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In the framework of an interference setup in which
only two outcomes are possible (such as in the
case of a Mach–Zehnder interferometer), we dis-

cuss in a simple and pedagogical way the difference
between a standard, unitary quantum mechanical
evolution and the existence of a real collapse of the
wavefunction. This is a central and not-yet resolved
question of quantum mechanics and indeed of quan-
tum field theory as well. Moreover, we also present
the Elitzur–Vaidman bomb, the delayed choice exper-
iment, and the effect of decoherence. In the end, we
propose two simple experiments to visualize decoher-
ence and to test the role of an entangled particle.
Quanta 2014; 3: 156–170.

1 Introduction

Quantum mechanics is a well-established theoretical con-
struct, which passed countless and ingenious experimen-
tal tests [1]. Still, it is renowned that quantum mechanics
has some puzzling features [2–8]: are macroscopic distin-
guishable superpositions (Schrödinger-cat states) possible
or there is a limit of validity of quantum mechanics? Do
measurements imply a non-unitary (collapse-like) time
evolution or are they also part of a unitary evolution? In
the latter case, should we simply accept that the wave-
function splits in many branches (i.e., parallel worlds),
which decohere very fast and are thus independent from

each other? It is important to stress that these issues are
not only central in nonrelativistic quantum mechanics but
apply also in relativistic quantum field theory. Namely,
the generalization to quantized fields does not modify
the role of measurements. In this work we discuss in a
introductory way some of the questions mentioned above.
We study the quantum interference in an idealized two-
slit experiment and we analyze the effect that a detector
measuring “which path has been taken” has on the sys-
tem. In particular, we shall concentrate on the collapse of
the wavefunction, such as the one advocated by collapse
models [7–14] and show which are the implications of it.

Variants of our setup also lead us to the presentation of
the famous Elitzur–Vaidman bomb [15] and to delayed
choice experiments [16, 17]. Thus, we can describe in a
unified framework and with simple mathematical steps
(typical of a quantum mechanical course) concepts related
to modern issues and experiments of quantum mechanics.

Besides the pedagogical purposes of this work, we also
aim to propose two experiments (i) to see decoherence at
work in an interference setup with only two possible out-
comes and (ii) to test the dependence of the interference
on an idler entangled particle.
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2 Collapse vs no-collapse: no
difference?

2.1 Interference setup

We consider an interference setup as the one depicted in
Fig. 1. A particle P flies toward a barrier which contains
two ‘slits’ and then flies further to a screen S . Usually in
such a situation there is a superposition of waves which
generates on the screen S many maxima and minima.
We would like to avoid this unnecessary complication
here but still use the language of a double-slit experiment
in which a sum over paths is present. To this end, we
assume that the particle can hit the screen in two points
only, denoted as A and B. All the issues of quantum
mechanics can be studied in this simplified framework.
We assume also to ‘sit on’ the screen S : when the particle
hits A or B we ‘see’ it.

First, we consider the case in which only the left slit
is open, see Fig. 1a. In order to achieve our goal, the slit
is actually not a simple hole in the barrier (out of which
a spherical wave would emerge) but a more complicated
filter which projects the particle either to a straight tra-
jectory ending in A or to a straight trajectory ending in
B. In the language of quantum mechanics, this situation
amounts to a wavefunction |L〉 associated to the particle
which has gone through the left slit, which is assumed to
be

|L〉 =
1
√

2
(|A〉 − |B〉) . (1)

Then, by simply using the Born rule (i.e., by squaring
the coefficient multiplying |A〉 or |B〉), we predict that the
particle ends up either in the endpoint A with probability
50% or in the endpoint B with probability 50%. This is in-
deed what we measure by repeating the experiment many
times. As we see, the probability is a fundamental ingre-
dient of quantum mechanics, which however enters only
in the very last step, i.e. when the measurement comes
into the game. The state |L〉 is an equal (antisymmetric)
superposition of |A〉 and |B〉, but in a single experiment
we do not find a pale spot on A and a pale spot on B:
we always find the particle either fully in A or in B. It
is only after many repetitions of the experiment that we
realize that the outcome A and the outcome B are equally
probable.

If only the right slit is open, see Fig. 1b, we have a
similar situation in which only two trajectories ending in
A and in B are present. The wavefunction of the particle
after having gone through the right slit is denoted by |R〉
and is described by the orthogonal combination to |L〉:

|R〉 =
1
√

2
(|A〉 + |B〉) . (2)

A 50% B 50%

| |L A B〉 = 〉− 〉( )
2

|1

(a)

| |R A B〉 = 〉+ 〉( )
2

|1

A 50% B 50%
(b)

A 100% B 0%

(c)

| |〉 = 〉+ 〉A R L( )
2

|1

Double slit

Screen

Particle

Figure 1: Hypothetical experiment with only two possible out-
comes (A and B). Panel (a) only the left slit is open. Panel (b)
only the right slit is open. Note, each slit is not a simple hole
but acts as a filter which projects the particle either to a trajec-
tory with endpoint A or to a trajectory with endpoint B. Panel
(c) shows the experiment with both slits open: interference
takes place and all particles hit the screen in A.
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In this case one also finds the particle in 50% of cases in
A and 50% in B.

We now turn to the case in which both slits are open,
see Fig. 1c. The wave function of the particle is assumed
to be the sum of the contributions of the two slits:

|Ψ〉 =
1
√

2
(|L〉 + |R〉) , (3)

i.e. the contributions of both slits add coherently. A
simple calculation shows that

|Ψ〉 = |A〉 , (4)

which means that the particle P always hits the screen in
A and never in B. Namely, in A we have a constructive
interference, while in B we have a destructive interference.
(Notice that the points A and B are not equidistant from
the two slits. However, we take the two slits as being
close to each other and the points A and B as being far
from each other: the difference between the segments
LA and RA (and so between LB and RB) is assumed to
be negligible such that the two contributions of the wave
packet of the particle P from the left and right slit arrive
almost simultaneously and the depicted interference effect
takes place).

In conclusion, we have chosen the language of a two-
slit experiment because it is the most intuitive. The price
to pay is a slit acting as a filter and not as a simple hole.
However, one can easily build analogous setups as the
one here described by using photon polarizations, electron
spins or equivalent quantum objects, or by using a Mach–
Zehnder interferometer, see details in § 2.3.3.

2.2 Detector measuring the path

As a next step we put a detector D right after the two
open slits. D measures through which hole the particle
has passed, without destroying it. We analyze the situa-
tion in two ways: first, by assuming the collapse of the
wavefunction as induced by D and, second, by studying
the entanglement of the particle with the detector. Note,
we still assume that we sit on (or watch) the screen S
only, but we are not directly connected to the detector D.

2.2.1 Collapse

In this case we assume that the detector D generates a
collapse of the wavefunction. Suddenly after the interac-
tion with D, the state of the particle P collapses into |L〉
with a probability of 50% or into |R〉 with a probability of
50%. Then, the state is described by either |L〉 or |R〉, but
not any longer by the superposition of them. As a conse-
quence, we have in half of the cases a situation analogous

to having only the left slit open and in the other half to
having only the right slit open.

What we will then see on the screen S ? The probability
to find the particle in A is given by

P[A] = P[L, A] + P[R, A] =
1
2
·

1
2

+
1
2
·

1
2

=
1
2

(5)

where P[L, A] = 1/4 is the probability that the detector
D has measured the particle going through the left slit
and then the particle has hit the screen in A. Similarly,
P[R, A] = 1/4 is the probability that the detector D has
measured the particle going through the right slit before
the latter hits A. For P[B] holds a similar description

P[B] = P[L, B] + P[R, B] =
1
2
·

1
2

+
1
2
·

1
2

=
1
2

. (6)

The collapse is obviously part of the standard inter-
pretation of quantum mechanics, in which a detector is
treated as a classical object which induces the collapse
of the quantum state. As a result, there is no interference
on the screen S . As renowned, the standard interpretation
does not put any border between what is a classical sys-
tem and what is a quantum system. Nevertheless, one can
interpret the collapse postulate as an effective description
of a physical process. Namely, in theories with the col-
lapse of the wavefunction, the collapse is a real physical
phenomenon which takes place when one has a macro-
scopic displacement of the position wavefunction of the
detector (or, more generally, of the environment). In this
framework, somewhere in between the quantum world
and the classical macroscopic world, a new physical pro-
cess takes place which realizes the collapse: this could
be, for instance, the stochastic hit in the Ghirardi-Rimini-
Weber model [7,9,10] or the instability due to gravitation
in the Penrose-Diosi approach [8, 12, 13]. Neglecting de-
tails, the main point is that such collapse theories realize
physically the collapse which is postulated in the standard
interpretation and liberates it from inconsistencies. Still,
it is an open and well posed physical question if (at least
one of) such collapse theories are (is) correct.

2.2.2 No-collapse

In this case we do not assume that the detector D gener-
ates a collapse of the wavefunction, but we enlarge the
whole wave function of the system by including also the
wavefunction of the detector. We assume that, prior to
measurement, the detector is in the state |D0〉 (we can,
for definiteness, think of a old-fashion indicator which
points to 0). Then, when both slits are open, the state of
the whole system just after having passed through them
but not yet in contact with the detector D, is given by

|Ψ〉 =
1
√

2
(|L〉 + |R〉) |D0〉 . (7)
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Then, the particle-detector interaction induces a (we as-
sume very fast) time evolution which generates the fol-
lowing state:

|Ψ〉 =
1
√

2
(|L〉 |DL〉 + |R〉 |DR〉) , (8)

where |DL〉 (|DR〉) describes the pointer of the detector
pointing to the left (right). Thus, no collapse is here
taken into account, because the whole wavefunction still
includes a superposition of |L〉 and |R〉, which, however,
are now entangled with the detector states |DL〉 and |DR〉,
respectively.

An important point is that the overlap of |DL〉 and |DR〉

is small
〈DL|DR〉 ' 0, (9)

to a very good degree of accuracy. To show it, let us
ignore the rest of the detector and the environment and
concentrate on the pointer only, which is assumed to be
made of N atoms, where N is of the order of the Avogadro
constant. The atom α of the pointer is in a superposition
of the type

(
ψαL(~x) + ψαR(~x)

)
/
√

2, where ψαL(~x) (ψαR(~x)) is
the wavefunction of the atom when the pointer points to
the left (right). We have

〈DL|DR〉 =

N∏
α=1

∫
d3x

(
ψαL(~x)

)∗
ψαR(~x). (10)

The quantity
∫

d3x
(
ψαL(~x)

)∗
ψαR(~x) = λα is such that

|λα| < 1. For a large displacement, λα is itself a very
small number (small overlap), but the crucial point is to
observe that 〈DL|DR〉 is the product of many numbers
with modulus smaller then 1. Assuming that λα = λ for
each α (each atom gets a similar displacement: this as-
sumption is crude but surely sufficient for an estimate),
we get

〈DL|DR〉 ' λ
N , (11)

which is extremely small for large N. Even if we take
λ = 0.99 (which is indeed quite large and actually over-
estimates the overlap of the wave functions of an atom
belonging to macroscopic distinguishable configuration),
we obtain

〈DL|DR〉 ' 0.99NA ∼ 10−1021
(12)

which is tremendously small.
After having clarified the de facto orthogonality of |DL〉

and |DR〉, we rewrite the full wavefunction of the system
|S 〉 as

|Ψ〉 =
1
2

[|A〉 (|DR〉 + |DL〉) + |B〉 (|DR〉 − |DL〉)] . (13)

Then, the probability to find the particle P in A is obtained
(now by using the Born rule, because we are observing
the screen S ):

P[A] = P[L, A] + P[R, A] =
1
2
·

1
2

+
1
2
·

1
2

=
1
2

(14)

where P[L, A] = 1/4 is the probability that the system is
described by |A〉 |DL〉 and P[R, A] = 1/4 the probability
that it is described by |A〉 |DR〉. A similar situation holds
for P[B] = 1/2. Thus, also in this case the presence of D
causes the disappearance of interference.

The same result is obtained if we use the formalism of
the statistical operator, which is defined by ρ̂ = |Ψ〉 〈Ψ|

(see, for instance, Refs. [1, 7]). Upon tracing over the
detector states (environment states) the reduced statistical
operator reads (we use here 〈DL|DR〉 = 0):

ρ̂red = 〈DL |ρ̂|DL〉 + 〈DR |ρ̂|DR〉

=
(
|A〉 |B〉

) ( 1
2 0
0 1

2

) (
〈A|
〈B|

)
, (15)

where the diagonal elements represent p[A] = p[B] = 1/2
respectively, while the off-diagonal elements vanish in
virtue of the (for all practical purposes) orthogonality of
|DL〉 and |DR〉.

2.2.3 Summary

We find that, for us sitting on the screen S , the very same
outcome, i.e. the absence of interference, is obtained by
applying the collapse postulate as an intermediate step
due to the detector D or by considering the whole quan-
tum state (including the detector D) and by applying the
Born rule only in the very end. This equivalence holds
as long as the (anyhow very small) overlap of the de-
tector states of Eq. 12 is neglected (see also the related
discussion in § 3). The question is then: do we need the
collapse? The second calculation (no-collapse) seems to
answer us: ‘no, we don’t’. In this respect, one has a super-
position of macroscopic distinct states, which coexist and
are nothing else but the branches of the Everett’s many
worlds interpretation of quantum mechanics [18]. Thus,
assuming that no collapse takes place brings us quite nat-
urally to the many worlds interpretation [3,19–21]. (Orig-
inally, Everett [18] introduced the concept of ‘relative
state formulation’, which was reinterpreted as the many
worlds interpretation by Wheeler and Dewitt [19,20]. The
many worlds interpretation is the most natural interpre-
tation when no collapse is present, but the definition of
what is a ‘world’ is not trivial. Intuitively, it is a piece
of the wavefunction which is a pointer-state, i.e. it does
not contain spacial superpositions of macroscopic objects.
Other points of view, such as ‘many histories’ and ‘many
minds’ were also considered.)
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However, care is needed: in fact, the ‘no collapse’
assumption is a general statement and means also that
there is no collapse when the particle P hits the screen S
(where our own wavefunction is part of the game). Let us
clarify better this point by going back to the very first case
we have studied, in which only the left slit was open and
no detector D was present (Fig. 1a). The wavefunction
of the particle just before hitting the screen is given by
Eq. 1. But then, after the hit and assuming no collapse, the
whole wavefunction (including us, who are the observers)
reads:

|Ψ〉 =
1
√

2
|A〉

∣∣∣Screen recording A and we observing A
〉

−
1
√

2
|B〉

∣∣∣Screen recording B and we observing B
〉

.

(16)

The question is why the coefficient in front of the vector

|A〉
∣∣∣Screen recording A and we observing A

〉
tells us which is the subjective probability of observing A
for the observer (us) sitting on the screen. In other words,
how does the many worlds interpretation explain the prob-
abilities according to the Born rule? The Born rule seems
to be an additional postulate, which has to be put ad hoc
into it. This situation is however not satisfactory, because
the main idea of the many worlds interpretation is to
eliminate the collapse from the description of the quan-
tum mechanics and consequently to derive the standard
Born probabilities. Although there are attempts to show
that there is no need of postulating the Born rule in this
context [22–24] (see also Ref. [25]), no agreement has
been reached up to now [7, 26, 27]. (Notice that in the
case of Eq. 16 one could understand the many worlds
interpretation by noticing that there are two worlds, ergo
the subjective probability to be in one of those is 50% in
agreement with the Born rule. However, this is a partic-
ular case with equal coefficients. When the coefficients
in front of the kets are not 1/

√
2 (but say a and b with

|a|2 + |b|2 = 1) one still has two worlds but the subjective
probability to be in one of those is not 1/2, but the one
given by the Born rule (|a|2 and |b|2 respectively). This is
exactly the point discussed in Refs. [22–24, 26, 27] with,
however, different conclusions.) This is indeed an argu-
mentation in favor of the possibility that a collapse really
takes place. Surely, ‘real collapse’ scenarios deserve to
be studied theoretically and experimentally [7–9].

Note, up to now we did not mention the decoherence,
see e.g. Refs. [2, 28–32] and references therein. This is
possible because we have put a detector that makes a
measurement by evolving from the state |D0〉 into two
(almost) orthogonal states |DL〉 and |DR〉, but actually one

can interpret this fast change of the detector state as the
result of a decoherence phenomenon. This is however a
rather peculiar decoherence, because we have prepared
the detector in a particular (low entropic) |D0〉 state, which
is ‘ready to’ evolve into |DL〉 and |DR〉 as soon as it in-
teracts with the particle P. In § 3 we will describe what
changes when the environment, instead of the detector, is
taken into account.

2.3 Variants of the setup

2.3.1 The bomb

A simple change of the setup allows us to present the fa-
mous Elitzur–Vaidman bomb, first described in Ref. [15]
and then experimentally verified in Ref. [33]. We substi-
tute the detector with a ‘bomb’, which can be activated
by the particle P. We place the bomb only in front of the
left slit, see Fig. 2. This means that, if only the left slit is
open, the bomb explodes soon after the particle has gone
through the slit. If, instead, only the right slit is open,
it doesn’t explode. For definiteness and simplicity we
assume that the particle is not destroyed nor absorbed by
the bomb.

Just as previously, we can interpret the experiment
applying either the collapse or by studying the whole
wavefunction. In the collapse approach, the bomb simply
makes a measurement. When both slits are open the
wavefunction, before the interaction with the bomb, is
given by Eq. 3: we will have an explosion in 50% of cases
and no explosion in the remaining 50%. Notice that in the
second case the bomb is doing a null measurement. The
very fact that the bomb does not explode means that the
particle went to the right slit (we assume 100% efficiency
in our ideal experiment). When the bomb explodes there
is a collapse into |Ψ〉 = |L〉, when it does not explode there
is a collapse into |Ψ〉 = |R〉 . Then, we have a situation
which is very similar to the case of the detector D which
we have studied previously: no interference on the screen
S is observed, but we observe the particle in the endpoint
A and B with probability 1/2 each.

If we do not assume the collapse of the wavefunction,
the whole wavefunction is given by (after interaction with
the bomb)

|Ψ〉 =
1
√

2
(|L〉 |BE〉 + |R〉 |B0〉) (17)

=
1
2

[|A〉 (|B0〉 + |BE〉) + |B〉 (|B0〉 − |BE〉)]

where |B0〉 is the state describing the unexploded bomb
and |BE〉 the exploded one. Obviously, as in Eq. 12, we
have 〈BE |B0〉 ' 0. Again and just as before no inter-
ference is seen on S but the two outcomes A and B are
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A 50% B 50%

Bomb

Double slit

Screen

Particle

Figure 2: Variant of the Elitzur–Vaidman experiment: a bomb
is placed just after the left slit.

equiprobable. Clearly, no difference between assuming
the collapse or not is found, but the interesting fact is
that the non-explosion of the bomb is enough to destroy
interference. If, instead of the bomb we put a fake bomb
(referred to as the dud bomb, which has the very same
aspect of the real functioning bomb but does not interact
at all with the particle P), the wavefunction of the system
is given by

|Ψ〉 =
1
√

2
(|L〉 + |R〉)

∣∣∣Bdud
0

〉
= |A〉

∣∣∣Bdud
0

〉
(18)

where
∣∣∣Bdud

0

〉
describes the wavefunction of the dud bomb.

In this case, there is interference and the particle P always
ends up in A.

Then, the amusing part comes: if we do not know if the
bomb is a dud or not, we can (in some but not all cases)
find out by placing it in front of the left slit. If there is
no explosion and the particle ends up in B, we deduce for
sure that the bomb is real. Namely, this outcome is not
possible for a dud, see Eq. 18. Note, we have deduced
that the bomb is ‘good’ without making it explode (that
would be easy: just send the particle P toward the bomb,
if it goes ‘boom’ it was real). This situation occurs in 25%
of cases in which a functioning bomb is placed behind the
slit, see Eq. 17: we can immediately ‘save’ 25% of the
good bombs. Conversely, in 50% of cases the good bomb
simply explodes and we lose it (then, the particle P goes
to either A (25%) or to B (25%)). In the remaining 25%
the good bomb does not explode, but the particle P hits A.
Then, we simply do not know if the bomb is good or fake:
this situation is compatible with both hypotheses. We can,
however, repeat the experiment: in the end, we will be
able to save 1/4 +1/4 · 1/4 + ... = 1/3 of the functioning
bombs.

2.3.2 The idler particle and the delayed choice
experiment

Another interesting configuration is obtained by assuming
that a second entangled particle, denoted as I (for idler),
is emitted when P goes through the slit(s). The system is
built in the following way: if the particle P goes through
the left slit, the particle I is described by the state |IL〉.
Similarly, when the particle P goes to the right slit, the
particle I is described by the state |IR〉. We assume that the
two idler states are orthogonal: 〈IL|IR〉 = 0. This situation
resembles closely that of delayed choice experiments
[16, 17].

When both slits are open the whole wavefunction of
the system is given by

|Ψ〉 =
1
√

2
(|L〉 |IL〉 + |R〉 |IR〉)

=
1
√

2
(|A〉 |I+〉 + |B〉 |I−〉) , (19)

where
|I+〉 =

1
√

2
(|IR〉 + |IL〉) (20)

|I−〉 =
1
√

2
(|IR〉 − |IL〉) . (21)

The idler particle I is entangled with the particle P, but
being a microscopic object, we surely cannot apply the
collapse hypothesis because the particle I is not a measur-
ing apparatus.

Do we have interference on the screen S in this case?
The answer is clear: no. The states |A〉 |IL〉 , |A〉 |IR〉 ,

|B〉 |IL〉 , |B〉 |IR〉 represent a basis of this system, thus the
probability to obtain |A〉 (that is, the probability of P
hitting S in A) is 1/4 + 1/4 = 1/2. So for B. The presence
of the entangled idler state destroys the interference on S .

It is sometime stated that this result is a consequence
of the fact that the state of the idler particle I carries the
information of which way P has followed. For this reason,
the interference has disappeared (this is a modern refor-
mulation of the complementarity principle). However,
such expressions, although appealing, are often too vague
and need to be taken with care.

As a next step we study what happens if we perform a
measurement on the idler particle I. We study separately
two distinct types of measurements.

Measuring the idler particle in the |IL〉,|IR〉 basis

First, we perform a measurement which tells us if the state
of the idler particle is |IL〉 or |IR〉 . For simplicity, we apply
the collapse hypothesis (as usual, the results would not
change by keeping track of the whole unitary quantum
evolution). But first, we have to clarify the following
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issue: when do we perform the measurement on I? We
have two possibilities:

• If we measure the state of I before the particle S hits
the screen, the wavefunction reduces to |L〉 |IL〉 or
to |R〉 |IR〉 with 50% probability, respectively. Then,
the screen S performs a second measurement: we
find as usual 50% of times A (25% |A〉 |IL〉 and 25%
|A〉 |IR〉) and 50% of times B (25% |B〉 |IL〉 and 25%
|B〉 |IR〉).

• If, instead, the particle P arrives first on the screen
S , the quantum state collapses into |A〉 |I+〉 in 50%
of cases (A has clicked), or into |B〉 |I−〉 in the other
50% of cases (B has clicked). The subsequent mea-
surement of the I particle will then give |IL〉 or |IR〉

(50% each).

In conclusion, we realize that it is absolutely irrelevant
which experiment is done before the other. In particular,
for us sitting on the screen S , it does not matter at all when
and if the measurement of the idler state is performed.
We simply see no interference.

Measuring the idler particle in the |I+〉,|I−〉 basis

Being the particle P entangled with another particle and
not with a macroscopic state, we can also decide to per-
form a different kind of measurement on I. For instance,
we can put a detector measuring I by projecting onto the
basis |I+〉 and |I−〉. If we do this measurement before the
particle P has hit the screen S , we have the following
outcome as a consequence of the collapse induced by the
I-detector:

|Ψ〉 = |A〉 |I+〉 with probability 50%; (22)

|Ψ〉 = |B〉 |I−〉 with probability 50%. (23)

In the former case, the particle P will surely hit S in A,
in the latter case the particle P will surely hit S in B.

One sometimes interpret the experiment in the follow-
ing way: the detector measuring the state of I as being
either |I+〉 or |I−〉 ‘erases the which-way information’.
When the detector measures |I+〉 we still have interfer-
ence and we see the particle P in the position A, just as
the case with two open slits (Fig. 1). In the other case,
when the detector measures |I−〉, we also have a kind of
interference in which the final position B is the only out-
come. In the language of Ref. [16], one speaks of ‘fringes’
in the former case, and of ‘anti-fringes’ in the latter.

However, care is needed: for us sitting on S , if we
do not know which measurement is performed on I, we
simply see that no interference occurs (50%-A and 50%-
B). But, if we could then speak with a colleague working

with the I-detector, we would realize that, each time we
have measured A he has found the state |I+〉, while each
time we have measured B he has found |I−〉. Thus, we
have a correlation of our results (measurement of the
screen S ) with those of the I-detector. This is actually no
surprise if we look at the quantum state of Eq. 19. This
statement is indeed more precise than the statement of
having interference because we have erased the which-
way information. Namely, we do not have interference.

Indeed, we can perform the measurement of I even
after (in principle long time after) the screen S has mea-
sured P in either A or B. Here the name ‘delayed choice’
comes from: we choose if we retain the which-way infor-
mation or not. Still, the result is the same because there
is no influence on the time-ordering of the measurements.
If the measurement of the screen S occurs first, we have a
collapse onto the very same Eqs. 22 and 23. Then, a mea-
surement of the idler particle I would simply find either
|I+〉 correlated with A or |I−〉 correlated with B. For sure,
there is no change of the past by a measurement of the
idler state, but simply a correlation of states. Still, such
a very interesting setup visualizes many of the peculiari-
ties of quantum mechanics and can be used for quantum
cryptography.

2.3.3 Realizations of the setup

In a two-slit experiment all the peculiarities of quantum
mechanics are evident due to the fact that the particle
P follows (at least) two paths at the same time. This is
extremely fascinating as well as counterintuitive for our
imagination based on a childhood with rolling ‘classical’
marbles. However, as already mentioned in § 2.1, a sim-
ple implementation of the two-slit experiment does not
produce only two possible outcomes, but gives rise to a
superposition of waves with many maxima and minima.
In the following we present two possible realizations of
our Gedankenexperiment which do not make use of slits.

An interference experiment in which only two out-
comes are possible can be realized by using particles with
spin 1/2 (such as electrons in a Stern-Gerlach-type experi-
ment) or photons (spin 1, but due to gauge invariance only
two polarizations are realized). Clearly, all the quantum
mechanics features do not depend on which particle or
on which quantum number are implemented, but solely
on the presence of superpositions and on the effect of
measurements. In the case of photon polarizations we
can use the fact that a photon can be horizontally or ver-
tically polarized (corresponding to the kets |h〉 and |v〉
respectively). In our analogy, the state |h〉 corresponds to
the state of our particle P coming out from the left slit,
|h〉 ≡ |L〉 , and similarly |v〉 from the right slit, |v〉 ≡ |R〉 .
Then, we place a detector which acts as the screen S by
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Figure 3: The Mach–Zehnder interferometer. In analogy with the setup shown in Fig. 1, the case (a) corresponds to only the
left slit open, (b) to only the right slit open, (c) to both slits open. The interferometer paths are adjusted so that constructive
interference occurs at detector A and destructive interference occurs at detector B. M, mirror; BS, beam splitter; γ, photon.

making a measurement in the basis |A〉 = (|v〉 + |h〉)/
√

2
and |B〉 = (|v〉 − |h〉)/

√
2. In addition, we can place a

second detector which plays the role of the detector D
by measuring the polarization in the |h〉,|v〉 basis. Indeed,
in this case we do not need to send the photons along
two different paths, because the polarization degree of
freedom is enough for our purposes.

Another possible realization of our setup is the Mach–
Zehnder interferometer [34, 35], see Fig. 3, which makes
use of beam splitters. When a photon is sent to path |1〉
of Fig. 3a, both photon counters A and B can detect the
photon with a probability of 50%. For our analogy, we
have |1〉 ≡ |L〉. Similarly, when the photon is sent to
path |2〉 of Fig. 3b, we hear a click in A or in B with
50% probability. For the analogy: |2〉 ≡ |R〉. When
a beam splitter is put in the beginning of the setup as
shown in Fig. 3c, after the photon passes through, we
get a superposition (|1〉 + |2〉)/

√
2. The inclusion of the

detector D, the bomb, entangled particle(s) as well as the
environment can be easily carried out.

In the end, notice that Mach–Zehnder interferometers
can be constructed by using neutrons instead of photons.
The so-called neutron interferometers (see the recent re-
view paper [36] and references therein) can be very well
controlled and allow to experimentally study quantum
systems to a great level of accuracy.

3 Collapse vs no-collapse: there is
a difference

In this section we show that there is a difference between
the collapse and no-collapse scenarios. To this end, in-
stead of having a detector, a bomb, or an idler entangled
state, we assume that the space between the slits and the
screen is not the vacuum. Then, we study the time evolu-

tion of the environment which interacts with the particle
P. This interaction is assumed to be soft enough not to
absorb or kick away the particle in such a way that the
final outcomes on the screen S are still the endpoints A
or B.

Before the particle P goes through the slit(s), the en-
vironment is described by the state |E0〉. First, we study
the case in which only the left slit is open. Denoting as
t = 0 the time at which P passes through the left slit, the
wavefunction of the environment evolves as function of
time t as

|Ψ(t)〉 = |L〉 |EL(t)〉 , (24)

where by construction |EL(0)〉 = |E0〉. Similarly, if only
the right slit is open, at the time t the system is described
by |Ψ(t)〉 = |R〉 |ER(t)〉 with |ER(0)〉 = |E0〉.

We now turn to the case in which both slits are open. It
is important to stress that, by assuming a weak interaction
of the particle P with the environment, we surely do
not have (at first) a collapse of the wavefunction, but an
evolution of the whole quantum state given by

|Ψ(t)〉 =
1
√

2
(|L〉 |EL(t)〉 + |R〉 |ER(t)〉)

=
1
2

[|A〉 (|ER(t)〉 + |EL(t)〉) + |B〉 (|ER(t)〉 − |EL(t)〉)] .

(25)

This is indeed very similar to the detector case, but there
is a crucial aspect that we now take into consideration.
The state |EL(t)〉 and |ER(t)〉 coincide at t = 0 and then
smoothly depart from each other. At the time t we assume
to have

c(t) = 〈EL(t)|ER(t)〉 = e−λt. (26)

(where c(t) is taken to be real for simplicity). This is noth-
ing else than a gradual decoherence process. The states
of the environment entangled with |L〉 and |R〉 overlap
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less and less by the time passing. The constant λ de-
scribes the speed of the decoherence and depends on the
number of particles involved and the intensity of the in-
teraction. Note, strictly speaking, this non-orthogonality
is also present in the case of the detector (if no collapse
is assumed), but the overlap is amazingly small, see the
estimate in Eq. 12. (In the case of the detector D of § 2.2,
λ is very large and consequently λ−1 is a very short time
scale, shorter than any other time scale in that setup. For
that reason we assumed that the detector state evolved
for all practical purposes instantaneously from the ready-
state (pointer at 0) to pointing either to the left or to the
right.)

Now we ask the following question: what is the proba-
bility that the particle P hits the screen in A? We assume
that the particle P hits the screen at the time τ. At this
instant, the state is given by |Ψ(τ)〉 with 〈EL(τ)|ER(τ)〉 =

c(τ).
We now present the mathematical steps leading to

p[A, τ], which, although still simple, are a bit more dif-
ficult than the previous ones. The reader who is only
interested in the result can go directly to Eq. 31.

At the time τ we express the state |EL(τ)〉 as

|EL(τ)〉 = c(τ) |ER(τ)〉 +
∑
α

bα(τ)
∣∣∣Eα

R,⊥(τ)
〉

(27)

where the summation over α includes all states of
the environment which are orthogonal to |ER(τ)〉:〈
Eα

R,⊥(τ)|ER(τ)
〉

= 0. This expression is possible because
the set {ER(τ), Eα

R,⊥(τ)} represents an orthonormal basis
for the environment state. Its explicit expression will be
extremely complicated, but we do not need to specify it.
The normalization of the state |EL(τ)〉 implies that

|c(τ)|2 +
∑
α

|bα(τ)|2 = 1. (28)

Then, the state of the system at the instant τ is given by
the superposition

|Ψ(τ)〉 =
1
2

[1 + c(τ)] |A〉 |ER(τ)〉

+
1
2
|A〉

∑
α

bα(τ)
∣∣∣Eα

R,⊥(τ)
〉

+
1
2

[1 − c(τ)] |B〉 |ER(τ)〉

+
1
2
|B〉

∑
α

bα(τ)
∣∣∣Eα

R,⊥(τ)
〉

. (29)

At the time τ the probability of the particle P hitting A is
given by

p[A, τ] =
1
4
|1 + c(τ)|2 +

1
4

∑
α

|bα(τ)|2

=
1
4
|1 + c(τ)|2 +

1
4

(
1 − |c(τ)|2

)
, (30)

where in the last step we have used Eq. 28. A simple
calculation leads to

p[A, τ] =
1
2

+
1
2

c(τ) =
1
2

+
1
2

e−λτ. (31)

A similar calculation leads to the probability of the parti-
cle P hitting S in B as

p[B, τ] =
1
2
−

1
2

c(τ) =
1
2
−

1
2

e−λτ. (32)

We see that ‘a bit’ of interference is left (no matter how
large the time interval τ is):

p[A, τ] − p[B, τ] = e−λτ, (33)

showing that there is always an (eventually very slightly)
enhanced probability to see the particle in A rather than
in B.

Notice that the very same result is found by using the
reduced statistical operator

ρ̂red(τ) = 〈ER(τ) |ρ̂(τ)| ER(τ)〉

+
∑
α

〈
Eα

R,⊥(τ) |ρ̂(τ)| Eα
R,⊥(τ)

〉
=

(
|A〉 |B〉

) ( p[A, τ] c(τ)
c(τ) p[B, τ]

) (
〈A|
〈B|

)
(34)

where ρ̂(τ) = |Ψ(τ)〉 〈Ψ(τ)|. The diagonal elements are the
usual Born probabilities, while the non-diagonal elements
quantify the overlap of the two branches and become
very small for increasing time. (A related subject to the
quantum evolution described here is that of the weak
measurement, in which the ‘measurement’ is performed
by a weak interaction and thus a unitary evolution of
the whole system is taken into account, see the recent
review [37] and references therein.)

All these considerations do not require any collapse
of the wavefunction due to the environment (see also
Ref. [38]). Indeed, if we replace the environment with the
detector D of § 2.2 (which was nothing else than a partic-
ular environment), the whole discussion is still valid (but
see the comments on time scale after Eq. 26). The only
point when the Born rule enters is when we see the parti-
cle being either in A or in B, but as we commented pre-
viously in this no-collapse many worlds scenario, we do
not know why the Born rule applies [26,27]. In this sense,
decoherence alone is not a solution of the measurement
problem [39]. The wavefunction is still a superposition
of different and distinguishable macroscopic states. Still,
because of decoherence, these states (branches) become
almost orthogonal, thus decoherence is an important ele-
ment of the many worlds interpretation although it does
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Figure 4: The quantity p[A, τ] is plotted as function of τ. The
dashed line represents the prediction of the unitary evolution of
Eq. 25. The solid line represents the prediction of the collapse
hypothesis of Eq. 35: if the detection of the screen takes place
for τ larger than the critical value τ∗, the state has collapsed
to either A or B, therefore p[A, τ > τ∗] = 1/2. Note, we use
arbitrary units. The choice of τ∗ is also arbitrary and serves to
visualize the effect (it is expected to be much larger in reality).

not explain the emergence of probabilities. What do the-
ories with the collapse of the wavefunction predict? As
long as few particles of the environment are involved (i.e.,
at small times), for sure we do not have any collapse and
the entanglement in Eq. 25 is the correct description of
the system. Namely, we know that interference effects
occur for systems which contains about 1000 (and even
more) particles [40]. But, if we wait long enough we can
reach a critical number of particles at which the collapse
takes place. Thus, simplifying the discussion as much as
possible, according to collapse models there should be a
critical time-interval τ∗ at which the probability p[A, τ]
suddenly jumps to 1/2:

p[A, τ] =

 1
2 + 1

2 e−λτ for τ < τ∗;
1
2 for τ ≥ τ∗.

(35)

(In the presented example we vary the time of flight τ by
keeping all the rest unchanged, but the crucial point is the
number of particles involved. Alternatively, one could
change the density of the particles of the environment,
which induces a change of the parameter λ. In that case,
one would have a critical λ∗.) Indeed, such a sudden jump
is an oversimplification, but is enough for our purposes: it
shows that a new phenomenon, the collapse, takes place.
In Fig. 4 we show schematically the difference between
the ‘no-collapse’ and the ‘collapse’ cases. Obviously, if
τ∗ is very large, it becomes experimentally very difficult
to distinguish the two curves, but the qualitative difference
between them is clear.

In Ref. [41] the gradual appearance of decoherence due
to interaction of electrons with image charges has been

experimentally observed. This is analogous to our Eq. 31.
(For other decoherence experiment see Ref. [32] and ref-
erences therein.) Indeed, it would be very interesting to
study decoherence in a setup with only two outcomes, for
instance with the help of a Mach–Zehnder interferome-
ter or by using neutron interferometers. Namely, even if
the distinction between collapse/non-collapse is not yet
reachable [9], a clear demonstration of decoherence and
the experimental verification of Eq. 31 would be useful
on its own.

As a last step, we show that the behavior p[A, t] = 1/2
for all t ≥ τ∗ is a peculiarity of the collapse approach
which is impossible if only a unitary evolution is taken
into account. The proof makes use of the Hamiltonian
H of the whole system (particle+slits+environment), for
which we assume that 〈R |H| L〉 = 〈L |H|R〉 = 0, i.e. the
full Hamiltonian does not mix the states |L〉 and |R〉. (This
is indeed a quite general assumption for the type of prob-
lems that we study: once the particle has gone through
the left slit, its wavefunction is |L〉 and stays such (and
vice versa for |R〉). Similarly, in the example of a (photon
or neutron) Mach–Zehnder interferometer, after the first
beam-splitter the path is either the lower or the upper
and the whole Hamiltonian does not mix them.) It then
follows that:

|Ψ(t)〉 = e−ıHt 1
√

2
(|L〉 |E0〉 + |R〉 |E0〉)

=
1
√

2

(
|L〉 e−ıHLt |E0〉 + |R〉 e−ıHRt |E0〉

)
(36)

where we have expressed |EL(t)〉 = e−ıHLt |E0〉 and
|ER(t)〉 = e−ıHRt |E0〉 by introducing the Hamiltonians
HL = 〈L |H| L〉 and HR = 〈R |H|R〉 which act in the sub-
space of the environment. (These expressions hold be-
cause Hn |L〉 |E0〉 = |L〉Hn

L |E0〉 for each n). The overlap
c(t) defined in Eq. 26 can be formally expressed as

c(t) = 〈EL(t)|ER(t)〉 =
〈
E0

∣∣∣e−ı(HR−HL)t
∣∣∣ E0

〉
. (37)

The Hamiltonians HL and HR, as well as their difference
HR−HL, are Hermitian. For a finite number of degrees of
freedom of the system, the quantity c(t) shows a (almost)
periodic behavior and returns (very close) to the initial
value 1 in the so-called Poincaré duration time (which can
be very large for large systems). It is then excluded that
c(t) vanishes for t > τ∗. (At most, it can vanish for certain
discrete times, see § 4, but not continuously). Even in the
limit of an infinite number of states, the quantity c(t) does
not vanish but approaches smoothly zero for t → ∞.
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4 Entanglement with a
non-orthogonal idler state

As a last example, we design an ideal setup in which the
environment is represented again by a single particle, the
idler state (see § 2.3.2). However, we assume now that a
time-evolution of the idler state takes place

|Ψ(t)〉 =
1
√

2
(|L〉 |EL(t)〉 + |R〉 |ER(t)〉) , (38)

with the ‘environment’ states now expressed in terms of
the orthonormal idler-basis {|I1〉 , |I2〉}.

|EL(t)〉 = |I1〉 , (39)

|ER(t)〉 = cos(ωt) |I1〉 + sin(ωt) |I2〉 . (40)

Thus, while |EL(t)〉 = |I1〉 is a constant over time, we
assume that |ER(t)〉 rotates in the space spanned by |I1〉

and |I2〉 . Then, we can rewrite |Ψ(t)〉 as

|Ψ(t)〉 =
1
2
|A〉 [(1 + cos(ωt)) |I1〉 + sin(ωt) |I2〉]

+
1
2
|B〉 [(−1 + cos(ωt)) |I1〉 + sin(ωt) |I2〉] . (41)

The probability p[A, τ] is given by

p[A, τ] =
1
2

+
1
2

cos(ωτ) (42)

where τ is the time at which the particle P hits the screen.
In conclusion, in a real implementation of this simple

idea, it would be interesting to see the appearance and
the disappearance of interference (with both fringes and
antifringes) as function of the time of flight τ, see Fig. 5.
It should be however stressed that the full interaction
Hamiltonian does not act on the idler state alone. Indeed,
the corresponding Hamiltonian has the form

H = α(|R〉 |I1〉 〈R| 〈I2| + h.c.). (43)

This is indeed a quite peculiar type of interaction because
the idler state rotates only if the particle P is in the state
|R〉 (in the language of § 4, it means: HL = 0, HR =

α(|I1〉 〈I2|+ h.c.).). This implies that the spatial trajectory
of both states |I1〉 and |I2〉 must be the same, otherwise
the overlap 〈EL(t)|ER(t)〉 would be an extremely small
number and the effect that we have described would not
take place.

5 Conclusions

We have presented an ideal interference experiment in
which we have compared the unitary evolution and the
existence of a collapse of the wavefunction. We have
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Figure 5: Quantity p[A, τ] as function of τ in the case of en-
tanglement with an idler state according to Eq. 41.

analyzed the case in which a detector measures the which-
way information and we have shown that the collapse
postulate as well as the no-collapse unitary evolution lead
to the same outcome: the disappearance of interference
on the screen. In the unitary (no-collapse) evolution, this
is true only if the states of the detector are orthogonal.
This is surely a very good, but not exact, approximation.
It was then possible to describe within the very same
Gedankenexperiment two astonishing quantum phenom-
ena: the Elitzur–Vaidman bomb and the delayed-choice
experiment.

We have then turned to a description of the entangle-
ment with the environment. The phenomenon of decoher-
ence ensures that the interference smoothly disappears.
However, as long as the quantum evolution is unitary, it
never disappears completely. Conversely, the real col-
lapse of the wave function introduces a new kind of dy-
namics which is not part of the linear Schrödinger equa-
tion. While the details differ according to which model
is chosen [9], the main features are similar: a quantum
state in which one has a delocalized object (superposition
of ‘here’ and ‘there’) is not a stable configuration, but is
metastable and decays to a definite position (either ‘here’
or ‘there’). In conclusion, the collapse and the no-collapse
views are intrinsically different, as Fig. 4 shows. At a
fundamental level, the unitary (no-collapse) evolution
leads quite naturally to the many worlds interpretation
in which also detectors and observers are included in a
superposition. (For a different view see the Bohm inter-
pretation in which an equation describing the trajectories
of the particles is added [42, 43]. The positions are the
hidden variables of this approach. The Born rule is put in
from the very beginning. An extension of the Bohm in-
terpretation to the relativistic framework and to quantum
field theories is a difficult task, see Ref. [44] for a critical
analysis.)
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Even if the distinction between the collapse and the
no-collapse alternatives is probably still too difficult to
be detected at the moment, the demonstration of decoher-
ence in an experiment with two final states would be an
interesting outcome on its own (see the dashed curve in
Fig. 4). Also a situation in which an entangled particle
is emitted in such a way that an ‘oscillating interference’
takes place (see Fig. 5) might be an interesting possibility.

A further promising line of research to test the exis-
tence of the collapse of the wavefunction is the theoretical
and experimental study of unstable quantum systems. The
non-exponential behavior of the survival probability for
short times renders the so-called Zeno and Anti-Zeno
effects possible [45–54]: these are modifications of the
survival probability due to the effect of the measurement,
which have been experimentally observed [55,56]. The
measurement of an unstable system (for instance, the de-
tection of the decay products) can be modelled as a series
of ideal measurements in which the collapse of the wave-
function occurs, but can also be modelled through a uni-
tary evolution in which the wave function of the detector
is taken into account and no collapse takes place [57–60].
Then, if differences between these types of measurement
appear, one can test how a detector is performing a certain
measurement [61]. Quite remarkably, such effects are not
restricted to nonrelativistic quantum mechanics, but hold
practically unchanged also in the context of relativistic
quantum field theory [62–65] and are therefore applicable
in the realm of elementary particles.

In conclusion, quantum mechanics still awaits for bet-
ter understanding in the future. It is surely of primary
importance to test the validity of (unitary) standard quan-
tum mechanics for larger and heavier bodies. In this way
the new collapse dynamics, if existent, may be discov-
ered.
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