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Alles Gescheite ist schon gedacht worden,

man muß nur versuchen, es noch einmal

zu denken.

(Johann Wolfgang von Goethe)

Chapter 1

Introduction

Exploring nature at more and more extreme distance scales, both microscopic and macroscopic,

has always triggered groundbreaking scientific insights and innovations. This path has lead to our

current understanding that nucleons (protons and neutrons) are composed of quarks kept together

due to the strong interaction which is mediated by gluons. With the advent of the quark model

developed by Gell-Mann, quantum chromodynamics (QCD) soon became successful in describing

many features of the strong interactions observed in experiment. Using the words of Goethe,

with the modern high-energy collider experiments physicists all around the world try to improve

our understanding of whatever holds the world together in its inmost folds. At the Large Hadron

Collider (LHC) in Geneva, for example, protons are accelerated and collided with each other

such that energy densities occur which have never been measured before. Whereas the highest

reachable collision energy of 14 TeV merely corresponds to the energy released when clapping ones

hands [3], the energy densities reached are incredibly high when compared to those encountered

in every-day life. Due to the high energy density, the temperature, T , and the baryonic chemical

potential, µB, reach values as in the early stages of the universe. There is theoretical as well as

experimental evidence that hadronic matter undergoes a transition to an exotic state of matter,

called quark-gluon plasma, when increasing T and/or µB . This transition is accompanied by

a so-called chiral transition. It is an important question whether this chiral transition involves

latent heat or not, i.e., whether it is of first order or continuous. Many results indicate the chiral

transition to be crossover (i.e., not a real phase transition) for vanishing chemical potential and

of first order for vanishing temperature. It is, however, still under debate whether this is true.

If so, it is natural to assume that there exists a critical endpoint, (Tc ≠ 0, µB ≠ 0), where the

chiral transition is of second order, which can be regarded as the border case between first order

and crossover. Indeed, a critical endpoint exists in several theoretical approaches describing the

chiral phase transition, the predictive power of which are lively discussed. A main goal of the

future CBM experiment [4] at GSI in Darmstadt is to shed light on the existence of the critical

endpoint.

Near the QCD (phase) transition, the strongly coupled nature of QCD together with the absence

of any small expansion parameter is what makes analytical calculations from first principle almost

impossible. The same is true for realistic effective models for QCD, which share this difficulty.

Hence the investigation of the QCD phase diagram indispensably depends on nonperturbative
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methods. The most popular among such are lattice calculations, resummation theory, the Dyson-

Schwinger formalism, and the functional renormalization group (FRG). All of these approaches

are used complementary, and are sometimes even combined. One of the strengths of the FRG

method is that it can be successfully applied not only to effective models, but also to QCD itself

(see Sec. 4.4). In order to guide these first-principle calculations, however, results from effective

models for QCD are very helpful.

Our thesis is centered around the question of which order the chiral phase transition of two-

flavor QCD is. Clarifying the conditions for the possible existence of a second-order transition,

determining the universality class to which it belongs, etc., are tasks which require knowledge and

techniques from several areas. First of all, in chapter 2 we want to outline several general aspects

of phase transitions which are of central importance for the understanding of the RG approach

towards them. Our focus lies on reviewing the universality hypothesis, a crucial ingredient when it

comes to the construction of effective theories for order parameters, the credibility of which often

heavily depends on universality arguments. We finish the chapter with an attempt to formulate

the latter more precisely than usually done. Chapter 3 discusses the chiral phase transition

from a general point of view. We supplement well-known facts with a detailed discussion of the

so-called O(4) conjecture. In chapter 4 we introduce the nonperturbative method we use, the

FRG method. Furthermore, we discuss the relation between effective models for QCD and the

underlying fundamental theory making use of the FRG perspective. Chapter 5 is concerned with

a mathematical subject indispensable for our approach towards the study of phase transitions,

namely the systematic construction of polynomial invariants characterizing a given symmetry.

We want to emphasize that this topic is of very general interest in any field of research where

symmetry considerations play a role. With this thesis we point out its relevance in the context of

high-energy physics and hope to reinforce the interest in systematic methods for the derivation

of invariants associated with continuous symmetry groups. We present a simple, but novel,

brute-force algorithm to effectively construct invariants of a given polynomial order. Chapter 6

is devoted to RG studies of several dimensionally reduced theories which are capable to either

predict or to rule out the possible existence of a second-order phase transition. Of main interest

for us is the linear sigma model, particularly in presence of the axial anomaly. It turns out that

the fixed-point structure of the latter is rather complicated, requiring a deeper understanding of

the underlying method and its preconditions. This leads us to a careful analysis of the fixed-point

structure of several models, which is of great benefit for our review of the universality hypothesis

and has several spin-off effects. For example, in the course of studying the influence of vector and

axial-vector mesons we encounter a new universality class, which might be more relevant in other

areas where chirality plays a role. Some important questions, however, cannot be addressed in

the framework of dimensionally reduced theories where the explicit dependence of temperature

has been eliminated. We are therefore pushed towards FRG studies where the temperature is

kept as an explicit variable. We note that a great part of our work consisted in finding our own

implementations of suitable algorithms to solve the encountered partial differential equations

numerically. Our routines (which entirely use well-known methods) are provided in an appendix.

Our main goal, the application to effective models for QCD, is discussed in chapter 7. In chapter

8 we state our conclusions and give an outlook. The appendices A–D provide several routines

utilized in this work and contain other material to which we refer in the main chapters.
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Chapter 2

Phase transitions and the

renormalization group

2.1 Basic aspects

A phase transition is defined as a thermodynamic process in which a system changes from one

phase to another at a transition point where a thermodynamic potential is non-analytic. Often

one considers either the grand-canonical potential, Ω, or the Helmholtz free energy, F , whose

definitions in terms of the grand-canonical partition function, Z , and the partition function, Z,

respectively, are given by

Ω = −T lnZ , (2.1)

F = −T lnZ . (2.2)

Both quantities are related by

F = Ω +∑
i

µiQi , (2.3)

where the µi denote the chemical potentials associated with the conserved net-charges Qi.

According to the modern classification, one defines the order of a phase transition using the

notion of latent heat which is the amount of heat a system absorbes or releases, respectively,

without changing its temperature. A first-order phase transition involves latent heat whereas a

continuous phase transition does not. Continuous phase transitions are of second order if there

exist discontinuities in second derivatives of the free energy with respect to certain thermody-

namic variables, and of infinite order if not. Right at a first-order phase transition one observes

the coexistence of clusters of both phases. At a second-order phase transition there are clusters

of any size giving rise to self-similarity on all length scales. This is equivalent to a diverging

correlation length (which can be defined as the largest size of the clusters) which is the deeper

reason for the existence of universal power laws (see Sec. 2.2). The divergence in the correlation

length is caused by long-range fluctuations of a so-called soft mode. The nature of this mode

can be quite different and depends on the physical context. For example it can be a phonon
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of vanishing frequency at the transition point, or it can be a particle becoming massless. Very

often, but not necessarily, the different phases are associated with different symmetries and the

corresponding phase transition is accompanied by symmetry breaking (SB). A symmetry can

be explicitly broken when changing from one phase to the other, or the phase transition can go

along with a spontaneous breaking of a symmetry (which can be either continuous or discrete).

One speaks of spontaneous symmetry breaking (SSB) if a system as a whole (for example the

Lagrangian for this system) is symmetric under a certain symmetry transformation, whereas

there exists an order parameter which is not invariant under the full symmetry group in the

so-called spontaneously broken phase1. In a first-order phase transition, the order parameter

changes discontinuously from a nonzero value in the spontaneously broken phase to zero in the

restored phase, when a certain variable (for example temperature) is varied. In a second-order

phase transition the change is continuous. Plotting two thermodynamic variables of state against

each other one obtains a phase diagram. Points where the phase transition is of second-order

(critical points) are associated to SB with one exception: a line of first-order phase transitions

not associated to any symmetry can end in a so-called critical endpoint which is not associated

to SB 2. This is a major difference in comparison with infinite-order phase transitions which

are never accompanied by SB. Since critical points are associated with SB, explicit breaking of

symmetry usually turns the transition into a crossover. In a crossover transition (which is not a

true phase transition) the order parameter continuously approaches, but never reaches zero. For

first-order phase transitions accompanied by SB, there remains a discontinuous jump in the order

parameter also in case of (small) explicit breaking of symmetry. Redefining the order parameter

φ by subtracting its value at the transition point, φ → φ − φc, one still has a well-defined order

parameter and a first-order phase transition.

The partition function can be always expressed as a path integral over field variables which un-

dergo thermal and quantum fluctuations [5]. Models which are defined on a lattice can be usually

translated into field theories in the limit of a large number of lattice points (for the Ising model

see Ref. [6]). In case of QCD, at the microscopical level the fields consist of the quark fields,

Ψ and Ψ̄, the ghost fields, c and c̄, and the gauge fields, A. Commonly one tries to translate

the formulation in terms of entirely microscopic degrees of freedom into one involving the order

parameter which is usually of composite nature arising dynamically from the interaction between

the microscopical constituents. In general the order parameter is a scalar quantity constructed

from the components Φi of a so-called order-parameter field Φ. For example, in case of the

O(4) symmetric linear sigma model for the chiral phase transition, the order-parameter field

has four real-valued components, Φ ≡ (σ,π1, π2, π3). The order parameter, however, is given by

the vacuum expectation value of the sigma field, ⟨σ⟩, that is the value of the field at the global

minimum of the potential describing the system. As an analytic treatment of the path integral is

1We note that the massless Goldstone modes arising in the spontaneously broken phase if the symmetry is a

continuous one are not be confused with a soft mode, which is only massless right at the transition point.
2The conjectured critical endpoint of QCD is an example (see also Sec. I.2.2.4.5. in Ref. [4]). Chiral symmetry is

explicitly broken due to nonvanishing quark masses. One can argue that only right at the critical endpoint a Z(2)

symmetry is effectively realized. This gives rise to Ising universality with Z(2)-noninvariant scaling corrections (see

Sec. 3.3.1) but there do not exist two phases of distinct symmetry. More generally, a d-dimensional hypersurface of

first-order phase transitions can be bordered by a d− 1 dimensional critical boundary. Fig. 3.2 contains examples

for such critical boundaries.
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only possible in exceptional cases, one depends on approximations and simplifying assumptions.

Using such simplifications, in Sec. 4.4 we sketch a systematical derivation of an effective theory

for the order parameter of the chiral phase transition starting from QCD itself. In this deriva-

tion order-parameter degrees of freedom (mesonic fields) are introduced using the technique of

bosonization. Fermions can be effectively integrated out giving rise to a fermion determinant.

Instead of deriving the effective mesonic potential by explicitly calculating this determinant, we

use chiral symmetry to make an expansion in terms of group-theoretic invariants.

In case of phase transitions accompanied by spontaneous symmetry breaking, an expansion of

the free energy in terms of group-theoretic invariants constructed from the order parameter com-

ponents is a natural thing to do. Landau’s approach towards second-order phase transitions is

based on such an expansion. Also the renormalization group approach still relies on a truncation

of the free energy and Landau’s expansion in terms of invariants is still the best choice when

treating second-order transitions. Accordingly one often speaks of a Landau-Wilson (or Landau-

Ginzburg-Wilson) ansatz. Although originally intended for second-order phase transitions, it is

also quite successfully applied to first-order phase transitions where a group-subgroup relation

exists between the phases [7]. Whereas in the former case the free energy can be truncated at

fourth order in the order parameter, in the latter case it is necessary to go to sixth order. Landau

theory is a mean-field theory, i.e., the order parameter is replaced by its average value and fluctu-

ations about this mean-field value are not taken into account. From the path-integral perspective

it constitutes a saddle-point approximation, where the partition function is approximated by the

integrand at a constant value for the order-parameter field minimizing the free energy [6]. A

consequent improvement of the mean-field approximation is the so-called Gaussian approxima-

tion where quadratic fluctuations are taken into account. This approximation is possible because

Gaussian integrals are analytically solvable. Further improvement can be achieved by taking

account of higher-order fluctuations in a perturbative expansion. The basic idea underlying the

renormalization group (RG) approach towards phase transitions is nonperturbative and consists

of separating fluctuations into fast and slow modes in momentum space and absorbing the effect

of fast modes successively into the parameters of an ansatz for the free energy. One can write

down an explicit differential equation for the free energy, which is exact and implements this idea.

Earliest examples for such so-called exact renormalization group (ERG) equations are those of

Wegner and Houghton [8] and Wilson and Kogut [9]. Expanding the free energy in powers of the

field, these equations lead to an infinite tower of coupled differential equations for the expansion

parameters, which are difficult to handle. Later, other, equivalent exact renormalization group

equations, namely those of Wetterich [10] and Morris [11], turned out to be more practical and

are referred to as functional renormalization group (FRG) equations. The latter can be success-

fully applied to describe second-order as well as first-order phase transitions. In the early days

however, the renormalization group method gained its popularity in the field of phase transi-

tions from the celebrated ǫ-expansion of Wilson and Fisher [12]. Their approach combined the

renormalization group idea with both, a perturbative expansion, and an expansion in ǫ ≡ 4 −D,

where D is the spatial dimension of the system under consideration. The ǫ-expansion is designed

to describe critical phenomena characteristic of second-order phase transitions and is a practical

tool to calculate critical exponents. Large parts of our understanding about critical behavior and

universality were facilitated by investigating different models in the ǫ-expansion and comparing
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the results to experiments. We will discuss aspects of critical phenomena, critical exponents,

universality, and the ǫ-expansion in the following sections.

2.2 Universality - an experimental fact

Close to the critical point of a second-order phase transition certain thermodynamic quantities

show a power-law behavior involving critical exponents. For example, near the critical tempera-

ture Tc of a transition, the order parameter vanishes according to the power law

φ∝ ∣T − Tc∣β . (2.4)

Another example is the correlation length, ξ, which diverges as

ξ ∝ ∣T − Tc∣−ν . (2.5)

The explicit definition of the order parameter depends on the specific system under consideration,

and the same is true for the other thermodynamic quantities showing a power-law behavior.

Usually one can define the specific heat, C, and the corresponding critical exponent, α, according

to

C ∼ ∂
2F

∂T 2
∝ ∣T − Tc∣−α , (2.6)

and the susceptibility, χh, for a certain external field, h, according to

χh ∼ ∂φ
∂h
∝ ∣T − Tc∣−γ . (2.7)

Further one can define a power law for the two-point correlation

⟨φ(r⃗)φ(r⃗′)⟩ ∝ ∣r⃗ − r⃗′∣2−D−η , (2.8)

where φ(r⃗) is the local value of the order parameter, the brackets denote the vacuum expectation

value, D is the spatial dimension, and η is called anomalous dimension. For a comparison between

liquid-gas systems, magnets, and QCD we refer to Ref. [13]. We also recommend chapter I.2 of

Ref. [4].

Critical behavior can be universal in the sense that different systems can share the same values

for the critical exponents. Such systems are said to belong to the same static universality class.

It is a fascinating observation that systems which are very different at the microscopical level

can fall into the same universality class. A lot of examples can be found in the modern review

of Pelissetto and Vicari [14]. Furthermore, universal scaling relations exist between the critical

exponents:

α = 2 − νD , β = ν
2
(D − 2 + η) , γ = ν (2 − η) . (2.9)

We note that in order to observe the nontrivial critical exponents characteristic of a certain

universality class one has to be sufficiently close to the critical point, namely in the so-called

critical region. Outside of this region, but still close to the critical point, one finds mean-field

critical exponents irrespective of the universality class to which the model belongs. The size of
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the critical region is not universal but depends on the microscopical details of the model [15],

i.e., in the framework of the RG, which will be discussed in the next section, it depends on the

values for the couplings involved in the potential defining the model at the microscopical cutoff

scale (UV scale).

So far we discussed static universality classes, which refer to systems which are in local thermal

equilibrium. This means that if we tune the system from temperature T1 to temperature T2 in a

time interval ∆t, the equilibration time, τ , has to be small compared to ∆t. In contrast, dynamic

universality classes refer to the behavior of systems out of equilibrium. One usually distinguishes

these classes with respect to the dynamic critical exponent z involved in the universal power law

τ ∼ ξz ∼ (T − Tc)−νz . (2.10)

Different models belonging to the same static universality class can give rise to different dynamic

critical exponents z, i.e., usually static universality classes split into several dynamic universality

classes. This is due to the fact that the dynamical behavior depends on the equation of motion

and certain conserved densities in addition to the order parameter (which can be a conserved

density itself). For more details we refer to the seminal work of Hohenberg and Halperin [16],

which provides a classification of the most important (but clearly not of all possible) dynamic

universality classes.

2.3 Explaining universality using the RG

Finding a more macroscopic description for a system initially defined at some microscopic scale is

a very general problem in physics. In such an effective model, the detailed structure is averaged

out, retaining only the desired relevant information. Renormalization group equations exactly

serve this purpose. The general idea behind the renormalization group approach towards phase

transitions was already discussed in Sec. 2.1. We now proceed with this discussion, focusing on

universality encountered for second-order phase transitions.

The partition function written as a path integral over order-parameter component fields Φi reads

Z =∏
i
∫ DΦie

−S[Φ;λ⃗] , (2.11)

where S denotes the Euclidean action which involves the couplings λi mediating the interactions

between the field components. Denoting temperature by T and spatial dimension by D, S is

given by

S = ∫
1/T

0
dτ ∫ dDx⃗L , (2.12)

where the Euclidean Lagrangian is the sum of a kinetic term K and a potential U ,

L =K +U. (2.13)

In momentum space the action S is a functional of the Fourier components Φ(ωn, p⃗) and involves

sums over Matsubara frequencies, ωn, and integrations over the momenta, p⃗. It is physically

meaningful to impose a high momentum (ultraviolet) cutoff Λ on the momentum integrations,
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that is, only fluctuations Φ(∣p⃗∣ < Λ) are taken into account.

In order to investigate second-order phase transitions near the critical point it it sufficient to

study the so-called dimensionally reduced theory, at least if fermions are absent. Dimensional

reduction is a mechanism first proposed by Appelquist and Pisarski [17] and is based on the

idea that the nonzero bosonic Matsubara modes, ωn≠0 = 2nπT , act like heavy masses for large

T , leading to a decoupling of these modes in analogy to the Appelquist-Carazzone theorem [18].

The generalization to fermions is not obvious because the smallest fermionic Matsubara modes

are given by ±πT ≠ 0. Whereas in general dimensional reduction only sets in at sufficiently

high temperature, near the critical point of a second-order phase transition it takes place due to

the diverging correlation length [19]. In order to investigate critical phenomena it is therefore

justified to consider the dimensionally reduced theory, neglecting the τ -dependence of the fields:

S = 1

T
∫ dDx⃗L . (2.14)

The averaging process mentioned above can be implemented iteratively by integrating out mo-

mentum modes and absorbing their effect into the couplings λi (for details we refer to Ref. [6]).

In each iteration step, the functional integral over modes Φ(Λ/b < ∣p⃗∣ < Λ), where b > 1, can

be performed using perturbation theory. The result can be absorbed into a redefinition of the

couplings if momentum is rescaled by

p⃗
′ = bp⃗ , (2.15)

and the field components by an appropriate factor, Φ′(p⃗′) = f(b)Φ(bp⃗). This procedure results in
recursion relations for the couplings, which, for b infinitesimally close to 1, turn into differential

flow equations,

k
∂

∂k
λi = Fi(Λ, λ⃗) , (2.16)

where the momentum scale k separates modes which already have been taken into account,

Φ(∣p⃗∣ > k), and modes which remain to be integrated out. The explicit dependence on the cutoff

Λ on the r.h.s. of Eq. (2.16) can be eliminated by introducing dimensionless couplings, λ̄i, by

multiplying the couplings λi by appropriate powers of Λ,

λ̄i = λiΛ−[λi] , (2.17)

where [λi] denotes the dimension of λi. Eq. (2.16) with Eq. (2.17) yields the flow equations for

the dimensionless couplings,

k
∂

∂k
λ̄i = Fi(⃗̄λ) . (2.18)

The flow equations (2.18) can be used to determine if a second-order phase transition exists for

the model defined by the action (2.12). This is due to the fact that the correlation length (2.5)

diverges at the critical point of a second-order phase transition. Since Eq. (2.15) implies that

every quantity of dimension length is rescaled by the factor b−1 in a RG step, this implies for the

correlation length

ξ′ = ξ/b . (2.19)
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At a fixed point of the flow equations (2.18),

k
∂

∂k
λ̄∗i = 0 , (2.20)

this implies for the fixed-point value of the correlation length:

ξ∗ = ξ∗/b , (2.21)

which can be only satisfied for either ξ∗ = 0 or ξ∗ = ∞. Indeed it turns out that critical exponents

can be calculated from the RG flow close to fixed points, and that the stability properties of

the fixed points determine if a second-order phase transition can be associated with one of

them. Another argument which explains the correspondence between the existence of a second-

order phase transition and an infrared fixed point is the following. Every point in coupling space

corresponds to a certain bare action S̄k=1[Φ̄, λ̄k=1]. Whereas in Landau theory no fluctuations are

taken into account, this is the case in the RG approach. Integrating out fluctuations, one obtains

an effective action, S̄k[Φ̄, λ̄k], describing the system where fluctuations with momenta p > k have

been taken into account. An infrared fixed point is special in the following sense: starting in

the UV with the fixed-point action, the effective action remains equal to the fixed-point action

under the RG flow, i.e., irrespective of the fluctuations which are taken into account or not. This

is exactly the physical picture of scale invariance which is characteristic for second-order phase

transitions. No matter at which resolution scale one looks at the system (i.e., which momentum

fluctuations one is able to resolve), one always sees qualitatively the same picture. The question

whether a system can be practically tuned to the critical point by varying a certain number

of physical parameters (such as for instance the reduced temperature (T − Tc)/Tc, which is an

example for a so-called relevant scaling variable introduced later) can be answered by a stability

analysis of the fixed point. In the following we summarize the important facts concerning such

investigations. In App. E we provide several graphs illustrating the abstract discussion. These

examples show the RG flow in the vicinity of two fixed points calculated in Sec. 6.6.

It is a reasonable assumption that the potential U in expression (2.13) is a functional of the order-

parameter field and its derivatives, U = U[Φ, ∂µΦ∂µΦ, . . . ]. Note that we work in Euclidean

space, where ∂0 = ∂/∂τ . Usually one further assumes that Φ is independent of τ , i.e., U =
U[Φ, ∂iΦ∂iΦ, . . . ]. In general, an expansion of the potential U in terms of order-parameter

components reads

ULP =∑
i

c
(1)
i Φi +∑

i,j

c
(2)
i,j ΦiΦj + (...) , (2.22)

where the coefficients as well the order-parameter components are real-valued variables. The

local-potential approximation (2.22) neglects terms involving derivatives. Derivatives are only

present in the kinetic term, which is usually of the form

K = 1

2
∑
i

∂µΦi∂
µΦi . (2.23)

All statements in this thesis are made under the assumption that the kinetic term is of this form.

The more refined derivative expansion (compare with Eq. (4.7)) keeps such terms,

UD = ULP +∑
i,j

d
(2)
i,j (Φ)∂µΦi∂

µΦj + (...) . (2.24)
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In momentum space the derivatives translate into four-momenta,

∂µΦi∂
µΦj → (ω2 + q⃗2)ΦiΦj , (2.25)

so that it becomes obvious that the local-potential approximation becomes problematic if high-

momentum fluctuations dominate the system. As in Landau theory, an expansion of U in terms

of group-theoretic invariants constructed from the order-parameter components is a natural trun-

cation. In local-potential approximation this expansion has the general form

U =∑
i

λ
(1)
i I

(1)
i +∑

i

λ
(2)
i I

(2)
i +∑

i

λ
(3)
i I

(3)
i +∑

i

λ
(4)
i I

(4)
i + (...) , (2.26)

where I
(n)
i denotes the group-theoretic invariants constructed from the order-parameter compo-

nents, which are polynomials of n-th order. Truncating the expansion at the n-th order we speak

of the local-potential approximation at naive scaling dimension n. This approximation will be

discussed later. At this point we only want to mention that according to rules stated by Landau

[20, 21], the existence of a second-order phase transition requires λ
(1)
i = λ(3)i = 0, which rules

out certain potentials from the beginning (compare with the discussion in Sec. 2.4). The deci-

sion whether the model defined by Eqs. (2.14) or (2.26), respectively, allows for a second-order

phase transition can be inferred from the eigenvalues of the stability matrix S, which have to be

evaluated for each of the fixed points {λ̄∗i }:
(Sij) ≡ ( ∂βi

∂λ̄j
) ∣⃗̄λ=⃗̄λ∗ , (2.27)

where the beta functions are defined by

βi ≡ k∂kλ̄i . (2.28)

The classification of fixed points according to their stability-matrix eigenvalues is a well-known

task in stability theory of differential equations. Integrating Eq. (2.18) from the ultraviolet (UV)

limit (k = Λ, which corresponds to k = 1 after rescaling) down to the infrared (IR) limit (k = 0),
the values for the couplings λ̄i(k) change along flow lines in coupling space. Examples can be

found in chapter 6. Also the following general statements are illustrated by these examples. Note

that in our notation the arrows in the flow diagrams always point from the UV to the IR.

In general, for each infrared fixed point, there exists a so-called critical manifold in coupling

space: starting in the UV on the critical manifold, the flow ends in the infrared fixed point in the

IR limit. Every point on the critical manifold represents a system at criticality because, due to

Eq. (2.21), the correlation length is divergent on the whole critical manifold. In the dimension-

ally reduced theory (2.14) the couplings do not carry any implicit dependence on scaling fields.

In order to tune the system through a phase transition, one hence has to assume an explicit

dependence of the initial UV couplings on the relevant scaling fields ui. A trajectory λ̄i(u⃗) which
crosses the critical manifold describes a second-order phase transition at the point of intersection.

Whether a certain UV action can be tuned towards the critical line by varying a certain number

of relevant scaling fields depends on the location in coupling space of both, the UV couplings and

the critical manifold. At a fixed point, directions in coupling space in which the flow is repelled

from the fixed point are called relevant directions. Accordingly, directions in which the flow is

16



attracted towards the fixed point are called irrelevant directions. In general, the λ̄i-directions

are neither purely relevant, nor purely irrelevant. Instead, such directions in coupling space are

associated in the following way with the scaling fields ui.

Consider first a fixed point associated with entirely real eigenvalues. In this case the left eigen-

vectors v⃗i of the stability matrix (2.27),

v⃗Ti S = yiv⃗Ti (2.29)

determine directions perpendicular to purely irrelevant directions3. Of course the exact definition

of such directions is only possible right at a fixed point and becomes less precise when moving a

little bit away from it. In the close vicinity, however, the definition still constitutes a satisfying

approximation (see for example Fig. 6.1). The scaling fields can be defined by

ui(k) = v⃗Ti ⋅ (⃗̄λk − ⃗̄λ∗) , (2.30)

and it is possible to derive the following flow equations for them [6]:

k
∂ui(k)
∂k

= −yiui(k) . (2.31)

Obviously, a scaling field ui associated with a positive (negative) eigenvalue, yi > 0 (yi < 0),

becomes smaller (larger) under the RG flow towards the IR. Starting in the UV with a point⃗̄λk=Λ in the close vicinity of the fixed point, we conclude that in the IR limit δ ⃗̄λk ≡ (⃗̄λk − ⃗̄λ∗)
becomes more and more perpendicular to v⃗Ti if yi > 0, which means that it becomes more and

more parallel to a purely irrelevant direction. Likewise, if yi < 0 and ui > 0, the difference δ ⃗̄λk
necessarily increases with the flow towards the IR. Hence, in order to arrive at the fixed point

in the IR limit, the scaling fields associated with negative eigenvalues, say ui with i = 1, . . . , nc,

must vanish in the UV, i.e. ui(k = Λ) = 0 for i = 1, . . . , nc. Accordingly, one refers to them as

relevant scaling fields and one can identify their UV values with the physical variables which are

to be tuned to zero in order to arrive at a second-order phase transition. An example is given

by the reduced temperature, u1(k = Λ) = (T − Tc)/Tc. Obviously, the number nc determines

the nature of the second-order transition associated with the fixed point. For nc = 1 one has an

IR-stable fixed point associated to an ordinary critical point in experiment. For nc > 1 the fixed

point is nc-fold IR unstable and can be associated with a multi-critical point (nc = 2: bicritical,
nc = 3: tricritical, etc.). Furthermore, it can be shown that the critical exponent ν in the power

law (2.5) for the correlation length can be identified with the inverse of the negative eigenvalue

associated to the reduced temperature,

ν = − 1

y1
. (2.32)

The outline of a proof can be found in Ref. [6].

If yi = 0 one speaks of a marginal eigenvalue, and one cannot decide whether the associated

scaling field is relevant or irrelevant. In this case one has to go beyond the utilized polynomial

order in the Landau potential.

3We note that the stability-matrix eigenvalues yi are the same irrespective whether determined from the left

or from the right eigenvectors.
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For the above discussion we assumed entirely real eigenvalues. The stability matrix can, however,

exhibit complex eigenvalues, too. Such eigenvalues indicate the existence of planes in coupling

space where the flow describes spirals in the vicinity of the fixed point. Refraining from an

interpretation of the eigenvectors associated with the complex eigenvalues, we only want to state

that if the real part of the eigenvalue is positive (negative), the spiral is directed towards (away

from) the fixed point in the IR. A fixed point with nc negative eigenvalues, whereas all other

eigenvalues have positive real parts, is hence associated to an ordinary critical point for nc = 1
and to a multi-critical point for nc > 1.
Assuming a single quadratic invariant, ∑N

i=1 φ
2
i , the anomalous dimension η involved in the power

law (2.8) can be calculated from the flow equation for a field-independent coupling

d
(2)
ij (Φ) ≡ 1

2
δij (Z−1k − 1) (2.33)

in front of a corresponding term in the derivative expansion (2.24), which is determined by [6]

ηk = kZ−1k

∂Zk

∂k
(2.34)

with η = ηk=0. The assumption of a single quadratic invariant will be discussed in detail later.

2.4 Universality hypothesis

Setting the stage

In the preceding sections we have already discussed the theoretical framework which is capable

to describe static universal critical behavior. Starting from a potential of the form (2.26), one

can derive the fixed points under the RG flow and calculate the stability-matrix eigenvalues

associated to each of them. Fixed points with a single negative eigenvalue are called IR stable

and correspond to second-order phase transitions. The critical exponent ν can be inferred from

the stability matrix via Eq. (2.32). Knowing in addition to ν also the anomalous dimension

η, one can infer all other critical exponents from the scaling relations (2.9), if one has trust

in their validity. For lattice models a field-theoretic treatment is necessarily constrained to

those which can be rewritten as field theories in the continuum limit. Other models have to be

addressed for example in a real-space RG approach or by Monte-Carlo RG simulations (see for

example Refs. [14, 22]). Usually a rewriting is possible, but some models are intrinsically related

to the structure of the lattice (compare with Ref. [23]). For an important lattice model, the

infamous (exactly solvable) eight-vertex model of Baxter in D = 2 dimensions [24], we cannot

state a field-theoretic formulation. It is of relevance, however, since it spoils the original form

of the universality hypothesis in that the critical exponents continuously depend on coupling

constants of the action. This is found also for several other lattice models (see [25] and references

therein). We want to emphasize that this phenomenon is not restricted to low-dimensional

systems. In particular, there is evidence that the critical exponents of the eight-vertex model

continuously vary in any dimension [26]. For a three-dimensional Ising model with continuously

varying exponent γ see Ref. [27]. It has been shown, however, that the phenomenon is caused

by “marginal couplings” in the action which defines the theory (see Sec. 5.12 of the review [22]).

In the following we exclude this case in a systematic way by restricting the discussion to models
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without such marginal couplings, which should take account of the majority of physically relevant

systems.

Obviously, the critical exponents that can arise in the framework summarized above only depend

on

1. the properties of the potential U (assuming the kinetic term to be of the form (2.23)),

2. the spatial dimension D.

The interesting question is now what are the properties of two different Lagrangians falling into

the same static universality class. Which conditions have to be necessarily fulfilled, and can one

state sufficient criterions? We review this question in detail in this section. A notion closely

related is that of “the” universality hypothesis, which actually appears in slightly varying scope

and content in the literature. We can distinguish between different versions with rising ambition.

First one can define as universality hypothesis simply an enumeration of (partially loosely defined)

features on which the critical exponents predominantly depend. These features are (compare for

example with Ref. [28])

� the spatial dimension D,

� the number of components of the order parameter,

� the ‘symmetry properties’ of the order parameter,

� the (non-)existence of long-range interactions,

� maybe other (unknown) ones.

One of the earliest versions of the universality hypothesis was given by Griffiths in 1970 and was

based on results for a very limited amount of lattice models [29]. Also Kadanoff pointed out

the essential features in a rather qualitative form in 1971 (compare the quotation given in Ref.

[30]). In a more ambitious sense, one can define the universality hypothesis as a set of criteria

which are hypothesized to be necessarily or sufficiently fulfilled for two models falling into the

same universality class (i.e., in RG language, being attracted by the same infrared stable fixed

point). Section 4.6. of Ref. [7] discusses the progress in this direction. Unfortunately, in the

literature often many highly questionable assumptions are made between the lines when claiming

that two models fall into the same universality class “according to the universality hypothesis”.

The following discussion will give an impression how subtle the issue can be.

Instead of considering all possible potentials of the form (2.22), we can restrict the discussion to

potentials which are expected to arise as order-parameter theories in the real world. All phase

transitions involving spontaneous symmetry breaking are covered by taking into account all

the most general potentials invariant under symmetry groups in their particular representations.

But also the most prominent second-order phase transitions which are not related to spontaneous

symmetry breaking can be successfully described on this basis. The famous Kosterlitz-Thouless

phase transition for example occurs in a system of spatial dimension D = 2. According to the

Mermin-Wagner theorem there cannot exist spontaneous breaking of symmetry in two spatial

dimensions. Nevertheless, the Kosterlitz-Thouless transition falls into the O(2) universality class.
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Another example is the critical endpoint of the liquid-gas phase transition. Although both phases

are not distinguished by any symmetry at the critical endpoint the phase transition falls into the

Z(2) universality class. Therefore we restrict the discussion to most general potentials invariant

under symmetry groups in their particular representations, which are of the form (2.26).

For convenience we introduce the following notation.

� We denote the set of n potentials of the form (2.26) by {UP
1 , U

P
2 , . . . , U

P
n } if the same fixed

point P exists in all of the n models.

� For a potential U of the form (2.26) we denote the subspace spanned by the linearly

independent invariants of order m by {I(m)i }.
� An integrity basis for a certain representation Γ(G) of a group G is defined by a set of in-

variants (basic invariants) from which all other invariants can be constructed by summation

and multiplication.

First of all we distinguish between those static universality classes which have been observed in

experiment (EUV’s), and those static universality classes which are defined by IR-stable fixed

points associated with fixed-point potentials (i.e., the potentials at the fixed points) of a certain

symmetry (SUV’s). We note that the same fixed point can exist in different models of the form

(2.26). A necessary condition for this situation is of course that the fixed-point potential is a

special case of the potentials defining the models. Since different fixed points have different char-

acteristic stability-matrix eigenvalues, every EUV should be in one-to-one correspondence with

a specific infrared fixed point. Indeed, most of the EUV’s have been very successfully identified

with certain SUV’s with (see Refs. [7, 14, 21] for comprehensive reviews). For example, the Ising

universality class encompasses a large variety of experimentally well-accessible systems, and the

agreement between theory and experiment (including high-precision studies in microgravity envi-

ronment [14]) is convincing. In other cases, however, such a mapping has not yet been achieved in

a satisfactory manner. In the following we point out three examples for such cases. First of all we

point to Tab. X in Ref. [31] for an example where a second-order transition is seen experimentally,

whereas no stable infrared fixed point is found in the ǫ-expansion. Second, it is also well-known

that the standard ǫ-expansion is only an asymptotical expansion and not convergent [32], i.e.,

there is an optimal loop order from which on the results for the critical exponents become worse.

Although it has been demonstrated in the context of O(N) models that this problem can be

cured by using resummation techniques yielding high-precision critical exponents which agree

astonishingly well with experiments and lattice simulations, to our knowledge this program has

not been carried out for all universality classes involving anisotropic symmetries. One might find

unexpected deviations between theory and experiment here. Another problem of the low-loop

ǫ-expansion is the extension of the results to D = 3 by setting ǫ = 1 in the end. There exist

examples where this extrapolation clearly fails [33], one of which is of great relevance for two-

flavor QCD, namely the U(2)L ×U(2)R-symmetric model (see Sec. 3.3.2). Third, the stability of

certain fixed points for potentials with anisotropic symmetry is still under debate. An example

is the cubic anisotropy model which will be discussed in Sec. 6.3.
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Polynomial order

One important property of the potential U is its polynomial order (or naive scaling dimension).

As far as we can tell from the above references, every EUV can be defined via the value for ν.

Calculating the value of ν for a certain SUV from the FRG method, the precision dramatically

depends on the truncation order. In local-potential approximation at a certain naive scaling

dimension, however, the value is universal in the following sense. Consider a fixed point P and a

set {UP
1 , U

P
2 }. Let the fixed-point potential involve m linearly independent couplings (including

mass terms in the counting). Then m of the stability-matrix eigenvalues calculated with respect

to UP
1 coincide with m of the stability-matrix eigenvalues calculated with respect to UP

2 . Usually,

in local-potential approximation it is therefore possible to unambiguously identify each univer-

sality class associated with a fixed point from the universal stability-matrix eigenvalues, and in

particular from ν. For the identification of the SUV’s known to the author the value for η is

not needed. Special attention, however, has to be paid to the following cases. First, in presence

of fixed points with marginal eigenvalues the truncation order has to be increased in order to

decide on the stability properties. The second case is subtle. One can ask whether there could

exist different universality classes which correspond to the same fixed-point potential at a certain

truncation order. Only beyond this order the fixed-point potentials would be distinguishable.

We are, however, neither aware of an argument ruling out this possibility, nor of universality

classes of this type.

Symmetry and the number of order-parameter components

Another crucial property of the potential U is its symmetry, i.e., under which symmetry trans-

formations of the fields it is left invariant. In order to uniquely determine the invariants it is not

sufficient to specify only a symmetry group G. Fixing in addition the representation Γ(G) of the
group, however, uniquely determines the potential. As we outline in App. A.1, in general the N

real order-parameter components Φi are involved in a tensor ϕ, the form of which depends on

the particular choice for Γ(G). From the transformation law of ϕ under the action of the group

one can infer how the fields Φi transform, and from this one can derive the subspaces {I(m)i },
where the representation Γ(G) leaves simultaneously invariant all the invariants I

(m)
i (see Sec.

5).

In terms of a potential a phase transition is described by a minimum which changes from a

nonzero value to zero. In Landau theory this is achieved by tuning a single coupling in front of

the quadratic invariant λ
(2)
0 = ∑N

i=1 φ
2
i from a negative value to zero while it is assumed that the

higher-order invariants assure stability. Landau and Lifshitz introduced the following necessary

conditions for the existence of a second-order phase transition associated with a single relevant

variable [20, 21, 34]:

1. necessary condition: the potential does not involve invariants of odd polynomial order,

2. necessary condition: the potential involves exactly one quadratic invariant: λ
(2)
0 = ∑N

i=1 φ
2
i .

In the following we refer to these conditions as Landau-Lifshitz criteria. It is stated in the

literature that the above conditions imply that the symmetry of the potential must correspond
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to an irreducible representation [21, 34, 35, 36]. However, they rigorously hold true only in mean-

field approximation but not necessarily beyond mean-field level [37]. Ref. [38] clearly emphasizes

that irreducibility of the representation is not a necessary condition. Nevertheless, for D = 3

spatial dimensions the Landau-Lifshitz criteria are usually reliable. Interesting in this respect is

our investigation of the SU(2) ×U(2)-symmetric model belonging to a reducible representation

and involving two quadratic invariants.

Impressive investigations have been performed for order parameters with N ≤ 2 [21, 39], N = 3
[21, 39], N = 4 [31, 40, 41], N = 6 [42, 43], and N = 8 [44] components, respectively. Some

general features have been discussed in Ref. [45] (see also Ref. [46]) for arbitrary N at one-

loop order in the ǫ-expansion. The main result of Ref. [45] is that for N < 4 the only stable

IR fixed point is the O(N)-symmetric one, whereas for N > 4 it is always unstable. Refs.

[21, 31, 39, 40, 41, 42, 43, 44] consider vector representations which are irreducible on the real

numbers and involve N order-parameter components. Irreducibility on the real numbers means

that the representation is either real, or an irreducible representation can be obtained by taking

the direct sum of the representation and its complex conjugate [47]. We note that there is a one-

to-one correspondence between N/2-dimensional complex vector representations (represented by

complex-valued matrices M acting on complex-valued vectors z⃗) and N -dimensional real vector

representations due to the isomorphism [48]

Mz⃗ ≃ ⎛⎝ReM − ImM

ReM ImM

⎞⎠⎛⎝Re z⃗Im z⃗

⎞⎠ . (2.35)

The chosen restrictions are obviously compatible with the Landau-Lifshitz criteria. The set of

distinct matrices of an irreducible vector representation Γ(G) is a group called the image of G

under Γ and is denoted by IΓ(G) in the following. According to Ref. [21] IΓ(G) completely

determines the Landau potential associated with Γ(G) and all of the irreducible representations

exhibit a single quadratic invariant. In case of an N -component order parameter we are only

interested in images where this quadratic invariant is given by ∑N
i=1 φ

2
i . Since (∑N

i=1 φ
2
i )2 is neces-

sarily an invariant if ∑N
i=1 φ

2
i is one, we conclude that we can restrict the relevant G’s to subgroups

of O(N). Different irreducible representations of the same group G can be associated to different

images and hence different Landau potentials. For instance, the irreducible representations W1,

W2, W3, and W3, respectively, of the group O5
h are associated with the image L1, whereas the

irreducible representation X−5 of O5
h is associated with the image L7 (see Tab. I of Ref. [43]).

Further, different groups can have irreducible representations corresponding to the same image

(see again Tab. I of the above reference). It is also possible that the subspace E ≡ {I(4)i } coincides
for different images. This is for example the case for the images L1, L2, L3, and L5 in Tab. I

of the above reference. Distinct Landau polynomials can be labeled by the largest image group

(i.e., the group of highest symmetry) which is also known as centralizer Ec of E. We speak of

most general Ec-invariant Landau potentials. The largest group leaving invariant the fixed-point

potential found for the most general Ec-invariant Landau potential is a subgroup of Ec and is

called little group of Ec, which we denote by E∗c . Another group relevant for the discussion is

the normalizer EN defined as the largest group leaving invariant the space E as a whole, which

in general contains the centralizer as a subgroup.

We note that at least in the study for N = 6 another group-theoretical criterion (proposed by
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Michel and Toledano) has been used, which rules out certain irreducible representations. Fur-

thermore, in all of the Refs. [21, 39, 31, 40, 41, 42, 43, 44] calculations are finally restricted to

discrete subgroups of O(N) (point groups). For the remaining irreducible representations the

images are calculated, from which the most general potentials up to fourth order are constructed

and the RG flow is studied in an n ≤ 2 loop-order ǫ-expansion. According to Ref. [41], in spite

of the restriction to discrete subgroups of O(N), the following enumeration covers all possible

Landau potentials (up to polynomial-order four) for the respective numbers of order-parameter

components N , which are consistent with the Landau-Lifshitz criteria, i.e., all possible groups

and representations of relevance. We can confirm this statement, however, only for the cases

N = 1 and N = 2. For N ≤ 3 we have the following objections. Whereas the restriction to discrete

subgroups is clearly appropriate in the context of phase transitions in crystals, we doubt its

validity in the general case, however. As pointed out in Section 3.1. of Ref. [7], in case of liquid

crystals for instance continuous groups in real space have to be taken into account. Apart from

this, only vector representations are taken into account. However, also tensor representations4

should be taken into account (compare with App. A). Tensor representations are of particular

importance when considering gauge theories, i.e., local symmetries which the above references

do not take into account. In case of gauge theories one usually (but not necessarily) speaks of

Ginzburg-Landau potentials, whereas we confined the discussion to Landau potentials in absence

of couplings to gauge fields. We will continue with the discussion of gauge fields in Sec. 4.4. In

the following we summarize the most important results inferred from the above references.

For N = 1 the Landau-Lifshitz criteria restrict the form of the potential to

UO(1) = rφ2 + λφ4 , (2.36)

which corresponds to the fundamental representation of O(1). Also when taking into account

all possible groups and representations this is obviously the only possibility consistent with the

criterions of Landau and Lifshitz. The potential exhibits the infamous Ising fixed point, which

is IR stable (see Sec. 6.1).

For N = 2 only the groups Cn and Cnv are potentially consistent with the Landau-Lifshitz cri-

teria. The corresponding vector representations with carrier space φ⃗ = (φ1, φ2)T give rise to the

following integrity bases [21, 39]:

Cnv ∶ I1 = φ21 + φ22 , I2 = (φ21 + φ22)n/2 cos (nθ) , (2.37)

Cn ∶ I1 = φ21 + φ22 , I2 = (φ21 + φ22)n/2 cos (nθ) , I3 = (φ21 + φ22)n/2 sin (nθ) , (2.38)

with tan θ = φ1

φ2
. For n = 4 we obtain:

I2 = φ41 − 6φ21φ22 + φ42 , I3 = 4 (φ1φ32 − φ31φ2) , (2.39)

from which one determines the most general C4v-potential,

UC4v
= rI1 + aI21 + bI2 = r (φ21 + φ22) + g1 (φ41 + φ42) + g2φ21φ22 (2.40)

(where g1 ≡ a + b, and g2 ≡ 2a − 6b), and the most general C4-potential,

UC4
= UC4v

+ g3 (φ1φ32 − φ31φ2) . (2.41)

4For potentials associated to tensor representations see for instance [49, 50, 51, 52, 53] and Sec. 6.5.
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For n = 1 one obtains two linear invariants, I2 = φ2 and I3 = φ1, which is not compatible with the

Landau-Lifshitz criteria. For n = 2 one obtains the additional quadratic invariants, I2 = φ22 − φ21
and I3 = 2φ1φ2, which is incompatible as well. Also the case n = 3 spoils the conditions of Landau

and Lifshitz due to the two cubic invariants, ∣I2 ∣ = φ32 − 3φ21φ2 and ∣I3∣ = 3φ22φ1 − φ31. For n > 4 no

fourth-order potentials different from the potentials (2.40) and (2.41), respectively, are generated.

Hence, the only candidates for stable IR fixed points are the latter potentials. At one-loop order

in the ǫ-expansion the only stable IR fixed point is the isotropic O(2)-symmetric one [45]. We

reinvestigate the fixed points in Sec. 6.2 from the FRG method. We find an IR-stable O(2)
fixed point in case of the C4v-potential, whereas the investigation of the C4-potential remains

inconclusive even at naive scaling dimension six.

Using Brezin’s rule [45] (also known as trace condition), which states that

N

∑
k

c
(4)
ijkk = δijc (2.42)

if the potential (2.22) exhibits a single quadratic invariant, we conclude that the potential (2.41)

is in fact the most general Landau potential for N = 2 consistent with the Landau-Lifshitz criteria.

That is, any representation of any group is associated with a special case of this potential.

For N = 3 only the groups O, Oh, Th, Y , and Yh are consistent with the Landau-Lifshitz criteria

[21, 39]. The corresponding vector representations with carrier space φ⃗ = (φ1, φ2, φ3)T are all

associated with the same most general fourth-order Landau potential:

UC = r (φ21 + φ22 + φ23) + g1 (φ21 + φ22 + φ23)2 + g2 (φ41 + φ42 + φ43) . (2.43)

For the groups Y and Yh, however, the degeneracy in the potential is lost at higher order. The

potential UC, which is said to possess a cubic symmetry, will be studied in Sec. 6.3 from the FRG

method. We confirm the one-loop order ǫ-expansion result that the only stable IR fixed point is

the isotropic O(3)-symmetric one [45].

For N = 4 the number of distinct potentials consistent with the Landau-Lifshitz criteria is sig-

nificantly larger. According to Refs. [21, 31, 41], there are 22 nonequivalent centralizers labeling

22 distinct Landau potentials. The group-subgroup relationship between the 22 groups together

with the associated polynomials is shown in Fig. 1 of Ref. [31]. Only six of the Landau potentials

exhibit a stable IR fixed point, namely those associated with the centralizers O(4), ( Y
C2

; Y
∗

C2
)∗,

(D∞ × D∞)∗, ( O
D2

; O
D2
)∗, (C8

C4
; D4

D2
) and (D4

D2
; D4

D2
)∗, respectively. In total there are only four

distinct stable IR fixed points which are listed in Tab. 6.2. We note that Ref. [40] discards the( Y
C2

; Y
∗

C2
)∗-symmetric potential since it is not associated to a representation of a point group, i.e.,

is not relevant for crystals. Accordingly, in their counting there are, apart from the isotropic case,

only four physically relevant Landau potentials with anisotropic symmetry exhibiting a stable

IR fixed point. Since we are not only interested in point groups we regard all of the five Landau

potentials with anisotropic symmetry as physically relevant. We reinvestigate the five anisotropic

Landau potentials from FRG in Sec. 6.4 where the (C8

C4
; D4

D2
)-symmetric potential is of particular

interest. In Ref. [31] the fixed-point structure for this potential was derived not from an explicit

calculation but from an elegant group-theoretical analysis. Since the centralizer (C8

C4
; D4

D2
) is not

a little group, the RG flow consists of trajectories characterized by several little groups, giving

rise to manifolds of different symmetry. The fixed-point structure, further discussed in Sec. 6.4,
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can then be inferred from the Landau potentials associated to these little groups [31]. Neverthe-

less, it is quite interesting how this complicated fixed-point structure appears in an explicit FRG

calculation. We were able to verify at least part of it.

For N = 6 there have been found 11 different images giving rise to six distinct Landau potentials

consistent with the Landau-Lifshitz criteria [42, 43]. Only two of them exhibit a stable IR fixed

point, namely

U1 = r
6

∑
i=1
φ2i + g1 ( 6

∑
i=1
φ2i)

2

+ g2

6

∑
i=1
φ4i + g3 (φ21φ24 + φ22φ25 + φ23φ26) . (2.44)

and

U6 = U1 + g4 [φ1φ4 (φ21 − φ24) + φ2φ5 (φ22 − φ25) + φ3φ6 (φ23 − φ26)] . (2.45)

The Landau potential U1 is associated to certain irreducible representations of the groups O5
h, O

3,

T 2
d , and O

8, respectively. The Landau potential U6 is associated to the irreducible representation

M2 ⊕M3 of the group O6, and to the irreducible representation M2 ⊕M3 of the group O7,

respectively. We reinvestigated these two Landau potentials from FRG but found the quartic

truncation order inconclusive due to the occurrence of marginal eigenvalues. We refrained from

further studies in this case. Instead, we found a new Landau potential exhibiting a stable IR fixed

point. It is associated with the [3,1]⊕ [1,3] representation of SU(2)V ×SU(2)A. Apparently it

does not appear in Refs. [42, 43] because it is not a representation of a point group. It will be

discussed in Sec. 6.8.1.

Utilizing the same strategy also for N = 8, no IR stable fixed points have been found for models

other than the isotropic O(8) model [44]. In Sec. 6.8.3, however, we present a potential exhibiting

a stable IR fixed point. Unfortunately, we are not able to determine the symmetry group to which

it corresponds.

For N = 5, N = 7, and N > 8 we are not aware of similarly systematical investigations.

Range of interaction

Also the range of interaction of the terms involved in the potential U is a relevant property. In

local-potential approximation (2.22), and also in simple forms of the derivative expansion (2.24),

only local interactions (short-range interactions) are taken into account, i.e., the fields involved in

the interaction terms are localized at the same point in space. Non-local interactions (long-range

interactions), however, cannot be excluded by the symmetry constraints discussed above and can

have an effect on the critical exponents [28]. Probably the simplest non-local interaction is of

the isotropic form

∼ ∫ dDx⃗∫ dDx⃗′Φi(x⃗)Φi(x⃗′) 1∣x⃗ − x⃗′∣D+dσ
, (2.46)

which has been mainly studied in the framework of O(N) models, in particular for the Ising

model (see Ref. [54]). At least in this context, in local-potential approximation (where η ≡ 0),
for −D ≤ dσ ≤ 0 one can speak of strong long-range interactions, and for 0 < dσ ≤ dc(D), where
dc(D) =D/2 for D < 4, one can still speak of weak long-range interactions. In this case the range

of interaction, as well as the angular dependence, indeed has influence on the critical exponents or

25



even on the order of the phase transition. We are not aware of systematic investigations studying

the influence of non-local interactions on the anisotropic models discussed above, however.

Attempts in stating a more precise universality hypothesis

In the following we consider only systems in which long-range interactions are either absent or

can be neglected, respectively. Furthermore we restrict the hypothesis to models which can be

formulated as a field theory and whose phase transition is associated to a spontaneous breaking

of symmetry. Note further that we excluded models exhibiting marginal couplings giving rise

to critical exponents varying continuously with these couplings. Then a universality hypothesis

(UH1) can be stated as follows:

Two models A and B exhibiting a second-order phase transition associated to a single relevant

variable (e.g. temperature or any other quantity) necessarily fall into the same universality class

if the following conditions are fulfilled:

1. The spatial dimension D is the same.

2. The order parameters are associated with equivalent irreducible representations, i.e., the

representations are related by a similarity transformation.

This version is rather restrictive as it leaves not much room for differences between A and B.

Based on systematic investigations is also the following restricted universality hypothesis (UH2):

Two models A and B exhibiting a second-order phase transition associated to a single relevant

variable necessarily fall into the O(N) universality class if the following conditions are fulfilled:

1. The spatial dimension D is the same.

2. The order parameters have the same number N ≤ 3 of components.

We propose a further universality hypothesis (UH3) on the basis of the rule that a stable IR fixed

point implies the coincidence of the centralizer and the normalizer associated to it, for which a

proof was presented in Ref. [31]. If we understand the implications of this rule correctly (which

needs to be checked) one can formulate the following universality hypothesis:

Consider two models A and B with N -component order parameters defined by potentials asso-

ciated to normalizers GA and GB, respectively, both exhibiting a second-order phase transition

associated to a single relevant variable. Let us denote all possible normalizers (of potentials)

which are identical to subgroups of O(N) giving rise to a real irreducible N -dimensional repre-

sentation by Gi, i = 1, . . . , l. Then, A and B belong to the same universality class if GA ⊆ Gi and

GB ⊆ Gi holds exactly for one of the Gi. This Gi is the normalizer associated to the fixed-point

potential.

The above formulations have the premise that two models exhibit a second-order phase transi-

tion (and therefore IR-stable fixed point(s)) and state sufficient conditions for them to fall into

the same universality class. A closely related problem is the identification of sufficient/necessary

conditions for the existence of a stable IR fixed point in a certain class of models. Several efforts

have been made in topological studies (see for instance Refs. [55, 56]). We are optimistic that

further investigations in this direction will lead to more refined versions of the universality hy-

pothesis.
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Finally we want to state several points which challenge the universality hypothesis. Ref. [57]

conjectures the existence of two simultaneously stable fixed points. Ref. [58] gives an example

where critical exponents change along the second-order phase boundary. These examples illus-

trate that even version (UH1) of the universality hypothesis remains unproven in a general setting

(on the other hand, so far, no definitely confirmed violations exist). In particular the possible

existence of two (or even more) IR-stable fixed points of distinct symmetry in a model cannot be

ruled out a priori (compare with Sec. 6.4.3). Very recently we found two IR-stable fixed points

in a most general U(2)A × U(2)V -symmetric Landau potential up to sixth polynomial order,

which seem to be associated with the same symmetry but with different ν (see Sec. 6.5). So far,

their existence does not constitute a violation of the universality hypothesis, however, because

the Gaussian fixed point aquires marginal stability-matrix eigenvalues at this truncation order.

Also the studies at higher truncation order remain inconclusive due to the occurence of marginal

eigenvalues. Further investigations are in progress. We further note that, at least in principle,

there could exist models involving N order-parameter components which, nevertheless, fall into

a universality class associated with M < N order-parameter components. In the cubic anisotropy

model (which involves an arbitrary number of order-parameter components), for instance, there

exists a fixed point associated with the Ising universality class (see Sec. 6.3). Although it turns

out to be unstable in explicit calculations, we are not aware of a general reason why this must

be the case.

Ref. [59] is of particular interest for us as it concerns QCD. The authors of the latter reference

study a dimensionally reduced Gross-Neveu model at finite temperature which, according to the

universality hypothesis, should fall into the same universality class as the Ising model. Lattice

calculations, however, suggest that the critical exponents are different. More precisely, the nu-

merical data for the Gross-Neveu model is in agreement with mean-field behavior. We suspect

that this has to do with the large-N expansion which has been performed, since one finds mean-

field exponents for the Ising model in the large-N limit. The authors, however, argue against

this asserting that their result is not an artifact of their approximation. Also the range of the

interactions involved should be checked. Further investigations are desired in order to verify the

violation and to understand the underlying reasons. A confirmation of the results would also

question the applicability of the universality hypothesis (but maybe only that of dimensional

reduction) to two-flavor QCD (compare with Sec. 3.3.2).
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Die Farben sind Taten des Lichts, Taten

und Leiden.

(Johann Wolfgang von Goethe, Zur

Farbenlehre)

Chapter 3

Quantum chromodynamics

3.1 Phase transitions in quantum chromodynamics

Originally, the quark model, and later QCD, was constructed to explain the existence and prop-

erties of hadrons (mesons and baryons). One of the features of QCD is asymptotic freedom,

meaning that the coupling strength between quarks becomes smaller with increasing momentum

transfer involved in the interaction1. Deep-inelastic scattering of leptons by nucleons confirmed

this prediction (see for example Ref. [61] for a detailed discussion and the history of such experi-

ments). On this basis another state of matter was predicted for high temperature and/or baryonic

chemical potential, which is now known as quark-gluon plasma. One of the earliest references

to this exotic phase is that of Collins and Perry [62] who spoke of a ‘quark soup’. Their idea

was that at high densities, as observed in neutron stars, one must expect the hadrons to overlap.

Due to asymptotic freedom, quarks should interact weakly in this phase which motivated the

authors to consider the ‘quark soup’ as a relativistic gas of free quarks. For high temperature,

the existence of a quark-gluon plasma phase was confirmed from first principles in Ref. [63] using

perturbation theory, which is justified due to asymptotic freedom.

An important question is whether the transition from hadronic matter to the quark-gluon plasma

phase goes along with a true phase transition. So far, the answer is not complete. QCD possesses

two kinds of symmetry which can be broken spontaneously, namely chiral symmetry and the cen-

ter of the color gauge group, respectively, both of which are only approximate in case of physical

quark masses causing explicit symmetry breaking. Consequently the spontaneous breaking of

symmetry associated with the corresponding phase transitions is only of approximate nature. In

case of chiral symmetry and the chiral phase transition this is mirrored in the experimental fact

that the would-be Goldstone particles have a (small) mass due to explicit symmetry breaking.

Nevertheless, as discussed in Sec. 2.1, also in case of physical quark masses one can still speak

of an exact first-order chiral phase transition and an exact critical endpoint. Second-order lines

and ordinary critical points encountered for vanishing quark masses, however, will be turned into

crossover. It is a nontrivial question to which extent the transition from hadronic matter to the

QGP is determined by descriptions based on (explicitly broken) chiral and/or center symmetry.

1For a proof from first principle that asymptotic freedom also exists with respect to high baryon density and/or

temperature see Ref. [60].
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Although the associated order parameters, which will be introduced in the following, should play

an important role, it is rather likely that other degrees of freedom are relevant, too. This will be

discussed for the critical endpoint in Sec. 3.3.1.

First, there is a discrete Z(Nc) symmetry, the center of the gauge group SU(Nc), where Nc is

the number of colors. This center symmetry is only exact in the limit of infinite (static) quark

masses and approximate in the case of finite (dynamical) quark masses. Correspondingly, the

spontaneous center symmetry breaking is of approximate nature in presence of dynamical quarks

as well. An order parameter can be defined as the vacuum expectation value of a quantity called

Polyakov loop, L, named after A.M. Polyakov, who discovered its relation to the free energy F

of a single quark [64] in case of infinite quark masses:

⟨L⟩ = exp (−F /T ) , (3.1)

where T denotes temperature. The free energy of a single quark is linked to confinement. At small

temperatures quarks are confined in hadrons, that is no free single quarks exist (i.e., F =∞), and

hence ⟨L⟩ = 0 in the so-called confined phase. Due to asymptotic freedom, at high temperature

one expects quarks to be liberated (i.e., F finite) so that ⟨L⟩ ≠ 0 in the so-called deconfined

phase. Since ⟨L⟩ is not invariant under Z(Nc), the center symmetry is spontaneously broken in

the deconfined phase. In presence of dynamical quarks one can still speak of an exact first-order

phase transition if one redefines the order parameter by subtracting its value at the transition

point: ⟨L⟩→ ⟨L⟩− ⟨L⟩c. A second-order phase transition is only possible at a critical endpoint in

case of dynamical quark masses. Unfortunately, the analogue to Eq. (3.1) for dynamical quark

masses fails to describe confinement in a strict sense. The transition described on the basis of

explicitly broken center symmetry, which is still called deconfinement transition, can therefore

only be an approximate description of the expected hadron-QGP transition in the real world. A

second-order phase transition with respect to the Polyakov loop in case of static quark masses

will be turned into a crossover in presence of sufficiently light quarks.

Second, there is chiral symmetry, U(Nf)R × U(Nf)L, which is defined by the following unitary

transformations:

ψR,L Ð→ UR,LψR,L , UR,L ≡ exp
⎛⎜⎝i

N2
f−1
∑
a=0

αa
R,LTa

⎞⎟⎠ ∈ U(Nf) , (3.2)

where Nf is the number of flavors, UR,L acts on the right-handed or left-handed fermionic quark

spinor ψR,L, respectively, given by

ψR,L ≡ PR,Lψ , PR,L ≡ 1 ± γ5
2

, ψ = ψR + ψL , (3.3)

the T a denote the generators of U(Nf), and ψ is the fermionic quark spinor appearing in the QCD

Lagrangian. U(Nf)R ×U(Nf)L can be rewritten in terms of axial and vector transformations,

ψ Ð→ UV,Aψ , UV ≡ exp
⎛⎜⎝i

N2
f−1
∑
a=0

αa
V Ta
⎞⎟⎠ , UA ≡ exp

⎛⎜⎝i γ5
N2

f−1
∑
a=0

αa
ATa
⎞⎟⎠ , (3.4)

due to the group isomorphism [65]

G ≡ U(Nf)V ×U(Nf)A ≃ U(Nf)R ×U(Nf)L
≃ U(1)V ×U(1)A × [SU(Nf)/Z(Nf)]L × [SU(Nf)/Z(Nf)]R . (3.5)
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However, chiral symmetry is only an exact symmetry of QCD for vanishing quark masses mq = 0.
In consequence, spontaneous chiral symmetry breaking is only of approximate nature in case of

physical quark masses. The associated order parameter is given by the so-called quark condensate,

which is defined by the following vacuum expectation value:

⟨ψpψq⟩ = ⟨ψL,pψR,q⟩ + ⟨ψR,pψL,q⟩ , (3.6)

where p, q are flavor indices. Obviously, a (non-)vanishing quark condensate, ⟨ψpψq⟩, is equivalent
to (non-)vanishing chiral condensates, ⟨ψL,pψR,q⟩ and ⟨ψR,pψL,q⟩, respectively. For m = 0, all

quark flavors are equivalent, and hence Φpq ≡ ⟨ψL,pψR,q⟩ = ϕδpq. Whereas the QCD Lagrangian

is invariant under full chiral symmetry in the case mq = 0, a non-vanishing chiral condensate

is only invariant under the subgroup U(Nf)V , Φ Ð→ UV ΦU
�

V = Φ (compare with App. A.2),

but not under U(Nf)A. Chiral symmetry is hence broken by a non-vanishing chiral condensate

following the pattern

U(Nf)R ×U(Nf)L → U(Nf)V . (3.7)

Again, in presence of dynamical quarks one can speak of an exact first-order phase transition

if one redefines the order parameter by subtracting its value at the transition point: ⟨ψpψq⟩ →⟨ψpψq⟩ − ⟨ψpψq⟩c. A second-order phase transition is only possible at a critical endpoint in case

of dynamical quark masses. Otherwise a second-order phase transition found for vanishing quark

masses will be turned into a crossover.

A sketch of the QCD phase diagram consistent with the current results from different approaches

towards QCD is shown in Fig. 3.1. In the so-called Columbia plot (compare Fig. 3.2), the

Figure 3.1: Conjectured QCD phase diagram. Taken from Ref. [66].

QCD phase diagram in the mu,d-ms plane for vanishing chemical potential, the order of the
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QCD phase transitions is summarized. Originally its form was based on lattice calculations at

Figure 3.2: Conjectured QCD phase diagram for vanishing baryonic chemical potential. The left

panel shows the original Columbia plot of the Columbia group [67], where filled dots mark points

where lattice calculations were performed, and the dashed circle indicates the point of physical

quark masses. The right panel shows a modern, more refined version [68].

only a few points in the different regimes [67]. The plot is schematic in two ways. First, it is

only the simplest possible form consistent with the results so far. In particular, the shape of the

second-order boundaries is simply a sketch. The existence of merely two points, randomly picked,

one associated to a first-order phase transition and another associated to a crossover transition,

already give rise to the conclusion that a second-order boundary should exist in between (compare

with the discussion in Sec. 2.1). Second, the lower left corner corresponds to the chiral transition,

whereas the upper right corner is associated with the deconfinement transition. Both transitions

are no real phase transitions in between the limit of small and large quark masses, respectively,

and hence the label ‘crossover’ in the plot refers to both, either the chiral transition or the

deconfinement transition. We emphasize however that both transitions have to be distinguished

from each other.

Later, the form of the phase diagram was verified from other approaches towards QCD. Fig. 1.2.

in chapter I.1. of Ref. [4] (and the discussion thereof) comprises an enlightening summary of

their applicability in different regions of the diagram. It provides as well an insight from which

sources our information about the QCD phase diagram stems. A question still under debate is

whether the point associated to the real quark masses falls into the crossover or into the first-

order region. Further, efforts were made to determine the universality class of the second-order

lines (see Sec. 3.3 for details). The possibility of O(4) criticality for infinitely high strange quark

mass (i.e., effectively Nf = 2) on the one hand, and indication for Z(2) universality along the

second-order boundaries on the other hand gives rise to the prediction of a tricritical point at

some critical value mtric
s , where the universality class changes from Z(2) to O(4). Until very

recently, it has been assumed that the phase transition can only be of second-order in presence

of the axial anomaly, and if so, it should belong to the O(4) universality class. However, as
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demonstrated in Ref. [33] (see also Sec. 6.5), a second-order phase transition can also exist in

absence of the anomaly. Consistent with Refs. [1, 33] we do not expect a second-order phase

transition for finite anomaly strength, but also this statement should be thoroughly checked. For

a detailed discussion we refer to Sec. 3.3.2.

3.2 Instantons and the axial anomaly

Although the explicit breaking of the U(1)A symmetry contained in Eq. (3.5) plays a major

role in this work, our investigations did not require a deeper knowledge of the circumstances

causing the anomalous breaking. Within the scope of this thesis we are only concerned with the

implications for the order of the chiral phase transition. Nevertheless, we want to briefly discuss

some central aspects concerning the general background.

Instantons are solutions to the Euclidean classical equations of motion of quantum mechanics

or of quantum field theory, for which the action takes a finite value [69]. A prominent example

for an instanton solution is the one in the gauge sector of QCD, encountered by Polyakov and

collaborators [70]. These gauge-field configurations are also of relevance for light quark dynamics,

for example in the case of the axial anomaly. It was shown by t’Hooft that instantons explicitly

break the axial U(1)A symmetry of QCD, which explains why the η′ meson is not an (approxi-

mate) Goldstone particle in the real world [71]. Whereas the QCD Lagrangian is invariant under

U(1)A transformations in the chiral limit at the classical level, quantum corrections lead to a

non-conservation of the associated Noether current. This is an example of a general situation to

which one refers to as an anomaly, in this special case called axial anomaly. Whereas the breaking

pattern (3.7) would yield N2
f (approximate) Goldstone particles (in presence of nonzero quark

masses), which equals the number of generators of the broken U(Nf)A, there remain only N2
f −1

of them if the explicit breaking of U(1)A is taken into account. As already mentioned, this ex-

plains why the η′ is significantly heavier than the members of the pseudoscalar SU(Nf = 3) octet
(the approximate Goldstone particles). More precisely, the axial U(1)A is not completely broken

but a discrete Z(Nf) symmetry remains, which is related in a certain way with the speculative

possibility of CP violation in QCD [72]. And this is only one of many examples illustrating how

far-reaching the implications of the anomalous breaking actually are (or could be, respectively).

Our next remark concerns the notion anomaly strength. We were already concerned with an

explicit breaking of symmetry in the case of nonzero quark masses breaking chiral symmetry.

In this context the strength of the explicit breaking is determined by the quark masses. Light

quarks break chiral symmetry only weakly. In this sense, a large number of instantons breaks

U(1)A stronger than a small number. Accordingly, the instanton density is a measure for the

strength of the anomaly. Correspondingly, in the framework of the linear sigma model one can

quantify the anomaly strength by the coefficient in front of the U(1)A-breaking term (compare

with Sec. 3.3.2).

Finally, we want to state an expression for the instanton density n which was derived by the

authors of Ref. [73]:

n(Q,T ) = n(Q,0) exp[−1
3
λ2(2Nc +Nf) − 12A(λ)(1 + 1

6
[Nc −Nf ])] . (3.8)
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In the following we list the quantities entering the above equation:

n(Q,0) = CNc
Q5 (4π2

g2
)2Nc

e−8π2/g2

ζQ−1∏
i

mi , (3.9)

A(λ) ≃ − 1

12
ln(1 + λ2

3
) + α (1 + γλ−3/2)−8 , (3.10)

4π

g2(Q) = 4π

g2(Q0) − 1

6π
(33 − 2Nf) ln Q0

Q
, (3.11)

CNc
= 0.260156ζ−(Nc−2)/(Nc − 1)!(Nc − 2)! , (3.12)

λ = πT /Q , (3.13)

where Q denotes the inverse of the instanton scale size ρ = Q−1. Eq. (3.11) is the perturbative

one-loop renormalization group equation for the running coupling constant of QCD, g, with Q0

denoting an arbitrary reference scale, at which the value of g is known. A common choice for Q0

is the mass of the Z-boson, for which g2(MZ)/4π = 0.1184±0.00007 [74]. The light quark masses

are denoted by mi, Nc denotes the number of colors, and Nf the number of flavors. Finally,

ζ = 1.33876, α = 0.01289764, and γ = 0.15858.

3.3 Critical behavior in QCD

In this chapter we want to discuss aspects which are of importance for the current understanding

of critical behavior in QCD.

3.3.1 Ising universality in QCD

The boundary in the lower left corresponding to a second-order chiral phase transition is com-

monly claimed to inevitably fall into the Ising universality class. This statement is often founded

on a mean-field analysis of the linear sigma model [75] where the dynamical quark masses are

taken into account by an explicit symmetry breaking term. In a strict sense the universality

hypothesis is only applicable in case of exact chiral symmetry. In order to determine the univer-

sality class for QCD with physical quark masses from the linear sigma model one has to make

the nontrivial assumption that the universality hypothesis is also valid in presence of (small)

explicit symmetry breaking for critical endpoints. Ref. [75] demonstrates that only the sigma

particle becomes massless when tuning the mass parameter of the model towards the critical

value. According to group-theoretic arguments the Ising universality class is believed to be the

only one possible in case of a single-component order parameter (see the discussion of the Ising

model (2.36) in Sec. 2.4). Further assuming the number of massless modes not to change beyond

mean-field one arrives at the above statement. The same arguments can be used to justify that

the critical endpoint at nonzero chemical potential should belong to the Ising universality class

as well.

Ref. [15] has been seminal in the case of the critical endpoint of QCD. The authors apply the CJT

formalism in ladder approximation directly to QCD extending the work of Ref. [76]. Investigating

the behavior of the chiral condensate in the chiral limit for Nf = 2, they find a second-order line

(SOL) and a first-order line (FOL) joining in a tricritical point (TCP). The critical behavior at
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the TCP should belong instead to another universality class. In contrast to Ref. [76], the authors

also study the influence of nonvanishing quark masses. As expected, they find that the quark

condensate decreases with increasing temperature and/or chemical potential, however, it never

vanishes. This is a consequence of the explicitly broken chiral symmetry. One can still speak of a

first-order phase transition by considering the quark condensate minus its value at the transition

point where the condensate shows a discontinuous jump (to a nonvanishing value). A first-order

line ends in a critical endpoint (CEP), where the discontinuity vanishes and the transition be-

comes crossover. At the CEP the condensate drops down from a rather high to a very small

value and its temperature gradient is infinite. Consequently, the transition is hard to distinguish

from a second-order phase transition at the CEP. The distance between the CEP and the TCP

becomes larger with increasing quark mass. Now the authors calculate quark-number and chiral

susceptibilities which are expected to diverge at a second-order phase transition (compare with

Sec. 2.2) in the neighborhood of the TCP and determine critical exponents. For very large quark

masses, mq > 100 MeV, one observes a mean-field critical exponent of 2/3. This is explained

by the fact that the TCP does not lie in the critical region of the CEP (i.e., the region where

nontrivial critical exponents associated to the CEP are observed) in this case. Accordingly one

finds mean-field exponents associated to the CEP. For nearly vanishing quark mass, mq = 0.1

MeV, one finds critical exponents significantly distinct from mean-field values, which indicates

that the TCP has influence. The influence becomes weaker with increasing quark mass, however,

it is still significant for realistic quark mass mq = 5 MeV.

Apart from certain peculiarities involved in the ladder approximation (for example only a QCD-

like running coupling is used), the results mentioned so far can be regarded as derived from first

principles. One can conclude as follows. Although the TCP is only of exact nature for mq = 0,
it still affects the critical exponents significantly at physical quark mass mq where it is only of

approximate character. Also the CEP gives rise to critical behavior in the susceptibilities. How-

ever, it remains an open question to which extent Ising universality exists close to the CEP. It

should be possible to derive scaling corrections in dependence of mq in analogy to those for the

critical endpoint of the liquid-gas transition. In this case there does not exist an exact symmetry

either, nevertheless one observes Z(2) (Ising) critical behavior2 with Z(2)-noninvariant correc-
tions to the power laws [14]. Another critical endpoint which should correspond to the Ising

universality class is the one of nuclear matter. In comparison with the critical endpoint of QCD

it is experimentally much better accessible. In fact, it has been stated in Sec. I.2.2.3.4 of Ref. [4]

that actually measured critical behavior is in agreement with Ising universality.

Another part of Ref. [15] consists of partly courageous universality considerations complementary

to their study in the framework of the CJT formalism. We address these points in the following.

First of all, the authors speculate that the second-order line SOL corresponds to a sequence of

O(4) critical points. This extends the original O(4) conjecture, which predicts an O(4) critical
point for µ = 0 and mq = 0 if the strength of the axial anomaly is sufficiently high (see Sec.

3.3.2). Unfortunately we are not familiar enough with the assumptions involved in the ladder

approximation in order to judge their interesting proposal.

Our second remark concerns the role of the sigma particle. According to the authors of Ref. [15]

2For a first-principle derivation (not assuming an effective Landau potential) of the Z(2)-symmetric critical

endpoint present in a microscopic liquid-gas model we refer to Ref. [77].
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(and in consistence with Ref. [75]) the sigma field is the soft mode for both the TCP and the

CEP, i.e. drives the divergence in the susceptibilities. There is evidence that this is not true for

the CEP. Due to the far-reaching implications of this point, in the following we explain in large

detail why. The authors themselves mention the similarity with the situation in the NJL model

by citing Ref. [78]. Qualitatively the same phase diagram, containing a tricritical point and a

critical endpoint, is found in a simple NJL model,

L = Ψ̄(iγµ∂µ −mq)Ψ +G1 ([Ψ̄Ψ]2 − [Ψ̄γ5τ⃗Ψ]2) , (3.14)

which can be derived as an effective theory for QCD from first principles neglecting explicit

gluonic degrees of freedom and most of the hadronic degrees of freedom. Such a derivation be-

comes obvious from the discussion in Sec. 4.4, more precisely from expression (4.36), which for

G2 = G3 = G4 = 0 yields the Lagrangian (3.14) if the gluonic part is neglected. See also Ref. [79]

for a more explicit derivation. We note that at least to some extent, gluon dynamics effectively

hides in the four-fermion couplings. As pointed out by Fujii in Refs. [80, 81], the sigma particle

remains massive at the critical endpoint of the NJL model (see also Ref. [82]) while certain sus-

ceptibilities diverge. The phase transition associated with such a significant divergence can not be

driven by the massive sigma particle. Again, the situation is similar to the Ising-like continuous

transition at the critical endpoint of the liquid-gas transition. According to Fujii, at the CEP the

soft mode driving the divergences in the susceptibilities is given by a scalar density fluctuation.

At the TCP, i.e. in the chiral limit, the soft mode is the sigma field instead. We note that,

although the (tri)critical endpoint is a feature of the chiral phase transition, its location might

be affected by the deconfinement transition. The interplay with the Polyakov loop is taken into

account in PQM (Polyakov-Quark-Meson) and PNJL (Polyakov-Nambu-Jona-Lasinio) models.

Due to the strongly-coupled nature of QCD near the chiral and the deconfinement phase tran-

sition, nonperturbative methods are indispensable. First of all there is lattice QCD which at

nonvanishing baryonic chemical potential suffers from the infamous sign problem: the fermion

determinant is complex valued with vanishing average phase factor in the thermodynamic limit,

which rules out standard Monte-Carlo techniques. Fortunately so-called reweighting methods

have been recently developed allowing to study QCD at nonvanishing chemical potential. For

example in Ref. [83] the existence of a critical endpoint is inferred for semi-realistic quark masses

(whereas the strange quark mass is reasonable, the up and down quark mass are four times

heavier than in reality) from the so-called Lee-Yang zeros of the partition function. On the other

hand, the computation time rises with decreasing quark masses, for vanishing as well as for non-

vanishing chemical potential, which still hampers a reliable answer to the O(4) conjecture. The
latter is the main subject of this thesis and will be introduced in the following section.

3.3.2 From the linear sigma model to the O(4) conjecture

In this section we address the upper left corner of the Columbia plot (Fig. 3.2), i.e., the two-

flavor case, Nf = 2. An effective theory for the order parameter, the chiral condensate, is

given by the linear sigma model. In Sec. 4.4 we discuss how such an effective theory could

in principle be derived starting from QCD and imposing approximations in successive stages.
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The final step in this approach would consist in an approximate calculation of the fermion

determinant, stated in Eq. (4.45), which is a major contribution to the action of the effective

theory. Instead of explicitly calculating the fermion determinant one can perform an expansion

guided by symmetry. Consistent with Sec. 4.4 we assume that the relevant degrees of freedom are

mesons, i.e., the expansion should be in terms of mesonic fields. On the other hand, consistent

with Landau theory, it should be an expansion in terms of the order parameter. This is actually

in perfect agreement because, as shown in App. A.2, in flavor space the chiral condensate can

be parameterized by the mesonic fields. In the following we assume that the relevant degrees of

freedom are the scalar mesons σ and a⃗0 on the one hand, and the pseudoscalar mesons η and π⃗

on the other hand. In the representation [2,2]⊕ [2,2] of SU(2)× SU(2), the chiral condensate,

Φ, can be parameterized in terms of these mesonic fields [compare with Tab. A.1 and Eq. (A.50)]:

Φ = 1√
2
[(σ + iη)12 + (a⃗0 + i π⃗) ⋅ τ⃗] . (3.15)

We further assume that long-range interactions between the mesons can be neglected. In addition

we neglect explicit contributions of quarks and gluons. Their effect is, of course, to a certain

extent contained in the effective mesonic degrees of freedom and the effective interactions between

them. As far as it concerns the critical behavior, taking into account quarks explicitly should not

turn a second-order phase transition into a first-order one since the lowest fermionic Matsubara

frequency, ν0 = 2πT , adds a thermal contribution to the effective quark mass (compare also with

the discussion of dimensional reduction in Sec. 2.3). Since only light degrees of freedom play a

role at a second-order phase transition, quarks should not wash out critical behavior if it exists

in their absence. The situation is different for the gauge fields. Following Ref. [84], it is even very

likely that gauge-field contributions lead to a fluctuation-induced first-order transition (compare

with Sec. 4.4). Taking account of gauge-field fluctuations is a task for future investigations. We

proceed with the construction of the most general Lagrangian invariant under chiral symmetry

in the representation [2,2]⊕ [2,2]. We note that most of the following has been taken from our

publication [1].

The most general perturbatively renormalizable Lagrangian for D = 3 (neglecting the anomalous

dimension) which is invariant under the chiral U(Nf)V ×U(Nf)A symmetry of QCD, where Nf

denotes the number of quark flavors, was investigated by Pisarski and Wilczek [85] regarding

the order of the chiral phase transition. Choosing the [N̄f ,Nf ] ⊕ [Nf , N̄f ] representation of

SU(Nf)A × SU(Nf)A, in Euclidean space this Lagrangian reads

LΦ = 1

2
Tr(∂µΦ�)(∂µΦ) + 1

2
m2

ΦTrΦ
�Φ +

π2

3
g1(TrΦ�Φ)2 + π2

3
g2Tr(Φ�Φ)2 . (3.16)

We note that the ǫ-expansion is a perturbative method and hence one neglects perturbatively

nonrenormalizable terms in this approach. Instead, in nonperturbative approaches (such as FRG)

one has to consider their influence (compare with the discussion of the polynomial order in Sec.

2.4). The invariance under axial and vector transformations (A.51) can be easily confirmed from

the invariance of the trace under cyclic permutations. The circumstance that instantons explicitly

break the U(1)A [71] (see also Ref. [86]) is known as U(1)A anomaly. The authors of Ref. [85]

conjectured that, for Nf = 2, the chiral phase transition of QCD can be of second order in the

presence of the U(1)A anomaly. In this case, it would fall into the O(4) universality class. This
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is the already mentioned O(4) conjecture.
The term commonly introduced into Eq. (3.16) in order to explicitly break the U(1)A symmetry

is

detΦ�

+ detΦ . (3.17)

In Sec. 5.3 we show that, for Nf = 2, the most general form of the anomaly including terms up

to naive scaling dimension four is [65]

LA = c (detΦ�

+ detΦ) + y (detΦ�

+ detΦ)TrΦ�Φ + z [(detΦ�)2 + (detΦ)2] . (3.18)

These terms must be added to Eq. (3.16),

L = LΦ +LA , (3.19)

if one wants to study the impact of the U(1)A anomaly on the chiral phase transition. For Nf = 2
and including terms up to naive scaling dimension four, the Lagrangian (3.19) is the most general

Lagrangian invariant under SU(2)A ×U(2)V and respecting parity symmetry. We note that the

terms ∼ y, z are always induced by the RG flow if c ≠ 0. Therefore, in the following we shall use

the notion “in the presence of the anomaly”, whenever c ≠ 0. Note also that

(detΦ�

+ detΦ)2 = −Tr(Φ�Φ)2 + (TrΦ�Φ)2 + [(detΦ�)2 + (detΦ)2] , (3.20)

so that the square of the term (3.17) is not linearly independent from the other invariants con-

tained in Eq. (3.18). Finally note that

i (detΦ�

− detΦ) (3.21)

is not invariant under CP transformations [85].

In this work, we consider the case Nf = 2. The Lagrangian (3.19) can be rewritten as [87]

L = 1

2
(∂µσ∂µσ + ∂µπ⃗ ⋅ ∂µπ⃗ + ∂µη∂µη + ∂µa⃗0 ⋅ ∂µa⃗0) +U , (3.22)

U = 1

2
µ2 (σ2

+ π⃗2
+ η2 + a⃗20) + λ14! (σ2

+ π⃗2
+ η2 + a⃗20)2

+λ2 [(σ2
+ π⃗2) (η2 + a⃗20) − (ση − π⃗ ⋅ a⃗0)2]

+c (σ2
− η2 + π⃗2

− a⃗20) + y (σ2
+ π⃗2

+ η2 + a⃗20) (σ2
− η2 + π⃗2

− a⃗20)
+z

1

2
(η2 + a⃗20 − σ2

− π⃗2
− 2a⃗0 ⋅ π⃗ + 2ησ) (η2 + a⃗20 − σ2

− π⃗2
+ 2a⃗0 ⋅ π⃗ − 2ησ) , (3.23)

where λ1 ≡ 4!π
2

3
(g1 + 1

2
g2), λ2 ≡ 2π2

3
g2, µ

2 ≡m2
Φ. For c = 0, y = 0, and z = 0 Eq. (3.22) reduces to

the U(2)L ×U(2)R-symmetric Lagrangian (3.16).

The RG flow for the Lagrangian (3.16) was analyzed for different values of Nf . The results from

the ǫ-expansion [65, 88] prove that for Nf = 2 the O(8)-symmetric infrared (IR) fixed point is

unstable, which is confirmed from FRG studies [87] as well as from lattice calculations [89]. The

absence of a IR-stable fixed point is a sufficient criterion for the phase transition to be of first

order. Very recently, however, the existence of an IR-stable U(2)A×U(2)V -symmetric fixed point

has been confirmed in a RG approach similar to the ǫ-expansion [33]. The authors convincingly
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explain this surprising finding by a failure of the low-loop ǫ-expansion, which only finds fixed

points that also exist near D = 4 − ǫ. Their perturbative field theoretic RG approaches (MZM

scheme and 3DMS scheme, respectively) circumvent an expansion in ǫ. Instead, the perturbative

expansion is directly performed for D = 3. Their results pushed us to a FRG investigation of the

most general U(2)A × U(2)V -potential in higher truncation order (see Sec. 6.5). The FRG ap-

proach is perfectly fine with D = 3 as well, and due to its nonperturbative nature it goes beyond

the one-loop ǫ-expansion, the results of which can be reproduced using a quartic truncation in

the limit of vanishing mass term. Going to sixth order in the canonical scaling dimension we can

indeed confirm the existence of two IR-stable U(2)A × U(2)V -symmetric fixed points (see Sec.

6.5). The results at this (and higher) truncation order, however, are inconclusive because the

Gaussian fixed point aquires marginal stability-matrix eigenvalues. Further investigations are in

progress.

Apart from our publication [1] we are not aware of other explicit RG calculations for the La-

grangian (3.22) in the presence of anomaly terms. The FRG study presented in Refs. [90, 91]

neglects the fields η and a⃗0 from the beginning. A very recent qualitative discussion can be found

in Ref. [33]. Other RG results in the presence of the anomaly can be found in the literature only

for cases where the anomaly term acts as a coupling of order higher than two [see for example

Refs. [92, 93, 94, 95, 96]]. Also, studying how c approaches ∞ has not yet been investigated ex-

plicitly on the level of RG flow equations. In Sec. 6.6 we want to fill these gaps by appropriately

extending the study presented in Ref. [87].

The U(1)A anomaly explicitly breaks the U(1)A symmetry contained in G ≡ U(Nf)V ×U(Nf)A ≃
U(1)V ×U(1)A× [SU(Nf)/Z(Nf)]L × [SU(Nf)/Z(Nf)]R down to Z(Nf)A, where ≃ symbolizes

group isomorphy. The group U(1)V is associated with baryon number conservation and should

not be broken (spontaneously) during the phase transition. Thus one usually argues that one can

neglect it when studying the chiral phase transition, leaving [SU(Nf)L × SU(Nf)R] /Z(Nf)V →
SU(Nf)V /Z(Nf)V for the symmetry breaking pattern relevant for the chiral phase transition

in the presence of the anomaly [65]. The spontaneous breaking of a discrete symmetry does not

yield Goldstone modes, such that it is sufficient to consider the breaking of the continuous group

G′ ≡ SU(Nf)L×SU(Nf)R in the chiral phase transition in the presence of the anomaly. In Sec. 6.6

we nevertheless consider the effective theory for the order parameter invariant under U(1)V ×G′
in the search for the IR fixed point associated to spontaneous breaking of SU(Nf)L ×SU(Nf)R.
We can now substantiate the O(4) conjecture. We neglected (a) the possible existence of long-

range interactions between the mesons, (b) gluonic contributions, and (c) other than the lightest

scalar and pseudoscalar mesons. Assuming in addition (d) the validity of the universality hy-

pothesis (see Sec. 2.4), we conclude that if the chiral phase transition of two-flavor QCD in the

presence of the anomaly is of second order, then the Lagrangian (3.22) falls into the same uni-

versality class as QCD. The Lagrangian (3.19) has eight degrees of freedom, whereas the O(4)
model has only four. It is therefore a priori not clear that the Lagrangian (3.19) has an IR-stable

O(4) fixed point. Due to the existence of two mass terms one expects two relevant directions

instead. This corresponds to the fact that the representation of the Lagrangian (3.22), or (3.19),

respectively, is reducible. It consists of the sum of two equivalent O(4) representations [65, 97, 98]
(see Sec. A.2), Φ1 = σt0 + it⃗ ⋅ π⃗ and Φ2 = iηt0 + t⃗ ⋅ a⃗, which are both irreducible, but not faithful,
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representations of SU(2)× SU(2). This circumstance is due to the isomorphism

SU(2)× SU(2)/Z(2) ≃ SO(4) , (3.24)

which means that SU(2)×SU(2) is locally isomorphic to O(4). Therefore, the symmetry of QCD

allows for an O(4) representation, if only the sigma and pion are light particles. At mean-field

level this can be confirmed. The analysis in Refs. [99, 100] shows that if we identify π⃗ with the

Goldstone modes3, the fields η and a⃗0 are massive at the critical point, whereas the field σ is as

light as the pions (and can be interpreted as the chiral partner4 of the pion). Since at the critical

point only the modes with smallest mass are relevant (i.e., which count as components of the

order parameter), we conclude that, if the mean-field approximation were justified, the IR fixed

point would indeed be the stable Wilson-Fisher fixed point of the O(4) model.

Of course, the mean-field approximation neglects quantum fluctuations (such as instantons),

which might change the universality class or might lead to the instability of the fixed point. For

this reason we study the FRG flow for the Lagrangian (3.22) in Sec. 6.6. One could argue that

for very large anomaly strength, c→ −∞, η- and a⃗-loop diagrams should be suppressed according

to the Appelquist-Carazzone decoupling theorem [18] due to the very high tree-level mass for the

corresponding fields. Since the ǫ-expansion deals only with loop diagrams, one can indeed expect

to find the O(4) fixed point 5. However, this argument says nothing about (a) the stability of

the O(4) fixed point and (b) the cases of small and intermediate anomaly strength.

3.3.3 A few words on experiments

According to Ref. [101] “the discovery of the critical point would in a stroke transform the

map of the QCD phase diagram from one based only on reasonable inference from universality,

lattice gauge theory and models into one with a solid experimental basis.” So far, apart from

vague evidence, a reliable experimental detection has not happened yet. This might change

with the upcoming CBM experiment [4, 102] which will study for example event-by-event (ebye)

fluctuations of observables indicating the existence of a critical point. In particular, the CBM

detector will be able to detect ebye fluctuations in the kaon-pion and the proton-pion ratio using

the time of flight method.

Although there exist ideas how one could (in principle) measure static critical exponents near

the QCD critical endpoint (see for instance Ref. [103]), in reality this is rather unrealistic. A

severe problem is the short duration of a heavy-ion collision. Together with relation (2.10) the

growth of the correlation length is severely limited (see Ref. [101] for details). This makes it

extremely hard to observe a signal in the correlation length when the system cools through the

critical point.

There is even less hope to find (remnants of) O(4) critical behavior in experiment, however,

3The spontaneous breaking of SU(2)A gives rise to N2

f
− 1 = 3 Goldstone bosons, the pions, which in reality

acquire a (small) mass due to the explicit breaking of chiral symmetry caused by the (small) quark masses mq.

One can take account of this small mass by the introduction of an explicit symmetry breaking term. We restrict

our investigation, however, to the chiral limit where mq ≡ 0.
4Chiral partners should become degenerate in mass in the chirally restored phase.
5Note that in the limit c→ −∞ the O(4) fixed point corresponds to the above mentioned O(4) representation

Φ1 = σt0 + it⃗ ⋅ π⃗. The limit c→∞ would in turn correspond to the equivalent O(4) representation Φ2 = iηt0 + t⃗ ⋅ a⃗

with σ and π⃗ simply exchanging roles with η and a⃗.
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it is not ruled out completely (compare with Ref. [104]). A basic requirement is of course a

medium with baryonic chemical potential as small as possible. This is the case for the early

universe which went through the QCD phase transition. Unfortunately, we are not aware of

any measurable consequences of a second-order phase transition in this case. Another possibility

are observables at mid-rapidity in heavy-ion collisions since this regime is rather free of baryons

[4]. The further restrictions are obvious. First of all it is questionable if the strange quark

mass is high enough to allow for an effective two-flavor scenario where a second-order phase

transition is possible. Second, physical quark masses explicitly break chiral symmetry turning

the second-order phase transition into a crossover, so that only remnants of criticality might be

observable. On top of this, as in the case of the critical endpoint, there is the problem of finite-

size effects and critical slowing down which drastically limits the correlation length. Apart from

these limitations one could look at similar observables as in the search for the critical endpoint

(certain ebye correlations, enhancement of particles interacting strongly with the sigma and/or

the pions, etc.).
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Chapter 4

FRG

4.1 Wetterich equation

Before we begin our discussion, let us note that a large amount of our understanding about the

Functional Renormalization Group (FRG) method was gained from the excellent textbook of

Peter Kopietz, Lorenz Bartosch, and Florian Schütz [6]. For an introduction to the subject from

scratch, we refer to this detailed work. Their textbook also provides a prescription of Functional

Methods in general, which allows for a self-contained introduction to the FRG approach, as well

as the derivation of what lies at heart of the latter, the Wetterich equation. Our discussion sets

in at that point, explaining the meaning behind this powerful tool.

The basic idea lying at heart of the FRG approach is the same as the one discussed in Sec. 2.3,

namely averaging out fluctuations and absorbing their effect into the parameters of the theory.

In the context of a theory which can be described by an effective action Γ, the Wetterich equation

∂kΓk = 1

2
STr [(∂kRk) (Γ(2)k +Rk)−1] (4.1)

implements such an averaging, where the average effective action, Γk[Φ], is a functional of field

components Φα and depends on the momentum scale k. The superfield label α may contain

continuous as well as discrete components. For example, in case of an N -component scalar field

theory in D-dimensional space, the superfield label reads α = (i, p⃗), so that Φα = Φi(p⃗), where p⃗
is a D-dimensional momentum vector, and i = 1, ...,N . In the following we denote p = ∣p⃗∣. The

supertrace STr[...] ≡ Tr[Z...] involves the statistics matrix Z, which implies a minus sign in case

of fermionic (i.e., Grassmann-valued) field components:

Zαα′ = δαα′ζα , (4.2)

where ζα = (−)1 if Φα is a bosonic (fermionic) field component. The statistics matrix enters due

to the anticommutation of Grassmann numbers and appears also in the matrix Γ
(2)
k :

(Γ(2)k )αα′ = δ2Γk

δΦαδΦβ

Zβα′ . (4.3)

Aside from the field components, the average effective action, Γk [Φ(p);λk], contains couplings λk
mediating the interaction between them. In D-dimensional space, apart from other parameters,
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the degrees of freedom always carry momenta p, i.e., occur in various momentum modes. However,

the momenta p are restricted to values smaller than k. Consistent with Sec. 2.3, let us assume

that the system is described at a certain microscopical level by an effective action Γk=Λ [Φ(p);λΛ],
where the degrees of freedom Φ carry momenta p smaller than some ultraviolet (UV) cutoff Λ.

Integrating Eq. (4.1) down from Λ to some momentum k0, one obtains in result the average

effective action Γk=k0
[Φ(p);λk0

], where modes Φ(p > k0) have been eliminated. However, due

to averaging process involved, the degrees of freedom still feel the presence of these modes. As

in Sec. 2.3, their effect simply has been absorbed into the couplings λk0
. Integrating the flow

equation down to the infrared (IR) limit, k = 0, one effectively takes account of all possible

momentum modes, i.e., all fluctuations allowed in the system. In the derivation of Eq. (4.1),

a k-dependent inverse free propagator is introduced by adding a regulator Rk(p) to the inverse

free propagator for the field Φ(p),
G−10,k(p) =G−10 (p) −Rk(p) , (4.4)

where the regulator is necessarily defined such that

1. only modes Φ(p ≈ k) contribute to ∂kΓk at the scale k, which assures that the modes are

successively integrated out,

2. ∣ (Rk→0)αα′ ∣ = 0, which assures that all modes have been taken into account in the IR limit,

3. ∣ (Rk→Λ)αα′ ∣ =∞, which assures that the ultraviolet (UV) limit is obtained at k = Λ.
If these conditions are fulfilled, the results in the IR limit should be independent from the

particular definition for the regulator. The form of the flow equations derived from Eq. (4.1),

however, depends on the definition, and hence the choice of the regulator is of great practical

importance. Finally, we note that Eq. (4.1) is an exact equation, i.e., no approximation is

involved. In the following section we discuss the approximation which is used throughout this

thesis.

4.2 Local-Potential Approximation

For simplicity, and since we are concerned with fermions only in Sec. 7.3, we restrict the discussion

to bosonic fields, i.e. N scalar fields Φi, for the rest of this chapter. At nonzero temperature a

scalar field theory is defined by the action

S =
1/T
∫
0

dτ ∫ dDx(1
2
∂µΦ (τ,x) ⋅ ∂µΦ (τ,x) +U (Φ (τ,x))) , (4.5)

where the metric is Euclidean,

∂µΦ (τ,x) ⋅ ∂µΦ (τ,x) = dΦ
dτ
⋅
dΦ

dτ
+
dΦ

dx1
⋅
dΦ

dx1
+ (⋯) + dΦ

dxD
⋅
dΦ

dxD
, (4.6)

and periodic boundary conditions, Φ(τ, x⃗) != Φ(τ + 1
T
, x⃗), are implied.

The effective action can be expanded in terms of gradients of the field [6, 105],

Γ[Φ] = 1/T
∫
0

dτ ∫ dDx [U (Φ (τ,x)) +Z(Φ)∂µΦ (τ,x) ⋅ ∂µΦ (τ,x) + (⋯)] , (4.7)
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which is known as derivative expansion (compare with Eq. (2.24)). Setting Z(Φ) ≡ 1 and ignoring

higher-order terms in the expansion defines the so-called local-potential approximation (LPA).

In momentum space, at nonzero temperature T , and in absence of fermions the Wetterich equa-

tion (4.1) reads

∂kΓ[Φ] = 1

2

N

∑
i,j

∑
ω,q⃗

∑
ω′,q⃗′
[∂kRk]i,ω,q⃗;j,ω′,q⃗′ [(Γ(2)k +Rk)−1]

j,ω′,q⃗′;i,ω,q⃗

, (4.8)

where the superlabels i and j correspond to the field components, and the indices ω and ω′
denote the bosonic Matsubara frequencies 2nπT . We note that the notation we use [6] implies

1

V
∑⃗
q

V→∞ÐÐÐ→ ∫ dD q⃗(2π)D (4.9)

in the limit of infinite volume V . The regulator can be chosen in diagonal form [10],

[Rk]i,ω,q⃗;j,ω′,q⃗′ = δijδωω′δq⃗q⃗′Rk(q⃗) . (4.10)

Assuming Φ(τ, x⃗) ≡ Φ, Eq. (4.7) implies Γk ≡ (V /T )Uk, and hence, in the limit (4.9), we obtain

for Eq. (4.8)

∂kUk(Φ) = 1

2
T∑

ω

N

∑
i
∫ dD q⃗(2π)D ∂kRk(q⃗) [(Γ(2)k (ω, q⃗) +Rk(q⃗))−1]

ii

. (4.11)

In momentum space ∂µΦ ⋅ ∂µΦ→ (ω2 + q⃗ 2)Φ ⋅Φ, and hence

[Γ(2)k (ω, q⃗)]ij = (ω2
+ q⃗ 2)δij + δ2Uk

δΦiδΦj

. (4.12)

Using the optimized regulator introduced by Litim [106],

Rk(q⃗ 2) = (k2 − q⃗ 2)θ(k2 − q⃗ 2) , (4.13)

we obtain

∂kRk(q⃗ 2) = 2kθ(k2 − q⃗ 2) . (4.14)

Since the integrand in Eq. (4.11) only depends on q ≡ ∣q⃗∣, one can perform the integration over

the angular part leaving

∂kUk(Φ) = 1

2
(21−Dπ−D/2

Γ(D/2) )T∑ω
N

∑
i
∫
∞

0
dqqD−1∂kRk(q2) [(Γ(2)k (ω, q2) +Rk(q2))−1]

ii

. (4.15)

Due to (4.14), the integral in Eq. (4.15) can be restricted to ∫ k

0 , and further:

∂kRk(q2) [(Γ(2)k (ω, q2) +Rk(q2))−1]
ii

=
⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 for q2 > k2 ,
2k [((ω2 + k2)δij + δ2Uk

δΦiδΦj
)−1]

ii

for q2 ≤ k2 .
(4.16)

This results in

∂kUk(Φ) =KDk
D+1T∑

ω

N

∑
i

⎡⎢⎢⎢⎢⎣((ω
2
+ k2)δij + δ2Uk

δΦiδΦj

)−1⎤⎥⎥⎥⎥⎦ii , (4.17)
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where we denoted

KD ≡ 21−Dπ−D/2
Γ(D/2)D . (4.18)

Using the fact that the trace of the inverse of a matrix equals the sum of its inverse eigenvalues,

Eq. (4.17) can be rewritten as

∂kUk(Φ) =KDk
D+1T∑

ω

N

∑
i

1

ω2 + k2 +M2
i

, (4.19)

where M2
i denotes the N eigenvalues of the mass matrix

Mij = δ2Uk

δΦiδΦj

. (4.20)

Finally, carrying out the sum over the Matsubara frequencies ω = 2nπT , where the sum runs

from n = −∞ to n =∞, we obtain

∂kUk(Φ) = 1

2
KDk

D+1 N

∑
i

1

Ei

coth(Ei

2T
) , Ei =

√
k2 +M2

i . (4.21)

Due to limx→∞ cothx = 1, at zero temperature the flow equation (4.21) becomes

∂kUk(Φ) T=0= 1

2
KDk

D+1 N

∑
i

1

Ei

. (4.22)

Another important limit is that of high temperature, where the flow is dominated by thermal

fluctuations. Expanding the hyperbolic cotangent around zero,

coth(Ei

2T
) ≃ 2T

Ei

+O ( 1
T
) , (4.23)

we obtain the flow equation for the case where thermal fluctuations are dominant:

∂kU
DR
k (Φ) =KDk

D+1 N

∑
i

1

E2
i

, (4.24)

where we defined the dimensionally reduced potential by

UDR
k (Φ) ≡ Uk(Φ)

T
. (4.25)

Comparing Eq. (4.24) with Eq. (4.21) we observe that taking into account only the zeroth

Matsubara mode, n = 0, in the latter equation results in the former one. This is an example of

dimensional reduction, which we already discussed in Sec. 2.3.

4.3 FRG investigation of phase transitions

4.3.1 Evolution of the potential

One possibility to study the phase transition of a model is to solve the Wetterich equation numer-

ically. In a finite-temperature study one aims at solving Eq. (4.21) for different values of T . One
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makes an ansatz for Uk=Λ(Φ) in the UV limit where one starts the integration down towards the

IR limit. The IR limit, k = 0, corresponds to the solution where all fluctuations have been taken

into account, i.e., to the physical solution. The ansatz Uk=Λ(Φ) is chosen such that one obtains

the desired values for certain physical observables (such as for example the pion decay constant,

physical masses, etc.). The order of the phase transition, as well as the critical temperature Tc,

can be inferred from the dependence of the IR value for the global minimum on the temperature,

Φ0(T ). The integration can be stopped at a certain kf from which on the value Φ0 does not

change significantly anymore. Whereas Φ0(T ) continuously decreases towards zero for a second-

order transition, it shows a discontinuous jump in case of a first-order transition. Characteristic

of a first-order transition is also the occurrence of a maximum separating two minima during the

evolution of the potential in k. Studies at nonzero temperature can be found in chapter 7. We

describe the numerical algorithms we used in App. C and provide example routines implemented

in Mathematica.

One can also study the evolution of the dimensionally reduced potential from Eq. (4.24). Di-

mensional reduction corresponds to a high-temperature approximation and temperature is not

available anymore as an explicit parameter. Nevertheless, because the diverging correlation length

near a second-order phase transition leads to dimensional reduction, one can decide about the

order of the transition in the framework of the dimensionally reduced theory. Here, consistent

with Landau’s approach towards phase transitions, the UV parameters involved in UDR
k=Λ(Φ) have

to be regarded as temperature-dependent parameters. The explicit dependence can be calculated

in a perturbative expansion in T −1. For our purposes this is not necessary, however, since we are
interested in the whole coupling space and any phase transition which can be achieved by tuning

the mass term1 in the UV potential UDR
k=Λ(Φ). More practical in the case of the dimensionally

reduced theory, however, is a fixed-point analysis for the rescaled parameters of the potential as

described in Sec. 4.3.2.

4.3.2 Fixed-point analysis

The general framework underlying a fixed-point analysis was already described in Sec. 2.3. It

remains to explain how we extract the flow equations (2.18) from Eq. (4.24). The large amount

of examples presented in Sec. 6 makes this step rather obvious. Nevertheless we want to give a

general description.

We discuss models defined by potentials U of the form (2.22) or (2.26), respectively. Plugging

U into the flow equation (4.24), we perform a Taylor expansion of the r.h.s. in terms of the

fields Φi and read off the flow equations for the couplings by comparison of coefficients. The

calculation can be simplified by setting certain fields Φi to zero after having determined the mass

matrix Mij stated in Eq. (4.20). Hereby, with the corresponding fields set to zero, the potential

U must still contain the same number of linearly independent terms, so that one obtains a flow

equation for each of the couplings. We emphasize that no approximation is involved in setting the

respective fields to zero since the coefficients in the Taylor expansion are of course independent

of the fields. Working with a potential of the form (2.26) one has to rewrite the remaining

1In general a transition can also be described by tuning other couplings. Consistent with Landau theory,

however, we assume that the mass term is the relevant parameter to tune.
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fields Φi in terms of the basic invariants (those invariants from which all others are constructed)

after having calculated Mij . In order to obtain the correct flow equations this mapping has to

be unambiguous. We further note that ambiguous flow equations can arise, depending on the

monomial in the Taylor expansion from which one infers the flow, if U is not a most general

polynomial (at the given order) invariant under some group.

4.4 Towards the chiral phase transition from first princi-

ples - On the relationship between QCD and effective

models for QCD

In order to investigate the order of the chiral phase transition and the possibility of a second-

order phase transition one requires a framework which is capable of describing the behavior of

the order parameter. An approach which derives the behavior of the order parameter from first

principle, without imposing restrictive assumptions and invoking approximations, is out of reach.

In our opinion, however, it is still justified to speak of an approach from first principle if it starts

from QCD, and if the assumptions and approximations made are systematically improvable. In

the following we try to outline a way towards this goal, which remains of course incomplete.

In general, the effective action, Γ[Φ], is a functional of field components Φα, which can be either

bosonic or fermionic, where α is a superfield label containing continuous and/or discrete variables.

It can be written in the following form [6]:

Γ[Φ] = ∞∑
n=0

1

n!
⨋
α1

⋯⨋
αn

Γ(n)α1⋯αn
Φα1
⋯Φαn

. (4.26)

The irreducible vertices herein can be expressed in terms of the infinitely many one-particle

irreducible Feynman diagrams without external legs (usually called vacuum diagrams), G
(n)
i :

Γ(n)α1⋯αn
=
∞

∑
i

aiG
(n)
i , (4.27)

where the coefficients ai contain combinatorial factors and factors of i, depending on notational

conventions. We note that the quadratic contribution in Eq. (4.26) can be decomposed into

kinetic and mass terms for the fields. Furthermore we remark that one can prove that the

Wetterich average effective action at k = Λ equals the bare (or classical) action [6].

In practice, in order to apply the Wetterich equation (4.1) to QCD, one has to choose a reasonable

truncation for Γ, i.e., to pick out the relevant terms out of the infinitely many ones. For a

practical truncation certain assumptions are indispensable. To which extent these preconditions

are justified has to be tested by comparison to lattice results or experiments. Depending on

the scope of application the required assumptions differ. In this work we are interested in the

order of the chiral phase transition, and we make the assumption that mesons are the degrees

of freedom which have the strongest influence on the order of the chiral phase transition. The

simplest Feynman diagrams with one meson in the initial and one in the final state, respectively,

are the so-called box diagrams [107]. A few examples are depicted in Fig. 4.1. Note that the first

diagram on the left is not one-particle irreducible and consequently does not contribute to the
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Figure 4.1: Examples for four-fermion box diagrams of QCD. Solid lines denote the quark prop-

agator, curly lines the gluon propagator.

effective action. The interactions between mesons are obviously mediated by gluons. Although

not possible analytically, one could absorb the influence of gluons into effective n-point fermion

couplings by integrating out the gluonic fields in the partition function. Instead, in order to keep

at least some explicit gluonic influence, we keep the classical QCD interactions in our truncation,

but we substitute the box-diagrams by all possible four-quark interactions (neglecting higher-

order interactions as well as ghost contributions). Actually the four-quark interactions should

automatically arise in an expansion of the right hand side of the FRG flow equation when the

classical QCD interactions are present. According to Ref. [108] these interactions can be classified

with respect to their color and flavor quantum numbers, and a complete linearly independent set

(up to Fierz transformations) of U(Nf)A × U(Nf)V symmetric four-quark interactions is given

by

(V −A) = (Ψ̄γµΨ)2 + (Ψ̄γµγ5Ψ)2 , (4.28)

(V +A) = (Ψ̄γµΨ)2 − (Ψ̄γµγ5Ψ)2 , (4.29)

(S −P ) = (Ψ̄iΨj)2 − (Ψ̄iγ5Ψ
j)2, (4.30)

(V −A)adj = (Ψ̄γµTΨ)2 + (Ψ̄γµγ5TΨ)2 , (4.31)

where color (a, b, . . . ) and flavor (i, j, . . . ) indices are contracted pairwise. Note, however, that

UA(1)-breaking anomaly terms, in particular ∼ (Ψ̄Ψ)Nf , are absent since they arise from topo-

logically nontrivial gauge configurations [109]. The authors defined (Ψ̄iΨj)2 = Ψ̄iΨjΨ̄jΨi, etc.,

and denote the generators of SU(Nc) in the fundamental representation by (T )ab. Then, the

above assumptions lead to the following truncation [108, 109] for the effective action of QCD:

Γ = Sgf + ∫ d4x

⎡⎢⎢⎢⎢⎣Ψ̄(iγ
µ∂µ + gT

aγµAa
µ −mq)Ψ − 1

4
Fµν
a F a

µν

+
1

2
(λ−(V −A) + λ+(V +A) + λσ(S −P ) + λV A[2(V −A)adj + 1

Nc

(V −A)])⎤⎥⎥⎥⎥⎦ , (4.32)

where Sgf denotes gauge-fixing terms, and we have set wave-function renormalization factors to

one for simplicity. An important remark in Ref. [109] concerns the axial anomaly. For Nf = 2
one can rewrite (S −P ) as follows:

(S −P ) = 1

2
[(Ψ̄Ψ)2 − (Ψ̄τ⃗γ5Ψ)2] − [det Ψ̄(1 + γ5)Ψ + det Ψ̄(1 − γ5)Ψ] , (4.33)
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where τ⃗ = (σ1, σ2, σ3) denotes the Pauli matrices. Note that Ψ̄Ψ ≡ Ψ̄iΨi with summation over i

implied. Furthermore, for Nf = 2 the term involving the determinant is given by

det Ψ̄(1 + γ5)Ψ + det Ψ̄(1 − γ5)Ψ = 1

2
[(Ψ̄Ψ)2 − (Ψ̄τ⃗γ5Ψ)2] − 1

4
[(Ψ̄τ⃗Ψ)2 − (Ψ̄τ⃗ γ5Ψ)2] . (4.34)

Whereas the first term on the right-hand side of Eq. (4.34) is not invariant under U(1)A transfor-

mations (A.17), the second term in Eq. (4.34), (Ψ̄τ⃗Ψ)2−(Ψ̄τ⃗ γ5Ψ)2, is invariant (see Eq. (A.22)).
Consequently the combination (S − P ) is invariant because the term 1

2
[(Ψ̄Ψ)2 − (Ψ̄τ⃗ γ5Ψ)2] is

canceled by the appropriate contribution in the determinant term (4.34). Therefore, the U(1)A
anomaly is absent in the truncation (4.32). Accordingly, one can take account of the anomaly

by carrying out the substitution

λσ(S −P )→ G1 [(Ψ̄Ψ)2 − (Ψ̄τ⃗ γ5Ψ)2] + (Gtop − 2G1) [det Ψ̄(1 + γ5)Ψ + det Ψ̄(1 − γ5)Ψ] (4.35)

in expression (4.32), so that the anomaly is absent for Gtop = 0 and present for Gtop ≠ 0.

In Ref. [110] the authors applied the Wetterich equation to the above truncation (4.32). For

different numbers of massless quark flavors and vanishing chemical potential, an estimate for

the (pseudo)critical temperature of the chiral phase transition is obtained. Their estimates for

Nf = 2 (Tc ≈ 186 ± 33 MeV) and Nf = 3 (Tc ≈ 161 ± 31 MeV) are found to be in good agreement

with lattice results. The order of the phase transition is discussed in Ref. [109]. We want to note

that the conclusion about the order of the two-flavor phase transition in Fig. 20 of Ref. [109]

is premature. According to the sketch, the phase transition is of second order for Nf = 2. This

result, however, was obtained taking into account only the sigma meson and the pions, which

corresponds to an infinite anomaly strength (compare with Sec. 3.3.2).

In the following we restrict the discussion to the two-flavor case. We discuss the basic idea how

to derive an effective action involving mesons by the method of (partial) bosonization. The

nontrivial part of this approach is calculating the fermion determinant obtained after having

integrated over the quarks. Since we are not aiming at performing this final step we keep

the lightest scalar (JPC = 0++), pseudoscalar (JPC = 0−(+)), vector (JPC = 1−(−)), and axial-

vector (JPC = 1+(+)) mesons for demonstrational purposes. In correspondence with the meson

summary table of the Particle Data Group [74] we can identify the mesons with observed particle

resonances. We note, however, that the stated mass values are not fully appropriate for a study

with Nf = 2 because they involve contributions from heavier quarks. A better choice is given

by the nonstrange contributions (Ref. [111] considers for example the nonstrange contribution of

the eta meson). Also the assignment of the mesons to different particle resonances is still under

debate [112, 113, 114]. In particular there are two scenarios how to identify the sigma and the a0

meson with particle resonances. Either they correspond to f0(500) and a0(980), or to f0(1370)
and a0(1450), respectively. The mesonic properties are summarized in Tab. A.1 of App. A.2,

which in addition discusses the transformation properties under chiral symmetry.

Instead of starting from a complete set of linearly independent U(2)A ×U(2)V symmetric four-

quark interactions as in expression (4.32), we use the following SU(2)A × SU(2)V -symmetric
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ansatz (which involves U(1)A violation):

Γ′ = Sgf + ∫ d4x

⎡⎢⎢⎢⎢⎣Ψ̄(iγ
µ∂µ + gT

aγµAa
µ −mq)Ψ − 1

4
Fµν
a F a

µν

+G1 [(Ψ̄Ψ)2 − (Ψ̄τ⃗γ5Ψ)2] +G2 [(Ψ̄τ⃗Ψ)2 − (Ψ̄γ5Ψ)2]
+G3 [(Ψ̄γµΨ)2 + (Ψ̄γµγ5Ψ)2] +G4 [(Ψ̄γµγ5τ⃗Ψ)2 + (Ψ̄γµτ⃗Ψ)2] ⎤⎥⎥⎥⎥⎦ . (4.36)

The basis from which functional approaches, such as the FRG method, are derived is the path

integral formalism. Since the average effective action at k = Λ equals the classical action, we

can write down the (Minkowskian) generating functional (which in the Euclidean and at finite

temperature turns into the partition function):

Z = ∫ DΨ̄DΨDA ei Γ
′
. (4.37)

Since the generating functional can be multiplied by an overall constant, bosonic degrees of

freedom can be trivially introduced as follows:

Z = N ∫ DΨ̄DΨDADσDπ⃗DηDa⃗0DωµDa⃗µ1Dfµ
1 Dρ⃗µ×

× ei Γ
′−i ∫ d4x[m2

1(σ2+π⃗2)+m2
2(η2+a⃗2

0)+m2
3(ωµω

µ+f1,µf
µ
1
)+m2

4(ρ⃗µρ⃗
µ+a⃗1,µa⃗

µ
1
)] . (4.38)

Performing Hubbard-Stratonovich transformations (compare with Ref. [115]),

σ → σ +

√
G1

m1
Ψ̄Ψ , π⃗ → π⃗ + i

√
G1

m1
Ψ̄τ⃗γ5Ψ , (4.39)

η → η + i

√
G2

m2
Ψ̄γ5Ψ , a⃗0 → a⃗0 +

√
G2

m2
Ψ̄τ⃗Ψ , (4.40)

ωµ → ωµ
+

√
G3

m3
Ψ̄γµΨ , f

µ
1 → f

µ
1 +

√
G3

m3
Ψ̄γµγ5Ψ , (4.41)

a⃗
µ
1 → a⃗

µ
1 +

√
G4

m4
Ψ̄γµγ5τ⃗Ψ , ρ⃗µ → ρ⃗µ +

√
G4

m4
Ψ̄γµτ⃗Ψ , (4.42)

mesonic degrees of freedom are generated:

Z = N ∫ DΨ̄DΨDADσDπ⃗DηDa⃗0DωµDa⃗µ1Dfµ
1 Dρ⃗µ eiSgf−i ∫ d4x 1

4
Fµν

a Fa
µν ×

× e− i ∫ d4x[m2
1(σ2+π⃗2)+m2

2(η2+a⃗2
0)+m2

3(ωµω
µ+f1,µf

µ
1
)+m2

4(ρ⃗µρ⃗
µ+a⃗1,µa⃗

µ
1
)] ei ∫ d4xΨ̄BΨ , (4.43)

where we denoted

B = (iγµ∂µ + gT aγµAa
µ −mq − g1σ − g1 iγ5τ⃗ ⋅ π⃗ − g2 iγ5η − g2τ⃗ ⋅ a⃗0

−g3γµω
µ
− g3γµγ5f

µ
1 − g4γµτ⃗ ⋅ ρ⃗

µ
− g4γµγ5τ⃗ ⋅ a⃗

µ
1) , (4.44)

with gi ≡ 2
√
Gi/mi. At this stage there are no kinetic terms for the mesons and no interactions

between them. Such terms arise when carrying out the integration over the quark fields,

∫ DΨ̄DΨei ∫ d4xΨ̄BΨ = ei ∫ d4x[− iTr lnB] , (4.45)
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and performing a derivative expansion of the fermion determinant in terms of the mesonic fields

which have been introduced,

− iTr lnB = − i ln detB ≃ 1

2
(∂µσ)2 + 1

2
(∂µπ⃗)2 + 1

2
(∂ησ)2 + 1

2
(∂µa⃗0)2

+
1

2
(∂µωµ)2 + 1

2
(∂µa⃗µ1)2 + 1

2
(∂µfµ

1 )2 + 1

2
(∂µρ⃗µ)2 −Umes . (4.46)

Instead of explicitly calculating the mesonic potential, Umes, we can make an ansatz restricted

by symmetry properties and experimental observations. Clearly, assuming mq = 0, Umes should

be invariant under G(c) ≡ (S)U(2)A × U(2)V (in the presence of the axial U(1)A anomaly).

In Sec. 3.3.2 we discussed in detail how to construct the potential for scalar and pseudoscalar

mesons using the eight-dimensional [2̄,2]⊕[2, 2̄] representation of SU(2)×SU(2). These mesons

are presumably most important when investigating the phase transition. Nevertheless, vector

and axial-vector mesons might have substantial influence. In Refs. [112, 116, 117] it has been

discussed how to incorporate them in the mesonic potential taking account of vector meson dom-

inance and the way in which the photon enters the effective theory. In this thesis we are not

seriously concerned with vector and axial-vector mesons but we discuss a toy model based on the

symmetry properties in Sec. 6.8.1.

In the following we want to discuss how the quark-meson model emerges from the above considera-

tions. Completely integrating out the fermions corresponds to neglecting momentum fluctuations

which are high enough to resolve the internal quark structure of the mesons. In other words,

one imposes an UV cutoff at a compositeness scale, roughly estimated by kcomp ∼ 600 MeV [90],

below which quarks can be predominantly assumed to be confined into mesons. The mesonic

terms generated in the expansion (4.46) are the dominant degrees of freedom at low energy scales,

k ≪ kcomp, whereas the Yukawa interaction term Ψ̄BΨ becomes relevant around k ∼ kcomp. In

a RG treatment it is rather natural to include both contributions in a truncation for the effec-

tive action. The Refs. [118, 119] demonstrate how to cope with the technical difficulties arising

in such a joint treatment. In the standard version of the quark-meson model one only takes

into account the sigma meson and the pions. One associates these four degrees of freedom with

the four-dimensional representation [2̄,2] of SU(2) × SU(2), which is identical to the defining

representation of O(4). The effective action reads

Γ = ∫ d4x [1
2
(∂µσ)2 + 1

2
(∂µπ⃗)2 + Ψ̄(iγµ∂µ − g [σ + i γ5τ⃗ ⋅ π⃗])Ψ −Umes] , (4.47)

where Umes is the most general O(4) symmetric polynomial (in the fundamental representation

of O(4)) constructed from the O(4) invariant σ2 + π⃗2, which is given by

Umes ≡ −m
2

2
(σ2
+ π⃗2) + λ

4
(σ2
+ π⃗2)2 , (4.48)

where terms of naive scaling dimension larger than 4 are omitted. Note that neither the Yukawa

interaction nor the potential (4.48) is invariant under U(1)A, i.e., the axial anomaly is present.

Gauge-field terms are neglected in the quark-meson model. This is a severe simplification since

quarks should not only interact via the Yukawa coupling, but also via the quark-gluon vertex as

soon as they are included. Below momentum scales k < kcomp it is consistent to neglect both

quarks and gauge fields, but if one aims to set up a consistent theory with a cutoff larger than
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kcomp one should include the gluon fields. A first step in this direction is represented by the

Polyakov-loop extended quark-meson (PQM) model (see for instance Sec. I.4.5.6 in Ref. [4]).

Work on keeping the terms

Sgf +∫ d4x

⎡⎢⎢⎢⎢⎣Ψ̄(iγ
µ∂µ + gT

aγµAa
µ −mq)Ψ − 1

4
Fµν
a F a

µν

⎤⎥⎥⎥⎥⎦ (4.49)

is currently under progress in the FRG community (compare with Refs. [120, 121]). For a status

report on the FRG approach towards the simultaneous treatment of the deconfinement and the

chiral phase transition in case of physical quark masses we refer to Ref. [122]. For a fixed-point

analysis in d = 4 dimensions we point to Ref. [123]. In its present form, however, the study tells

nothing about the phase transition since it neglects mesonic degrees of freedom.

For a qualitative understanding of the influence of gauge fields on critical behavior we refer to

Ref. [84] (see also [49, 124]). In the framework of a one-loop ǫ-expansion Ref. [84] investigated

dimensionally reduced O(N) and SU(N) gauge theories, respectively, involving scalar fields

transforming according to different tensor representations. No IR-stable fixed points exist in

presence of an asymptotically free gauge-field coupling (indicating a first-order phase transition),

whereas in the opposite case there are theories exhibiting such (and hence a second-order phase

transition is implied). Nevertheless the following “rule of thumb” was stated, which is still a

good guide today: “(one-loop) gauge effects act to drive a first-order transition.”
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Chapter 5

Constructing invariants

5.1 General remarks

As it has been discussed in Sec. 2.1 the construction of polynomial invariants for different repre-

sentations of groups is of great importance for the investigation of phase transitions associated

to a breaking of symmetry. It has been further demonstrated in chapter 2.4 that this task is a

crucial ingredient in RG studies of second-order phase transitions. But the topic is actually of

much more general importance as almost any physical theory is related, at least to some extent,

to symmetry. Symmetry considerations therefore play a central role in the construction of mod-

els, for example in the determination of the Higgs potential in gauge theories [49, 124], in the

model building of high-energy physics [125], molecular physics, atomic physics [126], etc. At this

point it is worth noting that several elementary invariants have been derived which are of use for

the construction of effective models within the standard model [127, 128, 129]. In conclusion, it

is highly desirable to have systematic techniques at hand to derive the invariants.

Most groups relevant in physics are compact Lie groups. Since any compact Lie group is isomor-

phic to a closed subgroup of the orthogonal group [130] the latter subgroups are of particular

importance. The group U(2)×U(2), for instance, is a soubgroup of O(8) [125].
Methods for the construction of invariants comprise approaches restricted to finite groups [7,

21, 131] and techniques which are suited for continuous groups [48, 124, 132, 133, 134]. For the

latter groups the practical determination of integrity bases is an open problem when considering

the general case [48]. At least for any classical or exceptional Lie group L (but probably even

for a much more general class of groups), in case of the adjoint representation a complete set of

linearly independent basic invariants is given by {Im}, where m takes values depending on L,

and Im is defined by

Im = Tr(∑
i

ϕiXi)m , (5.1)

with Xi denoting the generators of L in an arbitrary representation, and ϕi denoting the compo-

nents of the carrier space for the adjoint representation [132, 133]. The invariants are listed for

the classical and exceptional Lie groups in Tab. I of Ref. [133]. For an explicit example consider

the adjoint representation of SU(2). According to the table cited above the only basic invariant
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is given by I2. We can choose the Xi as the generators in the fundamental representation (the

Pauli matrices) so that we obtain

I2 = 2(ϕ2
1 + ϕ

2
2 +ϕ

2
3) , (5.2)

which is indeed the correct result because the adjoint representation of SU(2) equals the funda-

mental representation of SO(3).
We note that there exist construction methods based on basic invariant tensors (see for example

[135, 136, 137]). In particular, we observe a close relationship between the principal invari-

ants stated in Ref. [136] and the most general invariant polynomials derived for O(N), SU(N),
O(N) × O(M), (S)U(N) × U(M), and U(N) × SO(M) for various representations (compare

with Refs. [49, 52] and expressions (3.16) and (3.18), respectively). Since this goes beyond the

scope of this thesis we were not able to investigate this further. In Sec. 5.2 we give an example

illustrating the projection operator method. In Sec. 5.3 we describe a new brute-force algorithm

which we have developed using Mathematica. It turned out to be practical for continuous groups.

5.2 Method using projection operators

Refs. [7, 21] nicely explain how to construct the invariants for representations of finite groups in

case the carrier space and the representation matrices are known. The method is explained at

the example of the group C3v, which characterizes the symmetry of an equilateral triangle. To

give a second example, we consider here the two-dimensional irreducible representation of the

group C4v, which we denote as Γ(5) consistent with Ref. [138]. In the latter reference we find the

matrices representing the eight group elements in Γ(5),

Γ(5)(E) = ⎛⎝1 0

0 1

⎞⎠ , Γ(5)(C4) = ⎛⎝0 −1

1 0

⎞⎠ , Γ(5)(C2
4) = ⎛⎝−1 0

0 −1

⎞⎠ , Γ(5)(C3
4) = ⎛⎝ 0 1

−1 0

⎞⎠ ,

Γ(5)(mx) = ⎛⎝1 0

0 −1

⎞⎠ , Γ(5)(my) = ⎛⎝−1 0

0 1

⎞⎠ , Γ(5)(σu) = ⎛⎝ 0 −1

−1 0

⎞⎠ , Γ(5)(σv) = ⎛⎝0 1

1 0

⎞⎠ ,

which act on the carrier space (x, y)T . Polynomial invariants of order n are in some sense related

to the n-th power of the representation, [Γ(5)]n, which is associated with an n-dimensional carrier

space. In order to determine a set of linearly independent polynomial invariants of order n it is

helpful to calculate their number, Nn, first. We can infer this number from the traces (also known

as characters) of the matrices representing the group elements in the representations of powers

up to n. These representations can be constructed from the original one, Γ(5). For instance,

the carrier space of [Γ(5)]2 is given by (x2, xy, y2)T . The matrix representing a group element

in [Γ(5)]2 can be calculated from the transformation of x and y under the group element. For

instance, under the action of the element C4 the components transform as x → −y and y → x.

The matrix [Γ(5)]2(C4) representing the group element in the 2-nd power of the representation

is then determined from

[Γ(5)]2(C4)⎛⎜⎜⎝
x2

xy

y2

⎞⎟⎟⎠ =
⎛⎜⎜⎝
y2

−xy

x2

⎞⎟⎟⎠
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as

[Γ(5)]2(C4) = ⎛⎜⎜⎝
0 0 1

0 −1 0

1 0 0

⎞⎟⎟⎠ .

Instead of calculating all of the matrices, one can use iterative formulas for the characters,

Tr [Γ(5)]2(g) = 1

2
[TrΓ(5)(g2) + (TrΓ(5)(g))2] , (5.3)

Tr [Γ(5)]3(g) = 1

3
TrΓ(5)(g3) + 1

2
TrΓ(5)(g2)TrΓ(5)(g) + 1

6
(TrΓ(5)(g))3 , (5.4)

Tr [Γ(5)]4(g) = 1

4
TrΓ(5)(g4) + 1

3
TrΓ(5)(g3)TrΓ(5)(g)

+
1

8
(TrΓ(5)(g2))2 + 1

4
TrΓ(5)(g2)(TrΓ(5)(g))2 + 1

24
(TrΓ(5)(g))4 . (5.5)

As illustration, for g = C4 one obtains

Tr [Γ(5)]2(C4) = 1

2
(TrΓ(5)(C4 ⋅C4) + (TrΓ(5)(C4))2) = 1

2
(−2 + 0) = −1 .

The number Nn can now be calculated from the formula

Nn = 1

d(C4v)
d(C4v)
∑
i=1

Tr [Γ(5)]n(gi) , (5.6)

where d(C4v) = 8 is the number of elements of the group. For example, we obtain for the number

of linearly independent second-order invariants

N2 = 1

8
(3 ⋅ 1 − 1 ⋅ 1 + 3 ⋅ 1 − 1 ⋅ 1 + 1 ⋅ 1 + 1 ⋅ 1 + 1 ⋅ 1 + 1 ⋅ 1) = 1 .

Furthermore, we calculate N1 = 0, N3 = 0, and N4 = 2. Invariants can be constructed from

properly defined projection operators (in addition to Refs. [7, 21] see also Ref. [139]). In our

example it is sufficient to use the simplest one,

PΓ(5) =
d(C4v)
∑
i=1

Γ(5)(gi) . (5.7)

Obviously, P is a matrix. One defines its action on monomials xkyl from the transformation of

x and y, respectively, under Γ(5)(gi) acting on (x, y)T . For instance, Γ(5)(C4)(x, y)T = (−y, x)T ,
and hence Γ(5)(C4)xkyl = (−y)kxl. Accordingly we obtain for instance

PΓ(5)x
2 = 4 (x2 + y2) , PΓ(5)x

4 = 4 (x4 + y4) , PΓ(5)y
4 = 4 (x4 + y4) (5.8)

PΓ(5)x
2y2 = 8x2y2 , PΓ(5)x

3y = 0 . (5.9)

Since we know the number of linearly independent invariants for each polynomial order, we

conclude that the most general C4v-symmetric polynomial associated with the representation

Γ(5) is given by

r(x2 + y2) + g1(x4 + y4) + g2x2y2 = r(x2 + y2) + g2
2
(x2 + y2)2 + (g1 − g2

2
) (x4 + y4) . (5.10)
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This confirms the Landau potential stated in Eq. (2.40).

The above consideration was restricted to finite groups. We suspect, however, that the method

can be generalized to continuous groups, at least in principle. Unfortunately, we were only able to

confirm this for the fundamental representation of O(N) with N = 2,3. Our conjecture is based

on the observation that for several formulas involving the sum over group elements, ∑gi , the sum

turns into an integral over the Haar measure, ∫ dµG(g), when the relations are generalized to

continuous groups G (see for instance Ref. [134]). On this basis we conjecture that the projectors

known for finite groups can be generalized accordingly. For instance the projector (5.7) should

give rise to its analogue

PΓ(G) = ∫ dµΓ(G)(g)Γ(g) , (5.11)

where Γ(G) denotes a certain matrix representation of the continuous group G, and Γ(g) denotes
a group element in this representation. For the fundamental representation of O(2) the matrix

elements are two-dimensional rotation matrices acting on a real two-dimensional carrier space.

We use the notation defined in Eq. (A.1). We obtain for instance

PO(2)x2 = ∫
2π

0
(x cosα − y sinα)2 dα = π(x2 + y2) . (5.12)

Similarly, we obtain (i, j ≥ 0)

PO(2)xiyj =
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 for i + j odd ,

π(x2 + y2) for i + j = 2 ,
3
4
π(x2 + y2)2 for i + j = 4 .

(5.13)

For the fundamental representation of SO(3) the group elements can be parameterized by rota-

tions of fixed radius in three-dimensional space (x, y, z),
Rz(φ2)Rx(θ)Rz(φ1) , (5.14)

with angles θ ∈ [0, π), φ1, φ2 ∈ [0,2π]. The rotation matrices can be easily found in the literature.

Then the Haar measure is given by [140]

dµSO(3) = 1

8π2
sin θdθdφ1dφ2 . (5.15)

The integrals ∫ π

0 ∫ 2π
0 ∫ 2π

0 dµSO(3)Rz(φ2)Rx(θ)Rz(φ1)xixjxk are easily calculated using Mathe-

matica. We find again corresponding powers of the basic invariant (x2 + y2 + z2).
5.3 New brute-force algorithm

In the following we describe how to construct the SU(2)A×SU(2)V invariants for the [2̄,2]⊕[2, 2̄]
representation using a brute-force algorithm implemented in Mathematica. The corresponding

notebook is provided in Sec. B.2. We note that our method is not restricted to this special case,

and we have checked that it can be successfully applied to other groups as well. However, one has

to know the explicit form of the symmetry transformation for the representation of interest. As
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a further example, in Sec. B.1 we provide a self-explanatory notebook confirming the invariants

which have been derived in Sec. 5.2 for the two-dimensional irreducible representation Γ(5) of
the group C4v. The latter example demonstrates that a construction via brute force is not

only extremely comprehensive in comparison to the mathematically involved projection operator

method, but that it can be even more effective from a computational point of view. We note,

however, that in case of large-dimensional order parameters there can easily occur problems with

memory of Mathematica due to the rapidly increasing number of monomials. In such cases one

either needs a powerful computer or a more sophisticated method to solve the (simple) system

of linear equations. The following paragraphs have been taken from our publication [1].

The [2̄,2] ⊕ [2, 2̄] representation is 8-dimensional. Accordingly, the corresponding invariants of

order N are polynomials in eight components which are in our notation the fields σ, π⃗, η, and a⃗,

i.e., they are of the form

p = ∑
mi∈m

cimi , (5.16)

where m denotes the set of all possible monomials of order N ,

m = {σn1πn2

1 πn3

2 πn4

3 ηn5an6

1 an7

2 an8

3 } , ni ∈ N , ∑
i

ni =N , (5.17)

and the coefficients ci are expected to be rational multiples of each other.

Infinitesimal SU(2)A transformations for the above representation are inferred from Eqs. (A.23)-

(A.26) (compare with Ref. [141]),

σ′ = σ + α⃗ ⋅ π⃗ , π′i = πi − αiσ , η′ = η − α⃗ ⋅ a⃗ , a′i = ai + αiη , (5.18)

where α⃗ = (α1, α2, α3) consists of three infinitesimal angles. Infinitesimal SU(2)V transforma-

tions for the above representation are given by

σ′ = σ , π⃗′ = π⃗ + β⃗ × π⃗ , η′ = η , a⃗′ = a⃗ + β⃗ × a⃗ , (5.19)

where β⃗ = (β1, β2, β3) consists of three infinitesimal angles.

Under the transformation (5.18), the polynomial p transforms as

p → p′ = ∑
mi∈m

c′i(c⃗, α⃗)mi , (5.20)

where the new coefficients, c′i, depend on the coefficients c⃗ and the angles α⃗, and where we only

keep terms linear in αi. Since invariants are defined by p = p′, we obtain a system of equations,

ci = c′i(c⃗, α⃗) , (5.21)

determining all invariants of order N .

For N = 2, the sum in Eq. (5.16) runs from i = 1 to i = 36, since there are 36 different monomials

of order N = 2. Using for example Mathematica’s option SolveAlways [142], solutions for the

coefficients ci can be found, such that Eqs. (5.21) are fulfilled for arbitrary values of the angles

αi. Inserting the solution into the general ansatz (5.16), we obtain

p = c1(σ2
+ π⃗2) + c2(η2 + a⃗2) + c3(ση − π⃗ ⋅ a⃗) . (5.22)
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Since the coefficients ci are independent from each other, there exist exactly three linearly inde-

pendent invariants of order N = 2:

ϕ1 = σ2
+ π⃗2 , ϕ2 = η2 + a⃗2 , ϕ3 = ση − π⃗ ⋅ a⃗ . (5.23)

For N = 4, the sum in Eq. (5.16) runs from i = 1 to i = 330, since there are 330 different monomials

of order N = 4. Again, using Mathematica, we find solutions for the coefficients ci, such that Eqs.

(5.21) are fulfilled for arbitrary values of the angles αi. Inserting the solution into the general

ansatz (5.16), we obtain

p = c1 (η2 + a⃗2)2 + c2 (σ2
+ π⃗2)2 + c3 (−ση + π⃗ ⋅ a⃗)2 + c4 (−ση + π⃗ ⋅ a⃗) (σ2

+ π⃗2)
+c5 (η2 + a⃗2) (−ση + π⃗ ⋅ a⃗) + c6 [(η2 + a⃗2)(σ2

+ π⃗2) − (ση − π⃗ ⋅ a⃗)2] . (5.24)

Since the coefficients ci are independent from each other, there exist exactly four linearly inde-

pendent invariants of order N = 4:

ϕ2
1 , ϕ2

2 , ϕ1ϕ2 , γ = ϕ2
3 . (5.25)

Note that the quadratic invariant ϕ3 is not invariant under parity transformations

σ → σ , π⃗ → π⃗ , η → −η , a⃗ → −a⃗ , (5.26)

and therefore cannot appear in a theory without parity violation.

Note further that the invariants (5.23) and (5.25) are also invariant under SU(2)V transfor-

mations (5.19). Proceeding along the same lines described above one can derive several ad-

ditional invariants for this symmetry. Since these are not SU(2)A symmetric, and hence no

SU(2)A × SU(2)V invariants, we do not list them here.
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Chapter 6

Fixed-point analysis of

dimensionally reduced theories

In this chapter we study the fixed points for different dimensionally reduced scalar models cal-

culated from the FRG equation in local-potential approximation (4.24). The method we use is

described in Sec. 4.3.2. The stability properties of the fixed points are investigated in the frame-

work discussed in Sec. 2.3. We note that the stability properties of fixed points depend on the

spatial dimension, which is set to D = 3 for all our studies (although we keep D general in the

expressions for the flow equations up to quartic order; it is fixed to D = 3 in the flow equations

for higher-order couplings). We merely state the potentials but always assume a kinetic term of

the form (2.23).

6.1 O(N) model

In field theory, the O(N) model for the N -dimensional vector representation of the orthogonal

group O(N) is defined by the potential

U = rφ⃗ ⋅ φ⃗ + λ

24
(φ⃗ ⋅ φ⃗)2 , (6.1)

where φ⃗ = (φ1, ..., φN )T denotes a real N -component vector. The O(N ≤ 3) models are also

known under the following names: Ising model (N = 1), XY-model (N = 2), Heisenberg model

(N = 3). Including higher-order terms, ∼ (φ⃗ ⋅ φ⃗)n with n > 2, the potential (6.1) is actually the

most general O(N)-symmetric polynomial for the fundamental representation of O(N).
For N = 1 we obtain

k∂kr̄k = −2r̄k −KD

λ̄k

2(1 + 2r̄k)2 (6.2)

k∂kλ̄k = (D − 4)λ̄k +KD

6λ̄k
2

(1 + 2r̄k)3 . (6.3)

In Fig. 6.1 we show the solution of the above flow equations for D = 3 (K3 = 1/6π2) in the

neighborhood of the Wilson-Fisher fixed point.
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We note that for r̄ = 0 the results from the lowest-order ǫ-expansion are reproduced. For a

derivation of the flow equations in the ǫ-expansion we refer to chapter 4.2.2 of Ref. [6] and

simply cite the result:

k∂k r̄k = −2r̄k − 1

4

ūk

1 + 2r̄k
(6.4)

k∂kūk = (D − 4)ūk + 3

2

ūk
2

(1 + 2r̄k)2 . (6.5)

Redefining ū = 4KDλ̄, we observe that Eq. (6.3) indeed equals Eq. (6.5) for r̄ = 0.
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Figure 6.1: Solution of the flow equations in the neighborhood of the IR-stable Ising fixed point

(grey point). Arrows point in IR direction. The eigenvectors plotted indicate the relevant and

the irrelevant scaling direction, respectively.

For arbitrary N , the flow equations and the fixed points with their associated stability-matrix

eigenvalues can be easily calculated using the Mathematica notebook provided in App. D. In

Tab. 6.1 we list results for several values of N .

6.2 Models with two-component order parameter and a

stable fixed point

In this section we present our FRG results for the potential (2.41).

Let us first consider the case g3 ≡ 0, which corresponds to the most general C4v-potential. We
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Table 6.1: Stability-matrix eigenvalues, yi, for the Wilson-Fisher fixed point of the O(N) model,

d = 3, FRG (in local-potential approximation), up to quartic coupling. The bar denotes rescaled

quantities.

N 1
2
µ̄2
∗ λ̄1∗ ν = −1/y1 y2

1 -0.03846 7.76271 0.54272=-1/-1.84256 1.1759

2 -0.04545 6.67366 0.55149=-1/-1.81327 1.21327

3 -0.05102 5.84682 0.55871=-1/-1.78985 1.24439

4 -0.05556 5.1988 0.564751=-1/-1.77069 1.27069

8 -0.06757 3.59143 0.581495=-1/-1.71971 1.34471

obtain the flow equations

k∂kr̄k = −2r̄k − 2KD

6ḡ1,k + ḡ2,k(1 + 2r̄k)2 (6.6)

k∂kḡ1,k = (D − 4)ḡ1,k + 4KD

36ḡ21,k + ḡ
2
2,k(1 + 2r̄k)3 (6.7)

k∂kḡ2,k = (D − 4)ḡ2,k + 32KD

(3ḡ1,k + ḡ2,k) ḡ2,k(1 + 2r̄k)3 . (6.8)

Apart from the IR-unstable Gaussian fixed point, (r̄ = 0, ḡ1 = 0, ḡ2 = 0), we find two IR-unstable

anisotropic fixed points,

(r̄ = −0.03846, ḡ1 = 0.16172, ḡ2 = 0.97034) ,
(r̄ = −0.03846, ḡ1 = 0.32345, ḡ2 = 0) ,

for both of which the stability-matrix eigenvalues read

{−1.84256,1.1759,−0.33334} ,
and an IR-stable O(2) fixed point,

(r̄ = −0.0454545, ḡ1 = 0.278069, ḡ2 = 0.556138) ,
for which the stability-matrix eigenvalues are given by

{−1.81327,1.21327,0.2} .
We also determined the flow equations for the most general C4-invariant potential up to sixth

order in the fields. The analysis, however, remains inconclusive due to the occurrence of marginal

eigenvalues.

6.3 Cubic anisotropy model

The cubic anisotropy model (up to quartic order) is given by

U = r
N

∑
i

φ2i +
λ1

24
(N∑

i

φ2i )2 + λ224
N

∑
i

φ4i . (6.9)
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The name is related to the group O constituted by all rotations (of the N = 3 components) which

leave invariant the cube. For N = 2 cubic symmetry corresponds to the group C4v, and for N = 4
to the group ( O

D2
; O
D2
)∗. The model has been reviewed in section 11.3 of Ref. [14]. We restrict

the discussion to D = 3. Apart from the trivial Gaussian one, there exist three different fixed

points: the O(N)-symmetric fixed point, the fixed point with cubic symmetry, and a fixed point

with Ising critical exponents (the quartic O(N)-symmetric coupling vanishes for this point). It

has been pointed out that the O(N) fixed point is IR stable for N < Nc, whereas it becomes

unstable for N > Nc where the fixed point with cubic symmetry is IR stable instead. The value

of Nc, however, is still under debate. Studies in low order of the ǫ-expansion, as well as several

complementary investigations, find 3 < Nc < 4, whereas more recent 5-loop ǫ-expansion results

indicate 2 < Nc < 3. Therefore, in the following we consider the interesting case N = 3 from

FRG in the local-potential approximation. We find the O(3) fixed point to be IR stable, whereas

the other fixed points (Gaussian, Ising-like, Cubic) are IR unstable. Again, the local-potential

approximation is completely consistent with the one-loop ǫ-expansion.

We obtain the following flow equations for the rescaled couplings:

k∂k r̄k = −2r̄k − 1

6
KD

5λ̄1,k + 3λ̄2,k(1 + 2r̄k)2 , (6.10)

k∂kλ̄1,k = (D − 4)λ̄1,k + 2

3
KD

λ̄1,k(11λ̄1,k + 6λ̄2,k)(1 + 2r̄k)3 , (6.11)

k∂kλ̄2,k = (D − 4)λ̄2,k + 2KD

λ̄2,k(4λ̄1,k + 3λ̄2,k)(1 + 2r̄k)3 . (6.12)

Apart from the IR-unstable Gaussian fixed point, (r̄ = 0, λ̄1 = 0, λ̄2 = 0), we find three fixed

points.

The stability-matrix eigenvalues for the O(3) fixed point, (r̄ = −0.05102, λ̄1 = 5.84682, λ̄2 = 0),
are given by {−1.78985,1.24439,0.09091} and indicate that it is IR stable.

The cubic fixed point (r̄ = −0.05, λ̄1 = 7.19494, λ̄2 = −2.39831) is associated with the stability-

matrix eigenvalues {−1.79415,1.23859,−0.11111} indicating its IR instability.

Finally there is a Ising-like fixed point (r̄ = −0.03846, λ̄1 = 0, λ̄2 = 7.76271) with stability-matrix

eigenvalues {−1.84256,1.1759,−0.33333}. The first two eigenvalues are characteristic of the Ising

universality class (compare with Tab. 6.1) whereas the additional one indicates the IR instability

of the fixed point.

One might suspect that the Ising-like fixed point is associated to eigenvalues distinguishable from

the Ising universality class at higher truncation order. We checked this by including all linearly

independent invariants of sixth order in the fields,

λ3(N∑
i

φ2i )3 + λ4(N∑
i

φ2i )(N∑
j

φ4j) + λ5 N

∑
i

φ6i . (6.13)

We still find a Ising-like fixed point,

(r̄ = −0.07143, λ̄1 = 0, λ̄2 = 12.43052, λ̄3 = 0, λ̄4 = 0, λ̄5 = 0.75113) ,
associated with eigenvalues

{12.2196,5.21314,2,−1.68572,1.13275,−0.213137} .
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The eigenvalues {12.2196,−1.68572,1.13275} are indeed those found for the Ising model up to

sixth order in the field.

The case N = 4, i.e. the most general ( O
D2

; O
D2
)∗-potential, is discussed in Sec. 6.4. For the case

N = 2, i.e., the most general C4v-potential, we refer to Sec. 6.2.

6.4 Models with four-component order parameter and a

stable fixed point

Table 6.2: Centralizers Ec (labeling a most general Ec-symmetric Landau potential) and the

largest symmetry group leaving invariant the associated IR-stable fixed-point potential, E∗c ,

called little group of Ec. O(4) is called isotropic, ( Y
C2

; Y
∗

C2
)∗ is called di-icosahedral, (D∞ ×D∞)∗

is called dicylindrical, and ( O
D2

; O
D2
)∗ is called cubic.

Ec E∗c

O(4) O(4)
( Y
C2

; Y
∗

C2
)∗ ( Y

C2
; Y

∗

C2
)∗

( O
D2

; O
D2
)∗ ( O

D2
; O
D2
)∗

(D∞ ×D∞)∗ (D∞ ×D∞)∗(D4

D2
; D4

D2
)∗ (D∞ ×D∞)∗

(C8

C4
; D4

D2
) (D∞ ×D∞)∗

In this section we discuss our FRG results for the most general potentials invariant under the

anisotropic centralizers stated in Tab. 6.2. For the isotropic O(4)-symmetric potential we refer

to Sec. 6.1.

6.4.1 ( Y
C2
; Y

∗

C2
)
∗

The most general ( Y
C2

; Y
∗

C2
)∗-symmetric potential up to quartic order is given by

U = r
4

∑
i=1
φ2i + λ1 ( 4

∑
i=1
φ2i )

2

+ λ2 [5(φ41 + φ42 + φ43) + φ44 + 60√
5
φ1φ2φ3φ4 + 12φ

2
4(φ21 + φ22 + φ23)] (6.14)

We obtain the rescaled flow equations

k∂k r̄k = −2r̄k − 12KD

2λ̄1,k + 7λ̄2,k(1 + 2r̄k)2 , (6.15)

k∂kλ̄1,k = (D − 4)λ̄1,k + 48KD

4λ̄21,k + 14λ̄1,kλ̄2,k + 27λ̄
2
2,k(1 + 2r̄k)3 , (6.16)

k∂kλ̄2,k = (D − 4)λ̄2,k + 192KD

λ̄2,k(λ̄1,k + 3λ̄2,k)(1 + 2r̄k)3 . (6.17)
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Again, we observe that the one-loop ǫ-expansion result (compare with Tab. III of Ref. [31])

is reproduced when setting r̄k = 0 and properly redefining the couplings. At this trunca-

tion order the O(4) fixed point, (r̄ = −0.05556, λ̄1 = 0.21662, λ̄2 = 0), is marginal as one in-

fers from the stability-matrix eigenvalues {−1.77069,1.27069,0}, whereas the cubic fixed point,(r̄ = −0.05319, λ̄1 = 0.28298, λ̄2 = −0.02096) is IR unstable as inferred from the eigenvalues{−1.78068,1.25687,−0.047619}. The marginality of the isotropic fixed point indicates, however,

that also the stability analysis of the anisotropic fixed point is inconclusive at quartic truncation

order. We note that also in the one-loop ǫ-expansion a marginal eigenvalue occurs (compare with

Tab. IV of Ref. [31]). In the framework of the ǫ-expansion one can get rid of the marginality at

two-loop order (see Tab. V of Ref. [31]). In the local-potential approximation of FRG, taking

into account the sixth-order invariants

λ3 ( 4

∑
i=1
φ2i )

3

+ λ4 ( 4

∑
i=1
φ2i)[5(φ41 + φ42 + φ43) + φ44 + 60√

5
φ1φ2φ3φ4 + 12φ

2
4(φ21 + φ22 + φ23)] (6.18)

one can get also rid of the marginal eigenvalue (which should be the case for the one-loop ǫ-

expansion as well). We note, however, that these are not all linearly independent sixth order

invariants, and the remaining one(s) should be taken into account in a fully conclusive analysis.

For simplicity we neglect them in our investigation and indeed find an IR-stable ( Y
C2

; Y
∗

C2
)∗-

symmetric fixed point,

(r̄ = −0.12011, λ̄1 = 0.23417, λ̄2 = 0.03085, λ̄3 = 0.18003, λ̄4 = 0.0621996) ,
for which the stability-matrix eigenvalues read

{14.5934,6.17205,1.5506,0.208268,−1.48923} .
6.4.2 ( O

D2
; O
D2
)
∗

We proceed with the most general ( O
D2

; O
D2
)∗-potential up to sixth polynomial order,

U = r
4

∑
i

φ2i +
λ1

24
( 4

∑
i

φ2i)
2

+
λ2

24

4

∑
i

φ4i + λ3 ( 4

∑
i

φ2i )
3

+ λ4 ( 4

∑
i

φ2i )⎛⎝
4

∑
j

φ4j
⎞⎠ + λ5 (

4

∑
i

φ6i ) . (6.19)

We find the following flow equations:

k∂k r̄k = −2r̄k − KD

2

(2λ̄1,k+λ̄2,k)(1+2r̄k)2 , (6.20)

k∂kλ̄1,k = (D − 4)λ̄1,k + 4KD
λ̄1,k(2λ̄1,k+λ̄2,k)−72(2r̄k+1)(4λ̄3,k+λ̄4,k)(1+2r̄k)3 , (6.21)

k∂kλ̄2,k = (D − 4)λ̄2,k + 2KD
λ̄2,k(4λ̄1,k+3λ̄2,k)−72(2r̄k+1)(4λ̄4,k+5λ̄5,k)(1+2r̄k)3 , (6.22)

k∂kλ̄3,k = K3

72

−10λ̄3
1,k−3λ̄2,kλ̄

2
1,k+288(2r̄k+1)(9λ̄3,k+λ̄4,k)λ̄1,k+432(2r̄k+1)λ̄2,kλ̄3,k(1+2r̄k)4 , (6.23)

k∂kλ̄4,k = K3

24

−8λ̄2,kλ̄
2
1,k−3(λ̄2

2,k−16(2r̄k+1)(14λ̄4,k+5λ̄5,k))λ̄1,k+48(2r̄k+1)λ̄2,k(12λ̄3,k+7λ̄4,k)(1+2r̄k)4 , (6.24)

k∂kλ̄5,k = K3

8

λ̄2,k(128λ̄4,k(2r̄k+1)−λ̄2,k(2λ̄1,k+λ̄2,k))+80(2r̄k+1)(2λ̄1,k+3λ̄2,k)λ̄5,k(1+2r̄k)4 . (6.25)

At quartic truncation order (λ3 = λ4 = λ5) we reproduce the ǫ-expansion result at one-loop order

(compare with Eqs. (4) and (5) of Ref. [143]) when setting r̄k = 0 and properly redefining the
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couplings. Whereas the cubic fixed point is IR unstable, the O(4) fixed point is marginal, indi-

cating that one has to go beyond quartic truncation order. To solve the fixed point equations at

higher truncation order we applied an algorithm with randomized starting values in a reasonably

large domain of parameter space, each of the starting values lying in the interval [−104,104].
Using 105 different starting values, we checked that these should be the only solutions for given

starting values in the above domain of parameter space. Apart from the Gaussian fixed point,

we find six different fixed points. There are three IR-unstable ( O
D2

; O
D2
)∗-symmetric fixed points,

first

(r̄ = −0.02268, λ̄1 = −11.217, λ̄2 = 27.3307, λ̄3 = −0.05318, λ̄4 = 1.51546, λ̄5 = −0.30854) ,
for which the stability-matrix eigenvalues read

{11.4536,−2.85698,−1.91474,−0.0671996+ 1.55317 i,−0.0671996− 1.55317 i,1.14137} ,
second

(r̄ = −0.04685, λ̄1 = −4.22854, λ̄2 = 17.5725, λ̄3 = 0.23709, λ̄4 = −0.82491, λ̄5 = 1.40115) ,
for which the stability-matrix eigenvalues read

{11.0574,2.61531,−1.76448,1.04669,−0.295782+ 0.790764 i,−0.295782− 0.790764 i} ,
and third

(r̄ = −0.10102, λ̄1 = 13.3721, λ̄2 = −11.5082, λ̄3 = 1.07211, λ̄4 = −2.49304, λ̄5 = 1.8374) ,
for which the stability-matrix eigenvalues read

{13.761,6.38171,−0.104173+ 2.54967 i, ,−0.104173− 2.54967 i,−1.52874,1.36167} .
Then there is the same Ising-like fixed point as for the cubic anisotropy model with N = 3,

(r̄ = −0.07143, λ̄1 = 0, λ̄2 = 12.43052, λ̄3 = 0, λ̄4 = 0, λ̄5 = 0.75113) ,
associated with the eigenvalues

{12.2196,5.21314,2,−1.68572,1.13275,−0.213137} .
Also the O(4) fixed point

(r̄ = −0.10976, λ̄1 = 7.91848, λ̄2 = 0, λ̄3 = 0.309944, λ̄4 = 0, λ̄5 = 0)
is unstable as one infers from its stability-matrix eigenvalues

{12.9187,9.24667,5.625,−1.50401,1.33533,−0.121665} .
Finally, there is a fourth ( O

D2
; O
D2
)∗-symmetric fixed point,

(r̄ = −0.10605, λ̄1 = 5.87836, λ̄2 = 3.83762, λ̄3 = 0.1598, λ̄4 = 0.22639, λ̄5 = 0.09684) ,
which is IR stable as one infers from the eigenvalues

{13.1153,9.56795,5.17813,1.31346,0.0875986,−1.52192} .
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6.4.3 (D∞ ×D∞)∗, (D4

D2
; D4

D2
)
∗

, and (C8

C4
; D4

D2
)

The most general (C8

C4
; D4

D2
)-invariant Landau potential up to sixth polynomial order reads [40]

U = r
4

∑
i

φ2i + g1 ( 4

∑
i

φ2i )
2

+ g2 [(φ21 + φ22)2 + (φ23 + φ24)2] + g3 [φ1φ2(φ21 − φ22) − φ3φ4(φ23 − φ24)]
+g4

4

∑
i

φ4i + g5 ( 4

∑
i

φ2i )
3

+ g6

4

∑
i

φ6i + g7 [φ1φ2(φ41 − φ42) − φ3φ4(φ43 − φ44)] + g8 ( 4

∑
i

φ2i )⎛⎝
4

∑
j

φ4j
⎞⎠

+g9 ( 4

∑
i

φ2i )[(φ21 + φ22)2 + (φ23 + φ24)2] + g10 ( 4

∑
i

φ2i ) [φ1φ2(φ21 − φ22) − φ3φ4(φ23 − φ24)] . (6.26)

The special case gi = 0, where i ≥ 3, corresponds to the most general (D∞ ×D∞)∗-symmetric

Landau potential at quartic order. For g3 = 0, gi = 0, where i ≥ 5, one obtains the most general(D4

D2
; D4

D2
)∗-symmetric Landau potential at quartic order. At sixth order in the fields, however,

the most general Landau potentials for the latter symmetries are not special cases of U .

We derived the flow equations for the full potential U . Since they are rather lengthy we do not

state them here explicitly. We have solved them numerically by the method of randomized initial

values. Unfortunately there exist fixed points exhibiting marginal eigenvalues. We suspect that

this might have to do with the existence of lines of fixed points (compare with the discussion in

Ref. [31]). Interestingly, we find two IR-stable fixed points of different symmetry, namely

A1 ≡ (r̄ = −0.09655, ḡ1 = 0.73696, ḡ2 = −0.64010, ḡ5 = 0.62921, ḡ9 = −0.26343, ḡ3,4,6,7,8,10 = 0) ,
(6.27)

which is associated to the stability-matrix eigenvalues

{13.7836,8.1382,8.1382,0.246709+ 2.80159 i,0.246709− 2.80159 i,0.156746+ 1.57142 i,
0.156746− 1.57142 i,0.156746+ 1.57142 i,0.156746− 1.57142 i,1.33844,−1.548} , (6.28)

and

A2 ≡ (r̄ = −0.08513, ḡ1 = −0.01660, ḡ2 = 0.45873, ḡ5 = −0.28840, ḡ9 = 0.83807, ḡ3,4,6,7,8,10 = 0) ,
(6.29)

which is associated to the eigenvalues

{12.4717,9.7189,9.7189,5.43242,3.21794,3.21794,1.19774,0.1574,0.1574,0.000472,−1.62133} .
(6.30)

We checked that the eigenvalue 0.000472 is really positive and not a marginal eigenvalue in insuf-

ficient numerical accuracy. If the stability analysis at this truncation order were not inconclusive

due to the occurrence of marginal eigenvalues for other fixed points, the simultaneous existence

of two different IR-stable fixed points would constitute a violation of the universality hypothesis.

We therefore expect that either A1 or A2 becomes unstable at higher truncation order. Further

investigations are necessary to clarify the situation.
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6.5 U(2)A ×U(2)V linear sigma model

We were pushed to a reinvestigation of the U(2)A × U(2)V linear sigma model from the FRG

method during the final stage of our work where we became aware of the very recent publication

[33] which confirms the existence of an IR-stable U(2)A × U(2)V -symmetric fixed point from

a field-theoretic RG approach. In this section we study the most general Landau potential up

to sixth polynomial order invariant under U(2)A × U(2)V in the [2, 2̄] ⊕ [2̄,2]-representation.
Since the authors of Ref. [33] use a resummation procedure, we speculate that it might be

necessary to go beyond the perturbatively renormalizable truncation order (four for D = 3) in

order to reproduce their result from FRG. Whereas no IR-stable fixed points were found at

quartic polynomial order [87], we find two IR-stable fixed points at sixth order, S1 and S2. This

is a rather unexpected result because no marginal stability-matrix eigenvalues occur for the fixed

points at quartic order. In the absence of marginal eigenvalues it is usually assumed that the

utilized truncation order is sufficient, which does not seem to be justified in the given case at first

glance. The occurrence of two IR-stable fixed points is critical with respect to the universality

hypothesis. Although both of them seem to be U(2)A × U(2)V -symmetric, they are associated

with different values for ν. The results at this truncation order, however, are inconclusive because

the Gaussian fixed point aquires marginal stability-matrix eigenvalues. We also investigated

higher-order truncations (up to canonical scaling dimension ten) and found a single IR-unstable

U(2)A × U(2)V -symmetric at each of these truncation orders, while the Gaussian fixed-point

remains marginal rendering our studies inconclusive. We believe that this is different beyond

the local-potential approximation which assumes η = 0. In fact, the IR-stable U(2)A × U(2)V -
symmetric fixed point found in Ref. [33] is associated with an anomalous dimension of η ∼ 0.12
indicating that it might be necessary to go beyond the local-potential approximation to confirm

its existence. Investigations in this direction are in progress.

Using a similar algorithm to the one provided in App. B.2, we verify that the potential

1

2
m2

ΦTrΦ
�Φ + λ1(TrΦ�Φ)2 + λ2Tr(Φ�Φ)2 + λ3(TrΦ�Φ)3 + λ4 (TrΦ�Φ)Tr(Φ�Φ)2 , (6.31)

where Φ is defined in Eq. (3.15), and which can be rewritten as

U = r (σ2
+ π⃗2

+ η2 + a⃗20) + g1 (σ2
+ π⃗2

+ η2 + a⃗20)2
+g2 [(σ2

+ π⃗2)(η2 + a⃗20) − (ση − π⃗ ⋅ a⃗0)2] + g3 (σ2
+ π⃗2

+ η2 + a⃗20)3
+g4 (σ2

+ π⃗2
+ η2 + a⃗20) [(σ2

+ π⃗2) (η2 + a⃗20) − (ση − π⃗ ⋅ a⃗0)2] , (6.32)

is the most general Landau potential at the given order. We obtain the following flow equations

for the rescaled couplings:

k ∂r̄k
∂k
= −2r̄k − 2KD

20ḡ1,k+3ḡ2,k(1+2r̄k)2 , (6.33)

k
∂ḡ1,k
∂k
= (D − 4)ḡ1,k + 2KD

128ḡ2
1,k+24ḡ2,k ḡ1,k+6ḡ

2
2,k−3(1+2r̄k)(12ḡ3,k+ḡ4,k)(1+2r̄k)3 , (6.34)

k
∂ḡ2,k
∂k
= (D − 4)ḡ2,k + 16KD

ḡ2
2,k+12ḡ1,k ḡ2,k−2ḡ4,k(1+2r̄k)(1+2r̄k)3 , (6.35)

k
∂ḡ3,k
∂k
= 8K3

−272ḡ3
1,k−36ḡ2,k ḡ

2
1,k−18ḡ

2
2,k ḡ1,k−3ḡ

3
2,k+3(2r̄k+1)(ḡ2,k(3ḡ3,k+ḡ4,k)+2ḡ1,k(22ḡ3,k+ḡ4,k))(1+2r̄k)4 , (6.36)

k
∂ḡ4,k
∂k
= 8K3

(2r̄k+1)(72ḡ2,k ḡ3,k+92ḡ1,k ḡ4,k+19ḡ2,k ḡ4,k)−3ḡ2,k(192ḡ2
1,k+44ḡ2,k ḡ1,k+ḡ

2
2,k)(1+2r̄k)4 . (6.37)
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Apart from two complex-valued fixed points (which are not relevant for our purposes) and the

Gaussian fixed point (exhibiting two marginal stability-matrix eigenvalues), we find the following

fixed points.

First, there is the O(8) fixed point,

(r̄ = −0.135468, ḡ1 = 0.213201, ḡ2 = 0, ḡ3 = 0.128472, ḡ4 = 0) ,
which is IR unstable as one infers from the stability-matrix eigenvalues

{12.9247,8.12499,1.50915,−1.3798,−0.503366} .
The interesting fixed points are the IR stable ones,

S1 ≡ (r̄ = −0.131592, ḡ1 = 0.0827324, ḡ2 = 0.858639, ḡ3 = 0.209119, ḡ4 = 0.216127) , (6.38)

which is associated with stability-matrix eigenvalues

{15.6603,0.624502+ 3.53423 i,0.624502− 3.53423 i,1.63064,−1.37434} , (6.39)

and

S2 ≡ (r̄ = −0.102993, ḡ1 = 0.333416, ḡ2 = −0.941056, ḡ3 = 0.306972, ḡ4 = −0.715374) , (6.40)

which is associated with stability-matrix eigenvalues

{13.2219,1.18817+ 2.14805 i,1.18817− 2.14805 i,−1.51084,1.37317} . (6.41)

We observe that the stability-matrix eigenvalues (6.39) and (6.41), respectively, are different but

very similar.

6.6 SU(2)A ×U(2)V linear sigma model

In this section (compare with our publication [1]) we investigate the FRG flow of the Lagrangian

(3.22) in different parameterizations proceeding in analogy to Ref. [87]. We reproduce the result

of Ref. [87] in the limit c, y, z → 0. The fields Φi entering Eq. (4.20) are given by σ, π⃗, η, and a⃗.

With the invariants

ϕ ≡ σ2
+ π⃗2

+ η2 + a⃗2 , ξ = (σ2
+ π⃗2)(η2 + a⃗2) − (ση − π⃗ ⋅ a⃗)2 , α ≡ σ2

− η2 + π⃗2
− a⃗2 , (6.42)

and the abbreviation

β ≡ α2
−
ϕ2

2
+ 2ξ = 1

2
(η2 + a⃗2 − σ2

− π⃗2
− 2a⃗ ⋅ π⃗ + 2ησ) (η2 + a⃗2 − σ2

− π⃗2
+ 2a⃗ ⋅ π⃗ − 2ησ) ,

the bare potential (3.23) reads

U(ϕ, ξ,α) = 1

2
µ2ϕ +

1

4!
λ1ϕ

2
+ λ2ξ + cα + yαϕ + zβ . (6.43)

Using relation (3.20) and a different notation,

ϕ1 = σ2
+ π⃗2 , ϕ2 = η2 + a⃗2 , γ = (ση − π⃗ ⋅ a⃗)2 , (6.44)

70



we obtain

U(ϕ1, ϕ2, γ) =m2
1ϕ1 +m

2
2ϕ2 + l1ϕ

2
1 + l2ϕ

2
2 + l12ϕ1ϕ2 + l3γ , (6.45)

where we introduced new couplings,

m2
1 =

1

2
µ2
+ c , m2

2 =
1

2
µ2
− c , (6.46)

l1 = y + λ1
4!
+
z

2
, l2 = −y + λ1

4!
+
z

2
, l12 = λ1

12
+ λ2 − z , l3 = −(λ2 + 2z) . (6.47)

Note that the number of linearly independent invariants is the same in expressions (6.43) and

(6.45), respectively. When calculating the mass eigenvalues Mi, we have to simplify the compu-

tation by setting the values of several fields to zero after having performed the second derivatives

in Eq. (4.20). Keeping all fields nonzero, we obtain complicated expressions for the eigenvalues

because an 8 × 8 matrix has to be diagonalized. One can circumvent the diagonalization using

the relation

∑
i

1

k2 +M2
i

= TrM−1 , Mij ≡Mij + k
2δij . (6.48)

However, it still would take a symbolic computation program a long time to expand the r.h.s. of

the FRG equation (4.24) in powers of the fields. Fortunately, the ǫ-expansion results from Ref.

[85] can be reproduced by keeping nonzero values only for σ and one of the components of a⃗, say

a1 [87]. Note that this is not possible if we choose another field than a component of a⃗, since

then ξ = 0 and we do not obtain a flow equation for λ2.

6.6.1 Parameterization in terms of invariants

In this section we use the parameterization (6.45) for the potential. It is nontrivial to rewrite

all fields φi in terms of the above invariants. Since we have three invariants, the rewriting can

be performed unambiguously only if we keep at least three fields nonzero. Keeping η, σ, and a1

nonzero, we obtain the unambiguous mapping

σ =√ϕ1 , a1 =
√

ϕ1ϕ2 − γ

ϕ1
, η =

√
γ

ϕ1
. (6.49)

We also repeated our analysis using π1 instead of η and found identical results.

We express the mass eigenvaluesMi in terms of ϕ1, ϕ2, and γ and expand the r.h.s. of Eq. (4.24)

in powers of these invariants. Then, inserting Eq. (6.45) on the l.h.s., we read off flow equations

for the couplings by comparing coefficients. In order to calculate critical exponents we rescale

quantities to obtain flow equations for dimensionless parameters. With

m2
i,k = k2m̄2

i,k , li,k = k4−dl̄i,k , (6.50)
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we obtain

k
∂m̄2

1

∂k
= −2m̄2

1 −
1

3π2
(12l̄1
ǭ21
+
l̄3 + 4l̄12
ǭ22

) , (6.51)

k
∂m̄2

2

∂k
= −2m̄2

2 −
1

3π2
( l̄3 + 4l̄12

ǭ21
+
12l̄2
ǭ22
) , (6.52)

k
∂l̄12

∂k
= −l̄12 +

2 [4(l̄1ǭ32 + l̄2ǭ31) (l̄3 + 6l̄12) + (l̄23 + 4l̄212) (ǭ1 + ǭ2) ǭ1ǭ2]
3π2ǭ31ǭ

3
2

, (6.53)

k
∂l̄1

∂k
= −l̄1 + 2

3π2
(48l̄21
ǭ31
+
l̄23 + 2l̄3l̄12 + 4l̄

2
12

ǭ32
) , (6.54)

k
∂l̄2

∂k
= −l̄2 + 2

3π2
(48l̄22
ǭ32
+
l̄23 + 2l̄3l̄12 + 4l̄

2
12

ǭ31
) , (6.55)

k
∂l̄3

∂k
= −l̄3 +

4l̄3 [4l̄1ǭ32 + 4l̄2ǭ31 + (3l̄3 + 4l̄12) (ǭ1 + ǭ2) ǭ1ǭ2]
3π2ǭ31ǭ

3
2

, (6.56)

where we omitted the index k and used the abbreviation

ǭi = 1 + 2m̄2
i . (6.57)

In order to find the fixed points we have to set the left-hand sides to zero and solve the resulting

system of equations. Since the equations are nonlinear, this has to be done numerically, using

starting values for which a standard root-finding algorithm converges towards a solution. We

applied an algorithm with randomized starting values in a reasonably large domain of parameter

space, each of the starting values lying in the interval [−104,104]. We found the nontrivial

solutions given in Tab. 6.3 where they are listed together with the corresponding eigenvalues

of the stability matrix. Using 106 different starting values, we checked that these are the only

solutions for given starting values in the above domain of parameter space.

From comparison with the corresponding stability-matrix eigenvalues for the O(N) models in

the same approximation scheme (local-potential approximation, fourth-order truncation in the

fields), see Tab. 6.1, we can unambiguously identify those fixed points in Tab. 6.3 with O(N)
critical exponents. Let us start our discussion with the fixed points FP6 and FP7. From the

vanishing of the couplings in the upper part of Tab. 6.3 we see that for each of these fixed

points the fixed-point potential is that of an O(4) model. Fixed point FP6 is that for the O(4)
representation Φ1 = σt0 + it⃗ ⋅ π⃗, while FP7 that for Φ2 = iηt0 + t⃗ ⋅ a⃗. From the eigenvalues of the

stability matrix in the lower part of Tab. 6.3 one observes that both fixed points have more than

one negative eigenvalue, which means that they are unstable. Comparison of the second and

third eigenvalue with the last two columns in Tab. 6.1 also tells us that they have one relevant

O(4) scaling direction.

For fixed point FP5, the two masses m̄2
i and the two coupling constants l̄i are identical, while

l̄12 = 0. This means that the fixed-point potential is that of two independent, identical O(4)
models. From the lower part of Tab. 6.3 we see that this fixed point is a multicritical fixed point

with two relevant O(4) scaling directions. The third negative eigenvalue of the stability matrix

renders this an unstable fixed point. Fixed point FP8 is another unstable multicritical fixed

point with a single O(4) scaling direction.

From the vanishing of l̄3 and the fact that l̄1 = l̄2 = l̄12/2, the fixed-point potential for FP9 is that
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of an O(8) model. The stability matrix indicates that this fixed point is unstable. Comparison of

the eigenvalues of the stability matrix with Tab. 6.1 shows that it has one relevant O(8) scaling
direction. Since all eigenvalues of the stability matrix are negative, fixed points FP10 and FP11

are UV-stable fixed points. Fixed points FP1 and FP2 are unstable fixed points, none of them

belonging to one of the O(N) universality classes.

Finally, FP3 and FP4 are IR-stable fixed points. While for the other fixed points the (rescaled)

eigenvalues of the (squared) mass matrix are always positive semi-definite, for FP3 and FP4

we find one negative eigenvalue in all minima of the (rescaled) fixed-point potential Ū(σ̄, η̄, ā1),
which corresponds to an unphysical situation. However, this could be an artifact of our fourth-

order truncation of the potential (6.45), and the masses could be real-valued in higher order [144].

In that case, these IR-stable fixed points are in the SU(2)×U(2) universality class. Nevertheless,

at quartic truncation order we have to reject them.

In the framework of the ǫ-expansion it is often assumed that negative (positive) eigenvalues

remain negative (positive) at higher truncation order, also if marginal eigenvalues occur. As we

found out in our studies, in the framework of FRG this is not necessarily the case (although,

as a rule of thumb, it is rather unlikely that a large number of eigenvalues changes sign). An

example is given in Sec. 6.4.2. At quartic truncation order there exists exactly one IR-unstable

cubic fixed point, whose stability-matrix eigenvalues do not involve marginal eigenvalues. The

stability matrix eigenvalues associated with the O(4) fixed point, however, do involve a marginal

eigenvalue. At sixth order in the truncation one finds four different cubic fixed points, of which

exactly one is IR stable. This demonstrates that the stability properties of all other fixed points

can change at higher truncation order if merely one of them contains a marginal eigenvalue. We

therefore constructed also all sixth-order invariants, using a similar routine to the one provided

in App. B.2, in order to verify that the most general SU(2)A × U(2)V -symmetric and parity-

invariant potential up to naive scaling dimension six is given by

U =m2
1ϕ1 +m

2
2ϕ2 + l1ϕ

2
1 + l2ϕ

2
2 + l12ϕ1ϕ2 + l3γ + l4ϕ

3
1 + l5ϕ

2
1ϕ2 + l6ϕ1ϕ

2
2 + l7ϕ1γ + l8ϕ

3
2 + l9ϕ2γ .

(6.58)

We refrain from stating the lengthy flow equations and merely list some of the fixed points

relevant for the discussion in Tab. 6.4, namely those which correspond to FP3, FP5, FP6, and

FP8, respectively, at the given truncation order. We observe that, unfortunately, also at this

truncation order there occur marginal eigenvalues, namely for the O(4) fixed points FP6 and

FP8. We speculate that this might have to do with the occurrence of a line of (unstable) O(4)
fixed points, since we encountered a similar situation in Sec. 6.4.3. Further investigations are

necessary to understand the exact fixed-point structure. We further observe that the unphysical

IR-stable fixed points (FP3 and FP4) also exist at sixth order. They are still associated with

negative mass-matrix eigenvalues rendering these fixed points unphysical.

6.6.2 Parameterization in terms of original fields

In this section, in contrast to the previous one, we keep the potential parameterized in terms

of the original fields φi. This avoids the use of the chain rule together with tedious rewriting

procedures and serves as a check of our results. As in the previous section, we expand the r.h.s.

of Eq. (4.24) and read off flow equations for the couplings by comparison of coefficients, but now
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Table 6.3: Fixed points in the presence of nonzero anomaly strength, in D = 3 dimension, in the

FRG analysis in the local-potential approximation, with couplings up to quartic order. The bar

denotes rescaled quantities.

FP m̄2
1 m̄2

2 l̄1 l̄2 l̄12 l̄3

FP1 -3.80278 -0.197224 -355.58 0.273944 29.6088 0

FP2 -0.197224 -3.80278 0.273944 -355.58 29.6088 0

FP3 -1.34694 -0.333929 -17.0334 0.128417 5.64724 -5.93079

FP4 -0.333929 -1.34694 0.128417 -17.0334 5.64724 -5.93079

FP5 -0.0555556 -0.0555556 0.216617 0.216617 0 0

FP6 -0.0555556 0 0.216617 0 0 0

FP7 0 -0.0555556 0 0.216617 0 0

FP8 -0.0555556 -0.0555556 0.108308 0.108308 0.216617 0.433234

FP9 -0.0675676 -0.0675676 0.149643 0.149643 0.299286 0

FP10 0.609013 -1.18037 -34.5716 7.9826 -9.98504 129.304

FP11 -1.18037 0.609013 7.9826 -34.5716 -9.98504 129.304

FP stability-matrix eigenvalues

FP1 {9.64793,-5.66667,-0.585909+4.07239 i,-0.585909-4.07239 i,3.83241,-1.30852}

FP2 {9.64793,-5.66667,-0.585909+4.07239 i,-0.585909-4.07239 i,3.83241,-1.30852}

FP3 {29.6235,14.0524 +4.23653 i,14.0524 -4.23653 i,0.917927 +9.64911 i,0.917927 -9.64911 i,-1.17232}

FP4 {29.6235,14.0524 +4.23653 i,14.0524 -4.23653 i,0.917927 +9.64911 i,0.917927 -9.64911 i,-1.17232}

FP5 {-1.77069,-1.77069,1.27069,1.27069,-0.666667,0 }

FP6 {-2.,-1.77069,1.27069,-1.,-0.833333,-0.5}

FP7 {-2.,-1.77069,1.27069,-1.,-0.833333,-0.5}

FP8 {-2.,-1.77069,1.27069,-0.666667,0,0}

FP9 {-1.98804,-1.71971,1.34471,0.613041,-0.25,-0.25}

FP10 {-28.9145,-16.865,-10.9156,-3.11604+5.87462 i,-3.11604-5.87462 i,-1.28288}

FP11 {-28.9145,-16.865,-10.9156,-3.11604+5.87462 i,-3.11604-5.87462 i,-1.28288}
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Table 6.4: Fixed points in the presence of nonzero anomaly strength, in D = 3 dimension, in the

FRG analysis in the local-potential approximation, with couplings up to naive scaling dimension

six. The bar denotes rescaled quantities.

FPi m̄2
1 m̄2

2 l̄1 l̄2 l̄12 l̄3 l̄4 l̄5 l̄6 l̄7 l̄8 l̄9

3 -0.7774 -0.428 -0.938 0.034 0.618 -0.767 -7.898 6.728 -0.234 -7.573 0.022 0.116

5 -0.1098 -0.1098 0.3299 0.32990 0 0.3099 0 0 0 0.30990

6 -0.1098 0 0.3299 0 0 0 0.3099 0 0 0 0 0

8 -0.1098 -0.1098 0.165 0.165 0.32990.6599 0.0775 0.232 0.232 0.9298 0.07750.9298

FPi stability-matrix eigenvalues

3 {211.68,114.7,88.9892,74.9107,19.4627 + 53.8263 i,19.4627 − 53.8263 i,40.3879,5.84219 +

22.4579 i,5.84219− 22.4579 i,15.2941+ 6.09425 i,15.2941− 6.09425 i,−0.751575}
5 {12.9187,12.9187,6.53046,5.625,4.625,4.125,−1.50401,−1.50401,1.33533,1.33533,−0.75,0.344539}
6 {12.9187,4.99126,4.01279,−2,−1.50401,1.33533,1.125,−1,−0.887787,0.375,−0.366265,0}
8 {12.9187,8,6.53046,4.625,4.5,2.25,−2,−1.50401,1.33533,−0.75,0.344539,0}

the expansion is in powers of the original fields φi instead of the invariants ϕi, γ. Again, in order

to obtain the correct flow equations, accounting for all three anomaly terms, we have to keep at

least three fields nonzero after having performed the second derivatives in Eq. (4.20).

For checking purposes we keep an additional field nonzero, say π1, and set π2, π3, a2, and a3 to

zero after having computed the second derivatives. This means that the comparison of coefficients

is carried out using the potential (3.23) for π2 = π3 = a2 = a3 = 0 on the l.h.s. of the flow equation

(4.24). In this case the (scale-dependent) potential (3.23) reads

Uk = a21m2
2,k + η

2m2
2,k + σ

2m2
1,k + π

2
1m

2
1,k + λaη (a41 + η4) + λσπ (σ4

+ π4
1) (6.59)

+δ1 (π2
1a

2
1 + η

2σ2) + δ2a21η2 + δ0 (a21σ2
+ π2

1η
2) + κπ1a1ησ + δ3π2

1σ
2 ,

with

λaη ≡ λ1
24
− y +

z

2
, λσπ ≡ λ1

24
+ y +

z

2
, δ0 ≡ λ1

12
+ λ2 − z ,

δ1 ≡ λ1
12
− 3z , δ2 ≡ λ1

12
+ z − 2y , δ3 ≡ λ1

12
+ z + 2y , κ ≡ 4z + 2λ2 .

Note that

δ3 = 2λσπ , δ2 = 2λaη , δ0 = δ1 + κ
2
, y = λσπ

2
−
λaη

2
,

z = −δ1
4
+
λσπ

4
+
λaη

4
, λ1 = 3δ1 + 9λaη + 9λσπ , λ2 = δ1

2
+
κ

2
−
λσπ

2
−
λaη

2
.

We verified that we obtain unambiguous flow equations for m2
1,k, m

2
2,k, λ1,k, λ2,k, yk, and zk, no

matter from which of the coefficients in Eq. (6.59) we extract them (which is a freedom we have
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due to the additional field we have kept nonzero). We do not state the flow equations and fixed

points again; we have checked that they are equivalent to those found in Sec. 6.6.1.

6.6.3 Physical anomaly strength

So far we have considered only a finite anomaly strength. According to Ref. [98], however, the

limit c → −∞ should be closer to reality: in order to reproduce the correct vacuum mass of the

eta meson in the two-flavor quark-meson model at tree-level, one has to choose a value for the

anomaly strength (∣c∣ ∼ (958 MeV)2) which exceeds a physically reasonable UV cut-off scale for

the RG flow (k ∼ 600 MeV). Therefore, on all scales relevant for the RG flow, effectively c→ −∞.

More precisely, instead of this limit, we should rather consider the limit

m2
2,k =

1

2
µ2
k − ck →∞ , (6.60)

otherwise m2
1,k ≡ 1

2
µ2
k + ck → −∞ would impose severe constraints on the RG flow in order to

finally obtain positive-definite masses for σ and π⃗.

In the limit m2
2,k →∞ the flow equations (6.51)–(6.56) simplify to

k
∂m̄2

1

∂k
= −2m̄2

1 −
4l̄1
π2ǭ21

, (6.61)

k
∂l̄12

∂k
= −l̄12 +

8l̄1 (l̄3 + 6l̄12)
3π2ǭ31

, (6.62)

k
∂l̄1

∂k
= −l̄1 + 32l̄21

π2ǭ31
, (6.63)

k
∂l̄2

∂k
= −l̄2 + 2

3π2

l̄23 + 2l̄3l̄12 + 4l̄
2
12

ǭ31
, (6.64)

k
∂l̄3

∂k
= −l̄3 + 16l̄3l̄1

3π2ǭ31
. (6.65)

The above flow equations have only one nontrivial fixed point, namely the O(4) fixed point,

(m̄2
1 = −0.0555556, l̄1 = 0.216617, l̄2 = 0, l̄12 = 0, l̄3 = 0) . (6.66)

Calculating its stability-matrix eigenvalues,

{−1.77069,1.27069,−1,−0.83334,−0.5} , (6.67)

we find that it is IR unstable. According to standard rules one would, erroneously, conclude

that the phase transition cannot be of second order. According to common sense, however, this

cannot be true since the fields η and a⃗ are infinitely heavy, so that fluctuations of these fields

are completely suppressed and cannot affect the critical behavior. In Sec. 6.7 we explain, using

a simpler model as an example, why we have to neglect the spurious negative eigenvalues when

inferring the order of the phase transition. From the discussion in Sec. 6.7, we conclude that

couplings occurring only in front of terms involving infinitely heavy fields have to be neglected

in the stability analysis of fixed points. This can be also understood from the fact that the
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fluctuations represented by infinitely heavy fields are zero.

Inserting the fixed-point solution (6.66) into the rescaled potential (6.45), we obtain

Ūk=0 = −0.0555556 (σ̄2
+ ⃗̄π2) + 0.216617 (σ̄2

+ ⃗̄π2)2 . (6.68)

Since the fixed-point potential is O(4) symmetric, we can choose ⃗̄π0 = 0 in the vacuum state.

Then, the rescaled vacuum is given by

(σ̄0 = 0.358099, ⃗̄π0 = 0) . (6.69)

Using these vacuum expectation values we calculate the rescaled mass eigenvalues (i.e., the

rescaled physical masses):

M̄2
σ = 2/9 , M̄2

πi
= 0 , M̄2

η →∞ , M̄2
ai
→∞ . (6.70)

We see that, as expected, we have three Goldstone bosons, the three pions π⃗, whereas η and a⃗ are

infinitely heavy and thus decouple. Considering Eq. (6.45), we conclude that the couplings l̄2,

l̄12, and l̄3 appear only in front of terms involving infinitely heavy fields and must not be included

in the stability analysis. Including only m̄2
1 and l̄1, we find the stability-matrix eigenvalues

{−1.77069,1.27069} , (6.71)

from which we finally conclude that there exists a stable O(4) fixed point in case of infinite

anomaly strength. We also note that we verified that above the critical dimension, d ≥ 4, the

Gaussian fixed point becomes IR stable with mean-field critical exponent ν = 1/2, as expected.
6.7 Coupled vector model

The most general potential (up to quartic order) invariant under O(N1) ⊕O(N2), with O(Ni)
in the fundamental representation, is given by [14]

U =m2
1φ⃗

2
1 +m

2
2φ⃗

2
2 +

λ11

24
(φ⃗21)2 + λ1212

φ⃗21φ⃗
2
2 +

λ22

24
(φ⃗22)2 , (6.72)

where φ⃗i is a Ni-component vector. It is also known as coupled vector model. We focus on the

simplest case N1 = N2 = 1, i.e.,

U =m2
1φ

2
1 +m

2
2φ

2
2 +

λ11

24
φ41 +

λ12

12
φ21φ

2
2 +

λ22

24
φ42 . (6.73)

The following discussion has been taken from our publication [1]. For a mean-field analysis of

the model we refer to Ref. [145], for a leading-order ǫ-expansion to Ref. [146].

Using the method of Taylor expansion and comparison of coefficients, we find the following flow

equations:

k
∂m̄2

1

∂k
= −2m̄2

1 −
1

36π2
(3λ̄11
ǭ21
+
λ̄12

ǭ22
) , k

∂m̄2
2

∂k
= −2m̄2

2 −
1

36π2
(3λ̄22
ǭ22
+
λ̄12

ǭ21
) , (6.74)

k
∂λ̄11

∂k
= −λ̄11 + 1

π2
( λ̄211
ǭ31
+
λ̄212
9ǭ32
) , k

∂λ̄22

∂k
= −λ̄22 + 1

π2
( λ̄222
ǭ32
+
λ̄212
9ǭ31
) , (6.75)

k
∂λ̄12

∂k
= −λ̄12 + λ̄12

9π2ǭ31ǭ
3
2

[2λ̄12 (ǭ1 + ǭ2) ǭ2ǭ1 + 3λ̄22ǭ31 + 3λ̄11ǭ32] , (6.76)
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where we again used the abbreviation (6.57).

In this work we are only interested in the Ising fixed point,

(m̄2
1 = −0.03846, m̄2

2 = 0, λ̄11 = 7.76271, λ̄12 = 0, λ̄22 = 0) , (6.77)

the stability-matrix eigenvalues of which,

{−2,−1.84256,1.1759,−1,−0.666667} , (6.78)

indicate that it appears to be unstable in the m̄2
2, λ̄12, and λ̄22 directions.

Examining the above flow equations in the limit m̄2
2 →∞,

k
∂m̄2

1

∂k
= −2m̄2

1 −
1

12π2

λ̄11

ǭ21
, k

∂λ̄11

∂k
= −λ̄11 + 1

π2

λ̄211
ǭ31

, (6.79)

k
∂λ̄22

∂k
= −λ̄22 + 1

9π2

λ̄212
ǭ31

, k
∂λ̄12

∂k
= −λ̄12 + 1

3π2

λ̄12λ̄11

ǭ31
, (6.80)

we still find negative eigenvalues corresponding to the unstable λ̄12 and λ̄22 directions, respec-

tively. We obviously have the same situation as in Sec. 6.6.3. Formally, the negative eigenvalues

would indicate that the Ising fixed point is IR unstable. In this particular case, however, one

cannot conclude from this that the phase transition is fluctuation-induced first order. Fluctua-

tions in λ̄12 and λ̄22 direction are completely suppressed due to the infinitely heavy φ2 field and

cannot affect the critical behavior. To prove this, we investigate in detail the scale evolution of

the dimensionful potential for different initial values for the parameters in the UV. Using the

invariants

ϕ1 = φ21 , ϕ2 = φ22 , (6.81)

we make the following ansatz for the potential running under the RG flow:

Uk = Vk(ϕ1) +Wk(ϕ1)ϕ2 +Xk(ϕ1)ϕ2
2 . (6.82)

Having expressed the mass eigenvalues M2
i in terms of ϕ1 and ϕ2, we expand the r.h.s. of Eq.

(4.24) and read off flow equations for Vk(ϕ1), Wk(ϕ1), and Xk(ϕ1) by comparison of coefficients.

We solve the resulting system of three partial differential equations together with the initial

conditions

Vk=Λ(ϕ1) =m2
1,Λϕ1 +

λ11,Λ

24
ϕ2
1 , Wk=Λ(ϕ1) =m2

2,Λ +
λ12,Λ

12
ϕ1 , Xk=Λ(ϕ1) = λ22,Λ

24
. (6.83)

Fig. 6.2 illustrates the potential for various values of the RG-flow parameter k for various values

of m2
2,Λ and λ12,Λ for fixed values of m2

1,Λ, λ11,Λ, and λ22,Λ = 0. We observe that the influence

of the coupling λ̄12 on the shape of the potential becomes smaller for larger values of m2
2. We

have checked that the same is true for nonzero values of the coupling λ̄22. We also observe that

the RG-evolved potential exhibits the typical shape for a (fluctuation-induced) first-order phase

transition in the case of a light ϕ2 field (upper panels), while the transition remains of second

order for a heavy ϕ2 field (lower panels).
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Figure 6.2: Scale evolution of the potential Vk. In each panel, the solid line is the same and

corresponds to the start of the evolution in the UV (k/Λ = 1). Furthermore, in each panel there

are two sets of three curves (drawn with identical line mode). These three curves correspond to

the RG potentials at the scales k/Λ = 0.7, k/Λ = 0.4, and k/Λ = 0.12 respectively. For all panels,

m2
1,Λ = −0.005Λ2, λ11,Λ = 0.02Λ, λ22,Λ = 0. In the upper left, the lower left, and the lower right

panel, the dotted curves correspond to m2
2,Λ = 0, λ12,Λ = 0 (and therefore coincide with solutions

for the Ising model). In the upper left and upper right panel, the dashed curves are for m2
2,Λ = 0,

λ12,Λ = 8Λ. In the lower left panel, the dot-dashed curves are for m2
2,Λ = 0.5Λ2 and λ12,Λ = 8Λ.

In the lower right panel, the dot-dashed curves are for m2
2,Λ = 8Λ2 and λ12,Λ = 8Λ.
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6.8 Toy models

6.8.1 Toy model involving vector and axial-vector mesons defining a

novel universality class

In this section we introduce the most general parity and SU(2)V ×SU(2)A symmetric potential

for the representation [3,1]⊕[1,3] which involves six real field components. In models concerned

with vector meson dominance these six fields have been identified with the rho and the a1 triplets,

which are chiral partners. Alternatively, we could reinterpret one of the vectors as the pion field,

yielding a toy model for the pion and, say, the rho meson. The six fields, denoted by ρ⃗µ and a⃗µ1 ,

transform as stated in Eqs. (A.27) and (A.28), respectively. In the framework of our toy model

we neglect the Lorentz indices. Whereas these mesons play for example an important role for the

phase transition in models with hidden local symmetry [147, 148], we do not want to overrate

the physical implications of our toy model. We regard it as a first step towards a more accurate

treatment and we merely report on the infrared stable fixed point found under the RG flow. Its

existence is made possible since only the combination ρ⃗2 + a⃗21 is invariant, whereas the individual

terms ρ⃗2 and a⃗21, respectively, are not. Including in addition the omega and the f1 mesons by

using a [2, 2̄] ⊕ [2̄,2]-representation, we found no stable IR-fixed point due to the additional

invariants ω2 and f2
1 .

Using a similar algorithm to the one provided in App. B.2, we derived the following most general

potential (up to quartic order) invariant under SU(2)V × SU(2)A in the representation [3,1]⊕[1,3] and under parity:

U = r(ρ⃗2 + a⃗21) + g1(ρ⃗2 + a⃗21)2 + g2(ρ⃗ ⋅ a⃗1)2 , (6.84)

where ρ⃗ ≡ (ρ1, ρ2, ρ3)T , and a⃗1 ≡ (a1, a2, a3)T . Using the notation of Tab. II in Ref. [42], we can

rewrite the potential as

U = rI0 + g1I20 + g2(I(4)2 + 2I
(4)
3 ) ,

which is not listed in Ref. [42] as a Landau potential exhibiting a stable IR fixed point (apparently

because it is not associated with a representation of a point group).

We obtain the following flow equations for the rescaled couplings:

k
∂r̄k

∂k
= −2r̄k − 2KD

16ḡ1,k + ḡ2,k(1 + 2r̄k)2 , (6.85)

k
∂ḡ1,k

∂k
= (D − 4)ḡ1,k + 4KD

56ḡ21,k + 4ḡ2,kḡ1,k + ḡ
2
2,k(1 + 2r̄k)3 , (6.86)

k
∂ḡ2,k

∂k
= (D − 4)ḡ2,k + 8KD

(24ḡ1,k + 5ḡ2,k) ḡ2,k(1 + 2r̄k)3 . (6.87)

Apart from the IR-unstable Gaussian fixed point we find three different fixed points. The O(6)
fixed point

(r̄ = −0.0625, ḡ1 = 0.177103, ḡ2 = 0)
is associated with stability-matrix eigenvalues

{−1.74125,1.31268,−0.142857} ,
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which indicate its IR instability.

The second fixed point,

(r̄ = −0.0510204, ḡ1 = 0.121809, ḡ2 = 0.487235) ,
is associated with stability-matrix eigenvalues

{−1.78985,1.24439,−0.0909091} ,
and is hence IR unstable, too. Note that for this fixed point ḡ2 = 4ḡ1, which characterizes its

symmetry.

The third fixed point,

(r̄ = −0.0584416, ḡ1 = 0.149947, ḡ2 = 0.299893) ,
is IR stable as one infers from its stability-matrix eigenvalues

{−1.75847,1.28788,0.0588235} .
Note that the symmetry of the IR-stable fixed point is characterized by ḡ2 = 2ḡ1.

6.8.2 Toy model involving vector mesons, axial-vector mesons, and

pions

In this section we extend the toy model discussed in Sec. 6.8.1 by including in addition the three

pions, which completes the particle content taken into account in Refs. [147, 148]. Again we

neglect the Lorentz indices of the vector and axial-vector mesons. From the local isomorphism

SU(2) ≃ SO(3) we conclude that

SU(2)L × SU(2)R ≃ SO(3)L × SO(3)R . (6.88)

The most general SO(3)-invariant polynomial coincides with the most general O(3)-invariant
polynomial. Accordingly, also the most general polynomial invariant under SO(3)L ⊗SO(3)R is

the same as that invariant under O(3)L⊗O(3)R, which, taking both of the SO(3) groups in the

product (6.88) in the fundamental representation, is given (up to quartic order) by [88]

U = rTrΦTΦ + g1(TrΦTΦ)2 + g2Tr(ΦTΦ)2 , (6.89)

where Φ is a real-valued 3 × 3 matrix,

Φ =
⎛⎜⎜⎝
φ1 φ2 φ3

φ4 φ5 φ6

φ7 φ8 φ9

⎞⎟⎟⎠ , (6.90)

which transforms under (S)O(3)L × (S)O(3)R according to

Φ→ LΦR , (6.91)
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where L and R, respectively, denote arbitrary elements of (S)O(3) in the fundamental represen-

tation, L ∈ (S)O(3) and R ∈ (S)O(3).
We checked that the potential (6.89) can indeed be rewritten as [14]

U = r
9

∑
i=1
φ2i + λ1 ( 9

∑
i=1
φ2i )

2

+ λ2 [(ρ⃗ × a⃗1)2 + (π⃗ × a⃗1)2 + (π⃗ × ρ⃗)2] , (6.92)

where the vectors

π⃗ ≡ (φ1, φ2, φ3)T , ρ⃗ ≡ (φ4, φ5, φ6)T , a⃗1 ≡ (φ7, φ8, φ9)T , (6.93)

can be interpreted as the pion, the rho meson, and the a1 meson fields, respectively.

We obtain the following flow equations for the rescaled couplings:

k
∂r̄k

∂k
= −2r̄k − 4KD

11λ̄1,k + 2λ̄2,k(1 + 2r̄k)2 , (6.94)

k
∂λ̄1,k

∂k
= (D − 4)λ̄1,k + 16KD

17λ̄21,k + 4λ̄2,kλ̄1,k + λ̄
2
2,k(1 + 2r̄k)3 , (6.95)

k
∂λ̄2,k

∂k
= (D − 4)λ̄2,k + 16KD

(12λ̄1,k + λ̄2,k) λ̄2,k(1 + 2r̄k)3 . (6.96)

Apart from two complex-valued fixed points (which have to be rejected in our context) and the

IR-unstable Gaussian fixed point, the only nontrivial fixed point is the O(9) fixed point

(r̄ = −0.06962, λ̄1 = 0.13884, λ̄2 = 0) ,
for which the stability-matrix eigenvalues

{−1.71096,1.35802,−0.294118}
indicate its IR instability (in consistence with Ref. [88]). We note that the equivalence of our

flow equations with those inferred from the one-loop ǫ-expansion in Ref. [88] can be shown by

appropriately redefining the coupling constants and setting r̄k = 0.

6.8.3 Novel IR-stable fixed point for an eight-component order param-

eter

Apart from the U(2)A×U(2)V model (see Ref. [33] and Sec. 6.5) and the SU(2)A×U(2)V model

(at inconclusive truncation order, however), both in the [2, 2̄]⊕ [2̄,2]-representation, we are not

aware of other Landau potentials involving an eight-component order parameter and exhibiting

an IR-stable fixed point. Also a systematic investigation for point groups did not reveal any

[44]. We therefore report on a novel universality class associated with an eight-component order

parameter.

Extending the vectors involved in the potential (6.84) to general N -component vectors, ρ⃗ → φ⃗ ≡(φ1, . . . , φN )T , a⃗1 → ϕ⃗ ≡ (ϕ1, . . . , ϕN )T , we obtain a Landau potential involving a 2N -component

order parameter,

U = r(φ⃗2 + ϕ⃗2) + g1(φ⃗2 + ϕ⃗2)2 + g2(φ⃗ ⋅ ϕ⃗)2 + g3(φ⃗2 + ϕ⃗2)3 + g4(φ⃗2 + ϕ⃗2)(φ⃗ ⋅ ϕ⃗)2 , (6.97)
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where we also included higher-order terms since marginal eigenvalues occur at quartic order.

In the following we focus on the case N = 4. Before considering the general case, one should

first clarify to which centralizer the potential corresponds in order to decide about its physical

relevance. For N = 4 we obtain the following flow equations for the rescaled couplings:

k ∂r̄k
∂k
= −2r̄k − 2KD

20ḡ1,k+ḡ2,k(1+2r̄k)2 , (6.98)

k
∂ḡ1,k
∂k
= (D − 4)ḡ1,k + 2KD

128ḡ2
1,k+8ḡ2,k ḡ1,k+2ḡ

2
2,k−(2r̄k+1)(36ḡ3,k+ḡ4,k)(1+2r̄k)3 , (6.99)

k
∂ḡ2,k
∂k
= (D − 4)ḡ2,k + 16KD

3ḡ2,k(4ḡ1,k+ḡ2,k)−2ḡ4,k(1+2r̄k)(1+2r̄k)3 , (6.100)

k
∂ḡ3,k
∂k
= 8K3 ( ḡ2,k(3ḡ3,k+ḡ4,k)+2ḡ1,k(66ḡ3,k+ḡ4,k)(1+2r̄k)3 −

272ḡ3
1,k+12ḡ2,k ḡ

2
1,k+6ḡ

2
2,k ḡ1,k+ḡ

3
2,k(1+2r̄k)4 ) , (6.101)

k
∂ḡ4,k
∂k
= 8K3 ( 72ḡ2,k ḡ3,k+92ḡ1,k ḡ4,k+25ḡ2,k ḡ4,k(1+2r̄k)3 −

9ḡ2,k(4ḡ1,k+ḡ2,k)(16ḡ1,k+ḡ2,k)(1+2r̄k)4 ) . (6.102)

Apart from several IR-unstable fixed points, we find the following IR-stable fixed point:

(r̄ = −0.10976, ḡ1 = 0.16497, ḡ2 = 0.65987, ḡ3 = 0.07749, ḡ4 = 0.92983) .
The associated stability-matrix eigenvalues read

{12.9187,6.53046,1.33533,0.344539,−1.50401} .
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Chapter 7

Effective Models for QCD at

nonzero temperature

7.1 General remarks

As we have pointed out earlier, a study in the framework of dimensional reduction is limited in

several respects calling for a finite-temperature approach where temperature is a tunable variable

(see the discussion in Secs. 4.3.2 and 4.3.1, respectively). A fixed-point study, in particular, can

merely either rule out or confirm the possible existence of a second-order phase transition and

predict its universality class. As we observed in our fixed-point studies, however, several predic-

tions remain inconclusive and require a crosscheck from a complementary approach. Extending

the study to finite temperature is a first step towards clarification, which remains incomplete up

to date. Further investigations are required particularly concerning the truncation dependence

of results.

We successively improved our numerical routines by comparing to results stated in the literature.

Having started with simple differential equations, we proceeded with FRG-flow equations. For

example, we reproduced Fig. 5.3 of Ref. [149]. We also reproduced the results for the quark-

meson model of Ref. [150], which we present in Sec. 7.3. We are currently crosschecking our

numerical results for the linear sigma model (see Sec. 7.2) with those of other collaborations.

First comparison of our routines provided in App. C with an independent code has been success-

ful for certain initial values. We hope that this will be also the case for the rest of our results.

We emphasize, however, the preliminary character of the numerical studies presented in section

7.2.

7.2 Linear sigma model

In this chapter we discuss preliminary numerical results for the linear sigma model at nonzero

temperature in presence (SU(2)A×U(2)V ) and in absence (U(2)A×U(2)V ) of the axial anomaly.

The FRG flow is inferred from Eq. (4.21) and is hence of nonperturbative nature. The dimen-

sionally reduced theories are discussed in Secs. 6.6 and 6.5, respectively. In the presence of the
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anomaly we use the truncation

Up = V (ϕ1) +W (ϕ1)ϕ2 +A(ϕ1)ϕ2
2 +B(ϕ1)γ . (7.1)

where the fields are defined in Eq. (6.44). The functions V (ϕ1), W (ϕ1), A(ϕ1), and B(ϕ1),
respectively, will be fixed in the UV such that certain physical values are produced in the IR.

We note that the functions are therefore not hampered by any expansion in the variable ϕ1.

Since only the sigma field, σ, is expected to acquire a nonvanishing vacuum expectation value,

the expansion in ϕ2 and γ, respectively, is reasonable. We do not claim, however, that the

truncation order is sufficient. Further investigations are desirable. In the absence of the anomaly

we use the truncation (compare with Ref. [87])

Ua = V (ϕ) +W (ϕ)ξ , (7.2)

where the fields are defined in Eq. (6.42). Again, V (ϕ) and W (ϕ) are arbitrary functions which

will be appropriately fitted in the UV.

Since we work in terms of the invariants defined in Eqs. (6.44) and (6.42), respectively, we have

to apply the chain rule in order to bring the mass matrix (4.20), entering the flow equation via

its eigenvalues, into a form suited for our numerical approach. For example,

∂Ua

∂φi
= (V ′(ϕ) +W ′(ϕ)ξ) ∂ϕ

∂φi
+W (ϕ) ∂ξ

∂φi
,

and similar for the second derivative and for Up, respectively. As in Secs. 6.5 and 6.6, respectively,

we need to keep only some of the fields φi nonzero after having calculated the mass matrix. In

the absence of the anomaly we can for instance keep σ and a1, whereas in the presence of the

anomaly we can keep in addition η.

Our preliminary results in the presence of the anomaly can be summarized as follows. In the UV

we use functions of the form

Vk=Λ(ϕ1) = r(ϕ1 − φ
2
0)2 , Wk=Λ(ϕ1) =∑

n

wnϕ
n
1 , Ak=Λ(ϕ1) =∑

n

anϕ
n
1 , Bk=Λ(ϕ1) =∑

n

bnϕ
n
1 .

We investigate the scale evolution of Uk with k and evaluate the result in ϕ1-direction, i.e., at

ϕ2 = ξ = 0 (since only the sigma field is assumed to take a nonzero vacuum expectation value).

Note that we take account of ϕ2 ≠ 0 and ξ ≠ 0 during the evolution, of course. Whereas a local

maximum evolves near the origin under the evolution of the potential for some UV parameters,

we do not find one for others. This indicates that the phase transition (which occurs when tuning

the temperature T towards a critical value) is of first order for some UV parameters, whereas

it is of second order for others. As already mentioned, different UV parameters yield different

physical observables (in this case the meson masses and the pion decay constant) in the IR limit.

We checked that all the masses are positive semidefinite in the IR but we did not adjust them

to their physical values, yet, because we wanted to understand the variable order of the phase

transition first. In order to further investigate this issue we studied the evolution of the potential

for different values of φ0 and T . We stopped the integration at a certain k = k0 below which

the position of the nontrivial local minimum, φ0,k, does not change significantly anymore. For

each φ0 and T we adjusted r such that both local minima are at the same height in the IR limit,

Uk=k0
(φ = φ0,k0

) ≈ Uk=k0
(φ = 0). For simplicity we used a relatively small cutoff of Λ = 500
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MeV. Typical evolutions are shown for T = 30 MeV and varying φ0 in Figs. 7.1–7.5. In Fig. 7.1

we observe a pronounced local maximum which is characteristic for a first-order phase transi-

tion, and we find that the nontrivial minimum does not change significantly below k0 ∼ 2 MeV.

Decreasing φ0, in Figs. 7.2 and 7.3 we observe that the local maximum becomes less and less

pronounced. Furthermore, φ0,k0
decreases and settles for smaller k0. Finally, for φ0 ∼ 174 − 179

MeV we reach the restored phase (see Figs. 7.3 and 7.5). Interestingly, for φ0 < 179 MeV we can

obtain an evolution where no local maximum occurs by choosing r only a little bit larger than

described above. In this way it seems that we can turn an evolution characteristic for a first-order

transition (Fig. 7.3) into one characteristic of a second-order transition (Fig. 7.4). We note that

we were not able to reach lower values than k ∼ 6.36 MeV in Fig. 7.4 due to numerical problems.

Accordingly, we cannot be sure that the potential becomes flat in the IR limit. This is the case,

however, for the parameter set in Fig. 7.6 where we show a second-order (or extremely weak

first-order) transition occuring at roughly Tc ∼ 125 MeV. We note that such transitions might

occur only for unphysical ratios Tc/Λ > 1/71. More elaborated parameter studies are necessary

to decide for which regime of UV values the phase transition is of second-order or, respectively,

a very weak first-order.
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Figure 7.1: SU(2)A × U(2)V -model. Wk=Λ = 10, Ak=Λ = 0, Bk=Λ = 0.8. Λ = 500 MeV. T = 30

MeV, φ0 = 191 MeV, r = 0.0125594. Evolution from k = 6.7 MeV to k = 0.7 MeV. ∆k = 1 MeV

between each line.

If we had found an IR-stable fixed point associated to physical masses in the dimensionally re-

duced theory, the occurence of a second-order phase transition at finite temperature would be

easily understood as follows. UV parameters yielding a first-order transition should be associ-

1We thank Mario Mitter, Jan M. Pawlowski, and Bernd-Jochen Schaefer for discussions about this issue, and

for pointing out the existence of a maximal temperature above which the predictions of the dimensionally reduced

theory could fail.
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Figure 7.2: SU(2)A × U(2)V -model. Wk=Λ = 10, Ak=Λ = 0, Bk=Λ = 0.8. Λ = 500 MeV, T = 30

MeV, φ0 = 183 MeV, r = 0.0139854. Evolution from k = 6.43 MeV to k = 0.43 MeV. ∆k = 1 MeV

between each line.
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Figure 7.3: SU(2)A × U(2)V -model. Wk=Λ = 10, Ak=Λ = 0, Bk=Λ = 0.8. Λ = 500 MeV, T = 30

MeV, φ0 = 179 MeV, r = 0.0147909. Evolution from k = 6.26 MeV to k = 0.26 MeV. ∆k = 1 MeV

between each line.
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Figure 7.4: SU(2)A × U(2)V -model. Wk=Λ = 10, Ak=Λ = 0, Bk=Λ = 0.8. Λ = 500 MeV, T = 30

MeV, φ0 = 179 MeV, r = 1/60. Curves correspond to k = 70 MeV, k = 9 MeV, k = 8 MeV, k = 7
MeV, and k = 6.36 MeV, respectively

0 2 4 6 8 10
-5

-4

-3

-2

-1

0

1

2

j1

U
-

U
H0
L

Figure 7.5: SU(2)A × U(2)V -model. Wk=Λ = 10, Ak=Λ = 0, Bk=Λ = 0.8. Λ = 500 MeV, T = 30

MeV, φ0 = 174 MeV, r = 0.0159019. Curves correspond to k = 50 MeV, k = 30 MeV, k = 10 MeV,

k = 8 MeV, k = 2.28 MeV, and k = 0.28 MeV, respectively
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ated with UV parameters in the dimensionally reduced theory which do not lie in the basin of

attraction for the IR-stable fixed point. Since we were not able to confirm the existence of such

a physically stable IR fixed point (see Sec. 6.6), the possibility of a second-order transition is

somehow unexpected.

Figure 7.6: SU(2)A×U(2)V -model. Wk=Λ = 12992, Ak=Λ = 0, Bk=Λ = 0.2. Λ = 500 MeV, φ0 = 110
MeV, r = 1/3. From left to right, top to bottom: T = 0.1 MeV, evolution from k = 52.3 MeV to

k = 37.3 MeV; T = 10 MeV, evolution from k = 24.45 MeV to 9.45 MeV; T = 50 MeV, evolution

from k = 19.2 MeV to 4.2 MeV; T = 100 MeV, evolution from k = 18 MeV to 3 MeV; T = 120
MeV, evolution from k = 24.92 MeV to 9.92 MeV; T = 125 MeV, evolution from k = 18.6 MeV to

3.6 MeV. ∆k = 3 MeV between each line.

Before dialing up the cutoff and fitting the UV potential to physical observables we would like to

clarify the above issue. For this purpose we went one step back to the U(2)A ×U(2)V -model. A

similar situation is observed in this case (we refrain from showing the preliminary results here).

Further work is in progress. Finally, we want to point out the strategy2 for further investigations

in presence of the anomaly. We plan to fit our UV parameters such that at T = 0 the nonstrange

contributions to the meson masses (with focus on eta and sigma), as well as the pion decay con-

stant in vacuum, are reproduced in the IR. From this one can determine the instanton density

2We thank Rob Pisarski for pointing out the possibility of fitting to the instanton density.
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in dependence of T , the quark masses, and the instanton scale size ρ [compare with Eq. (3.8)].

Since the anomaly strength is proportional to the instanton density, one can now use this as

input in the UV for studies at nonzero temperature.

7.3 Quark-meson model

In Sec. 4.4 we discussed how the quark-meson model, defined in Eq. (4.47), arises as an effective

theory for QCD. We focus on the two-flavor case, take into account the sigma meson and the

pions, and assume three colors. Neglecting the flow for the Yukawa coupling g and assuming

that only the sigma field acquires a nonzero vacuum expectation value, the derivation of a flow

equation within the proper-time RG approach has been discussed in Ref. [150]. The result reads

∂U

∂k
= k4

12π2
[ 3

Eπ

coth(Eπ

2T
) + 1

Eσ

coth(Eσ

2T
) − 12

Eq

{tanh(Eq − µ

2T
) + tanh(Eq + µ

2T
)}] , (7.3)

where Eπ =
√
k2 + 2U ′(ϕ), the prime denotes the derivative with respect to ϕ = σ2 + π⃗2, Eσ =√

k2 + 2U ′(ϕ) + 4ϕU ′′(ϕ), and Eq =
√
k2 + g2ϕ. It turns out that the result can be obtained as

well using the FRG method (for details we refer to Ref. [151]).

The UV potential, Uk=Λ, should be chosen such that one obtains the following physical values

in the IR limit k = 0. The position of the minimum in the IR and for T = µ = 0 shall be

equal to the pion decay constant in the vacuum,
√
ϕ0 = fπ ∼ 90 MeV. The mass of the sigma

field in the IR and for T = µ = 0 shall be equal to the vacuum mass of the sigma particle,

Mσ =
√
2U ′(ϕ0) + 4ϕU ′′(ϕ0) ∼ 500 MeV. The Yukawa coupling shall be chosen such that one

obtains a meaningful constituent quark mass, mq = g√ϕ0. Consistent with Ref. [150] we choose

Uk=Λ = 5
2
ϕ2, Λ = 500 MeV, and g = 3.2. In Fig. 7.7 we show the evolution of the potential for

T = µ = 0 in the regime where the position of the minimum settles. The evolution can be stopped

as soon as the position of the minimum does not change anymore. We infer from the potential at

Figure 7.7: T = 0 MeV, µ = 0 MeV. Evolution from k = 60 MeV to k = 25 MeV. ∆k = 5 MeV

between each line.
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k = 25 MeV:
√
ϕ0 ∼ 85.5 MeV, Mσ ∼ 265 MeV, mq ∼ 273.5 MeV. The phase diagram as inferred

from the evolution at different values for T and µ has been presented in Fig. 1 of Ref. [150]. We

reproduced Figs. 3 and 4 of Ref. [150] using a similar routine to the ones provided in App. C.

Fig. 3 of Ref. [150] corresponds to our Fig. 7.9, whereas Fig. 4 of Ref. [150] corresponds to our

Figs. 7.11 and 7.13. In order to illustrate the evolution of the potential at larger k, we include

Figs. 7.8, 7.10, and 7.12, showing the regime 200 MeV> k > 60.

Figure 7.8: T = 6 MeV, µ = 254 MeV. Evolution from k = 200 MeV to k = 60 MeV. ∆k = 20 MeV

between each line.

Figure 7.9: T = 6 MeV, µ = 254 MeV. Lowest line k = 8 MeV, highest line k = 20 MeV, ∆k = 1
MeV between each line.
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Figure 7.10: T = 45.1 MeV, µ = 253.9 MeV. Evolution from k = 200 MeV to k = 60 MeV. ∆k = 20
MeV between each line.

Figure 7.11: T = 45.1 MeV, µ = 253.9 MeV. Lowest line k = 2 MeV, highest line k = 14 MeV,

∆k = 1 MeV between each line.
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Figure 7.12: T = 100 MeV, µ = 0 MeV. Evolution from k = 200 MeV to k = 60 MeV. ∆k = 20

MeV between each line.

Figure 7.13: T = 100 MeV, µ = 0 MeV. Lowest line k = 2 MeV, highest line k = 20 MeV, ∆k = 1
MeV between each line.
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Mit dem Wissen wächst der Zweifel

(Johann Wolfgang von Goethe)

Chapter 8

Conclusions and Outlook

With our work we address the question of which order the chiral phase transition of two-flavor

QCD is. The framework of our studies is that of effective models for the order parameter and the

functional renormalization group (FRG) method. A crucial ingredient substantiating the mean-

ing behind our approach is the universality hypothesis, the validity of which is therefore another

central topic of our thesis. In this context we systematically reinvestigated a large amount of

most general Landau potentials invariant under certain symmetries from the FRG approach in

local-potential approximation (LPA), which enabled us to obtain a deeper understanding of the

method and to point out several limitations of effective approaches towards QCD.

Whereas there is not much room for speculation about the symmetry of the effective theory

for the order parameter (which necessarily corresponds to a subgroup G ⊆ U(2)A ×U(2)V ), the
identification of the components of the order parameter with the relevant mesonic degrees of

freedom is highly nontrivial. This choice, which corresponds to the choice of the representation

of G, cannot be definitely inferred from QCD at the moment and has to be made a priori. It

is, however, guided by observations in collider experiments, lattice calculations, and plausibility

considerations. Nevertheless, it is indispensable to test out several possible choices. A well-known

choice consists in assigning the pion and its chiral partner, the sigma meson, to the O(4) repre-
sentation of SU(2)A×SU(2)V , which allows for a second-order phase transition. This scenario is

meaningful only if all other mesons remain heavy near the critical temperature. Considering the

two-flavor case this requires the axial anomaly to be sufficiently strong. At intermediate anomaly

strength, taking into account the eta and the a0 meson in addition, our FRG fixed-point study

of the dimensionally reduced theory for the order parameter cannot confirm the existence of a

second-order phase transition. Our results favor a fluctuation-induced first-order scenario. In

general, the existence of a second-order phase transition is unlikely due to the existence of two

quadratic invariants, which rule out a second-order phase transition at mean-field level. There

is, however, still a hypothetical chance that the unphysical IR-stable SU(2)A×U(2)V -symmetric

fixed point, encountered in the truncation up to naive scaling dimension six, could become phys-

ical at higher truncation order. This leads us to our (preliminary) FRG studies at nonzero

temperature, which are dicussed next.

Whereas a fixed-point analysis of the dimensionally reduced theory (where temperature is not an

explicit parameter anymore) is of great value to predict or to rule out, respectively, a second-order
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chiral phase transition, it is not practical to judge the strength of a first-order chiral phase tran-

sition since the latter depends on the observables (meson masses and the pion decay constant in

vacuum) to which one has to fit at zero temperature. Our (preliminary) FRG studies at nonzero

temperature allow for both, either an extremely weak first-order transition, or a pronounced

one, respectively, depending on the chosen value for the cutoff and on the above mentioned

parameters. There is even evidence for a second-order phase transition for certain parameter

choices, but it might be as well an extremely weak first-order phase transition. It is not clear,

yet, if these parameter values are consistent with the region of validity for the dimensionally

reduced theory, and if they are in some way related to the occurence of the unphysical IR-stable

SU(2)A ×U(2)V -symmetric fixed point. Before we can draw reliable conclusions further investi-

gations are required.

Very recently (end of September 2013) the existence of a U(2)A × U(2)V -symmetric stable IR

fixed point (associated with an anomalous dimension η ∼ 0.12) has been stated in the literature by

Pelissetto and Vicari. This result is very surprising since the first-order nature of the two-flavor

case has been widely accepted and verified. Apparently, one- and higher-loop ǫ-expansions failed

because for D = 3 (ǫ = 1) only fixed points can be found which also exist near D = 4 (small ǫ). The

RG approach of the above mentioned authors circumvents the ǫ-expansion and works directly

in D = 3. Inspired by their important finding, we performed an FRG calculation taking into

account invariants up to naive scaling dimension ten. At sixth order we find two U(2)A×U(2)V -
symmetric fixed points, and a single U(2)A ×U(2)V -symmetric fixed point at eighth and tenth

order, respectively. The stability analysis remains inconclusive because the Gaussian fixed point

aquires marginal eigenvalues. We believe that this is different beyond the local-potential approx-

imation which assumes η = 0. Investigations in this direction are in progress.

In any case, the current results point out the limitations of both the local-potential approximation

and the ǫ-expansion, on which most fixed-point studies (and investigations of the universality

hypothesis) are based. In case of a sufficiently large value for the anomalous dimension the fixed-

point structure can change significantly, and with it the conclusion whether a second-order phase

transition can exist and to which universality class it belongs. Systematic investigations of the

fixed-point structure for models with N ≤ 8 order-parameter components were performed in the

literature in the framework of the ǫ-expansion. We were able to verify most of their predictions

from FRG in the local-potential approximation. Some of them, however, are questioned by the

occurence of marginal stability-matrix eigenvalues. The former predictions are reliable, if η is suf-

ficiently small in the corresponding experiment. The latter ones call for additional investigations

taking η properly into account. Such studies would also be relevant to refine the current version

of the universality hypothesis. Apart from (possible) violations reported in the literature, we

presented our own studies which give cause for serious concern. We plan further investigations

in this direction.

In our conclusions concerning the linear sigma model corresponding to the representation [2̄,2]⊕[2, 2̄] we only took into account the lightest scalar and pseudoscalar mesons, so far. We also in-

vestigated, however, the [3,1]⊕[1,3] representation as well as the SO(3)⊗SO(3) representation.
In the first case we found an IR-stable fixed point (defining, to our knowledge, a new universality

class) indicating the existence of a second-order phase transition, whereas in the second case the

phase transition is predicted to be of first order. Neglecting the Lorentz indices of the vector and
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axial-vector mesons in the framework of a toy model, we can consider the following scenarios. If

the rho and the a1 meson fields are the components of the order parameter we can assign them

to the [3,1]⊕ [1,3] representation concluding that the phase transition is of second order. This

scenario is very unlikely since the pion as the (approximate) Goldstone boson should be part of

the order-parameter field. Alternatively one could exchange one of the mesons with the pion.

One can simultaneously account for all three mesons (which play the central role in several stud-

ies featuring hidden local symmetry) by assigning them to the SO(3) ⊗ SO(3) representation.
That is, if the pion, the rho, and the a1 meson fields are components of the order parameter

the phase transition is of first order. Although we neglected the Lorentz indices, our results can

be regarded as a first estimate and hopefully serve as a guide for more refined studies. We also

emphasize that the new [3,1]⊕[1,3] universality class might be relevant in other areas of physics.

We also pointed out that the coupling between the order parameter and other degrees of freedom

can affect the order of the phase transition. In QCD the inclusion of gauge-field fluctuations

should lead to a fluctuation-induced first-order transition. It would be therefore interesting to

investigate the linear sigma model coupled to gauge fields from FRG. Fermions, on the other

hand, should not affect universality since their lowest Matsubara mode acts like a thermal mass

rendering them heavy.

In total, the existence of two new universality classes is proposed in this thesis: (i) the class char-

acterized by the [3,1]⊕ [1,3] representation of SU(2)A ×SU(2)V , (ii) a class (or maybe classes)

of yet undetermined symmetry arising from a generalization of the Landau potential associated

to the first mentioned class. Furthermore we discussed the existence of the U(2)A ×U(2)V uni-

versality class in the framework of the FRG method. Speculations concerning the existence of a

SU(2)A ×U(2)V universality class are inconclusive, yet.

Furthermore, we developed a practical brute-force algorithm for the systematic construction of all

linearly independent polynomial invariants of a given order using Mathematica. The knowledge

of such complete sets is of crucial importance for model building and RG fixed-point studies.
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Appendix A

Group-theoretical details

In this appendix we outline our understanding of certain group-theoretical issues relevant for our

work.

A.1 Aspects of representation theory

In the following we summarize certain aspects of representation theory as inferred from Refs. [152,

153]. In general, for a group G one can distinguish the following kinds of matrix representations

Γ(G) involvingN order-parameter components Φi ∈ R. In the following, summation over identical

indices is implied.

� A vector representation is given by p×pmatrices acting on the carrier space ϕ⋅ = (ϕ1, . . . , ϕp)T
as ϕ′i = U i

jϕ
j . Short: ϕ′⋅ = Uϕ⋅. By a tiny upper (lower) dot we indicate column (row)

tuples involving components with upper (lower) indices. Note that the matrices form a

matrix representation which acts on vectors and is therefore called vector representation.

In general, U depends on a set of parameters α⃗, and the components ϕi consist of alge-

braic combinations of the order-parameter components Φk. For faithful representations of

continuous groups, for example, the matrices are in one-to-one correspondence with the

(infinite set of) group elements, so that α⃗ is a continuous variable unambiguously labeling

the group elements. Rotations in two-dimensional space, for instance, can be described by

a 2 × 2-matrix U(α) involving an angle α, acting on a two-dimensional vector (x, y)T ,
⎛⎝x
′

y′
⎞⎠ = ⎛⎝cosα − sinα

sinα cosα

⎞⎠⎛⎝xy⎞⎠ , (A.1)

forming a faithful representation of the group O(2). For finite representations of finite

groups, on the other hand, the parameters are not continuous. Regarding the ambiguous

dependence of the ϕi on the components of physical space (here the spatial coordinates)

consider for example the equivalent representation

⎛⎝x
′ + y′

x′ − y′
⎞⎠ = ⎛⎝ cosα sinα

− sinα cosα

⎞⎠⎛⎝x + yx − y

⎞⎠ . (A.2)
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Equivalent representations are related by a change of basis, i.e., a similarity transformation,

and they are usually defined to be identical. Inequivalent representations are given for

example by

⎛⎜⎜⎝
x′

y′

z′

⎞⎟⎟⎠ =
⎛⎜⎜⎝
cosα − sinα 0

sinα cosα 0

0 0 1

⎞⎟⎟⎠
⎛⎜⎜⎝
x

y

z

⎞⎟⎟⎠ (A.3)

and

⎛⎜⎜⎝
x′ + i y′

z′

x′ − i y′

⎞⎟⎟⎠ =
⎛⎜⎜⎝
eiα 0 0

0 1 0

0 0 e− iα

⎞⎟⎟⎠
⎛⎜⎜⎝
x + iy

z

x − iy

⎞⎟⎟⎠ , (A.4)

respectively.

If ϕi ∈ C the matrices are usually also complex-valued and one has a complex vector

representation. Then one obtains another representation by taking the complex conjugate

of the above equation, i.e., ϕ′i∗ = (U i
j)∗ϕj∗ = (U �)j

i
ϕj∗. By convention we can distinguish

between upper (covariant) indices and lower (contravariant) indices defining ϕj ≡ ϕj∗.

Accordingly, ϕ′i = (U �)j
i
ϕj . Short: (ϕ′⋅)� = (ϕ⋅)�U �, which can be rewritten as ϕ

′

⋅
= ϕ⋅U �

denoting ϕ⋅ = (ϕ1, . . . , ϕp). The matrices U � define the conjugate vector representation

associated with the carrier space ϕ⋅.

� Tensor representations can be constructed by forming outer tensor products,

ϕi1⋯ϕiNϕ
j1⋯ϕjM ≡ ϕj1⋯jM

i1⋯iN
,

which are consequently tensors transforming as

ϕ′
j1⋯jM
i1⋯iN

= (U �)k1

i1
⋯ (U �)kN

iN
U

j1
l1
⋯U

jM
lM
ϕl1⋯lM
k1⋯kN

. (A.5)

We note that Eq. (A.5) can be rewritten in terms of the Kronecker product ⊗ defined for

matrices. Consider for example a transformation of the form

c′ij = AikBjlckl . (A.6)

Eq. (A.6) is equivalent to each of the following relations. Denoting

A ≡ ⎛⎝A11 A12

A21 A22

⎞⎠ and B ≡ ⎛⎝B11 B12

B21 B22

⎞⎠ , (A.7)

we can rewrite

⎛⎝c
′

1

c′2

⎞⎠⊗ ⎛⎝c
′

3

c′4

⎞⎠ = A⊗B ⎛⎝c1c2
⎞⎠⊗ ⎛⎝c3c4

⎞⎠ , (A.8)

where we introduced components ci via

⎛⎝c1c2
⎞⎠⊗ ⎛⎝c3c4

⎞⎠ =
⎛⎜⎜⎜⎜⎜⎝

c1c3

c1c4

c2c3

c2c4

⎞⎟⎟⎟⎟⎟⎠
≡

⎛⎜⎜⎜⎜⎜⎝

c11

c12

c21

c22

⎞⎟⎟⎟⎟⎟⎠
. (A.9)
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Alternatively we can introduce the matrix

c ≡ ⎛⎝c11 c12

c21 c22

⎞⎠ (A.10)

and obtain

c′ = AcBT . (A.11)

Furthermore:

⎛⎝c
′

1

c′2

⎞⎠ = A⎛⎝c1c2
⎞⎠ ,

⎛⎝c
′

3

c′4

⎞⎠ = B ⎛⎝c3c4
⎞⎠ . (A.12)

A.2 Chiral symmetry

Quark fields Ψ consist of components Ψc,f,σ carrying Nc color indices, Nf flavor indices, and

four Dirac indices. Accordingly they are Kronecker products of tuples in color space, ΨC , tuples

in flavor space (the subspace for Nf = 2 is called strong isospin), ΨF , and tuples in Dirac (i.e.,

spin) space, ΨD. Namely

Ψ = ΨC ⊗ΨF ⊗ΨD , (A.13)

where ⊗ denotes the Kronecker product. Quark fields ΨF belong to the irreducible representation[Nf ] of SU(Nf), antiquark fields Ψ̄F to the irreducible representation [N̄f ]. For Nf = 2, the

generators of SU(2) in the representation [2] are given by half the Pauli matrices. Hence, from

(3.4) we obtain the following infinitesimal transformations for this representation:

SU(2)V ∶ Ψ→ (1 + i 3

∑
a=1

αa
V

σa

2
)Ψ , (A.14)

SU(2)A ∶ Ψ→ (1 + iγ5 3

∑
a=1

αa
A

σa

2
)Ψ , (A.15)

U(1)V ∶ Ψ→ (1 + iα0
V

12

2
)Ψ , (A.16)

U(1)A ∶ Ψ→ (1 + iγ5α0
A

12

2
)Ψ . (A.17)

QCD describes mesons as quark-antiquark pairs. The mesonic fields can be identified with

currents

Ψ̄OΨ , (A.18)

where the operator O determines their transformation properties under spin (J), parity (P ),

strong isospin (I), and Lorentz symmetry (see Tab. A.1). We can derive the behavior of the

mesonic fields under infinitesimal continuous transformations (A.14)–(A.17) by plugging in the

respective transformation into the expressions of Tab. A.1 , keeping only terms up to linear order
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Table A.1:

JPC I O resonance abbreviation for Ψ̄OΨ transforms as Lorentz...

0++ 0 1 f0(500) or f0(1370) σ scalar

0++ 1 τ⃗ a0(980) or a0(1450) a⃗0 = (a1, a2, a3) scalar

0−+ 0 i γ5 η η pseudoscalar

0−(+) 1 i γ5τ⃗ π0, π± π⃗ = (π1, π2, π3) pseudoscalar

1−(−) 0 γµ ω(782) ωµ vector

1−(−) 1 γµτ⃗ ρ(770) ρ⃗µ = (ρµ1 , ρµ2 , ρµ3 ) vector

1+(+) 0 γµγ5 f1(1285) f
µ
1 axial vector

1+(+) 1 γµγ5τ⃗ a1(1260) a⃗
µ
1 = (aµ1,1, aµ1,2, aµ1,3) axial vector

in the angles αa
A,V , and rearranging matrices according to the relations

γµγ5 = −γ5γµ , (A.19)

[σi, σj] = σiσj − σjσi = 2 i 3

∑
k=1

ǫijkσk , i, j = 1,2,3 , (A.20)

{σi, σj} = σiσj + σjσi = 2δij12 , i, j = 1,2,3 . (A.21)

Also note that the gamma matrices commute with the Pauli matrices τ⃗ ≡ (σ1, σ2, σ3) for the trivial
reason that they act on distinct subspaces, Dirac space ΨD and flavor space ΨF , respectively,

As an example consider the invariance of the combination (Ψ̄τ⃗Ψ)2 − (Ψ̄τ⃗ γ5Ψ)2 under U(1)A
transformations (A.17). Denoting for simplicity α0

A
12

2
≡ αA, one obtains

(Ψ̄τ⃗Ψ)2 − (Ψ̄τ⃗γ5Ψ)2 U(1)AÐÐÐ→∑
i

[Ψ̄(1 + iαAγ5)τi(1 + iαAγ5)Ψ] [Ψ̄(1 + iαAγ5)τi(1 + iαAγ5)Ψ]
−∑

i

[Ψ̄(1 + iαAγ5)τiγ5(1 + iαAγ5)Ψ] [Ψ̄(1 + iαAγ5)τiγ5(1 + iαAγ5)Ψ]
=∑

i

[Ψ̄τiΨΨ̄τiΨ + Ψ̄τiΨΨ̄2 iαAγ5τiΨ + Ψ̄2 iαAγ5τiΨΨ̄τiΨ]
−∑

i

[Ψ̄τiγ5ΨΨ̄τiγ5Ψ + Ψ̄τiγ5ΨΨ̄2 iαAτiΨ + Ψ̄2 iαAτiΨΨ̄τiγ5Ψ]
= (Ψ̄τ⃗Ψ)2 − (Ψ̄τ⃗ γ5Ψ)2 , (A.22)

where terms of order α2
A have been dropped in the calculation. Similarly one derives the following

transformation rules under infinitesimal vector and axial-vector transformations:

σ
SU(2)VÐÐÐÐ→ σ , σ

SU(2)AÐÐÐÐ→ σ + α⃗A ⋅ π⃗ , σ
U(1)VÐÐÐ→ σ , σ

U(1)AÐÐÐ→ σ + α0
Aη , (A.23)

η
SU(2)VÐÐÐÐ→ η , η

SU(2)AÐÐÐÐ→ η − α⃗A ⋅ a⃗0 , η
U(1)VÐÐÐ→ η , η

U(1)AÐÐÐ→ η − α0
Aσ , (A.24)

π⃗
SU(2)VÐÐÐÐ→ π⃗ + α⃗V × π⃗ , π⃗

SU(2)AÐÐÐÐ→ π⃗ − α⃗Aσ , π⃗
U(1)VÐÐÐ→ π⃗ , π⃗

U(1)AÐÐÐ→ π⃗ − α0
Aa⃗0 , (A.25)

a⃗0
SU(2)VÐÐÐÐ→ a⃗0 + α⃗V × a⃗0 , a⃗0

SU(2)AÐÐÐÐ→ a⃗0 + α⃗Aη , a⃗0
U(1)VÐÐÐ→ a⃗0 , a⃗

U(1)AÐÐÐ→ a⃗ + α0
Aπ⃗ , (A.26)
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ρ⃗µ
SU(2)VÐÐÐÐ→ ρ⃗µ − α⃗V × ρ⃗

µ , ρ⃗µ
SU(2)AÐÐÐÐ→ ρ⃗µ − α⃗A × a⃗

µ
1 , ρ⃗µ

U(1)VÐÐÐ→ ρ⃗µ , ρ⃗µ
U(1)AÐÐÐ→ ρ⃗µ , (A.27)

a⃗
µ
1

SU(2)VÐÐÐÐ→ a⃗
µ
1 − α⃗V × a⃗

µ
1 , a⃗

µ
1

SU(2)AÐÐÐÐ→ a⃗
µ
1 − α⃗A × ρ⃗

µ , a⃗
µ
1

U(1)VÐÐÐ→ a⃗
µ
1 , a⃗

µ
1

U(1)AÐÐÐ→ a⃗
µ
1 , (A.28)

ωµ SU(2)VÐÐÐÐ→ ωµ , ωµ SU(2)AÐÐÐÐ→ ωµ , ωµ U(1)VÐÐÐ→ ωµ , ωµ U(1)AÐÐÐ→ ωµ , (A.29)

f
µ
1

SU(2)VÐÐÐÐ→ f
µ
1 , f

µ
1

SU(2)AÐÐÐÐ→ f
µ
1 , f

µ
1

U(1)VÐÐÐ→ f
µ
1 , f

µ
1

U(1)AÐÐÐ→ f
µ
1 . (A.30)

We proceed with further group-theoretical aspects. More details can be found for example in

Refs. [97, 141, 154, 155] Irreducible representations of SU(2) can be labeled by [2j + 1], where
j = 0, 1

2
,1, . . . , or in a different notation by [j]. Each of them is in one-to-one correspondence

with a multiplet consisting of 2j + 1 states, and the generators of SU(2) in the representation[2j + 1] are (generally complex-valued) (2j + 1) × (2j + 1)-matrices. Hence, the elements of the

group in the representation [2j + 1] are (generally complex-valued) (2j + 1) × (2j + 1)-matrices

acting on a carrier space of the representation, which is spanned by a (generally complex-valued)(2j + 1)-dimensional tuple. For instance, the carrier space of the representation [2] is given by

a two-dimensional, complex-valued spinor ψ = (u, d)T . Conjugate irreducible representations are
labeled by [2j + 1] (or [j], respectively). The carrier space of the representation [2] is given by

a two-dimensional, complex-valued spinor ψ� = (u∗, d∗).
Consistent with Eq. (A.5) the spinor ψ transforms according to

ψ′
i = U i

jψ
j , (A.31)

where ψ1 = u, ψ2 = d, and U is an arbitrary unitary 2 × 2 matrix with determinant 1, i.e.,

an arbitrary element of SU(2) in the fundamental representation. The spinor ψ� transforms

according to

ψ′i = (U �)j
i
ψj , (A.32)

where ψ1 = u∗, ψ2 = d∗. Accordingly, the outer tensor product ψj
i = ψiψ

j transforms as

ψ′
i

k = U i
j (U �)l

k
ψ
j
l , (A.33)

where ψ1
1 = uu∗, ψ1

2 = ud∗, ψ2
1 = du∗, ψ2

2 = dd∗. With Eq. (A.11), for A = B∗ = U , we can rewrite

the transformation (A.33) as

Ψ′ = UΨU � , (A.34)

where Ψ = ⎛⎝ψ
1
1 ψ1

2

ψ2
1 ψ2

2

⎞⎠, U = ⎛⎝U
1
1 U1

2

U2
1 U2

2

⎞⎠, and U � = ⎛⎝(U
�)1

1
(U �)1

2(U �)2
1
(U �)2

2

⎞⎠. Alternatively, according to

Eq. (A.8):

⎛⎝u
′

d′
⎞⎠⊗ ⎛⎝u

′∗

d′∗
⎞⎠ = ⎛⎝U

1
1 U1

2

U2
1 U2

2

⎞⎠⊗ ⎛⎝(U
1
1)∗ (U1

2)∗(U2
1)∗ (U2

2)∗
⎞⎠⎛⎝ud⎞⎠⊗ ⎛⎝u

∗

d∗
⎞⎠ . (A.35)

The above defined representation associated with Ψ relates to the fundamental representation of

O(4), which can seen as follows. All invariants under the transformation (A.34) which can be
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constructed from Ψ are given, up to quartic order in the fields, by√
TrΨ Ψ� = (Reu)2 + (Imu)2 + (Red)2 + (Imd)2 , (A.36)

TrΨ Ψ� =
√

Tr (Ψ Ψ�)2 = ((Reu)2 + (Imu)2 + (Red)2 + (Imd)2)2 . (A.37)

Identifying φ1 ≡ Reu, φ2 = Imu, φ3 = Re d, and φ4 = Imd, we recognize that the basic invariant

is that of O(4) in the fundamental representation, φ21 + φ
2
2 + φ

2
3 + φ

2
4.

Taking account of their flavor content, mesonic fields can be identified with linear combinations

of the components ψi
j as follows.

σ ≡ 1√
2
(uu∗ + dd∗) , a+0 ≡ ud∗ ≡

1√
2
(a1 − ia2) , (A.38)

a−0 ≡ du∗ ≡
1√
2
(a1 + ia2) , a00 ≡

1√
2
(uu∗ − dd∗) ≡ a3 , (A.39)

where σ denotes the sigma-meson field, and (a+0 , a−0 , a00) denotes the a0-meson field (a⃗0 = (a1, a2, a3)
denotes an equivalent parameterization).

η ≡ 1√
2
(uu∗ + dd∗) , π+ ≡ ud∗ ≡ 1√

2
(π1 − iπ2) , (A.40)

π− ≡ du∗ ≡ 1√
2
(π1 + iπ2) , π0 ≡ 1√

2
(uu∗ − dd∗) ≡ π3 , (A.41)

where η denotes the eta-meson field, and (π+, π−, π0) denotes the pion field (π⃗ = (π1, π2, π3)
denotes an equivalent parameterization).

ωµ ≡ 1√
2
(uu∗ + dd∗) , ρ+,µ ≡ ud∗ ≡ 1√

2
(ρµ1 − iρµ2 ) , (A.42)

ρ−,µ ≡ du∗ ≡ 1√
2
(ρµ1 + i ρµ2) , ρ0,µ ≡ 1√

2
(uu∗ − dd∗) ≡ ρµ3 , (A.43)

where ω denotes the omega-meson field, and (ρ+,µ, ρ−,µ, ρ0,µ) denotes the rho-meson field (ρ⃗µ =(ρµ1 , ρµ2 , ρµ3 ) denotes an equivalent parameterization).

f
µ
1 ≡

1√
2
(uu∗ + dd∗) , a

+,µ
1 ≡ ud∗ ≡ 1√

2
(aµ1,1 − iaµ1,2) , (A.44)

a
−,µ
1 ≡ du∗ ≡ 1√

2
(aµ1,1 + iaµ1,2) , a

0,µ
1 ≡ 1√

2
(uu∗ − dd∗) ≡ aµ1,3 , (A.45)

where fµ
1 denotes the f1-meson field, and (a+,µ1 , a

−,µ
1 , a

0,µ
1 ) denotes the a1-meson field (a⃗µ1 =(aµ1,1, aµ1,2, aµ1,3) denotes an equivalent parameterization).

Ψ can now be parameterized in terms of the mesonic fields. We can either use the scalar fields,

Ψ ≡ S ≡ 1√
2
(σ12 + a⃗0 ⋅ τ⃗) = 1√

2

⎛⎝ σ + a3 a1 − ia2

a1 + ia2 σ − a3

⎞⎠ , (A.46)

the pseudoscalar fields,

Ψ ≡ P ≡ 1√
2
(η12 + π⃗ ⋅ τ⃗) = 1√

2

⎛⎝ η + π3 π1 − iπ2

π1 + iπ2 η − π3

⎞⎠ , (A.47)
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the vector-meson fields,

Ψ ≡ V µ = 1√
2
(ωµ12 + ρ⃗

µ
⋅ τ⃗) , (A.48)

or the axial-vector meson fields,

Ψ ≡ Aµ = 1√
2
(fµ

1 12 + a⃗
µ
1 ⋅ τ⃗) . (A.49)

We can now consider a representation associated with the direct sum S ⊕ P , which can be

identified with

Φ ≡ S + iP , (A.50)

taking account of scalar and pseudoscalar mesons. From Eqs. (A.23)-(A.30) we can verify the

transformation laws for the different fields under axial and axial-vector transformations:

Φ
SU(2)VÐÐÐÐ→ UV ΦU�

V , Φ
SU(2)AÐÐÐÐ→ UAΦUA , Φ

U(1)VÐÐÐ→ U0
V ΦU

0
V

�

, Φ
U(1)AÐÐÐ→ U0

AΦUA
0 , (A.51)

Rµ SU(2)VÐÐÐÐ→ UVRµ
U
�

V , Lµ SU(2)VÐÐÐÐ→ UV Lµ
U
�

V , Rµ U(1)VÐÐÐ→ U0
VR

µ
U

0
V

�

, Lµ U(1)VÐÐÐ→ U0
V L

µ
U

0
V

�

,

(A.52)

Rµ SU(2)AÐÐÐÐ→ UARµ
U
�

A , Lµ SU(2)AÐÐÐÐ→ U�

AL
µ
UA , Rµ U(1)AÐÐÐ→ U0

AR
µ
U

0
A

�

, Lµ U(1)AÐÐÐ→ U0
A

�

Lµ
U

0
A ,

(A.53)

where we defined

Rµ = V µ
+Aµ , Lµ = V µ

−Aµ , (A.54)

UV /A = exp( i
2
α⃗V /A ⋅ τ⃗) ∈ SU(2) (A.55)

denotes an arbitrary element of SU(2) (in the fundamental representation), and

U
0
V /A = exp( i2αV /A12) ∈ U(1) (A.56)

denotes an arbitrary element of U(1) (in two-dimensional representation).

The representation associated with (A.50) is known as [2,2] ⊕ [2,2] representation of SU(2) ×
SU(2). Similarly, matrix fields associated with the three-dimensional irreducible representations[3,1] and [1,3], respectively, are for instance given by

V
µ = 1√

2
(ρ⃗µ ⋅ τ⃗) , Aµ = 1√

2
(a⃗µ1 ⋅ τ⃗) . (A.57)
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Appendix B

Brute-force algorithms for the

construction of invariants

In this appendix we provide Mathematica notebooks implementing a straightforward construc-

tion of polynomial invariants for a given order. As example for a finite group we choose the

representation Γ(5)(C4v), for which we already constructed the invariants from the projection

operator method in Sec. 5.2. As example for a continuous group we choose SU(2)A ×SU(2)V in

the [2̄,2]⊕ [2, 2̄] representation and consider infinitesimal SU(2)A transformations.

In contrast to output and comments, input is set in boldface.

B.1 Two-dimensional irreducible representation of C4v

M1 =
⎛⎝ 1 0

0 1

⎞⎠M1 =
⎛⎝ 1 0

0 1

⎞⎠M1 =
⎛⎝ 1 0

0 1

⎞⎠
M2 =

⎛⎝ 0 −1

1 0

⎞⎠M2 =
⎛⎝ 0 −1

1 0

⎞⎠M2 =
⎛⎝ 0 −1

1 0

⎞⎠
M3 =

⎛⎝ −1 0

0 −1

⎞⎠M3 =
⎛⎝ −1 0

0 −1

⎞⎠M3 =
⎛⎝ −1 0

0 −1

⎞⎠
M4 =

⎛⎝ 0 1

−1 0

⎞⎠M4 =
⎛⎝ 0 1

−1 0

⎞⎠M4 =
⎛⎝ 0 1

−1 0

⎞⎠
M5 =

⎛⎝ 1 0

0 −1

⎞⎠M5 =
⎛⎝ 1 0

0 −1

⎞⎠M5 =
⎛⎝ 1 0

0 −1

⎞⎠
M6 =

⎛⎝ −1 0

0 1

⎞⎠M6 =
⎛⎝ −1 0

0 1

⎞⎠M6 =
⎛⎝ −1 0

0 1

⎞⎠
M7 =

⎛⎝ 0 −1

−1 0

⎞⎠M7 =
⎛⎝ 0 −1

−1 0

⎞⎠M7 =
⎛⎝ 0 −1

−1 0

⎞⎠
M8 =

⎛⎝ 0 1

1 0

⎞⎠M8 =
⎛⎝ 0 1

1 0

⎞⎠M8 =
⎛⎝ 0 1

1 0

⎞⎠
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Do

⎡⎢⎢⎢⎢⎣vpi = Dot

⎡⎢⎢⎢⎢⎣Mi,
⎛⎝ x

y

⎞⎠
⎤⎥⎥⎥⎥⎦ ,{i,1,8}

⎤⎥⎥⎥⎥⎦Do

⎡⎢⎢⎢⎢⎣vpi = Dot

⎡⎢⎢⎢⎢⎣Mi,
⎛⎝ x

y

⎞⎠
⎤⎥⎥⎥⎥⎦ ,{i,1,8}

⎤⎥⎥⎥⎥⎦Do

⎡⎢⎢⎢⎢⎣vpi = Dot

⎡⎢⎢⎢⎢⎣Mi,
⎛⎝ x

y

⎞⎠
⎤⎥⎥⎥⎥⎦ ,{i,1,8}

⎤⎥⎥⎥⎥⎦
Do [xpi = vpi[[1,1]]; ypi = vpi[[2,1]],{i,1,8}]Do [xpi = vpi[[1,1]]; ypi = vpi[[2,1]],{i,1,8}]Do [xpi = vpi[[1,1]]; ypi = vpi[[2,1]],{i,1,8}]
sys =sys =sys =
Table [a ∗ x2 + b ∗ y2 + c ∗ x ∗ y == a ∗ xpi2 + b ∗ ypi2 + c ∗ xpi ∗ ypi,Table [a ∗ x2 + b ∗ y2 + c ∗ x ∗ y == a ∗ xpi2 + b ∗ ypi2 + c ∗ xpi ∗ ypi,Table [a ∗ x2 + b ∗ y2 + c ∗ x ∗ y == a ∗ xpi2 + b ∗ ypi2 + c ∗ xpi ∗ ypi,{i,1,8}]{i,1,8}]{i,1,8}]
SolveAlways[sys,{x, y}]SolveAlways[sys,{x, y}]SolveAlways[sys,{x, y}]{{a→ b, c→ 0}}
sys = Table [a ∗ x4 + b ∗ x3 ∗ y + c ∗ x2 ∗ y2 + d ∗ x ∗ y3 + f ∗ y4 ==sys = Table [a ∗ x4 + b ∗ x3 ∗ y + c ∗ x2 ∗ y2 + d ∗ x ∗ y3 + f ∗ y4 ==sys = Table [a ∗ x4 + b ∗ x3 ∗ y + c ∗ x2 ∗ y2 + d ∗ x ∗ y3 + f ∗ y4 ==
a ∗ xpi

4 + b ∗ xpi
3 ∗ ypi + c ∗ xpi

2 ∗ ypi
2 + d ∗ xpi ∗ ypi

3 + f ∗ ypi
4,a ∗ xpi

4 + b ∗ xpi
3 ∗ ypi + c ∗ xpi

2 ∗ ypi
2 + d ∗ xpi ∗ ypi

3 + f ∗ ypi
4,a ∗ xpi

4 + b ∗ xpi
3 ∗ ypi + c ∗ xpi

2 ∗ ypi
2 + d ∗ xpi ∗ ypi

3 + f ∗ ypi
4,{i,1,8}]{i,1,8}]{i,1,8}]

sol = SolveAlways[sys,{x, y}]sol = SolveAlways[sys,{x, y}]sol = SolveAlways[sys,{x, y}]{{b→ 0, d→ 0, a→ f}}
a ∗ x4 + b ∗ x3 ∗ y + c ∗ x2 ∗ y2 + d ∗ x ∗ y3 + f ∗ y4/.sola ∗ x4 + b ∗ x3 ∗ y + c ∗ x2 ∗ y2 + d ∗ x ∗ y3 + f ∗ y4/.sola ∗ x4 + b ∗ x3 ∗ y + c ∗ x2 ∗ y2 + d ∗ x ∗ y3 + f ∗ y4/.sol{fx4 + cx2y2 + fy4}

B.2 Two-flavor linear sigma model

● Infinitesimal SU(2)A transformations are given by:

σp = σ + α1 ∗ pi1 + α2 ∗ pi2 + α3 ∗ pi3σp = σ + α1 ∗ pi1 + α2 ∗ pi2 + α3 ∗ pi3σp = σ + α1 ∗ pi1 + α2 ∗ pi2 + α3 ∗ pi3
pi1p = pi1 − α1 ∗ σpi1p = pi1 − α1 ∗ σpi1p = pi1 − α1 ∗ σ
pi2p = pi2 − α2 ∗ σpi2p = pi2 − α2 ∗ σpi2p = pi2 − α2 ∗ σ
pi3p = pi3 − α3 ∗ σpi3p = pi3 − α3 ∗ σpi3p = pi3 − α3 ∗ σ
ηp = η − α1 ∗ a1 − α2 ∗ a2 − α3 ∗ a3ηp = η − α1 ∗ a1 − α2 ∗ a2 − α3 ∗ a3ηp = η − α1 ∗ a1 − α2 ∗ a2 − α3 ∗ a3
a1p = a1 + α1 ∗ ηa1p = a1 + α1 ∗ ηa1p = a1 + α1 ∗ η
a2p = a2 + α2 ∗ ηa2p = a2 + α2 ∗ ηa2p = a2 + α2 ∗ η
a3p = a3 + α3 ∗ ηa3p = a3 + α3 ∗ ηa3p = a3 + α3 ∗ η
● Terms of order O(α⃗2) will be set to zero:

alsq = Expand [(α1 + α2 + α3)2]alsq = Expand [(α1 + α2 + α3)2]alsq = Expand [(α1 + α2 + α3)2]
v1 = Table [ alsq[[i]](alsq[[i]]/.{α1→1,α2→1,α3→1}) → 0,{i,1,Length[alsq]}]v1 = Table [ alsq[[i]](alsq[[i]]/.{α1→1,α2→1,α3→1}) → 0,{i,1,Length[alsq]}]v1 = Table [ alsq[[i]](alsq[[i]]/.{α1→1,α2→1,α3→1}) → 0,{i,1,Length[alsq]}]
alsq = Expand [(α1 + α2 + α3)3]alsq = Expand [(α1 + α2 + α3)3]alsq = Expand [(α1 + α2 + α3)3]
v2 = Table [ alsq[[i]](alsq[[i]]/.{α1→1,α2→1,α3→1}) → 0,{i,1,Length[alsq]}]v2 = Table [ alsq[[i]](alsq[[i]]/.{α1→1,α2→1,α3→1}) → 0,{i,1,Length[alsq]}]v2 = Table [ alsq[[i]](alsq[[i]]/.{α1→1,α2→1,α3→1}) → 0,{i,1,Length[alsq]}]
alsq = Expand [(α1 + α2 + α3)4]alsq = Expand [(α1 + α2 + α3)4]alsq = Expand [(α1 + α2 + α3)4]
v3 = Table [ alsq[[i]](alsq[[i]]/.{α1→1,α2→1,α3→1}) → 0,{i,1,Length[alsq]}]v3 = Table [ alsq[[i]](alsq[[i]]/.{α1→1,α2→1,α3→1}) → 0,{i,1,Length[alsq]}]v3 = Table [ alsq[[i]](alsq[[i]]/.{α1→1,α2→1,α3→1}) → 0,{i,1,Length[alsq]}]
● Construction of the quartic invariants:

qua = Expand [(a1 + a2 + a3 + η + σ + pi1 + pi2 + pi3) 4]qua = Expand [(a1 + a2 + a3 + η + σ + pi1 + pi2 + pi3) 4]qua = Expand [(a1 + a2 + a3 + η + σ + pi1 + pi2 + pi3) 4]
mon =mon =mon =
Table[Table[Table[
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qua[[i]]/qua[[i]]/qua[[i]]/(qua[[i]]/.{a1→ 1,a2→ 1,a3→ 1, η → 1, σ → 1,(qua[[i]]/.{a1→ 1,a2→ 1,a3→ 1, η → 1, σ → 1,(qua[[i]]/.{a1→ 1,a2→ 1,a3→ 1, η → 1, σ → 1,

pi1 → 1,pi2 → 1,pi3 → 1}) ,{i,1,Length[qua]}]pi1 → 1,pi2 → 1,pi3 → 1}) ,{i,1,Length[qua]}]pi1 → 1,pi2 → 1,pi3 → 1}) ,{i,1,Length[qua]}]
monp =monp =monp =
Table[FullSimplify[Table[FullSimplify[Table[FullSimplify[
Expand[Expand[Expand[(qua[[i]]/.{a1→ a1p,a2→ a2p,a3→ a3p,(qua[[i]]/.{a1→ a1p,a2→ a2p,a3→ a3p,(qua[[i]]/.{a1→ a1p,a2→ a2p,a3→ a3p,

η → ηp, σ → σp,pi1 → pi1p,pi2 → pi2p,η → ηp, σ → σp,pi1 → pi1p,pi2 → pi2p,η → ηp, σ → σp,pi1 → pi1p,pi2 → pi2p,

pi3 → pi3p})/pi3 → pi3p})/pi3 → pi3p})/(qua[[i]]/.{a1→ 1,a2→ 1,a3→ 1, η → 1,(qua[[i]]/.{a1→ 1,a2→ 1,a3→ 1, η → 1,(qua[[i]]/.{a1→ 1,a2→ 1,a3→ 1, η → 1,

σ → 1,pi1 → 1,pi2 → 1,pi3 → 1})] /.v1/.v2/.σ → 1,pi1 → 1,pi2 → 1,pi3 → 1})] /.v1/.v2/.σ → 1,pi1 → 1,pi2 → 1,pi3 → 1})]/.v1/.v2/.
v3],{i,1,Length[qua]}]v3],{i,1,Length[qua]}]v3],{i,1,Length[qua]}]
Do[Do[Do[
eqj = Sum [Coefficient [ci ∗monp[[i]],eqj = Sum [Coefficient [ci ∗monp[[i]],eqj = Sum [Coefficient [ci ∗monp[[i]],
σExponent[mon[[j]],σ] ∗ pi1Exponent[mon[[j]],pi1]∗σExponent[mon[[j]],σ] ∗ pi1Exponent[mon[[j]],pi1]∗σExponent[mon[[j]],σ] ∗ pi1Exponent[mon[[j]],pi1]∗
pi2

Exponent[mon[[j]],pi2] ∗ pi3Exponent[mon[[j]],pi3]∗pi2
Exponent[mon[[j]],pi2] ∗ pi3Exponent[mon[[j]],pi3]∗pi2
Exponent[mon[[j]],pi2] ∗ pi3Exponent[mon[[j]],pi3]∗

ηExponent[mon[[j]],η] ∗ a1Exponent[mon[[j]],a1]
∗ηExponent[mon[[j]],η] ∗ a1Exponent[mon[[j]],a1]
∗ηExponent[mon[[j]],η] ∗ a1Exponent[mon[[j]],a1]
∗

a2Exponent[mon[[j]],a2]
∗ a3Exponent[mon[[j]],a3]] ,a2Exponent[mon[[j]],a2]
∗ a3Exponent[mon[[j]],a3]] ,a2Exponent[mon[[j]],a2]
∗ a3Exponent[mon[[j]],a3]] ,{i,1,Length[monp]}]{i,1,Length[monp]}]{i,1,Length[monp]}]

,{j,1,Length[mon]}],{j,1,Length[mon]}],{j,1,Length[mon]}]
sys = Table [eqi == ci,{i,1,Length[mon]}]sys = Table [eqi == ci,{i,1,Length[mon]}]sys = Table [eqi == ci,{i,1,Length[mon]}]
solal = SolveAlways[sys,{α1, α2, α3}]solal = SolveAlways[sys,{α1, α2, α3}]solal = SolveAlways[sys,{α1, α2, α3}]
in = Expand [Sum [ci ∗mon[[i]]/.{solal[[1]]},in = Expand [Sum [ci ∗mon[[i]]/.{solal[[1]]},in = Expand [Sum [ci ∗mon[[i]]/.{solal[[1]]},{i,1,Length[mon]}]]{i,1,Length[mon]}]]{i,1,Length[mon]}]]
a14c35+2a1

2a22c35+a2
4c35+2a1

2a32c35+2a2
2a32c35+a3

4c35+2a1
2η2c35+2a2

2η2c35+2a3
2η2c35+

η4c35−a1
2ησc229−a2

2ησc229−a3
2ησc229−η

3σc229+η
2σ2c300+a1

2σ2c304+a2
2σ2c304+a3

2σ2c304−

ησ3c325+σ
4c330+a1

3c229pi1+a1a2
2c229pi1+a1a3

2c229pi1+a1η
2c229pi1−2a1ησc300pi1+2a1ησc304pi1+

a1σ2c325pi1 + a1
2c300pi

2
1 + a2

2c304pi
2
1 + a3

2c304pi
2
1 + η

2c304pi
2
1 − ησc325pi

2
1 + 2σ

2c330pi
2
1 + a1c325pi

3
1 +

c330pi
4
1 + a1

2a2c229pi2 + a2
3c229pi2 + a2a3

2c229pi2 + a2η
2c229pi2 − 2a2ησc300pi2 + 2a2ησc304pi2 +

a2σ2c325pi2+2a1a2c300pi1pi2−2a1a2c304pi1pi2+a2c325pi
2
1pi2+a2

2c300pi
2
2+a1

2c304pi
2
2+a3

2c304pi
2
2+

η2c304pi
2
2 −ησc325pi

2
2 +2σ

2c330pi
2
2 +a1c325pi1pi

2
2 +2c330pi

2
1pi

2
2 +a2c325pi

3
2 + c330pi

4
2 +a1

2a3c229pi3 +

a22a3c229pi3+a3
3c229pi3+a3η

2c229pi3−2a3ησc300pi3+2a3ησc304pi3+a3σ
2c325pi3+2a1a3c300pi1pi3−

2a1a3c304pi1pi3 + a3c325pi
2
1pi3 + 2a2a3c300pi2pi3 − 2a2a3c304pi2pi3 + a3c325pi

2
2pi3 + a32c300pi

2
3 +

a12c304pi
2
3+a2

2c304pi
2
3+η

2c304pi
2
3−ησc325pi

2
3+2σ

2c330pi
2
3+a1c325pi1pi

2
3+2c330pi

2
1pi

2
3+a2c325pi2pi

2
3+

2c330pi
2
2pi

2
3 + a3c325pi

3
3 + c330pi

4
3

inv1 = Coefficient [in[[1]], c35]inv1 = Coefficient [in[[1]], c35]inv1 = Coefficient [in[[1]], c35]
a14 + 2a12a22 + a24 + 2a12a32 + 2a22a32 + a34 + 2a12η2 + 2a22η2 + 2a32η2 + η4

inv2 = Coefficient [in[[1]], c229]inv2 = Coefficient [in[[1]], c229]inv2 = Coefficient [in[[1]], c229]
−a12ησ−a22ησ−a32ησ−η3σ+a13pi1+a1a2

2pi1+a1a3
2pi1+a1η

2pi1+a1
2a2pi2+a2

3pi2+a2a3
2pi2+

a2η2pi2 + a1
2a3pi3 + a2

2a3pi3 + a3
3pi3 + a3η

2pi3
inv3 = Coefficient [in[[1]], c300]inv3 = Coefficient [in[[1]], c300]inv3 = Coefficient [in[[1]], c300]
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η2σ2−2a1ησpi1+a1
2pi21−2a2ησpi2+2a1a2pi1pi2+a2

2pi22−2a3ησpi3+2a1a3pi1pi3+2a2a3pi2pi3+

a32pi23
inv4 = Coefficient [in[[1]], c304]inv4 = Coefficient [in[[1]], c304]inv4 = Coefficient [in[[1]], c304]
a12σ2+a22σ2+a32σ2+2a1ησpi1+a2

2pi21+a3
2pi21+η

2pi21+2a2ησpi2−2a1a2pi1pi2+a1
2pi22+a3

2pi22+

η2pi22 + 2a3ησpi3 − 2a1a3pi1pi3 − 2a2a3pi2pi3 + a1
2pi23 + a2

2pi23 + η
2pi23

inv5 = Coefficient [in[[1]], c325]inv5 = Coefficient [in[[1]], c325]inv5 = Coefficient [in[[1]], c325]
−ησ3 +a1σ2pi1 −ησpi

2
1 +a1pi

3
1 +a2σ

2pi2 +a2pi
2
1pi2 −ησpi

2
2 +a1pi1pi

2
2 +a2pi

3
2 +a3σ

2pi3 +a3pi
2
1pi3 +

a3pi22pi3 − ησpi
2
3 + a1pi1pi

2
3 + a2pi2pi

2
3 + a3pi

3
3

inv6 = Coefficient [in[[1]], c330]inv6 = Coefficient [in[[1]], c330]inv6 = Coefficient [in[[1]], c330]
σ4 + 2σ2pi21 + pi

4
1 + 2σ

2pi22 + 2pi
2
1pi

2
2 + pi

4
2 + 2σ

2pi23 + 2pi
2
1pi

2
3 + 2pi

2
2pi

2
3 + pi

4
3

known1 = (σ2 + pi1
2 + pi2

2 + pi3
2)known1 = (σ2 + pi1

2 + pi2
2 + pi3

2)known1 = (σ2 + pi1
2 + pi2

2 + pi3
2)

known2 = (η2 + a12 + a22 + a32)known2 = (η2 + a12 + a22 + a32)known2 = (η2 + a12 + a22 + a32)
known3 = (σ ∗ η − pi1 ∗ a1 − pi2 ∗ a2 − pi3 ∗ a3) 2known3 = (σ ∗ η − pi1 ∗ a1 − pi2 ∗ a2 − pi3 ∗ a3) 2known3 = (σ ∗ η − pi1 ∗ a1 − pi2 ∗ a2 − pi3 ∗ a3) 2
known4 = σ ∗ η − pi1 ∗ a1 − pi2 ∗ a2 − pi3 ∗ a3known4 = σ ∗ η − pi1 ∗ a1 − pi2 ∗ a2 − pi3 ∗ a3known4 = σ ∗ η − pi1 ∗ a1 − pi2 ∗ a2 − pi3 ∗ a3
FullSimplify[inv1]FullSimplify[inv1]FullSimplify[inv1](a12 + a22 + a32 + η2)2
FullSimplify[inv2]FullSimplify[inv2]FullSimplify[inv2](a12 + a22 + a32 + η2) (−ησ + a1pi1 + a2pi2 + a3pi3)
FullSimplify[inv3]FullSimplify[inv3]FullSimplify[inv3](−ησ + a1pi1 + a2pi2 + a3pi3) 2
FullSimplify[inv4]FullSimplify[inv4]FullSimplify[inv4](a12 + a22 + a32)σ2 + (a22 + a32 + η2)pi21 + (a12 + a32 + η2)pi22 + 2a3ησpi3 + (a12 + a22 + η2)pi23 +
2a2pi2 (ησ − a3pi3) + 2a1pi1 (ησ − a2pi2 − a3pi3)
SolveAlways[SolveAlways[SolveAlways[
c1 ∗ known1∧2 + c2 ∗ known2∧2 + c3 ∗ known4∧2+c1 ∗ known1∧2 + c2 ∗ known2∧2 + c3 ∗ known4∧2+c1 ∗ known1∧2 + c2 ∗ known2∧2 + c3 ∗ known4∧2+

c4 ∗ known1 ∗ known2 + c5 ∗ known1 ∗ known4+c4 ∗ known1 ∗ known2 + c5 ∗ known1 ∗ known4+c4 ∗ known1 ∗ known2 + c5 ∗ known1 ∗ known4+

c6 ∗ known2 ∗ known4 == inv4,c6 ∗ known2 ∗ known4 == inv4,c6 ∗ known2 ∗ known4 == inv4,{σ, η,pi1,pi2,pi3,a1,a2,a3}]{σ, η,pi1,pi2,pi3,a1,a2,a3}]{σ, η,pi1,pi2,pi3,a1,a2,a3}]{{c1→ 0, c2→ 0, c3→ −1, c4→ 1, c5→ 0, c6→ 0}}
FullSimplify[−1 ∗ known4∧2 + 1 ∗ known1 ∗ known2 − inv4]FullSimplify[−1 ∗ known4∧2 + 1 ∗ known1 ∗ known2 − inv4]FullSimplify[−1 ∗ known4∧2 + 1 ∗ known1 ∗ known2 − inv4]
0

FullSimplify[inv5]FullSimplify[inv5]FullSimplify[inv5]
− (ησ − a1pi1 − a2pi2 − a3pi3) (σ2 + pi21 + pi

2
2 + pi

2
3)

FullSimplify[inv6]FullSimplify[inv6]FullSimplify[inv6](σ2 + pi21 + pi
2
2 + pi

2
3) 2

● Construction of the quadratic invariants:

qua = Expand [(a1 + a2 + a3 + η + σ + pi1 + pi2 + pi3) 2]qua = Expand [(a1 + a2 + a3 + η + σ + pi1 + pi2 + pi3) 2]qua = Expand [(a1 + a2 + a3 + η + σ + pi1 + pi2 + pi3) 2]
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mon =mon =mon =
Table[Table[Table[
qua[[i]]/qua[[i]]/qua[[i]]/(qua[[i]]/.{a1→ 1,a2→ 1,a3→ 1, η → 1, σ → 1,(qua[[i]]/.{a1→ 1,a2→ 1,a3→ 1, η → 1, σ → 1,(qua[[i]]/.{a1→ 1,a2→ 1,a3→ 1, η → 1, σ → 1,

pi1 → 1,pi2 → 1,pi3 → 1}) ,{i,1,Length[qua]}]pi1 → 1,pi2 → 1,pi3 → 1}) ,{i,1,Length[qua]}]pi1 → 1,pi2 → 1,pi3 → 1}) ,{i,1,Length[qua]}]
monp =monp =monp =
Table[FullSimplify[Table[FullSimplify[Table[FullSimplify[
Expand[Expand[Expand[(qua[[i]]/.{a1→ a1p,a2→ a2p,a3→ a3p,(qua[[i]]/.{a1→ a1p,a2→ a2p,a3→ a3p,(qua[[i]]/.{a1→ a1p,a2→ a2p,a3→ a3p,

η → ηp, σ → σp,pi1 → pi1p,pi2 → pi2p,η → ηp, σ → σp,pi1 → pi1p,pi2 → pi2p,η → ηp, σ → σp,pi1 → pi1p,pi2 → pi2p,

pi3 → pi3p})/pi3 → pi3p})/pi3 → pi3p})/(qua[[i]]/.{a1→ 1,a2→ 1,a3→ 1, η → 1,(qua[[i]]/.{a1→ 1,a2→ 1,a3→ 1, η → 1,(qua[[i]]/.{a1→ 1,a2→ 1,a3→ 1, η → 1,

σ → 1,pi1 → 1,pi2 → 1,pi3 → 1})] /.v1/.v2/.σ → 1,pi1 → 1,pi2 → 1,pi3 → 1})] /.v1/.v2/.σ → 1,pi1 → 1,pi2 → 1,pi3 → 1})]/.v1/.v2/.
v3],{i,1,Length[qua]}]v3],{i,1,Length[qua]}]v3],{i,1,Length[qua]}]
Do[Do[Do[
eqj = Sum [Coefficient [ci ∗monp[[i]],eqj = Sum [Coefficient [ci ∗monp[[i]],eqj = Sum [Coefficient [ci ∗monp[[i]],
σExponent[mon[[j]],σ] ∗ pi1Exponent[mon[[j]],pi1]∗σExponent[mon[[j]],σ] ∗ pi1Exponent[mon[[j]],pi1]∗σExponent[mon[[j]],σ] ∗ pi1Exponent[mon[[j]],pi1]∗
pi2

Exponent[mon[[j]],pi2] ∗ pi3Exponent[mon[[j]],pi3]∗pi2
Exponent[mon[[j]],pi2] ∗ pi3Exponent[mon[[j]],pi3]∗pi2
Exponent[mon[[j]],pi2] ∗ pi3Exponent[mon[[j]],pi3]∗

ηExponent[mon[[j]],η] ∗ a1Exponent[mon[[j]],a1]
∗ηExponent[mon[[j]],η] ∗ a1Exponent[mon[[j]],a1]
∗ηExponent[mon[[j]],η] ∗ a1Exponent[mon[[j]],a1]
∗

a2Exponent[mon[[j]],a2]
∗ a3Exponent[mon[[j]],a3]] ,a2Exponent[mon[[j]],a2]
∗ a3Exponent[mon[[j]],a3]] ,a2Exponent[mon[[j]],a2]
∗ a3Exponent[mon[[j]],a3]] ,{i,1,Length[monp]}]{i,1,Length[monp]}]{i,1,Length[monp]}]

,{j,1,Length[mon]}],{j,1,Length[mon]}],{j,1,Length[mon]}]
sys = Table [eqi == ci,{i,1,Length[mon]}]sys = Table [eqi == ci,{i,1,Length[mon]}]sys = Table [eqi == ci,{i,1,Length[mon]}]
solal = SolveAlways[sys,{α1, α2, α3}]solal = SolveAlways[sys,{α1, α2, α3}]solal = SolveAlways[sys,{α1, α2, α3}]
in = Expand [Sum [ci ∗mon[[i]]/.{solal[[1]]},in = Expand [Sum [ci ∗mon[[i]]/.{solal[[1]]},in = Expand [Sum [ci ∗mon[[i]]/.{solal[[1]]},{i,1,Length[mon]}]]{i,1,Length[mon]}]]{i,1,Length[mon]}]]{a12c6 + a22c6 + a32c6 + η2c6 − ησc31 + σ2c36 + a1c31pi1 + c36pi

2
1 + a2c31pi2 + c36pi

2
2 + a3c31pi3 + c36pi

2
3}

inv1 = Coefficient [in[[1]], c6]inv1 = Coefficient [in[[1]], c6]inv1 = Coefficient [in[[1]], c6]
a12 + a22 + a32 + η2

inv2 = Coefficient [in[[1]], c36]inv2 = Coefficient [in[[1]], c36]inv2 = Coefficient [in[[1]], c36]
σ2 + pi21 + pi

2
2 + pi

2
3

inv3 = Coefficient [in[[1]], c31]inv3 = Coefficient [in[[1]], c31]inv3 = Coefficient [in[[1]], c31]
−ησ + a1pi1 + a2pi2 + a3pi3
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Appendix C

Numerical methods

We basically use two independent numerical approaches for our calculations at finite temperature.

Both are based on discretizing the field variable x ≡ ϕ (in the usual terminology of differential

equations we refer to it as spatial variable in the following, which should not be confused with

the spatial dimension D) on a one-dimensional grid. The first one is based on approximating the

spatial derivatives U (n)(ϕ) ≡ U(n)x by appropriate finite-difference formulas (usually 4th order

turns out to be good enough, sometimes we use higher-order ones, however). In the following

we refer to this method as Finite-Difference Method. We became aware of its practical use by

the master thesis of Eirik Eik Svanes who kindly provides a Mathlab code within his work [149].

We decided to use this method, since it is well documented by Eirik Eik Svanes in his master

thesis. Our implementation, however, is different. The second method is what we refer to as

Taylor Method. It is described on page 5 in Ref. [156]. We thank Mario Mitter for pointing out

this reference to us. We also want to thank him and Bernd-Jochen Schaefer for useful discussions

about certain numerical details.

Applying either of the above methods yields a system of coupled ordinary differential equations

in the RG scale k. We solve this systems using different versions of the Runge-Kutta method.

Preferable is the Cash-Karp method with adaptive stepsize control (which is described in Ref.

[157]). We also made good experiences with the built-in option IDA of Mathematica’s NDSolve.

All of the methods described can be implemented in Mathematica. We provide notebooks for

the Finite-Difference Method as well as for the Taylor method. For both cases we choose the

FRG-flow equation (in LPA) of the U(2) ×U(2) model in the truncation (7.2).

C.1 Finite-Difference Method

T = 1576
10

;T = 1576
10

;T = 1576
10

;

diff = 5;diff = 5;diff = 5;
sqxmin = 230;sqxmin = 230;sqxmin = 230;
amp = 4

240
;amp = 4

240
;amp = 4

240
;

xmin = sqxmin∧2;xmin = sqxmin∧2;xmin = sqxmin∧2;
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vv[x ] = amp ∗ (x − xmin)∧2vv[x ] = amp ∗ (x − xmin)∧2vv[x ] = amp ∗ (x − xmin)∧2
ww[x ] = 13

100
ww[x ] = 13

100ww[x ] = 13
100

fv[k , ϕ ,v ,vx ,vxx ,w ,wx ,wxx ] =fv[k , ϕ ,v ,vx ,vxx ,w ,wx ,wxx ] =fv[k , ϕ ,v ,vx ,vxx ,w ,wx ,wxx ] =
k4Coth[√k2+2vx

2T
]

3π2
√
k2
+2vx

+

k4Coth[√k2+2vx+2wϕ

2T
]

6π2
√

k2
+2vx+2wϕ

+
k4Coth[√k2+2vx

2T
]

3π2
√
k2
+2vx

+

k4Coth[√k2+2vx+2wϕ

2T
]

6π2
√

k2
+2vx+2wϕ

+
k4Coth[√k2+2vx

2T
]

3π2
√
k2
+2vx

+

k4Coth[√k2+2vx+2wϕ

2T
]

6π2
√

k2
+2vx+2wϕ

+

k4Coth

⎡⎢⎢⎢⎢⎣
√

k2+2vx+2vxxϕ+wϕ−
√
(2vxx−w)2ϕ2

2T

⎤⎥⎥⎥⎥⎦
12π2

√
k2
+2vx+2vxxϕ+wϕ−

√(2vxx−w)2ϕ2
+

k4Coth

⎡⎢⎢⎢⎢⎣
√

k2+2vx+2vxxϕ+wϕ−
√
(2vxx−w)2ϕ2

2T

⎤⎥⎥⎥⎥⎦
12π2

√
k2
+2vx+2vxxϕ+wϕ−

√(2vxx−w)2ϕ2
+

k4Coth

⎡⎢⎢⎢⎢⎣
√

k2+2vx+2vxxϕ+wϕ−
√
(2vxx−w)2ϕ2

2T

⎤⎥⎥⎥⎥⎦
12π2

√
k2
+2vx+2vxxϕ+wϕ−

√(2vxx−w)2ϕ2
+

k4Coth

⎡⎢⎢⎢⎢⎣
√

k2+2vx+2vxxϕ+wϕ+
√
(2vxx−w)2ϕ2

2T

⎤⎥⎥⎥⎥⎦
12π2

√
k2
+2vx+2vxxϕ+wϕ+

√(2vxx−w)2ϕ2
;

k4Coth

⎡⎢⎢⎢⎢⎣
√

k2+2vx+2vxxϕ+wϕ+
√
(2vxx−w)2ϕ2

2T

⎤⎥⎥⎥⎥⎦
12π2

√
k2
+2vx+2vxxϕ+wϕ+

√(2vxx−w)2ϕ2
;

k4Coth

⎡⎢⎢⎢⎢⎣
√

k2+2vx+2vxxϕ+wϕ+
√
(2vxx−w)2ϕ2

2T

⎤⎥⎥⎥⎥⎦
12π2

√
k2
+2vx+2vxxϕ+wϕ+

√(2vxx−w)2ϕ2
;

fw[k , ϕ ,v ,vx ,vxx ,w ,wx ,wxx ] =fw[k , ϕ ,v ,vx ,vxx ,w ,wx ,wxx ] =fw[k , ϕ ,v ,vx ,vxx ,w ,wx ,wxx ] =
(k4Csch [√k2

+2vx
2T

]3(k4Csch [√k2
+2vx

2T
]3(k4Csch [√k2

+2vx
2T

]3
(((2k2 − 3T 2 + 4vx)w2 + 2T 2 (k2 + 2vx)wx)(((2k2 − 3T 2 + 4vx)w2 + 2T 2 (k2 + 2vx)wx)(((2k2 − 3T 2 + 4vx)w2 + 2T 2 (k2 + 2vx)wx)
Cosh [√k2

+2vx
2T

]+Cosh [√k2
+2vx

2T
]+Cosh [√k2

+2vx
2T

]+
T (3w2 − 2 (k2 + 2vx)wx)T (3w2 − 2 (k2 + 2vx)wx)T (3w2 − 2 (k2 + 2vx)wx)
(TCosh[ 3√k2

+2vx
2T

]+(TCosh [3√k2
+2vx

2T
]+(TCosh [3√k2

+2vx
2T

]+
2
√
k2 + 2vxSinh [√k2

+2vx
2T

])))/2
√
k2 + 2vxSinh [√k2

+2vx
2T

])))/2
√
k2 + 2vxSinh [√k2

+2vx
2T

])))/
(48π2T 2 (k2 + 2vx)5/2)−(48π2T 2 (k2 + 2vx)5/2)−(48π2T 2 (k2 + 2vx)5/2)−
(k4(w +wxϕ)Csch [√k2

+2vx
2T

]2(k4(w +wxϕ)Csch [√k2
+2vx

2T
]2(k4(w +wxϕ)Csch [√k2

+2vx
2T

]2
(√k2 + 2vx + TSinh [√k2

+2vx
T

]))/(√k2 + 2vx + TSinh [√k2
+2vx
T

]))/(√k2 + 2vx + TSinh [√k2
+2vx
T
]))/

(12π2T (k2 + 2vx)3/2ϕ)+(12π2T (k2 + 2vx)3/2ϕ)+(12π2T (k2 + 2vx)3/2 ϕ)+
(k4(w −wxϕ)Csch [√k2

+2vx+2wϕ

2T
]2(k4(w −wxϕ)Csch [√k2

+2vx+2wϕ

2T
]2(k4(w −wxϕ)Csch[√k2

+2vx+2wϕ

2T
]2

(√k2 + 2(vx +wϕ) + TSinh [√k2
+2vx+2wϕ

T
]))/(√k2 + 2(vx +wϕ) + TSinh [√k2

+2vx+2wϕ

T
]))/(√k2 + 2(vx +wϕ) + TSinh[√k2

+2vx+2wϕ

T
]))/

(12π2Tϕ (k2 + 2(vx +wϕ))3/2)+(12π2Tϕ (k2 + 2(vx +wϕ))3/2)+(12π2Tϕ (k2 + 2(vx +wϕ))3/2)+
(k4 (3w2 + 4wx2ϕ2 − 5wx

√(−2vxx +w)2ϕ2−(k4 (3w2 + 4wx2ϕ2 − 5wx
√(−2vxx +w)2ϕ2−(k4 (3w2 + 4wx2ϕ2 − 5wx
√(−2vxx +w)2ϕ2−

wxxϕ
√(−2vxx +w)2ϕ2 +wϕ(8wx −wxxϕ)+wxxϕ
√(−2vxx +w)2ϕ2 +wϕ(8wx −wxxϕ)+wxxϕ
√(−2vxx +w)2ϕ2 +wϕ(8wx −wxxϕ)+

2vxx(6w +ϕ(4wx +wxxϕ)))2vxx(6w +ϕ(4wx +wxxϕ)))2vxx(6w + ϕ(4wx +wxxϕ)))
Csch[√k2

+2vx+2vxxϕ+wϕ−
√(−2vxx+w)2ϕ2

2T
]2Csch [√k2

+2vx+2vxxϕ+wϕ−
√(−2vxx+w)2ϕ2

2T
]2Csch [√k2

+2vx+2vxxϕ+wϕ−
√(−2vxx+w)2ϕ2

2T
]2

(√k2 + 2vx + 2vxxϕ +wϕ −√(−2vxx +w)2ϕ2+(√k2 + 2vx + 2vxxϕ +wϕ −√(−2vxx +w)2ϕ2+(√k2 + 2vx + 2vxxϕ +wϕ −√(−2vxx +w)2ϕ2+

TTT

Sinh[Sinh[Sinh[√
k2
+2vx+2vxxϕ+wϕ−

√(−2vxx+w)2ϕ2

T
]))/√

k2
+2vx+2vxxϕ+wϕ−

√(−2vxx+w)2ϕ2

T
]))/√

k2
+2vx+2vxxϕ+wϕ−

√(−2vxx+w)2ϕ2

T
]))/
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(24π2T
√(−2vxx +w)2ϕ2(24π2T
√(−2vxx +w)2ϕ2(24π2T
√(−2vxx +w)2ϕ2

(k2 + 2vx + 2vxxϕ +wϕ −√(−2vxx +w)2ϕ2)3/2)−(k2 + 2vx + 2vxxϕ +wϕ −√(−2vxx +w)2ϕ2)3/2)−(k2 + 2vx + 2vxxϕ +wϕ −√(−2vxx +w)2ϕ2)3/2)−
(k4 (3w2 + 4wx2ϕ2 + 5wx

√(−2vxx +w)2ϕ2+(k4 (3w2 + 4wx2ϕ2 + 5wx
√(−2vxx +w)2ϕ2+(k4 (3w2 + 4wx2ϕ2 + 5wx
√(−2vxx +w)2ϕ2+

wxxϕ
√(−2vxx +w)2ϕ2 +wϕ(8wx −wxxϕ)+wxxϕ
√(−2vxx +w)2ϕ2 +wϕ(8wx −wxxϕ)+wxxϕ
√(−2vxx +w)2ϕ2 +wϕ(8wx −wxxϕ)+

2vxx(6w +ϕ(4wx +wxxϕ)))2vxx(6w +ϕ(4wx +wxxϕ)))2vxx(6w + ϕ(4wx +wxxϕ)))
Csch[√k2

+2vx+2vxxϕ+wϕ+
√(−2vxx+w)2ϕ2

2T
]2Csch [√k2

+2vx+2vxxϕ+wϕ+
√(−2vxx+w)2ϕ2

2T
]2Csch [√k2

+2vx+2vxxϕ+wϕ+
√(−2vxx+w)2ϕ2

2T
]2

(√k2 + 2vx + 2vxxϕ +wϕ +√(−2vxx +w)2ϕ2+(√k2 + 2vx + 2vxxϕ +wϕ +√(−2vxx +w)2ϕ2+(√k2 + 2vx + 2vxxϕ +wϕ +√(−2vxx +w)2ϕ2+

TTT

Sinh[Sinh[Sinh[√
k2
+2vx+2vxxϕ+wϕ+

√(−2vxx+w)2ϕ2

T
]))/√

k2
+2vx+2vxxϕ+wϕ+

√(−2vxx+w)2ϕ2

T
]))/√

k2
+2vx+2vxxϕ+wϕ+

√(−2vxx+w)2ϕ2

T
]))/

(24π2T
√(−2vxx +w)2ϕ2(24π2T
√(−2vxx +w)2ϕ2(24π2T
√(−2vxx +w)2ϕ2

(k2 + 2vx + 2vxxϕ +wϕ +√(−2vxx +w)2ϕ2)3/2) ;(k2 + 2vx + 2vxxϕ +wϕ +√(−2vxx +w)2ϕ2)3/2) ;(k2 + 2vx + 2vxxϕ +wϕ +√(−2vxx +w)2ϕ2)3/2) ;

kL = 500;kL = 500;kL = 500;
kR = 5;kR = 5;kR = 5;

nx = 180;nx = 180;nx = 180;
nfine = 80;nfine = 80;nfine = 80;
dx = 3∗xmin−xnfine

nx−1
;dx = 3∗xmin−xnfine

nx−1
;dx = 3∗xmin−xnfine

nx−1
;

Do [xi = ( 1
10
) ∧2 + (i − 1)∧2,{i,1,nfine}]Do [xi = ( 1

10
) ∧2 + (i − 1)∧2,{i,1,nfine}]Do [xi = ( 1

10
)∧2 + (i − 1)∧2,{i,1,nfine}]

Do[Do[Do[
xi+1 = xi + dxxi+1 = xi + dxxi+1 = xi + dx
,{i,nfine,nx − 1,1}],{i,nfine,nx − 1,1}],{i,nfine,nx − 1,1}]
grid:=Table [xj ,{j,1,nx}]grid:=Table [xj ,{j,1,nx}]grid:=Table [xj ,{j,1,nx}]
(*FiniteDifferenceFormulaforspatialderivativesvx,(*FiniteDifferenceFormulaforspatialderivativesvx,(*FiniteDifferenceFormulaforspatialderivativesvx,

vxxatthespatialgridpoints*)vxxatthespatialgridpoints*)vxxatthespatialgridpoints*)

vhelp[k ] = Table [vj[k],{j,1,nx}] ;vhelp[k ] = Table [vj[k],{j,1,nx}] ;vhelp[k ] = Table [vj[k],{j,1,nx}] ;
(* derivatives for left boundary and middle points *)(* derivatives for left boundary and middle points *)(* derivatives for left boundary and middle points *)

D1v = NDSolvèFiniteDifferenceDerivative[1,grid,D1v = NDSolvèFiniteDifferenceDerivative[1,grid,D1v = NDSolvèFiniteDifferenceDerivative[1,grid,
vhelp[k],"DifferenceOrder"→ diff];vhelp[k],"DifferenceOrder"→ diff];vhelp[k],"DifferenceOrder"→ diff];
D2v = NDSolvèFiniteDifferenceDerivative[2,grid,D2v = NDSolvèFiniteDifferenceDerivative[2,grid,D2v = NDSolvèFiniteDifferenceDerivative[2,grid,
vhelp[k],"DifferenceOrder"→ diff];vhelp[k],"DifferenceOrder"→ diff];vhelp[k],"DifferenceOrder"→ diff];
(*computeboundaryconditions,(*computeboundaryconditions,(*computeboundaryconditions,

note ∶ D1[[nx]]islastpoint*)note ∶ D1[[nx]]islastpoint*)note ∶ D1[[nx]]islastpoint*)
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Do [vxj = D1v[[j]],{j,1,nx}] ;Do [vxj = D1v[[j]],{j,1,nx}] ;Do [vxj = D1v[[j]],{j,1,nx}] ;
Do [vxxj = D2v[[j]],{j,1,nx}] ;Do [vxxj = D2v[[j]],{j,1,nx}] ;Do [vxxj = D2v[[j]],{j,1,nx}] ;
whelp[k ] = Table [wj[k],{j,1,nx}] ;whelp[k ] = Table [wj[k],{j,1,nx}] ;whelp[k ] = Table [wj[k],{j,1,nx}] ;
(* derivatives for left boundary and middle points *)(* derivatives for left boundary and middle points *)(* derivatives for left boundary and middle points *)

D1w = NDSolvèFiniteDifferenceDerivative[1,grid,D1w = NDSolvèFiniteDifferenceDerivative[1,grid,D1w = NDSolvèFiniteDifferenceDerivative[1,grid,
whelp[k],"DifferenceOrder"→ diff];whelp[k],"DifferenceOrder"→ diff];whelp[k],"DifferenceOrder"→ diff];
D2w = NDSolvèFiniteDifferenceDerivative[2,grid,D2w = NDSolvèFiniteDifferenceDerivative[2,grid,D2w = NDSolvèFiniteDifferenceDerivative[2,grid,
whelp[k],"DifferenceOrder"→ diff];whelp[k],"DifferenceOrder"→ diff];whelp[k],"DifferenceOrder"→ diff];
(*computeboundaryconditions,(*computeboundaryconditions,(*computeboundaryconditions,

note ∶ D1[[nx]]islastpoint*)note ∶ D1[[nx]]islastpoint*)note ∶ D1[[nx]]islastpoint*)
Do [wxj = D1w[[j]],{j,1,nx}] ;Do [wxj = D1w[[j]],{j,1,nx}] ;Do [wxj = D1w[[j]],{j,1,nx}] ;
Do [wxxj = D2w[[j]],{j,1,nx}] ;Do [wxxj = D2w[[j]],{j,1,nx}] ;Do [wxxj = D2w[[j]],{j,1,nx}] ;
sys =sys =sys =
Join[Join[Join[
Table [D [vj[k], k] == fv [k,xj , vj[k],vxj ,vxxj ,Table [D [vj[k], k] == fv [k,xj , vj[k],vxj ,vxxj ,Table [D [vj[k], k] == fv [k,xj , vj[k],vxj ,vxxj ,
wj[k],wxj ,wxxj] ,{j,1,nx}] ,wj[k],wxj ,wxxj] ,{j,1,nx}] ,wj[k],wxj ,wxxj] ,{j,1,nx}] ,
Table [D [wj[k], k] == fw [k,xj , vj[k],vxj ,vxxj ,Table [D [wj[k], k] == fw [k,xj , vj[k],vxj ,vxxj ,Table [D [wj[k], k] == fw [k,xj , vj[k],vxj ,vxxj ,
wj[k],wxj ,wxxj] ,{j,1,nx}]] ;wj[k],wxj ,wxxj] ,{j,1,nx}]] ;wj[k],wxj ,wxxj] ,{j,1,nx}]] ;
initc = Join [Table [vj[kL] == vv [xj] ,{j,1,nx}] ,initc = Join [Table [vj[kL] == vv [xj] ,{j,1,nx}] ,initc = Join [Table [vj[kL] == vv [xj] ,{j,1,nx}] ,
Table [wj[kL] == ww [xj] ,{j,1,nx}]] ;Table [wj[kL] == ww [xj] ,{j,1,nx}]] ;Table [wj[kL] == ww [xj] ,{j,1,nx}]] ;
sysin = Join[sys, initc];sysin = Join[sys, initc];sysin = Join[sys, initc];
vars = Join [Table [vj ,{j,1,nx}] ,Table [wj ,{j,1,nx}]]vars = Join [Table [vj ,{j,1,nx}] ,Table [wj ,{j,1,nx}]]vars = Join [Table [vj ,{j,1,nx}] ,Table [wj ,{j,1,nx}]]
sol = NDSolve[sysin,vars,{k,kL,kR}]sol = NDSolve[sysin,vars,{k,kL,kR}]sol = NDSolve[sysin,vars,{k,kL,kR}]
ListPlot [Table [{√xj ,Re[sol[[1, j,2]][t]]} ,{j,1,39}]/.t→ 16,PlotStyle→ Black]ListPlot [Table [{√xj ,Re[sol[[1, j,2]][t]]} ,{j,1,39}]/.t→ 16,PlotStyle→ Black]ListPlot [Table [{√xj ,Re[sol[[1, j,2]][t]]} ,{j,1,39}]/.t → 16,PlotStyle→ Black]

C.2 Taylor Method

T = 1576
10

;T = 1576
10

;T = 1576
10

;
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fv[k , ϕ ,v ,vx ,vxx ,w ,wx ,wxx ] =fv[k , ϕ ,v ,vx ,vxx ,w ,wx ,wxx ] =fv[k , ϕ ,v ,vx ,vxx ,w ,wx ,wxx ] =
k4Coth[√k2+2vx

2T
]

3π2
√
k2
+2vx

+

k4Coth[√k2+2vx+2wϕ

2T
]

6π2
√

k2
+2vx+2wϕ

+
k4Coth[√k2+2vx

2T
]

3π2
√
k2
+2vx

+

k4Coth[√k2+2vx+2wϕ

2T
]

6π2
√

k2
+2vx+2wϕ

+
k4Coth[√k2+2vx

2T
]

3π2
√
k2
+2vx

+

k4Coth[√k2+2vx+2wϕ

2T
]

6π2
√

k2
+2vx+2wϕ

+

k4Coth

⎡⎢⎢⎢⎢⎣
√

k2+2vx+2vxxϕ+wϕ−
√
(2vxx−w)2ϕ2

2T

⎤⎥⎥⎥⎥⎦
12π2

√
k2
+2vx+2vxxϕ+wϕ−

√(2vxx−w)2ϕ2
+

k4Coth

⎡⎢⎢⎢⎢⎣
√

k2+2vx+2vxxϕ+wϕ−
√
(2vxx−w)2ϕ2

2T

⎤⎥⎥⎥⎥⎦
12π2

√
k2
+2vx+2vxxϕ+wϕ−

√(2vxx−w)2ϕ2
+

k4Coth

⎡⎢⎢⎢⎢⎣
√

k2+2vx+2vxxϕ+wϕ−
√
(2vxx−w)2ϕ2

2T

⎤⎥⎥⎥⎥⎦
12π2

√
k2
+2vx+2vxxϕ+wϕ−

√(2vxx−w)2ϕ2
+

k4Coth

⎡⎢⎢⎢⎢⎣
√

k2+2vx+2vxxϕ+wϕ+
√
(2vxx−w)2ϕ2

2T

⎤⎥⎥⎥⎥⎦
12π2

√
k2
+2vx+2vxxϕ+wϕ+

√(2vxx−w)2ϕ2
;

k4Coth

⎡⎢⎢⎢⎢⎣
√

k2+2vx+2vxxϕ+wϕ+
√
(2vxx−w)2ϕ2

2T

⎤⎥⎥⎥⎥⎦
12π2

√
k2
+2vx+2vxxϕ+wϕ+

√(2vxx−w)2ϕ2
;

k4Coth

⎡⎢⎢⎢⎢⎣
√

k2+2vx+2vxxϕ+wϕ+
√
(2vxx−w)2ϕ2

2T

⎤⎥⎥⎥⎥⎦
12π2

√
k2
+2vx+2vxxϕ+wϕ+

√(2vxx−w)2ϕ2
;

fw[k , ϕ ,v ,vx ,vxx ,w ,wx ,wxx ] =fw[k , ϕ ,v ,vx ,vxx ,w ,wx ,wxx ] =fw[k , ϕ ,v ,vx ,vxx ,w ,wx ,wxx ] =
(k4Csch [√k2

+2vx
2T

]3(k4Csch [√k2
+2vx

2T
]3(k4Csch [√k2

+2vx
2T

]3
(((2k2 − 3T 2 + 4vx)w2 + 2T 2 (k2 + 2vx)wx)(((2k2 − 3T 2 + 4vx)w2 + 2T 2 (k2 + 2vx)wx)(((2k2 − 3T 2 + 4vx)w2 + 2T 2 (k2 + 2vx)wx)
Cosh [√k2

+2vx
2T

]+Cosh [√k2
+2vx

2T
]+Cosh [√k2

+2vx
2T

]+
T (3w2 − 2 (k2 + 2vx)wx)T (3w2 − 2 (k2 + 2vx)wx)T (3w2 − 2 (k2 + 2vx)wx)
(TCosh[ 3√k2

+2vx
2T

]+(TCosh [3√k2
+2vx

2T
]+(TCosh [3√k2

+2vx
2T

]+
2
√
k2 + 2vxSinh [√k2

+2vx
2T

])))/2
√
k2 + 2vxSinh [√k2

+2vx
2T

])))/2
√
k2 + 2vxSinh [√k2

+2vx
2T

])))/
(48π2T 2 (k2 + 2vx)5/2)−(48π2T 2 (k2 + 2vx)5/2)−(48π2T 2 (k2 + 2vx)5/2)−
(k4(w +wxϕ)Csch [√k2

+2vx
2T

]2(k4(w +wxϕ)Csch [√k2
+2vx

2T
]2(k4(w +wxϕ)Csch [√k2

+2vx
2T

]2
(√k2 + 2vx + TSinh [√k2

+2vx
T

]))/(√k2 + 2vx + TSinh [√k2
+2vx
T

]))/(√k2 + 2vx + TSinh [√k2
+2vx
T
]))/

(12π2T (k2 + 2vx)3/2ϕ)+(12π2T (k2 + 2vx)3/2ϕ)+(12π2T (k2 + 2vx)3/2 ϕ)+
(k4(w −wxϕ)Csch [√k2

+2vx+2wϕ

2T
]2(k4(w −wxϕ)Csch [√k2

+2vx+2wϕ

2T
]2(k4(w −wxϕ)Csch[√k2

+2vx+2wϕ

2T
]2

(√k2 + 2(vx +wϕ) + TSinh [√k2
+2vx+2wϕ

T
]))/(√k2 + 2(vx +wϕ) + TSinh [√k2

+2vx+2wϕ

T
]))/(√k2 + 2(vx +wϕ) + TSinh[√k2

+2vx+2wϕ

T
]))/

(12π2Tϕ (k2 + 2(vx +wϕ))3/2)+(12π2Tϕ (k2 + 2(vx +wϕ))3/2)+(12π2Tϕ (k2 + 2(vx +wϕ))3/2)+
(k4 (3w2 + 4wx2ϕ2 − 5wx

√(−2vxx +w)2ϕ2−(k4 (3w2 + 4wx2ϕ2 − 5wx
√(−2vxx +w)2ϕ2−(k4 (3w2 + 4wx2ϕ2 − 5wx
√(−2vxx +w)2ϕ2−

wxxϕ
√(−2vxx +w)2ϕ2 +wϕ(8wx −wxxϕ)+wxxϕ
√(−2vxx +w)2ϕ2 +wϕ(8wx −wxxϕ)+wxxϕ
√(−2vxx +w)2ϕ2 +wϕ(8wx −wxxϕ)+

2vxx(6w +ϕ(4wx +wxxϕ)))2vxx(6w +ϕ(4wx +wxxϕ)))2vxx(6w + ϕ(4wx +wxxϕ)))
Csch[√k2

+2vx+2vxxϕ+wϕ−
√(−2vxx+w)2ϕ2

2T
]2Csch [√k2

+2vx+2vxxϕ+wϕ−
√(−2vxx+w)2ϕ2

2T
]2Csch [√k2

+2vx+2vxxϕ+wϕ−
√(−2vxx+w)2ϕ2

2T
]2

(√k2 + 2vx + 2vxxϕ +wϕ −√(−2vxx +w)2ϕ2+(√k2 + 2vx + 2vxxϕ +wϕ −√(−2vxx +w)2ϕ2+(√k2 + 2vx + 2vxxϕ +wϕ −√(−2vxx +w)2ϕ2+

TTT

Sinh[Sinh[Sinh[√
k2
+2vx+2vxxϕ+wϕ−

√(−2vxx+w)2ϕ2

T
]))/√

k2
+2vx+2vxxϕ+wϕ−

√(−2vxx+w)2ϕ2

T
]))/√

k2
+2vx+2vxxϕ+wϕ−

√(−2vxx+w)2ϕ2

T
]))/

(24π2T
√(−2vxx +w)2ϕ2(24π2T
√(−2vxx +w)2ϕ2(24π2T
√(−2vxx +w)2ϕ2

(k2 + 2vx + 2vxxϕ +wϕ −√(−2vxx +w)2ϕ2)3/2)−(k2 + 2vx + 2vxxϕ +wϕ −√(−2vxx +w)2ϕ2)3/2)−(k2 + 2vx + 2vxxϕ +wϕ −√(−2vxx +w)2ϕ2)3/2)−
(k4 (3w2 + 4wx2ϕ2 + 5wx

√(−2vxx +w)2ϕ2+(k4 (3w2 + 4wx2ϕ2 + 5wx
√(−2vxx +w)2ϕ2+(k4 (3w2 + 4wx2ϕ2 + 5wx
√(−2vxx +w)2ϕ2+

wxxϕ
√(−2vxx +w)2ϕ2 +wϕ(8wx −wxxϕ)+wxxϕ
√(−2vxx +w)2ϕ2 +wϕ(8wx −wxxϕ)+wxxϕ
√(−2vxx +w)2ϕ2 +wϕ(8wx −wxxϕ)+
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2vxx(6w +ϕ(4wx +wxxϕ)))2vxx(6w +ϕ(4wx +wxxϕ)))2vxx(6w + ϕ(4wx +wxxϕ)))
Csch[√k2

+2vx+2vxxϕ+wϕ+
√(−2vxx+w)2ϕ2

2T
]2Csch [√k2

+2vx+2vxxϕ+wϕ+
√(−2vxx+w)2ϕ2

2T
]2Csch [√k2

+2vx+2vxxϕ+wϕ+
√(−2vxx+w)2ϕ2

2T
]2

(√k2 + 2vx + 2vxxϕ +wϕ +√(−2vxx +w)2ϕ2+(√k2 + 2vx + 2vxxϕ +wϕ +√(−2vxx +w)2ϕ2+(√k2 + 2vx + 2vxxϕ +wϕ +√(−2vxx +w)2ϕ2+

TTT

Sinh[Sinh[Sinh[√
k2
+2vx+2vxxϕ+wϕ+

√(−2vxx+w)2ϕ2

T
]))/√

k2
+2vx+2vxxϕ+wϕ+

√(−2vxx+w)2ϕ2

T
]))/√

k2
+2vx+2vxxϕ+wϕ+

√(−2vxx+w)2ϕ2

T
]))/

(24π2T
√(−2vxx +w)2ϕ2(24π2T
√(−2vxx +w)2ϕ2(24π2T
√(−2vxx +w)2ϕ2

(k2 + 2vx + 2vxxϕ +wϕ +√(−2vxx +w)2ϕ2)3/2) ;(k2 + 2vx + 2vxxϕ +wϕ +√(−2vxx +w)2ϕ2)3/2) ;(k2 + 2vx + 2vxxϕ +wϕ +√(−2vxx +w)2ϕ2)3/2) ;

nx = 22;nx = 22;nx = 22;

Do [xi = ( 1
10
) ∧2 + ( 1950

100
∗ (i − 1))∧2,{i,1,nx}] ;Do [xi = ( 1

10
) ∧2 + (1950

100
∗ (i − 1))∧2,{i,1,nx}] ;Do [xi = ( 1

10
)∧2 + (1950

100
∗ (i − 1)) ∧2,{i,1,nx}] ;

list1 =list1 =list1 =
Table [vpi + vppi ∗ xi+1−xi

2.
+ vpppi ∗

(xi+1−xi)∧2
8.

+Table [vpi + vppi ∗ xi+1−xi

2.
+ vpppi ∗

(xi+1−xi)∧2
8.

+Table [vpi + vppi ∗
xi+1−xi

2.
+ vpppi ∗

(xi+1−xi)∧2
8.

+

vppppi ∗
(xi+1−xi)∧3

48.
==vppppi ∗

(xi+1−xi)∧3
48.

==vppppi ∗
(xi+1−xi)∧3

48.
==

vpi+1 − vppi+1 ∗
xi+1−xi

2.
+ vpppi+1 ∗

(xi+1−xi)∧2
8.

−vpi+1 − vppi+1 ∗
xi+1−xi

2.
+ vpppi+1 ∗

(xi+1−xi)∧2
8.

−vpi+1 − vppi+1 ∗
xi+1−xi

2.
+ vpppi+1 ∗

(xi+1−xi)∧2
8.

−

vppppi+1 ∗
(xi+1−xi)∧3

48.
,{i,1,nx − 1}] ;vppppi+1 ∗

(xi+1−xi)∧3
48.

,{i,1,nx − 1}] ;vppppi+1 ∗
(xi+1−xi)∧3

48.
,{i,1,nx − 1}] ;

list2 = Table [vppi + vpppi ∗ xi+1−xi

2.
+ vppppi ∗

(xi+1−xi)∧2
8.

==list2 = Table [vppi + vpppi ∗
xi+1−xi

2.
+ vppppi ∗

(xi+1−xi)∧2
8.

==list2 = Table [vppi + vpppi ∗
xi+1−xi

2.
+ vppppi ∗

(xi+1−xi)∧2
8.

==
vppi+1 − vpppi+1 ∗

xi+1−xi

2.
+ vppppi+1 ∗

(xi+1−xi)∧2
8.

,vppi+1 − vpppi+1 ∗
xi+1−xi

2.
+ vppppi+1 ∗

(xi+1−xi)∧2
8.

,vppi+1 − vpppi+1 ∗
xi+1−xi

2.
+ vppppi+1 ∗

(xi+1−xi)∧2
8.

,{i,1,nx − 1}];{i,1,nx − 1}];{i,1,nx − 1}];
list3 = {vppp1 + vpppp1 ∗

x2−x1

2.
== vppp2 + vpppp2 ∗

x1−x2

2.
,list3 = {vppp1 + vpppp1 ∗ x2−x1

2.
== vppp2 + vpppp2 ∗ x1−x2

2.
,list3 = {vppp1 + vpppp1 ∗ x2−x1

2.
== vppp2 + vpppp2 ∗ x1−x2

2.
,

vpppnx−1 + vppppnx−1 ∗
xnx−xnx−1

2.
==vpppnx−1 + vppppnx−1 ∗

xnx−xnx−1
2.

==vpppnx−1 + vppppnx−1 ∗
xnx−xnx−1

2.
==

vpppnx + vppppnx ∗
xnx−1−xnx

2.
} ;vpppnx + vppppnx ∗

xnx−1−xnx

2.
} ;vpppnx + vppppnx ∗

xnx−1−xnx

2.
} ;

alg = Join[list1, list2, list3];alg = Join[list1, list2, list3];alg = Join[list1, list2, list3];
va = Join [Table [vpppi,{i,1,nx}] ,va = Join [Table [vpppi,{i,1,nx}] ,va = Join [Table [vpppi,{i,1,nx}] ,
Table [vppppi,{i,1,nx}]] ;Table [vppppi,{i,1,nx}]] ;Table [vppppi,{i,1,nx}]] ;
truncv = Solve[alg,va][[1]];truncv = Solve[alg,va][[1]];truncv = Solve[alg,va][[1]];
list1 =list1 =list1 =
Table [wpi +wppi ∗

xi+1−xi

2.
+wpppi ∗

(xi+1−xi)∧2
8.

+Table [wpi +wppi ∗ xi+1−xi

2.
+wpppi ∗

(xi+1−xi)∧2
8.

+Table [wpi +wppi ∗ xi+1−xi

2.
+wpppi ∗

(xi+1−xi)∧2
8.

+

wppppi ∗
(xi+1−xi)∧3

48.
==wppppi ∗

(xi+1−xi)∧3
48.

==wppppi ∗
(xi+1−xi)∧3

48.
==

wpi+1 −wppi+1 ∗
xi+1−xi

2.
+wpppi+1 ∗

(xi+1−xi)∧2
8.

−wpi+1 −wppi+1 ∗
xi+1−xi

2.
+wpppi+1 ∗

(xi+1−xi)∧2
8.

−wpi+1 −wppi+1 ∗
xi+1−xi

2.
+wpppi+1 ∗

(xi+1−xi)∧2
8.

−

wppppi+1 ∗
(xi+1−xi)∧3

48.
,{i,1,nx − 1}] ;wppppi+1 ∗

(xi+1−xi)∧3
48.

,{i,1,nx − 1}] ;wppppi+1 ∗
(xi+1−xi)∧3

48.
,{i,1,nx − 1}] ;

list2 = Table [wppi +wpppi ∗
xi+1−xi

2.
+wppppi ∗

(xi+1−xi)∧2
8.

==list2 = Table [wppi +wpppi ∗
xi+1−xi

2.
+wppppi ∗

(xi+1−xi)∧2
8.

==list2 = Table [wppi +wpppi ∗ xi+1−xi

2.
+wppppi ∗

(xi+1−xi)∧2
8.

==
wppi+1 −wpppi+1 ∗

xi+1−xi

2.
+wppppi+1 ∗

(xi+1−xi)∧2
8.

,wppi+1 −wpppi+1 ∗
xi+1−xi

2.
+wppppi+1 ∗

(xi+1−xi)∧2
8.

,wppi+1 −wpppi+1 ∗
xi+1−xi

2.
+wppppi+1 ∗

(xi+1−xi)∧2
8.

,{i,1,nx − 1}];{i,1,nx − 1}];{i,1,nx − 1}];
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list3 = {wppp1 +wpppp1 ∗
x2−x1

2.
== wppp2 +wpppp2 ∗ x1−x2

2.
,list3 = {wppp1 +wpppp1 ∗

x2−x1

2.
== wppp2 +wpppp2 ∗

x1−x2

2.
,list3 = {wppp1 +wpppp1 ∗ x2−x1

2.
== wppp2 +wpppp2 ∗

x1−x2

2.
,

wpppnx−1 +wppppnx−1 ∗
xnx−xnx−1

2.
==wpppnx−1 +wppppnx−1 ∗

xnx−xnx−1
2.

==wpppnx−1 +wppppnx−1 ∗
xnx−xnx−1

2.
==

wpppnx +wppppnx ∗
xnx−1−xnx

2.
} ;wpppnx +wppppnx ∗

xnx−1−xnx

2.
} ;wpppnx +wppppnx ∗

xnx−1−xnx

2.
} ;

alg = Join[list1, list2, list3];alg = Join[list1, list2, list3];alg = Join[list1, list2, list3];
wa = Join [Table [wpppi,{i,1,nx}] ,wa = Join [Table [wpppi,{i,1,nx}] ,wa = Join [Table [wpppi,{i,1,nx}] ,
Table [wppppi,{i,1,nx}]] ;Table [wppppi,{i,1,nx}]] ;Table [wppppi,{i,1,nx}]] ;
truncw = Solve[alg,wa][[1]];truncw = Solve[alg,wa][[1]];truncw = Solve[alg,wa][[1]];

trunc = Join[truncv, truncw]trunc = Join[truncv, truncw]trunc = Join[truncv, truncw]

Do [fj = fv [k,xj , vj ,vpj ,vppj ,wj ,wpj ,wppj] ,{j,1,nx}] ;Do [fj = fv [k,xj , vj ,vpj ,vppj ,wj ,wpj ,wppj] ,{j,1,nx}] ;Do [fj = fv [k,xj , vj ,vpj ,vppj ,wj ,wpj ,wppj] ,{j,1,nx}] ;

Do[Do[Do[
fj+nx =fj+nx =fj+nx =(D[fv[k,x, v[x], v′[x], v”[x],w[x],w′[x],w”[x]],(D[fv[k,x, v[x], v′[x], v”[x],w[x],w′[x],w”[x]],(D[fv[k,x, v[x], v′[x], v”[x],w[x],w′[x],w”[x]],
x]/.{v[x] → vj , v

′[x]→ vpj , v”[x] → vppj ,x]/. {v[x]→ vj , v
′[x]→ vpj , v”[x]→ vppj ,x]/. {v[x] → vj , v
′[x] → vpj , v”[x] → vppj ,

v(3)[x] → vpppj , v
(4)[x]→ vppppj ,w[x] → wj ,v(3)[x] → vpppj , v
(4)[x] → vppppj ,w[x] → wj ,v(3)[x]→ vpppj , v
(4)[x]→ vppppj ,w[x] → wj ,

w′[x] → wpj ,w”[x]→ wppj ,w
(3)[x]→ wpppj ,w′[x]→ wpj ,w”[x]→ wppj ,w
(3)[x] → wpppj ,w′[x] → wpj ,w”[x] → wppj ,w
(3)[x] → wpppj ,

w(4)[x]→ wppppj , x → xj})/.trunc,{j,1,nx}] ;w(4)[x] → wppppj , x→ xj})/.trunc,{j,1,nx}] ;w(4)[x]→ wppppj , x→ xj})/.trunc,{j,1,nx}] ;
Do[Do[Do[
fj+2∗nx =fj+2∗nx =fj+2∗nx =(D[D[fv[k,x, v[x], v′[x], v”[x],w[x],w′[x],(D[D[fv[k,x, v[x], v′[x], v”[x],w[x],w′[x],(D[D[fv[k,x, v[x], v′[x], v”[x],w[x],w′[x],
w”[x]], x], x]/.w”[x]], x], x]/.w”[x]], x], x]/.{v[x] → vj , v

′[x] → vpj , v”[x]→ vppj ,{v[x] → vj , v
′[x] → vpj , v”[x] → vppj ,{v[x]→ vj , v
′[x]→ vpj , v”[x]→ vppj ,

v(3)[x] → vpppj , v
(4)[x]→ vppppj ,w[x] → wj ,v(3)[x] → vpppj , v
(4)[x] → vppppj ,w[x] → wj ,v(3)[x]→ vpppj , v
(4)[x]→ vppppj ,w[x] → wj ,

w′[x] → wpj ,w”[x]→ wppj ,w
(3)[x]→ wpppj ,w′[x]→ wpj ,w”[x]→ wppj ,w
(3)[x] → wpppj ,w′[x] → wpj ,w”[x] → wppj ,w
(3)[x] → wpppj ,

w(4)[x]→ wppppj , x → xj})/.trunc,{j,1,nx}] ;w(4)[x] → wppppj , x→ xj})/.trunc,{j,1,nx}] ;w(4)[x]→ wppppj , x→ xj})/.trunc,{j,1,nx}] ;
(*f1 =D[v1, s], ..., fnx =D[vnx, s], fnx+1 =D[vp1, s], ...,(*f1 =D[v1, s], ..., fnx =D[vnx, s], fnx+1 =D[vp1, s], ...,(*f1 =D[v1, s], ..., fnx =D[vnx, s], fnx+1 =D[vp1, s], ...,
f2nx =D[vpnx, s], f2nx+1 =D[vpp1, s], ..., f3nx =D[vppnx, s]*)f2nx =D[vpnx, s], f2nx+1 =D[vpp1, s], ..., f3nx =D[vppnx, s]*)f2nx =D[vpnx, s], f2nx+1 =D[vpp1, s], ..., f3nx =D[vppnx, s]*)
Do [fj+3∗nx = fw [k,xj , vj ,vpj ,vppj ,wj ,wpj ,wppj] ,Do [fj+3∗nx = fw [k,xj , vj ,vpj ,vppj ,wj ,wpj,wppj] ,Do [fj+3∗nx = fw [k,xj , vj ,vpj ,vppj ,wj ,wpj ,wppj] ,{j,1,nx}];{j,1,nx}];{j,1,nx}];

Do[Do[Do[
fj+4∗nx =fj+4∗nx =fj+4∗nx =(D[fw[k,x, v[x], v′[x], v”[x],w[x],w′[x],w”[x]],(D[fw[k,x, v[x], v′[x], v”[x],w[x],w′[x],w”[x]],(D[fw[k,x, v[x], v′[x], v”[x],w[x],w′[x],w”[x]],
x]/.{v[x] → vj , v

′[x]→ vpj , v”[x] → vppj ,x]/. {v[x]→ vj , v
′[x]→ vpj , v”[x]→ vppj ,x]/. {v[x] → vj , v
′[x] → vpj , v”[x] → vppj ,
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v(3)[x] → vpppj , v
(4)[x]→ vppppj ,w[x] → wj ,v(3)[x] → vpppj , v
(4)[x] → vppppj ,w[x] → wj ,v(3)[x]→ vpppj , v
(4)[x]→ vppppj ,w[x] → wj ,

w′[x] → wpj ,w”[x]→ wppj ,w
(3)[x]→ wpppj ,w′[x]→ wpj ,w”[x]→ wppj ,w
(3)[x] → wpppj ,w′[x] → wpj ,w”[x] → wppj ,w
(3)[x] → wpppj ,

w(4)[x]→ wppppj , x → xj})/.trunc,{j,1,nx}] ;w(4)[x] → wppppj , x→ xj})/.trunc,{j,1,nx}] ;w(4)[x]→ wppppj , x→ xj})/.trunc,{j,1,nx}] ;
Do[Do[Do[
fj+5∗nx =fj+5∗nx =fj+5∗nx =(D[D[fw[k,x, v[x], v′[x], v”[x],w[x],w′[x],(D[D[fw[k,x, v[x], v′[x], v”[x],w[x],w′[x],(D[D[fw[k,x, v[x], v′[x], v”[x],w[x],w′[x],
w”[x]], x], x]/.w”[x]], x], x]/.w”[x]], x], x]/.{v[x] → vj , v

′[x] → vpj , v”[x]→ vppj ,{v[x] → vj , v
′[x] → vpj , v”[x] → vppj ,{v[x]→ vj , v
′[x]→ vpj , v”[x]→ vppj ,

v(3)[x] → vpppj , v
(4)[x]→ vppppj ,w[x] → wj ,v(3)[x] → vpppj , v
(4)[x] → vppppj ,w[x] → wj ,v(3)[x]→ vpppj , v
(4)[x]→ vppppj ,w[x] → wj ,

w′[x] → wpj ,w”[x]→ wppj ,w
(3)[x]→ wpppj ,w′[x]→ wpj ,w”[x]→ wppj ,w
(3)[x] → wpppj ,w′[x] → wpj ,w”[x] → wppj ,w
(3)[x] → wpppj ,

w(4)[x]→ wppppj , x → xj})/.trunc,{j,1,nx}] ;w(4)[x] → wppppj , x→ xj})/.trunc,{j,1,nx}] ;w(4)[x]→ wppppj , x→ xj})/.trunc,{j,1,nx}] ;
(*f3nx+1 =D[w1, s], ..., f4nx =D[wnx, s], f4nx+1 =D[wp1, s], ...,(*f3nx+1 =D[w1, s], ..., f4nx =D[wnx, s], f4nx+1 =D[wp1, s], ...,(*f3nx+1 =D[w1, s], ..., f4nx =D[wnx, s], f4nx+1 =D[wp1, s], ...,
f5nx =D[wpnx, s], f5nx+1 =D[wpp1, s], ..., f6nx =D[wppnx, s]*)f5nx =D[wpnx, s], f5nx+1 =D[wpp1, s], ..., f6nx =D[wppnx, s]*)f5nx =D[wpnx, s], f5nx+1 =D[wpp1, s], ..., f6nx =D[wppnx, s]*)

(*Cash−KarpCoefficients ∶ *)(*Cash −KarpCoefficients ∶ *)(*Cash −KarpCoefficients ∶ *)

a2 = 1
5
; a3 = 3

10
; a4 = 3

5
; a5 = 1; a6 = 7

8
;a2 = 1

5
; a3 = 3

10
; a4 = 3

5
; a5 = 1; a6 = 7

8
;a2 = 1

5
; a3 = 3

10
; a4 = 3

5
; a5 = 1; a6 = 7

8
;

b21 = 1
5
; b31 = 3

40
; b41 = 3

10
; b51 = −11

54
;b21 = 1

5
; b31 = 3

40
; b41 = 3

10
; b51 = −11

54
;b21 = 1

5
; b31 = 3

40
; b41 = 3

10
; b51 = −11

54
;

b61 = 1631
55296

; b32 = 9
40
; b42 = −9

10
; b52 = 5

2
;b61 = 1631

55296
; b32 = 9

40
; b42 = −9

10
; b52 = 5

2
;b61 = 1631

55296
; b32 = 9

40
; b42 = −9

10
; b52 = 5

2
;

b62 = 175
512

; b43 = 6
5
; b53 = −70

27
; b63 = 575

13824
;b62 = 175

512
; b43 = 6

5
; b53 = −70

27
; b63 = 575

13824
;b62 = 175

512
; b43 = 6

5
; b53 = −70

27
; b63 = 575

13824
;

b54 = 35
27
; b64 = 44275

110592
; b65 = 253

4096
; c1 = 37

378
;b54 = 35

27
; b64 = 44275

110592
; b65 = 253

4096
; c1 = 37

378
;b54 = 35

27
; b64 = 44275

110592
; b65 = 253

4096
; c1 = 37

378
;

c2 = 0; c3 = 250
621

; c4 = 125
594

; c5 = 0; c6 = 512
1771

;c2 = 0; c3 = 250
621

; c4 = 125
594

; c5 = 0; c6 = 512
1771

;c2 = 0; c3 = 250
621

; c4 = 125
594

; c5 = 0; c6 = 512
1771

;

cS1 = 2825
27648

; cS2 = 0; cS3 = 18575
48384

; cS4 = 13525
55296

cS1 = 2825
27648

; cS2 = 0; cS3 = 18575
48384

; cS4 = 13525
55296cS1 = 2825

27648
; cS2 = 0; cS3 = 18575

48384
; cS4 = 13525

55296

cS5 = 277
14336

; cS6 = 1
4
;cS5 = 277

14336
; cS6 = 1

4
;cS5 = 277

14336
; cS6 = 1

4
;

helpp = Join[Table[v[j, i + 1],{j,1,nx}],helpp = Join[Table[v[j, i + 1],{j,1,nx}],helpp = Join[Table[v[j, i + 1],{j,1,nx}],
Table[vp[j, i + 1],{j,1,nx}],Table[vp[j, i + 1],{j,1,nx}],Table[vp[j, i + 1],{j,1,nx}],
Table[vpp[j, i + 1],{j,1,nx}],Table[vpp[j, i + 1],{j,1,nx}],Table[vpp[j, i + 1],{j,1,nx}],
Table[w[j, i + 1],{j,1,nx}],Table[w[j, i + 1],{j,1,nx}],Table[w[j, i + 1],{j,1,nx}],
Table[wp[j, i + 1],{j,1,nx}],Table[wp[j, i + 1],{j,1,nx}],Table[wp[j, i + 1],{j,1,nx}],
Table[wpp[j, i + 1],{j,1,nx}]]Table[wpp[j, i + 1],{j,1,nx}]]Table[wpp[j, i + 1],{j,1,nx}]]
help = Join[Table[v[j, i],{j,1,nx}],help = Join[Table[v[j, i],{j,1,nx}],help = Join[Table[v[j, i],{j,1,nx}],
Table[vp[j, i],{j,1,nx}],Table[vpp[j, i],{j,1,nx}],Table[vp[j, i],{j,1,nx}],Table[vpp[j, i],{j,1,nx}],Table[vp[j, i],{j,1,nx}],Table[vpp[j, i],{j,1,nx}],
Table[w[j, i],{j,1,nx}],Table[wp[j, i],{j,1,nx}],Table[w[j, i],{j,1,nx}],Table[wp[j, i],{j,1,nx}],Table[w[j, i],{j,1,nx}],Table[wp[j, i],{j,1,nx}],
Table[wpp[j, i],{j,1,nx}]]Table[wpp[j, i],{j,1,nx}]]Table[wpp[j, i],{j,1,nx}]]
helppS = Join[Table[vS[j, i + 1],{j,1,nx}],helppS = Join[Table[vS[j, i + 1],{j,1,nx}],helppS = Join[Table[vS[j, i + 1],{j,1,nx}],
Table[vpS[j, i + 1],{j,1,nx}],Table[vpS[j, i + 1],{j,1,nx}],Table[vpS[j, i + 1],{j,1,nx}],
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Table[vppS[j, i + 1],{j,1,nx}],Table[vppS[j, i + 1],{j,1,nx}],Table[vppS[j, i + 1],{j,1,nx}],
Table[wS[j, i + 1],{j,1,nx}],Table[wS[j, i + 1],{j,1,nx}],Table[wS[j, i + 1],{j,1,nx}],
Table[wpS[j, i + 1],{j,1,nx}],Table[wpS[j, i + 1],{j,1,nx}],Table[wpS[j, i + 1],{j,1,nx}],
Table[wppS[j, i + 1],{j,1,nx}]]Table[wppS[j, i + 1],{j,1,nx}]]Table[wppS[j, i + 1],{j,1,nx}]]

vv[x ] = 4
240
∗ (x − 230∧2)∧2;vv[x ] = 4

240
∗ (x − 230∧2)∧2;vv[x ] = 4

240
∗ (x − 230∧2)∧2;

vvx[x ] =D[vv[x], x];vvx[x ] =D[vv[x], x];vvx[x ] =D[vv[x], x];
vvxx[x ] =D[vvx[x], x];vvxx[x ] =D[vvx[x], x];vvxx[x ] =D[vvx[x], x];
Do [v[j,1] = vv [xj] ,{j,1,nx}] ;Do [v[j,1] = vv [xj] ,{j,1,nx}] ;Do [v[j,1] = vv [xj] ,{j,1,nx}] ;
Do [vp[j,1] = vvx [xj] ,{j,1,nx}] ;Do [vp[j,1] = vvx [xj] ,{j,1,nx}] ;Do [vp[j,1] = vvx [xj] ,{j,1,nx}] ;
Do [vpp[j,1] = vvxx [xj] ,{j,1,nx}] ;Do [vpp[j,1] = vvxx [xj] ,{j,1,nx}] ;Do [vpp[j,1] = vvxx [xj] ,{j,1,nx}] ;

ww[x ] = 13
100

;ww[x ] = 13
100

;ww[x ] = 13
100

;

wwx[x ] =D[ww[x], x];wwx[x ] =D[ww[x], x];wwx[x ] =D[ww[x], x];
wwxx[x ] =D[wwx[x], x];wwxx[x ] =D[wwx[x], x];wwxx[x ] =D[wwx[x], x];
Do [w[j,1] = ww [xj] ,{j,1,nx}] ;Do [w[j,1] = ww [xj] ,{j,1,nx}] ;Do [w[j,1] = ww [xj] ,{j,1,nx}] ;
Do [wp[j,1] = wwx [xj] ,{j,1,nx}] ;Do [wp[j,1] = wwx [xj] ,{j,1,nx}] ;Do [wp[j,1] = wwx [xj] ,{j,1,nx}] ;
Do [wpp[j,1] = wwxx [xj] ,{j,1,nx}] ;Do [wpp[j,1] = wwxx [xj] ,{j,1,nx}] ;Do [wpp[j,1] = wwxx [xj] ,{j,1,nx}] ;
adaptivestepsizeCashKarp ∶adaptivestepsizeCashKarp ∶adaptivestepsizeCashKarp ∶

Join [{k},Table [vj ,{j,1,nx}] ,Table [vpj ,{j,1,nx}] ,Join [{k},Table [vj ,{j,1,nx}] ,Table [vpj ,{j,1,nx}] ,Join [{k},Table [vj ,{j,1,nx}] ,Table [vpj ,{j,1,nx}] ,
Table [vppj ,{j,1,nx}] ,Table [wj ,{j,1,nx}] ,Table [vppj ,{j,1,nx}] ,Table [wj ,{j,1,nx}] ,Table [vppj ,{j,1,nx}] ,Table [wj ,{j,1,nx}] ,
Table [wpj ,{j,1,nx}] ,Table [wppj ,{j,1,nx}]]Table [wpj ,{j,1,nx}] ,Table [wppj ,{j,1,nx}]]Table [wpj ,{j,1,nx}] ,Table [wppj ,{j,1,nx}]]
Withorwithout(dependsonwhichblockcommentedout)Withorwithout(dependsonwhichblockcommentedout)Withorwithout(dependsonwhichblockcommentedout)
Adaptivestep − size, takeonlyv,vp,vpp,Adaptivestep − size, takeonlyv,vp,vpp,Adaptivestep − size, takeonlyv,vp,vpp,

wforerrorintoaccount ∶wforerrorintoaccount ∶wforerrorintoaccount ∶

eps = 8eps = 8eps = 8

kh1 = 500kh1 = 500kh1 = 500
h = −0.05h = −0.05h = −0.05

com = Join [{{k, Real}},Table [{vj , Real} ,{j,1,nx}] ,com = Join [{{k, Real}},Table [{vj , Real} ,{j,1,nx}] ,com = Join [{{k, Real}},Table [{vj , Real} ,{j,1,nx}] ,
Table [{vpj , Real} ,{j,1,nx}] ,Table [{vpj , Real} ,{j,1,nx}] ,Table [{vpj , Real} ,{j,1,nx}] ,
Table [{vppj , Real} ,{j,1,nx}] ,Table [{vppj , Real} ,{j,1,nx}] ,Table [{vppj , Real} ,{j,1,nx}] ,
Table [{wj , Real} ,{j,1,nx}] ,Table [{wj , Real} ,{j,1,nx}] ,Table [{wj , Real} ,{j,1,nx}] ,
Table [{wpj , Real} ,{j,1,nx}] ,Table [{wpj , Real} ,{j,1,nx}] ,Table [{wpj , Real} ,{j,1,nx}] ,
Table [{wppj , Real} ,{j,1,nx}]]Table [{wppj , Real} ,{j,1,nx}]]Table [{wppj , Real} ,{j,1,nx}]]
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Do [fcpj = Compile [Evaluate[com],Evaluate [fj]] ,Do [fcpj = Compile [Evaluate[com],Evaluate [fj]] ,Do [fcpj = Compile [Evaluate[com],Evaluate [fj]] ,{j,1,6 ∗ nx}]{j,1,6 ∗ nx}]{j,1,6 ∗ nx}]
i = 1i = 1i = 1
Do[Do[Do[
k = khi;Do [vj = v[j, i],{j,1,nx}] ;k = khi;Do [vj = v[j, i],{j,1,nx}] ;k = khi;Do [vj = v[j, i],{j,1,nx}] ;
Do [vpj = vp[j, i],{j,1,nx}] ;Do [vpj = vp[j, i],{j,1,nx}] ;Do [vpj = vp[j, i],{j,1,nx}] ;
Do [vppj = vpp[j, i],{j,1,nx}] ;Do [vppj = vpp[j, i],{j,1,nx}] ;Do [vppj = vpp[j, i],{j,1,nx}] ;
Do [wj = w[j, i],{j,1,nx}] ;Do [wpj = wp[j, i],{j,1,nx}] ;Do [wj = w[j, i],{j,1,nx}] ;Do [wpj = wp[j, i],{j,1,nx}] ;Do [wj = w[j, i],{j,1,nx}] ;Do [wpj = wp[j, i],{j,1,nx}] ;
Do [wppj = wpp[j, i],{j,1,nx}] ;Do [wppj = wpp[j, i],{j,1,nx}] ;Do [wppj = wpp[j, i],{j,1,nx}] ;
Do[Do[Do[
k1j = h ∗ fcpj [k, v1, v2, v3, v4, v5, v6, v7, v8, v9,k1j = h ∗ fcpj [k, v1, v2, v3, v4, v5, v6, v7, v8, v9,k1j = h ∗ fcpj [k, v1, v2, v3, v4, v5, v6, v7, v8, v9,
v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20,v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20,v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20,

v21, v22,vp1,vp2,vp3,vp4,vp5,vp6,vp7,vp8,v21, v22,vp1,vp2,vp3,vp4,vp5,vp6,vp7,vp8,v21, v22,vp1,vp2,vp3,vp4,vp5,vp6,vp7,vp8,

vp9,vp10,vp11,vp12,vp13,vp14,vp15,vp16,vp17,vp9,vp10,vp11,vp12,vp13,vp14,vp15,vp16,vp17,vp9,vp10,vp11,vp12,vp13,vp14,vp15,vp16,vp17,

vp18,vp19,vp20,vp21,vp22,vpp1,vpp2,vpp3,vp18,vp19,vp20,vp21,vp22,vpp1,vpp2,vpp3,vp18,vp19,vp20,vp21,vp22,vpp1,vpp2,vpp3,

vpp4,vpp5,vpp6,vpp7,vpp8,vpp9,vpp10,vpp11,vpp4,vpp5,vpp6,vpp7,vpp8,vpp9,vpp10,vpp11,vpp4,vpp5,vpp6,vpp7,vpp8,vpp9,vpp10,vpp11,

vpp12,vpp13,vpp14,vpp15,vpp16,vpp17,vpp18,vpp12,vpp13,vpp14,vpp15,vpp16,vpp17,vpp18,vpp12,vpp13,vpp14,vpp15,vpp16,vpp17,vpp18,

vpp19,vpp20,vpp21,vpp22,w1,w2,w3,w4,w5,w6,vpp19,vpp20,vpp21,vpp22,w1,w2,w3,w4,w5,w6,vpp19,vpp20,vpp21,vpp22,w1,w2,w3,w4,w5,w6,

w7,w8,w9,w10,w11,w12,w13,w14,w15,w16,w17,w18,w7,w8,w9,w10,w11,w12,w13,w14,w15,w16,w17,w18,w7,w8,w9,w10,w11,w12,w13,w14,w15,w16,w17,w18,

w19,w20,w21,w22,wp1,wp2,wp3,wp4,wp5,wp6,wp7,w19,w20,w21,w22,wp1,wp2,wp3,wp4,wp5,wp6,wp7,w19,w20,w21,w22,wp1,wp2,wp3,wp4,wp5,wp6,wp7,

wp8,wp9,wp10,wp11,wp12,wp13,wp14,wp15,wp16,wp8,wp9,wp10,wp11,wp12,wp13,wp14,wp15,wp16,wp8,wp9,wp10,wp11,wp12,wp13,wp14,wp15,wp16,

wp17,wp18,wp19,wp20,wp21,wp22,wpp1,wpp2,wpp3,wp17,wp18,wp19,wp20,wp21,wp22,wpp1,wpp2,wpp3,wp17,wp18,wp19,wp20,wp21,wp22,wpp1,wpp2,wpp3,

wpp4,wpp5,wpp6,wpp7,wpp8,wpp9,wpp10,wpp11,wpp4,wpp5,wpp6,wpp7,wpp8,wpp9,wpp10,wpp11,wpp4,wpp5,wpp6,wpp7,wpp8,wpp9,wpp10,wpp11,

wpp12,wpp13,wpp14,wpp15,wpp16,wpp17,wpp18,wpp12,wpp13,wpp14,wpp15,wpp16,wpp17,wpp18,wpp12,wpp13,wpp14,wpp15,wpp16,wpp17,wpp18,

wpp19,wpp20,wpp21,wpp22] ,{j,1,6 ∗ nx}] ;wpp19,wpp20,wpp21,wpp22] ,{j,1,6 ∗ nx}] ;wpp19,wpp20,wpp21,wpp22] ,{j,1,6 ∗ nx}] ;
k = khi + a2 ∗ h;Do [vj = v[j, i] + b21 ∗ k1j ,{j,1,nx}] ;k = khi + a2 ∗ h;Do [vj = v[j, i] + b21 ∗ k1j ,{j,1,nx}] ;k = khi + a2 ∗ h;Do [vj = v[j, i] + b21 ∗ k1j,{j,1,nx}] ;
Do [vpj = vp[j, i] + b21 ∗ k1j+nx,{j,1,nx}] ;Do [vpj = vp[j, i] + b21 ∗ k1j+nx,{j,1,nx}] ;Do [vpj = vp[j, i] + b21 ∗ k1j+nx,{j,1,nx}] ;
Do [vppj = vpp[j, i] + b21 ∗ k1j+2∗nx,{j,1,nx}] ;Do [vppj = vpp[j, i] + b21 ∗ k1j+2∗nx,{j,1,nx}] ;Do [vppj = vpp[j, i] + b21 ∗ k1j+2∗nx,{j,1,nx}] ;
Do [wj = w[j, i] + b21 ∗ k1j+3∗nx,{j,1,nx}] ;Do [wj = w[j, i] + b21 ∗ k1j+3∗nx,{j,1,nx}] ;Do [wj = w[j, i] + b21 ∗ k1j+3∗nx,{j,1,nx}] ;
Do [wpj = wp[j, i] + b21 ∗ k1j+4∗nx,{j,1,nx}] ;Do [wpj = wp[j, i] + b21 ∗ k1j+4∗nx,{j,1,nx}] ;Do [wpj = wp[j, i] + b21 ∗ k1j+4∗nx,{j,1,nx}] ;
Do [wppj = wpp[j, i] + b21 ∗ k1j+5∗nx,{j,1,nx}] ;Do [wppj = wpp[j, i] + b21 ∗ k1j+5∗nx,{j,1,nx}] ;Do [wppj = wpp[j, i] + b21 ∗ k1j+5∗nx,{j,1,nx}] ;
Do[Do[Do[
k2j = h ∗ fcpj [k, v1, v2, v3, v4, v5, v6, v7, v8, v9,k2j = h ∗ fcpj [k, v1, v2, v3, v4, v5, v6, v7, v8, v9,k2j = h ∗ fcpj [k, v1, v2, v3, v4, v5, v6, v7, v8, v9,
v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20,v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20,v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20,

v21, v22,vp1,vp2,vp3,vp4,vp5,vp6,vp7,vp8,v21, v22,vp1,vp2,vp3,vp4,vp5,vp6,vp7,vp8,v21, v22,vp1,vp2,vp3,vp4,vp5,vp6,vp7,vp8,

vp9,vp10,vp11,vp12,vp13,vp14,vp15,vp16,vp17,vp9,vp10,vp11,vp12,vp13,vp14,vp15,vp16,vp17,vp9,vp10,vp11,vp12,vp13,vp14,vp15,vp16,vp17,

vp18,vp19,vp20,vp21,vp22,vpp1,vpp2,vpp3,vp18,vp19,vp20,vp21,vp22,vpp1,vpp2,vpp3,vp18,vp19,vp20,vp21,vp22,vpp1,vpp2,vpp3,

vpp4,vpp5,vpp6,vpp7,vpp8,vpp9,vpp10,vpp11,vpp4,vpp5,vpp6,vpp7,vpp8,vpp9,vpp10,vpp11,vpp4,vpp5,vpp6,vpp7,vpp8,vpp9,vpp10,vpp11,

vpp12,vpp13,vpp14,vpp15,vpp16,vpp17,vpp18,vpp12,vpp13,vpp14,vpp15,vpp16,vpp17,vpp18,vpp12,vpp13,vpp14,vpp15,vpp16,vpp17,vpp18,

vpp19,vpp20,vpp21,vpp22,w1,w2,w3,w4,w5,w6,vpp19,vpp20,vpp21,vpp22,w1,w2,w3,w4,w5,w6,vpp19,vpp20,vpp21,vpp22,w1,w2,w3,w4,w5,w6,

w7,w8,w9,w10,w11,w12,w13,w14,w15,w16,w17,w18,w7,w8,w9,w10,w11,w12,w13,w14,w15,w16,w17,w18,w7,w8,w9,w10,w11,w12,w13,w14,w15,w16,w17,w18,

w19,w20,w21,w22,wp1,wp2,wp3,wp4,wp5,wp6,wp7,w19,w20,w21,w22,wp1,wp2,wp3,wp4,wp5,wp6,wp7,w19,w20,w21,w22,wp1,wp2,wp3,wp4,wp5,wp6,wp7,
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wp8,wp9,wp10,wp11,wp12,wp13,wp14,wp15,wp16,wp8,wp9,wp10,wp11,wp12,wp13,wp14,wp15,wp16,wp8,wp9,wp10,wp11,wp12,wp13,wp14,wp15,wp16,

wp17,wp18,wp19,wp20,wp21,wp22,wpp1,wpp2,wpp3,wp17,wp18,wp19,wp20,wp21,wp22,wpp1,wpp2,wpp3,wp17,wp18,wp19,wp20,wp21,wp22,wpp1,wpp2,wpp3,

wpp4,wpp5,wpp6,wpp7,wpp8,wpp9,wpp10,wpp11,wpp4,wpp5,wpp6,wpp7,wpp8,wpp9,wpp10,wpp11,wpp4,wpp5,wpp6,wpp7,wpp8,wpp9,wpp10,wpp11,

wpp12,wpp13,wpp14,wpp15,wpp16,wpp17,wpp18,wpp12,wpp13,wpp14,wpp15,wpp16,wpp17,wpp18,wpp12,wpp13,wpp14,wpp15,wpp16,wpp17,wpp18,

wpp19,wpp20,wpp21,wpp22] ,{j,1,6 ∗ nx}] ;wpp19,wpp20,wpp21,wpp22] ,{j,1,6 ∗ nx}] ;wpp19,wpp20,wpp21,wpp22] ,{j,1,6 ∗ nx}] ;
k = khi + a3 ∗ h;Do [vj = v[j, i] + b31 ∗ k1j + b32 ∗ k2j ,k = khi + a3 ∗ h;Do [vj = v[j, i] + b31 ∗ k1j + b32 ∗ k2j ,k = khi + a3 ∗ h;Do [vj = v[j, i] + b31 ∗ k1j + b32 ∗ k2j ,{j,1,nx}];Do [vpj = vp[j, i] + b31 ∗ k1j+nx + b32 ∗ k2j+nx,{j,1,nx}];Do [vpj = vp[j, i] + b31 ∗ k1j+nx + b32 ∗ k2j+nx,{j,1,nx}];Do [vpj = vp[j, i] + b31 ∗ k1j+nx + b32 ∗ k2j+nx,{j,1,nx}];{j,1,nx}];{j,1,nx}];
Do [vppj = vpp[j, i] + b31 ∗ k1j+2∗nx + b32 ∗ k2j+2∗nx,{j,1,nx}] ;Do [vppj = vpp[j, i] + b31 ∗ k1j+2∗nx + b32 ∗ k2j+2∗nx,{j,1,nx}] ;Do [vppj = vpp[j, i] + b31 ∗ k1j+2∗nx + b32 ∗ k2j+2∗nx,{j,1,nx}] ;
Do [wj = w[j, i] + b31 ∗ k1j+3∗nx + b32 ∗ k2j+3∗nx,{j,1,nx}] ;Do [wj = w[j, i] + b31 ∗ k1j+3∗nx + b32 ∗ k2j+3∗nx,{j,1,nx}] ;Do [wj = w[j, i] + b31 ∗ k1j+3∗nx + b32 ∗ k2j+3∗nx,{j,1,nx}] ;
Do [wpj = wp[j, i] + b31 ∗ k1j+4∗nx + b32 ∗ k2j+4∗nx,{j,1,nx}] ;Do [wpj = wp[j, i] + b31 ∗ k1j+4∗nx + b32 ∗ k2j+4∗nx,{j,1,nx}] ;Do [wpj = wp[j, i] + b31 ∗ k1j+4∗nx + b32 ∗ k2j+4∗nx,{j,1,nx}] ;
Do [wppj = wpp[j, i] + b31 ∗ k1j+5∗nx + b32 ∗ k2j+5∗nx,{j,1,nx}] ;Do [wppj = wpp[j, i] + b31 ∗ k1j+5∗nx + b32 ∗ k2j+5∗nx,{j,1,nx}] ;Do [wppj = wpp[j, i] + b31 ∗ k1j+5∗nx + b32 ∗ k2j+5∗nx,{j,1,nx}] ;
Do[Do[Do[
k3j = h ∗ fcpj [k, v1, v2, v3, v4, v5, v6, v7, v8, v9,k3j = h ∗ fcpj [k, v1, v2, v3, v4, v5, v6, v7, v8, v9,k3j = h ∗ fcpj [k, v1, v2, v3, v4, v5, v6, v7, v8, v9,
v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20,v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20,v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20,

v21, v22,vp1,vp2,vp3,vp4,vp5,vp6,vp7,vp8,v21, v22,vp1,vp2,vp3,vp4,vp5,vp6,vp7,vp8,v21, v22,vp1,vp2,vp3,vp4,vp5,vp6,vp7,vp8,

vp9,vp10,vp11,vp12,vp13,vp14,vp15,vp16,vp17,vp9,vp10,vp11,vp12,vp13,vp14,vp15,vp16,vp17,vp9,vp10,vp11,vp12,vp13,vp14,vp15,vp16,vp17,

vp18,vp19,vp20,vp21,vp22,vpp1,vpp2,vpp3,vp18,vp19,vp20,vp21,vp22,vpp1,vpp2,vpp3,vp18,vp19,vp20,vp21,vp22,vpp1,vpp2,vpp3,

vpp4,vpp5,vpp6,vpp7,vpp8,vpp9,vpp10,vpp11,vpp4,vpp5,vpp6,vpp7,vpp8,vpp9,vpp10,vpp11,vpp4,vpp5,vpp6,vpp7,vpp8,vpp9,vpp10,vpp11,

vpp12,vpp13,vpp14,vpp15,vpp16,vpp17,vpp18,vpp12,vpp13,vpp14,vpp15,vpp16,vpp17,vpp18,vpp12,vpp13,vpp14,vpp15,vpp16,vpp17,vpp18,

vpp19,vpp20,vpp21,vpp22,w1,w2,w3,w4,w5,w6,vpp19,vpp20,vpp21,vpp22,w1,w2,w3,w4,w5,w6,vpp19,vpp20,vpp21,vpp22,w1,w2,w3,w4,w5,w6,

w7,w8,w9,w10,w11,w12,w13,w14,w15,w16,w17,w18,w7,w8,w9,w10,w11,w12,w13,w14,w15,w16,w17,w18,w7,w8,w9,w10,w11,w12,w13,w14,w15,w16,w17,w18,

w19,w20,w21,w22,wp1,wp2,wp3,wp4,wp5,wp6,wp7,w19,w20,w21,w22,wp1,wp2,wp3,wp4,wp5,wp6,wp7,w19,w20,w21,w22,wp1,wp2,wp3,wp4,wp5,wp6,wp7,

wp8,wp9,wp10,wp11,wp12,wp13,wp14,wp15,wp16,wp8,wp9,wp10,wp11,wp12,wp13,wp14,wp15,wp16,wp8,wp9,wp10,wp11,wp12,wp13,wp14,wp15,wp16,

wp17,wp18,wp19,wp20,wp21,wp22,wpp1,wpp2,wpp3,wp17,wp18,wp19,wp20,wp21,wp22,wpp1,wpp2,wpp3,wp17,wp18,wp19,wp20,wp21,wp22,wpp1,wpp2,wpp3,

wpp4,wpp5,wpp6,wpp7,wpp8,wpp9,wpp10,wpp11,wpp4,wpp5,wpp6,wpp7,wpp8,wpp9,wpp10,wpp11,wpp4,wpp5,wpp6,wpp7,wpp8,wpp9,wpp10,wpp11,

wpp12,wpp13,wpp14,wpp15,wpp16,wpp17,wpp18,wpp12,wpp13,wpp14,wpp15,wpp16,wpp17,wpp18,wpp12,wpp13,wpp14,wpp15,wpp16,wpp17,wpp18,

wpp19,wpp20,wpp21,wpp22] ,{j,1,6 ∗ nx}] ;wpp19,wpp20,wpp21,wpp22] ,{j,1,6 ∗ nx}] ;wpp19,wpp20,wpp21,wpp22] ,{j,1,6 ∗ nx}] ;
k = khi + a4 ∗ h;Do [vj = v[j, i] + b41 ∗ k1j + b42 ∗ k2j + b43 ∗ k3j ,k = khi + a4 ∗ h;Do [vj = v[j, i] + b41 ∗ k1j + b42 ∗ k2j + b43 ∗ k3j ,k = khi + a4 ∗ h;Do [vj = v[j, i] + b41 ∗ k1j + b42 ∗ k2j + b43 ∗ k3j ,{j,1,nx}];{j,1,nx}];{j,1,nx}];
Do [vpj = vp[j, i] + b41 ∗ k1j+nx + b42 ∗ k2j+nx + b43 ∗ k3j+nx,Do [vpj = vp[j, i] + b41 ∗ k1j+nx + b42 ∗ k2j+nx + b43 ∗ k3j+nx,Do [vpj = vp[j, i] + b41 ∗ k1j+nx + b42 ∗ k2j+nx + b43 ∗ k3j+nx,{j,1,nx}];{j,1,nx}];{j,1,nx}];
Do [vppj = vpp[j, i] + b41 ∗ k1j+2∗nx + b42 ∗ k2j+2∗nx+Do [vppj = vpp[j, i] + b41 ∗ k1j+2∗nx + b42 ∗ k2j+2∗nx+Do [vppj = vpp[j, i] + b41 ∗ k1j+2∗nx + b42 ∗ k2j+2∗nx+
b43 ∗ k3j+2∗nx,{j,1,nx}] ;b43 ∗ k3j+2∗nx,{j,1,nx}] ;b43 ∗ k3j+2∗nx,{j,1,nx}] ;
Do [wj = w[j, i] + b41 ∗ k1j+3∗nx + b42 ∗ k2j+3∗nx + b43 ∗ k3j+3∗nx,Do [wj = w[j, i] + b41 ∗ k1j+3∗nx + b42 ∗ k2j+3∗nx + b43 ∗ k3j+3∗nx,Do [wj = w[j, i] + b41 ∗ k1j+3∗nx + b42 ∗ k2j+3∗nx + b43 ∗ k3j+3∗nx,{j,1,nx}];{j,1,nx}];{j,1,nx}];
Do [wpj = wp[j, i] + b41 ∗ k1j+4∗nx + b42 ∗ k2j+4∗nx + b43 ∗ k3j+4∗nx,Do [wpj = wp[j, i] + b41 ∗ k1j+4∗nx + b42 ∗ k2j+4∗nx + b43 ∗ k3j+4∗nx,Do [wpj = wp[j, i] + b41 ∗ k1j+4∗nx + b42 ∗ k2j+4∗nx + b43 ∗ k3j+4∗nx,{j,1,nx}];{j,1,nx}];{j,1,nx}];
Do [wppj = wpp[j, i] + b41 ∗ k1j+5∗nx + b42 ∗ k2j+5∗nx + b43 ∗ k3j+5∗nx,Do [wppj = wpp[j, i] + b41 ∗ k1j+5∗nx + b42 ∗ k2j+5∗nx + b43 ∗ k3j+5∗nx,Do [wppj = wpp[j, i] + b41 ∗ k1j+5∗nx + b42 ∗ k2j+5∗nx + b43 ∗ k3j+5∗nx,{j,1,nx}];{j,1,nx}];{j,1,nx}];
Do[Do[Do[
k4j = h ∗ fcpj [k, v1, v2, v3, v4, v5, v6, v7, v8, v9,k4j = h ∗ fcpj [k, v1, v2, v3, v4, v5, v6, v7, v8, v9,k4j = h ∗ fcpj [k, v1, v2, v3, v4, v5, v6, v7, v8, v9,
v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20,v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20,v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20,
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v21, v22,vp1,vp2,vp3,vp4,vp5,vp6,vp7,vp8,v21, v22,vp1,vp2,vp3,vp4,vp5,vp6,vp7,vp8,v21, v22,vp1,vp2,vp3,vp4,vp5,vp6,vp7,vp8,

vp9,vp10,vp11,vp12,vp13,vp14,vp15,vp16,vp17,vp9,vp10,vp11,vp12,vp13,vp14,vp15,vp16,vp17,vp9,vp10,vp11,vp12,vp13,vp14,vp15,vp16,vp17,

vp18,vp19,vp20,vp21,vp22,vpp1,vpp2,vpp3,vp18,vp19,vp20,vp21,vp22,vpp1,vpp2,vpp3,vp18,vp19,vp20,vp21,vp22,vpp1,vpp2,vpp3,

vpp4,vpp5,vpp6,vpp7,vpp8,vpp9,vpp10,vpp11,vpp4,vpp5,vpp6,vpp7,vpp8,vpp9,vpp10,vpp11,vpp4,vpp5,vpp6,vpp7,vpp8,vpp9,vpp10,vpp11,

vpp12,vpp13,vpp14,vpp15,vpp16,vpp17,vpp18,vpp12,vpp13,vpp14,vpp15,vpp16,vpp17,vpp18,vpp12,vpp13,vpp14,vpp15,vpp16,vpp17,vpp18,

vpp19,vpp20,vpp21,vpp22,w1,w2,w3,w4,w5,w6,vpp19,vpp20,vpp21,vpp22,w1,w2,w3,w4,w5,w6,vpp19,vpp20,vpp21,vpp22,w1,w2,w3,w4,w5,w6,

w7,w8,w9,w10,w11,w12,w13,w14,w15,w16,w17,w18,w7,w8,w9,w10,w11,w12,w13,w14,w15,w16,w17,w18,w7,w8,w9,w10,w11,w12,w13,w14,w15,w16,w17,w18,

w19,w20,w21,w22,wp1,wp2,wp3,wp4,wp5,wp6,wp7,w19,w20,w21,w22,wp1,wp2,wp3,wp4,wp5,wp6,wp7,w19,w20,w21,w22,wp1,wp2,wp3,wp4,wp5,wp6,wp7,

wp8,wp9,wp10,wp11,wp12,wp13,wp14,wp15,wp16,wp8,wp9,wp10,wp11,wp12,wp13,wp14,wp15,wp16,wp8,wp9,wp10,wp11,wp12,wp13,wp14,wp15,wp16,

wp17,wp18,wp19,wp20,wp21,wp22,wpp1,wpp2,wpp3,wp17,wp18,wp19,wp20,wp21,wp22,wpp1,wpp2,wpp3,wp17,wp18,wp19,wp20,wp21,wp22,wpp1,wpp2,wpp3,

wpp4,wpp5,wpp6,wpp7,wpp8,wpp9,wpp10,wpp11,wpp4,wpp5,wpp6,wpp7,wpp8,wpp9,wpp10,wpp11,wpp4,wpp5,wpp6,wpp7,wpp8,wpp9,wpp10,wpp11,

wpp12,wpp13,wpp14,wpp15,wpp16,wpp17,wpp18,wpp12,wpp13,wpp14,wpp15,wpp16,wpp17,wpp18,wpp12,wpp13,wpp14,wpp15,wpp16,wpp17,wpp18,

wpp19,wpp20,wpp21,wpp22] ,{j,1,6 ∗ nx}] ;wpp19,wpp20,wpp21,wpp22] ,{j,1,6 ∗ nx}] ;wpp19,wpp20,wpp21,wpp22] ,{j,1,6 ∗ nx}] ;
k = khi + a5 ∗ h;k = khi + a5 ∗ h;k = khi + a5 ∗ h;
Do [vj = v[j, i] + b51 ∗ k1j + b52 ∗ k2j + b53 ∗ k3j + b54 ∗ k4j ,Do [vj = v[j, i] + b51 ∗ k1j + b52 ∗ k2j + b53 ∗ k3j + b54 ∗ k4j ,Do [vj = v[j, i] + b51 ∗ k1j + b52 ∗ k2j + b53 ∗ k3j + b54 ∗ k4j ,{j,1,nx}];{j,1,nx}];{j,1,nx}];
Do [vpj = vp[j, i] + b51 ∗ k1j+nx + b52 ∗ k2j+nx + b53 ∗ k3j+nx+Do [vpj = vp[j, i] + b51 ∗ k1j+nx + b52 ∗ k2j+nx + b53 ∗ k3j+nx+Do [vpj = vp[j, i] + b51 ∗ k1j+nx + b52 ∗ k2j+nx + b53 ∗ k3j+nx+
b54 ∗ k4j+nx,{j,1,nx}] ;b54 ∗ k4j+nx,{j,1,nx}] ;b54 ∗ k4j+nx,{j,1,nx}] ;
Do [vppj = vpp[j, i] + b51 ∗ k1j+2∗nx + b52 ∗ k2j+2∗nx+Do [vppj = vpp[j, i] + b51 ∗ k1j+2∗nx + b52 ∗ k2j+2∗nx+Do [vppj = vpp[j, i] + b51 ∗ k1j+2∗nx + b52 ∗ k2j+2∗nx+
b53 ∗ k3j+2∗nx + b54 ∗ k4j+2∗nx,{j,1,nx}] ;b53 ∗ k3j+2∗nx + b54 ∗ k4j+2∗nx,{j,1,nx}] ;b53 ∗ k3j+2∗nx + b54 ∗ k4j+2∗nx,{j,1,nx}] ;
Do [wj = w[j, i] + b51 ∗ k1j+3∗nx + b52 ∗ k2j+3∗nx + b53 ∗ k3j+3∗nx+Do [wj = w[j, i] + b51 ∗ k1j+3∗nx + b52 ∗ k2j+3∗nx + b53 ∗ k3j+3∗nx+Do [wj = w[j, i] + b51 ∗ k1j+3∗nx + b52 ∗ k2j+3∗nx + b53 ∗ k3j+3∗nx+
b54 ∗ k4j+3∗nx,{j,1,nx}] ;b54 ∗ k4j+3∗nx,{j,1,nx}] ;b54 ∗ k4j+3∗nx,{j,1,nx}] ;
Do [wpj = wp[j, i] + b51 ∗ k1j+4∗nx + b52 ∗ k2j+4∗nx+Do [wpj = wp[j, i] + b51 ∗ k1j+4∗nx + b52 ∗ k2j+4∗nx+Do [wpj = wp[j, i] + b51 ∗ k1j+4∗nx + b52 ∗ k2j+4∗nx+
b53 ∗ k3j+4∗nx + b54 ∗ k4j+4∗nx,{j,1,nx}] ;b53 ∗ k3j+4∗nx + b54 ∗ k4j+4∗nx,{j,1,nx}] ;b53 ∗ k3j+4∗nx + b54 ∗ k4j+4∗nx,{j,1,nx}] ;
Do [wppj = wpp[j, i] + b51 ∗ k1j+5∗nx + b52 ∗ k2j+5∗nx+Do [wppj = wpp[j, i] + b51 ∗ k1j+5∗nx + b52 ∗ k2j+5∗nx+Do [wppj = wpp[j, i] + b51 ∗ k1j+5∗nx + b52 ∗ k2j+5∗nx+
b53 ∗ k3j+5∗nx + b54 ∗ k4j+5∗nx,{j,1,nx}] ;b53 ∗ k3j+5∗nx + b54 ∗ k4j+5∗nx,{j,1,nx}] ;b53 ∗ k3j+5∗nx + b54 ∗ k4j+5∗nx,{j,1,nx}] ;
Do[Do[Do[
k5j = h ∗ fcpj [k, v1, v2, v3, v4, v5, v6, v7, v8, v9,k5j = h ∗ fcpj [k, v1, v2, v3, v4, v5, v6, v7, v8, v9,k5j = h ∗ fcpj [k, v1, v2, v3, v4, v5, v6, v7, v8, v9,
v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20,v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20,v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20,

v21, v22,vp1,vp2,vp3,vp4,vp5,vp6,vp7,vp8,v21, v22,vp1,vp2,vp3,vp4,vp5,vp6,vp7,vp8,v21, v22,vp1,vp2,vp3,vp4,vp5,vp6,vp7,vp8,

vp9,vp10,vp11,vp12,vp13,vp14,vp15,vp16,vp17,vp9,vp10,vp11,vp12,vp13,vp14,vp15,vp16,vp17,vp9,vp10,vp11,vp12,vp13,vp14,vp15,vp16,vp17,

vp18,vp19,vp20,vp21,vp22,vpp1,vpp2,vpp3,vp18,vp19,vp20,vp21,vp22,vpp1,vpp2,vpp3,vp18,vp19,vp20,vp21,vp22,vpp1,vpp2,vpp3,

vpp4,vpp5,vpp6,vpp7,vpp8,vpp9,vpp10,vpp11,vpp4,vpp5,vpp6,vpp7,vpp8,vpp9,vpp10,vpp11,vpp4,vpp5,vpp6,vpp7,vpp8,vpp9,vpp10,vpp11,

vpp12,vpp13,vpp14,vpp15,vpp16,vpp17,vpp18,vpp12,vpp13,vpp14,vpp15,vpp16,vpp17,vpp18,vpp12,vpp13,vpp14,vpp15,vpp16,vpp17,vpp18,

vpp19,vpp20,vpp21,vpp22,w1,w2,w3,w4,w5,w6,vpp19,vpp20,vpp21,vpp22,w1,w2,w3,w4,w5,w6,vpp19,vpp20,vpp21,vpp22,w1,w2,w3,w4,w5,w6,

w7,w8,w9,w10,w11,w12,w13,w14,w15,w16,w17,w18,w7,w8,w9,w10,w11,w12,w13,w14,w15,w16,w17,w18,w7,w8,w9,w10,w11,w12,w13,w14,w15,w16,w17,w18,

w19,w20,w21,w22,wp1,wp2,wp3,wp4,wp5,wp6,wp7,w19,w20,w21,w22,wp1,wp2,wp3,wp4,wp5,wp6,wp7,w19,w20,w21,w22,wp1,wp2,wp3,wp4,wp5,wp6,wp7,

wp8,wp9,wp10,wp11,wp12,wp13,wp14,wp15,wp16,wp8,wp9,wp10,wp11,wp12,wp13,wp14,wp15,wp16,wp8,wp9,wp10,wp11,wp12,wp13,wp14,wp15,wp16,

wp17,wp18,wp19,wp20,wp21,wp22,wpp1,wpp2,wpp3,wp17,wp18,wp19,wp20,wp21,wp22,wpp1,wpp2,wpp3,wp17,wp18,wp19,wp20,wp21,wp22,wpp1,wpp2,wpp3,

wpp4,wpp5,wpp6,wpp7,wpp8,wpp9,wpp10,wpp11,wpp4,wpp5,wpp6,wpp7,wpp8,wpp9,wpp10,wpp11,wpp4,wpp5,wpp6,wpp7,wpp8,wpp9,wpp10,wpp11,

wpp12,wpp13,wpp14,wpp15,wpp16,wpp17,wpp18,wpp12,wpp13,wpp14,wpp15,wpp16,wpp17,wpp18,wpp12,wpp13,wpp14,wpp15,wpp16,wpp17,wpp18,

wpp19,wpp20,wpp21,wpp22] ,{j,1,6 ∗ nx}] ;wpp19,wpp20,wpp21,wpp22] ,{j,1,6 ∗ nx}] ;wpp19,wpp20,wpp21,wpp22] ,{j,1,6 ∗ nx}] ;
k = khi + a6 ∗ h;k = khi + a6 ∗ h;k = khi + a6 ∗ h;
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Do [vj = v[j, i] + b61 ∗ k1j + b62 ∗ k2j + b63 ∗ k3j + b64 ∗ k4j+Do [vj = v[j, i] + b61 ∗ k1j + b62 ∗ k2j + b63 ∗ k3j + b64 ∗ k4j+Do [vj = v[j, i] + b61 ∗ k1j + b62 ∗ k2j + b63 ∗ k3j + b64 ∗ k4j+
b65 ∗ k5j ,{j,1,nx}] ;b65 ∗ k5j ,{j,1,nx}] ;b65 ∗ k5j ,{j,1,nx}] ;
Do [vpj = vp[j, i] + b61 ∗ k1j+nx + b62 ∗ k2j+nx + b63 ∗ k3j+nx+Do [vpj = vp[j, i] + b61 ∗ k1j+nx + b62 ∗ k2j+nx + b63 ∗ k3j+nx+Do [vpj = vp[j, i] + b61 ∗ k1j+nx + b62 ∗ k2j+nx + b63 ∗ k3j+nx+
b64 ∗ k4j+nx + b65 ∗ k5j+nx,{j,1,nx}] ;b64 ∗ k4j+nx + b65 ∗ k5j+nx,{j,1,nx}] ;b64 ∗ k4j+nx + b65 ∗ k5j+nx,{j,1,nx}] ;
Do [vppj = vpp[j, i] + b61 ∗ k1j+2∗nx + b62 ∗ k2j+2∗nx+Do [vppj = vpp[j, i] + b61 ∗ k1j+2∗nx + b62 ∗ k2j+2∗nx+Do [vppj = vpp[j, i] + b61 ∗ k1j+2∗nx + b62 ∗ k2j+2∗nx+
b63 ∗ k3j+2∗nx + b64 ∗ k4j+2∗nx + b65 ∗ k5j+2∗nx,{j,1,nx}] ;b63 ∗ k3j+2∗nx + b64 ∗ k4j+2∗nx + b65 ∗ k5j+2∗nx,{j,1,nx}] ;b63 ∗ k3j+2∗nx + b64 ∗ k4j+2∗nx + b65 ∗ k5j+2∗nx,{j,1,nx}] ;
Do [wj = w[j, i] + b61 ∗ k1j+3∗nx + b62 ∗ k2j+3∗nx + b63 ∗ k3j+3∗nx+Do [wj = w[j, i] + b61 ∗ k1j+3∗nx + b62 ∗ k2j+3∗nx + b63 ∗ k3j+3∗nx+Do [wj = w[j, i] + b61 ∗ k1j+3∗nx + b62 ∗ k2j+3∗nx + b63 ∗ k3j+3∗nx+
b64 ∗ k4j+3∗nx + b65 ∗ k5j+3∗nx,{j,1,nx}] ;b64 ∗ k4j+3∗nx + b65 ∗ k5j+3∗nx,{j,1,nx}] ;b64 ∗ k4j+3∗nx + b65 ∗ k5j+3∗nx,{j,1,nx}] ;
Do [wpj = wp[j, i] + b61 ∗ k1j+4∗nx + b62 ∗ k2j+4∗nx+Do [wpj = wp[j, i] + b61 ∗ k1j+4∗nx + b62 ∗ k2j+4∗nx+Do [wpj = wp[j, i] + b61 ∗ k1j+4∗nx + b62 ∗ k2j+4∗nx+
b63 ∗ k3j+4∗nx + b64 ∗ k4j+4∗nx + b65 ∗ k5j+4∗nx,{j,1,nx}] ;b63 ∗ k3j+4∗nx + b64 ∗ k4j+4∗nx + b65 ∗ k5j+4∗nx,{j,1,nx}] ;b63 ∗ k3j+4∗nx + b64 ∗ k4j+4∗nx + b65 ∗ k5j+4∗nx,{j,1,nx}] ;
Do [wppj = wpp[j, i] + b61 ∗ k1j+5∗nx + b62 ∗ k2j+5∗nx+Do [wppj = wpp[j, i] + b61 ∗ k1j+5∗nx + b62 ∗ k2j+5∗nx+Do [wppj = wpp[j, i] + b61 ∗ k1j+5∗nx + b62 ∗ k2j+5∗nx+
b63 ∗ k3j+5∗nx + b64 ∗ k4j+5∗nx + b65 ∗ k5j+5∗nx,{j,1,nx}] ;b63 ∗ k3j+5∗nx + b64 ∗ k4j+5∗nx + b65 ∗ k5j+5∗nx,{j,1,nx}] ;b63 ∗ k3j+5∗nx + b64 ∗ k4j+5∗nx + b65 ∗ k5j+5∗nx,{j,1,nx}] ;
Do[Do[Do[
k6j = h ∗ fcpj [k, v1, v2, v3, v4, v5, v6, v7, v8, v9,k6j = h ∗ fcpj [k, v1, v2, v3, v4, v5, v6, v7, v8, v9,k6j = h ∗ fcpj [k, v1, v2, v3, v4, v5, v6, v7, v8, v9,
v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20,v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20,v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20,

v21, v22,vp1,vp2,vp3,vp4,vp5,vp6,vp7,vp8,v21, v22,vp1,vp2,vp3,vp4,vp5,vp6,vp7,vp8,v21, v22,vp1,vp2,vp3,vp4,vp5,vp6,vp7,vp8,

vp9,vp10,vp11,vp12,vp13,vp14,vp15,vp16,vp17,vp9,vp10,vp11,vp12,vp13,vp14,vp15,vp16,vp17,vp9,vp10,vp11,vp12,vp13,vp14,vp15,vp16,vp17,

vp18,vp19,vp20,vp21,vp22,vpp1,vpp2,vpp3,vp18,vp19,vp20,vp21,vp22,vpp1,vpp2,vpp3,vp18,vp19,vp20,vp21,vp22,vpp1,vpp2,vpp3,

vpp4,vpp5,vpp6,vpp7,vpp8,vpp9,vpp10,vpp11,vpp4,vpp5,vpp6,vpp7,vpp8,vpp9,vpp10,vpp11,vpp4,vpp5,vpp6,vpp7,vpp8,vpp9,vpp10,vpp11,

vpp12,vpp13,vpp14,vpp15,vpp16,vpp17,vpp18,vpp12,vpp13,vpp14,vpp15,vpp16,vpp17,vpp18,vpp12,vpp13,vpp14,vpp15,vpp16,vpp17,vpp18,

vpp19,vpp20,vpp21,vpp22,w1,w2,w3,w4,w5,w6,vpp19,vpp20,vpp21,vpp22,w1,w2,w3,w4,w5,w6,vpp19,vpp20,vpp21,vpp22,w1,w2,w3,w4,w5,w6,

w7,w8,w9,w10,w11,w12,w13,w14,w15,w16,w17,w18,w7,w8,w9,w10,w11,w12,w13,w14,w15,w16,w17,w18,w7,w8,w9,w10,w11,w12,w13,w14,w15,w16,w17,w18,

w19,w20,w21,w22,wp1,wp2,wp3,wp4,wp5,wp6,wp7,w19,w20,w21,w22,wp1,wp2,wp3,wp4,wp5,wp6,wp7,w19,w20,w21,w22,wp1,wp2,wp3,wp4,wp5,wp6,wp7,

wp8,wp9,wp10,wp11,wp12,wp13,wp14,wp15,wp16,wp8,wp9,wp10,wp11,wp12,wp13,wp14,wp15,wp16,wp8,wp9,wp10,wp11,wp12,wp13,wp14,wp15,wp16,

wp17,wp18,wp19,wp20,wp21,wp22,wpp1,wpp2,wpp3,wp17,wp18,wp19,wp20,wp21,wp22,wpp1,wpp2,wpp3,wp17,wp18,wp19,wp20,wp21,wp22,wpp1,wpp2,wpp3,

wpp4,wpp5,wpp6,wpp7,wpp8,wpp9,wpp10,wpp11,wpp4,wpp5,wpp6,wpp7,wpp8,wpp9,wpp10,wpp11,wpp4,wpp5,wpp6,wpp7,wpp8,wpp9,wpp10,wpp11,

wpp12,wpp13,wpp14,wpp15,wpp16,wpp17,wpp18,wpp12,wpp13,wpp14,wpp15,wpp16,wpp17,wpp18,wpp12,wpp13,wpp14,wpp15,wpp16,wpp17,wpp18,

wpp19,wpp20,wpp21,wpp22] ,{j,1,6 ∗ nx}] ;wpp19,wpp20,wpp21,wpp22] ,{j,1,6 ∗ nx}] ;wpp19,wpp20,wpp21,wpp22] ,{j,1,6 ∗ nx}] ;
Do[Evaluate[helpp[[j]]] =Do[Evaluate[helpp[[j]]] =Do[Evaluate[helpp[[j]]] =(Evaluate[help[[j]]] + c1 ∗ k1j + c2 ∗ k2j + c3 ∗ k3j+(Evaluate[help[[j]]] + c1 ∗ k1j + c2 ∗ k2j + c3 ∗ k3j+(Evaluate[help[[j]]] + c1 ∗ k1j + c2 ∗ k2j + c3 ∗ k3j+
c4 ∗ k4j + c5 ∗ k5j + c6 ∗ k6j) ,{j,1,6 ∗ nx}] ;c4 ∗ k4j + c5 ∗ k5j + c6 ∗ k6j) ,{j,1,6 ∗ nx}] ;c4 ∗ k4j + c5 ∗ k5j + c6 ∗ k6j) ,{j,1,6 ∗ nx}] ;

Do[Evaluate[helppS[[j]]] =Do[Evaluate[helppS[[j]]] =Do[Evaluate[helppS[[j]]] =(Evaluate[help[[j]]] + cS1 ∗ k1j + cS2 ∗ k2j + cS3 ∗ k3j+(Evaluate[help[[j]]] + cS1 ∗ k1j + cS2 ∗ k2j + cS3 ∗ k3j+(Evaluate[help[[j]]] + cS1 ∗ k1j + cS2 ∗ k2j + cS3 ∗ k3j+
cS4 ∗ k4j + cS5 ∗ k5j + cS6 ∗ k6j) ,{j,1,6 ∗ nx}] ;cS4 ∗ k4j + cS5 ∗ k5j + cS6 ∗ k6j) ,{j,1,6 ∗ nx}] ;cS4 ∗ k4j + cS5 ∗ k5j + cS6 ∗ k6j) ,{j,1,6 ∗ nx}] ;
(*trickdescribedbelow(16.2.8)inNumerical(*trickdescribedbelow(16.2.8)inNumerical(*trickdescribedbelow(16.2.8)inNumerical

Recipes*)Recipes*)Recipes*)

(*∆0 ∶ desirederrorforcurrentstep,(*∆0 ∶ desirederrorforcurrentstep,(*∆0 ∶ desirederrorforcurrentstep,

∆1 ∶ errorestimateforcurrentstep*)∆1 ∶ errorestimateforcurrentstep*)∆1 ∶ errorestimateforcurrentstep*)

(*∆1j = Abs[helpp[[j]] − helppS[[j]]],(*∆1j = Abs[helpp[[j]] − helppS[[j]]],(*∆1j = Abs[helpp[[j]] − helppS[[j]]],
∆0j = 10−eps ∗ yscalj*)∆0j = 10−eps ∗ yscalj*)∆0j = 10−eps ∗ yscalj*)
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Do [yscalj = Abs[help[[j]]] +Abs[helpp[[j]] − help[[j]]],Do [yscalj = Abs[help[[j]]] +Abs[helpp[[j]] − help[[j]]],Do [yscalj = Abs[help[[j]]] +Abs[helpp[[j]] − help[[j]]],{j,1,6 ∗ nx}];{j,1,6 ∗ nx}];{j,1,6 ∗ nx}];
(*Do [yscalj = Abs[helpp[[j]] − help[[j]]],{j,1,6 ∗ nx}] ; *)(*Do [yscalj = Abs[helpp[[j]] − help[[j]]],{j,1,6 ∗ nx}] ; *)(*Do [yscalj = Abs[helpp[[j]] − help[[j]]],{j,1,6 ∗ nx}] ; *)
(*If [i == 1,Print [Table [yscalj ,{j,1,6 ∗ nx}]]] ; *)(*If [i == 1,Print [Table [yscalj ,{j,1,6 ∗ nx}]]] ; *)(*If [i == 1,Print [Table [yscalj ,{j,1,6 ∗ nx}]]] ; *)
err =Max [Table [Abs [Abs[helpp[[j]]−helppS[[j]]]

10−eps∗yscalj
] ,err =Max [Table [Abs [Abs[helpp[[j]]−helppS[[j]]]

10−eps∗yscalj
] ,err =Max [Table [Abs [Abs[helpp[[j]]−helppS[[j]]]

10−eps∗yscalj
] ,{j,1,4 ∗ nx}]];{j,1,4 ∗ nx}]];{j,1,4 ∗ nx}]];

(* Adaptive step size BEGIN*)(* Adaptive step size BEGIN*)(* Adaptive step size BEGIN*)

pos =pos =pos =
Position [Table [Abs [Abs[helpp[[j]]−helppS[[j]]]

10−eps∗yscalj
] ,Position [Table [Abs [Abs[helpp[[j]]−helppS[[j]]]

10−eps∗yscalj
] ,Position [Table [Abs [Abs[helpp[[j]]−helppS[[j]]]

10−eps∗yscalj
] ,{j,1,4 ∗ nx}], err][[1,1]];{j,1,4 ∗ nx}], err][[1,1]];{j,1,4 ∗ nx}], err][[1,1]];

worstdiff = Abs[helpp[[pos]] − helppS[[pos]]];worstdiff = Abs[helpp[[pos]] − helppS[[pos]]];worstdiff = Abs[helpp[[pos]] − helppS[[pos]]];
worstscal = yscalpos;worstscal = yscalpos;worstscal = yscalpos;
worst2 = Abs [Abs[helpp[[pos]]−helppS[[pos]]]

10−eps∗yscalpos
] ;worst2 = Abs [Abs[helpp[[pos]]−helppS[[pos]]]

10−eps∗yscalpos
] ;worst2 = Abs [Abs[helpp[[pos]]−helppS[[pos]]]

10−eps∗yscalpos
] ;

(*(16.2.10)stepsizeadjustment*)(*(16.2.10)stepsizeadjustment*)(*(16.2.10)stepsizeadjustment*)

If[err > 1If[err > 1If[err > 1
,Do[v[j, i + 1]=.,{j,1,nx}];,Do[v[j, i + 1]=.,{j,1,nx}];,Do[v[j, i + 1]=.,{j,1,nx}];
Do[vp[j, i + 1]=.,{j,1,nx}];Do[vp[j, i + 1]=.,{j,1,nx}];Do[vp[j, i + 1]=.,{j,1,nx}];
Do[vpp[j, i + 1]=.,{j,1,nx}];Do[vpp[j, i + 1]=.,{j,1,nx}];Do[vpp[j, i + 1]=.,{j,1,nx}];
Do[w[j, i + 1]=.,{j,1,nx}];Do[w[j, i + 1]=.,{j,1,nx}];Do[w[j, i + 1]=.,{j,1,nx}];
Do[wp[j, i + 1]=.,{j,1,nx}];Do[wp[j, i + 1]=.,{j,1,nx}];Do[wp[j, i + 1]=.,{j,1,nx}];
Do[wpp[j, i + 1]=.,{j,1,nx}];Do[wpp[j, i + 1]=.,{j,1,nx}];Do[wpp[j, i + 1]=.,{j,1,nx}];
Do[vS[j, i + 1]=.,{j,1,nx}];Do[vS[j, i + 1]=.,{j,1,nx}];Do[vS[j, i + 1]=.,{j,1,nx}];
Do[vpS[j, i + 1]=.,{j,1,nx}];Do[vpS[j, i + 1]=.,{j,1,nx}];Do[vpS[j, i + 1]=.,{j,1,nx}];
Do[vppS[j, i + 1]=.,{j,1,nx}];Do[vppS[j, i + 1]=.,{j,1,nx}];Do[vppS[j, i + 1]=.,{j,1,nx}];
Do[wS[j, i + 1]=.,{j,1,nx}];Do[wS[j, i + 1]=.,{j,1,nx}];Do[wS[j, i + 1]=.,{j,1,nx}];
Do[wpS[j, i + 1]=.,{j,1,nx}];Do[wpS[j, i + 1]=.,{j,1,nx}];Do[wpS[j, i + 1]=.,{j,1,nx}];
Do[wppS[j, i + 1]=.,{j,1,nx}];mess = "do again";Do[wppS[j, i + 1]=.,{j,1,nx}];mess = "do again";Do[wppS[j, i + 1]=.,{j,1,nx}];mess = "do again";

Print[i, err,mess];h = 0.9 ∗ h ∗ err− 1
4Print[i, err,mess];h = 0.9 ∗ h ∗ err− 1
4Print[i, err,mess];h = 0.9 ∗ h ∗ err− 1
4

, i = i + 1; khi = khi−1 + h;mess = "accepted";, i = i + 1; khi = khi−1 + h;mess = "accepted";, i = i + 1; khi = khi−1 + h;mess = "accepted";
Print [{i − 1,khi−1, h, err,mess,pos,worstdiff,Print [{i − 1,khi−1, h, err,mess,pos,worstdiff,Print [{i − 1,khi−1, h, err,mess,pos,worstdiff,

worstscal,worst2}];h = 0.9 ∗ h ∗ err− 1
5 ] ;worstscal,worst2}];h = 0.9 ∗ h ∗ err− 1
5 ] ;worstscal,worst2}];h = 0.9 ∗ h ∗ err− 1
5 ] ;

(*Adaptive step size END*)(*Adaptive step size END*)(*Adaptive step size END*)
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(*(*(*

(*Fixed Stepsize BEGIN*)(*Fixed Stepsize BEGIN*)(*Fixed Stepsize BEGIN*)

i = i + 1; khi = khi−1 + h;mess = "accepted";i = i + 1; khi = khi−1 + h;mess = "accepted";i = i + 1; khi = khi−1 + h;mess = "accepted";
Print [{i − 1,khi−1, h, err,mess}] ;Print [{i − 1,khi−1, h, err,mess}] ;Print [{i − 1,khi−1, h, err,mess}] ;
(*Fixed Stepsize END*)(*Fixed Stepsize END*)(*Fixed Stepsize END*)

*)*)*)

If [khi < 9,Break[]] ;If [khi < 9,Break[]] ;If [khi < 9,Break[]] ;

,{ih,1,100000}],{ih,1,100000}],{ih,1,100000}]
ListPlot [Table [{√xj , v[j,700]} ,{j,1,20}]]ListPlot [Table [{√xj , v[j,700]} ,{j,1,20}]]ListPlot [Table [{√xj , v[j,700]} ,{j,1,20}]]
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Appendix D

O(N) fixed points

For convenience we provide a simple Mathematica notebook which allows for a quick calculation

of the stability-matrix eigenvalues for the O(n) models (up to quartic coupling) from FRG in

local-potential approximation. n can be chosen arbitrarily without further modifications.

n = 8;n = 8;n = 8;
phi = Sum [ai∧2,{i,1, n}] ;phi = Sum [ai∧2,{i,1, n}] ;phi = Sum [ai∧2,{i,1, n}] ;
U = r1 ∗ (phi) + 1

24
∗ λ1 ∗ (phi)2;U = r1 ∗ (phi) + 1

24
∗ λ1 ∗ (phi)2;U = r1 ∗ (phi) + 1

24
∗ λ1 ∗ (phi)2;

v = Table [ai → 0,{i,2, n}] ;v = Table [ai → 0,{i,2, n}] ;v = Table [ai → 0,{i,2, n}] ;
Do[Do[Do[
Mih,ih =With [{i = ih, j = ih},FullSimplify [D [D [U,ai] , aj] /.v]]Mih,ih =With [{i = ih, j = ih},FullSimplify [D [D [U,ai] , aj]/.v]]Mih,ih =With [{i = ih, j = ih},FullSimplify [D [D [U,ai] , aj] /.v]]
,{ih,1, n}];,{ih,1, n}];,{ih,1, n}];
diag = Table [Mih,ih + k

∧2,{ih,1, n}] ;diag = Table [Mih,ih + k
∧2,{ih,1, n}] ;diag = Table [Mih,ih + k
∧2,{ih,1, n}] ;

SUM = Tr[FullSimplify[Inverse[DiagonalMatrix[diag]]]];SUM = Tr[FullSimplify[Inverse[DiagonalMatrix[diag]]]];SUM = Tr[FullSimplify[Inverse[DiagonalMatrix[diag]]]];
RHSr1 = SeriesCoefficient [SUM,{a1,0,2}] ;RHSr1 = SeriesCoefficient [SUM,{a1,0,2}] ;RHSr1 = SeriesCoefficient [SUM,{a1,0,2}] ;
RHSr1s = FullSimplify [RHSr1/.{r1→ r1s ∗ k2, λ1 → k4−d ∗ λ1s}] ;RHSr1s = FullSimplify [RHSr1/.{r1→ r1s ∗ k2, λ1 → k4−d ∗ λ1s}] ;RHSr1s = FullSimplify [RHSr1/.{r1→ r1s ∗ k2, λ1→ k4−d ∗ λ1s}] ;
βr1s = −2 ∗ r1s +K ∗ (FullSimplify [RHSr1s ∗ kd]) ;βr1s = −2 ∗ r1s +K ∗ (FullSimplify [RHSr1s ∗ kd]) ;βr1s = −2 ∗ r1s +K ∗ (FullSimplify [RHSr1s ∗ kd]) ;
RHSλ1 = 24 ∗ SeriesCoefficient [SUM,{a1,0,4}] ;RHSλ1 = 24 ∗ SeriesCoefficient [SUM,{a1,0,4}] ;RHSλ1 = 24 ∗ SeriesCoefficient [SUM,{a1,0,4}] ;
RHSλ1s = FullSimplify [RHSλ1/.{r1→ r1s ∗ k2, λ1 → k4−d ∗ λ1s}] ;RHSλ1s = FullSimplify [RHSλ1/.{r1→ r1s ∗ k2, λ1 → k4−d ∗ λ1s}] ;RHSλ1s = FullSimplify [RHSλ1/.{r1→ r1s ∗ k2, λ1 → k4−d ∗ λ1s}] ;
βλ1s = (d − 4) ∗ λ1s +K ∗ (FullSimplify [RHSλ1s ∗ k2d−2]) ;βλ1s = (d − 4) ∗ λ1s +K ∗ (FullSimplify [RHSλ1s ∗ k2d−2]) ;βλ1s = (d − 4) ∗ λ1s +K ∗ (FullSimplify [RHSλ1s ∗ k2d−2]) ;
d = 3;d = 3;d = 3;
K = 2∗π

d
2

d∗Gamma[ d
2
] ∗ 1(2∗π)d ;K = 2∗π

d
2

d∗Gamma[ d
2
] ∗ 1(2∗π)d ;K = 2∗π

d
2

d∗Gamma[d
2
] ∗ 1(2∗π)d ;

sol = NSolve[{βr1s == 0, βλ1s == 0},{r1s, λ1s}];sol = NSolve[{βr1s == 0, βλ1s == 0},{r1s, λ1s}];sol = NSolve[{βr1s == 0, βλ1s == 0},{r1s, λ1s}];
Table

⎡⎢⎢⎢⎢⎣
⎧⎪⎪⎨⎪⎪⎩sol[[i]],Eigenvalues

⎡⎢⎢⎢⎢⎣
⎛⎝ D[βr1s, r1s] D[βr1s, λ1s]
D[βλ1s, r1s] D[βλ1s, λ1s] ⎞⎠ /.sol[[i]]

⎤⎥⎥⎥⎥⎦
⎫⎪⎪⎬⎪⎪⎭ ,{i,1,Length[sol]}

⎤⎥⎥⎥⎥⎦Table

⎡⎢⎢⎢⎢⎣
⎧⎪⎪⎨⎪⎪⎩sol[[i]],Eigenvalues

⎡⎢⎢⎢⎢⎣
⎛⎝ D[βr1s, r1s] D[βr1s, λ1s]
D[βλ1s, r1s] D[βλ1s, λ1s] ⎞⎠/.sol[[i]]

⎤⎥⎥⎥⎥⎦
⎫⎪⎪⎬⎪⎪⎭ ,{i,1,Length[sol]}

⎤⎥⎥⎥⎥⎦Table

⎡⎢⎢⎢⎢⎣
⎧⎪⎪⎨⎪⎪⎩sol[[i]],Eigenvalues

⎡⎢⎢⎢⎢⎣
⎛⎝ D[βr1s, r1s] D[βr1s, λ1s]
D[βλ1s, r1s] D[βλ1s, λ1s] ⎞⎠ /.sol[[i]]

⎤⎥⎥⎥⎥⎦
⎫⎪⎪⎬⎪⎪⎭ ,{i,1,Length[sol]}

⎤⎥⎥⎥⎥⎦{{{r1s→ −0.0675676, λ1s→ 3.59143},{−1.71971,1.34471}},{{r1s→ 0., λ1s→ 0.},{−2.,−1.}}}
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Appendix E

Fixed-point planes, SU(2)A ×U(2)V

For illustrational purposes we show here the flow in the vicinity of some of the fixed points of

Tab. 6.3. Note the change in notation (li ≡ gi, ri ≡m2
i ).

The following graphs comprise all fixed-point planes for one of the IR-unstable O(4) fixed points

(FP6). Note that in each plane the remaining couplings are set to their fixed-point values.
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The following graphs show all fixed-point planes involving a relevant direction for one of the

unphysical IR-stable fixed points (FP4).
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Deutschsprachige

Zusammenfassung

Die Untersuchung der Natur auf extrem kleinen und extrem grossen Längenskalen hat seit je-

her zu bahnbrechenden wissenschaftlichen Einsichten und Innovationen geführt. Insbesondere zu

unserem heutigen Verständnis, dass Nukleonen (Protonen und Neutronen) aus Quarks zusam-

mengesetzt sind, die infolge der starken Wechselwirkung, vermittelt durch Gluonenaustausch,

gebunden sind. Mit dem Aufkommen des Quarkmodells von Gell-Mann wurde bald die Quan-

tenchromodynamik (QCD) erfolgreich in der Beschreibung vieler Eigenschaften der starkenWech-

selwirkung, die im Experiment gemessen wurden. Um es mit Goethe zu sagen: mit den moder-

nen Hochenergie-Beschleuniger-Experimenten versuchen Physiker auf dem ganzen Globus unser

Verständnis davon zu verbessern, was die Welt im Innersten zusammenhält. Am Large Hadron

Collider (LHC) werden beispielsweise Protonen derart beschleunigt und miteinander zur Kollision

gebracht, dass bislang unerreichte Energiedichten auftreten. Während die höchste erreichbare

Kollisionsenergie von 14 TeV lediglich der Energie entspricht, die beim In-die-Hände-Klatschen

auftritt, sind die erzeugten Energiedichten unglaublich hoch verglichen mit denen des Alltags.

Infolge der enormen Energiedichte nehmen Temperatur, T , und baryochemisches Potential, µB,

Werte an, die mit denen des frühen Universums vergleichbar sind. Es gibt sowohl theoretische als

auch experimentelle Hinweise darauf, dass hadronische Materie mit zunehmendem T und/oder

µB einen Phasenübergang durchläuft, hin zu einem exotischen Zustand, der als Quark-Gluon-

Plasma bekannt ist. Dieser Übergang wird begleitet von einem sogenannten chiralen Übergang.

Es ist eine wichtige Frage, ob bei diesem chiralen Übergang latente Wärme auftritt oder nicht,

d.h., ob es sich um einen echten Phasenübergang (von erster bzw. zweiter Ordnung) handelt oder

ob ein sogenannter crossover vorliegt. Einige Resultate deuten auf einen crossover für µB = 0

und einen Phasenübergang erster Ordnung für T = 0 hin, lassen jedoch noch keinen endgültigen

Schluss zu, ob dies tatsächlich der Realität entspricht. Wenn ja, so liegt die Annahme nahe, dass

ein kritischer Endpunkt, (Tc ≠ 0, µB ≠ 0), existiert, an dem der chirale Übergang von zweiter

Ordnung ist, was als Grenzfall zwischen einem Phasenübergang erster Ordnung und einem kon-

tinuierlichen crossover angesehen werden kann. In der Tat existiert ein kritischer Endpunkt

in einigen theoretischen Zugängen zur Beschreibung des chiralen Phasenübergangs, deren Aus-

sagekraft seit jeher lebhaft diskutiert wird. Ein zentrales Ziel des zukünftigen CBM-Experiments

an der GSI in Darmstadt ist es, die Existenz im Experiment zu überprüfen.

In der Nähe des QCD-(Phasen)übergangs ist es die Abwesenheit jeglicher perturbativer Entwick-

lungsparameter (infolge der Stärke der Wechselwirkung), die exakte analytische Berechnungen so
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gut wie unmöglich macht. Das gleiche gilt für realistische effektive Modelle für QCD. Nichtper-

turbative Methoden sind daher unverzichtbar für die Untersuchung des QCD-Phasendiagramms.

Zu den populärsten dieser Zugänge gehören Gitter-QCD, Resummierungsverfahren, der Dyson-

Schwinger-Formalismus, sowie die Funktionale Renormierungsgruppe (FRG). All diese Methoden

ergänzen sich gegenseitig und werden zum Teil auch miteinander kombiniert. Eine der Stärken

der FRG-Methode ist, dass sie nicht nur erfolgreich auf effektive Modelle angewendet werden

kann, sondern auch auf QCD selbst. Für letztere Ab-Initio-Rechnungen sind die aus effektiven

Modellen für QCD gewonnenen Resultate von grossem Wert.

Der Schwerpunkt der vorliegenden Arbeit liegt auf der Fragestellung von welcher Ordnung der

chirale QCD-Phasenübergang im Fall von genau zwei leichten Quarksorten (up und down) ist.

Problemstellungen wie die Suche nach einer Antwort auf die Frage nach den Bedingungen für

die Existenz eines Phasenübergangs zweiter Ordnung, die Bestimmung der Universalitätsklasse

in diesem Fall etc. erfordern Wissen und Techniken aus verschiedenen Gebieten.

Kapitel 1 besteht aus einer allgemeinen Einleitung, welche (gemeinsam mit Kapitel 8, in dem

unsere Resultate diskutiert werden) zugleich Grundlage dieser Zusammenfassung ist.

In Kapitel 2 werden wir zunächst einige allgemeine Aspekte von Phasenübergängen darstellen, die

von besonderer Relevanz für das Verständnis des Renormierungsgruppen-Zugangs zu ebendiesen

sind. Unser Fokus liegt hierbei auf einer kritischen Diskussion der Universalitätshypothese, einem

entscheidenden Baustein bei der Konstruktion effektiver Theorien für Ordnungsparameter, deren

Glaubwürdigkeit häufig stark von Universalitätsbetrachtungen abhängt. Insbesondere die Recht-

fertigung des linearen Sigma-Modells als effektive Theorie für den chiralen Ordnungsparameter

beruht auf der Gültigkeit der Universalitätshypothese. Wir diskutieren ausführlich verschiedene

Formulierungen letzterer, angefangen bei einer Aufzählung derjenigen Eigenschaften einer The-

orie, von denen die kritischen Exponenten maßgeblich abhängen, hin zu Versuchen, die Univer-

salitätshypothese präziser zu formulieren als dies üblicherweise erfolgt, nämlich durch Angabe

hinreichender Bedingungen für die Zugehörigkeit zu einer bestimmten Universalitätsklasse. In

diesem Zusammenhang weisen wir auch auf solche Resultate hin, welche die uneingeschränkte

Gültigkeit der Universalitätshypothese in Frage stellen.

Kapitel 3 beschäftigt sich mit dem chiralen Phasenübergang von einem allgemeinen Standpunkt

aus. Wir ergänzen wohlbekannte Fakten durch eine detaillierte Diskussion der sogenanntenO(4)-
Hypothese, die ihren Ursprung ebenfalls in Universalitätsbetrachtungen hat. Die Überprüfung

der Gültigkeit selbiger wird schließlich in Kapitel 6 und 7 in Angriff genommen.

In Kapitel 4 stellen wir die von uns benutzte nichtperturbative Methode vor, die oben bereits

erwähnte FRG-Methode. Im Rahmen dieser Arbeit beschränken wir uns auf die sogenannte

lokale Potential-Näherung (LPA). Außerdem diskutieren wir den Zusammenhang zwischen effek-

tiven Theorien für QCD und der zugrundeliegenden fundamentalen Theorie unter Ausnutzung

der FRG-eigenen Perspektive.

Kapitel 5 behandelt ein mathematisches Thema, das für alle unserer Untersuchungen unabding-

bar ist, nämlich die systematische Konstruktion polynomialer Invarianten zu einer gegebenen

Symmetrie. An dieser Stelle sei betont, dass diese Thematik von sehr allgemeinem Interesse

ist und in all jenen Forschungsgebieten Relevanz besitzt, in denen Symmetriebetrachtungen

eine Rolle spielen. Im Rahmen dieser Arbeit weisen wir auf die Bedeutung im Kontext der

Hochenergie-Physik hin und hoffen, das Interesse in systematische Methoden zur Ableitung von
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Invarianten für kontinuierliche Symmetriegruppen zu verstärken. Wir präsentieren einen ein-

fachen, jedoch neuartigen, Algorithmus für die praktische Konstruktion von Invarianten einer

gegebenen polynomialen Ordnung.

Kapitel 6 widmet sich Renormierungsgruppen-Studien einer Reihe dimensional reduzierter Theo-

rien, welche das Potential besitzen, die mögliche Existenz eines Phasenübergangs zweiter Ordnung

vorherzusagen bzw. auszuschließen. Von zentralem Interesse ist hierbei das lineare Sigma-Modell,

insbesondere in Anwesenheit der axialen Anomalie. Es stellt sich heraus, dass die Fixpunkt-

Struktur des letzteren vergleichsweise kompliziert ist und ein tieferes Verständnis der zugrun-

deliegenden Methode sowie ihrer Annahmen erfordert. Dies führt uns zu einer sorgfältigen

Analyse der Fixpunkt-Struktur verschiedener Modelle (jeweils definiert durch das allgemein-

ste Landau-Potential invariant unter einer gegebenen Symmetriegruppe) in lokaler Potential-

Näherung, was wiederum unserer Diskussion der Universalitätshypothese zugutekommt und

darüberhinaus weitere Spin-off-Effekte hat. Im Zusammenhang mit der Untersuchung des Ein-

flusses von Vektor- und Axial-Vektor-Mesonen beispielsweise stoßen wir auf eine neue Univer-

salitätsklasse, die eventuell in anderen Bereichen, in denen Chiralität eine Rolle spielt, von Rel-

evanz sein könnte.

Während wenig Spielraum für die Wahl der Symmetriegruppe der effektiven Theorie für den chi-

ralen Ordnungsparameter besteht (die Symmetriegruppe ist notwendigerweise eine Untergruppe

G ⊆ U(2)A × U(2)V ), ist die Identifizierung der Ordnungsparameter-Komponenten mit den rel-

evanten mesonischen Freiheitsgraden hochgradig nichttrivial. Diese Wahl entspricht der Wahl

einer Darstellung der Gruppe G und kann zur Zeit nicht eindeutig aus der QCD hergeleitet

werden. Die Entscheidung muss auf der Grundlage von Beschleuniger-Experimenten, Gitter-

QCD-Rechnungen und Plausibilitätsbetrachtungen getroffen werden. Es ist daher unerlässlich,

verschiedene Möglichkeiten auszutesten. Eine wohlbekannte Wahl besteht darin, das Pion und

seinen chiralen Partner, das Sigma-Meson, der O(4)-Darstellung für SU(2)A ×SU(2)V zuzuord-

nen, welche einen Phasenübergang zweiter Ordnung erlaubt. Dieses Szenario ist jedoch nur dann

sinnvoll, wenn nahe der kritischen Temperatur alle anderen Mesonen entsprechend schwer sind.

Im Fall von genau zwei leichten Quarkmassen (Nf = 2) erfordert dies eine hinreichend große

Anomaliestärke. Berücksichtigt man zusätzlich zum Pion und Sigma-Meson auch das Eta-Meson

und das a0-Meson (mittels Wahl der [2̄,2]⊕ [2, 2̄]-Darstellung für SU(2)A×SU(2)V ), liefern un-

sere derzeitigen expliziten Rechnungen keinen Nachweis für die Existenz eines Phasenübergang

zweiter Ordnung. Stattdessen spricht die Abwesenheit eines physikalischen (hinsichtlich der

Massen) infrarot-stabilen Fixpunktes für einen fluktuationsinduzierten Phasenübergang erster

Ordnung. Dieses Ergebnis ist auch zu erwarten (jedoch nicht impliziert), allein durch die Exis-

tenz zweier quadratischer Invarianten. Es besteht jedoch immer noch eine hypothetische Chance

auf einen Phasenübergang zweiter Ordnung in der SU(2)A × U(2)V -Universalitätsklasse. Dies

wäre der Fall, wenn der entsprechende von uns gefundene unphysikalische infrarot-stabile Fix-

punkt physikalisch werden sollte in höherer Trunkierungsordnung. Interessanterweise finden wir

bei endlicher Temperatur (siehe unten) für gewisse Parameter einen Phasenübergang zweiter

Ordnung. Es ist noch unklar, ob diese Wahl der Parameter in den Gültigkeitsbereich der di-

mensional reduzierten Theorie fällt. Möglicherweise handelt es sich aber auch lediglich um einen

extrem schwachen Phasenübergang erster Ordnung. Es erfordert weitere Untersuchungen, um

die korrekte Erklärung zu finden. Abgesehen davon basieren unsere Resultate auf einer FRG-
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Fixpunkt-Studie der dimensional reduzierten Theorie, die keine Fixpunkte mit zu grosser anoma-

ler Dimension erfasst, was ebenfalls aufbauende Studien motiviert (vgl. unten).

Neben der [2̄,2]⊕ [2, 2̄]-Darstellung werden auch die [3,1]⊕ [1,3]-Darstellung und die SO(3)⊗
SO(3)-Darstellung untersucht. Im Falle von [3,1]⊕ [1,3] finden wir einen infrarot-stabilen Fix-

punkt, der einen Phasenübergang zweiter Ordnung erlaubt und, soweit wir wissen, eine neue

Universalitätsklasse definiert. Im Falle von SO(3) ⊗ SO(3) existiert kein infrarot-stabilen Fix-

punkt, also auch kein Phasenübergang zweiter Ordnung. Vernachlässigt man die Lorentz-Indizes

der Felder für Vektor- und Axial-Vektor-Mesonen im Rahmen eines vereinfachten Modells, so

können wir zwischen folgenden Szenarien unterscheiden. Falls die Felder des Rho- und des a1-

Mesons als Komponenten des Ordnungsparameters angenommen werden, so können wir diese

der [3,1]⊕ [1,3]-Darstellung zuweisen und die Existenz eines Phasenübergangs zweiter Ordnung

folgern. Dieses Szenario ist jedoch wenig realistisch, da das Pion als (näherungsweises) Goldstone-

Boson Teil des Ordnungsparameters sein sollte. Alternativ könnte man eines der Mesonen durch

das Pion austauschen. Alle drei Mesonen gemeinsam kann man hingegen berücksichtigen, indem

man sie der SO(3)⊗SO(3)-Darstellung zuweist, was einen Phasenübergang erster Ordnung zur

Folge hat. Diese Wahl macht schon mehr Sinn, da jene drei Mesonen eine zentrale Rolle in eini-

gen Studien zu versteckter lokaler Symmetrie spielen. Obwohl wir mit der Vernachlässigung der

Lorentz-Indizes eine starke Vereinfachung vorgenommen haben, stellen unsere Resultate einen

ersten Schritt hin zu adäquateren Studien dar.

Erst vor kurzem (Ende September 2013) wurde die Existenz eines infrarot-stabilen U(2)A ×
U(2)V -symmetrischen Fixpunkts durch Pelissetto und Vicari verifiziert (die zugehörige anomale

Dimension ist mit η ∼ 0.12 angegeben). Dieses Resultat war sehr überraschend, da für Nf = 2 und

abwesende Anomalie ein Phasenübergang erster Ordnung relativ gesichert erschien, insbesondere

durch die ǫ-Entwicklung. Offensichtlich versagt letztere jedoch im Limes ǫ = 1, also für D = 3

räumliche Dimensionen, da lediglich Fixpunkte gefunden werden können, die auch für kleines ǫ

(also nahe D = 4) existieren. Das von den oben genannten Autoren verwendete Resummierungs-

schema hingegen verzichtet auf eine herkömmliche ǫ-Entwicklung und arbeitet direkt in D = 3.
Inspiriert durch diesen wichtigen Fund führen wir eine FRG-Fixpunktstudie in lokaler Potential-

Näherung und hoher Trunkierungsordnung (bis zu zehnter Ordnung in den Feldern) durch. Für

die Trunkierung in sechster Ordnung finden wir zwei U(2)A × U(2)V -symmetrische Fixpunkte,

sowie einen einzigen solchen bei achter bzw. zehnter Ordnung. Die Stabilitätsanalyse besitzt je-

doch leider keine Aussagekraft, da die Stabilitätsmatrix für den Gaußschen Fixpunkt marginale

Eigenwerte besitzt. Wir sind überzeugt davon, dass dies nicht mehr der Fall ist, wenn man

über die lokale Potential-Näherung hinausgeht und eine nichtverschwindende anomale Dimen-

sion, η ≠ 0, zulässt. Untersuchungen in dieser Richtung sind im Gange. Die bisherigen Resultate

verdeutlichen die Limitierungen der lokalen Potential-Näherung und der ǫ-Entwicklung, auf de-

nen unsere Untersuchungen zur Universalitätshypothese in weiten Teilen beruhen. Im Falle einer

entsprechend großen anomalen Dimension kann sich die Fixpunktstruktur entscheidend ändern

und somit die Schlußfolgerung, ob ein Phasenübergang zweiter Ordnung existiert bzw. welcher

Universalitätsklasse letzterer angehört (auch dann, wenn unter Vernachlässigung des Einflusses

der anomalen Dimension keine marginalen Stabilitätsmatrix-Eigenwerte auftauchen). System-

atische Untersuchungen der Fixpunktstruktur von Modellen mit N ≤ 8 Ordnungsparameter-

Komponenten wurden in der Literatur im Rahmen der ǫ-Entwicklung in Ein-Schleifen-Näherung
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durchgeführt und im Rahmen dieser Dissertation innerhalb der lokalen Potential-Näherung. Die

meisten der Vorhersagen der ǫ-Entwicklung konnten bestätigt werden, einige hingegen werden

in Frage gestellt durch das Auftauchen marginaler Stabilitätsmatrix-Eigenwerte. Erstere sind

zuverlässig lediglich dann, wenn η im Experiment tatsächlich hinreichend klein ist. Letztere

motivieren aufbauende Untersuchungen, die mit dem Hinausgehen über die lokale Potential-

Näherung bereits im Gange sind.

Einige wichtige Fragestellungen können nicht im Rahmen einer dimensional reduzierten Theo-

rie behandelt werden, da die explizite Temperaturabhängigkeit in diesem Fall eliminiert wurde.

Insbesondere ist es in diesem Fall nicht möglich, die Stärke eines Phasenübergangs erster Ord-

nung vorherzusagen, da diese von Observablen (Meson-Massen und die Pion-Zerfallskonstante im

Vakuum) abhängen, an die man bei verschwindender Temperatur fitten muss. Dieser Umstand

führt uns zu solchen FRG-Studien, in denen die Temperatur als expliziter Parameter verbleibt.

Ein beträchtlicher Teil der für die vorliegende Dissertation zur Verfügung stehenden Arbeitszeit

wurde darauf verwendet, eigene Implementierungen geeigneter Algorithmen zur numerischen

Lösung der auftretenden partiellen Differentialgleichungen zu finden. Exemplarische Routinen

(welche ausschließlich wohlbekannte Methoden nutzen) sind in einem Anhang zur Verfügung

gestellt. Das Hauptziel der vorliegenden Arbeit, die Anwendung auf effektive Modelle für QCD,

wird in Kapitel 7 präsentiert. Unsere (vorläufigen) FRG-Studien des linearen Sigma-Modells mit

axialer Anomalie bei nichtverschwindender Temperatur erlauben verschiedene Szenarien. Sowohl

einen extrem schwach ausgeprägten, als auch einen sehr deutlichen Phasenübergang erster Ord-

nung, ganz abhängig von der Wahl der Ultraviolett-Abschneideskala und oben genannter Para-

meter. Sogar ein Phasenübergang zweiter Ordnung scheint möglich für gewisse Parameterwerte.

Um verlässliche Schlussfolgerungen zu ziehen, sind weitere Untersuchungen nötig und bereits im

Gange. In Kapitel 7 verifizieren wir außerdem bereits bekannte numerische Resultate für das

Quark-Meson-Modell, was zugleich einen guten Test der von uns verwandten Routinen darstellt.

In den Anhängen A-D stellen wir verschiedene Routinen zur Verfügung, die im Rahmen der vor-

liegenden Dissertation benutzt wurden. Außerdem enthalten diese Anhänge Material auf das wir

uns in den Hauptkapiteln beziehen.

Anhang A erklärt einige gruppentheoretische Aspekte, sowohl allgemeiner Art als auch in Bezug

auf die chirale Symmetrie. Anhang B enthält zwei voll funktionsfähige Mathematica-Routinen,

die unser Rezept zur systematischen Konstruktion polynomialer Invarianten in der Praxis verdeut-

lichen. Anhang C enthält ebenfalls zwei voll funktionsfähige Mathematica-Routinen. Diese

sind Implementierungen zweier unterschiedlicher (wohlbekannter) Methoden zur Lösung typ-

ischer FRG-Flussgleichungen für eine RG-Skala-abhängige Funktion (in unserem Fall das ef-

fektive Potential) einer skalaren Feldvariablen. Die Finite-Differenzen-Methode basiert darauf,

die partiellen Ableitungen nach der Feldvariablen durch geeignete Finite-Differenzen zu erset-

zen. Die Taylor-Methode hingegen nutzt eine Taylor-Entwicklung der RG-Skala-abhängigen

Funktion um verschiedene Feld-Gitterpunkte. Die Flussgleichungen für die Entwicklungskoef-

fizienten erhält man durch entsprechendes Ableiten der Flussgleichung für die Funktion nach

dem Feld. Mit geeigneter Wahl der Entwicklungspunkte resultiert, wie auch im Fall der Finite-

Differenzen-Methode, ein geschlossenes Gleichungssystem gewöhnlicher Differentialgleichungen

in der RG-Skala, welches man mittels Runge-Kutta-Verfahren lösen kann. Anhang D stellt eine

zweckdienliche Mathematica-Routine zur Verfügung, welche die Stabilitätsmatrix-Eigenwerte des
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O(N)-symmetrischen Fixpunkts des O(N)-Modells für frei wählbares N berechnet. Es verdeut-

licht zugleich am einfachstmöglichen Beispiel die Herleitung von Flussgleichungen in der lokalen

Potential-Näherung.
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