
Energy- and Cost-Efficient
Lattice-QCD Computations

Using Graphics Processing Units

Dissertation

zur Erlangung des Doktorgrades

der Naturwissenschaften

vorgelegt beim Fachbereich 12

der Johann Wolfgang Goethe-Universität

in Frankfurt am Main

von

Matthias Bach

aus Darmstadt

Frankfurt 2014

(D 30)

vom Fachbereich 12 der

Johann Wolfgang Goethe-Universität als Dissertation angenommen.

Dekan: Prof. Dr. Thorsten Theobald

Gutachter: Prof. Dr. Volker Lindenstruth
Prof. Dr. Owe Philipsen
Prof. Dr. Tilo Wettig

Datum der Disputation: 18. Februar 2015

ii

Abstract

Quarks and gluons are the building blocks of all hadronic matter, like protons and
neutrons. Their interaction is described by Quantum Chromodynamics (QCD), a the-
ory under test by large scale experiments like the Large Hadron Collider (LHC) at
CERN and in the future at the Facility for Antiproton and Ion Research (FAIR) at GSI.
However, perturbative methods can only be applied to QCD for high energies. Stud-
ies from first principles are possible via a discretization onto an Euclidean space-time
grid. This discretization of QCD is called Lattice QCD (LQCD) and is the only ab-initio
option outside of the high-energy regime.
LQCD is extremely compute and memory intensive. In particular, it is by definition

always bandwidth limited. Thus—despite the complexity of LQCD applications—it led
to the development of several specialized compute platforms and influenced the devel-
opment of others. However, in recent years General-Purpose computation on Graphics
Processing Units (GPGPU) came up as a new means for parallel computing. Contrary
to machines traditionally used for LQCD, graphics processing units (GPUs) are a mass-
market product. This promises advantages in both the pace at which higher-performing
hardware becomes available and its price.
CL2QCD is an OpenCL based implementation of LQCD using Wilson fermions that

was developed within this thesis. It operates on GPUs by all major vendors as well
as on central processing units (CPUs). On the AMD Radeon HD 7970 it provides the
fastest double-precision /D kernel for a single GPU, achieving 120GFLOPS. /D—the
most compute intensive kernel in LQCD simulations—is commonly used to compare
LQCD platforms.
This performance is enabled by an in-depth analysis of optimization techniques for

bandwidth-limited codes on GPUs. Further, analysis of the communication between
GPU and CPU, as well as between multiple GPUs, enables high-performance Krylov
space solvers and linear scaling to multiple GPUs within a single system.
LQCD calculations require a sampling of the phase space. The hybrid Monte Carlo

(HMC) algorithm performs this. For this task, a single AMD Radeon HD 7970 GPU
provides four times the performance of two AMD Opteron 6220 running an optimized
reference code. The same advantage is achieved in terms of energy-efficiency.
In terms of normalized total cost of acquisition (TCA), GPU-based clusters match

conventional large-scale LQCD systems. Contrary to those, however, they can be scaled
up from a single node. Examples of large GPU-based systems are LOEWE-CSC and
SANAM. On both, CL2QCD has already been used in production for LQCD studies.

iii

Contents

1. Introduction 1

1.1. Lattice QCD . 3
1.1.1. The Lattice . 4
1.1.2. The Heatbath Algorithm . 6
1.1.3. The HMC Algorithm . 6
1.1.4. Inversions . 8
1.1.5. The Actions . 9
1.1.6. Computational Costs . 10

1.2. Traditional Lattice QCD Systems . 11
1.2.1. PCs and PC Clusters . 11
1.2.2. APE . 11
1.2.3. QCDSP . 12
1.2.4. QCDOC . 13
1.2.5. Blue Gene . 13
1.2.6. QPACE . 14

1.3. Utilization of GPUs . 15
1.3.1. Lattice QCD as a Video Game . 15
1.3.2. QUDA . 16
1.3.3. Other Efforts . 16

1.4. Conclusion . 18

2. GPGPU 19

2.1. GPUs as General-Purpose Many-Core Processors 19
2.1.1. The Execution Model . 20
2.1.2. The Memory Model . 21
2.1.3. GPU-Performance Explained . 23
2.1.4. Traditional GPUs . 24
2.1.5. Development of NVIDIA GPUs 25
2.1.6. Development of AMD GPUs . 26
2.1.7. Other Devices . 27

2.2. Programming Models . 27
2.2.1. NVIDIA CUDA . 28
2.2.2. OpenCL . 29
2.2.3. OpenGL Computer Shaders . 31
2.2.4. C++ AMP . 31
2.2.5. OpenACC . 32

v

Contents

2.2.6. OpenMP 4.0 . 32
2.2.7. Conclusion . 33

3. Optimization Techniques 35

3.1. Bandwidth . 35
3.1.1. clBandwidth . 35
3.1.2. Data Type . 38
3.1.3. Buffer Alignment . 42
3.1.4. AoS versus SoA . 43
3.1.5. SoA Stride . 47
3.1.6. ECC . 53
3.1.7. Conclusion . 56

3.2. Registers . 56
3.3. Cache Usage . 59
3.4. Communication . 61

3.4.1. Communication between Host and Device 61
3.4.2. Communication between Devices 64
3.4.3. Bidirectional Communication between Devices 70
3.4.4. DirectGMA . 71
3.4.5. Summary . 73

4. CL2QCD 75

4.1. Application Requirements . 75
4.2. Architecture . 77

4.2.1. The Initial Architecture for Hybrid Systems 77
4.2.2. The Second Generation Architecture 78
4.2.3. Common Architectural Features 81
4.2.4. Common Code for CPUs and GPUs 83
4.2.5. Utilizing Multiple Devices . 84

4.3. Optimization . 89
4.3.1. Global Memory Storage Formats 89
4.3.2. /D Operator . 91
4.3.3. Inverter . 99
4.3.4. Hybrid Monte Carlo . 102
4.3.5. Multi-Device . 104

5. Results 109

5.1. Comparison to Existing Solutions . 109
5.1.1. Compute Time . 109
5.1.2. Total Cost of Acquisition . 118
5.1.3. Energy Consumption . 120

5.2. Scaling to Multiple GPUs . 126
5.2.1. Throughput . 126
5.2.2. Latency . 128

vi

Contents

5.2.3. Problem Size . 130
5.2.4. Conclusion . 132

5.3. Results obtained via CL2QCD . 132

6. Conclusion 133

A. LOEWE-CSC 137

B. SANAM 141

C. Development and Test Systems 143

C.1. gpu-dev00 . 143
C.2. gpu-dev01 . 144
C.3. gpu-dev03 . 145
C.4. gpu-dev04 . 146
C.5. titanic . 147

D. Scheduling GPUs with SLURM 149

D.1. Scheduling NVIDIA GPUs . 149
D.2. Scheduling AMD GPUs . 150
D.3. Known Issues of the Current Implementation 151

Bibliography 153

Glossary 163

List of Figures 177

List of Tables 181

List of Listings 183

Zusammenfassung 185

vii

Chapter 1.

Introduction

Quarks and gluons—which make up hadronic matter like protons and neutrons—
interact via the strong force. This force is described by Quantum Chromodynamics
(QCD). QCD features asymptotic freedom. This means, the coupling decreases with
increasing energy while it is of the order of unity for small energies. Thus, perturbat-
ive methods are only applicable for high energies [1, 2]. Studies from first principles
are possible via a discretization onto an Euclidean space-time grid. This discretization
of QCD is called Lattice QCD (LQCD). It constitutes one of the most compute intensive
problems and has heavily influenced the development of computer architectures.
To retrieve physical values from LQCD calculations, the discretization must be re-

moved again. Therefore, the lattice spacing must be decreased to infinitesimal values.
However, a lattice of 304 points is merely enough for a hypercube of 3 fm spatial extent.
Calculations on such a lattice already require a large amount of TFLOPS [3]. Addition-
ally, due to the four-dimensional volume, increasing the resolution by a factor of two
already increases the number of lattice sites by a factor of 16. Other parameters—like
the pion mass—have an influence on the computational cost, too. Thus, LQCD calcu-
lations are usually performed using a pion mass differing from the physical value. To
calculate quantities like the hadron masses and decay constants at an accuracy match-
ing that of experimental results, LQCD requires machines with compute capabilities at
the multi-PFLOP level [4].
To fulfil the compute requirements of LQCD, dedicated architectures like Array Pro-

cessing Element (APE) [5], QCD-on-a-chip (QCDOC) [6], and QCD Parallel Computing
on the Cell Broadband Engine (QPACE) [7] were developed. In addition, LQCD influ-
enced the development of high-performance systems like the Blue Gene family [8].
The clock speed of central processing units (CPUs) no longer increases. Instead, their

core count does. This makes graphics processing units (GPUs)—with their high peak
performance and bandwidth—an interesting platform for high-performance comput-
ing (HPC), as parallelization is required in any case. As Figure 1.1 shows, in terms of
peak performance they have been ahead of CPUs by an order of magnitude over the
last years. The TOP500 [9] list of supercomputers was repeatedly led by systems us-
ing heterogeneous architectures. In November 2010 and November 2012 these were
systems equipped with GPUs. In June 2013 it was a system using Intel Xeon Phis.
An example of such a heterogeneous architecture for general-purpose computing is
LOEWE-CSC [10]. Located at the Johann Wolfgang Goethe-Universität Frankfurt am
Main it provides two 12-core Advanced Micro Devices (AMD) Magny-Cours CPUs and

1

Chapter 1. Introduction

2002 2004 2006 2008 2010 2012

101

102

103

Year

Pe
ak

Pe
rf
or
m
an

ce
/
G
FL

O
P
S GPUs

CPUs

Figure 1.1.: Development of CPU and GPU compute power in comparison [14]. The
CPU performance is that of the fastest consumer CPU at that time. The
GPU performance is that of the fastest consumer GPU by AMD at that time.

one AMD Radeon HD 5870 GPU in the majority of its nodes. Originally, it was ranked
22nd in the TOP500 list of supercomputers and ranked eighth in the Green500 [11]
list of energy-efficient supercomputers. Its energy efficiency is 718MFLOPS/W [12].
Another example is SANAM. This computer, which was built by a cooperation of the
Frankfurt Institute for Advanced Studies (FIAS) and the King Abdulaziz City for Sci-
ence and Technology (KACST), is equipped with four AMD FirePro S10000 in each
node. In fall 2012 it claimed second place in the Green500 [13].
Originating in the high-end computer gaming market, GPUs nowadays offer highest

computing capabilities at a very attractive price-per-flop ratio. Current high-end gam-
ing GPUs by AMD and NVIDIA are priced at about 500€. As GPUs provide a well-
suited computing architecture, there is an on-going software and algorithm develop-
ment in order to utilize GPUs for this kind of computation [2, 15–17]. The pioneer work
in the field [18]—using application programming interfaces (APIs) designed for graph-
ics rendering—was in principle platform agnostic. Yet, nearly all later developments
in the field were based on NVIDIA CUDA. Therefore, they are limited to hardware by
this single GPU vendor.
GPU-accelerated systems offer an interesting solution to the compute requirements

of LQCD. They provide a better performance-per-price ratio than CPU systems. Yet,
like those—and unlike a Blue Gene system—they can be scaled up from small budgets.
The same is true in relation to dedicated systems where initial development and custom
hardware produced in small batches drive up the price.
To utilize clusters like LOEWE-CSC—and to get out of the vendor lock—an applic-

ation which can utilize GPUs but does not rely on NVIDIA CUDA is required. In this
thesis I present CL2QCD, an OpenCL based LQCD application. Utilizing OpenCL en-

2

1.1. Lattice QCD

ables the code to be run on GPUs by AMD and NVIDIA, as well as on classical CPUs.
Beyond that, OpenCL is also available on other platforms like the Intel Xeon Phi.
Parts of this work have already been presented in ‘LatticeQCD using OpenCL’ [19]

and ‘Lattice QCD based on OpenCL’ [20]. Here I also present how the application was
optimized to achieve the results in those publications. In addition, I show how the
architecture of the application was adjusted to enable the utilization of multiple GPUs.
As mentioned, in terms of peak-performance GPUs offer an excellent price-per-flop

ratio. However, they are not designed explicitly for LQCD computations. Dedic-
ated systems and the Blue Gene come with a higher price-tag. Yet, these have been
optimized—at least in part—for LQCD computations. Thus, it is not necessarily clear
whether dedicated hardware or GPUs provide the best performance-per-price. There-
fore, I also present a cost-per-flop comparison of CL2QCD on GPUs in comparison to
LQCD applications running on other systems.
Energy-efficiency is another major challenge in HPC. So far, energy consumption

has risen with overall system performance. However, as energy-costs rise and only a
limited amount of energy can be dissipated, performance-per-watt becomes an increas-
ingly important metric. GPUs have repeatedly placed among the first ten systems of the
Green500 list, showing the excellent energy-efficiency of GPUs in the HPL [21] bench-
mark. However, so far no comparisons have been performed on the energy-efficiency of
LQCD computations. Here, I present the energy-efficiency of CL2QCD utilizing GPUs
and that of a reference CPU application.

1.1. Lattice QCD

QCD is an SU(Nc) gauge theory consisting of gauge and fermion fields. In nature,
the value of Nc equals 3. The strong force, which it describes, differs from the other
forces—electromagnetic, weak and gravitation—in important aspects. For long dis-
tances the potential between colour-charged particles—quarks and gluons—increases
linearly. Therefore, a colour-charged particle cannot be given enough energy to over-
come the potential wall. As a result they cannot be observed freely but are always
bound into colourless states. This is called confinement.
Another distinct feature of QCD is given by its coupling constant, which for low

energies is in the order of unity. Therefore, higher-order terms are not suppressed
and perturbative methods cannot be used for calculations at the scale of the hadronic
world [1]. Only when increasing the involved energies to the order of the Z-Bosonmass,
the asymptotic freedom stemming from the running of the coupling constant enables
perturbative methods.
LQCD provides an ab-initio approach to QCD by discretization of the Euclidean path

integral. In the continuum the partition function is the following:

Z =
∫
DAµDψDψe−SQCD . (1.1)

3

Chapter 1. Introduction

Lspatial

Ltemporal

a

site

link

Figure 1.2.: Lattice with sites, links, lattice spacing and dimensions

In this integral SQCD is the QCD action:

SQCD =
∫
d4x

(1
4
FµνF

µν −ψM(Aµ)ψ
)
. (1.2)

The fermions are represented by the Grassmann variables ψ and ψ, M is the Dirac
operator and F is the field strength tensor, which depends on the gluons represented
by gauge fields Aµ.
Here I give a short introduction into the basic methods of LQCD and introduce the

terminology used. For a more comprehensive introduction please see dedicated literat-
ure like Lattice QCD for Novices [22], Introduction to Lattice QCD [1], andQuarks, Gluons
and Lattices [23].

1.1.1. The Lattice

In LQCD the space-time coordinates are discretized onto a four-dimensional lattice,
which leads to the name. The points of the lattice—called sites—are separated by a
lattice spacing, commonly called a. The connections in between the sites are called
links. A two-dimensional projection of this is shown in Figure 1.2.
In these lattices the quarks are described by the spinor field. It is described by four

components at each site. Of those components, each is a complex three-vector. The
gluons are described by the gauge field. However, link variables U are used instead of
the values Aµ at the lattice sites. The link variables are SU (3) matrices, which are de-
termined by a line integral of Aµ along the link connecting two sites. They completely
represent one path in the path integral (Equation 1.1) and are, therefore, also referred
to as a configuration.
SU (3) matrices are complex 3-by-3 matrices, thus they contain 18 floating point

numbers. Naming the columns of an SU (3) matrix ~a, ~b and ~c, these have to obey
~c = ~a×~b. This allows to reconstruct the last from the other two. Using this technique—
commonly referred to as Reconstruct 12 (REC12)—only 12 floating point numbers have

4

1.1. Lattice QCD

to be stored in memory which conserves memory and bandwidth at the cost of addi-
tional arithmetic operations. Additional restrictions imposed by SU (3) allow to elimin-
ate 2 or 4 more floating point numbers. However, this can lead to arithmetic problems
during the reconstruction [17].
The choice of lattice size influences the physics that can be observed. The length of

the lattice in time direction is inversely proportional to the temperature. Thus, lattices
with a large extent in the time direction are closer to the zero-temperature limit and
are used for vacuum simulations. Lattices with a small extent in time direction operate
in the finite temperature regime and are thus used to study thermal systems.
Despite the discretization in space-time, the path integral would still be an integral

over as many integration variables as there are links. As this is infeasible, Monte Carlo
methods are used for its evaluation.
It is important to note that the path integral average 〈A(x)〉 of an observable A is

given by an average over paths weighted with e−S(x). Here S is the action and x is one
path:

〈A(x)〉 =

∫
DxA(x)e−S(x)∫
Dxe−S(x)

. (1.3)

If for a large number of generated paths Ncf, the probability P (x(i)) to obtain any par-
ticular path x(i) is equal to the weight for that path in Equation 1.3, then the integral
can be estimated by an unweighed sum.
Sets of configurations with such a distribution of configurations can be generated

using Metropolis algorithms. One starts with an arbitrary configuration x(0) and from
this generates a new path x(1) via the so-called update step. This is continued until the
desired amount of configurations has been generated. The key to the proper distribu-
tion is the Metropolis step. Each new configuration x(i+1) is only accepted if the change
4S of the action fulfils the following inequality in comparison to a random number η.

e−4S > η (1.4)

The random number η is drawn from a uniform distribution in range 0 to 1. If the
inequality is not fulfilled, then the new configuration is discarded and the next update
step is again started from configuration x(i).
Successive configurations are highly correlated. Thus, when collecting Ncf configur-

ations, there should be a distance of Ncor configurations between those kept. Here, Ncor
must be chosen large enough to overcome the correlation length of the system. Typical
values for Ncor are in the order of 50 configurations. Those for Ncf are in the hundreds.
Thus, a couple thousand steps of the hybrid Monte Carlo (HMC) algorithm must be
executed.
There are two common ways to choose the initial configuration for the HMC. On

is using a so-called cold configuration containing only unit matrices. Alternatively, a
hot configuration, filled with random matrices, can be used. The initial configuration
is usually quite atypical. Therefore, the configurations generated first should be dis-
carded. The process of reaching typical configurations is called thermalization. It can
easily span about 1000 steps.

5

Chapter 1. Introduction

1.1.2. The Heatbath Algorithm

Often one is interested in so-called pure gauge theory (PGT). This theory describes
QCD-like systemswithout fermions—or those with infinitely heavy ones. In these cases
the set of configurations can be generated using the heatbath algorithm [24–26].
The heatbath algorithm follows the concept of the general Metropolis algorithm. Its

update step is based on an exact algorithm for SU (2) which updates each link of the
lattice according to its neighbours. In SU (3) this algorithm is extended by systematic-
ally reducing the SU (3) link to three SU (2) subgroups. Each subgroup is updated and
then extended back into SU (3). The product of the results of the subgroups is used to
generate the new link. As the algorithm only operates on the gauge field it cannot be
used if fermions are involved.

1.1.3. The HMC Algorithm

For calculations including fermions the update step is usually performed using the
HMC algorithm [27]. It embeds the system into a fictitious molecular dynamics system
with time τ . The algorithm relies on a Markov process to generate the configurations
with the required distribution.
The operations performed by the algorithm for each step of the algorithm are visual-

ized in Figure 1.3. The chain of configurations follows from the evolution of the system
in fictitious time τ . The Hamiltonian of the system is given as follows:

H(U,π) :=
π2

2
+ S(U). (1.5)

Each update step consists of multiple molecular-dynamics steps. In each of these steps,
the system is evolved according to the derived equations of motion with a force F for a
time τ0.

π̇ = −∂S/∂U ≡ F (1.6)

U̇ = π (1.7)

Schemes like leapfrog or second order minimal (2MN) [28] can be used to integrate
these. The conjugate momenta π(t), with which the evolution is started, are chosen at
random from a Gaussian distribution of unit variance around zero. The same happens
for the fermion field φ, which is held constant during the integration. The acceptance
probability is calculated slightly different than noted before, it is given via the follow-
ing:

PA =min(1,eδH). (1.8)

Thus, if energy is conserved, the new configuration is always accepted as δH = 0 in that
case.
The number of molecular-dynamics steps and the integration time τ0 can be tuned to

vary the acceptance rate ε. This rate is defined by the ratio of accepted configurations
over the number of acceptance tests performed. If the ratio is too low, the simulation

6

1.1. Lattice QCD

Arbitrary
Gauge
Field U

Gaussian π
Random φ

Integrate
Equations
of Motion

Number of
Integration

Steps
Reached?

Accept new
configuration

rand(0,1) <
min(1,eδH)

Reject new
configuration

yes

yes no

no

Figure 1.3.: Flow-chart of the HMC algorithm.

7

Chapter 1. Introduction

takes too long; however, if ε approaches unity, the phase space might be sampled in-
sufficiently. Thus, the acceptance rate is typically tuned to 60% to 80%. This can be
done by varying the number of steps used for the integration.

1.1.4. Inversions

Including the gauge fields U and the fermionic fields ψ into Equation 1.3 leads to:

〈A〉 = 1
Z

∫
DUDψDψ Ae−S(U,ψ,ψ). (1.9)

The fermion fields can be integrated out exactly, yielding the determinant of the fer-
mion matrix D.

〈A〉 = 1
Z

∫
DU Adet(D(U))e−Sgauge(U) (1.10)

This leaves only an integral over all gauge configurations. The fermion determinant,
however, is expensive to calculate. Therefore, it is commonly replaced by an integral
over bosonic pseudo-fermion fields φR and φI .

det(D(U)) ∼
∫
Dφ†RDφI e

−φ†RD−1(U)φI (1.11)

This leads to the following effective action:

Seff(U,φ) = Sgauge(U) +φ†RD
−1(U)φI . (1.12)

The dimension N of the matrix D is given by the lattice volume V4d =Nx ·Ny ·Nz ·Nt,
the Dirac indices ND , and the number of colours Nc:

N = V4d ·ND ·Nc. (1.13)

The actual inversion of the matrix is impractical, but the evaluation of the joined ex-
pression D−1φ is equal to solving a system of linear equations:

ψ =D−1φ⇒Dψ = φ. (1.14)

A common approach to solving these equations are Krylov space solvers like conjug-
ate gradients (CG) and the biconjugate gradient stabilized method (BiCGSTAB) [29].
These iterate to the value of ψ by starting with a trial solution ψ0 and repeatedly eval-
uating Dψ to refine it until the result has reached the desired precision. Their conver-
gence rate depends inversely on the mass of the simulated quarks and the total volume
of the lattice.
The convergence rate can be improved by using even-odd preconditioning [30]. It takes

advantage of the structure of the fermion matrix. This allows to choose matrices L and
U with known inverses such that D̃ = L−1DU−1 only has two non-zero parts. The upper
left quadrant is a unit matrix. Thus, the solver can ignore the even sites as they are not
modified by multiplications with D̃. Therefore, for each spinor field variable only half

8

1.1. Lattice QCD

the sites must be computed and stored. The other non-zero quadrant is the lower right
quadrant, mapping odd sites to odd sites. Its smallest eigenvalue is about twice that of
the smallest eigenvalue of D. Thus, solving D̃ψ̃ = φ̃ is faster than solving the original
equation.
The inverse of D does not only show up in operator evaluation but also also in the

fermionic part of the force F required by the Hamiltonian equations of motion. Thus,
the solver is required in each integration step in the molecular-dynamics part of the
HMC. Mass preconditioning allows to speed up the solvers in this case. It introduces
additional pseudo fermions of a larger mass, for which the Krylov solver converges
faster [31].

1.1.5. The Actions

The discretization of the continuum theory onto the lattice is not unique, as only the
continuum limit is required to match continuum theory. Different discretization exper-
ience different discretization artefacts.
One specific artefact is that the naïve discretization increases the original number of

fermion species by a factor of 24. To get rid of these so-called doublers, improved actions
are introduced. These add redundant operators to the theory that remove the doubling.
An example are Wilson fermions [32], which, however, break chiral symmetry.
Another prominent method to discretize the fermionic part of the action are staggered

fermions [33]. Staggering shifts the fermionic lattice in relation to the gauge lattice. One
numerical consequence for staggered fermions is that at each site of the lattice there is
only one spinor component instead of four. Doublers are still present in the staggered
discretization, but their number reduces from 15 to only three.
Recently the method of domain wall fermions [34] has also picked up traction. In

this variant a lattice version of chiral symmetry is preserved. However, this comes at
much higher cost, since a fifth dimension has to be introduced. As this dimension must
be large, these are much more expensive than Wilson or staggered fermions. A more
feasible variant are overlap fermions [35]. These are a relative to domain wall fermions
but only require four-dimensional calculations.
A variant of the Wilson fermions which is important in the context of this thesis are

twisted-mass Wilson fermions [36]. These add a second mass parameter µ. The mass
µ allows to avoid so-called exceptional configurations for which the fermion matrix
has very small eigenvalues and the inversion becomes ill-defined. More importantly,
however, the parameters can be tuned such that the mass is determined solely by µ. In
this Maximal Twist scenario the first order discretization errors vanish.
Common to the usual methods of discretization is that the fermion matrix D can be

split into a diagonal part and the /D operator1.

D =Mdiag + /D (1.15)

The /D operator embodies the quark kinematics and the interaction between quarks and
gluons. It is a sparse matrix acting only on nearest-neighbour sites with the following
1 /D is pronounced as ‘D slash’.

9

Chapter 1. Introduction

operational form:

/D(i, j) ∝ 1
2

4∑
µ=1

(
Uµ(i)(1 +γµ)δ(i +µ,j) +U

†
µ(i −µ)(1−γµ)δ(i −µ,j)

)
. (1.16)

The γµ are the usual Gamma Matrices which permute rows potentially multiplying the
row with −1, i, or −i. /D is commonly not stored in memory but implemented by a
routine that calculates the action of /D on a spinor field.
For each site of the resulting spinor field, the /D routine loads the spinors of the

neighbouring sites in all four dimensions as well as the connecting links. For each
direction the spinor is projected using the γ matrices and multiplied with the SU (3)
matrix of the connecting link. Finally, the multiplication results are summed up to
form the resulting spinor.
The /D operator commonly dominates the execution time of LQCD applications.

Therefore, it is the primary target for optimizations of LQCD applications and its per-
formance is often used to characterize the performance of hardware and implementa-
tions.

1.1.6. Computational Costs

I want to end this section with a remark on the computational cost of LQCD calcula-
tions. Those can be estimated using the following formula [37]:

cost ∝ 1

m6
π

L5

a7
. (1.17)

The computational costs increase extremely when attempting to slightly improve
the accuracy of the calculation. Increasing the edge length L = 4

√
V4d of the lattice to

increase the size of the physical problem increases the costs by the fifth power. Even
more, reducing the lattice spacing to reduce the discretization errors scales the costs
by the seventh power. Finally, reducing the pion mass of the investigated system also
increases the costs by the sixth power. Thus, typically systems with an unphysical pion
mass are used.
In addition, as the Euclidean path integral is evaluated using stochastic methods, the

results carry stochastic errors in addition to the systematic ones. This is not taken into
account in the above formula. Halving the stochastic errors requires four times as many
configurations. This adds another cubic proportionality into the cost estimation.
The inherently serial nature of the HMC algorithm requires a single, fast machine.

Otherwise no sufficiently long chain of configurations can be created in finite time.
Studies of thermal systems—those with small extent in the time direction—require
simulations over a large range of parameter values. Each set of parameter values re-
quires an own instance of the HMC. Thus, in these cases throughput is important, too.
Finally, the operator evaluation is a sum over the operator values for each configuration
in a chain. These can be spread out onto as many machines as there are configurations.
Thus, in this case, the overall throughput of the available machines is more important
than single machine performance.

10

1.2. Traditional Lattice QCD Systems

1.2. Traditional Lattice QCD Systems

In the past decades a wide variety of systems has been utilized for LQCD computations.
Beside classical CPU systems a variety of specialized systems was utilized and is still
in use.

1.2.1. PCs and PC Clusters

As personal computers (PCs)—and clusters based on them—are widely available, a
multitude of LQCD applications exist for them. Examples are MILC Lattice Computa-
tion (MILC) [38], Chroma [39], the Columbia Physics System (CPS) [40], and tmlqcd [3].
All of these packages also support other architectures. The latter has been a reference
implementation for CL2QCD.
In the latest generation of CPUs the Advanced Vector Extensions (AVX) provide a

single instruction multiple data (SIMD) width of eight for single-precision (SP) and
four for double-precision (DP). CPUs usually clock at about 2GHz to 4GHz, delivering
up to 64GFLOPS per core in SP utilizing fused multiply-add (FMA). Currently, a typ-
ical CPU has about four to eight cores. Typical memory bandwidths range from 10GB/s
to 50GB/s per CPU. To make up for the large latencies to memory, CPUs provide large
caches in the order of 10MiB.
A cluster of 128 nodes can provide multi-TFLOP performance in LQCD calcula-

tions [41]. To achieve this, the applications utilize vectorization, cache-friendly tiling,
and compression techniques to minimize the required bandwidth.

1.2.2. APE

The APE processor family [42] of computing engines is optimized for numerical simu-
lations of lattice gauge theories. All APEs are based on custom, very-large-scale integ-
ration (VLSI) processors.
The first prototype of the original APE was constructed in 1986. It was build from 16

nodes, each containing one processor core. A centralized switching network connected
them to the 16 memory bars of the system. Special about this architecture is that the
nodes act as a single SIMD processor together. They operate in lock-step on a common
instruction stream.
To cope with the special demands of LQCD, each node has a pipelined floating-point

unit (FPU) optimized for computations on complex numbers. In addition, the memory
implements periodic-boundary semantics. Programming is done in a special APE lan-
guage, which is similar to Fortran. The original APE provides a performance of about
1GFLOPS.
The follow-up to the APE in the early 1990s was the APE-100 [42, 43]. The concept

was upgraded to a performance of about 100GFLOPS by updating to more current
technology. It utilizes 4096 nodes. Each node contains one FPU and one memory bank.
The FPU has access to a large register file of 128 registers of 32 bit. Instructions are
still performed in lock-step over all nodes, effectively providing one very large SIMD

11

Chapter 1. Introduction

processor. Only floating-point operations are performed on the nodes. All integer oper-
ations, typically address calculations and loop handling, are performed by the central
controller processor. This has the advantage of reducing the size and complexity of
each node.
Communication is no longer performed using a switching network but via next-

neighbour communication. For this, the nodes are organized into a three-dimensional
lattice. Data transfer is performed by pushing the data into one of the six available dir-
ections. Given the SIMD nature of the machine, this is similar to a rotation operation,
only that it occurs at a memory address instead of inside a register.
The latest member of the APE family is the apeNEXT [44] from 2006. It increases the

performance of the APE to themulti-TFLOPS scale. Again, it utilizes three-dimensional
neighbour-to-neighbour communication. However, other than its predecessors, it does
not use a SIMD approach. Instead, its processors utilize a single process multiple data
(SPMD) architecture, synchronizing by communication between the processors. Pro-
gramming of the apeNEXT is performed in C or TAO.
In the apeNEXT the floating-point capabilities of the processors have been explicitly

matched to the memory throughput and arithmetic density of the Dirac operator. To
improve the available bandwidth, separate access paths are available from the pro-
cessor to the memory and to the network. In addition, prefetch queues are used. The
processors are clocked at 200MHz. This results in a peak performance of the pro-
cessor of 1.6GFLOPS. The memory bandwidth is 3.2GB/s and communication with
the neighbours can be performed at 0.2GB/s. The latency for next-neighbour commu-
nication is only about two to three times that of a memory access.
The machine is assembled by putting 16 processors on a single board. 16 boards are

contained in one crate, and two crates form a single rack. Also most other dedicated
LQCD machines use a similar assembly pattern.

1.2.3. QCDSP

The Quantum Chromodynamics on Digital Signal Processors (QCDSP) machine [45,
46] won a Gordon Bell Prize for lowest cost per delivered performance in 1998. It
provided 0.6TFLOPS using 12288 nodes at $13.2/MFLOPS.
QCDSP is a multiple instructions multiple data (MIMD) architecture based on the

Texas Instruments TMS320C31-50. To form a node, the processor is complemented
with 2MiB of random access memory (RAM) and a custom, application-specific integ-
rated circuit (ASIC). The ASIC provides a small cache and communication with the
nearest neighbours in a four-dimensional mesh.
The machine is assembled by attaching 63 node cards to a motherboard. The latter

contains a 64th node. Eight motherboards are combined via one backplane. Finally,
the system is made up of a varying number of backplanes.
Programming of the machine occurs in C and C++ utilizing cross compilers. As-

sembly language is used to optimize the application kernels. Communication utilizes
a message-passing library. Login to the system is performed via a Unix node.

12

1.2. Traditional Lattice QCD Systems

1.2.4. QCDOC

The QCDOC [46] machines from 2004 are the successors to the QCDSP machines. In-
stead of combining a digital signal processor (DSP) with an ASIC on a node card, they
utilize a System on a Chip (SoC) manufactured by the International Business Machines
Corporation (IBM). The design goal was to reach 10TFLOPS at $1/MFLOPS. Commu-
nication is based on a six-dimensional grid instead of only four dimensions. This allows
to partition the machine without negative effects on performance.
The SoC contains a PowerPC 440, a 64-bit FPU, 4MiB of memory, 24 bit-serial com-

munication links, two Ethernet controllers and a double data rate (DDR) RAM control-
ler. The bit-serial links are used for communication with the nearest neighbours. Their
total bandwidth is 1.3Gbit/s. The Ethernet links are used for input/output (I/O), boot-
ing, debugging and diagnostics. The PowerPC 440 features an L1 cache for data and
instructions. It operates at 420MHz.
QCDOC provides some distinct architectural features. One is the on-chip memory,

which can later also be found in the Cell Broadband Engine processor and GPUs. An-
other is that the serial links have direct access to the memory controller. In addition,
all communication is coherent to the L1 caches. Here, special logic is involved to avoid
unnecessary flushing of cache lines by communication. Also, the hardware has spe-
cial support for broadcast operations and global sums, which are often a performance
problem in nearest-neighbour communication networks.
QCDOC utilizes a custom kernel on the nodes. It supports only two threads, one

for the kernel and one for the application. There is no scheduling. Context switches
only occur at initiation and termination of an application. While a memory-manage-
ment unit (MMU) exists, it is not used for address translation. It only serves to protect
memory regions and to be able to mark memory as transient.
Programming of themachine is performed in C and C++ using cross-compilers. Again,

compute kernels are optimized in assembly language. The LQCD-specific message-
passing library QCDMessage Passing (QMP) is available in addition to a basic message-
passing library. However, standard Message Passing Interface (MPI) is not supported.
Its additional functionality is not required for LQCD computations.
The machine is assembled very similar to the QCDSP. Two nodes are combined on

one daughter board. Each mother board combines 32 daughter boards. Four mother
boards are assembled on one backplane, of which two are filled into one create. Of
these, two can be stored in one water-cooled rack.

1.2.5. Blue Gene

The Blue Gene [47–49] series by IBM is not used solely for LQCD computations. The
gene part of its name hints at protein folding, which is another problem this machine
was designed for. Still, it is based on the concepts and architecture of the QCDOC
machines. In 2004, the Blue Gene/L, the first generation of the Blue Gene, was the
first system to provide a sustained TFLOPS in LQCD computations. Today, the Blue
Gene/Q, the third generation of the Blue Gene, allows LQCD computations at the

13

Chapter 1. Introduction

PFLOPS level. In addition, Blue Gene systems have always held top positions in the
TOP500 and Green500 lists.
Like QCDOC, Blue Gene/L is based on an SoC using a PowerPC 440 processor. How-

ever, each chip contains two cores. While the QCDOC utilized scalar FPUs, each core
is equipped with a two-way SIMD DP FPU. At an operation speed of 700MHz it can
deliver 5.6GFLOPS peak. In addition to an L1 cache, the Blue Gene also features L2
and L3 caches. Only those are kept coherent by the hardware while the L1 cache is not.
The interconnect is based on a three-dimensional torus, instead of the six dimensions
used by QCDOC. Using 32768 cores the Blue Gene/L can sustain 12.2TFLOPS.
The way the machine is assembled is very similar to the QCDOC. Again, two chips

are put onto one compute card. 16 compute cards create a node card, of which 32 are
combined via two mid-plane cards to create a rack. Thus, each rack of a Blue Gene/L
features 2048 cores.
The third Blue Gene generation, Blue Gene/Q, again is based on an SoC integrating

processors cores, cache memory, memory controller, and network logic. However, the
processor is now based on 18 PowerPC A2 cores, of which one is reserved for the op-
erating system (OS) and another one is disabled to increase yield. Each core features
four-way simultaneous multi-threading (SMT) to hide latencies and four-way SIMD
in DP including FMA. Useful for LQCD is that the FPU can also operate on complex
types. For those the vector width is two. At 1.6GHz the compute chip provides a peak
performance of 204.8GFLOPS.
To feed the FPUs, the L2 cache provides a bandwidth of 563GB/s and is filled by

a dedicated prefetch engine. Both network and DDR3 memory can provide about
40GB/s. To avoid the overhead of the modified-exclusive-shared-invalid (MESI) pro-
tocol, a back-invalidate architecture is used in the memory system. Each write to
memory causes invalidation messages. A consistent view of the memory is ensured
after synchronization.
The assembly of the machine is basically the same as for the Blue Gene/L. A node

board is formed from 32 compute nodes. Twomid-plane cards connect 16 node boards.
Finally, two of these sets form a rack of 1024 compute nodes.
The Blue Gene runs a Unix system, utilizing a custom kernel on the compute nodes.

Code can be written in C++ or Fortran. The BAGEL system provides a domain-specific
compiler for LQCD.

1.2.6. QPACE

The QPACE [7] machines combine an IBM PowerXCell 8i with a custom interconnect
based on a field-programmable gate array (FPGA). A set-up of eight racks reaches a
performance of 200TFLOPS.
The IBM PowerXCell 8i is a relative of the Cell Broadband Engine processor used in

the Sony Playstation 3 gaming console. It features a PowerPC based Power Processing
Unit (PPU), eight Synergistic Processing Elements (SPEs) and a DDR2 memory inter-
face. All components are connected via the Element Interconnect Bus (EIB) with a
bandwidth of up to 200GB/s. The SPEs combine a Synergistic Processing Unit (SPU), a

14

1.3. Utilization of GPUs

Memory Flow Controller (MFC), and a local data store of 256KiB. The compute power
stems from the SPUs, which can perform two DP multiply-add operations per cycle.
This results in a peak performance of 102GFLOPS in DP. The bandwidth to the ex-
ternal memory is 25.6GB/s.
The nodes are interconnected via a three-dimensional torus implemented using Xil-

inx Virtex-5 LX110T FPGAs. Communication is performed via messages. As latency is
important, the network enables direct transmission from SPE to SPE. The torus network
is only used for communication of data between the processors. Ethernet is utilized to
boot the nodes and perform I/O. An additional signal network is utilized for global
conditions, synchronization and kill signals. Based on an FPGA, the network can also
be reconfigured for other usage scenarios. For HPL—used to benchmark the system for
the TOP500 and Green500—the communication between the main memories is more
important. Using a reconfigured network, QPACE topped the Green500 in November
2009 and June 2010 with 723MFLOPS/W.
The machine is assembled similar to all other LQCD-specific machines. A node card

combines one IBM PowerXCell 8i with the Xilinx Virtex-5 LX110T and 4GiB of RAM.
Each backplane combines 32 node cards and two root cards. Up to eight backplanes
are combined to one rack. Thus, one rack contains up to 256 nodes with a beak per-
formance of about 26TFLOPS.

1.3. Utilization of GPUs

GPUs promise to deliver a lot of computational power, and the LQCD community is
used to utilizing unconventional hardware to fulfil their computational requirements.
As a result, once GPUs became programmable various research groups studied how to
best utilize GPUs for LQCD computations.

1.3.1. ‘Lattice QCD as a video game’

The first paper [18] presenting the use of GPUs for LQCD was published in 2006. Egri
et al. show a performance of 33GFLOPS on the NVIDIA GeForce 8800 GTX in SP.
They used the Open Graphics Library (OpenGL) to access the GPU. Therefore, they

had to map LQCD to the graphics pipeline, making each site of the lattice a pixel of
a texture. As each pixel contains only four elements per site, multiple textures are
used to represent a single field. The computation is done in pixel shaders, which are
programmed using the C for Graphics (Cg) language. One restriction of this approach
is that the amount of threads is defined by the amount of pixels in the resulting texture.
For each pixel a single thread is spawned. That thread can only write to that single
pixel.
As the GPUs in 2006 were incapable of DP calculations, they implemented a mixed-

precision solver. In the mixed precision solver all DP calculations are carried out by the
CPU. For this mixed-precision solver they report a speed-up of five when comparing
the NVIDIA GeForce 7900 GTX with a CPU.

15

Chapter 1. Introduction

They found synchronous data transfers to be a major performance bottleneck. There-
fore, they used the OpenGL extension Pixel Buffer Objects (PBO), which allows to asyn-
chronously read back results from the GPU to the host. Another obstacle were the
limited control-flow capabilities of GPUs. To solve this, they removed all loops and
conditionals from the shaders.
Based on OpenGL and Cg, their implementation should actually work on all GPUs.

Yet, they only report performance numbers for GPUs by NVIDIA.

1.3.2. QUDA

QUDA [17] is probably the most prominent implementation of LQCD on GPUs. It
provides high-performance /D and solver implementations that can be used fromMILC,
Chroma, CPS, and other LQCD frameworks. Initially it only supported Wilson and
Wilson-Clover discretizations but others have been contributed [50]. Thus, it now cov-
ers a wide variety of discretizations.
The /D provided by early versions delivers 135GFLOPS in SP, 40GFLOPS in DP,

and 225GFLOPS in half-precision on an NVIDIA GeForce GTX 280. To achieve this
performance, QUDA compresses the gauge field and performs similarity transforma-
tions to increase the sparsity of the matrix. The DP CG built on this /D implementation
achieves 38GFLOPS. In addition, QUDA provides a mixed-precision solver that ex-
ceeds 100GFLOPS on the NVIDIA GeForce GTX 280.
QUDA has been extensively tuned for high performance in multi-GPU scenarios. In

2010 QUDA was shown to exceed 4TFLOPS in weak scaling on 32 NVIDIA GeForce
GTX 285 [16]. This probably makes it the first successful multi-GPU code for LQCD.
Back then, QUDA only parallelized in time direction. For lattices of size 323 × 256
overlapping communication and computation was found to be a worthy optimization.
But, for lattices of size 243×128 it was slower than using synchronous communication.
For Wilson-Clover and improved-staggered discretizations QUDA scales beyond 100

GPUs [2]. For this, it uses an additive Schwarz domain-decomposed preconditioner
for the generalized conjugate residual (GCR) solver, which the authors call GCR-DD.
Scaling reaches a limit at 256 NVIDIA Tesla M2050 GPUs.
On the recent Fermi architecture QUDA reaches up to 300GFLOPS in SP [51]. For

this it utilizes a cache-friendly streaming pattern which exploits the locality of spinor
loads in the spatial dimension. Temporal locality is not exploited due to limits imposed
by the shared-memory size and lack of global thread synchronization capabilities. The
achieved performance is 79% of that which could be reached with perfect memory
reuse.
As the name implies, QUDA is based on NVIDIA CUDA. Thus, it is limited to the

hardware by NVIDIA.

1.3.3. Other Efforts

Ibrahim et al. studied the effect of coarse-grained versus fine-grained parallelism in
the /D kernel [52]. Coarse-grained parallelism means the well established technique of

16

1.3. Utilization of GPUs

each thread calculating one or more output spinors. In their approach of fine-grained
parallelism the contribution to /D for each dimension is calculated by separate threads.
A final reduction step then creates the output spinor. This increases the amount of
threads that can be utilized by a factor of 8 or 16. The major challenge in this approach
is branching. However, most branches can be avoided by doing address calculations
in a special way. Another issue they identified is the size of the register file and the
shared memory, which limits concurrency. On an NVIDIA GeForce 8800 GTX they
reach 7.5GFLOPS, outperforming the coarse-grained implementation by 19%.

In 2010 the first application of domain-decomposition [4]—splitting the problem
into separately solved subproblems—to GPU code has been shown by Osaki and Ishi-
kawa. They used a restrictive additive Schwarz (RAS) preconditioner to utilize eight
NVIDIA GeForce GTX 280 [53].

Bonati et al. implemented a Rational Hybrid Monte Carlo (RHMC) for the staggered
discretization that performs all calculations on the GPU [15]. It was initially written
in NVIDIA CUDA but extended to OpenCL via an abstraction layer. Run on the same
GPU, the NVIDIA CUDA version outperforms the OpenCL one. The AMD Radeon HD
5870 shows similar performance to the NVIDIA Tesla S2050 but is limited to small lat-
tices by device memory. They found the performance of the AMD Radeon HD 5870 to
be limited by rather large kernel launch latencies. This implementation scales to mul-
tiple NVIDIA Tesla C1060 in the same node at an efficiency of 80% to 90%. Another
full HMC, using a variant of domain-wall fermions, has been implemented by Chiu et
al. But, that implementation utilized only NVIDIA CUDA [54].

Many more applications have been implemented on the NVIDIA CUDA platform.
Among them are the generation of pure gauge lattice configurations [55]. Multiple
NVIDIA Tesla M2070 have been utilized to calculate the overlap operator [56]. Also,
the use of memory-lean single-mass solvers to solve multi-mass problems was invest-
igated [57]. For these usually multi-shift solvers [58] are used. These solve the system
for all masses using the same number of matrix-vector products as solving the system
for a single mass. The presented implementation outperforms those by a factor of two
using single-mass solvers.

LQCD has also been implemented on the Intel Xeon Phi. The implementation [59]
resembles a CPU program. But, like GPUs, the Intel Xeon Phi is a many-core processor
that is attached to the node via Peripheral Component Interconnect Express (PCIe). Yet,
it also differs from a GPU, as it runs its own OS and can directly access the InfiniBand
(IB). The CG runs completely on the Intel Xeon Phi and—in SP—scales to 3.9TFLOPS
on 32 Intel Xeon Phis.

Another OpenCL based implementation of /D has been reported by Kowalski and
Shen [60]. However, they have only tested their implementation on CPUs and the
NVIDIA Tesla C1060.

17

Chapter 1. Introduction

1.4. Conclusion

LQCD is a problem that is both complex and compute intensive. To cope with its huge
demand for computational power and memory bandwidth, the LQCD community has
continuously adapted and developed new platforms. This repeatedly required to port
thousands of lines of code [61].
In early, dedicated machines RAM was fast compared to the processors. Therefore,

each processor mapped the memory of its neighbours. As cores sped up, memory speed
became a limiting factor. Thus, fast local memories and complex cache hierarchies
were introduced. This made communication the prime problem to cope, as data of
neighbouring processors is no longer directly accessible. As LQCD does not require full
connectivity, dedicated machines put a lot of emphasis on low-latency, high-bandwidth
communication between neighbouring nodes. Therefore, they usually utilize three- or
four-dimensional torus networks, which can often transfer data directly between the
caches of the processors.
Over the years there has also been a shift from full custom designs to more com-

modity hardware. While the APE utilized a custom-designed processor, the Blue Gene
supercomputers are a pre-packaged solution. However, they are not exactly commod-
ity. The most recent development in this aspect is the utilization of GPUs. Those offer a
lot of memory bandwidth to a single compute chip. However, communication is tricky,
as they are attached to the node via PCIe. Interestingly, they are similar to early dedic-
ated machines, as they give many cores access to a common homogeneous memory.
The big machines—like the Blue Gene—are commonly used as capacity machines to

generate the configurations for later evaluation. In the analysis stage—which depends
less on latency and more on throughput—trivial parallelism is then exploited to spread
the calculation out to smaller machines, e.g. single GPUs.
Many efforts to utilize GPUs for LQCDwere performed after NVIDIA introduced the

NVIDIA CUDA platform. However, while platform independent standards for GPU
programming exists, there are hardly implementations that do not base on NVIDIA
CUDA. Even fewer implementations have been tested on non-NVIDIA hardware, which
makes the community quite dependent on this single vendor.

18

Chapter 2.

GPGPU

The term General-Purpose computation on Graphics Processing Units (GPGPU) de-
scribes the concept of utilizing GPUs for computations not related to rendering. A very
early example of this concept was described by Hull in 1987 [62]. He used the blitting
engine of the Amiga computer to speed up the Game of Life. However, the term itself
only became popular in the last decade.
Early endeavours into GPGPU utilizing the shader units can be found in Gpu Gems

2 [63]. There, among other applications, a fast Fourier-transform (FFT) implemented
onGPUs is presented. Today, GPGPU can by found in consumer software. One example
of this are games, where GPGPU is used to accelerate the physics engine. Another
example are real-time shakiness removal filters, which allow real-time processing even
on mobile devices.
Table 2.1 shows an overview over a variety of GPUs and CPUs which went to market

in recent years. The GPUs surpass the CPUs in peak performance as well as in memory
bandwidth. The same can also be seen in Figure 1.1, which shows the development of
CPU and GPU performance in the last years. The raw performance advantage given
by the GPU immediately shows why they are also an interesting platform for compute
intensive workloads other than graphics.
To take advantage of GPUs, an appropriate programming model and a certain under-

standing of the hardware architecture is required. The most prominent programming
model is NVIDIA CUDA, which is the proprietary framework by NVIDIA and currently
limited to hardware by this vendor. Its sibling OpenCL is an open standard and avail-
able on a wide variety of platforms. Therefore it is used for the work presented in this
thesis.

2.1. GPUs as General-Purpose Many-Core Processors

Like modern CPUs, GPUs are multi-core SIMD processors. However, while CPUs are
tuned towards low-latency processing of individual threads, the GPU architecture is
tuned towards high throughput over thousands of threads. The different design ori-
entation can easily be understood by looking at the original purpose of GPUs. When
rendering thousands of pixels, many completely independent calculations must be per-
formed. However, as there is little use in a partial image, there is no need to render in-
dividual pixels especially fast. Only the rendering time for the whole image is relevant.

19

Chapter 2. GPGPU

Table 2.1.: Theoretical peak performance of a variety of GPUs and CPUs. BW denotes
bandwidth

Chip Peak SP Peak DP Peak BW
GFLOPS GFLOPS GB/s

AMD Radeon HD 5870 Cypress 2720 544 154
AMD Radeon HD 6970 Cayman 2703 683 176
AMD Radeon HD 7970 Tahiti 3789 947 264
AMD FirePro S10000 Tahiti 2× 3410 2× 850 2× 240

NVIDIA GeForce GTX 280 Tesla 933 78 142
NVIDIA GeForce GTX 480 Fermi 1345 132 177
NVIDIA GeForce GTX 680 Kepler 3090 258 192
NVIDIA Tesla K20 Kepler 3520 1170 208

AMD Opteron 6172 Magny-Cours 202 101 43
AMD Opteron 6278 Interlagos 307 154 51
Intel Xeon E5-2690 Sandy Bridge EP 371 186 51

2.1.1. The Execution Model

The SIMD model of CPUs is based on vector registers. A single processor executes
an instruction in parallel for multiple elements in the vector register. GPUs imple-
ment a variant of this termed single instruction multiple threads (SIMT). The registers
are seen as scalar by each thread. But, groups of execution units—called processing ele-
ments (PEs) in OpenCL terminology—share a common instruction decoder. Therefore
a core—called compute unit (CU) in OpenCL—always executes a group of threads in
lock-step.1 The group of lock-stepped threads is equivalent to the SIMD thread on a
CPU.
The lock-stepped group is called warp by NVIDIA and wavefront by AMD. One or

more of these groupsmake up awork group. All threads of a work-group are guaranteed
to be scheduled to the same CU and can synchronize and communicate with each other.
Threads of different work groups cannot communicate with each other.2 This allows

GPUs to rather freely schedule the work groups depending on resource availability.
Thus, two work groups might be scheduled concurrently on two separate CUs, sequen-
tially on the same, or even concurrently on the same. In consequence, applications
should be completely agnostic of the actual number of CUs available. This allows to
scale the performance of GPUs simply by varying the number of CUs of the GPU.

1 GPU manufacturers commonly use the term (shader) core for the PEs of the GPU. This generates much
higher core counts, ideal for marketing purposes. Yet, from an architectural point of view and for
consistency with other processor architectures, the CU is the actual core of a GPU.

2 Modern GPUs provide atomics on global memory and allow for limited communication between work
groups. Yet, while useful for some algorithms, inter-work group communication can cause problems,
as it requires the work groups to be scheduled in the order expected by the algorithm. Thus, these
algorithms usually must be adjusted for each GPU.

20

2.1. GPUs as General-Purpose Many-Core Processors

The SIMT model has some advantages over the SIMD model. Diverging control-flow
conceptually comes for free. The hardware can mask out threads if their instruction
counter does not match that of the instruction currently processed by the group. Thus,
the programmer does not have to worry about masking out operations for elements or
backing up and restoring single elements as it might be required with vector registers.
Of course, this also comes at the danger of the programmer forgetting about the single-
instruction nature of the hardware. This can lead to degraded performance as—unless
all threads in a group take the same branch—the hardware will have to execute all
branches and mask out the threads not active in the current branch. This problem,
caused by diverging control flow within a lock-stepped group of threads, is known as
warp serialization.
The memory access is more flexible in the SIMT model. Scatter and gather memory

access comes naturally, as each thread performs loads and stores to individual ad-
dresses. The hardware tries to coalesce nearby memory accesses by threads of a group
into single, larger memory transfers. Thus, full performance can be reached for suit-
able patterns. Memory access patterns completely ignoring the grouped execution
of threads and the coalescing performed by the hardware can result in an increased
amount of memory transactions and, thus, reduced performance.
GPUs provide a larger set of registers than CPUs. The AMD Radeon HD 5870

provides 16384 registers, each 128 bit in size. The NVIDIA GeForce GTX 480 provides
32768 registers of 32 bit each. These registers are mapped to threads dynamically.
Therefore, a compiler can trade the number of threads in flight versus the number of
registers available for each thread. On the one hand, it can host a smaller number of
threads each using evenmore than hundred registers. On the other hand, if each thread
uses only a dozen registers, more than a thousand threads can be in flight concurrently
on a single CU. Like hyper-threading on a CPU, runningmore threads will allow hiding
memory latencies, increasing overall throughput. The scheduling of the thread groups
is performed by a hardware scheduler with minimal overhead. Registers stay allocated
to each thread from its creation until it finishes execution.

2.1.2. The Memory Model

The memory architecture of GPUs explicitly exposes more complexity than that of
CPUs, which appears uniform to the user. It is split into multiple logical regions. Fig-
ure 2.1 schematically shows where the different regions are located on a GPU.
Global memory is the normal main memory of the GPU that can be read and written

to by all threads running on the GPU. Accessing this memory incurs high latencies in
the order of a thousand cycles. This memory can also be read and written from the
host. The host is also responsible for managing allocations of global memory. Such
memory allocations on the GPU are referred to as Buffers by OpenCL.
Private memory is a part of the GPU’s main memory that is partitioned among all

threads running on the GPU. When addressing into private memory each thread ac-
cesses its own partition. This memory is also used to place spilled registers if the re-
gister file cannot hold a thread’s full working set. These registers are also known as

21

Chapter 2. GPGPU

ALUs

registers

local memory

L1 cache

L2 cache

global memory

private memory

constant memory

scratch registers

Figure 2.1.: The GPU memory is split into multiple regions. Registers and local
memory are located within the CUs. The main memory of the GPU, not
located within the GPU chip, is used for global memory, private memory
and constant memory. Caches are not always available and might only be
used by special memory requests.

22

2.1. GPUs as General-Purpose Many-Core Processors

scratch registers. As private memory is part of the GPU’s main memory, it shares the
performance characteristics of global memory. This means, large latencies can be in-
curred when accessing data from local memory. Therefore, usage of scratch registers
usually comes with a large performance penalty. On recent GPUs, this might be mitig-
ated by caches.
Another part of the GPU’s main memory is used for constant memory. That memory

can only be written to by the host. GPUs are usually able to cache accesses to this
memory and broadcast values from this memory to all threads very efficiently.
In addition, modern GPUs also provide a local memory. Just like registers, local

memory is on-die and can be accessed with similar performance. Local memory is
shared between threads running on the same CU and can be used as a user-programmed,
explicit cache.
Stemming from their graphics tradition, GPUs originally only had dedicated read-

only caches for constant memory and textures. Textures are images stored in global
memory in a special format. On the AMD Radeon HD 5870 and AMD Radeon HD
6970—when keeping to some restrictions—the AMD OpenCL compiler is capable to
automatically utilize the texture cache to access buffers which are only read by a ker-
nel. More modern GPUs—like the NVIDIA GeForce GTX 480 and the AMD Radeon
HD 7970—provide multi-level read-write caches. While CPU caches aim to minimize
latencies in memory access for a single thread, GPU caches are shared by many threads.
One of their main functions is to enhance the GPU’s capabilities of coalescing accesses
by multiple threads to close-by addresses into single memory transactions. The first
level of the caches is typically located within each CU, while the second level of the
cache is either global or shared in between clusters of CUs.

2.1.3. GPU-Performance Explained

As shown in Table 2.1, GPUs offer higher peak performances than CPUs. The larger
amount of available FLOPS does not stem from the clock rate of the GPUs. While many
CPUs run at up to 4GHz, GPUs commonly clock at about 1GHz.
As mentioned above, GPUs are optimized for throughput instead of latency. CPUs

spend a lot of silicon real-estate on control logic. This includes the logic for speculative
execution, which is required to minimize latencies for a single thread. The GPU does
not implement such features and relies on running many threads interleaved to hide
memory latencies. Thus, it can spend a much larger portion of the silicon real-estate
for FPUs.
For the higher peak bandwidth it is most relevant that GPUs usually have dedicated

on-board memory. This allows to utilize very wide buses to access the memory. For
example, the width of the AMD Radeon HD 7970’s memory bus is 384 bit. Also, as
the GPU manufacturer knows the particular memory model that will be used and as
there is no socket connection, timing parameters of the memory can be chosen more
aggressively.
This is different if the GPU is integrated with the CPU. In this case the GPU uses

the same bus as the CPU to access the memory. Thus, it only reaches the same peak

23

Chapter 2. GPGPU

bandwidth as the CPU. An exception to this is the GPU of the Sony Playstation 4, where
the chip containing both CPU and GPU accesses on-board memory via a wide bus as it
is usually done in dedicated GPUs.
The architecture of GPUs also has energetic advantages. With their lower clock rates,

GPUs can utilize slower, more energy-efficient transistor designs. Also, GPUs do not
waste energy on speculative execution. However, GPUs with their highly parallel exe-
cution model can require memory accesses which in serial execution might be avoided
by caching. As data transfers also incur energetic costs, this can increase a GPU’s en-
ergy consumption in comparison to that of a CPU.

2.1.4. Traditional GPUs

Early GPUs accelerated the drawing of two-dimensional graphics primitives—lines,
arcs, rectangles—and were able to perform blitting operations. The later describes the
process of moving, copying and combining bitmaps. While some GPUs were actu-
ally based on general-purpose microprocessors, the exposed function set was fixed to a
small amount of operations.
In the 1990s the success of 3dfx Interactive’s Voodoo Graphics PCI series established

hardware acceleration for 3D graphics. Soon the now dominant vendors NVIDIA and
ATI, which is now part of AMD, appeared with their own GPUs. Direct3D became the
dominant API onWindows, and OpenGL became dominant on Linux. GPUs of this era
already possessed floating-point-computation capabilities, while 2D graphics only re-
quired bit manipulation. Yet, these GPUs still used a so-called fixed-function pipeline.
The programmer could not choose the calculations performed but only influence para-
meters like the projection matrix used.
In the first half of the 2000s, programmable shading was added to the capabilities of

the GPUs. This, for the first time, allowed programmers to run small, custom programs
performing floating-point operations on the GPU. Capabilities were still limited. The
NVIDIAGeForce 3—which was the first GPU to ship with these features—did not allow
any loops. In addition, the programs could only be executed in certain points of the
still mostly fixed-function pipeline. One point allowed to modify the position and
projection of the processed vertices. The second point allowed to customize the shading
process of the rendered pixels. Thus, these programs are commonly called shaders.
Mirroring the logical positions of the shader executions inside the fixed-function

pipeline, vertex and pixel shaders were executed by different algorithmic and logic
units (ALUs). By mapping the problem to be computed into a rendering problem, these
GPUs could be used for generic computations. Libraries like BrookGPU [64] could
somewhat hide the graphics nature from the programmer, but in the end the GPU
was still performing a rendering pass. One consequence of this was that the available
precision was in most cases less then SP. Also, shaders were incapable of writing to
arbitrary addresses. Each thread would emit exactly the vertex or pixel it was launched
for by the hardware.
In 2006 the concept of unified shaders came up. Vertex and pixel shaders are since

then executed on the same ALUs. The fixed-function pipeline was dropped, which also

24

2.1. GPUs as General-Purpose Many-Core Processors

allows the introduction of shaders at other stages of the graphics pipeline. Not all steps
are performed in software, though. At least rasterization—generating the set of pixels
covered by a graphics primitive—is still performed using special-purpose hardware on
all current GPUs. On the software side this conceptual change was mirrored by the
release of Direct3D 10 and OpenGL 3.3.
Unified shaders are important for GPGPU, as it is now possible to utilize the ALUs

outside of the graphics pipeline. They do, however, also have advantages in the tra-
ditional rendering process. Traditional GPUs had a specific amount of computational
power for each of the programmable rendering stages—vertex processing and pixel
shading. However, the computational demand of these stages varies from application
to application. Thus, an application could be limited by the available vertex shaders
while the pixel shaders were idling and vice versa. Unified shaders allow to increase
the utilization of the GPU as the shaders can be used for both processes.

2.1.5. Development of NVIDIA GPUs

G80 based GPUs—like the NVIDIA GeForce 8800 GTX—where the first generation of
NVIDIA GPUs to support NVIDIA CUDA—and later also OpenCL. This allowed to
perform GPGPU without mapping the problem to the rendering process. These GPUs
supported SP computation but not DP. Each CU contained one instruction decoder,
16KiB of local memory, eight scalar ALUs, and a special-function unit (SFU) for tran-
scendental operations. The ALUs ran at twice the speed of the instruction decoder. For
each cycle of the instruction decoder an ALU processed two threads. Thus, the lock-
step size on this generation of GPUs is 16. Cached access to the global memory was
only available via the texture unit.
The next architecture by NVIDIA was called Tesla and was used in GPUs like the

NVIDIA GeForce GTX 280. It is an evolution of the G80 that added support for DP
arithmetics. For this, the CU units were given a single DP FPU in addition to the eight
ALUs. Thus, DP operations were executed at an eighth the speed of SP.
The Tesla architecture was followed by Fermi, which introduced read-write caches

for global memory. Those are always active and do not require the explicit use of
the texture unit. The L1 cache shares its storage with the local memory and NVIDIA
CUDA allows to reduce the size of the local memory from 48KiB to 16KiB to increase
the size of the L1 cache. Each CU unit now contains two instruction decoders and
32 PEs. The lock-step size was kept at 16 threads. In the configuration used in the
NVIDIA Tesla3 product line, Fermi is able to provide half the SP performance in DP.
For the consumer grade GPUs like the NVIDIA GeForce GTX 480 this ratio was kept at
one eighth. Starting with this generation the NVIDIA Tesla product line also supports
error correcting codes (ECC).
With the Kepler architecture the CUs became even larger. Each contains four instruc-

tion decoders that distribute their work to 192 PEs and 32 SFUs. The DP performance
is reduced to one third of the SP performance on NVIDIA Tesla devices and to 1/24th

3 NVIDIA uses the name Tesla for both one of its GPU generations and for a product line. Unless expli-
citly stated otherwise, Tesla usually refers to the product line.

25

Chapter 2. GPGPU

on consumer GPUs. An exception is the NVIDIA GeForce GTX Titan, on which the DP
performance can be switched between the two levels.

2.1.6. Development of AMD GPUs

AMD’s first GPU generation with unified shaders was the Radeon HD 2000 series based
on the R600 architecture. On these GPU’s, AMD supported GPGPU via its Compute
Abstraction Layer (CAL) technology, which required compute kernels to be written
in an assembler language. In addition there was a variant of BrookGPU [64] which
used CAL instead of OpenGL. The succeeding R700 architecture, on which the Radeon
HD 4000 series was based, later received OpenCL support. However, local memory
never worked efficiently on these devices.
The Evergreen series of GPUs—with its flagship AMD Radeon HD 5870 based on

the Cypress chip—was AMD’s first GPU with proper OpenCL support. Contrary to
its NVIDIA counterparts of the Tesla and Fermi generation, it does not use scalar PEs.
Each PE contains four FPUs and one SFU. The commands are encoded as very long
instruction words (VLIWs) containing up to five instruction. Thus, the full compute
performance can only be exploited if the compiler can extract a sufficient level of in-
struction-level parallelism (ILP) from the code, as each PE processes one thread. One
CU contains 16 of these PEs. Instructions are repeated over four cycles, resulting in a
lock-step size of 64 threads. For DP computations the four FPUs are combined into one.
Thus, the DP performance is one fifth of the SP performance. The local memory avail-
able on each CU is 32KiB. Like the Tesla generation by NVIDIA, the cache can only
be used via the texture unit. However, AMD’s OpenCL compiler is capable of auto-
matically generating the required instructions for read-only buffers. Thus, for those
the programmer can benefit from the texture cache without additional programming
overhead.
In the following Northern Islands architecture, AMD reduced the VLIW size and the

PE width to four. The ratio of DP to SP adjusted to one fourth. Otherwise the Southern
Islands architecture matches the Evergreen one. The flagship GPU of this generation
was the AMD Radeon HD 6970.
With Southern Islands AMD completely redesigned its GPU architecture, which is

now called graphics core next (GCN). PEs are scalar and 16 of them form a vector unit.
Of these, four exist in each CU. Commands are still repeated over four cycles, keeping
the lock-step size at 64 threads. In addition, each CU features a scalar unit, which can
be used to execute commands, like loop counters, that are scalar over a whole work
group. The local memory available on each CU is 64KiB. Like NVIDIA with its Fermi
architecture, AMD also introduced full read-write caching. The DP performance is one
fourth of the SP performance. Contrary to NVIDIA, AMD still provides the full DP
performance in its high-end consumer GPUs. The flagship GPU of that series is the
AMD Radeon HD 7970. It is based on the Tahiti chip, which is also the basis of the
AMD FirePro S10000.

26

2.2. Programming Models

Listing 2.1: A simple scalar implementation and invocation of the saxpy routine from
the BLAS library.

1 // Performs saxpy on n elements

2 void saxpy(unsigned int const n, float const a,

3 float const * const x, float * const y)

4 {

5 for(unsigned int i = 0; i < n; ++i) {

6 y[i] = a * x[i] + y[i];

7 }

8 }

9

10 // Invoke saxpy on N elements

11 saxpy(N, a, x, y);

2.1.7. Other Devices

Even though not marketed as such, the Intel Xeon Phi has some similarities with the
current GPUs. Though based on an x86 CPU design, its SIMD vector width of 16 is
similar to the lock-step size of the GPU and its four-thread hyper-threading enables it
to hide latencies via thread swapping. In addition it uses an in-order architecture to
keep the control logic simple.
GPUs with GPGPU capabilities can not only be found in the PC market. The Mali

GPUs by ARM fully supports OpenCL and can be found in smartphones and tablets.

2.2. Programming Models

GPU applications generally consist of a controlling program—called host—running on
the CPU that executes suitable smaller programs—called kernels—on the GPU. All the
memory management, like buffer allocation and data transfer between host and GPU,
is performed by the host program. This model is also known as offload computing, as an
application running on the CPU offloads some of the workload to the GPU.
In the remainder of this section I will give an overview over a selection of GPGPU

programming models. To convey a sense of each programming model, I will give a
simple implementation and invocation of the saxpy routine from the Basic Linear Al-
gebra Subprograms (BLAS) library. This routine performs the following operation on
arrays ~x and ~y.

~y = a~x+ ~y (2.1)

A simple scalar implementation and invocation for CPUs is given in Listing 2.1. To
keep the examples short they do not include resource management and initialization.
Besides the models presented here, there is a variety of further models for GPGPU

programming. One of the earliest models was to utilize OpenGL, writing the shaders

27

Chapter 2. GPGPU

Listing 2.2: A simple implementation and invocation of the saxpy routine from the
BLAS library in NVIDIA CUDA.

1 // Performs saxpy on n elements

2 __global__ void saxpy(unsigned int const n, float const a,

3 float const * const x, float * const y)

4 {

5 unsigned int const threadId = blockIdx.x * blockDim.x

6 + threadIdx.x;

7 unsigned int const globalSize = gridDim.x * blockDim.x;

8 for(unsigned int i = threadId; i < n; i += globalSize) {

9 y[i] = a * x[i] + y[i];

10 }

11 }

12

13 // Invoke saxpy on N elements

14 saxpy<<<1024, 128>>>(N, a, x, y);

in the Cg programming language. For Java there is Aparapi [65], which allows to for-
mulate data parallel workloads using Java objects such that under the hood OpenCL
can be used for all operations. In addition, there are experimental models like Copper-
head [66], which provides a data parallel extension to the python language based on
annotations and functional programming.

2.2.1. NVIDIA CUDA

NVIDIA CUDA is the most prominent tool for GPU computation. Virtually all existing
LQCD applications are based on NVIDIA CUDA, at the disadvantage that these are
destined to run on NVIDIA hardware exclusively [15–17, 55, 57].
Originally NVIDIA CUDA allowed to use the C subset of C++ and static C++ features

like method overloading and templates. More recent versions extended this to the full
functionality of C++, including features like virtual functions and exceptions. Propriet-
ary compilers even allow to use other languages—like Fortran or Python—for the GPU
code.
Listing 2.2 shows an implementation of saxpy in NVIDIACUDA. Kernels aremarked

by the __global__ annotation. The code of a kernel describes the work each thread is
supposed to perform. Thus, the code first checks the index of the current thread to
select the elements to operate on.
NVIDIA provides a compiler driver called nvcc, which divides each source file into

the part of the code that is to be compiled by the host compiler and that part which
is supposed to be compiled by the GPU compiler. In addition, it also takes care to
remove all NVIDIA CUDA specific syntax from the host code, adding equivalent C++

code instead.

28

2.2. Programming Models

For cases where nvcc cannot be used, NVIDIA CUDA also provides the so-called
driver API. This C-API is very similar to that of OpenCL and does not add any custom
syntax. As the high-level API uses C++ features, this API is also required if no C++

compiler is available or the language used cannot bind to C++ APIs.
A major advantage of NVIDIA CUDA is that it provides access to the latest features

of NVIDIAGPUs. Such, it is possible to dynamically allocate memory or launch kernels
from code running on the GPU. However, despite NVIDIA officially having opened its
specification for implementation by others, at the moment NVIDIA CUDA does not
support any other vendor’s devices.

2.2.2. OpenCL

OpenCL is a hardware independent approach to parallel computing. It is an open
standard to perform calculations on heterogeneous computing platforms. From an ar-
chitectural and API point of view it is a sibling of NVIDIA CUDA. However, it lacks
the higher levels of the API and does not exploit all features available on the NVIDIA
CUDA platform. These drawbacks are partially overcome by higher level APIs built on
top of it and by extensions to OpenCL.
Implementations of OpenCL are available by AMD, ARM, Intel, NVIDIA and other

vendors. These implementations are not exclusively targeted at GPUs but also support
CPUs and other devices. The standard allows to use multiple implementations in a
single application. Such, computations can be spread over all devices available in a
system.
OpenCL defines a programming language that is based on C99 and provides a C-API.

Listing 2.3 shows an implementation of saxpy in OpenCL. The kernel function is annot-
ated by __kernel and the pointers to data in global memory are qualified by __global.
Like in NVIDIA CUDA, the work for each thread is described by the kernel code. Thus,
the elements operated on are chosen based on the ID of the current thread.
The code example also shows that the API is more verbose than the high-level API

of NVIDIA CUDA. It is a pure C API, allowing to compile the host code using any
compiler and binding from virtually any language.
OpenCL expects the kernel code to be provided as a string to the API. Thus, in the

source code of the application the kernel must be stored such. The example ignored
this for reasons of readability. A common solution to this problem is to store the kernel
in a separate source file which is read at application start.
As OpenCL code can also be run on CPUs, it can also be used if no GPU is available.

Thus, it is not required to provide an alternative implementation for this case. This
allows to use scripting languages like Python for the host code. Advanced OpenCL
bindings—like PyOpenCL, which utilizes features of the scripting language—allow to
reduce the verbosity of the host code. For these the kernel invocation shrinks to a single
line, as in other programming models. In addition, features like automatic life-time
handling of OpenCL objects and error handling via exceptions become available.
AMD has proposed to extend the OpenCL language by C++ features. However, cur-

rently only AMD’s implementation offers support for overloading and other static C++

29

Chapter 2. GPGPU

Listing 2.3: A simple implementation and invocation of the saxpy routine from the
BLAS library in OpenCL.

1 // Performs saxpy on n elements

2 // The API requires this code to be passed as a string.

3 // Thus, it cannot be stored in the C or C++ file.

4 __kernel void saxpy(unsigned int const n, float const a,

5 __global float const * const x,

6 __global float * const y)

7 {

8 size_t const threadId = get_global_id(0);

9 size_t const globalSize = get_global_size(0);

10 for(size_t i = threadId; i < n; i += globalSize) {

11 y[i] = a * x[i] + y[i];

12 }

13 }

14

15 // Invoke saxpy on N elements (in a normal C or C++ file)

16 clSetKernelArg(saxpy, 0, sizeof(cl_uint), &N);

17 clSetKernelArg(saxpy, 1, sizeof(cl_float), &a);

18 clSetKernelArg(saxpy, 2, sizeof(cl_mem), &x);

19 clSetKernelArg(saxpy, 3, sizeof(cl_mem), &y);

20 size_t const group_size = 128;

21 size_t const work_size = 1024 * group_size;

22 clEnqueueNDRangeKernel(queue, saxpy,

23 1, nullptr, &work_size, &group_size,

24 0, nullptr, nullptr);

30

2.2. Programming Models

features. Hence, this feature can currently not be used without sacrificing the platform
independence of OpenCL.

2.2.3. OpenGL Computer Shaders

Starting with version 4.3, OpenGL provides compute shaders. These allow to perform
GPGPU calculations without adhering to the limits of the graphics pipeline. For ex-
ample: kernels can read and write to arbitrary positions in the used buffers. This is
especially interesting as all GPU vendors support OpenGL. Thus, this feature can be
used on all GPUs supporting the latest version of OpenGL.
However, OpenGL compute shaders are meant to be used by applications that re-

quire to perform some GPGPU computation in addition to their normal use of OpenGL.
It only supports a single device and operations are in-order and synchronous. In ad-
dition, OpenGL compute shaders do not require IEEE compliance for floating point
operations. The shaders are written in OpenGL Shader Language (GLSL), which is also
used for all other shaders in OpenGL. Their syntax is quite different from that used by
CPU code.
OpenGL compute shaders provide a wide range of supported hardware. They provide

an interesting alternative for OpenGL based applications that need to perform some
data-processing, but the limitations of the programming model make them of limited
use to scientific applications.

2.2.4. C++ AMP

C++ AMP extends C++11 to support parallel data processing. It allows to declare func-
tions and lambdas to be using a specified subset of the language which can be mapped
to CPUs and GPUs. Library functions allow the execution of these on index ranges, thus
providing parallel execution. Like OpenCL this can be used to perform calculations on
both CPUs and GPUs.
Listing 2.4 shows an implementation of saxpy in C++ AMP. The lambda specifies the

work for each index of the index range. The index to be processed is passed via the
argument of the lambda. The parallel_for_each function executes the lambda over
the whole index-range, which, in this case, is chosen to be identical to the size of the
array.
C++ AMP has been developed by Microsoft, which is so far the only vendor to support

it. Hence, it can only be used on the Windows OS, which severely limits its use to
scientific applications. AMD had originally announced to add support for C++ AMP to
its version of the Open64 compiler but has not delivered on this promise, yet. In 2012
Sharlet of Intel presented an implementation based on Clang, LLVM, and OpenCL at
the LLVMDeveloper’s Meeting [67]. However, that version is not yet publicly available,
either.

31

Chapter 2. GPGPU

Listing 2.4: A simple implementation and invocation of the saxpy routine from the
BLAS library in C++ AMP.

1 // Performs saxpy on n elements

2 void saxpy(unsigned int const n, float const a,

3 float const * const x_host, float * const y_host)

4 {

5 array_view<float const, 1> x(N, x_host);

6 array_view<float, 1> y(N, y_host);

7

8 parallel_for_each(

9 y.extent,

10 [=] (index<1> i) restrict(amp)

11 {

12 y[i] = a * x[i] + y[i];

13 }

14 }

15

16 // Invoke saxpy on N elements

17 saxpy(N, a, x, y);

2.2.5. OpenACC

OpenACC provides a high-level approach to GPGPU computing. It defines a set of
pragmas, which allow compatible compilers to extract GPU code from a serial CPU
code. Incompatible compilers ignore the pragmas, producing an equivalent, single-
threaded CPU code. This is very similar to the way OpenMP provides parallel execu-
tion on CPUs.
Listing 2.5 shows how the scalar implementation from Listing 2.1 can be transformed

to a GPU code by a single pragma. The first pragma is optional and ensures that the
contents of x are not transferred back to the host after the kernel execution. Further
pragmas allow to keep data on device between kernels, utilize local memory, and per-
form other performance optimizations.
Currently all compilers that support OpenACC are proprietary.

2.2.6. OpenMP 4.0

In version 4.0, OpenMP has been extended with functionality to offload computations
to other devices. The model can be viewed as a merge of OpenACC and the similar
proprietary solution Intel provides for its Intel Xeon Phi. In addition to the offloading
mechanism, OpenMP 4.0 also introduces functionality for vectorization.
Listing 2.6 shows how the scalar implementation from Listing 2.1 can be transformed

to a parallel code executed on another device via offloading. As for OpenACC, the copy

32

2.2. Programming Models

Listing 2.5: A simple implementation and invocation of the saxpy routine from the
BLAS library. using OpenACC

1 // Performs saxpy on n elements

2 void saxpy(unsigned int const n, float const a,

3 float const * const x, float * const y)

4 {

5 #pragma acc declare copin(x), copy(y)

6 #pragma acc kernels

7 for(unsigned int i = 0; i < n; ++i) {

8 y[i] = a * x[i] + y[i];

9 }

10 }

11

12 // Invoke saxpy on N elements

13 saxpy(N, a, x, y);

specification for the parameters x and y is optional and ensures that the contents of x
are not transferred back to the host after the kernel execution.
The specification for OpenMP 4.0 was released in July 2013. Sadly it is not yet sup-

ported by any compiler. However, support for OpenMP 3.2 has recently been added to
Clang. As LLVM is already the basis of all major OpenCL compilers, this might lead to
basic support for OpenMP 4.0 quite soon.

2.2.7. Conclusion

A variety of programming models for GPGPU computing exists. High-level program-
ming models like OpenACC and OpenMP 4.0 promise to quickly transfer an existing
serial CPU code to a GPGPU code. However, compilers with support for OpenACC
come with a price tag and compilers supporting OpenMP 4.0 are not yet available.
Microsoft’s C++ AMP also allows high-level access to GPGPU computing. But this

model, too, suffers from limited compiler support and is only available on theWindows
OS.
NVIDIA CUDA and OpenCL offer the most fine grained control over the hardware.

Thus, they also promise to offer the best potential for code optimization. NVIDIA
CUDA is less verbose than OpenCL and grants access to some features not yet available
in OpenCL. However, NVIDIA CUDA is limited to NVIDIA’s hardware.
Thus, OpenCL is currently the only viable option for software that supports multiple

platforms. Libraries and advanced language bindings can help reduce its verbosity and
reduce development efforts. Verbosity is mostly an issue of prototypes and examples,
anyway. In real applications code reuse limits the effect, making it less of an issue.
OpenMP 4.0 might become an interesting alternative for prototyping and porting of
existing code once compilers become available.

33

Chapter 2. GPGPU

Listing 2.6: A simple implementation and invocation of the saxpy routine from the
BLAS library. using OpenMP

1 // Performs saxpy on n elements

2 void saxpy(unsigned int const n, float const a,

3 float const * const x, float * const y)

4 {

5 #pragma omp target in(x), inout(y)

6 #pragma omp parallel for

7 for (unsigned int i = 0; i < n; ++i) {

8 y[i] = a * x[i] + y[i];

9 }

10 }

11

12 // Invoke saxpy on N elements

13 saxpy(N, a, x, y);

34

Chapter 3.

Optimization Techniques

In this chapter I will introduce several general optimization techniques that can be used
to speed up applications run on GPUs. The focus will be on those optimizations which
can be applied to bandwidth limited codes, as LQCD codes fall into that category [17,
20].

3.1. Bandwidth

It is an obvious limitation for every bandwidth limited code that it cannot be faster than
data can be read from and written to the memory of the GPU. Therefore, it is important
to make sure that neither the data types used nor the layout of the data limits the code’s
performance. This section analyses the effect that the choice of data type and layout has
on a variety of GPUs.

3.1.1. clBandwidth

To measure the bandwidth that can be achieved using a certain data type and layout,
the code must not perform any operations other than memory access. There are three
possible simple kernels for this task:

1. A kernel that only reads data from a buffer

2. A kernel that only writes data to a buffer

3. A kernel that copies data in between two buffers

The kernel that only reads data from a buffer cannot be implemented properly. Un-
less some data is written out in the end of the kernel, the compiler should—and from
experience will—remove all memory reads. This way the kernel achieves incredible
performance numbers, but they do not reflect reality. The problem can be solved by
writing out a small dataset that depends on all the input data. However, in that case
the result will always also depend on the quality of the data reduction method used
and the ratio of input to output data size.

35

Chapter 3. Optimization Techniques

Listing 3.1: A copy kernel using the float4 datatype

1 __kernel void copyScalar(

2 __global float4 * const restrict out,

3 __global const float4 * const restrict in)

4 {

5 PARALLEL_FOR(i) {

6 out[OFFSET + i] = in[OFFSET + i];

7 }

8 }

The write-only kernel is a viable approach. As the memory written to can be read
from outside the kernel, the compiler cannot cut corners and remove any writes1. How-
ever, for many kernels read performance is more important than write performance.
The copy kernel gives a reliable measure of read and write bandwidth available. Al-

though it does not allow tomeasure read performance solely, it is at least not dependent
on any device characteristic other than memory and memory controller.
The application clBandwidth [68]—developed in the context of this thesis—uses Py-

thon to generate2 and execute OpenCL kernels that copy data between buffers. A
simple version of such a kernel is given in Listing 3.1. It can also generate kernels
that operate on non-scalar data types. For those it can use a variety of data layouts,
which are shown in Subsection 3.1.4. To test the actual performance of memory and
memory controller—not the size of cache—the number of bytes read and written is
given by the size of the buffer. The kernel always performs exactly one copy from the
source to the destination buffer.
To increase measurement quality clBandwidth always runs the kernel several times

in a row. The measurement is stopped once the error of the mean kernel execution
time drops below 1%. This ensures that runtime variations caused by external effects,
like the graphical user interface of the system, do not impair the measurement. To
avoid any bias caused by the GPU powering up from idle state there are also always
a few warm-up runs to wake the GPU before each measurement. This is visualized in
Figure 3.1
clBandwidth swaps the input and output buffer between two kernel executions. This

configurable behaviour ensures the runtime does not play any tricks by avoiding sub-
sequent kernel executions that should obviously give the same result, as well as any
cache effects. On actual hardware I have not been able to observe any difference in
performance, whether swapping the buffers or not.

1There is the obvious exception of writing to the same memory address multiple times. In that case the
compiler should remove all but the last write operation.

2 This technique is commonly referred to as metaprogramming.

36

3.1. Bandwidth

Start

Error
< 0.1%

Queue
copies for
warmup

Queue
copies

for meas-
urement

Collect
kernel

runtimes

Done
yes

no

Figure 3.1.: Bandwidth measurements are repeated until the error of the average is be-
low 1%.

37

Chapter 3. Optimization Techniques

3.1.2. Data Type

The data type used has a major impact on the achievable bandwidth. Therefore, I
benchmarked the bandwidth of each device for a variety of data types.
Note, that although in this section I will always use specific types like float and

double, the same will also hold true for other types of the same size. In my bench-
marks I was unable to observe any performance difference between a float2, a double,
and a properly defined structure of two floats. However, as one usually uses types like
float and double, I use the type names instead of always breaking them down to their
size in bytes.
The bandwidth that can be achieved using a selection of data types for memory ac-

cess on an AMD Radeon HD 5870 can be seen in Figure 3.2. The graph shows some
small buffer effects until the size of the input and output buffers reaches 10MiB. The
effects are especially large for the float type. For larger buffers all types reach a plat-
eau of bandwidth that can be achieved using this type to copy data from one buffer
to another. On the AMD Radeon HD 5870 the best performance is achieved using the
float4 data type, which matches documentation provided by AMD [69]. Note that float
performance is about 20GB/s worse than that of double and float4. The worst per-
formance is achieved for data types larger than 16B. Contrary to smaller types their
performance decreases for larger buffers where the cache can no longer mitigate the
inefficient memory access pattern they require.
I have repeated the above measurement on the last three generations of NVIDIA and

AMDGPUs. In Figure 3.3 the bandwidth to copy buffers of 50GiB is shown. This buffer
size is chosen as it is well inside the plateau for all data types and GPUs.
The graph shows that large data types are a problem on every GPU. However, the best

performing data type varies. On the NVIDIA GPUs all data types up to 16B perform
well, larger types drop to roughly half the performance. The older AMD GPUs show a
much smaller performance difference between the data types. Still, types of 16B size
perform best, and in contrast to the NVIDIA GPUs types of 4 B size are about 20GB/s
slower than those of 8B and 16B size. The AMD Radeon HD 7970 shows the best
performance. It clearly favours types of 4 B and 8B size. Its performance drops by
about one third for types of size 32B and by more than half for types of 64B size.
The graph also shows the development of the GPU architectures. The graph for the

NVIDIA GeForce GTX 480 is nearly identical to that of the NVIDIA GeForce GTX 580,
reflecting the fact that the latter is based on the same GPU architecture and only uses
a smaller chip production process. AMD changed the architecture of the GPU when
going from the AMD Radeon HD 5870 to the AMD Radeon HD 6970, however, the
memory system was not effected by this. Moving to the AMD Radeon HD 7970 AMD
performed a major architectural change, which is also reflected by the fact that this
GPU has completely different characteristics with regards to memory performance.
Note that in this benchmark no GPU reaches its theoretical bandwidth limit. On the

AMD Radeon HD 5870 only about 110GB/s of the theoretical 154GB/s are reached.
That is an efficiency of about 70%. The theoretical peak of the AMD Radeon HD 6970
is 176GB/s, but only 125GB/s are reached in the benchmark, showing approximately

38

3.1. Bandwidth

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

110

120

Buffer Size /MiB

B
an

dw
id
th

/
G
B
/s

float (4B)
double (8B)
float4 (16B)
double8 (64B)

Figure 3.2.: Achieved bandwidth on an AMDRadeon HD 5870 when copying buffers of
varying sizes for a selection of data types. The deviant shape of the double8
curve is caused by cache effects.

39

Chapter 3. Optimization Techniques

0 20 40 60 80 100 120 140 160 180 200 220

AMD Radeon HD 5870

AMD Radeon HD 6970

AMD Radeon HD 7970

NVIDIA GeForce GTX 480

NVIDIA GeForce GTX 580

NVIDIA GeForce GTX 680

90

93

204

143

147

136

109

123

205

144

147

144

113

127

160

143

144

141

104

115

126

66

67

89

84

92

91

75

79

71

Bandwidth / GB/s

double8 (64B)
float8 (32B)
float4 (16B)
double (8B)
float (4B)

Figure 3.3.: Achieved bandwidth when copying buffers of 50MiB size using a selection
of data types on various GPUs.

40

3.1. Bandwidth

Threads 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Memory

256B

Figure 3.4.: The memory controller coalesces memory accesses by a group of neigh-
bouring threads into actual memory requests. In the sketched example the
group contains 16 threads. The data is stored as float4, such that each ele-
ment has a size of 16B. Thus, the threads, each requesting 16B, together
fully utilize a memory request of 256B.

the same utilization. On the AMD Radeon HD 7970 utilization goes up to about 78%,
reaching 205GB/s of the 264GB/s theoretically available. On all of the NVIDIA GPUs
a bandwidth of about 145GB/s is reached. The theoretical peak of the NVIDIAGeForce
GTX 480 is 177.4GB/s, of which 82% are utilized. In theory, the newer NVIDIA GPUs
provide about 192GB/s. But, that speed-up cannot be observed in the benchmark.
Thus, utilization drops to about 75%. Overall, it seems that in such a simple scenario
only about three quarters of the memory bandwidth can be utilized on any GPU.
The varying performance of different data types is caused by the way the reads map

onto actual memory accesses. In hardware there is a limited number of read and write
commands. Usually each thread can explicitly write between four and sixteen bytes in
one command. Larger types must be broken into multiple read and write commands.
While this pretty obviously increases latency, it also reduces achievable bandwidth.
The memory controller coalesces memory operations of neighbouring threads. If

the memory controller cannot map all requests of a group of threads into one access
to memory the achieved bandwidth goes down. This is visualized in Figure 3.4. On
NVIDIA GPUs the memory controller can typically issue memory accesses of 32B, 64B
and 128B [70]. AMD does not document the memory access size, but each memory
channel has a width of 256B [69]. In the example I use a hypothetical GPU with a
lock-step size of 16 and a memory access size of 256B.
If a type is larger than the largest memory request a thread can issue, the thread

has to split its memory access into multiple commands. In this case, if neighbouring
threads read neighbouring indices of the input buffer, there are holes in the memory
accessed concurrently. Figure 3.5 shows this for a type of 32B. In this case, each thread
splits its operations into two reads of 16B. When each thread performs its first read
operation, those are offset by 32B. The memory controller still coalesces the requests
into common memory accesses. But, while requesting 256B from the memory, only
128B will be used. This way the net bandwidth achieved is only 50% of the hardware’s
capabilities. Caching can mitigate the issue to some extent. However, in Section 3.3 I
show why it cannot completely remove the issue.

41

Chapter 3. Optimization Techniques

Threads 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Memory

256B

Figure 3.5.: Thememory controller coalescesmemory accesses by a group of neighbour-
ing threads into actual memory requests. For types of 32B the 16B reads
issued by the threads—shown in grey—leave holes—shown in white—in
the actual memory request, wasting bandwidth.

On Cypress and Cayman GPUs there is an additional effect that explains why the
float type performs worse than the float4 type. All of the internal memory paths have
a width of 16B. Also the native data type of the L1 cache has that size. Thus, if threads
perform loads of 16B, a better performance is reached.

3.1.3. Buffer Alignment

There are many situations where a kernel does not read the data of a buffer in the
most naïve way. It is unusual that the first thread reads the first element of a buffer,
the second thread reads the second element, and so on. A typical example are stencil
kernels, where the second thread will also have to read the first element. Another
example are situations where multiple datasets are stored in a single buffer. In that
case the second dataset must be stored at some offset from the start of the buffer. The
question is: What impact on performance does the choice of this offset have?
On early NVIDIA GPUs this effect was quite large. If the strict rules for coalescing

were violated, an own memory transaction was performed for each thread [70]. Since
then, NVIDIA changed the architecture of its memory controller to mitigate the prob-
lem. By giving the memory controller the possibility to read only 64B from memory
less bandwidth is wasted in case only a few bytes are required from a neighbouring
memory segment. In addition, the introduction of caches allows to reuse read data of
those segments in case it is required by a neighbouring group of threads. According to
AMD the effect is small on their GPUs [69].
To verify the validity of the claims in the programming guides [69, 70], I have meas-

ured the effect of offset memory accesses on GPUs from AMD and NVIDIA. For this I
used the same copy kernel as for the raw bandwidth measurement. As shown in Fig-
ure 3.6, every thread used a specified additional offset when accessing the elements. In
the original case the offset into the buffer was only given by the thread’s index. The
offset was always specified in elements instead of bytes. While an offset specified in
bytes allows more fine grained control, it can only be implemented by casting pointers,
complicating the code for both the developer and the compiler. It also introduces ali-

42

3.1. Bandwidth

Threads 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Memory

256B

Figure 3.6.: Each thread accesses the buffer using a given offset in addition to its thread
index. In this example an element is 16B and the offset is one element.
Thus, the last thread cannot be fed by the same 256B memory transaction
as the first 15 threads.

asing, which limits the optimizations the compiler can perform. Any desired offset can
also be reached via offsetting whole elements, though it requires some more memory
in certain cases. As before I used a buffer size of 50MiB. Of course, the actual buffer
allocated on the device was larger to accommodate for the offset into the buffer.
On all the GPUs tested the best performance is achieved when the offset is aligned

to 256B. As an example Figure 3.7 shows the bandwidth achieved using the double
data type on the AMD Radeon HD 7970. For offsets aligned to 256B the previously
measured peak performance of about 205GB/s is achieved. For other offsets, however,
the performance can drop by more than 25% to less than 150GB/s. The behaviour of
the other GPUs is the same. The NVIDIA GPUs level between 110GB/s and 120GB/s,
while their performance for properly aligned offsets is close to 150GB/s.
This can be understood by looking at the example sketched in Figure 3.6. The 16

threads of the group read 16B each, thus requesting a total of 256B. Without any off-
set this results in the situation sketched in Figure 3.4. There, the reads by all 16 threads
can be coalesced into a single memory transaction. With the offset of a single element—
equivalent to 16B—the 256B memory transaction would no longer be aligned to 256B.
This is, however, required. Thus, the 256B memory transaction can only fulfil the re-
quest of the first 15 threads and 16B of the requested data are discarded. To fulfil the
request of the 16th thread, a second memory transaction is required. Assuming a min-
imum memory transaction size of 64 byte, this adds an overhead of 25%. Caches can
help mitigate this problem, potentially allowing the reuse of the otherwise discarded
data by threads of other groups of lock-stepped threads. Still, as the results show, the
effect is significant.

3.1.4. AoS versus SoA

Algorithms often rely on composite data types, represented by structures containing
smaller types. However, in Section 3.1 I showed that these types do not allow to reach
the maximum bandwidth if they exceed a device specific size, usually 16B. On the one
hand, it is usually possible to reformulate the algorithm to only use primitive types.

43

Chapter 3. Optimization Techniques

0 1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

120

140

160

180

200

220

Offset / KiB

B
an

dw
id
th

/
G
B
/s

Offsets aligned to 256B
Offsets not aligned to 256B

Figure 3.7.: Achieved bandwidth on an AMD Radeon HD 7970 when copying 50MiB
using the double (8 B) data type for different offsets into the buffer.

44

3.1. Bandwidth

AoS x1 x2 x3 x4 x5 x6 x7 x8y1 y2 y3 y4 y5 y6 y7 y8

256B

SoA
x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16
y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 y14 y15 y16

Figure 3.8.: An array of structure build from two scalars can be stored in two ways. In
the AoS layout the two elements—x and y—of each structure are stored
next to each other in consecutive memory. In the SoA approach the ele-
ments of the structure are stored independently. All x elements are stored
in one array, all y elements in another.

On the other hand, this usually makes the code less readable and limits reuse of basic
operations specified for the composite data type.
There is a third way: If implemented properly, the structure of arrays (SoA) approach

provides both the convenience of the composite data types as well as the high perform-
ance of the primitive types. In the traditional approach—commonly called array of
structures (AoS)—the composite structures implementing the composite data type are
written directly to memory. This allows to read each entry by simply accessing the
corresponding array element. By splitting the composite data type into its elements,
storing each in an own array, an SoA layout is achieved. In the following I will refer to
each of these arrays as lanes, as in C the term array is synonymous to the term buffer—
which can lead to confusion. Figure 3.8 shows the difference in memory layout of the
two approaches. This restricts memory accesses to data types yielding good perform-
ance. The memory accesses can be wrapped into dedicated functions which perform
the transformation in between the structure and thememory representation of the type.
This hides the additional complexity from the algorithm.
In theory it is also possible to always use the best-performing data type as the storage

data type in an SoA storage layout. This does, however, require the use of some aliasing
or passing the read data through a union. This can easily be hidden in the load and
store functions implementing the SoA storage layout and, therefore, is not a problem
concerning program readability. An example for a load function using this concept is
shown in Listing 3.2. However, the compiler and optimizer will have to deal with the
additional complexity. This might overcompensate the advantage of a slightly better
performing data type.
There are two ways to implement the array part of an SoA memory layout. One is to

use a separate buffer for each lane. The other is to use different areas of a single buffer.
The latter is very easy to implement for a data structure containing N entries of the
same type. A simple approach forM structures is to use an array ofM ·N elements for
storage. The jth entry of the ith structure would then be stored in entry k of this buffer,
which is calculated as follows:

k = i + j ·M. (3.1)

45

Chapter 3. Optimization Techniques

Listing 3.2: An example of using float4 as the storage type for a structure containing
only float elements.

1 typedef struct {

2 float e1, e2, e3, e4, e5, e6, e7, e8;

3 } BigType;

4

5 typedef struct {

6 float4 part1, part2;

7 } BigTypeHelper;

8

9 BigType loadBigType(

10 float4 const * const restrict lane1,

11 float4 const * const restrict lane2,

12 size_t index) {

13

14 BigTypeHelper tmp;

15 tmp.part1 = lane1[index];

16 tmp.part2 = lane2[index];

17

18 return (BigType) tmp;

19 }

46

3.1. Bandwidth

Of course, other patterns are possible. However, if neighbouring threads are supposed
to read neighbouring structures, the layout should ensure to keep the structure in-
dex the innermost. Otherwise, accessing subsequent structures will not result in sub-
sequent memory accesses.
When the pointers to device memory are exposed to the host side of the applica-

tion and can be wrapped into an object, the approach of separate buffers works well.
A major advantage of this approach is that each buffer should automatically fulfil all
alignment restrictions. Therefore, optimal performance should be expected. In addi-
tion, memory size restrictions get stretched, as only part of the dataset has to fit into
the maximum buffer size.
Contrary to NVIDIACUDA, OpenCL does not easily allow this approach. In OpenCL

all the buffers must be passed to a kernel as separate arguments. This becomes tedious
and error-prone even for small numbers of buffers. In addition, many implementations
of OpenCL impose a limit on the maximum number of kernel arguments. Still, this
approach has been used successfully [55]. Yet, it cannot be applied in all situations.
The single buffer approach does not have these problems. In this case, it is always

sufficient to pass the single buffer and the number of structures stored in it. Thereby, it
is also easily possible to switch between an AoS and an SoA implementation. Also, the
storage type used in the SoA implementation can easily be switched, as only the func-
tions reading and writing to memory will be affected. Any function that only passes
around the pointer to the buffer and the buffer size is not effected, assuming the data
type used for the buffer has been properly defined. An additional advantage of the
single buffer approach is that the hardware might only be able to read a limited num-
ber of buffers through its caches. This can cause additional performance losses if more
than this number of buffers are used. Therefore, I usually prefer the single buffer ap-
proach.

3.1.5. SoA Stride

In Subsection 3.1.4 I introduced the SoAmemory layout for storage of composite types.
The offset between the lanes is called stride. Previously I have simply chosen the stride
to be equivalent to the number of elements stored. This is theminimal stride that can be
used. Otherwise the lanes would overlap. However, in Subsection 3.1.3 I also showed
that not all offsets into a buffer are able to provide optimal performance. Therefore, I
also investigate the performance impact of using different strides.
Figure 3.9 shows the performance that can be achieved on an AMD Radeon HD 5870

for buffers of different size using an SoAmemory layout for a composite type built from
two float4. The float4 type is the fastest type available on the AMD Radeon HD 5870. It
achieves more than 110GB/s when copying buffers using scalars of that type to access
memory. The SoA layout using the naïve stride introduced before reaches only about
70GB/s. This means a loss in performance of about 30%.
Figure 3.9 also shows the performance reached using separate buffers for each lane.

In this case, this means two buffers for the storage of the data to be copied and two buf-
fers to write the data to. The graph shows that for some buffer sizes this provides close

47

Chapter 3. Optimization Techniques

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

110

120

Buffer Size /MiB

B
an

dw
id
th

/
G
B
/s

Naïve Stride
Optimized Stride
Seperate Buffers

Figure 3.9.: Copy performance using SoA for structures of two float4 (16B) on the AMD
Radeon HD 5870. In the case of separate buffers the stride is chosen by the
GPU driver.

48

3.1. Bandwidth

0 8 16 24 32 40 48 56 64

70

80

90

100

110

Stride−Array Size / KiB

B
an

dw
id
th

/
G
B
/s

Figure 3.10.: Performance using SoA for a structure of two float4 (16B) to copy 50MiB
of data on the AMD Radeon HD 5870.

to peak performance. However, for other buffer sizes the performance drops below
90GB/s. This is a performance loss of more than 20%.
Obviously the stride between two buffers allocated by the GPU driver is not always

optimal. This also effects kernels like the addition of float vectors which are not us-
ing SoA memory accesses. That kernel has the same memory access pattern—each
threads reads corresponding elements from each buffer—and will suffer from reduced
performance on certain buffer sizes.
The variant using optimized strides reaches about 105GB/s for all buffer sizes, ex-

cept for small buffer effects. But, before I present how the stride was optimized, I want
to show how different strides effect the performance.
Figure 3.10 shows the effect of varying the stride for structures of two float4 on an

AMD Radeon HD 5870. The measurement is performed by copying 50MiB of data.
Based on the results of Subsection 3.1.3 all lanes should be aligned to 256B. Thus, only
strides that are a multiple of 256B are used. Each of the two lanes stores 16B of each
element. The graph shows a clear structure with dips in performance every 16KiB,
which is equivalent to 1024 elements. Centred on strides that are a multiple of 16KiB
they range 768B in each direction. While most strides provide more than 100GB/s of
bandwidth, in the dips performance drops to about 70GB/s. This means: More than
30% of the performance is lost.
To investigate how this translates to structures with more elements, Figure 3.11

shows the same measurement. However, this time structures of four float4 are used.
Overall performance is slightly lower this time. Again, major dips every 16KiB can be
observed. In addition, there are now smaller dips in between the dips at 16KiB. Of
these, the dips located at an offset of 8KiB from the major dips are the largest.

49

Chapter 3. Optimization Techniques

0 8 16 24 32 40 48 56 64

70

80

90

100

Stride−Array Size / KiB

B
an

dw
id
th

/
G
B
/s

Figure 3.11.: Performance using SoA for a structure of four float4 (16B) to copy 50MiB
of data on the AMD Radeon HD 5870.

Measurements using structures of other numbers of entries show similar patterns,
always including the major dips at 16KiB. When using three float4 per structure only
the dips at 8KiB offset are added. Structures of eight float4 show a complex pattern in-
cluding five clearly visible additional dips. With structures of sixteen float4 it becomes
difficult to recognise any pattern but the major dips because there is no clear plateau of
well performing strides any more.
Up till now the term stride always implied the offset between two consecutive lanes

used for storing the structure. However, when storing a structure with more elements
there are additional strides that occur. The offset between the first and the third lane
also defines a stride. When using a structure of four elements there are three different
strides given by the possible combinations of the four lanes. This assumes that the
offset between consecutive lanes is constant, as it is the case in the measurements and
analysis performed here. In that case the stride between the first and the third lane is
the same as that between the second and the fourth. This simplifies the problem to the
strides between the first lane and all other lanes. In general for a structure of N entries
there are (N − 1) strides. Naming the stride between consecutive lanes stridebase, those
can be expressed via the following formula:

striden = n · stridebase. (3.2)

The additional strides explain the additional dips in Figure 3.11. Whenever one of
the strides is a multiple of 16KiB—or within 768B of such a multiple—performance
drops. The different levels of the performance drops can be explained by how many
of the combinations of the lanes are in the range of such a multiple. If the base stride
is a multiple of 16KiB all combinations of lanes are effected. In the case that only

50

3.1. Bandwidth

stride2 is effected; only the combinations between the first and third, as well as between
the second and forth are effected. Thus, the performance loss is less. Finally, if only
stride3 is effected, only the combination of the first and fourth lane is effected and the
performance loss is even smaller.

Figure 3.12 outlines an algorithm that can be used to find a base stride that is not
effected by the drops. It repeatedly increments the stride by one element until it fulfils
all requirements—all lanes are aligned to 256B and no two lanes have a stride of 16KiB
in between them. While there might be edge-cases where no such stride can be found,
I have not observed such a case so far. Using this algorithm results in the optimized
curve shown in Figure 3.9, which only shows a minimal loss of about 10GB/s versus
the performance using plain float4 shown in Figure 3.2.

The AMD Radeon HD 6970 shows the same behaviour. However, as shown in Fig-
ure 3.13, the frequency of the dips halves. Only strides that are within 768B of being a
multiple of 32KiB drop in performance. Therefore, the stride optimization targeted at
the AMD Radeon HD 5870 works fine for this GPU, too. It improves the SoA perform-
ance for structures of two float4 from less than 90GB/s to more than 120GB/s for all
buffer sizes.
The interesting bit about this is that this effect is caused by the stride between sub-

sequent reads performed by a single thread. Other bandwidth optimizations are usu-
ally required due to the interaction of reads by multiple threads.

One potential cause for the performance impact could be the organization of the L1
cache of the GPUs. For both the AMD Radeon HD 5870 and the AMD Radeon HD
6970 that cache has a size of 8KiB [69]. Assuming an associativity of two, reads with a
stride that is a multiple of 16KiB would hit the same cache line. In that case the second
memory request would have to wait until the first request has been serviced while a
request using a different cache line could overlap with the first. This would explain
the observed performance reduction. The doubling to 32KiB on the AMD Radeon HD
6970 could be explained by a doubled cache associativity.

On the AMD Radeon HD 7970 and on the GPUs by NVIDIA, no similar behaviour is
observed. Therefore, on those GPUs only the alignment of the lanes to 256B must be
taken into account. This simplifies the SoA stride optimization algorithm by leaving
out the second decision.

Using an SoAmemory layout the AMDRadeon HD 7970 is limited to about 160GB/s
when using the double data type, which is far below the maximum bandwidth that can
be achieved on this GPU. Other types show similar performance. The NVIDIA GPUs
show about 140GB/s, which is at the level of their peak performance.

Using the given optimizations, optimum performance can be reached for any data
size using only a single buffer to store all lanes of an SoA data layout. Given that
this—as shown in Subsection 3.1.4—is also the better approach in terms of program
readability and error avoidance, I recommend to always use this approach.

51

Chapter 3. Optimization Techniques

Start with
stridebase =
#elements

Base stride
multiple
of 256B?

Any stride
within 768B
of being
a multiple
of 16KiB?

Proper base
stride found

Increment
base stride

no

yes

yes

no

Figure 3.12.: An algorithm to find proper SoA strides.

52

3.1. Bandwidth

0 8 16 24 32 40 48 56 64

90

100

110

120

130

Stride−Array Size / KiB

B
an

dw
id
th

/
G
B
/s

Figure 3.13.: Performance using SoA for a structure of two float4 (16B) to copy 50MiB
of data on the AMD Radeon HD 6970.

3.1.6. ECC

Contrary to traditional servers, GPUs historically do not have ECC RAM. In their tradi-
tional use case of rendering graphics it simply does not matter if a pixel shows a wrong
value for a single frame. Even in the less likely case that some data that is used in more
than one frame is effected by a memory error, the cost of restarting an application is
much lower than the additional cost of ECC RAM. Especially, as there are no prob-
lems in case they go undetected. And in case they are detected they are only a visual
annoyance.
With the appearance of GPGPU an interest in ECC memory on GPUs came up, as

they are now used in areas where memory errors might potentially cause much higher
cost. For example, GPUs are now used to process medical data [71]. NVIDIA presen-
ted the first ECC enabled GPU in 2011 when it introduced the Fermi architecture. It
now offers ECC capabilities for both its NVIDIA Quadro series targeted at workstation
graphics and its NVIDIA Tesla series meant as pure compute cards. AMD followed
in 2012 by adding ECC capabilities to its AMD FirePro GPUs based on the Tahiti ar-
chitecture. On all of these GPUs the available memory bandwidth decreases if ECC is
enabled as parts of GPUmemory and buses are used to store and transfer the ECC data.
ECC only protects from a very special kind of error: that in which the memory does

not return the same value as previously written to the read address. Therefore, one can
always argue whether other error detection schemes, that verify the result of a compu-
tation, are not suited better. For example, when solving a system of linear equations the
solution can easily be verified by inserting it back into the system of equations. This
has the advantage of also being able to detect implementation errors. However, the

53

Chapter 3. Optimization Techniques

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

120

140

160

180

200

Buffer Size /MiB

B
an

dw
id
th

/
G
B
/s

ECC disabled
ECC enabled

Figure 3.14.: Copy performance using the double (8 B) data type on one GPU of an
AMD FirePro S10000 with and without ECC enabled.

feasibility of such a solution depends on the problem to be solved. In addition, it seems
that memory errors are dominated by hard errors [72]. These errors, which indicate a
broken memory chip, could also be found by frequent memory tests. Here, I will focus
on the performance implications that the use of ECC has on the bandwidth available to
applications.

As before, I measured the performance achieved when copying buffers of varying
size. Figure 3.14 shows the performance when using the double data type with and
without ECC enabled. Usage of ECC limits the performance to less than 100GB/s in
contrast to 180GB/s to 200GB/s, which are possible without ECC. This means nearly
half the performance is sacrificed.

ECC has similar effects on larger data types with SoA data layout. Figure 3.15 com-
pares the performance with and without ECC enabled to copy buffers of varying size
using an SoA layout for a structure of two entries of type double. Again the GPU is

54

3.1. Bandwidth

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

120

140

160

180

Buffer Size /MiB

B
an

dw
id
th

/
G
B
/s

ECC disabled
ECC enabled

Figure 3.15.: Copy performance using a structure for two entries of type double (8 B)
on one GPU of an AMD FirePro S10000 with and without ECC enabled.
The data was stored in an SoA layout with optimized strides.

limited to less than 100GB/s if ECC is enabled. However, the loss versus not using
ECC is less in this case. Obviously on this low level of performance SoA does no longer
loose as much performance versus the plain types. Still, nearly half the performance is
lost versus not using ECC.

Overall ECC comes with a major performance penalty. The loss of nearly half the
available bandwidth suggests to not use ECC for bandwidth limited codes. In this case,
I clearly recommend to use other verification schemes to ensure correct results.

This is different for codes which are not bandwidth limited. An extreme example
of this is Bitcoin mining [73]. The Bitcoin miner Phoenix [74] is compute bound and
hardly utilizes the memory at all. I sampled the performance of version 2.0.0 of that
application on the AMD FirePro S10000 for one hour. The miner was connected to a

55

Chapter 3. Optimization Techniques

Bitcoin client running on the same system.3 With ECC enabled, 464.413(15)MHash/s
are achieved. Without ECC enabled, it achieves 464.591(42)MHash/s. This shows
that the performance impact of ECC can be neglected if the application is sufficiently
compute bound.

3.1.7. Conclusion

The bandwidth that can be achieved depends strongly on the data types and memory
layouts used. The choice of the wrong data type or of the wrongmemory layout can eas-
ily cost 50% of performance. In addition, caremust be taken when performingmemory
accesses with an offset into the buffer. While the performance loss in these cases has
reduced on current hardware, it can still cost a quarter of the possible performance.
As it can be seen in Figure 3.3, types with a size of 8 B, like double or float2, provide

best performance on all GPUs. If there is no need for high performance on older GPUs
by AMD, types of size 4B, like float are also a good choice.
SoA data layouts allow to reach high performance for data types larger than 16B.

However, on Tahiti based GPUs like the AMD Radeon HD 7970 and the AMD FirePro
S10000, bandwidth is still limited to about 160GB/s instead of the 200GB/s that can
be achieved using small, scalar types like float and double. On older AMD GPUs naïve
SoA layouts can cost more than 30GB/s of performance, which is more than 25% of
the achievable bandwidth. I have developed an algorithm that generates a proper data
layout for these GPUs. On all other GPUs it is sufficient to ensure that each lane of the
SoA layout is aligned to 256B.
Finally, on current GPUs ECC costs nearly half the available bandwidth. Therefore,

the use of ECC should be avoided for bandwidth limited applications.

3.2. Registers

GPUs have a register file of fixed size. From this they dynamically allocate registers
for threads. The exact number of registers allocated per thread depends on the kernel
used and is defined at compile time—of course within limits imposed by the GPU ar-
chitecture. This is a major difference to CPUs, where the number of registers available
to each thread is fixed by the CPU architecture.
Register file size and register requirements of the GPU kernel define the number of

threads that can be run concurrently. Lightweight threads, that use only a small num-
ber of registers, allow to keep a maximum number of threads in flight on the hardware.
This helps to hide the latencies incurred by memory accesses. If one group of threads
issues a memory access, the hardware will simply continue with a different group of
threads on the next cycle. As memory accesses have latencies in the order of a thousand
cycles, many logical and arithmetical operations can be performed until the memory
operation completes.

3The client was using the Bitcoin test network. Thus, it did not take part in the global Bitcoin economy.

56

3.2. Registers

Using a larger number of registers limits the number of threads that can be in flight
at the same time. This does, however, not necessarily have to be an issue if memory
latency is not a limiting factor for the application. Using more registers can reduce the
number of memory accesses. This is useful in bandwidth limited codes as it reduces
the bandwidth requirements.
In case the hardware cannot provide as many registers as the calculations require,

registers will be swapped out into the private memory of the GPU. This has two major
disadvantages: Access to these swapped-out registers has the same latencies as normal
memory access. In addition, writing and reading these registers increases the overall
bandwidth requirements of the application. In an application that is not bandwidth
limited, the latter is not an issue and the former might be outweighed by other advant-
ages as long as the scratch registers are not accessed too often or remain in cache. This
can be observed in the GPU based tracker for the time projection chamber (TPC) of A
Large Ion Collider Experiment (ALICE) [13, 75]. However, in a bandwidth limited ap-
plication the additional bandwidth requirement will deteriorate application perform-
ance. Therefore, bandwidth limited codes must always make sure to not swap out
registers into memory.
I have measured the effect of different register usage quantities on performance. It is

not easily possible to create simple copy kernels with one specific register requirement.
However, allocating a specific amount of local memory for each group of threads has
the same limiting effect on the maximum number of executed threads as register util-
ization has. Therefore, I used this to emulate the effect that using more registers would
have on the achievable bandwidth.
Figure 3.16 shows the bandwidth for copying 50MiB of data using the float4 data

type using different amounts of local memory on the AMD Radeon HD 5870. As a
result the amount of threads running concurrently on each CU is limited. The graph
shows that to achieve high performance using the plain float4 type at least 192 threads
are required. Using a structure of two float4, even only 64 threads reach good perform-
ance. Thus, this minimal number of threads per CU is enough for a bandwidth limited
code as long as enough independent memory operations are performed by each thread.
Therefore, on the AMD Radeon HD 5870 bandwidth limited codes should be able to
use up to 256 registers per thread without a negative impact on performance. Factually,
the maximum number of registers per thread seems to be limited to 124, then allowing
the use of 128 threads.
Figure 3.17 shows how the number of threads per CU effects performance on the

AMD Radeon HD 7970. The graph shows a similar structure as that for the AMD
Radeon HD 5870, but on the AMD Radeon HD 7970 a larger number of independent
memory accesses is required to be able to saturate the memory bandwidth. Also note
that this measurement uses the double data type as it is the best performing type on the
AMD Radeon HD 7970. Therefore, only half as many bytes are transferred per memory
access. Still, starting from only 256 threads good performance is reached. This means,
each thread can use up to 256 registers without performance losses. A larger number
of used registers should be possible if each thread performs a sufficient number of
independent memory accesses.

57

Chapter 3. Optimization Techniques

64 128 192 256 320 384 448 512

70

80

90

100

110

Threads per CU

B
an

dw
id
th

/
G
B
/s

Plain float4
SoA for a struct of two float4

Figure 3.16.: Copy performance for 50MiB of data with different numbers of threads
per CU on an AMD Radeon HD 5870.

64 128 192 256 320 384 448 512

100

150

200

Threads per CU

B
an

dw
id
th

/
G
B
/s

Plain double
SoA for a struct of two double

Figure 3.17.: Copy performance for 50MiB of data with different numbers of threads
per CU on an AMD Radeon HD 7970.

58

3.3. Cache Usage

The bandwidth of a GPU can be saturated without running the maximum number
of threads a GPU can run. Therefore, in bandwidth limited codes it is not essential to
reduce the registers used to an absolute minimum. The additional margin can be used
to keep data in registers, minimizing the bandwidth requirements of the application.
However, care must be taken to not exceed the register file’s resources, as swapping in
and out registers will cause additional use of the limited bandwidth available.
This also opens up room for ND-Range optimizations. As only few threads local to

the CU are required to saturate memory bandwidth, it is sufficient to queue a minimum
number of threads per CU. This allows to use large working sets. If a kernel only uses
few registers and performs only few independent memory operations per thread, a
large number of threads should be queued on each CU to achieve optimum bandwidth.
To allow the developer to monitor the number of registers used by a kernel, the com-

pilers can report this number. This is especially important to verify that a kernel does
not use scratch registers. The AMD compiler prints this number to intermediate files
during the compilation process. To ease the analysis of the kernel register usage I have
created the application pyclKernelAnalyzer [76]. It compiles a file containing OpenCL
code, parses the intermediate files, and reports the register usage.
Experience shows that the register usage of kernels increases with kernel complexity,

which can be caused by loops, conditional execution, or simply kernel length. While
this does not seem too surprising, the compilers often do not properly reuse registers,
even if this leads to register spilling. Thus, it is usually a good idea, to avoid kernels
growing too long.
Utilizing more registers is not necessarily a bad thing, as it increases the possibilities

for ILP. This improves shader utilization and thus overall performance. When aiming
for the best possible performance, it makes sense to perform as much work in a single
kernel as possible. However, onemust carefully check the register usage to avoid falling
victim of degraded performance due to the usage of scratch registers.

3.3. Cache Usage

The purpose of a cache differs in between a CPU and a GPU, and even in between
the different GPUs. On a CPU, a cache’s purpose is to reduce the latencies a thread
experiences when accessing main memory. It speeds up multiple subsequent accesses
to nearby memory areas. Its caching is based on time locality of memory accesses in
the current thread.
The cache of a GPU does not necessarily provide low latency access [77]. Due to the

large number of threads, optimizing temporally local accesses by a single thread is not
that important. If a GPU runs 1024 threads on a single CU and each thread reads 16B,
a total of 16KiB is read. This will completely fill the L1 cache of an AMD Radeon HD
7970 [69]. If each thread should process more than 16B of continuous data, the threads
would constantly thrash out each others cache lines.
The purpose of a cache on the GPU is to enable coalesced access to memory if the

accesses of neighbouring threads do not fulfil the strict rules for direct coalescing. In

59

Chapter 3. Optimization Techniques

a simple stencil algorithm lots of misaligned reads are required. In Subsection 3.1.3 I
showed why this reduces the memory throughput. In such a scenario, the cache can en-
sure that all memory accesses are of the maximum size. Ideally, afterwards all groups
queued on this CU unit can utilize the data stored in the cache. Such, memory ac-
cesses that would otherwise have only provided a few bytes of data for a single thread
of a single group now are used by more threads, potentially part of multiple groups.
As a result, the ratio of bytes used versus bytes read from memory increases. This re-
quires that—instead of a temporal locality of memory requests in a single thread—the
algorithm has a spatial locality of memory requests of multiple threads. Therefore, al-
gorithms need to be structured differently on the GPU than on the CPU to optimally
utilize the caches [78].
On modern CPUs, features like hyper-threading introduce some of the GPU cache

characteristics. The two threads that in case of hyper-threading can be executed on
the same core of an Intel CPU must share a common cache. Therefore, in this case,
it is of advantage if these two threads access the same cache lines in an interleaved
fashion [41]. This is the same pattern that is ideally used on a GPU. The difference
is that on the CPU the memory accesses are coalesced by the temporal locality of the
two threads accessing the same cache line, which the cache always fully fetches from
memory. On the GPU the memory requests actually occur at the same time by all
threads. Ideally, in this case, the memory controller coalesces those requests even if the
cache is not involved.
Historically caches on GPUs have only been used to access textures. Therefore, there

are some restrictions how they can be utilized. OpenCL has a special buffer type called
image which exposes this capability. The major drawback is that, instead of normal ar-
ray notation, special access functions must be used to access data in these buffers from
a kernel. The current generation of GPUs from both NVIDIA and AMD do provide
generic caches that are utilized when accessing normal buffers as well [69, 79].
For GPUs of the Cypress and Cayman generation, AMD provides an intermediate

solution. If a normal buffer is only accessed via a non-aliased pointer to a constant
type, the compiler will automatically create the instructions to read the data through
the cache. The restrict keyword of C99 is used to specify that the pointer is not
aliased. This allows to use the caches of those GPUs with normal OpenCL buffers in
many cases.
For the simple buffer copying benchmark used in this chapter, the pointers to the

buffers were always used with all possible qualifiers applied. This means that the com-
piler was free to utilize the cache on the AMD Radeon HD 5870 and AMD Radeon HD
6970 to speed up reading the input data. I removed the qualifiers and performed an
additional benchmark on the AMD Radeon HD 5870 for the float4 data type and using
SoA for a structure with two entries of this type. The data shows no difference from the
performance using the cache. This is of little surprise, as the memory accesses in this
simple case are already optimally structured.
The cache of the GPU can also mitigate register spilling. If spilled registers are

cached—instead of accesses reaching thememory—this will reduce the impact of spilled
registers on the achievable bandwidth.

60

3.4. Communication

The scratch-pad memory local to each CU can usually be accessed with low latency
[69, 77, 79]. As it is shared by all threads of a group it can be used as an explicitly
managed cache. This can be especially useful if values need to be accessed often but
cannot be stored in registers. Another use case is if multiple threads in a group need to
access the same data. In this case, the data can be loaded into the scratch-pad memory
in an optimal way and afterwards used with high performance.
On a GPU it is possible to achieve full memory bandwidth without any cache utiliz-

ation. However, this does require the proper memory access patterns. Algorithms that
cannot fulfil the restrictions of these patterns, as it occurs for stencil based ones, can
profit from caching. For this, they need to be written such that there is a spatial locality
in the memory accesses. The local scratch-pad memory in each CU can be used as an
explicitly managed cache, providing a valuable resource for optimization.

3.4. Communication

The previous sections focused on speeding up the performance of calculations on the
GPU. In this section I evaluate the performance of communication via PCIe, which is
the primary interconnect of current GPUs. This communication is important, as before
any calculation is performed data will have to be transferred to the GPU and any result
will have to be transferred back the host afterwards.
While the initial and final transfer can be negligible for lengthy calculations, many

algorithms also require intermediate results to be transferred to the CPU. In this case,
communication latency can be more important than data rate. An example of such
algorithms are iterative inverters. The impact of communication latency on such al-
gorithms is shown in Subsection 4.3.3.
Another situation where intermediate communication often cannot be avoided is

when utilizing multiple devices. This is often desirable due to the larger aggregate
memory bandwidth provided by multiple devices and because of the larger aggregate
memory size. In this case, data must often be transferred in between devices, instead
of between host and device.
To analyse the performance of different communication techniques, I have developed

clPCI [80]. This collection of Python scripts handles benchmark execution and data
correctness verification. All the benchmarks in this section have been performed on
SANAM. The measurements have all been performed over 1000 consecutive transfers
to keep the errors below the percentage limit.

3.4.1. Communication between Host and Device

Figure 3.18 shows the performance reached when transferring data from one GPU on
the AMD FirePro S10000 to the memory of the CPU. When using plain memory, which
has been allocated via a usual malloc, only about 5GB/s are reached. For pinned
memory a much higher data rate of more than 12GB/s is reached. Pinned memory
is page-locked and registered with the GPU, such that the GPU can directly write to

61

Chapter 3. Optimization Techniques

1B 32B 1KiB 32KiB 1MiB 32MiB
0

2

4

6

8

10

12

Buffer Size

B
an

dw
id
th

/
G
B
/s

Plain
Pinned

Figure 3.18.: Utilized Bandwidth when copying data from GPU to CPU memory in a
node of SANAM

1B 32B 1KiB 32KiB 1MiB 32MiB100

101

102

103

104

105

Buffer Size

La
te
nc

y
/
µ
s

Plain
Pinned

Figure 3.19.: Latency when copying data from GPU to CPU memory in a node of
SANAM

62

3.4. Communication

1B 32B 1KiB 32KiB 1MiB 32MiB
0

2

4

6

8

10

12

Buffer Size

B
an

dw
id
th

/
G
B
/s

Plain
Pinned

Figure 3.20.: Utilized bandwidth transferring data fromGPU to CPUmemory and back
in a node of SANAM

1B 32B 1KiB 32KiB 1MiB 32MiB100

101

102

103

104

105

Buffer Size

La
te
nc

y
/
µ
s

Plain
Pinned

Figure 3.21.: Latency transferring data from GPU to CPU memory and back in a node
of SANAM

63

Chapter 3. Optimization Techniques

the destination memory. This does not work for normal memory, as it is not necessarily
even located in physical memory. For normal memory the GPU will send the data to a
buffer allocated by the driver. The data is then copied into the destination memory by
the CPU.
In current OpenCL implementations pinned memory can be acquired by creating a

buffer that is backed by CPU memory and requesting a pointer to that memory from
the OpenCL runtime. This is not specified by the standard but works on both, AMD’s
and NVIDIA’s, implementations.
The performance for small buffers can be better seen in Figure 3.19 which shows the

latency for transfers from GPU to CPU memory. For pinned memory the minimum
latency of about 10µs is kept for buffers up to a size of 64KiB. Except for very small
buffers the latency using plain memory is at least 50µs.
For comparison, in 2010 NVIDIA has shown reduction kernels to sum up 222 in-

tegers, which means a buffer of 16MiB, in less then 268µs [81]. This is only five times
the minimum latency observed.
The performance for transfers from host to device is similar. But, when using plain

memory, the latency for small buffer increases to about 200µs while the latency for
pinned memory stays at about 10µs.
Figure 3.20 shows that the full performance of 12GB/s is reached when repeatedly

sending data from the GPU to the host and back. Compared to the single-direction case
only larger transfers reach this limit. As Figure 3.21 shows, even for pinned memory
the latency increases to about 55µs.
This last benchmark does not represent the use case found in actual applications.

But, it mimics a typical pattern in device-to-device communication, where the data
is send to the memory of the CPU by one GPU and afterwards fetched from there by
another. Thus, it provides an upper limit for such communication patterns. Contrary to
an actual multi-GPU implementation it does not include the synchronization overhead.
Of course, for comparison with actual device-to-device communication performance
values, the data rate must be halved to get the net buffer-to-buffer copy performance.

3.4.2. Communication between Devices

In OpenCL there are multiple methods to transfer data from one device to the other.
Figure 3.22 shows the performance for a variety of those methods when copying data
between the memories of the two GPUs located on the same AMD FirePro S10000 in
the SANAM cluster.
Maybe the most obvious variant to transfer the data between the two GPUs is to copy

it from one GPU to the CPU memory and then send it on to the other GPU. Consistent
with the single-GPU measurements shown in Figure 3.18 and Figure 3.20, the variant
using plain memory performs worse than the variant using pinned memory. Therefore,
it is excluded from Figure 3.22. Yet, even the variant using pinned memory peaks at
3GB/s, and only reaches this performance for very specific buffer sizes.
Another set of options stems from the possibility to map buffers into the address

space of the CPU. In the general case any OpenCL implementation can implement this

64

3.4. Communication

feature by copying the buffer to the CPU memory and copying it back to the GPU once
it becomes unmapped. This is possible, as any operation on a buffer is undefined as
long as that buffer has been mapped for access by the CPU.
The OpenCL implementation by AMD extends this feature to allow the CPU to dir-

ectly access data stored on the GPU. For this an AMD specific flag must be passed when
creating the buffers. This slightly reduces the portability of the code. But, as the flag
can simply be skipped on other platforms functional portability remains.
Using these mapped buffers I have created three additional transfer variants. Map-

ping the buffers on both the source and the destination GPU to the CPU address space
allows to implement a programmed input/output (PIO) method. In this case, once both
buffers have been mapped, the buffer is transferred from the source to the destination
via a classical memcpy. As the benchmark is implemented in Python, I utilized the cor-
responding functionality for copying Numpy arrays. Figure 3.23 shows that this is the
fastest method for copying buffers in the range from 4B to 512KiB. In the plateau for
small buffers it shows a latency of about 60µs.
A second variant utilizingmapped buffers is to onlymap the buffer of the source GPU

into the CPU address space. Passing clWriteBuffer, the normal OpenCL function
for sending data from host to device, a pointer to the mapped memory results in a
successful transfer. For the OpenCL runtime the mapped buffer seems to work like
any plain memory. Even the performance curve is very similar to that shown for plain
memory in Figure 3.18. The transfer peaks at about 4.5GB/s and is the fastest variant
for buffers larger than 64MiB.
The inverse variant, mapping the destination buffer and writing to it from the source

GPU performs much worse. It shows similar performance to the two variants using an
explicit cache in CPU memory. Therefore, it is excluded from the plots.
A completely different variant to perform the transfer utilizes the fact that buffers

in OpenCL are not explicitly bound to a device. Simply issuing a buffer copy on the
destination device—passing a buffer on another device as the source—leaves it up to
the OpenCL implementation how to actually implement the transfer. As Figure 3.22
shows this is the fastest method for copying buffers of a few MiB on the AMD FirePro
S10000, peaking at 5GiB/s. However, the implementation in AMD’s OpenCL seems to
be broken for buffers larger than 64MiB where its performance falls below that of the
custom implementations.
The two AMD FirePro S10000 in a node of SANAM are connected to different PCIe

root complexes located in separate CPUs. Transfers between two GPUs located on dis-
tinct AMD FirePro S10000s, therefore, are forced to pass through the Quick Path Inter-
connect (QPI) connecting the two CPUs. As Figure 3.24 shows this results in reduced
performance for the variant using a cache of pinned memory and the one where the
second GPU reads from the mapped memory of the first. The buffer copy variant, how-
ever, still peaks at 5GB/s.
For small buffers the performance is identical to that observed transferring the data

between the two GPUs on a single AMD FirePro S10000. This is shown by Figure 3.25.

65

Chapter 3. Optimization Techniques

1B 32B 1KiB 32KiB 1MiB 32MiB
0

1

2

3

4

5

Buffer Size

B
an

dw
id
th

/
G
B
/s

Pinned
PIO
Read from Mapped
Buffer Copy

Figure 3.22.: Utilized Bandwidth transferring data between the two GPUs of a single
AMD FirePro S10000 in a node of SANAM.

1B 32B 1KiB 32KiB 1MiB 32MiB101

102

103

104

105

106

107

Buffer Size

La
te
nc

y
/
µ
s

Pinned
PIO
Read from Mapped
Buffer Copy

Figure 3.23.: Latency transferring data between the two GPUs of a single AMD FirePro
S10000 in a node of SANAM

66

3.4. Communication

1B 32B 1KiB 32KiB 1MiB 32MiB
0

1

2

3

4

5

Buffer Size

B
an

dw
id
th

/
G
B
/s

Pinned
PIO
Read from Mapped
Buffer Copy

Figure 3.24.: Utilized Bandwidth transferring data between two GPUs of separate AMD
FirePro S10000s in a node of SANAM.

1B 32B 1KiB 32KiB 1MiB 32MiB101

102

103

104

105

106

107

Buffer Size

La
te
nc

y
/
µ
s

Pinned
PIO
Read from Mapped
Buffer Copy

Figure 3.25.: Latency transferring data between two GPUs of separate AMD FirePro
S10000s in a node of SANAM.

67

Chapter 3. Optimization Techniques

1B 32B 1KiB 32KiB 1MiB 32MiB
0

2

4

6

8

Buffer Size

A
gg

re
ga

te
B
an

dw
id
th

/
G
B
/s Pinned

PIO
Read from Mapped
Buffer Copy

Figure 3.26.: Utilized Bandwidth swapping buffer contents between the two GPUs of
an AMD FirePro S10000 in a node of SANAM

1B 32B 1KiB 32KiB 1MiB 32MiB101

102

103

104

105

106

107

Buffer Size

La
te
nc

y
/
µ
s

Pinned
PIO
Read from Mapped
Buffer Copy

Figure 3.27.: Latency swapping buffer contents between the two GPUs of an AMD
FirePro S10000 in a node of SANAM

68

3.4. Communication

1B 32B 1KiB 32KiB 1MiB 32MiB
0

2

4

6

8

Buffer Size

A
gg

re
ga

te
B
an

dw
id
th

/
G
B
/s Pinned

PIO
Read from Mapped
Buffer Copy

Figure 3.28.: Utilized Bandwidth swapping buffer contents between two GPUs of sep-
arate AMD FirePro S10000s in a node of SANAM.

1B 32B 1KiB 32KiB 1MiB 32MiB101

102

103

104

105

106

107

Buffer Size

La
te
nc

y
/
µ
s

Pinned
PIO
Read from Mapped
Buffer Copy

Figure 3.29.: Latency swapping buffer contents between two GPUs of separate AMD
FirePro S10000s in a node of SANAM.

69

Chapter 3. Optimization Techniques

3.4.3. Bidirectional Communication between Devices

In a typical multi-device usage pattern, each device requires some data from other
devices. A typical example is the halo or ghost cell update in domain-decomposed
problems. In this case, the aggregate bandwidth and latency over all potentially over-
lapping transfers is important.
As before, I implemented a simple benchmark in clPCI [80] to evaluate multiple

communication patterns between the two GPUs of an AMD FirePro S10000 in a node
of SANAM. The benchmark allocates the buffer on each device and splits it in half. The
upper half of the buffer is sent from the first device to the second. The lower half is
sent from the second device to the first.
Figure 3.26 and Figure 3.27 show the best performing methods for a variety of buffer

sizes. The simple approach of copying via a cache of pinned memory has a high latency
of 300µs to 400µs for small buffers. Nevertheless, it is the only method that allows for
an aggregate bandwidth of more than 3GB/s for buffers of more than 64MiB, which
means a transfer of 32MiB in each direction. Still, it peaks at less than 4GB/s showing
the same performance as a simple unidirectional device-to-device transfer. For best
performance with this method separate cache buffers for each direction must be used
on the host.
The PIO variant shows the best latency for small buffers. It stays at 50µs up to a

buffer size of 32KiB. As this variant utilizes only a single thread, high performance for
larger buffers is not to be expected. Yet, even a multi-threaded variant peaks at 3GB/s
and shows worse performance than the pinned-memory cache variant.
The best peak performance is reached by the variant leaving the transfer details up to

the OpenCL implementation by simply requesting a buffer copy. For best performance
the buffer objects may not be accessed by two transfers at the same time, even if the
transfers are non-overlapping. This is ensured by first locally copying the data to be
sent into a cache buffer on the same device. Given the 200GB/s bandwidth that can be
reached for on-device copies, the copy to the cache buffer is irrelevant for the transfer
duration. The speed-up from the cache buffer is 0.5GB/s to 1GB/s in the buffer size
range from 1MiB to 64MiB. The peak aggregate bandwidth is 6GB/s, which is only
1GB/s more than the unidirectional device-to-device performance.
When swapping buffer contents between the two GPUs on the AMD FirePro S10000,

the classical methods are limited by the shared PCIe connection to the CPU memory.
A single GPU can send up to 12GB/s to the CPU memory. Two GPUs sending data at
the same time can each only use half this bandwidth, limiting the transfer to 6GB/s
per GPU. While the aggregated bandwidth is still 12GB/s, transferring the data back
to the GPUs is again performed at only 6GB/s per GPU. This results in a net transfer
rate of only 3GB/s per transfer direction. Therefore, any scheme swapping the buffer
contents via the host is always limited to these 6GB/s. Given this limitation the buffer
copy variant shows optimal performance.
This scheme could be improved upon by utilizing the full-duplex property of PCIe.

Splitting the transfer into multiple smaller transfers would allow to overlap the trans-
fers from and to the GPU. This could allow large transfers to reach up to 12GB/s.

70

3.4. Communication

Swapping buffer contents between GPUs on separate AMD FirePro S10000s is not
effected by this limitation. Figure 3.28 shows that the buffer copy variant, in this case,
peaks at 7.4GB/s. This is about 75% of the performance that would be reached if two
uni-directional transfers could be performed without influencing each other. Due to
the set-up in SANAM, the data must pass through the QPI interconnect in this case.
Two AMD FirePro S10000 attached to the same PCIe root complex might provide even
better aggregate bandwidth. As the curve for the PIO variant in Figure 3.29 shows, the
latency is not influenced negatively.

3.4.4. DirectGMA

In Subsection 3.4.2 I have shown a variety of methods for transferring data between
GPUs. However, they all failed to fully utilize the bandwidth provided by PCIe. This
was caused by the detour via CPU memory that all of these methods used. Especially
when performing bidirectional transfers between the two GPUs on an AMD FirePro
S10000—as in Subsection 3.4.3—the achieved aggregate bandwidth is far below the
theoretical peak.
To fully utilize the PCIe bandwidth the data needs to be directly transferred from one

GPU to the other. NVIDIA’s solution for this problem is called GPUDirect. However,
it is limited to the NVIDIA CUDA framework, and, therefore, cannot be used with
OpenCL.
AMD provides DirectGMA for this task. While not available on all GPUs, it can be

used from within OpenCL, allowing an application to gracefully fall back to another
transfer method on systems that do not support it.
As DirectGMA is not yet supported by PyOpenCL, clPCI [80] could not be extended

to benchmark the performance of DirectGMA. Therefore, I rewrote it as CLPCI2 [82]
in C++11.
Figure 3.30 shows the performance reached when sending data from one GPU to the

other. For reference the performance using the classical buffer copy method is also in-
cluded. Between the two GPUs of an AMD FirePro S10000 the DirectGMA based trans-
fer is by far the best performing option, reaching up to 8.4GB/s. However, transfers
that must pass through the QPI link perform worse than any of the classical methods
discussed in Subsection 3.4.2. The same behaviour can be observed on NVIDIA GPUs
when using GPUDirect [83].
Contrary to the methods discussed in Subsection 3.4.3, the DirectGMA based trans-

fer method is able to utilize the duplex capabilities of PCIe. As Figure 3.31 shows,
the DirectGMA based transfer method reaches up to 15GB/s when swapping buffer
contents between the two GPUs of an AMD FirePro S10000.
The implementation using DirectGMA does not expose its full potential, yet. Direct-

GMA also enables GPUs to signal each other. This allows to synchronize the execution
between GPUs without involvement of the CPU. However, this feature was not avail-
able in the used preview-version of the GPU driver.
Another limitation of DirectGMA is the maximum transfer size. All buffers utilized

for DirectGMA transfers must fit within an area of 96MB. However, the size of this

71

Chapter 3. Optimization Techniques

1B 32B 1KiB 32KiB 1MiB 32MiB
0

2

4

6

8

Buffer Size

B
an

dw
id
th

/
G
B
/s

DirectGMA within a single PCIe root complex
Buffer Copy (not using DirectGMA)
DirectGMA via QPI

Figure 3.30.: Utilized bandwidth transferring data between two GPUs using Direct-
GMA on SANAM.

1B 32B 1KiB 32KiB 1MiB 32MiB
0

5

10

15

Buffer Size

A
gg

re
ga

te
B
an

dw
id
th

/
G
B
/s DirectGMA

Buffer Copy (not using DirectGMA)

Figure 3.31.: Utilized Bandwidth swapping buffer contents between the two GPUs of
an AMD FirePro S10000 in a node of SANAM using DirectGMA.

72

3.4. Communication

area can be increased via configuration parameters. Alternatively, larger transfers can
also be split into multiple transfers utilizing smaller transfer buffers.

3.4.5. Summary

Communication between GPU and CPU memory does not require any optimization
but pinned memory to reach peak performance. However, if communication between
the devices is required, the situation becomes more complex. In this case, the most
portable solution is to simply rely on OpenCL’s native buffer copying functionality. It
provides good performance for all transfer sizes and works on any platform.
On the AMD platform two further optimizations are possible. When transferring

small buffers, utilizing PIO can reduce the latencies. This can especially be of advant-
age in situations where some processing will have to be performed on the transferred
data. An example for this are reduction implementations. In this case, the CPU can
perform the transfer and the processing in one step. As the only proprietary part of
this optimization is a special flag during buffer creation, it can gracefully degrade on
other implementations, where mapping the buffers will then become an implicit copy.
For large buffers DirectGMA provides a faster alternative to OpenCL’s native buffer

copying functionality. However, this does not work well if the data must pass through
a QPI link. Therefore, any application relying on maximum transfer performance will
have to benchmark the DirectGMA performance on start-up and fall back to the basic
functionality if that performs better.
An interesting alternative is the utilization of Accelerated Processing Units (APUs).

As those share the same memory for CPU and GPU, no transfer is required in between
the two, minimizing latencies. For transfers between multiple APUs classical CPU data
transfer methods can be used. This avoids the QPI bottleneck observed in the Direct-
GMA case and the detour via CPU memory in the traditional methods to transfer data
between two GPUs.

73

Chapter 4.

CL2QCD

The physical problems currently investigated at the Johann Wolfgang Goethe-Univer-
sität Frankfurt am Main include the quark gluon plasma (QGP) and the thermal trans-
ition of QCD with dynamical fermions [84–86] as well as in PGT. Previously those
calculations mostly relied on the tmlqcd program suite [3] and an application based on
QGP++. Neither of these applications had previous support for OpenCL. Also, none
of the existing GPU codes supported the twisted mass variant of LQCD. To account for
both the concepts of OpenCL and the LQCD variant used in Frankfurt, a new applica-
tion was developed from scratch.
In ‘LatticeQCD using OpenCL’ [19] and ‘Lattice QCD based on OpenCL’ [20] some

details on CL2QCD have already been published. While the other authors focused on
the initial implementation and the implementation of all physical features, my work
was focused on performance optimizations and the implementation of technical fea-
tures.
In this chapter I will first motivate my work by collecting a list of requirements for

the application by looking at some of the challenges faced in LQCD computations.
Then I will give an overview over the architecture of the application and finally show
how I applied the techniques introduced in Chapter 3 to optimize the performance of
CL2QCD.

4.1. Application Requirements

While excellent single-GPU performance is one of the design goals of CL2QCD, it is not
always sufficient. Modern supercomputers like SANAM provide hundreds of GPUs.
On SANAM, this allows to run 600 application instances with different parameters and
pseudo-random number generator (PRNG) seeds at the same time. In this mode the
application allows to increase the statistics of a measurement at a tremendous rate.
This is extremely useful for parameter-sweeps, where each set of parameters requires
an own instance of the HMC, as well as for the measurement stage, where the analysis
can be performed by a separate application instance for each configuration.
However, to sufficiently sample phase transitions, the length of the HMC chain is

important. Its length should exceed 2000 steps of the HMC algorithm. Using CL2QCD,
on SANAM this will mean a calculation duration of 1500h to 2000h—whichmeans two
to three months—to study the thermal transition of QCDwith dynamical fermions on a
323×12 lattice at a pion mass of approximately 270MeV. After that time one will have

75

Chapter 4. CL2QCD

very good statistics, as one can have completed 600 chains of that length. However,
obviously it is of advantage to reduce that wall time of such calculation even if that
means some drawbacks in the obtained statistics.
In addition, the memory of the GPU is a limiting factor regarding the problem size.

An HMC on a 323 × 12 lattice can currently not be performed on GPUs that have only
1GiB of memory. While this is not an issue on SANAM, the next problem size to study
would be 483×16. This is too large even for the 3GiB of memory available on the AMD
FirePro S10000.
When setting up a new chain, this chain first has to thermalize. The number of HMC

steps required for this process is of the order of 1000. If creation of many chains is
desired this can be avoided by using a pre-generated chain, which has already been
thermalized. From this chain new chains are forked. Of course, the correlation length
in the original chain must be taken into account when selecting the new start config-
urations. Otherwise the new chains start in a correlated state. To quickly start data
production, however, it is of advantage if one could directly start into new chains. For
this, single chain performance must be sufficient to quickly run through the thermal-
ization process.
There are additional requirements that put limits on the optimizations that can be

performed. A correct HMC algorithm requires the molecular-dynamics step to be re-
versible [87]. Due to the finite precision of the calculations, this reversibility is inev-
itably lost. To keep the algorithm as close to reversibility as possible, as few rounding
errors as possible should be introduced. Thus, it is usually not sufficient to perform
these calculations using SP. Any utilization of less-precision calculations inside the
molecular-dynamics step must, therefore, ensure to not reduce the precision of the
overall calculation.
In addition, it is desirable to be able to utilize different discretization schemes. Thus,

optimizations should not prevent the efficient implementation of other discretization
schemes inside CL2QCD.
To summarize, these are the key requirements given for the implementation:

• Support for twisted mass LQCD

• Keep the application flexible enough to support other variants in the future.

• High performance on a single GPU for the following use cases:

– Analysis

– Parameter range scans

• Support for multiple GPUs to support the following use cases:

– Speed up long running chains.

– Enable calculations too large to fit into the memory of a single GPU.

• Perform computations at DP accuracy.

76

4.2. Architecture

Gaugefield

Transportcoefficients Heatbath HMC Inverter

Figure 4.1.: Class hierarchy of the gauge-field classes in the old architecture of
CL2QCD [19]. The arrows depict generalization relationships.

4.2. Architecture

The architecture of the application developed historically in two stages. The first itera-
tion of the architecture [19]—designed and implemented by Pinke et al.—was focused
on hybrid systems, such as LOEWE-CSC. In the second iteration I refactored the archi-
tecture to ease modification of low-level routines without interfering with high-level
application logic. This allows to keep changes required for efficient operation on spe-
cific devices rather local. In addition, it eased the implementation of features required
on systems with a higher ratio of GPUs to CPUs, such as SANAM. Common to both
architectures is that the host program is set up in C++11. The actual computation is
performed by kernels written in OpenCL.

4.2.1. The Initial Architecture for Hybrid Systems

The initial architecture [19] was based around a central class called Gaugefield. This
class provided import and export functionality for the gauge field and took care of ini-
tializing and tearing downOpenCL. As depicted in Figure 4.1, for each binary—e.g. the
HMC and the inverter used in the analysis stage—the Gaugefield class was extended.
The execution of code on the devices was wrapped in opencl_device objects. Their base

class provided basic functionality to read in and compile device code as well as memory
management capabilities. The derived classes had three purposes: management of the
required OpenCL buffers, management of OpenCL kernels, and implementation of full
on-device algorithms like the solver. Distinct implementations existed for different
functionalities. There was one for the pseudo-random number generator (PRNG), one
to implement linear algebra on the spinor fields, one to provide HMC specific code, and
so on. Those which required functionality of another class extended that one. Thus,
the class providing the functionality for the fermionic fields extended the PRNG. This
way it could access the PRNG state and code to generate random fields. The full class
hierarchy of opencl_device classes is shown in Figure 4.2.
Each child of the Gaugefield used one or more instances of the opencl_device variants

to implement their algorithm. For different tasks it would use separate objects, possibly
using different devices. For example, the inverter would use on instance of the Fermion
module to perform the solve on the GPU. Then it would copy the resulting spinor field
into an instance of the Correlator module bound to the CPU which would perform the
operator evaluation [19].

77

Chapter 4. CL2QCD

opencl_device

Kappa

Random

Heatbath

Spinor LA

Correlators

Fermions HMC

Figure 4.2.: Class hierarchy of the OpenCL modules in the old architecture of
CL2QCD [19]. The arrows depict generalization relationships.

4.2.2. The Second Generation Architecture

Once we had shown a full HMC application, wewanted to extend the application in two
directions. We wanted to optimize it for a larger variety of systems, both in the specific
GPUs used as well as in their number. Trying to achieve this goal, the old architecture
showed several limitations: Buffers were not type-safe. Thus, one could easily pass a
buffer containing a gauge field to a kernel expecting a spinor field. In addition, con-
cepts were not separated properly. Thus, modifications to the buffer layout affected a
large part of the application. Therefore, I decided to design a new architecture for the
application.
While the new architecture imposes a major refactoring it is an evolution from the

original. It focuses on cleaner separation of concepts while retaining parts of the old
architecture, like the OpenCL modules. Those, however, now only exist to generate
and wrap the OpenCL kernels used by the other parts of the application. They are no
longer responsible for managing the buffers used by the application and they no longer
contain algorithms that operate on the data. These responsibilities have been moved
to dedicated classes in the Buffers package and functions in the Algorithms package,
respectively.
The code is now split into several packages—implemented as namespaces in C++.

Each package represents a distinct level of abstraction. For reference, the most prom-
inent packages and classes of the new architecture are shown in Figure 4.3.
How all those objects interact shall be explained using the example of the inverter.

An application will first create an Inputparameters object. It will then instantiate Sys-
tem, which will require the Inputparameters object for its initialization. Afterwards
the application can create instances of the classes Gaugefield and Spinorfield. These will
again require the System instance for initialization. To perform the inversion the applic-
ation will now invoke the inverter algorithm. Given instances of the classes Gaugefield
and Spinorfields this will perform the inversion.
The previous paragraph describes the object interaction as it is observed from the

top level of the application. The implementations of these objects add further interac-
tions. Creation of objects from the Lattices package will cause the newly created objects
to create Buffer instances on the devices described by the Device objects of the given

78

4.2. Architecture

Hardware

Physics

meta

Buffers Code

Lattices

System Device

Buffer Plain<T>

Spinor

SU3PRNG

Module Buffer

Heatbath Spinors

Fermions HMC

Gaugefield

Gaugemomenta

Spinorfield_eo

Spinorfield

PRNG

Inputparameters

Figure 4.3.: Class diagram overview of the new architecture. To reduce complexity us-
age relations, members and operations are not shown.

79

Chapter 4. CL2QCD

System instance. In addition, creation and invocation of the Inverter object may cause
the creation of additional objects from either the Lattices or Buffer package. Note how-
ever, the latter should ideally be wrapped by some class living in the Physics package.
Further, all objects in the Physics package will utilize objects from the Code package to
perform operations on a device.
The package Physics contains everything required to describe the program logic.

It contains the sub packages Lattices, Fermionmatrix, and Algorithms. The first con-
tains classes representing lattices of different type. One example is a complete field of
spinors. The second contains the high-level implementation of the fermion matrix and
related operators working on the fields. The third contains algorithms that work on
these objects, e.g. an inverter.
A lattice class does not only wrap the buffers containing the data, but it also provides

the operations on this data. To implement those operations it will use the OpenCL
modules from the Code package. The advantage of this is, when modifying the way a
certain lattice type is handled, algorithms using this type do not need to be changed.
This allows, for example, to change the number of buffers a gauge field is stored in
without having to change the inverter algorithm.
Not all classes in the Lattices package contain actual lattices. It also contains a special

class Scalar which is used to represent scalars of all kinds. This is required for linear
algebra operations, like scalar products or the scaling of lattices.
The members of Algorithm are not shown in Figure 4.3 as this package now only

contains functions. These implement the high-level algorithms, like the inverters and
the integrators, that are composed by chaining multiple computational kernels.
For layout reasons the same is true for the package Fermionmatrix, even though it

contains objects. These, however, are simple callable classes, wrapping the functions
implementing the fermion matrix and related operators. Those operate on the objects
in the Hardware package, just like the Algorithm and Lattices package.
The package Hardware contains all code that is responsible for matching the logic

of the application onto the actual hardware. Of this only the System class should be
directly used by the application. Anything else is used to actually implement the types
from the Physics package on the given system. Children of the Buffer class provide a
type-safe alternative to conventional OpenCL buffers. Classes in the Lattices package
use them to store their data on the given hardware in proper formats. Note that the
mapping from lattices to buffers does not have to be one to one. A lattice class might
store its data in multiple buffers, e.g. on multiple devices. The OpenCL modules still
wrap the kernels, but contrary to the previous architecture the types of the kernel ar-
guments are now checked. In addition, the OpenCL modules no longer use inheritance
to access each others features. The objects are instantiated as per-device singletons and
access each other in case they need each others features. Usually, this only occurs in the
kernel building stage. For example, the Fermion module requests the source files and
required build parameters to operate on spinors from the Spinor class.
The package Meta contains things that neither fit well into the Physics not into the

Hardware package. For example the parsing and representation of input parameters
are located here.

80

4.2. Architecture

This new architecture throws overboard an important feature of the previous archi-
tecture. It is currently not possible to run different algorithms on different devices.
This is caused by the lattices being initialized using a System instance. I chose this
limitation to simplify the refactoring process. A further evolution of the architecture
can solve this by using a set of devices instead of the whole system for these initializ-
ations. This will then allow an even more flexible distribution of tasks to devices than
the original architecture did.

4.2.3. Common Architectural Features

There are, of course, architectural features that are common to both architecture iter-
ations. Typical simulation parameters, like the dimension of the lattice or the lattice
spacing, which are variables in the host part of the application, are passed as compile
time constants to OpenCL. This reduces the number of arguments that must be passed
to the compute kernels on invocation and allows the compiler to optimize the code for
the specific problem at hand.
The OpenCL source is laid out such that a single compilation unit only includes a

single—or at least only few—kernels. This has multiple advantages: If the compiler
fails to build the source and also fails to provide a helpful error message, the size of
code that can have caused the error is less. Also, if only code of a single kernel was
modified, the compilation time for a specific kernel is less.
Application initialization time is a large issue during development of an OpenCL

based application. Therefore, a custom cache for the compiled OpenCL code is in-
cluded in CL2QCD. Every time a kernel is generated the binary of that kernel is re-
trieved from the runtime and stored in a temporary file. Subsequent invocations of
the application will try to reconstruct the kernel from this file and only recompile
the sources if the compute device, the build options or the sources themselves have
changed. Some OpenCL runtimes include such a cache on their own. On those the
custom cache does not cause a significant overhead.
After clearing the cache, running the suite of automatic tests included with CL2QCD

takes about 58min on our development system gpu-dev04. This time already profits
from the cache, as multiple tests utilize the same kernels. A second run, starting with
an up-to-date cache, completes in only 12min.
In the kernel code all data types are implemented as structures, with all the required

operations defined for them. This might in some cases require more registers than
simply operating on arrays of scalars stored in main memory. However, in Section 3.2
I have shown that it is not required to optimize for minimal register usage as long as
register spilling can be avoided. Therefore, we opted for this implementation strategy
for its better code readability.
It is not trivial to estimate what the register overhead of the structure based imple-

mentation strategy is. The exact register requirements highly depend on the optimizer.
The possibly higher register requirements of the structure based approach, however,
can easily be seen when looking at the addition of two structures of four floats. When
operating on arrays of scalars there only has to be space for three floats in registers.

81

Chapter 4. CL2QCD

As addition is element-wise, only one float from each operand has to be loaded at the
same time. Additionally there has to be room for one element of the result. Using ac-
tual structures requires four times this space, as the whole structure has to be stored
for each operand and the result. In the case of spinors, register requirements would
increase from three floats to 72. This is, however, a worst case situation as for most
operations, e.g. multiplication of an SU (3) matrix with a spinor, more than one ele-
ment of each structure is required at the same time anyway. In addition, given the high
latency of GPU memory it does not make sense to completely serialize handling each
element in a structure. Therefore, the register usage should be higher even when per-
forming all operations using scalar types, as the optimizer will use different registers
for different elements to enable the exploitation of ILP.
CL2QCD can collect statistics from the OpenCL compiler similar to pyclKernelAna-

lyzer [76]. This enables register optimizations without the use of external applications.
This is important as register usage can vary with the choice of run-time parameters
like the lattice size. Based on this feature CL2QCD will also warn users of development
builds if the compiler uses scratch registers.
The storage format of the data types on the device is abstracted as far as possible.

Inside the kernel code the actual data format used is wrapped by object load and store
functions. These are automatically chosen at compile time to match the storage format.
The storage format itself is—at least in the new architecture—chosen by the buffer ob-
ject and depends on the hardware used. The buffer object includes data import and
export functions, which will automatically convert the data between the device specific
format and the default AoS layout used in the host code. Thus, any developer not ex-
plicitly optimizing the storage format can be completely unaware of the optimizations
performed on it.
As up till now they have not been relevant for the overall runtime, all required lin-

ear algebra operations have been implemented in a straightforward manner. The only
optimization was implicitly given by the data type storage format. International Lat-
tice Data Grid (ILDG) compatible I/O has been implemented as well as the Ranlux [88]
PRNG, as it is the standard choice for LQCD simulations. We use the original imple-
mentation on the host while on the device we use RANLUXCL [89], an open-source
OpenCL implementation of Ranlux. For testing purposes we have also implemented
the generator from Numerical Recipes 3rd Edition: The Art of Scientific Computing [90],
but it has not been used for any results reported in this thesis. Initialization of the
random number generator follows the usual Ranlux rules. They are applied across the
host and the device, where each OpenCL thread runs on its own Ranlux PRNG state.
Since on different GPU drivers we have observed multiple miscompilations of our

code during development, we added regression tests for most of our OpenCL func-
tionality. This allows us to quickly check new drivers for incorrect output. A special
challenge is that the likelihood for compiler errors scales with code complexity. Thus,
a function might work perfectly in a simple test case but will produce errors when
integrated into a larger kernel. Therefore, it is important to not only test each build-
ing block for regressions but also repeatedly check whether they still work as expected
when being used in larger kernels.

82

4.2. Architecture

CL2QCD also includes the capability tomonitor thememory utilization of each device.
This is important due to the size of the fields involved. In DP a gauge field requires
144B per element, resulting in 216MiB for a 323 × 12 lattice. Each element of a spinor
field requires 192B per element. This results in 36MiB consumedmemory for a 323×12
lattice using even-odd preconditioning. If not using even-odd preconditioning, twice
as muchmemory is consumed by the spinor field. As some of the fields are not required
at all times of the computation, a mechanism to swap them to host memory has been
integrated.

4.2.4. Common Code for CPUs and GPUs

As OpenCL can be used both for CPU and GPU programming, we use a single source
code for the CPU and the GPU implementation. To cater for the different architectures,
we introduced some abstractions.
The optimal looping strategy differs in between the CPU and the GPU. Assuming

no SMT, loops on the CPU perform best when each core works on its own consecutive
block of memory. Thereby, it can best utilize its time-local cache to reduce the number
of actual requests performed on the memory. On the GPU however, the best memory
throughput is achieved if consecutive cores read consecutive elements from memory.
Therefore, a loop should always move though the data using large strides. We use a
macro called PARALLEL_FOR to implement these different looping strategies transpar-
ently. Note, that Smelyanskiy et al. report this pattern to also be of advantage if SMT
is used on CPUs [41].
A simplified version of the PARALLEL_FOR macro is shown in Listing 4.1. An invoc-

ation has the form PARALLEL_FOR(id,max_value). This will iterate the value of id
for each thread such that combined all values from 0 to max_value are covered. If
_USE_BLOCKED_LOOPS_ is defined, the work is distributed into equal-sized blocks. Each
thread is given a block and will linearly iterate over the contained indices. Otherwise,
the work will be split into blocks of a size equal to the number of threads. Then, each
thread will be given that index from each block which matches its thread identifier.
Another important difference between CPU and GPU is that the GPU prefers a full

SoA pattern. On CPUs AoS patterns are traditionally used. Partial SoA patterns have
been shown to reach high performance on the CPU, but full SoA patterns are prob-
lematic [41]. Therefore, we encapsulated all memory accesses into separate functions
which transparently perform the SoA conversion if required. When moving data onto a
device or back to the host, the same automatism occurs. This ensures the best memory
access patterns are used on all devices.
While OpenCL provides vector data types, which the AMD platform uses for vec-

torization on the CPU, we did not use those in our code. Besides complication of the
source code, they would increase the amount of registers required on the GPU which
are already a sparse resource. The Intel compiler is able of performing implicit vector-
ization by combining the work of multiple OpenCL threads into SIMD instructions.

83

Chapter 4. CL2QCD

Listing 4.1: A macro to utilize strided loops on GPUs and blocked loops on CPUs. Line-
continuation characters have been removed to improve readability.

1 #ifdef _USE_BLOCKED_LOOPS_

2 #define PARALLEL_FOR(VAR, LIMIT)

3 size_t _block_size =

4 (LIMIT + get_global_size(0) - 1)

5 / get_global_size(0);

6 for(size_t VAR = get_global_id(0) * _block_size;

7 VAR < (get_global_id(0) + 1) * _block_size && VAR < LIMIT;

8 ++VAR)

9 #else /* _USE_BLOCKED_LOOPS_ */

10 #define PARALLEL_FOR(VAR, LIMIT)

11 for(size_t VAR = get_global_id(0);

12 VAR < LIMIT;

13 VAR += get_global_size(0))

14 #endif /* _USE_BLOCKED_LOOPS_ */

4.2.5. Utilizing Multiple Devices

CL2QCD currently only supports GPUs within a single host system. All operations
are performed from a single host thread and only OpenCL is required to implement
parallelism. To utilize multiple GPUs the lattice is split into multiple parts. The GPUs
each perform the same operations, each on their part of the lattice.
All objects in the Physics package always operate on the whole lattice. Thus, each

object from the Lattice package contains multiple buffers. One for each of the parts into
which the lattice has been split. Methods and classes in the Physics package invoke the
kernels for each of the buffers and ensure to combine the results, if required.

Volume Splitting

The lattice onwhich CL2QCDoperates is the discretization of a four-dimensional volume.
Some fields do actually have more dimensions, but these are not relevant for volume
splitting as they are not common to all fields. Examples are the gauge fields and the
gaugemomenta fields, which have an additional direction dimension. Splitting in these
dimensions would not affect all fields and reduce the profit in terms of a reduction in
memory requirements.
Even more, in /D the calculation of one entry of the target spinor field requires neigh-

bours in all directions. Therefore, a splitting in the extra dimension direction is not
possible in a reasonable way. However, only direct neighbours are required in the four
space-time dimensions. Other kernels, like the force calculation, might require second
neighbours in space-time. Still the depth to which kernels reach into the neighbouring
volume is always limited. Therefore, splitting is performed in space-time.

84

4.2. Architecture

Currently the mapping from space-time to to the index imem, specifying the storage
location in memory, is performed in the following order: position in x direction, posi-
tion in y direction, position in z direction, position in time, where the left-most is the
fastest running index. This basically gives the following formula for the index. x, y,
z, and t specify the position in the corresponding direction. Nx, Ny and Nz specify the
extent of the lattice in the corresponding direction. Usually those are all equal, so they
can be replaced by Nspace.

imem = x+ y ·Nx + z ·Nx ·Ny + t ·Nx ·Ny ·Nz (4.1)

Usually the slowest running index is used for splitting. However, for lattices with
T >> 0 this is also the smallest dimension. Therefore, they give the worst boundary to
volume ratio and put the lowest limit on the maximum number of GPUs used. One
solution to mitigate this problem would be to switch the order of the time and the z
direction in this case. Another solution is to split the volume in more than one dir-
ection. This does, however, complicate boundary handling. Therefore, it is not done
in the initial implementation. This allows to solve the basic implementation problems
without having to deal with the additional complexity.
The basic concept does not get changed by this, so the following conceptual work

assumes splitting in time direction. This is also the variant implemented currently.
Splitting the volume modifies the mapping of indices to memory, as there are now two
variants of the variable t. tglobal indicates the position of a site in the global lattice.
tlocal indicates the position of a site within the part of the problem local to the device.
What before was the memory index imem now becomes the global index iglobal. The
local index ilocal gives the position within the local problem.

iglobal = x+ y ·Nx + z ·Nx ·Ny + tglobal ·Nx ·Ny ·Nz (4.2)

ilocal = x+ y ·Nx + z ·Nx ·Ny + tlocal ·Nx ·Ny ·Nz (4.3)

Given Ndevices devices, the values of the local indices follow from the global values as
follows:

Nt,local =Nt,global/Ndevice, (4.4)

tlocal = tglobal modNt,local. (4.5)

The device on which a specific node is stored is given as follows:

idevice = btglobal/Nt,localc. (4.6)

The inverse of course also can be computed:

tglobal = idevice ·Nt,local + tlocal. (4.7)

The indices of the other directions—x, y, z—remain unchanged.
There is an important limitation in this concept. Nt,local is the same on all devices.

Therefore, the size of the lattice in time direction must be a multiple of the number of
devices.

85

Chapter 4. CL2QCD

Nlocal

Nhalo

Nglobal

Calculated Cell
Read Cells

Halo

Local Cells

Figure 4.4.: A blur filter reads neighbouring pixels. Thus, a halo of width 1 is required.

Boundary Handling

An additional issue that comes up in multi-GPU computing using volume splitting, is
the boundary handling. In an example not related to LQCD this can easily be explained
using a blur filter. A blur filter—applied to an image—for each pixel averages the
values of the neighbouring pixels. Therefore, if the image is split into multiple local
volumes, the PE needs some way to get the neighbours of the outermost pixels of the
local volume. Thus, at the boundary an additional area with a width of one element is
required to process the image. This is visualized in Figure 4.4. In the following I will
call the additional area halo. Its width is given as Nhalo. The total width of the stored
volume is given as Nglobal and the width excluding the halo as Nlocal.
The LQCD calculation utilizes periodic boundary conditions1. Therefore, even those

sides of the local volume that are on the outside of the global volume require halo cells.
There are many kernels in CL2QCD that do not require any neighbouring sites. This

includes reduction kernels. They do require all sites, but for them the results of mul-
tiple local calculations can trivially be combined.
/D requires the direct neighbours for calculation of a single result element. The cal-

culation of rectangles and improved fermion forces require the second-nearest neigh-
bours for calculation of a single result. Thus, CL2QCD uses a halo width of two sites by
default. The halo width is actually a compile time constant in CL2QCD. Should a later
version of the code require third or fourth neighbours, it can easily be changed.
There are two major approaches to store the halo sites. One is to increase the size

of the lattice storing the local sites to also include the halo sites. A major advantage of

1The time direction is actually anti-periodic. However, in CL2QCD a phase of π/Nt is applied at each
node. This evenly distributes the phase over all nodes. Therefore, the implementation is technically
periodic.

86

4.2. Architecture

Lower Halo Upper Halo

Local Volume

Figure 4.5.: Storage of the halo by extending the lattice. Accesses to the local volume
must be offset to account for the halo cells.

this approach is that the number of buffers handled does not change. Also the kernels
do not require any changes to their arguments. Only the calculation of the indices
into memory changes. It now must take into account the increase in lattice size and
potential offsets due to the halo cells.
Given periodic boundary conditions there are two variants of this approach. For one,

the part of the halo containing lower neighbours can be stored below the volume local
to the device. This is sketched in Figure 4.5. In that case each computation needs to use
an offset into the buffer when accessing the local volume. In the memory of the device
the halo cells form an actual halo around the local data.
CL2QCD uses the other variant. The lower neighbours are wrapped around and

stored above the upper neighbours. This way the indices of the local nodes start at
the first element. A major advantage is that high level code has to care less about the
halo and only index calculation if affected.
An alternative approach would have been to add buffers containing the halo sites.

This way transferring the data is very easy to implement. However, for each access to a
site a check whether it is a halo site is required. This causes modifications to the code
in more places. In addition, it can lead to branch serialization, which can cause major
performance issues on GPUs.
The boundary handling slightlymodifies the index calculation for the sites. However,

as t is the outermost index this is limited to fields which have more than the space and
time dimensions and to neighbour index calculations. In these the actual size of t in
memory Nt,mem must be used instead of Nt,local.

Nt,mem =Nt,local +2Nhalo (4.8)

87

Chapter 4. CL2QCD

Upper Halo

Lower HaloLocal Volume

Figure 4.6.: Storage of the halo by extending the lattice and taking advantage of the
periodic nature. Accesses to the local volume can completely ignore the
volume. Reading the lower halo part must wrap around to the top, which
is hidden in the index calculation.

Halo Transfer

After each calculation that updates the sites the halo must be refreshed from the neigh-
bouring devices. As long as the lattice is only split in the major dimension, this is not
too complicated even if the offset halo scheme is used. Each device transfers its lower
boundary to its lower neighbour, and its upper boundary to its upper neighbour. For
two devices this is shown in Figure 4.7. As t is the slowest running index, this is in
principle continuous memory. However, things get more complicated if SoA, even-odd
preconditioning, and additional dimensions are involved.
In the SoA case, given n storage lanes, n copies are performed. This is sketched in

Figure 4.8. Conceptually it looks as if multiple AoS lattices were stored in a single buf-
fer. Utilizing OpenCL’s functionality for multi-dimensional memory copies allows to
queue the copy using a single command. The padding added for best SoA performance
causes the stride between subsequent blocks to not be equal to the volume of local and
halo sites.
Even-odd preconditioning is only a special case of an additional dimension. The one

additional effect it causes is that only half the sites are actually stored. Therefore, all
indices and volumes are halved when accessing the memory. For spinor fields the size
of this dimension is one. For gauge field and gauge momenta the size of this dimension
is two.
Additional dimensions can have two effects. If they are faster running than the space

and time coordinates, they simply cause the sites to be larger. However, in CL2QCD ad-
ditional dimensions are always slower running. Therefore, for each additional dimen-
sion the amount of copies required must be multiplied with the size of this dimension.
This is very similar to the effect of the SoA lanes, just within them.

88

4.3. Optimization

Figure 4.7.: The halo exchange pattern using two devices and AoS storage.

4.3. Optimization

In this section I will show how I applied the optimization techniques described in
Chapter 3 to CL2QCD. As /D is the kernel dominating overall performance, I give the
most detailed analysis for this kernel. Before, however, I will discuss how data types
are stored in memory since this optimization affects all parts of the application. The
performance implications of this optimization will then be discussed using the example
of the /D kernel.
Optimizing an LQCD code, the net memory bandwidth achieved is the most import-

ant metric because LQCD is completely memory bound. This can easily be seen for
the /D kernel, which for each site performs 2880B of memory I/O, while only perform-
ing 1632 FLOPS. Thus, the arithmetic density is only about 0.57 FLOP/B while—as
Table 2.1 shows—GPUs provide more FLOPS than bandwidth.

4.3.1. Global Memory Storage Formats

As I have shown in Section 3.1 the way data is laid out in memory has significant effects
on the achievable memory bandwidth. In Subsection 3.1.2 I have shown that large data
types perform significantly worse than smaller ones. The typical upper limit for the
size of a well-performing data type is 16B. The larger types shown in Figure 3.3 show
30% to 60% less performance. However, in DP the important types SU (3) and spinor
have a size of 144B and 192B, respectively. Therefore, those types must be stored in a
SoA format.
Table 4.1 shows how such types can be mapped to simple types for SoA storage. The

copy benchmark—also used in Section 3.1—can be used to check which type performs
best using the corresponding number of SoA lanes required for the QCD types. On
the AMD Radeon HD 5870 this are the types of size 16B. These reach about 90GB/s.
For comparison, using an AoS layout only 55GB/s can be reached for the SU (3) type.

89

Chapter 4. CL2QCD

SoA Padding

Figure 4.8.: The halo exchange pattern using two devices and SoA storage with two
lanes. Contrary to Figure 4.7, the devices are sketched below each other.

90

4.3. Optimization

Table 4.1.: Possible mappings of LQCD types to SoA storage. The table shows how
many SoA lanes are required to store the LQCD type using a given basic
type for storage.

QCD type
Storage Type SU (3) spinor

float 36 48
float2 18 24
float4 9 12
double 18 24
double2 9 12
double4 N/A 6

Of course all SoA stride optimizations from Subsection 3.1.5 have been applied. The
NVIDIA GPUs show the same characteristic, reaching about 130GB/s for types of size
of 16B. On the AMD Radeon HD 7970 all types from Table 4.1 show about 160GB/s
when run with the corresponding number of SoA lanes.
The SU (3) and spinor types are internally built from a DP complex type. This type

is equivalent to the double2 type and has a size of 16B. As this size showed to be the
best size for a SoA storage type, this type is the best possible base type to store the
QCD types on all currently used GPUs. This type does not only provide the maximum
memory bandwidth, but it has the additional benefit that the QCD types can be directly
constructed from this type. Therefore, it is not required to perform any reinterpreting
type conversions, reducing the complexity of the code given to the compiler.

4.3.2. /D Operator

The high-performance /D kernel started from a very naïve implementation that was
basically identical to a generic scalar CPU implementation. The major difference was
that the loop over the lattice sites was parallelized by spreading it over all threads.
Figure 4.9 shows how the net utilized bandwidth of the GPU changed with various ver-
sions of the /D kernel during development. The details of each version will be described
in the remainder of this section.

Memory Bandwidth Optimizations

The original version of the /D kernel is Version 1 in Figure 4.9. It still used an AoS stor-
age format for the gauge and spinor fields and utilized only about 22GB/s of memory
bandwidth. This is only 14% of the peak memory bandwidth of the AMD Radeon HD
5870.
Before showing the effect of the bandwidth optimizations suggested in Section 3.1, I

want to show the effect of some minor modifications, which are also suggested by the
AMD Accelerated Parallel Processing OpenCL™ Programming Guide (v2.8) [69] and its

91

Chapter 4. CL2QCD

1 2 3 4 5 6 7 8

20

30

40

50

60

70

80

90

100

110

120

22

46

68

34

68

75

93

120

B
an

dw
id
th

/
G
B
/s

Figure 4.9.: Utilized bandwidth for multiple versions of the /D kernel on the AMD
Radeon HD 5870.

92

4.3. Optimization

predecessors. The advantage of these optimizations is that they can be performed with
minimal code modification. All the benchmarks for memory bandwidth optimization
of the /D kernel on the AMD Radeon HD 5870 were performed using Catalyst 10.7 and
11.11.
Version 2 is a minor improvement over the initial version. Utilizing the texture

cache—which on hardware by AMD can be done with minimal code modification by
declaring all pointers as const restrict—provides a significant speed-up. However,
the achieved 46GB/s are still far from the AMD Radeon HD 5870’s theoretical band-
width limit of 155GB/s.
As Version 3 shows, another speed-up can be reached by specifying a proper align-

ment for the AoS data types. The key is to use the largest possible alignment that is
still a divisor of the data type’s size. If no alignment is specified the compiler will use
the alignment of the smallest contained data type, resulting in superfluous memory
fetches. Without any additional specifications the SU (3) type would only be aligned
to 8B. This is the size of double, from which the complex type is built. The SU (3)
type itself is then constructed from this complex type and inherits the 8B alignment.
Therefore, the complex type should be explicitly aligned to 16B. This is also the best
alignment for the SU (3) type, as its size cannot be divided by 32B without a remainder.
While the number of fetches in some cases could be reduced even further by using an
alignment that is larger than the data type, it turns out that the additional bandwidth
required overcompensates the benefit. Using proper alignment of all types the code
reaches 68GB/s.
Utilizing the texture cache and properly specifying the alignment for all types is

insufficient to optimize the /D kernel. It does, however, only require minimal code
modification and should, therefore, always be applied. In codes with higher arithmetic
density it might already provide all the speed-up required to be no longer limited by
available memory bandwidth.
As shown in Subsection 4.3.1, to achieve maximum performance an SoA layout is

required. But, when simply applying the SoA storage to the /D kernel, performance
collapses to the 34GB/s shown for Version 4.
The SoA performance issue is caused by the way the gauge fields sites are mapped to

the memory. Figure 4.10 shows the implications of multiple implementation variants.
It focuses on a segment of 256B of memory, as 256B are the maximum amount of data
the AMD Radeon HD 5870 can read from memory in one request. The grey-coloured
memory contains the data requested by multiple lock-stepped threads. Any white-
coloured memory read cannot be used to fulfil a data request by the current group of
threads and is discarded.
The first row shows the original layout. Sites are stored in an AoS fashion. The four

links originating at each site are stored next to each other. Given proper caching, in the
AoS case this does not cause a major problem. As each SU (3) has a size of 144B, a large
portion of a 256B access to memory can be used by the kernel and little bandwidth is
wasted, even if neighbouring threads do not read neighbouring elements. The latter
is the case in the /D kernel. Neighbouring threads will always read neighbouring sites,
and of those they will read the links pointing in the same direction. This is why the

93

Chapter 4. CL2QCD

256B

1–3

4

5

6–8

Figure 4.10.: The graph shows multiple layout variants for storing the gauge field. Each
row represents a different storage variant. The label shows the kernel ver-
sion in Figure 4.9 and the text using the storage variant shown in this
row. The grid spacing denotes the size of elements used for access. Ele-
ments that are accessed by lock-stepped threads in the /D kernel are given
a darker colour. Thus, white elements would be fetched when reading
256B from memory but discarded afterwards.

second part of the segment is not used by the neighbouring thread. It does not contain
the neighbouring site but a link into a different direction originating from the same
site.

The second row of Figure 4.10 shows why the performance collapses if SoA is naïvely
added to the implementation. Now each thread will only request 16B, and there is a
stride of eight elements, or 128B between the accesses by neighbouring threads. The
stride of eight elements stems from even-odd preconditioning. If neighbouring threads
would actually read neighbouring sites, then the stride would be four elements as there
are four dimensions resulting in four links per site. However, using even-odd precondi-
tioning, only even or odd sites are taken into account which doubles the stride. There-
fore, if the memory controller requests a block of 256B from memory, only 32B will
actually be used, wasting nearly 90% of the available bandwidth.

Row 3 shows the effect of making µ—the direction in which a link is pointing—the
outermost index. Now neighbouring threads nearly access neighbouring sites. The
stride is only 32B. That means, half the memory read will actually be used. This gives
a performance of 68GB/s for Version 5 in Figure 4.9. To completely solve the issue, in
Version 6 Imade the even-oddness an own index, removing the interleaving of even and
odd sites. It is not possible to simply leave out half of the sites, as all sites will be read
by the /D kernel. This leads to row 4, where neighbouring threads read neighbouring
links, providing maximum memory bandwidth utilization. Of the 256B fetched via
one reading access to memory, all 256B are used.

The 75GB/s of memory bandwidth utilized by Version 6 of the /D kernel are still far
from the peak memory bandwidth of the AMD Radeon HD 5870. The difference to
peak performance is, however, not caused by the way the memory is accessed but by

94

4.3. Optimization

register spilling. Combined with the register optimizations shown in Section 4.3.2, the
optimizations shown in this section allow to utilize more than 120GB/s on the AMD
Radeon HD 5870, which is more than 70% of the peak. On the AMD Radeon HD 7970
close to 200GB/s are utilized, which is nearly 80% of the peak.

Register Optimizations

In Section 4.3.2 I showed the optimizations that are required to efficiently utilize the
bandwidth provided by the GPU memory. But, as the /D kernel was spilling registers it
did not reach the full performance of the AMD Radeon HD 5870. As with the band-
width optimization, I performed all register optimizations for the AMD Radeon HD
5870 using Catalyst 11.11.
The copy benchmark in Section 3.2 shows that full bandwidth can be achieved using

only 64 threads per CU when copying float4 values. However, the float type requires
at least 256 threads per CU for best performance. In addition, most floating-point
operations have a latency of four cycles on the AMD Radeon HD 5870 [69]. Therefore,
I aimed at running at least 256 concurrent threads per CU. This imposes a limit of 62
registers per thread.
Allowing the compiler to utilize scratch registers makes it possible to run 256 concur-

rent threads per CU. I implemented this in Version 7, which uses 62 normal registers
and 10 scratch registers. This results in a bandwidth utilization of 93GB/s.
When investigating the register usage I noted that the amount of registers used by

a kernel is often more related to code complexity than to the actual working set size.
Version 6 of the /D kernel required 73 registers per thread. Adding more scopes to the
kernel, to explicitly release variables no longer used, actually increased the register us-
age by 13 registers per thread. On the other hand, always directly using get_global_id
instead of storing it in a variable at the beginning of the kernel reduced the number of
used registers by 8.
The /D kernel performs the same operation once in each dimension, summing up the

results in the destination site. This allows to study the register requirements of partial
implementations, e.g. only operating in one or two directions. In theory, all registers
used to perform the operation in one direction can be reused to perform the operation
for the next direction. Only when going from a single to multiple directions the re-
gisters to keep the intermediate result should cause some increase in register usage. In
reality though, while the kernel for a single direction requires only 50 registers and a
two direction kernel requires 67, the kernels implementing three and four directions
require 69 and 73 registers, respectively.
The obvious solution is to make sure that the implementation uses exactly the same

code and the same registers for each direction. This can be achieved by using a loop
over the directions which may not be unrolled. However, each direction requires mul-
tiplication with a different Gamma matrix. Therefore, each direction was originally
implemented as a separate function, in which the matrix multiplication was coded in.
As the Gamma matrices are the same for all threads one option is to store them in

constant memory and conventionally multiply the matrix with the intermediate result.

95

Chapter 4. CL2QCD

It shows, however, that this approach actually increases the register requirements and
performs worse than the original code.
A second approach is to create one function that unifies the four separate functions

with hard-coded matrices. The unified function ensures each variable used is only
declared once for all directions. To implement the different matrices it branches for
the hard-coded matrix multiplication. But, as the branch condition will always be the
same for neighbouring threads it should not cause performance issues. This is Version
8 of the /D kernel. It requires only 54 registers and operates at 120GB/s, nearly 80% of
the peak bandwidth.
The 120GB/s reached show that it is not necessary to further optimize the registers

to enable more than 256 threads per compute unit. But it also shows that for the /D
kernel less threads per CU are not sufficient, just as it was for the float copy kernel.
The AMD Radeon HD 7970 does not require any specific optimization to achieve

high performance in the /D kernel. However, it did take AMD multiple driver versions
until their compiler was capable of properly handling the high complexity of the code
implementing the /D. For this purpose I created a standalone version of the /D kernel.
This version contains all kernel code in a single file. In addition it provides a Python
script that can properly configure the code for multiple lattice sizes, benchmark it and
test the result for correctness. This version was provided to AMD to enable them to test
their compiler with a real code of this complexity.
Figure 4.11 shows how the performance of the code developed as Catalyst was up-

dated to newer versions. On Catalyst 12.3 the /D achieves 165GFLOPS/s. Ironically
that performance is only achieved in the classic implementation of the /D kernel, which
shows register spilling on the AMD Radeon HD 5870. The other variant, where all
directions are merged into a single branching function, only achieves about 115GB/s.
This is slower than the much older AMD Radeon HD 5870. The major drawback of this
old Catalyst version was that it did not officially support the AMD Radeon HD 7970
and failed on some other kernels required for a full HMC.
Catalyst 12.4 was the first to officially support the AMD Radeon HD 7970. Using this

driver both kernel variants run into massive register spilling. This limits the perform-
ance of the /D to 20GB/s, a loss in performance of 80%. Less than 10% of the peak
bandwidth are utilized.
The first official driver to fix the regression was Catalyst 13.6.2 Using this driver

the /D kernel is able to utilize 225GB/s of memory bandwidth on the AMD Radeon
HD 7970. This even exceeds the performance of the benchmarks in Chapter 3. There
are two effects which cause this. Firstly, the benchmarks in Chapter 3 measured copy
performance while the /D kernel reads much more data than it writes. Secondly, the
larger working set of the /D kernel can result a larger number of memory transactions
that are in flight concurrently. Despite the major architectural change from the AMD
Radeon HD 5870 to the AMD Radeon HD 7970, this does not require any additional

2AMD has continually been providing drivers containing a fix for the performance regression since
November 2012. But, until Catalyst 13.6 none of these drivers was officially released and publicly
available.

96

4.3. Optimization

0 20 40 60 80 100 120 140 160 180 200 220 240

13.6

12.4

12.3

225

20

165

225

19

115

Bandwidth / GB/s

Unified
Classic

Figure 4.11.: /D kernel performance for a 243 ×12 lattice on the AMD Radeon HD 7970
using multiple versions of the Catalyst driver. The classic kernel uses
distinct functions to implement the calculation for each direction. The
unified kernel uses a loop over the directions, using branching inside the
unified function to implement the direction-specific parts of the calcula-
tion. Driver versions in between 12.4 and 13.6 provided the same per-
formance as Version 12.4. Catalyst 13.8 provides the same performance
as 13.6. For the AMD Radeon HD 5870 and the AMD Radeon HD 6970
no performance variations were observed.

optimizations. As a matter of fact, the optimization of merging the different directions
into a single function is no longer required. It no longer provides better performance
than the classic implementation.

Small Lattice Optimizations

When my colleague Christopher Pinke used CL2QCD for studies based on small lat-
tices [91], he quickly noted /D to perform very badly for these. At that point in time
Catalyst 12.4 was up to date. As the legacy code curve in Figure 4.12 shows, the /D ker-
nel is hardly able to utilize any of the AMD Radeon HD 5870’s bandwidth. It is unable
to reach even 10GB/s, except for lattices with a spacial extent of 16 sites.
Using Catalyst versions past 12.4, the /D kernel requires 865 scratch registers if the

spacial extent of the lattice is not a multiple of 16. Lattices with a spatial extent of 16
sites do not require any scratch registers. All these lattices are using the same code.
Only the lattice size is given as a compile time constant, seemingly triggering the com-
piler to use different optimizations depending on its value.
I was able to solve the performance issue by a minor modification to the way the

loop over all sites is implemented. The legacy /D kernel uses the following code to
implement the loop:

1 size_t _global_size = get_global_size(0);

2 for(size_t VAR = get_global_id(0);

3 VAR < LIMIT;

4 VAR += _global_size)

97

Chapter 4. CL2QCD

83
×
6

83
×
10

12
3
×
4

12
3
×
6

12
3
×
8

16
3
×
4

12
3
×
12

16
3
×
6

16
3
×
8

16
3
×
10

16
3
×
12

0

20

40

60

80

100

120

Lattice Size

G
B
/s Legacy Code

Improved Version

Figure 4.12.: Bandwidth utilization of the /D on the AMD Radeon HD 5870 using Cata-
lyst 12.4 for small lattices.

The performance issue is solved by moving the call to get_global_size(0) inside
the declaration of the loop. Using the following definition, the /D kernel does not re-
quire any scratch registers on small lattices, despite the fact that it only reduces the
number of declared variables by one:

1 for(size_t VAR = get_global_id(0);

2 VAR < LIMIT;

3 VAR += get_global_size(0))

Note, that the function get_global_size is defined by the OpenCL standard. As
the size of a grid is constant once a kernel has been launched it is basically a constant
expression. Therefore, these two code variants specify exactly the same behaviour. In
theory, a compiler should even be able to transform between these two variants by
itself, using some cost estimation to choose the better one.
It turns out that using the second code variant will cause performance issues if the

spatial extent of the lattice is a multiple of 16. Therefore, /D now uses a different formu-
lation of the loop depending on the lattice site. The complete definition of the macro
used to implement parallel loops on GPUs is given in Listing 4.2. In Figure 4.12 this
improved version shows much better bandwidth utilization. It reaches 80GB/s even
for small lattices.

98

4.3. Optimization

Listing 4.2: The macro used to implement parallel for loops on GPUs. This macro re-
places the GPU part of the macro shown in Listing 4.1. Contrary to List-
ing 4.1 it does not differntiate between device types but between problem
sizes. Again, line-continuation characters have been removed.

1 #if (NSPACE / 16) * 16 == NSPACE

2 #define PARALLEL_FOR(VAR, LIMIT)

3 size_t _global_size = get_global_size(0);

4 for(size_t VAR = get_global_id(0);

5 VAR < LIMIT;

6 VAR += _global_size)

7 #else /* NSPACE % 16 == 0 */

8 #define PARALLEL_FOR(VAR, LIMIT)

9 for(size_t VAR = get_global_id(0);

10 VAR < LIMIT; \

11 VAR += get_global_size(0))

12 #endif /* NSPACE % 16 == 0 */

4.3.3. Inverter

The inversion of the fermion matrix is the computational hotspot of both operator eval-
uation and the HMC algorithm. Inside the inversion /D is the most expensive operation.
However, as we know from Amdahl’s Law [92] we cannot expect the speed-up in /D to
completely transfer to a speed-up in the inverter. The optimized /D provides about
70GFLOPS on the AMD Radeon HD 5870. This translates into a performance of about
38GFLOPS for both inverters, the CG and the BiCGSTAB. This is slightly about half of
the /D performance.

Effects of Generic Optimizations

The inverter performance of 38GFLOPS is reached without any specific optimizations,
but some generic optimization guidelines have to be followed. Obviously, no data lay-
out conversions may be performed inside the iterative loop of the inverter. The /D ker-
nel accesses 2880B of memory for each site. Any conversion of a spinor field reads and
writes one spinor per site, resulting in 384B of memory I/O. A conversion of the gauge
field reads and writes four SU (3) matrices per site, resulting in 576B of memory I/O.
That are 20% of the I/O performed by the /D kernel. As both problems are limited
by memory bandwidth, conversions would, therefore, take about 20% of the execution
time of the /D kernel.
Avoiding memory layout conversions automatically means that all other kernels use

the same optimized memory layout as the /D kernel. As they are all of lower complexity
than the /D kernel, register spilling is not an issue for them and on the AMD Radeon
HD 5870 they can utilize memory bandwidth in the order of 100GB/s.

99

Chapter 4. CL2QCD

As shown in Section 3.4, communication between the host and the device is an im-
portant optimization issue. The inverter gives an academic, but rather illustrative, ex-
ample of this. It invokes /D twice in a row, once to update the even sites, and once to
update the odd sites. Adding a call to clFinish will prevent the CPU from sending
the second /D invocation to the GPU before it has been notified of the completion of the
first invocation. In this case, sprofile shows the idle time of the GPU in between the
/D kernel executions to be as long as the processing of the /D kernel takes for a lattice
of 163 × 12 sites. Thus, for a lattice of this size a useless call to clFinish effectively
halves the performance of the /D implementation. Calls to clFinish are not required
in between multiple calls send to the same OpenCL command queue, as those are ex-
ecuted subsequently by the device.

Buffer Operations

The reduction kernels required by the inverters show a similar problem. As there is no
global synchronization in OpenCL, reductions are implemented via two-pass kernels.
Therefore, they require a temporary buffer to store the intermediate results. Dynam-
ically creating this buffer every time a reduction is performed costs about 3GFLOPS
when inverting a 243 × 8 lattice on the AMD Radeon HD 5870. However, from a
software-architectural point of view the temporary buffer should be encapsulated in
the code implementing the proper invocation of the reduction kernels and should not
be visible for other code. For CL2QCD I solved this problem by attaching the temporary
buffer to the code object owning the reduction kernel. There its lifetime is scoped to
be the same as the kernel objects. This has an additional advantage. If reductions are
queued faster than they can be executed by the GPU, memory usage would creep up if
each reduction allocated a separate temporary buffer.
The same issue exists with some compound operators used in the inverter. These

require a temporary fermionic field to store intermediate results. Creating these tem-
porary fields ad-hoc—every time the compound operator is called—costs 7GFLOPS to
8GFLOPS of performance when inverting a 243 × 8 lattice on the AMD Radeon HD
5870. As the temporary fields are rather large and the size of the GPU memory is lim-
ited, these buffers require a different treatment than the reduction buffers. Therefore,
these operators were implemented as callable objects. Creating such an object when
entering the solver will allocate the temporary fields. Invocation of the object will then
execute the required kernels without any overhead for buffer management. This way,
the costly buffer allocation on the GPU is only performed once, no longer affecting
overall inverter performance. Finally, when the inversion finished and the object rep-
resenting the compound operator goes out of scope, the buffer will be released and the
memory can be reused for other data.
The inverter requires copying buffers containing only a single complex value within

the GPU in each iteration. Using Catalyst 12.6, sprofile showed these copies to take
about 800µs on the AMD Radeon HD 5870, and even 5ms on the AMD Radeon HD
7970. For comparison, on the AMD Radeon HD 5870 the /D kernels requires about
1400µs to process a 243×8 lattice. A simple scalar division only takes about 10µs. The

100

4.3. Optimization

whole issue seems to be a profiling artefact. Yet, to avoid any potential performance
issues CL2QCDnow automatically uses a simple kernel to perform any on-device copies
for buffers containing exactly 16B.

Residual Checking

The above mentioned performance penalty when synchronizing to the GPU does also
impact the residual check required in any iterative solver. This residual check is re-
quired to determine whether the solver has reached a sufficient solution and the itera-
tion can be stopped. Before evaluating the residual value the CPUmust ensure that the
GPU has stored it. Thus, the synchronization cannot be skipped.
One potential way to mitigate the performance penalty is to utilize an asynchronous

transfer of the residual value from GPU to CPUmemory. This way the GPU can already
continue on the next iteration while the CPU waits for the completion of the transfer to
be signalled. The only overhead imposed by this is an additional iteration of the solver,
as the next iteration has already been queued on the GPU when the CPU evaluates the
residual.
Using Catalyst 12.6, this approach does not show any speed-up on the AMD Radeon

HD 5870 when performing the transfer in the same command queue as the kernel
executions. As shown in Section 3.4 the actual transfer takes less then 10µs. Therefore,
I have not tried using a second command queue to perform the transfer in parallel to
the computation. In that case an additional synchronization in between the command
queues would be required. This should worsen and not lessen the problem.
Another approach is to only check whether the residual value is below the termina-

tion threshold every N th iteration. This way the synchronization overhead is incurred
less often. For realistic input values the inverter performs thousands of iterations to
get to a solution. Therefore, even values such as N = 50 will only cause a compute
time overhead in the single digit percentage range. Especially, as on average only N/2
additional iterations will be performed.
Figure 4.13 shows how this approach affects the performance of the CG inverter. On

the AMD Radeon HD 5870 a speed-up of up to 15% is observed. This overcompensates
the overhead imposed by the additional number of iterations. For an inversion that
requires 1001 iterations, the time-to-solution is reduced by 12% even though 1050
iterations are performed.
On the AMD Radeon HD 7970 the effect is even larger, at least when using older

drivers. Using the standard approach of checking the residual after each iteration,
performance is worse than on the AMD Radeon HD 5870 despite the much higher per-
formance in the individual kernels used. Checking the residual only every ten itera-
tions improves the performance by 78%. Performance doubles if the block size exceeds
50 iterations. Even in the hypothetical inversion of 1001 iterations the time-to-solution
nearly halves. It is reduced by 48%.
As the performance curves flatten for block sizes of more than ten iterations, CL2QCD

by default uses a block size of ten iterations. This ensures no slowdown occurs when
performing inversions that require only a few iterations. For problems that are known

101

Chapter 4. CL2QCD

0 5 10 15 20 25 30 35 40 45 50
0

20

40

60

Iteration Block Size

In
ve
rt
er

Pe
rf
or
m
an

ce
/
G
FL

O
P
S

AMD Radeon HD 5870 – Catalyst 12.6
AMD Radeon HD 7970 – Catalyst pre 13.6
AMD Radeon HD 7970 – Catalyst 13.6

Figure 4.13.: Performance of the CG inverter for a 243 × 8 lattice when checking the
residual only every N iterations.

to require a few thousand iterations the block size can be adjusted when invoking
CL2QCD.
A further optimization would be to make the iteration block size depending on the

residual value. Thus, the inverter would run at maximum speed for most of the itera-
tions but not overshoot in the end. However, since Catalyst 13.6 the effect has mostly
vanished, thus this optimization is now of less importance.

4.3.4. Hybrid Monte Carlo

The performance of the HMC algorithm is dominated by the inverter. For the Z12
set-up used in Section 5.1 the inverter makes up for about 90% of the overall execution
time. Given an average HMC step duration of about 50min, only 5minutes are spent
in the remaining parts of the HMC.
The time spent in the inverter does depend on the pion mass and the gauge field

used. For larger pion masses and for cold configurations the time spent in the inverter
reduces while the remaining parts of the HMC stay constant in execution time. How-
ever, the physical interest is in low pion masses and thermalized configurations making
the performance of such cases less relevant.
Of the approximately 5min spent outside of the inverter about 80% are spent cal-

culating the gauge force. On Tahiti based GPUs this calculation originally performed
much worse. Given its large contribution to the non-inverter runtime of the HMC, this
directly affected overall performance.
The gauge force kernels have a similar structure as the /D kernels. They aggregate

a result value by combining multiple ingredients that follow a common pattern, too.
Again, the compiler fails to properly reuse the registers, leading to register spilling.

102

4.3. Optimization

Note, that while the /D kernel works on the links and sites of the lattice, the gauge force
operates only on the links. While the /D kernel emits one result per site, the gauge force
calculation emits one result per link.
For the kernel gauge_force, which is the simpler of the two gauge force kernels, the

effect is only minor. The largest effect is caused by proper coalescing of the memory
accesses. In the original implementation neighbouring threads work on geometrically
neighbouring links. As for the /D kernel the storage of the links has been reordered—
storing even and odd sites separately—this leads to a suboptimal memory access pat-
tern. This can be solved by reordering the association of threads to links, such that
neighbouring threads operate on neighbouring sites inmemory. Reordering thememory
would not solve the problem, as in that case /D performance would collapse. This im-
proves the performance on the AMD FirePro S10000 from 130GB/s to 183GB/s. This
can, however, only be observed on lattices of a size of 323 × 12, as they are used in the
Z12 set-up. On a smaller 163 ×12 lattice the kernel manages to utilize 180GB/s on the
AMD FirePro S10000, even in the original version.
While the original version requires 916 scratch registers, this does not have a huge

impact on the utilized memory bandwidth. Dedicating an own thread for each link
solves the problem. In that case no scratch registers are used. Originally the code
looped over the links. Such, the number of threads did not have to match the number
of links in the lattice. Utilizing this optimization the performance on the AMD FirePro
S10000 improves slightly to 195GB/s for a 323 × 16 lattice. Using this optimization, it
is important to start the kernel with as many threads as there are links. Processing the
links by invoking the kernel multiple time with the same number of threads used in
the original version drops the utilized bandwidth to 111GB/s.
The more complex kernel gauge_force_tlsym requires 5488 scratch registers in its ori-

ginal version. Exchanging the loop over the links for a dedicated thread per link as
above is no sufficient solution for this kernel. This limits the utilized bandwidth to
77GB/s for both lattice sizes.
Simplified versions of the kernel—containing only a subset of the six ingredients

required for the full calculation—show that a kernel using two ingredients takes more
than three times the execution time of a kernel using only one ingredient. From the
two-ingredient kernel the code scales pretty straight to the three ingredient kernel,
which takes about 50% longer. The complete kernel using all ingredients takes about
three times as long as the two ingredient kernel. While this is expected it is more than
twice as long than executing kernels for each ingredient individually.
Therefore, I split the kernel into six smaller ones. Each performs the calculation of

one of the ingredients. Despite the additional overhead of writing and reading inter-
mediate results, this allows for a net bandwidth utilization of 171GB/s for a 323 × 12
lattice on the AMD FirePro S10000. This reduces the execution time by 55%.
Overall, in the Z12 set-up CL2QCD spends a negligible 40 s per step of the HMC

algorithm in the gauge_force kernel. The more complex gauge_force_sym calculation
requires about 200 s, which is about 7% of the overall HMC step duration. The optim-
ization of this part of the HMC reduces the execution time by about 4min of the typical
50min an HMC step takes for this set-up.

103

Chapter 4. CL2QCD

4.3.5. Multi-Device

Utilizing multiple devices adds another dimension to the performance optimization
problem. The /D kernel, which makes up most of the computation, requires an up to
date halo. Therefore, the time required to update the halo affects the net /D perform-
ance.
First, I will estimate the effect of the halo transfer onto the /D performance. To sim-

plify the formulas I use the following definitions:

Vspace =
1
2
Nx ·Ny ·Nz, (4.9)

V4d =Nt ·Vspace. (4.10)

The factor one half in the spatial volume stems from the even-odd preconditioning.
The time t2 to execute the /D kernel on two devices is given by:

t2 = tcalc,2 + tcomm,2. (4.11)

Here tcalc,2 is the time it takes to calculate /D on two devices. tcomm,2 is the time it takes
to communicate the halo in between two devices and communication and computation
are not overlapped. Assuming a constant speed for /D, the following can be assumed:

tcalc,N =
tcalc,1
N

. (4.12)

The problem sizes are always in the plateau of the /D kernels performance, such that
linear scaling can be assumed if the performance estimation is not expected to be exact
to more then 10%. This leads to the following formula for tcalc,2:

tcalc,2 =
V4d · 1362FLOP

2 · P1
. (4.13)

Here, P1 is the performance on a single GPU and the 1362 FLOP are the number of
floating point operations required for each site of the output volume. In the following
P1 = 100GFLOPS is used.
The volume of each halo is given by:

Vhalo = Vspace ·Nhalo. (4.14)

This leads to the total volume transferred on N devices:

Vhalo,N = 2Vhalo ·N. (4.15)

Here the two stems from the fact that one halo needs to be sent to the next GPU, and
one halo needs to be sent to the previous GPU. Using the aggregate bandwidth BN leads
to the time required to perform the communication.

tcomm,N =
Vhalo,N · 192B

BN
. (4.16)

104

4.3. Optimization

The performance P2 to expect on two devices can be estimated as follows:

P2 =
t2
t1
P1. (4.17)

This formula can now be used to estimate the performance of a 243 × 128 lattice.
For such a lattice the size of one halo is about 2.5MiB. At this size the fastest copy
method transfer I found in Subsection 3.4.3 was the standard buffer copy. It provides
about 5GiB/s of aggregate bandwidth. The single-GPU performance is approximately
100GFLOPS. Using the initial implementation this results in an estimated /D perform-
ance of 155GFLOPS. This matches perfectly with experimental result of 155GFLOPS
on SANAM.
DirectGMA provides about twice the bandwidth between devices. This could push

the performance to about 174GFLOPS. However, it will not work properly if using all
four GPUs on SANAM.
As noted before, /D only requires a halo depth Nhalo of 1. Halving the halo depth

has the same effect on performance as doubling the bandwidth. Of the 174GFLOPS
expected, 168GFLOPS are achieved on SANAM.
Therefore, CL2QCD only updates the part of the halo required by the next kernel. For

this, the update of the halo is not triggered by each kernel that modifies data. Whenever
a kernel modifies data the corresponding object is marked as dirty. Then, a kernel will
require a halo update for this object before it will read halo data. In the inverter, the
only kernel requiring halo cells is /D. Since /D requires only the next neighbours, the
entire inverter never performs a full halo update, but only next neighbours are updated
on demand.
Another speed-up can be gained by executing /D on the inner cells—those cells which

do not require data resident in the halo—while the halo update is performed. In the-
ory this should provide a perfect speed-up to 200GFLOPS even employing the con-
ventional transfer mechanism. However, on SANAM only 180GFLOPS are observed.
There are two things limiting performance in this case. The synchronization in between
the different command queues has some latency. In addition, the boundary data must
be copied to temporary buffers before the transfer is performed. Only then, the /D
kernel can start to process the inner cells. Once the transfer has been performed, the
transferred data must be copied to the halo buffer. After that the boundary cells can be
computed. While the on-device copy performs at more than 200GB/s, combined with
the synchronization overhead it causes enough delay to limit the speed-up to 80% in-
stead of the desired 100%.
The same calculations also show that a 323 × 12 lattice cannot receive significant

speed-up using parallelization in time direction. However, parallelization in space dir-
ection promises perfect speed-up. Therefore, this kind of parallelization is a prime
candidate for future work.
To summarize, on a 243×128 lattice the initial code version achieves 155GFLOPS us-

ing two GPUs and 224GFLOPS using four GPUs for /D. Reducing the halo size—using
Nhalo = 1—provides 168GFLOPS on two GPUs and 263GFLOPS on four GPUs. Over-

105

Chapter 4. CL2QCD

lapping communication and computation—still usingNhalo = 1—provides 180GFLOPS
on two GPUs and 331GFLOPS on four GPUs.
Adding DirectGMA improves /D performance to 193GFLOPS on two devices. Then,

even the 323×12 lattice can slightly profit from a second GPU, achieving 130GFLOPS.
The four-GPU case involves QPI. As a result, the performance of the 243 × 128 lattice
on four GPUs drops to 161GFLOPS. This is less than half the performance achieved
using the conventional method.
As DirectGMA does not perform well through QPI, CL2QCD benchmarks the trans-

fer between devices on start-up and chooses the faster method. This results in a hy-
brid halo update method which uses DirectGMA for transfers within a single AMD
FirePro S10000 and the conventional method for transfers in between the two AMD
FirePro S10000. Using DirectGMA the data of the transfers within the AMD FirePro
S10000 does not leave the GPU. This reduces the load on the shared uplink to CPU
memory, leaving additional available bandwidth for the transfers in between the two
AMDFirePro S10000 transfers. However, there seems to be some interference in between
the two transfer methods. On a 323 × 64 lattice the hybrid method only provides
about two thirds of the performance of the conventional overlapped method. How-
ever, on lattices with a sufficiently large size in time dimension the hybrid method
provides a speed-up of about 5%. The performance of the 243 × 128 lattice improves
to 356GFLOPS. This is a speed-up of 59% over the initial code version with Nhalo = 2,
which achieved 224GFLOPS.
Given a fast multi-GPU /D implementation, the reductions become a performance

problem in the inverter. In the single-GPU code the reduction writes its result to GPU
memory, from where the next kernel can use it without any host-side synchronization.
In the multi-GPU code, however, the results from each GPUs must be collected to get
the global result. Afterwards the result is written back to all GPU, such that the next
kernel can use it.
In Section 3.4 I showed that for small buffers less latency is incurred if the memory

is mapped from the GPU into the CPU address space. Thus, in multi-GPU mode the
Scalar class will attempt to allocate its buffers such that they can bemapped to the CPU.
The final reduction will then be performed using PIO, minimizing latencies.
A further optimization is to completely eliminate the latency introduced by writ-

ing back the reduction result to the GPU. For this I implemented a special multi-GPU
variant of the CG solver which allows the reduction to leave the GPU side copy of the
reduction result in an inconsistent state. Instead of writing back the result, all fur-
ther scalar calculations are performed on the host and the scalar values are passed to
the kernels via kernel arguments. This does not cause any additional latency but the
normal kernel launch latency.
The optimizations of the handling of scalar values improve the inverter performance

by about 20%. Utilizing them, the inverter provides 250GFLOPS for a 243×128 lattice
using the four GPUs on two AMD FirePro S10000.
Overall, the bandwidth in between the devices is essential for multi-device perform-

ance. Minimizing the size of the halo and overlapping the halo update with the /D
calculation is essential for good performance. Yet, it cannot completely hide the cost

106

4.3. Optimization

of transferring the data. This shows especially if QPI is involved. Therefore, the per-
formance using four GPUs would probably improve if both AMD FirePro S10000 were
attached to the same PCIe tree.

107

Chapter 5.

Results

In this chapter I present the results of the work performed. I focus on the ramifications
this work has on execution time and energy efficiency for the different use cases. In
addition, I will verify the cost effectiveness of the solution and provide a quick look at
the physics results that were enabled by this work.

5.1. Comparison to Existing Solutions

To evaluate the compute time and energy consumption values of CL2QCD, I perform
comparisons to existing solutions for different use cases. As far as possible this compar-
ison is based on published results. Where no data has been published I have performed
reference measurements using an existing solution myself.

5.1.1. Compute Time

An essential criterion for the applicability of a given implementation is the time to
solution. Therefore, I have benchmarked the performance of the /D, the heatbath al-
gorithm, and the HMC for a variety of lattice sizes. Since the LQCD group in Frankfurt
is primarily interested in thermal systems, I have focused on such lattices.
The measurements have been performed on LOEWE-CSC, SANAM and a set of de-

velopment systems located at the FIAS. I have covered a wide range of GPUs. Measure-
ments have been performed on the AMD Radeon HD 5870, the AMD Radeon HD 6970
and the AMDRadeonHD 7970, covering the last three generations of AMDGPUs. Each
of these is the fastest single-chip gaming GPU produced by AMD in its generation. The
AMD Radeon HD 5870 is also the GPU available in LOEWE-CSC. In addition I also
benchmarked the AMD FirePro V7800, which is build on the same chip as the AMD
Radeon HD 5870, and the AMD FirePro S10000, which is used in SANAM. Thus, I also
covered the last two generations of professional GPUs manufactured by AMD. For the
/D benchmark I have also evaluated NVIDIA GPUs, namely the NVIDIA GeForce GTX
480, NVIDIA GeForce GTX 580 and NVIDIA GeForce GTX 680, thus again covering
the last three generations of gaming GPUs.
All the benchmarks on AMD GPUs were performed using a beta version of release

12.102 of the AMD FirePro variant of the Catalyst driver. This version was pre-released
to me as it contained register allocation fixes required for the /D kernel. The first pub-
licly available release to contain these fixes is Catalyst 13.6. The measurements on

109

Chapter 5. Results

16
3
×
8

16
3
×
16

16
3
×
24

16
3
×
32

24
3
×
12

24
3
×
16

32
3
×
8

24
3
×
24

32
3
×
12

24
3
×
32

32
3
×
16

24
3
×
48

32
3
×
24

48
3
×
80

20

40

60

Lattice Size

G
FL

O
P
S

AMD Radeon HD 5870
AMD Radeon HD 6970
2 Intel Xeon E5520
2 AMD Opteron 6278

Figure 5.1.: Performance of the SP heatbath kernel.

NVIDIA GPUs used version 295.41 of the proprietary GPU driver by NVIDIA. Details
on the systems used for the measurements can be found in Appendix C. Details on
LOEWE-CSC and SANAM are presented in Appendix A and Appendix B, respectively.

Heatbath

Although it was never in the focus of the performance optimizations performed, I also
report on the performance of the heatbath algorithm. While not showing the full poten-
tial of the hardware, the implementation of the heatbath algorithm gives an indication
on the performance that can be reached with limited development effort based on the
generic optimizations provided by the common parts of the implementation.
The performance of the heatbath algorithm is dominated by two kernels. That of the

heatbath kernel is presented in Figure 5.1. This kernel makes large-scale use of the
pseudo-random number generator (PRNG) and does not saturate the available band-
width. Figure 5.2 shows the performance of the overrelaxation kernel. This kernel does
not require the PRNG and shows much better performance.
Both kernels show four times the performance on GPUs compared to CPU. This is

a common performance ratio for many applications. However, the CPU code still has
room for performance improvements as it currently does not make use of vectorization.
The performance difference in between the CPUs can be explained by the fact that the
AMD system available for testing was both much newer and equipped with more cores
and memory controllers than the Intel system.
TheDP performance of the current implementation is only in the order of 10GFLOPS.

This is caused by register spilling, which is caused by the large working set of these

110

5.1. Comparison to Existing Solutions

16
3
×
8

16
3
×
16

16
3
×
24

16
3
×
32

24
3
×
12

24
3
×
16

32
3
×
8

24
3
×
24

32
3
×
12

24
3
×
32

32
3
×
16

24
3
×
48

32
3
×
24

48
3
×
80

50

100

150

Lattice Size

G
FL

O
P
S AMD Radeon HD 5870

AMD Radeon HD 6970
2 Intel Xeon E5520
2 AMD Opteron 6278

Figure 5.2.: Performance of the SP over-relaxation kernel.

kernels. It could probably be avoided with an optimized version of this kernel. In the
heatbath algorithm there are no summations over the whole lattice, therefore, precision
is less of an issue and the SP is currently sufficient.

A major issue for the heatbath algorithm is the size of the GPUmemory, which limits
the size of the studied lattices. This is especially an issue on the AMD Radeon HD 5870
and the AMD Radeon HD 6970. Their memory size is only 1GB and 2GB. In addition,
usage of more than half of the memory by an OpenCL application is not supported
officially. An unsupported way to utilize nearly all of the GPU memory is documented
in the AMD Developer Knowledge Base [93], though. The OpenCL standard is not too
specific as to what happens if a device runs out of physical memory. While current
implementations all seem to report an error in this case, it would also be completely
legal for an implementation to swap buffers or use host memory in this case. Both of
these variants would obviously degrade performance.

Cardoso and Bicudo published numbers for an implementation based on NVIDIA
CUDA [55]. They used the NVIDIA GeForce GTX 295 and the NVIDIA GeForce GTX
580. Compared to their numbers, the heatbath kernel only provides about half the
performance on the AMD Radeon HD 5870 and the AMD Radeon HD 6970. The over-
relaxation kernel shows similar performance even though the current implementation
does not make use of the bandwidth reducing REC12 technique. Contrary to the im-
plementation in CL2QCD, the NVIDIA CUDA implementation cannot handle lattices
that have a larger number of sites than the number of threads that can be scheduled on
the GPU. CL2QCD can process any lattice that fits into the memory of the GPU.

111

Chapter 5. Results

16
3
×
8

16
3
×
16

16
3
×
24

16
3
×
32

24
3
×
12

24
3
×
16

32
3
×
8

24
3
×
24

32
3
×
12

24
3
×
32

32
3
×
16

24
3
×
48

32
3
×
24

48
3
×
80

20

40

60

80

100

120

Lattice Size

G
FL

O
P
S AMD Radeon HD 7970

AMD FirePro S10000
AMD Radeon HD 5870
NVIDIA GeForce GTX 680

Figure 5.3.: Performance of the DP /D kernel.

Overall, all of the GPUs can be used efficiently for the heatbath algorithm. However,
there is still some room for performance improvements on the existing hardware.

/D Operator

The inversion of the fermion matrix is the most compute intensive operation in the
HMC and during operator evaluation. In terms of compute time /D is the most expens-
ive operation in the solvers implementing this inversion [17]. Therefore, the perform-
ance of the /D implementation is of highest importance for the overall application per-
formance. Figure 5.3 shows the performance of the /D kernel on three different GPUs
for a variety of lattice sizes.
The elderly AMD Radeon HD 5870 performs at about 70GFLOPS for a wide vari-

ety of lattice sizes. For smaller lattices, the performance drops slightly but is still
above 50GFLOPS. It’s successor, the AMD Radeon HD 6970 scales with the increased
memory bandwidth, providing about 80GFLOPS.
With its much higher memory bandwidth, the AMD FirePro S10000 achieves about

100GFLOPS for a wide variety of lattice sizes. While it cannot provide the full speed-
up for small lattice sizes, for large lattice sizes the performance scales very well with the
increased memory bandwidth. For some lattice sizes it even peaks up to 110GFLOPS.
The AMD Radeon HD 7970, equipped with slightly more memory bandwidth than the
AMD FirePro S10000, achieves about 120GFLOPS and peaks up to 125GFLOPS.
On the NVIDIAGeForce GTX 680 the /D kernel does not perform as well. The register

spilling which occurs on that GPU severely limits performance to only 25GFLOPS.

112

5.1. Comparison to Existing Solutions

This register spilling is caused by a major limitation of the OpenCL implementation by
NVIDIA. Different than in NVIDIA CUDA it is not possible to request a larger number
of registers per thread from the compiler. Even though this would mean less concur-
rent threads on the hardware, it should result in a significant boost in performance. In
addition, the OpenCL API does not provide the possibility to reconfigure the ratio of
L1 cache to local memory, which in NVIDIA CUDA is possible on the NVIDIA GeForce
GTX 680. This would allow to cache some of the spilled registers, reducing register
bandwidth consumed by register spilling and enabling better performance. Thus, cur-
rently the code does not provide competitive performance on NVIDIA GPUs. However,
those have not been in the focus of the development, and the provided performance
shows the principle portability of the current implementation.
In addition, the gaming GPUs produced by NVIDIA are pretty crippled in terms

of DP performance. Still, the /D kernel does not reach their theoretical peak DP per-
formance. Therefore, it should still be bandwidth limited. However, this low DP peak
performance might have an impact on performance and performance might be better
on the professional series of GPUs by NVIDIA.
There is a multitude of /D performances given in literature. However, none of the

published values has been measured on the latest generation of GPUs.
Clark et al. have shown a performance of 40GFLOPS on the NVIDIA GeForce GTX

280 [17]. Theymake use of the REC12 technique to reduce the bandwidth requirements
of the kernel. In comparison, the AMD Radeon HD 5870 is about 75% faster than this.
However, the NVIDIA GeForce GTX 280 is one generation older than the AMD Radeon
HD 5870, which make the latter comparison somewhat unfair. Yet, it’s peak bandwidth
of 142GB/s nearly matches the 154GB/s of the AMD Radeon HD 5870.
The NVIDIA GeForce GTX 480 used by Alexandru et al. is of the same genera-

tion as the AMD Radeon HD 5870. Their NVIDIA CUDA based code achieves about
50GFLOPS in DP [57]. Thus, the AMD Radeon HD 5870 is about 40% faster.
Since the QUDA community has moved towards mixed-precision solvers, only SP

performance numbers are available for current NVIDIA GPUs. Lacking other num-
bers I will quote those here. Interpretation, however, requires to keep in mind that a
mixed precision solver usually converges slower than a DP solver. On the latest gen-
eration NVIDIA Tesla K20, QUDA achieves about 250GFLOPS [59]. Using a special
cache-friendly streaming strategy, QUDA even manages to exceed 300GFLOPS on the
previous-generation NVIDIA Tesla M2090 [51]. However, this approach only seems to
work for rather large lattices.
For the Intel Xeon Phi only SP performance numbers have been published so far, too.

Joó et al. achieved a performance of 295GFLOPS to 320GFLOPS for SP /D on the Intel
Xeon Phi B1PRQ-7110P [59].
For problems that fit into the last-level cache, the Intel Xeon X5680 has been shown

to reach 75GFLOPS [41]. However, that performance is only reached in SP. For larger
problems, their performance drops to 42GFLOPS in SP while the AMD FirePro S10000
stays constant at more than 100GFLOPS in DP. The CPU performance can be improved
to 53GFLOPS by merging multiple /D invocations. In that case the CPU manages to
exceed the bandwidth limit. The implementation which is also used on the Intel Xeon

113

Chapter 5. Results

Phi can reach 120GFLOPS on two Intel Xeon E5-2680 [59]. This is approximately the
performance of one of the GPUs on the AMD FirePro S10000. However, the Intel Xeon
E5-2680 uses SP while the AMD FirePro S10000 provides DP results.
On a single node of a Blue Gene/Q about 70GFLOPS can be reached in DP /D [49].

This is at least 30% less than what CL2QCD achieves on the AMD FirePro S10000.
However, on a Blue Gene/Q one would usually not use a single node only. Interestingly,
SP /D on the Blue Gene/Q only achieves up to 90GFLOPS. For a bandwidth bound
problem like the /D kernel the performance would be expected to double going from
DP to SP.
Overall, in DP the /D implementation presented in this thesis provides better per-

formance than published for other implementations. However, CL2QCD running on
NVIDIA GPUs is currently unable to compete with QUDA in terms of performance.
But, even on the elderly AMD Radeon HD 5870 it already outperforms the DP /D per-
formance numbers published for other GPUs and those for CPUs. On the AMD FirePro
S10000 it shows excellent scaling to the higher peak performance of that GPU and out-
performs the older GPU by more than 40%. This makes it the fastest DP /D on a single
GPU.

Inverter

The inverter—or actually the solver—is the next building block on top of the /D and
dominates the performance of both the HMC and the analysis stage. Comparing solver
performances is tricky. Different solvers operate at different convergence rates. Thus, a
higher-performance solver might actually have a higher time to solution. In addition,
optimizations—like the used of mixed-precision—can also influence the convergence
rate of a given solver. Thus, a proper comparison should be based on the time to solu-
tion for a given set of problems with a defined solution precision. However, lacking the
option to evaluate other implementations in this way, I give only the raw performance
values for the CG solver.
On the AMD Radeon HD 5870 about 50GFLOPS are reached in DP. The AMD

FirePro S10000 provides about 73GFLOPS and the slightly faster AMD Radeon HD
7970 solves at 75GFLOPS.
As mentioned above, for the Intel Xeon Phi only SP performance number have been

published. The QUDA library, which is the performance reference on NVIDIA GPUs
relies on mixed-precision solvers. The high-end Intel Xeon Phi B1PRQ-7110P achieves
about 230GFLOPS. The Intel Xeon Phi 5110P and NVIDIA Tesla K20 both run at about
205GFLOPS.
All of the CG implementations—ours and those quoted—achieve 70% to 80% of the

corresponding /D performance. The notable exception is the AMD Radeon HD 7970
which is hardly faster than the AMD FirePro S10000 although it is 10% to 20% faster
in /D. This might be related to the driver or the system in which the measurements
where performed. Gpu-dev04, in which the AMD Radeon HD 7970 was benchmarked,
has a significantly worse PCIe performance than SANAM, in which the AMD FirePro
S10000 was benchmarked.

114

5.1. Comparison to Existing Solutions

Table 5.1.: Parameter values of the three set-ups for the HMC performance benchmark.
The value of mπ is only approximate.

set-up A B C

aµ 0.0025 0.0035 0.1
mπ 260 310 520

Hybrid Monte Carlo

To avoid depending on other systems for configuration generation, the performance of
the HMC is of major importance.
In ‘Lattice QCD based on OpenCL’ [20] we presented performance tests of the HMC

performance under realistic conditions. Here I will cite those numbers and extend them
to include the performance of the AMD FirePro S10000, which is based on a completely
different architecture than the previously used GPUs.
The tests were performed for one heavy and two lighter pion masses, as shown in

Table 5.1. To simulate at maximal twist we chose β = 3.9 and κ = κc = 0.160856 accord-
ing to Baron et al. [94]. Measurements were always performed over ten steps of the
HMC algorithm. For set-up C we used τ = 1, in set-ups A and B τ = 0.1 was used. The
integration was performed using a 2MN integrator with ten integration steps for the
separate timescales of the fermion and the gauge part. All inversions were performed
using a CG solver. For the CPU performance values tmlqcd was executed on one node
of LOEWE-CSC. As they were found to be below the percentage limit, we neglected
statistical errors.
Figure 5.4 and Figure 5.5 show the performance of set-up C for different lattice sizes.

The AMD FirePro V7800 is at least 70 percent faster than the CPUs and about twice
as fast for most lattice sizes. The AMD Radeon HD 5870 could not be used for this
benchmark, as its memory is to small to hold all of the used lattice sizes. For the AMD
FirePro S10000 memory size is not a problem. Its superior /D performance scales well
to HMC performance. For small lattices it is twice as fast as the AMD FirePro V7800
and four times as fast as the CPU node. For larger lattices it scales even better, showing
a speed-up of 2.6 over the older AMD FirePro V7800.
Figure 5.6 shows the performance on a 243 × 8 lattice for the different set-ups. The

runtime for the different configurations scales approximately the same on all systems.
For the lighter pion masses the AMD Radeon HD 5870 is twice as fast as the CPUs, too.
For those masses the inverter is more dominant on the runtime of the HMC benefiting
the GPUs with their high-performance /D implementation. The AMD FirePro S10000 is
another factor of two faster than the AMD Radeon HD 5870. This means, a single GPU
of the AMD FirePro S10000 provides a speed-up of four over a full node of LOEWE-
CSC running tmlqcd. Given that a node of SANAM is equipped with four GPUs, it
provides eight times the throughput of a node of LOEWE-CSC utilizing its GPU. Com-
pared to a node of LOEWE-CSC utilizing its CPUs, the throughput even increases by a
factor of 16.

115

Chapter 5. Results

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000

16

24

32

774

3,275

6,974

397

1,244

2,785

219

601

1,081

Execution Time / s

N
σ

AMD FirePro S10000
AMD FirePro V7800
tmlqcd on 16 AMD Opteron 6172 Cores

Figure 5.4.: HMC runtimes in seconds for set-up C for fixed Nτ = 8

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000

4

8

12

16

760

2,178

2,927

3,984

469

1,244

1,725

2,326

234

601

774

910

Execution Time / s

N
τ

AMD FirePro S10000
AMD FirePro V7800
tmlqcd on 2 AMD Opteron 6172

Figure 5.5.: HMC runtimes in seconds for set-up C for fixed Nσ = 24

116

5.1. Comparison to Existing Solutions

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000

A

B

C

6,459

6,469

2,178

3,458

3,410

1,021

1,602

1,592

553

Execution Time / s

AMD FirePro S10000
AMD Radeon HD 5870
tmlqcd on 2 AMD Opteron 6172

Figure 5.6.: HMC runtimes in seconds for set-ups A, B and C on a 243 × 8 lattice

Bonati et al. have benchmarked the HMC performance of the AMD Radeon HD 5870
and several NVIDIA GPUs using staggered fermions [15]. Due to the different discret-
ization a direct comparison to our code is difficult. However, they found the AMD
Radeon HD 5870 to be about 20% faster than the NVIDIA Tesla S2050 running the
OpenCL version of their code. Compared to the NVIDIA CUDA version, the AMD
Radeon HD 5870 was 50% slower, however. It is unclear what causes the big perform-
ance difference in between the OpenCL and the NVIDIA CUDA code running on the
NVIDIA Tesla S2050. Bonati et al. also note that the small memory of the AMD Radeon
HD 5870 limits the maximum problem size that can be studied.
While the AMD Radeon HD 5870 was severely limited by its small memory, the

AMD FirePro S10000 can easily handle state-of-the-art lattice sizes like 323 × 12. Such
lattices are currently used on SANAM to investigate the thermal QCD transition with
two flavours of twisted mass fermions. The Z12 set-up used for this work follows up
on the previously investigated set-ups A12, B12 and C12 [86]. For this set-up the HMC
is configured to utilize mass preconditioning and a 2MN integrator on three timescales
of eight, six and five steps. As Figure 5.7 shows, one GPU of the AMD FirePro S10000
provides a five times speed-up over a pure CPU system running tmlqcd. Therefore, a
node with two AMD FirePro S10000, as it is the case in SANAM, provides 20 times the
throughput of a pure CPU node.
The performance measurement of tmlqcd was performed on titanic. The system is

equipped with two AMD Opteron 6220, providing a total of 16 Interlagos cores. While
4.3 times as fast as the tmlqcd run, the AMD Radeon HD 7970 is unable to match the
speed-up of the AMD FirePro S10000. As the AMD Radeon HD 7970 does have the
higher peak performance, this is probably an artefact of the system gpu-dev04 which
hosted the AMD Radeon HD 7970.1

1As noted in Section 5.1.1, the AMD Radeon HD 7970 also already shows a strangely low inverter per-
formance in that system.

117

Chapter 5. Results

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

tmlqcd on
2 AMD Opteron 6220

AMD Radeon HD 7970

AMD FirePro S10000

4.61

1.07

0.86

Execution Time / h

Figure 5.7.: Runtime for a single HMC step using the Z12 set-up with β = 3.8175 and
κ = 0.1634937.

Table 5.2.: TCA per MFLOP for a variety of machines used for LQCD

Machine Year $/MFLOPS

QCDSP 1998 13.2
Blue Gene/L 2006 1.70
Kraken (x86) 2011 1.14
Sequoia (Blue Gene/Q) 2012 0.040
SANAM (x86 + GPU) 2012 0.033

5.1.2. Total Cost of Acquisition

Given the fact that budgets are usually limited, the TCA is an important metric for
every system. There are hardly two systems that provide exactly the same performance.
However, performance can—within limits—be scaled with the system size. Therefore,
it is reasonable to compare the TCA normalized to the system performance in LQCD.
Table 5.2 gives an overview over the TCA of multiple machines that have been used

for LQCD computations. In 1998 a Gordon Bell Prize was awarded for showing LQCD
computations on QCDSP machines reaching a normalized TCA of $13.2/MFLOPS [45].
Since then the TCA per MFLOPS of performance has dropped by a factor of 400.
For the Blue Gene/L, Kraken, and Sequoia the normalized TCA has not been pub-

lished. Therefore, I estimated the TCA of those systems based on publicly available
data.
The Blue Gene/L delivers 12.2TFLOPS on 32Ki CPU cores[61]. Using a rack price

of $1.3 million[95] I assume the TCA of the used system to be about $21 million.
Kraken is a Cray XT machine that is based on a grant providing $30 million for

its construction [96]. It is based on AMD Opteron CPUs and uses Cray’s proprietary
interconnect technology. I estimated the normalized TCA by scaling it down to the 4096
cores that Babich et al. have shown to provide 952GFLOPS [2]. With its normalized
TCA of $1.14/MFLOPS this system seems to lag behind the development in LQCD
performance shown by the less conventional systems.

118

5.1. Comparison to Existing Solutions

Table 5.3.: TCA per MFLOP for hypothetical workstations. The performances for the
systems not based on GPUs by AMD are taken from ‘Lattice QCD on Intel
Xeon Phi Coprocessors’ [59].

/D CG
Processor $/MFLOPS $/MFLOP Precision

2 Intel Xeon E5-2680 0.058 0.073 single
4 Intel Xeon Phi 5110P 0.013 0.018 single
4 NVIDIA Tesla K20 0.020 0.024 single
4 AMD FirePro S10000 0.020 0.028 double

Finally, Sequoia—based on the current Blue Gene generation Blue Gene/Q—provides
6.18PFLOPS [49] for an estimated TCA of $250 million [97]. This performance is
matched by SANAM [98] with its AMD FirePro S10000 GPUs. However, Sequoia is still
in the advantage of being capable of PFLOPS calculations which are out of SANAM’s
reach.
Given the limited availability of capacity systems, the cost of always-available work-

station systems provide another interesting point for comparison. For this I created
hypothetical workstation configurations based on a system by CADnetworks, which
can be ordered with four NVIDIA Tesla K20 GPUs. Table 5.3 shows the normalized
TCA for these systems.
Per flop, the pure CPU system is up to three times as expensive as an accelerator

based system. The best normalized TCA is actually shown by the Intel Xeon Phi sys-
tem. However, prices for the Intel Xeon Phi [99] are currently somewhat academic, as
no store actually has it in stock. In the /D computation the AMD FirePro S10000 man-
ages to match the NVIDIA Tesla K20, despite the NVIDIA Tesla K20’s performance
being provided for single precision computations. Given the bandwidth limited nature
of LQCD this should approximately double the performance. In the inverter calcula-
tion the AMD FirePro S10000 falls behind the NVIDIA Tesla K20, which for the given
performance values even utilizes half-precision computation. For a better comparison
more recent DP precision values for the NVIDIA Tesla K20 and a mixed-precision code
for the AMD FirePro S10000 would be required.
The usage of accelerators also allows the creation of truly low cost systems based on

conventional consumer hardware. Table 5.4 provides the TCA for a set of hypothetical
systems based on such hardware. The base system is the One Gamestar PC XL Core. It
is shipped for a price of 1299€2 including an AMD Radeon HD 7970. The price of the
latter has of course been deducted for the configurations using a different GPU.
For the Intel Xeon Phi 5110P3 and the NVIDIA Tesla K20 the reduced system cost

hardly effects normalized TCA. This is due to the high price of these accelerators which

2The price is taken from the One’s web shop at http://www.one.de on 5 July 2013. It includes a VAT of
19%.

3In fact the Intel Xeon Phi 5110P will not work in this system, due to its passive cooling solution.

119

http://www.one.de

Chapter 5. Results

Table 5.4.: TCA per MFLOP for hypothetical minimum acquisition cost systems based
on a consumer system. The performances for the systems not based on GPUs
by AMD are taken from ‘Lattice QCD on Intel Xeon Phi Coprocessors’ [59].

System Cost /D CG
Processor $ $/MFLOPS $/MFLOP Precision

Intel Xeon Phi 5110P 3672.01 0.013 0.018 single
NVIDIA Tesla K20 4807.27 0.019 0.023 single
AMD FirePro S10000 3987.46 0.017 0.027 double
AMD Radeon HD 7970 1400.30 0.012 0.019 double

in the four-accelerator configurations even dwarfed the workstation costs. The effect
on normalized TCA is slightly larger for the AMD FirePro S10000, which still provides
two GPUs in this minimal system.
AMD provides the same DP performance in its high-end consumer products as in

its AMD FirePro line. Using the AMD Radeon HD 7970, that ships with the system,
results in a normalized TCA of $0.012/MFLOPS to $0.019/MFLOPS, equalling that of
the Intel Xeon Phi 5110P. However, using the AMD Radeon HD 7970 results in less
than half of the system cost as when using the Intel Xeon Phi 5110P. In addition, the
AMD Radeon HD 7970 provides DP calculations at the same normalized TCA as the
Intel Xeon Phi 5110P provides single precision calculations.
The single node system is a factor 2 to 3 as price efficient as the big machines. Some

of this can be attributed to the additional costs for high-performance interconnect and
front-end nodes. However, due to their size these systems should compensate this by
scaling effects in hardware prices. Therefore, the larger contribution is probably from
the smaller system being tuned more heavily towards QCD computations. These sys-
tems do not contain the fastest CPUs and only the minimum amount of memory re-
quired for optimum memory speed. This reduces the system costs without negatively
effecting LQCD performance.
In conclusion, CL2QCD allows the computation of LQCD on systems using AMD

GPUs at a TCA competitive with other accelerator based systems. Overall, accelerators
match the Blue Gene systems in normalized TCA. Used in systems tuned for LQCD
they can even outperform the Blue Gene systems by factor of 2 to 3.

5.1.3. Energy Consumption

Given today’s energy costs and the cooling challenge, the energy required to solve a
given problem is one of the key performance indicators. Therefore, I compared the
energy consumption of running CL2QCD with the energy consumption of running tm-
lqcd.
There are two metrics of interest. The average power consumption while running

the application defines the required cooling. The total energy required to get to the
result is important for the ecological impact of the system and the monetary costs. For

120

5.1. Comparison to Existing Solutions

the purpose of this comparison I introduce an efficiency-metric which is defined as the
number of steps the HMC algorithm can achieve per kWh.
The set-up used is that of the Z12 studies. The HMC algorithm is run on a given

configuration of a 323 × 12 lattice using β = 3.8025 and β = 3.8175. I performed the
comparison using two different systems: Tmlqcd runs on titanic, a system with two
AMD Opteron 6220 and no GPUs. CL2QCD runs on gpu-dev04, which is equipped
with a varying number of AMD Radeon HD 7970 GPUs. In those measurements where
more than one GPUwas used I ran an own instance of CL2QCD on each GPU. I removed
unused GPUs from gpu-dev04 during the measurements. Such, the measurements rep-
resent a single-, dual-, or three-GPU system.
I measured the energy consumption of the whole systems at the wall outlet using an

LMG95 [100]. All measurements include the whole application runtime. For CL2QCD
this includes the GPU code initialization from a pre-filled cache during application
start-up.
The runtime of the HMC algorithm is influenced by the random numbers used.

Therefore, all measurements were performed for ten random number seeds and the
analysis was performed on the average result.
Figure 5.8 shows the power consumption of the systems averaged over the duration

of one step of the HMC algorithm. Equipped with one GPU, the system gpu-dev04
requires 348W running CL2QCD. This is hardly more than the 343W required by the
pure CPU system titanic running tmlqcd. Adding the second GPU to run a second
instance of the HMC increases the power consumption by about 235W. The third GPU
leads to a larger increase in power consumption of about 271W to a total of 884W. The
exact value of β does not have any significant effect on the power consumption.
The power-consumption increase depending on the number of used GPUs allows

to model the power consumption of the GPU computation and the offset of the base
system. The following formula gives a simple model for this:

Pn = n · PGPU + Poffset. (5.1)

In this model Pn is the power consumed by a system of n GPUs running n application
instances. PGPU is the power required by a GPU computation and Poffset is the system
offset.
However, the power consumption values in Figure 5.8 cannot be fit using this simple

model. As I will show in Subsection 5.2.1 the system gpu-dev04 shows exceptionally
bad scaling behaviour, especially for the third GPU. Therefore, I will for now use a
worst and a best case estimation derived from the three- and the two-GPU case, re-
spectively. The worst case estimated from the three GPU case leads to:

PGPU = 271W, (5.2)

Poffset = 73.5W. (5.3)

The best case leads to:

PGPU = 235W, (5.4)

Poffset = 113W. (5.5)

121

Chapter 5. Results

0 100 200 300 400 500 600 700 800 900

CPUs

1 GPU

2 GPUs

3 GPUs

344

348

581

885

342

348

582

884

Power /W

β = 8.175
β = 8.025

Figure 5.8.: Average power consumption of one HMC step

The specified typical power consumption of the AMDRadeonHD 7970 is 210W. The
specified maximum power consumption, which can be derived from its power connect-
ors, is 225W. This fits well with the observed values, which include the CPU and main
memory power consumption caused by the host part of the application and the limited
efficiency of the power supply.
Figure 5.9 shows themaximum power consumption during the calculation of a single

HMC step. In this figure the maximum means the highest average power consumption
in a 0.5 s sampling interval, not the highest infinitesimal peak consumption. While
there is hardly any difference between the CPU and the single-GPU system when aver-
aging the power consumption over the whole calculation, the maximum consumption
of the single-GPU system shows a 23W higher maximum consumption than the CPU
system. The CPU system shows a maximum consumption of 364W. This is 21W more
than the average. The single GPU consumes up to 387W, surpassing its average by
about 39W. The CPU system has a more constant energy consumption than the GPU
system.
The three-GPU system breaks the kW barrier, consuming up to 1009W. Compar-

ison of the single-, dual- and three-GPU systems shows an increase in maximum power
consumption of 263W to 358W per GPU. This is 17% to 60% beyond the maximum
energy consumption specified for a single AMD Radeon HD 7970. Even taking into ac-
count the power consumption due to the additional CPU load generated, the three-GPU
system shows a disproportional increase in power consumption. In Subsection 5.2.1 I
show that utilizing three GPUs hits the thermal limits of this system. This is prob-
ably the reason for this disproportional increase in power consumption and could be
avoided by a system providing proper cooling as the SANAM nodes do.

122

5.1. Comparison to Existing Solutions

0 100 200 300 400 500 600 700 800 900 1,000 1,100

CPUs

1 GPU

2 GPUs

3 GPUs

363

387

651

1,009

364

386

656

1,008

Power /W

β = 8.175
β = 8.025

Figure 5.9.: Maximum power consumption during one HMC step

Figure 5.10 shows the energy efficiency of the different systems when performing
HMC calculations. The efficiency is calculated as follows:

eff = n/E. (5.6)

E is the energy consumed during the measurement. n is the number of HMC steps
performed. For the single GPU and the CPU system n equals one. For the multi-GPU
systems n is equal to the number of GPUs, as an own instance of CL2QCDwas executed
on each GPU.
The CPU system performs about 0.63 HMC steps per kWh. The single-GPU system

is 4.25 to 4.5 times as efficient. It can perform 2.7 to 2.85 HMC steps per kWh.
Contrary to the CPU system, the energy efficiency of the GPU systems shows a de-

pendency on the value of β. The power consumption of the systems is the same for both
values of β used. This difference in energy consumption stems only from the difference
in execution time.
The same effect exists in between the CPU and the single-GPU system. Both have

basically the same power consumption. Thus, the higher energy efficiency of the GPU
system stems from its improved throughput.
The two-GPU system shows the best energy efficiency, performing 3.3 HMC steps

per kWh for β = 8.025. This is a 5.25 times the energy efficiency of the CPU system.
The three-GPU system manages to calculate about 3 HMC steps per kWh. While

this is more than the single-GPU system provides, it is less than the two-GPU system
achieves. This comparatively low efficiency is a result of the disproportional increase
in power consumption and an disproportional increase in compute time time observed
for the three-GPU system.

123

Chapter 5. Results

0 0.5 1 1.5 2 2.5 3 3.5

CPUs

1 GPU

2 GPUs

3 GPUs

0.63

2.85

3.32

3.08

0.63

2.7

3.13

2.92

Energy Efficiency / kW−1 h−1

β = 8.175
β = 8.025

Figure 5.10.: Energy efficiency measured in HMC steps per energy consumed.

The system gpu-dev04 used for the measurements is not optimal from a power con-
sumption perspective. As a development workstation it is equipped with 24 CPU cores.
While those help in the development process by speeding up the compilation, only one
is used by each instance of CL2QCD. Therefore, the system overhead of the power con-
sumption could be reduced by using a more lightweight system to host the GPUs. In
addition, as I show in Subsection 5.2.1, gpu-dev04 is ill-suited to host multiple GPUs.
The slowdown observed when running multiple instances of CL2QCD is much smaller
on SANAM. This should lead to a better energy-efficiency scaling on that system.
The following formula gives a simple model for the energy consumption En of a

system with n GPUs. It assumes a linear slowdown s of each single-GPU application
caused by additional GPUs in the system. In addition, the power consumption of each
GPU is assumed to be independent of additional GPUs in the system. Thus, there is a
small linear increase in runtime and a linear increase in power consumption with each
GPU.

En = tn Pn = (1+ (n− 1)s) t1 Pn (5.7)

Running a separate application instance on each GPU there are n results produced
using the Energy En. Thus, the efficiency effn of a system with nGPUs can be calculated
as follows:

effn = n/En. (5.8)

Normalizing the efficiency to that of the single-GPU system makes it independent of

124

5.1. Comparison to Existing Solutions

1 2 3 4 5 6 7 8 9 10

1

1.1

1.2

1.3

Number of GPUs

Re
la
ti
ve

En
er
gy

Effi
ci
en

cy

Optimistic
Pessimistic
Actual

Figure 5.11.: Modelled energy efficiency of multi-GPU systems and actual efficiency on
gpu-dev04 normalized to that of an identical single-GPU system.

the actual execution time:

δeffn =
effn
eff1

=
n ·E1
En

=
n

1+ (n− 1)s
P1
Pn
, (5.9)

δeffn =
n

1+ (n− 1)s
PGPU + POffset
nPGPU + Poffset

. (5.10)

Figure 5.11 shows the result of this model for two sets of parameters. The optimistic
curve uses the power values extracted from the measurements using two GPUs. The
value of the slowdown parameter is only 0.5% per additional GPU. This is similar to the
value observed on SANAM. The pessimistic curve is modelled after the values observed
for three GPUs in gpu-dev04. It uses a slowdown of 5%.
The comparison to the actual values observed on gpu-dev04 shows that the simple

model is unable to explain the behaviour of that system. However, assuming similar
throughput scaling as on SANAM the system could scale to large numbers of GPUs.
At about eight GPUs the curve flattens at an energy efficiency that is about one third
better than that of the single-GPU system. However, given the bad throughput scal-
ing observed for the three-GPU system, the energy falls below that of the single-GPU
system if more than four GPUs are used. All of this happens at an already high level
of energy efficiency, which, for the single-GPU system, is four times that of the CPU
system.
Overall, the GPU systems show amuch better energy efficiency than the CPU system.

In the same energy budget they provide 4.25 to 5.25 times the throughput of the CPU
system. The average power consumption of the GPUs fits well with the specifications
given by the manufacturer. Yet, the observed maximum power consumption of the

125

Chapter 5. Results

GPU calculation exceeds the specified maximum power consumption of the GPU by
up to 43%. This shows that the power consumption of the host systems—and GPUs
potentially exceeding their specified power consumption for short intervals—must not
be neglected when estimating peak power consumption of a GPU. The bad scaling to
three GPUs on gpu-dev04 also shows that the host system must be carefully chosen.
Otherwise, the slowdown caused by utilizing multiple GPUs can overcompensate the
benefit of dividing the host system energy consumption in between the GPUs. Still,
even in this case energy-efficiency of the GPU system exceeds that of the CPU system
by far.

5.2. Scaling to Multiple GPUs

There are three ways to utilize multiple GPUs. In the analysis stage and for parameter
sweeps only throughput is of interest. But, if a large number of HMC steps are required
for a single set of parameters, the wall time of a single HMC step becomes relevant.
Thirdly, multiple devices become interesting if a single device is unable to process a
lattice because of memory size constrains.

5.2.1. Throughput

In a system with n GPUs, running a separate instance of the HMC algorithm on each
GPU should provide n times the throughput of a single GPU. However, host memory
and PCIe are shared resources, which might cause some interference. On today’s CPUs
the host part of each instance can use an own CPU core. But, the GPU driver might
internally require some serialization, imposing another possibility for interference in
between the instances. All these effects might slow down each instance, reducing the
overall throughput.
To measure the slowdown I ran n instances on n GPUs, varying n from one to the

maximum number of GPUs in the system. Each instance performed a single step of the
HMC algorithm using the Z12 set-up.
Figure 5.12 shows the time required to complete all n instances on gpu-dev04. Run-

ning two instances on two GPUs takes about 3% longer than running a single instance
on a single GPU. Running three instances on three GPUs takes about 10% longer than
running a single instance on a single GPU. This is a significant slowdown. Therefore,
three GPUs provide only about 2.7 time the throughput of a single GPU in this system.
The situation is different on SANAM. The runtimes shown in Figure 5.13 show that

on SANAM even running four instances on four GPUs only takes about 2.5% longer
than a single instance on a single GPU.
On SANAM there is also no significant slowdown when moving from two to three

GPUs. The third and the fourth GPU are connected to the second CPU socket of that
system. This probably explains why there is hardly any effect in between the third GPU
and the first two.
On gpu-dev04 the second and the third GPU are attached to the same CPU socket.

This might explain why the slowdown is much larger for the third GPU. However,

126

5.2. Scaling to Multiple GPUs

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500

1

2

3

3,631

3,730

4,057

3,840

3,947

4,184

Execution Time / s

In
st
an

ce
s

β = 3.8175
β = 3.8025

Figure 5.12.: Time for one step of the HMC algorithm on gpu-dev04 if multiple in-
stances of CL2QCD are running concurrently.

0 500 1,000 1,500 2,000 2,500 3,000

1

2

3

4

3,027

3,061

3,062

3,105

3,085

3,112

3,114

3,158

Execution Time / s

In
st
an

ce
s

β = 3.8175
β = 3.8025

Figure 5.13.: Time for one step of the HMC algorithm on SANAM if multiple instances
of CL2QCD are running concurrently on the same node.

127

Chapter 5. Results

contrary to the situation on SANAM there is already a significant interference between
the first two GPUs, despite them being attached to different CPUs.
The more likely explanation for the huge slowdown on gpu-dev04 is overheating. If

the system only contains a single GPU, this GPU will never exceed 81 ◦C. Adding a
second GPU will make both GPUs reach a reported temperature of 90 ◦C. On average
they will be running at about 88 ◦C. Running three GPUs in gpu-dev04, the outermost
GPUs reaches temperatures of about 92 ◦C. The middle GPU even reaches reported
temperatures of up to 97 ◦C. On average it runs at about 95 ◦C, the temperature at
which thermal throttling occurs for this GPU. Given that the reported temperatures
are measured on the board of the GPU—not inside the actual GPU chip—even the
outermost GPU might be affected by thermal throttling. On SANAM, where no such
slowdown is observed, GPU temperatures stay in the 70 ◦C range even if all four GPUs
are under load.
Obviously the choice of the host system has a huge impact on this type of scaling. On

SANAM application throughput has been shown to scale up to four GPUs withminimal
losses of only 2.5%. Given a host system with good PCIe performance and sufficient
cooling it should be possible to scale to even larger numbers of GPUs.

5.2.2. Latency

I have studied the scaling behaviour of CL2QCD on SANAM. As the maximum number
of GPUs in a node of SANAM is four, this limited the scaling analysis.
Figure 5.14 shows that for lattices with a sufficiently large time dimension a good

scaling behaviour can be observed in /D. For lattices that also fit onto a single GPUs the
efficiency is 75% to 95% Here, I define efficiency as follows:

Efficiency =
Performance using N GPUs

N ×Performance of a single GPU
. (5.11)

On sufficiently large lattices like 323×256 even 419GFLOPS are reached on four GPUs.
Sadly, due to memory constrains this lattice cannot be used in the inverter. The 323×12
lattice shows about 50% speed-up on two GPUs. To be sped up further, this kind of
lattice will require parallelization in additional directions.
Figure 5.14 also shows the effect of DirectGMA, QPI, and GPU selection. The lower

performance of the 323 × 12 lattice is achieved if two GPUs on separate AMD FirePro
S10000 are used. In this case, QPI is involved and DirectGMA cannot be used. The
effect also shows, though less, for the other lattices. For them the performance does not
double when moving from two to four GPUs.
Figure 5.15 shows the strong scaling for the inverter. Due to memory constraints

single-GPU data is only available for the 323 × 12 lattice. For the vacuum lattices, two
GPUs can reach 140GFLOPS, nearly twice the single-GPUs peak performance in the
CG. Four GPUs reach 250GFLOPS, an efficiency of 85% versus the single GPU peak.
In the strong scaling case the local lattice size reduces with each added GPU. This

can result in reduced performance of the /D kernel execution. Therefore, it is also in-
teresting to observe the scaling behaviour given a fixed local lattice size. Figure 5.16

128

5.2. Scaling to Multiple GPUs

1 2 3 4
0

100

200

300

400

GPUs

/ D
Pe

rf
or
m
an

ce
/
G
FL

O
P
S

323 × 12
483 × 16
243 × 128
323 × 64
323 × 256

Figure 5.14.: Strong scaling of the /D operator on the AMD FirePro S10000 GPUs in
SANAM for multiple lattice sizes. The jump at two GPUs is caused by
communicating either between GPUs attached to the same CPU or GPUs
attached to different CPUs involving QPI in the communication.

1 2 3 4
0

50

100

150

200

250

GPUs

S
ol
ve

r
Pe

rf
or
m
an

ce
/
G
FL

O
P
S 323 × 12

483 × 16
323 × 64
243 × 128

Figure 5.15.: Strong scaling of the CG solver on the AMD FirePro S10000 GPUs in
SANAM for multiple lattice sizes. The jump at two GPUs is caused by
communicating either between GPUs attached to the same CPU or GPUs
attached to different CPUs involving QPI in the communication.

129

Chapter 5. Results

shows the /D performance in this case. Figure 5.17 does the same for the inverter. The
results match that of the strong scaling case. Obviously the reduction in local lattice
size is not an issue for the lattices analysed.
Weak scaling with a local lattice size of 323 × 16 very clearly shows the effect of us-

ing DirectGMA. Switching to the slower conventional transfer method for three GPUs
leaves hardly any speed-up compared to two GPUs, where DirectGMA is used. The
effect is smaller on the 243 × 32 lattice, with its much smaller halo. The inverter scales
linearly for both local lattice sizes. In both cases, the efficiency is about 85%.
Babich et al. have published their results of utilizing multiple NVIDIA GPUs using

NVIDIA CUDA in 2010 [16]. Their implementation utilizes MPI instead of operating
all GPUs from a single host process. They show weak scaling with a local lattice size
of 243 × 32 to be linear up to 32 GPUs. In DP they reach about 32GFLOPS per GPU in
BiCGSTAB, while we reach about 63GFLOPS in CG. However, their data is based on the
much older NVIDIA GeForce GTX 285 and can utilize GPUs in multiple host systems.
Normalizing the performance by the peak bandwidth of the used GPUs, CL2QCD has
a performance advantage of about 25%. Most of this can probably be attributed to the
more direct communication.
Using mixed precision in combination with a GCR-DD solver Babich et al. have

shown to scale up to 256 GPUs [2]. However, their code is optimized to study much
larger lattices, while the development of CL2QCD was so far focused at lattices like
323 ×12 and similar sizes used for parameter sweeps. Still, this indicates two potential
directions for further performance improvements in CL2QCD.
The Intel Xeon Phi has been shown to provide about 122GFLOPS per device for up

to 32 devices [59]. However, no DP results are available for that platform. Given the
high degree of optimization applied to the data transfer in CL2QCD, the Intel Xeon
Phi might currently provide better device-to-device communication capabilities than
the AMD FirePro S10000. However, the 122GFLOPS are only about half of the single-
device performance. On the AMD FirePro S10000 CL2QCD achieves about 85% of the
single-device performance when scaling to multiple devices. Unlike the Intel Xeon Phi
implementation, CL2QCD is not restricted to SP and operates at DP accuracy.

5.2.3. Problem Size

The multi-GPU capabilities increases the maximum problem size that can be studied
using CL2QCD. In Subsection 5.2.2 I showed the performance of the 243 × 128 and the
323×64 lattice. Both do not fit into a single GPU of an AMD FirePro S10000 but can be
computed by using both GPUs. In addition, for these lattices CL2QCD also shows nice
performance scaling to additional GPUs.
The next interesting problem size to follow up on the Z12 studies is 483 × 16. It is

also too large to fit a single GPU. Using all four GPUs of the two AMD FirePro S10000
in a SANAM node this lattice can be simulated. In that case the inverter performs at
about 93GFLOPS. This is equivalent to the performance of eight nodes in LOEWE-CSC
running tmlqcd.

130

5.2. Scaling to Multiple GPUs

1 2 3 4
0

100

200

300

400

GPUs

/ D
Pe

rf
or
m
an

ce
/
G
FL

O
P
S

323 × 16
243 × 32

Figure 5.16.: Weak scaling of the /D operator on the AMD FirePro S10000 GPUs in
SANAM for two different local lattice sizes.

1 2 3 4
0

50

100

150

200

250

GPUs

S
ol
ve

r
Pe

rf
or
m
an

ce
/
G
FL

O
P
S

323 × 16
243 × 32

Figure 5.17.: Weak scaling of the CG solver on the AMD FirePro S10000 GPUs in
SANAM for two different local lattice sizes. The jump at two GPUs is
caused by communicating either between GPUs attached to the same CPU
or GPUs attached to different CPUs involving QPI in the communication.

131

Chapter 5. Results

5.2.4. Conclusion

CL2QCD can utilize multiple GPUs in all three variants—throughput improvement,
latency reduction, and enabling larger lattices.
For thermal lattices, where parameter sweeps are commonly required, CL2QCD can

utilize multiple GPUs in a single node using separate application instances, achiev-
ing throughput scaling without any significant losses. However, care must be taken
to choose a proper host systems, as insufficient cooling and PCIe issues have been ob-
served to cause interference.
Vacuum lattices, which are typically somewhat larger than thermal lattices, can be

sped up using multiple GPUs for a single application instance. Using extensive optim-
ization of the device-to-device and the device-to-host communication, CL2QCD man-
ages to achieve linear scaling. In /D perfect scaling can be achieved for lattices of suffi-
cient size. The CG solver achieves linear scaling with an efficiency of about 85%.
Finally, utilizing multiple GPUs also enables the processing of lattices which do not

fit into the memory of a single GPU. Examples for for this are 323 × 128 and 483 × 16
lattices. The latter would be the successor of the 323×12 lattices used in the Z12 studies.

5.3. Results obtained via CL2QCD

The code has so far been used extensively to study the Z12 set-up, which has been
mentioned multiple times in this chapter. However, no publications have been made
on the results of this study, yet.
CL2QCD has also been used for ‘The nature of the Roberge-Weiss transition in N_f=2

QCD with Wilson fermions’ [91]. There, the QCD phase diagram is studied using
Wilson fermions in regions so far only studied using staggered fermions. For this, both
LOEWE-CSC and SANAM were utilized. Following the success of this study, further
investigations will be performed using smaller quark masses.

132

Chapter 6.

Conclusion

This thesis presents architecture and optimization of CL2QCD—the first implementa-
tion of LQCD using OpenCL for Wilson fermions—as well as a performance, TCA, and
energy-efficiency analysis. The optimizations are based on an in-depth analysis of op-
timization techniques for bandwidth-limited applications on GPUs. Based on OpenCL,
CL2QCD is not limited to accelerators by a single vendor and shows excellent perform-
ance on AMD GPUs. In addition, it also operates on CPUs.
For AMD GPUs the implementation manages to utilize more than 70% of the theor-

etical peak device bandwidth in the /D kernel. Reaching 70GFLOPS in DP on the AMD
Radeon HD 5870 it outperforms published performances of both NVIDIA and CPU
based codes. This performance scales with device bandwidth, reaching 100GFLOPS
on the newer AMD FirePro S10000 used in SANAM and 120GFLOPS on the AMD
Radeon HD 7970—a performance unmatched by other DP /D kernels.
Running the full HMC there is a speed-up of two when comparing the AMD Radeon

HD 5870 with a CPU system containing two AMD Opteron 6172 CPUs. This speed-up
increases to a factor of four when using the AMD FirePro S10000 or the AMD Radeon
HD 7970.
The speed-up translates directly into energy-efficiency, as a single-GPU system op-

erates on the same power budget as a pure CPU system. Utilizing multi-GPU systems
further improves energy efficiency. Overall, GPU systems provide 4.25 to 5.25 times
the energy-efficiency of a CPU system with two AMD Opteron 6220.
On such systems CL2QCD shows excellent scaling properties. If multiple instances of

the HMCs algorithm are executed concurrently—as convenient to perform parameter
range scans for thermal lattices—throughput scales without any significant perform-
ance losses. Using multiple GPUs to reduce the wall time of processing a single vacuum
lattice shows perfect scaling in /D and linear scaling with an efficiency of 85% in CG.
In terms of TCA LQCD calculations on accelerators match conventionally-used ca-

pacity machines. Dedicated accelerator-based systems can even improve cost efficiency
by a factor of 2 to 3. Here, CL2QCD even enables DP LQCD computations at the lowest
entry price by far.
To achieve these results, hardware characteristics have been analysed thoroughly.

To address a performance issue of the AMD Radeon HD 5870 and similar GPUs, an
optimized SoA pattern was developed. For QCD data types this provides a speed up of
50% over using AoS or conventional SoA patterns.
Highmemory-bandwidth utilization can be achievedwith a small number of threads.

133

Chapter 6. Conclusion

Thus, a large number of registers per thread can be used by bandwidth-limited codes.
Still, register usage has proven to be a major challenge to solve in order to achieve high
performance on the given hardware.
Other challenges are latency and bandwidth of PCIe, which connects the GPUs and

the CPU. Different methods of data transfer provide different characteristics. Thus,
a variety of these methods is used. For compatibility reasons, an automatic selection
depending on the hardware is performed. For inter-GPU communication, this selection
is additionally based on start-up benchmarks, as the performance highly depends on
the system layout and the GPUs involved.
On the AMD Radeon HD 5870 the combination of all the techniques presented in

this thesis lead from a /D kernel utilizing 20GB/s to one utilizing 120GB/s—six times
the previous performance.
OpenCL is a valuable tool for portable GPGPU computations. As this thesis shows,

complex applications can be implemented using OpenCL and, on top of that, achieve
excellent performance. Its approach of run-time code compilation to target architec-
tures helped in the creation of versatile tools [68, 76] to study optimization techniques.
However, implementation quirks by the vendors have at some points hindered optim-
ization. In addition, at the feature level, NVIDIA does not provide the same level of
support to OpenCL as it does to NVIDIA CUDA.
As presented in this thesis, CL2QCD provides excellent performance on the AMD

platform and can be used on all accelerator platforms and CPUs that support OpenCL.
Its architecture has been modularized. Such, new algorithms can be implemented
quickly, reusing components and profiting from all the given optimizations. This also
allowed for collaborative development, where the co-authors of the other publications
on CL2QCD [19, 20] focused on the physics and I focused on the optimizations. Yet, as
always, there is of course still room for further improvement.
Further application speed-up might be reached by further optimization of the in-

verter performance. One way to do this is usingmixed precision solvers [17]. Those had
originally been avoided because of the limited memory capacity of the AMD Radeon
HD 5870. Initial prototypes on the AMD Radeon HD 7970 have been stashed because
of compiler issues with the SP /D kernel. However, this GPU has already shown ex-
cellent performance in SP codes [101] and similar problems have already been solved
for the DP kernel. Thus, future drivers should resolve the issue, making this a viable
option.
Another potential for further performance improvements lies in bandwidth con-

serving techniques like REC12. Together with Pinke et al., I have already shown the
principal feasibility of this approach in ‘Lattice QCD based onOpenCL’ [20], however—
for a long time fighting with compiler problems regarding register usage—have not yet
come around to completely integrate it into the main version of the application.
To reduce the wall time of the calculations it might also be worthwhile to utilize

GPUs frommultiple nodes. This requires to extend the application to use multiple host
processes, extending the existing device-to-device communication methods to include
MPI transfers. Given the performance limitations presented in Section 5.2, such an
implementation would also need to use a more advanced inverter algorithm. One such

134

solver could be GCR-DD, which has already been used by Babich et al. on the Edge
cluster at Lawrence Livermore National Laboratory (LLNL) [2].
In terms of hardware it would be interesting to evaluate the use of APUs and similar

hybrid processors. Given the bandwidth requirements of LQCD, those would probably
require on-board, GPU-like memory as found in the Sony Playstation 4. Combined
with an interconnect this could lead to architectures similar to the QPACE system and
avoid the QPI-PCIe interference observed in classical multi-socket, multi-GPU systems.
The work presented has already enabled new studies [91]. For these, calculations

have been performed on the LOEWE-CSC and SANAM supercomputers. Now, work
is under way to extend CL2QCD’s scope by adding further discretizations, namely
staggered fermions. A prototype of the Langevin algorithm—an alternative method
for ensemble generation—has been implemented in a day, reusing building blocks of
the HMC algorithm. It shows the successful modularization of the architecture and
profits from all the optimizations performed to speed up the /D, the inverter and the
HMC.

135

Appendix A.

LOEWE-CSC

LOEWE-CSC is a hybrid supercomputer at the Johann Wolfgang Goethe-Universität
Frankfurt amMain. Built from commodity hardware, including AMDRadeonHD 5870
GPUs, and utilizing a highly optimized HPL [12] it can operate at 740MFLOPS/W.
Thereby it ranked eighth in the Green500 list of November 2010. It is hosted in a
highly efficient data centre, which features an exceptionally low cooling overhead of
less than 8% [10].
As LOEWE-CSC is a university system, it had to be designed to cope with the di-

verse set of requirements arising from a large number of heterogeneous applications.
Besides the LQCD computations, which are covered in detail in the main part of this
thesis, there is also the simulation of heavy-ion collisions using Monte-Carlo transport
simulations. While these simulations have recently been ported to GPU, they tradition-
ally require a large number of single-threaded jobs [102]. Climate model calculations
require petabytes of storage to store their highly resolved data. Yet, other applications
have further requirements. This heterogeneous set of requirements enforced a general
purpose machine.
LOEWE-CSC is implemented as a hybrid cluster of 826 compute nodes in 34 racks.

For details see Table A.1. It has two node types: The details of the GPU nodes can be
found in Table A.2. For jobs requiring large amounts of main memory there are also
nodes without GPUs but more main memory and four instead of two CPUs. These
are called quad nodes. Their details can be found in Table A.3. The resources of the
machine are managed via the Simple Linux Utility for Resource Management (SLURM).

137

Appendix A. LOEWE-CSC

Table A.1.: Key data of the LOEWE-CSC supercomputer

Compute nodes 826

GPU nodes 786

CPU nodes 40

Total CPU cores 20768

Total GPUs 786

Total main memory 55.4TiB

Peak performance (DP) 599TFLOPS

Peak performance (SP) 2.45PFLOPS

Shared storage 2PB

Table A.2.: LOEWE-CSC GPU node data

Server SuperServer 2022TG-HIBQRF

CPUs 2 AMD Opteron 6172

Total cores 24

CPU clock speed 2.1GHz

GPUs 1 AMD Radeon HD 5870

Main memory 64GiB

Interconnect on-board quad data rate (QDR) IB

138

Table A.3.: LOEWE-CSC quad node data

Server SuperServer 2042G-TRF

CPUs 4 AMD Opteron 6172

Total cores 48

CPU clock speed 2.1GHz

Main memory 128GiB

Interconnect on-board QDR IB

139

Appendix B.

SANAM

SANAM, built by an international collaboration of research groups from FIAS and
KACST, is the prototype of a general-purpose 10PFLOPS supercomputer. Similar to
LOEWE-CSC it is based on off-the-shelf components. However, contrary to that older
system it features four GPUs in each node instead of just one. Utilizing a highly optim-
ized HPL implementation [103] it can perform at 2351MFLOPS/W, ranking second in
the Green500 list of November 2012. Its overall HPL performance is 532TFLOPS. The
key data of the system can be found in Table B.1. Details about the nodes can be found
in Table B.2. The resources of the machine are managed via SLURM. Details on how
the GPU scheduling is implemented can be found in Appendix D.

Table B.1.: Key data of the SANAM supercomputer

Compute nodes 304

Total CPU cores 4468

Total GPUs 1216

Total main memory 38.9TiB

Peak performance (DP) 1112.8TFLOPS

Peak performance (SP) 4295.9TFLOPS

141

Appendix B. SANAM

Table B.2.: SANAM compute node data

Server ASUS ESC4000/FDR G2

CPUs 2 Intel Xeon E5-2650

Total cores 16

CPU clock speed 2.0GHz

GPUs 4 AMD FirePro S10000

Main memory 128GiB

Interconnect on-board fourteen data rate (FDR) IB

142

Appendix C.

Development and Test Systems

This appendix gives an overview over the technical specifications of the development
systems used during the development of CL2QCD. I report on their specifications as I
have used them for some of the performance measurements in this thesis.

C.1. gpu-dev00

gpu-dev00 has been the primary development system for any NVIDIA targeted devel-
opment. It is a consumer system that has been equipped with a variety of NVIDIA
GPUs.

Table C.1.: gpu-dev00’s specification

Motherboard ASUS P6T7 WS SUPERCOMPUTER

CPUs Intel Nehalem Core i7-930

CPU Family Nehalem

Total Cores 4

CPU clock speed 2.8GHz (up to 3.06GHz in turbo mode)

Memory 12GiB DDR3 at 1333MHz

Maximum Number of GPUs 3

Operating System Ubuntu Linux

143

Appendix C. Development and Test Systems

C.2. gpu-dev01

gpu-dev01 is a server system similar to the nodes used in LOEWE-CSC, however, based
on Intel instead of AMD CPUs. It has been used for a lot of development targeting
Cypress GPUs. For a long while it has been equipped with an AMD FirePro V7800.

Table C.2.: gpu-dev01’s specification

Server Supermicro 827H-R1400B

Motherboard Supermicro X8DTT-IBX

CPUs 2 Intel Xeon E5520

CPU Family Nehalem

Total Cores 8

CPU clock speed 2.27GHz

Memory 24GiB DDR3 at 1066MHz

Maximum Number of GPUs 1

Operating System Ubuntu Linux

144

C.3. gpu-dev03

C.3. gpu-dev03

gpu-dev03 is a workstation that has mostly been equipped with a varying number of
AMD Radeon HD 7970 GPUs.

Table C.3.: gpu-dev03’s specification

Workstation Supermicro AS-4022G

Motherboard Supermicro H8DG6

CPUs 2 AMD Opteron 6278

CPU Family Piledriver

Total Cores 32

CPU clock speed 2.4GHz (up to 3.3GHz in turbo mode)

Memory 128GB DDR3 at 1600MHz

Maximum Number of GPUs 3

Operating System openSUSE 12.1

145

Appendix C. Development and Test Systems

C.4. gpu-dev04

gpu-dev04 is a workstation that has been been equipped with a varying number of
AMDRadeonHD 7970GPUs, but also hosted AMDRadeonHD 6970 andAMDRadeon
HD 5870 GPUs.

Table C.4.: gpu-dev04’s specification

Workstation Supermicro AS-4022G

Motherboard Supermicro H8DG6

CPUs 2 AMD Opteron 6172

CPU Family K10 (Magny-Cours)

Total Cores 24

CPU clock speed 2.1GHz

Memory 64GB DDR3 at 1333MHz

Maximum Number of GPUs 3

Operating System openSUSE 12.1

146

C.5. titanic

C.5. titanic

titanic is a server system that has not been equipped with GPUs, but was used as a
reference system to execute CPU codes.

Table C.5.: titanic’s specification

Server Supermicro AS-1022GG-TF

Motherboard Supermicro H8DGG-QF

CPUs 2 AMD Opteron 6220

CPU Family Bulldozer

Total Cores 16

CPU clock speed 3.0GHz (up to 3.6GHz in turbo mode)

Memory 64GB DDR3 at 1333MHz

Maximum Number of GPUs 2

Operating System openSUSE 12.1

147

Appendix D.

Scheduling GPUs with SLURM

In every system that allows the execution of multiple applications an important ques-
tion arises: Which application may use which resource at a given point in time?
For CPUs this problem is solved by the OS and cluster resource managers like the

Simple Linux Utility for Resource Management (SLURM). The cluster resource man-
ager sends the individual jobs, in which applications are executed, to the individual
nodes of the cluster and instructs the OS on which CPU cores to run the application,
how much memory the application may consume, and so on. This way it avoids that
two applications compete for the same resource and optimum throughput of the cluster
is ensured.
Once GPUs come into play this becomes more difficult. An OS does not schedule

GPUs. All applications running on a given node can access all of its GPUs. While
two applications using the same GPU will observe increased latencies in GPU kernel
completion, this is not the major problem. As there is no concept of swappable memory
for GPUs, this can also lead to unexpected application crashes if two applications access
the same GPU.
On systems like LOEWE-CSC, which only contain a single GPU, this problem can be

avoided by always scheduling only a single job on each node. This way an application
can always be sure that it has exclusive access to the GPU. On a system with more than
one GPU per node such an approach could, however, lead to a rather suboptimal dis-
tribution of resources. Even a job that only requires a single GPU would be scheduled
four GPUs.
Therefore, the cluster resource manager must also treat the GPUs as consumable

resources, just as CPUs and system memory. The following sections describe how to
achieve this using SLURM for GPUs by NVIDIA and AMD.
The solution presented here has been developed for SLURM version 2.4.4. Using this

version it has been tested extensively on SANAM. It should also work on the current
version 2.6.0 but has not been tested with that version.

D.1. Scheduling NVIDIA GPUs

SLURM provides an out-of-the-box support for scheduling NVIDIA GPUs. It is enabled
by selecting the consumable resources scheduling plug-in and defining the GPUs as
consumable resources. The entries required into themain configuration file slurm.conf

149

Appendix D. Scheduling GPUs with SLURM

Listing D.1: Required entries in the SLURM configuration file to use four GPUs as con-
sumable resources

1 GresTypes=gpu

2 NodeName=<list of nodes> Gres=gpu:4

3 SelectType=select/cons_res

Listing D.2: Content of gres.conf on a system with four NVIDIA GPUs

1 Name=gpu File=/dev/nvidia[0-3]

are shown in Listing D.1. The example is taken from SANAM and, therefore, assumes
four GPUs per node.
Each node that provides a consumable resource requires an additional SLURM con-

figuration file called gres.conf. Listing D.2 gives an example for a node with four
GPUs. The purpose of specifying the device files is that SLURM will not use the node
in case a device is missing.
As mentioned before, the operating system does not handle access of the applications

to the GPUs. Therefore, SLURM utilizes a functionality of the NVIDIA device driver
to restrict access to the GPUs. If the environment variable CUDA_VISIBLE_DEVICES is
set to a comma separated list of device indices, the NVIDIA device driver will only
display those devices to the application. When CUDA_VISIBLE_DEVICES=2,3 is set, an
application will only see the third and fourth GPU in the system. This way it will be
unable to conflict with applications running on the first or second GPU.1

D.2. Scheduling AMD GPUs

SLURM does not provide out-of-the-box support for scheduling AMD GPUs. How-
ever, as the AMD device driver knows a functionality that works the same way as
CUDA_VISIBLE_DEVICES works for NVIDIA GPUs, this functionality can easily be built
on top of the NVIDIA GPU scheduling shown in Section D.1.
The file gres.conf should look as given in Listing D.3 according to SLURM’s doc-

umentation on consumable resources [104]. However, in this case, SLURM will set
CUDA_VISIBLE_DEVICES to nonsense values like 0,0,1,0. Therefore, we have to make
SLURM believe it is actually using NVIDIA GPUs and use the gres.conf given in List-
ing D.2.
As the NVIDIA device files do not exist in a system with AMD GPUs these have to be

created manually. To keep the functionality of SLURM checking whether the devices
are actually existing, it is useful to create the NVIDIA dummy device files based on
the actual device files of the AMD GPUs. A possible implementation for this is shown

1Of course there can still be conflicts caused in other areas of the system, but not because the two applic-
ations are using the same GPU.

150

D.3. Known Issues of the Current Implementation

Listing D.3: Naïve version of gres.conf on a system with four AMD GPUs

1 Name=gpu File=/dev/ati/card[0-3]

Listing D.4: A script to create mockup NVIDIA device files based on the AMD GPUs in
a system

1 #!/bin/bash

2 for FILE in /dev/ati/card*; do

3 touch "/dev/nvidia${FILE#/dev/ati/card}";

4 done

in Listing D.4. This can be included into the SLURM initialization file right before
the invocation of the actual SLURM daemon. The AMD device files are not existent
until the AMD device driver is loaded, which is usually triggered by X. Therefore, the
start-up of SLURM should also be made dependent on X.
Finally, the variable CUDA_VISIBLE_DEVICES needs to be transformed to its AMD

equivalent GPU_DEVICE_ORDINAL. This can be achieved by the script shown in List-
ing D.5. It simply assigns the value of the NVIDIA specific variable to the AMD specific
one. By setting it to an invalid value in case the NVIDIA variable is empty it will mask
out all GPUs for jobs that did not demand any. This is required, as the AMD device
driver will show all devices to an application if the variable GPU_DEVICE_ORDINAL is set
to an empty value. The name of the script has to be given as the value of TaskProlog
in the SLURM configuration file.
Note that it would of course have been possible to modify SLURM itself to fully

support AMD GPUs. However, until that patch would have been merged back into the
upstream version of SLURM, it would have to be ported every time a new version is
released. With the purely configuration based solution presented here, updates can be
applied without any additional overhead.

D.3. Known Issues of the Current Implementation

The current method of scheduling GPUs via SLURM is not perfect. Using this imple-
mentation for multiple months of data production I ran into several limitations.
SLURM sometimes gets confused as to which GPUs are already allocated and al-

locates the same GPU to multiple jobs. I have observed this behaviour in high load
scenarios, that is, when starting many jobs at the same time. My workaround for the
problem is to always add a delay of thirty seconds between launching of jobs.
The issue also affects returning nodes—or the whole cluster—into service after main-

tenance. When adding single nodes the above workaround still works. Thus, to return
multiple nodes into service, I hold waiting jobs and release them with the same thirty
second pause between two jobs. When restarting the whole cluster after maintenance,

151

Appendix D. Scheduling GPUs with SLURM

Listing D.5: SLURM task prolog script for AMD GPUs

1 #!/bin/sh

2 #

3 # A TaskProlog script that will port the CUDA device

4 # restrictions to AMD.

5 #

6

7 if ["X${CUDA_VISIBLE_DEVICES}" == "X"]

8 then

9 # mask all GPU devices

10 echo "export�GPU_DEVICE_ORDINAL=-1"
11 else

12 echo "export�COMPUTE=:0"
13 echo "export�GPU_DEVICE_ORDINAL=$CUDA_VISIBLE_DEVICES"
14 fi

however, holding the jobs does not help. To me it seems that SLURM in that case com-
pletely forgets to mark the GPUs as allocated. As our focus was on getting data from
our simulations, I was unable to investigate this further but just created a script that
kills all pending jobs and recreates them after maintenance.
While not an error, a feature that I would really love to see in SLURM is the capability

to drain a single GPU instead of a whole node. Draining, in this context, means to
prevent it from accepting further jobs. As we were already using the cluster during
commissioning phase there were still some hardware issues. If a GPU started hanging
up or produced calculation errors, I had to disable the whole node instead of the single
GPU. This way we lost four GPUs instead of just one until the node was repaired.
Another feature lacking from the version of SLURMused is the capability to show the

GPUs allocated to a certain job, or a list of jobs ordered by GPUs. This feature would
have two major advantages: In the case of a failing GPU it would allow to quickly
check which jobs are effected. When starting up nodes, it would allow to quickly check
proper allocation of GPUs. As a workaround I always had each job print its allocated
GPUs at the top of its output via a simple echo $GPU_DEVICE_ORDINAL.
While the other issues mostly effect error states, there is also a missing feature that

effects normal job execution. The scheduler is unaware of the PCIe topology. Thus, if a
mixture of single- and dual-GPU jobs is queued, the scheduler will also allocate GPUs
on two different AMD FirePro S10000s to a dual-GPU job. As shown in Chapter 3,
Chapter 4, and Chapter 5 this results in reduced performance. The current workaround
is to only to use single or four GPU assignments.

152

Bibliography

[1] R. Gupta, Introduction to Lattice QCD. Jul. 1998, p. 150. arXiv: 9807028 [hep-

lat] (cit. on pp. 1, 3, 4).

[2] R. Babich, M. A. Clark, B. Joó, G. Shi, R. C. Brower and S. Gottlieb, ‘Scaling
Lattice QCD beyond 100 GPUs’, Sciences-New York, p. 11, Sep. 2011. arXiv:
1109.2935 (cit. on pp. 1, 2, 16, 118, 130, 135, 167).

[3] K. Jansen and C. Urbach, ‘tmLQCD: a program suite to simulateWilson Twisted
mass Lattice QCD’, Quantum, no. May 2009, pp. 1–44, 2009 (cit. on pp. 1, 11,
75).

[4] D. Padua, Ed., Encyclopedia of Parallel Computing. Boston, MA: Springer US,
2011, isbn: 978-0-387-09765-7. doi: 10.1007/978- 0- 387- 09766- 4 (cit. on
pp. 1, 17).

[5] C. Battista, S. Cabasino, F. Marzano, P. S. Paolucci, J. Pech, F. Rapuano, R. Sarno,
G. M. Todesco, M. Torelli, W. Tross, P. Vicini, N. Cabibbo, E. Marinari, G. Parisi,
G. Salina, F. del Rete, A. Lai, M. P. Lombardo, R. Tripiccione and A. Fucci, ‘The
APE-100 Computer: (I) The Architecture’, International Journal of High Speed
Computing, vol. 05, no. 04, pp. 637–656, Dec. 1993, issn: 0129-0533. doi: 10.
1142/S0129053393000268 (cit. on pp. 1, 186).

[6] P. Boyle, D. Chen, N. Christ, M. A. Clark, S. Cohen, A. Gara, L. Levkova, R.
Mawhinney, S. Ohta, K. Petrov, T. Wettig, A. Yamaguchi and C. Cristian, ‘QC-
DOC: A 10 Teraflops Computer for Tightly-Coupled Calculations’, in Proceed-
ings of the ACM/IEEE SC2004 Conference, vol. 00, IEEE, 2004, pp. 40–40, isbn:
0-7695-2153-3. doi: 10.1109/SC.2004.46 (cit. on p. 1).

[7] H. Baier, H. Boettiger, M. Drochner, N. Eicker, U. Fischer, Z. Fodor, A. Frommer,
C. Gomez, G. Goldrian, S. Heybrock, D. Hierl, M. Hüsken, T. Huth, B. Krill,
J. Lauritsen, T. Lippert, T. Maurer, B. Mendl, N. Meyer, A. Nobile, I. Ouda, M.
Pivanti, D. Pleiter, M. Ries, A. Schäfer, H. Schick, F. Schifano, H. Simma, S. Sol-
brig, T. Streuer, K. .-.-H. Sulanke, R. Tripiccione, J. .-.-S. Vogt, T. Wettig and F.
Winter, ‘QPACE – a QCD parallel computer based on Cell processors’, p. 21,
Nov. 2009. arXiv: 0911.2174 (cit. on pp. 1, 14).

[8] P. Vranas, ‘QCD and the BlueGene’, Journal of Physics: Conference Series, vol. 78,
p. 012 080, Jul. 2007, issn: 1742-6588. doi: 10.1088/1742-6596/78/1/012080
(cit. on pp. 1, 186).

[9] H. Meuer, E. Strohmaier, J. Dongarra and H. Simon, Top 500 Supercomputing
Sites. [Online]. Available: http://top500.org (cit. on p. 1).

153

http://arxiv.org/abs/9807028
http://arxiv.org/abs/9807028
http://arxiv.org/abs/1109.2935
http://dx.doi.org/10.1007/978-0-387-09766-4
http://dx.doi.org/10.1142/S0129053393000268
http://dx.doi.org/10.1142/S0129053393000268
http://dx.doi.org/10.1109/SC.2004.46
http://arxiv.org/abs/0911.2174
http://dx.doi.org/10.1088/1742-6596/78/1/012080
http://top500.org

Bibliography

[10] M. Bach, J. de Cuveland, H. Ebermann, D. Eschweiler, J. Gerhard, S. Kalcher,
M. Kretz, V. Lindenstruth, H.-J. Ludde, M. Pollok and D. Rohr, ‘A Comprehens-
ive Approach for a Power Efficient General Purpose Supercomputer’, in 2013
21st Euromicro International Conference on Parallel, Distributed, and Network-
Based Processing, IEEE, Feb. 2013, pp. 336–342, isbn: 978-1-4673-5321-2. doi:
10.1109/PDP.2013.55 (cit. on pp. 1, 137).

[11] W.-c. Feng and K. W. Cameron, The Green500. [Online]. Available: http://www.
green500.org (cit. on p. 2).

[12] M. Bach, M. Kretz, V. Lindenstruth and D. Rohr, ‘Optimized HPL for AMDGPU
and multi-core CPU usage’, Computer Science - Research and Development, vol.
26, no. 3-4, pp. 153–164, Apr. 2011, issn: 1865-2034. doi: 10.1007/s00450-
011-0161-5 (cit. on pp. 2, 137).

[13] D. Rohr, ‘On Development, Feasibility, and Limits of Highly Efficient
CPU and GPU Programs in Several Fields’, PhD thesis, Johann Wolfgang
Goethe-Universität, Frankfurt am Main, 2013 (cit. on pp. 2, 57).

[14] P. Rogers, J. Macri and S. Marinkovic, AMD Heterogeneous Uniform Memory Ac-
cess, 2013. [Online]. Available: http : / / www . slideshare . net / AMD / amd -
heterogeneous-uniform-memory-access (cit. on p. 2).

[15] C. Bonati, G. Cossu, M. D’Elia and P. Incardona, ‘QCD simula-
tions with staggered fermions on GPUs’, p. 22, Jun. 2011. doi:
10.1016/j.cpc.2011.12.011. arXiv: 1106.5673 (cit. on pp. 2, 17, 28, 117).

[16] R. Babich, M. A. Clark and B. Joó, ‘Parallelizing the QUDA Library for Multi-
GPU Calculations in Lattice Quantum Chromodynamics’, in 2010 ACM/IEEE
International Conference for High Performance Computing, Networking, Storage
and Analysis, IEEE, Nov. 2010, pp. 1–11, isbn: 978-1-4244-7557-5. doi: 10 .
1109/SC.2010.40. arXiv: 1011.0024 (cit. on pp. 2, 16, 28, 130).

[17] M. A. Clark, R. Babich, K. Barros, R. Brower and C. Rebbi, ‘Solving Lattice QCD
systems of equations using mixed precision solvers on GPUs’, Computer Physics
Communications, p. 30, Nov. 2010, issn: 0010-4655. doi: 10.1016/j.cpc.2010.
05.002. arXiv: 0911.3191 (cit. on pp. 2, 5, 16, 28, 35, 112, 113, 134).

[18] G. I. Egri, Z. Fodor, C. Hoelbling, S. D. Katz, D. Nogradi and K. K. Szabo, ‘Lattice
QCD as a video game’, Computer Physics Communications, vol. 177, no. 8, p. 11,
Nov. 2006, issn: 0010-4655. doi: 10.1016/j.cpc.2007.06.005. arXiv: 0611022
[hep-lat] (cit. on pp. 2, 15).

[19] C. Pinke, O. Philipsen, C. Schäfer, L. Zeidlewicz and M. Bach, ‘LatticeQCD us-
ing OpenCL’, Dec. 2011. arXiv: 1112.5280 (cit. on pp. 3, 75, 77, 78, 134, 188).

[20] M. Bach, V. Lindenstruth, O. Philipsen and C. Pinke, ‘Lattice QCD based on
OpenCL’, Computer Physics Communications, p. 19, Mar. 2013, issn: 00104655.
doi: 10.1016/j.cpc.2013.03.020. arXiv: 1209.5942 (cit. on pp. 3, 35, 75, 115,
134, 188).

154

http://dx.doi.org/10.1109/PDP.2013.55
http://www.green500.org
http://www.green500.org
http://dx.doi.org/10.1007/s00450-011-0161-5
http://dx.doi.org/10.1007/s00450-011-0161-5
http://www.slideshare.net/AMD/amd-heterogeneous-uniform-memory-access
http://www.slideshare.net/AMD/amd-heterogeneous-uniform-memory-access
http://dx.doi.org/10.1016/j.cpc.2011.12.011
http://arxiv.org/abs/1106.5673
http://dx.doi.org/10.1109/SC.2010.40
http://dx.doi.org/10.1109/SC.2010.40
http://arxiv.org/abs/1011.0024
http://dx.doi.org/10.1016/j.cpc.2010.05.002
http://dx.doi.org/10.1016/j.cpc.2010.05.002
http://arxiv.org/abs/0911.3191
http://dx.doi.org/10.1016/j.cpc.2007.06.005
http://arxiv.org/abs/0611022
http://arxiv.org/abs/0611022
http://arxiv.org/abs/1112.5280
http://dx.doi.org/10.1016/j.cpc.2013.03.020
http://arxiv.org/abs/1209.5942

Bibliography

[21] A. Petitet, R. C. Whaley, J. Dongarra and A. Cleary, HPL - A Portable Implement-
ation of the High-Performance Linpack Benchmark for Distributed-Memory Com-
puters. [Online]. Available: http://www.netlib.org/benchmark/hpl/ (cit. on
p. 3).

[22] G. P. Lepage, Lattice QCD for Novices, 1. 2005, pp. 1–42 (cit. on p. 4).

[23] M. Creutz, Quarks, Gluons and Lattices. Cambridge University Press, 1983, isbn:
0521244056 (cit. on p. 4).

[24] ——, ‘Monte Carlo study of quantized SU(2) gauge theory’, Physical Review
D, vol. 21, no. 8, pp. 2308–2315, Apr. 1980, issn: 0556-2821. doi: 10.1103/
PhysRevD.21.2308 (cit. on p. 6).

[25] N. Cabibbo and E. Marinari, ‘A new method for updating SU(N) matrices in
computer simulations of gauge theories’, Physics Letters B, vol. 119, no. 4-6,
pp. 387–390, Dec. 1982, issn: 03702693. doi: 10.1016/0370-2693(82)90696-7
(cit. on p. 6).

[26] A. Kennedy and B. Pendleton, ‘Improved heatbath method for Monte Carlo cal-
culations in lattice gauge theories’, Physics Letters B, vol. 156, no. 5-6, pp. 393–
399, Jun. 1985, issn: 03702693. doi: 10.1016/0370-2693(85)91632-6 (cit. on
p. 6).

[27] S. Duane, A. Kennedy, B. J. Pendleton and D. Roweth, ‘Hybrid Monte Carlo’,
Physics Letters B, vol. 195, no. 2, pp. 216–222, Sep. 1987, issn: 03702693. doi:
10.1016/0370-2693(87)91197-X (cit. on p. 6).

[28] T. Takaishi and P. de Forcrand, ‘Testing and tuning symplectic integrators for
the hybrid Monte Carlo algorithm in lattice QCD’, Physical Review E, vol. 73, no.
3, p. 036 706, Mar. 2006, issn: 1539-3755. doi: 10.1103/PhysRevE.73.036706
(cit. on p. 6).

[29] A. Meister, Numerik linearer Gleichungssysteme. Wiesbaden: Vieweg, 2008, isbn:
9783834815507. doi: 10.1007/978-3-8348-8100-7 (cit. on p. 8).

[30] T. a. Degrand and P. Rossi, ‘Conditioning techniques for dynamical fermions’,
Computer Physics Communications, vol. 60, no. 2, pp. 211–214, Sep. 1990, issn:
00104655. doi: 10.1016/0010-4655(90)90006-M (cit. on p. 8).

[31] C. Urbach, K. Jansen, A. Shindler and U.Wenger, ‘HMC algorithmwithmultiple
time scale integration and mass preconditioning’, Computer Physics Communic-
ations, vol. 174, no. 2, pp. 87–98, Jan. 2006, issn: 00104655. doi: 10.1016/j.
cpc.2005.08.006. arXiv: 0506011v2 [arXiv:hep-lat] (cit. on p. 9).

[32] K. Wilson, ‘Confinement of quarks’, Physical Review D, vol. 10, no. 8, pp. 2445–
2459, Oct. 1974, issn: 0556-2821. doi: 10.1103/PhysRevD.10.2445 (cit. on
p. 9).

[33] L. Susskind, ‘Lattice fermions’, Physical Review D, vol. 16, no. 10, pp. 3031–
3039, Nov. 1977, issn: 0556-2821. doi: 10.1103/PhysRevD.16.3031 (cit. on
p. 9).

155

http://www.netlib.org/benchmark/hpl/
http://dx.doi.org/10.1103/PhysRevD.21.2308
http://dx.doi.org/10.1103/PhysRevD.21.2308
http://dx.doi.org/10.1016/0370-2693(82)90696-7
http://dx.doi.org/10.1016/0370-2693(85)91632-6
http://dx.doi.org/10.1016/0370-2693(87)91197-X
http://dx.doi.org/10.1103/PhysRevE.73.036706
http://dx.doi.org/10.1007/978-3-8348-8100-7
http://dx.doi.org/10.1016/0010-4655(90)90006-M
http://dx.doi.org/10.1016/j.cpc.2005.08.006
http://dx.doi.org/10.1016/j.cpc.2005.08.006
http://arxiv.org/abs/0506011v2
http://dx.doi.org/10.1103/PhysRevD.10.2445
http://dx.doi.org/10.1103/PhysRevD.16.3031

Bibliography

[34] P. M. Vranas, ‘Chiral symmetry restoration in the Schwinger model with domain
wall fermions’, Physical Review D, vol. 57, no. 3, pp. 1415–1432, Feb. 1998, issn:
0556-2821. doi: 10.1103/PhysRevD.57.1415 (cit. on p. 9).

[35] H. Neuberger, ‘Exactly massless quarks on the lattice’, Physics Letters B, vol.
417, no. 1-2, pp. 141–144, Jan. 1998, issn: 03702693. doi: 10.1016/S0370-
2693(97)01368-3. arXiv: 9707022 [hep-lat] (cit. on p. 9).

[36] A. Shindler, ‘Twisted mass lattice QCD’, Physics Reports, vol. 461, no. 2-3,
pp. 37–110, May 2008, issn: 03701573. doi: 10.1016/j.physrep.2008.03.001
(cit. on p. 9).

[37] A. Ukawa, ‘Computational cost of full QCD simulations experienced by CP-
PACS and JLQCD Collaborations’, Nuclear Physics B - Proceedings Supplements,
vol. 106-107, no. 2, pp. 195–196, Mar. 2002, issn: 09205632. doi: 10.1016/
S0920-5632(01)01662-0 (cit. on p. 10).

[38] C. Bernard, T. Burch, T. DeGrand, C. DeTar, S. Gottlieb, U. Heller, J. Hetrick,
L. Levkova, C. McNeile, K. Orginos, J. Osborn, K. Rummukainen, B. Sugar and
D. Toussaint, The MILC Code, 2010. [Online]. Available: http://www.physics.
utah.edu/~detar/milc/milcv7.pdf (cit. on p. 11).

[39] R. G. Edwards and B. Joo, ‘The Chroma Software System for Lattice QCD’,
pp. 7–9, Sep. 2004. doi: 10.1016/j.nuclphysbps.2004.11.254. arXiv: 0409003
[hep-lat] (cit. on p. 11).

[40] The Columbia Physics System, 2010. [Online]. Available: http :

//phys.columbia.edu/~cqft/physics%5C_sfw/physics%5C_sfw.htm (cit. on
p. 11).

[41] M. Smelyanskiy, K. Vaidyanathan, J. Choi, B. Joó, J. Chhugani, M. A. Clark and
P. Dubey, ‘High-performance lattice QCD for multi-core based parallel systems
using a cache-friendly hybrid threaded-MPI approach’, Proceedings of 2011 In-
ternational Conference for High Performance Computing, Networking, Storage and
Analysis on - SC ’11, p. 1, 2011. doi: 10.1145/2063384.2063477 (cit. on pp. 11,
60, 83, 113).

[42] N. Avico, P. Bacilieri, S. Cabasino, N. Cabibbo, L. Fernández, G. Fiorentini, A.
Lai, M. Lombardo, E. Marinari, F. Marzano, P. Paolucci, G. Parisi, J. Pech, F.
Rapuano, E. Remiddi, R. Sarno, G. Salina, A. Tarancón, G. Todesco, M. Torelli, R.
Tripiccione andW. Tross, ‘From APE to APE-100: From 1 to 100 gflops in lattice
gauge theory simulations’, Computer Physics Communications, vol. 57, no. 1-3,
pp. 285–289, Dec. 1989, issn: 00104655. doi: 10.1016/0010-4655(89)90229-4
(cit. on p. 11).

[43] N. Cabibbo, F. Rapuano and R. Tripiccione, An Introduction to the APE100 Com-
puter (cit. on p. 11).

156

http://dx.doi.org/10.1103/PhysRevD.57.1415
http://dx.doi.org/10.1016/S0370-2693(97)01368-3
http://dx.doi.org/10.1016/S0370-2693(97)01368-3
http://arxiv.org/abs/9707022
http://dx.doi.org/10.1016/j.physrep.2008.03.001
http://dx.doi.org/10.1016/S0920-5632(01)01662-0
http://dx.doi.org/10.1016/S0920-5632(01)01662-0
http://www.physics.utah.edu/~detar/milc/milcv7.pdf
http://www.physics.utah.edu/~detar/milc/milcv7.pdf
http://dx.doi.org/10.1016/j.nuclphysbps.2004.11.254
http://arxiv.org/abs/0409003
http://arxiv.org/abs/0409003
http://phys.columbia.edu/~cqft/physics%5C_sfw/physics%5C_sfw.htm
http://phys.columbia.edu/~cqft/physics%5C_sfw/physics%5C_sfw.htm
http://dx.doi.org/10.1145/2063384.2063477
http://dx.doi.org/10.1016/0010-4655(89)90229-4

Bibliography

[44] F. Belletti, S. Schifano, R. Tripiccione, F. Bodin, P. Boucaud, J. Micheli, O. Pene,
N. Cabibbo, S. de Luca, A. Lonardo, D. Rossetti, P. Vicini, M. Lukyanov, L.
Morin, N. Paschedag, H. Simma, V. Morenas, D. Pleiter and F. Rapuano, ‘Com-
puting for LQCD: apeNEXT’, Computing in Science & Engineering, vol. 8, no. 1,
pp. 18–29, Jan. 2006, issn: 1521-9615. doi: 10.1109/MCSE.2006.4 (cit. on p. 12).

[45] D. Chen, P. Chen, N. H. Christ, R. G. Edwards, G. Fleming, A. Gara, S. Hansen,
C. Jung, A. Kahler, S. Kasow, A. D. Kennedy, G. Kilcup, Y. Luo, C. Malureanu,
R. D. Mawhinney, J. Parsons, C. Sui, P. Vranas and Y. Zhestkov, ‘QCDSP ma-
chines: design, performance and cost’, in Proceedings of the 1998 ACM/IEEE
conference on Supercomputing (CDROM), ser. Supercomputing ’98, Washington,
DC, USA: IEEE Computer Society, 1998, pp. 1–6, isbn: 0-89791-984-X. [Online].
Available: http://dl.acm.org/citation.cfm?id=509058.509113 (cit. on
pp. 12, 118).

[46] P. a. Boyle, D. Chen, N. H. Christ, M. A. Clark, S. D. Cohen, C. Cristian, Z. Dong,
A. Gara, B. Joo, C. Jung, C. Kim, L. a. Levkova, X. Liao, G. Liu, R. D. Mawhinney,
S. Ohta, K. Petrov, T. Wettig and A. Yamaguchi, ‘Overview of the QCDSP and
QCDOC computers’, IBM Journal of Research and Development, vol. 49, no. 2.3,
pp. 351–365, Mar. 2005, issn: 0018-8646. doi: 10.1147/rd.492.0351 (cit. on
pp. 12, 13, 186).

[47] G. Bhanot, D. Chen, A. Gara, J. Sexton and P. Vranas, ‘QCD on the BlueGene/L
Supercomputer’, Nuclear Physics B - Proceedings Supplements, vol. 140, pp. 823–
825, Mar. 2005, issn: 09205632. doi: 10.1016/j.nuclphysbps.2004.11.153
(cit. on p. 13).

[48] J. Doi, ‘Peta-scale Lattice Quantum Chromodynamics on a Blue Gene/Q su-
percomputer’, in 2012 International Conference for High Performance Computing,
Networking, Storage and Analysis, IEEE, Nov. 2012, isbn: 978-1-4673-0806-9. doi:
10.1109/SC.2012.96 (cit. on p. 13).

[49] P. Boyle, ‘The BlueGene/Q supercomputer’, in The 30 International Symposium
on Lattice Field . . ., 2012. [Online]. Available: http://pos.sissa.it/archive/
conferences/164/020/Lattice%202012%5C_020.pdf (cit. on pp. 13, 114, 119).

[50] G. Shi, S. Gottlieb, A. Torok and V. Kindratenko, ‘Design of MILC Lattice QCD
Application for GPU Clusters’, in 2011 IEEE International Parallel & Distributed
Processing Symposium, IEEE, May 2011, pp. 363–371, isbn: 978-1-61284-372-8.
doi: 10.1109/IPDPS.2011.43 (cit. on p. 16).

[51] M. A. Clark and R. Babich, ‘High-efficiency Lattice QCD computations on the
Fermi architecture’, in 2012 Innovative Parallel Computing (InPar), IEEE, May
2012, pp. 1–9, isbn: 978-1-4673-2633-9. doi: 10.1109/InPar.2012.6339591
(cit. on pp. 16, 113).

157

http://dx.doi.org/10.1109/MCSE.2006.4
http://dl.acm.org/citation.cfm?id=509058.509113
http://dx.doi.org/10.1147/rd.492.0351
http://dx.doi.org/10.1016/j.nuclphysbps.2004.11.153
http://dx.doi.org/10.1109/SC.2012.96
http://pos.sissa.it/archive/conferences/164/020/Lattice%202012%5C_020.pdf
http://pos.sissa.it/archive/conferences/164/020/Lattice%202012%5C_020.pdf
http://dx.doi.org/10.1109/IPDPS.2011.43
http://dx.doi.org/10.1109/InPar.2012.6339591

Bibliography

[52] K. Z. Ibrahim, F. Bodin and O. Pène, ‘Fine-grained parallelization of lattice QCD
kernel routine on GPUs’, Journal of Parallel and Distributed Computing, vol. 68,
no. 10, pp. 1350–1359, Oct. 2008, issn: 07437315. doi: 10.1016/j.jpdc.2008.
06.009 (cit. on p. 16).

[53] Y. Osaki and K.-i. Ishikawa, ‘Domain Decomposition method on GPU cluster’,
in The XXVIII International Symposium on Lattice Field Theory, Lattice2010, 2010.
[Online]. Available: http://pos.sissa.it/archive/conferences/105/036/
Lattice%202010%5C_036.pdf (cit. on p. 17).

[54] T.-W. Chiu, T.-H. Hsieh and Y.-Y. Mao, ‘Topological susceptibility in two flavors
lattice QCD with the optimal domain-wall fermion’, Physics Letters B, vol. 702,
no. 2-3, pp. 131–134, Aug. 2011, issn: 03702693. doi: 10.1016/j.physletb.
2011.06.070. arXiv: 1105.4414 (cit. on p. 17).

[55] N. Cardoso and P. Bicudo, ‘Generating SU(Nc) pure gauge lattice QCD config-
urations on GPUs with CUDA’, p. 17, Dec. 2011. doi: 10.1016/j.cpc.2012.10.
002. arXiv: 1112.4533 (cit. on pp. 17, 28, 47, 111).

[56] A. Alexandru, M. Lujan, C. Pelissier, B. Gamari and F. Lee, ‘Efficient Imple-
mentation of the Overlap Operator on Multi-GPUs’, 2011 Symposium on Applic-
ation Accelerators in High-Performance Computing, pp. 123–130, Jul. 2011. doi:
10.1109/SAAHPC.2011.13 (cit. on p. 17).

[57] A. Alexandru, C. Pelissier, B. Gamari and F. Lee, ‘Multi-mass solvers for lattice
QCD on GPUs’, Journal of Computational Physics, vol. 231, no. 4, pp. 1866–1878,
Feb. 2012, issn: 00219991. doi: 10.1016/j.jcp.2011.11.003 (cit. on pp. 17,
28, 113).

[58] B. Jegerlehner, ‘Krylov space solvers for shifted linear systems’, no. December,
pp. 1–16, Dec. 1996. arXiv: 9612014 [hep-lat] (cit. on p. 17).

[59] B. Joó, D. D. Kalamkar, K. Vaidyanathan, M. Smelyanskiy, K. Pamnany, V. W.
Lee, P. Dubey and W. I. Watson, ‘Lattice QCD on Intel Xeon Phi Coprocessors’,
in Supercomputing, J. M. Kunkel, T. Ludwig and H. W. Meuer, Eds., Springer
Berlin Heidelberg, 2013, pp. 40–54, isbn: 978-3-642-38750-0. doi: 10.1007/
978-3-642-38750-0_4 (cit. on pp. 17, 113, 114, 119, 120, 130).

[60] A. Kowalski and X. Shen, ‘Implementing the Dslash Operator in OpenCL’, Tech.
Rep., 2010. [Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.211.7733%5C&rep=rep1%5C&type=pdf (cit. on p. 17).

[61] P. Vranas, G. Bhanot, M. Blumrich, D. Chen, A. Gara, P. Heidelberger,
V. Salapura and J. C. Sexton, ‘The BlueGene/L supercomputer and quantum
ChromoDynamics’, in Proceedings of the 2006 ACM/IEEE conference on
Supercomputing - SC ’06, New York, New York, USA: ACM Press, 2006, p. 50,
isbn: 0769527000. doi: 10.1145/1188455.1188507 (cit. on pp. 18, 118, 186).

158

http://dx.doi.org/10.1016/j.jpdc.2008.06.009
http://dx.doi.org/10.1016/j.jpdc.2008.06.009
http://pos.sissa.it/archive/conferences/105/036/Lattice%202010%5C_036.pdf
http://pos.sissa.it/archive/conferences/105/036/Lattice%202010%5C_036.pdf
http://dx.doi.org/10.1016/j.physletb.2011.06.070
http://dx.doi.org/10.1016/j.physletb.2011.06.070
http://arxiv.org/abs/1105.4414
http://dx.doi.org/10.1016/j.cpc.2012.10.002
http://dx.doi.org/10.1016/j.cpc.2012.10.002
http://arxiv.org/abs/1112.4533
http://dx.doi.org/10.1109/SAAHPC.2011.13
http://dx.doi.org/10.1016/j.jcp.2011.11.003
http://arxiv.org/abs/9612014
http://dx.doi.org/10.1007/978-3-642-38750-0_4
http://dx.doi.org/10.1007/978-3-642-38750-0_4
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.211.7733%5C&rep=rep1%5C&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.211.7733%5C&rep=rep1%5C&type=pdf
http://dx.doi.org/10.1145/1188455.1188507

Bibliography

[62] G. Hull, ‘Life’, Amazing Computer Magazine, vol. 2, pp. 81–84, 1987. [Online].
Available: http : / / www . archive . org / stream / amazing - computing -

magazine-1987-12/Amazing%5C_Computing%5C_Vol%5C_02%5C_12%5C_1987%

5C_Dec%5C#page/n81/mode/2up (cit. on p. 19).

[63] M. Pharr and R. Fernando, Eds., Gpu Gems 2. Amsterdam: Addison-
Wesley Longman, 2005, isbn: 978-0321335593. [Online]. Available:
https://developer.nvidia.com/content/gpu-gems-2 (cit. on p. 19).

[64] BrookGPU. [Online]. Available: http://graphics.stanford.edu/projects/
brookgpu/ (cit. on pp. 24, 26).

[65] Aparapi. [Online]. Available: http://code.google.com/p/aparapi/ (cit. on
p. 28).

[66] B. Catanzaro, M. Garland and K. Keutzer, ‘Copperhead’, in Proceedings of the
16th ACM symposium on Principles and practice of parallel programming - PPoPP
’11, New York, New York, USA: ACM Press, 2011, p. 47, isbn: 9781450301190.
doi: 10.1145/1941553.1941562 (cit. on p. 28).

[67] D. Sharlet, ‘Shevlin Park: Implementing C++ AMP with Clang/LLVM
and OpenCL’, in LLVM Developer’s Meeting, 2012. [Online]. Available:
http://llvm.org/devmtg/2012- 11/Sharlet- ShevlinPark.pdf (cit. on
p. 31).

[68] M. Bach, clBandwidth, 2012. [Online]. Available: https : / / github . com /

theMarix/clBandwidth (cit. on pp. 35, 36, 134, 188).

[69] AdvancedMicro Devices, ‘AMDAccelerated Parallel Processing OpenCL™Pro-
gramming Guide (v2.8)’, Tech. Rep. December, 2012 (cit. on pp. 38, 41, 42, 51,
59–61, 91, 95).

[70] Cuda C Programming Guide, 5.5, July. NVIDIA, 2013. [Online]. Available: http:
//docs.nvidia.com/cuda/cuda-c-programming-guide/index.html (cit. on
pp. 41, 42).

[71] G. Pratx and L. Xing, ‘GPU computing in medical physics: a review.’, Medical
Physics, vol. 38, no. 5, pp. 2685–2697, 2011. doi: 10.1118/1.3578605 (cit. on
p. 53).

[72] B. Schroeder, E. Pinheiro and W.-D. Weber, ‘DRAM errors in the wild’, in Pro-
ceedings of the eleventh international joint conference onMeasurement and modeling
of computer systems - SIGMETRICS ’09, New York, New York, USA: ACM Press,
2009, isbn: 9781605585116. doi: 10.1145/1555349.1555372. [Online]. Avail-
able: http://www.cs.toronto.edu/~bianca/papers/sigmetrics09.pdf (cit.
on p. 54).

[73] S. Nakamoto, ‘Bitcoin : A Peer-to-Peer Electronic Cash System’, Tech. Rep., 2008.
[Online]. Available: http://bitcoin.org/bitcoin.pdf (cit. on p. 55).

[74] Phoenix Miner, 2012. [Online]. Available: https://github.com/phoenix2/
phoenix (cit. on p. 55).

159

http://www.archive.org/stream/amazing-computing-magazine-1987-12/Amazing%5C_Computing%5C_Vol%5C_02%5C_12%5C_1987%5C_Dec%5C#page/n81/mode/2up
http://www.archive.org/stream/amazing-computing-magazine-1987-12/Amazing%5C_Computing%5C_Vol%5C_02%5C_12%5C_1987%5C_Dec%5C#page/n81/mode/2up
http://www.archive.org/stream/amazing-computing-magazine-1987-12/Amazing%5C_Computing%5C_Vol%5C_02%5C_12%5C_1987%5C_Dec%5C#page/n81/mode/2up
https://developer.nvidia.com/content/gpu-gems-2
http://graphics.stanford.edu/projects/brookgpu/
http://graphics.stanford.edu/projects/brookgpu/
http://code.google.com/p/aparapi/
http://dx.doi.org/10.1145/1941553.1941562
http://llvm.org/devmtg/2012-11/Sharlet-ShevlinPark.pdf
https://github.com/theMarix/clBandwidth
https://github.com/theMarix/clBandwidth
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
http://dx.doi.org/10.1118/1.3578605
http://dx.doi.org/10.1145/1555349.1555372
http://www.cs.toronto.edu/~bianca/papers/sigmetrics09.pdf
http://bitcoin.org/bitcoin.pdf
https://github.com/phoenix2/phoenix
https://github.com/phoenix2/phoenix

Bibliography

[75] D. Rohr, ‘ALICE TPC Online Tracking on GPU based on Kalman Filter’, Diplo-
marbeit, Ruprecht-Karls-Universität Heidelberg, 2010 (cit. on p. 57).

[76] M. Bach, pyclKernelAnalyzer, 2012. [Online]. Available: https://github.com/
theMarix/pyclKernelAnalyzer (cit. on pp. 59, 82, 134, 188).

[77] V. Volkov and J. Demmel, ‘Benchmarking GPUs to tune dense linear algebra’, in
2008 SC - International Conference for High Performance Computing, Networking,
Storage and Analysis, IEEE, Nov. 2008, pp. 1–11, isbn: 978-1-4244-2834-2. doi:
10.1109/SC.2008.5214359 (cit. on pp. 59, 61).

[78] N. Govindaraju, S. Larsen, J. Gray and D. Manocha, ‘A Memory Model for Sci-
entific Algorithms on Graphics Processors’, in ACM/IEEE SC 2006 Conference
(SC’06), IEEE, Nov. 2006, pp. 6–6, isbn: 0-7695-2700-0. doi: 10.1109/SC.2006.
2 (cit. on p. 60).

[79] NVIDIA, ‘CUDA C Programming Guide (v5.0)’, Tech. Rep. October, 2012 (cit.
on pp. 60, 61).

[80] M. Bach, clPCI, 2013. [Online]. Available: https://bitbucket.org/marix/
clpci (cit. on pp. 61, 70, 71, 188).

[81] M. Harris, ‘Optimizing Parallel Reduction in CUDA’, Tech. Rep., 2010. [Online].
Available: http://docs.nvidia.com/cuda/cuda-samples/index.html (cit.
on p. 64).

[82] M. Bach, CLPCI2, 2013. [Online]. Available: https://bitbucket.org/marix/
clpci2 (cit. on p. 71).

[83] ‘Developing a linux kernel module using RDMA for GPUDir-
ect’, NVIDIA, Tech. Rep. July, 2013. [Online]. Available: http :

//docs.nvidia.com/cuda/gpudirect-rdma/index.html (cit. on p. 71).

[84] E.-M. Ilgenfritz, K. Jansen, M. P. Lombardo, M. Müller-Preussker, M. Petschlies,
O. Philipsen and L. Zeidlewicz, ‘Phase structure of thermal lattice QCD with
N_{f}=2 twisted mass Wilson fermions’, Physical Review D, vol. 80, no. 9,
p. 094 502, Nov. 2009, issn: 1550-7998. doi: 10.1103/PhysRevD.80.094502.
arXiv: 0905.3112 (cit. on p. 75).

[85] O. Philipsen and L. Zeidlewicz, ‘Cutoff effects of Wilson fermions on the QCD
equation of state to O(gˆ2)’, Physical Review D, vol. 81, no. 7, p. 9, Dec. 2008,
issn: 1550-7998. doi: 10.1103/PhysRevD.81.077501. arXiv: 0812.1177 (cit. on
p. 75).

[86] F. Burger, E. .-.-M. Ilgenfritz, M. Kirchner, M. P. Lombardo,M.Muller-Preussker,
O. Philipsen, C. Pinke, C. Urbach and L. Zeidlewicz, ‘The thermal QCD trans-
ition with two flavours of twisted mass fermions’, vol. 06, p. 11, Feb. 2011.
arXiv: 1102.4530 (cit. on pp. 75, 117).

160

https://github.com/theMarix/pyclKernelAnalyzer
https://github.com/theMarix/pyclKernelAnalyzer
http://dx.doi.org/10.1109/SC.2008.5214359
http://dx.doi.org/10.1109/SC.2006.2
http://dx.doi.org/10.1109/SC.2006.2
https://bitbucket.org/marix/clpci
https://bitbucket.org/marix/clpci
http://docs.nvidia.com/cuda/cuda-samples/index.html
https://bitbucket.org/marix/clpci2
https://bitbucket.org/marix/clpci2
http://docs.nvidia.com/cuda/gpudirect-rdma/index.html
http://docs.nvidia.com/cuda/gpudirect-rdma/index.html
http://dx.doi.org/10.1103/PhysRevD.80.094502
http://arxiv.org/abs/0905.3112
http://dx.doi.org/10.1103/PhysRevD.81.077501
http://arxiv.org/abs/0812.1177
http://arxiv.org/abs/1102.4530

Bibliography

[87] B. Joo, B. Pendleton, A. D. Kennedy, A. C. Irving, J. C. Sexton, S. M. Pickles,
S. P. Booth and U. Collaboration, ‘Instability in the Molecular Dynamics Step
of Hybrid Monte Carlo in Dynamical Fermion Lattice QCD Simulations’, p. 22,
May 2000. doi: 10.1103/PhysRevD.62.114501. arXiv: 0005023 [hep-lat] (cit.
on p. 76).

[88] M. Luescher, ‘A Portable High-Quality Random Number Generator for Lattice
Field Theory Simulations’, Computer Physics Communications, vol. 79, no. 1,
pp. 100–110, Sep. 1993, issn: 00104655. doi: 10.1016/0010-4655(94)90232-1.
arXiv: 9309020 [hep-lat] (cit. on p. 82).

[89] I. U. Nikolaisen, RANLUXCL, 2011 (cit. on p. 82).

[90] W. H. Press, S. A. Teukolsky, W. T. Vetterling and B. P. Flannery, Numerical Re-
cipes 3rd Edition: The Art of Scientific Computing. Cambridge University Press,
2007, vol. 1, p. 1262, isbn: 0521880688. [Online]. Available: http://www.nr.
com/ (cit. on p. 82).

[91] C. Pinke and O. Philipsen, ‘The nature of the Roberge-Weiss transition in N_f=2
QCD with Wilson fermions’, in The XXXI International Symposium on Lattice
Field Theory, Lattice2013, 2013. [Online]. Available: http://www.lattice2013.
uni-mainz.de/presentations/2B/Pinke.pdf (cit. on pp. 97, 132, 135).

[92] G. M. Amdahl, ‘Validity of the single processor approach to achieving large
scale computing capabilities’, Proceedings of the April 18-20, 1967, spring joint
computer conference on - AFIPS ’67 (Spring), 1967. doi: 10 . 1145 / 1465482 .
1465560 (cit. on pp. 99, 164).

[93] AMD Developer Knowledge Base. [Online]. Available: http://developer.amd.
com/resources/documentation-articles/knowledge-base/ (cit. on p. 111).

[94] R. Baron, P. Boucaud, P. Dimopoulos, F. Farchioni, R. Frezzotti, V. Gimenez, G.
Herdoiza, K. Jansen, V. Lubicz, C. Michael, G. Muenster, D. Palao, G. C. Rossi,
L. Scorzato, A. Shindler, S. Simula, T. Sudmann, C. Urbach and U. Wenger,
‘Light Meson Physics from Maximally Twisted Mass Lattice QCD’, no. Novem-
ber, p. 40, Nov. 2009. arXiv: 0911.5061 (cit. on p. 115).

[95] J. Brodkin, IBM Drops Price on Supercomputer, 2007. [Online]. Available: http:
//www.pcworld.com/article/135334/article.html (visited on 06/07/2013)
(cit. on p. 118).

[96] The University of Tennessee, UT Wins $65M National Science Foundation Super-
computing Grant For Next-Generation Computing System, 2008. [Online]. Avail-
able: http://www.tennessee.edu/media/kits/nsf/index.html (visited on
06/07/2012) (cit. on p. 118).

[97] J. Brodkin, With 16 petaflops and 1.6M cores, DOE supercomputer is world’s
fastest, 2012. [Online]. Available: http://arstechnica.com/information-
technology / 2012 / 06 / with - 16 - petaflops - and - 1 - 6m - cores - doe -

supercomputer-is-worlds-fastest/ (visited on 06/07/2012) (cit. on p. 119).

161

http://dx.doi.org/10.1103/PhysRevD.62.114501
http://arxiv.org/abs/0005023
http://dx.doi.org/10.1016/0010-4655(94)90232-1
http://arxiv.org/abs/9309020
http://www.nr.com/
http://www.nr.com/
http://www.lattice2013.uni-mainz.de/presentations/2B/Pinke.pdf
http://www.lattice2013.uni-mainz.de/presentations/2B/Pinke.pdf
http://dx.doi.org/10.1145/1465482.1465560
http://dx.doi.org/10.1145/1465482.1465560
http://developer.amd.com/resources/documentation-articles/knowledge-base/
http://developer.amd.com/resources/documentation-articles/knowledge-base/
http://arxiv.org/abs/0911.5061
http://www.pcworld.com/article/135334/article.html
http://www.pcworld.com/article/135334/article.html
http://www.tennessee.edu/media/kits/nsf/index.html
http://arstechnica.com/information-technology/2012/06/with-16-petaflops-and-1-6m-cores-doe-supercomputer-is-worlds-fastest/
http://arstechnica.com/information-technology/2012/06/with-16-petaflops-and-1-6m-cores-doe-supercomputer-is-worlds-fastest/
http://arstechnica.com/information-technology/2012/06/with-16-petaflops-and-1-6m-cores-doe-supercomputer-is-worlds-fastest/

Bibliography

[98] S. Kalcher, D. Rohr, M. Bach, A. A. Alaqeeli, H. M. Alzaid, V. Lindenstruth,
S. B. Alkhereyf, A. Alharthi, A. Almubarak, I. Alqwaiz, R. Bin Suliman and
D. Eschweiler, ‘SANAM: An Energy- and Cost-Efficient Multi-GPU Supercom-
puter’, 2013 (cit. on p. 119).

[99] N. Ernst, Intels erste GPU-Beschleuniger ab 2.000 US-Dollar, 2012. [Online].
Available: http://www.golem.de/news/xeon-phi-3100-und-5110p-intels-
erste-gpu-beschleuniger-ab-2-000-us-dollar-1211-95669.html (visited
on 06/07/2012) (cit. on p. 119).

[100] ZES Zimmer LMG 95. [Online]. Available: http://www.zes.com/english/
products/single-phase-precision-power-analyzer-lmg95.html (visited
on 25/09/2013) (cit. on p. 121).

[101] J. Gerhard, ‘Refactoring the UrQMD model for many-core architectures’, PhD
thesis, Johann Wolfgang Goethe-Universität, Frankfurt am Main, 2013. [On-
line]. Available: http://publikationen.ub.uni-frankfurt.de/frontdoor/
index/index/docId/31346 (cit. on p. 134).

[102] J. Gerhard, V. Lindenstruth and M. Bleicher, ‘Relativistic Hydrodynamics on
Graphic Cards’, p. 9, Jun. 2012. arXiv: 1206.0919 (cit. on p. 137).

[103] D. Rohr, M. Bach, M. Kretz and V. Lindenstruth, ‘Multi-GPUDGEMM andHigh
Performance Linpack on Highly Energy-Efficient Clusters’, IEEE Micro, vol. 31,
no. 5, pp. 18–27, Sep. 2011, issn: 0272-1732. doi: 10.1109/MM.2011.66 (cit. on
p. 141).

[104] Consumable Resources in SLURM. [Online]. Available: http://slurm.schedmd.
com/cons%5C_res.html (cit. on p. 150).

[105] A. Klöckner, N. Pinto, Y. Lee, B. Catanzaro, P. Ivanov and A. Fasih, ‘PyCUDA
and PyOpenCL: A scripting-based approach to GPU run-time code generation’,
Parallel Computing, vol. 38, no. 3, pp. 157–174, Mar. 2012, issn: 01678191. doi:
10.1016/j.parco.2011.09.001 (cit. on p. 172).

162

http://www.golem.de/news/xeon-phi-3100-und-5110p-intels-erste-gpu-beschleuniger-ab-2-000-us-dollar-1211-95669.html
http://www.golem.de/news/xeon-phi-3100-und-5110p-intels-erste-gpu-beschleuniger-ab-2-000-us-dollar-1211-95669.html
http://www.zes.com/english/products/single-phase-precision-power-analyzer-lmg95.html
http://www.zes.com/english/products/single-phase-precision-power-analyzer-lmg95.html
http://publikationen.ub.uni-frankfurt.de/frontdoor/index/index/docId/31346
http://publikationen.ub.uni-frankfurt.de/frontdoor/index/index/docId/31346
http://arxiv.org/abs/1206.0919
http://dx.doi.org/10.1109/MM.2011.66
http://slurm.schedmd.com/cons%5C_res.html
http://slurm.schedmd.com/cons%5C_res.html
http://dx.doi.org/10.1016/j.parco.2011.09.001

Glossary

C++ A programming language with support for object-oriented programming. 12–14,
28, 29, 78, 163, 166

C++11 The latest version of C++. 31, 71, 77

C++ AMP An extension of the C++ language for parallel computing. 31–33, 183

CL2QCD is an OpenCL based implementation of twisted mass LQCD developed in the
context of this thesis. iii, 2, 3, 11, 75–78, 81–84, 86–89, 97, 100–103, 105, 106,
109, 111, 114, 120, 121, 123, 124, 127, 128, 130, 132–135, 143, 174, 179, 180,
185, 188, 189

Johann Wolfgang Goethe-Universität Frankfurt am Main The University at which
the work for this thesis was performed. 1, 75, 137

LOEWE-CSC A supercomputer equipped with AMD GPUs. For details see
Appendix A. iii, 1, 2, 77, 109, 110, 115, 130, 132, 135, 137–139, 141, 144, 149,
164, 181

2MN Second order minimal. 6, 117

3dfx Interactive A GPU manufacturer. Build the Voodoo Graphics PCI GPU, which
was the first successful consumer-GPU providing hardware-accelerated 3D
graphics. 24, 175

above At a numerical index of higher numeric value. 87

ACM Association for Computing Machinery. 167

ALICE A Large Ion Collider Experiment. 57

ALU Algorithmic and Logic Unit. 24, 25

AMD is a manufacturer of GPUs and x86 CPUs. 1–3, 20, 24, 26, 29, 31, 38, 41, 42, 53,
56, 59, 60, 64, 65, 71, 73, 83, 93, 96, 109, 110, 118, 120, 133, 134, 144, 149–151,
163–170, 173

AMD FirePro AMD’s series of GPUs for use in workstations and servers. 53, 109, 120

AMD FirePro S10000 The GPU that is used in SANAM. 2, 20, 26, 54–56, 61, 64–72,
76, 103, 106, 107, 109, 112–115, 117, 119, 120, 128–131, 133, 142, 152, 174,
178–180, 187, 189

163

Glossary

AMD FirePro V7800 A GPU by AMD. Based on the Cypress chip, like the AMD
Radeon HD 5870, it features 2GB of memory instead of just 1GB. 109, 115, 144

AMD Opteron 6172 A CPU by AMD. This CPU is used in LOEWE-CSC. 20, 133, 138,
139, 146

AMD Opteron 6220 A CPU by AMD. iii, 117, 121, 133, 147

AMD Opteron 6278 A CPU by AMD. 20, 145

AMD Radeon HD 5870 The GPU that is used in LOEWE-CSC. 2, 17, 20, 21, 23, 26, 38,
39, 47–51, 57, 58, 60, 89, 91–101, 109, 111–115, 117, 133, 134, 137, 138, 146,
164–166, 177–180, 187

AMD Radeon HD 6970 A GPU by AMD. Successor to the AMD Radeon HD 5870. 20,
23, 26, 38, 51, 53, 60, 97, 109, 111, 112, 146, 164, 178, 179

AMD Radeon HD 7970 A GPU by AMD. Successor to the AMD Radeon HD 6970. The
first GPU to be based on the GCN architecture. iii, 20, 23, 26, 38, 41, 43, 44, 51,
56–59, 91, 95–97, 100, 101, 109, 112, 114, 117, 119–122, 133, 134, 145, 146, 174,
177–179, 187, 189

Amdahl’s Law Amdahl stated, that the inherently serial part of an application limits
the speed-up that can be achieved by parallelization of part of an application [92].
This can be generalized to general optimization problems, where the speed-up in
the overall application is always limited by the proportion of the code which has
not received optimization. 99

AoS A method of storing data in memory. See Subsection 3.1.4 for details. 45, 47, 82,
83, 88, 89, 91, 93, 133, 178, 179

APE A computer specialized on LQCD computations. 1, 11, 12, 18, 164, 186

APE-100 A computer specialized on LQCD computations. Successor of the APE. 11,
164

apeNEXT A computer specialized on LQCD computations. Successor of the APE and
APE-100. 12

API Application Programming Interface. 2, 24, 29, 113, 166

APP Accelerated Processing Platform. 173

APU Accelerated Processing Unit. 73, 135

ARM A company that designs GPUs and reduced instruction set computing (RISC)
CPUs. They license their designs for integration into actual chips by third parties.
27, 29, 169

164

Glossary

ASIC Application-Specific Integrated Circuit. 12, 13

ATI A manufacturer of GPUs. Was acquired by AMD in 2006. 24

AVX Advanced Vector Extensions. 11

BAGEL A domain specific compiler for LQCD on Blue Gene systems. 14

below At a numerical index of smaller numeric value. 87

BiCGSTAB BiConjugate Gradient STABilized method. 8, 99, 130

Bitcoin A virtual currency. 55, 56

BLAS Basic Linear Algebra Subprograms. 27, 28, 30, 32–34, 183

Blue Gene A family of supercomputers by IBM. 1–3, 13, 14, 18, 119, 120, 165, 186,
189

Blue Gene/L The first generation of the Blue Gene family of supercomputers. 13, 14,
118

Blue Gene/Q The third generation of the Blue Gene family of supercomputers. 13, 14,
114, 118, 119

BrookGPU An early GPGPU programming model. 24

C A programming language. 12, 13, 45, 165

C99 The version of C on which OpenCL is based. 29, 60

CAL Compute Abstraction Layer. 26

Catalyst The proprietary driver provided by AMD for its GPUs. 93, 95–98, 100–102,
109, 179, 180

Cayman A GPU chip based on a VLIW architecture. It is used in the AMD Radeon HD
5870. 20, 42, 60

Cell Broadband Engine A microprocessor developed by IBM, Sony and Toshiba. Its
most prominent use was in the Sony Playstation 3. 13, 14, 168, 173, 174

CERN The laboratory of the European Organization for Nuclear Research located near
Geneva. iii, 185

CG Conjugate Gradients. 8, 16, 17, 99, 101, 102, 106, 114, 115, 119, 120, 128–133, 180

Cg A language for vertex and pixel shaders developed by NVIDIA. It can generate
Direct3D or OpenGL shader programs. 15, 16, 28

165

Glossary

Chroma A library for lattice field theory. 11, 16

Clang A C and C++ compiler based on LLVM. 31, 33

constant memory is a part of the GPU’s memory that can only be written to from the
host. It is main purpose is to provide efficient access to values that are accessed
by all threads concurrently. 23

CPS Columbia Physics System. 11, 16

CPU Central Processing Unit. iii, 1–3, 11, 15, 17, 19–21, 23, 24, 27, 29, 31–33, 56,
59–65, 70, 71, 73, 77, 83, 91, 100, 101, 106, 110, 113–115, 117–126, 128, 129,
131, 133, 134, 137–139, 141–147, 149, 163, 164, 167–172, 174, 178, 180, 181

CU Compute Unit. 20, 21, 23, 25, 26, 57, 59–61, 95, 96, 169, 175

Cypress A GPU chip based on a VLIW architecture. It is used in the AMD Radeon HD
5870. 20, 26, 42, 60, 144, 164

DDR Double Data Rate. 13, 166

DDR2 The second generation of DDR memory. 14

DDR3 The third generation of DDR memory. 14, 143–147

Direct3D A graphics API by Microsoft. Dominant on the Windows OS. Originally it
was also known as DirectX, which includes input, sound and 2D functionalities.
24, 25, 165

DirectGMA A technology to perform peer-to-peer data transfers in between AMD
GPUs. 71–73, 105, 106, 128, 130, 179, 188

DP Double Precision. iii, 11, 14–16, 20, 25, 26, 76, 83, 89, 91, 110, 112–114, 119, 120,
130, 133, 134, 138, 141, 180

DSP Digital Signal Processor. 13

ECC In combination with memory used to designate memory that can detect and cor-
rect a certain kind of errors as it might be inflicted by background radiation or as
a sign of memory becoming bad. 25, 53–56, 178, 187

Edge A cluster at LLNL equipped with NVIDIA Tesla M2050 GPUs. 135

EIB Element Interconnect Bus. 14

Evergreen A GPU architecture by AMD. 26

FAIR Facility for Antiproton and Ion Research. iii, 185

166

Glossary

FDR A data rate of the IB interconnect. The signalling rate is about 14Gbit/s. 142

Fermi A GPU architecture by NVIDIA. 16, 20, 25, 26, 53

FFT Fast Fourier-Transform. 19

FIAS Frankfurt Institute for Advanced Studies. 2, 109, 141

fixed-function pipeline A compute engine that performs a specific operation, in con-
trast to a processor that can run a variety of applications. 24

FMA Fused Multiply-Add. 11, 14

Fortran A programming language. 11, 14, 28

FPGA Field-Programmable Gate Array. 14, 15, 175

FPU Floating-Pointer Unit. 11, 13, 14, 23, 25, 26, 170

G80 A GPU architecture by NVIDIA. 25

GCN Graphics Core Next is a GPU architecture by AMD. 26, 164, 173, 174

GCR Generalized Conjugate Residual. 16, 167

GCR-DD A domain-decompositioned variant of the GCR algorithm [2]. 16, 130, 135

global memory is the normal main memory of the GPU that can be read and written
to by all threads running on the GPU. This memory is also used to store data
transferred to or from the CPU. 21, 23, 25, 29

GLSL OpenGL Shader Language. 31

Gordon Bell Prize A prize awarded each year by the Association for Computing Ma-
chinery (ACM) to recognize outstanding achievement in HPC. 12, 118

GPGPU General-Purpose computation on Graphics Processing Units. iii, 19, 25–27,
31–33, 53, 134, 165

GPU Graphics Processing Unit. iii, 1–3, 13, 15–21, 23–29, 31, 32, 35, 36, 38, 40–43, 49,
51, 53–57, 59–73, 75–78, 82–87, 89, 91, 95, 98–102, 104–107, 109–115, 117–126,
128–135, 137, 138, 141–147, 149–152, 163–175, 177–181, 183, 189

gpu-dev00 A GPU development system equipped with NVIDIA GPUs. For details see
Table C.1. 143

gpu-dev01 A GPU development system equipped with AMD GPUs. For details see
Table C.2. 144

gpu-dev03 A GPU development system equipped with AMD GPUs. For details see
Table C.3. 145

167

Glossary

gpu-dev04 A GPU development system equipped with AMD GPUs. For details see
Table C.4. 81, 114, 117, 121, 124–128, 146, 180

GPUDirect A technology to perform peer-to-peer data transfers in between NVIDIA
GPUs. 71

Green500 An alternative ranking of supercomputers according to energy-efficiency.
The systems are ranked according to their performance in FLOPS/W when run-
ning the HPL benchmark. To qualify a system must be located in the TOP500. 2,
3, 14, 15, 137, 141, 169

GSI GSI Helmholtzzentrum für Schwerionenforschung GmbH. iii, 185

half-precision A floating point format using only 2B. Usually only used as a storage
format. 16

halo Extra cells stored on a device that are not part of the volume this device has
responsibility for. They are used to allow a device to read into volume of neigh-
bouring devices and have to be updated via copies from those. 86

HMC hybrid Monte Carlo. iii, 5–7, 9, 10, 17, 75–78, 96, 99, 102, 103, 109, 112, 114,
115, 117, 121–123, 126, 127, 133, 135, 177, 180, 181

HPC High-Performance Computing. 1, 3, 167

HPL The most popular implementation of the High Performance Computing Linpack
Benchmark, which is the basis of the TOP500 list of supercomputers. http://

www.netlib.org/benchmark/hpl/. 3, 15, 137, 141, 168

hyper-threading Intel’s variant of SMT. 21, 27, 60

I/O Input/Output. 13, 15, 89, 99

IB InfiniBand. 17, 138, 139, 142, 167, 172

IBM International Business Machines Corporation. 13, 165, 171, 172

IBM PowerXCell 8i An enhanced version of Cell Broadband Engine processor used in
the Sony Playstation 3. 14, 15

ILDG International Lattice Data Grid. 82

ILP Instruction Level Parallelism. 26, 59, 82

Intel is a manufacturer of x86 CPUs. 29, 31, 32, 60, 83, 110, 144, 168, 169

Intel Xeon E5-2650 A CPU by Intel. 142

Intel Xeon E5-2680 A CPU by Intel. 114, 119

168

http://www.netlib.org/benchmark/hpl/
http://www.netlib.org/benchmark/hpl/

Glossary

Intel Xeon E5-2690 A CPU by Intel. 20

Intel Xeon E5520 A CPU by Intel. 144

Intel Xeon Phi An accelerator by Intel. Like a GPU based on a PCIe card, but using
x86 cores. 1, 3, 17, 27, 32, 113, 114, 119, 130

Intel Xeon Phi 5110P An accelerator by Intel. 114, 119, 120

Intel Xeon Phi B1PRQ-7110P An accelerator by Intel. 113, 114

Intel Xeon X5680 A CPU by Intel. 113

Interlagos A CPU family by AMD. 117

KACST King Abdulaziz City for Science and Technology. 2, 141

Kepler A GPU architecture by NVIDIA. 20, 25, 171

kernel The atomic unit of application execution on a GPU. 27, 35, 36, 42, 47, 60, 77,
78, 80, 81

LHC Large Hadron Collider. iii, 185

Linux An open-source, Unix-like OS. 24

LLNL Lawrence Livermore National Laboratory. 135, 166

LLVM A collection of modular and reusable compiler and tool-chain technologies. Cur-
rently the basis of all major OpenCL compilers. 31, 33, 166

LMG95 A power meter that is accepted to be used for Green500 submissions. 121

local memory A small on-die memory local to each CU. It usually shares performance
characteristics of the register file, but can be accessed by all threads of a work
group. 23, 25, 26, 32, 175

lower An index in a specific direction that has a smaller numeric value. Given peri-
odic boundary conditions this might also be a larger numeric value, for which
incrementing by the given offset gets wrapped around by the modulo arithmetic.
87

LQCD Lattice QCD is the only a priory approach to describing the strong force. iii,
1–4, 10–18, 28, 35, 75, 76, 82, 86, 89, 91, 109, 118–120, 133, 135, 137, 163–165,
172, 174, 175, 181

Mali A GPU by ARM. 27

169

Glossary

many-core A processor with more cores than a multi-core processor. Typical values
are in the order of 20 to 64. Current multi-core processors have up to 12 cores.
Many-cores are usually equipped with hundreds of FPUs, while multi-cores have
significantly less than 100 FPUs. 17

MESI A method of managing cache lines in coherent multi-CPU systems. 14

MFC Memory Flow Controller. 15

Microsoft A soft- and hardware vendor. Mostly known for is OS and office suite. 31,
33, 166, 175

MILC MILC Lattice Computation. 11, 16

MIMD Multiple Instructions Multiple Data. 12

MMU Memory-Management Unit. 13

MPI Message Passing Interface. 13, 130, 134

Northern Islands A GPU architecture by AMD. 26

Numpy A Python library proving linear-algebra, statistics, plotting and other numer-
ical functionality. 65

NVIDIA is a GPU manufacturer of GPUs. 2, 3, 16, 18–20, 24–26, 28, 29, 33, 38, 41–43,
51, 53, 60, 64, 71, 91, 109, 110, 113, 114, 117, 130, 133, 134, 143, 149–151, 165,
167–172, 174

NVIDIA CUDA is a GPU programming language and library by NVIDIA. 2, 16–19, 25,
28, 29, 33, 47, 71, 111, 113, 117, 130, 134, 172, 186

NVIDIA GeForce 3 A GPU by NVIDIA. 24

NVIDIA GeForce 7900 GTX A GPU by NVIDIA. 15

NVIDIA GeForce 8800 GTX A GPU by NVIDIA. 15, 17, 25

NVIDIA GeForce GTX 280 A GPU by NVIDIA. 16, 17, 20, 25, 113

NVIDIA GeForce GTX 285 A GPU by NVIDIA. 16, 130

NVIDIA GeForce GTX 295 A dual GPU graphics board by NVIDIA. 111

NVIDIA GeForce GTX 480 A GPU by NVIDIA. 20, 21, 23, 25, 38, 41, 109, 113, 170

NVIDIA GeForce GTX 580 A GPU by NVIDIA. Its chip is a shrink of that found in the
NVIDIA GeForce GTX 480. 38, 109, 111, 170

NVIDIA GeForce GTX 680 A GPU by NVIDIA. Its the successor of the NVIDIA Ge-
Force GTX 580. 20, 109, 112, 113

170

Glossary

NVIDIA GeForce GTX Titan A GPU by NVIDIA. It is the top-of-the-line of the Kepler
generation. 26

NVIDIA Quadro NVIDIA’s series of GPUs for workstation graphics. 53

NVIDIA Tesla NVIDIA’s series of GPUs for use a pure compute devices in workstations
and servers. 25, 53

NVIDIA Tesla C1060 A GPU by NVIDIA. 17

NVIDIA Tesla K20 A GPU by NVIDIA. 20, 113, 114, 119, 120

NVIDIA Tesla M2050 A GPU by NVIDIA. 16, 166

NVIDIA Tesla M2070 A GPU by NVIDIA. 17

NVIDIA Tesla M2090 A GPU by NVIDIA. 113

NVIDIA Tesla S2050 A GPU by NVIDIA. 17, 117

OpenACC A pragma based framework for GPU computing. 32, 33, 183

OpenCL An open standard for GPU programming. iii, 2, 3, 17, 19–21, 23, 25–29, 31,
33, 36, 47, 59, 60, 64, 65, 70, 71, 73, 75, 77, 78, 80–84, 88, 98, 100, 111, 113, 117,
133, 134, 163, 165, 169, 172, 179, 185, 188, 189

OpenGL Open Graphics Library. 15, 16, 24–27, 31, 165, 171

OpenMP A pragma based framework for parallel computing on shared-memory archi-
tectures. 32–34, 183

OS Operating System. 14, 17, 31, 33, 149, 166, 169, 170, 175

PBO An OpenGL extension. 16

PC Personal Computer. 11, 27

PCIe Peripheral Component Interconnect Express. 17, 18, 61, 65, 70, 71, 107, 114, 126,
128, 132, 134, 135, 152, 169, 188

PE Processing Element. 20, 25, 26, 86

PGT Pure Gauge Theory. 6, 75

PIO Programmed Input/Output. 65, 70, 71, 73, 106

PowerPC Performance Optimization With Enhanced RISC — Performance Comput-
ing. 14

PowerPC 440 A 32-bit integer CPU by IBM. 13, 14

171

Glossary

PowerPC A2 A CPU by IBM. 14

PPU Power Processing Unit. 14

private memory is a part of the GPU’s memory that is partitioned among all threads
running on the GPU. Each thread as exclusive use of a different part of this
memory. 21, 23, 57

PRNG Pseudo-Random Number Generator. 75, 77, 82, 110, 172

PyOpenCL A module to utilize OpenCL from Python. For details see ‘PyCUDA and
PyOpenCL: A scripting-based approach to GPU run-time code generation’ [105].
29, 71

Python A scripting language. 28, 29, 36, 61, 65, 96, 170, 172

QCD Quantum Chromodynamics is the gauge theory describing the strong force. iii,
1, 3, 4, 6, 12, 75, 89, 91, 117, 120, 132, 133, 169, 185, 186

QCDOC A computer specialized on LQCD computations. 1, 13, 14, 186

QCDSP A computer specialized on LQCD computations. 12, 13, 118

QDR A data rate of the IB interconnect. The signalling rate is about 10Gbit/s. 138,
139

QGP Quark Gluon Plasma. 75

QMP A message-passing library for LQCD applications. 13

QPACE A computer specialized on LQCD computations. 1, 14, 15, 135

QPI Quick Path Interconnect. 65, 71, 73, 106, 107, 128, 129, 131, 135, 180

QUDA is a LQCD framework for NVIDIA GPUs based on NVIDIA CUDA. 16, 113, 114

RAM Random Access Memory. 12, 13, 15, 18, 53

Ranlux A PRNG that can be used in a multi-threaded fashion. 82, 172

RANLUXCL An OpenCL based implementation of Ranlux. It is available at https:
//bitbucket.org/ivarun/ranluxcl. 82

RAS Restrictive Additive Schwarz. 17

REC12 A memory and bandwidth conserving technique of storing SU (3) matrices. 4,
111, 113, 134, 189

RHMC Rational Hybrid Monte Carlo. 17

172

https://bitbucket.org/ivarun/ranluxcl
https://bitbucket.org/ivarun/ranluxcl

Glossary

RISC Reduced Instruction Set Computing. 164

SANAM A supercomputer equipped with AMD GPUs. For details see Appendix B. iii,
2, 61–72, 75–77, 105, 109, 110, 114, 115, 117–119, 122, 124–133, 135, 141, 149,
150, 163, 178–180, 189

scratch register A register that is not located in the GPU’s register file, but in the
global memory of the GPU. Scratch registers incur high latencies when accessed,
which often reduces application performance. 23, 57, 59, 82, 95, 97, 98, 103

SDK Software Development Kit. 173

SFU Special-Function Unit. 25, 26

SIMD Single Instruction Multiple Data. 11, 12, 14, 19–21, 27, 83

SIMT Single Instruction Multiple Threads. 20, 21

SLURM The Simple Linux Utility for Resource Management is an open-source work-
loadmanager that allows to schedule multiple jobs on a cluster, fairly distributing
the resources between them. http://slurm.schedmd.com/. 137, 141, 149–152

SMT Simultaneous Multi-Threading. 14, 83, 168

SoA A method of storing data in memory. See Subsection 3.1.4 for details. 45, 47–56,
60, 83, 88–91, 93, 94, 133, 174, 178–181, 187

SoC System on a Chip. 13, 14

Sony One of the companies involved in the creation of the Cell Broadband Engine.
165, 173

Sony Playstation 3 A game console by Sony. 14, 165, 168

Sony Playstation 4 A game console by Sony. 24, 135

Southern Islands A GPU generation by AMD, based on the GCN architecture. 26

SP Single Precision. 11, 15–17, 20, 24–26, 76, 110, 111, 113, 114, 130, 134, 138, 141,
174, 180

SPE Synergistic Processing Element. 14, 15

spinor A vector of four complex three-vectors. 4, 8–10, 16, 17, 77, 78, 80, 82–84, 88,
89, 91, 99

SPMD Single Process Multiple Data. 12

sprofile A profiler for GPU applications included in AMD’s Accelerated Processing
Platform (APP) software development kit (SDK). 100

173

http://slurm.schedmd.com/

Glossary

SPU Synergistic Processing Unit. 14, 15

stride The offset, usually in bytes, between two areas of memory. This typically oc-
curs when storing multi-dimensional data or using a SoA layout. In the former
it describes the offset between two rows, in the latter the offset between two ar-
rays. The performance implications of different strides are discussed in Subsec-
tion 3.1.5. 47, 50–52, 178

SU(3) A group of 3 × 3 matrices with a determinant of 1. 4–6, 10, 82, 89, 91, 93, 99,
172

Tahiti A GPU chip based on the GCN architecture. It is used in the AMD Radeon HD
7970 and the AMD FirePro S10000. 20, 26, 53, 56, 102

TAO A programming language. 12

TCA Total Cost of Acquisition. iii, 118–120, 133

Tesla A GPU architecture by NVIDIA. Not to be confused with the product series of
the same name. 20, 25, 26

Texas Instruments TMS320C31-50 A processor by Texas Instruments capable of SP
floating-point arithmetic at a peak speed of 50MFLOPS. 12

texture The representation of an image in GPU memory. 60

thread A sequence of instructions with some state. 42

titanic A CPU development system. For details see Table C.5. 117, 121, 147

tmlqcd An LQCD program suite for calculation with twisted-mass fermions. It was
used as a reference code for CL2QCD. 11, 115, 117, 120, 121, 130, 189

TOP500 A list of the 500 fastest supercomputers ranked according to the LINPACK
benchmark. It is updated twice a year. http://top500.org/. 1, 2, 14, 15, 168

Toshiba One of the companies involved in the creation of the Cell Broadband Engine.
165

TPC Time Projection Chamber. 57

upper An index in a specific direction that has a higher numeric value. Given peri-
odic boundary conditions this might also be a smaller numeric value, for which
decrementing by the given offset gets wrapped around by the modulo arithmetic.
87

VLIW Very Long Instruction Word. 26, 165, 166

VLSI Very-Large-Scale Integration. 11

174

http://top500.org/

Glossary

Voodoo Graphics PCI A GPU by 3dfx Interactive. The first successful consumer-GPU
that provided hardware-accelerated 3D graphics. 24, 163

Wilson fermions A discretization variant of LQCD. iii, 9, 133

Windows An OS by Microsoft. 24, 31, 33, 166

work group A set of threads that will be scheduled to the same CU and can commu-
nicate via local memory. 20, 169

Xilinx Virtex-5 LX110T An FPGA by Xilinx. 15

175

List of Figures

1.1. Development of CPU and GPU compute power in comparison [14]. The
CPU performance is that of the fastest consumer CPU at that time. The
GPU performance is that of the fastest consumer GPU by AMD at that
time. 2

1.2. Lattice with sites, links, lattice spacing and dimensions 4
1.3. Flow-chart of the HMC algorithm. 7

2.1. The GPU memory is split into multiple regions. Registers and local
memory are located within the CUs. The main memory of the GPU, not
located within the GPU chip, is used for global memory, private memory
and constant memory. Caches are not always available and might only
be used by special memory requests. 22

3.1. Bandwidth measurements are repeated until the error of the average is
below 1%. 37

3.2. Achieved bandwidth on an AMDRadeon HD 5870 when copying buffers
of varying sizes for a selection of data types. The deviant shape of the
double8 curve is caused by cache effects. 39

3.3. Achieved bandwidth when copying buffers of 50MiB size using a selec-
tion of data types on various GPUs. 40

3.4. The memory controller coalesces memory accesses by a group of neigh-
bouring threads into actual memory requests. In the sketched example
the group contains 16 threads. The data is stored as float4, such that
each element has a size of 16B. Thus, the threads, each requesting 16B,
together fully utilize a memory request of 256B. 41

3.5. The memory controller coalesces memory accesses by a group of neigh-
bouring threads into actual memory requests. For types of 32B the
16B reads issued by the threads—shown in grey—leave holes—shown
in white—in the actual memory request, wasting bandwidth. 42

3.6. Each thread accesses the buffer using a given offset in addition to its
thread index. In this example an element is 16B and the offset is one
element. Thus, the last thread cannot be fed by the same 256B memory
transaction as the first 15 threads. 43

3.7. Achieved bandwidth on an AMDRadeon HD 7970 when copying 50MiB
using the double (8 B) data type for different offsets into the buffer. . . . 44

177

List of Figures

3.8. An array of structure build from two scalars can be stored in twoways. In
the AoS layout the two elements—x and y—of each structure are stored
next to each other in consecutive memory. In the SoA approach the
elements of the structure are stored independently. All x elements are
stored in one array, all y elements in another. 45

3.9. Copy performance using SoA for structures of two float4 (16B) on the
AMD Radeon HD 5870. In the case of separate buffers the stride is
chosen by the GPU driver. 48

3.10.Performance using SoA for a structure of two float4 (16B) to copy 50MiB
of data on the AMD Radeon HD 5870. 49

3.11.Performance using SoA for a structure of four float4 (16B) to copy
50MiB of data on the AMD Radeon HD 5870. 50

3.12.An algorithm to find proper SoA strides. 52
3.13.Performance using SoA for a structure of two float4 (16B) to copy 50MiB

of data on the AMD Radeon HD 6970. 53
3.14.Copy performance using the double (8 B) data type on one GPU of an

AMD FirePro S10000 with and without ECC enabled. 54
3.15.Copy performance using a structure for two entries of type double (8 B)

on one GPU of an AMD FirePro S10000 with and without ECC enabled.
The data was stored in an SoA layout with optimized strides. 55

3.16.Copy performance for 50MiB of data with different numbers of threads
per CU on an AMD Radeon HD 5870. 58

3.17.Copy performance for 50MiB of data with different numbers of threads
per CU on an AMD Radeon HD 7970. 58

3.18.Utilized Bandwidth when copying data from GPU to CPU memory in a
node of SANAM . 62

3.19.Latency when copying data from GPU to CPU memory in a node of
SANAM . 62

3.20.Utilized bandwidth transferring data from GPU to CPU memory and
back in a node of SANAM . 63

3.21.Latency transferring data from GPU to CPU memory and back in a node
of SANAM . 63

3.22.Utilized Bandwidth transferring data between the two GPUs of a single
AMD FirePro S10000 in a node of SANAM. 66

3.23.Latency transferring data between the twoGPUs of a single AMDFirePro
S10000 in a node of SANAM . 66

3.24.Utilized Bandwidth transferring data between two GPUs of separate
AMD FirePro S10000s in a node of SANAM. 67

3.25.Latency transferring data between two GPUs of separate AMD FirePro
S10000s in a node of SANAM. 67

3.26.Utilized Bandwidth swapping buffer contents between the two GPUs of
an AMD FirePro S10000 in a node of SANAM 68

3.27.Latency swapping buffer contents between the two GPUs of an AMD
FirePro S10000 in a node of SANAM . 68

178

List of Figures

3.28.Utilized Bandwidth swapping buffer contents between two GPUs of sep-
arate AMD FirePro S10000s in a node of SANAM. 69

3.29.Latency swapping buffer contents between two GPUs of separate AMD
FirePro S10000s in a node of SANAM. 69

3.30.Utilized bandwidth transferring data between two GPUs using Direct-
GMA on SANAM. 72

3.31.Utilized Bandwidth swapping buffer contents between the two GPUs of
an AMD FirePro S10000 in a node of SANAM using DirectGMA. 72

4.1. Class hierarchy of the gauge-field classes in the old architecture of
CL2QCD [19]. The arrows depict generalization relationships. 77

4.2. Class hierarchy of the OpenCL modules in the old architecture of
CL2QCD [19]. The arrows depict generalization relationships. 78

4.3. Class diagram overview of the new architecture. To reduce complexity
usage relations, members and operations are not shown. 79

4.4. A blur filter reads neighbouring pixels. Thus, a halo of width 1 is required. 86
4.5. Storage of the halo by extending the lattice. Accesses to the local volume

must be offset to account for the halo cells. 87
4.6. Storage of the halo by extending the lattice and taking advantage of the

periodic nature. Accesses to the local volume can completely ignore the
volume. Reading the lower halo part must wrap around to the top, which
is hidden in the index calculation. 88

4.7. The halo exchange pattern using two devices and AoS storage. 89
4.8. The halo exchange pattern using two devices and SoA storage with two

lanes. Contrary to Abbildung 4.7, the devices are sketched below each
other. 90

4.9. Utilized bandwidth for multiple versions of the /D kernel on the AMD
Radeon HD 5870. 92

4.10.The graph shows multiple layout variants for storing the gauge field.
Each row represents a different storage variant. The label shows the ker-
nel version in Abbildung 4.9 and the text using the storage variant shown
in this row. The grid spacing denotes the size of elements used for ac-
cess. Elements that are accessed by lock-stepped threads in the /D kernel
are given a darker colour. Thus, white elements would be fetched when
reading 256B from memory but discarded afterwards. 94

4.11. /D kernel performance for a 243 × 12 lattice on the AMD Radeon HD
7970 using multiple versions of the Catalyst driver. The classic kernel
uses distinct functions to implement the calculation for each direction.
The unified kernel uses a loop over the directions, using branching in-
side the unified function to implement the direction-specific parts of the
calculation. Driver versions in between 12.4 and 13.6 provided the same
performance as Version 12.4. Catalyst 13.8 provides the same perform-
ance as 13.6. For the AMD Radeon HD 5870 and the AMD Radeon HD
6970 no performance variations were observed. 97

179

List of Figures

4.12.Bandwidth utilization of the /D on the AMDRadeonHD 5870 using Cata-
lyst 12.4 for small lattices. 98

4.13.Performance of the CG inverter for a 243 × 8 lattice when checking the
residual only every N iterations. 102

5.1. Performance of the SP heatbath kernel. 110
5.2. Performance of the SP over-relaxation kernel. 111
5.3. Performance of the DP /D kernel. 112
5.4. HMC runtimes in seconds for set-up C for fixed Nτ = 8 116
5.5. HMC runtimes in seconds for set-up C for fixed Nσ = 24 116
5.6. HMC runtimes in seconds for set-ups A, B and C on a 243 × 8 lattice . . 117
5.7. Runtime for a single HMC step using the Z12 set-up with β = 3.8175 and

κ = 0.1634937. 118
5.8. Average power consumption of one HMC step 122
5.9. Maximum power consumption during one HMC step 123
5.10.Energy efficiency measured in HMC steps per energy consumed. 124
5.11.Modelled energy efficiency of multi-GPU systems and actual efficiency

on gpu-dev04 normalized to that of an identical single-GPU system. . . 125
5.12.Time for one step of the HMC algorithm on gpu-dev04 if multiple in-

stances of CL2QCD are running concurrently. 127
5.13.Time for one step of the HMC algorithm on SANAM if multiple instances

of CL2QCD are running concurrently on the same node. 127
5.14. Strong scaling of the /D operator on the AMD FirePro S10000 GPUs in

SANAM for multiple lattice sizes. The jump at two GPUs is caused by
communicating either between GPUs attached to the same CPU or GPUs
attached to different CPUs involving QPI in the communication. 129

5.15. Strong scaling of the CG solver on the AMD FirePro S10000 GPUs in
SANAM for multiple lattice sizes. The jump at two GPUs is caused by
communicating either between GPUs attached to the same CPU or GPUs
attached to different CPUs involving QPI in the communication. 129

5.16.Weak scaling of the /D operator on the AMD FirePro S10000 GPUs in
SANAM for two different local lattice sizes. 131

5.17.Weak scaling of the CG solver on the AMD FirePro S10000 GPUs in
SANAM for two different local lattice sizes. The jump at two GPUs is
caused by communicating either between GPUs attached to the same
CPU or GPUs attached to different CPUs involving QPI in the commu-
nication. 131

1. Auf einer AMD Radeon HD 5870 beim Kopieren erreichte Datenrate für
einen Datentyp von 32B der per SoA auf zwei Segmente mit Typen von
16B verteilt gespeichert wird. 187

2. Laufzeit für einen Schritt des HMC. 189

180

List of Tables

2.1. Theoretical peak performance of a variety of GPUs and CPUs. BW de-
notes bandwidth . 20

4.1. Possible mappings of LQCD types to SoA storage. The table shows how
many SoA lanes are required to store the LQCD type using a given basic
type for storage. 91

5.1. Parameter values of the three set-ups for the HMC performance bench-
mark. The value of mπ is only approximate. 115

5.2. TCA per MFLOP for a variety of machines used for LQCD 118
5.3. TCA per MFLOP for hypothetical workstations. The performances for

the systems not based on GPUs by AMD are taken from ‘Lattice QCD on
Intel Xeon Phi Coprocessors’ [59]. 119

5.4. TCA per MFLOP for hypothetical minimum acquisition cost systems
based on a consumer system. The performances for the systems not
based on GPUs by AMD are taken from ‘Lattice QCD on Intel Xeon Phi
Coprocessors’ [59]. 120

A.1. Key data of the LOEWE-CSC supercomputer 138
A.2. LOEWE-CSC GPU node data . 138
A.3. LOEWE-CSC quad node data . 139

B.1. Key data of the SANAM supercomputer 141
B.2. SANAM compute node data . 142

C.1. gpu-dev00’s specification . 143
C.2. gpu-dev01’s specification . 144
C.3. gpu-dev03’s specification . 145
C.4. gpu-dev04’s specification . 146
C.5. titanic’s specification . 147

181

List of Listings

2.1. A simple scalar implementation and invocation of the saxpy routine
from the BLAS library. 27

2.2. A simple implementation and invocation of the saxpy routine from the
BLAS library in NVIDIA CUDA. 28

2.3. A simple implementation and invocation of the saxpy routine from the
BLAS library in OpenCL. 30

2.4. A simple implementation and invocation of the saxpy routine from the
BLAS library in C++ AMP. 32

2.5. A simple implementation and invocation of the saxpy routine from the
BLAS library. using OpenACC . 33

2.6. A simple implementation and invocation of the saxpy routine from the
BLAS library. using OpenMP . 34

3.1. A copy kernel using the float4 datatype 36
3.2. An example of using float4 as the storage type for a structure containing

only float elements. 46

4.1. A macro to utilize strided loops on GPUs and blocked loops on CPUs.
Line-continuation characters have been removed to improve readability. 84

4.2. The macro used to implement parallel for loops on GPUs. This macro re-
places the GPU part of the macro shown in Listing 4.1. Contrary to List-
ing 4.1 it does not differntiate between device types but between problem
sizes. Again, line-continuation characters have been removed. 99

D.1. Required entries in the SLURM configuration file to use four GPUs as
consumable resources . 150

D.2. Content of gres.conf on a system with four NVIDIA GPUs 150
D.3. Naïve version of gres.conf on a system with four AMD GPUs 151
D.4. A script to create mockup NVIDIA device files based on the AMD GPUs

in a system . 151
D.5. SLURM task prolog script for AMD GPUs 152

183

Zusammenfassung

Große internationale Kooperationsprojekte am LargeHadron Collider (LHC) amCERN,
sowie zukünftig an der Facility for Antiproton and Ion Research (FAIR) an der GSI
Helmholtzzentrum für Schwerionenforschung GmbH (GSI), beschäftigen sich mit dem
Verständnis der Quantenchromodynamik (QCD), der Wechselwirkung zwischen Gluo-
nen und Quarks, den Bausteinen aller hadronischer Materie. Störungstheoretischen
Ansätzen ist die QCD allerdings nur im Bereich hoher Energien zugänglich. Ab initio
lässt sie sich für niedrigere Energien nur durch die Diskretisierung auf ein euklidisches
Gitter in Raum und Zeit rechnen. Dieser Ansatz ist als Gitter-QCD bekannt.
Gitter-QCD-Rechnungen werden aufgrund ihres hohen Rechenbedarfs auf den größ-

ten wissenschaftlichen Clustern durchgeführt und haben wiederholt deren Architek-
tur beeinflusst. Mit dem Aufkommen der Nutzung von Grafikprozessoren für nicht-
grafische Berechnungen (GPGPU) wurden diese auch für die Berechnung der Gitter-
QCD interessant. Anders als traditionell für die Gitter-QCD genutzte Rechner sind
diese ein Massenmarktprodukt, was Vorteile in Hinblick auf Preis und Weiterentwick-
lung verspricht.
Im Rahmen dieser Dissertation wurde CL2QCD entwickelt, eine auf OpenCL basie-

rende Anwendung, welche Gitter-QCD-Rechnungen sowohl auf Grafikprozessoren als
auch auf traditionellen Prozessoren ermöglicht. Anders als andere GPGPU-Anwen-
dungen für Gitter-QCD ist CL2QCD nicht auf Grafikprozessoren eines einzelnen Her-
stellers beschränkt. CL2QCD bietet nicht nur eine hohe Rechenleistung, sondern über-
trifft Systeme ohne Grafikprozessor auch in der Energieeffizienz. Außerdem ermöglicht
CL2QCDdie Nutzung günstiger Hardware und skaliert auf mehrere Grafikprozessoren.
Um die Rechenleistung von CL2QCD zu ermöglichen, wurden die Eigenschaften der

Grafikprozessoren intensiv studiert und mehrere Optimierungstechniken für Anwen-
dungen, welche durch die erreichbare Datenrate beim Speicherzugriff limitiert sind,
evaluiert und entwickelt.

Einführung

QCD ist eine auf SU (Nc) basierende Eichtheorie mit fermionischen Feldern und Eich-
feldern. In der Natur hat Nc, die Anzahl der Farben, den Wert drei. Gitter-QCD ermög-
licht auf dieser Theorie basierende Rechnungen dadurch, dass die Zustandssumme

Z =
∫
DAµDψDψe−SQCD (1)

185

Zusammenfassung

mit der Wirkung

SQCD =
∫
d4x

(1
4
FµνF

µν −ψM(Aµ)ψ
)

(2)

auf einem vierdimensionalen Raum-Zeit-Gitter diskretisiert wird. Das diskretisierte
Gitter besteht aus dem Spinorfeld auf den Knotenpunkten des Gitters und den Linkva-
riablen auf den Kanten. Letztere werden anstelle des Eichfeldes verwendet und gehen
durch ein Integral entlang der Kante aus diesem hervor.
Die diskretisierte Zustandssumme enthält immer noch so viele Integrationsvariablen

wie das Gitter Linkvariablen enthält. Deshalb werden Monte-Carlo-Verfahren verwen-
det, um das Integral durch Abtastung des Phasenraumes auszuwerten. Das wichtigste
Verfahren hierfür ist das hybride Monte-Carlo-Verfahren (HMC), welches auf Basis ei-
ne Markov-Prozesses in einem fiktiven molekulardynamischen System eine Kette von
Gitterkonfigurationen erstellt. Hierbei entspricht die Wahrscheinlichkeit für eine Kon-
figuration, in der Kette enthalten zu sein, ihrem Gewicht in der Zustandssumme.
Der fermionische Teil der Zustandssumme lässt sich ausintegrieren, was allerdings

zur Berechnung der Determinante der Fermionmatrix führt. Um diese nicht berechnen
zumüssen, werden zwei Pseudofermionfelder eingeführt. Dies führt zu einer effektiven
Wirkung:

Seff(U,φ) = Seich(U) +φ†RD
−1(U)φI . (3)

Die Berechnung der inversen Fermionmatrix wird aufgrund ihrer hohen Kosten durch
die Lösung des entsprechenden Gleichungssystems

ψ =D−1φ⇒Dψ = φ (4)

ersetzt. Außerdem lässt sich die Fermionmatrix in eine Diagonalmatrix und /D, eine
Matrix welche ausschließlich Nebendiagonalen enthält, aufteilen. Die Anwendung von
/D auf das Pseudofermionfeld dominiert die Rechenzeit in der Gitter-QCD.
Um den Anforderungen an Rechenleistung und Speichersystem gerecht zu werden,

wurden immer wieder neue Technologien adaptiert und spezielle Systeme für die Git-
ter-QCD entwickelt, auch wenn dies häufig die Portierung tausender Zeilen Code be-
deutete [61]. Über die Jahre gab es hierbei eine Verschiebung von vollen Eigenentwick-
lungen zur Nutzung von Massenmarktprodukten. Frühe Maschinen, wie die APE [5],
wurden explizit nur für die Gitter-QCD gebaut, und Speicher und Rechenleistung ex-
plizit auf diese Anwendung abgestimmt. Die Blue Gene [8] hingegen ist ein kommerzi-
elles Produkt. Allerdings basiert sie architektonisch auf QCDOC [46], welche explizit
für die Gitter-QCD entwickelt wurde. All diesen Architekturen ist gemeinsam, dass
die Kommunikation zwischen benachbarten Prozessoren besonders effizient ist.
Seit dem Aufkommen von GPGPU werden auch Grafikprozessoren für die Gitter-

QCD verwendet. Allerdings basieren die meisten Anwendungen auf NVIDIA CUDA
und sind damit auf Grafikprozessoren dieses Herstellers beschränkt, obwohl herstel-
lerübergreifende Standards existieren. Selbst die nicht auf NVIDIA CUDA basierenden
Lösungen sind größtenteils nur auf Prozessoren dieses Herstellers getestet.

186

0 10 20 30 40 50 60 70 80 90 100

60

80

100

Größe des kopierten Speichers /MiB

D
at
en

ra
te

/
G
B
/s

Naive Abstände
Optimierte Abstände

Abbildung 1.: Auf einer AMD Radeon HD 5870 beim Kopieren erreichte Datenrate für
einen Datentyp von 32B der per SoA auf zwei Segmente mit Typen von
16B verteilt gespeichert wird.

Optimierungstechniken

Die Rechenleistung von Gitter-QCD-Anwendungen wird vor allem durch die beim Zu-
griff auf den Speicher verfügbare Datenrate bestimmt. Außerdem unterscheidet sich
die Charakteristik von Speicherzugriffen eines Grafikprozessors deutlich von denen ei-
nes klassischen Prozessors. So optimiert der Cache eines Grafikprozessors vor allem
gleichzeitige Zugriffe unterschiedlicher Threads, während er auf einem klassischen
Prozessor aufeinander folgende Zugriffe des gleichen Threads optimiert. Deshalb habe
ich Optimierungen untersucht, welche den Zugriff auf den Speicher betreffen.
Ein wichtiger Punkt bei der optimalen Nutzung der verfügbaren Datenrate ist der

verwendete Datentyp. Die in der Gitter-QCD verwendeten Datentypen sind über 100B
groß. Ein Benchmark, bei dem nur Daten kopiert werden, zeigt aber, dass auf einer
AMD Radeon HD 7970 bereits Typen ab 64B lediglich 91GB/s nutzen lassen. Einfa-
chere Typen, wie zum Beispiel solche mit nur 8B, erlauben es aber, über 200GB/s zu
nutzen.
Möchte man größere Datentypen auf hochperformante Datentypen abbilden, indem

man das sogenannte SoA-Pattern nutzt, zeigt sich, dass die relative Positionierung der
Daten im Speicher sich stark auf die erreichbaren Datenraten auswirkt. Durch einen
im Rahmen dieser Arbeit entwickelten Algorithmus, der den Abstand zwischen den
einzelnen Datensegmenten optimiert, lässt sich, wie in Abbildung 1 zu sehen ist, für
Daten beliebiger Größe die bestmögliche Datenrate erzielen.
Die Untersuchung des Einflusses von ECC auf die erreichbaren Bandbreiten zeigt

auf einer AMD FirePro S10000 einen Verlust von etwa der Hälfte der erreichbaren Da-

187

Zusammenfassung

tenrate. Datenratensensitive Anwendungen sollten sich deshalb um andere Formen der
Fehlererkennung bemühen.
Da auf einem Grafikprozessor die Anzahl der einem Thread zur Verfügung stehen-

den Register nicht fix ist, sondern von der Anzahl der gleichzeitig ausgeführten Threads
abhängt, wurde auch untersucht, wie sich deren Nutzung auf die erreichbare Datenrate
auswirkt. Es zeigt sich, dass bereits eine geringe Anzahl an Threads die maximale Da-
tenrate erreichen kann, so dass in solchen Anwendungen mit der maximalen Anzahl
an Registern gearbeitet werden kann.
Ein wichtiger Unterschied zwischen Grafikprozessoren und klassischen Gitter-QCD-

Maschinen besteht in der Kommunikation zwischen benachbarten Prozessoren. Gitter-
QCD-Maschinen verfügen für gewöhnlich über ein Torus-Netzwerk, in dem benach-
barte Prozessoren direkt miteinander kommunizieren können. Häufig ist dies sogar
von Cache zu Cache möglich. Grafikprozessoren sind hingegen auf die Mithilfe des
Hauptprozessor angewiesen. Die Untersuchung verschiedener Kommunikationsmus-
ter zeigt, dass es im Allgemeinen am effektivsten ist, die Details der Kommunikation
OpenCL zu überlassen. Für kleine Datenmengen kann allerdings die Latenz verrin-
gert werden, indem der Hauptprozessors direkt auf den Speicher des Grafikprozessors
zugreift. Hängen alle Grafikprozessoren im gleichen PCIe-Baum, lässt sich durch die
Nutzung von DirectGMA eine noch schnellere Kommunikation erreichen, welche dann
auch nicht mehr vom Hauptprozessor abhängt.
Für diese Analysen wurden mehrere Anwendungen erstellt, welche die Vermessung

der Eigenschaften sowie die Analyse von GPU-Anwendungen erlauben [68, 76, 80].

CL2QCD

Die im Rahmen dieser Arbeit entwickelte Anwendung nutzt die untersuchten Optimie-
rungen, um Grafikkarten bei der Berechnung von Gitter-QCD optimal auszunutzen.
Die Anwendung ist modular aufgebaut, so dass die Domänenlogik und die Optimie-
rung auf die benutzten Prozessoren entkoppelt sind. So konnten sich meine Coautoren
von „LatticeQCD using OpenCL“ [19] und „Lattice QCD based on OpenCL“ [20] auf
die Physik konzentrieren. Ein Prototyp des Langevin-Algorithmus, einer Alternative
zum HMC, wurde innerhalb eines Tages entwickelt und profitierte bereits von allen
Optimierungen.
Zusätzlich zu den im Allgemeinen beschriebenen Optimierungen musste unter an-

derem die Formulierung des /D an den Compiler angepasst werden, so dass dieser nicht
unnötig ressourcenhungrigen Code generierte. Um die in Frankfurt durchgeführten
Studien zu ermöglichen, wurde außerdem besonderes Augenmerk auf die erreichte Re-
chenleistung bei kleinen Gittern gelegt. Zusätzlich wurde eine, für die Domänenlogik
transparente, Möglichkeit geschaffen, die Ausführung auf mehrere Grafikprozessoren
zu verteilen. Dies erlaubt Rechnungen, die nicht in den Speicher eines einzelnen Pro-
zessors passen.

188

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

tmlqcd auf
2 AMD Opteron 6220

AMD Radeon HD 7970

AMD FirePro S10000

4.61

1.07

0.86

Ausführungszeit / h

Abbildung 2.: Laufzeit für einen Schritt des HMC.

Ergebnisse

Die Implementierung des /D in CL2QCD erreicht auf einer AMD Radeon HD 7970 bis
zu 125GFLOPSmit doppelter Genauigkeit. Dies ist die höchste veröffentlichte Rechen-
leistung für einen /D mit doppelter Genauigkeit. Auf aktuellen Grafikprozessoren über-
trifft die Rechenleistung im gesamten HMC die eines Systems mit zwei Serverprozes-
soren, auf welchen die Referenzanwendung tmlqcd läuft, um das vierfache. Dies ist in
Abbildung 2 dargestellt.
Die auf die Rechenleistung normalisierten Anschaffungskosten lassen sich bei der

Nutzung von CL2QCD bis auf circa $0.012/MFLOPS senken. Andere GPU-basierte Git-
ter-QCD-Anwendungen liegen im gleichen Bereich. Auf dem Großrechner SANAM,
welcher weniger auf Gitter-QCD optimiert ist, liegen die Kosten bei $0.033/MFLOPS,
und damit in der gleichen Größenordnung wie bei einer Blue Gene.
Die im Vergleich zu einem System ohne Grafikprozessoren um einen Faktor vier hö-

here Rechenleistung überträgt sich eins zu eins auf eine bessere Energieeffizienz. Durch
die Nutzung mehrerer Grafikprozessoren in einem einzelnen System lässt sich dieser
Vorteil sogar bis zu einem Faktor von 5.25 steigern. Hierbei ist allerdings auf eine hin-
reichende Kühlung der Grafikprozessoren zu achten.
Bei der Nutzungmehrerer Grafikprozessoren skaliert CL2QCD für hinreichend große

Gitter mit einer Effizienz von 85% linear. Im /D erreichen die vier Prozessoren auf zwei
AMD FirePro S10000 bis zu 400GFLOPS. Im iterativen Gleichungssystemlöser werden
250GFLOPS erreicht.

Ausblick

CL2QCD ermöglicht kostengünstiges, energieeffizientes und schnelles Rechnen vonGit-
ter-QCD. Aktuell wird bereits daran gearbeitet, weitere Varianten der Gitter-QCD zu
unterstützen. Nächste Schritte wären die Einbindung weiterer Optimierungstechniken
wie REC12, die weitere Verbesserung der Parallelisierung über mehrere Grafikprozes-
soren und die Optimierung auf weitere von OpenCL unterstützte Prozessoren. Insbe-
sondere die Nutzung kombinierter Haupt- und Grafikprozessoren ist interessant.

189

	Abstract
	Contents
	Introduction
	Lattice QCD
	The Lattice
	The Heatbath Algorithm
	The HMC Algorithm
	Inversions
	The Actions
	Computational Costs

	Traditional Lattice QCD Systems
	PCs and PC Clusters
	APE
	QCDSP
	QCDOC
	Blue Gene
	QPACE

	Utilization of GPUs
	Lattice QCD as a Video Game
	QUDA
	Other Efforts

	Conclusion

	GPGPU
	GPUs as General-Purpose Many-Core Processors
	The Execution Model
	The Memory Model
	GPU-Performance Explained
	Traditional GPUs
	Development of NVIDIA GPUs
	Development of AMD GPUs
	Other Devices

	Programming Models
	NVIDIA CUDA
	OpenCL
	OpenGL Computer Shaders
	C++ AMP
	OpenACC
	OpenMP 4.0
	Conclusion

	Optimization Techniques
	Bandwidth
	clBandwidth
	Data Type
	Buffer Alignment
	AoS versus SoA
	SoA Stride
	ECC
	Conclusion

	Registers
	Cache Usage
	Communication
	Communication between Host and Device
	Communication between Devices
	Bidirectional Communication between Devices
	DirectGMA
	Summary

	CL2QCD
	Application Requirements
	Architecture
	The Initial Architecture for Hybrid Systems
	The Second Generation Architecture
	Common Architectural Features
	Common Code for CPUs and GPUs
	Utilizing Multiple Devices

	Optimization
	Global Memory Storage Formats
	Dslash Operator
	Inverter
	Hybrid Monte Carlo
	Multi-Device

	Results
	Comparison to Existing Solutions
	Compute Time
	Total Cost of Acquisition
	Energy Consumption

	Scaling to Multiple GPUs
	Throughput
	Latency
	Problem Size
	Conclusion

	Results obtained via CL2QCD

	Conclusion
	LOEWE-CSC
	SANAM
	Development and Test Systems
	gpu-dev00
	gpu-dev01
	gpu-dev03
	gpu-dev04
	titanic

	Scheduling GPUs with SLURM
	Scheduling NVIDIA GPUs
	Scheduling AMD GPUs
	Known Issues of the Current Implementation

	Bibliography
	Glossary
	List of Figures
	List of Tables
	List of Listings
	Zusammenfassung

