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Abstract

We show that an unambiguous way of determining the universal limiting fragmentation region

is to consider the derivative (d2n/dη2) of the pseudo-rapidity distribution per participant pair. In

addition, we find that the transition region between the fragmentation and the central plateau

regions exhibits a second kind of universal behavior that is only apparent in d2n/dη2. The
√

s de-

pendence of the height of the central plateau (dn/dη)η=0 and the total charged particle multiplicity

ntotal critically depend on the behavior of this universal transition curve. Analyzing available RHIC

data, we show that (dn/dη)η=0 can be bounded by ln2 s and ntotal can be bounded by ln3 s. We

also show that the deuteron-gold data from RHIC has the exactly same features as the gold-gold

data indicating that these universal behaviors are a feature of the initial state parton-nucleus in-

teractions and not a consequence of final state interactions. Predictions for LHC energy are also

given.
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I. INTRODUCTION

Recently, PHOBOS and BRAHMS collaborations at RHIC published a set of intriguing

data. Among them are the striking feature of the limiting fragmentation [1, 2]. It is reported

by PHOBOS that the shifted (by the beam rapidity ymax) pseudo-rapidity distribution per

participant pair dn/dη ≡ (dNch/dη)/(Npart/2) is independent of colliding energy up to 85-

90% of the plateau height [1].

If taken at face value, this would imply that the height of the plateau and its
√

s de-

pendence would be almost fully determined by the limiting fragmentation curve and the

location of the beginning of the plateau. Also, since the total multiplicity is simply the area

under dn/dη, its
√

s dependence would be largely determined by the limiting fragmentation

curve as well.

It is not easy to determine the validity of above statements when only the rapidity

distributions (dn/dη) are compared. In this paper we argue that comparing the slopes

(d2n/dη2) is a much better way to determine various regions of the rapidity distribution.

A surprising feature is the existence of another ‘universal’ behavior, which is only appar-

ent in the slopes. It turns out that d2n/dη2 in the transition region between the limiting

fragmentation and the central plateau also follows a universal curve. This is not an extension

of the limiting fragmentation curve. To our knowledge, this is the first time the existence of

this second universal curve is demonstrated. These two universal curves basically determine

the dn/dη. The energy dependence shows up through the position of the beginning of the

central plateau.

The hypothesis of limiting fragmentation has a long history. For hadron-hadron collisions,

this hypothesis was first put forward by Benecket et.al.[3] and also by Feynman[4] and

Hagedorn[5]. This idea was further developed in Refs.[6] – [15].

Feynman hypothesized that as
√

s → ∞, the multiplicity spectrum

lim√
s→∞

Ep
dnhh

d3p
= lim√

s→∞

dnhh

dy d2pT
= f(xL, pT ) (1)

becomes independent of
√

s. Here y = (1/2) ln((Ep + pL)/(Ep − pL)) is the rapidity and

xL = 2pL/
√

s is the longitudinal momentum fraction. If the mass of the particles is light

compared to the average pT , this expression also equals dnhh/dη d2pT where η = (1/2) ln((p+

pL)/(p−pL)) is the pseudo-rapidity. The universal function f(xL, pT ) then totally determines

the height of the dnhh/dη and the total multiplicity at high energies.

Note that since f(xL, pT ) itself is independent of
√

s, the height of the plateau

(dnhh/dy)η=0 must also be independent of
√

s. This also implies that the total multiplicity

must behave like ymax ∼ ln s where

ymax = cosh−1(
√

s/2mN) ≈ ln(
√

s/mN) (2)
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is the beam rapidity and mN is the nucleon mass. However, up to
√

s = 1800 GeV the

experimental data does not show that (dn/dη)η=0 is saturated. Also proton-proton and

proton-anti-proton data show that the height of the plateau grows like ln2 s (See compilation

by PHOBOS in Refs.[16, 17].). The the total multiplicity then must grow like ln3 s. This is

not what one would expect from Eq.(1).

The source of this discrepancy is the fact the strict Feynman-Yang scaling is not perfect

nor is it supposed to be. The central region (or small xL) is modified by radiation of soft

partons and and the multiple rescatterings of produced particles. QCD radiative corrections

should also give rise to the additional scale dependence in f(xL, pT )[18].

However, within the dynamic range where Feynman-Yang scaling approximately holds,

what should still work is the universality of dn/dη near η = ymax, or equivalently at large

xL. We should still have

dnhh

dη

∣

∣

∣

∣

∣

η=ymax+η′

≈
∫

d2pT f((pT /mN) eη′

, pT ) ≡ fU(η′) (3)

where the universal function fU(η′) is independent of
√

s (modulo the separating scale de-

pendence). So far this is what the experimental data seem to show in both hadron-hadron

collisions and the heavy-ion collisions.

Physically, the existence of the limiting fragmentation is a consequence of having a uni-

versal large x distributions in high energy hadrons combined with the short interaction range

in the rapidity space[19]. Therefore, learning about the limiting fragmentation is equivalent

to learning about the universal large x distribution.

In the popular Venugopalan-McLerran model of gluon dynamics, these large x partons

then act as the color source that generates the small x partons. Therefore establishing the

validity and also the form of the limiting fragmentation in heavy ion collisions can provide

an important input for the bulk dynamics of the soft degrees of freedom.

As far as we can determine, the second universal curve in the transition region has never

been studied before. In the following sections, we will argue that the appearance of the

universal transition curve may be anticipated. However, further study is needed to uncover

the true cause for this universality.

In this context, it is quite interesting that the deuteron-gold (d+Au) result contains the

same fragmentation and transition region curve as the gold-gold (Au+Au) result. This is

discussed in more detail in section IIB.

The rest of this paper is organized as follows. In section II, we analyze available RHIC

data. A simple parametrization of d2n/dη2 is presented and its consequences explicitly

calculated. The results from several theoretical models including HIJING[20], UrQMD[21,

22] and a saturation model[23, 24] are compared against the universal curves. Using the
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FIG. 1: d2n/dη′2 numerically calculated from the PHOBOS most central collision data[1]. The

triangles are for
√

s = 200 GeV, the squares are for
√

s = 130 GeV and the circles are for
√

s =

19.6 GeV. Also shown are two choices of limiting fragmentation functions as explained in the text.

The two arrows mark the starting point of the plateau (ηp − ymax) and the starting point of the

fragmentation region (ηf − ymax) for
√

s = 200 GeV curve.

two parametrizations of dn/dη from previous sections, we make a prediction for LHC in

section III. Discussions and Conclusions are given in section IV. Appendix A contains

details of a calculation not shown in the main text. In Appendix B, we discuss the validity

(or the lack of) the Wood-Saxon form of dn/dη sometimes used to describe the data.

II. EXPERIMENTAL LIMITING FRAGMENTATION AND TRANSITION

CURVES

A. Analysis of RHIC Au+Au

If the universal behavior indeed extends up to 90% of the plateau height[1], the height

as well as the total multiplicity would be largely determined by the limiting function fU(η′)

where η′ ≡ η − ymax. In reality, the fragmentation region extend up to 50% of the plateau
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FIG. 2: d2n/dη′′2 numerically calculated from the PHOBOS most central data [1]. Here η′′ = η−ηp

where ηp is the location of the hump in dn/dη. The solid line is gU (η′′) = −0.65 η′′.

height at RHIC energy. This fact is hard to see when comparing dn/dη’s but becomes

apparent when comparing d2n/dη2’s. In Fig. 1, we plot d2n/dη2 for the most central collisions

for
√

s = 200 GeV,
√

s = 130 GeV and
√

s = 19.6 GeV numerically calculated from the

PHOBOS data1. One can see that there are three distinct regions (we will ignore the hump).

The limiting fragmentation region lies to the right of the minimum of d2n/dη2 (η > ηf) in

which all data points merge together. To its left comes the transition region between the

fragmentation and the plateau (ηp < η < ηf). The zero of d2n/dη2 is where the plateau

begins (η = ηp). This is also the location of the hump in dn/dη.

It is clear from this figure that the true limiting fragmentation region starts from about

half way between the plateau and ymax. The area of the triangular shape is the height of the

plateau. Therefore at these energies the limiting fragmentation region extends up to about

50% of the maximum height. Apparent matching of data points below ηf seen in dn/dη′ is

1 It is not possible to estimate experimental error bars for the slope without knowing the correlation between

the errors. It is likely that the errors in the neighboring bins are highly correlated. In this paper, we

assume that this is the case.
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900 GeV, p−pbar
y = −0.65 x

FIG. 3: d2n/dη′2 numerically calculated from the PHOBOS most central data and semi-central

data [1]. Here η′′ = η − ηp where ηp is the location of the hump in dn/dη. The solid line is

gU (η′′) = −0.65 η′′.

due to the slow change in the slope but it is not a true universal behavior.

What is even more interesting is that the transition region also exhibits a universal

behavior. This is easily seen if one matches the zeros of d2n/dη2 curves (locations of the

hump in dn/dη) as shown in Fig. 2. One can see that all data points again merge together.

We will denote this ‘universal curve’ as

gU(η′′) ≡ d2n

dη2

∣

∣

∣

∣

∣

η=ηp+η′′

(ηp < η < ηf ) (4)

In Fig. 3, we also show the semi-central data from PHOBOS together with the central

collision data. The quality of the data is not as good as the central collision data, but the

universal behavior is still evident. We do not plot very peripheral data in Fig. 3 since the

participant scaling seems not to have been well established for them [1]. Instead, in Fig. 4,

we plot the result of pp̄ collisions at various high energies as measured at CERN together

with a UrQMD calculation from Ref. [25] and HIJING results. The quality of data for these

measurements are not as clean as RHIC data from PHOBOS. However, there is a strong

indication that there is a common transition curve. There is also an indication that the slope
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FIG. 4: d2n/dη′2 numerically calculated from CERN data as compiled by Particle Data Group[26].

Here η′′ = η−ηp where ηp is the location of the hump in dn/dη. The solid line is gU (η′′) = −0.40 η′′.

in pp̄ (−0.4) is different from the heavy ion result (−0.65). As argued in Section IIB, this

is most likely due to the nuclear modification which is also supported by the HIJING and

UrQMD results shown in Fig. 4. From now on, we will focus our attention on the central

heavy ion collisions.

The shape of dn/dη is determined by the functional forms of f ′
U(η′) = dfU/dη′ and gU(η′′)

and the condition that these two curves meet at the transition point η = ηf :

gU(ηf − ηp) = f ′
U(−ymax + ηf) (5)

This is the condition that connects the behavior of the fragmentation region to the plateau

region. Once the value of ηp is determined by the zero of d2n/dη2, the pseudo-rapidity

distribution dn/dη is fully determined by fU , gU and the condition (5).

A question then arises: What are the functional forms of the limiting fragmentation curve

fU and the transition curve gU? For the transition curve gU , the current RHIC data shown

in Fig. 2 suggest that it is a linear function of η with a
√

s independent slope. In this paper,

we take this to be true and write

gU(η′′) = −Kη′′ (6)
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FIG. 5: The tail part of the PHOBOS data on dn/dη′ for the central 6 % of Au+Au collisions at
√

s = 19.6 GeV. The straight line is (dn/dη′) = 0.492 e−1.253 η′

.

where η′′ = η − ηp. The value of K we use is set to 0.65 which is the slope of the straight

line shown in Fig. (2).

As for the limiting fragmentation function, there is little doubt that fU is exponential for

η > ymax as can be clearly seen in Fig. 5. But what about below ymax? A current theoretical

analysis[18] relates fU to the gluon distribution function at large x. At moderate Q2, the

gluon distribution function has the form

xG(x, Q2) ∼ x−λ (1 − x)n (7)

With x = e−2−ymax+η = e−2+η′

[18], this means that the limiting fragmentation function

should behave like

fU(η′) ∼ e−λη′

(1 − e−2+η′

)n (8)

Here −2 in the exponent is due to the mass difference between a proton and a pion. The

behavior of the expression (8) is different from the exponential behavior shown in Fig. 5 in

the η′ > 0 (η > ymax) region. However in the η′ < 0 (η < ymax) region,

fU(η′) ∼ e−λη′

(9)

gives a reasonable description with λ ∼ 0.25[18].
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FIG. 6: Pseudo-rapidity distribution for 6% most central Au-Au collisions at
√

s = 200 GeV. Data

are from Ref. [1]. Lower curves are d2n/dη2 calculated numerically from dn/dη data. The solid

lines are our fits. Here we used θ̃ρ(x − x0) = 1/(1 + e−(x−x0)/ρ) with ρ = 0.25 and the parameters

are set to p = 0.95, 1/r = 0.308, q = r/5, δ = 0.3 and K = 0.65. The value of p is different

from 1.08 quoted in the text because a finite value of ρ compensates it a little. Here ηp is not free

but fixed by the position of the hump. They are at η′ = −3.96, η′ = −3.65 and η′ = −2.6 for
√

s = 200, 130, 19.6 GeV respectively.

Combined, the above analysis indicate that the behavior of dn/dη changes from one

exponential form to another exponential form when η crosses ymax (or η′ crosses 0). We may

represent such behavior with

f ′
U(η′) ≡ dfU

dη′ = − p

eη′/r + eη′/q
(10)

In Fig. 1, the solid curve corresponds to this form fitted to η′ > −1 portion of the combined

data set. The dashed curve corresponds to the extension of the exponential from η′ > 0

region.

If the data points shown in Fig. 1 follow the true universal curve, then we have no choice

but to conclude that fU changes its behavior once η = ymax is crossed. On the other hand,
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FIG. 7: dn/dη and d2n/dη2 calculated using Kharzeev and Levin’s result[24]. Open symbols are

PHOBOS results and full symbols are the calculations.

we may also consider that RHIC energy is not high enough for the true universal curve to

manifest and what we see in the current data is an accident. One such example is presented

in Appendix B. For reasons explained in the Appendix, this accident is unlikely. However,

only further experiments can give a definite verdict.

Using Eq. (6) for gU , we write for η > 0

d2n

dη′2 = −
(

p

eη′/r + eη′/q

)

θ̃ρ(η
′ + χf) − K(η′ + χp) θ̃ρ(−χf − η′) θ̃ρ(η

′ + χp − δ) (11)

where η′ = η − ymax and θ̃ρ(x) is the smeared θ function with limρ→0 θ̃ρ(x) = θ(x). The

minimum of d2n/dη′2 is located at η′ = −χf = ηf − ymax and the hump of dn/dη′ is located

at η′ = −χp = ηp − ymax. The parameters δ and ρ control the height and the width of

the hump. The parameter K = 0.65 is the slope of the transition region. By fitting the

combined η′ > −1 data, we get p = 1.08, 1/r = 0.308 and 1/q = 1.566 ≈ 5/r. We mention

here that this 1/r value is fairly close to the value of a similar coefficient obtained from

saturation model studies[18, 23, 24, 27, 28, 29]. The shape of dn/dη obtained from Eq.(11)

as well as d2n/dη2 itself is shown in Fig. 6. In the figure, p = 0.95 is used because having

finite ρ changes the slope a little.
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FIG. 8: d2n/dη2 calculated using Kharzeev and Levin’s result[24] up to the LHC energy.

The transition between the fragmentation region and the transition region happens at

η′ = −χf where the two lines meet. This yields the following condition

K(χp − χf ) =
p

e−χf/r + e−χf /q
≈ p eχf/r (12)

where the approximation works for large χf/r. This is the condition which relates the

limiting fragmentation to the plateau and ultimately determines the size of the fragmentation

region. For large χf/r, the solution is given by

χf ≈ χp − r W (eχp/rp/Kr) (13)

where the Lambert function solves w = W (w) exp(W (w)). With the values of the parameters

from above, the approximation (13) is good within 1% for RHIC and LHC but not for SPS.

For future reference, we note that for large w, W (w) ≈ ln w − ln ln w. Hence

χf ∼ ln χp ≪ χp (14)

Integrating Eq.(11) from ∞ to η′ gives the rapidity distribution dn/dη′. Numerical inte-

gration yields excellent description of the existing data as shown in Fig. 6. Unfortunately,

the form of f ′
U(η′) in Eq.(10) does not allow analytic integration in general. However, note
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FIG. 9: dn/dη′ and d2n/dη′2 from the central PHOBOS data compared with HIJING v1.37 (filled

symbols) calculations with dE/dx = −2 GeV/fm [32].

that 1/q ≈ 5/r. If 1/q = 5/r, the necessary integration can be carried out in the sharp

θ-function limit (θ̃ρ → θ). The resulting form is analytic but not very illuminating. Details

can be found in Appendix A.

Now consider the height of the plateau, (dn/dη)0. Note that the fragmentation region

d2n/dη2 behaves exponentially while the transition region d2n/dη2 behaves linearly in η.

Therefore in the large ymax limit, the contribution from the transition region dominates in

(dn/dη)0. Physically, this is what one would expect. At high enough energies, the dynamics

of the central plateau region and the dynamics of the limiting fragmentation region should

decouple and the height of the central plateau should not depend much on the exact form

of fU . The height of the plateau in the large ymax limit is then given by

(

dn

dη

)

0

≈ K

2
(χf − χp)

2 + O(ymax) (15)

This implies

(

dn

dη

)

0

<
K

2
ln2(

√
s/mN ) (16)
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FIG. 10: d2n/dη′2 numerically calculated from the central PHOBOS data compared with HIJING

v1.37 calculations.

since ηp < ηf < ymax and χf ∼ ln χp. Integrating once more, the total multiplicity can be

obtained as

ntotal ≈ K

3
(ηf − ηp)

2(2ηf + ηp) + O(y2
max) (17)

which implies

ntotal <
2K

3
ln3(

√
s/mN) (18)

From Eqs.(15) and (17) we conclude that the central plateau cannot rise faster than y2
max

or ln2 s and the total multiplicity cannot rise faster than y3
max or ln3 s. The only possible

way to get faster dependence is to have
√

s dependent K, or faster rising gU (for instance

an exponential). Judging from Fig. 4, this is not likely up to 900GeV. Also there is an

additional evidence from the CDF collaboration [30] that up to
√

s = 1.8 TeV, the central

plateau in pp̄ collisions rises only as fast as ln2 s.

In many current models of heavy ion collisions, ntotal grows faster than ln3 s. For instance,

Ref.[24] has ntotal ∼ sλ/2 and the e+e− model[17] has ntotal ∼ ec
√

ln s where λ and c are

constants. Parametrization of pp, pA and AA data up to the SPS energy by Gazdzicki
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FIG. 11: d2n/dη′2 numerically calculated from the central PHOBOS data compared with UrQMD

calculations (filled symbols). The solid line is UrQMD result for
√

s = 200 GeV without rescatter-

ings.

and Hansen[31] gives Nch ∝ s1/4. At present energies, these are indistinguishable from

polynomials in ln s. However, as will be presented shortly, LHC will be able to tell whether

the bound (18) indeed holds for high energy heavy ion collisions.

At this point, we can attempt a partial explanation of the appearance of the universal

transition curve. Suppose that as the collision energy becomes larger the dynamics of plateau

region largely decouples from the dynamics of the fragmentation region. This is certainly

the case for the fU and gU given in this section as indicated by Eq.(14). Eq.(14) implies

that in the large ymax limit, ηf ≫ ηp and

ηf = ymax + O(ln ymax) . (19)

This is a consequence of having an exponential fragmentation curve and a polynomial tran-

sition curve. Note that the functional form of gU and fU enters only through the logarithmic

correction.

At RHIC energies, the area under fU and gU looks like an isosceles triangle. This is

because ln ymax is still not that small compared to ymax. However since an exponential rises

14
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FIG. 12: The derivative (d2N/dη2)/(Npart/2) with respect to η. Data are taken from the PHOBOS

website[43].

fast, the area will look more and more like a right triangle as the energy grows and the area

will become dominated by the transition part:

(

dn

dη

)

0

≈
∫ ηp

ηf

dη gU(η − ηp)

= −
∫ ηf−ηp

0
dη′′ gU(η′′) ≈ −

∫ ymax

0
dη′′ gU(η′′) . (20)

Therefore, to leading order in ymax, (dn/dη)0 is a function of ymax ≈ ln(
√

s/mN) and it is

independent of the functional form of the fragmentation curve fU . Denoting the functional

dependence as (dn/dη)0 = S(ymax), the universality of gU follows if the following relationship

holds

gU(η′′) ≈ −dS(η′′)

dη′′ . (21)

Once the dependence of (dn/dη)0 on
√

s is given, gU is totally determined and it is indeed

universal up to logarithmic corrections. The relation (21) certainly holds for Eqs.(6) and

(15) when ymax ≫ 1.
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FIG. 13: The same as Fig.12 but d+Au data is vertically scaled by a factor of 1.3 and shifted to

the right by 0.4 unit of pseudorapidity (2 experimental bins).

The hole in this argument is that the relationship (20) does not automatically imply

Eq.(21). For instance, suppose S(ymax) = ay2
max. In this case, any

gU(η′) = a n y2−n
max (η′′)n−1 (22)

with n > 1 satisfies Eq.(20). Unless n = 2, however, gU(η′′) depends on ymax and hence it

is not universal. Surprising fact is that the data seems to suggest n is indeed 2 or at least

very close to it.

The relationship (21) is remarkable. It relates an observable that is a function of collid-

ing energy to an observable that is a function of the pseudo-rapidity at any fixed energy.

Unfortunately, energies probed so far are too small for this to manifest. As seen in Figures

2-4, the transition region is not truly dominant yet. However, we should be able to test this

relationship at LHC.

It is also instructive to compare some theory curves with RHIC data as shown in Figs. 7-

11. As shown in Figs.7 the saturation model by Kharzeev and Levin[24] gives a good

description of the plateau and the transition region at RHIC energy although the fragmen-

tation region is badly off. However, since the model is based on small x picture, it is not
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FIG. 14: The same as Fig.13 but for dN/dη.

supposed to be valid in the fragmentation region. From the expression of dn/dy given in

Ref.[24], it is clear that the transition curve obtained by Kharzeev and Levin is exponential

and this form of dn/dy does not satisfy the relation (21). The reason Fig. 8 shows approxi-

mate universal behavior up to
√

s = 1000 GeV is λ is small. At LHC energy, the violation

of the universality is clearly seen for this model.

HIJING results [32, 33] with shadowing and a parton energy loss of dE/dx = −2GeV/fm

and an energy dependent scale parameter p0 as considered in [34] are shown in Fig.9. It

is quite evident in the d2n/dη2 plot that the fragmentation region dominates in HIJING.

Again to test the transition curve universality, one must go beyond the RHIC energy. Fig.10

shows d2n/dη2 up to the LHC energy. From the figure, it is quite clear that HIJING

does not contain a universal transition curve. Furthermore, at higher energies, the central

region develops a bump instead of a plateau. This feature is due to the abundance of the

minijets. As can be seen in Fig. 17, by enhancing the parameter p0 (equivalently, reducing

the number of minijets) HIJING becomes closer to the other models. But the transition

region universality is clearly not a feature in the HIJING model.

On the other hand, it is quite striking that the default UrQMD results get both dn/dη and
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FIG. 15: The same as Fig.12 but d+Au data is vertically scaled by a factor of 1.9 and shifted to

the right by 0.2 unit of pseudorapidity (1 experimental bin).

d2n/dη2 right at RHIC energies. It is also significant that without rescatterings, UrQMD

does not describe the data well. Why UrQMD results in universal transition curve is not

yet clear.

B. Analysis of RHIC d+Au

Recently the PHOBOS collaboration published the result of measuring the pseudora-

pidity distribution of produced particles in the deuteron-gold (d+Au) collisions at
√

s =

200 GeV[35]. At a first glance, it would seem that there is no common feature at all between

the d+Au dn/dη and Au+Au dn/dη, especially if one just looks at the participant-scaled

results. However, when dealing with very asymmetric systems such as d+Au, one must be

careful about the scaling behavior. As can be easily shown in a simple wounded nucleon

model, the scaling of produced particles in the heavy ion side and the d side should be

different. The number of wounded nucleons in the heavy ion side depends on the linear

size of the heavy ion whereas the d side always have 1 or 2 wounded nucleons. Hence, the
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FIG. 16: The same as Fig.15 but for dN/dη. d+Au result is shifted vertically down by 3.6.

multiplicity in the heavy ion side should have an additional scale factor ∼ A1/3 compared

to the d side.

To see whether there is a common feature between Au+Au and d+Au or not, again it is

much better to look at the derivative (d2N/dη2)/(Npart/2) as shown in in Fig.12. Judging

from this figure, it is clear that there is a common feature. To bring it out more clearly, we

vertically scale the d+Au result by a factor of 1.3 and shift it horizontally by 0.4 unit of

rapidity (or 2 experimental bins). This results in Figs. 13 and 14 which leaves no room for

doubt that the shape of dN/dη for η > 1.5 is common to both Au+Au and d+Au results.

It is also interesting to see that different scaling (additional factor of 1.5 compared to Fig.13

and the rapidity shift of 0.2 (or 1 experimental bin) instead of 0.4) brings the Au side of

the spectrum together as shown in Fig.15. and Fig.16. Again, there is no room for doubt

that there is a common curve. This implies that beside a constant component, the shape of

dn/dη for both Au+Au and d+Au is simply related by scaling even in the Au side.
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FIG. 17: Predictions for central collisions at LHC. Also shown are parametrized RHIC 200 result.

We set
√

s = 5.5TeV and Pb+Pb for LHC.

III. PREDICTION FOR LHC

Given the two forms of parametrization considered in the previous sections, it is possible

to extrapolate and predict what should happen at LHC where
√

s = 5500 GeV and ymax =

8.68. To do so, we need to parametrize the functional form of ηp or ηf . The value of ηp in the

model from section IIA is not a free parameter. The position of the hump clearly visible in

d2n/dη2 as a zero is the value of ηp. From the PHOBOS data, one gets, ymax−ηp = 3.96, 3.65

for
√

s = 200, 130 GeV. For
√

s = 19.6 GeV case, the data has ymax − ηp = 2.75. However,

with our model, ymax − ηp = 2.6 describes the data better.

By fitting the above values of ηp with ymax − ηp = λyν + β ln y and ymax − ηp = λyν + C,

we get2

ymax − ηp =







0.60 + 0.73 y0.91
max (Model I)

0.33 ln ymax + 0.96 y0.75
max (Model II)

(23)

2 Since we have only three data points, one cannot fit the full ymax − ηp = λyν + β ln y + C.

20



ymax − ηp (dn/dη)0 ntotal

Model I 5.8 6.9 87

Model II 5.6 6.5 83

K & L – 10.7 110

HIJING w/ p0 = 3.5 GeV/c – 21.4 160

HIJING w/ p0 = 7.0 GeV/c – 11.6 100

TABLE I: Predictions for LHC central collisions. We set
√

s = 5.5TeV and Pb+Pb for LHC.

.

These two parametrizations do not differ much up to ymax = 10. The LHC predictions from

these two parametrizations are given in Table I3. The shape of dn/dη is given in the Fig 17

together with the Kharzeev-Levin prediction and the HIJING predictions with two different

minimum minijet energies. The results obtained for p0 = 3.5 GeV suggested in reference

[34], is clearly very different from other models. Increasing the mini-jet scale parameter to

a higher value p0 = 7.0 GeV brings it to a better agreement with other models. Only data

from LHC will allow us to draw a definite conclusion and to choose the right value for this

parameter p0.

One striking feature is that in both the Kharzeev-Levin model and the HIJING model

with p0 = 3.5 GeV, the central plateau disappear. This is mainly due to the fact that

these models do not contain rescatterings of the secondaries and hence cannot not undergo

a Bjorken-like expansion.

IV. DISCUSSIONS AND CONCLUSIONS

In this paper, we showed that there exists a second universal behavior in the rapidity

distribution of produced particles. The data we have analyzed clearly indicate that d2n/dη2’s

in the transition region taken at different energies follow a common curve. This is not easy

to see when comparing dn/dη’s but clearly seen when comparing d2n/dη2’s.

We emphasize here that any model that purports to describe the rapidity distribution

in the whole rapidity space must be able to reproduce not only the limiting fragmentation

curve, but also the universal transition curve.

The existence of the two universal curves implies that the shape and the size of the

rapidity distribution itself is mostly determined by (i) the limiting fragmentation curve fU ,

3 To predict the height more accurately, we need to remember that Eq.(15) neglects some part of the tail

contribution.
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(ii) the universal transition curve gU and (iii) the starting point of the plateau region ηp.

Non-trivial physics resides in the
√

s dependence of ηp or equivalently the size the central

plateau.

The physics behind the limiting fragmentation curve is well known to be the Feynman-

Yang scaling which states that at high energy, large xL behavior of an inclusive cross-

section is independent of
√

s. In this paper we argued that the physics behind the universal

transition curve is in fact the decoupling between the dynamics of the plateau and the

fragmentation region. We note that it is also intriguing that perhaps a connection to the

gluon parton distribution can be made. In saturation models, dn/dη is related to the gluon

distribution function[18, 23, 24]. In this case, the universal transition curve puts a severe

restriction on the behavior of the gluon distribution at moderate x.

In this work, we found that the universal transition curve is linear in η′′ = η − ηp based

on
√

s = 20 − 200 GeV RHIC data and UA5 pp̄ data. A consequence of having a linear

transition curve is that the plateau height (dn/dη)0 cannot grow faster than ln2 s and the

total charged multiplicity cannot grow faster than ln3 s. This polynomial behavior in ln s is

maintained if the transition curve is polynomial in η′′. A power law growth (dn/dη)0 ∼ sλ

or an e+e− type exponential growth is possible only if the transition curve is exponential.

The available data does not show such exponential behavior. It does not, of course, rule out

a change in the behavior at higher energies. As shown in the last section, these possibilities

can be clearly distinguished at LHC.

What we have found in this study also impacts hydrodynamic studies. As can be seen

in Eq.(23) the size of the plateau does not grow fast. Moreover as ymax → ∞, ηp/ymax → 0.

Therefore, the relative region of validity for 2-D hydrodynamic calculation shrinks as the

energy goes up and the need for 3-D hydrodynamic calculation becomes greater. Further-

more, the existence of the universal transition curve will tightly constrain the longitudinal

evolution of the hydrodynamic system.

We have also analyzed the deuteron-gold result from RHIC and found that there is a single

common curve that determines the shape of dN/dη for both d+Au and Au+Au cases. A few

conclusions can be drawn from our analysis. First of all, the different scaling factors for the

deuteron side and the gold side indicate that the scaling of d+Au system is more complex

than a simple participant scaling. This implies that using a simple participant scaling can

potentially mislead the comparision between the d+Au result and Au+Au result. This is

especially significant for the Au side where there appears to be a constant component on

top of the two universal curves discussed in this paper. Again, these facts are much more

transparent if one compares d2N/dη2.

Second, the existence of a function common to both Au+Au and d+Au indicates that the

dynamics of the transition region and the fragmentation region in the Au+Au case cannot
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depend much on the final state interactions. It can only depend on initial state parton-

nucleus dynamics. Especially, whether or not a hot and dense system is formed in Au+Au

collisions does not influence the shape of dN/dη beyond the plateau region.

The exact physical meaning of the rapidity shifts and the constant component in the

d+Au data are under investigation.
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APPENDIX A: INTEGRAL OVER dfU/dη′

To calculate dn/dη, we need
∫ η′

∞
dη′′ dfU

dη′′ = −p
∫ η′

∞
dη′′ 1

eη′/r + e5η′/r
(A1)

Changing variable to y = eη′′/r yields

− p r
∫ eη′/r

∞

dy

y2(1 + y4)
= −p r

∫ eη′/r

∞
dy

(

1

y2
− y2

1 + y4

)

(A2)
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These integrals can be found in integral tables, for instance Ref.[42]. We get

∫ η′

∞
dη′′ dfU

dη′′ = p r

{

e−η′/r +
p

2
√

2

(

tan−1
(

1 +
√

2eη′/r
)

− tan−1
(

1 −
√

2eη′/r
)

− π
)

− 1

2
log

(

1 +
√

2e−η′/r + e−2η′/r

1 −
√

2e−η′/r + e−2η′/r

)}

(A3)

APPENDIX B: UNIVERSAL FRAGMENTATION CONDITION FOR WOOD-

SAXON

A popular choice of parametrization for dn/dη is the Wood-Saxon function. Many models

for hadron-hadron collisions developed in the 70’s [36, 37, 38, 39, 40] also had this type of

dn/dη. As will be shortly shown, this Wood-Saxon form is not compatible with the transition

region universality and hence it is unlikely that this is the right form of dn/dη. Nevertheless

we feel that it is worth considering the Wood-Saxon form here because it gives an example

of slowly changing (as opposed to universal) limiting fragmentation curve.

A reasonable description of the current data can be provided by the following combination

of the Wood-Saxon (Fermi-Dirac) functions and a hyperbolic cosine[41]

dn

dη
=

g cosh(η/ζ)

[1 + e−(η+ηf )/σ][1 + e(η−ηf )/σ]
(B1)

where g, ηf , ζ and σ are functions of ymax. Here the parameter ηf roughly corresponds to

where the fragmentation region begins. The hyperbolic cosine is there to provide the dip in

the middle. Since the dip is usually shallow, ζ ≫ σ.

Since we are not so much interested in the dip, we consider a simplified form4

dn

dη
=

g

1 + e(η−ηf )/σ
for η > 0 (B2)

Universal fragmentation behavior demands that for high enough energy

dn

dη

∣

∣

∣

∣

∣

η=ymax+η′

= fU(η′) (B3)

where fU(η′) is indepdent of ymax. If ηf/σ ≫ 1, this just implies that g = κ0e
(ymax−ηf )/σ so

that it compensates the large exponential in the denominator. Near η = ymax this yields

fU(η′) = κ0 e−η′/σ. However at SPS and RHIC energy, ymax is only about 3 to 5 and it can

be easily shown that simply having g = κ0e
(ymax−ηf )/σ with a constant σ does not result in

4 Entirely analogous anaylsis can be also performed using Eq.(B1).
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the universal limiting fragmentation. Instead, we must regard all parameters appearing in

Eq.(B2) as functions of ymax and look for a relationship among them by requiring

∂

∂ymax

dn

dη′ ≈ 0 (B4)

near η = ymax (or η′ = η − ymax = 0).

The solution of Eq.(B4) is obtained as follows. Set σ = 1/τ and η = ymax + η′ and

χf = ymax − ηf and write

f ≡ dn

dη′ =
g

1 + e(η′+χf )τ
(B5)

Taking the derivative with respect to y = ymax yields

∂f

∂y
=

(dg/dy)(1 + e(η′+χf )τ ) − g [η′(dτ/dy) + d(χfτ)/dy] e(η′+χf )τ

(1 + e(η′+χf )τ )2
(B6)

If this is to be independent of η′ for small η′, we must have

(dg/dy)
[

1 + e−χf τ (1 − η′τ)
]

≈ g [η′(dτ/dy) + d(χfτ)/dy] (B7)

which yields the following two conditions:

− τe−χf τ dg

dy
= g

dτ

dy
(B8)

and

dg

dy

[

1 + e−χf τ
]

= g
d(χfτ)

dy
(B9)

Assuming monotonic functions, we can rewrite them as

dg

g
= −dτ

τ
eχf τ (B10)

and

dg

g
=

d(χfτ)

1 + e−χf τ
(B11)

Solving the second equation first gives

g = κ0(1 + e(ymax−ηf )/σ) (B12)

Combine the two equations to get

d(χfτ)

(1 + e−χfτ )
= −dτ

τ
eχf τ (B13)
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Let L = e−χf τ and use dL = −d(χfτ) e−χf τ to get

− dL

1 + L
= −dτ

τ
(B14)

Solving this equation, we finally get

τ = C ′(1 + e−χf τ ) (B15)

which can be rearranged to yield

σ =
σ0

1 + e−(ymax−ηf )/σ
(B16)

or

1

σ
=

1

σ0

+
1

χf

W
(

(χf/σ0)e
−χf /σ0

)

(B17)

where we used χf = ymax − ηf and W (w) is the Lambert function that solves w = xex

for x. Hence given a value of ηf , the width and the height of the Wood-Saxon function is

completely determined.

For large enough (ymax − ηf)/σ,

1

σ
≈ 1

σ0

(1 + e−(ymax−ηf )/σ0) (B18)

ignoring terms of O(e−2(ymax−ηf )/σ0). At an asymptotically high energy,

lim
ymax→∞σ = σ0 (B19)

Hence the limiting curve is given by

fU(η′) = κ0 e−η′/σ0 (B20)

Fitting the η > ymax portion of
√

s = 19.6 GeV data yields 1/σ0 = 1.253 and κ0 = 0.492

as shown in Fig. 5. The height of the plateau and the total multiplicity can be now easily

obtained from Eq.(B2)

(

dn

dη

)

0

=
κ0(1 + e(ymax−ηf )/σ)

1 + e−ηf /σ
(B21)

and

ntotal = 2ηf

(

dn

dη

)

0

+ O(e−ηf/σ) (B22)

The resulting dn/dη and d2n/dη2 are shown in Fig. 18 together with PHOBOS data.

Note that although fragmentation region universality is reasonably well described by the
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FIG. 18: {χf , σ} = {1.32, 0.694} for 200 GeV, {1.20, 0.681} for 130 GeV and {0.77, 0.619} for

19.6 GeV. The limiting curve parameters are κ0 = 0.492 and 1/σ0 = 1.253.

Wood-Saxon functions, the transition region universality is not. Again, we emphasize that

it is the slope (d2n/dη2) that gives clearer criterion for the goodness of the description.

Unlike the previous case, the Wood-Saxon case has no separate ηp. This is because

both the fragmentation and the transition behaves like an exponential ∼ e−|η−ηf |/σ0 near

ηf . Therefore the transition between the plateau and the limiting behavior happens within

about 3σ0 around ηf . This fact also indicates that dynamics of the plateau and the dynamics

of the fragmenation region does not decouple even at an asymptotically high
√

s.

This non-decoupling also allows us to put a severe condition on the transverse energy.

To calculate the energy content of the plateau, we need to carry out an integral over the

product of the Wood-Saxon and a hyperbolic cosine. This can be done, but the resulting

form is not particularly illuminating. However, within the plateau we can approximate

Eplateau ≈ 2

(

dn

dη

)

0

〈mT 〉pl. sinh(ηf ) (B23)

Energy conservation demands that

〈mT 〉pl. <
mN

κ0
e−(1/σ−1)(ymax−ηf ) (B24)
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ymax − ηf (dn/dη)0 ntotal

WS I 2.3 10.6 130

WS II 2.1 8.5 110

TABLE II: Predictions for LHC central collisions using the Wood-Saxon form. We set
√

s = 5.5TeV

and Pb+Pb.

where we used Eq.(B21). Since σ < 1, this indicates that the average transverse energy in

the plateau region must be a decreasing function of ymax if ymax−ηf is an increasing function

of ymax. This is an absurd result. One would expect that as
√

s becomes larger, 〈mT 〉pl.

would also become larger or at least reach a limiting value, but not decrease. This, in our

opinion, invalidates the Wood-Saxon description of dn/dη.

Nevertheless, it is instructive to also have the extrapolated Wood-Saxon result to LHC.

For the Wood-Saxon form, we find that χf = 1.32, 1.20, 0.77 for
√

s = 200 GeV, 130 GeV,

20 GeV, respectively. These yield

ymax − ηf =







0.59 y0.85
max − 0.68 ln ymax (WS I)

−0.47 + 0.57 y0.69
max (WS II)

(B25)

The results for LHC are tabulated in Table II. The values of (dn/dη)0 and ntotal are compa-

rable to the saturation model (K & L) values in Table I. Also one can easily see in Fig. 19

that the limiting fragmentation curve followed by the Wood-Saxon functions is not the same

as the one followed by the interpolating-exponential ones.
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FIG. 19: Predictions for central collisions at LHC. Also shown are parametrized RHIC 200 result.

We set
√

s = 5.5TeV and Pb+Pb for LHC.
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