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Abstract

We propose a framework for estimating network-driven time-varying systemic risk
contributions that is applicable to a high-dimensional financial system. Tail risk de-
pendencies and contributions are estimated based on a penalized two-stage fixed-
effects quantile approach, which explicitly links bank interconnectedness to sys-
temic risk contributions. The framework is applied to a system of 51 large European
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banks and 17 sovereigns through the period 2006 to 2013, utilizing both equity and
CDS prices. We provide new evidence on how banking sector fragmentation and
sovereign-bank linkages evolved over the European sovereign debt crisis and how it
is reflected in network statistics and systemic risk measures. Illustrating the useful-
ness of the framework as a monitoring tool, we provide indication for the fragmen-
tation of the European financial system having peaked and that recovery has started.

Keywords: systemic risk contribution; tail dependence; network topology; sovereign-
bank linkages; Value-at-Risk

JEL classification: G01, G18, G32, G38, C21, C51, C63

1 Introduction

A clear lesson from the global financial crisis has been the propensity for company-
specific risk to spill over to other firms. These spill-overs arise from contractual linkages
in conjunction with heightened counterparty risk, but also from price effects generated by
for instance fire sales. The result of these spill-overs has been the freezing of interbank
markets observed at the height of the global financial crisis in October 2008. The market
freeze was followed by a much longer period of interbank market fragmentation during
European sovereign debt crisis, during which banks in core European countries were no
longer willing to finance banks in the periphery.

Another key feature, particularly salient during the European sovereign debt crisis,
has been the interplay between fiscally strained sovereign banks and stressed banks. An
impaired banking sector has limited ability to support economic activity, which in turn
further strains public finances, eventually putting in question the ability of the sovereign
to clean up the banking system. The ECB (2011, 2012) identifies this adverse feedback
loop as the key risk to financial stability in the euro area. A better ability to understand and
monitor the fragmentation of European financial markets as well as the interdependence
between banks and sovereigns is thus of utmost importance for central banks and policy
makers.

Quantifying these relationships empirically is challenging due to (i) the high dimen-
sionality of the underlying financial and sovereign system, (ii) lack of data on cross-
linkages and detailed individual characteristics for a large cross-section of financial insti-
tutions and sovereigns, and (iii) the time-variability of network connections and systemic
risk contributions. Moreover, for purposes of surveillance and regulation of financial sys-
tems, network dependencies in extreme risks are much more relevant than simple (mean)
correlations. This requires focusing on connections between (time-varying) tails, as, e.g.,
represented by conditional quantiles, expected shortfall or related tail measures of the
underlying risk distributions. Finally, the empirical methodology should ideally produce
measures and estimates that are empirically tractable and easily interpretable.
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In this paper, we address these challenges and contribute to the literature in three ma-
jor aspects. First, we further develop an econometric model which allows handling the
high dimensionality in tail risk networks while producing sufficiently precise and robust
quantities given the available data in rolling windows. Second, we employ a unique data
set consisting of equity prices, CDS prices and quarterly balance sheet data of large Eu-
ropean banks as well as CDS and government bond prices of corresponding sovereigns.
This database allows us to cover a major fraction of the European banking and sovereign
system. Third, we provide novel insights into time-varying tail risk dependencies and
spillovers between European banks and sovereigns, particularly covering the 2008 global
financial crisis and the subsequent European sovereign debt crisis. We show how network
connectedness, fragmentation and interactions between European financial institutions
and sovereigns change over this time period and how the state of the financial system is
reflected in the topology of the underlying network.

Our empirical methodology builds on the framework proposed by (Hautsch, Schaum-
burg, and Schienle 2014a) (henceforth HSS2014) and (Hautsch, Schaumburg, and Schienle
2014b). The underlying idea is to quantify the systemic impact of an individual company
by the marginal effect of a firm’s time-varying Value at Risk (VaR) on the VaR of the
entire system. To statistically identify the relevant tail risk drivers of a specific company
out of a high-dimensional set of potential characteristics (including the tail risk of other
companies), HSS2014 propose to use a statistical regularization and shrinkage method.
The selection of individual-specific tail risk drivers gives a rise to a risk network, deter-
mining to what extent the VaR of a company is driven by the tail risk of other companies.
This information is then explicitly utilized in a second step, where the marginal systemic
relevance of an individual firm is quantified using a quantile regression of the system VaR
on the VaR of the respective company while controlling for the firm-specific risk drivers
and additional economic state variables. The explicit quantification and utilization of net-
work dependencies distinguishes HSS2014 from alternative methods for measuring and
predicting systemic risk, see, e.g., Acharya, Pedersen, Philippon, and Richardson (2010),
Adrian and Brunnermeier (2011), and Brownlees and Engle (2012).

In this paper, we further develop the methodology introduced by HSS2014 in two di-
rections. First, we adapt the approach to make it feasible to use in situations, where the
density of the network is high and the underlying sample period is relatively short. In
such a situation, individual companies may face tail risk spillovers from many others,
making it necessary to account for large sets of individual-specific tail risk drivers when
estimating companies’ marginal systemic risk contribution in a quantile regression of the
system VaR. The requirement of controlling for a large number of different risk factors,
while having a comparably short estimation window, makes standard estimates inherently
inefficient and unstable and - in the extreme case – even infeasible. We therefore pro-
pose an adaptive version of the standard shrinkage technique for determining the relevant
risk drivers not only among other banks but also among sovereigns. The use of rela-
tively short estimation windows is driven by the need of accounting for time-variations
in companies’ systemic riskiness and underlying network connections. Accounting for
time variations via rolling window estimations, however, is crucial when the framework
is used for surveillance and monitoring of the system building the basis for macropruden-
tial regulation. To overcome this empirical difficulty and to address the tradeoff between

3



estimation robustness on the one hand and capturing time-variability of the underlying
relationships on the other hand, we propose combining the two-step quantile framework
with a panel fixed effects approach. While controlling for company-specific fixed effects,
we keep the model sufficiently parsimonious by imposing group-wise common parame-
ters. We show that this approach is empirically tractable and balances model flexibility
and estimation robustness in the given context. Second, when estimating a company’s
systemic relevance, we explicitly account for the interconnectedness of an institution,
measured by its network centrality. We empirically show that the latter is a significant
factor of a firm’s systemic risk contribution.

Empirically, we contribute to the literature in two major directions. First, focusing on
51 large European banks allows us covering a substantial fraction of the European bank-
ing system. Moreover, by analyzing data up to 2013, we are able to study the effects
of the global financial crisis, its aftermath and the transition into the European sovereign
debt crisis on the fragmentation and integration of the European financial system. Sec-
ond, bringing together both banks and sovereigns in a network estimated based on CDS
returns yields novel insights on the interplay between the banks and the sovereigns. We
quantify and visualize time-varying tail dependencies, spillover directions and the density
of networks, and show how banking sector fragmentation and sovereign-bank linkages
evolved over the European sovereign debt crisis.

Beyond the growing literature on estimation of systemic risk contributions, our paper
is also related to the papers investigating the sovereign bank-interlinkages, such as Ejs-
ing and Lemke (2011), Alter and Schüler (2012), Arnold (2012), Bruyckere, Gerhardt,
Schepens, and Vennet (2013), Alter and Beyer (2014), and Correa, Lee, Sapriza, and
Suarez (2014). The key difference to the aforementioned papers, which mainly analyze
contagion or spillover effects between sovereign and bank CDS spreads or credit rating
downgrades, is the ability of our approach to incorporate both sovereigns and banks into
tail risk networks and to track how their interconnectedness evolves over time.

Moreover, methodologically our paper is also related to earlier studies analysing con-
tagion and co-movement in banks’ equity prices using extreme value theory, in particular
to Gropp, Duca, and Vesala (2009), who analyse cross-border contagion among European
banks in 1994-2003 and to Bae, Karolyi, and Stulz (2003) and Hartmann, Straetmans, and
De Vries (2004), who focus on cross-country spillovers. Finally, our paper is also closely
related to the increasing literature analysing financial networks, contagion and systemic
risk, see e.g. Allen and Gale (2000) and Cont, Moussa, and Santos (2013)1.

The key findings are as follows: First, we observe that the density of the European
financial network increases from 2006 onwards, peaks around the height of the financial
crisis and significantly declines thereafter. Second, an interesting feature of the sovereign
credit crisis 2011-2013 is a clear decline of banks’ connectedness and an increasing mar-
ket fragmentation reflected by a dominance of domestic (within-country) linkages. Third,
the national fragmentation during the sovereign credit crisis is accompanied by increas-
ing dependencies between sovereigns and financial firms, making particularly the CDS
tail risk of Italy, Spain and Greece strongly dependent of the financial sector. Fourth, the

1see Chinazzi and Fagiolo (2013) for a recent review of this literature
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topology of the European banking and sovereign network clearly changes when moving
from the 2008 financial crisis to the current credit risk crisis. We find that the state of the
system is well reflected in underlying network statistics which might be used as (rough)
indicators for monitoring purposes.

From a methodological point of view, we show the importance of explicitly linking a
bank’s or sovereign’s connectedness (e.g., reflected by its network centrality) to its (time-
varying) systemic risk contribution. Moreover, particularly relevant for the European
sovereign debt crisis, we stress the relevance of sovereign risk as banks’ tail risk driver.
Finally, the combination of the two-stage panel framework with a panel fixed effects ap-
proach turns out to provide sufficiently robust estimates given data availability and the
need of addressing a dense tail risk network.

The remainder of the paper is organized as follows. Section 2 explains the estimation
methodolgy while Section 3 describes the dataset. Section 4 presents the results and is
divided into three subsections: Subsection 4.1 illustrates the estimated time-varying tail
risk networks, Subsection 4.2 describes the sovereign-bank interactions, while Subsection
4.3 presents the systemic risk contributions. Finally, Section 5 concludes.

2 Methodology

Our empirical methodology in estimating systemic risk contributions works in two steps.
The first step is necessary for determining the time-varying topology of the underlying tail
risk network of banks and sovereigns. While this contains valuable economic information
on its own, it is indispensable for identifying the systemic risk contribution of a bank in a
densely interconnected system. The outcome of this step is the estimated conditional VaR
of each institution given the underlying network structure and economic state variables.
The second step explicitly utilizes information on the identified network to estimate an
individual institution’s marginal impact on the system VaR.

2.1 Time-Varying Bank-Sovereign Networks

We constitute generalized tail risk networks for the European bank-sovereign system by
substantially adapting and extending the approach in Hautsch, Schaumburg, and Schienle
(2014a). In particular, we account for potentially time-varying bank sovereign spillovers
and explicitly include sovereigns as parts of the generalized European financial network.
The main idea is to empirically determine a network link from bank/sovereign j to bank/sovereign
i, whenever the tail risk of i is (positively) affected by the distress of j. Denoting the eq-
uity or CDS return of bank/sovereign i byX i

t , the tail risk of i is reflected by its conditional
Value-at-Risk (VaR), V aRi

q,t, given a set of i-specific risk drivers Ri
t, i.e.,

Pr(−X i
t ≥ V aRi

q,t|Ri
t) = q, (1)
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with V aRi
q,t denoting the (negative) conditional q-quantile of X i

t .
2 The distress of a

bank/sovereign is identified by the corresponding return being below its empirical 10%
quantile. Accordingly, we define a so-called loss exceedance byNt,j = Xj

t 1(Xj
t ≤ Q̂j

0.1),
where Q̂0.1 is the unconditional 10% sample quantile of Xj

t .

The full set of tail risk drivers of a bank/sovereign i thus consists of loss exceedances of
banks/sovereigns other than i, which we denote as vector N i

t with elements Nt,j for j 6= i,
and additional observable control variables Zi

t . These externalities Zi
t contain macro-

financial state variables, and, in case of banks, i-specific balance sheet characteristics.
Specifying V aRi

t as a linear function of the regressors yields

V aRi
t = αi0 + αi1Z

i
t + αi2N

i
t . (2)

Thus, in theory, it appears straightforward to estimate this model by standard linear quan-
tile regression techniques (see Koenker and Bassett (1978)). But in practice, this is in-
feasible. The challenge of this task is that the number of loss exceedances N i

t potentially
affecting i is large. Including the entire set N i

t as regressors in the model would result
in highly imprecise and unstable estimates. Moreover, (sequential) tests on the statistical
significance of individual variables are virtually infeasible with outcomes hardly inter-
pretable.

We therefore statistically identify the subset of relevant i-specific loss exceedances,
denoted byN (i)

t , from the full set of potential network influencesN i
t by a model shrinkage

approach. In particular, we use a weighted version of the least absolute shrinkage and
selection operator (LASSO) approach for quantile regression as introduced by Belloni
and Chernozhukov (2011). The idea is to run a penalized quantile regression to find the
estimate α̂i of αi := (αi0, α

i
1, α

i
2) by

α̃i = argminαi

1

τ

τ∑
t=1

ρq

(
X i
t + αi0 + αi1Z̃

i
t + α2

iÑ i
t

)
+ λi

√
q(1− q)
τ

K∑
k=1

wikσ̂k|αi2,k| ,

(3)
where τ denotes the number of observations, Z̃i

t and Ñ i
t denote the de-meaned form of

the set of potential regressors Zi
t and N i

t , ρq(u) is the quantile loss function ρq(u) =
u(q− I(u < 0)) at level q with the indicator I(·) being one for u < 0 and zero otherwise,
and σ̂k is the empirical standard deviation of the k-th component in N i

t .

The coefficient λi is a penalty parameter, which penalizes regressors which do not suf-
ficiently contribute to the objective function, and thus are not relevant for the model. Due
to the penalization, the coefficients of these regressors are shrinked towards zero. Hence,
the penalization component helps to identify relevant loss exceedances as those regres-
sors with sufficiently large marginal effects. Correspondingly, a regressor is de-selected
if its (adaptive) LASSO estimate in α̃i2 is close to zero. The strength of the penalization is
therefore governed by λi with the number of eliminated regressors increasing in λi. For
instance, for λi = 0, we obtain the standard quantile regression problem according to
Koenker and Bassett (1978). As loss exceedances of banks and sovereigns might be of
quite different magnitudes, it is important to allow for regressor-specific penalizations wik.

2We use the convention that V aRq is defined as the negative conditional q-quantile such that higher
levels of risk are reflected by higher levels of VaR.
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Both λi and wik are chosen in a data-driven way, optimizing the score of (3) with remain-
ing constants maximizing the in-sample predictive ability of the resulting post-LASSO
quantile specification. The quality of the in-sample fit is evaluated based on the model’s
backtesting performance. The details of this procedure are presented in the Appendix.
Finally, retaining only the regressors, which are not de-selected by the weighted LASSO
results into the corresponding ’post-LASSO’ VaR specification.

The weighted quantile LASSO approach is performed for each bank and sovereign
i. The final set of post-LASSO regressors yields the set of i-specific tail risk drivers.
Then, the weighted LASSO-selected i-specific loss exceedances N (i)

t constitute directed
network impacts to bank i. By moving along all banks in the system, we thus obtain
a network graph showing tail dependence relationships among banks conditional on the
control variables Zi

t .

Moreover, to allow for time-variations in network dependencies, we perform this anal-
ysis based on rolling windows, where sample windows of 24 months are rolled over at a
yearly frequency. In particular, at the beginning of each period indexed by t0, we deter-
mine relevant risk drivers based on the weighted LASSO approach utilizing information
from the previous two years. Thus, networks are year-specific and can vary on an annual
basis. Correspondingly, the VaR of firm/sovereign i at time t in year t0 is determined as

V̂ aR
i,t0

t = α̂i,t00 + α̂i,t01 Zi
t−1 + α̂i,t02 N

(i,t0)
t , (4)

where N (i,t0)
t is the set of i-specific loss exceedances selected by the LASSO procedure

for the period indexed by year t0 and the coefficients α̂i,t00 , α̂i,t01 and α̂i,t02 are obtained by
the year-t0 post-LASSO quantile regression.

This approach is performed in Section 4 to estimate (i) tail risk networks of finan-
cial companies based on equity returns with sovereigns’ bond returns serving as (non-
penalized) state variables and (ii) joint tail risk networks of both banks and sovereigns
based on corresponding CDS returns. For more details on the choices of Zi

t and N i
t , see

Section 4.

2.2 Evaluating Systemic Impact

We define the systemic risk contribution of a bank as the total realized impact of a change
in a bank’s VaR on the VaR of the entire system. Following HSS2014, we denote this
effect as realized systemic risk beta. To quantify this measure, the system VaR V aRs

t is
taken as the VaR of a value-weighted portfolio of firms representing the financial system.
Moreover, as explained in more detail below, we build groups g = 1, . . . , G of institutions,
which allows us to estimate certain group-specific marginal effects instead of individual-
specific marginal effects.

Thus, the effect of the estimated V̂ aR
i,t0

t on V aRs
t in a dense network within a given

group g of banks at time point t in year t0 is obtained from

V aRs
t = βt0g (Bi

t, net
i,t0
t )V̂ aR

i,t0

t + γi,t0 + θt01 Z
s
t−1 + θt02 R

(i,t0)
t , (5)
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where the (time-varying) marginal effect βt0 is referred to systemic risk beta. Apart
from time variations of βt0 arising from the rolling window estimation, we allow for
additional variation within a two-year period (indexed by t0) by modeling βt0 as a function
of firm-specific characteristicsBi

t and an i-specific local network measure, neti,t0t , defined
as the logarithm of one plus the out-degree of node i in the network topology.3 The latter
characterizes the firm’s connectedness in the corresponding year-t0 network topology at
time t, and thus explicitly links a firm’s marginal systemic relevance to its role in the
underlying tail risk network. Furthermore, γi,t0 is a firm-specific fixed effect, R(i,t0) is
a value-weighted index of the VaRs of all banks selected as relevant for bank i in the
first step, and Zs contain macro-financial state variables. The inclusion of these i-specific
control variables, in particular the individual fixed effect and the aggregated indicator
for network spillover influences on beta R(i,t0), provide a robust way to obtain unbiased
estimates of β. To keep the approach computationally tractable, we assume βt0 being
linear in its components within a group g ∈ {1, . . . , G} of similar institutions in a dense
network, i.e.,

βt0g (Bi
t, net

i,t0
t ) = δt00,g + δt01,gB

i
t + δt02,gnet

i,t0
t . (6)

The grouping of institutions is necessary in order to balance robustness of the obtained
beta measure against the variability required for consistent estimation of the effect. Hence,
pooling together firms which are found as being similar in terms of their (average) marginal
systemic impact and their marginal effects with respect to the variables Bi

t , allows esti-
mating the parameters in (6) group-wise instead of individual-specific. In practice, we
suggest a simple and straightforward data-driven procedure to obtain adequate groups,
which we outline below in the empirical section. Thus, groups are objective and yield a
stabilizing effect on the obtained systemic risk beta in a dense network.

The full specification is then estimated by a single (pooled) quantile SUR system re-
gression with the inclusion of appropriate group and bank specific dummies. Thus, the
coefficients of control variables from the system Zs and from the network R(i,t0) are com-
mon across all institutions, while influences of balance sheet characteristics on the time-
variation of β can vary across subgroups in estimates of δt0g . Note that despite group-
specific common parameters in (6), an individual bank’s systemic risk beta βt0g () still
varies on an individual basis as it depends on i-specific variablesBi

t and neti,t0t . Moreover,
γi,t0 differs across all banks and captures individual fixed effects. This model and estima-
tion strategy yields stabilized parameter estimates by exploiting as much cross-sectional
variation as possible without losing consistency of the estimate for βt0 . Moreover, we
can estimate all coefficients of (5) and (6) in one step, in contrast to a multiple-equation
estimation as in Hautsch, Schaumburg, and Schienle (2014b). Finally, the included fixed
effects γi,t0 capture potentially neglected bank-specific covariates making the approach
more robust to potential misspecification.

Finally we obtain an estimate of the realized systemic risk beta βs|i as

β̂
s|i
t := β̂t0(Bi

t, net
i,t0
t )V̂ aR

i,t0

t . (7)

3The specification neti = log(1+out-degreei) exploits the directed nature of the network. Conditioning
on the risk driver index R controls for incoming linkages.
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This is the measure according to which we assess the overall systemic importance of
institutions. It reflects the total realized effect of an increase in a bank i risk level on the
risk of the entire system. This impact consists of the direct impact via the idiosyncratic
VaR but also of a potential change in the marginal systemic effect via beta. Our rankings
in the following are based on realized systemic risk betas.

3 Data

Our dataset consists of 51 large European banks, which we choose based on the following
criteria. First, we select the largest European banks, covering up to 90% of the Euro-
pean banking system’s total assets (in 2010), which results in 74 banks. Second, as the
empirical analysis requires equity price data, we keep only the publicly traded and listed
banks in the sample, which leaves us with 53 listed banks, covering 72.4% of the Euro-
pean banking system’s total assets. Third, two further banks (Bankia and Österreichische
Volksbanken) are dropped from the sample due to data limitations. The list of 51 banks
in the sample is shown in Table 1. For each institution, we collect quarterly balance sheet
data as well as daily equity prices covering the period from 01/07/2006 to 30/06/2013
from Bloomberg. If available, we also collect corresponding data on 5-year senior CDS
spreads. Stock prices enter the regressions in the form of returns; CDS prices in first
differences.

As V aRi-specific control variables Zi
t , we choose a set of bank-specific balance sheet

characteristics. These include leverage, measured as total assets over total equity, to cap-
ture the fragility of a bank. Loan loss reserves and return on assets represent asset quality,
whereas the cost-to-income ratio and the price-to-book ratio measure management qual-
ity. The return on equity measures a bank’s capacity to generate earnings, while the ratio
of net short-term borrowing to total liabilities and the loan-to-deposit ratio capture liquid-
ity risk. The size, measured as total assets, proxies for the bank being too big to fail. We
also collect the release date of the balance sheet information and merge it with the stock
price data accordingly to use the data in real-time manner.

The dataset also includes macro-financial state variables. We use the Euribor-OIS
spread as barometer of distress in money markets covering both liquidity and credit risk.
The VDAX index measures implied volatility in the German stock market, proxying for
investors’ risk appetite. To represent sovereign risk, we also collect data on the sovereigns
of the countries where the banks are headquartered. Thus, our sample includes the follow-
ing sovereigns: Austria, Belgium, Cyprus, Germany, Denmark, Spain, Finland, France,
Greece, Hungary, Ireland, Italy, the Netherlands, Poland, Portugal, Sweden and the UK.
The data include the yields on 10-year benchmarks bonds, the slope of the yield curve
as measured by the yield difference between 10-year and 2-year bonds as well as the 5-
year sovereign CDS spreads. The Stoxx Europe 600 Financial Services index is used to
represent the financial system in the second stage.

The macro-financial state variables listed above are also used as control variables Zs
t

in the second stage regression. Moreover, as variables driving the time variability of sys-
temic risk betas, Bi

t contains the subset of balance sheet characteristics with a distinct
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macroprudential interpretation, in this case leverage and size as defined above. All eco-
nomic and financial variables come from Bloomberg.

4 Results

4.1 Time-varying tail risk networks of banks

Figures 1 and 2 and Tables 2 and 3 visually and quantitatively characterize the evolution of
tail dependence networks of all financial companies for all six (overlapping) two-year sub-
periods. Here, the external influences Zi

t on the network in (2) contain company-specific
characteristics and macroeconomic state variables as described in Section 3. We measure
a bank’s interconnectedness by its network degree and graphically illustrate it by the size
of the nodes in Figures 1 and 2. In the figures, we label all banks whose degree is above
the 75th percentile of the degree distribution in the respective subperiod. The shape of
each network is obtained by minimizing the length of all aggregated network connections
between all institutions. Correspondingly, the most connected firms are located in the
center of the network graph.

The main findings can be summarised as follows. First, the density of the network
increases between 2006 and 2008, peaks in the 2008-2010 period and declines thereafter.
At the height of the global financial crisis (2008/09), we observe the strongest estimated
interconnectedness between European banks, as reflected by the size of the nodes and
the number of identified linkages. The network structure in the subsequent periods (from
2010 onwards), however, indicates a clearly different picture. Here, the connectedness
between the banks strongly declines and the European banking system becomes more
fragmented. This is most obvious in the period 2010-2012, reflecting the height of the
European sovereign debt crisis.

As Figures 1 and 2 show, the density of the network clearly varies over time indicating
that the financial system is moving through different states. This is confirmed by the
corresponding network densities reported in Table 2.4 The network density increases from
0.07 in the first subperiod to 0.08 at the height of the global financial crisis. In contrast,
during the European sovereign debt crisis, the network density decreases to 0.04. The
pattern is intuitive as one would expect tail dependence between banks to increase during
a financial crisis. Conversely, a stronger role of sovereigns in transmitting shocks should
be reflected in sparser tail dependencies between banks. Since sovereign bond returns
serve as non-penalized control variables, a stronger impact thereof might be responsible
for the decline of network density after 2008. Tail-dependence networks where sovereigns
are not used as control variables but as risk drivers (see Section 4.2) confirm the view
that the decline of network densities in bank-only networks during the period 2010 to
2013 reflects mainly the increasing role of sovereigns. On the other hand, the increase
in network densities from 0.04 to 0.05 between the two last subperiods suggests that the
intensity of the sovereign debt crisis has to some extent receded.

4The network density is calculated as the number of actually observed connections in the network di-
vided by the number of possible connections for the given nodes.
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The colour of the nodes, which indicates the countries where the banks are head-
quartered, illustrates the impact of country-specific developments on the network struc-
ture. While during the 2006-2008 period, the most interconnected firms originate pre-
dominantly from Spain, but also from France, Portugal and Ireland, in the subsequent pe-
riod also Italian and British banks move to the center of the network. Both network graphs
depict pronounced country-specific clusters with strong cross-country links, in particular,
among banks in the center of the network. These developments might already indicate
upcoming problems in the banking sector of these countries, partly driving the European
sovereign debt crisis in 2012/13. While these ’national clusters’ disappear in the height
of the global financial crisis (reflected by the 2008-2010 subgraph), they become very
pronounced in the aftermath.

The sovereign debt crisis in particular is characterized by a strong fragmentation of
the financial network with ’domestic’ linkages (i.e., linkages between companies within a
country) becoming increasingly prominent. This is confirmed by Table 2, showing that the
share of domestic linkages (relative to all linkages) has increased from 0.28 in the 2008-
2010 sub-period to 0.52 in the 2010-2012 sub-period. Again, the slight decrease to 0.45
in the latest sub-period might reflect a relaxation of the sovereign debt crisis. This is most
obvious for financial institutions in Greece and Cyprus, Italy, Spain and Portugal, and
(partly) France. Particularly Greece and Cyprus move towards the fringe of the network.
In the 2010-2013 sub-periods, they are totally disconnected from the rest of the network.
Also Spanish and Portuguese banks jointly leave the center of the network (2009-2011),
with in particular the Portuguese banks becoming increasingly disconnected to the rest of
the system.

Third, Table 3 provides the shares of domestic links separately for countries, which
have been particularly affected by the sovereign debt crisis (in particular, Cyprus, Greece,
Ireland, Italy, Portugal, and Spain) and all other countries. It turns out that countries af-
fected by the sovereign debt crisis display on average a higher share of domestic linkages.
This is most pronounced during the 2009-2011 and the 2010-2012 period, and is consis-
tent with the notion that financial fragmentation has primarily affected banking systems
in the European periphery.

Fourth, during the financial crisis periods (Figure 1), we observe that some banks are
particularly strongly interconnected. In the 2006-2008 sub-period, the Spanish banks
Banco Santander, Banco de Sabadell and Banco Popular Espanol are in the center of the
tail dependence network but also the French BNP Paribas, Credit Agricole and Societe
Generale, as well as the Portuguese Espirito Santo Financial Group, the Belgian Dexia,
Bank of Ireland, the Royal Bank of Scotland and German Commerzbank stand out as
strongly interconnected banks. In the 2007-2009 sub-period, the Spanish banks Banco
de Sabadell and Banco Popular Espanol are the most strongly interconnected, while in
2008-2010 this role is taken by Italian Banco BPI. Banco de Sabadell and the Royal Bank
of Scotland constantly appear among the most interconnected banks in the first three of
the six subperiods, also Credit Agricole belongs to this group at the very beginning and at
the height of the financial crisis.
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4.2 Sovereign-bank interaction

Complementing the analysis above by a corresponding analysis based on CDS data opens
up a valuable additional perspective. In particular, CDS prices reflect investors’ expec-
tations on default risks, and thus are explicitly connected to extreme market movements.
Moreover, utilizing CDS returns allows us constructing and analyzing a network of both
financial companies and underlying sovereigns. This complements the analysis above,
where information on sovereign risk enters the analysis only via respective bond returns
used as economic state variables. According to the ECB and the IMF5, the European
sovereign debt crisis is characterised by the interplay of fiscally constrained sovereigns
and weak banking systems. Exploiting CDS prices enables us to study to what extent this
relationship is also reflected in the tail dependence networks.

The network construction differs from the procedure explained in Section 4.1 in the
following way: First, instead of equity returns as underlying variables we utilize CDS
returns of both banks and sovereigns. Accordingly, bank and sovereign CDS returns
are both penalized in the weighted LASSO approach. As illustrated below, this leads
to an overall higher level of penalization, which is reflected in higher network densities.
Second, when modeling the VaR of a bank, Zi

t consists of bank-specific balance sheet
characteristics and macro-financial state variables (as described in Section 3). Conversely,
in case of a sovereign, we only include macro-financial state variables.

Figures 3 and Figure 4 present the corresponding CDS-based networks. The figures
reflect the implications of the sovereign debt crisis in the sense that some sovereigns (rep-
resented by square vertices), mostly those affected by the crisis, move towards the center
of the networks. This is particularly true in the aftermath of the global financial crisis and
the increase of the sovereign debt crisis (2010-2012). Particularly, the CDS tail risk of
France, Italy and Spain becomes deeply connected with the tail risk of financial compa-
nies. Italy stands out as the most important sovereign according to this topology, but also
France and Spain exhibit a high degree of interconnectedness in 2010-2012. This shape
persists also in 2011-2013, where also Portugal, Ireland and Austria gain importance. The
centrality of the German sovereign, on the other hand, is comparatively low, confirming
Germany’s role as anchor of stability as opposed to a transmitter of tail risk.

Table 4 shows that the evolution of network density over time resembles that of the
bank networks above until the period 2008-2010. In both cases, they peak during 2008-
2010. The CDS-based networks, however, reach another high during 2011-2013, where
the network density is equal to the crisis peak level. This suggests that tail dependence as
measured by network density in sovereign-bank networks can serve as an indicator for the
crisis intensity. While the 2010-2012 period was just as critical to the survival of European
Monetary Union as the 2008-2010 period, the first was not detected as problematic by
pure bank networks.

The increase of sovereigns’ connectedness is particularly true for countries which
have been strongly affected by the sovereign debt crisis (so-called ’crisis countries’), i.e.,

5see e.g. ECB Financial Stability Reviews (2011, 2012) or the IMF Global Financial Stability Re-
views(2011, 2012)
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Ireland, Italy, Portugal and Spain. According to Table 5, the connectedness of ’crisis
countries’ and ’non-crisis countries’ is relatively similar during the global financial crisis
(2006-2008).6 In the subsequent periods, however, we observe a clear increase of the
average centrality of ’crisis countries’, while others are only affected to a much smaller
extend. These results indicate that a simple network statistic, as the network degree, cap-
tures substantial information about the evolution of a sovereign’s contribution to systemic
risk.

The share of sovereign-bank linkages, as shown by Table 6, reveals supportive infor-
mation for this view. During the global financial crisis, ’crisis countries’ show, on average,
a slightly lower share of sovereign-bank linkages than the others. With the advent of the
European sovereign debt crisis, however, the picture strongly reverts with the share of
sovereign-bank linkages of ’crisis countries’ increasing, where that of the other countries
remains at about the same level. Hence, it is not only the increasing interconnectedness of
a sovereign, but obviously the increase of linkages to financial institutions. Italy displays
a particularly high share of sovereign-bank linkages, whereas that of Germany is compar-
atively low. In contrast, the time evolution of financial fragmentation, as represented by
the share of domestic linkages, resembles that of the bank networks analyzed in Section
4.1. Again, fragmentation peaks during 2010-2012 before receding slightly.

4.3 Systemic risk contributions

Building on the estimated banking network structure in Section 4.1, we estimate the sys-
temic risk contribution of a bank based on (5) and (6). The choice of the underlying
grouping follows two criteria: On the one hand, companies within a group should be
preferably similar in terms of their average marginal systemic impact and the way how
characteristics B influence this effect. In this case, the coefficients of components of the
systemic risk beta (6) are captured sufficiently well by respective common parameters
within the group. On the other hand, we aim at keeping the number of groups small to
ensure the availability of a sufficient number of observations per group and thus the pre-
cision of the resulting beta estimate. Investigating different combinations and number of
groups we found a setting as follows the most appropriate: In particular, the regressions
are based on three groups, where the first group contains all banks below the overall em-
pirical median in size and below median in leverage, the second is below median in size
and above median in leverage, or vice versa and the last is above median in size and above
the median in leverage.

Figure 5 shows the estimated systemic risk network at the height of the European
sovereign debt crisis in June 2012. It stems from the baseline specification as used in Sec-
tion 4.1. While depicting the underlying network structure, we visualize the magnitude
of the estimated systemic risk beta, the corresponding VaR and the resulting total effect
corresponding to the product of the two and referred to as realized systemic risk. Again,
the node sizes reflect the quartiles of the corresponding underlying (cross-sectional) dis-
tributions with banks being in the respective top quartile explicitly labeled.

6The first period is discarded due to lack of data for Denmark, the Netherlands, Sweden and the UK.
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The first two plots of Figure 5 highlight the differences between the individual and
the systemic perspective. The banks that rank highly in the marginal systemic relevance
distribution tend to be comparatively large and well known entities, including BBVA and
Santander from Spain, or Barclays, HSBC, and Royal Bank of Scotland from the UK. The
banks that rank highly in the VaR distribution, on the other hand, are mainly from crisis
countries. For instance, all banks headquartered in Greece and Cyprus are in the highest
quartile of the VaR distribution. At the same time, they exhibit only moderate correlations
with the left tail of the riskindex. Conversely, the Swedish banks display a comparatively
strong correlation with the riskindex, but are very safe individually.

Table 8 ranks banks according to marginal systemic relevance and lists the associated
group, as well as the bank’s size, leverage and interconnectedness. Table 8 shows that the
estimated systemic risk beta increases with size and leverage as captured by the grouping.
The last column demonstrates that more interconnected banks likewise display a higher
degree of tail dependence. Thus, size, leverage, and interconnectedness modify the esti-
mated systemic risk beta in line with theoretical priors. More importantly, the results also
suggest that traditional balance sheet characteristics alone provide an incomplete account
of systemic relevance.

The third plot of Figure 5 shows the distribution of realized systemic risk, which in-
tegrates the individual and the systemic perspective. Banks in the fourth quartile of the
distribution tend to rank highly in one risk metric and to exhibit an intermediate level of
the other. Only three banks from what is typicially considered the euro area core were
at the time present in the fourth quartile of the realized systemic risk distribution: Dexia,
KBC, and Natixis. Perhaps more surprisingly, this applies to only one bank each from
Italy and Spain, despite the pressure exerted by financial markets at this stage of the
sovereign debt crisis. Less surprisingly, five banks from the crisis countries are present in
the fourth quartile of the realized systemic risk distribution.

4.4 Robustness Checks

To validate our analysis, we conducted various robustness and sensitivity checks: First,
we analyzed the sensitivity of results with respect to the choice of the riskindex R(i,t0).
While the form of weighting (e.g., equally weighting instead of value-weighting) does
not qualitatively change the results, its role as control variable for a consistent estimation
of systemic risk betas is distinct. Actually, leaving out R(i,t0) influences the estimates
of systemic risk betas and consequently the resulting systemic risk ranking. Second, we
checked the dependence of beta estimates on the number of underlying groups. Using,
for instance, an even rougher categorization based on two groups only, has very mild
effects on the final outcomes. Hence, our estimates show sufficient stability with respect
to the underlying grouping. Third, we redo the analysis by including asset growth as
additional control in the vector B. This extension, however, produces multi-collinearity
effects inducing instable estimates. Therefore, a specification with leverage, size and netit
as the drivers of time variabilities of systemic risk betas turns out to be sufficient.
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5 Conclusions

The paper provides a framework for estimating bank-specific time-varying systemic risk
contributions and applies it to a comprehensive sample of large European banks. Our
measure of realized systemic risk takes into account both the individual riskiness of the
bank as well as degree of price comovement with the left tail of the financial system return
distribution, which we refer to as marginal systemic relevance. Unsurprisingly, we find
that at the height of the sovereign debt crisis banks from programme countries exhibit the
greatest degree of fragility. We also document that marginal systemic relevance increases
with size, leverage, and interconnectedness. Banks from programme countries also rank
highly in the distribution of realized systemic risk.

The systemic risk contributions are based on tail dependence networks that can be used
as monitoring tool and thus are an output of interest in its own right. We show that network
density varies as expected with the intensity of the financial crisis. We further document
that the fragmentation of the European financial system is reflected in a clustering of tail
dependence relationships at the country level and provide evidence that fragmentation
has peaked. Constructing the networks based on CDS spreads allow for a symmetric
treatment of banks and sovereign and to explicitly represent bank-sovereign interaction.
The tail dependence networks reveal a dramatic increase in the interdependence of banks
and sovereigns since the beginning of the financial crisis. While there is evidence that
bank-sovereign interaction has peaked it is still way above the levels observed before the
crisis.
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Appendix

Selection algorithm for relevant risk drivers

We adapt the data-driven procedure of Hautsch, Schaumburg, and Schienle (2014a) to
account for time-variation in tail risk networks and different types and scalings of poten-
tial risk drivers. Determination of relevant risk drivers R(i,t0) at the beginning of a year
t0 uses information of observations from the previous two years on a rolling window ba-
sis. Hence it is based on approximately τ = 500 observations Rt0−τ , . . . , Rt0−1, where
each Rt is a K-vector of centered observations of the potential regressors. The idea is to
use penalized quantile regression of LASSO-type for model selection and then reestimate
the obtained model for obtaining unbiased coefficients (see Belloni and Chernozhukov
(2011)). Due to the included sovereigns we modify the procedure in the post-LASSO
selection step into a weighted LASSO for quantiles by introducing data-driven weights
wi,t0k for different components Rt,k. We thus obtain an improved precision in the selection
step (see Wu and Liu (2009)).

The whole methodology works in 3 Steps for each institution i in the system at time
point t0:

Step 1: Determine the penalty parameter λi,t0 and the component specific weights wi,t0
from the data:

Step a) Take τ iid draws from U [0, 1] independent of Rt0−τ , . . . , Rt0−τ denoted as
U1, . . . , Uτ . Conditional on observations of R, calculate the corresponding
value of the random variable,

Λi,t0 = τ max
1≤k≤K

1

τ

∣∣∣∣∣
τ∑
t=1

Rt0−τ,k(q − I(Ut ≤ q))

σ̂k
√
q(1− q)

∣∣∣∣∣ .
Step b) Repeat step a) B=500 times generating the empirical distribution of Λi,t0

conditional on R through Λi,t0
1 , . . . ,Λi,t0

B . For a confidence level α ≤ 1/K in
the selection, set

λi,t0 = c ·Q(Λi,t0 , 1− α|Rt0−),

whereQ(Λi,t0 , 1−α|Rt0−) denotes the (1−α)-quantile of Λi,t0 givenRt0−τ , . . . , Rt0−τ
and c ≤ 2 is a constant. Choose α = 0.1 for optimal rates of the post-
penalization estimators as in Belloni and Chernozhukov (2011). Generate
λi,t0(c) for different parameter values c on an equidistant grid.

Step c) Run an unrestricted quantile regression to obtain weights wi for the penal-
ization

ᾰi,t0q = argminαi

1

τ

τ∑
t=1

ρq
(
X i
t0−t + αiRt0−t

)
. (8)

Set wi,t0k = |ᾰi,t0q,k |−γ with γ > 0. Generate wi,t0(γ) = (wi,t01 (γ), . . . , wi,t0K (γ))′

on an equidistant grid of different γ.
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Step 2: Run an l1-penalized quantile regression and calculate for each (λi,t0(c);wi,t0(γ))
on the pairwise grid (c, γ) of step 1,

α̃i,t0q = argminαi

1

τ

τ∑
t=1

ρq
(
X i
t0−t + αiRt0−t

)
+ λi,t0(c)

√
q(1− q)
τ

K∑
k=1

wi,t0k σ̂k|αik| ,

(9)
with the set of potentially relevant regressors Rt = (Rt,k)

K
k=1, componentwise vari-

ation σ̂2
k = 1

τ

∑τ
t=1(Rt0−t,k)

2 and the loss function ρq(u) = u(q− I(u < 0)), where
the indicator I(·) is 1 for u < 0 and zero otherwise.

Step 3: Drop all firms in R with absolute marginal effects |α̃i,t0(c, γ)| below a threshold
a = 0.0001 keeping only the K(i, t0) remaining relevant regressors R(i,t0)(c, γ).
Re-estimate the unrestricted model (9) without penalty only with the selected rel-
evant regressors R(i,t0)(c, γ). This regression yields the post-LASSO estimates
α̂i,t0q (c, γ). The final estimates are the ones which maximize the in-sample pre-
dictive ability of the resulting VaR specification jointly in c and γ. This is evalu-
ated according to a backtest criterion (see Berkowitz, Christoffersen, and Pelletier
(2011)).

Tables and Figures
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Table 1: Banks in the sample
ID Name Country

alb Allied Irish Banks ie
alp Alpha Bank gr
crg Banca Carige it
bnp BNP Paribas fr
bmp Monte dei Paschi it
bpe Bance Popolare dell’Emilia Romagna it
pmi Banca Popolare di Milano it
bpi Banco BPI pt
bbv BBVA es
bcp Banco Comercial Portugues pt
bpi Banco Popolare SC it
pop Banco Popular Espanol es
san Banco Santander es
sab Banco de Sabadell es
boc Bank of Cyprus cy
bkt Bankinter es
bar Barclays gb
cbk Commerzbank de
aca Credit Agricole fr
ccf Credit Industriel et Commerciale fr
dan Danske Bank dk
dbk Deutsche Bank de
dpb Deutsche Postbank de
dex Dexia be
eur EFG Eurobank gr
ebs Erste Group Bank at
esf Espirito Santo Financial Group pt
bki Bank of Ireland ie
hsb HSBC gb
ing ING nl
ipm Irish Life and Permanent ie
isp Intesa Sanpaolo it
kbc KBC be
beb Landesbank Berlin de
llo Lloyds gb
cpb Marfin cy
ete National Bank of Greece gr
knf Natixis fr
nda Nordea se
otp OTP Bank hu
tpe Piraeus gr
poh Pohjola fi
pko Powszechna Kasa pl
rbs Royal Bank of Scotland gb
seb SEB se
gle Societe Generale fr
sta Standard Chartered gb
shb Svenska Handelsbanken se
swe Swedbank se
ucg UniCredit it
ubi Unione di Banche Italiane it
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Table 2: Characteristics equity price networks
(1) (2)

Network Share of domestic
density linkages

2006 0.07 0.34
2007 0.07 0.37
2008 0.08 0.28
2009 0.06 0.47
2010 0.04 0.52
2011 0.05 0.45

The table shows how network density and the frag-
mentation as represented by the share of domes-
tic linkages evolve over time. The underlying net-
works do not penalize sovereign bond yields.

Table 3: Financial fragmentation
(1) (2)

Crisis Non-crisis
countries countries

2006 0.32 0.10
2007 0.35 0.17
2008 0.20 0.15
2009 0.45 0.25
2010 0.56 0.30
2011 0.44 0.17

The table presents the share of domestic linkages between
banks of a given country. In the case of AT, DK, FI, HU, NL,
and PL, there is just one bank in the sample so the quantity is
not defined. The column titled crisis refers to the simple av-
erage for a group of countries composed of CY, ES, GR, IE,
IT, and PT. Non-crisis countries refers to the average over all
other countries in the sample.
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Table 4: Characteristics CDS price networks
(1) (2) (3)

Network Share of domestic Share of sovereign
density linkages bank linkages

2006 0.13 0.22 0.01
2007 0.14 0.20 0.06
2008 0.18 0.20 0.10
2009 0.12 0.30 0.13
2010 0.17 0.32 0.21
2011 0.18 0.23 0.19

The table shows how network density, the fragementation as represented by the
share of domestic linkages, and sovereign bank interaction evolve over time. The
underlying networks penalize sovereign cds return to the same extent as banks cds
returns. The share of domestic linkages only takes into account connections between
banks.

Table 5: Sovereign interconnectedness
(1) (2)

Crisis Non-crisis
countries countries

2006 1.25 1.33
2007 4.25 4.86
2008 5.25 4.71
2009 5.75 5.29
2010 9.00 7.43
2011 7.00 5.00

The table presents the interconnectedness of sovereigns as rep-
resented by degree. The column titled crisis refers to the sim-
ple average for a group of countries composed of ES, IE, IT,
and PT. Non-crisis refers to the average over all other countries
in the sample.
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Table 6: Sovereign-bank interaction
(1) (2)

Crisis Non-crisis
countries countries

2006 0.00 0.25
2007 0.28 0.07
2008 0.19 0.20
2009 0.26 0.13
2010 0.35 0.24
2011 0.46 0.33

The table presents the share of linkages of a sovereign directed
at banks. The column titled crisis refers to the simple aver-
age for a group of countries composed of ES, IE, IT, and PT.
Non-crisis refers to the average over all other countries in the
sample.
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Table 7: Realized systemic risk: June 2012
Rank Bank name ID Country Realized beta β ˆV aR

1 Irish Life and Permanent ipm ie 0.0193 0.1345 0.1432
2 Bank of Cyprus boc cy 0.0136 0.2125 0.0639
3 National Bank of Greece ete gr 0.0131 0.1160 0.1129
4 Dexia dex be 0.0121 0.1583 0.0766
5 Alpha Bank alp gr 0.0100 0.1863 0.0539
6 Royal Bank of Scotland rbs gb 0.0095 0.2259 0.0423
7 Banca Carige crg it 0.0088 0.1059 0.0830
8 Barclays bar gb 0.0082 0.2557 0.0322
9 Marfin cpb cy 0.0075 0.1415 0.0530

10 Natixis knf fr 0.0073 0.2593 0.0281
11 OTP Bank otp hu 0.0072 0.2582 0.0279
12 KBC kbc be 0.0066 0.1355 0.0486
13 Bankinter bkt es 0.0063 0.1530 0.0411
14 Lloyds llo gb 0.0062 0.1741 0.0355
15 Piraeus tpe gr 0.0062 0.1416 0.0437
16 EFG Eurobank eur gr 0.0061 0.1399 0.0433
17 Bank of Ireland bki ie 0.0059 0.1624 0.0361
18 Bance Popolare dell’Emilia Romagna bpe it 0.0055 0.1528 0.0362
19 Commerzbank cbk de 0.0054 0.1532 0.0356
20 Credit Agricole aca fr 0.0053 0.2484 0.0214
21 Danske Bank dan dk 0.0049 0.2052 0.0236
22 Erste Group Bank ebs at 0.0049 0.2024 0.0241
23 Intesa Sanpaolo isp it 0.0049 0.1980 0.0247
24 Credit Industriel et Commerciale ccf fr 0.0046 0.2269 0.0202
25 Banco Santander san es 0.0044 0.2278 0.0193
26 Banco Comercial Portugues bcp pt 0.0042 0.0882 0.0472
27 UniCredit ucg it 0.0042 0.2134 0.0195
28 BBVA bbv es 0.0041 0.2498 0.0164
29 SEB seb se 0.0040 0.2319 0.0173
30 Monte dei Paschi bmp it 0.0039 0.0907 0.0435
31 ING ing nl 0.0039 0.1714 0.0229
32 Standard Chartered sta gb 0.0038 0.2003 0.0191
33 Deutsche Bank dbk de 0.0036 0.1696 0.0215
34 Societe Generale gle fr 0.0035 0.1687 0.0206
35 BNP Paribas bnp fr 0.0034 0.1766 0.0194
36 Banco Popular Espanol pop es 0.0034 0.1163 0.0288
37 Banco BPI bpi pt 0.0033 0.1226 0.0266
38 Unione di Banche Italiane ubi it 0.0029 0.1226 0.0238
39 Banco Popolare SC bpi it 0.0028 0.1207 0.0228
40 Allied Irish Banks alb ie 0.0027 0.0416 0.0646
41 Nordea nda se 0.0026 0.2133 0.0124
42 Pohjola poh fi 0.0026 0.1784 0.0145
43 Swedbank swe se 0.0026 0.1787 0.0145
44 Banca Popolare di Milano pmi it 0.0021 0.1014 0.0209
45 Deutsche Postbank dpb de 0.0020 0.1355 0.0150
46 HSBC hsb gb 0.0020 0.2330 0.0087
47 Banco de Sabadell sab es 0.0018 0.1425 0.0124
48 Svenska Handelsbanken shb se 0.0018 0.1985 0.0090
49 Powszechna Kasa pko pl 0.0015 0.1003 0.0146
50 Landesbank Berlin beb de 0.0012 0.1211 0.0100
51 Espirito Santo Financial Group esf pt 0.0007 0.0863 0.0077
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Table 8: Systemic risk betas and driving components: June 2012
Bank name β group Size Leverage Net

Banco Santander 0.2878 2 7.1572 16.8518 1.3863
HSBC 0.2850 2 7.5899 15.9292 1.0986
Natixis 0.2779 3 6.2299 26.1202 1.3863
Royal Bank of Scotland 0.2768 2 7.4282 19.0981 1.0986
BBVA 0.2729 3 6.3977 15.3705 1.0986
Barclays 0.2725 3 7.5333 29.0104 1.0986
OTP Bank 0.2679 1 3.5264 7.3755 1.7918
Credit Agricole 0.2657 3 7.4519 36.1905 1.0986
SEB 0.2595 3 5.5769 21.7143 1.0986
Credit Industriel et Commerciale 0.2553 3 5.4523 25.2925 1.0986
UniCredit 0.2522 2 6.8385 14.5713 0.6931
Nordea 0.2432 3 6.5425 25.9949 0.6931
Erste Group Bank 0.2388 3 5.3786 17.7028 0.6931
Standard Chartered 0.2383 2 6.1254 13.7613 0.6931
Danske Bank 0.2373 3 6.1540 28.4674 0.6931
Svenska Handelsbanken 0.2335 3 5.6288 26.9227 0.6931
Bank of Cyprus 0.2281 1 3.6547 15.1471 1.0986
Intesa Sanpaolo 0.2154 2 6.4810 12.4980 0.0000
Lloyds 0.2143 3 7.0558 21.4171 0.0000
Swedbank 0.2140 2 5.3662 19.1752 0.6931
BNP Paribas 0.2139 3 7.5834 28.0491 0.0000
ING 0.2112 3 7.1243 25.8275 0.0000
Alpha Bank 0.2108 1 4.0530 15.8155 1.0986
Societe Generale 0.2087 3 7.0850 28.3256 0.0000
Deutsche Bank 0.2065 3 7.6513 37.5956 0.0000
Dexia 0.2041 3 6.0229 21.4107 0.0000
Pohjola 0.1982 1 3.7527 17.0224 0.6931
Commerzbank 0.1962 3 6.5382 36.8333 0.0000
Bankinter 0.1865 2 4.1047 19.6879 0.6931
Deutsche Postbank 0.1852 3 5.3287 35.8836 0.0000
Banco de Sabadell 0.1807 1 4.6570 14.8263 1.0986
Bance Popolare dell’Emilia Romagna 0.1805 1 4.0969 16.1703 0.6931
Bank of Ireland 0.1760 2 5.0427 18.3763 0.0000
EFG Eurobank 0.1715 1 4.2985 2.1094 1.0986
Unione di Banche Italiane 0.1661 1 4.8791 12.7310 1.0986
Piraeus 0.1654 1 3.8606 3.3544 0.6931
Banco Popolare SC 0.1647 1 4.9048 12.6513 1.0986
Banco Popular Espanol 0.1635 1 5.0639 15.7241 1.0986
KBC 0.1598 2 5.6721 59.4140 0.6931
Marfin 0.1588 1 3.4617 15.3970 0.0000
National Bank of Greece 0.1553 1 4.6453 2.1094 1.0986
Banco BPI 0.1499 2 3.8012 39.6606 0.6931
Monte dei Paschi 0.1465 1 5.4412 15.9840 1.0986
Irish Life and Permanent 0.1441 2 4.2772 28.7822 0.0000
Banca Carige 0.1326 1 3.8607 11.6481 0.0000
Banca Popolare di Milano 0.1305 1 3.9705 13.1303 0.0000
Banco Comercial Portugues 0.1283 1 4.5221 24.7166 0.0000
Powszechna Kasa 0.1267 1 3.8250 7.9325 0.0000
Landesbank Berlin 0.1256 2 4.9002 49.8018 0.0000
Allied Irish Banks 0.0917 1 4.9174 15.7617 0.0000
Espirito Santo Financial Group 0.0842 2 4.4446 70.8370 0.0000
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