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Abstract 

Evaluating the quality of credit portfolio risk models is an important issue for both 
banks and regulators. Lopez and Saidenberg (2000) suggest cross-sectional 
resampling techniques in order to make efficient use of available data. We show that 
their proposal disregards cross-sectional dependence in resampled portfolios, which 
renders standard statistical inference invalid. We proceed by suggesting the 
Berkowitz (1999) procedure, which relies on standard likelihood ratio tests performed 
on transformed default data. We simulate the power of this approach in various 
settings including one in which the test is extended to incorporate cross-sectional 
information. To compare the predictive ability of alternative models, we propose to 
use either Bonferroni bounds or the likelihood-ratio of the two models. Monte Carlo 
simulations show that a default history of ten years can be sufficient to resolve 
uncertainties currently present in credit risk modeling. 
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1. Introduction 

In the literature on portfolio credit risk models, it is customary to refer to the 

difficulties of evaluating the quality of these models. Several years after the first 

models have been proposed, there is only one paper which empirically examines 

their predictive ability (Nickell, Perraudin and Varotto, 2001). One explanation for the 

scarcity of research are concerns that evaluation procedures developed for market 

risk models have little power when applied to credit data sets. The available time 

series on credit portfolio losses are believed to be too short to produce reliable 

results. 

The following example illustrates the validation problem: in the current supervisory 

backtesting framework1, internal market risk models can be sanctioned if there are 

more than four violations of the 99% VaR at Risk (VaR) over the preceding year. 

Under the assumption that violations are binomially distributed (using a success 

probability of 99% and 250 days), one out of nine models might be sanctioned even 

though it is correct. Consider another model which underestimates the VaR by 12% 

because it mistakenly sets the 99% VaR equal to the 98%-quantile of the loss 

distribution. With a probability of 44%, this misspecified model will not be sanctioned 

under the current rule. What happens if we base the test on only ten data points 

instead? For the true model, the probability of observing no violations is now 90%. If 

regulators took a single violation to be sufficient for sanctioning, the error of 

sanctioning the true model would be similar to the former setting. But the probability 

of not sanctioning the misspecified model would increase to 82%. This shows that 

the power of the regulatory market risk backtest drops sharply when applied to short 

histories typical for credit risk data. 

In order to overcome the lack of credit data on the time dimension Lopez and 

Saidenberg (2000) propose to evaluate credit portfolio risk models based on cross-

sectional simulation. Given a data set of N loans over T years, the idea is to 

resample without replacement, for each of the T years, a large number of 

subportfolios containing a fixed number of loans (<N). The credit risk of each 

subportfolio is predicted and compared with the actual portfolio return. Lopez and 

                                            

1
 Basel Committee on Banking Supervision (1996 a, b) 
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Saidenberg propose tests for the accuracy of the predicted loss distribution’s mean 

and quantiles and of the complete distribution. In the construction of the tests they 

assume that prediction errors for portfolios resampled from the loss experience of 

one year are independent.  

We demonstrate that the independence assumption made by Lopez and Saidenberg 

will not be fulfilled in a typical setting. If the economy moves into recession, for 

instance, defaults will be above average both in the entire sample and in randomly 

drawn subsamples, which renders standard statistical inference invalid.  

Subsequently, we show that backtesting credit portfolio risk models based on a 

default history of only ten years is possible if we use the information of the complete 

default distribution. For this purpose, we recommend using Berkowitz’ (1999) test 

procedure. Observed credit losses are transformed such that they are independent 

and identically distributed standard normal random variables under the null 

hypothesis that the model is correct. Standard likelihood ratio tests can then be used 

to test this hypothesis. Berkowitz proposes a test of independence and a test of zero 

mean, unit variance and independence against a first-order autoregressive structure. 

For a market risk setting, Berkowitz shows that powerful tests can be constructed 

with a sample size as small as 100. Our simulations indicate that even ten 

observations are sufficient to detect misspecifications in credit risk models.  

This can be illustrated through the following example: in a CreditMetrics2 type model, 

the value chosen for the asset correlation is crucial for the results because it drives 

default correlations. According to the Basel Committee on Banking Supervision 

(2001), an average asset correlation of 20% is consistent with industry practice. In a 

calibration exercise for US loan portfolios, however, Gordy (2000) obtains correlation 

estimates which vary between 1.5% and 12.5%. With ten years of data on annual 

defaults, a true correlation of 5% and a significance level of 10%, the probability of 

rejecting a correlation assumption of 20% equals 97%. 

We follow Lopez and Saidenberg in trying to exploit information contained in the 

cross-section of defaults. However, we argue that random sampling will often fail to 

make efficient use of this information. Tests can rather be based on judiciously 

                                            

2
  Cf. J.P. Morgan (1997) for a general description of CreditMetrics. 
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chosen subportfolios. To gain an intuition for our approach, consider a portfolio 

whose obligors are evenly split across two sectors. The true default probability is 1% 

in the first sector, and 3% in the second. Now assume that a risk analyst uses the 

default experience of this portfolio to evaluate a model, which posits a uniform default 

probability of 2%. If the test is based only on the average default rate of the entire 

portfolio or random subsets thereof, the inadequacy of the model will not be revealed 

because the expected default rate will be 2% in either case. By examining the default 

experience of single sector subportfolios, we are in a much better position to identify 

the inadequacy of the model. If the number of subportfolios is not too large, the 

Berkowitz procedure can be adapted to jointly test the validity of predictions for 

subportfolio defaults. 

If the aim of the evaluation is to choose among alternative credit risk models, Lopez 

and Saidenberg propose to use Bonferroni bounds. As an alternative, we draw on 

Bayesian statistics and suggest to compare the likelihood ratio of two models, that is, 

examine which model is more likely to have generated the data.3 Usually, such an 

analysis does not involve testing whether alternative models are statistically different 

from each other. Since we feel that many practitioners and regulators will want to 

base their decisions on the usual concepts of significance, we take up a proposal by 

Good (1957). The likelihood ratio is taken as a statistic, whose distribution is obtained 

through Monte Carlo simulation. This allows tests of the following form: What is the 

confidence that model A provides a better fit to the data than model B?  

Nickel, Perraudin and Varotto (2001) use two different credit risk models to predict 

the credit risk of a large portfolio of dollar-denominated eurobonds. The authors 

compare the predictions to the observed losses, but do not conduct a formal test of 

the models’ validity. Carey (1998) and Carey (2001) discuss various resampling 

strategies for constructing expected loss distributions from a default history. Carey 

(2001) uses the Moody’s database (1970-98) to simulate credit portfolios in order to 

evaluate the relevance of several dimensions of credit risk. Carey (1998) performs a 

similar task on the database of the Society of Actuaries (1986-92). Gordy (2000) and 

Kiesel, Perraudin and Taylor (2001) use stylized portfolios to study how risk 

                                            

3
 Kon (1984), for example, uses odds ratios to examine whether stock returns are best described by a 

t-distribution or by a mixture of normal distributions. 
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measures vary across different portfolio types. Crouhy, Galai and Mark (2000), Gordy 

(2000) and Wahrenburg and Niethen (2000) compare risk measures calculated for 

the same portfolio but using different models. Sobehart, Keenan and Stein (2000) 

propose techniques for assessing the quality of individual default rate estimates, an 

important input to credit risk models. A useful summary of available credit risk models 

is given in Crouhy, Galai and Mark (2000).  

Besides being related to the credit risk literature, our paper also builds on the 

literature on the evaluation of density forecasts: Clements and Smith (2000) compare 

the performance of models to forecast macroeconomic variables. They compare 

three different validation techniques: the approach of Diebold, Gunter and Tay 

(1998)4, Berkowitz (1999) and a normality test recommended by Doornik and Hansen 

(1994). The authors suspect that the Berkowitz (1999) test and the normality test 

might be sensitive to outlier observations. De Gooijer and Zerom (2000), however, 

cannot confirm this conjecture.  

Bedendo and Hodges (2001) compare the power of multivariate goodness-of-fit tests 

based on the empirical characteristic function. The focus of the authors is on testing 

market risk models with potentially hundreds of risk factors. The Berkowitz (1999) 

approach does not lend itself easily to multidimensional tests. In a credit risk setting, 

where the number of risk factors is typically small, this does not seem to be a major 

disadvantage. 

The paper is organized as follows. Section 2 describes the framework for the 

evaluation of test procedures. Section 3 discusses the tests proposed by Lopez and 

Saidenberg (2000). Section 4 presents our proposals and assesses their power using 

Monte Carlo simulations. Section 5 concludes. 

2. Framework for the evaluation of test procedures 

A natural way for evaluating the power of test procedures is to employ a Monte Carlo 

study. We simulate a large number of random default histories which are all 

generated by one specific credit portfolio risk model. We then state the null 

                                            

4
 Diebold, Gunter and Tay (1998) propose to use the probability integral transform to transform 

observed data into a series of iid U(0,1) distributed variables under the true model. The independence 
assumption and the uniformity assumption can be tested together or separately. The authors argue for 
a separate test and graphical methods in order to identify the source of a possible deviation. 
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hypothesis that the history is governed by some model specification, choose a 

significance level, and apply a statistical test separately for each simulated history. 

The performance of the test is judged by two criteria: if the H0-model is the one that 

has generated the history, the rejection frequency should equal the chosen 

significance level, i.e. the size of the test. If the H0-model is incorrect, the rejection 

frequency, i.e. the power of the test, should be as large as possible. 

The framework we apply is similar to a two-state version of CreditMetrics. Without 

loss of generality, we neglect both migration risk and recovery rate uncertainty. In 

consequence, the output of a credit risk model is a discrete distribution of the 

expected number of defaults within a portfolio, and portfolio weights are irrelevant. 

Default correlations are modeled based on correlated latent variables. Following 

Merton (1974), these latent variables are usually thought of as the firms’ asset 

values. In the option-theoretic approach of Merton, a firm defaults if its asset value 

falls below a critical threshold defined by the value of liabilities. Asset value 

correlations thus translate into default correlations.  

In a two-state world, various credit portfolio risk models like CreditRisk+, 

CreditMetrics, KMV PortfolioManager or CreditPortfolioView are similar in the 

underlying structure and produce almost identical outputs when parameterized 

consistently.5 For this reason, we conjecture that our results are applicable to a broad 

range of credit risk models although we examine only one class of models. In 

addition, the test procedures put forward in this paper can be directly applied in more 

complex settings, e.g. when migration risk is added. Even though we restrict the 

analysis to one particular class of portfolio credit risk models, we will nevertheless 

speak of various ‘models’ which we are going to evaluate. In the following, the term 

‘models’ will thus refer to different parameterizations of the basic latent variable 

approach. 

                                            

5
 Cf. Finger (1998), Koyluoglu and Hickman (1998), Gordy (2000), and Wahrenburg and Niethen 

(2000). 
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In the simplest setup of this framework asset value changes iA
~∆  depend on a 

systematic factor Z
~

 (e.g. the growth rate of the economy) and idiosyncratic factors 

iε~ :6 

iiii wZwA ε~1
~~ 2−+=∆

,                                                                         (1) 

where Z
~

 and iε~  are iid N(0,1). The term 21 iw−  causes the asset value change iA
~∆  

to be standard normally distributed. A borrower defaults whenever )(
~ 1

ii pA −Φ<∆ , 

where pi is the unconditional default probability and Φ denotes the cumulative 

standard normal distribution function. The factor loadings wi determine asset 

correlations. In the case of a uniform loading, wi=w for all i , the asset correlation is 

equal to w² for all pairs of borrowers. Default correlations can be calculated via the 

bivariate normal distribution.7 

Since Gordy (2000) and Frey, McNeil and Nyfeler (2001) show that the multivariate 

normal assumption for asset returns is critical for the results, we will also investigate 

a case in which asset returns follow a t-distribution. The t-distribution converges to 

the normal as the degrees of freedom approach infinity which means that choosing 

the shape of the distribution is one step in parameterizing the asset value model (1). 

For a given realization of the systematic factor Z the conditional default probability 

pi|Z equals 
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The default distributions of this credit risk model can be easily derived using Monte 

Carlo simulations.8 We conduct Monte Carlo simulations with 1,000,000 trials to 

ensure accurate results. 

                                            

6
 The extension to a multi-factor model is straightforward. 

7
 Cf. Finger (1999), Koyluoglu and Hickman (1998), and Belkin, Suchower and Forest (1998b) for 

applications of this model. 
8
 If the portfolio is homogeneous, a quick way to perform the simulations is i) draw N(0,I)-distributed 

random numbers for the factor realizations, ii) calculate the conditional default probability, and iii) draw 
the number of defaults from a binomial distribution given the number of loans and the conditional 
default probability. The closed-form solution of Vasicek (1997) holds quite well for the portfolio sizes 
we use in this paper, but there are some discrepancies when asset correlations are small (e.g. 0.5%). 
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In the base case, we assume that evaluators of credit risk models observe ten years 

of annual data on homogeneous portfolios of 10,000 borrowers. We set the 

unconditional annual default probability equal to 1% for each obligor, and assume 

that there is no serial correlation of defaults across time. Asset values follow a 

standard normal distribution.  

The asset correlation parameter is the only one which is varied in the base case. In 

the true model, which underlies the simulated default histories, we use a uniform 

asset correlation of %52 =w  for all pairs of borrowers. In the alternative models, we 

vary the asset correlation in the range %]20%,0[2 ∈w . 

The power of our tests will be calculated based on 10,000 independent 10-year 

default histories which will be simulated using the true credit risk model. In most 

cases, the size of the test is chosen to be 10%. A size of 5% or 1% may be more 

common in other settings, but we believe that the data problems associated with the 

evaluation of credit risk models will make evaluators choose a larger size to increase 

the power. 

The assumptions are summarized in Table 1. They will be varied in section 4.1 to 

check the robustness of our simulation results.  

3. The proposal of Lopez and Saidenberg 

The main problem when evaluating credit risk models is the scarcity of data in the 

time dimension. Lopez and Saidenberg (2000) suggest cross-sectional resampling 

techniques to increase the power of evaluation procedures. Given a credit data set 

covering T years of data for N loans, a large number R of subportfolios is randomly 

drawn for each year t in T. In drawing the borrowers for a particular subportfolio, 

Lopez and Saidenberg suggest to draw without replacement. They also recommend 

to draw ‘large’ subportfolios, but do not discuss this issue in detail. For each 

subportfolio, the loss distribution is forecasted and compared with observed 

subportfolio losses. In a sense, the number of observations available for model 

evaluation is thus multiplied by the factor R.  
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The following example illustrates this procedure: for a credit portfolio of 10,000 

borrowers, we have a default history for the past ten years:  

 Year 1 Year 2 … Year 10 

Portfolio defaults 200 100 … 50 

 

Assuming an unconditional annual default probability of 1%, the number of defaults is 

high in the first year, average in the second and low in the last. For each out of the 

ten years we randomly draw 1,000 subportfolios (S) with 1,000 borrowers each. We 

count the number of defaults in each subportfolio: 

Subportfolio defaults Year 1 Year 2 … Year 10 

in S1 18 13 … 6 

in S2 20 9 … 5 

… … … … … 

in S1,000 22 7 … 5 

 

If overall portfolio defaults are high, as in year one, the number of defaults in 

resampled subportfolios will be high as well. Similarly, the low number of portfolio 

defaults in year ten shows in subportfolios drawn from that year. If the VaR were 

equal to 15 defaults we would record many violations in the first year and few, if any, 

in the last. Obviously, defaults in the 1,000 subportfolios resampled from one year’s 

default experience are not independent, so that standard testing procedures cannot 

be used.9 

In the following, we conduct simulations to demonstrate that the lack of 

independence can severely affect the performance of the test statistics proposed by 

Lopez and Saidenberg. For this purpose, we implement the quantile test the authors 

propose (Lopez and Saidenberg (2000), p. 160). 

Under the assumption that the predicted quantiles are accurate and observed 

violations of the quantiles are independent, these violations are draws from a 

                                            

9 In fact, cross-sectional dependence arises even when we resample from a portfolio with zero default 

correlation. Consider a homogenous portfolio with 1,000 obligors, a default probability of 1% and a 
zero default correlation. If the chosen subportfolio size is 500, the 90% quantile for subportfolio 
defaults is ten. With a probability of 46%, however, the overall number of defaults in the entire portfolio 
is nine or less; in these cases, one would not observe a violation of the 90% quantile in any of the 
random subportfolios. 
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binomial distribution. Whether or not the percentage of observed violations α̂  is 

equal to the chosen confidence level α  can be tested using the likelihood ratio 

statistic 

( ) ( )[ ]yRTyyRTyLR −•−• −−−= )1(log)ˆ1(ˆlog2)( ααααα ,             (3) 

where y is the number of violations across the T*R subportfolios.  

In the simulations, we apply this test to validate asset value models that differ only in 

their asset correlation 2w  (all parameters as in Table 1). For the test, we use the 

90%-quantile and a significance level of 10%, and proceed as follows: 

1. Simulate a 10-year default history using the true model with an asset correlation 

of %.52 =w   

2. Draw 1,000 random subportfolios for each year as proposed by Lopez and 

Saidenberg. (We do this for three different subportfolio sizes of 2,000, 5,000 and 

8,000 borrowers, respectively.) The borrowers included in a subportfolio are 

drawn without replacement. 

3. Implement the LR-test (3) for a specific credit risk model by calculating the 

number of violations of the predicted 90% quantile of defaults.. 

4. Repeat steps 1. - 3.  10,000 times. 

The results are summarized in Table 2.10 Since we use a test size of 10%, the credit 

risk model with the true asset correlation %52 =w  ought to be rejected with a relative 

frequency of 10%. Yet, depending on the subportfolio size these numbers vary 

between 73% and 91%. The intuition for the results is that, by assuming 

independence across simulated subportfolios, the test overestimates the amount of 

information contained in the data. In consequence, the test is biased towards 

rejection. The fact that the rejection frequency decreases with increasing subportfolio 

size is due to the resampling procedure. As we draw without replacement, 

subportfolio defaults are hypergeometrically distributed, and the variation of the 

number of defaults across subportfolios goes down with increasing subportfolio size. 

In the extreme case of a subportfolio size of 100% there is no variation any more. 

                                            

10
 The test statistic (3) is not defined if there are no violations across all subportfolios, but it is obvious 

that the model should be rejected. (With independent binomial draws, the probability of observing no 
violations if the sample size is 10,000 and the probability of a violation is 0.1 is less than    10

-311
.) 



 11

The decreasing variation leads to lower rejection frequencies. 

We conclude that the test procedure proposed by Lopez and Saidenberg (2000) is 

inaccurate. As the R subportfolios are not cross-sectionally independent the standard 

test statistics proposed by the authors cannot be used. This also holds if one tested 

the complete default distribution instead of the 90%-quantile, or ran Mincer-Zarnowitz 

regressions to examine unbiasedness of the forecasted number of defaults. Each of 

the tests proposed by Lopez and Saidenberg requires independent draws. 

One might think of modifying the test procedure by conditioning the forecasts of 

subportfolio defaults on the default experience of those borrowers which are not 

included in this specific subportfolio. While this might be a valid and useful procedure 

in some cases, it would fail to detect false models in others. For example, it would not 

be possible to discriminate between models which posit that asset values are driven 

by one factor with a uniform factor sensitivity w  but which differ in the value assumed 

for w. The intuition is as follows: default correlation arises through variations in the 

conditional default rate. Using conditional default rates instead of unconditional ones 

amounts to purging the default data of default correlation, making it impossible to 

discriminate between two simple one-factor models which differ in their assumptions 

about correlation. Another possible modification of the procedure is to draw 

subportfolios with rather than without replacement. This would not eliminate the 

problem of cross-sectional correlation across subportfolios. 

The data sets in our simulations cover ten years. Increasing the sample length would 

reduce the documented biases as the dependence brought about by cross-sectional 

resampling would be mitigated by a larger number of independent observations 

across time. Even if the tests were asymptotically valid, however, they would gain 

little appeal. Asymptotically, that is, for an increasing sample length T, the cross-

sectional information which the tests are meant to exploit loses importance.  

4. Evaluating credit risk models based on the entire forecast distribution 

Lopez and Saidenberg aimed at increasing the number of observations, assuming 

that existing approaches are inadequate for sample sizes typically available. In this 

section we show that it is possible to design powerful tests if we use the information 
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of the complete default distribution.11  

We recommend the Berkowitz (1999) test procedure. In this approach, the default 

history is transformed so that one obtains a series of standard normally distributed 

variables when using the correct credit risk model. Standard tests can be performed 

to test this characteristic. 

Berkowitz (1999) applies a simple twist to the so-called Rosenblatt (1952) 

transformation of observed data. First, the estimated cumulative distribution function 

ˆ (.)F  is applied to the observed number of defaults 

∫
∞−

==
ty

tt duufyFx )(ˆ)(ˆ ,                      (4) 

where ty  is the ex post number of defaults and )(ˆ uf  is the forecasted probability of  

u defaults. If the estimated default distribution is equal to the true one, the 

transformed variable tx  is iid U(0,1), where U(.) denotes the uniform distribution.  

In a second step, Berkowitz suggests to apply another transformation using the 

inverse of the standard normal distribution function Φ : 

( )1

t tz x−= Φ                         (5) 

If the predicted distribution function is correct, the transformed observations zt are iid 

N(0,1).12 Berkowitz recommends using a likelihood ratio test for testing whether the 

series zt is serially uncorrelated with mean zero and unit variance. In the following, 

we apply such tests to simulated default data in order to assess their power. We 

investigate two cases: in the first case we only use aggregate portfolio defaults 

across time for our tests. In the second we extend the analysis to include information 

inherent in subportfolio defaults. Finally, we treat the problem of model comparison. 

                                            

11 Simple quantile tests as in (3) are of little use if the sample size is small. This is intuitive for the 

case where the H0 distribution is riskier than the true one. The number of violations will be smaller than 
expected; in the extreme, there will be no violation at all. With only ten observations, however, 
observing no quantile violation is not sufficient evidence (at the 10% significance level) for rejecting 
the H0 if one tests for violations of the 90%, 95% or 99% quantiles. 
12

 See Berkowitz (1999) for a proof. 
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4.1 Using only aggregate portfolio defaults 

4.1.1 Alternative models differ in asset correlation assumption 

In the base case, we compare asset value models with one systematic factor and a 

uniform mutual asset correlation (all parameters as in Table 1). The asset correlation 

of the true model equals %52 =w . We define different null hypotheses by changing 

the correlation parameter 2w  on the interval [0%, 20%]. 

The test statistic is calculated based on the log-likelihood function of the univariate 

normal distribution for the transformed variable zt: 

2T
2 t

2
t 1

(z )1 T
log L log 2 log

2 2 2

µπ σ
σ=

 −= − − −  
 

∑  ,               (6) 

where T is the number of years.  Since both the true model and the H0 do not exhibit 

serial correlation, we do not need to test for it in this case. The maximum likelihood 

estimators for the mean and variance of the transformed variable are given by 

T

zt
ML

∑=µ̂  

( )
T

z MLt

ML

2

2
ˆ

ˆ
∑ −

=
µ

σ ,                                                                           (7) 

The LR-test is then structured to test the joint hypothesis that the zt have zero mean 

and unit variance. It is given by 

[ ])1,0(log)ˆ,ˆ(log2 222 ==−=== σµσσµµλ LL MLML      (8) 

The statistic is referred to the chi-squared distribution with two degrees of freedom.  

Figure 1 shows the simulated power of our test statistic in the base case. If the false 

model posits a zero default correlation, the null hypothesis is rejected in 100% of all 

cases. For models which are close to the correct 5%, the power is lower. However, it 

is larger than 50% if the assumed correlation is below 2.5% or above 10.5%.  

When using an alternative correlation assumption of 5%, which coincides with the 

true model, the power equals 12%, which is slightly higher than the expected value of 

10%. Due to the small size, the test statistic is not exactly chi-squared distributed. 

The inaccuracy seems to be small, and is probably negligible for many practical 

applications. It could be eliminated by simulating the critical values for the test 
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statistic.  

The results depicted in Figure 1 are also shown in column three of Table 3, along 

with some additional information which puts them into perspective. In column two we 

list the 99% quantiles of the default distribution under the various null hypotheses to 

illustrate how different these distributions are from the true model.  

Let us compare our results with the regulatory market risk backtesting. Recall that 

models can be sanctioned if there are more than four violations of the predicted VaR. 

With 250 observations, the probability that the true model is sanctioned equals 11%. 

A model underestimating the VaR by 12% will be sanctioned with a probability of 

56%. In Table 3, the 99% quantile of the true model with an asset correlation of 5% 

equals 321 defaults while an asset correlation of 3.5% leads to a 99% quantile of 273 

defaults, that is, underestimates the VaR by 15%. The power of the LR-test equals 

21% for this model which is significantly lower than the power of the market risk test. 

A comparable power is only achieved with an asset correlation of 2% (power = 61%). 

For this scenario, the 99% quantile equals 221 defaults which underestimates the 

VaR by 31%. 

Columns 4-9 of Table 3 report the simulated power when the size of the test, the 

available database, or the portfolio structure is changed. We examine the following, 

non-accumulating variations: 

• we use a significance level of 5% instead of 10% 

• the portfolio contains loans to 1,000 or 5,000 borrowers, respectively (instead 

of 10,000)  

• the available history comprises only five years instead of ten 

• the default rate is 0.5% instead of 1% 

• the portfolio is heterogeneous in terms of default probabilities. Rather than 

assuming a uniform default rate of 1% we split the portfolio into seven rating 

classes (Table 4). The structure is based on the high quality credit portfolio in 

Gordy (2000). Compared to the Gordy portfolio, we adjust the number of 

obligors in rating classes A and B to achieve a mean default rate of 1%. 

As should be expected, the power decreases if we lower the size of the test, increase 

idiosyncratic risk by lowering the number of obligors in the portfolio, shrink the 
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available data history, or lower the default rate. The loss of power is fairly small when 

the number of borrowers is 5,000 instead of 10,000. With 1,000 borrowers, the power 

is still above 75% in some cases. The same holds when the chosen size of the test is 

5% instead of 10%, or when the number of years in the observed default history is 

five instead of ten. With heterogeneous default rates, the power decreases modestly. 

This is due to the fact that differences in asset correlations matter less in a 

heterogeneous portfolio which is ceteris paribus less risky than its homogeneous 

counterpart. 

Is the documented power of the tests satisfactory? One of the most pressing 

questions in parameterizing credit risk models is to choose an appropriate value for 

the asset correlation. While the Basel Committee on Banking Supervision (2001) 

favors an asset correlation of 20%, calibration exercises (cf. Gordy, 2000 or 

Wahrenburg and Niethen, 2000) typically lead to much lower correlation estimates.13 

Often, the estimates are smaller than 5%. In Table 3, the probability of rejecting an 

asset correlation of 20%, if the correct one is 5%, ranges from 74% to 97%. Such 

rejection rates appear to be satisfactory.  

Contrary to the base case, estimates of default probabilities will be noisy in practice, 

and one might suspect that this reduces the power of detecting misspecifications of 

the asset correlation. We therefore examine a case in which the risk model not only 

falsely assumes an asset correlation of 20% but is also misspecified with respect to 

the default probabilities. The true default probabilities are those of the heterogeneous 

portfolio from above (see Table 4). Under H0, we underestimate the default 

probability by 50% for one half of the borrowers of each rating class, and 

overestimate it by the same percentage for the other half.14 Recall that the test’s 

power equals 93% when the heterogeneous default probabilities are correctly 

specified (see Table 3). When we introduce noise the power decreases slightly to 

90%. This suggests that the results presented above are robust to the introduction of 

estimation error. 

4.1.2 Alternative models differ in parameters other than the asset correlation 

So far, we have illustrated the power of rejecting models which diverged from the true 

                                            

13
 The asset correlations are calibrated to match the observed default rate volatility. 
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model in their assumptions about asset correlations. In the following, we present 

some results on the test’s power if other elements of the parameter space are 

misestimated. We start by examining a situation in which the models to be tested 

differ from the true model only with respect to the unconditional default probability. As 

before the true default probability is 1%, while the default rates assumed under the 

null hypotheses span from 0.2% to 2.4%. The other variables are set as in the base 

case (uniform correlation of 5%, 10,000 borrowers per year, ten observations). The 

simulated power is presented in Table 5.  

When comparing the power to the previous results, it is illustrative to compare null 

hypotheses which produce similar errors in predicting extreme losses, e.g. the 99% 

quantile. The true model is the same in both setups. An asset correlation of 5% and a 

default probability of 1.6% lead to roughly the same 99% quantile as an asset 

correlation of 10% and a default probability of 1%. In the latter case, the power is 

44% (see Table 3), while it amounts to 74% in the former case. Contrary to a false 

correlation assumption, missing the default probability also leads to a wrong 

prediction of the mean default rate. Since the Berkowitz test utilizes the entire 

distribution rather than focusing on extreme events, this explains the observed 

differences in power. 

Even if default probabilities and asset correlations are correctly specified, a credit risk 

model can still be a poor predictor of defaults. Gordy (2000) and Frey and McNeil 

(2001) document that the distribution of the latent variable heavily influences the 

probability of extreme events. Until now we followed the standard approach and 

assumed the latent variable to be normally distributed. A more general specification 

is to model the latent variables as following a t-distribution. Since the t-distribution is 

a continuous mixture of normal distributions, where the mixing distribution is the chi-

squared, this can be achieved by transforming the asset value changes as follows 

(see Frey and McNeil, 2001): 

)(~~,
~

~'
~ 2 νχν

wA
w

A ii ∆=∆ ,                  (9) 

where ν denotes the degrees of freedom assumed for the t-distribution. The 

                                                                                                                                        

14
 For example, the H0 default probabilities for obligors rated BB are 0.53% or 1.59% instead of 1.06%. 
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distribution approaches the normal as ν approaches infinity. A borrower defaults 

when )('
~ 1 ptA i

−<∆ υ , where p is the unconditional default probability and tν is the 

cumulative t-distribution with ν degrees of freedom. For the simulation experiments, 

we choose ν = ∞ to describe the true model, and vary the degrees of freedom 

assumed under the null hypothesis.15  In Table 5, it can be seen that the test’s power 

is larger than 50% if the degrees of freedom under H0 are less than forty. An example 

shall help to assess the power. The standard approach in credit risk modeling is to 

assume that latent variables are normally distributed. One piece of evidence against 

this assumption is the observed leptokurtosis of stock returns. The excess kurtosis of 

the S&P 500 index, for example, is 0.74 when computed with annual log returns from 

1971 to 2000.  This could lead a risk manager to favor a t-distribution with twelve 

degrees of freedom because then the excess kurtosis would be 0.75. If the normal 

assumption is correct, and there are ten years of credit data to check whether a t-

distribution with twelve degrees of freedom is appropriate, the power is close to 

100%.  

Finally, we modify the base case by introducing autocorrelation into the time series of 

the systematic factor Z
~

. In simulating the default histories, we use the following 

autoregressive process for tZ
~

:  

ttt uZZ ~866,0
~

5,0
~

1 += − ,   )1,0(~~ Nut , )1,0(~
~

1 NZ              (10) 

The choice of parameters is based on the study of Belkin, Suchower and Forest 

(1998a), who fit such a process on rating transition matrices and obtain an 

autocorrelation coefficient of 0.46. A credit risk model should incorporate such 

autocorrelation, that is, take the current position in the credit cycle into account when 

predicting default rates. Evaluators should thus be interested in testing whether the 

prediction errors are indeed uncorrelated across time. As in Berkowitz (1999), we 

augment the density function for the transformed defaults zt by allowing them to 

follow a first-order autoregressive process: 

                                            

15
 Conclusions do not change when we look at the opposite case that the true asset value distribution 

is a t-distribution and we test alternative hypotheses whose underlying distribution is normal. 
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Having obtained maximum likelihood estimators for the three parameters µ, σ² and ρ, 

it is tempting to construct a likelihood ratio statistic for the H0 restrictions µ=0, σ²=1 

and ρ=0. This would neglect the fact that the estimator for the autocorrelation 

coefficient ρ is downward biased in small samples (cf. Quenouille, 1949 or Andrews, 

1993). Monte Carlo simulations show that, if the null hypothesis is correct and there 

are ten observations as in the base case, the median maximum likelihood estimator 

of ρ equals -0.114. We therefore test the restrictions µ=0, σ²=1 and ρ=-0.114.16 The 

statistic is referred to the chi-squared distribution with three degrees of freedom.  

A simulation study, where we set all parameters (except for the autocorrelation) as in 

the base case, produces the following result: if the factor is governed by the process 

described in (10), but the null hypothesis assumes that there is no autocorrelation, 

the probability of rejecting the null is 38%. The figure is rather low, which is not 

surprising given that there are only ten time periods to estimate the autocorrelation.  

Should one nevertheless routinely test for autocorrelation? To answer this question, it 

is interesting to know whether testing for autocorrelation can actually decrease the 

power of the test. We use the base case setup, that is, a situation where neither the 

true model nor the H0 models contain autocorrelated factors. If the H0 posits an asset 

correlation of 10% (true being 5%), the power is 44% if we do not test for 

autocorrelation. The figure drops to 35% once the test includes the restriction 

0.114ρ = − . If one routinely tests for serial correlation, it might therefore be advisable 

to conduct parallel tests which exclude serial correlation.  

4.1.3 Alternative tests 

Under the null hypothesis, the transformed variables should be standard normally 

distributed. Following Berkowitz (1999), however, we only tested whether they have 

mean zero and unit variance. One could presume that the power of the test could be 

                                            

16
 In practical applications, one will have to determine the bias associated with the number of 

observations at hand. Using the mean bias (-0.108) instead of the median for defining the restriction 
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increased by testing for normality as well. To check whether this is indeed the case, 

we perform two additional tests. First, we test the transformed variable zt for 

normality using the test described in Doornik and Hansen (1994). The test is based 

on skewness and kurtosis, but transforms these statistics in order to improve the 

small-sample performance of the test.  

Second, we use an alternative testing procedure which will typically not be feasible, 

but provides a useful benchmark in the stylized example considered here.17 In the 

base case, the only unknown parameter was the factor sensitivity w. Using the 

original, untransformed default data we can determine a maximum likelihood 

estimate for w: 

∑
=

=
T

t

tw
w

ML ufw
1

)](log[maxargˆ ,               (12) 

where fw(ut) is the density function of portfolio defaults u for a specific factor 

sensitivity w. Maximization is done through a simple search procedure in which we 

evaluate the likelihood for each correlation assumption w² ∈ [0%, 0.5%,....., 50%]. 

This estimate can be used to construct a standard likelihood ratio test against a 

specific H0.  
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Asymptotically, the statistic will be distributed chi-squared with one degree of 

freedom. Since we cannot rely on the asymptotic properties to hold, we simulate the 

distribution under H0 and obtain critical values from this simulated distribution.  

We simulate the power of the Doornik-Hansen normality test as well as that of the 

standard maximum likelihood test Altλ . Results for the base case setting are shown 

in Figure 2. To facilitate comparison, the graph also contains the power curve of the 

Berkowitz test already shown in Figure 1. The power of the normality test is very low; 

the power of the standard likelihood test Altλ  is not substantially higher than when 

testing the transformed variables for a mean of zero and a variance of one. The 

                                                                                                                                        

does not change the results significantly. 
17

 Typically, the number of free parameters will be too large to estimate them based on aggregate 
portfolio data. 
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evidence supports the view that we do not lose significant information by (i) 

transforming the default data and (ii) testing only a subset of the restrictions which 

the transformed data should obey if the null hypothesis is correct. 

4.2 Testing cross-sectional predictions 

Up until now, we have used only the aggregate annual defaults to construct a test. 

This will not be efficient if there is additional information in the cross-section of the 

data. Consider evaluating a model which assumes a uniform asset correlation across 

obligors. Using the test procedure described above, the evaluator cannot reject the 

validity of the model. However, she conjectures that the true correlations differ across 

obligors. How could one test this conjecture? 

As an illustration we change our base case setup slightly. Instead of assuming a 

uniform asset correlation of 5% in our true model, we split the portfolio into two 

equally sized sectors with intra-sector asset correlations of 2% and 9%, respectively: 

iiii wZwA ε~1
~~ 2−+=∆ , 02.02 =iw  for 1sector ∈i ,  

   09.02 =iw  for 2sector ∈i .    (14) 

We simulate 10-year default histories using this two-sector model and use the 

Berkowitz test (8) to check whether we can reject a model which posits a uniform 

asset correlation of 5%. With a size of 10%, the power is only 16% (Figure 3). This 

result is due to the fact that the aggregate expected default distributions of the true 

model and the null hypothesis are almost identical, even though the sector portfolio 

distributions differ.  

One possible way of exploiting the cross-sectional information is to utilize the idea of 

Lopez and Saidenberg and apply the test to randomly drawn portfolio subsets. This 

would not make efficient use of the information, though. The main disadvantage of 

drawing the random subportfolios is that we hardly ever get extreme subportfolio 

compositions. If we draw a large number of reasonably large subportfolios (say, with 

2,000 borrowers each), the probability that we obtain at least one subportfolio which 

consists only of borrowers of one sector is extremely low.18 If the null hypothesis is a 

                                            

18
 Consider a portfolio of 10,000 obligors, one half of which belongs to one sector, the other half to 

another. Drawing a subportfolio of 2,000 obligors without replacement, the probability that all obligors 
belong to single sector is lower than 10

-314
. By contrast, the probability of obtaining an even mixture of 
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common correlation of 5%, it is these extreme portfolio compositions which have the 

greatest informational value for our purpose. The more evenly mixed a subportfolio 

is, the more similar the H0 model is to the true one. Even if we obtain some extreme 

portfolio compositions through resampling, their informational value will be lost by 

averaging across all subportfolios. As a consequence, randomly drawing 

subportfolios is unlikely to yield a significant increase of power. 

A more efficient way of tackling the problem is to divide the portfolio into the extreme 

subportfolios and calculate the test statistic for each of them. Thus, if we have a two-

sector portfolio and assume that borrowers of these two sectors have different 

sensitivities towards a common systematic factor, we form two subportfolios 

consisting of just one sector and proceed as though we were to test models on two 

different portfolios. Applying the Berkowitz transformation to the sector defaults yields 

two series of transformed default data zt. Since both sectors are subject to the same 

common factor, the variables will be contemporaneously correlated. Under the null, 

they follow a bivariate standard normal distribution, which has the following 

likelihood: 
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We obtain maximum likelihood estimators for the parameters 2

2

2

121 ,,, σσµµ  and 12ρ  

and construct a likelihood ratio statistic to jointly test the restrictions 

1,1,0,0 2

2

2

121 ==== σσµµ . The statistic is referred to the chi-squared distribution 

with four degrees of freedom.  

Applying this methodology to our example of a one-factor model with two intra-sector 

correlations of 2% and 9%, ten years of data are sufficient to reject the H0 of a 

uniform asset correlation of 5% in 99.6% of all cases. The reason for this substantial 

improvement is that the correlation parameters are sufficiently different from each 

other within each sector.  

We repeat the power calculations for other null hypotheses which differ in the 

                                                                                                                                        

sectors is 2%. 
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assumption about the value of the uniform asset correlation. The results are shown in 

Figure 3. Regardless of the asset correlation assumed under H0, the power is close 

to 100% if the test is based on sector defaults.  

The example has shown that the Berkowitz procedure can be extended to test cross-

sectional predictions. Since we propose to base the test on judiciously chosen 

subportfolios, there is no general rule for structuring an evaluation procedure. 

However, we believe that the choice of subportfolios will often be evident. Typically, 

one will want to test whether models are too parsimonious (as in the example) or too 

complex. In the former case, evaluators would split a portfolio into sectors they 

believe to be different. In the latter case, one would examine portfolios for which the 

model predicts large differences. If a model assumes, for instance, that individual 

default probabilities vary from 0% to 2%, while evaluators assume that they are 

uniform at 1%, one could separate borrowers according to whether the model 

predicts a default rate of less than 1% or larger than 1%, respectively.  

By extending the bivariate likelihood (15) to the M-variate case, such tests can be 

based on M subportfolios instead on just two as in the example. Of course, there is a 

limit to the number of subportfolios one can form because the number of parameters 

in the likelihood function ( M(M-1)/2 + 2M ) grows faster than the number of usable 

observations ( M × T ). 

4.3  Model comparisons 

So far we have tested whether one particular model is consistent with the default 

data. Another evaluation objective can be to decide whether one model provides a 

significant improvement against an alternative one.  

In such a setting, the Berkowitz (1999) test can be used to separately evaluate each 

model under consideration. The problem is that the type-I-errors might add up. If we 

test each model using a significance level of 10%, then the type-I error of the joint 

test will lie between 10% and 20%. Lopez and Saidenberg (2000) suggest using 

Bonferroni bounds to test whether two models are equally accurate. If the size of the 

test is to be bounded above by γ, one separately evaluates the accuracy of the 

models using a size of 2/γ . If the validity of just one model is rejected, the other one 

can be said to be more accurate. 
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For the same setting, we assess the power of an alternative procedure. Consider the 

following likelihood ratio for two models A and B: 
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where fA(y) denotes the density which model A assigns to a loss of y. If λMC is greater 

than zero, model A is more likely to have generated the data than model B. Such a 

comparison already gives an indication on which model to choose. If one wants to 

conduct a standard statistical test whether one model is significantly more accurate 

than the other, one cannot appeal to the chi-squared distribution. The λMC is not a 

likelihood ratio statistic in the usual sense, because it does not result from imposing a 

restriction on maximum likelihood estimates. However, we can nevertheless treat λMC 

as a statistic and simulate its distribution (cf. Good, 1957). If we want to test whether 

model A is significantly more accurate than model B, this would involve the following 

steps: 

1. Set up the hypotheses  H0: model B is at least as accurate as model A 

H1: model A is more accurate than model B. 

Since we take the models’ likelihood as a criterion for accuracy, we do not reject the 

null if ( ) 0/log ≤= BAMC LLλ . Else: 

2. Calculate MCλ  for a large number of histories generated under model B, and 

compute the (1-α)-quantile of this distribution. The sample size used for the 

random histories is equal to the one of the actual data available to the evaluator. 

3. Compute the value of the MCλ  statistic using the actual default history,  and 

decide whether or not to reject the null hypothesis by comparing it to the 

simulated (1-α) quantile. 

We simulate the power of this test as well as that of the Bonferroni test for the base 

case setup. We examine the polar case in which one of the models (model A) is the 

true one. For the Bonferroni test, the power is the probability that the Berkowitz test 

(8), while not rejecting model A, does reject the alternative model B (at a significance 

level of 5%). The power of the likelihood ratio test is the probability that the 
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statistic MCλ  is positive and larger than the 90% quantile of MCλ  simulated under 

model B.  

The results are depicted in Figure 4. The power of the likelihood ratio test is generally 

larger than that of the Bonferroni bounds test which is not surprising as the 

Bonferroni test is conservative. When testing the true model against another one 

which posits an asset correlation of 10%, for instance, the Bonferroni test detects the 

correct model in 24% of all cases, compared to a power of 60% when applying the 

likelihood ratio MCλ . 

We have thus presented a relatively powerful and simple tool for comparing 

alternative model specifications. Compared to the Berkowitz procedure described in 

section 4.1.1, the test involves only one more step, i.e., simulating the distribution of 

the test statistic. Unlike the Berkowitz test, the procedure does not easily lend itself to 

testing cross-sectional predictions. A possible solution would be to aggregate the 

statistic (16) across subportfolios and base a decision on the simulated distribution of 

the aggregate statistic.19 

5. Concluding remarks 

We have described procedures for evaluating credit risk models. Monte Carlo 

simulations show that the power of the tests is satisfactory. With ten years of annual 

data, for example, some of the questions currently debated by credit risk managers 

can be resolved with a probability larger than 90%. 

A test should meet other criteria than a large power, for instance ease of 

implementation and general applicability. The tests are computationally simple. In 

most cases, they require only the predicted cumulative distribution of defaults and 

some elementary transformations. The simplest form of the test, which is based only 

on aggregate defaults, provides a benchmark which is generally applicable. To 

exploit additional information contained in the cross-section of defaults, we propose 

to test the model’s prediction for judiciously chosen subportfolios. Thus, there is no 

general rule for the design of the test. We do not regard this as a serious 

                                            

19
 We have examined this possibility in an earlier version of the paper but do not explore it here 

because (i) it is computationally expensive and (ii) its general applicability is difficult to establish. 
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shortcoming because the choice of the most important subportfolios will be 

straightforward in many cases. Note, too, that the test procedures can directly be 

applied to models which include migration and recovery risk. Model comparisons can 

be based on a likelihood-ratio; for this test, alternative models need not be nested. 

A possible criticism is that the tests are based on the entire range of the distribution, 

whereas risk managers and regulators are mainly concerned about the probability of 

extreme events.20 There are two arguments against focusing on the right tail of the 

distribution when constructing a test. First, we observe only few of these rare events 

in the data, a problem even sophisticated procedures are unlikely to overcome. 

Second, differences in the tails of two distributions will often go along with predictable 

differences in the rest of the distribution. If default correlation is increased, for 

example, the probability of catastrophe losses rises, but so does the probability of 

very small losses. A good example in point is the choice of the asset value 

distribution in a CreditMetrics type model. Choosing a fat-tailed distribution can have 

substantial impacts on the probability of extreme credit events. As shown in the 

paper, ten data points give good guidance on choosing the distribution even though 

such a small sample will typically not contain the extreme events risk managers are 

concerned about. 

                                            

20
 Diebold, Schuermann and Stroughair (1998) 
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Table 1: Base case setup 

 

Parameter Value 

Portfolio size / number of borrowers (N) 10,000 

Constant unconditional 1-year default probability (p) 1% 

Uniform asset correlation in true model (w
2
) 5% 

Uniform asset correlation in alternative models (w
2
) [0%, 20%] 

Asset value distribution N(0,1) 

Serial correlation of systematic factor None 

Forecast horizon (years) 1 

Length of default history (years) 10 

Test size / Type-I error 10% 

Number of simulated default histories for power calculations 10,000 

Number of scenarios for default distributions 1,000,000 
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Table 2: Simulated performance of the Lopez and Saidenberg quantile test  

Subportfolio size H0 (Correlation) 
Rejection frequency  

of H0 

2,000 1.0% 96.0% 

 2.5% 92.8% 

 5.0% = true  90.5% 

 7.5% 89.8% 

 20.0% 92.8% 

   

5,000 1.0% 91.6% 

 2.5% 85.0% 

 5.0% = true  81.1% 

 7.5% 80.8% 

 20.0% 86.9% 

   

8,000 1.0% 85.4% 

 2.5% 76.3% 

 5.0% = true  72.7% 

 7.5% 73.0% 

 20.0% 82.0% 

 

Lopez and Saidenberg (2000) test procedure implemented for the base case (see Table 1). For each 
simulated default history and each year, 1,000 subportfolios of varying size (2,000, 5,000, 8,000) are 
drawn randomly without replacement. A likelihood ratio test is performed for each scenario to test the 
null hypothesis that the observed number of 90%-quantile violations is equal to the expected number.  
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Table 3: Simulated power of Berkowitz test 

H0 Power in variations of base case 

Correlation 

99% quantile  
of default 

distribution 
(base case) 

Power in 
base case 

Size = 5%  
(vs. 10%) 

1000 borrowers 
(vs. 10,000) 

5,000 borrowers 
(vs. 10,000) 

5-year history 
(vs. 10) 

0.5% default 
probability (vs 1%) 

Heterogeneous 
default 

probabilities 

0% 123 100% 100% 87.1% 100% 99.7% 100% 100% 

1% 181 92.3% 88.9% 53.2% 89.1% 74.5% 90.1% 90.5% 

2% 221 60.9% 50.6% 28.4% 53.8% 42.5% 56.5% 56.9% 

3% 256 29.5% 20.0% 16.2% 27.1% 24.2% 27.5% 27.0% 

4% 289 15.7% 8.8% 12.7% 14.7% 17.4% 14.9% 14.4% 

5% = true 321 12.6% 6.9% 13.3% 12.4% 15.8% 12.5% 12.3% 

6% 351 15.3% 8.4% 16.9% 15.0% 17.3% 15.2% 14.4% 

7% 381 20.6% 12.1% 21.7% 19.9% 19.9% 20.2% 19.4% 

8% 412 27.5% 16.9% 27.1% 26.5% 23.2% 27.0% 25.7% 

9% 440 35.2% 22.7% 33.6% 34.0% 26.9% 34.8% 32.8% 

10% 468 43.8% 29.5% 41.2% 42.4% 31.1% 43.5% 40.3% 

11% 493 52.0% 36.7% 48.1% 50.7% 35.2% 51.9% 47.7% 

12% 521 60.6% 44.6% 55.6% 59.8% 39.2% 61.0% 55.3% 

13% 553 68.8% 52.6% 62.0% 67.0% 43.3% 68.9% 63.0% 

14% 580 76.0% 60.6% 67.8% 73.9% 47.8% 76.0% 69.4% 

15% 607 81.9% 67.8% 73.3% 79.5% 52.4% 81.7% 75.3% 

20% 739 97.1% 92.2% 92.1% 95.4% 74.0% 96.8% 93.3% 

 

Columns 1-3 refer to the base case setting (see Table 1). The other columns refer to separate variations of the base case. In the last column the assumption of 
homogeneous default probabilities is replaced by a heterogeneous portfolio (see Table 4) which is similar to the high quality credit portfolio in Gordy (2000).  



 31

Table 4: Composition of heterogeneous portfolio  

Rating Unconditional default probability Number of borrowers 

AAA   0.01%   382 

AA   0.02%   590 

A   0.06% 2.256 

BBB   0.18% 3.792 

BB   1.06% 1.908 

B   4.94%   942 

CCC 19.14%   130 
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Table 5: Simulated power of Berkowitz test  

Varying default probabilities under H0 Varying the asset value distribution under H0 

Default 
probability 
under H0 

99% quantile of 
default 

distribution  
Power 

Degrees of 
freedom of t-
distribution 
under H0 

99% quantile of 
default 

distribution 
Power 

0.2% 79 100% 10 911 100% 

0.4% 145 99.5% 20 646 92.3% 

0.6% 207 76.4% 30 547 71.8% 

0.8% 265 29.1% 40 496 55.2% 

1.0% = true 321 12.6% 50 463 44.5% 

1.2% 376 22.8% 60 441 37.3% 

1.4% 428 48.3% 70 426 32.5% 

1.6% 481 73.8% 80 413 28.9% 

1.8% 531 89.9% 90 404 26.2% 

2.0% 581 96.9% 100 395 24.1% 

2.2% 630 99.1% 200 361 16.6% 

2.4% 678 99.8% ∞ = true 321 12.6% 

 

The true model in both scenarios is equal to the base case setting (see Table 1). We modify the base 
case by varying the unconditional default probability under H0 on the left and the type of the asset 
value distribution under H0 on the right instead of varying the asset correlation. 
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Figure 1: Power of Berkowitz  test in base case 
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Figure 2: Power of alternative tests in base case 

The Berkowitz test serves as a benchmark and is identical to Figure 1. The normality test is the 
Doornik-Hansen test. The ‘Standard’ likehood ratio test is performed on the untransformed default 
data. For each simulated default history, the optimum asset correlation is found by a search 
procedure. The distribution of the test statistic is simulated under H0 in order to obtain critical values. 
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Figure 3: Power of Berkowitz test when including cross-sectional
information 

The setup is identical to the base case (see Table 1) except for the asset correlation within the true
model. Instead of a uniform asset correlation of 5% there are two equally sized sectors with intra-
sector asset correlations of 2% and 9%, respectively. The grey shaded area shows the power when
the Berkowitz test is based on aggregate portfolio defaults. The dotted line depicts the power when
the Berkowitz procedure  is extended to assess the accuracy of sector defaults. 
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Figure 4: Power of  model comparisons 

Tests are performed for the base case (see Table 1). To derive the power of the Bonferroni bounds, 
we apply the Berkowitz test to both models under comparison (A,B) using a significance level of 5% 
instead of 10%. The power of the likelihood ratio test is the probability that the likelihood ratio 
log(LA/LB) is positive and larger than the 90% quantile of log(LA/LB) simulated under model B.  
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