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Zusammenfassung

Diese Arbeit beschäftigt sich mit zwei Themenkomplexen im Schnitt der Bereiche
der konvexen algebraischen Geometrie und der nichtlinearen Optimierung.

Zunächst wird ein neues Verfahren zum Lösen polynomieller Optimierungspro-
bleme über Polytopen entwickelt. Aus Sicht der konvexen algebraischen Geometrie
werden derartige Probleme üblicherweise mithilfe von Positivstellensätzen aus der
reellen algebraischen Geometrie modelliert. Durch die Beschränkung der Grade der
Positivstellensatzzertifikate erhält man so eine Hierarchie von semidefiniten Pro-
grammen, die jeweils untere Schranken für das ursprüngliche Problem liefern. In
der Optimierung ist es gängig, nichtlineare Optimierungsprobleme mit Hilfe von
Branch and Bound-Verfahren zu lösen. Wir entwickeln in dieser Arbeit ein neues
Branch and Bound-Verfahren, bei dem die Positivstellensatzrelaxierung zum Ein-
satz kommt, um untere Schranken zu generieren. Darüber hinaus entwickeln wir
eine neue Fehlerschranke für die Relaxierung, die auf Handelmans Positivstellen-
satz beruht. Dieses Ergebnis wird im Folgenden genutzt, um die Konvergenz des
resultierenden Branch and Bound-Verfahrens zu beweisen.

Der zweite Schwerpunkt dieser Arbeit liegt auf Enthaltenseinsfragen für Po-
lyeder und Spektraeder. Durch die Anwendung von Positivstellensätzen hat die
semidefinite Programmierung in den letzten Jahren stark an Bedeutung für die
Approximation polynomieller Optimierungsprobleme gewonnen. Während die Zu-
lässigkeitsbereiche der linearen Programmierung, Polytope und Polyeder, bereits
eingehend studiert und weitestgehend verstanden sind, sind die Zulässigkeitsbe-
reiche der semidefiniten Programmierung, sogenannte Spektraeder, ein wichtiger
Gegenstand aktueller Forschung. Wir klassifizieren zunächst die Komplexität ver-
schiedener Enthaltenseinsfragen von Polyedern und Spektraedern. Darüber hinaus
wird eine Hierarchie von hinreichenden Bedingungen für das Enthaltensein eines
Spektraeders in einem zweiten vorgestellt.
Im folgenden wird auf beide Themenbereiche detailliert eingegangen.

Positivstellensatz Branch and Bound-Verfahren

Wir entwickeln ein neues Verfahren zum Lösen von polynomiellen Optimierungs-
problemen, das heißt der Optimierung einer polynomiellen Zielfunktion p(x) ∈
R[x1, . . . , xn] über einer semialgebraischen Menge K,

minimiere p(x)

unter der Nebenbed. x ∈ K.
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Zusammenfassung

Diese Klasse von Optimierungsproblemen ist sehr weit gefasst, es können unter
anderem viele kombinatorische Optimierungsprobleme in der obigen Form formu-
liert werden. Entsprechend ist das Lösen dieser Probleme im Allgemeinen äußerst
schwierig. In der konvexen algebraischen Geometrie ist es eine gängige Herange-
hensweise, mit Hilfe von Positivstellensätzen Hierarchien von semidefiniten Pro-
grammen aufzustellen, deren Lösungen Näherungen an die Optimallösung des po-
lynomiellen Optimierungsproblems liefern. Beginnend mit der Arbeit von Lasserre
[46] wurde inzwischen eine große Bandbreite an Verfahren und Ergebnissen zu
diesem Thema entwickelt ([51, 53]). Grundsätzlich betrachtet man das Problem
zunächst in der dualen Form

maximiere t

unter den Nebenbed. p(x)− t ≥ 0,

x ∈ K.

Die Nebenbedingungen werden dann durch schwächere, aber einfacher handhab-
bare Bedingungen ersetzt. Abhängig vom verwendeten Positivstellensatz kann das
resultierende Problem mit Hilfe der linearen oder der semidefiniten Programmie-
rung gelöst werden.
Unser Hauptaugenmerk in dieser Arbeit liegt auf dem Fall, dass K ein Polytop

ist. In dieser Situation können wir Handelmans Positivstellensatz anwenden. Er
besagt, dass ein Polynom p(x) ∈ R[x] genau dann positiv auf einem Polytop P =
{x ∈ Rn | g1(x) ≥ 0, . . . , gk(x) ≥ 0, alle linear} ist, wenn es eine Darstellung der
folgenden Form hat

p(x) =
∑
α∈Nn

λαg
α1
1 (x) · · · gαkk (x), λα ≥ 0.

Durch Beschränkung des Grades des rechten Terms erhält man ein lineares Pro-
gramm, für dessen Lösung äußerst effiziente Methoden zur Verfügung stehen. Mit
steigender Gradschranke werden die Näherungen immer genauer, die relaxierten
Probleme jedoch auch immer komplexer und entsprechend schwerer zu lösen. Um
diesem Problem zu begegnen schlagen wir vor, den Zulässigkeitsbereich K aufzu-
teilen und die resultierenden Unterprobleme auf einer festen Relaxierungsstufe zu
lösen. Das resultierende Verfahren vereint die guten Approximationseigenschaften
der Positivstellenverfahren mit einem Branch and Bound-Verfahren.
Unser Hauptbeitrag in diesem Gebiet ist die Herleitung einer neuen Fehler-

schranke für das Handelman-Verfahren. Wir verallgemeinern eine Schranke für
die Optimierung eines Polynoms über dem Einheitswürfel, die auf De Klerk und
Laurent zurückgeht [13]. Hierfür nutzen wir die Ähnlichkeit der Handelman-Dar-
stellung auf Hyperrechtecken mit Bernstein Polynomen. Unter Verwendung frü-
herer Resultate zu Bernstein Darstellungen von Garloff [18] zeigen wir folgendes
Resultat. Wir bezeichnen mit pmin,K das Minimum von p auf K, mit p(d)Hand,K
die entsprechende untere Schranke, die sich aus der Handelman-Relaxierung mit
Gradschranke d ergibt.
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Satz 3.15. Sei K ein Polytop, welches in dem Hyperrechteck [a, b] enthalten ist.
Das Minimum pmin,[a,b] von p ∈ R[x1, . . . , xn] über dem Hyperrechteck werde in K
angenommen.
Sei m ≥ deg(p), dann gilt für jede natürliche Zahl d ≥ mn,

pmin,K − p(dn)Hand,K ≤ ∆(d),

wobei für ‖b− a‖∞ < 1,

∆(d) ≤ ϑp max(1, |a1|m, . . . , |an|m)‖b− a‖2∞
∑

γ∈[m]n0

 n∑
j=1

γj /∈{0,1}

(γj − 1)2

d


und für ‖b− a‖∞ ≥ 1,

∆(d) ≤ ϑp max(1, |a1|m, . . . , |an|m)‖b− a‖mn∞
∑

γ∈[m]n0

 n∑
j=1

γj /∈{0,1}

(γj − 1)2

d

 ,

mit einer Konstanten ϑp, die von den Koeffizienten von p abhängt.

Die Schranke wurde explizit so entwickelt, dass sie von der längsten Kante eines
das Polytop umschließenden Hyperrechtecks abhängt. Dies ermöglicht die Kon-
vergenz des Branch and Bound-Verfahrens, welches wir nun kurz beschreiben, zu
zeigen.
Die Grundidee des Verfahrens besteht darin, dass die Grundmenge des Optimie-

rungsproblems sukzessive weiter unterteilt wird. In der vorliegenden Arbeit wird
stets diejenige Teilmenge unterteilt, deren umschließendes Hyperrechteck eine Kan-
te maximaler Länge hat. Die Menge wird entlang der längsten Kante halbiert und
es wird eine untere und eine obere Schranken an das Minimum auf der entspre-
chenden Menge berechnet. Zur Berechnung einer unteren Schranke im j-ten Schritt
plb,P (j) wird das Handelman-Verfahren verwendet, die obere Schranke pub,P (j) er-
gibt sich durch Einsetzen eines Punktes aus der Teilmenge.

Satz 4.7. Das oben beschriebene Handelman Branch and Bound-Verfahren konver-
giert, d.h. die untere Schranke plb,P (j) und die obere Schranke pub,P (j) konvergieren
gegen pmin,K .

Neben den theoretischen Ergebnissen werden die diskutierten Methoden auf eine
Reihe von zufällig generierten Beispielen angewendet. Die numerischen Ergebnisse
zeigen, dass die Unterteilung des Zulässigkeitsbereichs in der Tat zu genaueren
Approximationen des Optimalwertes führt, bereits eine einzelne Unterteilung führt
schon zu Verbesserungen.
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Zusammenfassung

Enthaltenseinsfragen für Spektraeder

Enthaltenseinsfragen für konvexe Mengen gehören zu den klassichen Problemen
der konvexen Geometrie (siehe z.B. Gritzmann und Klee zum Enthaltensein von
Polytopen [25], Freund und Orlin zum Enthaltensein von Kugeln in Kugeln [16],
oder Mangasarian zum Enthaltensein von konvexen Mengen in umgekehrt konve-
xen Mengen [62]).
Sei Sk die Menge der reellen, symmetrischen k × k-Matrizen. Für Matrizen

A0, . . . , An ∈ Sk, bezeichnen wir mit A(x) das lineare Matrixpolynom A(x) =
A0 + x1A1 + · · ·+ xnAn ∈ Sk[x]. Die Menge

SA := {x ∈ Rn | A(x) � 0}

nennt man Spektraeder, wobei A(x) � 0 bedeutet, dass die Matrix A(x) positiv
semidefinit ist.
Wir untersuchen Enthaltenseinsfragen von Polyedern und Spektraedern. Da je-

des Polyeder auch ein Spektraeder ist, stellt folgende Frage den Ausgangspunkt
unserer Überlegungen dar: Gegeben zwei lineare Matrixpolynome A(x) ∈ Sk[x]
und B(x) ∈ Sl[x], ist SA ⊆ SB?
Für Polytope ist die algorithmische Geometrie und Komplexität von Enthalten-

seinsfragen bereits eingehend untersucht, hierbei sind insbesondere die Arbeiten
von Gritzmann und Klee [23, 24, 25] hervorzuheben. Die algorithmische Komple-
xität von polytopalen Enthaltenseinsfragen hängt stark von der Art der Eingabe-
daten ab. So ist die Enthaltenseinsfrage für den Fall, dass beide Polytope über ihre
Eckenmenge beschrieben werden (V-Polytop), oder beide Polytope als Schnitt von
Halbräumen beschrieben werden (H-Polytop), in Polynomialzeit zu entscheiden.
Andererseits ist die Frage des Enthaltenseins eines H-Polytops in einem V-Polytop
co-NP-schwer (siehe [16, 25]).
Für Spektraeder ist weitaus weniger bekannt. Ben-Tal und Nemirovski unter-

suchten das „matrix cube problem“, das der Frage des Enthaltenseins eines Spek-
traeders in einem Würfel entspricht. Helton, Klep und McCullough [28] leiteten
Ergebnisse zu Enthaltenseinsfragen von Spektraedern aus einer verallgemeinerten
Fragestellung zu matrixwertigen Abbildungen ab.
Wir erweitern in dieser Arbeit die bestehenden Klassifikationen zur algorithmi-

schen Komplexität von Polyedern auf den Fall von Polyedern und Spektraedern.
Insbesondere kann die Frage, ob ein V-Polytop in einem Spektraeder enthalten ist,
in Polynomialzeit beantwortet werden. Die Frage nach dem Enthaltensein eines
Spektraeders in einem H-Polytop kann als semidefinites Lösbarkeitsproblem mit
strikten Ungleichungen beschrieben werden. Die übrigen Fälle sind imWesentlichen
co-NP-schwer. Dies schließt die Frage nach dem Enthaltensein eines H-Polytops in
einem Spektraeder ein, bereits dann wenn das Spektraeder eine Kugel ist. Tabelle 1
fasst die entsprechenden Ergebnisse zusammen.
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H V S

H P co-NP-vollständig co-NP-schwer
V P P P
S „SDP“ co-NP-schwer co-NP-schwer

Tabelle 1: Algorithmische Komplexität von Enthaltenseinsfragen. Die Zeilen be-
zeichnen die innere Menge, die Spalten die äußere Menge. S steht für
Spektraeder.

Zum Beantworten der co-NP-schweren Fälle sind Relaxierungsmethoden von be-
sonderem Interesse. Wir schlagen die Verwendung einer Hierarchie von hinreichen-
den semidefiniten Bedingungen für das Enthaltensein eines Spektraeders in einem
zweiten vor. Dazu formulieren wir das Problem zunächst als polynomielles Opti-
mierungsproblem über einem Spektraeder und wenden dann Positivstellensatzrela-
xierungen für polynomielle Matrixungleichungen (basierend auf den Arbeiten von
Kojima [43], Hol und Scherer [33] sowie Henrion and Lasserre [31]) an.
In diesem Zusammenhang zeigen wir das folgende Konvergenzresultat.

Theorem 5.7. Die Optimalwerte der Hierarchie von Relaxierungen konvergieren
gegen den Optimalwert des ursprünglichen polynomiellen Optimierungsproblems.

Jede Stufe der Relaxierungshierarchie stellt eine hinreichende Bedingung für die
Enthaltenseinsfrage dar. Insbesondere zeigen wir, dass jede dieser Relaxierungen
mindestens so gut ist wie ein zuvor in [28, 40] eingeführtes Lösbarkeitskriterium.

Theorem 5.10. Wenn das semidefinite Lösbarkeitsproblem aus [28, 40] eine Lö-
sung hat und damit das Enthaltensein zweier Spektraeder zertifiziert, so zertifiziert
auch die erste Relaxierungsstufe der Hierarchie das Enthaltensein.

Dies erlaubt uns, die Exaktheitsaussagen aus [40] zu übertragen. Diese gelten
insbesondere bereits für die kleinst mögliche Relaxierungsstufe unserer Hierarchie.
Unter anderem zeigen wir, dass das Enthaltensein eines Spektraeders in einem
Polyeder (in gegebener Normalform) durch jede Stufe der Relaxierung exakt cha-
rakterisiert wird.
Wir verdeutlichen die Effektivität der Methode anhand von numerischen Ex-

perimenten zu verschiedenen Enthaltenseinsproblemen. Dabei zeigt sich, dass das
Verfahren sowohl auf einfachen Testproblemen, als auch auf zufällig generierten
Problemen sehr gute Ergebnisse liefert. In vielen Beispielfällen wird das Enthal-
tensein bereits im ersten Relaxierungsschritt zertifiziert.
Das bislang beschriebene Verfahren liefert lediglich hinreichende Bedingungen

für das Enthaltensein zweier Spektraeder. Wir schlagen daher ein auf den Branch
and Bound-Verfahren aus dem ersten Teil basierendes Verfahren vor, welches im
Falle des Nicht-Enthaltenseins der Spektraeder Punkte generiert, die als Zertifikat
für das Nicht-Enthaltensein dienen.
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1 Introduction

This work is concerned with two topics at the intersection of convex algebraic
geometry and optimization.
We develop a new method for the optimization of polynomials over polytopes.

From the point of view of convex algebraic geometry the most common method
for the approximation of polynomial optimization problems is to solve semidefi-
nite programming relaxations coming from the application of Positivstellensätze.
In optimization, non-linear programming problems are often solved using branch
and bound methods. We propose a fused method that uses Positivstellensatz-
relaxations as lower bounding methods in a branch and bound scheme. By deri-
ving a new error bound for Handelman’s Positivstellensatz, we show convergence
of the resulting branch and bound method.
Through the application of Positivstellensätze, semidefinite programming has

gained importance in polynomial optimization in recent years. While it arises to be
a powerful tool, the underlying geometry of the feasibility regions (spectrahedra) is
not yet well understood. See [8] for an overview on semidefinite programming, the
underlying geometry and applications to polynomial optimization. In this work, we
study polyhedral and spectrahedral containment problems, in particular we classify
their complexity and introduce sufficient criteria to certify the containment of one
spectrahedron in another one.

Positivstellensatz Branch and Bound Methods

We study polynomial optimization problems over a semialgebraic set (sets defined
by polynomial inequalities). The goal is to find the minimum of a polynomial
objective function p(x) ∈ R[x1, . . . , xn] over a semialgebraic set K, i.e.,

minimize p(x)

s.t. x ∈ K.
(1.1)

Such polynomial optimization problems occur in many applications such as finance,
structural engineering and control. Moreover, many important combinatorial prob-
lems can be modelled as a polynomial optimization problem. These problems are,
in general, very hard to solve.
Following the pioneering work of Lasserre [46] and Parrilo [70, 71], it has become

common practice in convex algebraic geometry to rewrite problem (1.1) in its dual
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1 Introduction

form

maximize t

s.t. p(x)− t ≥ 0,

x ∈ K,

and to replace the constraints by weaker, but more tractable conditions using
Positivstellensätze, see [51, 53]. By bounding the degree of the Positivstellensatz
certificates, one attains a hierarchy of relaxations, which can be solved using linear
or semidefinite programming methods, depending on the Positivstellensatz.
We mainly focus on the case whereK is a polytope and Handelman’s Positivstel-

lensatz can be applied. It states that a polynomial p(x) ∈ R[x] is positive on a
polytope P = {x ∈ Rn | g1(x) ≥ 0, . . . , gk(x) ≥ 0, all linear} if and only if p(x)
has a representation of the form

p(x) =
∑
α∈Nn

λαg
α1
1 (x) · · · gαkk (x), λα ≥ 0. (1.2)

Restricting the degree of the right hand side in equation (1.2) yields a linear pro-
gramming problems, which can be solved very efficiently.
The drawback of this approach is that the complexity of the relaxation increases

drastically when the order of the relaxation is increased by choosing a higher
degree bound for the Positivstellensatz. In this work we discuss a method that uses
Positivstellensatz relaxations, but instead of increasing the order of the relaxation
to obtain more precise results, we propose to divide the feasibility set K. The
resulting subproblems are solved at a fixed relaxation order, keeping the complexity
of the problems constant, but increasing the number of problems that have to be
solved.
Our main contribution in this area is the generalization of an error bound for

relaxations coming from Handelman’s Positivstellensatz by De Klerk and Laurent
[13]. We extend their result for the optimization of polynomials over the unit cube
to arbitrary hyperrectangular sets and, in a restricted setting, to general polytopes,
making use of earlier results by Garloff [18] on Bernstein approximations. The
bound depends on the length of the longest edge of a bounding box of the polytope.
This property is later used to derive theoretical results on the convergence of the
branch and bound scheme.
The elementary branch and bound method studied in this work uses a relax-

ation based on Handelman’s Positivstellensatz of the lowest possible order as lower
bounding method. The upper bound is computed by evaluating the objective on a
feasible point. Both bounds converge to the optimal value as the sets under con-
sideration are successively bisected along the longest edge. Since lower and upper
bounds are computed, it results in an approximation of the optimum of certified
accuracy.
To show the effectiveness of the approach, we apply the branch and bound

scheme to a number of sample problems. Our numerical experiments suggest that
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the branching method does indeed yield significantly improved results, already
when adding a single cut, compared to the unbranched problem at the same re-
laxation order.

Containment Problems for Spectrahedra

The second topic studied in this thesis is about containment problems of spec-
trahedra. Containment problems of convex sets belong to the classical problems
in convex geometry (see, e.g., Gritzmann and Klee for the containment of poly-
topes [25], Freund and Orlin for containment problems of balls in balls [16], or
Mangasarian for containment of convex sets in reverse-convex sets [62]).
Denote by Sk the set of all real symmetric k× k-matrices. For A0, . . . , An ∈ Sk,

let A(x) denote the linear (matrix) pencil A(x) = A0+x1A1+ · · ·+xnAn ∈ Sk[x].
Then the set

SA := {x ∈ Rn | A(x) � 0}

is called a spectrahedron, where A(x) � 0 denotes positive semidefiniteness of the
matrix A(x).
We study containment problems for polyhedra and spectrahedra. Since poly-

hedra are special cases of spectrahedra, we can use the following general setup:
Given two linear pencils A(x) ∈ Sk[x] and B(x) ∈ Sl[x], is SA ⊆ SB?

For polytopes (i.e., bounded polyhedra), the computational geometry and com-
putational complexity of containment problems have been studied in detail. See
in particular the classifications by Gritzmann and Klee [23, 24, 25]. Notably, it is
well known that the computational complexity of deciding containment problems
strongly depends on the type of the input. For instance, if both polytopes are given
by their vertices (V-polytopes), or both polytopes are given as an intersection of
halfspaces (H-polytopes), containment can be decided in polynomial time, while it
is co-NP-hard to decide whether an H-polytope is contained in a V-polytope (see
[16, 25]).
For spectrahedra, significantly less is known. Ben-Tal and Nemirovski studied

the matrix cube problem [6], which corresponds to the containment problem where
SA is a cube. In a more general setting, Helton, Klep, and McCullough [28] studied
containment problems of matricial positivity domains (which live in a union of
spaces of different dimensions). As a byproduct, they also derive some implications
for containment of spectrahedra.
In this work, we extend existing complexity classifications for the polyhedral

situation to the situation where polytopes and spectrahedra are involved. In par-
ticular, the containment question of a V-polytope in a spectrahedron can be de-
cided in polynomial time, and the question whether a spectrahedron is contained
in an H-polytope can be formulated by the complement of semidefinite feasibil-
ity problems (involving also strict inequalities). Roughly speaking, all other cases
are co-NP-hard. This includes the containment problem of an H-polytope in a
spectrahedron, already when the spectrahedron is a ball.
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1 Introduction

To deal with the situation that the general containment problem for spectrahe-
dra is co-NP-hard, relaxation techniques are of particular interest. We propose and
study a hierarchy of sufficient semidefinite conditions to certify the containment
of a spectrahedron in another one. This approach comes from applying a moment
relaxation to a suitable polynomial optimization formulation. We use common
relaxation techniques (by Kojima [43], Hol and Scherer [33] as well as Henrion
and Lasserre [31]) to derive a (sufficient) semidefinite hierarchy for the contain-
ment problem. The semidefinite hierarchy provides a much more comprehensive
approach towards the containment problems than the earlier sufficient criterion
studied by Helton, Klep and McCullough [28] and by Kellner, Theobald and Tra-
bandt [40].
Our main contributions in this area are the following.
1. Based on polynomial matrix inequalities, we provide a hierarchy of sufficient

semidefinite criteria for the containment problem and prove that the sequence
of optimal values converges to the optimal value of the underlying polynomial
optimization problem.
2. Any relaxation step of the hierarchy yields a sufficient criterion for the con-

tainment problem. We prove that each of these sufficient criteria is at least as
powerful as an earlier criterion introduced in [28, 40], in the sense that whenever
the criterion of [28, 40] is satisfied, then also the criterion from any of the relax-
ation steps of the hierarchy is satisfied. In particular, this already holds for the
criterion coming from the initial relaxation step. This allows to carry all exactness
results from [40] forward to our new hierarchical approach, in particular it shows
that the sufficient criterion for the containment of spectrahedra in polyhedra (in
normal form) is an exact characterization.
3. We demonstrate the effectiveness of the approach by providing numerical

results for several containment problems and radii computations.
4. Bearing in mind the insights from the first part, we apply an adapted branch-

ing method to some instances of the containment problem, allowing us to find
certificates for non-containment.

Thesis overview

This work is structured as follows.
Chapter 2 introduces notation and the necessary background on optimization

and Positivstellensatz relaxations. Following the geometrical characater of this
work we introduce polyhedra and spectrahedra before discussing the fundamentals
of linear and semidefinite programming. We review several Positivstellensätze and
resulting relaxations for polynomial optimization, discussing methods for polyno-
mial matrix inequalities in a separate section.
In Chapter 3, we first review error bounds for Positivstellensatz relaxations,

before focussing on the new results concerning Handelman’s Positivstellensatz.
For clarity, the error bound for the Handelman approach is derived first in the
univariate setting and then extended to the multivariate setting. We make use of
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Bernstein approximations to derive the error bound and also discuss similarities of
the Handelman and the Bernstein approach.
Our branch and bound scheme based on Handelman’s Positivstellensatz relax-

ations are discussed in Chapter 4. We begin more generally by studying the impact
of bisecting the feasibility set of a polynomial optimization problem before propos-
ing our branch and bound method. This is also where we discuss general theory
on the convergence of branch and bound schemes and show convergence of the
proposed approach.
Chapter 5 is devoted to spectrahedral containment problems. After classifying

their complexity, our relaxation hierarchy is introduced. We relate it to the earlier
criterion introduced in [28, 40] and apply it to a number of test cases. The final
section of this chapter connects the two topics of this thesis. We explain how a
modified version of the branch and bound method can be used to derive certificates
of non-containment for given spectrahedra.
We conclude this thesis in Chapter 6 with a discussion of open problems.

Numerical Computations

All numerical computations described in this thesis were performed on a desktop
computer with Intel Core i3-2100 @ 3.10 GHz and 4 GB of RAM.
For our computations, we implemented the branch and bound methods as well

as the containment hierarchy using high-level YALMIP [58, 59] code. We used
MOSEK 7 [3] as an external solver for the optimization problems defined in
YALMIP. The Matlab version used was R2011b.
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2 Notation and Preliminaries on
Mathematical Optimization

In this section, we introduce the basic concept of mathematical optimization. We
use common notation, as it can be found, e.g., in [9]. In the following sections, we
discuss special instances, such as linear, semidefinite and polynomial optimization.
We consider mathematical optimization problems of the form

minimize p(x)

s.t. fi(x) ≥ 0, i ∈ {1, . . . , k}.
(2.1)

Here, x is the vector of optimization variables, the function p : Rn → R is the
objective function and the functions fi : Rn → R, i ∈ [m] are the constraints.
The set {x ∈ Rn | fi(x) ≥ 0, ∀i ∈ {1, . . . , k}} is called the feasible set or

feasibility region of the optimization problem. A vector in this set is called a
feasible solution. The value p(x) is called the objective value of the vector x. A
vector x∗ that has the smallest objective value among all feasible solutions is called
optimal, the objective value p(x∗) of x∗ is the optimal value of the optimization
problem (2.1). The goal is to solve the optimization problem, that means to find
its optimal value and sometimes also an optimal vector.
The optimization problem stated in its general form (2.1) is in general very

hard to solve. For special classes of the problem, however, efficient algorithms are
known. Linear and semidefinite programming problems are such special cases. We
will discuss them in section 2.2. For polynomial optimization problems, which we
will introduce in section 2.3, on the other hand no efficient exact algorithms are
known. Thus we also discuss relaxation methods for these problems, which offer a
trade-off between exactness and complexity of the algorithms.
In this work, we approach most problems from a geometric point of view. In the

same spirit, we talk about linear and semidefinite programming problems in this
chapter by introducing the respective feasibility sets at first. Before diving into
mathematical programming, we consolidate the notation that we use throughout
in the next section.

2.1 Notation

The symbols N,Q, and R denote the non-negative integers, the field of rational
numbers and the field of real numbers. R+ stands for the subset of non-negative
numbers in R. We set Nnt := {α ∈ Nn |

∑n
i=1 αi ≤ t} for t ∈ N.

7



2 Notation and Preliminaries on Mathematical Optimization

The set of real n-vectors is denoted by Rn, the set ofm×nmatrices by Rm×n. ‖·‖
denotes the standard Euclidean norm. By Br(p), we denote the (closed) Euclidean
ball with center p and radius r > 0.
For a vector x ∈ Rn, we refer to the i-th entry of x by xi. For vectors a, b ∈ Rn,

inequalities are meant to be understood component-wise, for example a ≥ b stands
for a1 ≥ b1, . . . , an ≥ bn.
For a matrix A, the (i, j)-th entry of A is labeled by aij . For a block matrix B,

we label the (i, j)-th block by Bij and the (s, t)-th entry of Bij by (Bij)st.
A square matrix with 1 in the entry (i, j) and zeros otherwise is denoted by Eij .

The n× n identity matrix is denoted by In.
The symmetric k×k-matrices are denoted by Sk, the subset of positive semidef-

inite matrices by S+k = {X ∈ Sk | X � 0}, where for two matrices A,B ∈ Sk, the
notation A � B is a shorthand for A − B being positive semidefinite. The space
Sk is equipped with the trace inner product 〈A,B〉 := Tr(ABT ) =

∑
i,j aijbij , that

can also be interpreted as the usual Euclidean inner product on Rk×k.
Recall that a matrix A is positive semidefinite, if and only if one of the following

equivalent statements holds.
• zTAz ≥ 0 ∀z ∈ Rk;
• All eigenvalues of A are non-negative;
• All principal minors of A are non-negative.

The Kronecker product A⊗ B of square matrices A of size k × k and B of size
l × l is the kl × kl matrix

A⊗B =

a11B . . . a1k B
...

. . .
...

ak1B . . . akk B

 (2.2)

(see, e.g., [12, 34]). It is well known (see, e.g., [34, Cor. 4.2.13]) that the Kronecker
product of two positive semidefinite matrices is again positive semidefinite.

The ring of multivariate polynomials in n variables is denoted by R[x1, . . . , xn]
or by R[x] for short. For α ∈ Nn, we abbreviate the monomial xα1

1 · · ·xαnn by xα.
The degree of the monomial xα is given by |α| =

∑n
i=1 αi.

A polynomial is a finite linear combination of monomials p(x) =
∑

α∈Nn pαx
α ∈

R[x], where only finitely many pα are nonzero, the degree of p is the maximum
degree over all appearing monomials, deg(p) := max(|α| | pα 6= 0). The set of all
polynomials of degree less than or equal to t is denoted by R[x]t = {p(x) | p(x) =∑

α∈Nnt
pαx

α}, in the same spirit, we define R[x]m,...,m to be the multivariate poly-
nomials of degree at most m in each variable. A polynomial in which all terms are
of the same degree is called a homogeneous polynomial. We define the vector of
coefficients of p as ~p = (pα)α∈Nn .
We will use the notation for monomials also for sets of polynomials. Given

g1, . . . , gk ∈ R[x] and α ∈ Nk, we define gα :=
∏k
j=1 g

αj
j .

Let Sk[x] be the set of symmetric k × k-matrices with polynomial entries in
x = (x1, . . . , xn). For A0, . . . , An ∈ Sk, denote by A(x) the linear (matrix) pencil

8



2.2 Linear and Semidefinite Programming

A(x) = A0 + x1A1 + · · · + xnAn ∈ Sk[x]. We call the generalized inequality
A(x) � 0 a linear matrix inequality.

A subset C of a vector space V is a convex cone if αx + βy belongs to C, for
any non-negative scalars α, β, and any x, y in C. The following sets are convex
cones.
• The vectors with non-negative entries in Rn;
• Sk ⊂ Rk×k;
• The set of non-negative polynomials in n variables Pn ⊂ R[x1 . . . xn|;
• The set of sums of squares polynomials in n variables Σn ⊂ R[x1 . . . xn|, as

defined in section 2.3.1.

We define the index sets [d] := {1, . . . , d} and [d]0 := {0, . . . , d}, as well as the
corresponding n-tuples [d]n := {(d1, . . . , dn) | d1 ∈ [d], . . . , dn ∈ [d] and [d]n0 analo-
gously. When comparing n-tuples, inequalities are again meant to be understood
component-wise.

2.2 Linear and Semidefinite Programming

In this section, we will encounter special classes of optimization problems. Linear
programs are problems of the form (2.1), where both the objective and the con-
straint functions are affine linear functions. We discuss these problems in section
2.2.1. Semidefinite programs are problems where we optimize a linear objective
function over a set defined by matrix inequalities, as described in section 2.2.2.

2.2.1 Polyhedra, Polytopes and Linear Programming

A set P ⊂ Rn is called a polyhedron if it is the intersection of finitely many affine
halfspaces. Algebraically, these are described by linear inequalities. A polyhedron
P is given by a matrix A ∈ Rk×n and a vector b ∈ Rn such that

P = {x ∈ Rn | Ax+ b ≥ 0}. (2.3)

A bounded polyhedron is called polytope.
If an inequality cTx + d ≥ 0 is implied by the inequalities Ax + b ≥ 0, or,

more precisely, if cTx + d ≥ 0 holds for each x satisfying Ax + b ≥ 0, we call it
redundant in the representation of the polytope P . Farkas’ Lemma characterizes
the redundant inequalities.

Proposition 2.1 (Affine form of Farkas’ Lemma, [83, Corollary 7.1h]). Let the
polyhedron P = {x ∈ Rn : Ax + b ≥ 0} be nonempty and cTx + d ≥ 0 be a
redundant inequality. Then for some d′ ≤ d, the linear inequality cTx + d′ ≥ 0 is
a non-negative linear combination of the inequalities in the system Ax+ b ≥ 0.

9



2 Notation and Preliminaries on Mathematical Optimization

A linear programming problem is the problem of minimizing a linear objective
function over a polyhedron. We use the following standard form for linear pro-
grams.

minimize cTx

s.t. Ax+ b ≥ 0.
(2.4)

We call the linear program (2.4) the primal linear program. Associated with
this linear program is the dual linear program

maximize − yT b
s.t. AT y = c

y ≥ 0

y ∈ Rk.

(2.5)

The two linear programs are linked by the following duality theory. The key
property of the dual problem is that it bounds the objective value of the primal
problem in the following sense.

Theorem 2.2 (Weak duality [38, Theorem 4.11]). Let x be a feasible solution for
the primal linear program and y a feasible solution for the dual linear program.
Then cTx ≥ −bT y.

Theorem 2.3 (Strong duality [38, Theorem 4.13]). Given a pair of primal-dual
optimization problems

min{cTx | Ax+ b ≥ 0} and max{−yT b | AT y = c, y ≥ 0},

exactly one of the following statements is true.
• Both problems are feasible and the optimal values coincide.
• One of the problems is infeasible, the other unbounded.
• Both problems are infeasible.

Infeasibility of a linear program is characterized by another version of Farkas’
Lemma.

Theorem 2.4 ([83, Corollary 7.1e]). Either the polytope P = {x ∈ Rn | Ax+b ≥ 0}
is non-empty or the following system has a solution y ∈ Rk

y ≥ 0, yTA = 0, yT b < 0. (2.6)

To decide if P is empty, we can solve the following linear program

minimize yT b

s.t. yTA = 0

y ≥ 0.

(2.7)
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2.2 Linear and Semidefinite Programming

P is empty if and only if the optimal value of this problem is non-negative.
An alternative way of determining whether P is empty is to solve the following

auxiliary problem

maximize y

s.t. Ax+ b ≥ y
y ≤ 0.

(2.8)

To decide feasibility, note that P is nonempty if and only if the optimal value of
(2.8) is zero. If it is zero, the projection of any optimal point to the x-coordinates
lies in P . A similar approach is often taken when solving linear programs with the
simplex method to find an initial feasible vertex.
A special class of polytopes that we will use extensively are n-dimensional boxes.

For a, b ∈ Rn, a ≤ b, define

[a, b] := [a1, b1]× . . .× [an, bn]

= {x ∈ Rn | gli(xi) = xi − ai ≥ 0, gui(x) = bi − xi ≥ 0, i = 1, . . . , n}.
(2.9)

While the optimization problem (2.1) is, in general, hard to solve, the linear
version (2.4) can efficiently be solved and is used in many practical applications.

Theorem 2.5 (Khachiyan’s theorem, [83, Theorem 13.4]). Linear programming
problems with rational data can be solved in polynomial time.

Until now, we described polyhedra as the intersection of finitely many halfspaces.
A bounded polyhedron can also be described as the convex hull of finitely many
points in Rn. For algorithmic questions in n-dimensional space it is crucial whether
a polytope is given in the first way (H-polytope) or in the second way (V-polytope).
Our model of computation is the binary Turing machine: polytopes are presented
by certain rational numbers, and the size of the input is defined as the length of
the binary encoding of the input data (see, e.g., [23]). A V-polytope P is given
by a tuple (n;m; v(1), . . . , v(m)) with n,m ∈ N, and v(1), . . . , v(m) ∈ Qn such that
P = conv{v(1), . . . , v(m)}. An H-polytope P is given by a tuple (n; k;A; b) with
n, k ∈ N, a rational k×n-matrix A, and b ∈ Qk such that P = {x ∈ Rn | b+Ax ≥ 0}
is bounded. If the i-th row (b+Ax)i ≥ 0 defines a facet of P , then the i-th row of
A is an inner normal vector of this facet.
For fixed dimension, H- and V-representations of a rational polytope can be

converted into each other in polynomial time. In general dimension (i.e., if the
dimension is not fixed but part of the input) the size of one representation can be
exponential in the size of the other [63].

This section on linear programming is loosely based on the book by Joswig
and Theobald [38], which is an excellent resource for the geometry of polytopes
and spectrahedra and the book by Schrijver [83], which gives a comprehensive
introduction into the theory of linear programming.
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2 Notation and Preliminaries on Mathematical Optimization

2.2.2 Spectrahedra and Semidefinite Programming

Given matrices A0, A1, . . . An ∈ Sk, and the linear (matrix) pencil A(x) = A0 +∑n
p=1 xpAp ∈ Sk[x] we define a spectrahedron SA as the positivity region of the

linear matrix pencil SA = {x ∈ Rn | A(x) � 0}.
The equivalence between positive definiteness of A0 and the origin being an

interior point is not true. Moreover, in general, the interior of SA does not coincide
with the positive definiteness region of the pencil. However, if the spectrahedron
SA has nonempty interior (or, equivalently, SA is full-dimensional), then there
exists a reduced linear pencil that is positive definite exactly on the interior of SA.

Proposition 2.6 ([20, Corollary 5]). Let SA = {x ∈ Rn | A(x) � 0} be full-
dimensional and let N be the intersection of the nullspaces of Ai, i = 0, . . . , n. If V
is a basis of the orthogonal complement of N , then SA = {x ∈ Rn | V TA(x)V � 0}
and the interior of SA is int(SA) = {x ∈ Rn | V TA(x)V � 0}.

Furthermore, the spectrahedron SA contains the origin in its interior if and only
if there is a linear pencil A′(x) with the same positivity domain such that A′0 = Ik;
see [29]. To simplify notation, we sometimes assume that A(x) is of this form and
refer to it as a monic linear pencil, i.e., A0 = Ik.
Given the linear pencils A(x) ∈ Sk[x], we call the linear pencil

Â = 1⊕A(x) = 1⊕A0 +

n∑
p=1

xp(0⊕Ap) (2.10)

the extended linear pencil of A(x), where ⊕ denotes the direct sum of matrices.
Note that every polyhedron P = {x ∈ Rn | b+ Ax ≥ 0} has a natural represen-

tation as a spectrahedron:

P = PA =

x ∈ Rn : A(x) =

a1(x) 0 0

0
. . . 0

0 0 ak(x)

 � 0

 , (2.11)

where ai(x) abbreviates the i-th entry of the vector b+Ax. PA contains the origin
if and only if the inequalities can be scaled so that b = 1k, where 1k denotes the
all-ones vector in Rk. Hence, in this case, A(x) is monic, and it is called the normal
form of the polyhedron PA.
A centrally-symmetric ellipsoid with axis-aligned semi-axes of lengths a1, . . . , an

can be written as the spectrahedron SA of the monic linear pencil

A(x) = In+1 +

n∑
p=1

xp
ap

(Ep,n+1 + En+1,p). (2.12)

We call (2.12) the normal form of the ellipsoid. Specifically, for the case of equal
semi-axis lengths r := a1 = · · · = an this gives the normal form of a ball with
radius r.
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2.2 Linear and Semidefinite Programming

Similarly to linear programs, we define a semidefinite programming problem as
the problem of minimizing a linear objective function over a spectrahedron. We
use the following standard form for semidefinite programs.

minimize cTx

s.t. A(x) � 0.
(2.13)

Again there is a dual problem associated to the primal formulation above.

maximize − 〈A0, Y 〉
s.t. 〈Ai, Y 〉 = ci, i = 1, . . . , n,

Y � 0.

(2.14)

Here the variable is the matrix Y , which is subject to m equality constraints
and the matrix non-negativity condition. While it is not completely obvious, the
dual problem is also a semidefinite program, it can be transformed to the form of
the primal problem (2.13).
It is worthwhile to compare the formulations of the dual linear program (2.5)

to the dual semidefinite program (2.14). In both cases, we have a linear objective
function and linear equality constraints. The only difference is the non-negativity
constraint. In the linear program, the variables are constrained to the non-negative
orthant, that is the cone of non-negative vectors, in the semidefinite program to
the cone of positive semidefinite matrices. With this regard, both problems can be
seen as instances of a conic optimization problem.
As in linear programming, there exists a rich duality theory for semidefinite

programs.

Theorem 2.7 (Weak duality [88, p. 64]). Let x be a feasible solution for the primal
semidefinite program and Y a feasible solution for the dual semidefinite program.
Then cTx ≥ −〈A0, Y 〉.

While weak duality translates directly to the new setting, strong duality requires
some more prerequisites.
We denote the optimal values of the primal and dual optimization problems

by p∗ := inf{cTx | A(x) � 0}, and d∗ := sup{−〈A0, Y 〉 | 〈Ai, Y 〉 = ci, i =
1, . . . , n, Y � 0}. Furthermore, let Xopt and Yopt denote the optimal sets, Xopt :=
{x | A(x) � 0, cTx = p∗} and Yopt := {Y | − 〈A0, Y 〉 | 〈Ai, Y 〉 = ci, i =
1, . . . , n, Y � 0, −〈A0, Y 〉 = d∗}.

Theorem 2.8 (Strong duality [88, Theorem 3.1.]). Let p∗ be the optimal value
of a semidefinite program and d∗ be the optimal value of the corresponding dual
semidefinite program. Then p∗ = d∗ if either of the following conditions hold.
• The primal problem is strictly feasible, i.e., there exists an x such that A(x)
is positive definite;
• The dual problem is strictly feasible, i.e., there exists Y with Y = Y T � 0,
〈Ai, Y 〉 = ci, i = 1, . . . , n.

13



2 Notation and Preliminaries on Mathematical Optimization

If both conditions hold, the optimal sets Xopt and Yopt are nonempty.

For algorithmic questions, a linear pencil is given by a tuple (n; k;A0, . . . , An)
with n, k ∈ N and A0, . . . , An rational symmetric matrices.
A Semidefinite Feasibility Problem (SDFP) is defined as the following decision

problem (see, e.g., [76]): Given a linear pencil defined by a tuple (n; k;A0, . . . , An)
with n, k ∈ N and A0, . . . , An rational symmetric matrices. Are there real numbers
x1, . . . , xn such that A(x) = A0+

∑n
p=1 xpAp � 0, or equivalently, is the spectrahe-

dron SA non-empty? Although semidefinite programs can be approximated up to
an additive error of ε in polynomial time, the question “SDFP ∈ P?” is one of the
major open complexity questions in semidefinite programming (see [12, 76]). In
practice, however, SDFPs can be solved efficiently by semidefinite programming.
The material in this section is mostly based on the early article by Vandenberghe

and Boyd [88]. For a thorough treatment we recommend the book by De Klerk
[12].

2.3 Polynomial Optimization

Many practical problems can be formulated as polynomial optimization problems.
But in most cases, these problems are non-convex and hard to handle. The recent
approach to tackle these problems is to use sums of squares reformulations of the
problems to solve or at least approximate the optimal value by linear or semidefinite
programs. We will now introduce the main ideas of this approach.
Most material from this section can be found in greater detail in the excellent

survey [53] by Monique Laurent or in Lasserre’s book [51] and the Handbook on
Semidefinite, Conic and Polynomial Optimization [4].

2.3.1 Unconstrained Polynomial Optimization and Sums of
Squares

Starting with an unconstrained polynomial optimization problem of the form

minimize p(x), (2.15)

the first step to approach the problem is usually to reformulate it as a convex
optimization problem. This can be achieved by introducing an additional variable
and rewriting the problem as

maximize t,

s.t. p(x)− t ≥ 0.
(2.16)

The resulting problem is indeed convex, since the non-negative polynomials in n
variables form a convex cone. We denote this cone by Pn and the subset of non-
negative polynomials of degree at most d by Pn,d := Pn ∩ R[x]d. Note that both
problems have the same optimal value, which we denote by pmin.
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2.3 Polynomial Optimization

The non-negativity condition in problem (2.16) is then replaced by a more
tractable condition using sum of squares polynomials.

Definition 2.9. A polynomial p(x) ∈ R[x] is a sum of squares (SOS) if it can be
written as

p(x) =
m∑
j=1

hj(x), hj(x) ∈ R[x].

The sums of squares in n variables form a convex cone, which we denote by Σn,
the intersection with the polynomials of degree at most d is denoted by Σn,d =
Σn ∩R[x]d. Remarkably, it can be verified whether a given polynomial is a sum of
squares using semidefinite programming.

Lemma 2.10. A polynomial p(x) ∈ R[x]2d is a sum of squares if and only if the
following system in the matrix variable X = (Xα,β)α,β∈Nnd is feasible.

X � 0∑
α,β∈Nnd ,
α+β=γ

Xα,β = pγ , |γ| ≤ 2d.

By requiring the polynomial p(x)− t in the optimization problem to be a sum of
squares of restricted degree instead of requiring it to be non-negative, we arrive at
the following relaxed problem, which is a semidefinite program and can be solved
efficiently.

maximize t,

s.t. p(x)− t ∈ Σn,d.
(2.17)

The optimal value of this relaxation is denoted by p(d)sos.While every sum of squares
is obviously non-negative, that is Pn ⊂ Σn, and Pn,d ⊂ Σn,d, it is a well-known
result by Hilbert, that the reverse is not true in general.

Theorem 2.11 ([32]). Pn,d = Σn,d only in the following cases:
• n = 1,
• d = 2,
• (n, d) = (2, 4).

This means that problem (2.17) is indeed a relaxation to problem (2.16) and the
inequality p(d)sos ≤ pmin may be strict.
On the other hand, Hilbert conjectured, that every non-negative polynomial can

be written as a sum of squares of rational functions. This conjecture, which has
become known as Hilbert’s 17th problem, was proved to be correct by Emil Artin
in 1926. This result can be used for our purposes. Clearing denominators we can
look for a representation

gp = h
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2 Notation and Preliminaries on Mathematical Optimization

for some polynomials g, h ∈ Σ. While there exist bounds on the degree of g and
h, they are too large for practical implementations. But it is still a good idea to
strengthen the relaxation (2.17) by multiplying the polynomial p(x) − t with a
polynomial known to be non-negative.

2.3.2 Semialgebraic Sets and Constrained Polynomial
Optimization Problems

Let us now consider constrained polynomial optimization problems, that is the
minimization or maximization of a polynomial over a given set. The most general
sets that we will take into consideration in this work are semialgebraic sets.
A semialgebraic set is a subset of Rn defined by a boolean combination of poly-

nomial inequalities. Throughout this work, we will implicitly assume that all
semialgebraic sets are basic closed semialgebraic set, that means that they are the
solution set of a finite system of non-strict polynomial inequalities. Every basic
closed semialgebraic set K has a representation of the form

K = {x ∈ Rn | gi(x) ≥ 0, gi ∈ R[x], i ∈ [k]} ⊂ Rn. (2.18)

We will oftentimes use G as a shorthand for the set of constraints, that is G :=
{g1, . . . , gk}.
It is not hard to see that every polyhedron is a semialgebraic set, as it is defined

by non-strict linear inequalities. In the same spirit, we can see that every spectra-
hedron is a semialgebraic set, since it can be described as the positivity region of
the principal minors of the linear matrix pencil that defines the spectrahedron.
We define a polynomial optimization problem as the problem of minimizing a

polynomial over a semialgebraic set

minimize p(x)

s.t. x ∈ K
(2.19)

with optimal value pmin,K .
With the remark above it becomes apparent that every linear and every semidef-

inite programming problem is a polynomial optimization problem. However, the
class of polynomial optimization problems is by far more general. It incorporates a
large number of convex and non-convex problems. For example binary linear pro-
gramming problems can be encoded by adding constraints of the form xi− x2i = 0
to the formulation. Many NP-hard problems can be expressed in this form.
As in the unconstrained case, we approach the problem by first rewriting it in

what is known as the dual form.

maximize t

s.t. p(x)− t ≥ 0,

x ∈ K.
(2.20)
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In the same manner as we used sum of squares polynomials in the unconstrained
setting, we encode the condition p(x)−t ≥ 0 on K using Positivstellensätze. These
representation results from real algebraic geometry allow to encode the problem
as infinite dimensional linear or semidefinite programs. By restricting the degree
of the polynomials in the representation, we get hierarchies of finite dimensional
linear or semidefinite programming relaxations.
We will now state some well-known Positivstellensätze. We begin with a cele-

brated result by Polyá that provides a certificate of positivity for a homogeneous
polynomial on the simplex.

Theorem 2.12 (Polyá [72]). Let p ∈ R[x] be a homogeneous polynomial. If p > 0
on the simplex {x ∈ Rn+ |

∑n
i=1 = 1}, then for sufficiently large d ∈ N, all

coefficients of the polynomial (
∑n

i=1 xi)
dp are non-negative.

In a more general setting, namely for compact semialgebraic sets, we can use
a Positivstellensatz due to Schmüdgen. Remember that [1]k0 stands for all k-
dimensional 0/1-vectors as introduced in Section 2.1.

Theorem 2.13 (Schmüdgen [81, Corollary 3]). Assume the semialgebraic set K
is compact. Given p ∈ R[x], if p > 0 on K, then p =

∑
α∈[1]k0

σαg
α with σα ∈ Σ.

By applying Schmüdgen’s Positivstellensatz to the constrained optimization pro-
blem (2.20) and restricting the degree of the representation, we get the following
problem. It is in fact a semidefinite programming problem, since we have seen that
sums of squares can be recognized by semidefinite programming.

maximize t

s.t. p(x)− t =
∑
α∈[1]k0

σαg
α,

σα ∈ Σ, deg(σαg
α) ≤ d

(2.21)

For a set of constraint polynomials G = {g1, . . . , gk}, we denote by p(d)Sch,G, the
optimal value of the relaxation with degree bounded by d. This semidefinite pro-
gram can grow very large, since it involves 2k sums of squares to be checked. This is
the reason why for most practical purposes the Positivstellensatz of Putinar comes
into application. Its use was proposed by Lasserre, he describes a dual approach
using moment matrices in [46]. The relaxation method based on Putinar’s Posi-
tivstellensatz, which we describe below has hereupon become known as Lasserre
relaxation. Before we can state Putinar’s Positivstellensatz, we need some more
notation.

Definition 2.14. Given polynomials g1, . . . , gk ∈ R[x], the set M(g1, . . . , gk) :=
{σ0+

∑k
i=1 σigi | σ0, σi ∈ Σ} is called the quadratic module generated by g1, . . . , gk.

A truncated quadratic module Md(g1, . . . gk) is the subset of M(g1, . . . , gk)
that contains all polynomials up to degree d, that is Md(g1, . . . gk) := {σ0 +∑k

i=1 σigi | σ0, σi ∈ Σ, deg(σ0) ≤ d, deg(σigi) ≤ d}.
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The quadratic moduleM(g1, . . . , gk) is called Archimedean if there exists a poly-
nomial g ∈ M(g1, . . . , gk) such that the superlevel set {x ∈ Rn | g(x) ≥ 0} is
compact.

Now we are ready to state the Positivstellensatz.

Theorem 2.15 (Putinar’s Positivstellensatz [75, Theorem 1.4]). Let K be a semi-
algebraic set as in 2.18. Assume that the quadratic module M(g1, . . . , gk) is Archi-
medean. If p > 0 on K, then p ∈M(g1, . . . , gk).

Now we can apply Putinar’s Positivstellensatz to optimization problem (2.20).
By restricting degrees we end up with a different hierarchy of semidefinite pro-
grams. Unlike in (2.21), only k sums of squares terms are involved, which means
a significant reduction in complexity for large numbers of inequalities. We get the
following semidefinite program

maximize t

s.t. p(x)− t = σ0 +
k∑
i=1

σigi,

σi ∈ Σ, deg(σigi) ≤ d.

(2.22)

Its optimal value is denoted by p(d)Put,G.
The representation results by Schmüdgen and by Putinar both use sums of

squares and the resulting relaxations are semidefinite programs. Remarkably, there
also exists a result due to Handelman that leads to linear programming relaxations
in the special case when K is a polytope.

Theorem 2.16 (Handelman, [26, Proposition I.1]). Let p ∈ R[x] and let P be a
polytope described by linear inequalities g1(x) ≥ 0, . . . gk(x) ≥ 0. If p is positive on
P, then it admits a representation

p(x) =
∑
α∈Nk

λαg
α, λα ≥ 0.

Recently, Averkov published a constructive proof of this theorem, see [5].
A more general version of this Positivstellensatz was rediscovered several times.

Prestel and Delzell present a good overview in their book [74]. It generalizes
Handelman’s result to nonlinear constraints.

Theorem 2.17 ([53, Theorem 3.30]). Assume K is compact and the polynomials
g1, . . . , gk satisfy 0 ≤ gi ≤ 1 on K for all i. Furthermore, together with 1, they
generate the algebra R[x], i.e., R[x] = R[1, g1, . . . , gm]. If p is positive on K, then
it admits a representation of the form

p =
∑

α,β∈Nk
cαβg

α(1− g)β

for finitely many non-negative scalars cαβ.
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Since we will focus on relaxations derived by Handelman’s Positivstellensatz in
the following, we introduce some more notation. The Positivstellensatz motivates
the following definition.

Definition 2.18 (Handelman set). Given d ∈ N and a set of polynomials G =
{g1, . . . , gk} define the Handelman set (or the preprime) generated by G as

Hd(G) :=

{∑
α∈Nn

λαg
α| λα ≥ 0, deg(gα) ≤ d

}
. (2.23)

Lemma 2.19.

Let f ∈ Hdf (G), g ∈ Hdg(G), then
1. fg ∈ Hdf+dg(G),
2. f + g ∈ Hmax{df ,dg}(G),

Let G = {hi, i = 1, . . . , k, hi ∈ R[x]1} and νi ≥ 0, then (
∑k

i=1 νihi)
r ∈ Hr(G).

Proof. The statements can easily be seen by expanding the Handelman-represen-
tation.

As for the other representation results, Handelman’s result can be applied to
the polynomial optimization problem (2.20), leading to the following hierarchy of
relaxations.

maximize t

s.t. p(x)− t ∈ Hd(G).
(2.24)

The optimal value of this problem is denoted by p(d)Han,G.

2.3.3 Polynomial Optimization over Spectrahedra

Problems involving a polynomial objective function and positive semidefinite con-
straints on matrix polynomials are called polynomial matrix inequality (PMI) prob-
lems and can be written in the following standard form.

minimize p(x)

s.t. G(x) � 0,
(2.25)

where p(x) ∈ R[x] and G(x) ∈ Sk[x], not necessarily linear, for x = (x1, . . . , xn).
Remember that the matrix inequality condition defines a semialgebraic set, since
the condition can be translated to a condition on the principal minors of the
matrix G(x). From this point of view, problem (2.25) is a polynomial optimization
problem with 2k inequalities and the methods from the last section can be applied.
However the large number of inequalities already for small k make this approach
disadvantageous.
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Alternatively, Lasserre proposes to use an extension of Descartes’ rule of signs
to rewrite the positive semidefiniteness condition (described in [48], as cited in
[31]). In this approach, we are left with only n inequalities stemming from the
coefficients of the characteristic polynomial of G(x). This approach, too, has a sig-
nificant drawback. It leads to complex Positivstellensatz representations involving
polynomials of high degrees.
To circumvent this problem Hol and Scherer [33], and Kojima [43] introduced

sums of squares relaxations for PMIs leading to semidefinite programming relax-
ations of the original problem and extending the results from the last section.
This leads to relaxations that use a smaller number of variables and polynomials
of smaller degrees.
Analogously to the scalar case, they introduce sums of squares multipliers to

define a representation of the polynomial p(x).

Definition 2.20. A symmetric matrix-valued k×k polynomial matrix S(x) is said
to be a sum of squares matrix if there exists a (not necessarily square) polynomial
matrix T (x) such that S(x) = T (x)TT (x). We denote the set of all k × k sum of
squares matrices in n variables by Σk×k

n , and by Σk×k
n,d the subset of Σk×k

n where
each entry has degree at most d.

Note that for k = 1, the definition coincides with the definition of sum of squares
polynomials given earlier.
In a similar fashion to the Positivstellensatz relaxations from the last section,

Hol and Scherer propose to solve the following optimization problem.

maximize t

s.t. p(x)− 〈S(x), G(x)〉 − t ∈ Σn

S(x) ∈ Σk×k
n .

(2.26)

The following theorem shows that under mild assumptions, the optimal values of
problems (2.25) and (2.26) coincide. This constraint qualification is similar to the
assumptions of an Archimedean quadratic module in Putinar’s Positivstellensatz
and, in fact, derived from there. It ensures that the optimal value of the hierarchy
converges to the optimal value of the original optimization problem (2.25) for
growing bound on the degree d.

Theorem 2.21 ([33, Theorem 1]). If there exists some r > 0 and some SOS
matrix R(x) such that

r − ‖x‖2 − 〈R(x), G(x)〉 ∈ Σn,

then the optimal values of (2.25) and of (2.26) are equal.

To make the optimization problem (2.26) computationally tractable, the degree
of the SOS matrix S(x) can be restricted. For each degreebound d we attain a
problem of the following form.
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maximize t

s.t. p(x)− 〈S(x), G(x)〉 − t ∈ Σn

S(x) ∈ Σk×k
n,d .

(2.27)

Problem (2.27) is a semidefinite program. To see this, we will now explain how
to check whether a given matrix is a sum of squares matrix. We need a generalized
version of the trace product. If M ∈ Rnk×nk is partitioned into n × n blocks as
(Mij)

k
i,j=1, define

Trk(M) =

 Tr(M11) · · · Tr(M1k)
...

. . .
...

Tr(Mk1) · · · Tr(Mkk)


and the bilinear mapping 〈., .〉 : Rkk×nk × Rkk×nk → Rk×k as

〈A,B〉k = Trk(A
TB).

Now we are ready to state the representation result.

Theorem 2.22 ([33, Lemma 2]). Let u(x) be a polynomial vector whose compo-
nents uj(x), j ∈ [nu], contain all pairwise different monomials in the variables
x1 . . . xn up to a certain degree d, and denote the pairwise different monomials in
u(x)u(x)T by wj(x), j ∈ [nw]. Then we can uniquely describe u(x)u(x)T in terms
of symmetric matrices Zj, such that

u(x)u(x)T =

nw∑
j=1

Zjwj(x).

The matrix polynomial S(x) is SOS with respect to the monomial basis u(x) if
and only if there exist symmetric matrices Sj such that S(x) =

∑nw
j=1 Sjwj(x), and

the linear system
〈W, Ik ⊗ Zj〉k = Sj , j ∈ [nw]

has a solution W � 0.

An alternative treatment of polynomial matrix inequality problems is given in
[31]. Lasserre and Henrion focus mainly on the dual viewpoint of moment relax-
ations. As in Lasserre’s moment method for polynomial optimization [46], the
basic idea is to linearize all polynomials by introducing a new variable for each
monomial. The relations among the monomials give semidefinite conditions on
the moment matrices.
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2.4 Properties of Positivstellensatz Relaxations

All representation results shown in the last section serve the same purpose, to
certify the positivity of a polynomial over a given set.
As soon as the practical application in polynomial optimization comes into play,

a number of factors have to be considered when choosing a Positivstellensatz.
This section aims to provide a high level comparison of the Positivstellensätze of
Schmüdgen, Putinar and Handelman and to motivate why we focus on Handel-
man’s representation subsequently. Here, we will consider truncated representa-
tions, that is, representations that involve only monomials up to a certain degree.
The results introduced in the last section show that (as long as the conditions are
fulfilled) every polynomial does have a corresponding representation for unbounded
degrees, but we do not gain any information on the convergence or error bounds
for the truncated situation.
When comparing truncated representations, Schmüdgen’s result is clearly the

result with the highest expressive power. Not only are the preconditions the weak-
est, also every Putinar and every Handelman representation is a representation of
Schmüdgen type. The first statement is obvious, the second also if we remember
that higher exponents of the constraints in the gα term of the Handelman rep-
resentation can be pulled into the sums of squares multipliers of the Schmüdgen
representation. This stronger expressiveness comes, as already hinted in the last
section, at cost of higher complexity in the representation. Schmüdgen’s represen-
tations involves 2k terms, while k + 1 terms suffice for Putinar’s representation.
A direct comparison of the Handelman and Putinar result is harder. Situations

in which one of the two is stronger are known, as we will see in the following
examples.

Example 2.23 ([13, p. 15]). Let K be the 0/1-hypercube as defined in (2.9). The
monomial

∏n
i=1 xi ⊂ Rn belongs to the Handelman set spanned by the inequalities

of the hypercube Ht(xi, 1−xi) for any t ≥ n, but does not belong to the quadratic
module Mt(xi, 1 − xi). As De Klerk and Laurent remark, it does however belong
to the quadratic module after adding a suitable constant Cn ≤ 1 for even n:∏s
i=1 xi + Cn ∈Mn(xi, 1− xi).

Example 2.24 ([51, Example 5.5]). Let K = [0, 1]. The polynomial p(x) =
(x− 1

2)2 belongs to M2(x, 1− x) since it is a square.
It does only belong to H2(x, 1 − x) after adding 1

4 to get the representation
p(x) + 1

4 = 1
2(1− x)2 + 1

2x
2.

It is also interesting to study how fast the respective approaches converge.
Asymptotic convergence follows directly from the representation results, that is
we have

lim
d→∞

pdHan = lim
d→∞

pdPut = lim
d→∞

pdSch = pmin.

But more can be said about convergence. Due to its importance in practice, the
behavior of the Putinar approach is well studied. There exists a range of results on
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2.4 Properties of Positivstellensatz Relaxations

cases, in which Putinar’s approach converges after finitely many steps. For convex
problems we have the following.

Theorem 2.25 ([14, Corollary 3.3]). Consider problem (2.19) under the following
assumptions:

1. The polynomials p, g1, . . . , gk are convex;
2. The Slater condition holds:

∃x0 ∈ Rn : gi(x0) > 0 for gi nonlinear and
gi(x0) ≥ 0 for gi linear;

3. The quadratic module M(g1, . . . , gk) is Archimedean;
4. 52p(x∗) � 0(i.e. the Hessian of p at x∗ is positive definite) if x∗ is a mini-

mizer of (2.19).
Then one has finite convergence of the Putinar approach.

Indeed, in practical computations, finite convergence can oftentimes be observed.
A fact that is supported by the following result by Nie. It states that, generically,
finite convergence can be expected.

Theorem 2.26 ([67, Theorems 1.1 and 1.2]). Suppose the Archimedean condition
holds for the quadratic module M(g1, . . . gk). Let d0, d1, . . . , dm be positive integers.
Then there exist a finite set of polynomials Φ1, . . . ,ΦL, which are in the coefficients
of polynomials f ∈ R[x]d0 , gj ∈ R[x]dj for j ∈ [m], such that if Φ1, . . . ,ΦL do
not vanish at the input polynomial, then the Putinar approach (2.22) has finite
convergence.

Unfortunately, similarly strong results are not known for Handelman’s approach.
Quite the contrary is the case, as Lasserre explains in [51, p.126]. He gives a simple
argument why the convergence can never be finite, if the optimal point lies in the
interior of K. The argument is as follows.
Assume finite convergence for Handelman’s approach on a polytope K, that

is pmin = pdHan for some d ∈ N. The interior of K is given by intK := {x ∈
Rn | gj(x) > 0, j ∈ [k]}. If an optimal point x∗ lies in intK, we get the contra-
diction that

0 = pmin − pdHan =
∑
α∈Nn

deg(gα)≤d

λαg
α(x∗) > 0.

This means that potentially high relaxation orders have to be chosen to get good
results. Lasserre notes in [47, p.388] that this may cause numerical problems due
to large binomial coefficients in the expansion of terms gαjj for large exponents αj .
It may still be favorable to choose the approach using Handelman’s representa-

tion result. The fact that the resulting relaxation is a linear programming problem
instead of a semidefinite programming problem for approaches using Schmüdgen or
Putinar representations cannot be underestimated. While semidefinite program-
ming receives a lot of interest due to broad applications, solvers are still not as
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mature as solvers for linear programming. Only recently, first industrial codes
(MOSEK) appeared. Still semidefinite programming is only practical for problems
with a small to moderate number of variables, (see also the ongoing benchmarking
project [64]).
Linear programming solvers on the other hand can handle problems with millions

of variables and constraints (as claimed by IBM’s CPLEX in advertisements).
Attempts to strengthen the linear relaxations but still keep the nice computational
behavior have been made recently (see e.g. [52]). Our results in Section 4 also point
in this direction.
The Handelman approach is also attractive from a theoretical point of view.

The linear structure of the representation allows stricter analysis concerning error
bounds and degree bounds for representations. We will focus on these topics in
the next section.
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Approximations

In the last chapter, we introduced several hierarchical methods to relax polynomial
optimization problems. The quality of such a relaxation can be assessed with error
and degree bounds.
Our main contribution in this chapter is to generalize the error bound for the

Handelman representation for polynomial optimization over the unit cube to ar-
bitrary boxes and even further to polytopes. Not very surprisingly, the bound
also depends on a factor coming from the representation of the feasibility region.
Unlike the known results for the Putinar and Schmüdgen case, this constant can
be described in our case. It is simply the longest edge of a bounding box of the
polytope K.
We will start by reviewing previously known bounds for the Positivstellensätze

by Putinar and Schmüdgen in section 3.1. In this section we also state a bound
given by De Klerk and Laurent [13] for the Handelman approach in the special
case where the constraints define the unit cube. It is this result, which is gener-
alized in the following sections. In principle this can be achieved by a coordinate
transformation mapping a given box to the unit cube. We make this computation
very explicit, allowing us to derive a bound depending on the length of the edges
of the cube. This result is the key to show convergence of a branch and bound
scheme that uses the Handelman Positivstellensatz for the bounding in the next
chapter.
To derive our bound, we make use of the similarity of the Handelman repre-

sentation on the box with Bernstein polynomials. After recapping some basics on
Bernstein polynomials in Section 3.2, we describe the ideas from [13] on how to
use the Bernstein polynomials to find bounds on the Handelman representation in
Section 3.3.
Bernstein polynomials have a long history for their use in bounding interval poly-

nomials. The “Bernstein algorithm” is a standard tool in polynomial optimization.
Error bounds for the Bernstein bound for polynomials are known to the commu-
nity. We review these bounds thoroughly and extend them to an error bound for
the Handelman approach. We introduce ideas in the univariate case in Section 3.4
and readily generalize the concept to the multivariate setting in Section 3.5.
Section 3.6 is concerned with the connection of error and degree bounds. It is

a common procedure to extract degree bounds from known error bounds and we
will perform this task using the error bounds derived before.
Finally, in Section 3.7, we will further explore the similarities and differences
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between the Bernstein approximation and the Handelman relaxation.
To improve readability, we omit some lengthy calculations in the proofs. The

complete proofs are collected in Section 3.8.

3.1 Previously Known Bounds

Most error and degree bounds for Positivstellensatz relaxations depend on the
following three parameters.

1. A constant c, which depends on the description of the set K over which to
optimize;

2. deg(p), the degree of the objective polynomial p;
3. ‖p‖ for the error bound and ‖p‖

pmin
, a measure of how far p is from having a

zero on K, for the degree bound.
The norm in the last parameter is defined as

‖p‖ := max
α
|pα|

∏n
j=1 αj !

(
∑n

j=1 αj)!
.

Note that this does indeed define a norm on the real vector space R[x], measuring
the size of the coefficients of a polynomial.
The first result that we will state is concerned with Pólya’s theorem 2.12. Powers

and Reznick were able to prove a degree bound using only elementary methods.
Many later results, also such that are concerned with other representations, depend
on the following theorem.

Theorem 3.1 ([73, Theorem 1]). Let p ∈ R[x] be a homogeneous polynomial of
degree d. If

N >
d(d− 1)

2

‖p‖
pmin

− d,

then (x1 + . . .+ xn)Nf(x1, . . . , xn) has positive coefficients.

Deriving bounds for Schmüdgen’s Positivstellensatz is a more complex task. An
early result by Prestel states that a degree bound depending on the three param-
eters mentioned at the beginning of the section does exist. A (nearly) concrete
formulation of the bound has been found by Schweighofer. The bound, which we
will state in the next theorem, depends on a constant c, which in theory can be
computed from the representation of the set K. This task, however, is a com-
plicated undertaking and, as Schweighofer and Nie state in [69], “probably too
tedious” to perform in practice. The proof makes use of the effective version of
Pólya’s theorem stated above.

Theorem 3.2 ([84, Theorem 3, Theorem 4]). Let K be as in (2.18) and assume
K ⊂ (−1, 1)n. Then there are some c ∈ N and 1 < c′ ∈ N with the following
properties.
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Every p ∈ R[x] of degree m with pmin,K > 0 has a representation of the form
p =

∑
α∈[1]k0

σαg
α, where σα ∈ Σ[x] is such that

σα = 0 or deg(σαg
α) ≤ cm2

(
1 +

(
m2nm

‖p‖
pmin,K

)c)
for all α ∈ [1]k0.
For every polynomial p of degree m and for all integers d ∈ N, with d ≥

c′mc′nc
′m, we have

pmin,K − p(d)Sch,G ≤ c
′m4n2m

‖p‖
c′√d

.

From this result, Nie and Schweighofer derived a bound for Putinar’s Positivstel-
lensatz. Due to missing mixed terms in the representation, the result is weaker and
involves an exponential term. However, the bound is not expected to be sharp.
Nie and Schweighofer even speculate whether it can be reduced to the bound given
above for the Schmüdgen case.

Theorem 3.3 ([69, Theorem 6, Theorem 8]). Let K be as in (2.18) and assume
K ⊂ (−1, 1)n. Let the quadratic module M(g1, . . . gk) generated by the polynomials
defining K be Archimedean. Then there are some c ∈ R+ and 1 < c′ ∈ N with the
following properties.
Every p ∈ R[x] of degree m with pmin,K > 0 is in Md(g1, . . . , gk), where

d ≤ c exp

((
m2nm

‖p‖
pmin

)c)
.

For every polynomial p of degree m and for all integers d ∈ N, satisfying d ≥
c exp

((
2m2nm

)c)
, we have

pmin,K − p(d)Put,G ≤
6m3n2m‖p‖

c′
√
log dc′

.

It would be interesting to refine these bounds for special sets, for which the un-
known constant c can be calculated. For the case of the hypercube, De Klerk and
Laurent [13] propose to relate the error bounds for the Schmüdgen case (which we
will discuss below) to the Putinar case. Their argument depends on a representa-
tion of mixed terms of the form

∏n
i=1 xi + Cn in the quadratic module generated

by polynomials xi−x2i describing the hypercube for some constant Cn. They con-
jecture that the smallest possible Cn for such a representation is Cn = 1/n(n+ 2).
The argument is further refined in the recent work by Magron ([60]).
For minimization problems, a natural upper bound for the optimal value can

be found by discretizing the problem. The feasibility region is intersected with a
regular grid and the objective is evaluated at every point in the intersection. To
formalize this, we define S(d) as the set of points in S with denominator d

S(d) := {x ∈ S | dx ∈ Nn}. (3.1)
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For example, pmin,[a,b](d) is the minimum of p(x) over the points in

[a, b](d) =

{
a1 +

k1
d

(b1 − a1), . . . , an +
kn
d

(bn − an) | k ∈ [d]n0

}
.

In [13], de Klerk and Laurent derive a bound for the error of the Handelman
approximation on the hypercube Q = [0, 1]n. They use the fact that the minimum
of a polynomial over the cube Q is bounded from below by the Bernstein approx-
imation introduced in the next section and from above by the minimum over the
set Q(d) of points in Q with denominator d. We state their main result in the
following theorem.

Theorem 3.4 ([13, Theorem 1.4]). Let Q = {x ∈ Rn | gj(x) ≥ 0, j = 1, . . . , 2n} be
the hypercube defined by the 2n linear polynomials g1 = x1, g2 = 1−x1, . . . , g2n−1 =
xn, , g2n = 1− xn. For d ≥ deg(p) we have

max(pmin,Q − p(nd)Han,G, pmin,Q(d) − pmin,Q) ≤ ‖p‖)
d

(
deg(p) + 1

3

)
ndeg(p)

≤ ‖p‖
d

deg(p)3ndeg(p)

6
.

Employing similar ideas as in [13], we will use the Bernstein representation of
the objective polynomial to derive a new error bound on the Handelman approxi-
mations pHan,g. We generalize earlier results on the Bernstein approximation (see
[18, 61]) to arbitrary boxes. These results are used to obtain an error bound for
the general Handelman approach on polytopes in Theorem 3.15.

3.2 Preliminaries on Bernstein Polynomials

Before stating the error bounds, we have to introduce some facts on Bernstein
polynomials. The Bernstein polynomial basis was first introduced in 1912 as a
tool to constructively proof the Stone-Weierstrass theorem [7]. Since then, it has
been applied in many areas, most notably for computer aided design.
Our interest in Bernstein polynomials lies in the similarity to the polynomials

appearing in Handelman representations over boxes. In order to produce results
for arbitrary boxes, we use a generalized version of the Bernstein polynomials and
the Bernstein algorithm, mostly following the notation in [13, 18] and [78].

Definition 3.5. Given a, b ∈ R, a ≤ b, define the generalized univariate Bernstein
polynomials of degree d as

pj,d(x, a, b) :=

(
d

j

)
(x− a)j(b− x)d−j

(b− a)d
.

The (generalized) Bernstein approximation of a polynomial p(x) ∈ R[x] of degree
d ≥ deg(p) is given by

Bd(p, a, b) :=
d∑
j=0

p(a+
j

d
(b− a))pj,d(x, a, b). (3.2)
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For the multivariate case, let β ∈ [n]d0, a, b ∈ Rn. Analogously to the univariate
case, define the multivariate Bernstein polynomials by

Pβ,d(x, a, b) :=

n∏
i=1

pβi,d(xi, ai, bi) =

n∏
i=1

(
d

βi

)
(xi − ai)βi(bi − xi)d−βi

(bi − ai)d
(3.3)

and the multivariate Bernstein approximation by

Bd(p, a, b) :=
∑
β∈[d]n0

p

(
a1 +

β1
d

(b1 − a1), . . . , an +
βn
d

(bn − an)

)
Pβ,d(x, a, b).

These generalized versions inherit some of the nice properties of the usual Bern-
stein polynomials.

Lemma 3.6. Let a, b ∈ Rn, a ≤ b. Then the polynomials Pβ,d(x, a, b) are non-
negative on the box [a, b] and the Bernstein approximations of linear polynomials
are exact in the following sense:

Bd(1, a, b) =
∑
β∈[d]n0

Pβ,d(x, a, b) = 1,

Bd(xi, a, b) =
∑
β∈[d]n0

(
ai +

βi
d

(bi − ai)
)
Pβ,d(x, a, b) = xi.

Proof. The polynomials x − a and b − x are non-negative on the interval [a, b].
The same is true for their powers and products. The positive combination of these
products in pj,d(x, a, b) are thus also non-negative. This easily extends to the
multivariate case.
For the exactness of the approximation on linear polynomials, let us first proof

the statement for the univariate case.

Bd(1, a, b) =
d∑
j=0

pj,d(x, a, b) =
d∑
j=0

(
d

j

)
(x− a)j(b− x)d−j

(b− a)d

=
[(x− a) + (b− x)]d

(b− a)d
=

(b− a)d

(b− a)d
= 1,

Bd(x, a, b) = a+

d∑
j=0

(
j

d
(b− a)

)(
d

j

)
(x− a)j(b− x)d−j

(b− a)d

= a+
(x− a)

(b− a)d−1

d−1∑
j=0

(
d− 1

j

)
(x− a)j(b− x)d−1−j

= a+ (x− a)

d−1∑
j=0

pd−1,j = x.
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3 Error Bounds for Handelman Approximations

The multivariate statement follows by splitting the sum and summing over the
single indices βi ∈ [d] one after another.

Lemma 3.7. Every Bernstein polynomial Pβ,d−1(x, a, b) of degree d − 1 can be
written as a positive combination of Bernstein polynomials of degree d.

Proof. Every univariate Bernstein polynomial pj,d−1(x, a, b) of degree d− 1 can be
written as a positive combination of Bernstein polynomials of degree d as

pj,d−1(x, a, b) =
d− j
d

(b− a)pj,d(x, a, b) +
j + 1

d
(b− a)pj+1,d(x, a, b).

See [85, p. 23] for details on the proof in the univariate case on the unit interval.
The generalized version is proven analogously by combining the Bernstein basis
representations of (b−x)pj,d−1(x, a, b) = d−j

d (b−a)pj,d(x, a, b) and xpj,d−1(x, a, b) =
j+1
d (b − a)pj+1,d(x, a, b). For the multivariate version, elevate the degree of the

products in the multivariate Bernstein polynomial and apply the distributive law.

In the following sections, we make use of polynomials with representations in
different bases. Let us now give explicit formulas to change between the power basis
1, xi, x

2
i , xixj , . . ., the shifted power basis 1, xi−ai, (xi−ai)2, (xi−ai)(xj−aj), . . . ,

and the Bernstein basis Pj,d(x, a, b).
Let p ∈ R[x]m,...,m be a polynomial in n variables x1, . . . , xn of degree at most

m in each variable and d ≥ m

p(x) =
∑

α∈[m]n0

pαx
α =

∑
γ∈[m]n0

cγ

n∏
j=1

(xj − aj)γj =
∑
β∈[d]n0

b
(d)
β Pβ,d(x, a, b).

Given the coefficients of the power basis pα, the coefficients of the shifted power
basis can be computed by the following formula

∀γ ∈ [m]n0 , cγ =
m∑

α1=γ1

· · ·
m∑

αn=γn

pα

n∏
j=1

(
αj
γj

)
a
αj−γj
j . (3.4)

This can be seen by expanding the power basis representation as

p(x) =
∑

α∈[m]n0

pαx
α =

∑
α∈[m]n0

pα

n∏
j=1

((xj − aj) + aj)
αj

=
∑

α∈[m]n0

pα

n∏
j=1

 αj∑
γj=0

(
αj
γj

)
(xj − aj)γja

αj−γj
j


=

∑
γ∈[m]n0

 m∑
α1=γ1

. . .

m∑
αn=γn

pα

n∏
j=1

(
αj
γj

)
a
αj−γj
j

 n∏
j=1

(xj − aj)γj

=
∑

γ∈[m]n0

cγ

n∏
j=1

(xj − aj)γj .
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3.2 Preliminaries on Bernstein Polynomials

To derive a formula for the coefficients in the Bernstein basis in terms of the
coefficients of the shifted power basis, let us take a look at the Bernstein coefficients
of a univariate shifted monomial (x− a)s.

Lemma 3.8 ([78, p. 228]). For s ∈ [d],

(x− a)s =

d∑
j=s

(
j
s

)(
d
s

)(b− a)spj,d(x, a, b).

The Bernstein polynomials P1,d, . . . , Pd,d form a basis of the vectorspace of polyno-
mials of degree at most d.

Proof.

(x− a)s = (x− a)s(x− a+ b− x)d−s
1

(b− a)d−s

=

d−s∑
j=0

(
d− s
j

)
1

(b− a)d−s
(x− a)s+j(b− x)d−s−j

=
d∑
j=s

(
d− s
j − s

)
(x− a)i(b− x)d−s

(b− a)d−s

=
d∑
j=s

(
j
s

)(
d
s

)(d
j

)
(x− a)j(b− x)d−j

(b− a)d−s
.

The last equality follows from(
d− s
j − s

)
=

(d− s)!
(j − s)!(d− j)!

=

(
j!

s!(j−s)!

)
(

d!
s!(d−s)!

) d!

j!(d− j)!
=

(
j
s

)(
d
s

)(d
j

)
.

It follows directly, that

n∏
j=1

(xj − aj)γj =
d∑

β1=γ1

. . .
d∑

βn=γn

 n∏
j=1

(
βj
γj

)(
d
γj

) (bj − aj)γjPβ,d(x, a, b)


=
∑
β∈[d]n0
β≥γ

 n∏
j=1

(
βj
γj

)(
d
γj

) (bj − aj)γjPβ,d(x, a, b)

 .

Now we can express the Bernstein coefficients in terms of the coefficients of the
shifted power basis

b
(d)
β =

 β1∑
γ1=0

. . .

βn∑
γn=0

cβ

n∏
j=1

(
βj
γj

)(
d
γj

) (bj − aj)γj

 . (3.5)
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3 Error Bounds for Handelman Approximations

Remark 3.9. Bernstein polynomials can also be defined on a simplex instead of
the hyperrectangular domain used here. Error bounds for this setting have been
studied by Leroy [55, 56]. We focus on the version defined on hyperrectangular
sets, because it fits nicely with the Handelman relaxations on the box, as we will
see in the next section.

3.3 Using Bernstein Bounds to Bound the Handelman
Approximation

In this section, we show how a Bernstein representation of the objective polynomial
can be used to bound the optimal value of the Handelman approximation. The
ideas from [13, Section 1.3] on Bernstein approximations on the unit cube directly
translate to the setting with arbitrary boxes.
Let p(d)Ber(a,b) := minβ∈[d]n0 b

(d)
β be the smallest coefficient of the representation of

p in the generalized Bernstein basis (3.3). Analogously to the case, where a = 0
and b = 1, as discussed in [13], we use Lemma 3.6 to see that

p(x)− p(d)Ber(a,b) =
∑
β∈[d]n0

(
b
(d)
β − p

(d)
Ber(a,b)

)
Pβ,d(x, a, b).

Pβ,d(x, a, b) is non-negative on [a, b] (Lemma 3.6) and
(
b
(d)
β − p

(d)
Ber(a,b)

)
is non-

negative on [a, b] by definition of p(d)Ber(a,b). Therefore, the left hand side of the
equation above is non-negative on [a, b] and the following inequality is true:

p
(d)
Ber(a,b) ≤ pmin,[a,b].

Again, let G be the set of polynomials defining the box, that means G = {x1 −
a1, . . . , xn − an, b1 − x1, . . . , bn − xn}. Since Pβ,d(x, a, b) ∈ Hdn(G), we know that
p(x)− p(d)Ber(a,b) ∈ Hdn(G) and thus

p
(d)
Ber(a,b) ≤ p

(dn)
Han,G.

Combining the inequalities, we have

p
(d)
Ber(a,b) ≤ p

(dn)
Han,G ≤ pmin,[a,b] ≤ pmin,[a,b](d). (3.6)

In the following section, we are going to establish a bound for pmin,[a,b](d)−p
(d)
Ber(a,b)

in the univariate case. Remarkably, the bound depends on the length of the interval
[a, b]. This will be generalized to the multivariate case in Section 3.5.
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3.4 An Error Bound for Univariate Handelman Approximations

3.4 An Error Bound for Univariate Handelman
Approximations

In this section we derive an error bound for the Handelman approximation only in
the univariate case, in order to keep the notation simple and to introduce concepts.
The results are readily generalized to the multivariate setting in the next section.
The basic ideas for the univariate setting are already contained in Rivlin’s work

[77] and have been generalized to arbitrary intervals by Rokne in [78].
We are going to derive a bound on pmin,[a,b](d) − p

(d)
Ber(a,b) by bounding the error

that is made by the Bernstein approximation (3.2). Given 0 ≤ s ≤ n, let us rewrite
the polynomial Bd((x− a)s, a, b)− (x− a)s in the Bernstein basis with coefficients
δj(s).

Bd((x− a)s, a, b)− (x− a)s =
d∑
j=0

δj(s)pj,d(x, a, b). (3.7)

Next, we will provide a bound on the coefficients δj(s), which we use to deduce a
bound on general polynomials afterwards.

Theorem 3.10 ([78, Theorem 2], see also [77, Theorem 3]). For d ≥ m > 1, the
following holds:

∀j ∈ [d]0, s ∈ [m]0 : δj(s) ≤
(s− 1)2

d
(b− a)s.

Proof. See Section 3.8.

With the next theorem, we can relate the Bernstein approximation to the ap-
proximation on a regular grid introduced in (3.1).

Theorem 3.11 ([18, Theorem 4], [61, Theorem 2] and [78, Theorem 3]). For
p(x) =

∑m
i=1 ci(x− a)i and d ≥ m ≥ 1, we have

|pmin,[a,b](d) − p
(d)
Ber(a,b)| ≤ ∆(d)

with ∆(d) ≤ ϑp max(|a|m, 1)

m∑
s=2

(s− 1)2
(b− a)s

d

and ϑp = max
2≤s≤m

m∑
j=s

(
j

s

)
|ps|.

Proof. See Section 3.8.

Using the insights from the last section on the relation of the bounds (3.6), we
can now deduce an error bound for the Handelman approximation on arbitrary
intervals.
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3 Error Bounds for Handelman Approximations

Corollary 3.12. Given an interval [a, b], for any integer d ≥ n, we have pmin,[a,b]−
p
(dn)
Han,G ≤ pmin,[a,b] − p

(d)
Ber ≤ ∆(d), where for |b− a| < 1,

∆(d) ≤ ϑp max(1, am)|b− a|2∞
m∑
s=2

(
(s− 1)2

d

)
and for |b− a| ≥ 1,

∆(d) ≤ ϑp max(1, am)|b− a|m
m∑
s=2

(
(s− 1)2

d

)

3.5 An Error Bound for Multivariate Handelman
Approximations

Error bounds for the Bernstein approach in the fashion of our Theorem 3.14 have
been known for a long time now. They seem to be mentioned first by Garloff in
[18], the proof however discusses only rectangles in the bivariate setting. Similar
results can also be found in [61], again without proof. We will recap all necessary
steps and rigorously state the proofs of the error bounds. Most ideas from the
univariate setting can be generalized directly to the multivariate setting.
Our main contribution in this section is the generalization of the bounds to the

Handelman approach in Theorem 3.15.
Let us look again at the error that is made by the Bernstein approximation of

a shifted monomial Bd(
∏n
j=1(xj − aj)γj , a, b)−

∏n
j=1(xj − aj)γj , where d ≥ γj for

all j. We express the error in the Bernstein basis and call the coefficients of the
error term δβ(γ).

Bd(
n∏
j=1

(xj − aj)γj , a, b)−
n∏
j=1

(xj − aj)γj =
∑
β∈[d]n0

δβ(γ)Pβ,d(x, a, b)

Theorem 3.13 ([18, Theorem 3]). For d ≥ m > 1, the following holds:

∀β ∈ [d]n0 , γ ∈ [m]n0 : δβ(γ) ≤
n∏
j=1

(bj − aj)γj
n∑
j=1

γj /∈{0,1}

(γj − 1)2

d
.

Proof. See Section 3.8.

Similarly to the univariate case we can relate the Bernstein approximation with
values taken by p on a grid.

Theorem 3.14 ([61, Theorem 2] and [18, Theorem 4]). For p ∈ R[x]m and d ≥
m ≥ 1, we have

|pmin,[a,b](d) − p
(d)
Ber(a,b)| ≤ ∆(d)
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with

∆(d) = ϑp max(1, |a1|m, . . . , |an|m)
∑

γ∈[m]n0

 n∏
j=1

‖b− a‖
∑n
j=1 γj

∞

n∑
j=1

γj /∈{0,1}

(γj − 1)2

d


and ϑp = max

γ∈[m]n0

∑
α∈[m]n0
α≥γ

|pα|
n∏
j=1

(
αj
γj

)
.

Proof. See Section 3.8.

The following theorem describes a bound on the Handelman approach based
on a surrounding box of the polytope K. Note that such a box can be found by
solving 2n linear programs over the polytope K, minimizing and maximizing in
direction of the coordinate axes.

Theorem 3.15. Let K be a polytope contained in a box [a, b]. Assume that pmin,[a,b]
is attained at a point in K. For p ∈ R[x]m and any integer d ≥ mn, we have
pmin,K − p(dn)Han,G ≤ pmin,K − p

(d)
Ber(a,b) ≤ ∆(d), where for ‖b− a‖∞ < 1,

∆(d) ≤ ϑp max(1, |a1|m, . . . , |an|m)‖b− a‖2∞
∑

γ∈[m]n0

 n∑
j=1

γj /∈{0,1}

(γj − 1)2

d


and for ‖b− a‖∞ ≥ 1,

∆(d) ≤ ϑp max(1, |a1|m, . . . , |an|m)‖b− a‖mn∞
∑

γ∈[m]n0

 n∑
j=1

γj /∈{0,1}

(γj − 1)2

d

 .

Proof. As we have seen in Lemma 4.1, adding redundant inequalities to the prob-
lem does not change the value p(d)Han,G. Therefore, we can add the inequalities
defining the bounding box. The error bound from theorem 3.14 is valid in pres-
ence of these constraints.
For ‖b−a‖∞ < 1, we get a quadratic term in ‖b−a‖∞, because there has to be at

least one γi ≥ 2 in each summand, otherwise the term in parentheses vanishes.

Remark 3.16. We conjecture that similarly strong bounds exist for the general case
where the minimum of p over the hypercube does not lie in the polytope. For our
purpose, namely to show convergence of the branch and bound method described
in the next chapter, the result provided here suffices.

In the next corollary, we provide a somewhat coarser version of the bound from
Theorem 3.14 on the unit box to make it easier to compare.
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Corollary 3.17. For [a, b] = [0, 1], the bound from Theorem 3.15 is bounded by

pmin,K − p(dn)Han,G ≤ pmin,K − p
(d)
Ber(a,b) ≤

‖p‖
d
n(n+ 1)2mnm+4.

Proof. The result follows by rigorous bounding of ϑp.

ϑp = max
γ∈[m]n0

∑
α∈[m]n0
α≥γ

|pα|
n∏
j=1

(
αj
γj

)
≤ (m+ 1)n max

α,γ∈[m]n0
α≥γ

|pα|
n∏
j=1

(
αj
γj

)

≤ (m+ 1)n max
α,γ∈[m]n0
α≥γ

‖p‖
(
∑n

j=1 αj)!∏n
j=1 αj !

∏n
j=1 αj !∏n

j=1(αj − γj)!γj !

≤ (m+ 1)n‖p‖(nm)!

∆(d) ≤ ϑp
∑

γ∈[m]n0

 n∑
j=1

γj /∈{0,1}

(γj − 1)2

d


≤ ϑp(m+ 1)nn

(m− 1)2

d
≤ ‖p‖

d
(m+ 1)2n(nm)nm+2.

Note that the bound in theorem 3.15 depends on the length of the longest edge
of a box [a, b], surrounding the polytope over which we optimize. All other factors
in the bound are bounded in size. In other words, we can expect tighter and
tighter approximations, as we divide along the dimension of the longest edge in
the Handelman procedure. Moreover, with repeated subdivision of the interval, the
minimum over the optimal values on the subintervals converges to the minimum
of the objective polynomial.

3.6 Deriving Degree Bounds from Error Bounds

The error bound in Theorem 3.15 can be used to design a degree bound for the
Handelman approach. This is a common practice, the degree bounds in Section
3.1 were developed in the same way.

Lemma 3.18. Let p ∈ R[x] be positive on the polytope P , which is described
by linear polynomials G = {g1, . . . , gk}. Assume that the minimum of p over a
bounding box is attained at a point in P . Let ∆(d) be defined as in Theorem 3.15.
Choose d such that pmin,P −∆(d) is positive. Then p ∈ Hd(G).
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Proof. We have
pmin,P − p(d)Han,G ≤ ∆(d)

and by definition
p(x)− p(d)Han,G ∈ Hd(G).

This implies
p(x) + (pmin,P − p(d)Han,G)− pmin,P ∈ Hd(G),

and thus
p(x)− (pmin,P −∆(d)) ∈ Hd(G).

Since pmin,P −∆(d) is positive by assumption, p(x) ∈ Hd(G).

Note that in the special setting where the optimum over a bounding box lies in
the polytope P , this yields an alternative proof for Handelman’s Theorem 2.16,
since ∆(d) converges to zero as d goes to infinity.

3.7 Bernstein and Handelman

From the presentation in the last sections, one could get the impression that the
Bernstein approximation and the Handelman approximation are the same when
optimizing over a box. This observation is indeed close to the truth, we will see
in Corollary 3.20 that the Bernstein bound coincides with the Handelman bound
if we restrict the Handelman representation not by total degree but by a certain
degree in each variable.
In fact, it is due to the special structure of the Handelman representation on the

box that we only need polynomials of the highest degree in each variable for the
representation.

Lemma 3.19. Let p ∈ R[x] and let P be a box as in (2.9) described by linear
polynomials g1, . . . , gk. If p admits a representation

p(x) =
∑
α∈Nk

λαg
α, λα ≥ 0

with gα ∈ R[x](d,...,d), then it also admits such a representation for which gα ∈
R[x](d,...,d) \ R[x](d−1,...,d−1).

Proof. Since the feasibility region is a box, the polynomials gα above are Bernstein
polynomials (up to a positive factor consisting of binomial coefficients). The same
reasoning as in the proof of lemma 3.7 applies.

This has direct implications on the relation of the Bernstein bound and the
Handelman bound.

37



3 Error Bounds for Handelman Approximations

Corollary 3.20. Let p ∈ R[x] and let P be a box as in (2.9) described by linear
polynomials g1, . . . , gk.
When restricting to a certain degree d in every variable instead of a certain total

degree, the Bernstein bound and the Handelman bound coincide, that is, the optimal
value t∗ of the optimization problem

maximize t

s.t. p(x)− t =
∑
α∈Nm

λαg
α,

λα ≥ 0,

gα ∈ R[x](d,...,d)

is equal to p(d)Ber,P .

Proof. By lemma 3.19, the same optimal value t∗ can be achieved with polynomials
gα ∈ R[x](d,...,d) \ R[x](d−1,...,d−1), which are positive multiples of the Bernstein
polynomials of degree d. Therefore,

p(x)− t∗ =
∑
β∈[d]n0

λ′β Pβ,d(x, a, b)

with non-negative coefficients λ′β. Using that the Bernstein polynomials form a
partition of unity (Lemma 3.6), we get

p(x) =
∑
β∈[d]n0

λ′β Pβ,d(x, a, b) + t∗
∑
β∈[d]n0

Pβ,d(x, a, b)

=
∑
β∈[d]n0

(λ′β + t∗) Pβ,d(x, a, b)

and thus p(d)Ber,P = minβ∈[d]n0 λ
′
β + t∗ ≥ t∗.

The reverse inequality is shown by the argument in Section 3.3.

This is remarkable, since no optimization techniques have to be used to compute
the Bernstein bound. There exist efficient methods to find the Bernstein bound in
practice. In branch and bound methods like the one we will describe in the next
chapter, difference schemes can be used to successively find the Bernstein bound
on partition sets.
But this does not mean that the Bernstein approach is always superior to the

Handelman approach. The Handelman Positivstellensatz admits convex polytopes
as feasible regions and can thus be used in a much more general setting.

3.8 Proofs

In this section we collect the proofs omitted earlier in this chapter.
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3.8 Proofs

Proof (of Theorem 3.10). Since Bd(1, a, b) = 1 and Bd(x, a, b) = x (see Lemma
3.6), δj(0) = δj(1) = 0. This means that we can restrict our considerations to the
case s ≥ 2. Using Lemma 3.8, we have

Bd((x− a)s, a, b)− (x− a)s

=

d∑
j=0

[
j

d
(b− a)

]s
pj,d(x, a, b)−

d∑
j=s

(
j
s

)(
d
s

)(b− a)spj,d(x, a, b)

=

s−1∑
j=0

[
j

d
(b− a)

]s
pj,d(x, a, b) +

d∑
j=s

([
j

d
(b− a)

]s
−
(
j
s

)(
d
s

)(b− a)s

)
pj,d(x, a, b).

By comparing coefficients, for 0 ≤ j < s we get

δj(s) =

[
j

d
(b− a)

]s
≤ (s− 1)2

d2
(b− a)s ≤ (s− 1)2

d
(b− a)s.

and for 2 ≤ s ≤ j we get

δj(s) =

([
j

d
(b− a)

]s
−
(
j
s

)(
d
s

)(b− a)s

)

=

([
j

d

]s
− j!(d− s)!

(j − s)!d!

)
(b− a)s

=

(
j

d

)s1−

(
1− 1

j

)
· · ·
(

1− s−1
j

)
(
1− 1

d

)
· · ·
(
1− s−1

d

)
 (b− a)s

≤
(
j

d

)s(
1−

(
1− 1

j

)
· · ·
(

1− s− 1

j

))
(b− a)s

≤
(
j

d

)s(
1−

(
1− s− 1

j

)s−1)
(b− a)s.

Now apply the mean value theorem to f(x) := (1 − x)s−1. We have f ′(x) =
−(s− 1)(1− x)s−2. Choose a = 0, b = s−1

j .
Then

f(b)− f(a)

b− a
= f ′(x0) for some x0 ∈ [a, b]

⇔

(
1− s−1

j

)s−1
− 1

s−1
j − 0

= −(s− 1)(1− x0)s−2

⇔ 1− (1− s− 1

j
)s−1 =

(s− 1)2

j
(1− x0)s−2

≤ (s− 1)2

j
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and it follows that

δj(s) ≤
(
j

d

)s−1 (s− 1)2

j
(b− a)s

≤ (s− 1)2

d
(b− a)s.

Proof (of Theorem 3.11). By definition of p(d)Ber(a,b), ∆(d) can be bounded by the
corresponding j-th differences

∆(d) ≤ max
j∈[m]0

∆j(d),

where ∀j ∈ [m]0 ∆j(d) := p

(
a+

j

d
(b− a)

)
− b(d)j .

Again we use the Bernstein basis to express the difference between the Bernstein
approximation of the polynomial p and p itself

Bd(p, a, b)− p(x) =
d∑
j=0

[
p

(
a+

j

d
(b− a)

)
− b(d)j

]
pj,d(x, a, b)

=

d∑
j=0

∆j(d) pj,d(x, a, b).

Using equation (3.7), we get

Bd(p, a, b)− p(x) =

d∑
j=0

m∑
s=0

csδj(s) pj,d(x, a, b).

Therefore, we see that

∆j(d) =
m∑
s=0

csδj(s).

Using the definition of the cs in (3.4), the bound on δj(s) from Theorem 3.10 and
the fact that δ0(s) = δ1(s) = 0, we get 1

∆j(d) ≤
m∑
s=2

 m∑
j=s

|pj |
(
j

s

)
aj−s

 (s− 1)2
(b− a)s

d

≤ ϑp max(|a|m, 1)

m∑
s=2

(s− 1)2
(b− a)s

d
.

1The factor ϑp comes from the representation of the polynomial p in terms of the basis (x− a)s
as explained in equation (3.4). In [78], the factor is defined as

∑n
s=2 |ps|, while [18, 61] contain

the version shown here. We believe the additional binomial coefficients cannot be omitted.
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Proof (of Theorem 3.13).

Bd(
n∏
j=1

(xj − aj)γj , a, b)−
n∏
j=1

(xj − aj)γj

=

 ∑
β∈[d]n0

n∏
j=1

(
βj
d

)γj
(bj − aj)γj −

∑
β∈[d]n0
β≥γ

n∏
j=1

(
βj
γj

)(
d
γj

) (bj − aj)γj

Pβ,d(x, a, b)

=

 ∑
β∈[d]n0

n∏
j=1

(
βj
d

)γj
−
∑
β∈[d]n0
β≥γ

n∏
j=1

(
βj
γj

)(
d
γj

)
 n∏
j=1

(bj − aj)γjPβ,d(x, a, b).

If βi < γi for some i ∈ [n], and thus γi ≥ 1, we have

δβ(γ) =

n∏
j=1

(
βj
d

)γj
(bj − aj)γj

≤
(
γi − 1

d

)2 n∏
j=1

(bj − aj)γj

≤
n∑
j=1

(γj − 1)2
1

d

n∏
j=1

(bj − aj)γj ,

if β ≥ γ we have

δβ(γ) =

 n∏
j=1

(
βj
d

)γj
−

n∏
j=1

(
βj
γj

)(
d
γj

)
 n∏
j=1

(bj − aj)γj .

Since
n∏
j=1

(
βj
d

)γj
−

n∏
j=1

(
βj
γj

)(
d
γj

) ≤ n∏
j=1

γj /∈{0,1}

(
βj
d

)γj
−

n∏
j=1

γj /∈{0,1}

(
βj
γj

)(
d
γj

) ,
we can bound δβ(γ) by

δβ(γ) ≤

 n∏
j=1

γj /∈{0,1}

(
βj
d

)γj
−

n∏
j=1

γj /∈{0,1}

(
βj
γj

)(
d
γj

)
 n∏
j=1

(bj − aj)γj .

Similarly to the univariate case, the bound can be further estimated by

δβ(γ) ≤
n∏
j=1

γj /∈{0,1}

(βjd
)γj 1−

n∏
j=1

γj /∈{0,1}

(
1− γj − 1

βj

)γj
 n∏
j=1

(bj − aj)γj .
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Using a generalized Bernoulli inequality2 we get

δβ(γ) ≤

 n∏
j=1

γj /∈{0,1}

(
βj
d

)γj 1−

1−
n∑
i=1

γi /∈{0,1}

(γi − 1)2

βi



 n∏
j=1

(bj − aj)γj

=

 n∏
j=1

γj /∈{0,1}

(
βj
d

)γj  n∑
i=1

γi /∈{0,1}

(γi − 1)2

βi


 n∏
j=1

(bj − aj)γj

=

 n∑
i=1

γi /∈{0,1}


 n∏

j=1
γj /∈{0,1}

(
βj
d

)γj(βid
)γi−1 (γi − 1)2

d


 n∏
j=1

(bj − aj)γj

≤
n∑
i=1

γi /∈{0,1}

(γi − 1)2
1

d

n∏
j=1

(bj − aj)γj .

Proof of Theorem 3.14. Again, ∆(d) ≤ maxβ∈[d]n0 ∆β(d), where

∆β(d) = p

(
a1 +

β1
d

(b1 − a1), . . . , an +
βn
d

(bn − an)

)
− b(d)β .

We have

Bd(p, a, b)− p(x) =
∑
β∈[d]n0

∆β(d)Pβ,d(x, a, b)

=
∑
β∈[d]n0

∑
γ∈[m]n0

cγδβ(γ)Pβ,d(x, a, b),

and therefore

∆β(d) =
∑

γ∈[m]n0

cγδβ(γ)

≤
∑

γ∈[m]n0

 ∑
α∈[m]n0
α≥γ

|pα|
n∏
j=1

(
αj
γj

)
a
αj−γj
j


 n∏
j=1

(bj − aj)γj
n∑
j=1

γj /∈{0,1}

(γj − 1)2

d


2 [27, p. 60] Generalized Bernoulli inequality: If α, β, . . . , δ are greater than −1 and all positive
or all negative, then (1 + α)(1 + β) · · · (1 + δ) > 1 + α+ β + . . .+ δ
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≤ ϑp max(1, |a1|m, . . . , |an|m)
∑

γ∈[m]n0

 n∏
j=1

(bj − aj)γj
n∑
j=1

γj /∈{0,1}

(γj − 1)2

d



≤ ϑp max(1, |a1|m, . . . , |an|m)
∑

γ∈[m]n0

 n∏
j=1

‖b− a‖
∑n
j=1 γj

∞

n∑
j=1

γj /∈{0,1}

(γj − 1)2

d

 .
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4 Improving Positivstellensatz
Relaxations by Adding Inequalities
and Branching

In Chapter 2, we described how Positivstellensätze can be used to construct re-
laxations for polynomial optimization problems. With higher degree bounds, the
complexity of these relaxations also increases. Therefore, one tries to improve the
relaxations without changing the degree bound. This is usually done by adding
additional polynomials to the description of the set K over which the objective
function is to be optimized.
In Section 4.1, we discuss the impact of adding redundant polynomials to the

description of the feasible set. Since our main focus in this work lies on the Han-
delman relaxation, we are primarily interested in adding linear inequalities.
Instead of adding redundant linear polynomials, one can split the problem into

two parts by adding a non-redundant linear constraint. As we have seen in the
last chapter, we can expect the bounds to improve when the feasible set becomes
smaller. We make use of this fact and introduce a new branch and bound method
based on the Handelman relaxation in Section 4.2.1. We prove that the suggested
approach converges. Further variants of the approach (an additional splitting rule)
are discussed in Section 4.3.
Our main interest throughout is the Handelman relaxation, therefore we will

mainly be concerned with polynomial optimization over a polytope

minimize p(x)

s.t. x ∈ P,
P = {x ∈ Rn | gi(x) ≥ 0, gi linear}.

(4.1)

4.1 Adding Redundant Polynomials

In applications one tries to modify the polynomial optimization problem that is
to be solved, in order to reduce the error introduced by the relaxation. The most
common approach is to enrich the constraint set by adding redundant polynomials
to the description of the set K. This means that the original polynomial optimiza-
tion problem remains unchanged. At first sight, it is not clear why this should
improve the relaxation.
In [52], Lasserre provides a rationale for doing so. He relates the Positivstellen-

satz relaxation to the dual method of multipliers in nonlinear programming. The
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4 Improving Positivstellensatz Relaxations

resulting Lagrangian relaxation of the enriched polynomial optimization problem
differs from the Lagrangian relaxation of the original problem. Basically, additional
polynomials in the description of the feasibility region lead to a higher degree of
freedom in the Positivstellensatz representation of the objective polynomial.

4.1.1 Redundant Polynomials in the Linear Setting

We begin by exploring the impact of adding linear redundant polynomials. The
following two lemmata show that in the linear setting of problem (4.1) linear
polynomials do not have an impact on the quality of the relaxation. In view of the
dual method described above, this does not come as a surprise, linearly dependent
constraints should not increase the degree of freedom. The situation changes when
the feasible region is not described by linear inequalities.

Lemma 4.1. Let P be a non-empty H-polytope described by linear polynomials
G = {g1, . . . , gk}. The Handelman approximation approach (2.24) is invariant un-
der adding redundant linear constraints to the description G of P .

Proof. Let gk+1 be a redundant linear polynomial for the description of P , that
means, gk+1(x) ≥ 0 for all x ∈ P . We show that Hd(G) = Hd(G ∪ {gk+1}), which
proofs the statement.
By definition, we have Hd(G) ⊆ Hd(G ∪ {gk+1}). For the reverse inclusion,

we have to show that terms of the form gα1
1 · · · g

αk
k g

αk+1

k+1 with
∑k+1

i=1 αi ≤ d are
contained in Hd(G). It follows from Farkas’ Lemma 2.1, that gk+1 is a nonnegative
combination of the polynomials in G :

gk+1 = λ0 +
k∑
i=1

λigi, λ0 ≥ 0, . . . , λk ≥ 0.

This implies that gαk+qk+1 ⊂ Hαk+1
(G). Using Lemma 2.19, it immediately follows

that gα1
1 · · · g

αk
k g

αk+1

k+1 ∈ Hd(G) and thus Hd(G ∪ {gk+1}) ⊆ Hd(G).

The proof of Lemma 4.1 also implies the following: Any redundant linear in-
equalities can be eliminated from the description of P without changing the value
of the optimization problem (2.24). Reduction of the number of inequalities also
reduces the complexity of the optimization problem.
A similar statement can be made about the Putinar approach when restricting

to linear constraints.

Lemma 4.2. Let P be a non-empty H-polytope described by linear polynomials
G = {g1, . . . , gk}. The Putinar approximation approach (2.22) is invariant under
adding redundant linear constraints to the description G of P , that is pdPut(G) =
pdPut(G ∪ gk+1), where gk+1 is a redundant linear constraint.
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4.1 Adding Redundant Polynomials

Proof. Using the representation of a redundant inequality from the Farkas’ Lemma
2.1, gk+1 = λ0 +

∑k
i=1 λigi, λ0 ≥ 0, . . . , λk ≥ 0, we see that every Putinar repre-

sentation in terms of the constraint setG∪{gk+q} can be transformed into a Putinar
representation in terms of G. Given σ0 +

∑k+1
i=1 σigi with σi ∈ Σ, deg(σigi) ≤ d, we

insert the Farkas representation to get

σ0 +
k∑
i=1

σigi + σk+1(λ0 +
k∑
i=1

λigi)

=(σ0 + σk+1λ0) +
k∑
i=1

(σi + σk+1λi)gi

=σ′0 +

k∑
i=1

σ′igi.

Since the new multipliers are a positive combination of the former, they are still
sums of squares. The degree bounds deg(σ′igi) ≤ d are still satisfied since all
polynomials g1, . . . , gk+1 are linear.

From the proofs of the last two statements it is obvious that the statements also
hold if the optimization is not over a polytope, but the redundant linear inequalities
can be expressed by other linear inequalities.
However, it is not generally true that linear redundant inequalities do not have an

effect. For nonlinear constraints, adding linear redundant inequalities can improve
the relaxation. The next example shows this behavior for the Putinar approach.

Example 4.3. Consider the minimization of the polynomial p(x, y) = x over the
Bean curve described by the constraint

G =

{(
x+

1

2

)((
x+

1

2

)2

+ y2

)
−
(
x+

1

2

)4

−
(
x+

1

2

)2

y2 − y4
}
.

The constraint polynomial describes a curve with a singularity at (−0.5, 0). This
leads to an inaccuracy in the relaxation. We have

p
(4)
Put(G) = −0.6315,

p
(6)
Put(G) = −0.5498,

p
(8)
Put(G) = −0.5289.

The true optimal value is reached when adding the redundant constraint x− 1
2 ≥ 0

to the constraint set:

p
(4)
Put(G ∪ {x− 1/2}) = −0.5000.

The varieties of the constraints are depicted in Figure 4.1.
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4 Improving Positivstellensatz Relaxations

Figure 4.1: Bean Curve

While the example might seem constructed on the first view, it is commonly
known that the Putinar approach does not lead to exact results around singularities
of the variety described by the constraints (see [22, Theorem 4.3] ). If such singular
points are known a priori, it is a good idea to enhance the description of the set
K with supporting linear inequalities.

4.1.2 Redundant Polynomials in the Non-Linear Setting

For this section we leave the restricted setting of polytopal feasible sets. While the
convergence results for Handelman’s approach only apply in the polytopal setting,
adding redundant non-linear equations is of course not forbidden. In this more
general setting, the idea of adding redundant polynomials to the description of the
set K when applying Putinar’s approach has been pursued in several works.
The most prominent improvement is to add a polynomial of the formN−

∑n
i=1 x

2
i

with large enough N in order to guarantee that the quadratic module generated
by the constraints is Archimedean. This may be necessary for cases in which the
set K is compact, but the preconditions for Putinar’s Positivstellensatz are not
satisfied. The idea of adding this constraint was inspired by Putinar’s theoretical
result. In concrete applications, it has also turned out to improve the speed of
convergence. This approach has been described by Lasserre in [49, 50] and by
Lasserre and Henrion in [30].
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4.1 Adding Redundant Polynomials

p
(d)
Han,G p

(d)
Han,G′ p(x, y)

−0.3125 −0.1708 −0.72x3y − 0.37xy3 + 0.72 y2x2 − 0.13x2y − 0.88xy2

−0.1317 −0.0829 0.77x3y − 0.49xy3 − 0.42 y2x2 − 0.55x2y + 0.18xy2

−0.1317 −0.0782 0.13x3y + 0.73xy3 − 0.56 y2x2 − 0.40x2y + 0.17xy2

−0.0600 −0.0300 0.25x3y − 0.08xy3 + 0.30 y2x2 + 0.96x2y − 0.16xy2

−0.0200 −0.0120 0.95x3y + 0.04xy3 + 0.09 y2x2 − 0.24x2y + 0.70xy2

−0.2516 −0.1688 0.09x3y + 0.63xy3 − 0.03 y2x2 − 0.77x2y − 0.71xy2

−0.1525 −0.1171 0.57x3y − 0.46xy3 + 0.11 y2x2 − 0.73x2y − 0.15xy2

−0.0850 −0.0425 −0.88x3y + 0.59xy3 + 0.12 y2x2 + 0.54x2y + 0.99xy2

−0.4000 −0.2000 −0.82x3y + 0.44xy3 + 0.99 y2x2 − 0.78x2y − 0.09xy2

Table 4.1: Computational test with added redundant inequality.

Another common approach is to add optimality conditions known from the the-
ory of nonlinear programming. In [68], the well known KKT-conditions were used
to enforce finite convergence of the Putinar approach. This result, however, comes
at the cost of adding additional variables to model these conditions.
In [66], Nie proposes a new type of relaxation, also using the KKT-conditions,

but without additional variables. The disadvantage of this approach is that the
number of constraints grows rapidly. More recently these approaches have been
discussed in [1].
As we have seen, adding redundant linear polynomials to the description of the

polytope does not have any effect. But adding redundant polynomials of higher
degree may very well make a difference, as the following example shows.

Example 4.4 (cp. [51], Ex. 5.5). Let P = {x ∈ R : 0 ≤ x ≤ 1} and the objective
function be f : x 7→ x(x − 1). The optimal value of the minimization problem is
−1

4 , attained at x∗ = 1
2 .

For G = {x, 1− x}, the Handelman-hierarchy (2.24) of degree d = 2 overshoots
and returns an optimal value of −1

2 .
The objective can be improved by enriching the constraint set G with the

quadratic polynomial q(x) = x2−x+ 1
4 = (x− 1

2)2. The polynomial q is redundant:
since it is a square, it is positive on R. The Handelman-hierarchy enhanced with
q yields the true optimal value already for d = 2.
It is remarkable that the linear-factor of q is a non-redundant polynomial in the

description of P . Only by squaring, it becomes redundant.

To make the impact of such equations more tangible, we performed a com-
putational experiment on randomly generated polynomials. We optimized the
polynomials over the simplex; see Table 4.1. Here G denotes the constraint set
G = {x, y, 1− x− y}, while G′ is the enriched constraint set G′ = G ∪ {(x− y)2}.
We did not see any difference for linear and quadratic polynomials. The degree

four polynomials in Table 4.1 however improve significantly. This is due to the
special structure of the polynomials above.
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In the same spirit, Ghaddar, Vera and Anjos [19] describe a method to dynam-
ically generate additional redundant inequalities in Putinar’s relaxation. Without
raising the relaxation order, there method enriches the constraint set. They proof
convergence of this method for some important special cases such as binary poly-
nomial programs with quadratic objective function and linear constraints.

4.2 Subdivision Algorithm

The use of branch and bound algorithms has a long tradition in the field of opti-
mization. Following the principal of divide and conquer, the first easy to implement
algorithm was introduced by Land and Doig [44] in 1960. The algorithm, as well as
several refinements (see e.g. [11]), aimed mostly at solving integer or mixed integer
linear programs. Soon, other applications of branch and bound algorithms were
found. Lawler and Wood describe applications to nonlinear programming and the
traveling salesman problem in their 1966 survey [54].
Branch and bound like subdivision algorithms also play an important role in

solving polynomial optimization problems. A prominent example is the Bernstein
algorithm tailored to solve polynomial optimization problems over intervals [45],
and over rectangular boxes ([79, 65]). More recent works deal with more general
polynomial programming problems but still rely on branching on some hyperrect-
angular region, see, e.g., [15].
One of the main advantages of branch and bound methods is the generation of

lower and upper bounds on the optimum. This allows to get a certified error bound
for the result. Such bounds are often very important in practical applications.
In this section we extend the ideas from the Bernstein algorithm. Instead of

box constraints, we allow arbitrary polytopes as feasible sets. This is achieved
by combining the conventional branch and bound algorithm with Handelman’s
Positivstellensatz.

4.2.1 Branch and Bound Algorithms

As before, the method of choice to find a solution of problem (4.1) will be Handel-
man’s Positivstellensatz. Instead of elevating the degree to get better approxima-
tions, we incorporate a low degree relaxation into a branch and bound algorithm.
The beautiful structure of these relaxations allow to obtain convergence results for
the branch and bound scheme.
The basic idea in branch and bound methods is to subdivide the whole search

space in an optimization problem into smaller and smaller subsets and to calculate
a bound on each subset. Then subsets on which the bound is higher (for minimiza-
tion problems) than a known solution are excluded from the search space. The
search space is further subdivided until the solution lies in a specified tolerance.
Our presentation is loosely based on the classical textbook by Tuy and Horst

[36] and the more recent survey on geometric branch and bound methods by Scholz
[82].

50



4.2 Subdivision Algorithm

Algorithm 1 is a prototype branch and bound method in pseudocode. We will
now describe the components of the method in detail.
The essential underlying idea of a branch and bound algorithm is the subdivision

of the feasible region into a partition of sets, which we define now.

Definition 4.5 ([36, Def. IV.1]). Let H be a subset of Rn and I be a finite set of
indices. A set

{Hi | i ∈ I}

of subsets of H is said to be a partition of H if

H =
⋃
i∈I

Hi, Hi ∩Hj = ∂Hi ∩ ∂Hj ∀i, j ∈ I, i 6= j,

where ∂Hi denotes the (relative) boundary of Hi.

We will mainly focus on the case where the partition sets are hyperrectangular
sets (boxes) as defined in (2.9). The use of hyperrectangular sets fits well with
the definition that we used for the Bernstein basis. As discussed in remark 3.9,
Bernstein polynomials can also be defined over simplices.
When allowing arbitrary polytopes P as feasible sets for the optimization prob-

lem (4.1), it may happen that the hyperrectangular sets do not intersect with P
or intersect only partially. For the further discussion, it is useful to define the
following.

Definition 4.6 ([36, Def. IV.2]). Let P be the feasibility region of the optimization
problem. A partition set H satisfying H ∩ P = ∅ is called infeasible; a partition
set H satisfying H ∩ P 6= ∅ is called feasible.

Next to the partitioning, the most important component of a branch and bound
method is the bounding method. This is the method that generates lower bounds
for the objective function on a given partition set H. In the prototype algorithm
1, we denote the lower bound on H by plb,H .
Additionally, an upper bound denoted by pub,H on the objective is computed.

By comparing the upper and the lower bound, the quality of the bound can be
assessed. The upper bound can be generated by evaluating the function on a point
or it can be calculated from known error bounds on the lower bound.
A common bounding method for polynomial optimization problems over boxes

is the Bernstein method. We discussed how to generate a lower bound for a
polynomial optimization problem over a box in the last chapter. The error bound
for the Bernstein approach (Theorem 3.15) allows to calculate an upper bound on
the minimum, since we have that

p
(d)
Ber,[a,b] ≤ pmin,[a,b] ≤ p

(d)
Ber,[a,b] ·∆(d).

Alternatively, evaluating the objective polynomial on a feasible point inside the
box also gives an upper bound.

51



4 Improving Positivstellensatz Relaxations

Algorithm 1 Prototype Branch and Bound Algorithm
Initialization
K0 ← {P}
Calculate plb,P (0) = plb,K
Calculate pub,P (0) = pub,K
j ← 0

while Kj 6= ∅ do
j ← j + 1
Selection

Select subset Hj of elements from Kj−1 to partition
Subdivision

Split each element in Hj according to partition rule
Let H′j denote the set of partitioned elements

Deletion by Infeasibility
Delete each H ∈ H′j from H′j for which H ∩ P = ∅

Kj ← Kj−1 \ Hj ∪H′j
for each H in H′j do

Bounding
Calculate plb,H
Calculate pub,H

end for
pub,P (j)← min(pub,H | H ∈ Kj),
plb,P (j)← min(plb,H | H ∈ Kj)
if pub,P (j) = plb,P (j) then

STOP
end if
Prune

for all H ∈ Kj do
if pub,K ≤ plb,P (j) then
Kj = Kj \H

end if
end for

end while
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For the bounding, naturally the choice of the bounding method is a trade-off
between accuracy and efficiency. Positivstellensatz relaxations belong to the best
global methods known. We overcome the drawback of high complexity in high re-
laxation orders by restricting the relaxation order (usually to the initial relaxation
order). Incorporated into a branch and bound scheme, the initial relaxation order
still yields sufficiently good bounds.
For the study of the algorithm, we stick to the most basic rules for selecting

partition sets and for subdivision. We propose the following Handelman branch
and bound algorithm, refining the corresponding steps in Algorithm 1.

Handelman branch and bound
Selection: Select an element Hj with the greatest longest edge from Kj−1 for

partition.
Subdivision: Subdivide Hj by bisecting along the longest edge into Hj1 and

Hj2 .
Deletion by Infeasibility: Use the linear program (2.8) to decide if Hji∩P = ∅

and if nonempty, generate a point x in Hji ∩ P .
Bounding: Calculate the lower bound using the Handelman relaxation of order

mn. Calculate the bound on Hji ∩ P instead of Hji to get better bounds.
Calculate the upper bound by evaluating on the feasible point x returned by
the linear program from the Deletion by Infeasibility step.

A branch and bound algorithm is said to be convergent, if

plb,P (j)− pub,P (j) −−−→
j→∞

0.

The main goal in this section is to show convergence of the above proposed Han-
delman branch and bound method.

Theorem 4.7. The Handelman branch and bound method described above con-
verges.

As for the error bounds discussed in the last chapter, the path to the proof is
along the corresponding version based on Bernstein polynomials.

Bernstein branch and bound
Selection, Subdivision and Deletion by Infeasibility: Similar as above in

the Handelman branch and bound method.
Bounding: Calculate the lower bound using the Bernstein relaxation of order

m. Calculate the upper bound by applying the error bounds as described
above for the Bernstein approach.

Lemma 4.8. The Bernstein branch and bound method described above converges.

To proof these statements, let us review the essentials of the convergence theory
developed in [35, 36]. While explaining the theory we will directly discuss the
implications for the proposed methods while going along.
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4 Improving Positivstellensatz Relaxations

Convergence properties are inherently connected with the behaviour of the par-
tition sets. Consider nested (decreasing) sequences of successively refined partition
elements, i.e., sequences {Hjq} such that

Hjq ∈ Hjq , Hjq+1 ⊆ Hjq .

Since we deal with general polynomial objective functions without further re-
strictions (such as, e.g., concavity), we should not expect that the optimal solution
can be found in finitely many steps. Thus, infinite decreasing sequences of sets are
considered. Note, however, that an ε-approximation (that is pub,P (j)−plp,P (j) ≤ ε)
can sometimes be found much earlier.
Denote by δ(H) the diameter of H, i.e.,

δ(H) := max(‖x− y‖2 | x, y ∈ H).

Then we can define the following partition property for decreasing sequences.

Definition 4.9 ([36, Def. IV.10]). A subdivision is called exhaustive if

δ(Hjq) −−−→q→∞
0

for all decreasing subsequences {Hjq} of partition elements generated by the sub-
division.

Lemma 4.10 (Compare [36, Prop. IV.2] for a similar statement concerning sim-
plices). Let {Hjq} be any decreasing sequence of n-hyperrectangles generated by the
bisection subdivision process. Then we have

δ(Hjq) −−−→q→∞
0.

Proof. Let Hjq = [a, b] = [a1, b1]× . . . ,×[an, bn].
Then we have

δ(Hjq) =

(
n∑
i=1

(bi − ai)2
) 1

2

≤ (n‖b− a‖∞)
1
2

=
√
n‖b− a‖∞.

‖b − a‖∞ is halved after at most n subdivision steps, i.e., in the worst case, one
subdivision in each coordinate direction has to be performed. Thus

δ(Hjq+kn) ≤
√
n

2k
‖b− a‖∞

and
δ(Hjq+kn) −−−−−−→

q+kn→∞
0.
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4.2 Subdivision Algorithm

As discussed in [35, p.24], for any decreasing sequence of partition sets generated
by an exhaustive subdivision procedure, the sequence converges to a single point,
that is we have

lim
q→∞

Hjq =
⋂
q

Hjq = x̄, x̄ ∈ Rn.

The stopping criterion of Algorithm 1 is based on the distance between upper
and lower bound. For convergence or termination it is desirable to use a selection
rule that (at least occasionally) improves the lower bound.

Definition 4.11 ([36, Def. IV.6]). A selection operation is said to be bound
improving if, at least each time after a finite number of steps, Hj satisfies the
relation

Hj ∩ argmin{plb,H | H ∈ Kj−1} 6= ∅,

i.e., at least one partition element where the actual lower bound is attained is
selected for further partition in step j of the algorithm.

As described in [36, p. 130], our selection rule is bound improving due to the
finiteness of the number of partition sets. After finitely many steps, any set be-
comes the one with the longest edge.
To show convergence of our method, we need the following consistency property

for our bounding method.

Definition 4.12 ([36, Def. IV.7]). A lower bounding operation is called strongly
consistent if at every step any undeleted partition element can be further refined
and if any infinite decreasing sequence {Hjq} of successively refined partition ele-
ments possesses a subsequence {Hjq′} satisfying

H ∩ P 6= ∅, plb,Hjq′
−−−−→
q′→∞

pmin,H∩P ,

where H =
⋂
q
Hjq .

To proof the strong consistency property for the proposed methods, we make
use of the following well-known property of polynomials.

Lemma 4.13. Let H be a bounded set. Then every polynomial is Lipschitzian on
H. That means there exists a constant L (Lipschitz constant) such that

|f(x)− f(y)| ≤ L‖x− y‖ ∀x, y ∈ H.

Lemma 4.14. The Bernstein lower bounding method in the Bernstein branch and
bound method and the Handelman bounding method in the Handelman branch and
bound method are strongly consistent.
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4 Improving Positivstellensatz Relaxations

Proof. Note that exhaustiveness of the subdivision method implies that for any
descending sequence of partition sets Hjq , we have

⋂
qHjq = x̄ for some x̄ ∈ Rn.

Let ȳ be a minimizer of p in Hjq , that means pmin,Hjq = p(ȳ). Then we have

p(x̄)− pBer,Hjq
= p(x̄)− p(ȳ) + p(ȳ)− pBer,Hjq
≤ L‖x̄− ȳ‖+ ∆(d)

for some L ≥ 0. The last inequality follows from Lemma 4.13 and Theorem 3.14.
Both terms vanish as δ(Hjq) → 0. This proves the statement for the Bernstein
case.
The Handelman case follows in a similar way from Theorem 3.15.

Finally, to assess the performance of the algorithm, the method to detect and
discard infeasible sets plays an important role. As discussed in [36, p. 136], the
branch and bound procedure has to ensure that the limit of any nested sequence
lies in P , that is

H ∩ P 6= ∅
for H =

⋂
qHjq .

Definition 4.15 ([36, Def. IV.8]). The deletion by infeasibility rule used in the
branch and bound method is called certain in the limit, if for every infinite de-
creasing sequence Hjq of successively refined partition elements with limit H, we
have H ∩ P 6= ∅.
The Deletion by Infeasibility rule in the Handelman branch and bound method

is certain in the limit, since it decides the feasibility question definitely.
In the Handelman branch and bound method, infeasible sets H ∩ P can also be

discarded in the pruning step, since plb,H∩D = ∞ for H ∩ D = ∅, as we show in
the following lemma. Since the bounding operation is more expensive than the
feasibility test, it is advisable to use the Deletion by Infeasibility rule described
above.

Lemma 4.16. Let P = {x ∈ Rn | g1(x) ≥ 0, . . . , gk(x) ≥ 0} = ∅, d ≥ m.
Then p(d)Han,G =∞.

Proof. It follows from the Farkas Lemma (Theorem 2.4) that any negative number
has a positive combination in g1, . . . , gk.

While the strong consistency property from Definition 4.12 is only concerned
with the lower bound, the following definition brings the upper bound into play.

Definition 4.17 ([36, Definition IV.4]). A bounding operation is called consistent,
if at every step any unfathomed partition element can be further refined, and if
any infinitely decreasing sequence {Hjq} of successively refined partition elements
satisfies

lim
q→∞

(pub,P (jq)− plb,Hjq ) = 0.
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Lemma 4.18 ([36, Lemma IV.5]). Suppose that p is continuous and the subdivi-
sion procedure is exhaustive. Furthermore, assume that every infinite decreasing
sequence {Hjq} of successively refined partition elements satisfies ∅ 6= Hjq ∩ P .
Then every strongly consistent lower bounding operation does yield a consistent

bounding operation.

With the information collected so far, we can prove Theorem 4.7 and Lemma
4.8. They follow directly from the next theorem.

Theorem 4.19 ([36, Theorem IV.3]). In the infinite branch and bound procedure,
suppose that the bounding operation is consistent and the selection operation is
bound improving. Then the procedure is convergent:

pub,P := lim
q→∞

pub,P (q) = pmin,P = lim
q→∞

plb,P (q) =: plb,P .

This immediately proofs Theorem 4.7 and Lemma 4.8.

4.3 Variations of the Branch and Bound Scheme

The main points of criticism in the use of Handelman’s Positivstellensatz for relax-
ations of polynomial optimization problems are the slow convergence and the high
complexity for high relaxation orders. We avoid these problems by incorporating
the Positivstellensatz relaxation into a branch and bound scheme.
In this setting a relaxation of low order has to be solved many times. Therefore

it is worthwhile to explore ways of speeding up the bounding step and reducing
the number of iterations needed. The first is addressed in the next subsection,
afterwards we discuss the impact of the selection rule and the upper bounding
method on the speed of convergence.

4.3.1 Cleaning Redundant Inequalities

The complexity of the linear and semidefinite programs resulting from Positiv-
stellensatz-relaxations depends on three main factors, the number of variables, the
degree-bound and the number of constraints. Only the number of constraints varies
throughout the process of solving with our branch and bound method. By adding
new inequalities in the branch and bound method, the constraint set is modified.
In particular, constraints can become redundant in some subdivision during the
process. If additional information on the feasible region is available, cuts can even
be chosen in a way to reduce the number of inequalities describing the resulting
partitioned sets.
In any case, the constraint set should be cleaned from redundant constraints

occasionally in the process of the method. This can be done easily in the linear
setting.
It is possible to detect if a linear inequality is redundant by solving a linear pro-

gram. Let G = {g1(x), . . . gk(x), gk+1} be the constraint set defining a polytope P ,
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4 Improving Positivstellensatz Relaxations

i.e., P = {x ∈ Rn | gi(x) ≥ 0, i ∈ [k + 1]}. To test if the inequality gk+1 is
redundant, we can solve the following linear program.

minimize gk+1(x)

s.t. gi(x) ≥ 0, i ∈ [k]

gk+1(x) ≥ −1.

(4.2)

The inequality gk+1(x) ≥ 0 is redundant if and only if the optimal value of
(4.2) is greater or equal to 0. This is the method described in Fukuda’s “FAQ in
Polyhedral Computation”, [17].
Cleaning a linear program from redundant inequalities is commonly done in

linear programming codes as a presolve step. In this case, heuristics are used to
efficiently detect (most) redundant inequalities. A survey on common methods can
be found in [39].
As Andersen and Andersen state in [2], there clearly is a trade-off between how

much redundancy a presolve procedure detects and the time spent in the presolve
procedure. The same is of course true for the work spent on cleaning redundant
constraints in the branch and bound scheme.

4.3.2 Numerical Tests, Selection Rules and Upper Bounding

We tested the method introduced in this chapter on a range of sample problems.
For this, we randomly generated polynomial optimization problems in the following
manner.
As feasibility regions, we generated polytopes. The coefficients for the linear con-

straints were drawn from a uniform distribution on the interval [−10, 10]. They
are sparse in the sense that only roughly 60% of the coefficients (except the con-
stant term) are non-zero. Additionally all variables are constrained to the range
[−20, 20]. Only nonempty polytopes were kept.
The coefficients of the objective polynomials were drawn form a uniform distri-

bution on the interval [−1, 1], again with roughly 60% non-zero entries.
In our numerical experiments, we witnessed slow convergence for the basic

method described earlier in this chapter. This has two main reasons. The first
is the breadth first - selection rule, which always chooses the set with the longest
edge of a bounding box. This rule leads to a large number of subsets to be explored
before an optimal solution is reached. This is a commonly known problem. Strate-
gies that are commonly used in practical applications include depth first and best
bound. We implemented the best bound approach, which consistently subdivides
the set with the lowest lower bound currently known. This approach, too, may
result in a large list of problems, but it is optimal in the sense that it minimizes
the number of subproblems decomposed before the optimum is reached (see [37]
for a discussion of search strategies). Notice that the best bound strategy is also
bound improving by definition. That means the convergence results from above
persist in this situation.
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selection rule
size breadth first best bound

no. n k deg(p) steps cputime(s) steps cputime(s)

1 2 3 2 34 37.92 26 35.71
2 2 4 4 71 323.93 32 123.33
3 2 5 5 65 1182.04 35 620.1
4 2 6 3 224 718.93 25 71.21
5 2 7 3 120 331.52 25 70.89
6 3 4 4 90 1924.44 27 255.7
7 3 5 3 246 1730.92 39 120.01
8 3 6 4 310 18585.61 47 708.11

Table 4.2: Number of bisections and cputime needed to solve polynomial problems
as described in Example 4.20.

Example 4.20. We compared the performance of both strategies on a number of
small problems, all generated in the manner described above. As lower bounding
method, we solved Handelman relaxations of order m = deg(p). The problems
were solved up to a certified error of less than ε = 0.01. In Table 4.2, we report
the number of branching steps (steps) and the cputime in seconds needed for the
complete run.

The second great improvements that can be made is in the upper bounding
method. In our numerical experiments, we noticed that the lower bounds converge
rapidly, while evaluating the objective on a single point in the upper bounding
procedure often leeds to a large number of bisections before the point comes close
to the optimal point.
There are several ways to attack this problem. The easiest is to increase the

number of points on which the objective is evaluated to accomplish a better cov-
erage of the feasible region. For our implementation, we went a more rigorous
way.

Example 4.21. Again we performed calculations on a number of problems which
where generated as described at the beginning of the section. The problems were
solved up to a certified error of less than ε = 0.01, using Handelman relaxations of
orderm = deg(p) as lower bounding method. We used a local minimization method
for the upper bounding. We use the “fmincon” method included in Matlab for our
numerical tests. With this setting we are able to solve problems of moderate size
in acceptable time, see Table 4.3. We also include the problems from Example 4.20
(no. 1-8). Again, “steps” denotes the number of branching operations, “cputime”
the cputime in seconds.

We must emphasize at this point that neither the Handelman bounding nor the
implementation of the branch and bound scheme were optimized for speed. We

59



4 Improving Positivstellensatz Relaxations

provide these results rather as a proof of concept than as values that should be
benchmarked to other methods.
During the computation the number of subproblems stays quite small (usually

less than five problems), this is due to the good quality of lower and upper bounds.
They enable us to prune a large number of problems and to keep the search space
manageable. The small number of branching operations needed underlines this
observation.
We believe the methods described in this chapter bear, if efficiently implemented,

great potential for the solution of polynomial problems. From an implementation
point of view, branch and bound methods receive attention due to their potential of
parallelization. See, e.g., the WIKI of the Berkeley Parallel Computing Laboratory
[87] for methods to use the inherent structure of branch and bound schemes.
Apart from implementation details, the use of other Positivstellensätze is the

next step that should be explored. In Section 5.5.2, we successfully combine the
branch and bound approach with a method to certify containment of spectrahedra.
See also Chapter 6 for an outlook on related open problems.
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size best bound, fmincon
no. n k deg(p) steps cputime(s)

1 2 3 2 0 1.72
2 2 4 4 0 2.47
3 2 5 5 0 4.18
4 2 6 3 7 23.20
5 2 7 3 0 3.32
6 3 4 4 13 106.75
7 3 5 3 1 6.73
8 3 6 4 0 4.61
9 2 3 5 6 23.69
10 2 3 7 1 10.75
11 2 4 3 18 42.10
12 2 4 7 4 67.12
13 2 5 5 25 172.10
14 2 6 3 0 2.40
15 2 6 5 1 13.47
16 2 7 3 0 3.24
17 2 7 5 4 56.37
18 3 4 2 15 41.38
19 3 5 5 1 42.04
20 3 6 3 7 37.87
21 3 6 5 12 2566.58
22 3 7 2 1 6.49
23 3 7 4 0 6.52
24 3 8 2 0 3.55
25 3 8 4 23 660.58
26 3 9 2 0 3.93
27 3 9 3 0 5.41
28 3 10 2 0 4.34
29 3 10 3 0 6.88
30 4 5 2 0 3.16
31 4 5 3 23 120.67
32 4 5 4 0 5.23
33 4 6 2 20 59.38
34 4 6 3 0 4.30
35 4 6 4 0 8.22
36 4 7 2 0 4.19
37 4 7 3 0 5.38

Table 4.3: Number of bisections and cputime needed to solve polynomial problems
as described in Example 4.21.
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5 Containment Problems for Polytopes
and Spectrahedra

In this chapter, we study containment problems for polyhedra and spectrahedra.
Since polyhedra are special cases of spectrahedra, we can use the following general
setup: Given two linear pencils A(x) ∈ Sk[x] and B(x) ∈ Sl[x], is SA ⊆ SB?

For polytopes, the computational geometry and computational complexity of
containment problems have been studied in detail. See in particular the classifi-
cations by Gritzmann and Klee [23, 24, 25]. In Section 5.1, we extend existing
complexity classifications for the polyhedral situation to the situation where poly-
topes and spectrahedra are involved.

To deal with the the situation that the general containment problem for spec-
trahedra is co-NP-hard, we propose and study a hierarchy of sufficient semidefinite
conditions to certify containment. The proposed technique is derived by encoding
the containment problem as a polynomial optimization problem and then applying
sum of squares relaxations to it; see Section 5.2.

We demonstrate the effectiveness of the approach by comparing it with the
sufficient criterion from [28, 40]. In Section 5.3, we show that the new criterion is
satisfied whenever the criterion from [28, 40] is satisfied. Furthermore, numerical
results for several containment problems are provided in Section 5.4.

All containment criteria discussed so far are sufficient criteria. In Section 5.5, we
explore how to proceed if containment is not certified by the criteria. In the special
situation where the inner spectrahedron is a polytope, we can apply the branch
and bound scheme derived in the last chapter to find a point x ∈ SA\SB, certifying
non-containment. We propose to use another geometric branch and bound scheme
in the general setting (i.e., when SA is a spectrahedron), which performs well in
our numerical experiments.

Content published in advance. Some results of this chapter are published or
submitted for publication. Section 5.1 can be found in [40]. The core of Sections
5.2 – 5.4 is based on material from the paper [41] which is currently under review.
In [41], the hierarchical criterion is described in terms of a moment relaxation.
This is the dual point of view to the sum of squares approach discussed here.
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5.1 Complexity of Containment Problems for
Spectrahedra

In this section, we classify the complexity of several natural containment prob-
lems for spectrahedra. Our model of computation is the binary Turing machine:
polytopes are presented by certain rational numbers, and the size of the input is
defined as the length of the binary encoding of the input data (see, e.g., [23]).
For polytopes the computational complexity of containment problems strongly

depends on the type of input representations. Recall from Section 2.2.1 that a
polytope can be described as the convex hull of its vertices (V-representation) or
as the intersection of halfspaces (H-representation). The following result is well-
known (see [16, 25]).

Proposition 5.1. Deciding whether a polytope P is contained in a polytope Q can
be done in polynomial time in the following cases:

1. Both P and Q are H-polytopes,
2. both P and Q are V-polytopes, or
3. P is a V-polytope while Q is an H-polytope.

However, deciding whether an H-polytope is contained in a V-polytope is co-NP-
complete. This hardness persists if P is restricted to be the standard cube and Q
is restricted to be the affine image of the cross polytope.

In the next statements, we extend this classification to containment problems
involving polytopes and spectrahedra. See Table 5.1 for a summary. Theorems 5.2
and 5.3 give the positive results.

H V S

H P co-NP-complete co-NP-hard
V P P P
S “SDP” co-NP-hard co-NP-hard

Table 5.1: Computational complexity of containment problems, where the rows
refer to the inner set and the columns to the outer set. S abbreviates
spectrahedron.

Theorem 5.2. Deciding whether a V-polytope is contained in a spectrahedron can
be done in polynomial time.

Proof. Given a V-representation P = conv{v(1), . . . , v(m)} and a linear matrix
pencil A(x), we have P ⊆ SA if and only if all the points v(i) are contained in SA.
Thus, the containment problem is reduced to m tests whether a certain rational
matrix is positive semidefinite. This can be decided in polynomial time, as one can
compute, for a rational, symmetric matrix A, a decomposition A = UDUT with a
diagonal matrix D in polynomial time (see, e.g., [21]).
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Containment questions for spectrahedra are connected to feasibility questions
of semidefinite programs in a natural way. As discussed in Section 2.2.2, the
complexity of semidefinite feasibility problems is not known. Consequently, the
following statement on containment of a spectrahedron in an H-polytope does not
give a complete answer concerning polynomial solvability of these containment
questions in the Turing machine model. If the additional inequalities were non-
strict, then we had to decide a finite set of problems from the complement of the
class SDFP.

Theorem 5.3. The problem of deciding whether a spectrahedron is contained in an
H-polytope can be formulated by the complement of semidefinite feasibility problems
(involving also strict inequalities), whose sizes are polynomial in the description
size of the input data.

Proof. Let A(x) be a linear matrix pencil and P = {x ∈ Rn : b + Bx ≥ 0} with
B ∈ Qm×n be an H-polytope. For each i ∈ {1, . . . ,m} incorporate the linear
condition bi +

∑n
j=1 bijxj < 0 into the linear pencil A(x). If one of the resulting

m (“semi-open”) spectrahedra is nonempty then SA 6⊆ P .

The positive results in Theorems 5.2 and 5.3 are contrasted by the following
hardness results.

Theorem 5.4.
1. Deciding whether a spectrahedron is contained in a V-polytope is co-NP-hard.
2. Deciding whether an H-polytope or a spectrahedron is contained in a spectra-

hedron is co-NP-hard. This hardness statement persists if the H-polytope is
a standard cube or if the outer spectrahedron is a ball.

Proof. Deciding whether a spectrahedron SA is contained in a V-polytope is co-NP-
hard since already deciding whether an H-polytope is contained in a V-polytope
is co-NP-hard by Proposition 5.1.
Concerning the second statement, co-NP-hardness of containment of H-poly-

topes in spectrahedra follows from Ben-Tal and Nemirovski [6, Proposition 4.1],
who use a reduction from the maximization of a positive semidefinite quadratic
form over the unit cube.
For the co-NP-hardness of containment of an H-polytope in a ball, we provide

a reduction from the NP-complete 3-satisfiability problem (3-SAT [10]): Does a
given Boolean formula Φ over the variables z1, . . . , zn in conjunctive normal form,
where each clause has at most 3 literals, admit an assignment that evaluates True?
The 2n possible assignments {False,True}n for z1, . . . , zn can be identified

with the vertices of an n-dimensional cube [−1, 1]n. Let B be a ball (which is a
spectrahedron), such that the vertices of [−1, 1]n just “peak” through its boundary
sphere S. Precisely (assuming w.l.o.g. n ≥ 2), choose the radius r of B such that(

1

6

)2

+

(√
n− 1

6

)2

< r2 < n .
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Note that such a radius can be determined in polynomial time and size.
For the definition of the H-polytope P , we start from the H-representation
{x ∈ Rn : −1 ≤ xi ≤ 1, 1 ≤ i ≤ n} of [−1, 1]n and add one inequality for each
clause of Φ. Let C = C1 ∨ · · · ∨ Cm be a 3-SAT formula with clauses C1, . . . , Cm.
Denote by zi the complement of a variable zi, and define the literals z1i := zi,
z0i := zi. If the clause Ci is of the form Ci = z

ei1
i1
∨zei2i2 ∨z

ei3
i3

with ei1 , ei2 , ei3 ∈ {0, 1},
then add the inequality

(−1)ei1xi1 + (−1)ei2xi2 + (−1)ei3xi3 ≤ 1 .

If P ⊆ B, then, by the choice of r, none of the points in {−1, 1}n can be contained
in P and thus there does not exist a valid assignment for Φ. Conversely, assume
that P is not contained in B. Let p ∈ P \B ⊆ [−1, 1]n. We claim that component-
wise rounding of p yields an integer point p′ ∈ {−1, 1}n satisfying all defining
inequalities of P . To see this, first note that by the choice of the radius of B, the
components pi of p differ at most ε < 1

3
√
2
< 1

3 from either −1 or 1.
In order to inspect what happens to the inequalities when rounding, assume

without loss of generality that the inequality is of the form x1 +x2 +x3 ≥ −1. We
assume a rounded vector p′ does not satisfy the inequality, even though p does:

p′1 + p′2 + p′3 < −1 , but p1 + p2 + p3 ≥ −1 . (5.1)

Since p′ ∈ {−1, 1}n, (5.1) implies p′1 = p′2 = p′3 = −1. Hence, at least one of p1, p2
and p3 differs from either −1 or 1 by more than 1/3, which is a contradiction. This
completes the reduction from 3-SAT.
Finally, deciding whether a spectrahedron SA is contained in a spectrahedron

SB is co-NP-hard, since already deciding whether an H-polytope is contained in a
spectrahedron is co-NP-hard.

5.2 A (Sufficient) Semidefinite Hierarchy

Let A(x) ∈ Sk[x] and B(x) ∈ Sl[x] be two linear pencils. In this section, we provide
an optimization formulation to decide the question of whether the spectrahedron
SA is contained in SB. Using a polynomial matrix inequality formulation of the
containment problem, we first deduce a sufficient semidefinite hierarchy and prove
the convergence of the hierarchy (Theorem 5.7).

5.2.1 An Optimization Approach to Decide Containment of
Spectrahedra

Clearly, SA is contained in SB if and only if A(x) � 0 implies the positive semidef-
initeness of B(x). By definition, B(x) � 0 for arbitrary but fixed x ∈ Rn
is equivalent to the non-negativity of the polynomial zTB(x)z in the variables
z = (z1, . . . , zl). Thus, SA is contained in SB if and only if the infimum µ of
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the degree 3 polynomial zTB(x)z in (x, z) over the spectrahedron SA ×Rl is non-
negative. Imposing a normalization condition on z, we arrive at the following
formulation.

Proposition 5.5. Let A(x) ∈ Sk[x] and B(x) ∈ Sl[x] be linear pencils with SA 6= ∅,
and let gr(z) = zT z− r2, gR(z) = R2− zT z for arbitrary but fixed 0 < r ≤ R. For
the polynomial optimization problem

minimize zTB(x)z

s.t. GA(x, z) := diag(A(x), gr(z), g
R(z)) � 0

(5.2)

with optimal value µ, the following implications are true,

µ > 0 ⇒ SA ⊆ intSB,

µ = 0 ⇒ SA ⊆ SB,
µ < 0 ⇔ ∃x ∈ SA : B(x) � 0.

If the pencil B(x) is reduced in the sense of Proposition 2.6, µ = 0 implies that the
spectrahedra touch at the boundary.

A natural choice of the parameters r and R is to set both to 1. In this case,
the optimal value of the optimization problem equals the smallest eigenvalue of
any matrix in the set {B(x) | x ∈ SA}. Other choices result in an optimal value
that is scaled by R2 in the case µ < 0 and by r2 in the case µ > 0. As our
numerical computations in Section 5.4 show, the problem, or, more precisely, its
relaxation defined in Section 5.2.2 is numerically ill-conditioned if we chose r = R
and becomes more tractable for r < R.
In applications, it is advisable to use reduced pencils. The reduced pencil can be

computed by the methods in [20] and makes the numerical computations described
below better conditioned. Not only do we expect a strictly positive objective value
whenever SA ⊂ SB, the reduced pencil is also of smaller size.

Proof (of Proposition 5.5). Denote by T = Tr,R(0) = {z ∈ Rl | r2 ≤ zT z ≤ R2}
the annulus defined by the constraints gr(z) ≥ 0, gR(z) ≥ 0.
We first observe that the existence of an x ∈ SA and z ∈ Rl with zTB(x)z < 0

implies the existence of a point z′ := R · z
‖z‖ ∈ T with ‖z′‖ = R and z′TB(x)z′ < 0,

and thus (x, z′) lies in the product of the spectrahedron SA and the annulus T.
If µ ≥ 0, then clearly SA ⊆ SB. To deduce the case µ > 0, observe that the

boundary ∂SB of SB is contained in the set

{x ∈ Rn | B(x) � 0, zTB(x)z = 0 for some z ∈ T} .

Hence, if the boundaries of SA and SB contain a common point x̄, then there exists
some z̄ such that the objective value of (x̄, z̄) is zero.
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5.2.2 Derivation of the Hierarchy Using PMI Methods

Using the framework of sum of squares relaxations for polynomial matrix inequal-
ities introduced in Section 2.3.3, we consider the following semidefinite hierarchy
as a relaxation to problem (5.2).

maximize t

s.t. zTB(x)z − 〈S(x, z), GA(x, z)〉 − t ∈ Σn+l

S(x, z) ∈ Σ
(k+2)×(k+2)
n+l,d .

(5.3)

Denote by µsos(d) the optimal value of the d-th relaxation step. Since a sum of
squares polynomial necessarily has even degree and the polynomial zTB(x)z has
degree 3, the smallest sensible relaxation order is d = 2, which we call the initial
relaxation order for the problem.
By increasing d, additional constraints are added, which implies the following

corollary.

Corollary 5.6. The sequence µsos(d) for d ≥ 2 is monotone increasing. If for
some d∗ the condition µsos(d∗) ≥ 0 is satisfied, then SA ⊆ SB.

That is, for any d, the condition µsos(d) ≥ 0 provides a sufficient criterion for the
containment SA ⊆ SB. In the case when the inner spectrahedron SA is bounded,
the sequence of relaxations is not only monotone increasing, but also converges
to the optimal value of the original polynomial optimization problem (5.2), as the
next theorem shows.

Theorem 5.7. Let A(x) ∈ Sk[x] be a linear pencil such that the spectrahedron SA
is bounded. Then the optimal value of the sum of squares relaxation (5.3) converges
from below to the optimal value of the polynomial optimization problem (5.2), i.e.,
µsos(d) ↑ µ as d→∞.

Proof. By Proposition 2.21, it suffices to show that there exists an sos-polynomial
s(x, z) ∈ R[x, z] and an sos-matrix S(x, z) ∈ Sk+2[x, z] defining a polynomial
p(x, z) = s(x, z)+〈S(x, z), GA(x, z)〉 such that the set {(x, z) ∈ Rn+l | p(x, z) ≥ 0}
is compact. Define the quadratic module

MA =
{
t(x) + 〈A(x), T (x)〉 | t(x) ∈ Σ, T (x) ∈ Σk×k

}
.

As shown in [42, Lemma 4.4.1], the boundedness of SA is equivalent to the fact
that the quadratic module MA is Archimedean, i.e., there exists a positive integer
N ∈ N such that N − xTx ∈MA. Thus, by the definition of the quadratic module
MA, there exists an sos-polynomial t(x) ∈ R[x] and an sos-matrix T (x) ∈ Sk[x]
such that

N − xTx = t(x) + 〈T (x), A(x)〉 .
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Define s(x, z) = t(x) and S(x, z) = diag(T (x), 0, 1). Both have the sos-property.
Indeed, if T (x) = U(x)U(x)T is an sos-decomposition of T (x), then S(x, z) =
diag(T (x), 0, 1) = diag(U(x), 0, 1) diag(U(x)T , 0, 1) is one of S(x, z). We get

p(x, z) = N − xTx+R2 − zT z = s(x, z) + 〈S(x, z), GA(x, z)〉 .

Since this polynomial defines the ball of radius N + R2 centered at the origin,
BN+R2(0) ⊂ Rn+l, the level set is compact.

Remark 5.8. Computing a certificate N from the proof of the theorem can again
be done by the polynomial program (5.2) and its relaxation (5.3).

5.3 Exact Cases

In this section, we first review the containment criterion based on a semidefinite
feasibility problem, that was studied in [28, 40]. We then prove that the sufficient
criteria coming from our hierarchy of relaxations are at least as strong as this
feasibility criterion by showing that feasibility of the criterion implies µsos(2) ≥ 0.
From this relation, we get that in some cases already the initial relaxation step
gives an exact answer to the containment problem; see Corollaries 5.12 and 5.13.

The semidefinite feasibility criterion described in [28, 40] is based on another
sufficient condition for the pencil B(x) to be positive semidefinite whenever A(x)
is positive semidefinite.

Proposition 5.9. [40, Theorem 4.3] If the semidefinite feasibility problem

C = (Cij)
k
i,j=1 � 0 and Bp =

k∑
i,j=1

apijCij for p = 0, . . . , n (5.4)

has a solution, then SA ⊆ SB.

In terms of the linear pencils, the previous proposition states that the pen-
cil B(x) =

∑k
ij=1(A(x))ijCij is positive semidefinite if A(x) and C are positive

semidefinite. The proof in [40] is by elementary calculation.
The matrix C can also be interpreted as a linear map from the pencil A(x) to

the pencil B(x). In this setting, the feasibility problem above is feasible if and
only if the map is completely positive. Further details on map positivity and the
connection to the containment relaxations are given in [41].
As we will see next, positive semidefiniteness of the matrix C is not only a suffi-

cient condition for containment and thus for the non-negativity of the polynomial
optimization problem in Proposition 5.5, but also for its relaxation (5.3).
We show the following result:

Theorem 5.10. If the SDFP (5.4) has a solution, then the optimal value µsos(2)
of the initial relaxation in (5.3) is non-negative.
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Proof. Assume C � 0 is a solution to the SDFP. We claim that the following
matrix is a solution to (5.3) with optimal value µsos(d) = 0 for d ≥ 2

S(x, z) =


(
zTCijz

)k
i,j=1

0
0

 .

Let us first show that zTB(x)z − 〈S(x, z), GA(x, z)〉 − 0 ∈ Σk+l,d by showing
that the first two terms are equal. This can be seen using the equality from
system (5.4).

zTB(x)z = zT

 k∑
i,j=1

CijA(x)ij

 z =
k∑

i,j=1

zTCijz A(x)ij

=
〈(
zTCijz

)k
i,j=1

, A(x)
〉

= 〈S(x, z), GA(x, z)〉 .

It remains to show that S(x, z) ∈ Σk+2×k+2
n,d . We can ignore the zero-entries in

the lower right corner and focus on the submatrix
(
zTCijz

)k
i,j=1

. Denote by Ol
the all-zero vector in Rl and by Z the matrix

Z :=


z Ol · · · Ol

Ol z
. . .

...
...

. . . . . . Ol
Ol · · · Ol z

 .

With this notation, we have(
zTCijz

)k
i,j=1

= ZTCZ = ZTLTLZ,

where C = LTL is the Cholesky decomposition of C, which exists since C is
positive semidefinite by assumption. This shows that S(x, z) has a decomposition
of the form S(x, z) = T (x, z)TT (x, z) with T (x, z) = LZ. Therefore it is a sum of
squares matrix.

Remark 5.11. (1) The reverse implication in Theorem 5.10 is not always true.
Example 5.15 serves as a counterexample.
(2) By inspecting the proof, we see that it can be reasonable to use a lower re-
laxation order than what we described as initial relaxation order above. We can
not decrease the degree of the representation in the z-variables, but the matrix
S(x, z) can be constrained to be a sum of squares matrix only in the z-variables,
independent of x. This may be an option for very large systems where the initial
relaxation is too expensive to solve.
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Using Theorem 5.10, we can extend the exactness results from [40] to the hier-
archy (5.3), i.e., in some cases already the initial relaxation is not only a sufficient
condition but also necessary for containment. These results rely on the specific
pencil representation of the given spectrahedra. Before stating the results, we have
to agree on a consistent representation. Recall the normal forms of the polyhedron,
the ball and the ellipsoid as a spectrahedron given in Section 2.2.2.
Then we can state the following exactness results.

Corollary 5.12. Let A(x) ∈ Sk[x] and B(x) ∈ Sl[x] be monic linear pencils. In
the following cases, the initial relaxation step (d = 2) in (5.3) certifies containment
of SA in SB.

1. if A(x) and B(x) are normal forms of ellipsoids (both centrally symmetric,
axis-aligned semiaxes),

2. if A(x) and B(x) are normal forms of a ball and an H-polyhedron, respec-
tively,

3. if B(x) is the normal form of a polytope,
4. if Â(x) (see (2.10)) is the extended form of a spectrahedron and B(x) is the

normal form of a polyhedron.

Proof. Follows directly from [40, Theorem 4.8] and Theorem 5.10.

The second exactness result states that the initial relaxation step can always
certify containment of a scaled situation.

Corollary 5.13. Let A(x) ∈ Sk[x] and B(x) ∈ Sl[x] be monic linear pencils such
that SA is bounded. Then there exists ν > 0 such that the initial relaxation step
certifies νSA ⊆ SB, where νSA = {x ∈ Rn : Aν(x) := A(xν ) � 0} is the scaled
spectrahedron.

Proof. This follows from [40, Proposition 6.2] and Theorem 5.10.

5.4 Numerical Experiments

While the complexity of the containment question for spectrahedra is co-NP-hard
in general, the relaxation techniques introduced above give a practical way of
certifying containment. We implemented the hierarchy and applied it to several
examples. The criterion performs well already for relaxation orders as low as
d = 2, 4, as we will witness throughout this section.
We start by reviewing an example from [40] in Section 5.4.1, showing that the

new hierarchical relaxation indeed outperforms the feasibility criterion 5.4. We
then give an overview on the performance of the relaxation on some more examples.
In Section 5.4.2, to assess the performance of the algorithms, we compare results

as well as running times of the algorithms on randomly generated pencils of varying
sizes.
Throughout this section, we use the following notation. As before, integer n

stands for the number of variables in the pencils, k and l for the size of the pencil
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5 Containment Problems for Polytopes and Spectrahedra

A(x) and B(x), respectively. For monic pencils, we examine ν-scaled spectrahedra
νSA as defined in Corollary 5.13. We denote the (numerical) optimal value of the
sum of squares relaxation (5.3) of order d by µsos(d). In the tables, “sec” states the
time in seconds for setting up the problem in YALMIP and solving it in MOSEK.
Unless stated otherwise, the inner radius is set to r = 1 and the outer radius to

R = 2 in the relaxation (5.3).

5.4.1 Numerical Computations

We review the example of containment of two disks from [40]. The complete
positivity criterion from that work certifies the containment only if the disk on
the inside is scaled small enough. Theorem 5.10 shows that any containment
certified by the feasibility criterion is certified by the hierarchical relaxation. In
the following example we go one step further, showing that the latter performs
strictly better than the feasibility criterion already in small relaxation orders.

Example 5.14. Consider the monic linear pencils Aν(x) = I3+x1
1
ν (E1,3+E3,1)+

x2
1
ν (E2,3 +E3,2) ∈ S3[x] with parameter ν > 0 and B(x) = I2 + x1(E1,1 −E2,2) +

x2(E1,2 + E2,1) ∈ S2[x]. The spectrahedra defined by the pencils are the disk of
radius ν > 0 centered at the origin, νSA = Bν(0), and the unit disk SB = B1(0),
respectively. Clearly, νSA ⊆ SB if and only if 0 < ν ≤ 1. In particular, for ν = 1,
both pencils define the unit disk B1(0) = SA = SB.
In [40, Section 6.1], it is shown that the feasibility criterion for the containment

problem νSA ⊆ SB is satisfied if 0 < ν ≤ 1
2

√
2. Remarkably, the performance of

relaxation (5.3) depends on the choice of the parameters r and R. Table 5.2 con-
trasts the results of the sums of squares relaxation with parameters r = 1, R = 2
with the results of the feasibility criterion for the problem νSA ⊆ SB. Our nu-
merical computations show that the semidefinite relaxation of order d = 2 certifies
the same cases as the feasibility criterion. For d = 4, we have exactness of the
criterion.
When choosing r = R = 1, the semidefinite relaxation (5.3) is exact already

for relaxation order d = 2 and returns the same optimal values as for relaxation
order d = 4. This choice of parameters however leads to numerical problems in
the solver occasionally. Furthermore, the example of the two disks is the only one
we have found, where results for orders d = 2 and d = 4 differ if r and R are
chosen distinct. In all other examples, results seem to be exact already for d = 2.
Therefore, we advise to use r = 1 and R = 2 in general applications.

In the next example, we examine the containment of a ball in an elliptope.
The elliptope is a nice example of a spectrahedron that is described by a pencil
consisting of very sparse matrices. While the pencil is of small size, it is occupied
by a large number of variables.

Example 5.15. For this example, the pencil description of the ball is as in (2.12).
The elliptope can be described as the positivity domain of a symmetric pencil
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ν SDFP (5.4) µsos(2) sec µsos(4) sec

0.7 feasible 0.010 0.27 0.3 0.41
0.707 feasible 0.000 0.27 0.293 0.41
1/
√

2 feasible 0.000 0.27 0.293 0.40
0.708 infeasible -0.001 0.27 0.292 0.41
0.8 infeasible -0.066 0.27 0.2 0.41
1 infeasible -0.207 0.27 0 0.42
1.1 infeasible -0.278 0.27 -0.1 0.42

Table 5.2: Disk νSA in disk SB for two different representations and various radii
ν of the inner disk as described in Example 5.14. Parameters are chosen
as r = 1, R = 2.

n k l SDFP (5.4) µsos(2) sec

3 4 3 feasible 0.293 0.30
6 7 4 feasible 0.134 0.86
10 11 15 feasible 0.106 5.65
15 16 6 infeasible 0.087 46.86

Table 5.3: Computational test of containment of ball in elliptope as described in
Example 5.15.

with ones on the diagonal and distinct variables in the remaining positions; see [8,
Section 2.1.3].
As exhibited in Table 5.3, the ball of radius 1

2 in Dimensions n = 3, 6, 10 and
15 is contained in the elliptope of the respective dimension. The computational
time grows in the number of variables, but even dimensions as high as 15 are in
the scope of desktop computers if the size l of the pencil B(x) is moderate.
Note that the SDFP (5.4) is feasible for (n, k, l) = (10, 11, 5) but not feasible

for (n, k, l) = (15, 16, 6). Thus, for (n, k, l) = (15, 16, 6), this example serves as a
counterexample for the reverse statement of Theorem 5.10.

5.4.2 Randomly Generated Spectrahedra

We applied both the hierarchical criterion (5.3) and the feasibility criterion (5.4)
to several instances of linear pencils with random entries.
For the experiments in this section, we generate coefficient matrices A1, . . . , An

by assigning random numbers to the off-diagonal entries of the matrices. Numbers
are drawn from a uniform distribution on [−1, 1]. The generated matrices are
sparse in the sense that roughly 35% of the off-diagonal entries are nonzero. The
matrix for the constant term A0 is generated in the same way, but features ones
on the diagonal. This choice leads to bounded spectrahedra in most cases, namely
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size feasibility objective value sec
no. n k l SDFP(5.4) µsos(2) µsos(4) µsos(2) µsos(4)

1 2 4 4 infeasible 0.330 0.330 0.91 3.06
2 2 6 4 feasible 1.459 1.459 0.35 3.66
3 2 4 6 infeasible -2.009 -2.009 0.57 31.60
4 2 6 6 infeasible -0.209 -0.209 0.65 45.84
5 3 4 4 infeasible 0.156 0.156 0.39 7.39
6 3 6 4 infeasible 0.332 0.332 0.43 9.86
7 3 4 6 infeasible -6.918 -6.918 0.78 103.91
8 3 6 6 infeasible 0.028 0.028 0.87 97.28
9 4 4 4 infeasible -3.164 -3.164 0.50 29.46
10 4 6 4 infeasible 0.593 0.593 0.58 34.83
11 4 4 6 infeasible -0.938 -0.938 1.14 285.38
12 4 6 6 infeasible -0.251 -0.251 1.23 368.22

Table 5.4: Computational test of containment of randomly generated spectrahedra
as described in Example 5.16.

when the matrices A0, . . . , Ak are linearly independent. Unbounded spectrahedra
and spectrahedra without interior are discarded.
The pencil of the second spectrahedron SB is generated in the same way, except

that the diagonal entries of B0 are chosen larger. This has the effect that the
corresponding spectrahedra are scaled and the containment SA ⊆ SB is more
likely to happen.

Example 5.16. We apply the hierarchies to a range of problems with varying
dimensions and pencil sizes as reported in Table 5.4. To illustrate the approach,
we provide the pencils for experiment no. 1 below.

A(x) =


1 0.2528x1 + 0.3441x2 0 0

0.2528x1 + 0.3441x2 1 0 −0.1314x1
0 0 1 0.7969x2
0 −0.1314x1 0.7969x2 1

 ,

B(x) =


2 0.8454 0 0

0.8454 2 −0.2489x1 − 0.4063x2 0
0 −0.2489x1 − 0.4063x2 2 0.3562x1
0 0 0.3562x1 2

 .
For this experiment with randomly generated matrices, the truth value of the

containment question is unknown a priori. In the case of non-negative objective
values, our criterion yields a certificate for the containment. For negative objective
values, we inspected plots of the spectrahedra to check appropriateness of the
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criterion. Plots of the spectrahedra from the two-dimensional experiments no. 1–4
are shown in Figure 5.1.
In cases of higher dimension (n > 3), we examined projections of the spectrahe-

dra. See Figure 5.2 for projections of the spectrahedra from experiment no. 12 to
different planes. The small negative objective value reported in Table 5.4 suggests
that there is only a small overlap of SA over the boundary of SB. Indeed, the
projections to the coordinate planes suggest that SA is contained in SB. But when
projecting to the plane spanned by 0.3x1+x2 and x3, we see that the spectrahedra
are not contained.
See also Section 5.5 for an algorithmic method to certify non-containment.

Figure 5.1: Spectrahedra of experiments no. 1–4 from Table 5.4. SA: light grey,
SB: dark grey.

Figure 5.2: Projections of the 4-dimensional spectrahedron no. 12 from Table 5.4.
SA: light grey, SB: dark grey. Projections to planes spanned by
(x1, x2), (x2, x3), (x3, x4) and (0.3x1 + x2, x3)

In all cases we examined, the results from the hierarchical criterion correspond
with the expectations we had from inspecting the plots. Remarkably, for the ran-
domly generated spectrahedra, the results of the relaxations match closely across
different relaxation orders and across the two approaches discussed. This suggests
that the criteria perform well in generic cases.
As expected, running times increase quickly with growing dimension n and with

an increase in the sizes k and l of the pencils A(x) and B(x).
This can be explained by inspecting the size of the resulting semidefinite pro-

gram. As explained in Theorem 2.22, the two sum of squares constraints can be
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modeled by semidefiniteness constraints in S
k(n+l+d−1

d ) ×S(n+l+d+1
d+2 ). To model the

first constraint in (5.3), we need
(
n+l+2d−1

2d

)
equality constraints in addition. The

number of variables is given by

1 +
1

2
k

(
n+ l + d− 1

d

)[
k

(
n+ l + d− 1

d

)
+ 1

]
+

1

2

(
n+ l + d

d+ 1

)[(
n+ l + d

d+ 1

)
+ 1

]
.

(5.5)

See also [80, Section 5] for a similar discussion.
While k enters the formula only quadratically, l appears in the binomial coef-

ficients. As one would expect, increasing l has much more effect on the running
time than increasing k.
Standard semidefinite programming duality theory tells us that the dual prob-

lem has
(
n+l+2d−1

2d

)
variables and the number of equality constraints is given by

equation (5.5). We interpreted the primal problem as a truncated sum of squares
problem. In a similar way, we can interpret the dual problem as a truncated
moment relaxation, see [31, 41].
We implemented this dual approach and again performed numerical experiments.

Example 5.17. We apply the hierarchies to a range of problems with varying
dimensions and pencil sizes as reported in Table 5.5. By µmom(d), we denote the
optimal value of the dual problem to the d-th sum of squares relaxation. We fix
the spectrahedron SB for each dimension n and vary the size of the (randomly
generated) pencil describing SA to see the impact of changing the size k.
The running time for the moment approach is oftentimes shorter than for the

sum of squares approach. It is a common phenomenon that a large number of
variables has a greater impact on the complexity of a semidefinite program than
the number of constraints. It should be kept in mind that neither the sum of
squares implementation nor the moment implementation have been optimized for
speed and the running times in the table can only give rough estimates.

5.5 Certifying Non-Containment

The method introduced in Section 5.2 yields a lower bound on the optimal value
of the polynomial optimization problem (5.2). The procedure can only verify
containment of a spectrahedron SA in another one SB, if this lower bound is
non-negative. If the lower bound is negative, the containment question remains
undecided.
In this section, we discuss methods to find a point x ∈ SA \ SB that serves as

a certificate for non-containment. These methods are based on the branch and
bound scheme discussed in the last chapter.
Let us first look at the case where SA is a polytope before discussing the general

case in Subsection 5.5.2.
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size objective value sec
no. n k l µmom(2) µmom(4) µsos(2) µsos(4) µmom(2) µmom(4) µsos(2) µsos(4)

13 2 4 6 -0.698 -0.698 -0.698 -0.698 0.34 29.64 0.53 30.24
14 2 6 6 -0.037 -0.037 -0.037 -0.037 0.41 39.04 0.58 39.15
15 2 8 6 0.787 0.787 0.787 0.787 0.49 38.69 0.64 59.17
16 2 10 6 0.015 0.015 0.015 0.015 0.74 87.78 0.79 98.50
17 3 4 6 -1.902 -1.902 -1.902 -1.902 0.58 79.53 0.73 83.27
18 3 6 6 -0.317 -0.317 -0.317 -0.317 0.52 84.51 0.80 122.25
19 3 8 6 0.196 0.196 0.196 0.196 1.17 121.75 0.93 138.92
20 3 10 6 -0.668 -0.668 -0.668 -0.668 1.31 252.30 1.13 323.83

Table 5.5: Computational test of containment of randomly generated spectrahedra
as described in Example 5.17.

5.5.1 SA is a Polytope

In the special situation that SA = PA is a polytope, we can make a more refined
statement. We can solve a variation of the polynomial optimization problem (5.2)
by applying the branch and bound scheme developed in the last chapter.
Assume problem (5.2) has a negative optimal value, i.e., µ < 0 at some optimal

point. By the same argument as in the proof of Proposition 5.5, there is another
solution with negative objective value such that the z-component of the solution
lies in the unit cube. This means that the following optimization problem also has
a negative optimal value.

minimize zTB(x)z

s.t. x ∈ PA
z ∈ [−1, 1]l

(5.6)

On the other hand, if we have containment, the optimal value of (5.6) is equal
to zero. Then the optimal point has a z-component that is zero. Problem (5.6)
is a polynomial optimization problem over a polytope. Thus we can solve it by
means of the branch and bound scheme from the last chapter.
Note that we do not have to solve to optimality, since we are only interested in

detecting whether the optimal value is negative or non-negative. That means that
we can add the following additional stopping criteria.
• STOP if the global lower bound is non-negative, i.e., plb,K ≥ 0,
• STOP if any feasible point evaluates negative, i.e., pub,K < 0.

If the second criterion is met, the objective function is evaluated negative on
some point (x, z) ∈ PA×[−1, 1]l, which was generated by the Deletion-by-Infeasibility
step. This point serves as a certificate of non-containment, since for the x-component,
we have x ∈ PA \ SB.
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5.5.2 SA is a Spectrahedron

In the spirit of Section 4.3, it is of course possible to apply the branch and bound
method to more general Positivstellensatz relaxations. While we do not have a the-
oretical convergence result at hand, from a geometric point of view this approach
is also reasonable for the containment hierarchy.
Branching in the x-variables is reasonable because if SA is contained in SB,

the same must be true for any partition of SA. Furthermore, we can restrict the
branching to the x-variables. Overshooting the box for the z-coordinates may
change the objective value of the relaxation but does not change the sign and does
not influence the containment decision.
The challenges in this case are again to prove convergence and to find a suitable

Deletion by Infeasibility method. For the convergence, explicit error bounds are
needed which are not in sight.
For the Deletion by Infeasibility method, an algorithmically inexpensive test

is to evaluate the pencil on the vertices of the partition polytopes and to test if
the resulting scalar matrix is positive semidefinite. In this way, we can detect
situations where one of the vertices lies in the spectrahedron. Of course, if all
vertices evaluate to matrices that are not positive semidefinite, we cannot deduce
infeasibility and have to retreat to another method.
In this case, we have to solve semidefinite feasibility problems. Recall that a

linear pencil A(x) is called strongly infeasible if dist({A(x) | x ∈ Rn},S+k ) > 0 and
weakly infeasible if it is infeasible but not strongly infeasible. Detecting strongly
infeasible pencils is not hard, in this situation we have a result similar to the
Farkas’ Lemma in the linear setting.

Lemma 5.18 ([86]). If a linear pencil A(x) is strongly infeasible then

−1 ∈
{
s+ 〈A,S〉 | s ∈ R+, S ∈ S+k

}
.

Detecting weakly infeasible problems requires, possibly expensive, reformula-
tions of the original problem. See [57] for recent results.
In Section 4.2.1, we saw that we do not necessarily need a Deletion by Infeasibil-

ity method. Infeasible sets can also be detected by the bounding method, because
they have an unbounded objective value, since in this case, -1 is a positive combi-
nation of the constraints. We have seen that the same is true in the spectrahedral
setting, if the pencil is strongly feasible. For weakly feasible pencils, a similar
result is also available.

Theorem 5.19 (Klep, Schweighofer [42, Theorem 4.3.3.]). Let SA = ∅ and t =
min(k − 1, n). Then

−1 ∈
{
s+ 〈A,S〉 | s ∈ Σn,2t , S ∈ Σk×k

n,2t

}
.

Notice however, that the degree of the certificate may need to be larger than the
relaxation order used by default in the relaxation, which may make the bounding
step very expensive.
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5.5 Certifying Non-Containment

Most modern semidefinite programming solvers can detect infeasibility. For our
computations below we used the routine provided by MOSEK.
To test the ideas described above, we implemented the following branch and

bound scheme.

Containment branch and bound
Selection: We implemented two different Selection rules:

Breadth First: Select the element Hj with the greatest longest edge from
Kj−1.

Best Bound: Select the element Hj with the lowest lower bound plb,H .
Subdivision: Subdivide Hj by bisecting along the longest edge into Hj1 and

Hj2 .
Deletion by Infeasibility: Use the routine provided by MOSEK to decide if

Hji ∩ P = ∅, and if nonempty, generate a point x in Hji ∩ SA.
Bounding: Calculate the lower bound on Hji ∩SA using the initial relaxation of

the containment hierarchy (5.3). Calculate the upper bound by evaluating
the pencil B(x) on the feasible point x returned by the linear program from
the Deletion by Infeasibility step, use the smallest eigenvalue of this scalar
matrix as upper bound.

Stopping Criteria:
STOP if the global lower bound is non-negative, i.e., plb,K ≥ 0,
STOP if any feasible point evaluates negative, i.e., pub,K < 0.

As discussed in Section 4.3, both selection rules are bound improving and guar-
antee the convergence of the method. For our application, the best bound rule
exhibits a better performance as we will see in the next example. We are not in-
terested in solving the problem to optimality but rather in finding a certificate for
non-containment quickly. By constantly improving the lower bound, we can find
a positive bound early on in the case of containment. If we do not have contain-
ment, the partition set with the lowest bound is also a good candidate for a set
that contains a point with negative objective value. This also explains the smaller
number of bisections needed in the best bound approach in the following example.

Example 5.20. We applied the Containment branch and bound scheme described
above to the problems from Table 5.4 and Table 5.5. The number of branching
operations needed, depending on the selection rule, are reported in Table 5.6 in
the column “steps”, the column “cputime” gives the cputime in seconds needed to
determine the status of the containment problem. It becomes apparent that the
breadth first selection is indeed outperformed in most cases by the best bound
rule.
To illustrate the approach, we end this chapter with Figure 5.3. It shows again

the spectrahedra from experiment no. 4. The point marked by an asterisk is the
point returned by the branch and bound scheme above as a certificate of non-
containment.
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5 Containment Problems for Polytopes and Spectrahedra

selection rule
breadth first best bound

no. status steps cputime(s) steps cputime(s)

1 certified containment 0 1.17 0 1.22
2 certified containment 0 1.69 0 1.69
3 certified non-containment 2 7.67 2 7.37
4 certified non-containment 4 12.89 3 9.75
5 certified non-containment 1 4.85 1 4.73
6 certified non-containment 20 108.94 5 33.35
7 certified containment 0 1.44 0 1.35
8 certified containment 0 2.16 0 2.15
9 certified containment 0 2.92 0 2.97

10 certified non-containment 1 5.76 1 5.57
11 certified containment 0 3.13 0 3.04
12 certified non-containment 38 292.57 9 70.11
13 certified non-containment 4 11.86 3 9.08
14 certified non-containment 3 13.99 3 13.37
15 certified non-containment 1 7.32 1 7.08
16 certified non-containment 29 101.83 10 37.54
17 certified non-containment 49 263.26 8 43.02
18 certified non-containment 54 403.24 9 74.41
19 certified containment 0 2.54 0 2.46
20 certified containment 0 3.73 0 3.95
21 certified containment 0 6.03 0 6.02
22 certified containment 0 3.19 0 3.17
23 certified non-containment 9 90.1 5 54.98
24 certified containment 0 8.09 0 7.98

Table 5.6: Number of bisections and cputime needed to certify containment or non-
containment in the containment branch and bound scheme depending
on the used selection rule as described in Example 5.20.
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5.5 Certifying Non-Containment

Figure 5.3: Spectrahedra from experiment no. 4 with point used as certificate of
infeasibility (indicated by star). SA: light grey, SB: dark grey.
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6 Open Problems

This chapter is meant as an entry point to topics and problems, which are closely
related to this thesis, but were not in the scope of the present work. We will mainly
list some open problems that we regard worth exploring.

In this work, we explored the combination of Positivstellensatz relaxations for
polynomial programming problems with branch and bound techniques. Our main
contribution here is the proof of convergence of a method based on Handelman’s
Positivstellensatz. The key ingredient for this result was the error bound derived
in Chapter 3. It gives a bound on the error that is made when solving the linear
programming relaxation based on Handelman’s result of a polynomial program-
ming problem over a polytope. The bound depends on the length of the longest
edge of a bounding box and can thus be used to bound the error in the branching
scheme.
We implemented a basic version of the proposed Handelman branch and bound

method. It proved to work well on the elementary test problems studied in Chap-
ter 4. Our implementation was not optimized for speed (setting up the linear pro-
grams sometimes takes longer than solving them) and does not compete with state
of the art nonlinear programming codes. However, we have seen that strong bound-
ing methods coming from Positivstellensatz relaxations lead to quickly converging
methods. Our first question is concerned with the potential of such methods.

Question 6.1. What is the additional potential of refined implementations, and
how do they perform on practical problems? How do refined implementations
compare with other state of the art software?

In practical applications, the most commonly used Positivstellensatz is Puti-
nar’s. This is due to the fact that the number of terms in the representation stays
relatively small (compared to Schmüdgen’s and Handelman’s Positivstellensatz) for
increasing orders, while still reasonably good representation results are achieved.
The drawback is that the sum of squares multipliers result in semidefinite instead
of linear programming problems.
We expect that a convergence result similar to what we showed for Handelman’s

approach, can be devised for a branch and bound method using Putinar’s Posi-
tivstellensatz for the lower bounding. At present, the following two approaches to
proving convergence of the Putinar approach look most promising to us.
1) Generalizing the bound given by Nie and Schweighofer (Theorem 3.3). In their

paper [69], they describe how the bound can be adapted to the situation, where the
semialgebraic set K is contained in a hypercube of edge length r. By thoroughly
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6 Open Problems

reviewing the proof, this bound could even be made explicit for a simple family of
sets (such as hyperrectangular sets), which in turn could be used as partitioning
sets in a branch and bound scheme.
2) Generalizing the approach described by Magron [60] from hypercubes to hy-

perrectangular boxes. He describes how to transfer existing bounds for the Han-
delman approach to Putinar’s approach under the assumption that the following
conjecture by De Klerk and Laurent is true.

Conjecture 6.2 ([13]).
n∏
i=1

xi + Cn ∈M(G),

where M(G) is the quadratic module spanned by the polynomials

G = {x1 − x21, . . . , xn − x2n}

describing the hypercube and

Cn =
1

n(n+ 2)
.

Strongly believing in the validity of the Conjecture, we ask the following.

Question 6.3. Can the error term Cn in Conjecture 6.2 be made dependent on
the size of the box to generalize Magron’s result to arbitrary boxes?

The second area in which this work made a contribution is the study of spectra-
hedral containment problems. We extended complexity results from the polyhedral
setting to the spectrahedral setting. The next generalization in this direction is to
consider projections of spectrahedra (spectrahedral shadows). The positive results,
that is “V in S” and “H in S” from Table 5.1 seem to be easily transferred to this
new setting. The study of the co-NP-hard cases is more involved.

Question 6.4. Can the relaxation techniques for containment of spectrahedra
introduced in this work be generalized to projections of spectrahedra?

With the hierarchy (5.3) we found a sufficient criterion for the containment
question “S in S” and attacked one of the two main cases classified as co-NP-hard
in Table 5.1. The next questions concerns the other hardness result.

Question 6.5. Can we find good relaxations for the containment question “H in
V” that can be decided efficiently?

The sufficient containment criteria (5.4) and (5.3) can be interpreted in terms of
maps between the matrix (sub-)spaces spanned by the coefficient matrices of the
pencils A(x) and B(x). Criterion (5.4) is related to completely positive maps (see
[28, 40, 41]), the hierarchy (5.3) to positive maps (see [41]). Such maps are usually
studied in the setting of operator algebras. We believe it to be fruitful to fur-
ther study the connection between positivity in operator theory and containment
questions.
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