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Upper large deviations for Branching Processes
in Random Environment with heavy tails
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Abstract

Branching Processes in Random Environment (BPREs) (Zn : n ≥ 0) are the generalization of
Galton-Watson processes where ‘in each generation’ the reproduction law is picked randomly in
an i.i.d. manner. The associated random walk of the environment has increments distributed
like the logarithmic mean of the offspring distributions. This random walk plays a key role in the
asymptotic behavior. In this paper, we study the upper large deviations of the BPRE Z when the
reproduction law may have heavy tails. More precisely, we obtain an expression for the limit of
− logP(Zn ≥ exp(θn))/n when n→∞. It depends on the rate function of the associated random
walk of the environment, the logarithmic cost of survival γ :=− limn→∞ logP(Zn > 0)/n and the
polynomial rate of decay β of the tail distribution of Z1. This rate function can be interpreted
as the optimal way to reach a given "large" value. We then compute the rate function when the
reproduction law does not have heavy tails. Our results generalize the results of Böinghoff &
Kersting (2009) and Bansaye & Berestycki (2008) for upper large deviations. Finally, we derive
the upper large deviations for the Galton-Watson processes with heavy tails. .
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1 Introduction

Branching processes in random environment have been introduced in [3] and [21]. In such pro-
cesses, for each generation, an offspring distribution is chosen at random, independently of other
generations. As an example, we can consider a population of plants in which each plant has a one
year life-cycle. Every year the weather conditions (the environment) vary affecting the reproductive
success of the plant. Given these conditions, all the plants reproduce independently according to
the same mechanism.
BPREs have originally been studied under the assumption of i.i.d. geometric -or more generally
linear fractional- offspring distributions [1, 17]. Later on, the case of general offspring distributions
has attracted attention [2, 4, 8, 11].

Recently, several results about the large deviations of branching processes in random environment
for offspring distributions with weak tails have been proved. More precisely, the exact asymptotics
of P(Zn ≥ exp(θn)) for geometric offspring distributions are computed in [18] and [19]. In [5],
the authors present a general upper bound for the rate function and compute it in the special case
of each individual leaving at least one offspring, i.e. P(Z1 = 0) = 0. Finally, in [9] an expression of
the upper rate function is derived when the reproduction laws have geometrically bounded tails.
This obviously excludes heavy tails.
Upper large deviations of BPREs correspond to the exceptional growth of these processes and can be
due to an exceptional environment and/or to the exceptional reproduction in a given environment.
Thus the motivation is not only to compute the rate function but also to understand the effect of
environmental and demographical stochasticity. The way both effects can contribute to atypical
events is a challenging question in theoretical ecology.
In this paper, we focus on the large deviation probabilities when the offspring distributions may
have heavy tails and the exceptional reproduction of a single individual can contribute to a
large deviation event. For the proofs, new auxiliary power series and higher order derivatives of
generating functions are used.

Let us now state the formal definition of the process (Zn : n ∈N), N = {0, 1,2, 3, . . .}, by consid-
ering a random probability generating function f and a sequence ( fn : n ≥ 1) of i.i.d. realizations
of f which serve as the random environment. Conditioned on the environment ( fn : n ≥ 1), the
individuals at generation n reproduce independently of each other and their offsprings have gener-
ating function fn+1. Let Zn denote the number of particles in generation n and Zn+1 is the sum of
Zn independent random variables with generating function fn+1. That is, for every n≥ 0,

E
�

sZn+1 |Z0, . . . , Zn; f1, . . . , fn+1
�

= fn+1(s)
Zn a.s. (0≤ s ≤ 1).

In the whole paper, Pk denotes the probability associated with k initial particles. Then, for all k ∈N
and n ∈N, we have

Ek[s
Zn | f1, ..., fn] = [ f1 ◦ · · · ◦ fn(s)]

k a.s. (0≤ s ≤ 1).

Unless otherwise specified, the initial population size is 1.

We introduce the exponential rate of decay of the survival probability

γ := lim
n→∞

−
1

n
logP(Zn > 0). (1)
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The fact that the limit exists and 0 ≤ γ < ∞ is classical since the sequence (− logP(Zn > 0))n is
subadditive and nonnegative (see [15] p. 38, Lemma III.29). Essentially, if E[log f ′(1)] ≥ 0, then
Z is supercritical or critical and γ= 0. Otherwise, Z is subcritical and

γ = − log
�

inf
n

E
�

(log f ′(1))s
�

: s ∈ [0,1]
o�

> 0.

More precisely, γ = − log(E[ f ′(1)]) in the strongly or intermediately subcritical case, i.e.
E[ f ′(1) log f ′(1)] ≤ 0, whereas γ > − log(E[ f ′(1)]) in the weakly subcritical case, i.e.
E[ f ′(1) log f ′(1)] > 0. We refer to [12] for more precise asymptotic results on the survival proba-
bility of subcritical BPREs. For large deviations without heavy tails, it has been already observed in
[9] that γ is of importance in the limit theorems only in the strongly subcritical case.

Many properties of Z are mainly determined by the random walk associated with the environ-
ment

S0 = 0, Sn− Sn−1 = Xn (n≥ 1),

where

Xn := log f ′n(1) (n≥ 1),

are i.i.d. copies of the logarithm of the mean number of offsprings

X := log f ′(1).

If Z0 = 1, we get for the conditioned means of Zn

E[Zn| f1, . . . , fn] = eSn a.s. (2)

In the whole paper, we assume that there exists a λ > 0 such that the moment generating function
E[exp(λX )] is finite. Then the rate function ψ of the random walk (Sn : n ∈N) is given by

ψ(θ) := sup
λ≥0

�

λθ − log(E[exp(λX )])
	

. (3)

As ψ is convex and lower semicontinuous, there is at most one θ ≥ 0 with ψ(θ) 6= ψ(θ+). In
this case, ψ(θ+) = ∞ (see e.g. [10], [15]). Usually, ψ is defined as the Legendre transform of
log(E[exp(λX )]) and the supremum in (3) is taken over all λ ∈ R. Here, we are only interested in
upper deviations, thus setting ψ(θ) = 0 for θ ≤ E[X ] is convenient.

Notations: In the whole paper, we denote by Π := ( f1, f2, . . .) the entire sequence of environments.
We write L = L( f ) for the random variable associated with the probability generating function f :

E[sL | f ] = f (s) (0≤ s ≤ 1) a.s.

and by m= m( f ) we denote its expectation:

m := f ′(1) = E[L| f ]<∞ a.s.

Unless specified otherwise, we start the branching process with a single individual and denote by
P the underlying probability measure. We denote by Pk the probability measure when the initial
size of the population is k. As a matter of fact, large deviation results do not depend on the initial
number of individuals if the latter is fixed (or bounded).
For notational convenience, we use the symbol ≤c to indicate that the inequality holds up to a
multiplicative constant (which does not depend on any variable).
Throughout the paper, we use the convention 0 ·∞= 0.
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2 Main results and interpretation

In this paper, we will describe the upper large deviations of the branching process (Zn : n ∈ N)
when the offspring distributions may have heavy tails. This means that the probability that one
individual gives birth to an exponential number of offsprings is ’only of exponentially small order’.
Throughout this paper we will work with the following assumption. It ensures that the tail of the
offspring distribution of an individual, conditioned to be positive, decays at least with exponent
β ∈ (1,∞) uniformly with respect to the environments.

Assumption H (β). There exists a constant 0< d <∞ such that for every z ≥ 0,

P(L > z | f , L > 0) ≤ d · (m∧ 1) · z−β a.s.

The rate function χ that we establish and interpret below depends on γ, β and ψ and is defined by

χ(θ) := inf
t∈[0,1],s∈[0,θ]

n

tγ+ βs+ (1− t)ψ((θ − s)/(1− t))
o

(= χγ,β ,ψ(θ)). (4)

We will actually prove that, apart from the strongly subcritical case, χ simplifies to

χ(θ) = inf
s∈[0,θ]

{βs+ψ(θ − s)}.

Theorem 1. Assume that for some β ∈ (1,∞), log(P(Z1 > z))/ log(z)
z→∞−→ −β and that additionally

H (β) holds. Then for every θ ≥ 0,

1

n
log(P(Zn ≥ eθn))

n→∞−→ −χ(θ).

The assumptions in this theorem essentially ensure that in a positive probability set of environments,
the offspring distributions have polynomial tails with exponent −β , and no tail distribution exceeds
this exponent.

The lower bound is proved in Section 3, while the proof of the upper bound is presented in
Sections 4 and 5 by distinguishing the case β ∈ (1,2] and the case β > 2. The proof for β > 2
is technically more involved since it requires higher order derivatives of generating functions to
get the divergence of the power series ddβe

dsdβd
∑∞

k=0 skP(Zn ≥ k), s → 1. In Section 5, we adapt the
arguments of the proof for β ∈ (1, 2] to the case β > 2.

Remark: Let us note that we can relax AssumptionH (β) by letting d depend on the environment.
But this would make the proof more tedious.
Moreover, Theorem 1 still holds if we just assume that there exists a slowly varying function l such
that

P(L > z | f , L > 0)≤ d · (m∧ 1) · l(z) · z−β a.s. (5)

instead of Assumption H (β). Indeed, the properties of slowly varying functions (see [7],
Proposition 1.3.6, p. 16) imply that for any ε > 0, there exists a constant dε such that
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P(L > z | f , L > 0) ≤ dε · (m ∧ 1) · z−β+ε a.s. For fixed θ ≥ 0, χγ,β ,ψ is continuous in β . So letting
ε → 0 yields the upper bound in the theorem. Finally, the proof of the lower bound only requires
that E[Z1 log+(Z1)/ f ′1(1)]<∞ (see p. 1911) which is assured by (5).

Let us state two consequences of this result. First, we will derive a large deviation result for
offspring distributions without heavy tails by letting β →∞, which generalizes Theorem 1 in [9].

Corollary 1. If AssumptionH (β) is fulfilled for every β > 1, then for every θ ≥ 0,

ϕ(θ)≤ lim inf
n→∞

−
1

n
log(P(Zn ≥ eθn))≤ lim sup

n→∞
−

1

n
log(P(Zn ≥ eθn))≤ ϕ(θ+),

where ϕ(θ) := inft∈[0,1]

n

tγ+ (1− t)ψ(θ/(1− t))
o

.

For example, this result holds if the offspring distributions are bounded (P(L ≥ a | f ) = 0 a.s. for
some constant a) or if P(L > z | f , L > 0)≤ c exp(−zα) a.s. for some constants c,α > 0.

Secondly, Theorem 1 also covers the Galton-Watson case, when the environment is not random
and f is deterministic. We refer to [6, 20] for the precise large deviations results without heavy
tails.

Corollary 2. Assume that Z is a Galton-Watson process. If log(P(Z1 > z))/ log(z)
z→∞−→ −β , then for

every θ ≥ E[Z1] = m

1

n
logP(Zn ≥ eθn)

n→∞−→ χ(θ) =

¨

−βθ + log m , if m< 1
β(log m− θ) , if m≥ 1

.

Indeed, in the Galton-Watson case, for β + ε > β , (5) results from log(P(Z1 > z))/ log(z)
z→∞−→ −β .

Then, we let ε → 0 to derive this corollary from Theorem 1. Moreover ψ(θ) = ∞ for θ > log m
and ψ(log m) = 0. For the rate of decay of the survival probability, it is well-known that
γ = − log( f ′(1)) = − log m in the subcritical case (m < 1) , and γ = 0 in the critical (m = 1)
and supercritical (m > 1) case. In the subcritical case, ψ(s) = ∞ for s > 0, implying t = 1 in
(4). The only way to grow can come from an individual having exceptionally many offsprings. In
the supercritical case, γ = 0 implies t = 0 in the infimum in (4), meaning that the process starts
growing right from the beginning. It remains to minimize χ(θ) = infs∈[0,θ]{βs+ψ(θ − s)}, where
ψ(θ) = 0 for θ ≤ log m and ψ(θ) = ∞ for θ > log m. Hence, χ(θ) = β(θ − log m). The critical
case is obtained similarly.

We give now some complements and interpretations of the results.

The quenched approach The asymptotic behavior of the large deviation probabilities is now con-
sidered conditionally on the environment.

Proposition 1. If lim supz→∞ logP(Z1 > z | f1, Z0 = 1)/ log z = −β a.s. for some β ∈ (1,∞), then
for every θ ≥ (E[X ]∨ 0),

lim
n→∞

1

n
logP(Zn ≥ eθn | f1, f2, . . .) =

¨

−βθ +E[X ] , if E[X ]< 0
−β(θ −E[X ]) , if E[X ]≥ 0

a.s.
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Essentially, this is a modification of the rate function given in Corollary 2 for the Galton-Watson
case. Here log m has been replaced by E[X ], since Sn/n → E[X ] a.s. Indeed large deviations
cannot rely on the stochasticity of the environments any longer and will essentially be realized by
one individual having exponentially many offsprings. The upper bound in Proposition 1 follows
directly from Theorems 2 and 3. The lower bound can also be easily proved by slightly adapting the
proof in Section 3 with the help of the Paley-Zygmund inequality. We defer the details of the proof
to Christian Böinghoff’s thesis.

Path interpretation of the rate function. Following the terminology in [15], if for a measurable
set A,

P(Zn ∈ A) = e−an+o(n)

then a will be referred to as cost for A.
In this terminology, the rate function describes the cost of reaching exceptionally large values,
namely

P(Zn ≥ eθn) = exp(−χ(θ)n+ o(n)).

We now describe the paths which lead to exceptionally large values, i.e. paths which realize
{Zn ≥ exp(θn)} for n � 1 and θ > E[X ]. In the subcritical case, at the beginning, up to time
btnc, t ∈ [0, 1], there is a period without growth, during which the process just survives. The prob-
ability of this event decreases as exp(−γbtnc). At time btnc, there are very few individuals and one
individual has exceptionally many offsprings, namely exp(sn)-many, s ∈ [0,θ]. The probability of
this reproduction event is given by P(Z1 ≥ exp(sn)) ∼ exp(−βsn). Then the process grows expo-
nentially according to its expectation in an exceptionally good environment to reach exp(θn). That
is S grows linearly such that Sn−Sbntc ≈ [θ − s]n and the probability of observing this exceptionally
good environment sequence decreases as exp(−(1 − t)ψ((θ − s)/(1 − t))n). The most probable
path reaching exceptionally large values exp(θn) at time n is then obtained by minimizing the sum
of these three costs γt, βs and (1 − t)ψ((θ − s)/(1 − t)). The rate function χ results from this
minimization:

χ(θ) = inf
t∈[0,1],s∈[0,θ]

n

tγ+βs+(1− t)ψ((θ−s)/(1− t))
o

= tθγ+βsθ+(1− tθ )ψ((θ−sθ )/(1− tθ ))

and thus corresponds to a strategy described by the function

fθ (t) :=

¨

0, if t ≤ tθ
βsθ +

c
1−tθ
(t − tθ ), if t > tθ .

Figure 1. Representation of t ∈ [0, 1]→ fθ (t).
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More precisely, following [5], we expect that

sup
t∈[0,1]

�

�

� log(Z[tn])/n− fθ (t)
�

�

	 n→∞−→ 0

in probability. But the proof becomes very technical and cumbersome and we refrain from giving it
here.

Actually, convexity arguments given below ensure that the jump occurs either at the beginning or
at the end (except in a degenerated case which is explained below). Then t = 0 or t = 1 in the
last picture and the corresponding paths are given by the four paths plotted in Figure 3. More
generally, we will describe the most probable trajectories realizing the large deviation events and
their depending on θ . For that purpose, we need a new characterization of the rate function χ.

Graphical construction of the rate function. It turns out that χ is the largest convex function
satisfying for all x ,θ ≥ 0 (see appendix, Lemma 3)

χ(0) = γ, χ(θ)≤ψ(θ), χ(θ + x)≤ χ(θ) + β x .

The first condition plays a role iff ψ(0) > γ, which corresponds to the strongly subcritical
case. This can be seen in the following way: if E[X exp(X )] < 0, then the derivative of the
map s → E[exp(sX )] in s = 1 is negative and ψ(0) = sup{− log(E[exp(sX )]) : s ≥ 0} >
− log(E[exp(X )]) = γ. If E[X ] < 0 and E[X exp(X )] ≥ 0, the results in [12] and the definition
of ψ ensure that both γ and ψ(0) are equal to − log(E[exp(νX )]) and ν is characterized by
E[X exp(νX )] = 0. Finally, if Z is critical or supercritical, i.e. E[X ]≥ 0, then ψ(0) = γ= 0.

Resulting from this characterization, χ can be constructed in three pieces separated by θ ∗ and θ †

(see appendix, Lemma 4).

Figure 2. Illustration of χ in the strongly subcritical case:
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More explicitly, let us define ϕ as the largest convex function that satisfies ϕ(0) ≤ γ and ϕ(θ) ≤
ψ(θ) for all θ ≥ 0. As proved in [9], this function is the rate function of Z in the case of the
offspring distributions having geometrically bounded tails and is given by

ϕ(θ) =

¨

γ
�

1− θ
θ ∗

�

+ θ
θ ∗
ψ(θ ∗) , if θ ≤ θ ∗

ψ(θ) , else

where 0≤ θ ∗ ≤∞ is defined by

ψ(θ ∗)− γ
θ ∗

= inf
θ≥0

ψ(θ)− γ
θ

. (6)

Next we define

θ † = sup
n

θ ≥max{0,E[X ]} : ϕ′(θ)≤ β and ϕ(θ)<∞
o

. (7)

Then

χ(θ) =

¨

ϕ(θ) , if θ < θ †

βθ − log(E[eβX ]) , else
(8)

and we get the following expression (see appendix, Lemma 4):

χ(θ) =







γ(1− θ
θ ∗
) + θ

θ ∗
ψ(θ ∗) , if θ ≤ θ ∗

ψ(θ) , if θ ∗ < θ < θ †

β(θ − θ †) +ψ(θ †) , if θ ≥ θ †
.

Thus the trajectories have the following form.

Figure 3. Representation of the possible trajectories of the path associated with upper large deviations.
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Phase Transitions Let us first describe the phase transitions (of order two) of the rate function χ,
which correspond to discontinuities of the second derivative of χ and the associated strategies when
θ † > 0.

For θ < θ ∗, the rate function χ is identical to ϕ, which is a convex combination of γ and
ψ (and not β). Thus, conditioned on the event {Zn ≥ exp(θn)}, the process first ’just survives
with bounded values’ until time btθnc (tθ ∈ (0, 1)). Then it grows in a good environment such
that Sn − Sbtθ nc ≈ θn (see Figure 3 a)). When θ increases, the survival period decreases while the
exponential growth rate of the process remains constant and is equal to θ ∗. Large deviation events
are typically not realized by a reproduction event with exponentially many offsprings.

For θ ∗ ≤ θ ≤ θ †, χ is equal to ψ. Thus, conditionally on the large deviation event, the process
grows exponentially (respectively linearly at the logarithmic scale) from the beginning to the end
(see Figure 3 b)). This exceptional growth is due to a favorable environment such that Sn ≈ θn.

For θ > θ †, the trajectory associated with the optimal strategy begins with one individual
having exponentially many offsprings: Z1 ≈ exp(sn). Then it grows exponentially in a favorable
environment such that Sn ≈ (θ − s)n (see Figure 3 c)). When θ increases, the initial jump increases
while the rate of the exponential growth is still equal to θ †.

The case θ † = 0 corresponds to χ(θ) = γ + βθ . Here the optimal strategy consists in just
surviving until the end and one individual having exp(θn)-many offsprings in one of the last
generations (see Figure 3 d)).
Finally, we note that in the case 0 < θ = θ ∗ = θ †, the optimal strategy is no longer unique. Indeed,
for any t ∈ (0,1], there exists an s ∈ [0,θ] such that all the following trajectories have the same
probability: First, the process remains positive and bounded until time btnc (survival period), then
it ’jumps’ to exp(sn) and grows exponentially with a constant rate (see Figure 1).

Figure 4. Representation of t ∈ [0,1]→ fθ (t) in the strongly subcritical case for θ1 < θ2 < θ3 = θ ∗ <
θ4 < θ5 = θ † < θ6 < θ7.
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In the next sections, we will prove the results. In Sections 3,4, 5 and 6, relations stated conditioned
on the environment hold a.s. with respect to the underlying probability measure. We refrain from
indicating this in every equation. Section 7 is the appendix which contains several technical results
used in the proof.

3 Proof of the lower bound of Theorem 1

For the proof of the lower bound of Theorem 1, we need the following result. It ensures that
exceptional growth of the population can at least be achieved by some good environment sequences,
whose probability decreases exponentially according to the rate function of the random walk (Sn :
n ∈N). This result generalizes Proposition 1 in [5] for an exponential initial number of individuals.
With a slight abuse of notation, we will write below exp(sn) for the initial number of individuals
instead of the integer part of exp(sn).

Proposition 2. Under AssumptionH (β), for all θ ≥ 0 and 0≤ s ≤ θ ,

lim inf
n→∞

1

n
logPexp(sn)(Zn ≥ exp(θn)) ≥ −ψ((θ − s)+).

Proof. Without loss of generality, we restrict ourselves to the case ψ((θ − s)+)<∞. Recall that for
every θ ′ > 0,

ψ(θ ′) = sup
λ≥0

n

λθ ′− logE[exp(λX )]
o

.

First, we assume that E[exp(λX )] < ∞ for every λ ≥ 0. Then the derivative of the map
λ→ E[exp(λX )] exists for every λ≥ 0. The supremum above is achieved at λ= λθ ′ satisfying

θ ′ =
E[X exp(λθ ′X )]
E[exp(λθ ′X )]

.
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Pursuing classical large deviation techniques (or more specifically the proof in [5]), we introduce
the probability eP defined by

eP(X ∈ dx) =
exp(λθ ′ x)

E[exp(λθ ′X )]
P(X ∈ dx).

Under this new probability measure, (Sn : n ∈ N) is a random walk with drift eE[X ] = θ ′ > 0 and
Zn is a supercritical BPRE.

Let us fix θ ≥ 0 and 0≤ s ≤ θ . For all n≥ 1, θ ′ > θ − s and ε > 0,

Pexp(sn)
�

Zn ≥ exp(θn)
�

≥ Pexp(sn)
�

Zn ≥ exp(θn); Sn ≤ (θ ′+ ε)n
�

= E[exp(λθ ′X )]
n
eEexp(sn)

�

exp(−λθ ′Sn)1l{ Zn≥exp(θn),Sn≤(θ ′+ε)n}
�

≥ exp
�

n
�

log(E[exp(λθ ′X )]−λθ ′(θ ′+ ε)
��

ePexp(sn)
�

Zn ≥ exp(θn), Sn ≤ (θ ′+ ε)n
�

≥ exp(n[−ψ(θ ′)−λθ ′ε])
�

ePexp(sn)
�

Zn ≥ exp(θn)
�

− eP
�

Sn > (θ
′+ ε)n

��

.

As eP
�

Sn > (θ ′+ ε)n
�

→ 0 for n→∞, it remains to prove that

lim inf
n→∞

ePexp(sn)
�

Zn ≥ exp(θn)
�

> 0. (9)

The statement of the proposition results from letting ε→ 0 and θ ′→ θ − s.

Relation (9) results from the fact that under eP the population Zn starting from a single individual
grows roughly as exp(Sn) = exp(θ ′n + o(n)) on the nonextinction event. To prove (9), we label
the individuals of the initial population and denote the number of descendants in generation n of
individual i by Z (i)n . Let us fix N ∈N and introduce the ’success’ probability pn:

pn := P1(Zn ≥ N exp(n(θ − s)) | Π) a.s.

Then, conditionally on Π, the number of initial individuals whose number of descendants in gener-
ation n is larger than N exp(n(θ − s)), given by

Nn := #{1≤ i ≤ exp(sn) : Z (i)n ≥ N exp(n(θ − s))},

follows a binomial distribution with parameters (exp(sn), pn). Moreover, since E[Nn | Π] =
exp(sn)pn a.s., we obtain

ePexp(sn)
�

Zn ≥ exp(θn)
�

≥ ePexp(sn)
�

Nn ≥ exp(sn)/N)≥ ePexp(sn)

�

Nn ≥
E[Nn | Π]

N pn

�

.

The classical Paley and Zygmund inequality (see e.g. [16] p. 63) given for r ∈ [0, 1] by

P(Y ≥ rE[Y ]) ≥ (1− r)2
E[Y ]2

E[Y 2]
, (10)
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and the fact that E[N2
n | Π] = e2snp2

n + esnpn(1− pn) a.s., ensure

ePexp(sn)

�

Nn ≥
E[Nn | Π]

N pn

�

�

� Π
�

≥
h

1− 1∧
1

N pn

i2E[Nn | Π]2

E[N2
n | Π]

≥

h

1− 1∧ 1
N pn

i2

1+ e−sn

pn

a.s.

Observe that under AssumptionH (β),

E[Z1 log+(Z1)/ f ′1(1)]<∞.

Theorem 1 in [3] ensures that Zn exp(−Sn) converges a.s. to a random variable which is positive on
the nonextinction event. So for every N ∈N,

eE[pn] = eP1(Zn ≥ N exp(θn))
n→∞−→ eP1(∀n ∈N : Zn > 0)> 0.

As the right-hand side does not depend on N and eE[pn]≤ eP(pn ≥ α)+α for every α > 0, it follows
that for N large enough that

δ := lim inf
n→∞

eP(pn ≥ 2/N)> 0.

Thus we get for such N that

lim inf
n→∞

P̃exp(sn)
�

Zn ≥ exp(θn)
�

≥ lim inf
n→∞

eE
h

�

1− 1∧ 1/N pn
�2

1+ 1/pn

i

≥
δ(1− 1/2)2

1+ N/2
> 0,

which proves (9) and finishes the proof when E[exp(λX )] <∞ for every λ ≥ 0. The general case
follows by a standard approximation argument, see e.g. [9] p. 2075/2076

Proof of the lower bound in Theorem 1. The proof now amounts to exhibiting good trajectories
which realize the large deviation event {Zn ≥ exp(θn)}. By Markov property, for every t ∈ (0,1)
and s ∈ [0,θ],

P(Zn ≥ exp(θn)) ≥ P(Z[tn] > 0)P(Z1 ≥ exp(sn))Pexp(sn)(Zn−[tn] ≥ exp(θn)).

By (1), we get that
1

tn
log(P(Z[tn] > 0))

n→∞−→ −γ.

Using that log(P(Z1 > z))/ log(z)
z→∞−→ −β yields

1

n
log(P(Z1 ≥ exp(sn)))

n→∞−→ −sβ .

Finally, by Proposition 2, we obtain that

lim inf
n→∞

1

(1− t)n
log(Pexp(sn)(Zn−[tn] ≥ exp(θn))) ≥ −ψ((θ − s)/(1− t)+)

since

Pexp(sn)(Zn−[tn] ≥ exp(θn)) = Pexp((1−t)ns/(1−t))(Zn−[tn] ≥ exp(n(1− t)θ/(1− t))).
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Combining the first inequality and the last three limits ensures that

lim inf
n→∞

1

n
log(P(Zn ≥ exp(θn))) ≥ − inf

t∈[0,1],s∈[0,θ]

n

tγ+ βs+ (1− t)ψ((θ − s)/(1− t)+)
o

.

The convex nonnegative function, ψ can have at most one jump and this jump goes to infinity. Thus
the infimum above is χ(θ). To see this, we only have to consider the jump point. Suppose that exist
sθ ∈ [0,θ] and tθ ∈ [0,1) such that

tθγ+ βsθ + (1− tθ )ψ((θ − sθ )/(1− tθ )) = χ(θ)<∞

and ψ((θ − sθ )/(1− tθ )+) =∞. Then, as (θ − sθ )/(1− tθ ) is the only jump point, for any ε > 0
there is a δ = δ(ε)> 0 such that

χ(θ)− ε ≤ tθγ+ β(sθ −δ) + (1− tθ )ψ((θ − sθ −δ)/(1− tθ )+)

= tθγ+ β(sθ −δ) + (1− tθ )ψ((θ − sθ −δ)/(1− tθ )).

Letting ε,δ(ε)→ 0 proves the result and hence the lower bound of Theorem 1.

4 Proof of the upper bound of Theorem 1 for β ∈ (1, 2]

Let us now introduce the minimum and maximum of the associated random walk up to time n:

Ln := min
0≤k≤n

Sk, Mn := max
0≤k≤n

Sk

By Markov inequality,
P(Zn > 0|Π) ≤ E[Zn|Π] = exp(Sn) a.s.

Furthermore P(Zn > 0|Π) is decreasing a.s. and we get the following classical inequality, which will
indeed be a good estimate of the rate of decay of the survival probability

P(Zn > 0|Π)≤ eLn a.s. (11)

For the proof of the upper bound of Theorem 1, we require the following key result for the tail
probability of Zn.

Theorem 2. Under Assumption H (β) for some β ∈ (1, 2], there exist a constant 0 < c < ∞ and a
positive nondecreasing slowly varying function Υ such that for all k ≥ 1 and n≥ 1,

P(Zn > k|Π) ≤ cnΥ(kn2/(β−1)eMn−Ln)eLn(eSn−Ln/k)β a.s.

Let us briefly explain this result. The probability to survive until time n evolves as eLn . Conditioned
on survival, a good environment sequence corresponds to large values of (Sn − Ln). The possibility
of high reproduction of the initial individual is reflected by the last term, k−β . Conditioned on the
environment and survival, the expected size of the process at time n is of order eSn−Ln , which cor-
responds to a period of exponential growth of the process. Thus, this theorem essentially says that
conditioned on Zn > 0, the tail distribution of Zn/e

Sn−Ln decays at least polynomially with exponent
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−β .

Recalling that Π = ( f1, f2, ...) and fn(s) is the probability generating function of the offspring distri-
bution of an individual in generation n− 1, we have

f0,n(s) :=
∞
∑

k=0

skP(Zn = k|Π) = E[sZn |Π] a.s. (0≤ s ≤ 1). (12)

For the proofs, it is suitable to work with an alternative expression, namely for every n≥ 1,

gn(s) :=
1− fn(s)

1− s
a.s. (0≤ s < 1).

The function gn has already been introduced in [9]. As lims↗1 gn(s) = f ′n(1) exists, we define
gn(1) := f ′n(1). Using the representation of the function as power series, let us define

g0,n(s) :=
∞
∑

k=0

skP(Zn > k|Π) =
1− f0,n(s)

1− s
a.s. (0≤ s ≤ 1). (13)

Moreover we need the following auxiliary function defined for every µ ∈ (0,1] by

hµ,k(s) :=
1

(1− fk(s))µ
−

1

( f ′k(1)(1− s))µ
=

gk(1)µ− gk(s)µ

(gk(1)gk(s)(1− s))µ
a.s. (0≤ s ≤ 1). (14)

Finally, we define for all 0≤ k ≤ n,

Uk :=
�

f ′1(1) · · · f
′
k(1)

�−1
= f ′0,k(1)

−1 = e−Sk , 0< k ≤ n; U0 := 1

fk,n := fk+1 ◦ fk+2 ◦ · · · ◦ fn, 0≤ k < n; fn,n := id a.s.

By a telescoping summation argument similar to the one used in [11], we get that

1

(1− f0,n(s))µ
=

Uµ0
(1− f0,n(s))µ

=
Uµn

(1− fn,n(s))µ
+

n−1
∑

k=0

 

Uµk
(1− fk,n(s))µ

−
Uµk+1

(1− fk+1,n(s))µ

!

=
Uµn

(1− s)µ
+

n−1
∑

k=0

Uµk

�

1

(1− fk+1( fk+1,n(s)))µ
−

1

( f ′k+1(1)(1− fk+1,n(s)))µ

�

=
Uµn

(1− s)µ
+

n−1
∑

k=0

Uµk hµ,k+1( fk+1,n(s)), s ≥ 0. (15)

Proof of Theorem 2. In the same vein as in [9], we will obtain an upper bound for P(Zn > z|Π)
from the divergence of g ′0,n(s) =

∑∞
j=0 jP(Zn > j|Π)s j−1 as s→ 1. More precisely, for all k ≥ 1 and
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s ∈ [0,1],

g ′0,n(s) ≥
k
∑

j=1

jP(Zn > j|Π)s j−1

≥ sk k2

2
P(Zn > k|Π). (16)

To get an upper estimate for g ′0,n(s), we will use (15) with µ= β − 1. This yields

g0,n(s) =
�

Uβ−1
n + (1− s)β−1

n−1
∑

k=0

Uβ−1
k hβ−1,k+1( fk+1,n(s))

�−1/(β−1)
(0≤ s ≤ 1).

Calculating the first derivative of g0,n, we get that:

g ′0,n(s)

= −(β − 1)−1
�

Uβ−1
n + (1− s)β−1

n−1
∑

k=0

Uβ−1
k hβ−1,k+1( fk+1,n(s))

�−1−1/(β−1)

×
�

− (β − 1)(1− s)β−2
n−1
∑

k=0

Uβ−1
k hβ−1,k+1( fk+1,n(s))

+(1− s)β−1
n−1
∑

k=0

Uβ−1
k h′β−1,k+1( fk+1,n(s)) f

′
k+1,n(s)

�

=

∑n−1
k=0 Uβ−1

k hβ−1,k+1( fk+1,n(s))− (β − 1)−1(1− s)
∑n−1

k=0 Uβ−1
k h′β−1,k+1( fk+1,n(s)) f ′k+1,n(s)

(1− s)2−β
�

Uβ−1
n + (1− s)β−1

∑n−1
k=0 Uβ−1

k hβ−1,k+1( fk+1,n(s))
�1+1/(β−1)

≤

∑n−1
k=0 Uβ−1

k

�

hβ−1,k+1( fk+1,n(s))− (β − 1)−1h′β−1,k+1( fk+1,n(s)) f ′k+1,n(s)(1− s)
�

Uβn (1− s)2−β
. (17)

In the last step, we have used (14) to get hβ−1,k+1(s) ≥ 0 for all s ≥ 0 to estimate the denominator.
Then Lemma 5 in the appendix ensures that there exist a c > 0 and a slowly varying function Υ such
that for every s ∈ [0, 1),

hβ−1,k(s) ≤ cΥ(1/(1− s)), (18)

−h′β−1,k(s) ≤ cΥ(1/(1− s))/(1− s) a.s. (19)

Moreover, adapting (15) to fk+1,n(s) instead of f0,n(s) yields

1

(1− fk+1,n(s))µ
=

e−µ(Sn−Sk+1)

(1− s)µ
+

n−1
∑

j=k+1

eµ(S j−Sk+1)hµ,k+1( fk+1,n(s)), s ≥ 0.

Applying (45) in the appendix for 0 < µ < β − 1 to bound hµ,k, we can conclude that there exists a
c ≥ 1 such that for every s ∈ [0,1),

1

(1− fk+1,n(s))µ
≤

e−µ(Sn−Sk+1)

(1− s)µ
+ n c eµmaxk+1≤ j≤n(Sn−S j) ≤ c eµ(Mn−Ln)(n+ 1)/(1− s)µ.
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Combining this inequality with (18) yields

hβ−1,k+1( fk+1,n(s)) ≤ cΥ
�

(n+ 1)1/µeMn−Ln(1− s)−1� (0≤ s < 1).

for some c > 0. Moreover, fk+1,n(s) ≤ 1 − f ′k+1,n(s)(1 − s) by convexity of fk+1,n and thus (19)
ensures that

− h′β−1,k+1( fk+1,n(s)) f
′
k+1,n(s)(1− s) ≤ c f ′k+1,n(s)(1− s)Υ

�

1/(1− fk+1,n(s))
� 1

1− fk+1,n(s)

≤ c Υ
�

(n+ 1)1/µeMn−Ln(1− s)−1� a.s. (0≤ s < 1).

From the two last estimates with µ= (β − 1)/2 in (17), we get that for every s ∈ [0,1],

g ′0,n(s) ≤
c n e−(β−1)LnΥ

�

(n+ 1)2/(β−1)eMn−Ln(1− s)−1�

Uβn (1− s)2−β
.

By setting s = 1− 1/k in the estimate above and using (16), we obtain that

�

1−
1

k

�k k2

2
P(Zn > k|Π) ≤ c

n e−(β−1)Ln k2−β Υ
�

k(n+ 1)2/(β−1)eMn−Ln
�

Uβn
,

which completes the proof since Un = exp(−Sn).

For the proof of the upper bound of Theorem 1, we also need the following characterization of the
cost of survival γ:

Lemma 1. Under Assumption H (β), for all θ ≥ 0, b > 0 and Υ a positive nondecreasing slowly
varying function at infinity, we have

γ = − lim
n→∞

1

n
logE

�

Υ(nbeθne−Ln)eLn
�

.

Proof of Lemma 1. First let Υ = 1. Then using (11) as the upper bound, and (15) with some 0 <
µ < β − 1 along with (45) as the lower bound ensures that

eLn ≥ P(Zn > 0|Π) ≥
1

(e−µSn +
∑n−1

k=0 e−µSk hµ,k+1( fk+1,n(0)))1/µ

≥ c−1n−1/µeLn .

This yields

γ = − lim
n→∞

1

n
logP(Zn > 0) =− lim

n→∞

1

n
logE

�

eLn
�

.

As Υ is nondecreasing and −Ln (and thus nbeθne−Ln) is also nondecreasing,

γ = lim
n→∞

−
1

n
logE

�

eLn
�

≥ limsup
n→∞

−
1

n
logE[Υ(nbeθne−Ln)eLn].
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For the converse inequality, we use that E
�

et Ln
�

is nonincreasing in n to define

ξ(t) := − lim
n→∞

1

n
logE

�

et Ln
�

.

Note that ξ(t)≥ 0 and by Lemma V.4 in [15], ξ(t) is finite and convex. Thus ξ is continuous.
Now by properties of slowly varying sequences, for any δ > 0, x−δΥ(x) → 0 as x → ∞ (see [7],
Proposition 1.3.6, p. 16) and thus

lim inf
n→∞

−
1

n
logE

�

Υ(nbeθne−Ln)eLn
�

≥ −δθ − lim
n→∞

1

n
logE

�

e(1+δ)Ln
�

.

Letting δ→ 0 and using the continuity of ξ finishes the proof.

Proof of the upper bound of Theorem 1. First, recall the following classical large deviation inequality:

P(Sn ≥ θn) ≤ e−ψ(θ)n. (20)

Let us define the first time τn when the random walk (Si : i ≤ n) reaches its minimum value on
[0, n]:

τn := inf{0≤ k ≤ n : Sk = Ln}.

We decompose the probability of having an exponentially large population according to the values
Sn − Ln. To control the term in the slowly varying function in Theorem 2, we also add a term
bounding the maximum of the random walk up to time n. Let r ∈N. Then

P(Zn ≥ eθn) = P(Zn ≥ eθn, Sn− Ln ≥ θn) +E[P(Zn ≥ eθn|Π); Sn− Ln < θn, Mn ≤ rθn]

+E[P(Zn ≥ eθn|Π); Sn− Ln < θn, Mn > rθn]. (21)

The asymptotic of the first term can be found using (20) (see [9]):

P(Zn ≥ eθn, Sn− Ln ≥ θn) ≤
n
∑

i=1

P(Zi > 0)P(Sn− Si ≥ θn)

≤
n
∑

i=1

P(Zi > 0)exp(−(n− i)ψ(θn/(n− i))).

This ensures that

lim sup
n→∞

1

n
logP(Zn ≥ eθn, Sn− Ln ≥ θn) ≤ −ϕ(θ), (22)

where we recall that

ϕ(θ) = inf
0<t≤1

�

tγ+ (1− t)ψ(θ/(1− t))
	

.
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For the second term in (21), we use Theorem 2 and the Markov property for (Sn : n ≥ 0). For every
r ∈N,

E[P(Zn ≥ eθn|Π); Sn− Ln < θn, Mn ≤ rθn]

≤ c n E
h

Υ(n2/(β−1)eMn−Ln eθn)eLn eβ(Sn−Ln−θn); Sn− Ln < θn, Mn ≤ rθn
i

≤ c n
n
∑

k=0

E
h

Υ(n2/(β−1)e−Sk e(r+1)θn)eSk eβ(Sn−Sk−θn); Sn− Ln < θn,τn = k
i

≤ c n
n
∑

k=0

E[Υ(n2/(β−1)e−Sk e(r+1)θn)eSk ;τk = k]E[e−β(θn−Sn−k); Sn−k < θn, Ln−k ≥ 0].

Let ε= 1/n2 and mε = dθ/εe. Note that

E[Υ(n2/(β−1)e−Sk e(r+1)θn)eSk ;τk = k] = E[Υ(n2/(β−1)e−Lk e(r+1)θn)eLk ,τk = k]

≤ E[Υ(n2/(β−1)e−Lk e(r+1)θn)eLk],

and hence from (20), we deduce that

E[P(Zn ≥ eθn|Π); Sn− Ln < θn, Mn ≤ rθn]

≤ c n
n
∑

k=1

E[Υ(n2/(β−1)e−Lk e(r+1)θn)eLk]
mε
∑

j=0

e−β(θ−( j+1)ε)nP
�

Sn−k ∈ [n jε, n( j+ 1)ε), Ln−k ≥ 0
�

≤ c n
n
∑

k=1

E[Υ(n2/(β−1)e−Lk e(r+1)θn)eLk]
mε
∑

j=0

e−β(θ−( j+1)ε)ne−ψ( jεn/(n−k))(n−k)

≤ c θ n4 sup
0<t≤1,0≤s≤θ

n

E
h

Υ(n2/(β−1)e−Lbtnce(r+1)θn)eLbtnc
i

· e−(βs+(1−t)ψ((θ−s)/(1−t)))n
o

.

Together with Lemma 1, this yields that for every r ∈N,

limsup
n→∞

1

n
logE[P(Zn ≥ eθn|Π); Sn− Ln < θn, Mn ≤ rθn] ≤ −χ(θ), (23)

where

χ(θ) = inf
0<t≤1,0≤s≤θ

n

γt + βs+ (1− t)ψ((θ − s)/(1− t))
o

.

As to the third term in (21), by duality,

E[P(Zn ≥ eθn|Π); Sn− Ln < θn, Mn > rθn]≤ P(Mn > rθn)

= P( max
k=0,...,n

(Sn− Sk)> rθn) = P(Sn− Ln > rθn). (24)

It has been proved in [9] (see p. 2068) that,

ϕ0(x) :=− lim
n→∞

1

n
logP(Sn− Ln > xn) = inf

0<t≤1

�

(1− t)ψ(x/(1− t))
	 x→∞−→ ∞.
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Combining this result with (21), (22), (23) and (24) shows that

lim sup
n→∞

1

n
logP(Zn ≥ eθn) ≤ −min{ϕ(θ);χ(θ);ϕ0(rθ)}.

Observe that χ(θ) ≤ ϕ(θ) since the infimum is considered on a larger set for χ than for ϕ. Adding
that ϕ0(x)→∞ as x →∞, we get

lim sup
n→∞

1

n
logP(Zn ≥ eθn) ≤ −χ(θ)

by letting r →∞. This proves the upper bound of Theorem 1.

5 Adaptation of the proof of the upper bound for β > 2

First, note that Lemma 1 still holds for β > 2 by following the same proof. Indeed, using (15)
for µ= 1 together with Lemma 5 stated in the appendix ensures that

P(Zn > 0|Π) = 1− f0,n(0) ≥
1

e−Sn +
∑n−1

k=0 e−Sk h1,k+1( fk+1,n(0))
≥ n−1 c−1eLn .

The main difficulty here is to obtain the equivalent of Theorem 2. For this, one has to calculate the
higher order derivatives of g0,n. Then, the upper bound for the tail probability of Zn contains an
additional term:

Theorem 3. Under Assumption H (β) for some β > 2, there are a constant 0 < c <∞ and a positive
nondecreasing slowly varying function Υ such that for every k ≥ 1,

P(Zn > k|Π) ≤ c eSn nβΥ(n2eMn−Ln k)max
�

k−β e(β−1)(Sn−Ln); k−dβe−1edβe(Sn−Ln)
	

a.s.

For the proof, we will use the functions (compare with (14))

hk(s) := h1,k(s) =
1

(1− fk(s))
−

1

f ′k(1)(1− s)
=

gk(1)− gk(s)
gk(1)gk(s)(1− s)

(0≤ s < 1) a.s.

and

H(s) :=
n−1
∑

k=0

Ukhk+1( fk+1,n(s)) (0≤ s < 1) a.s. (25)

Applying (15) with µ= 1 yields

g0,n(s)
−1 =

1− s

1− f0,n(s)
= Un+ (1− s)H(s) (0≤ s < 1) a.s.

Calculating the l-th derivative of the above equation, we get that for all l ≥ 1 and s ∈ [0,1),

d l

dsl
g0,n(s)

−1 = (1− s)H(l)(s)− lH(l−1)(s) (0≤ s < 1) a.s. (26)
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The rest of this section is organized as follows. First, we provide a technical lemma which gives
useful bounds for the functions defined above. We then prove Theorem 3. Finally, we sketch the
main steps of the proof of the upper bound of Theorem 1 for β > 2. For notational simplicity, we
introduce ≤c to mean that the inequality is fulfilled up to a multiplicative constant c which does not
depend on s, k or Π.

Lemma 2. Under AssumptionH (β), for every l ≤ dβe − 1 and 0≤ k ≤ n,

f (l)k,n(1) ≤c nl−1 eSn−Sk e(l−1)(Sn−Ln) a.s. (27)

Moreover the following estimates hold a.s. for every s ∈ [0, 1) respectively for l < dβe − 2, l = dβe − 2
and l = dβe − 1,

|H(l)(s)| ≤c nl el(Sn−Ln)e−Ln , (28)

|H(l)(s)| ≤c nl e(dβe−2)(Sn−Ln)e−Ln

+nΥ(n2eMn−Ln(1− s)−1)(1− s)−(dβe−β)e−Sn e(β−1)(Sn−Ln) (29)

|H(l)(s)| ≤c nl e(dβe−1)(Sn−Ln)e−Ln + nΥ(n2eMn−Ln(1− s)−1) e−Sn eβ(Sn−Ln)(1− s)−(dβe−β)

+nΥ(n2eMn−Ln(1− s)−1) e−Sn e(β−1)(Sn−Ln)(1− s)−1−(dβe−β) a.s. (30)

Proof. We prove the lemma by induction with respect to l. All the following relations hold a.s. for
every s ∈ [0, 1). For l = 1, (27) is trivially satisfied since f ′0,n(1) = eSn and f ′k,n(1) = eSn−Sk . We first
consider l < dβe − 2 and assume that then (27) holds for every i ≤ l. In the first step, it will be
proved that (28) holds for l. In the second step, we will show that (27) holds for l + 1.

By the induction assumptions and the monotonicity of the generating functions and their derivatives,
for all i ≤ l and s ∈ [0, 1], we have

f (i)k+1,n(s) ≤ f (i)k+1,n(1) ≤c ni−1 eSn−Sk e(i−1)(Sn−Ln). (31)

We will use this to bound the l-th derivative of hk+1 ◦ fk+1,n. Lemma 7 (see appendix) ensures that

�

�

�

d l

dsl
hk+1( fk+1,n(s))

�

�

� =
�

�

�

l
∑

j=1

h( j)k+1( fk+1,n(s))u j,l(s)
�

�

�,

where

u j,l(s) =
∑

(i1,...,i2 j)∈C ( j,l)

ci( f
(i1)(s))i2 · · · ( f (i2 j−1))(s))i2 j

and C ( j, l) =
�

(i1, . . . , i2 j) ∈ N2 j
�

�i1i2 + i3i4 + . . . = l and i2 + i4 + . . . = j
	

. Using (53) and (31),
these functions statisfy

u j,l(s) ≤c nl− j e j(Sn−Sk) e(l− j)(Sn−Ln) ≤c nl−1 eSn−Sk e(l−1)(Sn−Ln).

For j < dβe − 2, the derivatives h( j)k are bounded by a constant that does not depend on Π (see
Lemma 6, appendix). Thus

�

�

�

d l

dsl
hk+1( fk+1,n(s))

�

�

� ≤c nl−1 eSn−Sk e(l−1)(Sn−Ln).

1919



By definition of H (see (25)), we get that

|H(l)(s)| ≤c

n−1
∑

k=0

nl−1 nl−1 eSn−Sk e(l−1)(Sn−Ln) e−Sk ≤c nl el(Sn−Ln)e−Ln ,

which proves (28) for l < dβe − 2.

We now show that (27) is fulfilled for l + 1 < dβe − 1. Using Lemma 7 again with f = g0,n and
h(x) = 1/x , we get that

d l

dsl
g0,n(s)

−1 =
l
∑

j=1

(−1)(−2) · · · (− j)g0,n(s)
−( j+1)ũ j,l(s)

= −g0,n(s)
−2 g(l)0,n(s) +

l
∑

j=2

(−1)(−2) · · · (− j)g0,n(s)
−( j+1)ũ j,l(s), (32)

where

ũ j,l(s) =
∑

i=(i1,...,i2 j)∈C ( j,l)

ci(g
(i1)
0,n (s))

i2 · · · (g(i2 j−1)
0,n )(s))i2 j , (33)

and C ( j, l) =
�

(i1, . . . , i2 j) ∈N2 j
�

�i1i2+ i3i4+ . . .= l and i2+ i4+ . . .= j
	

.
Moreover, f (l)(1) = l g(l−1)(1) (see (39)). Thus, using the induction assumption (27) yields for
every i ≤ l − 1, g(i)0,n(1)≤c nieSn ei(Sn−Ln) and

ũ j,l(1)≤c nl e jSn el(Sn−Ln).

By (25), the left-hand side of (32) is equal to (1− s)H(l)(s)− lH(l−1)(s). By (28), for l < dβe − 2,
(1− s)H(l)(s) vanishes for s = 1. Thus letting s→ 1 and recalling that g0,n(1) = eSn yields

g(l)0,n(1) ≤c e2Sn

�
l
∑

j=2

(−1)(−2) · · · (− j)e−( j+1)Sn nl e jSn el(Sn−Ln) + l|H(l−1)(1)|
�

≤c eSn nl el(Sn−Ln)+ e2Sn |H(l−1)(1)|.

As (28) is already proved for l < dβe − 2, we get that

g(l)0,n(1) ≤c nl eSn el(Sn−Ln)+ nl−1 e2Sn e(l−1)(Sn−Ln)e−Ln

≤c nl eSn el(Sn−Ln).

Using (39), we get (27) for l+1, which completes the induction step and proves (27) for l < dβe−1.
The proof for f (l)k,n(1) instead of f (l)0,n(1) is the same. Here, just note that for all 0 ≤ k ≤ n, it holds
that Sn− Sk −min j≥k{S j − Sk} ≤ Sn− Ln.

1920



Let us now prove the bound on H(l)(s) for l = dβe − 2. Using Lemma 6 and (27) yields
�

�

�

d l

dsl
hk+1( fk+1,n(s))

�

�

�

=
�

�

�

l−1
∑

j=1

h( j)k+1( fk+1,n(s))u j,l(s) + h(l)k+1( fk+1,n(s))( f
′
k+1,n(s))

l
�

�

�

≤c nl−1eSn−Sk e(dβe−3)(Sn−Ln)

+Υ(1/(1− fk+1,n(s)))(1− fk+1,n(s))
−(dβe−β)( f ′k+1,n(s))

dβe−2. (34)

Now by the same arguments as in the proof of Theorem 2,

Υ(1/(1− fk+1,n(s)))≤Υ(n2eMn−Ln(1− s)−1).

The convexity of fk+1,n ensures that

(1− fk+1,n(s))
−(dβe−β) ≤ (1− s)−(dβe−β)( f ′k+1,n(s))

−(dβe−β).

Recalling that β > 2 and f ′k+1,n(s)≤ eSn−Ln , and applying (34) yields

�

�

�

d l

dsl
hk+1( fk+1,n(s))

�

�

� ≤c nl−1eSn−Ln e(dβe−3)(Sn−Ln)

+Υ(n2eMn−Ln(1− s)−1)(1− s)−(dβe−β)e(β−2)(Sn−Ln).

Combining this inequality with the estimate (recall (25)),

|H(l)(s)| ≤
n−1
∑

k=0

e−Sk

�

�

�

d l

dsl
hk+1( fk+1,n(s))

�

�

�≤ ne−Ln

�

�

�

d l

dsl
hk+1( fk+1,n(s))

�

�

�, (35)

proves (29).

This implies that (1− s)H(l)(s)→ 0 as s→ 1 for l = dβe−2. Thus we can apply the same arguments
to get an upper bound for g(l)0,n(1) to prove (27) for l = dβe − 1.

Finally, let l = dβe − 1. Applying the same arguments as before, Lemmas 6 yields
�

�

�

d l

dsl
hk+1( fk+1,n(s))

�

�

�

=
�

�

�

l−2
∑

j=1

h( j)k+1( fk+1,n(s))u j,l(s) + lh(l−1)
k+1 ( fk+1,n(s)) f

(2)
k+1,n(s)( f

′
k+1,n(s))

l−2

+ h(l)k+1( fk+1,n(s))( f
′
k+1,n(s))

l
�

�

�

≤c nl−1e(dβe−1)(Sn−Ln)

+Υ(n2eMn−Ln(1− s)−1)(1− s)−(dβe−β)( f ′k+1,n(s))
−(dβe−β) f (2)k+1,n(s)( f

′
k+1,n(s))

dβe−3

+Υ(n2eMn−Ln(1− s)−1)(1− s)−1−(dβe−β)( f ′k+1,n(s))
−1−(dβe−β)( f ′k+1,n(s))

dβe−1

≤c nl−1eSn e(dβe−2)(Sn−Ln)+Υ(n2eMn−Ln(1− s)−1)

·
�

e(β−1)(Sn−Ln)(1− s)−(dβe−β)+ e(β−2)(Sn−Ln)(1− s)−1−(dβe−β)
�

.
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Using (35) again, we get (30) and the proof is complete.

Proof of Theorem 3 for β > 2. Let l = dβe−1. Without loss of generality, we can assume that Υ≥ 1.
The following relations hold a.s. Combining (26) and (32), we get that

g(l)0,n(s) = g0,n(s)
2
�

− (1− s)H(l)(s) + lH(l−1)(s) +
l
∑

j=2

(−1)(−2) · · · (− j)g0,n(s)
−( j+1)ũ j,l(s)

�

,

where ũ j,l is defined in (33). Using (29), (30), and g0,n(s)≤ eSn for the first terms yields

g(l)0,n(s)≤c e2Sn nlΥ(n2eMn−Ln(1− s)−1)
�

(1− s)e(dβe−1)(Sn−Ln)e−Ln + e−Sn eβ(Sn−Ln)(1− s)1−(dβe−β)

+ e−Sn e(β−1)(Sn−Ln)(1− s)−(dβe−β)+ e(dβe−2)(Sn−Ln)e−Ln + e−Sn e(β−1)(Sn−Ln)(1− s)−(dβe−β)
�

+ g−( j−1)
0,n (s)ũ j,l(s).

Using that for every i ∈ N, g(i)(s)/(g(s))i ≤ g(i)(1)/(g(1))i (see (41), appendix), the definition of
ũ j,l , (27) and (39), we get that

g−( j−1)
0,n (s)ũ j,l(s)≤c nl−1eSn e(l−1)(Sn−Ln).

Thus we get that

g(l)0,n(s)≤c eSn nlΥ(n2eMn−Ln(1− s)−1)
�

(1− s)−(dβe−β)e(β−1)(Sn−Ln)+ (1− s)1−(dβe−β)eβ(Sn−Ln)

+ (1− s)edβe(Sn−Ln)+ e(dβe−1)(Sn−Ln)
�

+ eSn nl e(dβe−1)(Sn−Ln).

As in (16), we get the following estimate for every 1/2≤ s < 1,

g(l)0,n(s) ≥c skkl+1P(Zn > k|Π).

Choosing s = 1− 1/k yields

P(Zn > k|Π) ≤c eSn nlΥ(n2eMn−Ln k)
�

k−β e(β−1)(Sn−Ln)+ k−(β+1)eβ(Sn−Ln)

+k−dβe−1edβe(Sn−Ln)+ k−dβee(dβe−1)(Sn−Ln)
�

.

Using the monotonicity of the function x → a−x exp((x − 1)b) for all a ≥ 1 and b ≥ 0, and that
β ≤ dβe< β + 1≤ dβe+ 1, we get that for all k ≥ 1,

max
�

k−β−1eβ(Sn−Ln); k−dβee(dβe−1)(Sn−Ln)
	

≤ max
�

k−β e(β−1)(Sn−Ln); k−dβe−1edβe(Sn−Ln)
	

.

Combining the two last inequalities leads to

P(Zn > k|Π) ≤c eSn nlΥ(n2eMn−Ln k)max
�

k−β e(β−1)(Sn−Ln); k−dβe−1edβe(Sn−Ln)
	

,

and this completes the proof.
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Proof of the upper bound of Theorem 1 for β > 2. The proof is in the same spirit as the proof for β ∈
(1,2]. Theorem 3 yields

lim sup
n→∞

1

n
logP(Zn > eθn) ≤ −min

�

χγ,β ,ψ(θ),χγ,dβe+1,ψ(θ)
	

,

where χ is defined in (4). Using the characterization of χ (see Lemma 3, appendix), we deduce
that for any θ ≥ 0,

χγ,β ,ψ(θ) ≤ χγ,dβe+1,ψ(θ).

Thus
min

�

χγ,β ,ψ(θ),χγ,dβe+1,ψ(θ)
	

= χγ,β ,ψ(θ) = χ(θ),

which yields the upper bound.

6 Proof of Corollary 1

By assumption, there exists a constant d <∞ such that for every β > 0,

P(L > z| f , L > 0) ≤ d · (m∧ 1) · z−β a.s.

Thus we may apply the upper bound in Theorem 1 for every β > 0. Thus, for all β > 0 and θ ≥ 0,

limsup
n→∞

1

n
logP(Zn > eθn) ≤ −χγ,β ,ψ(θ).

Taking the limit β →∞, monotone convergence of χγ,β ,ψ yields

lim sup
n→∞

1

n
logP(Zn > eθn) ≤ −χγ,∞,ψ(θ),

where

χγ,∞,ψ(θ) := lim
β→∞

inf
t∈[0,1],s∈[0,θ]

n

tγ+ βs+ (1− t)ψ((θ − s)/(1− t))
o

= inf
t∈[0,1]

n

tγ+ (1− t)ψ(θ/(1− t))
o

.

This gives the upper bound. For the proof of the lower bound, we can apply the same arguments as
in Section 3.

7 Appendix

In this section, we present several technical results for real functions which are required for the
proofs.
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7.1 Characterization of the rate function χ

Lemma 3. Let ψ be a nonnegative convex function, 0 ≤ γ ≤ ψ(0) and β > 0. Then the function χ
defined for θ ≥ 0 by

χ(θ) = inf
t∈[0,1],s∈[0,θ]

�

tγ+ βs+ (1− t)ψ((θ − s)/(1− t))
	

is the largest convex function such that for all x ,θ ≥ 0,

χ(0) = γ, χ(θ)≤ψ(θ), χ(θ + x)≤ χ(θ) + β x . (36)

Proof. We first prove that that χ is convex. Using the definition of χ and the convexity of ψ, for
any θ ′,θ ′′ ≥ 0 and ε > 0 there exist t ′, t ′′ ∈ [0, 1), s′ ∈ [0,θ ′] and s′′ ∈ [0,θ ′′] such that for every
λ ∈ [0,1],

λχ(θ ′) + (1−λ)χ(θ ′′)
≥ λ[t ′γ+ βs′+ (1− t ′)ψ((θ ′− s′)/(1− t ′))]

+(1−λ)[t ′′γ+ βs′′+ (1− t ′′)ψ((θ ′′− s′′)/(1− t ′′))]− ε
≥ [λt ′+ (1−λ)t ′′]γ+ [λs′+ (1−λ)s′′]β

+(λ(1− t ′) + (1−λ)(1− t ′′)) λ(1−t ′)
λ(1−t ′)+(1−λ)(1−t ′′)ψ((θ

′− s′)/(1− t ′))

+(λ(1− t ′) + (1−λ)(1− t ′′)) (1−λ)(1−t ′′)
λ(1−t ′)+(1−λ)(1−t ′′)ψ((θ

′′− s′′)/(1− t ′′))− ε

≥ [λt ′+ (1−λ)t ′′]γ+ [λs′+ (1−λ)s′′]β

+
�

1− [λt ′+ (1−λ)t ′′]
�

ψ
�λθ ′+ (1−λ)θ ′′− (λs′+ (1−λ)s′′)

1− [λt ′+ (1−λ)t ′′]

�

− ε

≥ χ
�

λθ ′+ (1−λ)θ ′′
�

− ε.

Letting ε→ 0 entails that χ is convex.

Following the previous computation, we can verify that χ fulfills (36). For any θ ≥ 0 and
ε > 0, there exist t ′ ∈ [0, 1) and s′ ∈ [0,θ] such that

χ(θ) ≥ t ′γ+ βs′+ (1− t ′)ψ
�

(θ − s′)/(1− t ′)
�

− ε
= t ′γ+ β(s′+ x) + (1− t ′)ψ

�

(θ + x − (s′+ x))/(1− t ′)
�

− β x − ε
≥ inf

t∈[0,1],s̃∈[0,θ+x]

�

tγ+ β s̃+ (1− t)ψ((θ + x − s̃)/(1− t))
	

− β x − ε.

Taking the limit ε→ 0 yields the third property in (36). Furthermore, setting t = 0, s = 0 implies
χ(θ)≤ψ(θ) and letting t → 1 shows that χ(0)≤ γ. This completes the proof of (36).

Finally, let κ be any convex function which satisfies (36). Then for all t ∈ [0,1) and 0≤ s ≤ θ ,

tγ+ βs+ (1− t)ψ((θ − s)/(1− t)) ≥ tκ(0) + βs+ (1− t)κ((θ − s)/(1− t))

≥ βs+κ
�

t0+ (1− t)(θ − s)/(1− t)
�

= βs+κ(θ − s)

≥ κ(θ).
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Taking the infimum over s and t yields χ(θ)≥ κ(θ) and this completes the proof.

Another characterization of χ results from Lemma 3 (see Figure 2):

Lemma 4. Let χ, θ ∗ and θ † be defined as in (4), (6) and (7) and assume 0< θ ∗ < θ † <∞. Then

χ(θ) =







γ(1− θ
θ ∗
) + θ

θ ∗
ψ(θ ∗) , if θ ≤ θ ∗

ψ(θ) , if θ ∗ < θ < θ †

β(θ − θ †) +ψ(θ †) , if θ ≥ θ †
.

Proof. Note that the convex and monotone function ψ has at most one jump (to infinity). Let this
jump be in 0 < θ j ≤ ∞. For θ < θ j , ψ(θ) is differentiable. As ψ is also continuous from below,
ψ(θ j)<∞. By the preceding lemma, χ is the largest convex function starting at χ(0) = γ, being at
most as large as ψ and having at most slope β .
The largest convex function through the point (0,γ) being smaller/equal than ψ has to be linear
and has to be a tangent toψ. By the definition of θ ∗, the tangent toψ at θ ∗ touches the point (0,γ).
Thus χ is linear for θ < θ ∗ and follows this tangent. For θ > θ ∗, χ is identical to ψ until the slope
of ψ is exactly β (or until ψ jumps to infinity). At this point θ †, the last condition in (36) becomes
important and χ is linear with slope β for θ > θ †. Summing up,

χ(θ) =







γ(1− θ
θ ∗
) + θ

θ ∗
ψ(θ ∗) , if θ ≤ θ ∗

ψ(θ) , if θ ∗ < θ < θ †

β(θ − θ †) +ψ(θ †) , if θ ≥ θ †
.

If γ=ψ(0), then θ ∗ = 0. If ψ′(0)> β , then θ † = 0 and χ(θ) = γ+βθ . We refrain from describing
other degenerated cases.

7.2 Slowly varying functions

In this section, we will recall some properties of slowly varying functions. We refer to [7] for details.
The function Υ : (0,∞)→ (0,∞) is a called slowly varying if for every a > 0,

lim
x→∞

Υ(ax)
Υ(x)

= 1.

In the following, a Tauberian result from [13], p. 423 (see also [7], Theorem 1.5.11, p. 28) is used:
For any α >−1, the function g(s) :=

∑∞
k=0 skkα satisfies

g(s) ∼ Γ(α+ 1)(1− s)−1−α (s→ 1−).

Then the function ξ = s → (1 − s)1+αg(s) is continuous on [0,1) and has a finite left limit at 1.
Denoting the supremum of this function extended to [0,1] by M , we get that

∞
∑

k=1

skkα ≤ M(1− s)−1−α (0≤ s < 1).
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For α=−1,
∑∞

k=1 sk/k =− log(1−s). As the logarithm is a slowly varying function, we may rewrite
the previous results in the following way, which will be convenient in the proofs:
There exists a nondecreasing positive slowing varying function Υ such that for all α ≥ −1 and
s ∈ [0,1)

∞
∑

k=1

skkα ≤ Υ(1/(1− s))(1− s)−1−α. (37)

7.3 Bounds for generating functions

We use the convention 0 · ∞ = 0. Let L be a random variable with values in {0,1, 2, ...} with
expectation m, distribution (pk)k∈N and generating function f . Let us define

qk := P(L > k| f )

and,

g(s) :=
∞
∑

k=0

skqk =
1− f (s)

1− s
. (38)

The last identity results from the Cauchy product formula of power series (see also [9]). Recall
that the l−th derivative of a function f is denoted by f (l) and that f (l)(s), g(l)(s) exist for every
s ∈ [0,1). Since

f (l)(s) =
∞
∑

k=0

k(k− 1) · · · (k− l + 1)sk−l pk, g(l)(s) =
∞
∑

k=0

k(k− 1) · · · (k− l + 1)sk−lqk,

all derivatives of f and g are nonnegative, nondecreasing functions. For the proofs, we will use g
instead of f since the associated sequence (qk)k∈N is monotone, which is more convenient. It is
straightforward to see by induction that

f (l)(1) = l g(l−1)(1). (39)

Calculating the l-th derivative of f (s) = 1− (1− s)g(s) yields

f (l)(s) = l g(l−1)(s)− (1− s)g(l)(s). (40)

Thus g(l−1)(1) and f (l)(1) both essentially describe the l-th moment of the corresponding probability
distribution. Next, we prove that for every i ∈N,

g(i)(s) · (g(1))i ≤ (g(s))i · g(i)(1). (41)

We will prove the result by induction. For i = 1, define a random variable Y with distribution
(qk/g(1))k∈N0

. Then

g ′(s) · g(1) = E[sY Y ]g(1)2 ≤ E[sY ]E[Y ]g(1)2 = g(s)g ′(1). (42)
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as sY and Y are obviously negatively correlated for s ∈ [0, 1]. Note that the above inequality remains
true if g ′ is replaced by g(i), i ∈N. Next, let (41) be fulfilled for i. Thus, using (40) and the induction
assumption and monotonicity of g(i) yield

g(i+1)(s)

(g(s))i+1 =
(i+ 1)g(i)(s)− f (i+1)(s)

(1− s)(g(s))i+1 ≤
(i+ 1)g(i)(1)

(1− s)(g(1))i g(s)
−

f (i+1)(s)

(1− s)(g(1))i g(s)

=
f (i+1)(1)− f (i+1)(s)

(1− s)(g(1))i g(s)
=

1

(g(1))i g(s)

∞
∑

k=0

k(k− 1) · · · (k− i)
1− sk−i−1

1− s
pk

=
g(i+1)(s)

(g(1))i g(s)
≤

g(i+1)(1)

(g(1))i+1 .

In the last step, we used (42) with g ′ replaced by g(i+1).

For µ ∈ (0, 1], let us define the function

hµ(s) :=
g(1)µ− g(s)µ

(g(1)g(s)(1− s))µ
. (43)

The following useful lemmas give the versions of Assumption H (β) in terms of the function hµ.
Noting that g(0) = q0 = P(L > 0| f ) and g(1) = m, we may rewrite Assumption H (β) in the
following way

qk ≤ d g(0) (g(1)∧ 1) k−β (k ≥ 1). (44)

Lemma 5. Let β > 1 and assume that (44) holds for some constant 0 < d < ∞. Then for every
0< µ < (β − 1)∧ 1, there exists a constant c = c(β , d,µ) such that for every s ∈ [0, 1],

hµ(s) ≤ c. (45)

The above bound also holds for µ = 1 if β > 2. Moreover, if β ∈ (1, 2], there exists a nondecreasing
positive slowly varying function Υ=Υ(β , d) such that for every s ∈ [0, 1),

hβ−1(s) ≤ Υ(1/(1− s)) (46)

−h′β−1(s) ≤ Υ(1/(1− s))/(1− s). (47)

Note that Υ depends on L (or g) only through the values of d and β . Thus under Assumption
H (β), we can derive a nonrandom constant bound from this lemma.

In the proofs, we will use the notation ≤c again, which means that the inequality is satisfied up
to a multiplicative constant which depends on β and µ but is independent of s.

Proof. Let s ∈ [0, 1). Using g(s)≥ g(0), we get that

hµ(s) =
g(1)µ− g(s)µ

(g(1)g(s)(1− s))µ

≤
g(1)µ− g(s)µ

(g(1)g(0)(1− s))µ

≤ (g(1)∧ 1)−1 (
∑∞

k=0 g(0)−1qk)µ− (
∑∞

k=0 skqk g(0)−1)µ

(1− s)µ
. (48)
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Since µ ∈ (0,1], the function x → xµ is concave, such that aµ− xµ ≤ µxµ−1(a− x) for all 0≤ x ≤ a.
Moreover

1= q0/g(0)≤ x :=
∞
∑

k=0

skqk g(0)−1 ≤ a :=
∞
∑

k=0

qk g(0)−1. (49)

Then xµ−1 ≤ 1 and using the inequality of concavity in (48) with qk ≤ d g(0) · (g(1)∧ 1) · k−β leads
to

hµ(s) ≤ µ(g(1)∧ 1)−1 xµ−1

∑∞
k=0 g(0)−1qk[1− sk]

(1− s)µ

≤c

∑∞
k=1(1− sk)k−β

(1− s)µ

= (1− s)1−µ
∞
∑

k=1

1− sk

1− s
k−β

= (1− s)1−µ
∞
∑

k=1

k−β
k−1
∑

j=0

s j

= (1− s)1−µ
∞
∑

j=0

s j
∞
∑

k= j+1

k−β

≤c (1− s)1−µ
∞
∑

j=0

s j( j+ 1)−β+1.

The estimates (45) and (46) on hµ for 0 < µ < (β − 1)∧ 1 and µ = β − 1 now follow directly from
(37). For µ= 1, β > 2 and s = 1, the sum is finite and (45) also holds in this case.

For the second part of the lemma, we explicitly compute the first derivative of hβ−1, using the
formula

hβ−1(s)g(s)
β−1 =

g(1)β−1− g(s)β−1

g(1)β−1(1− s)β−1
.

By the differentiation of both sides, we get

h′β−1(s)g(s)
β−1+(β−1)hβ−1(s)g(s)

β−2 g ′(s) =
(β − 1)([g(1)β−1− g(s)β−1]− (1− s)g(s)β−2 g ′(s))

g(1)β−1(1− s)β

and thus

−h′β−1(s) = (β − 1)
�hβ−1(s)g ′(s)

g(s)
+

g ′(s)

g(s)g(1)β−1(1− s)β−1
−

g(1)β−1− g(s)β−1

g(s)β−1 g(1)β−1(1− s)β

�

As g is nondecreasing, we can skip the last term which is negative. Using (44) and (46), we get that

−h′β−1(s) ≤c
g(0) · (g(1)∧ 1) ·

∑∞
k=1 ksk−1k−β

g(s)

�

Υ(1/(1− s)) +
1

g(1)β−1(1− s)β−1

�

.
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Moreover g(s)≥ g(0) and g(1)−(β−1) · (g(1)∧ 1)≤ 1 for β − 1 ∈ (0,1]. Hence,

−h′β−1(s) ≤c

∞
∑

k=1

sk−1k−β+1
�

Υ(1/(1− s)) +
1

(1− s)β−1

�

.

The result now follows from (37) and the fact that the product of two slowly varying functions is
also slowly varying.

Let us now consider the function

h(s) = h1(s) =
g(1)− g(s)

g(1)g(s)(1− s)
(0< s ≤ 1).

Lemma 6. Assume that (44) holds for some β > 1. Then there exists a finite constant c = c(β , d)<∞
such that for every s ∈ [0,1),

|h(l)(s)| ≤ c if 0≤ l < β − 2

|h(dβe−2)(s)| ≤ c Υ(1/(1− s)) (1− s)−(dβe−β) if β ≥ 2

|h(dβe−1)(s)| ≤ c Υ(1/(1− s)) (1− s)−1−(dβe−β). (50)

Proof. By (43) and the Cauchy product of power series, for every s ∈ [0,1),

g(s)g(1)h(s) =
g(1)− g(s)

1− s
=

∞
∑

k=0

sk(qk+1+ qk+2+ . . .).

Thus, the l-th derivative of g(s)h(s) is

l
∑

j=0

�

l

j

�

g( j)(s)h(l− j)(s) = g(1)−1
∞
∑

k=0

k(k− 1) · · · (k− l + 1)sk−l(qk+1+ qk+2+ . . .).

Moreover, (44) ensures that for all s ∈ [0, 1) and j < β − 2 (and even j < β − 1),

g( j)(s)≤ g( j)(1) ≤
∞
∑

k=0

k jqk ≤c g(0)(g(1)∧ 1)

Combining the last two expressions and using g(s)−1 ≤ g(0)−1 yields

|h(l)(s)| ≤c g(s)−1
�

g(1)−1 g(0) · (g(1)∧ 1) ·
∞
∑

k=0

klsk−l
∞
∑

j=k+1

j−β +
l
∑

j=1

�

l

j

�

g( j)(1)|h(l− j)(s)|
�

≤c

∞
∑

k=0

klsk−l
∞
∑

j=k+1

j−β +
l
∑

j=1

|h(l− j)(s)|
�

(51)

The first statement of the lemma is proved by induction on l. For l = 0, the result comes from
Lemma 5. Assuming that the bound holds for l ′ < l < β − 2, the previous inequality ensures that

|h(l)(s)| ≤c 1 +
l−1
∑

j=0

|h( j)(s)|
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since
∑∞

k=0 kl
∑∞

j=k+1 j−β <∞. This finishes the induction step and proves the first estimate in (50).

Next, we consider l = dβe − 2. Using the bound on h(l) for l < β − 2 and (51) yields

|h(l)(s)| ≤c

∞
∑

k=0

klsk
∞
∑

j=k+1

j−β + 1≤c

∞
∑

k=1

skkdβe−2k−β+1+ 1≤c

∞
∑

k=1

skk−(1−(dβe−β))

Then the second estimate of the lemma follows from (37).

Finally, the bound for l = dβe − 1 is proved in the same way. By (51),

|h(l)(s)| ≤c

∞
∑

k=0

klsk
∞
∑

j=k+1

j−β + l g(2)(1)|h(l−1)(s)|+ 1

≤c

∞
∑

k=1

skkdβe−β +
∞
∑

k=1

skk−(1−(dβe−β))+ 1

≤c

∞
∑

k=1

skkdβe−β .

Using (37) yields the claim.

7.4 Successive differentiation for composition of functions

For the proof of the upper bound on the tail probabilities when β > 2, we have to calculate higher
order derivatives of composition of functions. Here, a useful formula for the l-th derivative of a
composition of two functions is proved. This can also be derived from the combinatorial form of Faà
di Bruno’s formula.

Lemma 7. Let f and h be real-valued, l-times differentiable functions. Then

d l

dsl
h( f (s)) =

l
∑

j=1

h( j)( f (s))u j,l(s), (52)

where u j,l(s) is given by

u j,l(s) =
∑

(i1,...,i2 j)∈C ( j,l)

ci( f
(i1)(s))i2 · · · ( f (i2 j−1))(s))i2 j , (53)

for some constants 0≤ ci <∞ and C ( j, l) defined by

C ( j, l) :=
�

(i1, . . . , i2 j) ∈N2 j
�

�i1i2+ i3i4+ . . .= l and i2+ i4+ . . .= j
	

.
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Proof. The formula is proved by induction with respect to l. For l = 1, (52) is satisfied by the
chain rule for differentiation. Assume that (52) and (53) hold for l. Then by the product rule for
differentiation,

d l+1

dsl+1
h( f (s)) =

l
∑

j=1

�

h( j)( f (s))
d

ds
u j,l(s) + u j,l(s) f

′(s)h( j+1)( f (s))
�

.

Thus

u j,l(s) f
′(s) =

∑

i∈C ( j,l)

ci
�

f (1)(s)
�1( f (i1)(s))i2 · · · ( f (i2 j−1)(s))i2 j

=
∑

i∈C ( j+1,l+1)

c̃i( f
(i1)(s))i2 · · · ( f (i2 j+1)(s))i2( j+1) ,

with new constants defined by

c̃i1,i2,i3,...,i2( j+1)
:=

¨

ci3,...,i2( j+1)
, if i1 = i2 = 1

0 , else
.

Furthermore,

d

ds
u j,l(s) =

∑

i∈C ( j,l)

l
∑

k=1

ci( f
(i1)(s))i2 · · · i2k( f

(i2k−1)(s))i2k−1 f (i2k−1+1)(s) · · · ( f (i2 j−1)(s))i2 j

=
∑

i∈C ( j,l+1)

ĉi( f
(i1)(s))i2 · · · ( f (i2 j+1)(s))i2( j+1) ,

with some new constants 0≤ ĉi <∞. This completes the induction step.
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