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This work presents an effective model for strongly interacting matter and the QCD equation of

state (EoS). The model includes both hadron and quark degrees of freedom and takes into account

the transition of chiral symmetry restoration as well as the deconfinement phase transition. At

low temperatures T and baryonic densities ρB a hadron resonance gas is described using a SU(3)-

flavor sigma-omega model and a quark phase is introduced in analogy to PNJL models for higher

T and ρB. In this way, the correct asymptotic degrees of freedom are used in a wide range of

T and ρB. Here, results of this model concerning the chiral and deconfinement phase transitions

and thermodynamic model properties are presented. Large hadron resonance multiplicities in

the transition region emphasize the importance of heavy-mass resonance states in this region and

their impact on the chiral transition behavior. The resulting phase diagram of QCD matter at small

chemical potentials is in line with latest lattice QCD and thermal model results.
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1. Introduction

Detailed knowledge on the phase diagram of strongly interacting matter is still scarce and

the study of QCD matter, in particular at finite temperature T and baryon density ρB or chemical

potential µB attains increasing interest. In addition to the well known ground-state properties,

from heavy-ion experiments with highest collision energies, nuclear matter is known to exhibit

properties of a nearly perfect fluid at very high T . At µB = 0, lattice QCD predicts a smooth

cross-over transition for the restoration of chiral symmetry at T ≈ 160 MeV. For all µB > 0, lattice

QCD suffers from the fermion sign-problem which hinders to find solutions in this region. To

obtain information on QCD matter at finite potentials, expansion methods can be used. However,

until today neither from experiment nor from theory there is a clear picture whether the transition

possibly changes to first order and a critical end point exists. Therefore, the phase structure of QCD

matter under extreme conditions remains object of an ongoing and lively scientific debate.

This work presents results on the QCD phase diagram from an effective chiral flavor SU(3)

model and contrasts them to recent results from the lattice. The model includes all known hadronic

degrees of freedom as well as a quark-gluon phase implemented in a PNJL-like approach.

2. Chiral Effective Model

The SU(3)-flavor chiral effective model [1] unifies a σ -ω-model for the hadronic phase using

a non-linear realization of chiral symmetry and a PNJL-like approach for the quark phase. The

model is based on a mean field Lagrangian L = Lkin +Lint +Lmes which includes the particles’

kinetic energy, the interaction of baryons with scalar (σ , ζ ) and vector (ω , φ ) meson fields Lint =

−∑i ψ̄i[γ0(giω ω0 + giφ φ0) + m∗
i ]ψi. Index i runs over the quark flavors u, d, s, and all known

baryons (octet, decuplet, and heavy-mass baryon resonances with m ≤ 2.6 GeV). The effective

particle masses m∗
i = giσ σ +giζ ζ +δmi and their effective chemical potentials µ∗

i = µi −giω ω −
giφ φ are generated dynamically (except for small explicit masses δmi) by the coupling to the scalar

and the vector fields respectively. With increasing T and ρB, σ decreases, the effective masses

decline, and chiral symmetry is restored. The couplings of the baryon octet are fixed such as to

reproduce well-known vacuum masses and nuclear saturation properties. All quark couplings are

chosen according to the additive quark model and such as to restrain free quarks from the ground

state. The baryon resonance couplings (including the decuplet) are scaled by the coefficients rs, rv

to the respective couplings of the nucleons via gBσ ,ζ = rs ·gNσ ,ζ and gBω ,φ = rv ·gNω ,φ . To obtain

a smooth cross-over at µ = 0, the scalar coupling is chosen rs ≈ 1. The resonance vector coupling

rv has a large impact on the transition behavior and on the resulting phase diagram. For reasonable

values rv ≈ 1, the chiral transition is a smooth cross-over in the whole T –µ plane.

The last term of the model Lagrangian includes the vector and scalar meson self interactions as

well as explicit chiral symmetry breaking Lmes =Lvec +L0 +LESB. All thermodynamic quantities

are derived from the grand canonical potential Ω/V =−Lint −Lmes +Ωth/V −UPol, including the

thermal contribution Ωth of hadrons and quarks which couple to the Polyakov loop Φ. Furthermore,

Ω includes the Polyakov loop potential UPol defining the quark dynamics in the model [2]. The shift

of degrees of freedom from a hadron resonance gas (HRG) to a pure gas of quarks and gluons is

realized by excluded volume effects assuming finite-volume hadrons and point-like quarks. Due to
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Figure 1: Normalized chiral condensate (I) compared to older (gray band) and newest continuum

extrapolated lattice data [3]. The Polyakov loop from the effective model (analogously to PNJL

models [2]) shows a more rapid shift to deconfined quarks as in lattice QCD (II).

the excluded volume, at high T and µ hadrons vanish from the system and the QGP-phase prevails.

Introducing volume correction factors ensures thermodynamics consistency.

3. Results

Fig. 1 (I) shows the chiral order parameter normalized by its ground state value σ/σ0 as a

function of T . The Polyakov loop order parameter Φ is shown in Fig. 1 (II). The chiral model results

are compared to lattice QCD with different fermion actions [3]. The illustration contrasts different

parameter sets and particle compositions of the chiral model. A pure interacting HRG without

quarks (int. HRG) exhibits the steepest (and continuous) incline of σ within a small temperature

range. In line with most recent lattice results, a critical temperature Tc = 164 MeV is determined.

Other model scenarios additionally include the PNJL-like quark phase with either no interac-

tions between meson fields and particles (HRG+q) or full interactions (int. HRG+q). While in the

non-interacting case σ stays at its ground state value, the decrease of σ in the int. HRG+q sce-

nario is rather steep in the beginning. However, as soon as quarks are abundant above the critical

Polyakov temperature T0 = 175 MeV (Fig. 1 (II)), the slope of σ(T ) flattens significantly. Com-

paring the full model results to pure HRG, apparently, hadrons define the slope of σ(T ) at least up

to Tc and, thus, the chiral transition is driven by hadrons to a large extent. Due to quarks lacking

an eigenvolume, they are preferentially populated at T ≥ Tc and the number of quarks exceeds the

number of hadrons (Fig. 2 (a)). In this region, the significantly smaller quark scalar coupling causes

σ to decrease much slower. However, as illustrated in Fig. 1 (II), the rapid increase of quark multi-

plicities at Tc generates a distinctly faster increase of Φ than predicted by lattice QCD (compiled in

the gray band). A fundamental discrepancy between Φ from PNJL models [2] and lattice QCD [3]

in the transition region is apparent.

Quantifying the impact of heavy-mass resonances at the phase transition, Fig. 2 (I) shows the

baryon number density of baryons (a) and mesons (b) together with quarks divided by T 3 at µ = 0.

The total densities (gray line) are broken down into contributions from low- and intermediate-mass

particles as well as heavy-mass resonances and the red line illustrates the total quark density.
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Figure 2: Total baryon number density of baryons (a), mesons (b), and quarks divided by T 3 at

µ = 0. Illustrated are the total densities (gray lines) and the density shares of different particle

species. Panels (c) and (d) depict pressure and energy density over T 4 from different model sce-

narios contrasted to lattice QCD as functions of T .

Below Tc, low-mass baryons from the octet, mainly nucleons, represent the largest share of

the total baryon density (Fig. 2 (a)). This changes as soon as m∗ of the resonances decline due

to a decreasing σ -field. At T ≥ Tc, heavy-mass resonances are the most abundant baryons in the

system. Even though ∆-resonances reach rather large multiplicities with increasing temperature, the

combined density contribution of the decuplet stays lowest at all T . Regarding the mesons (Fig. 2

(b)), due to the abundant light-mass pions below Tc, pseudoscalar meson multiplicities are dominant

in this region. At Tc, the fast rising quark number and the pseudoscalar meson mass scaling m∗2
mes ∼

1/σ cause pseudoscalar meson multiplicities to decrease as well as a perceivable dip in the total

meson density. Higher temperatures are accompanied by an increase in the vector meson densities

and a distinctive appearance of heavier meson resonances which become the most abundant mesons

at T ≈ 210 MeV. This finding of large resonance multiplicities at Tc and slightly above underlines

the substantial impact of heavy-mass resonances on the chiral transition. The effect of resonances is

substantial even in the presence of quarks, where excluded volume effects suppress hadrons at high

T , and should be even larger in the pure HRG. Due to their large influence, heavy-mass hadron

resonances must be considered when studying the phase transition region. Notwithstanding this

study only considers µ = 0, this conclusion should also hold true in the whole T –µB-plane.

Fig. 2 (II) shows the pressure p (c) and the energy density e (d) divided by T 4. For both quan-

tities the interacting pure HRG perfectly reproduces continuum extrapolated lattice QCD results

up to Tc. Also the non-interacting HRG yields a qualitatively good agreement up to slightly higher

temperatures. In the whole temperature range, the fully interacting model including quarks yields

reasonable results with only minor deviations from lattice in e/T 4 around Tc. This dip in e/T 4 at

T = (155± 15) MeV is caused by the hard-core repulsion of the hadrons. The quark density is

just starting to rise sharply and can not compensate the lower hadron contribution in this region.

Therefore, the energy density flattens up to Tc and rises sharply again thereafter.
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Figure 3: Chiral transition from lattice QCD [4] (yellow band) and from the chiral effective model

(red line) at small µB. The estimates for the transition are compared to freeze-out curves from

statistical models and to data from thermal model fits [5] for SPS to LHC energies (
√

sNN in GeV).

Due to the large number of hadron degrees of freedom, the chiral transition is a smooth cross-

over even at large µB. In comparison to lattice QCD extrapolations [4] and thermal model fits of

experimental results [5], the phase transition line from the chiral model (Fig. 3) yields a plausible

estimate located at the upper boundary of lattice QCD results.

In summary, this work presented a unified effective model which not only provides the correct

ground state properties but also describes the transition from a confined HRG to a deconfined quark-

gluon phase reasonably well and in line with latest lattice QCD results. An extracted hadron-quark

EoS is to be used within dynamic models to study nuclear matter properties in heavy-ion collisions.
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