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Abstract. Our motivation is the question whether the lazy lambda calculus, a pure lambda
calculus with the leftmost outermost rewriting strategy, considered under observational semantics, or
extensions thereof, are an adequate model for semantic equivalences in real-world purely functional
programming languages, in particular for a pure core language of Haskell. We explore several
extensions of the lazy lambda calculus: addition of a seq-operator, addition of data constructors and
case-expressions, and their combination, focusing on conservativity of these extensions. In addition
to untyped calculi, we study their monomorphically and polymorphically typed versions. For most of
the extensions we obtain non-conservativity which we prove by providing counterexamples. However,
we prove conservativity of the extension by data constructors and case in the monomorphically
typed scenario.

1 Introduction

We are interested in reasoning about the semantics of lazy functional programming languages such as
Haskell [Pey03], in particular in semantical equivalences of expressions and, as a more general issue,
in correctness of program translations and transformations. As a notion of expression equivalence in a
calculus, we employ contextual equivalence which identifies expressions iff they cannot be distinguished
when observing convergence to WHNFs in any surrounding context. Contextual equivalence is coarser
than the (syntactical) conversion equality, and provides a more useful language model due to its maximal
set of equivalences.

However, complexity of a language makes analyses and reasoning hard, so it is advantageous to find
conceptually simpler sublanguages which also permit reasoning about equivalences in the superlanguage. As
a starting point we may use the pure core language, say LαHcore , of Haskell [PS98], which is a Hindley-Milner
polymorphically typed call-by-need lambda calculus extended by data constructors, case-expressions, seq
for strict evaluation and letrec to model recursive bindings and sharing. The semantics of such extended
lambda calculi have been analyzed in several papers [Ses97,MOW98,MS99,SSSS08,SSSM12].

However, even this language has a rich syntax and thus one may ask whether there are simpler and/or
smaller languages which can be used to reason about (parts of) Haskell. The issue of transferring the
equivalence question is as follows: given two expressions s1, s2 in a calculus L, in which cases is it possible
to decide the semantic equivalence s1 ∼ s2 by transferring the equivalence question for s1, s2 into a smaller
or conceptually simpler language Lsimple , using the proof methods in Lsimple? There are three (standard)
types of transfer steps: (i) from a typed language Lτ into its untyped language L (which may be larger).
Since we use contextual equivalence, in general s1 ∼L s2 implies s1 ∼Lτ s2 for equally typeable expressions

3 This document is a revised version of an earlier version originally published on the web in April 2013.
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s1, s2, and thus this is a valid transfer, however, some equivalences may be lost. (ii) from a language L
into a sublanguage Lsub by the removal of a syntactic construction possibility. Since now all expressions
of Lsub are also L-expressions, the desired implication s1 ∼L s2 =⇒ s1 ∼Lτ s2 exactly corresponds to
conservativity of the inclusion w.r.t. equivalence. (iii) transferring the question to an isomorphic language
L′.

We consider four calculi in this paper: Abramsky’s lazy lambda calculus AL and its extensions
ALseq,ALcc,ALcc,seq with seq, with case and constructors, and the combination of the two extensions,
resp. We also consider variants of these calculi with monomorphic (τ -superscript) and polymorphic
(α-superscript) types. We analyze whether natural embeddings between the calculi are conservative w.r.t.
contextual equivalence in the calculi.
Our results can be depicted as follows, where Yes/No indicates a conservative (non-
conservative, resp.) embedding, and Open indicates that the question is still unresolved.
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A common pattern is that the removal of seq makes the embeddings non-conservative.
A powerful commonly used proof technique in all the calculi under consideration is based on Howe’s
method [How89,How96], which shows that contextual equivalence coincides with applicative bisimilarity
which equates expressions if they cannot be distinguished by first evaluating them, then applying their
results to arguments, and then using this experiment co-inductively. Our improvement, which is valid
since the languages are deterministic, is a so-called APi-context lemma, which means that expressions are
equivalent iff their termination behavior is identical when applying them in all possible ways to finitely
many arbitrary arguments.

Our results are of help for equivalence reasoning in LαHcore considering implication chains for the
justification of equivalences. The first one starts with transferring to the untyped core-language LHcore ,
then removing the syntactic construct letrec (and changing call-by-need to call-by-name), justified in
[SSSM10,SSSM12], arriving at ALcc,seq. Then our results and counterexamples for the four untyped calculi
come into play, where the conclusion is that further transfer steps appear impossible, in particular that
AL [Abr90] cannot be justified as equivalence checking calculus via this implication chain. The second
implication chain takes another potential route: the first step is monomorphising the core language, then
removing the letrec, adding Fix, and again changing the reduction strategy to call-by-name, arriving at
the calculus ALτcc,seq. We believe that both implications of equivalence are correct, but a formal proof is
future work. Then, for the calculi ALτcc, AL

τ
seq, AL

τ , we got negative as well as positive results. A further
step could then be omitting the monomorphic types as well, which gives a valid implication chain from
ALτcc,seq to ALτseq and to ALseq, but again there is no justification for AL and ALτ as equivalence checking
calculi for LαHcore . Thus our results show that calculus for the transfer is ALcc,seq, and under the correctness
assumptions above, also ALτcc,seq, AL

τ
seq, and ALseq. Focusing on the direct relation between the minimal

calculi compared with LαHcore , and taking into account our counterexamples in the paper, ALτcc and ALcc
are ruled out by examples s7, s8. However, it is still possible that AL or ALτ can be used as equivalence
checking calculi LαHcore (although there are very few nontrivial equivalences there), which is strongly
related to the open problem of whether there exist Böhm-like trees for AL (see Problem 18 in [TLC10]).

Related Work. Our approach follows the general setup laid out e.g. in [Fel91,SSNSS08] which consider
the questions of relative expressivity between programming languages. , and define the notions such
as conservativity of extensions, and adequacy and full-abstraction of translations from one language
into another one. However, [Fel91] uses a notion of a conservative extension different from what we
use throughout the paper: We require that all equivalences of the smaller language also hold in the
extended language, while the notion of [Fel91] only requires that convergence of expressions of the smaller
language coincides with convergence in the extended language. In difference to [Fel91], we use applicative
bisimilarity and the APi-context lemma as a proof technique, and explore different calculi extensions. The
closest work to ours is [RS94] that shows, in particular, that the extension of a monomorphically typed
PCF with sum and product types and with Girard/Reynolds polymorphic types is conservative. They also
show that extending PCF with a “convergence tester” by second-order polymorphic types is conservative.
However, they do not (dis-)prove conservativity of adding the convergence tester to PCF and also do not
consider an untyped case, or the pure lambda calculus. Moreover, the PCF has built-in integers with
simple operations and a built-in test for 0. We do not know if these features themselves are a conservative
extension of Abramsky’s lazy lambda calculus.



Extending the Lazy Lambda Calculus: (Non)-Conservativity of Embeddings 3

Adding seq to call-by-need/call-by-name functional languages is investigated in several papers
(e.g. [Fel91,HH10,JV06]). For the lazy lambda calculus and its extension by seq an example in [Fel91]
can be adapted to show non-conservativity (see Theorem 4.3). It is well-known that in full Haskell seq
makes a difference: The usual free theorems [Wad89] break under the addition of seq [JV06], and the
monad laws do not hold for the IO-monad if the first argument of seq is allowed to be of an IO-type
[SSS11]. [SSSM12,SSSS08] provide a counterexample showing non-conservativity of adding seq to the lazy
lambda calculus with data-constructors and case expressions. However several questions remained open,
e.g. whether the extension by seq in typed variants of the lazy lambda calculus is conservative.

Research on calculi extensions with case and constructors also including studies of untyped calculi is
[AMR06,dV89,Stø06]. In [AMR06] the addition of case and constructors to a basic calculus is explored.
However, that calculus significantly differs from our ones in several points, e.g. it permits full η-reduction.
[dV89] and [Stø06] study an extension of a lambda calculus with surjective pairs. However, these works
are incomparable to our approach since they use an axiomatic approach to equality instead of a rewriting
and observational one.

Structure of the paper. In Sect. 2 we introduce a common notion for program calculi together with the
notion of contextual equivalence. In Sect. 3 we briefly introduce the lazy lambda calculus AL and its three
extensions ALcc,ALseq,ALcc,seq. Conservativity of embeddings between the untyped calculi is refuted in
Sect. 4. In Sect. 5 the monomorphically typed variants of the calculi are investigated. Counter-examples are
provided for the addition of seq, and conservativity is proven for the extensions by case and constructors.
Sect. 6 presents the analysis of polymorphically typed calculi. We conclude in Sect. 7. For readability
some proofs are in a technical appendix.

2 Preliminaries

We define our notion of a program calculus in an abstract way:

Definition 2.1. A typed deterministic program calculus (TDPC) is a tuple (E , C,−→D,A, T ) where E
is the (nonempty) set of expressions, such that every s ∈ E has a type T ∈ T . We write ET for the
expressions of type T , and assume ET 6= ∅. We also assume that E can be divided into closed and open
expressions, where Ec denotes the set of closed expressions. We use s, t, r, a, b, d to denote expressions and
x, y, z, u to denote variables. C is the set of contexts, such that every C ∈ C is a function C : ET → ET ′
where T, T ′ ∈ T . With CT,T ′ we denote the contexts that are functions from ET to ET ′ . We assume that
C contains the identity function for every type T ∈ T , and that C is closed under composition, i.e. iff
C1 ∈ CT2,T3

and C2 ∈ CT1,T2
then also (C1 ◦ C2) ∈ CT1,T3

. We denote the application of contexts C to
an expression s ∈ E by C[s]. The standard reduction relation −→D ⊆ (E × E) must be: (i) deterministic:
s1 −→D s2 and s1 −→D s3 implies s2 = s3, where = is syntactical equivalence (which usually also identifies
α-equivalent expressions); (ii) type preserving: s1 −→D s2 implies that s1 and s2 are of the same type; (iii)
closedness-preserving: if s1 is closed and s1 −→D s2, then s2 is closed. The set A ⊆ E are the answers of
the calculus, which are usually irreducible values or specific kinds of normal forms. We use v to range
over answers.

An untyped calculus can also be presented as a typed one, by adding a single type called “expression”.
However, we simply write (E , C,−→D,A) for such a calculus.

We denote the transitive-reflexive closure of −→D by
∗−→D, and

n−→D with n ∈ N0 means n reductions.
We define the notions of convergence, contextual approximation, and contextual equivalence in a general
way. Expressions are contextually equal if they have the same termination behavior in any surrounding
context. This makes contextual equivalence a strong equality, since the contexts of the language have
a high discrimination power. For instance, it is not necessary to add additional tests, such as checking
whether evaluation of both expressions terminates with the same values, since different values can be
distinguished by contexts.

Definition 2.2. Let D = (E , C,→,A, T ) be a TDPC. An expression s ∈ E converges if there exists v ∈ A
such that s

∗−→D v. We then write s↓Dv, or just s↓D if the value v is not of interest. If s↓D does not
hold, then we say s diverges and write s⇑D. Contextual preorder ≤D and contextual equivalence ∼D are
defined by:

For s1, s2 ∈ ET : s1 ≤D s2 iff ∀T ′ ∈ T , C ∈ CT,T ′ : C[s1]↓D =⇒ C[s2]↓D
For s1, s2 ∈ ET : s1 ∼D s2 iff s1 ≤D s2 and s2 ≤D s1

A program transformation ξ is a binary relation on D-expressions, such that for all s1 ξ s2 the expressions
s1 and s2 are of the same type. ξ is correct if for all expressions s1 ξ s2 the equivalence s1 ∼D s2 holds.
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(β) ((λx.s) t)→ s[t/x]
(seq) (seq v t) → t if v is an answer

(case) caseKi (cKi,j
→
s ) (p1 -> t1) . . . ((cKi,j

→
y ) -> tj) . . . (p|Ki| -> t|Ki|))→ tj [

→
s /

→
y ]

(fix) (Fix s) → s (Fix s)

Fig. 1. Call-by-name reduction rules

By straightforward arguments one can prove that contextual preorder is a precongruence, and contextual
equivalence is a congruence.

Definition 2.3. Let D = (E , C,−→D,A, T ) and D′ = (E ′, C′,−→D′ ,A′, T ′) be TDPCs. A translation
ζ : D → D′ consists of mappings ζ : E → E ′, ζ : C → C′, such that ζ maps the identity function C to the
identity function in C′, and ζ(s) is closed iff s is closed.

– ζ is convergence equivalent (ce) if s↓D ⇐⇒ ζ(s)↓D′ for all s ∈ E.
– ζ is compositional up to observation (cuo), if for all C ∈ C and all s ∈ E such that C[s] is typed:
ζ(C[s])↓D′ iff ζ(C)[ζ(s)]↓D′ .

– ζ is observationally correct (oc) if it is (ce) and (cuo).
– ζ is adequate if for all expressions s, t: ζ(s) ≤D′ ζ(t) =⇒ s ≤D t.
– ζ is fully abstract if for all expressions s, t: ζ(s) ≤D′ ζ(t) ⇐⇒ s ≤D t.
– ζ is an isomorphism if ζ is fully abstract and acts as a bijection on the equivalence classes from E/ ∼D

to E ′/ ∼D′ .

We say D′ is an extension of D iff T ⊆ T ′, ET ⊆ E ′T for any type T ∈ T , CT,T ′ ⊆ C′T,T ′ for all types
T, T ′ ∈ T , A = A′ ∩ E and −→D ⊆ −→D′ s.t. for all e1 ∈ E with e1 −→D′ e2 always e2 ∈ E (and thus
e1 −→D e2). Given D and an extension D′, the natural embedding of D into D′ is the identity translation
of ET into E ′T and CT,T ′ into C′T,T ′ for all types T, T ′ ∈ T . A natural embedding is conservative iff it is a
fully abstract translation.

Note that a natural embedding is always convergence equivalent and compositional, which implies that it
is always adequate (see [SSNSS08]).

3 Untyped Lazy Lambda Calculi and Their Properties

In this section we briefly introduce four variants of the lazy lambda calculus [Abr90] as instances of untyped
TDPCs: the pure calculus AL, its extension by seq, called ALseq, its extension by data constructors and
case, called ALcc, and finally its extension by seq as well as data constructors and case, called ALcc,seq.

Definition 3.1 (Lazy Lambda Calculus AL). AL is the (untyped) lazy lambda calculus [Abr90]. We
define the components of AL according to Definition 2.1.

Expressions E are the set of expressions of the usual (untyped) lambda calculus, defined by the grammar
r, s, t ∈ LAL ::= x | (s t) | λx.s. We identify α-equivalent expressions as syntactically equal according
to Definition 2.1. The only reduction rule is β-reduction (see Fig. 1). An AL-context is defined as an
expression in which one subexpression is replaced by the context hole [·]. AL-reduction contexts R are defined
by the grammar R := [·] | (R s), and the standard reduction in the sense of Definition 2.1 is the normal
order reduction −→AL which applies beta-reduction in a reduction context, i.e. R[(λx.s) t] −→AL R[s[t/x]].
The answers A are all (also open) abstractions, which are also called weak head normal forms (WHNF).

Definition 3.2 (ALseq). ALseq is the lazy lambda calculus extended by seq, i.e. expressions are defined
by r, s, t ∈ LALseq ::= x | (s t) | λx.s | seq s t. Answers are all abstractions (WHNFs). ALseq-reduction
contexts R are defined by the grammar R := [·] | (R s) | seq R t, and a normal order reduction is

R[s] −→ALseq R[t], whenever s
β−→ t or s

seq−−→ t (see Fig. 1).

Definition 3.3 (ALcc). ALcc extends AL by case and data constructors. There is a finite nonempty set of
type constructors K1, . . . ,Kn, where for every Ki there are pairwise disjoint finite nonempty sets of data
constructors {cKi,1, . . . cKi,|Ki|}. Every constructor has a fixed arity (a non-negative integer) denoted by
ar(Ki) or ar(cKi,j), resp. Examples are a type constructor Bool (of arity 0) with data constructors True and
False (both of arity 0), as well as lists with a type constructor List (of arity 1) and data constructors Nil (of

arity 0) and Cons (of arity 2). For the constructor application (cKi,j s1 . . . sar(cKi,j)), we use (cKi,j
→
s ) as an
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abbreviation, and write t[
→
s /
→
x ] for the parallel substitution t[s1/x1, . . . , sar(cKi,j)/xar(cKi,j)]. The grammar

r, s, t ∈ LALcc ::= x | (s t) | λx.s | (cKi,j
→
s ) | (caseKi s (cKi,1

→
x -> si,1) . . . (cKi,|Ki|

→
x -> si,|Ki|))

defines expressions of ALcc. Note that constructor applications are allowed only to occur fully saturated.
Note also that there are case expressions for every type constructor Ki and that in a case expression for type
constructor Ki there must be exactly one case-alternative for every constructor belonging to type constructor
Ki. We use an abbreviation caseK s alts if the alternatives of the case do not matter. The ALcc-reduction
contexts R are defined as R := [·] | (R s) | caseKi R alts. A normal order reduction is R[s] −→ALcc R[t],

where s
β−→ t or s

case−−−→ t (see Fig. 1, where pi mean patterns (cKk,i
→
x) in case-expressions). Answers in

ALcc are λx.s and (cKi
→
s ), also called WHNFs.

Note that in ALcc there are closed stuck terms which are normal-order irreducible, but not WH-
NFs. Such expressions are “ill-typed”, i.e. they are of the form R[(cKj ,k

→
s ) t], R[caseKi λx.s alts],

or R[caseKi cKj ,k
→
s alts], where Ki 6= Kj .

Definition 3.4 (ALcc,seq). The calculus ALcc,seq combines the syntax and reduction rules of ALseq and
ALcc with the obvious notion of normal order reduction −→ALcc,seq applying (β), (seq), and (case) (see Fig. 1)
in reduction contexts.

We will write λx1, x2, . . . , xn.t instead of λx1.λx2. . . . λxn.t. We use the following abbreviations for
specific closed lambda expressions:

id = λx.x ω = λx.(x x) Ω = (ω ω)
Y = λf.

(
(λx.f (x x)) (λx.f (x x))

)
> = (Y (λx, y.x))

It is not too hard to show that all closed diverging expressions are contextually equal. Thus we will use
the symbol ⊥ to denote a representative of the equivalence class of closed diverging expressions, e.g. one
such expression is Ω.

Remark 3.5. Note that contextual equivalence in all our calculi always distinguishes different values. For
instance, different constructors can always be distinguished by choosing case-expressions as contexts such
that one constructor is mapped to a value while the other one is mapped to Ω. Different abstractions are
distinguished by applying them to arguments. Different variables x, y are always contextually different:
The context C := (λx, y.[·]) id Ω distinguishes them, since C[x] converges, while C[y] diverges.

We now show correctness of program transformations. The simplifications for the calculi
ALseq,ALcc,ALcc,seq are defined in Fig. 2, s.t. each simplification is defined in all calculi where the constructs
exist. In the appendix (Theorem B.1 and Lemma B.3) we show:

Theorem 3.6. For D ∈ {AL,ALseq,ALcc,ALcc,seq} the reductions of the corresponding calculus (Fig. 1)
and the simplifications (Fig. 2) are correct program transformations, regardless of the context they are
applied in.

Contextual equivalence of open expressions can be proven by closing them using additional lambda
binders.

Lemma 3.7. For D ∈ {AL,ALseq,ALcc,ALcc,seq} and D-expressions s, t with FV (s) ∪ FV (t) ⊆
{x1, . . . , xn}: s ∼D t ⇐⇒ λx1, . . . , xn.s ∼D λx1, . . . , xn.t.

Proof. The proof is given in the appendix, Lemma B.2).

Correctness of β-reduction implies that a restricted use of η-expansion is correct:

Proposition 3.8. For every D ∈ {AL,ALseq,ALcc,ALcc,seq} the transformation η is correct for all ab-
stractions, i.e. s ∼D λz.s z, if s is an abstraction.

Definition 3.9. We use Bmk as an abbreviation for a “bot-alternative” of the kth data constructor of

type constructor Km i.e. Bmk := (cKm,k
→
x ->⊥). Let v be any closed abstraction (for AL,ALseq) or be any

closed abstraction or constructor application (cKm,j
→
s ) (for in ALcc,ALcc,seq), respectively.

Approximation contexts APi (i ∈ N0) are defined for AL,ALseq,ALcc,ALcc,seq as follows:

For AL, ALseq: AP0 ::= [·] APi+1 ::= (APi v) | (APi ⊥)

For ALcc, ALcc,seq: AP0 ::= [·] APi+1 ::= (APi v) | (APi ⊥)

| caseKm APi Bm1 . . . Bmj−1 (cKm,j
→
x ->xk) Bmj+1 . . . B

m
n

| caseKm APi Bm1 . . . Bmj−1 (cKm,j
→
x -> True) Bmj+1 . . . B

m
n



6 Manfred Schmidt-Schauss and Elena Machkasova and David Sabel

(caseapp) ((caseK t0 (p1 -> t1) . . . (pn -> tn)) r)
→ (caseK t0 (p1 -> (t1 r)) . . . (pn -> (tn r)))

(casecase) (caseK (caseK′ t0 (p1 -> t1) . . . (pn -> tn)) (q1 -> r1) . . . (qm -> rm))
→ (caseK′ t0 (p1 -> (caseK t1 (q1 -> r1) . . . (qm -> rm)))

. . .
(pn -> (caseK tn(q1 -> r1) . . . (qm -> rm))))

(seqseq) (seq (seq s1 s2) s3)→ (seq s1 (seq s2 s3))
(seqapp) ((seq s1 s2) s3)→ (seq s1 (s2 s3))
(seqcase) (seq (caseK t0 (p1 -> t1) . . . (pn -> tn)) r)

→ (caseK t0 (p1 -> (seq t1 r)) . . . (pn -> (seq tn r)))
(caseseq) (caseK (seq s1 s2) alts)→ (seq s1 (caseK s2 alts))

Fig. 2. case- and seq-simplifications

s1 := λx.x (λy.x > ⊥ y) > s2 := λx.x (x > ⊥) >
t1(s) := λx.x (x s) t2(s) := λx.x λz.x s z

where s is an expression with FV (s) ⊆ {x}
s3 := λx, y.x (y (y (x id))) s4 := λx, y.x (y λz.y (x id) z)
s5 := λx, y.(x (x y)) (x (x y)) s6 := λx, y.(x (x y)) (x λz.x y z))
s7 := λx.caseBool (x ⊥) (True -> True) (False ->⊥)
s8 := λx.caseBool (x λy.⊥) (True -> True) (False ->⊥)

Fig. 3. The untyped counterexample expressions

The following result known as a context lemma is proven in the appendix (Theorem B.9).

Theorem 3.10 (APi-Context-Lemma). For D ∈ {AL,ALseq,ALcc,ALcc,seq} and closed D-expressions
s, t holds:

s ≤D t iff for all i and all approximation contexts APi: APi[s]↓D =⇒ APi[t]↓D

We provide a criterion to prove contextual equivalence of expressions, which is used in later sections. Its
proof can be found in the appendix (Theorem B.11).

Theorem 3.11. For D ∈ {AL,ALseq,ALcc,ALcc,seq} closed D-expressions s and t are contextually equiva-
lent if there exists i ∈ N0 such that

1. APj [s]↓D ⇐⇒ APj [t]↓D for all 0 ≤ j < i and all APj-contexts.
2. APi[s] ∼D APi[t] for all APi-contexts.

For all four calculi applicative contexts are defined by A ::= [·] | (A s). The following proposition allows
systematic case-distinctions for expressions (the proof can be found in the appendix, Proposition B.5).

Proposition 3.12. Let D ∈ {AL,ALseq,ALcc,ALcc,seq}. For every D-expression s one of the following
equations holds: 1. s ∼D ⊥; 2. s ∼D v where v is an answer; 3. s ∼D A[x] where x is a free variable
and A is an applicative D-context; 4. s ∼D seq A[x] t′ where x is a free variable and A is an applicative
D-context, for D ∈ {ALseq,ALcc,seq}; or 5. s ∼D caseK A[x] alts where x is a free variable and A is an
applicative D-context, for D ∈ {ALcc,ALcc,seq}.

4 Relations between the Untyped Calculi

This section shows the non-conservativity of embeddings of the four untyped lazy calculi. These negative
results show that the syntactically less expressive calculi are not sufficiently expressive and are thus
unstable under extensions. Expressions used in our counterexamples are defined in Fig. 3. We also prove
equations necessary for the examples:

Lemma 4.1. For all expressions s: > ∼AL λx.> and > s ∼AL >.

Proof. > s ∼AL > follows from correctness of β (Theorem 3.6), since > s
β,∗−−→

λx.λz.(λx.λz.(x x)) (λx.λz.(x x))
β,∗←−− >. For > ∼AL λx.> we use Theorem 3.11 (for i = 1): >↓D, λx.>↓D,

and (λx.>) r
β−→ > ∼D (> r) for any r.
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Theorem 4.2. The following equalities hold for the expressions in Fig. 3: 1. If s[id/x] 6∼AL ⊥ then
t1(s) ∼AL t2(s) . 2. s1 ∼AL s2. 3. s3 ∼AL s4. 4. s5 ∼ALseq s6. 5. s7 ∼ALcc s8.

Proof. 1. We use Theorem 3.11 (for i = 1). For the empty context we have t1(s)↓AL and t2(s)↓AL. Now we
consider the case (t1 b) and (t2 b) where b is a closed abstraction or ⊥. We make a case distinction on
the argument b according to Proposition 3.12. By easy computations (t1 b) ∼AL (t2 b) if b = ⊥, b = λx.⊥,
or b = λx1.λx2.t. For b := λx.x, two β-reductions show that t1 λx.x ∼AL s[id/x], and that t2 λx.x ∼AL

λz.s[id/x] z. Since s[id/x] 6∼AL ⊥, it is equivalent to an abstraction, and Proposition 3.8 shows
contextual equivalence of the two expressions. Now let b := λu.u t1 . . . tn with n ≥ 1. If (b s[b/x]) 6∼AL

⊥, then there exists a closed abstraction λw.s′ such that (λw.s′) ∼AL (b s[b/x]). By Proposition 3.8 we
can transform: (t1 b) ∼AL b (b s[b/x]) ∼AL b λw.s

′ ∼AL b λz.(λw.s′) z ∼AL b λz.(b s[b/x] z) ∼AL t2 b.
In the case (b s[b/x]) ∼AL ⊥, evaluation of (λu.u t1 . . . tn) ⊥ and (λu.u t1 . . . tn) (λy.⊥) results in ⊥.

2. We use Theorem 3.11 (for i = 1). Since s1↓AL and s2↓AL, we only consider the cases (s1 b) and (s2 b)
where b is a closed abstraction or ⊥. We use Proposition 3.12 for a case distinction on b. It is easy to
verify that s1 b ∼AL s2 b for b = ⊥, b = λz.⊥, and b = λz.z. For b := λz.(z u1 . . . un) where n ≥ 1,
we have (s1 b) ∼AL b (λy.>) > and (s2 b) ∼AL b > >, and by Lemma 4.1 also (s1 b) ∼AL (s2 b).

3. We use Theorem 3.11 (for i = 2). Since sj↓AL and (sj b)↓AL for j = 3, 4 we need to consider
the cases (s3 b d) and (s4 b d) where b, d are closed abstractions or ⊥. We use Proposition 3.12
for case distinction on d. If d = ⊥, or d = λx.⊥, then s3 b d ∼AL s4 b d. If d := λx.x, then
item 1 shows that λx.x (x id) ∼AL λx.x λz.(x id) z. Correctness of β implies that b (b id) ∼AL

b λz.(b id) z, and thus s3 b d ∼AL b (b id) ∼AL b λz.(b id) z ∼AL s4 b d. If d := λx1.λx2.t, then

s3 b d ∼AL b (d (λx2.t[(b id)/x1]))
η−→ b (d λ.z (λx2.t[(b id)/x1]) z) ∼AL s4 b d, where η is correct

by Proposition 3.8. If d := λu.u t1 . . . tn with n ≥ 1 and (d (b id)) 6∼AL ⊥, it is equivalent to an
abstraction, and η is correct, hence equivalence holds in this case. Otherwise, if (d (b id)) ∼AL ⊥, then
(b (d ⊥) ∼AL (b (d λx.⊥)) since (d ⊥) ∼AL ⊥ ∼AL (d λx.⊥).

4. We use Theorem 3.11 (for i = 2). We have sj↓ALseq
and (sj b)↓ALseq

for any b for j = 5, 6. Now we
consider the cases (s5 b d) and (s6 b d) where b, d are closed abstractions or ⊥. We make a case
distinction on b using Proposition 3.12. The cases b = ⊥, b = λx.⊥, and b = λu.u are easy to verify.
If b = λu, v.b′ then the subexpression (b d) is contextually equivalent to λv.b′[d/u] Thus, η-expansion
for (b d) is correct which shows s5 b d ∼ALseq s6 b d. For the other case we distinguish whether
(b d) ∼ALseq ⊥ holds. If (b d) 6∼ALseq ⊥ then η is correct, which shows that s5 b d ∼ALseq s6 b d. If
(b d) ∼ALseq ⊥, then we have to check more cases: If b = λu.seq (u t1 . . .) r or b = λu.seq u r, then
(b (b d)) ∼ALseq ⊥, and s5 b d is equivalent to s6 b d. If b = λu.u t1 . . ., then (b (b d)) becomes ⊥ in
both expressions, which shows (s5 b d) ∼ALseq ⊥ ∼ALseq (s6 b d).

5. We use Theorem 3.11. Since s7↓ALcc
, s8↓ALcc

, and case s7 . . . ∼ALcc ⊥ ∼ALcc case s8 . . ., it is
sufficient to show (s7 b) ∼ALcc (s8 b) where b is a closed abstraction, a constructor application, or
⊥. If b = ⊥ then the equivalence holds. Otherwise, we inspect the cases of a normal-order reduction
for b y for some free variable y: If b y↓ALcc

True (or b y↓ALcc
False, resp.) then (b ⊥) and (b λx.⊥)

also converge with True (or False, resp.), which shows that (s7 b) ∼ALcc (s8 b). If evaluation of b y
stops with R[y] for some reduction context R, then (s7 b) evaluates to caseBool R[⊥] alts which is
equivalent to ⊥, and (s8 b) evaluates to caseBool R[λx.⊥] alts. We consider cases of R: If R = [·]
then (s8 b) ∼ALcc ⊥. If R = R′[[·] r] then (s8 b) evaluates to caseBool R

′[⊥] alts which is equivalent
to ⊥. Finally, if R = R′[caseK [·] alts′] then (s8 b) ∼ALcc ⊥. If (b y) converges with cKi,j t1 . . . tn
for some constructor cKi,k not of type Bool then (b ⊥) converges to cKi,j t

′
1 . . . t′n and (b λx.⊥)

converges to cKi,j t
′′
1 . . . t′′n. However, in this case (s7 b) ∼ALcc ⊥ ∼ALcc (s8 b). ut

Now we obtain non-conservativity for all embeddings between the four calculi as follows:

Theorem 4.3. The natural embeddings of AL in ALseq, AL in ALcc,seq, AL in ALcc, ALseq in ALcc,seq, and
ALcc in ALcc,seq are not conservative.

Proof. AL in ALseq and AL in ALcc,seq: The proof uses the expressions s1, s2 which are adapted from
the example of [Fel91, Proposition 3.15]. Theorem 4.2, item 2 shows that s1 ∼AL s2. The context
C := ([·] λz.seq z id) distinguishes s1, s2 in ALseq,ALcc,seq, since C[s1]↓D while C[s2]⇑D for D ∈
{ALseq,ALcc,seq}.
Another counterexample uses the expressions t1(s), t2(s) with s = (x ((x id) (x id))): Since s[id/x] ∼AL

id, Theorem 4.2, item 1 shows t1(s) ∼AL t2(s). However, the context C := ([·] λy. seq y ω) distinguishes
t1(s) and t2(s) in ALseq and ALcc,seq.

AL in ALcc: From Theorem 4.2 we have s3 ∼AL s4. In ALcc the context C :=
[·] (λu.u True) (λu.caseBool u (True -> False) (False -> id)) distinguishes s3 and s4, since
C[s3] ∼ALcc True and C[s4]⇑ALcc

.
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ALseq in ALcc,seq: Theorem 4.2 shows s5 ∼ALseq s6. In ALcc,seq the context C := ([·] b True) with b :=

λu.caseBool u (True -> False)(False -> id) distinguishes s5 and s6, since C[s5]
∗−→ALcc,seq id, but

C[s6]⇑ALcc,seq
.

ALcc in ALcc,seq: A counterexample for conservativity of embedding ALcc into ALcc,seq was given in
[SSSM12] which can be translated into the notations of this paper as follows: The equation s7 ∼ALcc s8
holds (Theorem 4.2), but for the context C := [·] λu.seq u True we have C[s8]↓ALcc,seq

True while
C[s7]⇑ALcc,seq

. ut

5 Monomorphically Typed Calculi and Embeddings

We now analyze embeddings among the four calculi under monomorphic typing, and therefore we add a
monomorphic type system to the calculi. The counterexamples in Sect. 4 cannot be transferred to the
typed calculi except for the counterexample showing non-conservativity of embedding ALcc into ALcc,seq.

Since AL with a monomorphic type system is the simply typed lambda calculus (which is too inexpressive
since every expression converges) we extend all the calculi by a fixpoint combinator Fix as a constant to
implement recursion, and by a constant Bot to denote a diverging expression4. The resulting calculi are
called ALτ , ALτseq, AL

τ
cc, AL

τ
cc,seq.

The syntax for types is T ::= o | T → T | K(T1, . . . , TarK), where o is the base type, and K is a
type constructor. The syntax for expressions is as in the base calculi, but extended by Fix as a family of
constants of all types of the form (T → T )→ T , and the constant Bot as a family of constants of all types.
Variables have a built-in type, i.e. in an expression every variable is annotated with a monomorphic type,
e.g. λxo→o.xo→o is an identity on functions of type o→ o. However, we rarely write these annotations
explicitly. The type of constructors is structured as in a polymorphic calculus: The family of constructors for
one constructor cKi has a (polymorphic) type schema of the form T1 → . . .→ Tn → (Ki T

′
1 . . . T ′ar(Ki)),

where every type-variable of T1 → . . .→ Tn is contained in (Ki T
′
1 . . . T ′ar(Ki)), and every monomorphic

type of constructor cKi is an instance of this type. The types of case and seq are the monomorphic
instances of the usual polymorphic types as in Haskell. We omit the standard typing rules. However, we
write s :: T which means that s can be typed by a (monomorphic) type T . The reduction rules are in
Fig. 1, and normal order reduction −→D for D ∈ {ALτ ,ALτseq,AL

τ
cc,AL

τ
cc,seq} applies the reduction rules in

reduction contexts (defined as before). It is easy to verify that normal order reduction is deterministic,
type-, and closedness-preserving. The following progress lemma holds: for every closed expression t, either
t
∗−→D t0, where t0 is a value, or t has an infinite reduction sequence, or t

∗−→D R[Bot], where R is a
reduction context. In particular, the typing implies that case-expressions (caseK (c . . .) alts) are always
reducible by a case-reduction.

Answers are defined as abstractions, constructor applications, and the constant Fix. Contextual
equivalence ∼D is defined according to Definition 2.2.

We also reuse the approximation contexts, but restrict them to well-typed contexts. The APi-context
lemma (Theorem 3.10) also holds for the typed calculi, where only equally typed expressions and well-typed
contexts are taken into account.

Theorem 5.1. For D ∈ {ALτ ,ALτseq,AL
τ
cc,AL

τ
cc,seq} and closed, equally typed D-expressions s, t holds:

s ≤D t iff for all i and all approximation contexts APi, such that APi[s] and APi[t] are well-typed:
APi[s]↓D =⇒ APi[t]↓D.

To lift the correctness results for program transformations into the typed calculi, we define a translation
δ.

Definition 5.2. Let δ : ALτcc,seq → ALcc,seq be the translation of an ALτcc,seq-expression that first removes
all types and then leaves all syntactical constructs as they are except for the cases δ(Bot) := Ω and
δ(Fix) := λf.(λx.f (x x)) (λx.f (x x)).

In the appendix (Corollary C.5) we prove adequacy of δ, which implies that reduction rules and simplifica-
tions are correct program transformations in the typed calculi (Lemma C.10).

Proposition 5.3. For equally typed ALτcc,seq-expressions s, t it holds: δ(s) ∼ALcc,seq δ(t) implies s ∼ALτcc,seq t.
The same holds for ALτ ,ALτseq, and ALτcc w.r.t. their untyped variants.

Theorem 5.4. All reduction rules and simplifications in Figs. 1, 2, and 4 are correct program transfor-
mations in ALτ ,ALτcc,AL

τ
seq, and ALτcc,seq.

4 Bot can also be encoded using Fix, but for convenient representation we include the constant.
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(botapp) (Bot s)→ Bot (botseq) (seq Bot s) → Bot

(botcase) (caseK Bot alts)→ Bot

Fig. 4. The bot-simplifications

We now show non-conservativity of embedding ALτ in ALτseq as well as of ALτcc in ALτcc,seq, i.e. the
addition of seq is not conservative. For the other embeddings, ALτ in ALτcc and ALτseq in ALτcc,seq, we show
conservativity. This is consistent with typability: the counterexample for AL in ALcc requires an untyped
context, and the counterexample for ALseq in ALcc,seq has a self-application of an expression, which is
nontypable.

5.1 Adding Seq is Not Conservative

We consider calculi ALτ and ALτseq.
There is only one equivalence class w.r.t. contextual equivalence for closed expressions of type o: it is

Boto :: o. For type o→ o, there are only two equivalence classes with representatives Boto→o and λxo.Boto.
Note that the expression λxo.xo is equivalent to λxo.Boto, since there are no values of type o.

Our counterexample to conservativity are the following expressions s9, s10 of type ((o→ o)→ (o→
o)→ (o→ o))→ (o→ o)→ (o→ o)→ (o→ o)→ (o→ o) :

s9 := λf, x, y, z.f (f x y) (f y z) s10 := λf, x, y, z.f (f x x) (f z z)

Theorem 5.5. The embedding of ALτ into ALτseq and into ALτcc,seq is not conservative

Proof. We use Theorem 3.11 (with i = 1) which also holds in the typed calculi (Theorem C.3) and show
s9 ∼ALτ s10. Since s9↓ALτ and s10↓ALτ , we need to show s′9 := (s9 b) ∼ALτ s

′
10 := (s10 b), where b is a closed

expression of type (o→ o)→ (o→ o)→ (o→ o). We check the different cases for b. Due to its type b must
be equivalent to one of Bot, λw.Bot, λu,w.Bot, λw1, w2, w3.Bot, λx, y.x, and λx, y.y. For the first three
cases it holds: s′9 ∼ALτ λx, y, z.Bot ∼ALτ s

′
10. If b = λw1, w2, w3.Bot then s′9 ∼ALτ λx, y, z, w3.Bot ∼ALτ

s′10. If b = λx, y.x then s′9 ∼ALτ λx, y, z.x ∼ALτ s′10. If b = λx, y.y then s′9 ∼ALτ λx, y, z.z ∼ALτ s′10.
Nonconservativity now follows from the context C = ([·] (λx, y.seq x y) (λx.Bot) Bot (λx.Bot)): The
expressions C[s9], C[s10], are typable in ALτseq,AL

τ
cc,seq and C[s9] ∼D Bot, but C[s10] ∼D (λx.Bot) for

D ∈ {ALτseq,AL
τ
cc,seq}.

We reuse the counterexample in the untyped case represented by expressions s7 and s8, where ⊥ is
replaced by Bot. The example becomes

s11 := λx.caseBool (x Bot) (True -> True) (False -> Bot)
s12 := λx.caseBool (x (λy.Bot)) (True -> True) (False -> Bot)

where s11, s12 are typed as ((T → Bool)→ Bool) for any type T . The two expressions are equivalent in
ALτcc: They are typed, and δ(s11) ∼ALcc δ(s12) (see Theorem 4.2, item 5). Thus Proposition 5.3 is applicable.
However, s11 6∼ALτcc,seq s12, since s12 b evaluates to True, while s11 b diverges, where b = λu.seq u True.

Theorem 5.6. The embedding of ALτcc into ALτcc,seq is not conservative.

5.2 Adding Case and Constructors is Conservative

We show that adding case and constructors to the monomorphically typed calculi is conservative. We give
a detailed proof for embedding ALτseq into ALτcc,seq. The proof for embedding ALτ into ALτcc is analogous by
omitting unnecessary cases. We show that for ALτseq-expressions s, t the embedding is fully abstract, i.e.
s ≤ALτseq t ⇐⇒ s ≤ALτcc,seq t. The hard part is s ≤ALτseq t =⇒ s ≤ALτcc,seq t. Lemma 3.7 holds in the typed
calculi as well, and thus it suffices to consider closed s, t. The APi-context lemma (Theorem 5.1) can be
used, where the arguments are closed.

The main argument concerns the following situation: There are closed equally typed ALτseq-expressions
s, t, such that s ≤ALτseq t, but we assume that s ≤ALτcc,seq t does not hold. Since s, t must have a type
without constructed types and since the APi-context lemma holds, there is an n ≥ 0, and vi, i = 1, . . . , n,
that are Bot or ALτcc,seq-values, and where all vi are of an ALτseq-type, such that s v1 . . . vn↓ALτcc,seq , but

t v1 . . . vn⇑ALτcc,seq . The goal is to show that there are ALτseq-expressions v′i that are Bot or ALτseq-values,

such that s v′1 . . . v
′
n↓ALτseq , and t v′1 . . . v

′
n⇑ALτseq which refutes s ≤ALτseq t and thus leads to a contradiction. It
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is sufficient to show that for every ALτcc,seq-value v and context C with C[v]↓ALτcc,seq , there is an ALτseq-value

v′, with v′ ≤ALτcc,seq v, such that C[v′]↓ALτcc,seq .
In order to construct the proof we define simplification transformations in our monomorphically typed

calculi, whenever the appropriate constructs exist in the calculus.

Definition 5.7. The simplification rules (caseapp), (casecase), (seqseq), (seqapp), (seqcase), (caseseq),
(botapp), (botcase), and (botseq) are defined in Figs. 2 and 4, where we use the typed variants. For

D ∈ {ALτcc,seq,AL
τ
cc} let

Dx−−→ denote the reduction using normal order reductions and simplification rules

in a reduction context, where in case of a conflict the topmost redex is reduced. If s
Dx ,∗−−−→ v for some

D-answer v, then we denote this as s↓Dx .

Let
bcsfC−−−→ denote the reduction in any context by (β), (case), (seq), and (fix).

The simplifications are correct in the calculi under consideration (Lemma C.10) and they do not change
the normal order reduction length (Lemma D.4):

Lemma 5.8. In the calculi ALτcc and ALτcc,seq: The simplification rules preserve the length of (converging)

normal order reductions, i.e. let d be a simplification rule and D ∈ {ALτcc,AL
τ
cc,seq}: if s

d−→ s′ then s
n−→D v,

where v is a D-WHNF, if and only if s′
n−→D v′, where v′ is a D-WHNF.

Lemma 5.9. For D ∈ {ALτcc,seq,AL
τ
cc} we have ↓D = ↓Dx .

Proof. Since the simplification rules are correct in ALτcc,seq, AL
τ
cc, s↓Dx implies that s↓D. Now assume

that s↓D. We use induction on the number of (β), (case), (seq), (fix)-reductions of s to a WHNF. If s

is a WHNF, then it is irreducible w.r.t.
Dx−−→. If s has a normal order reduction of length n > 0 to a

WHNF, then consider a
Dx−−→-reduction sequence s

Dx ,∗−−−→ s0, where s0 is a D-WHNF. Lemma 5.8 and

termination of the simplifications (Lemma D.3) show that there are s′, s′′, such that s
Dx ,∗−−−→ s′ −→D s′′,

where s
Dx ,∗−−−→ s′ consists only of simplification rules. Lemma 5.8 shows that the normal order reduction

length of s′′ to a WHNF is smaller than n. Now we can apply the induction hypothesis.

Definition 5.10. The following approximation procedure computes for every D-expression t (for
D ∈ {ALτcc,seq,AL

τ
cc}) and every depth i an approximating expression approx (t, i) ≤D t. First a pre-

approximation is computed where preapprox (t, 0) := Bot. If there is an infinite
Dx−−→-reduction sequence

starting with t, then preapprox (t, i) := Bot for all for i > 0. Otherwise, let t
Dx ,∗−−−→ t′ where t′ is irreducible

for
Dx−−→. Let M be the multicontext derived from t′ where every subexpression at depth one is a hole, such

that t′ = M(t1, . . . , tk), and tj, for 1 ≤ j ≤ k, are subexpressions at depth 1. Let t′j = preapprox (tj , i− 1)
for j = 1, . . . , k, and define the result as preapprox (t, i) := M(t′1, . . . , t

′
k).

Finally, approx (t, i) is computed from preapprox (t, i) by computing its normal form under the bot-
simplifications in Fig. 4.

E.g. for t = seq (seq x id) id first t
Dx ,∗−−−→ (seq x (seq id id)). Replacing the subexpressions at

depth 1 by Bot results in preapprox (t, 1) = (seq Bot Bot) which reduces to approx (t, 1) = Bot. Similarly,
preapprox (t, 2) = approx (t, 2) = (seq x λz.Bot).

Lemma 5.11. For D ∈ {ALτcc,seq,AL
τ
cc} : approx (t, i) ≤D t.

Proof. By Lemma 5.9, since all reductions are correct, and since cutting by Bot makes expressions smaller
w.r.t. ≤D.

We show a variant of the so-called subterm property for approximations:

Lemma 5.12. The approximations approx (t, i) are of the same type as t and irreducible w.r.t. the

simplification rules and
bcsfC−−−→-irreducible. If t is an ALτcc,seq-expression of ALτseq-type, then approx (t, i) is

an ALτseq-expression. If t is an ALτcc-expression of ALτ -type, then approx (t, i) is an ALτ -expression.

Proof. The expressions approx (t, i) have the same type as t. Only bot-simplifications may be possible,
and these can only enable other bot-simplifications and thus, every approx (t, i) is irreducible w.r.t. the
simplification rules. It remains to show that a := approx (t, i) must be an ALτseq-expression (ALτ -expression,
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resp.). W.l.o.g. we consider the case with seq-expressions. It is sufficient to use the facts that approx (t, i)

is irreducible w.r.t. the simplification rules and
bcsfC−−−→,and of ALτseq-type.

Suppose that there is a subexpression in a = approx (t, i) of non-ALτseq-type. We select the subexpressions
of non-ALτseq-type that are not contained in another subexpression of non-ALτseq-type; let s denote the
one of a maximal non-ALτseq-type among these subexpressions. Since a is closed, we obtain that s cannot
be a variable, since then either there is a superterm of s that is an abstraction of non-ALτseq-type, or a
case-expression of non-ALτseq-type. Since a is of ALτseq-type, and s is maximal, there must be an immediate
superterm s′ of s which is of ALτseq-type. We look for the structure of s′. Due to the maximality conditions,
s′ cannot be an abstraction, an application of the form (s0 s), a constructor application, a seq-expression
of the form (seq s0 s), or a case-alternative, since then it would also have a non-ALτseq-type. It may be an
application (s s2), a seq-expression (seq s s2), or a case expression case s alts.

First assume that s′ is an application, then let s0 be the leftmost and topmost non-application in s, i.e.
s′ = (s0 r1 . . . rn), and s = (s0 r1 . . . rn−1), n ≥ 1, where s0 is not an application. The expression s0 must
be of non-ALτseq-type. Then s0 cannot be Bot, an abstraction, Fix, a case-expression, or a seq-expression,
since otherwise the subterm s0 r1 would be reducible by (botapp), (β), (fix), (caseapp), or (seqapp). s0
cannot be a constructor application either, due to types. Hence s′ is not an application.

If s′ is a case expression caseK s alts, then s cannot be Bot, a case-expression, a seq-expression,
or a constructor-application, since otherwise s would be reducible by (botcase), (casecase), (case), or
(caseseq). Due to typing s cannot be an abstraction or Fix, and finally s′ cannot be an application using
the arguments above. Hence s′ is not a case-expression.

If s′ is a seq-expression seq s s2, then s cannot be Bot, an abstraction, Fix, a constructor application,
a case-expression, or a seq-expression, since then s′ would be reducible by (botseq), (seq), (seqcase), or
(seqseq). s cannot be an application either, as argued above. Hence s′ cannot be seq-expression.
In summary, such a subexpression does not exist, i.e. approx (t, i) is an ALτseq-expression.

In the following we use s|p for the subterm of s at position p, and s[·]p for the expression s where the
subterm at position p is replaced by a context hole.

Definition 5.13. For an ALτcc,seq-expression (ALτcc-expression, resp.) s, a position p, and a subexpression
s′ such that s|p = s′ the non-R-depth of s′ at p is the number of prefixes p′ of p s.t. s[·]p′ is not a reduction
context.

Lemma 5.14. For D ∈ {ALτcc,seq,AL
τ
cc}, a D-expression t, a D-context C with C[t]↓D there is some i

and an approximation approx (t, i) with C[approx (t, i)]↓D.

Proof. Let C[t]
n−→D t0, where t0 is a D-WHNF. Then compute t′ := approx (t, n+ 1). The construction

of approx (t, n + 1) includes (β)-, (case)-, (seq)- and (fix)-reductions and simplification rules. Let A be

the set of all the simplification rules. We have C[t]
bcsfC∪A,∗−−−−−−−→ C[t′′], where t′ is t′′ with subexpressions

replaced by Bot. Since reductions and simplifications are correct, we have C[t′′]↓D, and in particular, the
number of normal order reductions of C[t′′] to a D-WHNF is n′ ≤ n (proven in the appendix, Lemmas
D.4 and D.5).

The normal order reduction for C[t′] makes the same reduction steps as the normal order reduction
of C[t′′] since the Bot-expressions placed by the approximation are in the beginning at the non-R-depth
n+ 1, and remain at non-R-depth ≥ n+ 1− j after j normal order reductions. Finally, they will be at
non-R-depth of at least 1, hence the final D-WHNF may have Bots only at non-R-depth of at least 1, and
so it is a WHNF. Thus C[approx (t, n)]↓D.

Theorem 5.15. The embeddings of ALτ in ALτcc and of ALτseq in ALτcc,seq are conservative.

Proof. We prove this for the embedding of ALτseq in ALτcc,seq. The other case is similar. Let s, t be ALτseq-
expressions with s ≤ALτseq t. We have to show that s ≤ALτcc,seq t. Assume this is false. Since the APi-context
lemma holds (Theorem 5.1) the assumption implies that there is an n ≥ 0 and closed ALτcc,seq-expressions
b1, . . . , bn of ALτseq-type which are answers or Bot, such that (s b1 . . . bn)↓ALτcc,seq but (t b1 . . . bn)⇑ALτcc,seq .
According to Lemma 5.14, we have successively constructed the approximations b′i of bi of a depth
depending on the length of the normal order reduction of (s b1 . . . bn), such that (s b′1 . . . b

′
n)↓ALτcc,seq but

(t b′1 . . . b
′
n)⇑ALτcc,seq , also using Lemma 5.11. Lemma 5.12 shows that the approximations are in the smaller

calculus ALτseq, and thus also (s b′1 . . . b
′
n)↓ALτseq but (t b′1 . . . b

′
n)⇑ALτseq , which contradicts s ≤ALτseq t.

The same reasoning can be used to show the following result (of practical interest) for D ∈
{ALτcc,AL

τ
cc,seq}: Assume that the set of type and data constructors is a fixed set in D, and that D′
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is an extension of D such that only new type and data constructors are added. Then D′ is a conservative
extension of D, since we can use the approximation technique from this section to approximate D′-values
by D-values and then apply the APi-context lemma.

6 Polymorphically Typed Calculi

We consider polymorphically typed variants ALα,ALαseq,AL
α
cc,AL

α
cc,seq of the four calculi. We will show

non-conservativity of embedding ALα in ALαseq and ALαcc in ALαcc,seq, but leave open the question of
(non-)conservativity of embedding ALα in ALαcc and ALαseq in ALαcc,seq.

The expression syntax is the untyped one. The syntax for polymorphic types T is T ::= V | T 1 →
T 2 | (K T 1 . . . T ar(K)) where V is a type variable. The constructors have predefined Hindley-Milner poly-
morphic types according to the usual standards. Only expressions that are Hindley-Milner polymorphically
typed are permitted. Normal order reduction is defined only on monomorphic type-instances of expressions,
which is a deviation from Definition 2.1.

Definition 6.1. For D ∈ {ALα,ALαseq,AL
α
cc,AL

α
cc,seq} and for s, t ∈ D of equal polymorphic type: s ≤D t

iff ρ(s) ≤D′ ρ(t) for all monomorphic type instantiations ρ, where D′ is the corresponding monomorphically
typed calculus. Contextual equivalence is defined by s ∼D t iff s ≤D t ∧ t ≤D s.

Since s11, s12 (Sect. 5.1) are of polymorphic type (a→ Bool)→ Bool, the same arguments as for the
proof of Theorem 5.6 can be applied, hence:

Theorem 6.2. The natural embedding of ALαcc into ALαcc,seq is not conservative.

We observe that encoding cases and constructors in s11, s12 in Subsection 5.1 does not produce a
counterexample:

s′11 := λx.x Bot id
s′12 := λx.x (λy.Bot) id

These two expressions are not equivalent in ALα, since application to λu, v.u extract the first argument,
and thus the expressions behave differently.
A successful example is the following. Let s13, s14 of the polymorphic type ((α→ α)→ (α→ α)→ (α→
α))→ (α→ α)) be defined as: s13 := λx.x id (x Bot id) and s14 := λx.x id (x (λy.Bot) id).

Lemma 6.3. For ALτ -expressions t = M [Bot, . . . , Bot], t′ = M [λx.Bot, . . . , λx.Bot], and t⇑ALτ , t′↓ALτ it

holds that M [x1, . . . , xn]
∗−→ALτ xi for some i.

Proof. This follows by observing a normal order reduction of t, t′ and comparing the first use of Bot, or
λx.Bot, respectively. There must be a use of this argument, since otherwise the observations are identical.
If it is ever used in a function position in a beta-reduction, then both expressions diverge. Hence, the only
possibility is that they are returned.

Theorem 6.4. The embedding of ALα into ALαseq is not conservative. The embedding of ALα into ALαcc,seq
is also not conservative.

Proof. Since (ρ(s13) (λu, v.seq u v))⇑ALτ , but (ρ(s14) (λu, v.seq u v))↓ALτ for ρ = {α 7→ o}, we have
s13 6∼ALαseq s14 as well as s13 6∼ALαcc,seq s14. It remains to show that s13 ∼ALα s14 holds, i.e. that ρ(s13) ∼ALτ

ρ(s14) for any monomorphic type instantiation ρ of the type ((a→ a)→ (a→ a)→ (a→ a))→ (a→ a)).
We use the APi-context lemma (Theorem 5.1) and assume that there is an n, a closed ALτ -expression s,
and closed arguments b1, . . . , bn, such that ρ(s13) s b1 . . . bn is typed in ALτ , and ρ(s13) s b1 . . . bn⇑ALτ ,
ρ(s14) s b1 . . . bn↓ALτ . By Lemma 6.3, the only possibility is that the Bot, and λx.Bot-positions are
extracted. By the type preservation, and since the type of ρ(s13) s is the type of the Bot-position, it is
impossible that n > 0, since then the type of the result is smaller than the type of the Bot-position. Hence
s id (s y id)

∗−→ALτ y. But since the y occurs in the expression (s y id), we also have (s y id)
∗−→ALτ y. This

implies that (s id y)
∗−→ALτ y. But then the normal order reduction of s x1 x2 cannot apply either of its

arguments x1, x2, and hence must be a projection to one of the arguments, which is impossible, since
it must project to both arguments. We conclude that ρ(s13) and ρ(s14) cannot be distinguished in all
approximation contexts, and the reasoning does not depend on ρ. Hence s13 ∼ALα s14.
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The expressions s13, s14 could also be used to show non-conservativity of embedding ALτ into ALτseq.
Hence there are also examples at higher types as witnesses for Theorem 5.6.

Whether adding case and constructors is conservative or not in the polymorphic case, for ALα as well
as for ALαseq remains an open problem. Also the appendix with the pair example should only be part of
the technical report?

Remark 6.5. It is an open question whether the embeddings of ALα into ALαcc and ALαseq into ALαcc,seq are
conservative. Using bisimulation for a proof that s ∼ALα t implies that s ∼ALαcc t has to try ALαcc-arguments
bi of s, t. In contrast to the monomorphically typed conservativity proof, also bi with a non-ALα-type have
to be checked, hence an approximation does not work. Another potential method would be a translation of
bi using Church encoding of the cases and constructors. This, however, is not possible in the Hindley-Milner
polymorphic typing system, since, for example, the translation will enforce equal types of the component
of a pair, and thus does not allow to program the copy-function of pairs [SSNSS08,MJJS09]. An extended
example is in the appendix (Sect. ??).

Forgetting Types. Now we look for the translations defined as “forgetting” the types, and ask for
adequacy and full abstraction, which plays now the role of conservativity. For the monomorphically typed
calculi the answer is obvious: these translations are not fully abstract. For example λxo.xo is equivalent to
λxo.⊥o, which refutes full abstractness in all cases. For the polymorphically typed calculi, this question is
non-trivial:

Proposition 6.6. The translations of ALα into AL, ALαcc into ALcc, and ALαcc,seq into ALcc,seq by simply
forgetting the types are adequate but not fully-abstract.

Proof. For the first case, ALα and AL, we have s13 ∼ALα s14, but (s13 λu, v.(v (λx.u)))⇑ and
(s14 λu, v.(v (λx.u)))↓. For the other calculi, λx.caseBool x (True -> True) (False -> False) is equivalent
to λxBool.x, but in the untyped case, ([·] λz.z) distinguishes these expressions.

Full abstractness of forgetting types in ALαseq also remains an open question.

7 Conclusion

We have shown that the semantics of the pure lazy lambda calculus changes when seq, or case and
constructors, are added. Under the insight that any semantic investigation for Haskell should include the
seq-operator, we exhibited calculus extensions that are useful for the analysis of expression equivalences
that also hold in a realistic core calculus of lazy functional and typed languages. We left the rigorous
analysis of the implication chain for equivalence from ALτcc,seq to the polymorphic calculus with letrec for
future research.
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A Bisimilarity and Finite Simulation

We define the notion of bisimilarity in a general way, and then show that bisimilarity coincides with a
restricted form of contextual equivalence, provided the corresponding TDPC is convergence-admissible
(see Definition A.7).

Definition A.1. For a TDPC D = (E , C,−→D,A, T ) a set of experiments Q ⊆ C is a set of contexts which
preserves closedness, i.e. Q(s) is a closed expression for every Q ∈ Q and s ∈ Ec. We write Q ∈ QT,T ′ if
Q is a context which behaves like a function from ET into ET ′ .

A binary relation χ on typed expressions is called type-preserving, if sχt always implies that s and t
are of the same type.

Definition A.2 (Q-Similarity). Let D = (E , C,−→D,A, T ) be a TDPC and Q be a set of experiments.
The experiment-operator FQ on type-preserving binary relations χ on closed D-expressions is defined
as follows: The relation s FQ(χ) t for closed, equally typed expressions s, t of type T holds iff s↓Dv =⇒(
t↓Dv′∧ for all types T ′ and all Q ∈ QT,T ′ : Q(v)χQ(v′)

)
.

Q-similarity ≤b,D,Q is the greatest fixpoint of the operator FQ. Q-bisimilarity ∼b,D,Q is defined as
≤b,D,Q ∩ ≥b,D,Q where ≥b,D,Q is the inverse of ≤b,D,Q

Definition A.3. For a relation χ on closed expressions, let χo be the extension to open expression, defined
by s χo t iff for all closing substitutions σ, the relation σ(s) χ σ(t) holds.

We first show that normal order reductions of a TDPC preserve Q-bisimilarity.

Lemma A.4. Let D = (E , C,−→D,A, T ) be a TDPC and Q be a set of experiments. Then for any
expressions s1, s2 ∈ Ec with s1 −→D s2 we have s1 ∼b,D,Q s2.

Proof. Let M := −→D ∪ {(s, s) | s ∈ Ec}, M := {(s2, s1) | (s1, s2) ∈ M}. Then the relations M and
M are FQ-dense, i.e. X ⊆ FQ(X) for X ∈ {M,M} holds, since −→D is deterministic, type-preserving,
and closedness-preserving. Since ≤b,D,Q=

⋃
{X | X ⊆ FQ(X)}, FQ-density of M and M implies that

M ⊆ ∼b,D,Q.

Now we define the notion of finite simulation.

Definition A.5 (Finite Simulation). Let D be a typed deterministic calculus and let Q be a set of
experiments. Finite simulation �D,Q is defined as follows:

For s1, s2 ∈ EcTn the relation s1 �D,Q s2 holds if and only if:
∀n ≥ 0, T0 ∈ T : ∀Qi ∈ QTi,Ti−1 : Q1(Q2(. . . (Qn(s1))))↓D =⇒ Q1(Q2(. . . (Qn(s2))))↓D
Finite bisimulation ≈D,Q is defined as �D,Q ∩ �D,Q.

If ≈D,Q coincides with contextual equivalence, a sufficient criterion to show contextual equivalence is
the following:

Proposition A.6. Let D = (E , C,−→D,A, T ) and Q be a set of experiments, such that ≈D,Qo = ∼D.
Two closed expressions s1, s2 ∈ Ec of type Ti ∈ T are contextually equivalent if there exists i ∈ N0 such
that

1. s1↓D ⇐⇒ s2↓D.
2. For all 1 < k ≤ i, and for all Qk, . . . , Qi with Qj ∈ QTj ,Tj−1 (for k ≤ j ≤ i):

Qk(Qk+1(. . . (Qi(s1) . . .)))↓D ⇐⇒ Qk(Qk+1(. . . (Qi(s2) . . .)))↓D.
3. For all Q1, . . . , Qi with Qj ∈ QTj ,Tj−1 (for 1 ≤ j ≤ i): Q1(Q2(. . . (Qi(s1) . . .))) ∼D

Q1(Q2(. . . (Qi(s2) . . .))).

Proof. s1 ≈D,Q s2 holds, since ∼D is a congruence, Q ⊆ C, and ≈D,Q = ∼D.

Definition A.7. D = (E , C,→,A, T ) is convergence-admissible w.r.t. a set of experiments Q iff ∀Q ∈
QT,T ′ , s ∈ ET c : Q(s)↓Dv ⇐⇒ ∃v′ : s↓Dv′ ∧Q(v′)↓Dv

For the remainder of this section we assume a TDPC D = (E , C,−→D,A, T ) and a set of experiments
Q to be given.
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Lemma A.8. For all expressions s1, s2 ∈ Ec of the same type T the following holds: s1 ≤b,D,Q s2 iff
s1↓Dv1 =⇒ (s2↓Dv2 ∧ ∀T ′ ∈ T , Q ∈ QT,T ′ : Q(v1) ≤b,D,Q Q(v2)).

Proof. Since ≤b,D,Q is a fixpoint of FQ, we have ≤b,D,Q = FQ(≤b,D,Q). This equation is equivalent to
the claim of the lemma.

We show that FQ is monotonic and lower-continuous, which allows us to apply Kleene’s fixpoint theorem
and leads to an alternative characterization of ≤b,D,Q.

Lemma A.9. FQ is monotonic w.r.t. set inclusion, i.e. for all type-preserving binary relations χ1, χ2 on
closed expressions χ1 ⊆ χ2 =⇒ FQ(χ1) ⊆ FQ(χ2).

Proof. Let χ1 ⊆ χ2 and s1 FQ(χ1) s2 with s1, s2 ∈ ET . The assumption implies
s1↓Dv1 =⇒ (s2↓Dv2 ∧ ∀T ′ ∈ T , Q ∈ QT,T ′ : Q(v1)χ1Q(v2)). Now χ1 ⊆ χ2 shows s1↓Dv1 =⇒
(s2↓Dv2 ∧ ∀T ′ ∈ T , Q ∈ QT,T ′ : Q(v1)χ2Q(v2)) .

For infinite sequences of sets S1, S2 . . . , we define the greatest lower bound w.r.t. set-inclusion ordering
as glb(S1, S2, . . .) =

⋂∞
i=1 Si.

Proposition A.10. FQ is lower-continuous w.r.t. countably infinite descending chains Ch = χ1 ⊇ χ2 ⊇
. . . of type-preserving binary relations on closed expressions, i.e. glb(FQ(Ch)) = FQ(glb(Ch)) where
FQ(Ch) is the infinite descending chain FQ(χ1) ⊇ FQ(χ2) ⊇ . . ..

Proof. “⊇”: Since glb(Ch) =
⋂∞
i=1 χi, we have for all i: glb(Ch) ⊆ χi. Monotonicity of FQ shows

FQ(glb(Ch)) ⊆ FQ(χi) for all i. This implies FQ(glb(Ch)) ⊆
⋂∞
i=1 FQ(χi), i.e. FQ(glb(Ch)) ⊆

glb(FQ(Ch)).
“⊆”: Let (s1, s2) ∈ glb(FQ(Ch)), i.e. for all i: (s1, s2) ∈ FQ(χi). Unfolding the definition of FQ gives:

∀i : s1↓Dv1 =⇒ (s2↓Dv2 ∧ ∀Q ∈ Q : Q(v1)χiQ(v2)). Now we can move the universal quantifier for i
inside the formula: s1↓Dv1 =⇒ (s2↓Dv2 ∧∀Q ∈ Q : ∀i: Q(v1)χiQ(v2)). This is equivalent to s1↓Dv1 =⇒
(s2↓Dv2∧∀Q ∈ Q : Q(v1)

(⋂∞
i=1 χi

)
Q(v2)) or s1↓Dv1 =⇒ (s2↓Dv2∧∀Q ∈ Q : (Q(v1), Q(v2)) ∈ glb(Ch))

and thus (s1, s2) ∈ FQ(glb(Ch)).

Since the operator FQ is monotonic and lower-continuous, we can apply Kleene’s fixpoint theorem to
derive an inductive description of Q-similarity.

Theorem A.11. Let ≤b,D,Q,i for i ∈ N0 be defined as follows:

≤b,D,Q,0 = {EcT × EcT | T ∈ T } and ≤b,D,Q,i = FQ(≤b,D,Q,i−1), if i > 0

Then ≤b,D,Q =
∞⋂
i=1

≤b,D,Q,i

Proof. This follows by Kleene’s fixpoint theorem since FQ is monotonic and lower-continuous, and since
≤b,D,Q,i+1 ⊆ ≤b,D,Q,i for all i ≥ 0.

We show some helpful properties of ≤D,Q:

Lemma A.12. Let D = (E , C,→,A, T ) be convergence-admissible w.r.t. Q. Then the following holds for
all closed expressions s1, s2 of the same type T :

– s1 �D,Q s2 =⇒ Q(s1) �D,Q Q(s2) for all T ′ ∈ T and Q ∈ QT,T ′
– s1 �D,Q s2, s1↓Dv1, and s2↓Dv2 =⇒ v1 �D,Q v2

Proof. The first part is easy to verify. For the second part let s1 �D,Q s2, and s1↓Dv1, s2↓Dv2 hold.
Assume that Q1(. . . (Qn(v1)))↓Dv′1 for some n ≥ 0 where all Qi ∈ Q. Convergence-admissibility implies
Q1(. . . (Qn(s1)))↓Dv′1. Now s1 �D,Q s2 implies Q1(. . . (Qn(s2)))↓Dv′2. Applying convergence-admissibility
multiple times shows that s2↓Dw2 and Q1(. . . (Qn(w2)))↓v′2 for some answer w2. Since normal order
reduction is deterministic, the assumption s2↓Dv2 shows w2 = v2 and thus Q1(. . . (Qn(v2)))↓v′2.

We prove that ≤b,D,Q respects functions Q ∈ Q provided the underlying TDPC is convergence-
admissible w.r.t. Q:

Lemma A.13. Let D = (E , C,→,A, T ) be convergence-admissible w.r.t. Q. For all s1, s2 ∈ EcT , Q ∈
QT,T ′ : s1 ≤b,D,Q s2 =⇒ Q(s1) ≤b,D,Q Q(s2)
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Proof. Let s1 ≤b,D,Q s2, Q0 ∈ Q, and Q0(s1)↓Dv1. By convergence-admissibility s1↓Dv′1 holds and
Q0(v′1)↓Dv1. Since s1 ≤b,D,Q s2 this implies s2↓Dv′2 and for all Q ∈ Q : Q(v′1) ≤b,D,Q Q(v′2). Hence,
from Q0(v′1)↓Dv1 we derive Q0(v′2)↓Dv2. Convergence-admissibility now implies Q0(s2)↓Dv2. It remains
to show for all Q ∈ Q: Q(v1) ≤b,D,Q Q(v2): Since Q0(v′1)↓Dv1 and Q0(v′2)↓Dv2, applying Lemma A.8 to
Q0(v′1) ≤b,D,Q Q0(v′2) implies Q(v1) ≤b,D,Q Q(v2) for all Q ∈ Q.

We show that �D,Q and Q-similarity coincide for convergence-admissible TDPC:

Theorem A.14. Let D = (E , C,→,A, T ) be convergence-admissible w.r.t. Q. Then �D,Q = ≤b,D,Q.

Proof. “⊆”: Let s1 �D,Q s2. We use Theorem A.11 and show s1 ≤b,D,Q,i s2 for all i by induction on
i. The case i = 0 obviously holds. Let i > 0 and let s1↓Dv1. Then s1 �D,Q s2 implies s2↓Dv2. Thus,
it is sufficient to show that Q(v1) ≤b,D,Q,i−1 Q(v2) for all Q ∈ Q: As induction hypothesis we use
that s1 �D,Q s2 =⇒ s1 ≤b,D,Q,i−1 s2 holds. Using Lemma A.12 twice and s1 �D,Q s2, we have
Q(v1) �D,Q Q(v2). The induction hypothesis shows that Q(v1) ≤b,D,Q,i−1 Q(v2). Thus the definition of
≤b,D,Q,i is satisfied.

“⊇”: Let s1 ≤b,D,Q s2. By induction on the number n of observers we show ∀n,Qi ∈ Q :
Q1(. . . (Qn(s1)))↓D =⇒ Q1(. . . (Qn(s2)))↓D. The base case follows from s1 ≤b,D,Q s2. For the in-
duction step we use the induction hypothesis: t1 ≤b,D,Q t2 =⇒ ∀j < n,Qi ∈ Q : Q1(. . . (Qj(t1)))↓D =⇒
Q1(. . . (Qj(t2)))↓D for all t1, t2 of the same type. Let Q1(. . . (Qn(s1)))↓D. From Lemma A.13 we have
r1 ≤b,D,Q r2, where ri = Qn(si). Now the induction hypothesis shows that Q1(. . . (Qn−1(r1)))↓D =⇒
Q1(. . . (Qn−1(r2)))↓D and thus Q1(. . . (Qn(s2)))↓D.

We now instantiate the experiment set Q of Q-similarity (Definition A.2) with the usual contexts
(application for functions and projection for constructor applications):

Definition A.15. The set of experiments A(D) for D ∈ {ALcc,ALcc,seq} is defined as

A(D) := {[·] r | r is a closed D-expression}
∪{caseKi [·] . . . (cKi,j x1 . . . xar(cKi,j)) ->xk . . . | for all i, j, k}
∪{caseKi [·] . . . (cKi,j x1 . . . xar(cKi,j)) -> True . . . | for all i, j}.

For D ∈ {AL,ALseq} let A(D) := {([·] r) | r is a closed D-expression}.

Howe’s method ([How89,How96]) can be applied to all four calculi showing that contextual preorder and
A(D)-similarity coincide, since these are call-by-name calculi. For the calculi with case and constructors
the proofs are not completely straightforward, since in these calculi the “irregularity” that λx.⊥ is
contextually smaller than c t1 . . . tn for any constructor c has to be taken into account.

However, we omit the proofs (for AL a proof can be found in [Abr90], for ALcc,seq a worked out proof
can be found in [SSSM12]).

Proposition A.16. For every D ∈ {AL,ALseq,ALcc,ALcc,seq}: ≤D = ≤ob,D,A(D) = �oD,A(D)

Proof. Coincidence of contextual preorder and A(D)-similarity can be shown by Howe’s method. Inspecting
the normal order reduction in all four calculi shows that all the calculi are convergence-admissible which
makes Theorem A.14 applicable and thus implies that finite simulation coincides with contextual preorder.

B On the Contextual Equivalence in the Untyped Calculi

B.1 Correctness of Reductions and Simplifications

Theorem B.1. For D ∈ {AL,ALseq,ALcc,ALcc,seq} the reductions of the corresponding calculus (β-, seq-,
case-reduction) are correct program transformations.

Proof. Lemma A.4 shows that the reductions on closed expressions preserve A(D)-bisimilarity. For open
expressions it suffices to observe that s −→D t also implies σ(s) −→D σ(t) for any closing substitution σ.
This shows −→D ⊆ ≤ob,D,A(D) and thus Proposition A.16 shows the claim.

Lemma B.2. For D ∈ {AL,ALseq,ALcc,ALcc,seq} and open D-expressions s, t with FV (s) ∪ FV (t) ⊆
{x1, . . . , xn} the equivalence s ∼D t ⇐⇒ λx1, . . . , xn.s ∼D λx1, . . . , xn.t holds.
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Proof. One direction holds, since ∼D is a congruence. For the other direction, let λx1, . . . , xn.s ∼D
λx1, . . . , xn.t hold. The congruence property implies that (λx1, . . . , xn.s) r1 . . . rn ∼D
(λx1, . . . , xn.t) r1 . . . rn holds for expressions ri. Correctness of β-reduction implies s[r1/x1, . . . , rn/xn] ∼D
t[r1/x1, . . . , rn/xn]. Proposition A.16 implies s[r1/x1, . . . , rn/xn] ≈A(D),Q t[r1/x1, . . . , rn/xn] and thus
also σ(s) ≈A(D),Q σ(t) for any closing substitution σ, and thus s ≈oA(D),Q t. Proposition A.16 now shows
s ∼D t.

Lemma B.3. The reductions of Fig. 2 are correct in {ALseq,ALcc,ALcc,seq}.

Proof. Let D ∈ {ALseq,ALcc,ALcc,seq} as applicable. For all considered transformations it is easy to observe
that if s1 → s2 by a transformation, where s1, s2 are closed, then either both expressions s1, s2 diverge,
or their evaluation ends in the same answer. This shows that s1 and s2 are bisimilar. Now it is also easy
to verify that if the expressions s1, s2 are open, then σ(s1) → σ(s2) for a closing substitution σ is still
contained in the transformation. Thus s1 ∼ob,D,A(D) s2. Finally, Proposition A.16 shows correctness of the
transformations.

B.2 The APi-Context Lemma

Lemma B.4. Let D ∈ {AL,ALseq,ALcc,ALcc,seq} and let R be a D-reduction context and s be a D-
expression. Then one of the following equivalences hold:

1. R[s] ∼D A[s] for some applicative context A
2. R[s] ∼D seq A[s] t for some applicative context A (for D ∈ {ALseq,ALcc,seq})
3. R[s] ∼D caseK A[s] alts for some applicative context A (for D ∈ {ALcc,ALcc,seq})

Proof. We only consider ALcc,seq, for the other calculi the proof is analogous. The simplifications terminate
(the measure mcss(·) introduced in Lemma D.3 can also be used for the untyped case) and are correct
in the respective calculi (Lemma 3.6). Hence, w.l.o.g. the expressions are in normal form w.r.t. the
simplifications. We consider the path to the hole of R: If there are only applications, then the lemma
holds (item 1). If a seq [·] r and applications are on the path, but no case [·] alts, then the normal form
is described in item 2, since other forms are reducible. If a case [·] r and applications (or perhaps a seq)
are on the path, then the normal form has a single case at the top, and the seq cannot occur on the path
of the reduced expression, hence the context is described in item 3.

Proposition B.5. Let D ∈ {AL,ALseq,ALcc,ALcc,seq}. For every (perhaps open) D-expression s one of
the following is true: s ∼D ⊥; s ∼D v where v is an answer; s ∼D A[x] where x is a free variable and A is
an applicative D-context; s ∼D seq A[x] t′ where x is a free variable and A is an applicative D-context, for
D ∈ {ALseq,ALcc,seq}; or s ∼D caseK A[x] t′ where x is a free variable and A is an applicative D-context,
for D ∈ {ALcc,ALcc,seq}.

Proof. This follows from the correctness of normal order reductions and the following observations:
For an AL-expression s either s ∼AL ⊥, or s↓ALλx.s′, or s

∗−→AL x t1 . . . tn. For an ALseq-expression s

either ∼ALseq ⊥, or s↓ALseq
λx.s′, or s

∗−→ALseq R[x]. For the last case Lemma B.4 shows s ∼ALseq A[x] or
s ∼ALseq seq A[x] t. For an ALcc-expression s either s ∼ALcc ⊥, or s↓ALcc

λx.s′, or s↓ALcc
(c t1 . . . tn) or

s
∗−→ALcc R[caseK λx.s′ . . .] ∼ALcc ⊥, or s

∗−→ALcc R[caseK,i (cKj ,k t1 . . . tn) . . .] where Tj 6= Ti and thus

s ∼ALcc ⊥, s
∗−→ALcc R[(c t1 . . . tar(c)) s] ∼ALcc ⊥, or s

∗−→ALcc R[x], and Lemma B.4 then shows s ∼ALcc A[x],
or s ∼ALcc caseK A[x] alts. For ALcc,seq the cases are analogous where for the case s −→ALcc,seq R[x] again
Lemma B.4 shows the claim.

Corollary B.6. For D ∈ {AL,ALseq,ALcc,ALcc,seq} and any closed D-expression s either s ∼D ⊥, or
s ∼D λx.t, or s ∼D (cKi,j t1 . . . tar(cKi,j)).

Definition B.7. Let AV (D) = {[·] r | r is a closed D-abstraction, or ⊥} for
D ∈ {AL,ALseq}. For D ∈ {ALcc,ALcc,seq} we define the experiments
AV (D) = {([·] r) | r is a closed D-abstraction, a constructor application, or ⊥} ∪
{caseKi [·] . . . (cKi,j x1 . . . xar(cKi,j)) ->xk . . . | for all i, j, k}

Proposition B.8. �D,AV (D) = �D,A(D) for D ∈ {AL,ALseq,ALcc,ALcc,seq}.

Proof. One direction is trivial. For the other direction, Corollary B.6 shows that every expression
of the form Q1(Q2(. . . (Qn(s)) . . .)) where all Qi ∈ A(D) is contextually equivalent to an expression
Q′1(Q′2(. . . (Q′n(s)) . . .)) where all Q′i ∈ AV (D).
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xT :: T Bot :: T Fix :: (T → T )→ T

s :: T2

(λxT1 .s) :: T1 → T2

s :: T1 → T2, t :: T1

(s t) :: T2

s :: T1, t :: T2

(seq s t) :: T2

s :: (Ki T
′
1 . . . T ′

ar(Ki)), for i = 1, . . . ,m : (cKi,k xk,1 . . . xk,nk ) :: (Ki T
′
1 . . . T ′

ar(Ki)) and ti :: T

(caseKi s (cKi,1 x1,1 . . . x1,n1 -> t1) . . . (cKi,m xm,1 . . . xm,nm -> tm) :: T )

cKi has type-schema T1 → . . .→ Tn → (Kj T
′
1 . . . T ′

ar(Kj)),

there is an instantiation σ such that for j = 1, . . . , n:σ(Tj) = T ′′
j and sj :: T ′′

j ,

(cKi s1 . . . sn) :: σ(Kj T
′
1, . . . , T

′
ar(Kj))

Fig. 5. Monomorphic Typing Rules

Theorem B.9. For D ∈ {AL,ALseq,ALcc,ALcc,seq} we have ≤D = �oD,AV (D) = ≤ob,D,AV (D). Moreover,

s ≤D t iff for all i and APi-contexts: APi[s]↓D =⇒ APi[t]↓D.

Proof. Normal order reduction in the calculi satisfies that D is convergence-admissible w.r.t. AV (D). Now
Propositions B.8, A.16 and Theorem A.14 show the claim.

Theorem B.9 and Proposition A.6 imply:

Corollary B.10. For D ∈ {AL,ALseq,ALcc,ALcc,seq} closed D-expressions s and t are contextually equiv-
alent if there exists i ∈ N0 such that

1. s↓ ⇐⇒ t↓.
2. For all 1 < k ≤ i, and for all Qk, . . . , Qi with Qj ∈ AV (D) (for k ≤ j ≤ i):

Qk(Qk+1(. . . (Qi(s) . . .)))↓D ⇐⇒ Qk(Qk+1(. . . (Qi(t) . . .)))↓D.
3. For all Q1, . . . , Qi with Qj ∈ QTj ,Tj−1

(for 1 ≤ j ≤ i): Q1(Q2(. . . (Qi(s) . . .))) ∼D
Q1(Q2(. . . (Qi(t) . . .))) holds.

Since AV (D) coincides with AP1-contexts, Corollary B.10 implies:

Theorem B.11. For D ∈ {AL,ALseq,ALcc,ALcc,seq} closed D-expressions s and t are contextually equiv-
alent if there exists i ∈ N0 such that

1. APj [s]↓D ⇐⇒ APj [t]↓D for all 0 ≤ j < i and all APj-contexts.
2. APi[s] ∼D APi[t] for all APi-contexts.

C On the Typed Calculi

The typing rules for ALτ ,ALτcc,AL
τ
seq,AL

τ
cc,seq are in Fig. 5. The typing judgments do not contain a typing

environment, since the types of variables are built in. Howe’s method can be used to show that contextual
equivalence and applicative bisimilarity coincide. All of the calculi are convergence-admissible, and thus
finite simulation also coincides with contextual equivalence. As experiment set we adjust the contexts
AV (D) (Definition B.7) to the typed calculi: Applications and case-expressions are only allowed if they
are correctly typed, and ⊥ is replaced by Bot. Analogously to Theorem B.9, we have:

Theorem C.1. For D ∈ {ALτ ,ALτseq,AL
τ
cc,AL

τ
cc,seq} we have:

1. ≤D = ≤ob,AV (D),Q = �oAV (D),Q
2. For closed, equally typed D-expressions s, t holds: s ≤D t iff for all i and all APi-contexts, s.t. APi[s]

and APi[t] are well-typed: APi[s]↓D =⇒ APi[t]↓D.

Also a variant of Corollary B.10 obviously holds in these calculi:

Lemma C.2. For D ∈ {ALτ ,ALτseq,AL
τ
cc,AL

τ
cc,seq} equally typed closed D-expressions s, t are contextually

equivalent if there exists i ∈ N0 such that

1. s↓D ⇐⇒ t↓D.
2. For all 1 < k ≤ i, and for all Qk, . . . , Qi with Qj ∈ AV (D) (for k ≤ j ≤ i):

Qk(Qk+1(. . . (Qi(s) . . .)))↓D ⇐⇒ Qk(Qk+1(. . . (Qi(t) . . .)))↓D
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3. For all Q1, . . . , Qi with Qj ∈ QTj ,Tj−1
(for 1 ≤ j ≤ i): Q1(Q2(. . . (Qi(s) . . .))) ∼D

Q1(Q2(. . . (Qi(t) . . .))) holds.

This implies the following theorem:

Theorem C.3. For D ∈ {ALτ ,ALτseq,AL
τ
cc,AL

τ
cc,seq} closed, equally typed D-expressions s and t are

contextually equivalent if there exists i ∈ N0 such that APi[s] ∼D APi[t] for all APi-contexts, and
APj [s]↓D ⇐⇒ APj [t]↓D for all 0 ≤ j < i and all APj-contexts.

We show correctness of transformation in the typed calculi. First we define an untyped calculus
ALcc,seq,FB as ALcc,seq with two additional constants: Fix with the reduction rule as defined in Fig. 1, and
Bot as a constant that stands for any diverging expression.

Lemma C.4. Let δ1 : ALcc,seq,FB → ALcc,seq be the translation defined as the identity applied homomor-
phically over the term structure except for the cases: δ1(Fix) = λf.(λx.(f x x))(λx.(f x x)) and δ1(Bot) =
Ω. δ1 is fully-abstract, i.e. for all ALcc,seq,FB-expressions s, t: s ∼ALcc,seq,FB

t ⇐⇒ δ1(s) ∼ALcc,seq δ1(t).

Proof. The translations δ1(Fix) and δ1(Bot) simulate the behavior of these constants in ALcc,seq so that
s↓ALcc,seq,FB

⇐⇒ δ1(s)↓ALcc,seq
, i.e. δ1 is convergence equivalent. Since δ1 is compositional and the embedding

from ALcc,seq into ALcc,seq,FB is also convergence equivalent, full abstractness follows.

Corollary C.5. δ, as defined in Definition 5.2, is adequate.

Proof. Assume δ(s) ∼ALcc,seq δ(t) for some equally typed ALτcc,seq-expressions s, t. Then Lemma C.4 shows
that s′ ∼ALcc,seq,FB

t′ where s′, t′ are s, t without types. Then also s ∼ALτcc,seq t, since there are fewer contexts
in ALτcc,seq than in ALcc,seq,FB.

Remark C.6. δ is not fully abstract, e.g. the typed equation λxo.x ∼ALτcc,seq λxo.Bot holds, but
λx.x 6∼ALcc,seq,FB

λx.Bot, as well as λx.x 6∼ALcc,seq λx.Ω.

Lemma C.7. Bot-reductions in Fig. 4 are correct in ALcc,seq,FB and in ALτcc,seq.

Proof. For ALcc,seq,FB we use full-abstractness of δ1, and thus it is sufficient to show that δ1(s) ∼ALcc,seq δ1(t)
where s → t is a bot-reduction. In ALcc,seq we use bisimilarity (see Theorem B.9). Consider Ω, (Ω s),
seq Ω t, caseK Ω t. All expressions diverge and thus are bisimilar and hence contextually equivalent in
ALcc,seq.

Since Bot-reductions are type preserving and correct in the untyped ALcc,seq,FB where more contexts
are used in the definition of contextual equivalence than in ALτcc,seq, the Bot-reductions are also correct in
ALτcc,seq.

Note that since Bot stands for a family of constants (one for every type), the type of Bot on the
left-hand-side of a bot-reduction may not be the same as that on the right-hand-side. For instance, in
(Bot s)→ Bot, assuming s2 is of type τ1, the first occurrence of Bot is of a type τ1 → τ2, and the second
occurrence is of type τ2.

Lemma C.8. R[Bot] ∼D Bot, where D ranges over ALcc,seq,FB and the four monomorphically typed
calculi, and R is a D-reduction context.

Proof. In ALcc,seq,FB the equivalence follows from Lemma C.7 and an induction on the size of R. The
proof for ALτcc,seq can be obtained analogously by assuming that all of the expressions are typed and using
Lemma C.7 for the correctness of Bot-simplifications. For the other three typed calculi this follows, since
there are fewer contexts.

We also observe that (case) and (seq) simplifications are correct in ALτcc,seq:

Lemma C.9. The simplifications defined in Fig. 2 are correct in ALτcc,seq.

Proof. Since δ is adequate (Corollary C.5), it suffices to observe that for any simplification rule s→ t in
ALτcc,seq, the equivalence δ(s) ∼ALcc,seq δ(t) holds, which is proven by Lemma B.3.

We extend the addition of Fix and Bot to the untyped calculi AL,ALseq,ALcc in a completely analogous
way:

Lemma C.10. (botapp), (botcase), (botseq), (caseapp), (casecase), (botseq), (seqseq), (seqapp), (caseseq),
(seqcase) are correct in ALτ ,ALτseq,AL

τ
cc,AL

τ
cc,seq (if the constructs are defined).
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Proof. The results for ALτcc,seq are proven in Lemmas C.7 and C.9. The results for the other calculi
obviously hold, since they have a restricted syntax (compared to ALτcc,seq) and since there are fewer
contexts in their contextual equivalences.

The following properties are straightforward to verify:

Lemma C.11. 1. Any expression of the type (o→ o)→ (o→ o) is equivalent to one of: Bot, λx.Bot,
λx, y.Bot, and λx.x.

2. Any closed expression of the type (o→ o)→ (o→ o)→ (o→ o) is equivalent to one of: Bot, λx.Bot,
λx, y.Bot λx, y, z.Bot, λx, y.x, and λx, y.y.

Proof. We use applicative bisimulation for the proof, and that there is only one equivalence class, namely
Bot, of type o.
We argue for the second item: the cases for the syntax of the body are restricted. For example λx, y.r: r
may be Bot, an abstraction, x,y or an application with a variable as head. An abstraction can only be
equivalent to λz.Bot, and an application can only be of type o, which also can only be equivalent to Bot.

D Reduction Length for Simplifications

We consider simplifications defined in Figs. 2 and 4 in arbitrary contexts, and analyze their interactions
with normal order reductions in ALcc,seq,FB.

Since the diagrams given below hold in the untyped calculus, they also hold in its typed version ALτcc,seq
under the assumption that the initial expression is typable, since all reductions and simplifications preserve
types. There are two kinds of the diagrams: commuting and forking (see [KSS98,SSSS08]) In both kinds

of diagrams a simplification step (denoted by
a−→) and a normal order step (denoted by

b−→ALcc,seq,FB
) are

given, and both diagrams show how the given pair can be replaced by another sequence connecting the
given expressions. The two kinds of diagrams differ by directions of the given steps. In a commuting

diagram a given pair of reduction steps has the form s1
a−→ s2

b−→ALcc,seq,FB
s3, and the diagram is completed

by stating that there exists a sequence of steps from s1 to s3. In a forking diagram the given sequence

is of the form s1
a←− s2

b−→ALcc,seq,FB
s3, and the diagram is again completed by stating that there exists a

sequence of steps from s1 to s3.
The graphical representation in Lemma D.1 may be interpreted as a commuting or a forking diagram,

depending on which steps are assumed to be given and which ones are claimed to exist.

Lemma D.1. If
a−→ is a simplification of Figs. 2 and 4 and

b−→ALcc,seq,FB
is a (β)-, (case)-, (seq)-, or

(fix)-normal order reduction, then commuting and forking diagrams are as follows, where
a,∗−−→ means

zero or more occurrences of a.

·
b,ALcc,seq,FB ��

a // ·
b,ALcc,seq,FB��

·
a,∗ // ·

Proof. There are several possibilities for the redex of the b-reduction:

1. a is located in one of the operands of b. E.g., if b is a β-reduction ((λx.s1)s2), b can be located in s1
or s2. If it is located in s1 then it does not change because the shape of a redex is not changed by a
substitution into it. If it is located in s2 then it can be duplicated, preserved, or eliminated, which
creates 0 or more occurrences of a in the diagram. A similar situation happens when b is embedded
in a case reduction (either in the scrutinee or in the alternatives), in seq (in this case b cannot be
duplicated, only preserved or eliminated), and in (fix) (then it occurs in the result exactly twice).

2. The redex for a appears in a reduction context and contains the redex for b as its immediate (depth 1)
subredex. For instance, in (seqseq) the expression may be of the form R[seq (seq v s1) s2], where R is
a reduction context and v is a value. Then the result of both the (seqseq) followed by a normal order
reduction and the normal order (seq) result in the same expression seq s1 s2. The same situation
occurs with (seqapp) and a normal order (seq), (seqcase) and a normal order (case), (caseseq) and a
normal order (seq), and for both (caseapp) and (casecase) and a normal order (case). This case is
impossible for (fix) (since its operand is Fix which does not match any cases for a).

3. The redex for a contains the redex for b, but not as in item 2. In this case a and b do not affect each
other since the shape of the redex for a is not changed by b and the redex for b is moved, but not
changed, by a and remains in a reduction context.
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4. The two reductions have non-overlapping redexes. Then the diagram holds with exactly one instance
of a in the bottom line.

Combining all cases, we obtain the diagram in the lemma.

Lemma D.2. If s
a→ t, where a is one of the simplifications defined in Figures 2 and 4, then s is a

WHNF if and only if t is a WHNF.

Proof. In ALcc,seq,FB WHNFs are either abstractions or constructor applications. All auxiliary reductions
have either seq or case or an application as their top-level construct, so a WHNF cannot be a source or
a target of such a reduction.

Lemma D.3. There is no infinite sequence in ALτcc,seq consisting only of seq, case-, and Bot-
simplifications.

Proof. Let the term measure css(s) be defined as: For a = Bot, a = Fix, a = x: css(a) = 1;
css(caseT s (p1 -> r1) . . . (pn -> rn)) = 1 + 2css(s) + maxi=1,..,n(css(ri)); css(s t) = 1 + 2css(s) + 2css(t);
css(seq s t) = 2css(s) + css(t); css(c s1 . . . sn) = 1 + css(s1) + . . .+ css(sn); and css(λx.s) = 1 + css(s).
Every simplification rule strictly decreases css if applied at the top of an expression. We show the details
for (caseapp) and (casecase), the remaining rules are analogous, but simpler.

– (caseapp):
1 + 2(1 + 2css(t0) + maxi=1...n css(ti)) + 2css(r) =
3 + 4css(t0) + 2 maxi=1...n css(ti) + 2css(r) >
1 + 2css(t0) + maxi=1...n(1 + 2css(ti) + 2css(r)) =
2 + 2css(t0) + 2 maxi=1...n css(ti) + 2css(r)

– (casecase):
1 + 2(1 + 2css(t0) + maxi=1...n css(ti)) + maxj=1...m css(rj) =
3 + 4css(t0) + 2 maxi=1...n css(ti) +maxj=1...mcss(rj)
1 + 2css(t0) + maxi=1...n(1 + 2css(ti) + maxj=1...m css(rj)) =
2 + 2css(t0) + 2 maxi=1...n css(ti) + maxj=1...m css(rj))

Note that for (casecase) maxi=1...n css(ti) is independent from maxj=1...m css(rj). If the simplification
occurs in a non-maximal alternative of a case, the measure for that alternative decreases, but the measure
for the entire expression remains unchanged. We use multisets as a measure to account for all case
alternatives. I.e., as a measure for expressions s we use the multiset mcss(.) consisting of the following
numbers: css(s) for the expression s; and all numbers css(s′), where s′ is a case-alternative of a subterm
of s. It is well-known [DM79] that multisets of non-negative integers are well-founded w.r.t. the multiset-
ordering: M1 << M2, iff there exists multisets X1, X2 such that ∅ 6= X2 ⊆M2, M1 = (M2 \X2)∪X1, and
∀x1 ∈ X1.∃x2 ∈ X2.x1 < x2. The measure of a subexpression is always strictly smaller than the measure
for the expression itself. Every simplification rule results in one of the two options: i) decreasing the largest
number in the multiset which is the measure for the entire expression. ii) preserving the measure for the
entire expression if simplification takes place in a non-maximal case alternative. Then the measure for
that alternative decreases, although the measure for its subalternatives may increase (both (caseapp) and
(casecase) rules above allow for such a possibility). Since the decreased number is larger than the measure
for the subalternatives, the multiset becomes smaller.

We summarize the results and transfer them to ALτcc,seq and ALτcc:

Lemma D.4. For D ∈ {ALcc,seq,FB,ALτcc,seq,AL
τ
seq,AL

τ
cc} if s

a−→ s′ where a is a simplification rule then

s
n−→D v, where v is a WHNF, if and only if s′

n−→D v′, where v′ is a WHNF.

Proof. The result in ALcc,seq,FB follows from Lemmas D.1, D.2, and D.3, where the proof for closed
expressions is by induction on the length of a normal order reduction ending with a WHNF. The results
trivially transfer to ALτcc,seq by limiting the expressions to well-typed ones (and by type preservation of
normal order reductions and simplifications) and to ALτcc and ALτseq by limiting our consideration only to
constructs that exist in that calculus.

Lemma D.5. For D ∈ {ALcc,seq,FB,ALτcc,seq,AL
τ
seq,AL

τ
cc} if s

bcsfC−−−−→ s′ and s
n−→D v, where v is a D-

WHNF, then s′
n′−→D v′, where v′ is a D-WHNF, with n′ ≤ n.
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Proof. We only need forking diagrams in all contexts between the non-normal order reduction and the
normal order reduction. These are:

·
b,D ��

a // ·
b,D��

·
a,∗ // ·

The claim of the lemma is proved by induction on the length of the normal order reduction. The base case
obviously holds. If the reduction length is > 0, then there are possibilities: The

a−→-reduction is a normal
order reduction. Since normal order reduction is deterministic, the reduction length of s′ is strictly smaller
than that of s. Otherwise, we use the diagram and can apply the induction hypothesis multiple times to

the closing
a,∗−−→-reduction. The arguments are valid in all the mentioned calculi, hence the lemma holds.

E Nonisomorphism of AL and ALseq

We argue that the four untyped calculi are nonisomorphic by analysing the order structure of the different
calculi. It turns out that the order structure is fundamentally different for these calculi and distinguishes
them up to the pair of calculi ALcc,seq and ALcc, which we leave open, but where a thorough analysis
presumably will result in non-equivalence.

Remember that we use ⊥ as the abbreviation for a closed nonconverging expression, and > is the
abbreviation for (Y K), which for D ∈ {AL,ALseq} is characterised by the following property: for all n ≥ 0
and all closed expressions v1, . . . , vn, (> v1 . . . vn)↓D.

In the following we will write s <D t if s ≤D t holds but t ≤D s does not hold.

Lemma E.1. In AL, the following holds: ⊥ <AL λx.⊥ are the two smallest elements in AL. Also, there is
no closed AL-epression t with λx.⊥ <AL t <AL λx, y.⊥.

Proof. Let ⊥ <AL t ≤AL λx.⊥. Then (t r) ∼AL ⊥ for all closed r, hence t ∼AL λx.⊥.
For every abstraction t, the relation λx.⊥ ≤AL t follows easily from applicative bisimulation.

Let λx.⊥ <AL t ≤AL λx.λy.⊥. Then (t >) 6∼AL ⊥. Also, for all closed arguments r, we have t r ≤AL λy.⊥,
which implies t r ∼AL λy.⊥, hence applicative bisimulation shows t ∼AL λx.λy.⊥.

Lemma E.2. In AL, there is no direct descendent of >: I.e., t <AL > implies that there is a t′ with
t <AL t

′ <AL >.

Proof. In the case t ∼AL ⊥, the expression t′ = λx.⊥ is sufficient.
If t ∼AL λx1, . . . xn.⊥, then t′ ∼AL λx1, . . . xn, xn+1.⊥ is the desired expression.

If t ∼AL λx1, . . . , xn.xi t1 . . . tm for m ≥ 1, then t′ = λx1, . . . , xn, y.xi > . . .>︸ ︷︷ ︸
m+1

is the desired expression:

Applicative bisimulation shows that t ≤AL t
′: if there are n arguments r1, . . . , rn, then t′ r1 . . . rn converges.

For n + 1 arguments, we have ri t
′
1 . . . t

′
m rn+1 ≤AL ri > . . .>︸ ︷︷ ︸

m+1

. For more arguments, the ≤AL-relation

follows by induction. The expressions are not equivalent, by selecting rn+1 ∼AL ⊥, and ri as a projection
to the (m+ 1)st argument. Similarly, t′ 6∼AL >: Let ri be the projection to the (m+ 2)nd argument, and
let rn+2 ∼AL ⊥.

Lemma E.3. In ALseq, the following holds: λx.seq x > <ALseq >, and there is no closed expression t with
λx.seq x > <ALseq t <ALseq >,

Proof. Assume there is a closed expression t with λx.seq x > <ALseq t <ALseq >. The ALseq-WHNF of t
is an abstraction, thus we can assume that t = λx.t′. The body t′ cannot be an abstraction, since then
t ∼ALseq >, since t v1 . . . vn↓ALseq

for any n ≥ 0 and closed ALseq-expressions vi. The WHNF of the body t′

of t has x in reduction position. There are several cases:

– It cannot be x alone, since then the <ALseq -relation does not hold.
– It can also not be x t1 . . . tn, since then x 7→ λu.⊥ would refute this.
– Thus the body t′ is a seq-expression. Analysing all arguments: if (t ⊥)↓ALseq

, then the inequations
imply that t ∼ALseq >. Otherwise, if (t ⊥)⇑ALseq

, then for all sequences of arguments, λx.seq x > and
t, behave the same, and thus they are equivalent.

Theorem E.4. AL and ALseq are nonisomorphic.
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Proof. > is also a greatest element in ALseq. If φ : AL→ ALseq is such an isomorphism, then φ(>) must
map to >. However, there is no AL-expression t such that φ(t) = λx.seq x >, since for every t 6∼AL >,
there is some AL-expression t′ with t <AL t

′ <AL >, but there is no such image φ(t′) in ALseq.

Proposition E.5. All pairs from {AL, ALseq} × {ALcc,ALcc,seq} are nonisomorphic.

Proof. This holds, since AL and ALseq have > as a greatest elements, and neither ALcc not ALcc,seq have a
greatest element.

This leaves the case ALcc and ALcc,seq open.
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