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Zussamenfassung

Die ab-initio Molekulardynamik-Methode ist eine der fundamentalsten Werkzeuge der

heutigen Festkörperphysik und unersetzbar für die Untersuchung der mikroskopischen

Eigenschaften von Materie. Das Ziel der ab-initio Molekulardynamik ist, die Zeitent-

wicklung von System aus wechselwirkenden Atomkernen und Elektronen zu beschrei-

ben. Allgemein kann die elektronische Bewegung relativistisch untersucht werden. Diese

Behandlung ist notwendig für die Beschreibung von schweren Elementen, wohingegen

wir in dieser Arbeit Materialien behandeln werden, in denen relativistische Effekte ver-

nachlässigbar sind.

Im ersten Kapitel geben wir einen allgemeinen Überblick über die Methode der nichtre-

lativistischen ab-initio Molekulardynamik. Unser Ausgangspunkt ist dabei die überaus

komplizierte Vielteilchen-Hamiltonfunktion, welche ein System von nichtrelativistischen

Atomkernen und Elektronen beschreibt, die über die Coulombkraft miteinander wechsel-

wirken. Mit Hilfe der Born-Oppenheimer-Näherung und weiteren adiabatischen Näherungen

können gewichtige Vereinfachungen des Problems erreicht werden. Entsprechend der Tat-

sache, dass Atomkerne eine um mindestens drei Größenordnungen höhere Masse als Elek-

tronen besitzen, kann man annehmen, dass die Elektronen instantan auf Änderungen

der Konfiguration der Atomkerne reagieren, wohingegen die Atomkerne selbst sich ent-

sprechend der klassischen Bewegungsgleichungen bewegen. Dies bedeutet, dass für die

elektronische Wellenfunktion die Position der Atome eine vergleichsweise einfache para-

metrische Abhängigkeit darstellt und damit eine Hamiltonfunktion konstruiert werden

kann, in der die Coulombwechselwirkung mit den Atomkernen nur als externes Poten-

tial eingeht. Wenn die resultierende effektive Schrödingergleichung für das elektronische

Problem gelöst wird, kann daraus ein effektives Coulombpotential berechnet werden, wel-

ches zusammen mit der interatomaren Coulombwechselwirkung die Kräfte auf die Atome

zugänglich und berechenbar macht. Mit dieser Methode wird das Ziel, die zeitliche Ent-

wicklung der atomaren Positionen und elektronischen Wellenfunktion zu beschreiben,

erreichbar.
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Das Problem, eine Lösung der Schrödingergleichung zu finden, bleibt damit weiterhin

bestehen. Ein bis heute sehr erfolgreicher Ansatz ist die Dichtefunktionaltheorie (DFT),

welche wir im zweiten Kapitel vorstellen werden. Wie bereits vorher bemerkt, geht in

der betrachteten effektiven Hamiltonfunktion die Wechselwirkung der Elektronen mit

den Atomkernen als ein externes Potential ein. Alle weiteren Terme sind universell, das

heißt sie hängen nicht von den spezifischen Eigenschaften des zu untersuchenden Mate-

rials ab. Als Konsequenz lässt sich daraus das Hohenberg-Kohn-Theorem formulieren,

welches besagt, dass das externe Potential eindeutig durch die elektronische Grundzu-

standsdichte bestimmt ist. Dies erlaubt es uns, alle Observablen als Funktionale der

Elektronendichte aufzufassen. Die Elektronendichte ist nur noch eine Funktion der drei

Ortskoordinaten, wodurch wir eine signifikante Vereinfachung gegenüber der elektroni-

schen Vielteilchenwellenfunktion erreichen, welche von 3N Variablen abhängt (wobei N

die Anzahl der Elektronen beschreibt). Eine weitere wichtige Vereinfachung lässt sich

durch eine Ein-Elektron-Parametrisierung der Elektronendichte erreichen, in der ein fik-

tives System von Elektronen nur durch ein effektives gemitteltes Feld wechselwirkt. Für

dieses System wird gefordert, dass es die gleiche Elektronendichte wie das ursprüngliche

reale System besitzt. Damit bildet man das eigentliche Problem des Findens der Elek-

tronendichte des Gesamtsystems auf das Lösen eines Eigenwertproblems einer effektiven

Ein-Elektron-Schrödingergleichung ab. Die resultierenden Gleichungen sind als Kohn-

Sham-Gleichungen bekannt, mit den zugehörigen Ein-Elektron-Wellenfunktionen, den

Kohn-Sham Orbitalen. Die größte Hürde der Dichtefunktionaltheorie ist dabei, dass die

genaue Form des Funktionals des effektiven gemittelten Feldes nicht bekannt ist, und

so gewisse Näherungen notwendigerweise erfolgen müssen. Trotz dieser Tatsache kann

die Dichtefunktionaltheorie in vielen System beachtliche Erfolge erzielen. Eine Ausnah-

me bilden dabei Systeme von stark korrelierten Materialien. Eisenbasierte Supraleiter

gehören zur Kategorie der weniger stark korrelierten Systeme, so dass sich auch mit der

DFT genaue Vorhersagen für diese Materialien treffen lassen.

Im dritten Kapitel widmen wir uns der konkreten Implementierung der DFT. Eine opti-

male numerische Leistung wird durch wählen einer möglichst kleinen Basis erreicht. Dies

ist allgemein ein schwieriges Problem, da die Forderung einer akkuraten Beschreibung

der Wellenfunktion in der interatomaren Region auf der einen Seite, sowie die Beschrei-

bung der lokalisierten Elektronen in Atomkernnähe auf der anderen Seite zueinander

komplementär sind. Ein weit verbreiteter Ansatz ist, den Raum in zwei Bereiche zu

unterteilen: Einmal in einen sogenannten Interstitialbereich zwischen den Atomen, und

einmal in einen sphärischen Bereich um die Atome selbst, wobei für jeden dieser zwei

Teilbereiche eine spezialisierte Basis gewählt wird. Eine Umsetzung dieser Idee ist die

Projektoren-erweiterte Wellenmethode, oder auch Projector Augmented Wave method

(PAW), welche für die meisten in dieser Arbeit gezeigten Rechnung verwendet wurde.



Die PAW Methode verwendet Operatoren, welche die elektronische Wellenfunktion in

eine glatte Pseudowellenfunktion transformieren, die wiederum effizient in einer Basis

von ebenen Wellen entwickelt werden kann. Diese Transformation wird erreicht durch

die Verwendung von Atom-ähnlichen Projektorfunktionen in der Atomkernregion. Es

ist auch möglich, eine Atom-ähnliche Basis im gesamten Raum zu verwenden, wie es

beispielsweise in der sogenannten vollen Potential- und lokalen Orbitalmethode, oder

auch Full Potential Local Orbital method (FPLO) realisiert wird. Diese Methode ist

die zweite, die in dieser Arbeit zur Anwendung kam und ist besonders geeignet für die

Konstruktion von projektiven Wannierfunktionen und stark gebundenen Modellen, wie

zum Beispiel in sogenannten Tight-Binding Modellen.

Die Simulation von Ausübung von Druck auf ein Material sowie das numerische Lösen

der Kohn-Sham-Gleichungen erfordert die Anwendung von Minimierungs- und Diago-

nalisierungsalgorithmen, welche wir im vierten Kapitel behandeln werden. Ein Diago-

nalisierungsproblem kann einerseits als ein Minimierungsproblem betrachtet werden,

andererseits kann auch mit Hilfe des Variationsprinzip ein Minimierungsproblem als

Diagonalisierungsproblem formuliert werden. Simulationen von hydrostatischem Druck

oder Strukturvorhersagen bei Nulldruck können durch eine Minimierung der Enthalpie

erreicht werden. Dies kann erfolgen durch Verwendung eines Minimierungsalgorithmus

wie der konjugierten Gradientenmethode oder anderer quasi-Newtonscher Methoden.

Die Ausübung von nichthydrostatischem Druck hingegen bedarf eines anderen Ansat-

zes. Für diesen Zweck haben wir eine Methode entwickelt, die auf einer Modifizierung

des schnellen Inertial-Relaxationsalgorithmus, oder auch Fast Inertial Relaxation Engi-

ne (FIRE), basiert. Der FIRE Algorithmus erreicht eine numerische Minimierung durch

Integration von Newton-ähnlichen Bewegungsgleichungen. Die Verwendung von Diffe-

rentialgleichungen zweiter Ordnung und daraus resultierenden inertialen Eigenschaften

macht diesen Algorithmus zu einer nichtlokalen Minimierungsmethode, da die Informa-

tion der Energielandschaft in den Geschwindigkeiten der betrachteten Teilchen codiert

ist. Daher kann FIRE lokale Minimierungsmethoden in komplizierten Energielandschaf-

ten übertreffen. Weiterhin konnten wir aufgrund der metadynamischen Eigenschaften

von FIRE den Algorithmus modifizieren und den Konfigurationsraum um die kristalli-

nen Freiheitsgrade erweitern. Dadurch erhielten wir Bewegungsgleichungen, mit denen

es möglich wurde, den Spannungstensor an die Einheitszelle des Kristalls zu koppeln.

Im fünften Kapitel werden wir die vorher diskutierten Methoden auf reale Systeme an-

wenden und unsere Ergebnisse der ab-initio Simulationen von druckinduzierten Effekten

in BaFe2As2 und CaFe2As2 diskutieren. Zuerst geben wir eine Einführung in die Struk-

tur und die phänomenologischen Eigenschaften von Eisenbasierten Supraleitern. Wir

konzentrieren uns dabei auf die 122-Familie von Eisenpniktiden, die insbesondere unter



Druck interessante Effekte aufweist. Die Eisenbasierten Supraleiter werden im Allgemei-

nen supraleitend unter Anwendung von externem Druck, wobei ein Übergang von einer

magnetisch geordneten orthorhombischen Phase hin zu einer tetragonalen nichtmagne-

tischen Phase zu beobachten ist. Eine besondere Eigenschaft der 122-Familie ist das

Auftreten einer kollabierten tetragonalen Phase, deren Einfluss auf die supraleitenden

Eigenschaften bisher nicht zufriedenstellend geklärt ist. Ebenso sind die exakten Druck-

bedingungen für die Supraleitung nicht ausreichend verstanden. Daher untersuchen wir

in dieser Arbeit auch uniaxialen Druck als weitere Möglichkeit, die Eigenschaften dieser

Systeme zu modifizieren. Dazu führen wir eine systematische Untersuchung durch, in

der wir hydrostatischen sowie uniaxialen Druck entlang der Kristallaxen a, b, c und

a + b auf die zu untersuchenden Systeme ausüben. Dabei werden unsere Resultate zei-

gen, dass uniaxialer Druck in c-Richtung den kritischen Druck für den Übergang von der

orthorhombischen zur tetragonalen Phase um eine Größenordnung in BaFe2As2 sowie

CaFe2As2 reduzieren kann. Weiterhin werden wir sehen, dass in BaFe2As2 eine weitere

tetragonale Phase vor dem Übergang in die kollabierte tetragonale Phase existiert. Im

Unterschied zur experimentellen Beobachtung finden wir in CaFe2As2 keine solche tetra-

gonale Phase. Der strukturelle Phasenübergang in die tetragonale Phase in BaFe2As2

wird begleitet von signifikanten Änderungen in der Fermifläche, wobei die Lochzylin-

der um den Γ-Punkt verschwinden und dadurch mögliche Cooperpaar-Streuungskanäle

zwischen Elektron- und Lochtaschen unterdrückt werden. Wir sehen, dass applizierter

Druck in der Ebene, kompressiv wie expansiv, keinen Übergang von der orthorhom-

bischen zur tetragonalen Phase herbeiführen kann. Stattdessen finden wir, dass Druck

in gleicher Ebene eine Vertauschung der ferromagnetischen und antiferromagnetischen

Richtungen zur Folge hat, was eine direkte Konsequenz der intrinsischen magnetoelasti-

schen Kopplung und des Drucks ist. Unsere Ergebnisse geben weiterhin Einsicht in den

Mechanismus der sogenannten Entzwilligung in der orthorhombischen Phase und treffen

Vorhersagen zum kritischen Druck bei dem eine Invertierung der Orthorhombizität in

Domänen stattfindet.

Das sechste Kapitel behandelt die Entfaltung der elektronischen Bandstruktur und deren

Anwendung auf Eisenbasierte Supraleiter. Dies ist insbesondere wichtig für Systeme in

denen die ursprüngliche Translationssymmetrie gebrochen ist und Superzellenrechnun-

gen notwendig werden. Die Analyse der resultierenden elektronischen Struktur wird so

durch Faltung der Brillouinzone erschwert. Um dieses Problem zu lösen haben wir eine

Methode zur Entfaltung der Bandstruktur basierend auf Gruppentheoretischen Prin-

zipien entwickelt. In dieser Herangehensweise bilden wir das Entfaltungsproblem auf

die irreduziblen Unterräume der Raumgruppe ab. Dieser Ansatz ermöglicht es uns, die

Punktgruppenoperationen auf der gleichen Basis wie Translationen zu behandeln und



so unter gewissen Bedingungen die Bandstruktur hinausgehend über reine Translations-

symmetrie zu entfalten. Diese Möglichkeit ist wichtig für Modellrechnungen, wo die Mini-

mierung des Konfigurationsraumes von großem Vorteil ist. Die projektiven Eigenschaften

dieser Methode erlauben eine anschauliche physikalische Erklärung des Entfaltens, da die

irreduziblen Unterräume orthogonal bezüglich jeder Observable sind, die der Symmetrie

der Raumgruppe entspricht. Zur Hilfestellung findet der Leser eine Einführung in das

Thema der irreduziblen Darstellungen von Raumgruppen im Anhang dieses Kapitels.

Weitere in diesem Zusammenhang wichtige Ergebnisse werden im siebten Kapitel vorge-

stellt, bei denen der Verfasser dieser Arbeit mit beteiligt war. Wichtige Resultate wurden

dabei bei der Untersuchung des gigantischen Volumenkollaps von MnS2 unter Druck er-

zielt, ebenso bei der Untersuchung der elektronischen Struktur in alkalidotiertem Picen.

In der Studie über MnS2, geleitet von S. Kimber, wurden ab-initio Simulationen unter

Druck durchgeführt und die relativen Stabilitätsregionen der konkurrierenden Hochspin-

und Niedrigspin-Phasen von MnS2 bestimmt, sowie mit Phononenrechnungen die Sta-

bilitäten der Struktur überprüft. Die Niedrigspin-Struktur bei hohem Druck von MnS2

wurde dabei als Arsenopyrit-artig und als ein effektiv valenzgebundener Festkörper iden-

tifiziert. Das fehlen metallischer Eigenschaften sowie das Vorhandensein von Valenzbin-

dungen lassen auf einen qualitativ neuen Mechanismus des Volumenkollaps in MnS2

schließen, mit wichtigen Konsequenzen für das Verständnis des äußeren Mantels der Er-

de. Im Falle von alkalidotiertem Picen konnten experimentell bisher nicht zugängliche

Kristallstrukturen untersucht werden. Aufgrund dieser Strukturen konnte durch Rech-

nungen von H. Lee basierend auf dynamischer Molekularfeldtheorie (DMFT) die experi-

mentellen Photoemissionsexperimente von A. Ruff in alkalidotiertem Picen erklärt, sowie

die Bedeutung der elektronischen Korrelationen in diesem System aufgezeigt werden.

Im achten und letzten Kapitel geben wir eine Zusammenfassung der Ergebnisse die-

ser Arbeit und einen Ausblick auf zukünftige Untersuchungen. Da die Überschätzung

des magnetischem Moments das zurzeit bedeutendste Problem bei der Simulation von

Eisenbasierten Supraleitern unter Druck darstellt, ist eine mögliche Verbesserung der

Dichtefunktionaltheorie durch eine Austauschfeld-Skalierung wünschenswert. Ein Erfolg

auf diesem Gebiet wäre von großem Vorteil insbesondere für die ab-initio Untersuchung

von dotierten Eisenpniktidsupraleitern. Studien dieser Art sind außerdem von besonderer

Bedeutung für das Verständnis von Störstellen in Eisenselenid-Verbindungen wie FeSe

oder KFe2Se2, sowie uniaxialer Spannung in Systemen von FeSe auf SrTiO3-Substraten,

in denen die höchsten kritischen Temperaturen Tc beobachtet wurden. Auch das Ent-

falten der Bandstruktur ist dabei bedeutsam, da Rechnungen mit großen Superzellen

notwendig sind. Die Generalisierung und Erweiterung dieser Methode über Inklusion

der magnetischen Symmetrien ist dabei sehr erstrebenswert, was zum Beispiel durch die

Hinzunahme der irreduziblen Repräsentationen von Shubnikovgruppen möglich ist.



Abstract

The ab-initio molecular dynamics framework has been the cornerstone of computational

solid state physics in the last few decades. Although it is already a mature field it is

still rapidly developing to accommodate the growth in solid state research as well as to

efficiently utilize the increase in computing power. Starting from the first principles,

the ab-initio molecular dynamics provides essential information about structural and

electronic properties of matter under various external conditions.

In this thesis we use the ab-initio molecular dynamics to study the behavior of BaFe2As2

and CaFe2As2 under the application of external pressure. BaFe2As2 and CaFe2As2

belong to the family of iron based superconductors which are a novel and promising

superconducting materials. The application of pressure is one of two key methods by

which electronic and structural properties of iron based superconductors can be modified,

the other one being doping (or chemical pressure). In particular, it has been noted that

pressure conditions have an important effect, but their exact role is not fully understood.

To better understand the effect of different pressure conditions we have performed a

series of ab-initio simulations of pressure application. In order to apply the pressure

with arbitrary stress tensor we have developed a method based on the Fast Inertial

Relaxation Engine, whereby the unit cell and the atomic positions are evolved according

to the metadynamical equations of motion.

We have found that the application of hydrostatic and c axis uniaxial pressure induces a

phase transition from the magnetically ordered orthorhombic phase to the non-magnetic

collapsed tetragonal phase in both BaFe2As2 and CaFe2As2. In the case of BaFe2As2,

an intermediate tetragonal non-magnetic tetragonal phase is observed in addition. Ap-

plication of the uniaxial pressure parallel to the c axis reduces the critical pressure of

the phase transition by an order of magnitude, in agreement with the experimental find-

ings. The in-plane pressure application did not result in transition to the non-magnetic

tetragonal phase and instead, rotation of the magnetic order direction could be observed.

This is discussed in the context of Ginzburg-Landau theory. We have also found that

the magnetostructural phase transition is accompanied by a change in the Fermi surface
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topology, whereby the hole cylinders centered around the Γ point disappear, restricting

the possible Cooper pair scattering channels in the tetragonal phase. Our calculations

also permit us to estimate the bulk moduli and the orthorhombic elastic constants of

BaFe2As2 and CaFe2As2.

To study the electronic structure in systems with broken translational symmetry, such

as doped iron based superconductors, it is necessary to develop a method to unfold

the complicated bandstructures arising from the supercell calculations. In this thesis

we present the unfolding method based on group theoretical techniques. We achieve

the unfolding by employing induced irreducible representations of space groups. The

unique feature of our method is that it treats the point group operations on an equal

footing with the translations. This permits us to unfold the bandstructures beyond the

limit of translation symmetry and also formulate the tight-binding models of reduced

dimensionality if certain conditions are met. Inclusion of point group operations in the

unfolding formalism allows us to reach important conclusions about the two versus one

iron picture in iron based superconductors.

And finally, we present the results of ab-initio structure prediction in the cases of giant

volume collapse in MnS2 and alkaline doped picene. In the case of MnS2, a previously

unobserved high pressure arsenopyrite structure of MnS2 is predicted and stability re-

gions for the two competing metastable phases under pressure are determined. In the

case of alkaline doped picene, crystal structures with different levels of doping were

predicted and used to study the role of electronic correlations.
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Preface

The main research topic of the thesis are structural and electronic effects of pressure

application in the iron pnictide family of superconductors. The particular question we

aimed to examine was the role of particular pressure conditions, or more precisely, what

is the difference between the application of hydrostatic and uniaxial pressure.

We concerned mainly two materials, BaFe2As2 and CaFe2As2, where application of pres-

sure, yields very prominent structural and electronic effects, one of the most remarkable

being manifested in the appearance of the so-called collapsed tetragonal phase.

To proceed with such a study, it is necessary to employ a number of methods and

theoretical concepts. In order to maintain conceptual simplicity and provide a reasonably

self-contained coverage of the performed research, the exposition of material in this thesis

is laid out linearly and every chapter builds on the exposition of the previous chapter,

while at the same time introducing the necessary information.

Since the general problematics of simulation of pressure application belongs to the realm

of the ab-initio molecular dynamics, the first half of this thesis introduces the topic. A

general overview of the formalism of ab-initio molecular dynamics is given in first chap-

ter. The formalism of ab-initio molecular dynamics reduces the immensely complicated

problem of the many-body interaction in the system composed of atomic nuclei and

their electrons into two loosely coupled, and thus, more manageable problems of the

nuclear and the electronic subsystems. Motion of atomic nuclei can be treated classi-

cally. However, atomic nuclei move in a potential arising from the internuclear Coulomb

interaction and the effective potential arising from the interaction with the electronic

subsystem.

In order to solve the equations of motion of atomic nuclei, it is necessary to solve the

quantum equations of motion of the electronic system first. This is achieved by the Den-

sity Functional Theory formalism which is outlined in the second chapter. Density Func-

tional Theory leverages one-to-one mapping between the many-body electronic ground

xiv
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state and the corresponding charge density. This allows for single electron parametriza-

tion of the many body electronic state which leads to immense simplification of the

computational requirements since it casts the many-body problem in the form of the

familiar single-electron Schrödinger equation.

Choice of the convenient basis is of paramount importance for numerically solving the

equations based on Density Functional Theory. All computational results presented in

this thesis use either Projector Augmented Wave basis or localized basis of the Full

Potential Local Orbital method which are described in the third chapter.

Once the basis is in place, all ingredients for solving the problem of the electronic motion

are set. To achieve the structure prediction at zero temperature it is necessary to opti-

mize positions of the atomic nuclei so that their interaction energy is minimized. This is

the objective of structure optimization methods which are described in the fourth chap-

ter. To simulate the application of hydrostatic pressure, methods like conjugate gradient

can be used. However, simulation of application of uniaxial pressure has required the

development of a new method. We have achieved that by modifying the metadynam-

ics of the Fast Inertial Relaxation Engine so that the equations of motion treat lattice

degrees of freedom on an equal footing with the atomic degrees of freedom.

With this achieved, we could perform the study of effects of pressure on BaFe2As2 and

CaFe2As2. We have simulated the effects of hydrostatic and uniaxial pressures along all

three crystallographic axes of the orthorhombic unit cell of BaFe2As2 and CaFe2As2 as

well as along the diagonal of the iron plane. Detailed analysis of structural and electronic

properties was performed for all optimized structures. A Ginzburg-Landau analysis of

the in-plane application of uniaxial pressure was performed in collaboration with Rafael

M. Fernandes. Results of this study, as well as short overview of basic properties of iron

based superconductors is given in the fifth chapter

In the analysis of the electronic structure it is very useful to be able to unfold the compli-

cated bandstructures obtained for systems where the original translational symmetry is

broken. This is why an original method to unfold the bandstructures and tight-binding

models was developed, based on group theoretical principles. The method is described

in the sixth chapter, and in order to facilitate the discussion of the unfolding method, a

brief overview of the necessary group theoretical concepts is given in the appendix.

Our pressure simulation method has proven itself very robust and apart from the cases

of BaFe2As2 and CaFe2As2 we also applied the method successfully to the study of the

giant volume collapse in MnS2 as well as to theoretical prediction of alkali doped picene

structures. In both cases important results were contributed to the main study and they

are outlined in the seventh chapter.
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Finally, all results are briefly summarized in the eighth chapter and a possible path

towards the future studies is outlined.



Chapter 1

Ab-initio Molecular Dynamics

The most important information that can be obtained from the microscopic modeling of

matter is through its structural and electronic behavior. These properties are the main

subject of this thesis, which has the study of the electronic and the structural properties

of the iron-pnictide materials as a principal goal.

At the microscopic level, the quantum treatment of matter is a highly complex prob-

lem with multitude of approaches, each describing certain aspects with varying levels of

success. A few of these different approaches can be roughly unified within the frame-

work of the Ab-Initio Molecular Dynamics which provides a set of approximation driven

principles allowing access to the most relevant electronic and structural properties [1, 2].

This is achieved by decoupling simpler, classical, structural equations from the highly

complex electronic equations. The structural properties are intimately tied to the spa-

tial distribution of the atomic nuclei interacting through the effective Coulomb potential.

This potential arises from the classical pairwise electrostatic interaction of nuclei and the

complex interaction of electrons driven by the laws of quantum mechanics. Of course,

the electronic problem still remains a highly complex issue.

This chapter is organized in the following way. First, the Hamiltonian of the many-body

problem is outlined and then the approximations needed to carry out the separation of

the equations of motion of the atomic nuclei and the electrons, namely the adiabatic and

the Born-Oppenheimer approximations, are developed. Finally, the classical treatment

of the equations of motion of atomic nuclei is made.

1
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1.1 Non-relativistic Many-Body Hamiltonian

Let us suppose that we have a solid consisting of N positively charged atomic nuclei

(ions) located at positions Rn and M electrons at positions rα, all interacting via the

Coulomb interaction only. Then, the Hamiltonian of such system is given by

Ĥ = T̂I + T̂E + V̂II + V̂IEe + V̂EE =

N∑
n=1

P̂
2
n

2Mn
+

M∑
α=1

p̂2
α

2m
+

e2

8πε0

N∑
n=1

N∑
m=1

ZnZm

|R̂n − R̂m|
−

e2

4πε0

N∑
n=1

M∑
α=1

Zn

|R̂n − r̂α|
+

e2

8πε0

M∑
α=1

M∑
β=1

1

|r̂α − r̂β|
(1.1)

where the terms are

• T̂I is kinetic energy operator of ions

• T̂E is kinetic energy operator of electrons

• V̂II is potential energy operator of ion-ion interaction

• V̂IE is potential energy operator of ion-electron interaction

• V̂EE is potential energy operator of electron-electron interaction

In the coordinate representation, momentum operators become derivative operators

P̂n = ∂Rn , p̂α = ∂rα (where ∂/∂x = ∂x), position operators become multiplicative

operators R̂n = Rn, r̂α = rα, and a state of the system is determined by a wavefunction

〈R, r|Ψ(t)〉 = Ψ(R, r, t), satysfying the Schrödinger equation

i~
∂

∂t
Ψ(R, r, t) = ĤΨ(R, r, t) (1.2)

where R and r denote totality of electronic and ionic positions. Equation (1.2) is a

non-linear differential equation for a function of 3N + 3M variables, describing all of

the ionic and electronic degrees of freedom. Since both N and M are of the order of

the Avogadro number NA ∼ 1023, the solution to eq. (1.2) becomes computationally

intractable.
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1.2 Adiabatic and Born-Oppenheimer Approximation

In order to reach a computationally practical method for solving eq. (1.2) a series of

approximations are required. We first consider the Born-Oppenheimer[3], and the adia-

batic approximations, which are used to decouple the motion of ions and electrons. The

reasoning behind the approximation is that ions are much more massive than electrons,

at least by three orders of magnitude. This means that the characteristic response time

of the electronic motion is smaller than the characteristic response time of the atomic

motion by the same order of magnitude. The consequence is that the electronic states

can be considered to instantaneously adapt to any given ionic configuration. We can

now show that the interactions between the electrons and the atomic nuclei are unable

to bring about transitions between the stationary electronic states, which is the final

requirement that needs to be fulfilled in order to decouple the ionic from the electronic

motion.

To proceed with this consideration, we factorize the solution to eq. (1.2) in the following

manner

Ψ(R, r, t) = 〈R, r|
∑
λ

|Ψλ(t)〉 = 〈R, r|
∑
λ

|Φλ(t)〉 ⊗ |ψλ〉 =
∑
λ

Φλ(R, t)ψλ(R, r) (1.3)

where ψλ(R, r) comprise the electronic wavefunction basis satisfying the Schrödinger

equation for the effective electronic Hamiltonian ĤE

ĤEψλ(R, r) = (T̂E + V̂IE + V̂EE)ψλ(R, r) = Eλ(R)ψλ(R, r) (1.4)

In other words, eq. (1.3) decomposes the full state into the sum of factorizable states,

where the electronic factor-state satisfies, eq. (1.4) (where dependency on the ionic

configuration is purely parametric), and the entire time dependence is held in the ionic

factor state. With this ansatz we can now proceed to find the Hamiltonian matrix ele-

ments

〈Ψ(t)|Ĥ|Ψ(t)〉 = 〈Ψ(t)|
[
T̂I + T̂E + V̂II + V̂IE + V̂EE

]
|Ψ(t)〉 =

〈Ψ(t)|
[
T̂I + V̂II + Eλ

]
|Ψ(t)〉 (1.5)

where we have used eq. (1.4) and the fact that T̂E acts only on |ψλ〉. Now, it is neces-

sary to evaluate the matrix elements of T̂I. However, some additional care needs to be
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taken, since T̂I acts both on the electronic and the ionic factor-states. In the coordinate

representation, the matrix elements become

〈Ψ(t)|T̂I|Ψ(t)〉 =

N∑
n=1

∑
κ

∑
λ

~2

2Mn

∫ ∫
dRdrΦκ(R, t)ψκ(R, r)

∂2

∂R2
n

[Φλ(R, t)ψλ(R, r)] (1.6)

where we have assumed the functions Φ and ψ to be real, since eq. (1.2) is real. When

derivatives in the integrand of eq. (1.6) are calculated, the matrix element of the ionic

kinetic energy is

〈Ψκ(t)|T̂I|Ψλ(t)〉 =

N∑
n=1

∑
κ

∑
λ

~2

2Mn

[∫
dRΦκ(R, t)

∂2

∂R2
n

Φλ(R, t)δκλ +∫
drψκ(R, r)

∂2

∂R2
n

ψλ(R, r)δκλ+

2

∫ ∫
dRdrΦκ(R, t)

[
∂

∂Rn
Φλ(R, t)

]
ψκ(R, r)

[
∂

∂Rn
ψλ(R, r)

]]
(1.7)

For the first and the second terms on the right hand side, we have employed the fact

that both the electronic and the ionic wave functions are orthonormal. Were it not for

the third term in the right hand side of eq. (1.7), the kinetic energy matrix would be

diagonal, and hence the Hamiltonian eq. (1.5) would be also diagonal, since all inter-

action terms are diagonal. This would mean, that if we prepare the system in the pure

state |Ψλ(t)〉 = |Φλ(t)〉 ⊗ |ψλ〉, it would remain in that state indefinitely. Also, we could

factorize the eq. (1.2) into separate equations for the electronic and the ionic states.

The electronic state would be determined by eq. (1.4) and the ionic state would be given

by the equation

i~
∂

∂t
|Φλ(t)〉 = Ĥ|Φλ(t)〉 =

(
T̂I + 〈ψλ|T̂I|ψλ〉+ V̂II + Eλ

)
|Φλ(t)〉 (1.8)

This result is known as the adiabatic approximation. The remaining question is, which

conditions are required so that the third term on the right-hand side of the eq. (1.7)

can be neglected.
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The third term, rewritten in the Dirac notation, is

I3 = 2
N∑
n=1

∑
κ

∑
λ

1

Mn
〈Φκ(t)|P̂n|Φλ(t)〉 · 〈ψκ|P̂n|ψλ〉

If I3 is much smaller than the difference between Eλ and Eκ, then the off-diagonal matrix

elements of the Hamiltonian will be too small to cause a transition between the states

|Ψλ〉 and |Ψκ〉, which means that the condition for the adiabatic approximation to hold is

1

M

∣∣∣〈Φκ(t)|P̂n|Φλ(t)〉 · 〈ψκ|P̂n|ψλ〉
∣∣∣� |Eλ − Eκ|

where M is a mass of the order of the typical ionic mass. If we assume the characteristic

frequency of the electronic motion caused by the interaction with the ions to be ωIE,

then we have that

m

M

∣∣∣∣ ~ωIE

Eλ − Eκ

∣∣∣∣� 1 (1.9)

Since the prefactor of m/M is always smaller than 5·10−4, the condition in eq. (1.9) will

hold unless electronic energy levels are very close. This can happen in some exceptional

cases, such as the case of Jahn-Teller systems. For metallic systems, where there is

no gap at the Fermi level, the adiabatic approximation is justified by the fact that the

relevant energy scale of a few eV is dictated by the plasmon excitations, which will

dominate any excitations produced by ionic interactions.

In summary, we have shown that in the large majority of cases, separation of the elec-

tronic and the ionic motion through the adiabatic approximation is justified and that,

electronic and ionic motions are dictated by the equations (1.4) and (1.8), respectively.

However, these equations are still not fully decoupled, since the electronic states enter the

ionic Schrödinger equation through diagonal matrix elements of the ionic kinetic energy.

Despite of this, these matrix elements, have been shown to contribute less than 0.5% to

the right hand side of the eq. (1.8) and can be omitted. The approximation in which

those matrix elements are dropped, is known as the Born-Oppenheimer approximation.

1.3 Classical Approximation of the Ionic Motion

Since atomic nuclei have a large mass, their thermal wavelength λT = ~(2MkBT )−1/2 is

very small. For Hydrogen at room temperature λT is around 0.2Å. Since internuclear
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distances are an order of magnitude larger, a quantum treatment of atomic nuclei is

unnecessary. The only exception is Hydrogen at very low temperatures.

We arrive at the classical approximation by taking the expectation values of the ionic

position and momentum operators at a given state |Ψλ〉, 〈R̂n〉λ and 〈P̂n〉λ and identi-

fying them as the values of the classical position and the momentum variables in that

state. The time evolution of the expectation values is given by the Ehrenfest theorem

i~
∂

∂t
〈R̂n〉λ = 〈[Ĥ, R̂n]〉λ

i~
∂

∂t
〈P̂n〉λ = 〈[Ĥ, P̂n]〉λ

The second equation gives the Newton’s equations of motion. The commutator of the

momentum and the Hamiltonian operator is given by

〈[Ĥ, P̂n]〉λ =

〈[
N∑
n=1

~2

2Mn

∂2

∂R2
n

+ V̂II + Eλ(R),−i~ ∂

∂Rn

]〉
λ

=

i~
∂

∂Rn

(〈
V̂II

〉
λ

+ Eλ

)
= i~

∂

∂Rn

〈
V̂II

〉
λ

+ i~
∂

∂Rn
〈ψλ|ĤE|ψλ〉 = i~

∂Ẽλ
∂Rn

where Ẽλ =
〈

V̂II

〉
λ

+ Eλ. As a consequence of the Born-Oppenheimer approxima-

tion, we can assume that the electronic state is always variational with respect to the

ionic configuration, since electrons always have enough time to assume a state which

minimizes the energy. Since this is the case, the Hellmann-Feynman theorem can be

employed to calculate the derivative of the expectation value of the electronic energy

∂Eλ
∂Rn

=

〈
ψλ

∣∣∣∣∣ ∂ĤE

∂Rn

∣∣∣∣∣ψλ
〉

Finally, if nλ are occupation numbers of states |ψλ〉, then the classical equations of mo-

tion for atomic nuclei are

∂Pn
∂t

=
∑
λ

nλ
∂Ẽλ
∂Rn

(1.10)

A special case of (1.10) is the structural optimization problem where ∂Pn/∂t = 0.

This means that, we need to find the ionic positions R∗n for which the total energy

Ẽ =
∑

λ nλẼλ is minimized, ie. ∂RnẼ
∣∣∣
R∗n

= 0. In other words, we need to find a stable

structure for a given chemical composition. This is one of the fundamental problems in
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ab-initio molecular dynamics and is also an essential part of this thesis. Some structural

optimization methods, which were important for our studies are described in (insert

section).

It is worth pointing out here that the electronic Schrödinger equation (1.4) can now be

written as

(
T̂ + V̂ + V̂Ext

)
|ψ〉 = E|ψ〉 (1.11)

where T̂ is the electronic kinetic energy, V̂ is the electron-electron interaction and V̂Ext is

the electron-ion interaction, here termed “external”. The reason for that nomenclature

is that, the electron-ion interaction is external to the electron system when considered

independently from the ions in the context of the Born-Oppenheimer approximation.

1.4 Summary

The purpose of this section was to briefly introduce the method of ab-initio molecular

dynamics. We have started with the many-body Hamiltonian (1.1) and the correspond-

ing Schrödinger equation (1.2) for the wavefunction of all atomic nuclei and electrons.

It was then shown that by employing the adiabatic and the Born-Oppenheimer approx-

imation, the wavefunction can be factorized into electronic and ionic wavefunctions.

The electronic wavefunction can be obtained by solving the effective electronic problem

(1.4), a highly nontrivial task, where the ionic configuration enters only as a parameter.

The electronic energy levels and states can then be plugged into the classical equation

of ionic motion (1.10), which can then be solved.



Chapter 2

Density Functional Theory

In the previous chapter, the method of ab-initio molecular dynamics was introduced.

We have seen how, knowing the electronic state, classical equations of motion of atomic

nuclei can be solved. However, the major problem of the electronic state is still unsolved.

Historically, there have been many approaches, but, arguably, the most successful one

is the Density Functional Theory.

The Density Functional Theory is based on the Hohenberg-Kohn theorems which state

that the electron density contains all of the information needed to calculate the energy of

the system. This vastly simplifies the problem since instead of solving for the wavefunc-

tion, which is a function of 3N variables, where N is the number of electrons, we have

to solve for the electron density which is a function of 3 variables and can be obtained

by cleverly employing single-electron approximations.

In this chapter we will start with the Hohenberg-Koh theorems since they are relatively

straight-forward and self-contained as a consequence of the variational principle. Then,

the non-relativistic electronic Hamiltonian will be introduced and the possibility of sin-

gle electron wafefunction parametrization of the many-electron state will be discussed,

leading to the introduction of the Kohn-Sham equations, as a way to conduct practical

computations. Finally, spin-polarized density functional theory will be outlined.

2.1 Hohenberg-Kohn Theorems

Since the early days of the quantum mechanics and the Thomas-Fermi model[4][5], it

was believed that the energy of the electrons described by eq. (1.11), depends only

on the electron density. This assertion was formally proved by the Hohenberg-Kohn

theorems[6].

8
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Let us repeat eq. (1.11) with the first two terms fully expanded. M∑
α=1

p̂2
α

2m
+

e2

4πε0

M∑
α=1

M∑
β=1

1

|r̂α − r̂β|
+ V̂Ext

 |ψ〉 = E|ψ〉

As stated previously, this equations determines the electronic state and the electronic en-

ergy levels. The first two terms are the electronic kinetic energy and the electron-electron

Coulomb interaction, while the third term is the electron-ion Coulomb interaction. The

first two terms are universal, that is, they will have the same form for every substance

under consideration. The third term is the only term that distinguishes different sub-

stances. It is therefore natural to assume that there is a correspondence between the

external potential and the electron density. Precisely this is the content of the first

Hohenberg-Kohn theorem

Theorem I The external potential is uniquely determined by the ground state electron

density up to an additive constant.

Proof Let us assume the opposite, namely, that there are two arbitrary external poten-

tials V̂1
Ext and V̂2

Ext with the same ground state electron density ρ. Let the states |ψ1〉
and |ψ2〉 be the ground states corresponding to these two external potentials. We have

then that the ground state energies are

E1
0 =

〈
ψ1
∣∣∣ Ĥ1

∣∣∣ψ1
〉

=
〈
ψ1
∣∣∣ T̂ + V̂ + V̂1

Ext

∣∣∣ψ1
〉

E2
0 =

〈
ψ2
∣∣∣ Ĥ2

∣∣∣ψ2
〉

=
〈
ψ2
∣∣∣ T̂ + V̂ + V̂2

Ext

∣∣∣ψ2
〉

According to the variational principle, the expectation value for Ĥ1 is minimal for the

ground state |ψ1〉 which means that

E1
0 <

〈
ψ2
∣∣∣ Ĥ1

∣∣∣ψ2
〉

=
〈
ψ2
∣∣∣ Ĥ2

∣∣∣ψ2
〉

+
〈
ψ2
∣∣∣ Ĥ1 − Ĥ2

∣∣∣ψ2
〉

=

E2
0 +

∫
drρ(r)[v1Ext(r)− v2Ext(r)] (2.1)

where v1Ext(r) and v2Ext(r) are the densities of the potential energy defined as

〈
ψi
∣∣∣ V̂i

Ext

∣∣∣ψi〉 =

∫
drρ(r)viExt(r)
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for i = 1, 2. We can now rewrite eq. (2.1) for the external potential V̂2
Ext and the

Hamiltonian Ĥ2 in the state |ψ1〉 which yields

E2
0 <

〈
ψ1
∣∣∣ Ĥ2

∣∣∣ψ1
〉

=
〈
ψ1
∣∣∣ Ĥ1

∣∣∣ψ1
〉

+
〈
ψ1
∣∣∣ Ĥ2 − Ĥ1

∣∣∣ψ1
〉

=

E1
0 +

∫
drρ(r)[v2Ext(r)− v1Ext(r)] (2.2)

If we sum eqs. (2.1) and (2.2) we arrive at

E1
0 + E2

0 < E1
0 + E2

0

which is a contradiction, impliying that the external potentials V̂1
Ext and V̂1

Ext have to

be identical.

A direct and very important consequence of the theorem is that the ground state |ψ〉 is

also uniquely determined by the electron density, since the Schrödinger equation (1.11)

is uniquely determined by the external potential.

Let us now introduce the notion of a functional. Broadly speaking, a functional is a

function that maps a function onto a number. It is a useful concept since our goal in

the Density Functional Theory is to express expectation values of all observables as a

functional of the electron density. For the single electron local observables it can be

done in the following manner

O[ρ] =
〈
ψ
∣∣∣ Ô ∣∣∣ψ〉 =

∫
drô(r)ρ(r) (2.3)

where ô(r) is the density of the variable Ô and the notation O[ρ] is used to specify that

the expectation value of the observable Ô is a functional of the electron density.

In the proof of the first theorem, we have used the fact that the energy is minimal in

the ground state. Whether the energy is minimal for the ground state electron density

is a separate question which is answered by the second Hohenberg-Kohn theorem.

Theorem II Let ρ̃(r) be an arbitrary electron density of N electrons. We can define

the energy functional ETrial as

ETrial[ρ̃] = F [ρ̃] +

∫
drvExt(r)ρ(r) (2.4)
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where the functional F is defined as

F [ρ̃] =
〈
ψρ̃

∣∣∣ T̂ + V̂EE

∣∣∣ψρ̃〉 (2.5)

where |ψρ̃〉 is the ground state corresponding to the electron density ρ̃. Let ρ be the

ground state density, so that E0 = ETrial[ρ]. We have then for every ρ̃ 6= ρ that

E0 < ETrial[ρ̃]

In other words, the energy functional is minimized for the ground state density.

Proof From the variational principle we have that

E0 =
〈
ψρ

∣∣∣ Ĥ ∣∣∣ψρ〉 ≤ 〈ψρ̃∣∣∣ Ĥ ∣∣∣ψρ̃〉 = ETrial[ρ̃]

which proves the theorem.

It is now possible to restate the variational principle in terms of the functionals of the

density. Variations of the energy functional ETrial, subject to the constraint of elec-

tron number conservation, must vanish when varying the electron density ρ around the

ground state density ρ0

δ

{
ETrial[ρ]− µ

(∫
drρ(r)−N

)}
= 0

where µ is the chemical potential, playing the role of the Lagrange multiplier for the

electron number constraint. Taking the functional derivative we obtain{
δETrial[ρ]

δρ
− µ

}
δρ =

{
vExt(r) +

δF [ρ]

δρ
+ µ

}
δρ = 0

where δρ = ρ− ρ0 are electron density variations. Since the variations δρ are arbitrary,

the term inside the bracket must be zero, which gives us the generalized Thomas-Fermi

equation

vExt(r) +
δF [ρ]

δρ
+ µ = 0 (2.6)

The only term that depends on electron density is the second term. Moreover, the
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second term depends only on the electron density since the functional F , as defined in

eq. (2.5), depends only on the electron density. This means, in principle, that this

equation can be solved for the density ρ. However, this is not practically feasible since

the form of the universal functional is unknown and only approximations are available.

2.2 General Form of The Density Functional

In eq. (2.3), the expectation value of the single-electron local observable is written with

the help of the electron density. This expression is a special case of the following equation

O = TrÔρ̂ = Tr

(∑
i

wiÔ|ψi〉〈ψi|
)

where ρ̂ is the density matrix in the mixed state with the weights wi corresponding to

the pure states |ψi〉. When the coordinate representation is employed, this expression

becomes

O =

∫
dr11..dr

1
Ndr22..dr

2
N Ô(r11, .., r

1
N ; r21, .., r

2
N )ρN (r21, .., r

2
N ; r11, .., r

1
N )

Since the electronic Hamiltonian ĤE contains only single and two-electron terms, we can

make some simplifications. Let us consider the two particle observable Ô2 whose matrix

elements are Ô2(r
1
1, r

1
2; r21, r

2
2). The expectation value is

O2 =

∫
dr11dr12dr21dr22Ô2(r

1
1, r

1
2; r21, r

2
2)

∫
dr13..dr

1
Ndr23..dr

2
NρN (r21, .., r

2
N ; r11, .., r

1
N ) =∫

dr11dr12dr21dr22Ô2(r
1
1, r

1
2; r21, r

2
2)ρ2(r

2
1, r

2
2; r11, r

1
2)

Here the two particle density matrix ρ2 is introduced

ρ2(r
1
1, r

1
2; r21, r

2
2) =

∫
dr13..dr

1
Ndr23..dr

2
NρN (r11, .., r

1
N ; r21, .., r

2
N )

If we proceed in the same manner for the single particle observable Ô1 we will arrive at

the result for the expectation value
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O1 =

∫
dr11dr21Ô1(r

1
1; r21)

∫
dr12..dr

1
Ndr22..dr

2
NρN (r21, .., r

2
N ; r11, .., r

1
N ) =∫

dr11dr21Ô1(r
1
1; r21)ρ1(r

2
12; r11)

where the single particle density matrix

ρ1(r
1
1; r21) =

∫
dr12..dr

1
Ndr22..dr

2
NρN (r11, .., r

1
N ; r21, .., r

2
N )

is introduced. We note here, that the diagonal elements of the single particle density

matrix are equal to the electron density ρ1(r; r) = ρ(r). Also, we can use the fact that

V̂Ext and V̂EE are diagonal in the coordinate representation allowing us to deal only with

the electron density ρ(r) and the diagonal elements of the two particle density matrix

ρ2(r1, r2) = ρ2(r1, r2; r1, r2) respectively.

We can now attempt to find the form of the energy functional E[ρ]. The electronic

kinetic energy expectation value is given by

T =

N∑
α=1

1

2m

∫
dr11dr21p̂

2
α(r11; r21)ρ1(r

2
1; r11) = − ~2

2m

∫
dr11

[
∂2

∂(r11)2
ρ1(r

1
1; r21)

]
r11=r

2
1

The expectation value of the external potential is obviously

VExt = − Ze
2

4πε0

N∑
n=1

∫
dr

ρ(r)

|Rn − r|

and finally, the expectation value of the electron-electron interaction is

VEE =
e2

8πε0

∫
dr1dr2

ρ2(r1, r2)

|r1 − r2|

The external potential is readily cast as a functional of the electron density. However,

the kinetic energy and the electron-electron interaction assume a more complicated form

from which the form of the density functional is not apparent.

We can express the two particle density ρ2 in terms of the electron density as ρ2(r1, r2) =

ρ(r1)ρ(r2)g(r1, r2). Here we have introduced the two particle correlation function g

which tells us how the electron density located at r1 affects the electron density located

at r2. Obviously, 0 < g(r1, r2) < 1 and we expect that g increases with the distance
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|r1− r2| and that it approaches unity as this distance goes to infinity since the electron

densities at r1 and r2 become independent for very large separations. Because of this,

it is useful to split the electron-electron interaction into two terms

VEE = V H
EE + V XC

EE =

e2

8πε0

∫
dr1dr2

ρ(r1)ρ(r2)

|r1 − r2|
+

e2

8πε0

∫
dr1dr2

ρ(r1)ρ(r2)

|r1 − r2|
[g(r1, r2)− 1]

The first term is known as the Hartree term and is dominant for large separations, while

the second term, known as the exchange-correlation term becomes important for small

separations. The Hartree term describes the system of uncorrelated electrons interact-

ing via the Coulomb interaction. It is straightforward to write it as a density functional

V H
EE[ρ] =

∫
drvH(r)ρ(r), where the vH(r) is

vH(r) =
e2

4πε0

∫
dr′

ρ(r′)

|r − r′|

Therefore, for systems where the electrons are weakly interacting, it is still possible to

obtain some sensible results without the inclusion of the exchange correlation term.

Without the exchange correlation term, electrons would not behave as Fermions since

there is nothing in the energy functional to enforce the Pauli exclusion principle. The

Pauli exclusion principle is enforced through the exchange interaction which is the main

contribution to the exchange-correlation term.

With only the exchange interaction, it would be forbidden for the electrons with the

same spins to occupy the same position, which means that g(r, r) = 1/2, because only

up to two electrons with different spins are allowed to be located at r. The effects of

the exchange interaction are equivalent to writing the many-electron state as a Slater

determinant

φ(r1, .., rN ) =

∣∣∣∣∣∣∣∣∣∣∣

ϕ1(r1) ϕ2(r1) . . . ϕN (r1)

ϕ1(r2) ϕ2(r2) .. ϕN (r2)
...

...
. . .

...

ϕ1(rN ) ϕ2(rN ) .. ϕN (rN )

∣∣∣∣∣∣∣∣∣∣∣
⊗

where ϕi(r) are the single electron basis states. This results in the fully antisymmetric

many-electron state which guarantees the Pauli exclusion principle. This is known as the
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Figure 2.1: Pair correlation function within different approximations [1].

Hartree-Fock approximation. Within this approximation, the pair correlation function

is bounded by 1/2 from below.

Figure 2.1 shows the schematic behavior of the pair correlation function g(r1, r2) as a

function of the separation r = |r1 − r2| within different approximations. In the Hartree

approximation g is constant and equal to unity. Within the Hartree-Fock approximation,

it goes down with distance, and reaches 1/2 for r = 0. And finally inclusion of the

correlations, reduces its value further.

2.3 Kohn-Sham Equations

In the previous section we have outlined the main obstacles one encounters when trying

to devise the energy functional. To make the Density Functional Theory a useful com-

putational tool, an ansatz was devised to circumvent the hard problem of the universal

functional[7]. The basic idea is to replace the interacting electrons described by eq.

(1.11), by a system of fictitious non-interacting electrons with identical density. In other

words, instead of considering the single many-body wavefunction ψ(r1, .., rN ), we have

to consider N single-electron wavefunctions φi(r) such that

ρ(r) = ψ∗(r1, .., rN )ψ(r2, .., rN ) =
N∑
i=1

φ∗i (r)φi(r)

With this ansatz, we can write the expectation value of the kinetic energy as T =
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TS + T − TS = TS + TXC, where the single-electron density kinetic energy TS was intro-

duced

TS =
N∑
i=1

~2

2m

∫
drφ∗i (r)∇2φi(r)

and the term TXC measures the deviation of the single electron kinetic energy from the

exact value. When we put this into the energy functional (2.4) we arrive at

E[φ] =

N∑
i=1

∫
dr

[
− ~2

2m
φ∗i (r)∇2φi(r) + |φi(r)|2vExt(r)

]
+ TXC[φ] + VEE[φ] =

N∑
i=1

∫
dr

{
− ~2

2m
φ∗i (r)∇2φi(r) + |φi(r)|2 [vExt(r) + vH(r)]

}
+ EXC[φ]

where we consider now the energy to be a functional of wavefunctions φi. Here, the

electron-electron interaction was split into the Hartree and the exchange-correlation

term, and then the exchange-correlation energy EXC = TXC +V XC
EE was introduced. Fol-

lowing the variational principle, we require that when varying φi in the ground state,

the variations of energy vanish. We also need to impose the condition that wavefunc-

tions φi are normalized to unity, in order to have the electron density normalized to

the number of electrons. Since the energy functional E[φ] contains both the wavefunc-

tions φi and their complex-conjugates, we can equally consider both the variations δφi

and δφ∗i . The choice is up to our convenience, since the resulting variational equations

will just be complex-conjugates of each other. We thus choose to vary φ∗i which results in

δE[φ∗] = δ

{
−

N∑
i=1

~2

2m

∫
dr
[
φ∗i (r)∇2φi(r) + |φi(r)|2(vH(r) + vExt(r))

]
+

EXC[φ] +

N∑
i=1

εi

(
1−

∫
dr|φi(r)|2

)}
=

N∑
i=1

{
− ~2

2m
∇2φi(r) + [vH(r) + vExt(r)]φi(r) +

δEXC[ρ]

δρ(r)
φi(r)− εiφi(r)

}
δφ∗i (r) = 0

Since variations δφ∗i are arbitrary and independent, the term within the brackets has to

vanish, resulting in[
− ~2

2m
∇2 + vH(r) + vExt(r) + VXC(r)

]
φi(r) = εiφi(r) (2.7)
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where VXC(r) = δEXC[ρ]/δρ(r) is the exchange-correlation potential. The equations

(2.7) are known as Kohn-Sham equations and they are the counterpart to the previously

mentioned Thomas-Fermi equation (2.6) . They have the form of the eigenproblem of

the Kohn-Sham Hamiltonian

ĤKSφi(ri) = εiφi(r) (2.8)

where

ĤKS = − ~2

2m
∇2 + vH(r) + vExt(r) + VXC(r)

The Kohn-Sham approach reduces the Density Functional approach to the familiar

single-electron stationary Schrödinger equation (2.7). It is tempting to try to inter-

pret the Lagrange multipliers εi as the energy levels and φi as the single electron or-

bitals. The DFT-Koopmans’ theorem [8] states that the first ionization energy of the

system of N electrons is I = −εHOMO, where εHOMO corresponds to the highest occupied

Kohn-Sham state φHOMO. This means that occupation of state φi can be considered

equivalent to the addition of one non-interacting electron into the orbital φi with the

energy εi. Owing to this statement, attribution of the physical significance to the φi and

εi is possible in the aforementioned sense, but one always has to bear in mind that the

single-electron picture of the Kohn-Sham approach is fundamentally incorrect and that

in general, for the many-body system, the concept of the orbital and its energy level, is

not well defined.

Up to this point, equations (2.7) are exact. The problem of the universal functional,

mentioned earlier, has been reduced to the exchange correlation potential. In order

to undertake any practical computation, some approximations for the VXC have to be

employed. The basic starting point is to assume that the exchange-correlation energy

functional EXC can be written as

EXC[ρ] =

∫
drεXC(ρ)ρ(r)

where εXC(ρ) is the local exchange-correlation energy density of the electron system of

the uniform electron density ρ. This is known as the local density approximation. The

resulting exchange-correlation potential is
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VXC(r) =
δEXC[ρ]

δρ(r)
= εXC(ρ(r)) + ρ(r)

∂εXC(ρ(r))

∂ρ(r)

The exchange contribution to εXC(ρ) is known[9] within the local density approximation.

To estimate the correlation contribution other many-body methods, such as Quantum

Monte Carlo methods can be employed.

The local density approximation performs well in the systems where variations of the

electron density are not too large. It results in more uniform electron density and, as

a consequence, overestimates the strength of the chemical bonding. To alleviate this

deficiencies, the more accurate Generalized Gradient Approximation can be used. With

Generalized Gradient Approximation, the exchange correlation energy is assumed to be

of the form

EXC[ρ] =

∫
dr {εXC(ρ)ρ(r) + fXC[ρ, |∇ρ|]}

where variations in the electron density are taken into account up to first order.

2.4 Spin-Polarized Density Functional Theory

It is apparent that in all of the previous considerations, the spin is nowhere to be found

explicitly. The main reason is that from the very beginning we have dealt with the non-

relativistic electron Hamiltonian, which is independent from the spin degrees of freedom.

If we want to introduce the spin into the equations we have to do so explicitly, either in

the electron density, or the Kohn-Sham wavefunctions.

In the context of the Density Functional Theory, this can be achieved by splitting the

electron density into spin-up and spin-down components ρ(r) = ρ↓(r) + ρ↑(r). In the

context of the Kohn-Sham equations, this means that the densities are

ρσ(r) =

N∑
i=1

|φi,σ(r)|2

where σ =↓, ↑. Instead of using ρσ it is more common to use total electron density ρ(r)

and the magnetization density m(r) = ρ↑(r) − ρ↓(r). The only alteration that needs

to be made to the Kohn-Sham equations is to take into account that they are two-

component, and that the exchange correlation potential depends on both the electron

density and the magnetization density.
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This kind of formulation assumes that all electrons have the same spin quantization

axis which means that non-collinear magnetism cannot be treated. For a full three-

dimensional formulation, it is necessary to employ the spinor representation of the den-

sity defined as

ραβ(r) =
1

2
ρ(r) +

1

2

∑
i

mi(r)σiαβ

where i = x, y, z are Cartesian components, mi are the components of the three-

dimensional magnetization and σ̂i are Pauli matrices. Indices α and β enumerate spinor

components.

2.5 Self-consistent Cycle

The non-relativistic Density Functional Theory framework is now complete. We have

the Kohn-Sham equations (2.7) and we have assumed some approximate form of the

exchange-correlation potential VXC(r). The remaining question is how to solve the

Kohn-Sham equations since in the Kohn-Sham eigenproblem (2.8), the Hamiltonian

ĤKS depends on its eigenvectors through dependence on the electron density.

This issue can be resolved by using some initial assumption for the wavefunctions φ0i

and then calculating the Hamiltonian Ĥ0
KS. This Hamiltonian is then diagonalized,

and a new set of wavefunctions φ1i and eigenvalues ε1i is obtained. The Hamiltonian

Ĥ1
KS is computed from φ1i and the cycle is repeated until the wavefunctions φni and the

eigenvalues εni stop changing appreciably from one step of the cycle to the next one.

This is schematically shown on figure 2.2. However, there is no way to guarantee that

given any set of initial wavefunctions φ0i , the self-consistent cycle is going to converge.

2.6 Summary

In this chapter an overview of Density Functional Theory was given. Starting from the

Hohenberg-Kohn theorems and their notion that the electron density as the variable

that uniquely determines the external potential acting on the many-electron system, the

energy expectation value was expressed as a density functional.

Further examination of the energy functional shows that the kinetic energy functional

and the exchange-correlation part of the electron-electron interaction functional have
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Assume initial wavefunctions and 
calculate the initial Hamiltonian 

φ i
0
→ĤKS

0

Solve the eigenproblem of the 
Hamiltonain
ĤKS
n

→εi
n+1 ,φi

n+1

Check for convergence

∣εin+1−εi
n∣<Δε

∣φi
n+1

−φi
n∣<Δ φ

Not converged. Update the 
Hamiltonian
φ i
n+1

→ ĤKS
n+1

Converged. Terminate the cycle.

Figure 2.2: Schematic outline of the basic self-consistent cycle

highly non-trivial form. In order to work around this difficulty, the electron density was

parametrized in terms of a fictitious system of non-interacting electrons, allowing us to

write explicitly most of the terms in the energy functional. Everything that remained

unknown was consolidated into the exchange correlation potential.

Owing to the single-electron parametrization, and by making use of the variational

principle, the problem of the energy functional miminzation can be cast into a familiar

form of the eigenproblem of the effective single-electron Hamiltonian. As a result, we are

left with a solution in terms of eigenfunctions and eigenvalues which can be interpreted

as single-electron orbitals and corresponding energy levels.

And finally, a practical use of this approach can be made by self-consistently solving the

Kohn-Sham equations.



Chapter 3

Basis for Solving the Kohn-Sham

Equations

In order to practically solve the Kohn-Sham equations it is necessary to specify a set

of basis states. Let the basis set be composed of states |i〉, where i = 1, .., N . The

Kohn-Sham Hamiltonian is then represented by the following matrix

ĤKS =



〈
1
∣∣∣ ĤKS

∣∣∣1〉 〈
1
∣∣∣ ĤKS

∣∣∣2〉 . . .
〈

1
∣∣∣ ĤKS

∣∣∣N〉〈
2
∣∣∣ ĤKS

∣∣∣1〉 〈
2
∣∣∣ ĤKS

∣∣∣2〉 . . .
〈

2
∣∣∣ ĤKS

∣∣∣N〉
...

...
. . .

...〈
N
∣∣∣ ĤKS

∣∣∣1〉 〈
N
∣∣∣ ĤKS

∣∣∣2〉 . . .
〈
N
∣∣∣ ĤKS

∣∣∣N〉


The solutions to the Kohn-Sham equations are then given by eigenvalues and eigenvec-

tors of this matrix.

The choice of the appropriate basis is dictated by numerical convenience of application

to the particular problem, especially trying to keep N as small as possible.

In this context, we can consider two types of basis states. The first type uses localized

orbitals, such as Gaussians or atomic-like orbitals, and is commonly used for molecules.

The second major group uses extended wavefunctions, most frequently plane waves, and

is commonly used for periodic systems. The major problem with the second approach is

that the extended basis is ill suited in the vicinity of atomic nuclei, because expansion

of rapidly oscillating wavefunctions, close to the nuclei, requires large number of slowly

oscillating extended basis wavefunctions. This requires the use of large basis sets, which

in turn necessitates diagonalization of large matrices.

21
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Interstitial region

Core region

Figure 3.1: Schematic view of space subdivision into interstitial and core regions.
The core region is composed of non-overlapping atom-centered spheres

There are various ways to solve this problem. The usual one is to divide the com-

putational volume into an interstitial region, further away from the nuclei, and the

non-overlapping spherical core regions close to the nuclei (Figure 3.1) and then treat

those regions separately in their respective most convenient computational fashions.

This subdivision is the basis of the Projector Augmented Wave method which will be

presented here and which was used for most of the calculations performed in this thesis.

A good description of electrons in crystals can also be obtained with a careful use of

localized basis, as in the Full Potential Local Orbital method, which will also be outlined.

One of the benefits of this method is that it affords simple access to localized properties

as well as a straightforward construction of projective Wannier functions. Tis will be

shown at the end of the chapter.

3.1 Projector Augmented Wave Method

The Projector Augmented Wave[10] method is a generalization of the earlier Pseudopo-

tential method. The basic idea is to decompose the wavefunction, in this context called

the all-electron wavefunction, into a smooth component, called the pseudo-wavefunction,

which is identical to the all-electron wavefunction in the interstitial region and atomic-

like wavefunction corrections in the core region, called augmentation sphere.

|ψ〉 = |ψ̃〉+ |ψ〉 − |ψ̃〉 (3.1)

This decomposition is graphically shown in Figure 3.2 which shows the all-electron
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ψ

ψ̃

ψ−ψ̃

Figure 3.2: Panel a) shows all electron wavefunction ψ. Panel b) shows pseudo-
wavefunction ψ̃ and panel c) shows the difference ψ − ψ̃.

wavefuntion ψ in the vicinity of two atoms. Pseudo-wavefunction ψ̃ is chosen in such a

way that it is identical to ψ in the interstitial region. What is left as a difference in the

augmentation sphere ψ − ψ̃ looks like orbitals of two isolated atoms.

Because the difference ψ−ψ̃ is different from zero only within the augmentation spheres,

eq. (3.1) can be written as

|ψ〉 = |ψ̃〉+
∑
a

(|ψa〉 − |ψ̃a〉) (3.2)

where |ψa〉 and |ψ̃a〉 represent wavefunctions in the core region a and the sum runs over

all augmentation spheres. An operator T̂ , can be defined based on (3.2) as

|ψ〉 = T̂ |ψ̃〉 =

(
1 +

∑
a

T̂ a
)
|ψ̃〉 (3.3)

The operators T̂ a have no effect outside of their respective augmentation spheres. The

Kohn-Sham equations

ĤKS|ψi〉 = εi|ψi〉

can now be written as

T̂ †ĤKST̂ |ψ̃〉 = εT̂ †T̂ |ψ̃〉
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If we introduce the pseudo-Hamiltonian ˆ̃HKS = T̂ †ĤKST̂ and the overlap Ŝ = T̂ †T̂ , the

Kohn-Sham equations take the form of a generalized eigenproblem

ˆ̃HKS|ψ̃〉 = εŜ|ψ̃〉

where the matrix representing the pseudo-Hamiltonan ˆ̃HKS is much smaller than the one

representing ĤKS.

The task at hand is to find a general form for the transformation operators T̂ a. To do

so, within the augmentation sphere, we expand the all-electron wavefunction into partial

wavefunctions φai and then define the corresponding partial waves φ̃ai as

|φai 〉 = (1 + T̂ a)|φ̃ai 〉

If we assume that partial wavefunctions form a complete basis within the augmentation

sphere, we can write

|ψ̃a〉 =
∑
i

P ai |φ̃ai 〉 (3.4)

For the all-electron partial wavefunctions, expansion with the same coefficients hold,

since

|ψa〉 = T̂ |ψ̃a〉 = T̂
∑
i

P ai |φ̃ai 〉 =
∑
i

P ai |φai 〉

We can now define the smooth projector wavefunctions |p̃ai 〉 such that

P ai = 〈p̃ai |ψ̃a〉 (3.5)

However, this has to be consistent with the expansion (3.4), implying that projector

wavefunctions have to satisfy the following conditions

∑
i

|φ̃ai 〉〈p̃ai | = 1

〈p̃ai |φ̃aj 〉 = δij

(3.6)
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The first condition is obtained directly from eq. (3.4) when the projector definition (6.3)

is inserted in place of P ai . The second condition is also obtained directly from (3.4) by

requiring consistency in the limiting case when |ψ̃a〉 → |φ̃ai 〉. It can be shown[10] that,

given a set of linearly independent functions |fai 〉, the most general form of the projector

satisfying (3.6) is given by

|p̃ai 〉 =
∑
j

[
F̂−1

]
ij
|faj 〉

where F̂ is a matrix whose elements are given by

[
F̂
]
ij

= 〈fai |φ̃aj 〉

Thus, given any set of conveniently chosen functions fi, it is possible to obtain projec-

tors. Since we require projectors to be localized within the augmentation spheres, the

functions fi are chosen to be localized too.

We can now find the general form of the operator T̂ . From eq. (3.1) it follows that

T̂ a|φ̃ai 〉 = |φai 〉 − |φ̃ai 〉

while from eq. (3.6) it follows that

T̂ a =
∑
i

T̂ a|φ̃ai 〉〈p̃ai |

By combining these two relations we conclude that

T̂ = 1 +
∑
a

T̂ a = 1 +
∑
a

∑
i

(|φai 〉 − |φ̃ai 〉)〈p̃ai | (3.7)

In this way, the transformation operator T̂ is expressed in terms of all-electron partial

wavefunctions |φai 〉, partial pseudo wavefunctions |φ̃ai 〉 and the projectors |p̃ai 〉. The

projectors are subject to the conditions (3.6) and the all-electron and partial pseudo

wavefunctions have to form a complete basis set within their respective augmentation

sphere. All other remaining freedoms in choice are used to make computations converge

as quick as possible.

For the all-electron partial waves, one usually chooses the solutions of the Schrödinger
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equation of an isolated atom, while partial pseudo wavefunctions are chosen as any

smooth continuation of all-electron wavefunctions into the augmentation sphere since

they are identical by construction on the outside. For this purpose, Bessel functions,

Gaussians or even polynomials of even power can be used[11].

3.2 Full Potential Local Orbital Method

The Full Potential Local Orbital method[12] solves the Kohn-Sham equations by employ-

ing a basis consisting of non-orthogonal overlapping atomic-like orbitals. Such orbitals

can be constructed and manipulated in a computationally effective manner.

Let us consider a Bravais lattice composed of unit cells located at Rn with the basis

sα.The periodic crystal potential can be decomposed into a lattice sum of local non-

spherical contributions

V (r) =
∑
nαL

VαL(|r −Rn − sα|)YL(r −Rn − sα) (3.8)

where L = (l,m) is the composite angular momentum index denoting the angular mo-

mentum and its projection onto the quantization axis. This expansion is truncated at

an angular momentum Lmax and it can be shown[12] that the potential (3.8) converges

to the correct periodic potential with increasing Lmax.

Localized atomic-like basis is composed of the states

〈r|n, α, L〉 = ψlα(|r −Rn − sα|)YL(r −Rn − sα) (3.9)

which are a solution to the Schrödinger equation with the spherically symmetric potential

V at
α (r) =

1

4π

∫
dΩV (r −Rn − sα) +

r

r0

4
(3.10)

which is composed of the spherically averaged crystal potential around the site Rn + sα

and the confining potential contained in the second term. The unit cell index n is

dropped here since the potential will be the same for any other site Rm + sα because of

the translation symmetry. The role of the confining potential is to compress the atomic

orbitals. Compressed atomic orbitals are higher in energy and more convenient for for-

mation of the extended states. And finally, the extended states are given by the Bloch

sum
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|k, i〉 =
∑
nαL

eik·(Rn+sα)CkiLα|n, α, L〉 (3.11)

Matrix elements of the Kohn-Sham equation Ĥ|k, i〉 = εki|k, i〉 are then given by

∑
nβM

(〈
0, α, L

∣∣∣ Ĥ ∣∣∣n, β,M〉− 〈0, α, L|n, β,M〉εki)CkiβMeik·(Rn+sα−sβ) = 0 (3.12)

where translational invariance of scalar products and matrix elements was used. The

Hamiltonian and overlap matrix elements can be read from (3.12) as

HLM
n,αβ =

〈
0, α, L

∣∣∣ Ĥ ∣∣∣n, β,M〉
SLMn,αβ = 〈0, α, L|n, β,M〉

The matrix form of eq. (3.12) is

(Ĥ− ŜÊ)Ĉ = 0 (3.13)

where Ĉ is a matrix whose elements are coefficients CkiβM and Ê is diagonal matrix with

eigenvalues εki on the diagonal.

Localized atomic orbitals can be classified as core and valence orbitals, |n, α, Lc〉 and

|n, α, Lv〉 respectively. The core orbitals are highly localized and are effectively under

the influence of the spherically averaged potential (3.10), while the valence orbitals

are affected by the full potential (3.8). Because the core orbitals are solution of the

Schrödinger equation with the spherically symmetric potential, they will be orthonor-

mal, and additionally they will be eigenstates of the Bloch Hamiltonian

〈n, α, Lc|m,β,Mc〉 = δnmδαβδLcMc (3.14)

Ĥ|n, α, Lc〉 = εαLc |n, α, Lc〉 (3.15)

With this distinction the overlap matrix becomes

Ŝ =

[
Ŝcc Ŝcv

Ŝvc Ŝvv

]
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where the matrix elements of the sub-blocks are given by

[
Ŝcc

]LcMc

n,αβ
= 〈0, α, Lc|n, β,Mc〉 = δ0nδαβδLcMc[

Ŝcv

]LcMv

n,αβ
= 〈0, α, Lc|n, β,Mv〉 =

[
Ŝ†vc

]LvMc

n,αβ[
Ŝvv

]LvMv

n,αβ
= 〈0, α, Lv|n, β,Mv〉

Core state properties (3.14) also simplify the form of the Hamiltonian, since the Ĥcc

block will be diagonal

[
Ĥcc

]LcMc

n,αβ
= δ0nδαβδLcMcεαLc (3.16)

and the Ĥcv block can be written as

[
Ĥcv

]LcMv

n,αβ
=
〈

0, α, Lc

∣∣∣ Ĥ ∣∣∣n, β,Mv

〉
=∑

mγNc

〈
0, α, Lc

∣∣∣ Ĥ ∣∣∣m, γ,Nc

〉
〈m, γ,Nc|n, β,Mv〉 =

∑
mγNc

[
Ĥcc

]LcNc
m,βγ

[
Ŝcv

]NcMv

n−m,γβ
= ĤccŜcv

resulting in the Hamiltonian

Ĥ =

[
Ĥcc ĤccŜcv

ŜvcĤcc Ĥvv

]
(3.17)

where

[
Ĥvv

]LvMv

n,αβ
=
〈

0, α, Lv

∣∣∣ Ĥ ∣∣∣n, β,Mv

〉
Because the Ŝcc block of the overlap matrix is the unit matrix, Cholesky decomposition

of Ŝ can be performed

Ŝ = ŜlŜr =

[
1 0

Ŝrvc Ŝlvv

][
1 Ŝrcv

0 Ŝrvv

]
(3.18)



DFT 29

with its inverse given by

Ŝ−1 =
(

Ŝr
)−1 (

Ŝl
)−1

=

1 −Ŝcv

(
Ŝrvv

)−1
0

(
Ŝrvv

)−1
 1 0

−
(

Ŝlvv

)−1
Ŝvc

(
Ŝlvv

)−1
 (3.19)

By employing decomposition (3.18), the Kohn-Sham equations (3.13) become

(Ŝl)−1Ĥ(Ŝr)−1D̂ = D̂Ê

where D̂ = ŜrĈ, or in other words D̂ is the matrix diagonalizing the matrix Ĥp =

(Ŝl)−1Ĥ(Ŝr)−1. Since the c− c block of the matrix Ĥp is already diagonal it follows that

D̂cc = 1. In addition to that, following from (3.17) and (3.19) the c − v block of Ĥp

is equal to zero, meaning that the Cholesky decomposition of eq. (3.13) is actually

reduced to

(
Ŝlvv

)−1 (
Ĥ− ŜvcĤccŜcv

)(
Ŝrvv

)−1
D̂vv = D̂vvÊv

Thus the dimensionality of the eigenproblem (3.13) is reduced only to the dimensionality

of the valence subspace. The wavefunction coefficient matrix Ĉ can then be obtained

from D̂ as Ĉ = (Ŝr)−1D̂.

3.2.1 Projective Wannier Functions

When dealing with periodic systems, density-functional theory methods employ Bloch

wavefunctions to represent the extended states. However, for localized properties, such as

bonding information or synthesis of tight-binding models, localized states are preferred.

Such states come in form of Wannier functions and since the Full Potential Local Orbital

method is utilizing localized atomic-like basis to represent Bloch states, it is particularly

well-suited for Wannier function computations.

Given a Bloch state |k, i〉, a Wannier function centered in the unit cell located at posi-

tion R, can be defined as

|W ;R, µ〉 =

∫
dk
∑
i

e−ik·RiUkiµ|k, i〉

where Ukiµ are elements of a unitary matrix Ûk. Because of unitarity, different choices of
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Ûk will yield physically equivalent Wannier functions. The freedom of choice of Ûk can

be used to specify Wannier functions according to a given property, such as maximal

localization or a specific projective character. Bloch states |k, i〉 are given by (3.11) and

the matrix Ûk is given by

Ûkiµ = 〈µ|k, i〉wµ(εki) (3.20)

where |µ〉 is a projector state which is a linear combination of localized basis states

(3.9), and wµ(ε) is an energy window, defined to be

wµ(ε) =


1, εmin

µ < ε < εmax
µ

g(∆εµ, ε− εmin
µ ), ε < εmin

µ

g(∆εµ, ε
max
µ − ε), εmax

µ < ε

where g(∆ε, ε − ε0) is a Gaussian of width ∆ε centered around ε0. This means that

Wannier function is specifed by its projective character µ and the energy window wµ.

This practically means, that Wannier functions, whose Bloch sum, reproduces the Kohn-

Sham eigenstate with eigenvalues within the specified energy window, of a given atomic

character can be extracted from the ab-initio calculation. This procedure is well defined

only when matrix Ûk as defined in (3.20) is unitary, which means that entire projective

character µ must be located within the specified energy window.

Hamiltonian representation in the Wannier basis can now be obtained. Let the Bloch

sum of Wannier functions be

|W ;k, µ〉 =
∑
i

Ukiµ|k, i〉 =
1√
N

∑
R

eik·R|W ;R, µ〉

where N is the number of lattice sites. Expectation value of the Hamiltonian is

〈
W ;k, µ

∣∣∣ Ĥ ∣∣∣W ;k, ν
〉

=
∑
ij

Uk∗iµ U
k
jν

〈
k, i
∣∣∣ Ĥ ∣∣∣k, j〉 =

∑
i

Uk∗iµ U
k
iνεki

Fourier transforming this expression, we arrive at the Hamiltonian matrix elements

tµν(R) =
〈
W ;0, µ

∣∣∣ Ĥ ∣∣∣W ;R, ν
〉

=

∫
dke−ik·R

∑
i

Uk∗iµ U
k
iνεki

These matrix elements represent hopping energies and they can be used to specify the

tight-binding Hamiltonian, whose matrix elements are
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[
ĤTB
k

]
µν

=
1√
N

∑
R

tµν(R)eik·R

3.3 Summary

We have seen how Kohn-Sham equations from general Density Functional theory can be

cast into the computationally convenient matrix form by choosing a basis. Chosen basis

states can have localized nature, such as atomic-like orbitals, which are well suited for

computations of molecules, or they can have extended nature, such as plane-waves, and

they are a natural choice for computations of periodic lattices.

Projector Augmented Wave method was outlined, demonstrating a hybrid approach,

reconciling properties of electronic wavefunctions in the interstitial and the core regions.

This is achieved by utilizing smooth pseudo-wavefunction, that can efficiently be ex-

panded onto the planewave basis in the interstitial region, and then using the projector

functions and all electron localized wavefunctions within the augmentation sphere to

reproduce rapidly oscillating electronic states close to the atoms.

It is also possible to expand the extended states fully into localized basis, as is done

in the Full Potential Local Orbital method. Through utilization of core and valence

state separation, highly compact and efficient basis can be obtained. The method is well

suited when local properties are of interest, such as bonding or disorder. In addition,

this method provides a simple way to calculate the projective Wannier functions and

synthesize a tight-binding model based on those functions.



Chapter 4

Structure Optimization and

Matrix Diagonalization Methods

Two most important problems for the computational Ab-initio Molecular Dynamics are

function minimization and matrix diagonalization. These two problems are actually

interchangeable, since the function minimization can be recast into the matrix diago-

nalization problem through the variational principle. Kohn-Sham equations are demon-

stration of this, where the problem of electron density minimization was replaced by the

eigenproblem (2.8).

Function minimization is important for the structure optimization, as was argued in 1.3,

where minimization of the total energy Ẽ was required, while matrix diagonalization is

the computationally most demanding part of the Density Functional Theory, where the

Kohn-Sham equations (2.8) are to be solved.

In this chapter, a brief overview of algorithms important for this thesis will be given.

Since dealing with large matrices is necessary for purposes of the ab-initio calculations,

we will focus only on the iterative methods for diagonalization of large matrices, and in

particular to cases where only a part of the eigenspectrum is needed. Treatment of the

full diagonalization algorithms exceeds the scope of the work here, and will be ommited.

4.1 Minimization of a Single-variable Function

The task of function minimization algorithms is to find the values in a certain subset of

domain of the function, for which the function acquires minimal value. Usually, function

evaluations are computationally expensive and the minimization algorithms are required

to find the minimum with as few function evaluations as possible.

32
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The task of minimization is significantly easier when the approximate location of the

minimum is known, and especially if the range, called bracketing range, around the

minimum in which the function is unimodular is known. This guarantees that within a

bracketing range there will be only one function extremum.

Figure 4.1 shows a bracketed minimum of a single variable unimodular function f . The

bracketing range has the property that signs of the first derivative at its ends are op-

posite, ie. f ′(a)f ′(b) < 0. Given any value x0 from the bracket on fig. 4.1, the most

straightforward attempt at finding the minimum would be to linearly extrapolate the

first derivative towards zero. That is, starting from the condition f ′(x0 + ∆x0) = 0, we

would have

∆x0 = − f
′(x0)

f ′′(x0)
(4.1)

which is known as the Newton’s secant method. The procedure for a minimum search

would consist of starting from the initial guess x0, and then moving to x1 = x0 + ∆x0,

where ∆x0 is given by eq. (4.1). Given xi, this procedure is repeated to obtain

xi+1 = xi + ∆xi as long as |f ′(xi)| is greater than some threshold value. This is a very

simple, and in the ideal case the quickest procedure to find the minimum. However, the

biggest drawback is that it requires evaluation of the second derivative, and it might

produce numerically unstable behavior in the vicinity of the inflection point where the

second derivative vanishes. Simple workaround would be to use a constant value instead

of the second derivative f ′′(x) = 1/s, so that ∆xi = −sf ′(xi), resulting in the steepest

descent method. Here s is the step size. The problem with this method is that the

optimal step size is difficult to estimate, resulting in a minimization procedure which

requires a large number of function evaluations.

These problems can be circumvented by performing the search in the bracketing range.

The search proceeds by iteratively narrowing down the bracketing range. For example,

figure 4.1 shows subdivision of the bracketing range [a, b] into two subranges [a, c] and

(c, b]. If signs of the first derivative are opposite at the endpoints of a range, then the

function minimum is bracketed by it. In this way the bracketing range can be subdivided

until the resulting range is narrow enough to locate the minimum accurately enough.

The easiest way to perform the search is to perform bisection, that is to choose c =

(a + b)/2. However, this is rather inefficient since the information about the slope of

the function contained in the first derivative is not utilized. This can be achieved by

combining the bisection search with the Newton’s secant method (4.1). Let us assume

that we are in the k-th step of the search, and that the bracketing range is [ak, bk].

Let us further take that |f ′(bk)| ≤ |f ′(ak)|, so that bk is a better guess for the function
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a bc x

f ( x)

f (c)

f (b)

f (a)

Figure 4.1: Bracketing of the minimum. Red lines show the current bracket, while
the blue line shows the subdivision of the bracket for further search.

minimum. Then, subdivision point ck can be computed as

ck =

{
bk − bk−bk−1

f ′(bk)−f ′(bk−1)
f ′(bk), f ′(bk) 6= f ′(bk−1)

ak+bk
2 , f ′(bk) = f ′(bk−1)

(4.2)

In other words, when possible, utilize interpolation, as in the Newton’s secant method,

but with numerically approximate second derivative, and otherwise, use bisection search.

Equation (4.2) represents the so-called Dekker’s method[13]. This method usually

performs well for well-behaved functions, but it can converge slower than the bisection

method when bisection is used at every step, but bk converges slowly.

To rectify this, Brent has proposed[14] few alterations. If at step k−1 bisection was per-

formed then the following must be satisfied |bk − bk−1| > δ and |bk − bk−1|/2 > |ck − bk|,
where δ is a given numerical tolerance. Otherwise, if at step k − 1, interpolation was

used it must hold that |bk−1− bk−2| > δ and |bk−1− bk−2|/2 > |ck − bk| which forces the

interpolation step to halve after every two iterations. Additionally, performance can be

improved by using inverse quadratic interpolation instead of the linear interpolation in

(4.2). Within inverse quadratic interpolation, location of the minimum is approximated

by the bottom of a parabola fitted through three successive previous estimates of the

minimum
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ck =
f ′(bk−1)f

′(bk)

[f ′(bk−2)− f ′(bk−1)][f ′(bk−2)− f ′(bk)]
bk−2+

f ′(bk−2)f
′(bk)

[f ′(bk−1)− f ′(bk−2)][f ′(bk−1)− f ′(bk)]
bk−1+

f ′(bk−2)f
′(bk−1)

[f ′(bk)− f ′(bk−2)][f ′(bk)− f ′(bk−1)]
bk

4.1.1 Minimization of a Multi-variable Function

Minimization of the multi-variable function requires search in multidimensional space

to be performed. Simple one-dimensional searches, such as bisection or Brent’s method

described in the previous chapter are no longer a practical solution. However, Newton’s

secant method (4.1) can be generalized to the case of a function of multiple variables.

Let us assume that we have bracketed the minimum of the function f and let xk belong

to the bracket and be current estimate of the minimum. Then, the multi-variable version

of (4.1) is

∆xk = −Ĥ−1(x0)∇f(xk) (4.3)

where Ĥ is the Hessian matrix. Minimization of a multi-variable function by using (4.3)

suffers the same disadvantages as (4.1), compounded by the fact that evaluation of the

Hessian is computationally much more expensive because it requires evaluation of N2

second derivatives, where N is dimensionality of the parameter space. As was the case

for a single-variable function, it is possible to replace the Hessian matrix by a constant,

resulting in the multi-variable steepest-descent method, with the same drawbacks as in

the single-variable case. Figure 4.2 a) shows a path of the steepest descent starting

from x0.

It is also possible to attempt to build up the approximation of the Hessian as the mini-

mization is conducted. This is the strategy employed by the family of the quasi-Newton

methods. Usually, minimization is started with an initial Hessian given by the unit

matrix Ĥ(x0) = Î. As minimization proceeds, Ĥ is updated and progressively a better

approximation of the Hessian is constructed. For quasi-Newton methods, the step is

given by

∆xk = −αkĤ−1k ∇f(xk) = −αkvk

where Ĥk is the estimate of the Hessian in the k-th step of the minimization, and αk is
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x0
a)

x0
b) c)

Figure 4.2: Minimization of the multi-variable function. Panel a) shows contour plot
of the function of two variables and the path of the steepest descent starting from the
initial point x0. Panel b) shows direction of the line search starting from x0 and panel

c) shows function values along the line search direction.

a number chosen to satisfy Wolfe conditions[15][16].

f(xk + αkvk) ≤ f(xk) + a1αk∇f(xk) · vk
∇f(xk + αkvk) · vk ≤ a2∇f(xk) · vk

where 0 < a1 < 1 and a1 < a2 < 1. The first Wolfe condition ensures that the every step

∆xk results in a sufficient decrease of f . Since that will be satisfied by a small enough

αk, the second condition serves to rule out the small steps.

The remaining issue of updating the Hessian estimate, does not have a unique solution

in more that one dimension. An often used update formula is the Broyden–Fletcher–

Goldfarb–Shanno [17][18][19][20] formula

Ĥk+1 = Ĥk +
|yk〉〈yk|
〈yk|∆xk〉

− Ĥk|∆xk〉〈∆xk|Ĥ>k
〈∆xk|Ĥk|∆xk〉

Ĥ−1k+1 =

(
Î− |∆xk〉〈yk|〈yk|∆xk〉

)
Ĥ−1k

(
Î− |yk〉〈∆xk|〈yk|∆xk〉

)
+
|xk〉〈∆xk|
〈yk|∆xk〉

where the Dirac notation has been used to distinguish row-vectors and column-vectors

and yk = ∇f(xk+1)−∇f(xk).
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Another minimization strategy is to choose a direction v0 in the parameter space and

then search for a minimum along the given direction. This is called a line search. An

example is shown in figure 4.2 b) and c). In other words, consider the single-variable

function f1(t) = f(x0 + tv0), and then utilize, for example, Brent’s method to locate

its minimum, x1. Then, starting from x1, one performs the minimum search along

some other direction v1 to obtain x2 and so on until |∇f(xi)| becomes smaller than a

numerical threshold ε. With an appropriate choice of directions vi, the minimization

can be made more efficient and accurate than the steepest descent.

The conjugate gradient method[21] achieves an efficient minimization by performing line

searches along the conjugate directions. Directions vi and vj are conjugate with respect

to a symmetric positive definite matrix Â if vi · Âvj = δij . That is, the scalar products

are taken with respect to the metric given by Â, instead of the usual Cartesian metric

Â = Î. The matrix Â is taken to be the Hessian of the quadratic function

fq(x) = x · Âx+ b · x

which approximates the function f in the bracketing region, with f and fq having

identical minima. Due to the positive definiteness of Â, the function fq has a minimum

xq satisfying the condition ∇fq(xq) = Âxq + b = 0. The strength of the conjugate

gradient method lies in the fact that at most N line searches are needed to find a

minimum of fq when searching along the directions conjugate with respect to Â.

The conjugate gradient algorithm proceeds in the following manner: let x0 be an initial

guess for the minimum, and let the initial search direction be v0 = ∇fq(x0); let us

assume the algorithm is in the k-th iteration so that xk and vk are estimate for the

minimum and direction of the search, respectively; then

1. Perform line search along the line l(t) = xk + tvk to find the location of the mini-

mum xk+1 = l(tmin), where tmin is given by

tmin = −vk · ∇fq(xk)
vk · Âvk

(4.4)

which follows from the condition that ∇fq(l(tmin)) = 0.

2. If k < N−1, compute the new search direction vk+1 = −∇fq(xk+1)+βkvk, where

βk =
∇fq(xk+1) · Âvk

vk · Âvk
(4.5)
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which is a choice that guarantees that the direction vk+1 is conjugate to all previous

directions vi, i < k + 1.

3. If k = N − 1 we can terminate the minimization since xN estimated in the step

one is minimum.

Here we have to take into account that this refers to the quadratic function fq which is

just an approximation to f . Applying conjugate gradient minimization to f means that

the upper limit of N line searches cannot be guaranteed. Also, evaluation of the Hessian

is needed in (4.4) and (4.5), which is something we would like to avoid. The use of

Â in eq. (4.4) can be avoided by employing some one-dimensional minimum search

algorithm, such as Brent’s algorithm, while the use in eq. (4.5) can be avoided thanks

to the fact that

∇fq(xk+1)−∇fq(xk) = Â(xk+1 − xk) = cÂvk

where c is a constant. This follows from step two of the algorithm where xk+1 =

xk + tminvk. Thus (4.5) can be written as

βk =
∇fq(xk+1) · [∇fq(xk+1)−∇fq(xk)]

vk · [∇fq(xk+1)−∇fq(xk)]
(4.6)

so that Â is eliminated altogether. This is known as the Hestenes-Stiefel formula. Fur-

ther utilization of the conjugate property of directions vi and quadratic form of fq result

in further simplifications

βk =
∇fq(xk+1) · [∇fq(xk+1)−∇fq(xk)]

|∇fq(xk)|2

βk =
|∇fq(xk+1)|2
|∇fq(xk)|2

(4.7)

which are known as Polak-Ribiere and Fletcher-Reeves formulas, respectively. Formulas

(4.6) and (4.7) are equivalent and exact when applied to fq, but become only approx-

imate and no longer equivalent for general non-quadratic function f . Which formula

performs best depends on the properties of the function f .
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4.1.2 Fast Inertial Relaxation Engine

The algorithms described so far are local minimization algorithms and they can be

guaranteed to succeed only when the minimum is bracketed. In other words, it is

necessary to have a good initial guess for the minimum. When starting without a good

initial guess, a variety of global minimization algorithms exist. Of interest for this work

is the Fast Inertial Relaxation Engine (FIRE) algorithm[22], representing a hybrid of

local and global optimization techniques.

The FIRE algorithm relies on the analogy between the energy minimization and down-

hill movement on the potential energy landscape. According to the analogy, a path x(t)

leading to the minimum of a function f(x) is given by the modified Newton’s second law

dv(t)

dt
=
F (t)

m
− γ(t)|v(t)|

[
v̂(t)− F̂ (t)

]
(4.8)

where t parametrizes the path (analogous to time), v(t) = dx(t)/dt is the velocity along

the path, F (t) = ∇f(x(t)) are derivatives of the function to be minimized (analogous

to force), v̂(t) and F̂ (t) are unit vectors in directions of v(t) and F (t) respectively, and

γ(t) is a time-dependent scaling function. The first term on the right-hand side of (4.8)

is identical to the second Newton’s law, while the second term is such that it pulls the

minimization path towards the steepest descent path faster than it would be the case

with just the first term. The fact that eq. (4.8) contains the second derivative of x(t)

means that inertia is used as a means to automatically increase the step size since v(t)

is increased at every step with downhill motion.

The downside to this is that, due to inertia, the minimization path can turn in the uphill

direction. That is why, it is necessary to ascertain that power the P (t) = v(t) · F (t) is

positive, guaranteeing the downhill motion. In case P (t) < 0, velocity is set to zero, and

the minimization is restarted.

In addition to this, after every step of the minimization, the time step ∆t can be increased

resulting in larger ∆x(t). Also, the scaling function γ(t) can successively be decreased,

since it is important only when the movement is not in the direction of steepest descent.

This allows the minimization path to stay as close as possible to the steepest descent

path while keeping the minimization steps as large as possible.
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4.1.3 Application of Fast Inertial Relaxation Engine to the Full Struc-

tural Relaxations Under the Arbitrary Stress Tensor

When we apply (4.8) to the problem of energy minimization of the crystal lattice, we can

understand eq. (4.8) as a description of the metadynamical time evolution of the atomic

nuclei. This permits energy minimization under application of external forces[23].

Let us consider a crystal lattice with the unit cell vectors a, b and c, containing N

atomic nuclei at positions ri, i = 1, ..., N . Positions ri are related to the fractional

positions si through

ri = ĥsi =


ax bx cx

ay by cy

az bz cz

 si (4.9)

where ĥ is the unit cell matrix, whose columns are composed of the unit cell vector

components. To perform the full structural relaxation, we consider the internuclear in-

teraction energy to be a function of the extended set of 3N + 9 coordinates, consisting

of x̃ = (si, ĥ), so that E = E(x̃). Energy minimization according to (4.8) requires

evaluation of fictitious forces, F̃k = (∂E/∂si, ∂E/∂ĥ) and we need to express them in

terms of the physical forces acting on the lattice, which are given by

Fi =
∂E(si, ĥ)

∂ri

σ̂ = − 1

V

∂E(si, ĥ)

∂ε̂

where Fi are forces acting on atomic nuclei, and σ̂ is matrix of the lattice stress tensor,

and ε̂ is matrix of the infinitesimal lattice strain tensor. The strain tensor ε̂ describes

an infinitesimal deformation of the crystal lattice

ri → r′i(ε̂) = (1 + ε̂)ri (4.10)

If we take that in the deformed lattice, the unit cell deforms as ĥ→ ĥ′(ε̂), it is easy to

see from (4.9) and (4.10) that

ĥ′(ε̂) = (1 + ε̂)ĥ (4.11)
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The fictitious force components are now

∂E(si, ĥ)

∂si
=
∂E(si, ĥ)

∂ri

∂ri
∂si

= Fi
∂ri
∂si

(4.12)

∂E(si, ĥ)

∂ĥ
=
∂E(si, ĥ)

∂ε̂

∂ε̂

∂ĥ
= −V σ̂ ∂ε̂

∂ĥ
(4.13)

From (4.9) and (4.11) we have that

∂ri
∂si

= ĥ

∂ĥ

∂ε̂
= lim

ε̂→0

∂ĥ′(ε̂)

∂ε̂
= ĥ>

Combining this with (4.12) results in

∂E(si, ĥ)

∂si
= Fiĥ

∂E(si, ĥ)

∂ĥ
= −V σ̂

(
ĥ>
)−1

External forces can be applied by taking Fi → Fi −F ext
i and σ̂ → σ̂ − σ̂ext. With these

expressions all quantities needed for the application of (4.8) can be computed from the

forces and the stress tensor obtained in the ab-initio calculations, and full structural

relaxation can be performed.

4.2 Diagonalization Algorithms

The goal of diagonalization algorithms is, given a large N by N Hermitian matrix Â, to

find a set of N orthonormal vectors |xi〉 for which

Â|xn〉 = λn|xn〉 (4.14)

holds, where λi are eigenvalues. We have restricted ourselves only to the Hermitian
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matrices, since they are important in our case, but the algorithms described don’t nec-

essarily need to be restricted to them.

As was the case with the minimization, the idea is to iteratively diagonalize the matrix,

starting from an initial trial subspace V0, consisting of a certain number of trial vectors

|x0i 〉, and then iteratively expanding the trial subspace, building progressively better

approximation of the eigenvalues and the eigenvectors.

The basic idea behind the iterative algorithms is the concept of the power iteration. Let

us assume that eigenvalues λn are sorted by their absolute values in descending order, so

that λ0 is the highest magnitude eigenvalue. The spectral decomposition of Â is given by

Â =
∑
n

λn|xn〉〈xn|

Owing to the fact that |xn〉 are orthornormal, the spectral decomposition of the p-th

power of Â is given by

Âp =
∑
n

λpn|xn〉〈xn|

Let |y〉 be an arbitrary vector. The ction of Âp on the |y〉 is

Âp|y〉 =
∑
n

λpn|xn〉〈xn|y〉 = λp0
∑
n

(
λn
λ0

)p
|xn〉〈xn|y〉

If |λ0| > |λn| for n > 0, and p is large enough, then (λn/λ0)
p ≈ 0 and

Âp|y〉 ≈ λp0|x0〉〈x0|y〉 = c|x0〉

In other words, the action of the p-th power of matrix Â will yield the eigenvector of

the dominant eigenvalue. This can only be taken to hold approximately, since the com-

putation of large powers of Â is impractical, and λ0 can have a large number of other

eigenvalues in its vicinity. Despite of this, the power iteration presents a solid founda-

tion, since instead of relying on just a single eigenvector Âp|y〉, we can expect to be able

resolve a certain number of K < p highest eigenvalues and eigenvectors of Â, over a

subspace

Vp = span
(
|y〉, Â|y〉, Â2|y〉, ..., Âp|y〉

)
(4.15)
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where p is not too large. In realistic calculations, the subspace Vp is not built by a

direct application of powers of Â as in (4.15), since in general, the sequence of vectors

Âi|y〉, i = 1, ..., p, is not orthonormal, and the sequence can be made to converge quicker

by application of a suitably chosen matrix function f̂(Â).

If the highest magnitude eigenvalues are not of interest, it is possible to perform the so-

called shift-invert transformation. If, instead of Â, we consider the matrix (Â − σÎ)−1,

the power iteration will yield eigenvalues closest to σ.

For applications in physics, we are usually interested in the ground state, or certain

number of states above the ground state, which means that we need only a certain

number of lowest energy eigenvalues of Â (highest in absolute value). Thanks to this,

a lot of computational effort for large matrices can be saved. Additional simplification

arises when the matrix is diagonally dominant, as is usually the case in the ab-initio

calculations. Davidson [24] algorithm was devised for such cases. It proceeds in the

following manner.

Search starts from the initial trial subspace V0 = {|x0〉} consisting of a single vec-

tor. Let us assume that we are in the k-th iteration, and let the trial subspace be

Vk = {|x0〉, ..., |x〉k}. All vectors are taken to be normalized. Let V̂k be a matrix,

whose columns are vectors |xi〉, i = 0, ..., k so that projection of Â onto the Vk is

given by Âk = (V̂k)†ÂV̂k. Projection Âk is a relatively small matrix, and some of

the full diagonalization methods, such as the QR algorithm (Francis1961) (Francis1962)

(Kublanovskaya1961), ca be efficiently employed to diagonalize it. Let µk be the eigen-

value with the highest absolute value, and let |wk〉 be it’s eigenvector. By projecting

|wk〉 back from the Vk subspace we obtain the current estimates of the eigenvalue and

eigenvector of Â, λk+1 = µk and |xk+1〉 = (V̂k)†|wk〉 respectively. Error of the estimated

eigenpair is given by the residual vector

|rk〉 = (Â− λk+1Î)|xk+1〉 (4.16)

If the norm of the residual vector is smaller than the numerical tolerance, then λk+1 is

the highest magnitude eigenvalue of Â and x̂k+1 is its eigenvector. At the same time,

the eigenvalues λi for M < i < k + 1, with M > 0, will be a good approximation of the

next k+ 1−M eigenvalues of Â sorted by magnitude and |xi〉 will be an approximation

to their eigenvector.

If, however, |rk〉 is above the numerical tolerance, the trial subspace needs to be ex-

panded. The expansion is in the direction of the vector
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|x̃k+1〉 = M̂−1|rk〉 = (D̂− λk+1)−1|rk〉

where D̂ is a matrix whose diagonal consists of diagonal matrix elements of Â. Since

the preconditioner M̂ = D̂ − µk Î is diagonal, it is trivial to invert it. After this, |x̃k+1〉
is orthonormalized with respect to the trial subspace Vk, to obtain |xk+1〉 and the new

trial subspace Vk+1 = Vk ∪ {|xk+1〉} is formed.

Choice of the particularly simple preconditioner M̂ in (4.16) stems from the fact that

we have assumed Â to be a diagonally dominant matrix. Applicability of the David-

son algorithm can be expanded for other matrix type, by changing the form of the

preconditioner.

Another important diagonalization method is the Residual Minimization by Direct In-

version in the Iterative Subspace (RM-DIIS)(Pulay1980). It is particularly well suited

to the problems where initial guess for the eigenvectors is already known, and in this

case it converges to the correct solution very rapidly.

Let |xn〉 be the exact set of eigenvectors of Â we want to find and let |x̃0n〉 be initial

guess for those vectors. Let us further assume that RM-DIIS algorithm has performed

k iterations and has generated a sequence of trial vectors |x̃in〉 from the initial set |x̃0n〉.
The strategy of RM-DIIS algorithm is to generate the next set of trial vectors as a linear

combination of all previous trial vectors in a fashion which minimizes the total residual

error. We will assume that all vectors are orthonormal.

We have to formulate the residual minimization error equation now. The new set of trial

vectors is

|x̃k+1
n 〉 =

k∑
i=1

ci|x̃in〉 (4.17)

while the residual error of a single vector is given by

|∆x̃in〉 = (Â− µ̂in)|x̃in〉 (4.18)

where µin = 〈x̃in|Â|x̃in〉 are eigenvalue estimates. Since trial vectors are related to the

exact vectors as |x̃in〉 = |xn〉 + |∆x̃in〉, we can rewrite (4.17) for the case where |x̃k+1
n 〉

converges to the exact solution as
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|xn〉 =

k∑
i=1

ci|xn〉+

k∑
i=1

ci|∆x̃in〉

In order to for this to be satisfied,
∑k

i=1 ci = 1 and
∑k

i=1 ci|∆x̃in〉 = 0 must hold, which

means that residual error minimization is achieved by minimizing

L(c, λ) =

k∑
i,j=1

c∗i cj〈∆x̃in|∆x̃jn〉+ λ

(
k∑
i=1

ci − 1

)
(4.19)

where c = (c1, ..., ck) and λ is the Lagrange multiplier. The minimization of the first

term on the right-hand side of (4.19) achieves minimization of the magnitude of error

(4.18), while the second term guarantees that coefficients ci sum to unity. Let us de-

fine the overlap matrix Ŝ whose matrix elements are Sij = 〈∆x̃in|∆x̃jn〉. Minimization

of (4.19) is achieved when derivatives of L(c, λ) with respect to all ci and λ vanish,

resulting in the set of linear equations

S11 S12 · · · S1k 1

S21 S22 · · · S2k 1
...

...
. . .

...
...

Sk1 Sk2 · · · Skk 1

1 1 · · · 1 0





c1

c2
...

ck

−λ


=



0

0
...

0

1


which determine the coefficients ci and thus, a new set of trial vectors |x̃k+1

n 〉 are obtained.

The vectors are orthonormalized and a new iteration can be performed if the magnitude

of residual errors (4.18) was larger than the numerical tolerance.

4.3 Summary

In this chapter, a general overview of ideas necessary to computationally treat problems

of structure optimization and solution of the Kohn-Sham equations was presented.

Structure optimization requires optimization of energy in the multidimensional param-

eter space. Three algorithms were outlined, the Conjugate Gradient and the BFGS

Quasi-Newton method, as local algorithms for cases where good starting point for the

relaxation is available, and a hybrid of local and global minimization approaches, the

FIRE. In addition, dynamical nature of the FIRE algorithm has served as a convenient

starting point to implement the full structural relaxations under arbitrary stress tensor,

which plays an important part of this work.
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Further, basic ideas necessary when approaching the problem of diagonalization of large

matrices were presented. Two diagonalization algorithms were briefly showcased. A

robust, Davidson algorithm, and the less robust, but faster RM-DIIS algorithm, for

cases when the Kohn-Sham equations are to be solved when good initial wavefunctions

are known.



Chapter 5

Ab-Initio Simulations of the

Application of Pressure in

BaFe2As2 and CaFe2As2

Although it has been known that LaOFeAs is superconducting with Tc of 3.5 K [25],

the iron-pnicitides did not attract a lot of attention until 2008, when Tc of 26 K was

measured in LaO1−xFxFeAs [26]. In the subsequent rush of experimental activity, higher

and higher critical temperatures have been obtained, either by doping, either by applying

pressure, culminating in the, still somewhat controversial, discovery of Tc of 65 K in the

monolayer FeSe grown on the SrTiO3 substrate [27, 28], sparking the hope that it might

be possible for iron pnictides to bring the Tc high enough so that liquid nitrogen could

be used for cooling, which would have big implications for the practical applications.

Since one pressure is one of two principal ways to tune the superconductivity in iron

pnictides we have performed the ab-initio simulations of pressure application in order

to study how structural and electronic properties of iron pnictides evolve under its

effect[23, 29]. These results are presented in this chapter.

The organization of the chapter is as follow. First, we will give a brief overview of

general properties of iron pnictide family of materials and then we will focus on the

pressure application on the BaFe2As2 and CaFe2As2 as representatives of the so-called

122 family. We will first present the results of simulations of hydrostatic pressure and

then the results of simulations of uniaxial pressure along all three crystallographic axes.

The application of in-plane uniaxial pressure will be discussed in the context of the

Ginzburg-Landau theory of phase transition (contributed by Rafael M. Fernandes).

47
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Figure 5.1: The schematic view of building blocks of a FeAs layer. (Figure adapted
from ref. [30])

5.1 Structure of Iron Pnictides

The basic building block of all iron pnictides is a trilayer consisting of Fe and pnictogen

(P, As) or chalcogen (Se, Te, S) atoms (figure 5.1). Each trilayer consists of the central

layer Fe atoms, sandwiched between the two layers of pnictogen or chalcogen atoms.

Every layer, making up the trilayer is a square lattice of atoms. The arrangment of

atoms is such that pnictogen or chalcogen atoms tetrahedrally coordinate the iron atom.

The trilayer will subsequently be referred to as the FePn layer, even for the case of iron

chalcogenides.

From this building block, different families of structures can be made by stacking the

FePn layers in different fashions, and intercalating different atoms between the layers.

The principal familes are the so called 11, 111, 1111, 122, 32522 and 21311. The 11

family consists of the FeSe and FeTe compounds. Structurally, they are simply a lattice

of vertically stacked FePn layers, with two iron and two chalcogen atoms per unit cell,

which is tetragonal. The convention for unit cell notation is such, that a and b denote

the unit cell vectors lying parallel to the FePn plane, while the c is perpendicular to it

(see fig. 5.1). This convention extends to other families of iron pnictides.

The structures of 11, 111, 1111, 122, 32522 and 21311 families are shown in figure 5.2

along with their superconducting critical temperatures, from left to right respectively.

The 1111 family is composed of FePn layers separated by the trilayer of oxygen and
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Figure 5.2: Structural families of iron pnictides and their respective superconducting
critical temperatures. (Figure taken from ref. [31])

rare earth atoms, or the OR layer. Within the OR layer, O atoms are tetrahedrally

coordinated by the rare earth atoms, La for example. For the 111 family, the role of

the separator of FePn layers is played by the alkaline metals, such as Li, while for the

122 family, that role is played by the alkaline earths, such as Ca or Ba. One distinctive

feature of the 122 and 32522 families is that the unit cell contains two FePn layers,

shifted by (a + b)/2. As a result, the 122 and 32522 families are described by the

nonsymmorphic space groups, while all other families are described by the symmorphic

space groups. Since the 122 family is in the focus of this thesis, more attention will be

given to it in the exposition that follows.

5.2 Basic Phenomenology

At ambient pressure and temperature, all iron pnictides are paramagnetic metals with

the tetragonal unit cells shown in the figure 5.2. On cooling, when temperature reaches

TS , the structure develops an orthorhombic distortion which is followed by the onset

of the spin density wave driven antiferromagnetic order at temperature TN ≤ TS . In

the orthorhombic phase, a is taken to be the longer axis. The antiferromagnetic order

and the orthorhombic distortion are shown on figure 5.3. Magnetic moments of the Fe

atoms are aligned in the ab plane and they are antiferromagnetically ordered along the
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Figure 5.3: Schematic view of the magnetically ordered phase in iron pnictides. The
red arrows show iron’s magnetic moments, while the blue arrows show orthorhombic

distortion. (Figure adapted from ref. [30])

a axis and feromagnetically along the b axis.

With the application of pressure, or doping, the transition to the AFM orthorhombic

phase can be suppressed, and superconductivity can be observed within a range of

pressures. The schematic of the typical phase diagram under doping and pressure is

shown in the figure 5.4. It has broadly symmetric features with respect to the hole or

the electron doping.

Depending on the exact compound, the phase diagram details can vary. For example,

the phase diagram on the figure 5.4 shows the region (shaded in light blue) where the

compound is in the orthorhombic state, but the antiferromagnetic ordering still did not

set in. The size of this region depends on the material, so for example, in LaFeAsO,

the onset of the structural transition occurs at 155K and the magnetic ordering sets

in at 137K [32], while in BaFe2As2, the structural and the magnetic phase transitions

are almost simultaneous [33]. Although the phase diagram shows the superconductivity

regions excluding the magnetic order, in some materials, the coexistence has been found.

For example, no coexistence has been observed in the CeO1−xFxFeAs [34], while in the

Ba(Fe1−xCoxAs)2 [35] the magnetic order has been detected in the superconducting

region.

Underlying these observations is the Fermi surface characterized by the cylindrical topol-

ogy as shown on panel (a) of fig. 5.5 [36, 37]. The Fermi surface shown corresponds

to BaFe1.94Co0.06As2 and is composed of Fermi surface sheets arising from the bands

dominated by the iron’s 3d orbitals with some contributions from the 4p orbitals of

pnictogen and chalcogen atoms. Centered around the Γ point are three hole pockets,
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Figure 5.4: Schematic view of the typical phase diagram of iron pnictide compounds.

while two electron pockets are centered around the M point in the two iron equiva-

lent Brillouin zone. It is believed that the nesting between the hole and the electron

pockets plays an important role in the formation of magnetic order as well as for the

superconductivity[36]. However, there are exceptions to this simple picture, notably

K0.8Fe2Se2, which was found to be superconducting in 2010[38], but is lacking the hole

cylinder (panel (b) on fig. 5.5).

5.3 Overview of Pressure Application on BaFe2As2 and

CaFe2As2

One of the families that has been intensively studied under pressure is the 122 family

AEFe2As2 (AE = Ca, Sr, and Ba). CaFe2As2 at ambient pressure undergoes a first

order phase transition from a tetragonal to an orthorhombic phase at 172 K accompa-

nied by a magnetic transition. Initial reports on pressure experiments showed that at

P ∼ 0.23 GPa the orthorhombic and antiferromagnetic phases are suppressed and the

system superconducts at low temperatures [39, 40]. Moreover, a compressed tetragonal

phase – also called ’collapsed’ tetragonal phase – was identified at higher pressures. Sub-

sequent susceptibility and transport measurements under hydrostatic conditions showed
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Figure 5.5: The Fermi surface of BaFe1.94Co0.06As2 is shown on panel a), while the
panel b) shows K0.8Fe2Se2 in the two iron equivalent Brillouin zone. (figure adapted

from [37])

at low temperatures and P ∼ 0.35 GPa a sharp orthorhombic to collapsed tetragonal

phase but no signature of superconductivity [41]. In contrast, recent neutron diffraction

experiments on CaFe2As2 under uniaxial pressure along the c axis [42] indicate for pres-

sures above 0.06 GPa and low temperatures the presence of an intermediate nonmagnetic

tetragonal phase between the magnetic orthorhombic and the nonmagnetic collapsed

tetragonal phases. This phase was identified by the authors as the phase responsible for

superconductivity at T = 10 K. Other reports based on muon spin-relaxation measure-

ments suggest the existence of superconductivity in the orthorhombic phase, raising the

question whether superconductivity and magnetism can coexist [43].

BaFe2As2 shows an even more complex behavior under pressure. At ambient pressure

it undergoes a phase transition from a metallic tetragonal phase to an orthorhombic

antiferromagnetic phase at T = 140 K. Under pressure the gradual appearance of a

superconducting dome has been observed by various groups [44] though the role of

nonhydrostatic conditions is not yet well understood [36]. Recent synchrotron X-ray

diffraction experiments under pressure [45] observe at T = 300 K a tetragonal to col-

lapsed tetragonal phase transition at P = 22 GPa under hydrostatic conditions while

this transition appears already at P = 17 GPa under nonhydrostatic conditions. On

the other hand, the authors of Ref. [46] find at a lower temperature of T = 33 K that

BaFe2As2 undergoes a phase transition from a magnetic orthorhombic to a nonmagnetic

collapsed tetragonal phase at P = 29 GPa and report an anomaly in the As-Fe-As bond

angles at 10 GPa that they ascribe to be of electronic origin. In contrast, high-pressure
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neutron diffraction experiments [47] performed at T = 17 K find a tetragonal phase at

3 GPa and 6 GPa.

These experimental results show that the onset of superconductivity as well as the ap-

pearance of several structural phases at low temperatures in CaFe2As2 and BaFe2As2 are

extremely sensitive to the pressure conditions [42, 48–50] and are a subject of intensive

debate.

In particular, uniaxial pressure is currently being intensively discussed as a possible

route towards modifying the structural, magnetic and even superconducting properties

of these systems. A regular sample below its magnetic and structural transition tem-

peratures displays an equal number of opposite twin orthorhombic domains, effectively

canceling out its anisotropic properties. To circumvent this issue and obtain a single

orthorhombic domain sample, uniaxial tensile stress has been widely employed to detwin

iron pnictides like BaFe2As2 and CaFe2As2 [51–57] and unveil its anisotropic properties

– which have been argued to originate from electronic nematic degrees of freedom. [58–

60] Theoretically, although it is clear that in the tetragonal phase the applied uniaxial

pressure acts as a conjugate field to the orthorhombic order parameter, condensing a

single domain, [61] the nature of the detwinning process deep inside the orthorhombic

phase remains an open question, since different mechanisms might be at play – such as

twin boundary motion or reversal of the order parameter inside the domains. [57, 62]

Besides promoting detwinning, uniaxial strain has also been shown to affect the ther-

modynamic properties of the iron pnictides. Recent neutron scattering experiments on

BaFe2As2 under compressive stress along the in-plane b direction reported a progressive

shift to higher temperatures of the magnetic transition [54] - a behavior also seen in

BaFe2 (As1−xPx)2 by thermodynamic measurements. [63] - and an apparent reduction

of the magnetic moment [54]. Moreover, Blomberg et al. observed a significant uniaxial

structural distortion in BaFe2As2 under tensile stress, suggesting an enhanced response

to external strain. [56] More recently, it was found that epitaxially strained thin films of

FeSe on a SrTiO3 substrate show an increase in critical superconducting temperatures

up to 65 K, the highest reported Tc so far. [64] Clearly, crystal lattice strain plays a

key role for the magnetic, structural and superconducting properties in Fe-based su-

perconductors and a better understanding of the microscopic origin of such behavior is

desirable.

In view of the controversy caused by the experimental uncertainty about the pressure

conditions we performed ab initio density functional theory results for the electronic,

magnetic and structural behavior of both systems under uniaxial and hydrostatic pres-

sure conditions. Our approach consists of constant pressure structural relaxations, as

presented in chapter 4, allowing us to probe the low-temperature portion of the phase
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diagram in a relatively simple and straightforward way. With this approach we can treat

nonhydrostatic conditions which are at the heart of this chapter.

Previous theoretical approaches which have examined the properties of the 122 fam-

ily under hydrostatic pressure have employed either fixed volume structural optimiza-

tions [65] or molecular dynamics [66]. Recently, anisotropic pressure studies on BaFe2As2

based on ground state geometry calculations of more than 300 structures at different

fixed volumes were reported in Ref. [67]. We find that uniaxial pressure along the c

axis significantly reduces the transition pressures in both systems. CaFe2As2 shows for

both pressure conditions an orthorhombic to collapsed tetragonal transition, though the

transition is less abrupt when uniaxial pressure is applied. For BaFe2As2 we observe

two phase transitions from orthorhombic to collapsed tetragonal through an intermedi-

ate nonmagnetic tetragonal phase. An analysis of the electronic bandstructure features

near the critical pressures reveals the origin of the sensitivity of the systems to pressure

conditions.

We also combine the results of density functional theory calculations with Ginzburg-

Landau phenomenology to analyze the effects of uniaxial compressive stress as well as

uniaxial tensile stress on the magnetic, electronic and structural properties of BaFe2As2

and CaFe2As2 at low temperatures, deep inside the ordered phase. Stress is measured

in terms of equivalent hydrostatic pressure, P = Tr(σ̂)/3, where σ̂ is the stress tensor

matrix and positive and negative pressures correspond to applying compressive and

tensile stresses respectively. Our ab initio-derived estimates for the elastic constants in

the orthorhombic phase agree well with experimental values. While no sign of a true

structural or magnetic phase transition is observed in the range of pressures between

−2 GPa and 2 GPa, at a critical pressure we observe a reversal of the magnetization, i.e.

exchange of ferromagnetic (FM) and antiferromagnetic (AFM) directions, simultaneous

to a discontinuous change in the orthorhombic order parameter a−b, which also changes

sign. This behavior has important consequences on the orbital dxz and dyz occupancies

and is also related to the shift of the magnetic ordering temperature, as we argue below.

Furthermore, by employing a phenomenological Ginzburg-Landau model, we show that

this behavior is intimately connected to the magneto-elastic coupling of the system,

which by itself acts as an intrinsic conjugate field to the orthorhombic order parame-

ter. As the applied compressive stress is enhanced towards a critical value, it eventually

overcomes the effects of the magneto-elastic coupling, rendering the zero-pressure state

energetically unstable and resulting in a simultaneous reversal of the magnetization and

the orthorhombic order parameter. Comparison of the DFT-derived critical uniaxial

pressures for CaFe2As2 and BaFe2As2, combined with the Ginzburg-Landau result that

the critical pressure is proportional to the magneto-elastic coupling, suggests that the
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Figure 5.6: Structure of CaFe2As2 under hydrostatic and uniaxial pressure. Lattice
parameters, a) and b), volume and axis ratio, c) and d), c) and d), selected bond lengths

e) and f).

latter is larger in CaFe2As2 than in BaFe2As2. We also propose low-temperature de-

twinning measurements to compare the experimental critical pressure with our ab initio

estimates in order to clarify the dominant mechanism behind the detwinning process of

orthorhombic iron pnictide crystals.

Calculations were performed using the Vienna ab initio simulations package (VASP) [68]

with the projector augmented wave (PAW) basis [10] in the generalized gradient approx-

imation (GGA). Structural relaxations under hydrostatic pressure were carried out with

the conjugate gradient (CG) method as implemented in the VASP package. The energy

cutoff was set to 300 eV and a Monkhorst-Pack uniform grid of (6 × 6 × 6) points was

used for the integration of the irreducible Brillouin zone. For relaxations with the CG

algorithm two cycles were performed in order to minimize the error caused by the Pulay

stress. Note that the reported bond compressions of up to 7% at 50 GPa don’t affect the

precision of the PAW basis. In order to perform relaxations under uniaxial pressure we

modified the fast inertial relaxation engine [22] (FIRE) algorithm to be able to handle

full structural relaxations with an arbitrary stress tensor.

5.4 CaFe2As2 Under Hydrostatic and c-axis Uniaxial Pres-

sure

In Fig. 5.6 we show the evolution of lattice parameters, volume and Fe-Fe, Fe-As dis-

tances under hydrostatic and (c-axis) uniaxial pressure for CaFe2As2. We find a first
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order phase transition from a magnetic (stripe order) orthorhombic phase to a nonmag-

netic collapsed tetragonal phase at Pc = 3.05 GPa (Pc = 0.48 GPa) under hydrostatic

(uniaxial) pressure and at zero temperature we don’t observe any intermediate tetrago-

nal phase under uniaxial stress [42].

In hydrostatic conditions, a and b expand at the orthorhomic to collapsed tetragonal

phase transition with b abruptly increasing in value, while c shows a significant col-

lapse of 6.5% (Fig. 5.6 (a)) and the unit cell volume shows a sharp drop of about 4.3%

(Fig. 5.6 (c)). The sudden expansion of b can be explained as a consequence of the

Pauli principle [66]: As long as an antiferromagnetically ordered moment exists in the

orthorhombic phase, Fe 3d orbitals may overlap to some degree along b direction, but

in the paramagnetic state of the collapsed tetragonal phase, the same orbitals on neigh-

boring Fe sites repel each other. The value of c/at = 2.58 with at = a/
√

2, indicates

the onset of a collapsed tetragonal phase. Our results are in good qualitative agree-

ment with experimental [40] observations, except for the overestimation of the critical

pressure (P exp
c = 0.3 GPa) also found in previous theoretical studies [65, 66]. Following

the changes of the lattice parameters at Pc, the inplane Fe-Fe distances show a sharp

increase at Pc while the out-of-plane Fe-As distance decreases (Fig. 5.6 (e)). Using the

generalized Birch-Murnaghan p− V equation of state [69] we obtained a bulk modulus

B = 70± 3 GPa at ambient pressure, while at Pc the bulk modulus jumps from 56± 3

to 105±2 GPa. In order to obtain these estimates we performed a series of fits for every

phase separately considering every pressure point of our data as a reference pressure. In

this way we obtain the bulk modulus as a function of pressure.

In contrast to the hydrostatic case, when uniaxial pressure is applied (Fig. 5.6 (b)) the a

and b lattice parameters expand significantly while c is compressed up to Pc = 0.48 GPa

where a drop for c is observed while a and b continue to expand monotonously. The

volume reduces by 3.4% and the ratio c/at = 2.56 at Pc (Fig. 5.6 (c)) denotes the en-

trance to a collapsed tetragonal phase, where magnetism is suppressed completely. The

phase transition shifts to smaller Pc compared to hydrostatic pressure, which is in very

good agreement with experiments under nonhydrostatic pressure conditions [42]. Nev-

ertheless, the authors of Ref. [42] find for pressures above 0.06 GPa a stabilization of the

high-temperature tetragonal structure down to temperatures below the superconducting

transition. This phase is not seen in our calculations which may be related to the fact

that at very low temperatures the tetragonal phase may be disappearing again (Fig. 1

of Ref. [42]).

In order to understand the differences in behavior observed between the hydrostatic

and uniaxial pressures, we show in Fig. 5.7 the orbital weighted bandstructure and

kz = 0, ky = 0 and kx + ky = 0 Fermi surface cuts of CaFe2As2 under hydrostatic
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Figure 5.7: Bandstructure and kz = 0, ky = 0 and kx + ky = 0 Fermi surface cuts of
CaFe2As2. For the orbital character, x and y point along the nearest neighbour Fe-Fe

connections.

(Fig. 5.7 (b)-(c)) and uniaxial pressure (Fig. 5.7 (d)-(e)) at pressures below and above

the phase transition. Bandstructures and Fermi surfaces were calculated using the full-

potential local orbital (FPLO) basis [12]. The bandstructure and Fermi surface cuts at

ambient pressure are also shown for comparison (Fig. 5.7 (a)). We use the orthorhombic

space group F mmm for all band structure plots in order to facilitate comparison. The

behavior of the electronic structure in the vicinity of the Fermi energy is crucial for

understanding the transition. Right below Pc both pressure conditions show a high

density of Fe dxz, dyz and dx2−y2 states at EF (see in Fig. 5.7 (b) and (d) the Γ-Z
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path and near M) which are pushed away above Pc (Fig. 5.7 (c) and (e)) and the hole

pockets at Γ disappear, suppressing possible nesting conditions. The compression along

c enforces the interlayer As pz-As pz bonding [70] which can be related to the proximity

of the As pz band to EF near Pc. Uniaxial stress is for this process more effective

than hydrostatic pressure since a similar electronic behavior is reached at much smaller

pressures as observed in Fig. 5.7 (d)-(e). In agreement with Ref. [71] the collapsed

tetragonal phase sets in as soon as the Fe magnetic moment goes to zero. Note, that the

changes in the electronic structure at the phase transition in the uniaxial pressure case

(Fig. 5.7 (d) and (e)) are more subtle than for hydrostatic pressure, in agreement with

the somewhat less abrupt change of the lattice as shown in Fig. 5.6 (b), (d) and (f).

Also, the shape of the Fermi surface derived from Fig. 5.7 in the collapsed tetragonal

phase agrees well with the de Haas van Alphen measurements performed for CaFe2P2

(c/at = 2.59) where a highly dispersive topology in the c axis as well as the absence

of the hole pocket at the Γ point has been reported [72] (compare Fig. 5.7 (c) and

5.7 (e) with Figs. 2 and 3 of Ref. [72]). The isoelectronic substitution of As by P in

CaFe2As2 corresponds to application of chemical pressure and shows similar features to

the collapsed tetragonal phase of CaFe2As2 obtained after application of (hydrostatic)

pressure. The similarity of chemical pressure and applied pressure has already been

discussed in Refs. [72] and [47]. In fact, comparison of our obtained c/at = 2.58 ratio

and As position zAs = 0.1358 (hydrostatic) in the collapsed tetragonal phase of CaFe2As2

with the measured c/at = 2.59 and P position zP = 0.1357 of CaFe2P2 shows the high

resemblance between both crystal structures.
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5.5 BaFe2As2 Under Hydrostatic and c-axis Uniaxial Pres-

sure

We now proceed with the analysis of BaFe2As2. In Fig. 5.8 we present the changes in

lattice parameters, volume and atomic distances under hydrostatic and uniaxial pres-

sures for BaFe2As2. Similar to CaFe2As2, the critical pressures under uniaxial stress

are reduced with respect to hydrostatic conditions. This observation was also reported

by recent constant volume density functional theory calculations on BaFe2As2 under

nonhydrostatic pressure [67]. BaFe2As2, contrary to CaFe2As2, shows two phase tran-

sitions. At Pc1 = 11.75 GPa (Pc1 = 0.72 GPa) we find a phase transition from an

antiferromagnetic orthorhombic to a nonmagnetic tetragonal phase under hydrostatic

(uniaxial) conditions. A second smooth phase transition to a collapsed tetragonal phase

is obtained for Pc2 = 28.6 GPa (Pc2 = 3.17 GPa) (Fig. 5.8 (c)-(d)) [45]. High-pressure

neutron diffraction experiments [47] as well as previous theoretical calculations under

hydrostatic pressure conditions also find a phase transition to an intermediate tetragonal

phase [65, 66] but recent syncrotron X-ray diffraction experiments under nonhydrostatic

conditions see no signature of an intermediate tetragonal phase at low temperatures.

Nevertheless, an anomaly in the As-Fe-As bond angles at P ∼ 10 GPa [46] as well as

a loss of magnetic moment [50] have been reported. This could be related to the phase

transition that we find at Pc1 = 11.75 GPa where magnetism is suppressed. At higher

pressures the agreement of the onset of the collapsed tetragonal phase with the X-ray

diffraction data [46] is very good. Clearly the phase transitions in BaFe2As2 are less

abrupt than in CaFe2As2.

The ambient pressure bulk modulus is estimated at 67±4 GPa, in good agreement with

experimentally reported values [46] of 82.9± 1.4 and 65.7± 0.8 GPa at 33 K and 300 K,

respectively. At Pc1 , the bulk modulus abruptly increases from 98 ± 4 to 128 ± 3 GPa

and at Pc2 it jumps from 150±3 to 173±2 GPa. This is in very good agreement with the

experimental estimate of B = 153 ± 3GPa for the collapsed tetragonal phase [46]. We

also analyzed the Fe-As bond compressibility for P = 9 GPa (hydrostatic) and found

κ = 3.5 × 10−3 GPa−1 which is in excellent agreement with κ = 3.3 × 10−3 GPa−1

obtained in an extended X-ray absorption fine structure (EXAFS) experiment [73]. In

Fig. 5.9 (a), we show the comparison of the measured pressure dependence of the Fe-

As bond distances [73] with our results. Due to different temperatures (experiment is

performed at room temperature, theory at T = 0) our distances are shorter by about

0.02 Å (0.8%), but the overall agreement is good. In Fig. 5.9 (b), we show the comparison

to the X-ray diffraction measurement of the Fe-As bond distances [46] over a large

pressure range. The comparison is particularly good at low and at high pressures; in

the tetragonal phase (11.75 GPa to 28.6 GPa) the deviations are a bit larger.
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In Fig. 5.10 we present the orbital weighted bandstructure and kz = 0, ky = 0 and

kx + ky = 0 Fermi surface cuts of BaFe2As2 under hydrostatic (Fig. 5.10 (b)-(c)) and

uniaxial pressure conditions (Fig. 5.10 (d)-(e)) at two pressures below and above the

orthorhombic to tetragonal phase transition at Pc1 = 11.75 GPa (Pc1 = 0.72 GPa).

Similar to CaFe2As2 we observe below Pc1 a high density of Fe dxz, dyz and dx2−y2 states

at EF which is pushed down (less drastically than in CaFe2As2) for pressures above Pc1 .

The hole pockets disappear at the Γ point and the Fe magnetic moment goes to zero.

Here the As pz band seems to be little affected at the critical pressure. In contrast,

at Pc2 = 28.6 GPa (Pc2 = 3.17 GPa) (bandstructure not shown) the As pz band is

pushed towards the Fermi level indicating a strong As pz-As pz bonding while entering

the collapsed tetragonal phase. These results show that under perfect hydrostatic or

perfect uniaxial pressure conditions neither the intermediate tetragonal phase nor the

collapsed tetragonal phase fulfill Fermi surface nesting conditions. In fact, we find that

the structural parameters measured in Ref. [47] are similar to our calculated parameters

far below Pc1 in the orthorhombic phase (except for the orthorhombic distorsion), where

well defined hole pockets are found at the Γ point.
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Figure 5.10: Bandstructure and kz = 0, ky = 0 and kx + ky = 0 Fermi surface cuts
of BaFe2As2.

5.6 In Plane Application of Tensile and Compressive Stress

on BaFe2As2

Starting from the low-temperature orthorhombic structure with stripe magnetic or-

der, we performed structure relaxations under applied uniaxial tensile and compressive

stresses along a (AFM direction), b (FM direction) and the plane-diagonal a+b direc-

tion for both BaFe2As2 and CaFe2As2 (see inset of Figure 5.11 (a)). We measure stress

in units of the equivalent hydrostatic pressure, P = Tr(σ̂)/3, with σ̂ denoting the stress

tensor matrix. We simulated pressures in the range between −3 GPa and 3 GPa. In the
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tensile stress range, below −2.7 GPa we observe in both systems that, for stress along

a, a sudden expansion in a and contraction in b and c axes occurs. A similar situation

arises when pulling apart along b. This feature signals the extreme case of absence of

bonding within the material, and for this reason this pressure range will be excluded

from further discussion.
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Figure 5.11: Evolution of the unit cell parameters in BaFe2As2 under application of
uniaxial stress in the equivalent hydrostatic pressure range [−2 GPa, 2 GPa] (a) along
a, (b) along b and (c) along a+b. Panels (d)-(f) show the corresponding zoom of
the pressure dependence of the lattice parameters in the range [−0.3 GPa, 0.3 GPa].
Negative pressures correspond to tensile stress while positive pressures correspond to
compressive stress. Note, that the relationship between axes and iron moments shown
in the inset in (a) is valid for P ‖ a < 0.22 GPa, in (b) for P ‖ b > −0.22 GPa. For a

discussion of the reversal of AFM order, see the text.

Figure 5.11 shows the evolution of lattice parameters for BaFe2As2 as a function of uni-

axial stress along a, b and a+b. We consider both compressive stress (positive pressure)

and tensile stress (negative pressure). At P = 0 GPa, we have a (AFM direction) >

b (FM direction). BaFe2As2 remains in the orthorhombic phase with nonzero increas-

ing magnetic moment for large tensile stress (negative pressure). Pulling apart (i.e.

P < 0) along the (longer) AFM direction a (Figure 5.11 (a)) the system expands along

a, strongly compresses along c and shows almost no changes along b; similarly, pulling

apart along the (shorter) FM direction b (Figure 5.11 (b)) b expands, c compresses and

a shows almost no changes except at the pressure P = −0.22 GPa (Figure 5.11 (e)).

At this point, BaFe2As2 shows a sudden jump in the orthorhombicity where a becomes

the shorter axis and b becomes the longer axis. This interchange happens with a ro-

tation of the magnetic order by 90 degrees, i.e. the FM direction becomes parallel to

the a axis while the AFM direction becomes parallel to the b axis. We will discuss this

feature further below. Note that tensile stress along a+b acts similarly on both a and

b directions, which expand, while the c direction strongly compresses (Figures 5.11 (c)

and (f)).
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Under application of compressive stress (positive pressure), we observe in all three cases

a strong expansion along c and a compression along the direction of applied stress (a,

b or a+b). For the cases where pressure is applied along a or b, we observe almost no

changes or a slight expansion along b and a, respectively. application of uniaxial stress

along b by Dhital et al.. remains in all cases orthorhombic with nonzero decreasing

magnetic moment. Since a > b at zero stress, we observe the inversion of axes followed

by a jump in orthorhombicity and a 90 degree rotation of the magnetization when stress

is applied along a at P = 0.22 GPa (Figures 5.11 (a) and (d)). This inversion of axes,

with b > a for all higher compressive stress values means that the spin configuration

shown in the inset of Figure 5.11 (a) should now be turned by 90 degrees, with b pointing

along the AFM direction. Such an inversion is also observed for compressive stress along

a+b at much larger pressures of P = 2 GPa.

Figure 5.12 shows the evolution of magnetic moment, volume and As height in BaFe2As2

as a function of stress. The three quantities show a clearly monotonic behavior inde-

pendent of the applied stress direction except for small jumps at the pressures P =

−0.22 GPa (for stress along a) and P = 0.22 GPa (for stress along b) where the tetrag-

onal condition is almost fulfilled (a ≈ b) (Figures 5.12 (b), (d), (f)). We also note here

how magnetic moments in BaFe2As2respond to different direction of pressure applica-

tion. The highest rate of suppression, of roughly 0.1µB/GPa is achieved when pressure

is applied within ab-plane, while application of pressure along the c-axis actually results

in magnetic moment increase by 0.03µB/GPa. Even though DFT calculations overesti-

mate the value of the ordered Fe magnetic moment at P = 0 GPa, it is to be expected

that the relative changes in magnetic moment should provide a reliable description of

the situation of BaFe2As2 under pressure effects as shown in previous studies. [29, 65–67]

Except for the pressures P = −0.22 GPa (for stress along a) and P = 0.22 GPa (for

stress along b), stress always enforces a certain degree of orthorhombicity and the sys-

tem remains magnetically ordered with a decreasing ordered moment as a function of

compressive stress (Figure 5.12 (a)). Moreover, since the c axis continually expands

from negative to positive pressures, hAs increases accordingly as a function of stress

(Figure 5.12 (e)). These features have a direct consequence on the electronic properties

of the system.

As an illustration, we show the (non-spin polarized) Fermi surface of BaFe2As2 under

application of uniaxial stress P = −0.07 GPa and P = 1.7 GPa applied along a in

Figure 5.13 in the 1Fe/unit cell equivalent Brillouin zone. We would like to note that

correlation effects beyond DFT as implemented in DFT+DMFT (dynamical mean field

theory), which are known to give a good agreement between the calculated Fermi surfaces
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and (e) of the pnictogen height under uniaxial pressure in the range [−2 GPa, 2 GPa].
Panels (b), (d) and (e) show the corresponding zoom of the pressure dependence of
these quantities in the range [−0.3 GPa, 0.3 GPa]. Negative pressures correspond to

tensile stress while positive pressures correspond to compressive stress.

and angle-resolved photoemission measurements in the Fe pnictides, [74–78] have not

been included here.

Modest tensile stress of 0.07 GPa leads to the disappearance of the 3dxy hole pocket

around Γ̄ in the kz = 0 plane (see Figure 5 (a) in Ref. [29]). On the other hand, when

compressive stress is applied, the hole pockets around Γ̄ significantly change in size, and

additionally at a pressure of 1.7 GPa, small electron pockets, of majority 3dxy and 3dz2

character, appear along the Γ̄− M̄ directions of the BZ (Figures 5.13 (c) and (e)). The

increase of the 3dxy hole pocket size with increasing uniaxial stress can be explained by

the reduction of Fe-Fe distance along the a axis, leading to an increased contribution

of 3dxy - 3dxy bonding. In fact, the effects of tensile and compressive stress on the

electronic structure shown for the example of stress along a can be seen also in our

calculations for both stress along b and along a+b.

In Figure 5.14 we analyze the orbitally-resolved density of states at the Fermi level

N(EF). Applying stress both along a and b has the same effect on the total density of

states of both BaFe2As2 and CaFe2As2, but there is a selective orbital order as shown

in Figure 5.14. N(EF) is predominantly of 3dxz character when a > b and of 3dyz

character when a < b. This means that the dominant character switches from 3dyz to

3dxz at σ̂ ‖ a ≈ 0.22 GPa, and from 3dxz to 3dyz at σ̂ ‖ b ≈ −0.22 GPa as expected.
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Figure 5.13: Evolution of the Fermi surface of BaFe2As2 under uniaxial stress applied
along the a axis shown in the 1Fe/unit cell equivalent BZ (see Ref. [79] for the BZ path
definition). Panels (a) and (b) show kz = 0 cuts of the Fermi surface at pressures of
-0.07 GPaand 1.7 GPa respectively, while panels (c) and (d) show vertical cuts along
the diagonal of the BZ for pressures of -0.07 GPa and 1.7 GPa. Grey lines on panels

(a) and (b) denote boundaries of the 2 Fe/unit cell BZ.
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Figure 5.14: Evolution of the orbital resolved density of states of BaFe2As2 at the
Fermi level N(EF) with stress (a) applied along a, and (b) along b. Lines joining the

calculated points are a guide for the eye.

5.7 In Plane Application of Tensile and Compressive Stress

on CaFe2As2

The lattice parameters of CaFe2As2 under application of compressive stress along a,

b and a+b directions show a similar overall behavior compared to BaFe2As2 (see Fig-

ure 5.15) except for some important shifts of the pressures at which the system exchanges
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the FM and AFM directions. When stress is applied along the a direction, we observe at

P = 0.67 GPa a jump in the orthorhombic order parameter, with a sign-change, accom-

panied by a reversal of the magnetic AFM and FM directions. However, analogously to

the case of BaFe2As2, this is not followed by a suppression of the magnetic moments of

iron. In fact, the c axis expands with applied stress and at P = 0.67 GPa the c lattice

parameter in CaFe2As2 is too large for the formation of an interlayer As-As covalent

bond, necessary for a transition to a collapsed tetragonal phase and suppression of mag-

netic moments as observed under hydrostatic or c-axis uniaxial pressure. [29, 40, 66? ]

For tensile stress along the (shorter) b direction, the reversal of AFM and FM direc-

tions happens at P = −0.33 GPa followed by a jump in the orthorhombicity. Magnetic

response of CaFe2As2is highly anisotropic aswell, but contrary to the case of BaFe2As2,

magnetic moments in CaFe2As2are most effectively suppressed when pressure is applied

along c, with rate of around 0.1µB/GPa, while application of pressure within ab-plane

results in suppression of around 0.2µB/GPa.

Figure 5.15: Evolution of the unit cell parameters in CaFe2As2 under the application
of uniaxial stress in the range [−2 GPa, 2 GPa] (a) along a, (b) along b and (c) along
a+b. Negative pressures correspond to tensile stress while positive pressures correspond
to compressive stress. Note, that the relationship between axes and iron moments shown

in the inset in (a) is valid for P ‖ a < 1 GPa, in (b) for P ‖ b > −0.6 GPa.

In order to investigate the possibility of a structural and/or magnetic phase transition

at higher pressures, we concentrate now on compressive stress along the diagonal of

the ab-plane. We find that orthorhombicity is preserved up to 7.7 GPa, where a sharp

transition to a tetragonal phase appears. This transition is of first-order type like the

orthorhombic to collapsed tetragonal phase transition under application of hydrostatic

or uniaxial pressure along the c axis [29] but in this case, changes of magnetic and

structural properties take opposite directions; the c axis undergoes a sudden expansion

of about 9.5%, and a and b axes contract while the iron magnetic moments order

ferromagneticaly and sharply increase in value by around 25%. Interestingly though,

contrary to the application of hydrostatic and uniaxial pressure along c axis, the volume

change here is significantly smaller, namely an expansion by about 0.9%.
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5.8 Elastic Constants in the Orthorhombic Phase and Mag-

netic Moment Suppression Rates

Using data for the response to the uniaxial stress along a, b and c [29] axes we can

directly evaluate the elastic constants Cij in BaFe2As2 and CaFe2As2 corresponding to

the orthorhombic deformations. We define elastic constants to be such that

σi =
∑
j

Cijuj ,

where σi and uj are stress and strain tensor components respectively, and indices i and

j can be xx, yy, zz. Strains are defined to be uxx = (a − a0)/a0, uyy = (b − b0)/b0 and

uzz = (c− c0)/c0, where a0, b0 and c0 are equilibrium unit cell dimensions (P = 0 GPa).

We first directly obtain Sij = [C−1]ij by performing linear fits to ui(σj) and C is then

obtained by inverting the resulting matrix. For BaFe2As2, the elastic constant matrix is

C =


95.2± 4.3 20.4± 3.4 40.8± 4.5

27.3± 4.8 130.8± 6.1 64.0± 7.0

43.7± 4.5 47.7± 4.6 81.0± 5.6

GPa

Utilizing Voigt and Reuss averages, [80] defined as

BVoigt =
1

9
(C11 + C22 + C33 + 2(C12 + C13 + C23))

BReuss = (S11 + S22 + S33 + 2(S12 + S13 + S13))
−1

it is possible to estimate the bulk modulus. Voigt and Reuss averages yield 61.9 ±
5.1 GPa and 69.3± 7.5 GPa, respectively, which is in good agreement with our previous

estimate [29] and the experimental value of 59 ± 2 GPa. [81] For CaFe2As2, the elastic

constant matrix is given by

C =


148.7± 18.5 45.6± 12.3 55.5± 12.7

63.9± 21.4 182.4± 18.4 81.2± 17.5

61.4± 14.7 63.1± 11.4 68.8± 11.3

GPa

which results in bulk modulus of 84.3± 14.8 GPa and 77.7± 17.2 GPa using Voigt and

Reuss averages, respectively. Both values are in good agreement with experimentally de-

termined values of 82.9±1.4 GPa [46] and the estimate based on fits to Birch-Murnaghan

equation of state. [29]

It is interesting to compare this data with the estimates of the magnetic moment sup-

pression rates. In general, for small applied pressure, magnetic moments is suppressed at



Pressure Simulations 68

∆m/∆P [µB/GPa] (BaFe2As2) ∆m/∆P [µB/GPa] (CaFe2As2)

Phyd -0.08 -0.05

Pa -0.09 -0.01

Pb -0.13 -0.02

Pc 0.03 -0.13

Pa+b -0.12 -0.02

Table 5.1: Magnetic moment suppression rates in BaFe2As2 and CaFe2As2

a linear rate. The estimates for the suppression rate under different pressure conditions

are summarized in table 5.1.

Although suppression rates under hydrostatic pressure are roughly comparable in BaFe2As2

and CaFe2As2 at 0.08 and 0.05 µB/GPa respectively, there is a marked difference in re-

sponse to the uniaxial pressure where large anisotropy can be observed. While for

BaFe2As2 the greatest suppression rates are achieved for in-plane application of pres-

sure, in CaFe2As2 the largest suppression rates is achieved for application of pressure

along the c axis. In both cases, the maximal suppression rate is around 0.13 µB/GPa.

Remarkably, our calculations seem to indicate that application of c axis uniaxial pressure

in BaFe2As2 weakly increases the magnetic moments, by around 0.03 µB/GPa. In-plane

application of pressure in CaFe2As2 results in the maximal suppression rate of around

0.02 µB/GPa, which is a factor six reduction when compared to the c axis pressure

application.

Compared with the elastic constants, it is noticeable that the relative softness of the

magnetic moment parallels the relative softness of elastic constants in the corresponding

direction of pressure application. In case of CaFe2As2 the magnetic moments are softest

when pressure is applied along the c axis which is a direction of structural instability in

the 122 family, explaining why the orthorhombic to collapsed tetragonal phase transition

is so abrupt.

5.9 Phenomenological Ginzburg-Landau model

To aid the interpretation of the ab initio results, we develop a phenomenological magneto-

elastic Ginzburg-Landau model to capture the physics of the simultaneous sign-changing

jump of the orthorhombicity and reversal of the AFM and FM directions. As pointed

out by Refs. [58, 60, 82], the magnetic structure of the iron pnictides consists of two

interpenetrating Nèel sublattices, with magnetizations M1 and M2 of equal amplitude

that can point either parallel or anti-parallel to each other (see Figure 5.16).
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Figure 5.16: Magnetic structure of the iron pnictides consisting of two interpenetrat-
ing Nèel sublattices, with magnetizations M1 and M2.

By including also the orthorhombic order parameter δ = (a− b) / (a+ b), we obtain the

Ginzburg-Landau free energy:

F =
am
4

(
M2

1 +M2
2

)
+
um
16

(
M2

1 +M2
2

)2 − gm
4

(M1 ·M2)
2

+
as
2
δ2 +

us
4
δ4 +

λ

2
δ (M1 ·M2) + σδ

(5.1)

Here, am ∝ T − TN , as ∝ T − Ts, um, us > 0, and gm > 0. The last condition ensures

that the ground state is the striped magnetic configuration (i.e. collinear M1 and M2).

We also must have um > gm in order for the magnetic free energy to be bounded. λ > 0

is the magneto-elastic coupling and σ is the stress field conjugate to the orthorhombic

order parameter. The sign of λ is set to describe the experimental observation that fer-

romagnetic bonds are shorter than anti-ferromagnetic bonds. Although this model does

not take into account the physics of the magnetically-driven structural transition, which

comes from fluctuations beyond the Ginzburg-Landau analysis we perform below, [60]

it captures the main features of the ab initio results.

The magnetic ground state is completely determined by the magnitude M = |M1| =

|M2| and the relative angle θ between M1 and M2. Then, minimization of the free

energy leads to three coupled equations for M , θ, and δ:

∂F

∂M
= (am + λδ cos θ)M +

(
um − gm cos2 θ

)
M3 = 0 (5.2)

∂F

∂δ
= asδ + usδ

3 +
λ

2
M2 cos θ + σ = 0 (5.3)

∂F

∂θ
=
gm
4
M4 sin 2θ − λ

2
M2δ sin θ = 0 (5.4)

The last equation allows three possible solutions: θ = 0, θ = π, and cos θ = λδ/
(
gmM

2
)
.
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We focus only on the θ = 0, π solutions, since they are the energy minimum at zero stress.

In the ordered phase, where am, as < 0, we obtain the self-consistent equation for δ:

−
(
|as|+

λ2

2 (um − gm)

)
δ + usδ

3 = − λ |am| cos θ

2 (um − gm)
− σ (5.5)

For σ = 0, the mean-field equations and the free energy are invariant upon changing

δ → −δ and θ → θ+π. Thus, we have two degenerate solutions: δ > 0 and anti-parallel

M1 and M2, θ = π, (denoted hereafter δ+) or δ < 0 and parallel M1 and M2, θ = 0

(denoted hereafter δ−). The presence of a finite strain σ lifts this degeneracy. After

defining:

δ0 =

√
|as|
us

+
λ2

2us (um − gm)

h+ =
1

usδ30

(
λ |am|

2 (um − gm)
− σ

)
h− =

1

usδ30

(
λ |am|

2 (um − gm)
+ σ

) (5.6)

the self-consistent equations for the two solutions δ+ and δ− become simply:

−
(
δ±
δ0

)
+

(
δ±
δ0

)3

= ±h± (5.7)

and we obtain analytic expressions for the two possible solutions:

δ± (h±) =± δ0


h±

2
+

√
h2±
4
− 1

27

 1
3

+

h±
2
−

√
h2±
4
− 1

27

 1
3


(5.8)

The interplay between the external stress field σ and the magneto-elastic coupling λ

becomes evident in Eqs. (5.6)-(5.8). For σ = 0, λ acts as an external field of the same

magnitude for both the δ+ and δ− solutions, i.e. it gives rise to non-zero h+ = h− in

the equations of state (5.7), making these two solutions degenerate. Now, consider that

for σ = 0 the system chooses the minimum δ+ (i.e. δ > 0 and θ = π). By increasing

the external stress to a small value σ > 0, the effective field h+ is suppressed, whereas

the field h− is enhanced. Although the solution δ− (i.e. δ < 0 and θ = 0) has a lower

energy, the solution δ+ is still a local minimum, since the effective field h+ is still finite.

This situation persists until σ increases to the point where the field h+ becomes negative

and large enough to make the δ+ solution not a local minimum.
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In particular, to determine when the δ+ solution ceases to be a local minimum, we ana-

lyze when one of the eigenvalues of the Hessian matrix
(
∂2F/∂qi∂qj

)
becomes negative

(with generalized coordinates qi = M, δ, θ). The three eigenvalues µi are given by:

µ± =
1

2

[
as + 3usδ

2 + 2M2 (um − gm)
]

± 1

2

√
[as + 3usδ2 − 2M2 (um − gm)]2 + 4λ2M2

µ0 =
M2

2

(
gmM

2 − λδ cos θ
) (5.9)

For the δ+ (δ > 0, θ = π) solution, the only eigenvalue that can become negative with

increasing σ is µ−. We find that this happens when the condition δ+
δ0

= −3
2h+ is met,

corresponding to an effective field h+ = − 2
3
√
3
, i.e. to the critical stress:

σc =
λ |am|

2 (um − gm)

+
2us

3
√

3

( |as|
us

+
λ2

2us (um − gm)

)3/2 (5.10)

At σ = σc, the solution δ > 0, θ = π is not a local minimum any longer and the

system jumps to the new minimum with δ < 0, θ = 0, where not only the sign of the

orthorhombicity is reversed, but also the angle between the magnetizations of the two

sublattices (i.e. the AFM and FM directions). This behavior is shown in Figure 5.17

for a particular set of parameters.

To compare with the DFT results, we performed a slight modification with respect to

the calculations presented in the previous section. To ensure that the external stress

couples mainly to the orthorhombic mode δ and not to the longitudinal elastic mode

ε, such that it does not change the volume of the system, we simultaneously applied

positive (compressive) pressure along a and equal-amplitude negative (tensile) pressure

along b. By doing this, we avoid terms such as M2ε in the free energy, rendering the

comparison between the ab initio and the Ginzburg-Landau results more meaningful.

The ab initio obtained behavior of δ as function of σ, defined in the way described above,

is shown also in Figure 5.17.

We find a qualitative agreement with the Ginzburg-Landau results, showing that the

external stress indeed competes with the magneto-elastic coupling, helping the system

to overcome the energy barrier between the δ+ (δ > 0, θ = π) and δ− (δ < 0, θ = 0)

solutions. A quantitative comparison becomes difficult because the DFT calculations

are performed deep in the ordered phase, where higher order terms in the Ginzburg-

Landau expansion become more important. Furthermore, it is also possible that some

of the magnetic parameters (am, um and gm) have themselves some implicit pressure
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Figure 5.17: (a) Orthorhombic order parameter δ = a−b
a+b (in units of δ0 =√

|as|
us

+ λ2

2us(um−gm) ) as function of the applied stress σ (in units of σ0 = λ|am|
2(um−gm) ).

We used parameters such that λ|am|
2(um−gm)usδ30

= 2. The jump happens when the δ > 0

solution is no longer a local minimum, and is accompanied by a reversal of the angle
between the two-sublattice magnetizations M1 and M2, i.e. a reversal of the AFM and
FM directions. (b) DFT results for the strain-dependent orthorhombic order parameter

δ ≡ a−b
a+b . The blue curve is for BaFe2As2 and the red curve, for CaFe2As2.

dependence in this regime. Nevertheless, we can use Eq. (5.10) as a benchmark to discuss

differences in the BaFe2As2 and CaFe2As2 compounds. Clearly, Eq. (5.10) shows that σc

increases with increasing magneto-elastic coupling. Therefore, the fact that σc is three

times larger for CaFe2As2 than for BaFe2As2 suggests that, all other parameters being

equal, the magneto-elastic coupling is larger in CaFe2As2 than in BaFe2As2. This may

have important impact on the coupled magnetic and structural transitions displayed

by these compounds, as discussed in Refs. [60, 82, 83], and as such deserves further

investigation in the future.

5.10 Summary

In summary, we have presented finite pressure density functional theory calculations

which allow the investigation of nonhydrostatic pressure conditions. Our finite pressure

relaxed structures show good agreement with the available experimental data (volume,

Birch-Murnaghan values and compressibilities) though our magnetic moments in the

orthorhombic phase are larger than the observed experimental values. We expect that

this overestimation affects mostly the values of Pc. Comparison of our calculated Fe-As
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bond distances at different pressures with measured distances [73] shows good agree-

ment. Also, available de Haas van Alphen measurements performed for CaFe2P2 [72]

agree well with our predicted Fermi surface shapes for CaFe2As2 in the collapsed tetrag-

onal phase. This overall agreement with experimental observations demonstrates that

the presented constant pressure calculations provide a reliable theoretical prediction of

structures under nonhydrostatic pressure conditions, allowing for arbitrary stress ten-

sors in future studies. Such calculations can complement experiments and help identify

the precise degree of hydrostaticity. We find that uniaxial stress along the c axis con-

siderably reduces the critical pressures for CaFe2As2 and BaFe2As2. This behavior can

be understood by the fact that the phase transitions are strongly dictated by the elec-

tronic properties in the vicinity of the Fermi energy, as shown by our electronic structure

analysis. While CaFe2As2 undergoes a magnetic orthorhombic to a non-magnetic col-

lapsed tetragonal phase for both pressure conditions and no indication of an intermediate

tetragonal phase is observed under uniaxial stress, BaFe2As2 shows two phase transitions

from a magnetic orthorhombic to a collapsed tetragonal phase through an intermediate

nonmagnetic tetragonal phase for both pressure conditions. All nonmagnetic phases

show a disappearance of the hole pockets at the Γ point suppressing possible Cooper

pair scattering channels between electron and hole pockets. Such scattering channels

have been discussed to be important for the superconductivity in BaFe2As2 [84]. More

experiments need to be done in order to understand the origin of the superconducting

phase observed in these materials under various pressure conditions.

We have also analyzed the effects of tensile and compressive stress along a, b and a+b on

BaFe2As2 and CaFe2As2 by means of DFT calculations under constant stress conditions

with the help of the FIRE algorithm, combined with a phenomenological Ginzburg-

Landau model. Starting from the low-temperature magnetically ordered orthorhombic

phase, we found in the pressure range between −2 GPa and 2 GPa no real structural

phase transitions in both systems except for a pronounced orthorhombicity jump ac-

companied by a 90 degree rotation of the magnetic order. FM and AFM directions are

interchanged, as are the orbital occupations dxz and dyz. This inversion of axes is a

direct consequence of the interplay between the intrinsic magneto-elastic coupling and

the applied stress, as revealed by our Ginzburg-Landau analysis. The proportionality

between the critical stress where this inversion happens and the value of the magneto-

elastic coupling suggets that in CaFe2As2 the magnetic and structural degrees of freedom

are more strongly coupled than in BaFe2As2, which may be related to the differences

observed in their magnetic and structural transitions. [83] We also point out that the

estimates for the bulk moduli of BaFe2As2 and CaFe2As2 derived from our ab initio

results are in good agreement with the experimental measurements.
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Our calculations also provide important insight on the impact of uniaxial stress on the

magnetic properties of the pnictides. Fig. 5.12 shows that the magnetic moment at zero

temperature always decreases (increases) with compressive (tensile) stress, regardless of

the axis that is perturbed. Unlike the jump in the orthorhombicity and the reversal of

the FM and AFM directions, this is a consequence not of the magneto-elastic coupling,

but of the changes in the pnictogen height promoted by the uniaxial stress. This is an

important prediction of our first-principle calculations that can be tested experimen-

tally. Interestingly, recent neutron diffraction experiments [54] on BaFe2As2 observed

that upon application of compressive stress along the b axis, the magnetic moment is

suppressed from 1.04µB to 0.87µB. Given the small values of applied pressure, it could

be that this suppression is due to a reduction of the volume fraction of the domains

whose moments are oriented out of the scattering plane, as pointed out by the authors

of Ref. [54]. Nevertheless, in view of our current results, it would be interesting to ei-

ther apply higher pressures to completely detwin the samples at low temperatures or

to apply tensile stress to make a comparison with the case of compressive stress. We

note that Ref. [54] also found an enhancement of the magnetic transition temperature

TN in the same detwinned samples. Phenomenological models [63, 82, 85] attribute

this effect to changes in the magnetic fluctuation spectrum of the paramagnetic phase

promoted by the uniaxial stress. In this regard, it would be interesting in future ab ini-

tio studies to systematically investigate the changes in the nesting feature of the Fermi

surface (Fig. 5.13) as function of the uniaxial stress - specifically, changes in the (π, π)

susceptibility peak.

Finally, we comment on the impact of our results to the understanding of the detwinning

mechanism of iron pnictide compounds. In the tetragonal phase, rather small uniaxial

stress P < 10 MPa is enough to completely detwin the sample, giving rise to a single

domain. [54, 57, 62] This can be understood as fluctuations above the structural transi-

tion temperature giving rise to long-range order in the presence of a symmetry-breaking

field. [60] The situation is however very different deep in the orthorhombic phase, where

twin domains are already formed. Experimentally, it is known that larger pressures are

necessary to completely detwin the system in this case, [57, 62] although specific val-

ues have not been reported, to our knowledge. One possible detwinning mechanism is

the reversal of the orthorhombicity of one domain type, while the domain walls remain

pinned. This corresponds precisely to the situation studied here, where the orthorhom-

bicity jumps at a certain critical uniaxial pressure. Our ab initio results show that such

a critical pressure for BaFe2As2 would be around 200 MPa – one order of magnitude

larger than the pressure values necessary to detwin the sample in the tetragonal phase.

Of course, other mechanisms can also give rise to detwinning in the ordered phase, such

as domain wall motion. Therefore, we propose controlled detwinning experiments at low
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temperatures in BaFe2As2 to measure the critical pressure necessary to form a single

domain. Values comparable to the ones discussed here would be a strong indication for

reversal of the order parameter inside fixed domains. Which mechanism is at play in the

iron pnictides may have important consequences for the understanding of the impact

of the external stress on the anisotropic properties measured in detwinned samples –

particularly the in-plane resistivity anisotropy, [56, 57, 60] which is likely affected by

domain wall scattering. [86]



Chapter 6

Band Structure Unfolding

Often, when one wants to compare electronic properties of qualitatively similar crystal

structures, with unit cells of different size, a difficulty arises because structure with larger

unit cell will have more complicated band structure, making comparison more difficult

and obscuring important features shared with the crystal possessing a simpler unit cell.

This is especially true when doped compounds or crystals with any kind of defects are

of interest.

To go around this difficulty, we have developed an unfolding procedure which can lever-

age both translational and point group symmetry to effectively reduce the unit cell by

an integer factor, resulting in a reduction of a number of bands by the same factor.

In this chapter we will first explain how bandstructure folding occurs and then we will

present a simple method by which the unfolding can be achieved. This method proceeds

through a simple transformation between two Bloch basii and is similar to the other

recently developed methods [87–93]. We then presents our more general method, based

on group theory considerations. This method was inspired by the proposal to use the

glide mirror group to unfold the tight-binding model of LaFeAsO[79]. And finally, we

apply the method to various problems which arise when studying the iron pnictide family

of materials.

This chapter requires some level of familiarity with the representation theory of space

groups. Since this is not a very common topic outside the specialized area of crystal-

lography a short overview of group theory and representation theory of space groups is

given in appendix A.
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Figure 6.1: Simple example of band structure folding in one dimension. Panel (a)
shows a unit cell consisting of one atom. Above each atom, its contribution to the Bloch
state is shown. The resulting one band bandstructure is on panel (b). The panels (c)
and (d) show what happens when the unit cell is doubled. In this case, each unit cell
has two atoms, indexed with 1 and 2. Resulting in a folded bandstructure as-shown on

panel (d).

6.1 Problem of Folding

Before detailing out the unfolding procedure we have to clarify the folding. Figure 6.1

shows a simple example of a one dimensional crystal with a unit cell consisting of a

single atom. If we assume one localized state |n〉 at every atomic site n, with N being

the total number of sites, then the resulting Bloch states are of the form

|k〉 =
N∑
n=1

eikna|n〉.

There will be a total of N Bloch states, characterized by the wave numbers k ∈
[0, .., 2π/a). Since for every k there is only one Bloch state, the Hamiltonian will be

one-dimensional and as a result there will be only one band, shown on Figure 6.1 (a).

If we now take the same one dimensional crystal, and double the unit cell so that it

contains two atoms, marked as 1 and 2 (see Figure 6.1 c), the resulting Bloch states are
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|q, µ〉 =

N/2∑
n=1

e2iqna|n, µ〉

where µ = 1, 2 indexes atoms in the unit cell. Since the Bloch states |q, µ〉 span the same

space as states |k〉, there will have to be N of them, as in the case of one atom per unit

cell, but now there will be half as much wave numbers q ∈ [0, .., π/a) and for every q

there will be two states |q, µ = 1, 2〉. Because of this, the corresponding Hamiltonian at

q will be two dimensional and as a result the bandstructure will have two bands (Figure

6.1 d).

However, these two bands hold no more information than the one band shown on Fig-

ure 6.1 (a) to which there is a one to one correspodence shown by dashed green arrows,

which is called folding. The goal of the unfolding procedure we have developed is to find

the inverse mapping.

6.2 Transformation of the Bloch Basis

Let us remove the constraint of a one dimensional crystal with one atom per unit cell and

consider a crystal lattice with N unit cells located at sites Rn, with n = 1, ..., N , with

each unit cells containing M orthonormal atomic orbitals |µ〉 located at positions rµ

relative to the Rn. Here we allow the possibility of multiple orbitals occupying the same

site, since we would like to describe the multi-orbital systems. Let Ĥ be the Hamiltonian.

At an arbitrary k-point k of the Brillouin Zone, bands are obtained by diagonalizing the

projection of the Hamiltonian to the subspace spanned by the Bloch states

|k, µ〉 =
1√
N

N∑
n=1

eik·Rn |Rn, µ〉 (6.1)

where the index µ enumerates the atomic orbitals within the unit cell. Projection of the

Hamiltonian, is achieved by the following relation

Ĥk = P̂kĤP̂k =

M∑
µ,ν=1

|k, µ〉〈k, µ|Ĥ|k, ν〉〈k, ν| (6.2)

where the projectors P̂k are given by

P̂k =

M∑
µ=1

|k, µ〉〈k, µ| (6.3)
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In this case, there will be N k-points within the BZ and at each k-point there will be

M bands.

If we now divide the same crystal lattice into smaller number of larger unit cells, we will

obtain a lattice described by N/s vectors Sp, and Ms atomic orbitals within each unit

cell, where s > 1. The resulting Supercell Brillouin Zone (SBZ) will be covered with the

N/s k-points, and there will be Ms bands.

The resulting increase in number of bands represents the bandstructure folding.The goal

of the procedure presented here is to obtain the bandstructure in the BZ starting from

the bandstructure obtained in the SBZ. This can be achieved by projecting and deter-

mining matrix elements of the relation (6.2) in the subspace spanned by the supercell

Bloch states

|q, µ, i〉 =

√
s

N

N/s∑
p=1

eiq·Sp |Sp, µ, i〉 (6.4)

where q is from SBZ, and i = 1..s enumerates copies of the orbitals from unit cell in the

supercell (See figure 6.2).

Since, practically, in our calculations we start from the Hamiltonian evaluated in the

supercell basis, we can achieve this, by simply finding the matrix elements of the pro-

jectors (6.3) in the basis (6.4). Those are given by

Pαβ,ijk,q = 〈q, α, i|P̂k|q, β, j〉 =
M∑
µ=1

〈q, α, i|k, µ〉〈k, µ|q, β, j〉 =
M∑
µ=1

(
aµα,ik,q

)∗
aµβ,jk,q (6.5)

Coefficients aµα,ik,q are given by

aµα,ik,q = 〈k, µ|q, α, i〉 =

√
s

N

N∑
n=1

N/s∑
p=1

e−ik·Rneiq·Sp〈Rn, µ|Sp, α, i〉 (6.6)

To evaluate scalar products, instead of summing over the unit cells in the first sum, we

sum over supercells, and then over the replicas of the unit cells within the supercell.

This results in the following changes
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μ=1
i=1

μ=2
i=1

u⃗1
2

u⃗1
1

R⃗n1= S⃗ p1

R⃗n2= S⃗ p2

R⃗n4= S⃗ p4

R⃗n3=S⃗ p3

μ=2
i=2

μ=1
i=2

Figure 6.2: Unit cell boundaries are given by dashed gray lines, while supercell bound-
aries are given by solid gray lines. Grey diamonds mark unit cell sites which will become
supercell locations while white diamonds mark unit cell sites which will be internal to
the supercell. Colored vectors denote how the unit cell orbitals are duplicated in the

supercell.

N∑
n=1

−→
N/s∑
r=1

s∑
j=1

Rn −→ Sr + uµj

|Rn, µ〉 −→ |Sr, µ, j〉

where every vector Rn is decomposed into a sum of supercell location Sp and position

of the unit cell replica relative to the supercell location uµj (this position depends on the

orbital index µ because for different orbitals the unit cell replicas might be positioned

differently with respect to the supercell origin Sp as shown on figure 6.2). With these

changes taken into account it is easy to evaluate aµαk,q
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aµαk,q =

√
s

N

s∑
j=1

e−ik·u
µ
j

N/s∑
r=1

N/s∑
p=1

e−ik·Sreiq·Sp〈Sr, µ, j|Sp, α, i〉 =

√
s

N

s∑
j=1

e−ik·u
µ
j

N/s∑
r=1

N/s∑
p=1

e−ik·Sreiq·Spδrpδµαδij =

√
s

N
e−ik·u

µ
i δµα

N/s∑
p=1

e−i(k−q)·Sp =
1√
s
e−ik·u

µ
i δµαδkf ,q (6.7)

where kf is the vector k refolded back to the supercell Brillouin zone. Putting (6.7)

into (6.5) gives the final result

Pαβ,ijk,q =
1

s
eik·(u

α
i −u

β
j )δαβδkf ,q (6.8)

Unfolding of the band structure can then be achieved in practical ab-initio calculations

by operating with the matrix defined by (6.8) onto a column containing projections of

the Hamiltonian eigenvectors |k, n〉 onto some set of orthonormal localized states |µ〉,
which is usually provided by most density-functional theory codes.

6.3 Group Theoretical Formulation of the Unfolding

The important aspect of the Bloch basis (6.1) and the projectors (6.3) is that they are

concepts deeply rooted in the symmetry principles. Let us consider the same crystal

lattice as in the previous section. The lattice remains invariant when translated by Rn.

Thus, the electronic Hamiltonian from (1.4), must be invariant under the same set of

translations. One of the basic statements of group theory in physics is that the eigen-

states of the Hamiltonian can be classified according to the irreducible representations

of its group of symmetries [94]. This stems from the fact that the operators representing

the action of the symmetry operations commute with the Hamiltonian, which in turn

means that irreducible subspaces for a given group of symmetries will be invariant under

the action of the Hamiltonian.

The well known result[95] is that the translation group T of the periodic lattice of N

sites will have N inequivalent irreducible representations D(k), where k belongs to the

first Brillouin zone. The translations are represented by D̂(k)(Rn) = e−ik·Rn . For every

irreducible representation D(k), a projector onto the corresponding irreducible space can

be defined
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P̂k =
1

N

N∑
n=1

eik·RnT̂(Rn)

This is just another way to define a projector given in (6.3). The projection of the

Hamiltonian by the projectors P̂k brings the Hamiltonian to the block diagonal form

Ĥ =


Ĥk1 = P̂k1ĤP̂k1

Ĥk2
. . .

ĤkN


since k-th irreducible subspace of the translation group is invariant under the action

of the Hamiltonian. As a consequence, the Hamiltonian diagonalization is achieved by

separate diagonalization of every sub-block Ĥki .

The Bloch states (6.1) are a result of the action of the projectors P̂k onto a set of localized

states |µ〉, centered around origin of the lattice at positions rµ since |Rn, µ〉 = T̂(Rn)|µ〉.

Let us now assume that the lattice possesses symmetries additional to those contained in

T. In that case, the full group of symmetries will in general be a spacegroup S such that

T/S. The irreducible representations of S can be induced from the irreducible represen-

tations of T as shown in the Appendix A. Let the operators Ĉi = [Ûi|τi], i = 1, ..., F be

the left coset representatives of S with respect to T, where Ûi is a point group operation

and τi is a fractional translation. We allow Ĉi to be the pure fractional translations,

but not the pure point group operations since the goal of unfolding is to increase the

translational periodicity of the lattice. An element of S can be written as

Ŝn,i = ĈiT̂(Rm) = [Ûi|ÛiRm + τi] = [Ûi|Rn + τi]

and is represented by

∆̂(k,α)(Ŝn,i) = e−ik·(Rn+τi)∆̂
(k,α)
C (Ûi) (6.9)

To simplify, we will assume that k in (6.9) is a high symmetry point for all Ûi. In this

case, the irreducible representations of the little co group ∆
(k,α)
C will be one dimensional.

Since the irreducible representations are unitary, this means that ∆̂
(k,α)
C (Ûi) will be roots

of unity and we can write
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∆̂
(k,α)
C (Ûi) = eiαfi/F (6.10)

for appropriately chosen 0 ≤ fi < F . The numbers fi, with respect to addition modulo

F make up a group isomorphic to the little co group. Since, with this parametrization,

∆̂
(k,0)
C (Ûi) = 1 for every i, index α = 0 will correspond to the unit representation of the

little co-group.

In cases where Ĉi are pure fractional translations, which corresponds to the case of

the translational unfolding described in the previous section, it is not necessary to use

the induction procedure described in the appendix A.3 . The fractional translations

τi modulo T comprise an Abelian group Tf which is either cyclic, or a direct product

of one or more cyclic groups and thus its irreducible representations are easily found.

Since S = TTf , irreducible representations of S are a simple product of irreducible

representations of T and Tf .

Finally, when (6.9) an (6.10) are taken into account, a generalization of the projectors

(6.3) can be written

P̂kα =
1

NF

N∑
n=1

F∑
i=1

eiαfi/F eik·(Rn+τi)[Ûi|Rn + τi] (6.11)

The very important fact here is that there are now NF projectors P̂kα, which means

that the Hamiltonian can be put into the block diagonal form with NF instead of N

blocks which was the case with the projectors (6.3). This means that every block will

result in N/F bands and the unfolding can be achieved.

In order to be able to use the projectors (6.11) to generate the generalization of the

Bloch states (6.4), we have to determine how operators [Ûi|Rn +τi] act on the localized

states |µ〉. Since the action of translation by a lattice vector is already know, we are only

concerned here with the action of point group operator and the fractional translation

Ĉi = [Ûi|τi]. The action of point group operators Ûi will transform the localized states

within the unit cell into each other, while the action of fractional translations τi can

move localized states from one unit cell into another. However, since in the projector

(6.11) we sum over all operations of S, we can just shift the indexing, so that the trans-

formed localized states are translated back into the original unit cell. Now, the total

action of Ĉi can just be written as

Ĉi|Rn, µ〉 =

M∑
ν=1

|Rn, ν〉Wνµ(Ĉi) (6.12)
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so that the generalization of the Bloch basis (6.4) will be

|k, µ, α〉 =
1

NF

N∑
n=1

F∑
i=1

M∑
ν=1

eiαfi/F eik·(Rn+τi)|Rn, ν〉Wνµ(Ĉi) (6.13)

In order to be able to unfold, as in the previous section, we need to determine the matrix

elements of the projectors (6.11) in the Bloch basis (6.4)

Pµνkα = 〈k, µ|P̂kα|k, ν〉 =

1

NF

N∑
n=1

F∑
i=1

M∑
ν=1

eiαfi/F eik·(Rn+τi)〈k, µ|[Ûi|Rn + τi]|k, ν〉

where the matrix elements of the space group operators are

〈k, µ|[Ûi|Rn + τi]|k, ν〉 =
1

N

N∑
p=1

N∑
q=1

eik·(Rq−Rp)〈Rp, µ|[Ûi|Rn + τi]|Rq, ν〉

Since

〈Rp, µ|[Ûi|Rn + τi]|Rq, ν〉 =

M∑
γ=1

〈Rp, µ|Rq +Rn, γ〉Wγν(Ĉi) = δ(Rp −Rn −Rq)Wµν(Ĉi)

When all of this is put together, the final expression for the projector matrix elements

is simplified to

Pµνkα =
1√
F

F∑
i=1

eiαfi/F eik·τiWµν(Ĉi) (6.14)

For the case of the translational unfolding the expression (6.14) is identical to (6.8).

However, the meaning of the terms in (6.14) is much more obvious. Once the irreducible

representations of the space group S are known, in order to evaluate the projector matrix

elements, it is necessary to evaluate the matrices Ŵ(Ĉi).

Let us assume that every unit cell contains P sites sp. Every site sp is the center of

the Mp localized states |p, α〉. where α = 1, ...,Mp and
∑P

p=1Mp = M . We can now
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understand the index µ of the localized state |µ〉 as a composite index µ = (p, α). The

action of the operators Ĉi permutes the sites sp so that it’s action on the sites can be

represented by the permuation matrix K̂ whose matrix elements are

Kpq = δ(sq − [Ĉisp]modT)

where [Ĉisp]modT denotes the action of Ĉi on the sites sp modulo lattice translation, ie.

the position Ĉisp is translated back into the original unit cell.

In addition to the permutation action, the point group part Ûi of the operators Ĉi has

an action on states at every site given by the matrix L̂p(Ûi). Practically, index α in

|p, α〉 usually stands for the angular momentum quantum numbers α = (l,m). This

means that the matrices L̂p(Ûi) are transformation matrices in the spherical harmonic

basis. Finally, the matrix elements of Ŵ(Ĉi) are given by

Wµν(Ĉi = [Ûi|τi]) = Kpq(Ĉi)L
p
αβ(Ûi)

where µ = (p, α) and ν = (q, β).

If we now turn back to the representative of an arbitrary operation from S

∆̂(k,α)(Ŝn,i) = eiαfi/F e−ik·(Rn+τi)

we can see that the induced irreducible representations are differentiated by the factor

α in the first exponential term. This means that, for any two induced irreducible repre-

sentations ∆(k,α) and ∆(k,β), we can find a kαβ from the Brillouin zone, such that

kαβ ·Rn = 0

kαβ · τi = (β − α)fi/F
(6.15)

which then implies

∆(k,β) = ∆(k+kαβ ,α)

In other words, we can always choose one particular induced irreducible representa-

tion and then reproduce all other irreducible representations just by shifting the bands

through the vectors kαβ. This shifting will ofcourse move the bands past the boundaries
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Figure 6.3: The unfolding of the Brillouin zone. Panel a) shows the folded bandstruc-
ture and bands belonging to the two different irreducible representations. On the panel
b) one irreducible representation is reproduced from the other resulting in the unfolded

bandstructure and the unfolded Brillouin zone

of the Brillouin zone and will result in the extended Brillouin zone, which will correspond

to the unfolded Brillouin zone. The relations (6.15) then define the folding vectors. This

is schematically shown on the figure 6.3.

The important distinction with respect to the translational unfolding with the projectors

(6.8) is that the unfolding is formulated now as a projection onto the irreducible subspace

which has a well understood physical meaning. The projector (6.8) is a special case of

the translational unfolding where the induced unit representation is extended into the

unfolded Brillouin zone. Another important distinction is that, due to the definition of

the projectors (6.11), it is possible to apply unfolding to any observable, provided we

know how it transforms under the action of operators from S.

In order to arrive at (6.10) we have assumed that k is a high symmetry point for all Ûi

so that the irreducible representations of the little co-group are one dimensional. The

requirement of one dimensionality is imposed so that the irreducible representations

of S would not contain more than one wave vector since the physical meaning of the

unfolding would not be clear in that case. This imposes a limitation onto the unfolding

where point group operations are employed because we have to restrict the unfolding

only onto high symmetry wave vectors. This limitation is not that severe because for

materials whose electronic properties are predominantly one or two dimensional, it is

possible to extend the unfolding to the rest of the Brillouin zone as will be shown for

the iron pnictides.
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6.3.1 Unfolding of Tight-Binding Models

The unfolding formalism presented in the previous section can be employed to unfold

tight-binding models. Let us assume that we have a tight-binding model associated with

the Bloch basis (6.4). The matrix elements of the Hamiltonian are given by

[Ĥk]µν = 〈µ|P̂kĤP̂k|ν〉 = 〈µ|ĤP̂k|ν〉 =

N∑
n=1

eik·Rn〈0, µ|Ĥ|Rn, ν〉 (6.16)

where we have used the fact that [P̂k, Ĥ] = 0 and that projectors are idempotent. We

can now define a set of hopping energy matrices t̂(Rn) with matrix elements given by

t(Rn)µν = 〈0, µ|Ĥ|Rn, ν〉 (6.17)

so that the tight-binding Hamiltonian (6.16) is

Ĥk =
N∑
n=1

eik·Rn t̂(Rn) (6.18)

Since we have seen that the unfolding is block diagonalizing the Hamiltonian at every

k, it will do the same for the hopping energy matrices, since according to (6.18) they

share the same block diagonal structure of the Hamiltonian which means that we can

formulate the tight-binding model of the smaller dimensionality.

The simple way to arrive at a prescription for tight-binding model unfolding is to write

Ĥkα = P̂kαĤP̂kα in the form analogous to (6.18)

[Ĥkα]µν = 〈µ|ĤP̂kα|ν〉 =

1

F

N∑
n=1

F∑
i=1

M∑
γ=1

eiαfi/F eik·(Rn+τi)〈0, µ|Ĥ|Rn, γ〉Wγν(Ĉi) =

1

F

N∑
n=1

F∑
i=1

M∑
γ=1

eiαfi/F eik·(Rn+τi)tµγ(Rn)Wγν(Ĉi) (6.19)

On the other hand, for the unfolded tight-binding model, the expression analogous to

(6.18) is

Ĥkα =

N∑
n=1

F∑
i=1

eik·(Rn+τi)t̂α(Rn + τi)
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By comparing to (6.19) we can read off the relation between t̂(Rn) and t̂α(Rn + τi)

t̂α(Rn + τi) =
1

F
eiαfi/F t̂(Rn)Ŵ(Ĉi) (6.20)

The exponential prefactor is a problem since it can cause the hopping energies to be

complex in the unfolded tight binding model. However, this prefactor is the only thing

differentiating irreducible components of the unfolded hopping energy matrices and it

amounts to an overall k-independent unitary transformation of the Hamiltonian. Fur-

thermore, in the unfolded picture, we extend a single irreducible representation past

the Brillouin zone boundaries, so that in the tight-binding model picture, we expect

to have a single set of hopping energies, independent of the irreducible representation,

which manifestly does not hold here because the exponential prefactor depends on α.

Because of this, we can drop the exponential and define the irreducible representation-

independent unfolded hopping energy matrices as

t̂(Rn + τi) =
1

F
t̂(Rn)Ŵ(Ĉi) (6.21)

where the indices µ and ν of the hopping energy matrix now run only over a single block

Ĥkα in the block-diagonalized Hamiltonian.

6.4 Applications of The Bands Structure Unfolding

The iron pnictide family of the materials provides an excellent proving grounds for the

unfolding method presented here. All iron pnictides are built up from the layers con-

sisting of the iron atoms tetrahedrally coordinated by the pnictogen atoms as shown on

Fig 6.4 (a). Different families of the iron pnictide materials are differentiated by the

stacking sequence of the iron pnictogen layers, as well as by the content of the spacer

layers. For most of the iron pnictide families, minimal translationally invariant unit cell

consists of two iron and two pnictogen atoms. This unit cell can further be reduced

by considering the glide-mirror operations, which combine the translations between the

nearest-neighbor iron atoms with reflections in the xy-plane, thus mapping two transla-

tionally inequivalent irons and pnictogens into each other.

For the first example, we will consider a simple case of the translational unfolding, where

the translation group T is expanded by fractional translations Ĉi = [1|τi]. For example,

let us consider the supercell of the tetragonal FeSe Fig 6.4 (a). The suprecell consists
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Figure 6.4: Unit cel l a nd Brillo uin zo ne of the tet ragon al FeSe , dou bled along
the a-axis. (a) Supercell consisting of two unit cells of tetragonal FeSe. Fractional
translation τ is shown in green color. The iron atoms lie in the same plane, parallel
to the plane of the drawing, while the lighter colored selenium atoms are vertically
displaced above the plane, and the darker colored ones are below. (b) kz = 0 plane of
the Brillouin zone corresponding to the single unit cell of FeSe. Yellow filling marks the
Brillouin zone corresponding to the supercell. The folding vector kf is shown in green

color.

of the unit cell doubled along the a axis of FeSe. The bandstructure along the path

Γ − X shown in Fig 6.4 (b), corresponding to the FeSe supercell is shown on Fig 6.5

(a). To unfold the bands, we employ an additional symmetry the supercell has, on top

of the translational symmetry T, and that is the fractional translation τ = a. With

this, the factor group S : T is isomorphic to the cyclic group of order two, with the

generator [1|τ ]. With this, from every irreducible representation of T, two irreducible

representations with α = 0 and α = 1 are induced (for details see Appendix B.1).

The resulting projections of bands onto the irreducible representations are shown in

Fig 6.5 (b) and (c), while the unfolded picture, where the irreducible representation

∆(k,0) is extended outside the supercell Brillouin zone is shown in Fig 6.5 (d). Evidently

∆(k+kf ,0) = ∆(k,1), with kf = (π/a, 0, 0).

The unfolding shown on (Fig) is perfect, because the fractional translation [1|τ ] is an

exact symmetry of the supercell and every band will belong to only one of the irreducible

representations of S. In the realistic case, where the operations Ĉi are only approximate

symmetries, the bands will have nonzero projections onto multiple irreducible represen-

tations, although usually, only one of the irreducible representations will be dominantly
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Figure 6.5: Unfolding of the tetragonal FeSe doubled along the a-axis. (a) The folded
bandstructure. (b) Projection of bands onto ∆(k,0). (c) Projection of bands onto ∆(k,1).
(d) Unfolded picture. Irreducible representation ∆(,0) is extended past the boundaries

of the Brillouin zone by the folding vector kf = (π/a, 0, 0).

present in every band.

Such situation occurs, for example, when studying the doped compounds. We have cho-

sen to study the phosphorus doped CaFe2As2. We have already seen in chapter 5 that

when the pressure is applied, CaFe2As2 undergoes a magnetostructural phase transi-

tion from the magnetically ordered orthorhombic phase, to the non-magnetic, collapsed

tetragonal phase. It is also possible to induce the orthorhombic to collapsed tetragonal

phase transition in CaFe2As2 by applying the chemical pressure. For, example, sub-

stitutional doping of phosphorus into the arsenic sites, causes CaFe2As2 to enter the

collapsed tetragonal phase at the doping level of around 5%[96]. To fully understand how

chemical pressure is related to the application of physical pressure, we have performed

a sequence of full structural relaxations of P-doped CaFe2As2. To achieve varying levels

of doping, we have used supercells of different size.

We have found that ab-initio calculations predict that P-doped CaFe2As2 undergoes or-

thorhombic to collapsed tetragonal phase transition for the doping level between 9.375%

and 12.5% in accordance with the experiment. In order to analyze the electronic struc-

ture in the collapsed tetragonal phase of the P-doped CaFe2As2, we have to perform the

unfolding of the bandstructure.

The relaxed Ca(FeAs1−xPx)2 has an orthorhombic unit cell, where the phosphorus

atom is breaking the translational symmetry as shown on Fig 6.6. The unit cell of

Ca(FeAs1−xPx)2 is a supercell consisting of the four primitive unit cells of CaFe2As2.

This unit cell contains a total of eight iron atoms. The corresponding fractional trans-

lations are τ1 = (a + b)/2, τ2 = (a + c)/2 and τ3 = τ1 + τ2, where a, b and c are the

unit vectors of the supercell, as shown on Fig 6.6. These fractional translations map the

two translationally inequivalent iron atoms to the eight iron atoms of the supercell. .
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Figure 6.6: The unit cell of Ca(FeAs1−xPx)2. The fractional translations τi are shown
in green color.

The corresponding bandstructure is shown on Fig 6.7 (a). The bandstructure is cal-

culated along the path given by (0, 0, 0) − (2π/a, 0, 0) − (2π/a, 2π/a, 0) − (0, 0, 0) −
(0, 0, 2π/c). Four irreducible representations can be induced (for details see Appendix

B.2). We will select the irreducible representation ∆(k,0) and extend it to the unfolded

Brillouin zone. The resulting unfolded bandstructure, obtained by extending the irre-

ducible representation ∆(k,0) is shown in Fig 6.7 (b). Despite the fact that the fractional

translations τi are not the exact symmetries of Ca(FeAs1−xPx)2, the band projections

onto different irreducible representations are still mostly orthogonal, having relatively

clean unfolded bands as a result. This allows us to clearly see disappearance of the hole

pockets centered around Γ, since the set of three hole t2g bands is pushed bellow the

Fermi level by around 0.2eV. Comparison of the unfolded bands to the bandstructure of

the collapsed tetragonal phase of CaFe2As2 under pressure[29] confirms that phosphorus

doping and application of the hydrostatic pressure affects the structural and electronic

properties of CaFe2As2 in a remarkably similar way.

As a final example, we will demonstrate how inclusion of the point group operations

can be used to unfold the bandstructure past the limit imposed by the translational

symmetry. Simultaneously, we will showcase the use of (6.20) and (6.21) for the unfolding

of the tight-binding models.

We have used the projective Wannier funtions, as implemented in the FPLO code[12], to

obtain the 16 band tight-binding model of the FeSe structure obtained in the ab-initio

simulation of the hydrostatic pressure application of 10GPa. The tight-binding model

consists of five 3d orbitals per iron site, and three 4p orbitals per selenium site.
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Figure 6.7: Unfolding of Ca(FeAs1−xPx)2 bandstructure. (a) Bandstructure o f t he
Ca(FeAs1−xPx)2 supercell. (b) The unfolded bandstructure obtained from ∆(k,0).

As was already mentioned, the two translationally nonequivalent iron sites can be

mapped onto each other with the help of the glide mirror operations Ĉi = [σ̂z|τi] with

i = 1, 2. The fractional translations τi connect the nearest neighbor iron atoms, as

shown on Fig 6.4 (a), while σ̂z is a reflection in the xy-plane. To unfold, we can choose

one of Ĉi and then induce the irreducible representations of S = T∪TĈi. In accordance

with [79], we call S the glide-mirror group. Since the factor group is of index two, two

one-dimensional irreducible representations will be induced in the kz = 0 plane of the

Brillouin zone (for details see Appendix B.3). Because the electronic dispersion in the

FeSe is much weaker along the kz axis, we can expect that irreducible representations

induced in the kz = 0 plane will give good unfolding across the rest of the Brillouin

zone.

In these two irreducible representations, the glide mirror operation will have the same

representation as did the fractional translation in the example of doubled unit cell of

FeSe. However, what differentiates the case of the glide-mirror unfolding, from the

purely translational unfolding, is the orbitally selective action of the matrices Ŵ(Ĉi) in

(6.11). Namely, in the case of translational unfolding, matrices Ŵ(Ĉi) act the same on

all orbitals, while in the case of glide-mirror unfolding, they act differently, depending

on whether the orbitals are symmetric or antisymmetric with respect to the reflections

in the xy-plane. For example, 3dz2 orbital will stay invariant, while 3dxz will pick up a

minus sign under the action of σ̂z.

We have used (6.20) to create the two sets of hopping energies, corresponding to two

induced irreducible representations. These two sets correspond to the same 8 band

tight-binding model, up to the unitary transformation. The bandstructure calculated

from the 16 band and two 8 band tight-binding models along the path in the kz = 0

plane of the Brillouin zone is shown on Fig 6.8 (a). The corresponding Fermi surface
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slice in the kz = 0 plane is shown in Fig 6.8 (c). It is evident that the unfolding to the

8 band model is perfect in the kz = 0 plane. Since the kz = ±π/c planes are also the

high-symmetry planes for the reflections in the xy-plane, the unfolding will be perfect

there too. We can thus expect the largest deviations from the perfect unfolding around

the kz = ±π/2c plane. This can be seen in the bandstructure shown in Fig 6.8 (b),

taken along the path shown in Fig 6.8 (a) shifted by (0, 0, π/2c). The deviations of the

unfolded bands are evident. However, the deviations of the top ten bands, which are

the bands dominated by the 3d orbital character, are much smaller than in the bands

dominated by the 4p orbital character. This is a consequence of the crystal structure,

since the iron atoms are stationary under the action of σ̂z, while the selenium atoms

are not. Owing to this property, Fermi surface can be unfolded almost exactly across

the entire Brillouin zone. The Fermi surface slice in the kz = π/2c is shown in Fig 6.8

(d), while the vertical slice in the ky = 0 plane is shown in Fig 6.8 (e). It is remarkable

that the full three dimensional structure of the innermost Fermi surface pocket, centered

at Γ, is retained with high accuracy in the unfolded model, despite the fact that the

basis for the unfolding is purely two-dimensional. Similar behavior is observed in other

memebers of the iron-pnictide family.

This result has an important implication for the one-iron vs. two-iron discussion in the

iron pnictides[93]. When the unfolding is considered as a projection onto the irreducible

subspace of the glide-mirror group, we come to the conclusion opposite of [93]. As long

as we are interested in a range of energies within 1eV from the Fermi surface, a one-iron

tight-binding model can be used without significantly impacting the overall accuracy of

the calculation.

In addition, we arrive to a different conclusion from [93] about the reason why the

neutron scattering intensities seem to indicate the picture consistent with the one-iron

picture[97][98]. Again, this can naturally be interpreted as a consequence of the fact that

transitions between the states belonging to different irreducible subspaces are forbidden

as long as the interaction Hamiltonian has the approximate glide mirror symmetry.

6.5 Summary

In summary, we have demonstrated that more rigorous group theoretic treatment of

bandstructure unfolding shows that it can be understood as projection onto induced

irreducible representations of the supergroup of the original translation group. The

unfolded Brillouin zone arises as a consequence of the fact that different induced irre-

ducible representations become identical when shifted by an appropriate vector in the
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Figure 6.8: Unfolding of the 16 band tight-binding model of FeSe with the help of
glide-mirror operations. (a) Bandstructure along the path in the kz = 0 plane of the
one iron equivalent Brillouin zone. (b) Bandstructure along the path parallel to the
path shown in (a), but shifted along the kz-axis by π/2c. (c) Fermi surface cut at
kz = 0 plane of the one iron equivalent Brillouin zone of FeSe. The solid grey line
shows the boundary of the two iron Brillouin zone. (d) Fermi surface cut at kz = π/2c
plane of the one iron equivalent Brillouin zone of FeSe. (e) Fermi surface cut at ky = 0
plane of the one iron equivalent Brillouin zone of FeSe. The dashed grey line shows the

location of kz = π/2c.

Brillouin zone. Due to the projective definition, the unfolding procedure can be general-

ized to arbitrary quantities in the reciprocal space. Also, the unfolding artefacts in the

cases where the unfolding is inexact, arise because bands have nonzero projections onto

multiple irreducible representations.

When point group operations are used, the unfolding is exact only in the high-symmetry

k-points of the Brillouin zone. It is nonetheless possible to extend the unfolding onto the

entire Brillouin zone as long as the bandstructure is dominantly dispersive only along

the corresponding high-symmetry lines or planes in the Brillouin zone. By making sure

this constraint is satisfied, it is possible to formulate tight-binding models of reduced

dimensionality without the loss of accuracy.

On the example of FeSe, we have shown how an 8 band tight-binding model can be

constructed by unfolding the 16-band tight-binding model with the help of glide-mirror
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operations. The resulting unfolded model produces the almost exactly unfolded Fermi

surface. Similar results in other iron-pnictides confirm that one-iron tight-binding mod-

els can reliably be used in the vicinity of the Fermi level.



Chapter 7

Contributed Work

Besides the main topic of this thesis, the iron pnictide materials, other important cal-

culations were performed in order to investigate the giant volume collapse observed

in MnS2[99] as well as the nature of the electronic properties of the alkaline doped

picene[100] which has been suggested to superconduct.

A short overview will be given of the basic properties of MnS2, followed by the overview

of the results of ab-initio simulations of the hydrostatic pressure application on MnS2,

which represent the author’s original contribution to ref. [99]. These results will be put

in the overall context of the research presented in ref. [99].

Finally, we will outline the properties of alkali doped picene and the motivation for the

research presented in ref. [100]. The author’s original contribution consists of prediction

of structures of picene doped with various alkaline atoms.

7.1 Giant Volume Collapse in MnS2

The MnS2 has long been known to undergo a structural phase transition under applica-

tion of pressure, where the remarkable volume collapse of around 15% has been observed

at around 11 GPa[101, 102]. Such volume collapses in the transition metals are usually

driven by the transitions in the spin state of the system, where the crystal field splitting

is competing with the Hund’s rule and the Coulomb interaction. This is expected to

be the case for MnS2, since it possesses the pyrite structure (spacegroup Pa3̄) in which

every manganese atom is octahedrally coordinated by six sulfur atoms.

As a result of the octahedral symmetry, the energy levels corresponding to the 3d atomic

orbitals of iron atoms are split into a set of three degenerate t2g and two degenerate eg

96
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Figure 7.1: Structures of high pressure and low pressure phases of MnS2. Panel
(a) shows the ambient pressure pyrite structure of MnS2 characterized by the corner
sharing octahedra. Panel (b) shows a chain of edge sharing octahedra in the high-

pressure arsenopyrite structure of MnS2.

levels so that at ambient pressure MnS2, iron atoms have a spin of 5/2. This is the

high-spin t32ge
2
g state which is stabilized by the Hund’s rule coupling.

When hydrostatic pressure is applied, the sulfur atoms approach the iron atoms, in-

creasing the crystal field splitting, which makes the low-spin t52ge
0
g more favorable. In

the low-spin state, iron atoms have spin of 1/2.

This high-spin to low-spin transition has been conjectured to be behind the 15% volume

collapse at 11 GPa[101]. However, subsequent measurements have identified presence of

a disordered phase at high-pressure.

Motivated by this finding, the experimental group of S. Kimber and collaborators has

applied pressure to MnS2 using gas-loaded diamond anvil cells and x-ray diffraction was

used to determine the resulting crystal structures [99]. The pyrite structure remains sta-

ble, with no reduction in crystallinity until the pressure of 11.7 GPa, which is confirmed

by the sharp peaks in the x-ray diffraction pattern. When pressure is increased to 11.85

GPa, the well defined peaks in the x-ray diffraction pattern are replaced by a series of

broad maxima, making structure determination impossible.

Due to the poor quality of the x-ray diffraction data, the candidate structure was deter-

mined by employing the ab-initio simulations. A candidate structure was obtained by K.

Muthukumar from around 2800 structures generated by Universal Structure Predictor:

Evolutionary Xtallography (USPEX)[103, 104] and locally optimized by VASP.

The resulting structure was a so called arsenopyrite structure (spacegroup P21/c) which

was successfully matched to the x-ray diffraction pattern obtained from the 20 GPa
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structure of MnS2, recrystallized by the application of the in-situ laser heating. While

the pyrite structure is characterized by the MnS4 octahedra sharing a single corner with

the nearest neighbor octahedron, the arsenopyrite structures features chains of edge

sharing octahedra, as shown in figure 7.1.

This indicates that there are two competing metastable phases of MnS2. To determine

the regions of stability of both phases, ab-initio pressure simulations were performed

with VASP package. Both the pyrite and arsenopyrite crystal structures of MnS2 were

subjected to pressures in the 0-20 GPa range. Figure 7.2 shows the results. Panel (a)

shows volume of the experimentally determined unit cell. The volume collapse of 22%

is evident. From panel (b) which shows enthalpy calculated by the ab-initio pressure

simulations we can see that the pyrite phase is the stable phase in the 0-10 GPa range

while arsenopyrite phase becomes more stable in the 10-20 GPa range, putting the

transition pressure at 10 GPa. Panels (c) and (d) show the excellent agreement of ab-

initio and experimental Mn-Mn and Mn-S distances. To further validate the stability of

the arsenopyrite phase phonon dispersion was calculated for the 20 GPa structure using

Phonopy package [105]. No soft modes could be observed along the path spanning the

high-symmetry points of the Brillouin zone.

In ab-initio simulations, type III antiferromagnetic order [106] was imposed. Magnetic

moments of the manganese atoms are around 4 µB in the pyrite phase, while in the

arsenopyrite phase they assume the value of around 1 µB, confirming the high-spin to

low-spin transition.

Additional important feature of the arsenopyrite phase is dimerization of chains of the

edge-sharing octahedra (panel (b) in fig. 7.1), where the shorter dimer is hosting a spin

singlet. This can clearly be observed on fig. 7.2 (c), where two distinct Mn-Mn bond

lengths appear in the arsenopyrite phase. The formation of dimerized chains opens up

the possibility to discuss this phase transition in the framework of a Peierls-type distor-

tion. However, this is ruled out by the fact that dimers in MnS2 are better described

as a 3D network, which is confirmed by the tight-binding fit yielding intradimer and

interdimer hopping parameters of 0.37 eV and 0.15 eV respectively. This is consistent

with the physics of a valence bond solid which explains why such a dramatic change oc-

curs at the phase transition. In addition, formation of Mn-Mn dimers provides enough

stabilization energy to offset the penalty coming from the huge increase in density.

These findings imply that a qualitatively new mechanism is responsible for the volume

collapse in MnS2. This is important result for the investigations of the Earth’s mantle

where minerals containing the magnetic metals might undergo volume collapse under

pressure. Although Mn2 is geologically not abundant, the volume collapse mechanism

described here is applicable to other isoelectronic magnetic cations such as Fe3+.
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Figure 7.2: Structural parameters of MnS2 under hydrostatic pressure. (a) Pressure
evolution of the exprimentally determined unit cell volume (symbols) overlayed on
top of the volume obtained by fitting the Birch-Murnaghan equation of state to the
experimtal data (lines) (b) Ab-initio enthalpy in the pyrite and arsenopyrite phase. (c)
Mn-Mn distance comparison of the ab-initio and experimental structures in pyrite and
arsenopyrite phase. (d) Mn-S distance comparison of the ab-initio and experimental

structures in pyrite and arsenopyrite phase.

7.2 Alkaline Doped Picene

Since the observation of the superconductivity in the potassium doped picene [107,

108] the nature of the electronic structure of potassium doped picene has remained an

open issue. The calculations based on the density functional theory suggest that the

intercalation of a potassium atom into the picene would result in the metallic state,

while the different photoemission measurements seem to indicate contradictory findings.

The inability to observe the metallic state predicted by the density functional theory

in some photoemission measurements raises the question of the role of the electronic

correlations, making the case of potassium doped picene important in the more general

discussion of the role of the electronic correlations versus electron-phonon interaction in

the organic superconductors.

For this reason, joint theoretical and photoemission study has been performed [100].

The photoemission study has examined the potassium doped picene films for doping

levels of one, two and three potassium atoms per picene molecule. The photoemission

study was unable to observe metallic state for any of the doping levels.
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Figure 7.3: Unit cell volume of Ax picene, with A=Na, K, Cs and x = 0, 1, 2, 3.

To clarify the experimental findings further it was necessary to perform the ab-initio

calculations. To do so, the structures parameters of potassium doped picene had to be

determined, since no structural parameters were experimentally known for doped cases,

with the exception of unit cell volume of K3 picene [107] (it should be noted here that

doping concentrations are only nominal since structure characterization of potassium

doped picene is very hard to accomplish). To check for consistency, in addition to

potassium, cesium and sodium were also intercalated between the picene molecules at

concentrations of one, two and three atoms per picene molecule. The resulting unit cell

volumes are shown in fig. 7.3 and the evolution of equilibrium Kx picene structure with

increase of x is shown in fig. 7.4.

It is evident that unit cell volumes increase with the size of the dopant atom. Interesting

feature is that unit cell volume remains constant when dopant concentration is increased

from one atom per picene molecule to two atoms per picene molecule in cases of sodium

and potassium and that it drops when going from Na2 picene to Na3 picene. This

indicates that provision of additional electrons in the intercalation space increases picene-

picene intermolecular bonding but is offset by the increase of the dopant atom size.

For the pristine picene, there is a large discrepancy between the unit cell volume pre-

dicted by our calculation and the experimentally determined value [109] and the theo-

retical study [110]. The probable reason is that PAW basis is ill suited to describe large

amounts of empty space between the picene molecules. We expect however that this
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Figure 7.4: Crystal structures of Kx picene for x = 0, 1, 2, 3 in panels (a), (b), (c)
and (d) respectively. View is along the c unit cell vector.

deficiency will be less prominent when alkaline atoms are intercalated which seems to

be corroborated for the case of K3 picene.

The density functional theory predicts the ab-initio structures of Kx picene to be metallic

for odd x and seminconducting for even x. Since density functional theory cannot

account for electronic correlations, it was necessary to include them by performing a

calculation within the framework of the dynamical mean field theory, conducted by H.

Lee. When electronic correlations are taken into account, band gap opens in the spectral

function for all ab-initio Kx picene structures, confirming the experimental finding.

7.3 Summary

This section has given a short overview of calculations performed by the author which

have contributed to studies which were not the main focus of this thesis.
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In case of the giant volume collapse in MnS2, the unknown high-pressure arsenopyrite

structure was successfully determined. The ab-initio simulations of pressure application

have shown that volume collapse of 22% is a consequence of the high-spin to low-spin

transition, stabilized by the formation of the valence bond solid in the high pressure

phase. This is a qualitatively new mechanism with the important implications for the

physics of the Earth’s mantle.

In the case of potassium doped picene, the experimentally unavailable crystal structures

have been obtained through the ab-initio structure optimization. The dynamical mean

field theory calculation has been able to support the photoemission findings which were

important for the ongoing controversy about the status of the superconductivity in the

potassium doped picene.



Chapter 8

Summary and Outlook

The structural and the electronic properties of iron pnictides can be tuned to a great

effect by the application of pressure. The outcome is highly dependent on the exact

nature of pressure conditions. In order to be able to study the effects of nonhydrostatic

pressure we have developed an original method in chapter 4 which leverages the meta-

dynamics of the Fast Inertial Relaxation Engine algorithm by expanding the space of

atomic degrees of freedom with crystal lattice degrees of freedom.

In chapter 5 we have applied this method to study how hydrostatic and uniaxial pres-

sure affects the structural and electronic properties of BaFe2As2 and CaFe2As2. We

have found that application of hydrostatic and c-axis uniaxial pressure result in the

suppression of magnetic ordering both in BaFe2As2 and CaFe2As2. While CaFe2As2 un-

dergoes transition to the collapsed tetragonal phase upon suppression of the magnetic

order, BaFe2As2 first undergoes additional transition to the intermediate tetragonal

phase. Our findings are inconsistent with the reports of the intermediate tetragonal

phase in CaFe2As2. The transition from orthorhombic to the collapsed tetragonal phase

is followed by a change in the Fermi surface topology whereby the hole pocket cylinders

centered around the Γ-point disappear suppressing the possible channels for Cooper pair

scattering. These findings, along with the estimates of the bulk modulus and elastic con-

stants are in a good agreement with the experimental findings proving that our method

of uniaxial pressure simulation is reliable and that it can be applied in the future studies.

We have also found that in-plane application of both tensile and compressive stress is not

sufficient to suppress the magnetic moments and cause the transition into the tetragonal

phase. Instead, what is observed is abrupt change in orthorhombicity, whereby the

ferromagnetic and antiferromagnetic directions are interchanged. The Ginzburg-Landau

analysis has revealed the interplay between the intrinsic magneto-elastic coupling and

stress as a direct cause of such behavior. We also find that BaFe2As2 and CaFe2As2
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have qualitatively very different response to the applied pressure. While the BaFe2As2

shows the greatest rate of suppression of the magnetic moment for in-plane application

of stress, the CaFe2As2 shows the greatest rate of suppression for the pressure applied

along the c-axis which is also a direction of structural instability, explaining why the

phase transition is much more abrupt in CaFe2As2 than in BaFe2As2.

Important problem facing the ab-initio structure prediction in iron-pnictides is the over-

estimation of the critical pressure caused by the overestimation of the magnetic mo-

ments in the Generalized Gradient Approximation. Thus, for the future study, it would

be interesting to attempt to use the exchange field downscaling to reduce the magnetic

moments and obtain more accurate results.

Doping, or chemical pressure is another way to tune the structural and electron proper-

ties of iron-pnictides and is largely unexplored by the ab-initio simulations. Especially

interesting question to study is the role of vacancies in iron-selenide compounds such as

FeSe and KFe2Se2 as well as behavior of uniaxially strained FeSe on SrTiO3 substrates

where the largest Tc has been reported.

One problem for the study of the electronic properties of these structures is that in

doped structures, structures with vacancies or structures on substrates, the original

translational symmetry of the iron-pnictogen(chalcogen) layer is broken, necessitating

the use of large supercells. This results in folding of the bandstructure, which makes

analysis of the electronic structure difficult.

In chapter we have developed a solution to this problem by applying group theoretical

considerations. Careful application of the group theory has allowed us to interpret the

unfolding of bandstructure as projection onto the irreducible subspaces of a spacegroup.

With this, a unified framework was obtained whereby point group operations can be in-

cluded into the unfolding and the unit cell effectively reduced under certain conditions,

which is important feature for model calculations. Another benefit of our group theo-

retical approach to unfolding is that the magnetic symmetries can be treated on equal

footing with the geometric symmetries, represented by Shubnikov groups, allowing exact

unfolding of the spin-polarized bandstructures, which is the goal for a future study.



Appendix A

Irreducible Representations of

Space Groups

Examination of folding of bandstructures requires construction of the irreducible rep-

resentations of space groups. Since construction of irreducible representations of space

groups can be a very involved issue on its own, this section will give a brief overview

of the required group theory concepts, followed by the application to the induction of

irreducible representations of space groups. Exposition here mostly follows ref. [111]

with additional details supplemented from refs. [95, 112–114].

A.1 Basic Overview of Group Theory

A group G is any set where an operation called group multiplication is defined with the

following properties:

1. The group is closed under the multiplication, that is g1g2 ∈ G, ∀g1, g2 ∈ G

2. There is an identity element e ∈ G, such that eg = g,∀g ∈ G

3. For every g ∈ G there is unique inverse g−1 such that gg−1 = e

4. Multiplication is associative g1(g2g3) = (g1g2)g3,∀g1, g2, g3 ∈ G

The number of elements in a group is called group order and is denoted by |G|. If every

element of a group G is a product of elements gi, where i = 1..M < |G|, we call the

elements gi group generators. For every generator g of a finite group, a positive integer
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n exists, such that gn = e. Group with just one generator is called cyclic group, and

in such a group, every element is a power of the generator. If all elements of the group

commute under the multiplication, the group is called Abelian. Every cyclic group is

Abelian.

If any subset of the group H ⊂ G is a group on its own, it is called a subgroup and

is denoted H < G. The order of the subgroup is a divisor of the group order and the

number |G|/|H| = |G : H| is called index of the subgroup H. Every subgroup H < G
defines a decomposition of the group into a set of disjoint left(right) cosets G = ⊕|G:H|

i=1 giH
(G = ⊕|G:H|

i=1 Hgi), where gi /∈ H. Cosets are not unique, and depend on the choice of gi.

For every two left cosets giH and gjH, the product giHgjH = gkH will be a left coset too

(where product of cosets is defined as giHgjH = ⊕h,h′∈Hgihgjh′). The same holds for

right cosets. The set of cosets with coset multiplication forms a group of order |G : H|,
called a factor group F = G/H.

If a mapping f between the two groups f : G → F is given, such that it preserves the

structure of multiplication, that is f(g1)f(g2) = f(g1g2), ∀g1, g2 ∈ G, then the mapping

f is called homomorphism, and the groups G and F are homomorphic. If f is bijective,

it is an isomorphism, and if F = G, it is an automorphism. Every automorphism is an

isomorphism.

Every element g of the group defines an automorphism fg, called conjugation defined as

fg(h) = ghg−1. If a subset H ⊂ G of the group is closed under the conjugation by all

group elements, it is called a conjugacy class and every group can be partitioned into a

set of disjoint conjugacy classes. If, additionally, a conjugacy class H is a subgroup, it is

called an invariant subgroup and denoted H /G. A group G = H1H2 is a direct product

of its disjoint (with the exception of the unit element) invariant subgroups H1 and H2

if every element of G can be written as a product of elements from H1 and H2.

If there is a decomposition series of a group G, given by G0 /G1 / ... /G, where at every

decomposition step, the factor group is Abelian, the group is called solvable. This is

important concept, since all space groups are solvable, and there is always G0 which is

cyclic. Furthermore for all space groups, the order of factor groups of the decomposition

|Gi+1 : Gi| is either two or three, and consequently, all factor groups are also cyclic.

A.2 Representation Theory

A homomorphism D : G → L(V) from the group G onto a set of linear operators L
acting over an n-dimensional vector space V, is called a representation of the group of

dimension n. If D(G) is injective, the representation is called faithful. This distinction
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is made, because representations don’t need to be faithful, and, for example, mapping,

such that every group element is represented by unity, is also a representation, called

unit representation.

If we fix a basis in V, elements of L(V) will be represented by n-dimensional matrices,

thus mapping every g ∈ G onto a matrix D̂(g) ∈ L(V). Any nonsingular linear operator

S : V → U, represented by a matrix Ŝ, defines an isomorphic representation D′ over a

vector space U through the relation D̂′(g) = ŜD̂(g)Ŝ−1, ∀g. We say then, that represen-

tations D and D′ are equivalent, since the multiplication rule between matrices is the

same in both representations. In general, for every representation of the group, there

will be infinitely many equivalent representations.

In group theory applications in physics, the vector space V can be, for example, a Hilbert

space containing quantum mechanical states of the system, or in case of a geometrical

problem, an Euclidean space. Since symmetries of the system are isometries of the rele-

vant configuration space, only representations by (anti)unitary matrices are of interest.

Additionally, if D̂(g) represents a symmetry of the system, it should commute with the

Hamiltonian of the system which means that any invariant subspace of D̂(g) will also be

an invariant subspace of the Hamiltonian, allowing us to analyze the eigenvalue spectrum

of the system without having to solve the Schrödinger equation, which might be a difficult

task. It is thus useful to determine all nontrivial subspaces of V which are invariant under

all D̂(g). If there are no such subspaces, then the representation D is called irreducible,

otherwise, the representation is reducible. Irreducible representations will be denoted by

D(µ), where the index µ is used to enumerate nonequivalent irreducible representations.

Thus, if we have a reducible representation, we can decompose it into a sum of irreducible

representations. We understand this in a sense of decomposition of V into irreducible

subspaces Vµ as V = ⊕µ,tµVµtµ . An additional index tµ is used here, because when V
is decomposed, matrices of D will be represented by block-diagonal matrices, where the

µ-th block will correspond to the irreducible representation D(µ), which can occur more

than once, so that the index tµ = 1...aµ is needed to enumerate multiple occurrences of

the block D(µ). We can thus symbolically write decomposition of D as D = ⊕µaµD(µ).

A.3 Induction of Irreducible Representations

The task is now to determine all nonequivalent unitary irreducible representations. For a

finite group, there will be a finite number of such irreducible representations. In general,

the number of nonequivalent irreducible representations will be equal to the number of

conjugacy classes of the group.
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When a group is a direct product of two or more of it’s invariant subgroups, it’s irre-

ducible representations are simply a tensor product of irreducible representations of the

subgroups. However, in general, that is not the case and a more sophisticated approach

is required.

Since for space groups, the decomposition series to invariant subgroups always ends with

an Abelian subgroup, the strategy to find all irreducible representations will consist of

finding the irreducible representations of the Abelian subroup, and then moving up the

decomposition chain and inducing the irreducible representations from the irreducible

representation s of the subgroup.

The starting point for searching irreducible representations is the first Schur’s lemma

which states that only the scalar matrix commutes with all the matrices of an irre-

ducible representation. This means that an Abelian group is represented by scalars,

or in other words, it has only one-dimensional irreducible representations. Since, in an

Abelian group, every element is in a conjugacy class by itself, the number of inequivalent

irreducible representations will be equal to the group order.

The Abelian groups of interests for representations of space groups are cyclic, and since

cyclic groups consist of powers of a single generator for which gn = 1, where n is group

order, all irreducible representations of the generator will be given as n-th roots of

unity. With this observation, all irreducible representations of cyclic groups can easily

be obtained.

The problem of finding irreducible representations of the group, from its subgroup is

solved by the induction procedure which will be briefly outlined below.

Let us assume that we have a subgroup H < G of index n and decompose the group G
into left cosets with representatives gi, i = 1...n. Let D be a dD-dimensional representa-

tion of H. The induced representation D ↑ G of G is defined as

(D̂ ↑ G)(g) =
n∑

i,j=1

∑
h∈H

δ(t−1i gtj , h)Êij ⊗ D̂(h), (A.1)

where Êij are matrices of the n-dimensional Weyl basis defined as [Êij ]pq = δipδjq.

Matrices of D ↑ G consist of n × n dD-dimensional blocks, such that the ij-th block is

equal to D̂(h) when t−1i gtj = h and zero otherwise.

Conversely, if D is a representation of the group G, the subduced representation D ↓ H
to the subgroup H < G can be defined just by taking the subset of matrices of D

corresponding to elements of H.
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Let us restrict ourselves to the case where H /G. We now define the g-conjugate repre-

sentation (g ∈ G) of the representation D of H as the representation where every element

h ∈ H is represented by D̂g(h) = D̂(ghg−1). Because ghg−1 ∈ H, the representation Dg

consists of the same matrices as D, just differently assigned to the elements of H. If

D(µ) is an irreducible representation of H, the g-conjugated representation will also be

an irreducible representation , which can either be equivalent or nonequivalent to it. We

thus define the orbit Oµ of the irreducible representation D(µ) as a set of all nonequiv-

alent irreducible representations obtained from D(µ) by g-conjugations with all g /∈ H.

We also define the little group Lµ of irreducible representation D(µ) as a subgroup of G
consisting of all elements g such that g-conjugation yields an irreducible representation

equivalent to D(µ). It is obvious that H < Lµ < G.

Any irreducible representation D
(ν)
A of Lµ whose subduction to H contains D(µ) at least

once, is called allowed irreducible representation and the induced representationD
(ν)
A ↑ G

is an irreducible representation of G.

We can put this to use when |G : H| is two or three. In this case coset representatives

are {e, s} and {e, s, s2} respectively. Since two and three are prime numbers and H <

Lµ < G, we can either have that Lµ = H or Lµ = G.

In case where Lµ = G, the irreducible representation Dµ of H will also be an irreducible

representation of G. We can find matrices representing the coset elements by using the

condition that for the coset representative we have D̂(µ)(sn=2,3) = D̂µ(h = sn). This

condition will yield two(three) matrices representing s which will result in 2(3) irre-

ducible representations D(µ,i), i = 1..2(3) of G induced from H. The matrices of induced

irreducible representations for the case where |G : H| = 2 are

D̂(µ,1)(h) = D̂(µ)(h) D̂(µ,1)(sh) = ŜD̂(µ)(h) (A.2)

D̂(µ,2)(h) = D̂µ(h) D̂(µ,2)(sh) = −ŜD̂(µ)(h)

where Ŝ is such that Ŝ2 = D̂µ(s2) and D̂(µ)(shs−1) = ŜD̂(µ)(h)Ŝ−1. When |G : H| = 3

D̂(µ,1)(h) = D̂(µ)(h) D̂(µ,1)(sh) = ŜD̂(µ)(h) (A.3)

D̂(µ,2)(h) = D̂(µ)(h) D̂(µ,2)(sh) = e2πi/3ŜD̂(µ)(h)

D̂(µ,3)(h) = D̂µ(h) D̂(µ,3)(s2h) = e−2πi/3ŜD̂(µ)(h)
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where Ŝ is such that Ŝ3 = D̂µ(s3) and D̂(µ)(shs−1) = ŜD̂(µ)(h)Ŝ−1.

In case when Lµ = H, the induction formula (A.1) can be used, resulting in irreducible

representations of G. For the case of index two

D̂(µ)(h) =

[
D̂(µ)(h) 0

0 D̂
(µ)
s (h)

]
D̂(µ)(sh) =

[
0 D̂µ(s2)D̂

(µ)
s (h)

D̂(µ)(h) 0

]
(A.4)

and for the case of index three

D̂(µ)(h) =


D̂(µ)(h) 0 0

0 D̂
(µ)
s (h) 0

0 0 D̂
(µ)
s2

(h)

 (A.5)

D̂(µ)(sh) =


0 0 D̂(µ)(s3)D̂

(µ)
s2

(h)

D̂(µ)(h) 0 0

0 D̂
(µ)
s (h) 0



D̂(µ)(s2h) =


0 D̂(µ)(s3)D̂

(µ)
s (h) 0

0 0 D̂(µ)(s3)D̂
(µ)
s2

(h) 0

D̂(µ)(h) 0 0



Formulas (A.2), (A.3), (A.4) and (A.5) are sufficient to induce all irreducible represen-

tations of every space group in a step by step procedure.

A.4 Induction of Irreducible Representations of Space Groups

Let us now outline the general procedure for induction of irreducible representations

in an arbitrary spacegroup S. S is composed of operations whose action on a general

point r in the Euclidean space is given by r → r′ = Ûr + t, where Û is a point group

operation. In Seitz notation, this operation is denoted by [Û|t]. The multiplication rule

for space group operations is given by [Û1|t1][Û2|t2] = [Û1Û2|Û1t2 + t1] and the inverse

is given by [Û|t]−1 = [Û−1|− Û−1t].

When points r are restricted to lie on a periodic lattice, the space group operations

will be [Ûm|Rn + τm], where Rn are translation vectors connecting points on a lattice,

and Ûm and τm are point group operations and fractional translations respectively,

under whose simultaneous application the lattice remains invariant (for pure point group

operation Ûm the corresponding fractional translation is τm = 0). Here the lattice is
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assumed to have N points in total, and that periodic boundary conditions are imposed

so that there is a finite number of translations.

Pure translations [̂I|Rn] comprise a group T / S, which is a direct product of three

cyclic groups in addition. Thus, it is very easy to find its irreducible representations

and then use them as a starting point in the induction of irreducible representations of

S. Irreducible representations T are given by a well known result D̂(k)(Rn) = e−ik·Rn .

Let a space group decomposition in terms of left cosets of T be S = ⊕m[Ûm|τm]T. If we

take arbitrary space group operation s = [Û|t], and find a conjugate of D(k) we arrive

at the following

D̂(k)(s[̂I|Rn]s
−1) = D̂(k)([Û|t][̂I|Rn][Û

−1|− Û−1t]) = D̂(k)([̂I|ÛRn]) = D̂(Û−1k)(Rn)

because k · (ÛRn) = (Û−1k) · Rn. In other words, conjugation of an irreducible rep-

resentation D(k) by a space group element [Û|t] yields the irreducible representation

D(Û−1k). This means that the orbit of an irreducible representation D(k) will contain

the irreducible representations for all nonequivalent k′ obtained from k by application

of all point group operations of coset representatives. The orbit of k is called star in the

context of space groups. The Little group of D(k) consists of T, augmented by operations

[Ûk,i|τk,i] such that Ûk,ik = k +K, where K is a vector of the reciprocal lattice. As

a result, a general element of the little group Lk will have the form [Ûk,i|Rn + τk,i].

Connected to the concept of the Little group is the Little co-group LC
k , which consist

only of the point group operators Ûk,i. It is not hard to see that the Little co-group is

isomorphic to the factor group Lk/T.

The remaining problem in the induction procedure is to find allowed irreducible repre-

sentations of the little group. The little group can be decomposed into left cosets of T
as Lk = ⊕i[Ûk,i|τk,i]T. Multiplication of coset representatives results in

[Ûk,i|τk,i][Ûk,j|τk,j] = [Ûk,iÛk,j|τk,i + Ûk,iτk,j + τk,k − τk,k] =

[Ûk,k|τk,k +Rij] = [̂I|Rij][Ûk,k|τk,k] (A.6)

where the lattice vector Rij = τk,i + Ûk,iτk,j − τk,k has been introduced.

Let ∆(k,µ) be an allowed irreducible representation of the Lk. Since it is an allowed

irreducible representation , then ∆̂(k,µ)[̂I|Rn] must reduce to D̂(k)(Rn). This allows us

to write the representation of (A.6) as



Appendix A. Space Group Representations 112

∆̂(k,µ)([Uk,i|τk,i])∆̂(k,µ)([Uk,j|τk,j]) = D̂(k)(Rij)∆̂
(k,µ)([Uk,k|τk,k]) (A.7)

To simplify notation, we can drop the translational part of the coset representative and

write just ∆̂(k,µ)(Ûk,i) = ∆̂(k,µ)([Ûk,i|τk,i]). With this, representation can be intro-

duced ∆̂
(k,µ)
C (Ûk,i) = eik·τk,i∆̂(k,µ)(Ûk,i). The multiplication rule for the representatives

∆̂
(k,µ)
C (Ûk,i) is, with the help of (A.7)

∆̂
(k,µ)
C (Ûk,i)∆̂

(k,µ)
C (Ûk,j) = eik·(τk,i+τk,j)D̂(k)(Rij)∆̂

(k,µ)(Ûk,k) =

eik·(τk,i+τk,j)e−ik·(τk,i+Ûk,iτk,j−τk,k)∆̂(k,µ)(Ûk,k) =

e−iKi·τk,jeik·τk,j∆̂(k,µ)(Ûk,k) = e−iKi·τk,j∆̂
(k,µ)
C (Ûk,k) (A.8)

where Ki is such that Û−1k,ik = k + Ki is satisfied. From eq. (A.8) it follows that

∆
(k,µ)
C forms a projective representation of LC

k with multipliers given by m(Ûk,i, Ûk,j) =

e−iKi·τk,j . Moreover, this representation is irreducible, since ∆(k,µ) is irreducible by

assumption and LC
k is isomorphic to Lk/T. When any of the following is fullfiled

• k lies inside the Brillouin zone

• S is a symmorphic space group

• Lk is a symmorphic space group

then the projective irreducible representation multiplers reduce to unity, ∆
(k,µ)
C is an

irreducible representation of LC
k and the allowed irreducible representations of the little

group Lk are given by

∆̂(k,µ)([Ûk,i|Rn + τk,i]) = e−ik·(Rn+τk,i)∆̂
(k,µ)
C (Ûk,i) (A.9)

Thus, for any space group and any k in the interior of the Brillouin zone, the allowed

irreducible representations can be found by taking all irreducible representations of the

little co-group of k and by using eq. (A.9). And finally, irreducible representations of

the full space group can be found by using induction formulas (A.2)-(A.5).



Appendix B

Irreducible Representations and

Projectors for Iron Pnictides

This appendix contains the atomic positions in fractional coordinates, induced irre-

ducible representations and the corresponding projectors for the cases in 8. The order of

atomic positions in the permutation matrices K̂ is the same as in the table of positions.

The projectors omit the exponentials because our implementation of the unfolding re-

lies on the band projections onto localized states which already contain the appropriate

exponentials, as calculated by the VASP code.

B.1 FeSe doubled along the a-axis

p Atom x y z

1 Fe 1/8 1/4 0

2 Fe 2/8 3/4 0

3 Fe 3/8 1/4 0

4 Fe 4/8 3/4 0

5 Se 1/8 3/4 z

6 Se 2/8 1/4 -z

7 Se 1/8 3/4 z

8 Se 2/8 1/4 -z

Table B.1: Atomic positions in the supercell of FeSe, given in fractional coordinates
with respect to the orthorhombic unit cell vectors a, b and c.
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∆ [1|Rn] [1|Rn + τ ]

(k, 0) exp(−k ·Rn) exp(−k · (Rn + τ ))

(k, 1) exp(−k ·Rn) -exp(−k · (Rn + τ ))

Table B.2: Induced irreducible representations; τ = a/2.

P̂k,0 =
1√
2
⊕2
i=1


1 0 1 0

0 1 0 1

1 0 1 0

0 1 0 1

⊗ Îni

P̂k,1 =
1√
2
⊕2
i=1


1 0 −1 0

0 1 0 −1

−1 0 1 0

0 −1 0 1

⊗ Îni

where În is a n by n unit matrix. Since we are interested in 3d orbitals of iron, and 4p

orbitals of selenium, n1 = 5 for iron atoms and n2 = 3 for selenium atoms.
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B.2 Ca(FeAs1−xPx)2

p Atom x y z

1 Fe 3/4 1/4 1/4

2 Fe 1/4 3/4 3/4

3 Fe 1/4 3/4 1/4

4 Fe 3/4 1/4 3/4

5 Fe 1/4 1/4 3/4

6 Fe 3/4 3/4 1/4

7 Fe 3/4 3/4 3/4

8 Fe 1/4 1/4 1/4

9 As 0 1/2 1/2-z

10 As 0 1/2 1/2+z

11 As 0 0 1-z

12 As 0 0 z

13 As 1/2 1/2 1-z

14 As 1/2 1/2 z

15 As 1/2 0 1/2-z

16 P 1/2 0 1/2+z

Table B.3: Atomic positions in Ca(FeAs1−xPx)2, given in fractional coordinates with
respect to the orthorhombic unit cell vectors a, b and c. The fractional coordinates
and lattice vectors are taken before the structure optimization. This choice does not

impact the unfolding.

∆ [1|Rn] [1|Rn + τ1] [1|Rn + τ2] [1|Rn + τ3]

(k, 0) exp(−k ·Rn) exp(−k · (Rn + τ1)) exp(−k · (Rn + τ2)) exp(−k · (Rn + τ3))

(k, 1) exp(−k ·Rn) -exp(−k · (Rn + τ1)) exp(−k · (Rn + τ2)) -exp(−k · (Rn + τ3))

(k, 2) exp(−k ·Rn) exp(−k · (Rn + τ1)) -exp(−k · (Rn + τ2)) -exp(−k · (Rn + τ3))

(k, 3) exp(−k ·Rn) -exp(−k · (Rn + τ1)) -exp(−k · (Rn + τ2)) exp(−k · (Rn + τ3))

Table B.4: Induced irreducible representations; τ1 = (a + b)/2, τ2 = (a + c)/2,
τ3 = τ1 + τ2.

P̂kα =
1

2
(B̂Fe
kα ⊗ Î5)⊕ (B̂As

kα ⊗ Î3)

where În is a n by n unit matrix.
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The subblocks corresponding to Fe atoms are

B̂Fe
k,0 =



1 0 1 0 1 0 1 0

0 1 0 1 0 1 0 1

1 0 1 0 1 0 1 0

0 1 0 1 0 1 0 1

1 0 1 0 1 0 1 0

0 1 0 1 0 1 0 1

1 0 1 0 1 0 1 0

0 1 0 1 0 1 0 1



B̂Fe
k,1 =



1 0 −1 0 1 0 −1 0

0 1 0 −1 0 1 0 −1

−1 0 1 0 −1 0 1 0

0 −1 0 1 0 −1 0 1

1 0 −1 0 1 0 −1 0

0 1 0 −1 0 1 0 −1

−1 0 1 0 −1 0 1 0

0 −1 0 1 0 −1 0 1



B̂Fe
k,2 =



1 0 1 0 −1 0 −1 0

0 1 0 1 0 −1 0 −1

1 0 1 0 −1 0 −1 0

0 1 0 1 0 −1 0 −1

−1 0 −1 0 1 0 1 0

0 −1 0 −1 0 1 0 1

−1 0 −1 0 1 0 1 0

0 −1 0 −1 0 1 0 1



B̂Fe
k,3 =



1 0 −1 0 −1 0 1 0

0 1 0 −1 0 −1 0 1

−1 0 1 0 1 0 −1 0

0 −1 0 1 0 1 0 −1

−1 0 1 0 1 0 −1 0

0 −1 0 1 0 1 0 −1

1 0 −1 0 −1 0 1 0

0 1 0 −1 0 −1 0 1


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The subblocks corresponding to As atoms are

B̂As
k,0 =



1 0 1 0 1 0 1 0

0 1 0 1 0 1 0 1

1 0 1 0 1 0 1 0

0 1 0 1 0 1 0 1

1 0 1 0 1 0 1 0

0 1 0 1 0 1 0 1

1 0 1 0 1 0 1 0

0 1 0 1 0 1 0 1



B̂As
k,0 =



1 0 −1 0 1 0 −1 0

0 1 0 −1 0 1 0 −1

−1 0 1 0 −1 0 1 0

0 −1 0 1 0 −1 0 1

1 0 −1 0 1 0 −1 0

0 1 0 −1 0 1 0 −1

−1 0 1 0 −1 0 1 0

0 −1 0 1 0 −1 0 1



B̂As
k,0 =



1 0 −1 0 −1 0 1 0

0 1 0 −1 0 −1 0 1

−1 0 1 0 1 0 −1 0

0 −1 0 1 0 1 0 −1

−1 0 1 0 1 0 −1 0

0 −1 0 1 0 1 0 −1

1 0 −1 0 −1 0 1 0

0 1 0 −1 0 −1 0 1



B̂As
k,0 =



1 0 1 0 −1 0 −1 0

0 1 0 1 0 −1 0 −1

1 0 1 0 −1 0 −1 0

0 1 0 1 0 −1 0 −1

−1 0 −1 0 1 0 1 0

0 −1 0 −1 0 1 0 1

−1 0 −1 0 1 0 1 0

0 −1 0 −1 0 1 0 1


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B.3 Using the Glide-Mirror Group to Unfold the Band

Structure of FeSe

p Atom x y z

1 Fe 1/4 1/4 0

2 Fe 3/4 3/4 0

3 Se 1/4 3/4 z

4 Se 3/4 1/4 -z

Table B.5: Atomic positions are given in fractional coordinates with respect to the
tetragonal unit cell vectors a, b and c.

∆ [1|Rn] [σ̂z|Rn + τ ]

(k, 0) exp(−k ·Rn) exp(−k · (Rn + τ ))

(k, 1) exp(−k ·Rn) -exp(−k · (Rn + τ ))

Table B.6: Induced irreducible representations; τ = a/2.

P̂k,0 =
1√
2
⊕2
i=1

[
1 1

1 1

]
⊗ Âi

P̂k,1 =
1√
2
⊕2
i=1

[
1 −1

−1 1

]
⊗ Âi

with Â1 = diag(1,−1, 1,−1, 1) and Â2 = diag(1,−1, 1), assuming orbital orbital indices

are α = (3dxy, 3dyz, 3dz2 , 3dxz, 3dx2−y2) for Fe atoms and α = (4px, 4pz, 4py) for As

atoms.
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