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Abstract 

Bayesian Networks are computer-based environmental models that are frequently 

used to support decision-making under uncertainty. Under data scarce conditions, 

Bayesian Networks can be developed, parameterized, and run based on expert 

knowledge only. However, the efficiency of expert-based Bayesian Network 

modeling is limited by the difficulty in deriving model inputs in the time available 

during expert workshops. This thesis therefore aimed at developing a simple and 

robust method for deriving conditional probability tables from expert estimates in 

a time-efficient way. The design and application of this new elicitation and 

conversion method is demonstrated using a case study in Xinjiang, Northwest 

China. The key characteristics of this method are its time-efficiency and the 

approach to use different conversion tables based on varying levels of confidence. 

Although the method has its limitations, e.g. it can only be applied for variables 

with one conditioning variable; it provides the opportunity to support the 

parameterization of Bayesian Networks which would otherwise remain half-

finished due to time constraints. In addition, a case study in the Murray-Darling 

Basin, Australia, is used to compare Bayesian Network types and software to 

improve the presentation clarity of large Bayesian Networks. Both case studies 

aimed at gaining insights on how to improve the applicability of Bayesian 

Networks to support environmental management.  
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Summary 

Introduction. Environmental problems are complex. Due to diverse interrelations 

and interdependencies between nature and society, it is difficult to anticipate or 

predict all natural responses to anthropogenic influences and vice versa. 

Computer-based environmental models constitute a means to assist environmental 

managers to make more informed decisions under uncertainty. An environmental 

model is a simplified representation of a real-world system which can either be 

used for diagnostic or predictive purposes. For example, models can be used to 

ascertain causes for observed environmental pollution or to assess the expected 

outcome of various management alternatives. 

Many problems at the nature-society interface are insufficiently covered by 

empirical data. Modeling tools which incorporate various input data types are 

therefore needed to use and combine the best data available. This can be done 

through Bayesian Network models, which can utilize outputs from other models, 

data derived from statistics, measurements, scientific literature or household 

surveys, as well as expert knowledge. Under data scarce conditions, Bayesian 

Networks can even be developed, parameterized, and run based on expert 

knowledge only.  

Involving local experts and stakeholders from various disciplines and fields is a 

cost and time efficient way of obtaining information. In addition, it helps to better 

understand complex problems, to develop better informed models under data 

scarcity and to jointly find holistic solutions to real-world problems. More 

importantly, it has a significant impact on the likelihood that model outcomes are 

put into use after the completion of the modeling process. 

The efficiency of using expert-based Bayesian Network modeling is limited by the 

difficulty in deriving model inputs in the time available during expert workshops. 

Many people are not familiar with probabilistic thinking and are not used to 

formulate their knowledge in the form of probabilities. As Bayesian Networks are 

probabilistic causal models, the parameters are expressed in conditional 

probability values. The “conditional probability” of an event is the likelihood that 

an event occurs given another event has already happened. To fill so-called 

conditional probability tables, an expert needs to answer many “if-then-questions”. 

For example, “if event A has already happened, then event B will occur with a 

probability of __%“. In addition to this unusual format, these conditional 

probability tables grow exponentially with the number of conditioning variables. 

Filling these tables manually is very time-consuming and cognitively challenging 

for experts and stakeholders.  
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This thesis aims at developing a simple and robust method for deriving conditional 

probability tables from expert estimates, which is demonstrated using a case study 

in Northwest China. As the modeling process in the case study region had to be 

conducted in three 3-hour-workshops, it was predestined for testing “expert-

friendly” elicitation formats that can be used under serious time constraints. In 

addition, a case study in Australia provided the opportunity to compare Bayesian 

Network types and software to improve the presentation clarity of large Bayesian 

Networks. 

Bayesian Networks. A Bayesian Network is a probabilistic causal model of a 

selected real system. The system’s components and the relationships between them 

are represented in the form of a causal network. In a Bayesian Network, a link 

between two variables indicates that one variable is conditionally dependent on the 

other. The strength of this dependence is expressed in conditional probabilities. 

Among other rules of probability theory, the Bayesian Network software applies 

the Bayes’ rule which was derived by the 18th-century mathematician Reverend 

Thomas Bayes.  

Bayesian Network models emerged from Artificial Intelligence research and were 

first applied in the fields of medicine and automated fault diagnosis. Since the late-

1990s, Bayesian Networks are increasingly being used in support of environmental 

management. Among other reasons, as they offer the possibility to utilize and 

combine a wide range of input data types and to integrate experts’ knowledge 

within participatory modeling processes. 

Expert-based Bayesian Network modeling. Experts can be involved at various 

stages of a Bayesian Network modeling process. For example, experts can identify 

variables and link them into a causal network, they can estimate conditional 

probability values, or finally apply and evaluate the model. In absence of other 

data sources, the quality of expert-based Bayesian Networks hinges on the 

selection of experts, their willingness to invest time in the process, and the design 

of consultation process and elicitation procedure.  

A literature review revealed that in most expert-based Bayesian Network 

applications experts were required to estimate probability values – either with 

empty (conditional) probability tables or with the help of probability scales. Only 

in few applications, estimates were elicited as weights, as frequencies, as rankings 

or in other formats. The existing elicitation formats were inadequate for the case 

study in Northwest China. As the whole elicitation needed to be completed within 

one hour, the elicitation categories needed to be more intuitive and easy to 

understand. The case study therefore had the methodological purpose to develop a 

simple and even more time-efficient elicitation method to be used in a workshop 

setting.  
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Case study Northwest China. This case study was conducted in oasis towns of 

the Tarim Basin in Xinjiang Uighur Autonomous Region, Northwest China. It was 

designed as a three-year study in the frame of the SuMaRiO project (Sustainable 

Management of River Oasis along the Tarim River, China). One of SuMaRiO’s 

main objectives is to develop methods to assess ecosystem services and to support 

the integration of the ecosystem services concept into land and water management 

in the water-scarce Tarim Basin. In general, ecosystem services are defined as 

benefits that people obtain from ecosystems. The idea behind integrating this 

concept into land and water management is to draw attention to the plentitude of 

services provided by healthy ecosystems – instead of only focusing on irrigated 

agricultural products, such as cotton. In line with the goals of the SuMaRiO 

project, this case study aimed at developing, applying, and evaluating participatory 

modeling methods to support sustainable environmental management in the case 

study region.  

Urban and peri-urban vegetation provides many ecosystem services for people 

living in oasis towns at the margin of the Taklamakan desert. As towns in Southern 

Xinjiang, such as Aksu and Korla, are exposed to dust weather approximately 

100 days per year, dust weather mitigation is one of the most relevant ecosystem 

services in the region. The term dust weather describes dust events in which desert 

dust particles are raised and transported by the wind. The provision of shade is 

another ecosystem service in these oasis towns, which experience temperatures 

that reach 40°C or higher during summer months. Under the impact of climate 

change, it is most likely that the arid region of the Taklamakan desert would 

experience even higher temperatures.  

The Bayesian Network therefore compares plant species in their ability to mitigate 

dust weather and to provide shade as well as their resulting irrigation needs. The 

methodological challenge of this case study was to develop a Bayesian Network 

under data scarcity and with few chances to meet local experts – and only for a 

short time. In the course of a workshop series, local experts from urban landscape 

planning and forestry management as well as local researchers from various 

disciplines jointly developed two Bayesian Networks which were later merged into 

one network.  

During the first workshop, a preliminary network structure was discussed and 

improved. During the second workshop, expert estimates as well as their 

confidence in these estimates were elicited in the form of ratings on a scale of – to 

+++ and numerical values (0-1). In the following step, four conversion tables were 

designed to systematically transform these estimates into conditional probability 

values according to different levels of confidence. During the third workshop, the 
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fully parameterized model was applied and evaluated by the workshop 

participants. 

This case study resulted in a fully functioning Bayesian Network which can be 

used to compare 11 peri-urban plant species in their ability to mitigate dust weather 

and 10 urban plant species in their ability to provide shade as well as their irrigation 

needs. The final model exactly addresses the knowledge gap expressed by local 

urban landscape planners during an expert interview prior to the modeling process.  

Case study Australia. This case study is the result of a three-month research stay 

in Australia. The task was to identify the broad range of ecosystem services 

provided by ten wetland sites in the Murray-Darling Basin, and to develop a 

Bayesian Network that shows the links between environmental flows, the 

ecosystem condition and ecosystem services. Environmental flows are water flows 

necessary to sustain freshwater ecosystems and to secure the services for human 

well-being provided by them. In contrast to the workshop series of the Northwest 

China case study, this Bayesian Network was solely developed in cooperation with 

an ecological modeler. The conditional probability tables were filled based on 

expert knowledge, so-called ecological character descriptions, and equations.  

The methodological motivation behind this particular study was to exhaust the 

potential of Bayesian Networks to model multiple ecosystem services 

simultaneously, which has not been explored by previous Bayesian Network 

applications. In addition, the size of the final model provided the opportunity to 

compare different Bayesian Network types with regard to “user-friendliness”. This 

comparison showed that there is a trade-off between presentation clarity and 

accurate visualization of causal relationships.  

This case study resulted in a fully functioning Bayesian Network model which can 

be used to analyze the impact of annual water supply on the ecosystem condition 

of ten wetlands and all their ecosystem services simultaneously. For example, it 

shows how environmental flows can help to sustain a healthy ecosystem condition 

and to provide ecosystem services in case of low water availability.  

Conclusion. Whilst the case studies conducted in Northwest China and Australia 

differ in time spent, depth of study, and findings, they share a common ground in 

methodology and on the subject level. Both case studies aimed at gaining insights 

on how to improve the applicability of Bayesian Networks to support 

environmental management.  

The scientific contribution of this thesis consists of the design and application of 

an elicitation and conversion method that complements existing techniques. The 

key characteristics of this method are its time-efficiency and the approach to use 
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different conversion tables based on varying levels of confidence. Although this 

method has its limitations, e.g. it can only be applied for variables with one 

conditioning variable; it provides the opportunity to support the parameterization 

of Bayesian Networks which would otherwise remain half-finished due to time 

constraints. This thesis also broaches the issue of presentation clarity of large 

Bayesian Networks and nested Bayesian Networks. The short comparison neither 

advocates a Bayesian Network type nor software; it rather highlights the need to 

consider the applicability and user-friendliness of large models.  

The real-world purpose of the case study in Northwest China was to support and 

inform local vegetation managers and planners. It is difficult to assess the 

contribution of this case study for local environmental management. The research 

conditions in Northwest China made it impossible to invite the same group of local 

experts to all workshops. The high fluctuations of workshop participants reduced 

the perceived “ownership” of the modeling process and model results. 

Nevertheless, each workshop provided a platform for discussion and mutual 

learning. As in many other participatory Bayesian Network applications, the 

knowledge exchange during the modeling process was at least as valuable to the 

workshop participants as model results.  
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Zusammenfassung 

Einleitung. Umweltprobleme sind komplex. Die vielfältigen 

Wechselbeziehungen und gegenseitigen Abhängigkeiten zwischen Natur und 

Gesellschaft erschweren die Aufgabe, Reaktionen der Natur auf anthropogene 

Einflüsse zu erahnen oder vorherzusagen. Computerbasierte Umweltmodelle 

können Umweltmanager darin unterstützten, in dieser Ungewissheit informiertere 

Entscheidungen zu treffen. Ein Umweltmodell ist eine vereinfachte Darstellung 

eines real existierenden Systems, das zur Diagnose oder zur Voraussage verwendet 

werden kann. Zum Beispiel um die Ursachen von beobachteten 

Umweltverschmutzungen zu ermitteln oder die zu erwartenden Folgen 

verschiedener Managementmaßnahmen zu beurteilen.  

Zu vielen Mensch-Umwelt-Problemen liegen nur wenige empirische Daten vor. 

Um vorhandene Daten optimal nutzen und kombinieren zu können, sind 

Modellierungstools notwendig, die unterschiedlichste Inputdaten verwenden 

können. Dieses Kriterium wird von Bayes’schen Netzen erfüllt, da sie Ergebnisse 

anderer Modelle, statistische Daten, Messwerte, Erkenntnisse aus 

wissenschaftlichen Veröffentlichungen, Haushaltbefragungen sowie 

Expertenwissen verarbeiten können. Falls die Datenknappheit es notwendig 

macht, können Bayes’sche Netze auch ausschließlich mit Expertenwissen 

entwickelt, parametrisiert und angewendet werden.  

Lokale Experten und Stakeholder aus unterschiedlichen Disziplinen und 

Arbeitsfeldern in die Modellierung einzubeziehen ist eine kosten- und 

zeiteffiziente Methode, um Informationen zu erhalten. Zudem hilft dies, komplexe 

Probleme besser zu verstehen, informiertere Modelle unter Datenknappheit zu 

entwickeln und gemeinsam ganzheitliche Lösungsansätze für real existierende 

Probleme zu finden. Die Einbindung verschiedener Akteure erhöht auch die 

Wahrscheinlichkeit, dass Modellergebnisse nach Beendigung des 

Forschungsprojektes angewendet werden. 

Die experten-basierte Modellierung mit Bayes’schen Netzen wird dadurch 

erschwert, dass die Erhebung von Inputdaten meist mehr Zeit benötigt als im 

Rahmen von Experten-Workshops zur Verfügung steht. Viele Menschen sind es 

nicht gewohnt ihr Wissen in Form von Wahrscheinlichkeiten wiederzugeben. Da 

Bayes’sche Netze probabilistische kausale Modelle sind, werden ihre Parameter 

jedoch in bedingten Wahrscheinlichkeiten ausgedrückt. Die “bedingte 

Wahrscheinlichkeit” eines Ereignisses ist die Wahrscheinlichkeit dass das Ereignis 

stattfindet, gegeben dem Fall, dass ein anderes Ereignis bereits stattgefunden hat. 

Um sogenannte bedingte Wahrscheinlichkeitstabellen auszufüllen, muss ein 

Experte viele „wenn-dann-Fragen“ beantworten: „Wenn Ereignis A bereits 
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eingetroffen ist, wie hoch ist dann die Wahrscheinlichkeit, dass Ereignis B 

eintrifft?“. Zusätzlich zu diesem ungewöhnlichen Format, vergrößern sich diese 

bedingten Wahrscheinlichkeitstabellen exponentiell mit der Zahl der Variablen, 

welche die Eintrittswahrscheinlichkeit eines Ereignisses beeinflussen. Solche 

Tabellen per Hand auszufüllen stellt für Experten eine zeitaufwändige und 

kognitiv herausfordernde Aufgabe dar.  

In dieser Arbeit wird, im Rahmen einer Fallstudie in Nordwestchina, eine einfache 

und robuste Methode entwickelt, um Expertenschätzungen in bedingte 

Wahrscheinlichkeitstabellen umzuwandeln. Da der Modellierungsprozess im 

Rahmen dreier drei-stündiger Expertenworkshops durchgeführt werden musste, 

war diese Fallstudie prädestiniert dafür, „expertenfreundliche“ 

Erhebungsmethoden zu testen, die unter starkem Zeitdruck angewendet werden 

können. Zusätzlich bot eine Fallstudie in Australien die Möglichkeit, verschiedene 

Arten von Bayes’schen Netzen und Software für deren Erstellung zu vergleichen, 

um die Übersichtlichkeit großer Bayes’scher Netze zu verbessern. 

Bayes’sche Netze. Ein Bayes’sches Netz ist ein probabilistisches, kausales Modell 

eines ausgewählten real existierenden Systems. Die Komponenten des Systems 

und die Zusammenhänge zwischen ihnen werden in Form eines kausalen Netzes 

dargestellt. In einem Bayes’schen Netz zeigt ein Pfeil zwischen zwei Variablen an, 

dass die eine Variable von der anderen beeinflusst bzw. bedingt wird. Die Stärke 

dieser Abhängigkeit wird in bedingten Wahrscheinlichkeiten ausgedrückt. Der 

Satz von Bayes, welcher im 18. Jahrhundert vom Pfarrer und Mathematiker 

Thomas Bayes entwickelt worden ist, wird neben anderen Regeln der 

Wahrscheinlichkeitstheorie für die Modellierung mit Bayes’schen Netzen 

verwendet.  

Bayes’sche Netze stammen aus dem Bereich der Erforschung Künstlicher 

Intelligenz und wurden zunächst im Bereich der Medizin und der automatischen 

Fehlerdiagnose verwendet. Seit den späten 1990er Jahren werden Bayes’sche 

Netze vermehrt zur Unterstützung im Umweltmanagement verwendet. Unter 

anderem bietet diese Methode die Möglichkeit, eine Vielzahl von Inputdatentypen 

zu nutzen und zu kombinieren, sowie im Rahmen von partitzipativen 

Modellierungsprozessen Expertenwissen zu erheben und zu integrieren.  

Experten-basierte Modellierung mit Bayes’schen Netzen. Experten können in 

mehrere Schritte eines Modellierungsprozesses eingebunden werden. Zum 

Beispiel um Variablen zu identifizieren, sie zu einem kausalen Netz zu verbinden, 

um bedingte Wahrscheinlichkeiten zu schätzen, oder um das Modell anzuwenden 

und zu evaluieren. Wenn keine anderen Daten verwendet werden können, hängt 

die Qualität eines Experten-basierten Bayes’schen Netzes von der Auswahl der 
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Experten, ihrer Bereitschaft, Zeit in den Modellierungsprozess zu investieren und 

von der Gestaltung der Expertenerhebung ab.  

Eine Literaturstudie hat ergeben, dass in den meisten Anwendungen Experten-

basierter Bayes’scher Netze die Experten aufgefordert wurden, bedingte 

Wahrscheinlichkeiten zu schätzen – entweder mit leeren (bedingten) 

Wahrscheinlichkeitstabellen oder mit Wahrscheinlichkeitsskalen. Nur in wenigen 

Anwendungen wurden Schätzungen in Form von Gewichtungen, Häufigkeiten, 

Rangfolgen oder anderen Formaten erhoben. Die bestehenden Erhebungsformate 

konnten in der Fallstudie in Nordwestchina nicht angewendet werden. Da die 

gesamte Erhebung nur eine Stunde dauern durfte, mussten die 

Erhebungskategorien intuitiver und einfacher zu verstehen sein. Daher hatte diese 

Fallstudie den methodologischen Anspruch, eine einfache und zeit-effizientere 

Erhebungsmethode zu entwickeln, die in Rahmen von Expertenworkshops 

angewendet werden kann. 

Fallstudie Nordwestchina. Diese Fallstudie wurde in Oasenstädten des 

Tarimbeckens im Uigurischen Autonomen Gebiet Xinjiang in Nordwestchina 

durchgeführt. Sie wurde innerhalb von drei Jahren im Rahmen des SuMaRiO-

Projektes (Sustainable Management of River Oasis along the Tarim River, China) 

abgeschlossen. Hauptziele des SuMaRiO-Projektes sind es, Methoden zu 

entwickeln, mit denen Ökosystemdienstleistungen erfasst werden können, sowie 

die Integration des Konzepts der Ökosystemdienstleistungen in Land- und 

Wassermanagement im wasserarmen Tarimbecken zu unterstützen. 

„Ökosystemdienstleistungen“ sind die Vorteile oder Dienstleistungen, die 

Menschen von intakten Ökosystemen beziehen. Dieses Konzept im Land- und 

Wassermanagement einzubringen soll die Aufmerksamkeit darauf lenken, dass 

Menschen auf vielseitige Weise von intakten Ökosystemen profitieren können – 

nicht nur von dem Anbau wasserintensiver Agrarprodukte, wie zum Beispiel 

Baumwolle. In Übereinstimmung mit den SuMaRiO-Zielen diente diese Fallstudie 

dazu, partizipative Modellierungsmethoden zu entwickeln, anzuwenden und zu 

evaluieren, um ein nachhaltiges Umweltmanagement in der Region zu 

unterstützen. 

Die Menschen, die in Oasenstädten am Rande der Taklamakan-Wüste leben, 

profitieren von vielen Ökosystemdienstleistungen, welche die urbane und peri-

urbane Vegetation für sie bereitstellt. Da Städte im Süden Xinjiangs an etwa 

100 Tagen im Jahr von Staubwetter betroffen sind, ist die Verminderung von 

Staubwetter eine der wichtigsten Ökosystemdienstleistungen in der Region. Der 

Begriff „Staubwetter“ beschreibt den Zustand wenn (Wüsten-) Staubpartikel 

aufgewirbelt und vom Wind transportiert wird. Die Bereitstellung von Schatten ist 

eine weitere Ökosystemdienstleistung, da in den Oasenstädten während des 
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Sommers Temperaturen von 40°C und höher herrschen. Unter dem Einfluss des 

Klimawandels wird diese aride Wüstenregion höchstwahrscheinlich noch höhere 

Temperaturen erfahren. Das Bayes’sche Netz vergleicht daher Pflanzenarten in 

ihrer Fähigkeit, Staubwetter zu vermindern und Schatten zu spenden sowie den 

resultierenden Bewässerungsbedarf.  

Die methodologische Herausforderung dieser Fallstudie war es ein Bayes’sches 

Netz zu entwickeln – trotz der Datenknappheit und obwohl Experten nur selten 

und auch nur für kurze Zeit konsultiert werden konnten. In Rahmen einer 

Workshopreihe haben lokale Experten aus den Bereichen der Urbanen 

Landschaftsplanung und dem Waldmanagement gemeinsam zwei Bayes’sche 

Netze entwickelt die anschließend zu einem Netz zusammengefügt wurden.  

Während des ersten Workshops wurde die vorläufige Struktur des Netzes 

diskutiert und verbessert. Während des zweiten Workshops wurden sowohl 

Experteneinschätzungen in Form von Bewertungen auf einer Skala von – bis +++ 

und in numerischen Werten (0-1) als auch ihre Zuversicht in die Richtigkeit ihrer 

Einschätzungen erhoben. Anschließend wurden vier Konversionstabellen erstellt, 

mit denen – unter Einbeziehung des Zuversichtsgrades – die erhobenen Werte in 

bedingte Wahrscheinlichkeitsverteilungen umgewandelt werden konnten. 

Während des dritten Workshops wurde das vollständig parametrisierte Modell von 

den Workshopteilnehmern verwendet und evaluiert.  

Das Ergebnis dieser Fallstudie ist ein voll funktionstüchtiges Bayes’sches Netz 

welches peri-urbane und urbane Pflanzenarten gegenüberstellt. Es vergleicht die 

Fähigkeit 11 peri-urbaner Pflanzenarten, Staubwetter zu vermindern, die Fähigkeit 

10 urbaner Pflanzenarten, Schatten zu spenden sowie ihren Bewässerungsbedarf. 

Es schließt damit die Wissenslücke, die während eines Experteninterviews mit 

Grünflächenplanern vor Beginn des Prozesses genannt wurde.  

Fallstudie Australien. Diese Fallstudie ist das Ergebnis eines dreimonatigen 

Forschungsaufenthaltes in Australien. Zunächst galt es die Vielzahl der 

Ökosystemdienstleistungen zu identifizieren, die von Feuchtgebieten im Murray-

Darling-Becken bereitgestellt werden. Dann sollte ein Bayes’sches Netz erstellt 

werden, um die Zusammenhänge zwischen sogenannten environmental flows, dem 

Zustand von Ökosystemen und Ökosystemdienstleistungen aufzuzeigen. 

„Environmental flows” sind Wasserströme bzw. Wassermengen, die notwendig 

sind, um Süßwasserökosysteme zu erhalten und damit auch ihre Dienstleistungen 

zu sichern, die zum menschlichen Wohlergehen beitragen. Im Gegensatz zu der 

Fallstudie in Nordwestchina wurde dieses Bayes’sches Netz nur in Kooperation 

mit einer ökologischen Modelliererin erstellt. Die bedingten 

Wahrscheinlichkeitstabellen wurden basierend auf ihrem Expertenwissen, 
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Informationen zu den ökologischen Eigenschaften der Feuchtgebiete („ecological 

character descriptions”), und Gleichungen erstellt.  

Die methodologische Motivation hinter dieser Fallstudie war es, mit Bayes’schen 

Netzen eine Vielzahl von Ökosystemdienstleitungen gleichzeitig zu modellieren, 

da bisherige Anwendungen sich bisher auf 1-2 Ökosystemdienstleistungen 

beschränkt hatten. Zudem bot die Größe des Bayes’schen Netzes die Möglichkeit, 

verschiedene Arten von Bayes’schen Netzen auf ihre Benutzerfreundlichkeit zu 

prüfen. Der Vergleich zeigt dass es einen Zielkonflikt gibt zwischen der 

Übersichtlichkeit eines Modells und einer verständlichen Darstellung kausaler 

Zusammenhänge.  

Diese Fallstudie resultierte in einem funktionierenden Bayes’schen Netz welches 

dafür genutzt werden kann, den Einfluss des jährlichen Wasserhaushalts auf den 

Ökosystemzustand von zehn Feuchtgebieten und ihre Ökosystemdienstleistungen 

gleichzeitig darzustellen. Es zeigt zum Beispiel, wie das Bereitstellen von 

zusätzlichen Wassermengen für die Ökosysteme („environmental flows“) dabei 

helfen kann, Ökosysteme intakt zu halten und ihre Ökosystemdienstleistungen 

auch in Jahren mit geringerer Wasserverfügbarkeit zu sichern.  

Schlussfolgerung. Obwohl die Fallstudien sich in Projektdauer, Studientiefe, und 

Erkenntnissen unterscheiden, teilen sie die gleiche Methodologie und befassen 

sich mit ähnlichen Inhalten. Beide Fallstudien zielten darauf ab, Erkenntnisse zu 

gewinnen, um die Anwendbarkeit von Bayes’schen Netzen im Bereich des 

Umweltmanagements zu verbessern.  

Der wissenschaftliche Beitrag dieser Arbeit besteht aus der Erstellung und der 

Anwendung einer Erhebungs- und Konversionsmethode, die bisherige 

Herangehensweisen zur Ableitung von bedingten Wahrscheinlichkeiten ergänzt. 

Die Merkmale dieser Methode sind ihre Zeitersparnis und der Ansatz, die 

Zuversicht der Experten bei der Konversion ihrer Einschätzungen zu 

berücksichtigen. Obwohl diese Methode nur unter bestimmten Voraussetzungen 

verwendet werden kann, stellt sie doch eine Möglichkeit dar, um die 

Parametrisierung von anderen Bayes’schen Netzen voranzubringen. Diese Arbeit 

behandelt auch das Thema der Übersichtlichkeit von großen Bayes’schen Netzen. 

Der kurze Vergleich soll weder eine Art von Bayes’schen Netzen oder eine 

Software empfehlen, sondern vielmehr auf die Notwendigkeit hinweisen, die 

Anwendbarkeit und Benutzerfreundlichkeit großer Modelle zu berücksichtigen. 

Die Fallstudie in Nordwestchina zielte auch darauf ab, lokale Grünflächenplaner 

zu unterstützen und zu informieren. Es ist schwierig abzuschätzen, inwiefern diese 

Fallstudie zum lokalen Umweltmanagement beitragen konnte. Die 

Forschungsumstände in Nordwestchina machten es unmöglich, dieselbe 
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Expertengruppe zu allen Workshops einzuladen. Die hohe Fluktuation der 

Workshopteilnehmer minderte sicherlich das Zugehörigkeitsgefühl („ownership“) 

zum Modellierungsprozess und die Akzeptanz der Modellergebnisse. Dennoch 

stellte jeder Workshop eine Plattform für Diskussionen und gegenseitiges Lernen 

dar. Wie in vielen anderen partizipativen Anwendungen von Bayes’schen Netzen 

war die Möglichkeit zum Wissensaustausch zwischen den Workshopteilnehmern 

mindestens genau so wertvoll wie die Modellergebnisse selbst. 
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1. Introduction  

Today’s environmental problems are complex and pose urgent challenges to 

environmental managers. As nature and society are diversely interrelated, it is difficult 

to anticipate or predict all natural responses to anthropogenic influences and vice 

versa. Thus, environmental managers often need to choose between several 

management options – without having full knowledge of the consequences. Computer-

based environmental models, such as Bayesian Networks (BNs), are a means to assist 

environmental managers to make more informed decisions under uncertainty (e.g. 

Carmona et al., 2013). There are two reasons why BNs are increasingly used for 

environmental and ecological modeling (Aguilera et al., 2011; McCann et al., 2006). 

First, BNs are probabilistic causal models in which the relationships between variables 

are expressed in conditional probabilities. By describing these relationships in a 

probabilistic way, the above-mentioned uncertainty inherent in complex nature-

society systems can be explicitly addressed. Second, BNs accept various input data 

types, including expert and stakeholder knowledge, and therefore allow the utilization 

and combination of the best data available. This helps to develop and quantify models 

under data scarcity. The experiential knowledge of experts and stakeholders does not 

solely complement or substitute for data. Involving multidisciplinary experts and 

stakeholders from various fields in environmental modeling processes also helps to 

better understand complex environmental problems and to jointly find a holistic 

solution to them (Laniak et al., 2013).  

Integrating expert and stakeholder knowledge into BNs is a discipline of its own. Over 

the past decade, BNs have increasingly been used to integrate experts’ knowledge from 

various disciplines as well as diverging problem perspectives (Ban et al., 2014; Grêt-

Regamey et al., 2013; Haapasaari et al., 2013; Henriksen et al., 2007). In the past 

decade, a multitude of consultation and elicitation formats were used to derive 

conditional probabilities from expert knowledge (see Chapter 3). However, most of 

these elicitation methods require a very high commitment of time – both from experts 

and modelers. This thesis therefore seeks to improve the expert elicitation of BN 

parameters under serious time constraints. In addition to developing “expert-friendly” 

elicitation methods, the thesis aims at improving the “user-friendliness” of complex 

BNs by combining different BN types and BN software.  

This introductory chapter first reflects on the role of expert and stakeholder knowledge 

in environmental modeling (Chapter 1.1). It highlights both the methodological 

motivation behind the present thesis and the real-world purpose pursued by it 

(Chapter 1.2). The chapter presents the research questions which were addressed by 

two case studies in Northwest China and Australia (Chapter 1.3) and provides an 

outline of the thesis (Chapter 1.4). 
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1.1 The role of experts and stakeholder knowledge in environmental 
modeling 

A literature review revealed that experts and stakeholders are attributed with different 

functions in environmental modeling. To highlight their differing roles, this chapter 

first provides a definition on who are “experts” and “stakeholders” (Chapter 1.1.1). It 

briefly summarizes different motivations behind expert and stakeholder engagement 

(Chapter 1.1.2) and highlights the strengths and weaknesses of expert-based models 

(Chapter 1.1.3). 

 

1.1.1 Experts and stakeholders  

The term “expert” classifies persons according to their expertise, while the term 

“stakeholder” is used in the context of decision-making processes. Throughout this 

thesis, an “expert” is someone who has gained specialized, in-depth knowledge of the 

topic of interest (Drew and Perera, 2012; Krueger et al., 2012). This broad definition 

focuses on personal experience – no matter whether it is gained through research work 

or practical experience in the field. Therefore it includes experts working in academia, 

such as researchers from universities and research institutes, and experts working 

outside academia, such as environmental planners and natural resource managers.  

In contrast, a “stakeholder” is someone who either has the power to influence processes 

or actions or who is affected by them (Freeman, 1984 as cited in Krueger et al., 2012). 

This definition classifies stakeholders into those who affect and those who are affected. 

It acknowledges that stakeholders, such as farmers, who are not “influential” in terms 

of having the power to influence decision-making, still are “important” for the 

implementation of these decisions. Thus, the involvement of influential and important 

stakeholders in modeling processes (1) helps to understand complex problem fields, 

e.g. by eliciting differing problem perspectives from conflicting stakeholder groups 

(Baran et al., 2006), and (2) increases the chance that model results are put into use 

after the modeling process has ended. Details on importance and influence of different 

stakeholder groups for natural resource management are provided by the works of 

Grimble and Wellard (1997) and Grimble (1998).  

The terms “expert” and “stakeholder” do not exclude each other. Stakeholders can be 

experts, while experts can have a stake in a certain process or action. In general, natural 

resource planners and managers as well as persons with technical background were 

ascribed a higher level expertness or competence among all stakeholder groups (e.g. 

Chan et al., 2010).  
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1.1.2 Motivations behind expert and stakeholder involvement 

Due to the pressing nature of environmental problems and the prevalent data scarcity, 

BN modelers often use numerous knowledge sources available – ranging from 

scientific literature, model outputs, empirical data or expert and stakeholder 

knowledge (Borsuk et al., 2004; Carmona et al., 2013; Hamilton et al., 2007). 

Involving experts and stakeholders from various disciplines and working fields helps 

to better understand complex problems, to develop more-informed models under data 

scarcity and to jointly find holistic solutions to real-world problems. In some cases, 

the general public is also involved, e.g. to identify variables of interest (Borsuk et al., 

2001) or to increase the acceptance of management decisions arising from the 

modeling process or final model results (Henriksen et al., 2007).  

A literature review revealed different motivations behind engaging experts and 

stakeholders in environmental modeling processes. Whereas expert knowledge is 

mostly used under data scarcity to complement or even substitute for other data sources 

(Drew and Perera, 2012), stakeholders are mainly involved in modeling processes that 

aim at supporting decision-making and decision implementation (Voinov and 

Bousquet, 2010). However, this statement is not universally valid. Some expert-based 

modeling processes support decision-making (Chan et al., 2012; Hamilton et al., 2007; 

Holzkämper et al., 2012) and some stakeholder-based BN applications solely aim at 

knowledge elicitation (Castelletti and Soncini-Sessa, 2007b).  

The degree to which experts and stakeholders are involved in modeling processes also 

reflects the motivation behind their engagement. Using the terminology of Lynam et 

al. (2007), the involvement may solely be an “extractive use” of knowledge, which is 

a one-way elicitation, or “co-learning” or even “co-management”, depending on the 

level of expert/stakeholder interaction and their influence on decision-making 

processes. In BN applications in which expert knowledge is elicited in individual 

meetings (Jensen et al., 2009; Pellikka et al., 2005; Pike, 2004), the main motivation 

is to simply “extract” their knowledge as alternative to missing data. In contrast, 

BN applications come closer to the goal of co-learning and co-management if a broad 

range of experts and stakeholder groups are gathered for joint discussions and 

elicitation procedures (Baran et al., 2006; Carmona et al., 2013; Murray et al., 2012). 

Most BN applications in which expert knowledge served as sole input data were 

carried out in the field of ecology (Allan et al., 2012; Amstrup et al., 2008; Jensen et 

al., 2009; Johnson et al., 2010; Pellikka et al., 2005). One reason for this is that long-

term ecological data sets are often lacking due to financial and logistical constraints 

(Martin et al., 2005). Another reason is that specific knowledge of rare species might 

not be published but existent in the form of experiential knowledge. Experts are 

therefore regarded as “most accessible and cost-effective source of immediate 

ecological information” (Drew and Perera, 2012: 230).  
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In general, expert knowledge has a higher reputation than stakeholder knowledge. 

Whereas expert knowledge is regarded as best estimate available and legitimate 

alternative to “hard data” (Borsuk et al., 2003; Bromley, 2005), in some 

BN applications, stakeholder knowledge, in the form of a jointly developed network 

structure or elicited conditional probability values, was revised or validated by experts 

(Baran et al., 2006; Nash et al., 2010). 

 

1.1.3 Advantages and disadvantages of using expert knowledge 

The main advantage of expert-based BN modeling is its cost and time efficiency (see 

Chapter 1.1.2). Through expert elicitation, the aggregated knowledge of many years 

of experience can be utilized, including experience gained outside the study region 

(Martin et al., 2005). Expert elicitation discloses information for which no measured 

data equivalent is available or accessible (Krueger et al., 2012) – at least within the 

temporal and financial constraints of a given research project. Under data scarce 

conditions, BNs can be developed, parameterized, and run based on expert knowledge 

only. An expert-based BN is often referred to as “alpha-level model” (Marcot et al., 

2006) or “first generation model” (Amstrup et al., 2008) which can be updated as soon 

as other data has become available.  

The major disadvantage of using expert knowledge is the related risk of inaccuracy, 

overconfidence and expert biases. Expert knowledge can be inaccurate, just as 

measurements can be imprecise and data sets can be insufficient (Burgman, 2005; 

O'Hagan et al., 2006). Burgman et al. (2011) found out that common “quality criteria” 

of experts, such as qualifications, years of experience and track record, do not 

necessarily correspond with their actual performance in estimating quantities, natural 

frequencies and probabilities relevant to their fields of expertise. However, the overall 

performance of predictions, improved substantially following group discussion in all 

cases. In their comparison of expert reputation and performance, Burgman et al. (2011) 

also revealed that experts’ performance in giving accurate estimates was highly overrated by 

society as well as by experts themselves. In the elicitation of probabilities, it is relatively 

easy to recognize overconfidence, e.g. if experts tend to make extreme estimates, such 

as near zero or near 100 % (Morgan and Henrion, 1990). With respect to biases, 

experts might try to dominate group discussions to modify the model according to their 

own goals (intentional biases) or experts might be too confident in their own 

knowledge (unintentional biases) (Burgman, 2005). These problems can be taken care 

of by an experienced moderator during group discussions. 
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1.2 Motivation and purpose behind the present thesis 

As the case studies conducted in Northwest China and Australia differ in time spent, 

depth of study, and findings, it was never intended to compare them. Despite these 

differences, they share a common ground in methodology and on the subject level. 

Both case studies use Bayesian Networks (BNs) and focus on ecosystem services 

(ESS) which are broadly defined as benefits that people obtain from ecosystems 

(Millennium Ecosystem Assessment, 2005). The case studies are both included in the 

thesis to present varying challenges of expert-based BN modeling and different 

approaches to handle them.  

This chapter highlights the different methodological motivations and real-world 

purposes behind the two case studies. Here, the “methodological motivation” is the 

ambition to address methodological research gaps, while the “real-world purpose” is 

the aim to address existing environmental problems and to contribute to their solutions.  

 

1.2.1 Case study Northwest China 

The Northwest China case study was designed as a three-year study in the frame of the 

SuMaRiO project (Sustainable Management of River Oasis along the Tarim River, 

China). The SuMaRiO project is part of the “Sustainable Land Management” funding 

measure sponsored by the Federal Ministry of Education and Research 

(dt. Bundesministerium für Bildung und Forschung). One of SuMaRiO’s main 

objectives is to develop methods to assess ecosystem services (ESS) and to support the 

integration of the ESS concept into land and water management in the water-scarce 

Tarim Basin in Xinjiang Uighur Autonomous Region, Northwest China (Siew and 

Döll, 2012). Accordingly, this case study aimed at developing, applying, and 

evaluating participatory modeling methods to support sustainable environmental 

management in the case study region.  

The methodological challenge of this case study was to develop a BN under data 

scarcity and with few chances to meet local experts – and only for a short time. Many 

participatory BN applications are impeded by the discrepancy between time available 

and time needed for developing fully-functioning BNs with experts and stakeholders. 

Especially the elicitation of conditional probability values is very time-consuming and 

cognitively challenging for experts and stakeholders (Grêt-Regamey et al., 2013; 

Uusitalo, 2007). As a consequence, some participatory BNs remain half-finished. For 

example, Cain et al. (2003) described how only one of four stakeholder groups 

managed to develop a complete BN during a six-hour-workshop. The methodological 

motivation behind this case study therefore was to develop a simple and robust method 

for deriving conditional probability tables from expert estimates. As the BN modeling 
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process in Northwest China had to be conducted in three 3-hour-workshops, it was 

predestined for testing “expert-friendly” elicitation formats that can be used under 

serious time constraints. 

The real-world purpose of the case study was to support and inform local urban and 

peri-urban vegetation managers and planners. The purpose of the BN model was 

defined in accordance with the needs of local urban landscape planners. In an 

interview, they explicitly asked for a model that compared plant species in their ability 

to mitigate dust weather and their irrigation needs. As oasis towns in Southern 

Xinjiang, such as Aksu and Korla, are exposed to dust weather approximately 100 days 

per year (Yabuki et al., 2005), dust weather mitigation is one of the most relevant 

ecosystem services in the region. The term dust weather describes dust events in which 

desert dust particles are raised and transported by the wind. Although local vegetation 

managers seemed to be mainly interested in dust mitigation, urban and peri-urban 

vegetation provides many more ecosystem services for people living in oasis towns at 

the margin of the Taklamakan desert (Halik, 2003). For example, temperatures in these 

oasis towns reach 40°C or higher during summer months. Under the impact of climate 

change, it is most likely that the arid region of the Taklamakan desert would even 

experience higher temperatures. Therefore, this case study also addressed the role of 

urban vegetation in reducing urban heat stress by providing shade. This might be of 

local relevance and interest in the future. 

 

1.2.2 Case study Australia 

The Australia case study was conducted during a three-month research stay at the 

Commonwealth Scientific and Industrial Research Organisation (CSIRO) and the 

Integrated Catchment Assessment and Management Centre (iCAM) at the Australian 

National University (ANU) in Canberra, Australia. The author’s intention behind this 

research stay was to learn from and exchange with Australian experts in BN modeling. 

The methodological motivation behind this particular study was to exhaust the 

potential of large BNs to model multiple ecosystem services (ESS) simultaneously 

which has not been explored by previous BN applications in ESS modeling (Landuyt 

et al., 2013). In addition, the size of the final BN provided the opportunity to compare 

different BN software tools with regard to presentation clarity or “user-friendliness”. 

The real world purpose was minimal due to the short project time. Although the subject 

of managing ecosystems and environmental flows in the Murray-Darling Basin is of 

interest to many local stakeholders, the BN was solely developed in cooperation with 

an ecological modeler.  
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1.3 Research questions 

In accordance with the methodological motivations behind the two case studies, this 

thesis addresses two sets of research questions (RQs). The first set of questions is 

related to easing expert elicitation processes and the second to improving user-

friendliness of (large) BNs. The two primary research questions (RQ 1 and RQ 2) are 

subdivided into two secondary research questions each which are addressed by various 

chapters of this thesis (see Table 1).  

 

RQ 1: How to improve expert-based parameters in Bayesian Networks? 

RQ 1.1: How to improve the efficiency of modeling processes for expert-based 

Bayesian Networks? 

RQ 1.2: How to increase the reliability of expert-based parameters in Bayesian 

Networks?  

RQ 2: How to improve the user-friendliness by combining Bayesian Network 

types and software tools? 

RQ 2.1: What are the pros and cons of a combined application of Bayesian 

Networks (BNs) and Bayesian Decision Networks (BDNs)? 

RQ 2.2: What are the pros and cons of different software tools with regard to 

presentation clarity of large Bayesian Networks? 

 

Table 1: Overview of secondary research questions and related thesis chapters. 

Research 
question 

Case 
study 

Approach Discussion 

RQ 1.1 NW China Development and application of 
new elicitation format 
(see Chapter 4.2.3.1) 

Chapter 
4.6.1 

RQ 1.2 NW China Development and application of 
new confidence-based conversion 
method (see Chapter 4.2.3.1 and 
Chapter 4.4.1.2) 

Chapter 
4.6.2 

RQ 2.1 NW China Combined application of BNs and 
BDNs (see Chapter 4.3.1) 

Chapter 
4.6.3 

RQ 2.2 Australia Comparison of two BN software 
tools, Netica and GeNie, with regard 
to user-friendliness of large BNs 
(see Chapter 5.3) 

Chapter 
5.4 
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1.4 Outline of the thesis 

The thesis is organized in six chapters and presents the results of two case studies 

conducted in Northwest China and Australia. Chapter 2 provides a technical overview 

of Bayesian Network modeling. This methodological chapter builds the foundations 

for all following chapters by first presenting components of Bayesian Networks (BNs), 

by explaining the basics of model parameterization and model sensitivity, and by 

introducing different BN types. Chapter 3 depicts the results of a thorough literature 

review on expert-based BN modeling in support of environmental management. The 

identified consultation and elicitation formats and the insights on how other BN 

applications combined expert knowledge serve as background for the discussion in the 

subsequent chapter. The largest part of this thesis, Chapter 4, presents the case study 

which was conducted in Northwest China from 2011 to 2014. This self-contained 

chapter starts with a brief description of how the research conditions in the case study 

region affected the BN modeling process. The following step-by-step documentation 

provides insights of how experts informed the network structure and model 

parameters. The chapter introduces and discusses new methods for the elicitation of 

expert estimates and the systematic conversion of these estimates into conditional 

probability values. The chapter concludes with a reflection on what has been learned 

in the course of the modeling process. Chapter 5 presents the results of a three-month 

research stay in Australia. After providing background information on environmental 

flow management and ecosystem services in the Murray-Darling Basin, it describes 

the structure of the final BN with the help of four sub-networks and discusses the issue 

of presentation clarity of large BNs. Finally, Chapter 6 briefly assesses the 

contributions achieved by this thesis. 
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2. Bayesian Networks1 

The term “Bayesian” refers to the 18th century mathematician and clergyman Thomas 

Bayes (1702-1761). Bayes’ posthumously published work “An Essay towards Solving 

a Problem in the Doctrine of Chances” introduced a new approach to probability as 

well as a formula for belief updating, later referred to as Bayes’ Theorem or Bayes’ 

rule (Bayes and Price, 1763). The Bayesian approach to probability defines probability 

as someone’s degree of belief that an event will occur in the future. This stands in 

contrast to the frequentist approach which defines probability as frequency or 

proportion of times that an event occurs when an experiment is repeated (O'Hagan et 

al., 2006). Whereas the frequentist approach attaches importance to data, the Bayesian 

approach acknowledges expert beliefs as knowledge source to be used to predict future 

events in the absence of data. The idea that belief comes in degrees also implies that 

human opinion is constrained by ignorance and highlights the necessity to quantify 

uncertainty about unknown parameters in the form of a probability distribution (Korb 

and Nicholson, 2011; O'Hagan et al., 2006).  

A Bayesian Network (BN) is a probabilistic causal model of a selected real system. 

The system’s components and the relationships between them are represented in the 

form of a causal network. In a BN, a link between two variables indicates that one 

variable is conditionally dependent on the other. The strength of conditional 

dependence is expressed in conditional probabilities. With the help of Bayes’ rule, 

BNs apply Bayesian inference which is the recalculation or updating of all 

probabilities whenever new knowledge or data on any variable in the network is 

acquired (see Chapter 2.3). BNs emerged from Artificial Intelligence (AI) research 

(Minsky, 1961; Pearl, 1982) and were first applied for diagnostic purposes, e.g. in the 

fields of medicine and fault diagnosis (Fenton and Neil, 2007: 12ff.). Since the late-

1990s, BNs are increasingly being used in environmental modeling and natural 

resources management as they offer the possibility (1) to explicitly express 

uncertainty, (2) to integrate and combine a wide range of input data types and (3) to 

integrate experts’ knowledge within participatory modeling processes (Aguilera et al., 

2011; Düspohl et al., 2012; Uusitalo, 2007). 

This chapter briefly introduces the components of Bayesian Networks (BNs) 

(Chapter 2.1); it shows how BN software generates conditional probability tables 

(CPTs) from data and equations (Chapter 2.2), how BNs are used for top-down and 

bottom-up modeling (Chapter 2.3), and how model sensitivity is usually analyzed 

(Chapter 2.4). In addition, it provides a short overview of different BN types 

(Chapter 2.5).   

                                              
1 Parts of this chapter, namely text passages of chapter 2.1, 2.3, and 2.5.1 are extracted from the author’s 

contributions to Düspohl et al. (2012) and Frank et al. (2014a). 
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2.1. Components of Bayesian Networks 

BNs consist of three elements (Cain, 2001): (1) System variables referred to as nodes 

and visualized as boxes, (2) causal relationships between these nodes visualized as 

directed links which point from cause to effect, and (3) a set of (conditional) 

probabilities, for each node, defining the strength of the causal relationships. As BNs 

are directed acyclic graphs (DAGs), feedback loops are not possible in the networks.  

For BN modeling a large number of BN software packages exists (Fenton and Neil, 

2007; Uusitalo, 2007). In the field of environmental modeling, the software Netica and 

Hugin are most frequently used (Aguilera et al., 2011). The BNs presented in this 

chapter are generated using Netica™ Version 4.6 (Norsys, http://www.norsys.com). 

The software depicts variables in beige rectangles which are called nature nodes. The 

probability distribution across states is shown as a %-probability and visualized with 

black horizontal bars, which are referred to as belief bars. Figure 1 is an example of a 

BN (network structure and states of the variables) that models the decision of a 

reviewer to accept or reject a scientific paper. 

The diagram indicates that the system variable “Reviewer’s decision” is influenced by 

the “Quality of the paper” as well as by “Weather conditions” which influence the 

reviewer’s mood and thus decision. The directed links between the nodes indicate 

causal relationships. In this case, the nodes “Quality of the paper” and “Weather 

conditions” are the parent nodes of “Reviewer’s decision”, while “Reviewer’s 

decision” is their child node. Nodes without parent nodes, such as “Quality of data”, 

“Innovative approach”, and “Weather conditions”, are called root nodes. Nodes 

without child nodes, such as “Reviewer’s decision”, are called leaf nodes. Root nodes 

represent the input variables, while leaf nodes constitute the output variables of the 

BN (Castelletti and Soncini-Sessa, 2007a).  

 
Figure 1: A simple Bayesian Network “Reviewer’s decision”. 

 

 
 

 

http://www.norsys.com/
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Variables (i.e. nodes) can be either continuous or discrete (as in Figure 1), and in most 

BN applications, discrete variables are described by a limited number of discrete states 

(e.g. two in the case of “Reviewer’s decision”). States for discrete nodes can either be 

(1) labels, e.g. “low, medium, high”, (2) numbers, (3) intervals, or (4) in Boolean form 

(e.g. “yes, no”) (Bromley, 2005). The states must encompass all possible conditions 

and must be mutually exclusive.  

For each child node, conditional probability tables (CPTs) need to be defined. A CPT 

expresses the probability for the states of a child node, given the states of its parent 

nodes. The rows of a CPT can be read as “if-then-sentences”. In our example, the CPT 

of “Reviewer’s decision” reveals that “If the quality of the paper is high and the sun is 

shining, then the paper will be accepted with a probability of 95%” (Table 2). The CPT 

shows the strengths of the causal relationships, with the “Quality of the paper” having 

a much stronger impact on the decision than the “Weather conditions”. 

Root nodes are quantified by unconditional probability tables (PTs) which can 

represent observations, scenarios, or potential actions such as management 

interventions (Bromley, 2005). If root nodes are used to represent different scenarios 

of the future, the states can also be anchored to the current conditions, for example 

with labels such as “lower than today”, “like today”, and “higher than today” (Cain, 

2001). 

Table 2: Conditional probability table of node “Reviewer’s decision”. 
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2.2. Model parameterization 

For the model parameterization – in jargon known as population of probability tables 

– all kinds of data can serve as model input: Outputs from other models, data derived 

from statistics, measurements, scientific literature or household surveys, as well as 

expert and stakeholder knowledge. Although the BNs presented in this thesis are 

mainly populated with expert knowledge, for completeness, this chapter briefly 

introduces how Netica “learns” parameters by counting (Chapter 2.2.1) and builds 

CPTs from equations (Chapter 2.2.2).  

 

2.2.1. Parameter learning by counting 

Netica uses three algorithms to generate or “learn” CPTs from data: Counting-

learning, expectation-maximization (EM) and gradient descent (Norsys Software 

Corp., 2010: 46ff.). The counting-learning algorithm, also referred to as Lauritzen and 

Spiegelhalter algorithm, is most widely used to learn CPTs from case files (Korb and 

Nicholson, 2011: 189). A case is defined as “set of all findings entered into the nodes 

of a single Bayes’ net” (Norsys Software Corp., 2010: 36) and a case file consists of 

more than one or many cases.  

 

Here, a simulated case file with 100 cases2 (Table 3) is incorporated into the example 

BN3 (Figure 2). In 35 of 50 cases, state a1 leads to state b1 (70%) and in 15 cases 

state a1 leads to state b2 (30%). Thus, Netica counts the frequency with which 

combinations of the parent states lead to each state of the child node.  

 

                                              
2 Netica ► Cases ► Simulate cases. 
3 Netica ► Cases ► Incorp case file. 

   
Figure 2: On the left, Bayesian Network with two nodes (A, B) and two states each 

(a1/a2, b1/b2); on the right, conditional probability table of node B. 

 

 

 
 

B

state b1
state b2

70.0
30.0

A

state a1
state a2

 100
   0
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For parameter learning, Netica requires a large amount of data about the parent nodes 

and their corresponding child nodes. Whereas the counting-learning algorithm ignores 

cases in which states of child or parent nodes are missing, the EM algorithm estimates 

missing values from available data. For a comparison of the performances of the 

counting-learning and the EM algorithm, see Ticehurst et al. (2011).  

Table 3: Simulated file with 100 cases. 

NumCases A B 

35 state_a1 state_b1 

15 state_a2 state_b1 

15 state_a1 state_b2 

35 state_a2 state_b2 

 

2.2.2. Building conditional probability tables from equations 

Netica needs three pieces of information to build a conditional probability table (CPT) 

for a child node: (1) Assigned state values (“state numbers”) for each state of the parent 

nodes, (2) an equation to be used for the respective child node, and (3) assigned 

discretization intervals for each state of the child node. The following working steps 

are necessary to build the CPT of node C for Figure 3 from an equation. In this 

example, node C is a “summary node” which subsumes the impact of all parent nodes 

– here with the help of a simple equation. 

(1) Each state of the parent nodes A and B needs an assigned state value (“state 

number”). Here, the value 0 is attached to the states a1 and b1; the value 1 is 

assigned to the states a2 and b2 (Table 4). In Netica, the states of the parent 

nodes need to be arranged in the same order – for example from least favorable 

 
Figure 3: Bayesian Network with three nodes (A, B, C) and two states each (a1/a2, 

b1/b2, c1/c2). 

 

 

 

C

state c1
state c2
state c3

56.0
38.0
6.00

0.33 ± 0.22

A

state a1
state a2

80.0
20.0

0.2 ± 0.4

B

state b1
state b2

70.0
30.0

0.3 ± 0.46
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to most favorable. If the labels “low”, “medium”, and “high” are used, the 

states should consistently start with “low”. 

Table 4: States and state numbers of node A and B of Figure 3, with maximum state 

numbers underlined. 

A  B 

State State number State State number 

state a1 0 state b1 0 

state a2 1 state b2 1 

 

(2) To build the CPT of node C, an equation is entered in the equation window of 

its node dialog box:  C (A, B) = (A+B)/2   (1) 

This equation divides the sum of the state numbers of each state by the sum of 

the maximum state numbers, here the value 2 (1+1 = 2). The calculation is 

presented in Table 5. If the same state values are assigned to all parent nodes, 

they are equally weighted.  

(3) To use an equation, node C needs to be continuous. However, to convert each 

calculated ratio from the equation (1) into discrete states, node C needs assigned 

discretization intervals between 0-1 for each state. Here, the discretization 

values 0, 0.33, 0.66, and 1 are chosen for state c1 (0-0.33), state c2 (0.33-0.66) 

and state c3 (0.66-1). This way, the value 0 leads to state c1 (discretization 

interval 0-0.33) with a probability of 100% as shown in the first row of Table 

5. 

(4) Netica builds the CPT from the equation with the command “Equation to 

table”4. Deterministic CPTs are by default represented as so-called function 

tables which show the calculated values of the equation (Table 5). Function 

tables can be switched into %-probability tables with the respective selector in 

the table dialog box. 

 

                                              
4 Netica ► Table ► Equation to table. 
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Table 5: Calculation of equation (1) to build the function table and the 

conditional probability table of node C of Figure 3, both marked in pastel orange. 

State  

(state number) 

Calculation of equation Function 
table 

Conditional probability  

table (%) 

A B C (A, B) = (A+B)/2  state c1 

(0-0.33) 

state c2  

(0.33-0.66) 

state c3 

(0.66-1) 

state 
a1 (0) 

state b1 
(0) 

C(a1,b1) = (a1+b1)/2 

= (0+0)/2 = 0 

0 100 0 0 

state 
a1 (0) 

state b2 
(1) 

C(a1,b2) = (a1+b2)/2 

= (0+1)/2 = 0.5 

0.5 0 100 0 

state 
a2 (1) 

state b1 
(0) 

C(a2,b1) = (a2+b1)/2 

= (1+0)/2 = 0.5 

0.5 0 100 0 

state 
a2 (1) 

state b2 
(1) 

C(a2,b2) = (a2+b2)/2 

= (1+1)/2 = 1 

1 0 0 100 

 

After the CPT of node C has been built from an equation, Netica uses the probability 

tables of the parent nodes A and B and the CPT of node C to calculate the probability 

distribution of the child node (see Chapter 2.3 for calculations). If the probabilities of 

state a1 and b1 are set to 100% (Figure 4), the probability that node C is in state c1 is 

100% because of its deterministic table (Table 5). When the probability of a certain 

state is set to 100%, the color of the node changes to gray (compare Figure 3 and Figure 

4). 

Due to the equation, node C needs to be continuous and its CPT becomes deterministic 

which is indicated by the brown color of the node (Figure 3). For continuous nodes 

and nodes with assigned state values, the mean value followed by ± and the standard 

 
Figure 4: The same Bayesian Network as in Figure 3 after having set the 

probabilities of state a1 and b1 to 100%.  

C

state c1
state c2
state c3

 100
   0
   0

0 ± 0

A

state a1
state a2

 100
   0

0

B

state b1
state b2

 100
   0

0
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deviation (Norsys Software Corp., n.d.)5 are shown below the belief bars. In Figure 3, 

node A displays the mean value (0.2) and its standard deviation (0.4). Table 6 shows 

how Netica calculates these values using the assigned state values and their 

probabilities.  

Table 6: Calculation of mean value, variance and standard deviation for discrete 

node A of Figure 3. 
State State 

value 
Probability 

(𝑃) 
Mean value (𝜇) Variance (𝑉) Standard 

deviation (𝜎) 

 (𝑥) 𝑃(𝑥) 𝜇 = ∑ 𝑥𝑃(𝑥)

𝑥

 𝑉 = ∑(

𝑥

𝑥 − 𝜇)²𝑝(𝑥) 𝜎𝑥 = √𝑉 

state a1 0 0.8 0*0.8 = 0 (0-0.2)²*0.8 = 0.032  

state a2 1 0.2 1*0.2 = 0.2 (1-0.2)²*0.2 = 0.128 

∑  = 1 = 0.2 = 0.16 = √0.16 

= 0.4 

 

2.3. Top-down and bottom-up modeling 

BNs can either be applied for predictive purposes (“top-down modeling”) or for 

diagnosis (“bottom-up modeling”) (Castelletti and Soncini-Sessa, 2007a). For top-

down modeling, root nodes are used to compare scenarios of the future or management 

options. It is therefore appropriate for impact and scenario analyses, where the BN 

computes the impact of management decisions, represented by states of the root nodes, 

on the variables that are planned to be optimized. To compare the effects of these 

management decisions, the probability of each state of the root node can be set to 100% 

(one after the other) to see how the probability distribution of the child or leaf node of 

interest changes. Bottom-up modeling is applied for diagnostic purposes, e.g. to assess 

the likely reasons for an observed environmental pollution. For example, if an 

observation has been made for a leaf node, the probability distributions in the root 

nodes indicate the most likely cause for the observation. This is not equivalent to 

optimization, i.e. the updated probability distributions of the root nodes cannot be 

interpreted in terms of decisions that would lead to the observed finding or any desired 

state of the leaf node.  

For top-down modeling or downward propagation, the BN software applies the 

fundamental rule of probability and a joint probability calculation (Jensen and Nielsen, 

2007). This calculation is not only used to recalculate probability distributions after 

the probability of a root node state is set to 100%, but also to calculate the probability 

distributions of the child nodes in the first place. For calculating the probability 

                                              
5 Netica's Help System ► Reference ► Encyclopedia ► Standard Deviation. 
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distribution of child node C (Figure 5), Netica needs its conditional probability table 

P (C|A,B) and the unconditional probability tables of the parent nodes P (A) and P (B).  

First, the BN software uses the fundamental rule of probability (2) to calculate the joint 

probability:  P (A,B,C) = 𝑃(𝐶|𝐴, 𝐵) ∗ 𝑃 (𝐴) ∗ 𝑃(𝐵) 

Then the software marginalizes the probabilities of each state of P (C) out of the joint 

probability P (A,B,C) (Jensen and Nielsen, 2007). In general, the term marginalization 

describes the summation of values along rows (or columns) in tables. These sums are 

written in an extra column (or row) at the margins of a table. Table 7 elucidates the 

joint probability calculus and presents the marginalized probabilities of P (C) out of 

P (A,B,C) at the right margin of the table. 

For bottom-up modeling or upward propagation, the BN software applies the Bayes’ 

rule (3) to recalculate all probability distributions after the probability of a state in one 

node, here leaf node, is set to 100% (Figure 6) (Jensen and Nielsen, 2007):  

P(A|B) =
P(B|A)∗P(A)

P(B)
   (3) 

Table 7: Joint probability calculation with the fundamental rule (2) 

and marginalization of P (C) out of P (A,B,C) of Figure 5. 

 a1 a2 P(C) 

b1 b2 b1 b2 𝑃(𝐶) = ∑ 𝑃(𝐴, 𝐵, 𝐶)

𝐴,𝐵

 

c
1
 

P(a1,b1,c1) 
= P(c1|a1,b1)*
P(a1)*P(b1) 
= 0.9*0.8*0.7  
= 0.504 

P(a1,b2,c1) 
= P(c1|a1,b2)
*P(a1)*P(b2) 
= 0.4*0.8*0.3 
= 0.096 

P(a2,b1,c1) 
= P(c1|a2,b1)* 
P(a2)*P(b1) 
= 0.5*0.2*0.7 
= 0.07 

P(a2,b2,c1) 
= P(c1|a2,b2)*P
(a2)*P(b2) 
= 0.10*0.20*0.3
= 0.006 

0.676 (= 67.6%) 

c
2
 

P(a1,b1,c2) 
= P(c2|a1,b1)*
P(a1)*P(b1) 
= 0.1*0.8*0.7  
= 0.056 

P(a1,b2,c2) 
= P(c2|a1,b2)
*P(a1)*P(b2) 
= 0.6*0.8*0.3 
= 0.144 

P(a2,b1,c2) 
= P(c2|a2,b1)* 
P(a2)*P(b1) 
= 0.5*0.2*0.7 
= 0.07 

P(a2,b2,c2) 
= P(c2|a2,b2)* 
P(a2)*P(b2) 
= 0.90*0.20*0.3
= 0.054 

0.324 (= 32.4%) 

  
Figure 5: On the left, Bayesian Network with three nodes (A, B, C) and two states 

each (a1/a2, b1/b2, c1/c2); on the right, conditional probability table of node C. 

B

state b1
state b2

70.0
30.0

C

state c1
state c2

67.6
32.4

A

state a1
state a2

80.0
20.0
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Table 8: Recalculation of P(A) after an observation has been made for node B of with 

the Bayes’ rule. 
 b1 

a
1
 P(a1|b1) = P(b1|a1)*P(a1)/P(b1) 

= 0.9*0.3/0.48 = 0.5625 (= 56.3%) 

a
2
 P(a2|b1) = P(b1|a2)*P(a2)/P(b1) 

= 0.3*0.7/0.48 = 0.4375 (= 43.8%) 

 

For bottom-up modeling, Netica uses the conditional probability P(B|A), the 

unconditional probability P(A) and the probability of B before an observation has been 

made for node B. Therefore, all probability values which are used for the recalculation 

of P(A) (Table 8) stem from the BN at the top of Figure 6. 

 

 

 

 

 

 

Figure 6: Bottom-up modeling with the Bayes’ rule (3). 

At the top, Bayesian Network before an observation has been made (left) and 

conditional probability table of node B (right). At the bottom, result of the recalculation 

of P(A) after an observation has been made for node B.  

 

B

state b1
state b2

48.0
52.0

A

state a1
state a2

30.0
70.0

 
 

B

state b1
state b2

 100
   0

A

state a1
state a2

56.3
43.8
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2.4. Model sensitivity 

Sensitivity analyses are used to investigate how sensitive a model output reacts to 

variations in the model input. As variables only react to changes in nodes of which 

they are conditionally dependent, this chapter briefly introduces how the network 

structure determines the information flows and thus the influence in a BN 

(Chapter 2.4.1). 

BNs have two types of model input, probability distributions (“findings”) of the other 

nodes and parameters (CPTs). This is the reason why two different types of sensitivity 

analyses can be performed. The first, “sensitivity to findings” shows how strongly the 

probability distribution of the query node is affected by changes in the probability 

distributions of other nodes (Chapter 2.4.2). The second, “sensitivity to parameters” 

shows how sensitive the probability distribution of the query node is to variations in 

other parameters (Chapter 2.4.3).  

 

2.4.1. Information flows in Bayesian Networks 

Entering new data or “findings” into a BN influences the information flow between 

the variables. This depends on the network structure or the way how variables are 

connected with each other. In BNs, directly linked variables indicate a direct causal 

connection. If nodes are linked via an intermediate variable, they can either be 

conditionally dependent or independent. This hinges on the way they are connected 

and whether or not the state of their intermediate variable is known (Castelletti and 

Soncini-Sessa, 2007a). There are three ways of connecting two variables via an 

intermediate variable: Serial, diverging, and converging connections (Charniak, 1991; 

Jensen and Nielsen, 2007; Koski and Noble, 2009). 

In serial and diverging connections (Figure 7), all variables can influence each other 

as long as the state of the intermediate variable B is unknown. However, if the state of 

B is known, this communication channel or active trail is blocked, and A and C become 

separated and conditionally independent of each other, given B. This separation of 

variables in a directed graph is also referred to as d-separation (Jensen and Nielsen, 

2007). In converging connections, the parent nodes A and C are independent as long 

as the state of B is unknown. However, if the state of B or of one of its child nodes is 

known, evidence can be transmitted through B and the parent nodes become dependent 

of each other. In this case, A and C can be regarded as competing causes of B. If the 

probability of A increases, the probability of C decreases. If cause A is known to have 

happened, cause C is less likely to have happened. This pattern of reasoning is called 

explaining away (Koski and Noble, 2009).  
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2.4.2. Sensitivity to findings 

Netica uses two types of measures to quantify how much the probability distribution 

of the query node changes if a finding is entered at another node: Mutual information 

for discrete variables and variance reduction for continuous variables. For discrete 

node B of Figure 6, Netica determines the mutual information (I) of variables B and A 

with an entropy reduction calculation (4): 

I (A,B)  = H (B) – H (B|A) = ∑ ∑ 𝑃(𝐴𝐵 𝐴, 𝐵) log2 (
𝑃(𝐵,𝐴)

𝑃(𝐵)𝑃(𝐴)
)                 (4) 

with I (A,B) being the mutual information of variables A and B, and H being the 

entropy (Jensen and Nielsen, 2007: 251; Korb and Nicholson, 2011: 262; Norsys 

Software Corp., 2010: 47ff.). This way, Netica compares the entropy of B|A to what it 

would be if variable B was conditionally independent from A. The higher the mutual 

information of variables A and B, the more entropy or “randomness” of variable B is 

reduced by a finding at variable A (Pollino and Henderson, 2010: 14). 

A 

A 

B 

C 

A 

B 

C 

… 

A 

B 

C 

Figure 7: Three types of connections of two nodes (A and C) 

via an intermediate variable (B). 

(1) Serial, (2) Diverging, and (3) Converging connection. 

 
Figure 8: Sensitivity to findings report for query node B of Figure 6. 
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The influence of node A on the probability distribution of the query node B depends 

on the conditional probability table P(B|A) and on the initial probability distribution 

of node A. For example, if node A has a uniform probability distribution (50:50) it has 

less influence on the query node B than it would have with a more distinct probability 

distribution, such as 90:10. This is because the query node would react more sensitive 

if a more distinct probability distribution was changed from 90:10 to 0:100. The 

influence of a node on the query node also depends on the number of intermediate or 

latent variables between them (Marcot et al., 2006). More details on this dilution effect 

can be found in the work of Bromley (2005: 77).  

In Netica’s sensitivity to findings report6, the values are ranked according to their 

influence on the query node. For completeness, this report also includes the sensitivity 

of the query node (B) to changes at the query node itself (first row in Figure 8). As the 

minimum and maximum probability for each state of B is 0 and 1, the maximum 

reduction in entropy or variance is 100% (see “Percent” in Figure 8). In this case, the 

mutual information of B represents its full or maximum entropy with which the other 

values can be compared (Norsys Software Corp., n.d.)7. 

All variables for which the sensitivity analysis is performed are listed according to 

their influence. The higher the mutual information value, the higher is the influence of 

the variable on the query node. For example, the sensitivity to findings report of node 

C of Figure 5 reveals that node B has a higher influence on the query node than node 

A. In contrast, if the “Mutual Info” values of two variables are 0, the variables are 

mutually independent or d-separated (see Chapter 2.4.1).  

 

                                              
6 Netica ► Network ► Sensitivity to findings. 
7 Netica's Help System ► Special Topics ► Sensitivity Analysis ► Sensitivity-Example. 

 
Figure 9: Sensitivity to findings report for query node C of Figure 5. 
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2.4.3. Sensitivity to parameters 

To test how sensitive a query node is to changes in other parameters, the CPTs of the 

other nodes can be incrementally changed one after the other, e.g. the probability of a 

node with two states can be changed step-wise from 100:0 to 80:20 to 60:40 to 40:60 

to 20:80 and 0:100 to test how the probability distribution of the query node changes. 

This straightforward variation of CPTs takes a lot of time. Therefore, Coupé and van 

der Gaag (2002) introduced a more efficient method that restricts the sensitivity 

analysis to those variables of which the query node is algebraically dependent. This 

way, they identify a so-called sensitivity set of variables with the highest influence on 

the query node. With a certain algorithm, sensitivity functions are determined for each 

parameter in the sensitivity set (Korb and Nicholson, 2011: 391ff.). With these 

sensitivity functions, coefficients can be calculated. Parameter changes can thus be 

illustrated as linear sensitivity functions if there are no child nodes and as hyperbolic 

sensitivity functions if there are child nodes (Pollino and Henderson, 2010). 

Due to the high number of deterministic CPTs, this kind of sensitivity analysis is not 

performed for the BNs presented in this thesis. A step-by-step description of sensitivity 

to parameters analysis can be found in the Master thesis of Hansson and Sjökvist 

(2013: 25–36). 
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2.5. Bayesian Network types 

2.5.1. Bayesian Decision Networks 

Bayesian Decision Networks (BDNs) are applied in cost-benefit-analyses. BDNs are 

BNs with so-called decision nodes and utility nodes. In Netica, decision nodes are 

depicted as blue rectangles; utility nodes are depicted as red diamonds. The states of 

the decision node usually represent management options. A BDN can be used to 

identify the management option with the highest benefit at lowest cost. Costs and 

benefits of management options are quantified with the help of utility tables. Each 

utility node has an attached utility table. In utility tables, costs are expressed in 

numerical values between -1 and 0; benefits are expressed in numerical values between 

0 and +1 (Figure 10). 

 

 

Netica calculates the total expected utility (EU) or net benefit of each state of the 

decision node by subtracting the product of utility and probability of each state 

(between 0 and 1) from the standardized cost of each state (between 0 and -1) (5) 

(adapted from Jensen and Nielsen, 2007: 283): 

 

(5) 

 

 

 

 B

state b1
state b2

33.3
66.7

C

state c1
state c2

42.6
57.4

A

state a1
state a2

56.7
43.3

Decision node

Management decision 1
Management decision 2
Management decision 3

-0.6760
-0.0259
0.72400

Utility node (Costs)

Utility node (Benefits)

Figure 10: Bayesian Decision Network with three nature nodes (A, B, C), 

one decision node, two utility nodes and their associated utility tables. 

EU (Mgmt 1) = Costs (Mgmt 1) + ∑ Utility(C) ∗ Probability

C

(C|Mgmt 1) 
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The total expected utility shown behind each management decision can range between 

-1 and 1. Negative values (-1 to 0) indicate that costs outweigh the benefits; positive 

values (0 to +1) indicate that benefits outweigh the costs. In the example BDN, 

management decision 3 has the highest total expected utility (Table 9). 

 

Table 9: Calculation of total expected utilities (EU) for each state of the decision node 

of Figure 10. 

 

                                              
8 Calculated by Netica; these probabilities can be reproduced by setting the probability of each management 

decision to 100% (one by one). 

State of 

decision node 

Costs Utility (U) 

of C 

Probability (P) of 

C8|Mgmt decision 

U(C) * P (C|Mgmt 

decision) 

∑ (U (C)*P 

(C|Mgmt 

decision)) 

EU = Costs + 

∑ (U(C) * P 

(C|Mgmt 

decision)) 

  c1 c2 c1 c2 c1 c2   

Mgmt decision 1 -1 0 1 0.676 0.324 0 0.324 0.324 -0.676 

Mgmt decision 2 -0.7 0 1 0.326 0.674 0 0.674 0.674 -0.0259 

Mgmt decision 3 0 0 1 0.276 0.724 0 0.724 0.724 0.724 
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2.5.2. Object-Oriented Bayesian Networks 

An Object-Oriented Bayesian Network (OOBNs) consists of several network 

fragments (framed in Figure 11). These repetitive network fragments are referred to as 

classes. The example OOBN in Figure 11 has four identical classes which can be run 

with four different sets of values. Using the terms of object-oriented modeling, the 

model can be instantiated or realized four times. Classes that have been instantiated 

are referred to as objects (Jensen and Nielsen, 2007: 84ff.). Here, X serves as input 

and D and E as output attributes of the four objects. The possibility to aggregate 

outputs of different classes allows the integration of different scales in OOBNs, e.g. 

Carmona et al. (2011a) developed an OOBN to compare different farm types within 

the same model.  

 

 
Figure 11: General structure of an Object-Oriented Bayesian Network. 

(Jensen and Nielsen, 2007: 86). 
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2.5.3. Dynamic Bayesian Networks 

A Dynamic Bayesian Network (DBN) consists of local models with identical network 

structures and conditional probabilities for different points in time (Jensen and 

Nielsen, 2007: 91ff.). The time steps are referred to as time slices. The causal 

relationships within a time slice are represented by intra-slice arcs; the relationships 

between the variables at different time steps are represented by inter-slice arcs (Figure 

12) or temporal links (Korb and Nicholson, 2011: 112ff.). Figure 12 shows how four 

connected local models. The variables in each time slice are influenced by its parent 

nodes (intra-slice arcs) and by their counterparts from the previous time slice (inter-

slice arcs). DBNs are used to model change in all variables over time. 

 

 

 
Figure 12: General structure of a Dynamic Bayesian Network. 

(Korb and Nicholson, 2011: 114). 
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3. Expert-based Bayesian Network modeling 

A literature search within the Institute for Scientific Information (ISI) Web of 

ScienceTM Core Collection resulted in 25,150 publications on the topics “Bayesian 

Network” or “Bayesian Belief Network” from 2003 to 2013. These results were 

refined by selecting the following seven research fields only: Agriculture, Biodiversity 

Conservation, Environmental Sciences/Ecology, Fisheries, Forestry, Marine 

Freshwater Biology, and Water Resources. This led to 1,000 results. 

Within these publications, three key word searches were conducted one after the other: 

(1) “Expert” (131 results), (2) “Participatory” (42 results), and (3) “Stakeholder” 

(76 results). Without duplicates, this led to 180 results which were screened for 

Bayesian Network (BN) modeling. Of 146 papers describing BN applications, 

80 publications mention that expert knowledge was used for model parameterization. 

In a last step, the number of publications was reduced (1) by excluding papers which 

solely mention the use of expert knowledge without providing further information on 

the expert elicitation process and (2) by selecting only one of several publications 

describing the same case studies (e.g. (Carmona et al., 2011a; Carmona et al., 2011b, 

2013). This resulted in a final set of 50 case studies (see Table A - 1 in Appendix A).  

This chapter presents the results of the literature review on how BN models are 

developed and parameterized with experts. It synthesizes how experts are consulted to 

develop the network structure and to provide their estimates (Chapter 3.1), it provides 

an overview of established elicitation formats (Chapter 3.2), and summarizes how 

expert knowledge is combined – or not combined – within the 50 case studies (Chapter 

3.3) 

 

3.1. Consultation format  

Within the case studies, the consultation format ranges from sending out 

questionnaires to individual meetings and group meetings. All these consultation 

formats have their advantages and disadvantages. Whereas filling in questionnaires 

requires the least time from the experts, it also provides the lowest opportunity for 

learning for them. Individual meetings, such as interviews, offer the possibility to 

provide further information and clarifications during the elicitation. In addition, with 

individual meetings it is not necessary to find a time and place to assemble all experts 

in one place. However, discussions and exchange of knowledge during interviews is 

very limited. Group meetings, such as small group meetings or structured workshops, 

provide platforms for group discussions which presumably improve the “performance” 

of the experts (Burgman, 2005). However, if a group discussion is not mastered well 

by the moderator, some experts dominate the discussion while others keep silent.  
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The consultation format as well as the number of experts and stakeholders involved 

changes during the modeling process. At an early modeling stage, group meetings are 

used to jointly develop the network structure, henceforth referred to as directed acyclic 

graph (DAG) (Figure 13). At a later stage conditional probability values are mainly 

elicited during individual meetings (Figure 14) and only from a smaller sub-group (e.g. 

Chan et al., 2010; Schmitt and Brugere, 2013).  

In some case studies, group meetings are chosen to provide a platform for discussion 

and convergence among different conflicting stakeholder groups. For example, with a 

 
Figure 13: Use of different consultation formats for the development of the network 

structure in 50 case studies 

 

 
Figure 14: Use of different consultation formats for the elicitation of probability 

values in 50 case studies. 
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first round of separate group meetings before the stakeholder groups encounter each 

other in a joint group meeting (Carmona et al., 2013; Chan et al., 2010). 

Some case studies attempted to combine the advantages of individual and group 

meetings. Haapasaari et al. (2013) conducted six individual BN modeling workshops 

and invited all stakeholders and experts involved to a final joint meeting 1.5 years after 

the consultations. This way, the stakeholders and experts benefitted from a one-to-one 

assistance during all modeling steps and still had the possibility to exchange and learn 

in a group. Baynes et al. (2011) employed a one-to-one ratio of assistants to 

participants in a workshop setting (14:14). This enables group discussions and 

networking opportunities while the elicitation benefits from individual assistance.  

In only four case studies did experts and stakeholders receive a questionnaire by email. 

Two of these case studies used this format at a very early modeling stage to ask for 

feedback on a preliminary network structure, henceforth referred to as directed acyclic 

graph (DAG) (Schmitt and Brugere, 2013; Smith et al., 2007). The other two case 

studies used questionnaires to populate the conditional probability tables. This was 

only possible because the BNs consisted of two and five nodes and therefore allowed 

the elicitation of experts’ estimates and stakeholders’ preferences with very simple 

elicitation formats, e.g. on a scale of -2 to 2 (Haapasaari and Karjalainen, 2010; 

Newton et al., 2007). 

 

3.2. Elicitation format  

In the case studies, the network structure and experts’ estimates for probability tables 

(PTs) and conditional probability tables (CPTs) was mainly elicited on paper. Only 

two case studies mentioned the use of software products (Cmap and Vensim) for the 

development of conceptual maps or models (Catenacci and Giupponi, 2013; Richards 

et al., 2013) and none used elicitation software tools to retrieve experts’ probabilities 

(as introduced by Low-Choy et al., 2012). 

The 50 case studies exhibited a variety of elicitation formats for the parameterization 

of BNs (Figure 15). In 35 case studies, experts’ estimates were elicited in the form of 

(conditional) probability values – either with empty (conditional) probability tables 

(32 cases) or with the help of probability scales (3 cases). In the other case studies, 

experts’ estimates were elicited as weights (3 cases), in a frequency context (3 cases), 

as rankings (2 cases) or in other formats – ranging from quantile elicitation (Allan et 

al., 2012), graphical elicitation of bars in a coordinate system (Vilizzi et al., 2012) to 

the elicitation of triangular fuzzy numbers (Ren et al., 2008). 
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Some case studies used standardized probability scales as elicitation format (Jensen et 

al., 2009; Penman et al., 2011; Pike, 2004). On these scales, point probabilities or 

probability intervals are expressed in both numerical values and related verbal 

expressions (“verbal anchors”), such as “impossible” for 0.0 and “certain” for 1.0. 

These three case studies used probability scales introduced by Renooij and Witteman 

(1999), van der Gaag et al. (2002), and Pollack (2003) as cited in Penman et al. (2011). 

Another transformation table between probability intervals and verbal expressions of 

uncertainty can be found in the work of Druzdzel (1996).  

In three case studies, experts were asked to estimate weights for each parent node in 

percent (Baran et al., 2006; Baynes et al., 2011; Holzkämper et al., 2012; Kumar et al., 

2012). These weights are used to represent how much influence each parent node 

exerts on the child node. To calculate the conditional probability tables (CPTs) of the 

whole network, it is necessary to elicit the unconditional probability values for the root 

nodes and the weights of influence for all parent nodes, including the root nodes. Two 

of these case studies used a modified version of the weighted sum algorithm introduced 

by Das (2004). In three case studies, probability values were derived from elicited 

frequencies (Borsuk et al., 2001; Florin et al., 2013; Money et al., 2012). Example 

questions for the elicitation of frequencies can be found in the Appendix (Table A - 

1). In two case studies, experts were asked to rank all combinations of states of the 

parent nodes from greatest positive to greatest negative effect on the child node 

(McDowell et al., 2009; Nash et al., 2010). In a second step, the modelers assigned 

probability values based on these rankings and information from scientific literature.  

 
Figure 15: Use of different elicitation formats for the derivation of probability values 

in 50 case studies. 



31 

 

Independent from the elicitation format, there are two approaches to ease the expert 

elicitation. One approach is to reduce the number of values to be elicited, e.g. by using 

the structured elicitation technique devised by Cain (2001), also referred to as the 

“CPT calculator” (Bashari et al., 2009). In a nutshell, this method requires the 

elicitation of probability values for the worst-case scenario, the best-case-scenario and 

for the scenario in which all states of the parent nodes are “preferable” except for one. 

Cain (2001) introduced a method to calculate so-called “interpolation factors” based 

on these elicited probability values – for different variations of BNs, e.g. with varying 

numbers of states and parent nodes. In a second step, the missing probability values 

can be calculated using the interpolation factors (Cain, 2001: Appendix 2). Eight case 

studies applied this method to elicit the probability values or frequencies for a reduced 

number of scenarios (Bashari et al., 2009; Baynes et al., 2011; Florin et al., 2013; 

McDowell et al., 2009; Nash et al., 2010; Smith et al., 2012; Smith et al., 2007; Wang 

et al., 2009a).  

The other approach is to simplify CPTs by assuming independence of causal influence 

(ICI) among several parent nodes. The advantage of assuming independence of parent 

nodes is that the number of parameters to be elicited does not grow exponentially but 

linearly with the number of parent nodes. This way, an expert does not have to 

formulate conditional probability values for all combinations of parent states but only 

for the states of each parent node separately. This way, two case studies applied so-

called Noisy-MAX distributions, Noisy-AND and Noisy-OR approximations to 

complex CPTs (Money et al., 2012; Nolivos et al., 2011).  

 

3.3. Combination of expert knowledge 

In most case studies, the network structures (DAGs) were developed during group 

meetings (see Figure 13). When several experts jointly select and link variables, there 

is no need to combine several DAGs afterwards. Only in few case studies were BN 

components developed by different groups and merged afterwards (e.g. Money et al., 

2012) or developed individually and later combined into a final DAG (Kumar et al., 

2012). In contrast, Pike (2004) explicitly did not combine DAGs but developed 

10 individual BNs instead.  

Only 20 case studies disclosed whether or not expert estimates – that were elicited 

from more than one expert – were averaged. In fourteen case studies, probability 

values that were elicited from different groups or individuals were averaged (see Table 

A - 1). In most cases, expert estimates were treated equally and therefore unweighted 

averages were calculated. In three case studies, experts and stakeholders discussed the 

probability values until group consensus was reached (Baran et al., 2006; Hamilton et 

al., 2007; Murray et al., 2012). Only in three case studies were probability values 
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explicitly not averaged (Pike, 2004; Richards et al., 2013; Tiller et al., 2013). Whereas 

Pike developed 10 different BNs, Richards et al. (2013) and Tiller et al. (2013) 

represented the expert estimates in one BN with the help of a conditioning or auxiliary 

variable (Kjaerulff and Madsen, 2008: 199ff.). Each state of the auxiliary variable 

represents an expert and by selecting a certain “expert” state, the BN software shows 

the probability distributions based on his or her estimates.  

 

 



33 

 

4. Case Study Northwest China: Ecosystem services of urban and 
peri-urban vegetation in oasis towns in Xinjiang 

4.1. Introduction 

This case study was conducted in Xinjiang Uighur Autonomous Region in Northwest 

China. With an area of 1.6 million km², Xinjiang constitutes the largest administrative 

division of the People’s Republic of China. The “Sustainable Management of River 

Oasis along the Tarim River, China“ (SuMaRiO) project aims at contributing to 

sustainable land and water management in the Tarim Basin in Southern Xinjiang. The 

Tarim (in Pinyin9 “Talimu”) Basin is encircled by the Tian Shan mountain range in 

the North and the Kunlun Shan mountain range in the South and encompasses the 

Taklamakan Desert, the second largest sand desert in the world (Figure 16). 

 

Figure 16: Map of the Tarim Basin (Paproth, 2004, modified by Pietsch, 2011).  

The map was provided by the Institute of Applied Physical Geography of the Catholic 

University of Eichstätt-Ingolstadt. 

                                              
9  Pinyin is the official phonetic transcription system to transfer the pronunciation of (Mandarin) Chinese 

characters into the Latin alphabet.  
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This case study focuses on ecosystem services provided by urban and peri-urban 

vegetation of oasis towns at the margin of the Taklamakan desert. Expert interviews 

and workshops were conducted in the two case study towns Aksu (in Pinyin “Akesu”) 

and Korla (in Pinyin “Kuerle”) as well as in Urumqi (in Pinyin “Wulumuqi”) which is 

the capital of Xinjiang (Figure 16). 

Doing research at the natural and social science interface in China often holds 

unexpected intricacies (Van Den Hoek et al., 2012). This chapter therefore highlights 

which particular challenges the project team10 faced while conducting the case study 

in Xinjiang from 2011 to 2014 (Chapter 4.1.1) and describes how the research 

conditions affected the design of the BN modeling process (Chapter 4.1.2).  

 

4.1.1. Research conditions in the case study region 

The entry requirements and regulations for conducting expert interviews and 

workshops (WS) in Southern Xinjiang are strict, especially for foreign researchers in 

positions below professorship. Although this case study did not touch sensitive issues, 

such as the treatment of ethnic minorities, to receive formal invitations for business 

visa, detailed itineraries needed to be submitted three months in advance of each field 

trip. These itineraries had to give a detailed overview of all planned research activities, 

such as WS program, list of WS participants, as well as the work plan for each day of 

the field trip, incl. names of foreseen interview partners. Each invitation was issued 

for two-week stays only.  

The requirements and regulations for doing research in Aksu were stricter than for 

Korla. This could be related to different levels of prosperity, composition of ethnicity, 

and proximity to “hotspots” of violence between police forces and ethnic minorities. 

Aksu has a higher population and a lower per capita gross regional product compared 

to Korla (Jin, 2010) which experienced an oil boom as the location of the Petro China 

Tarim Basin Oil Control Center. Aksu has a slightly larger proportion of ethnic 

minorities compared to Korla which experienced a higher in-migration of Han Chinese 

due to the oil boom. As Aksu lies in the vicinity of Kashgar, it was chosen as the base 

for China’s elite anti-terrorist unit – the Snow Leopard Commando – following the 

violent incidents in Kashgar and Hotan in July 2011 (China Digital Times, 2011). In 

retrospect, the initial focus on Aksu as a case study town might have complicated the 

issuance of formal invitations.  

                                              
10 Referring to the SuMaRiO team at Goethe University Frankfurt, cooperating sub-projects from other German 

universities, and local partners in Xinjiang. 
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Figure 17: Timeline of field trips and violent incidents in Xinjiang, 2011-

07 – 2014-06 (see Table F - 1 for references). 
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These stricter regulations for Aksu and social unrest in Southern Xinjiang affected the 

design of the modeling process as well as itineraries, especially if incidents happened 

shortly before or during the field trips (Figure 17). For the first field trip, Hotan and 

Kashgar needed to be canceled from the route. During the second field trip, the venue 

of WS 1 needed to be changed from Aksu to Urumqi – only five days before the 

workshop date. During the third field trip, two experts from Aksu could not attend 

WS 2 in Korla after it had to be postponed from Sunday morning to the afternoon. The 

participants from Aksu gave two reasons for their cancellation. First, the postponement 

precluded their return trip by car on the same day. Second, they were reluctant to come 

due to the violent incident in Korla on 7th March 2013 (Figure 17) and also due to 

uncertainty about the local situation. 

Despite strict regulations, experts from Aksu and Korla were involved in the modeling 

process. This was only possible with the support of engaged local partners with well-

functioning professional networks in Southern Xinjiang. All interviews and workshops 

needed to be conducted in Mandarin. The author’s ability to speak a little Mandarin 

served as an ice-breaker at the very beginning of each workshop. Local PhD students 

supported the WS organizing team with the translation of presentations, 

questionnaires, and discussions throughout the workshop series.  

 

4.1.2. Design of Bayesian Network modeling process 

The Bayesian Network (BN) modeling process started in 2011 with first expert 

interviews in Xinjiang and Beijing (Table 10). The interviews in Aksu and Korla aimed 

at establishing contacts for the workshop series and at specifying the model purpose 

according to the demands of local planners. Most interview partners were experts in 

the fields of forestry and urban landscape planning. The idea was to involve experts 

working outside academia to increase the chances that model results would be put into 

use after the end of the research project. In this chapter, the term “experts working in 

academia” refers to scientific staff from universities and research institutes. The term 

“experts working outside academia” refers to managers and planners with specialized 

knowledge in the respective field, e.g. urban landscape planning and forestry 

management.  

The modeling process was designed for three expert workshops. The initial plan was 

to use the first workshop for developing the network structure, the second for filling 

in conditional probability tables (CPTs), and the third for evaluating both the final 

model and the participatory modeling process. When the duration of each workshop 

had to be shortened to only three hours due to time constraints of the participants, the 

methods for each modeling step had to be modified. During WS 1, participants 

discussed two preliminary BNs which had been developed based on scientific 
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literature instead of jointly drawing causal networks from the scratch. During WS 2, 

experts’ estimates were not elicited in the form of “complicated” CPTs but in other 

forms. During WS 3, participants applied the final BN and evaluated the method in 

general instead of evaluating the final BN and the modeling process. 

 

Table 10: Overview of interviewees in Xinjiang and Beijing, 2011 and 2012. 

Interviews  

Interviewees 

Total Experts working in 
academia 

Experts working outside 
academia 

2011 2012 2011 2012  

Aksu   3 3 6 

Korla   1  1 

Beijing 3    3 

Total 3  4 3 10 

 

Due to strict regulations for foreigners (see Chapter 4.1.1), it was impossible to 

conduct all workshops in one place and with the same group of experts. When WS 1 

had to be relocated from Aksu to Urumqi shortly before the workshop date, the 

composition of WS participants changed thoroughly. The budget available for 

covering travel expenses of external WS participants was only sufficient to invite two 

participants from Aksu to Urumqi. This is why most of the 13 participants of WS 1 

were experts from Urumqi working in academia (Table 11). To avoid the strict 

regulations in Aksu, WS 2 was organized in Korla. Two experts from Aksu were 

invited but could not attend the workshop after it had to be postponed (see 

Chapter 4.1.1). During WS 2, it was verbally agreed on that the third workshop could 

be hosted in Korla at one of the participants’ institutes. However, WS 3 had to be 

conducted in Urumqi again. A change of personnel in the management level was the 

official explanation for this decision. Two workshop participants from WS 2 could not 

attend WS 3 as they had been sent to the countryside for one year in the course of a 

governmental campaign to educate the rural population.  

Of the 22 experts who attended the workshop series, only 4 experts attended more than 

one workshop. Three experts attended two workshops and only one expert attended all 

three workshops. The high fluctuation of WS participants had advantages and 

disadvantages for modeling process and models. On the one hand, involving experts 

from Aksu, Korla and Urumqi broadened the scope of knowledge that could be used 

for the BNs and the higher proportion of participants working in academia might have 

contributed to the vividness of WS discussions. On the other hand, the WS participants 

did not develop an “ownership” towards the model or the modeling process.  

In addition, involving experts from three different places made it necessary to 

generalize the BNs. The final BN focuses more broadly on vegetation in oasis towns, 
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such as Aksu and Korla, instead of delivering precise results for either Aksu or Korla. 

The prevailing data scarcity or the limited access to existing data made this 

generalization necessary anyway. 

 

Table 11: Number and disciplinary background of workshop participants. 
 WS date and 

location 
Number and disciplinary background of 

workshop participants 
 

Total 

Experts working in 
academia from 

Experts working outside 
academia from 

 

Urumqi Aksu Korla Urumqi  
WS 1  
 

2012-05-25, 
Urumqi 

9 2 - 2 13 

  − Urban ecology 
− Agricultural sciences 
− Social sciences 
− Forestry sciences 

− Urban planning 
− Forestry 
− Meteorology 

 

WS 2  
 

2013-03-10, 
Korla 

4 - 3 - 7 

  − Forestry sciences 
− Hydrology sciences 

− Urban landscape 
planning 

− Natural conservation 
management 

 

WS 3  
 

2014-03-11, 
Urumqi 

5 - 2 - 7 

  − Urban ecology 
− Forestry sciences 
− Hydrology sciences 

− Urban landscape 
planning 
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4.2. Model development 

Local experts from the case study region supported the model development – from 

discussing the network structure (WS 1) to providing estimates for the model 

parameterization (WS 2). Due to short WS durations and long time periods between 

the workshops, not only local experts but also domain experts in Germany and 

BN experts in Australia contributed to the completion of the final BN. This chapter 

first depicts how the causal network structure of the BNs changed from 2011 to 2014 

(Chapter 4.2.1). Then it summarizes the reasons why broad labels were used as states 

for the nodes (Chapter 4.2.2) and presents how the final BN was parameterized with 

the help of expert knowledge and equations (Chapter 4.2.3). 

 

4.2.1. Development of the network structure  

As long as BNs are not parameterized, their causal network structure can easily be 

changed. During 2011-2013, nodes and links were added, deleted and restructured 

whenever new input could be used from scientific publications, expert interviews, WS 

discussions, and internal project meetings in Germany. Every change in the network 

structure was documented and saved as separate Netica file. In chronological order, 

the network structure was mainly influenced by (1) the literature review before WS 1, 

(2) discussions during WS 1, (3) the literature review between WS 1 and WS 2, 

(4) comments during WS 2, (5) an expert interview in Germany, and (6) input from 

Australian BN modelers.  

The initial plan was to develop two BNs: One on “Dust weather management” (Dust 

BN) and one on “Urban heat stress management” (Heat BN). From October 2011 to 

October 2013, the Dust BN was developed. The number of nodes varied between 9 

and 43; the number of links varied between 9 and 47 (Figure 18). From November 

2011 to May 2013, the Heat BN was developed. The number of nodes varied between 

15 and 41; the number of links varied between 17 and 45 (Figure 19).  

An expert interview in Germany in May 2013 clarified that it was impossible to fill in 

the CPTs of the Heat BN without data. The work on the Heat BN therefore stopped at 

the end of May 2013 (Figure 19). In this context, a BN on ecosystem services of urban 

and peri-urban vegetation (ESS BN) was developed to merge parts of the two BNs 

(Figure 20). Only the variables related to the provision of shade by urban plants, on 

which expert knowledge was already elicited during WS 2, were integrated from the 

Heat BN into the ESS BN. From May to October 2013, the ESS BN included all 

variables of the Dust BN.  
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Figure 18: Number of nodes and links of the Dust BN, 2011-10-27 to 2013-10-21. 

incl. (1) literature review before WS 1, (2) WS 1, (3) preparations for WS 2, (4) WS 2, and 

(5) simplifications during research stay in Australia. 

Figure 19: Number of nodes and links of the Heat BN, 2011-11-23 to 2013-05-29. 

incl. (1) literature review before WS 1, (2) WS 1, (3) preparations for WS 2, and (4) 

WS 2. 
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From September to November 2013, the structure of the ESS BN changed again based 

on the input from Australian experts in BN modeling (Figure 20). Instead of including 

variables that are difficult to quantify, such as “Peri-urban soil stability” and “Peri-

urban wind soil erosion”, the final BN only consists of nodes for which expert 

estimates were elicited at WS 2 and nodes that could be quantified with equations. The 

final ESS BN that was presented at WS 3 only consists of 16 nodes and 19 links (see 

Figure 28).  

 

 

4.2.1.1 Preparations for expert workshop 1 

To get a first overview on the two problem fields, two preliminary networks had been 

developed before WS 1. The preliminary Dust BN (Figure 21) consisted of 23 nodes. 

For the network structure, a review of 20 Chinese publications was undertaken by a 

project partner. Her translated excerpts were complimented with information from 

English publications from China (see Table B - 1). The directed links were set 

according to the causal relationships mentioned in the scientific publications and 

during the expert interviews in Xinjiang in 2011. In addition, PhD students and 

postdoctoral researchers of the SuMaRiO project commented on the networks which 

were presented at the first SuMaRiO PhD seminar in December 2011.  

Figure 20: Number of nodes and links of the ESS BN, 2013-05-22 to 2014-03-18. 
incl. (5) simplifications during research stay in Australia. 

5 
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The preliminary Heat BN (Figure 22) consisted of 28 nodes. As local experts were 

expected to be both more interested and more knowledgeable in the field of dust 

weather management, more efforts were put into developing a detailed Heat BN. For 

this, mainly publications on the so-called urban heat island (UHI) effect were used. 

The UHI effect refers to the phenomenon when the urban air temperature, mostly 

measured in the urban canopy layer below roof tops, is higher than the air temperature 

in its surrounding rural areas (Alcoforado and Matzarakis, 2010). In the Heat BN, the 

UHI effect was equalized with urban heat stress as they share most causes and 

countermeasures. In both networks “Irrigation needs?” was added as a floating node 

to get feedback from the WS participants whether or not they were interested to include 

this node. The final ESS BN includes variables on the irrigation needs of urban and 

peri-urban plants. 

 

 

 

 

  

 
Figure 21: Preliminary Dust BN before WS 1. 
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Figure 22: Preliminary Heat BN before WS 1. 
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4.2.1.2 Expert workshop 1  

WS 1 took place in Urumqi on 25th May 2012 and was titled “Sino-German Workshop 

on Ecosystem Services of Urban and Peri-urban Forests in Oasis Cities of Xinjiang” 

(see Table C - 1). All WS programmes and evaluations can be found in Appendix C11. 

WS 1 was organized in collaboration with another sub-project of SuMaRiO which also 

dealt with ecosystem services of urban and peri-urban vegetation. The other sub-

project started their WS session in the morning and the BN modeling part was 

scheduled for the afternoon. The morning session included an introduction to the 

SuMaRiO project, presentations on urban greening in Xinjiang, the valuation of ESS 

and two presentations on the history of urban landscape planning in Xinjiang by 

invited speakers, including a historical review of the Kokyar afforestation project in 

Aksu. As the problem field of dust weather was already part of the first workshop 

session, the afternoon session solely encompassed a presentation on urban heat stress 

management and an introduction into BN modeling. The aim of the afternoon session 

was to facilitate group discussions to improve the network structures of the preliminary 

BNs. Before the group discussions started, the network structure of each BN was 

introduced in detail. The nodes were titled in Chinese characters and the whole 

network was build-up node by node in front of the participants (Figure 23).  

Although the majority preferred to discuss the Dust BN, the 13 participants were 

divided into two groups to discuss the BNs in separate rooms (Table 12). The 

discussions were facilitated by two moderators – one to interact with the discussants 

and one to write down the results.  

                                              
11 WS programmes in Table C - 1 to Table C - 3; WS evaluations in Figure C - 1 to Figure C - 3. 

 
Figure 23: Presentation of Dust BN at WS 1, Urumqi, 25th May 2012. 
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Table 12: Composition of discussion groups at WS 1. 

Discussion group Experts in discussion groups No. of 
discussants  

Experts working in 
academia 

Experts working 
outside academia 

Urumqi Aksu Korla Urumqi 
Dust BN 3 2 - 1 6 

Heat BN 6 - - 1 7 

 

After one hour, the results of each discussion were presented to the other group which 

in turn could comment. The Dust BN discussion group added 18 new nodes to their 

network (an increase from 23 to 41 nodes) (Figure 24). As the group neither deleted 

nodes nor re-arranged links, the core network structure of the Dust BN remained 

exactly the same.  

 

 

 

  

 
 

 

 
 

Figure 24: On top, Dust BN after WS 1; at the bottom, Heat BN after WS 1. 

Newly added nodes are marked in green. 
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The Heat BN discussion group only deleted the node “Crop damages” and expressed 

their skepticism towards the node “Narrow roads & compact construction”.This node 

represented the idea that in narrow roads, buildings can provide shade for pedestrians 

and adjacent buildings. However, the discussion group noted that this was not realistic 

for Xinjiang as the volume of individual traffic was increasing and the roads needed 

to be enlarged. When the Heat BN was presented to the Dust BN discussion group, 

three nodes from the Dust BN were copied to the Heat BN (in total an increase from 

28 to 30; Figure 24). As the complexity of the initial networks as well as the 

willingness to discuss about these two problem fields was very different, it is difficult 

to compare the two expert discussions. 

 

4.2.1.3 Preparations for expert workshop 2 

Between WS 1 and WS 2, the network structure of both BNs was frequently changed. 

The number of nodes of the Dust BN varied betwen 23 and 43 (see Figure 18) and the 

Heat BN consisted of 25 to 41 nodes (see Figure 19). In this time span, 5 Netica files 

were created for the Dust BN and 20 Netica files were saved for the Heat BN.  

 

Table 13: Number of nodes before and after WS 1 and WS 2. 

 No. of nodes 

before WS 1 

No. of nodes 

after WS 1 

No. of nodes of 

before WS 2 

No. of nodes 

after WS 2 

Dust BN 23 41 26 23 

Heat BN 28 30 37 37 

 

The number of nodes of the Dust BN was reduced before WS 2 (Table 13). From the 

18 newly added nodes, only three nodes remained part of the network structure (Figure 

25). Some nodes were deleted because the causal relationship was difficult to quantify, 

such as the link between “Solar radiation” and “Soil stability”, other nodes were 

deleted as they went beyond the scope of the BN, such as “Low emission 

transportation” or “Demand for meat”. The BN presented during WS 2 only had one 

leaf node (“Human health impacts”) instead of seven. The node “Transportation of 

dust” was added.  

This version of the Dust BN was build as a Bayesian Decision Network (BDN) with 

“Urban and peri-urban tree species” as decision node, “Irrigation needs” as utility node 

for costs and “Ecosystem Services” as utility node for benefits (Figure 25). Utility 

nodes are depicted as red diamonds (see Chapter 2.5.1). As long as BDNs are not 

parameterized, they can be regarded as causal networks. The red nodes highlighted the 

two main objectives of the BN, the “Air quality in oasis town” and “Human health 

impacts”. The yellow nodes represented external factors which could not be influenced 

by urban landscape planning and management. The green and turquois nodes 
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represented management options of which the turquois nodes had a spatial dimension, 

e.g. increasing or decreasing extent of peri-urban vegetation.  

As the WS discussion on the Heat BN resulted in a few comments only, an extensive 

literature review was undertaken after WS 1. Scientific publications on the UHI effect 

revealed many two-directional causal relationships that could not be represented in the 

Heat BN as BNs allow no feedback loops. Here, three examples are mentioned in 

which only one of several caualities could be included in the BN. First, the UHI effect 

or “urban heat dome” can reduce the ventilation and thereby increase air pollution 

(Alcoforado and Matzarakis, 2010). Other sources highlight that ventilation may also 

be induced by the UHI itself. The UHI supports the advection of cooler and cleaner air 

from the outskirts. This phenomenon, also refered to as UHI circulation or country 

breeze, is supported by natural or artificial ventilation paths. However, the directed 

links in the Heat BN only indicate that “Ventilation” influences “Air pollution” which 

influences “Heat storage” which influences the “Urban Heat Island effect” (Figure 25).  

Second, the diverging effects of “Ground wind speed” in regions with great diurnal 

temperature ranges. Pearlmutter et al. (2007) argued that low ground wind speed 

during day-time can reduce urban heat stress in these regions due to the high thermal 

inertia of the buildings. In this respect, reducing ground wind speed, e.g. by compact 

construction or vegetation, had a positive effect. However, reducing ground wind 

speed also decreases ventilation and thereby increases the amount of pollutants in the 

air which supports atmospheric heating. As it was impossible to represent both cause-

effect-relationships in the Heat BN, only the latter relationship was included.  

Third, the challenge of both high diurnal and seasonal air temperature amplitudes in 

cities in hot arid climates. In order to avoid heat stress during summer, it is necessary 

to reduce the solar gain or “Heat storage” of cities. This can be achieved by “Urban 

greening” and “Highly reflective building materials”. The Heat BN solely focuses on 

these summer conditions and thereby neglects the fact that the solar gain should be 

maximized in winter (Alcoforado and Matzarakis, 2010). Despite these difficulties 

with the Heat BN, both BNs were presented at WS 2 in Korla in March 2013. 
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Figure 25: On top, Dust BN before WS 2; at the bottom, Heat BN before WS 2. 
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4.2.1.4 Expert workshop 2 

WS 2 took place in Korla on 10th March 2013 and was titled “Sino-German Workshop 

on Ecosystem Services of Urban and Peri-urban Forests in Oasis Cities of Xinjiang: 

The role of forests in relieving dust & urban heat”(see Table C - 2 in Appendix C). 

The aim of this workshop was to elicit experts’ estimates for the generation of CPTs. 

As only one of the seven WS participants attended WS 1 in Urumqi, the workshop 

started with presentations on participatory modeling and ESS of urban and peri-urban 

forests in oasis cities, an introduction into BN modeling, and the presentation of the 

BNs step-by-step (Figure 26, at the top). Each new node was visualized with photos 

and figures from research in China and examples from practice in Germany (Figure 

26, at the bottom). 

 

  

 
Figure 26: Presentation of Heat BN at WS 2, Korla, 10th March 2013. 
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When the WS participants were asked for feedback after each BN presentation, they 

agreed on most of the causal relationships and only had minor changes to the network 

structure. In the Dust BN, two nodes (“Construction for oil industry” and “Oil 

extraction”) which were added by participants from Urumqi during WS 1 were 

deleted. The participants said the oil industry was located in the desert far outside of 

town and therefore had limited or no influence on vegetation or ground water levels in 

the peri-urban area. The node “Overgrazing” was deleted after the participants said 

that this problem had already been solved due to strict regulations in the case study 

towns. The node “House prize value” was added in the context that peri-urban and 

especially urban greening increased the value of adjacent houses. The nodes “Extent 

of urban vegetation” and “Extent of peri-urban vegetation” were merged as the 

WS participants counted the peri-urban vegetation as urban vegetation. This became 

apparent when all participants from Korla stated that the urban vegetation in Korla 

covered 40% of the urban area – this fraction could only be reached if they counted 

large afforestation projects outside of town, such as the Dong Shan project, into the 

urban vegetation.  

In the Heat BN, the node “Emissions from traffic” was deleted. The node “Shade by 

urban design” was renamed into “Shade by buildings”. The node “Extent of urban 

vegetation” was changed into “Urban surface” – a node for which the percentages for 

the states “Built environment”, “Urban greening”, and “Water bodies” could be 

distributed according to the respective case study town. The state “Water bodies” was 

added after a participant highlighted the cooling effect of water bodies in urban spaces. 

The new node “House price value” was also added to the Heat BN.  

 

4.2.1.5 Expert interview in Germany  

After WS 2, most causal relationships in the Heat BN still needed to be quantified. 

Therefore, an interview with an expert from the field of urban climatology was 

conducted on 14th May 2013. The expert was not able to fill in the CPTs without data. 

To estimate conditional probability values, he would have needed at least data on local 

urban geometry such as heights of buildings and widths of streets and building 

materials. However, the interview partner made two comments that helped to clarify 

misunderstandings related to urban heat stress. First, he emphasized the importance of 

air humidity for humans to actually suffer from urban heat stress. The same 

temperatures in a dry desert place and in Hong Kong would pose completely different 

stress levels to humans. Second, he highlighted that adaptation also decreases the 

likelihood to suffer from urban heat stress. European tourists who visited either that 

desert place or Hong Kong would experience higher stress levels than locals.  
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After this expert interview, it was not clear whether the problem field “Urban heat 

stress” was a problem in the case study region at all. To calculate the urban heat stress 

level for Korla, the Discomfort Index (DI) was selected. The DI, first proposed by 

Thom (1959) as cited in Georgi and Dimitriou (2010), has little data requirements 

compared to more recent indices which at least account for radiation (Epstein and 

Moran, 2006). Here, the equation to calculate the DI (6) was adopted from Georgi and 

Dimitriou (2010):  

DI = TEM – 0.55(1-0.01 HUM) (Tem-14.5)°C (6) 

with DI being expressed in °C, TEM being the air temperature in °C and HUM being 

the humidity in percentage. 

Although in Korla the month July had the highest average humidity and the second-

highest average temperature in 2012, the DI never exceeded the threshold of 24°C 

(Figure 27) above which more than half of the population feels some kind of 

discomfort (Georgi and Dimitriou, 2010). This does not necessarily mean that there is 

no urban heat stress in Korla. For this calculation, only daily average temperatures and 

average humidity data were available (TuTiempo, 2014). With the great diurnal 

temperature ranges, it is possible that the discomfort in Korla would be much higher 

if hourly temperatures and humidity data was available. Due to this lack of data, the 

work on the Heat BN ended shortly after the expert interview (see Figure 19). The 

nodes “Urban tree species” and “Shading by canopy” were integrated into the new 

ESS BN which was further developed during a research stay in Australia in 2013. 

 
Figure 27: Daily Discomfort Index (DI) values in Korla, July 2012. 

DI values were calculated based on daily average temperatures and average humidity in 
Korla (meteorological station 516560) derived from TuTiempo (2014). 
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4.2.1.6 Final network structure 

In May 2013, the ESS BN was created with all nodes from the previous Dust BN and 

two nodes from the previous Heat BN. At the beginning of a three-month research stay 

in Australia (September-November 2013), the ESS BN consisted of 33 nodes and 42 

links (see Figure 20). Experienced BN modelers in Australia suggested to simplify the 

network and to concentrate on the nodes for which expert estimates had already been 

elicited during WS 2. Therefore the focus of the BN shifted away from complex causes 

of dust weather to the basic idea that urban and peri-urban plant species differ in their 

ability to mitigate dust weather and to provide shade. To simplify the ESS BN, only 

peri-urban plants influence dust weather mitigation and urban plants solely provide 

shade. At the end of this research stay, the BN was reduced to 15 nodes and 16 links.  

The final version which was presented at WS 3 in March 2014 consists of 16 nodes 

and 19 links (Figure 28). A full list of nodes and states (Table B - 2) as well as all 

conditional probability tables can be found in Appendix B12. The final BN compares 

11 peri-urban plant species in their ability to mitigate dust weather and 10 urban plant 

species in their ability to provide shade as well as their irrigation needs. It exactly 

addresses the knowledge gap expressed by local urban landscape planners during an 

expert interview in August 2011. They explicitly wanted to know which plant species 

were most effective in mitigating dust weather while needing the least irrigation. 

With the root nodes (blue), the model user can compare the effect of single plant 

species or combinations of plant species on (1) ecosystem services provided by urban 

and peri-urban vegetation and (2) irrigation needs of urban and peri-urban vegetation. 

In addition, the extent of the vegetation cover can be increased or decreased in either 

urban or peri-urban areas or both. The green nodes represent plant-specific 

characteristics and ecosystem services. The yellow nodes represent irrigation needs of 

single plant species and the total irrigation need of urban and peri-urban vegetation.  

                                              
12 Appendix B provides conditional probability tables that are derived from expert knowledge (Table B - 4 to 

Table B - 9) and conditional probability tables that are built from equations (Table B - 10 to Table B - 15). 
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Figure 28: Final ESS BN presented at WS 3. 
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4.2.2. Definition of states  

After the duration of WS 1 was too short to jointly define states, a literature review 

was conducted to define states based on scientific publications. However, publications 

use different units to describe the same variables. For example, some publications use 

air concentration data (in µg/m3) to characterize dust events (Draxler et al., 2001), 

whereas other publications use horizontal visibility at eye level (<1000m, ≤1000m, 

≤10000m) to categorize dust events (Goudie and Middleton, 2006). Even if 

publications use the same unit, to set realistic classes for the case study region, local 

data or the support of local experts would have been necessary.  

Due to this lack of data, all states of child nodes were expressed with simple labels, 

such as “low”, “medium”, and “high”. These labels were not defined as most of them 

were either not measurable (e.g. ecosystem services) or potentially measurable but 

unknown (e.g. the “Irrigation needs” in m³). For “Plant-specific irrigation needs” the 

label “very low” was used for the lowest irrigation need and the label “very high” for 

the highest irrigation need among the plants species. This way, the BN can be used to 

compare the plant species with each other.  

The states of root nodes can be used to compare management options. The 10 urban 

and 11 peri-urban plant species used as states of the two root nodes were chosen in 

cooperation with an expert from the field of urban ecology with long-term working 

experience in the case study region (Table B - 2). The expert selected plant species 

that have been increasingly planted in Korla and Aksu and species that are – in his 

opinion – very suitable to prevent dust weather and to provide shade and therefore 

should be planted more often in the future. Defining the states for the two root nodes 

on the extent of vegetation was especially difficult. Some experts counted peri-urban 

vegetation as part of the urban vegetation and it was impossible to elicit the extent of 

the peri-urban vegetation in a surface measure such as km², ha or mu during WS 2. 

The solution for both nodes (“Vegetation cover in % of urban area” and “Extent of 

peri-urban vegetation”) was to anchor the medium state to the current state. 

Subsequently, “low”/”small” and “high”/”large” represent decrease and increase in 

urban and peri-urban vegetation. 
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4.2.3. Model parameterization 

The first approach was to parameterize the BNs with statistical data. However, the 

only data available were prefectural data which were not suitable to represent the 

situation in the two case study towns. For example, in the Xinjiang Statistical 

Yearbook the area of key afforestation projects (9-26 林业重点工程造林面积) was 

only available for the whole Bayangol Mongol Autonomous Prefecture and Aksu 

Prefecture and not for the towns of Korla and Aksu (Jin, 2010). With no access to the 

Statistical Yearbooks of the towns Aksu and Korla, the second idea was to use 

information from scientific publications to populate the CPTs. However, this was 

impossible as the results of several case studies, e.g. regarding the cooling effects of 

urban vegetation, varied too much to be used as input data. In addition, results from 

case studies in Greece, Morocco or Botswana are not easily transferable to the case 

study region, e.g. the cooling effect of urban lakes in Mexico City (Martínez-Arroyo 

and Jáuregui, 2000) is not the same as the effect of water bodies in Korla. Therefore, 

only expert knowledge and equations were used to generate the CPTs. Expert 

knowledge was used to populate the CPTs of all direct child nodes of “Plant species 

in urban area” and “Plant species in peri-urban area” (▲) (see Figure 28). The child 

nodes of these nodes (●) were parameterized with the help of simple equations that 

equally weighted the incoming parent nodes. 

 

4.2.3.1 Model parameterization with expert knowledge 

WS 2 aimed at eliciting the knowledge of local experts. To avoid cognitive difficulties 

with conditional probabilities and especially to elicit as much expert knowledge as 

possible in a short period of time, we asked the experts to express their knowledge in 

the form of ratings and numerical values instead of asking them to fill in CPTs by 

themselves. 

 

Elicitation of experts’ estimates 

After the BNs had been introduced step-by-step and comments on the network 

structure had been collected, the WS participants sat together for one hour to jointly 

work on several tasks (see Table 14). For tasks 1 and 2, five experts from the fields of 

forestry science and urban landscape planning were divided into two groups: Expert 

group A (3 persons) – a representative of local urban landscape planning, a 

representative of local conservation management and a forestry scientist working 

abroad; and Expert group B (2 persons) – a representative of local urban landscape 

planning and a forestry scientist working in the provincial capital.  
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The expert groups were well mixed in terms of disciplinary background, work place, 

and international work experience (Table 15) to enhance discussions between experts 

with local, provincial or international experiences. The two representatives of the local 

urban landscape planning were intentionally separated. 

 

Table 14: Overview of tasks used for expert elicitation. 

Tasks Experts involved Description of the task Elicitation format 

Task 1  

(Dust BN) 

Expert group A 

(3 persons), 

expert group B 

(2 persons) 

Table to differentiate the irrigation 

needs of 11 peri-urban plant 

species  

Numerical values 

between 0 and 1 

Table to rate the capacity of 

11 peri-urban plant species to 

protect the soil, to serve as wind 

break, and to serve as dust filter  

Four fixed 

categories  

(–,+,++,+++) 

Task 2  

(Heat BN) 

Expert group A 

(3 persons), 

expert group B 

(2 persons) 

Table to differentiate the irrigation 

needs of 10 urban plant species 

Numerical values 

between 0 and 1 

Table to rate the capacity of 

10 urban plant species to provide 

shade  

Four fixed 

categories  

(–,+,++,+++) 

Task 3 

(Heat BN) 

All 7 WS 

participants 

individually 

Table to rate the potential of other 

management options to increase 

ventilation, to provide shade, and 

to reduce the human health 

impact from urban heat stress.  

Four fixed 

categories  

(–,+,++,+++) 

Task 4  

(Dust BN) 

All 7 WS 

participants in 

groups of 2-3 

CPTs for the nodes “Wind soil 

erosion”, “Soil stability”, 

“Transportation of dust”, “Dust 

weather in peri-urban area”, and 

“Air quality in oasis town” (Figure 

25).  

Conditional 

probability values 

Table to rate the potential of 

health education, warning systems 

and different types of cooling 

infrastructure to reduce the human 

health impacts from dust weather.  

Four fixed 

categories  

(–,+,++,+++) 
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For task 1 and 2, the expert groups were asked to first identify the plants with the 

lowest (0) and the highest (1) irrigation need. This way, the heuristic procedure of 

anchoring and adjustment was used because it is easier for experts to have an 

appropriate starting point to adjust the other estimates accordingly (Morgan and 

Henrion, 1990; Tversky and Kahneman, 1974). This procedure of anchoring helped 

the experts to assign values between 0 and 1 for all other plants as they always 

compared their estimate with the already assigned minimum and maximum. In a 

second step, the experts evaluated plant species using four fixed categories, with – 

being the lowest and +++ being the highest category (Table 14). The estimates of all 

expert groups are summarized in Appendix D (Table D - 1 and Table D - 2). 

For tasks 3 and 4, all 7 WS participants were asked to fill in the tables, individually 

and in groups of 2-3 persons. However, the results of these tasks were not used to 

derive CPTs for the final ESS BN as they all belonged to nodes of the Dust BN and 

Heat BN that were not integrated into the ESS BN. In addition, some of the elicited 

CPTs of task 4 were illogic or incorrect. This might have happened due to an overload 

of tables or due to oversight by the experts after having filled numerous tables 

beforehand in a very short time (see “Results” in Table 16).  

 

Table 15: Key characteristics of expert groups A and B, and expert C. 

  

 Disciplinary 
background  

Workplace Experts 
working in 
academia 

Experts working 
outside 

academia 

Size of 
group 

Expert 
group A 

Forestry science Germany 1  

3 

Urban landscape 
planning 

Korla 

 2 Natural 
conservation 
management 

Korla 

 

Expert 
group B 

Forestry science Urumqi 1  

2 
Urban 

landscape 
planning 

Korla  1 

 

Expert C Urban ecology Germany 1  1 
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Table 16: Key characteristics of the workshop series. 
 WS 1 

Urumqi, 25th May 2012 
WS 2 

Korla, 10th March 2013 
WS 3 

Urumqi, 11th March 
2014 

Purpose of 
the workshop 

Improvement of 
network structure 

Elicitation of experts’ 
estimates 

Application and 
evaluation of BNs 

Number of 
participants 

13 7 7 

Duration of 
workshop 

3 hours 3 hours 3 hours 

Duration of 
elicitation 

1 hour 1 hour 1.5 hours 

Elicitation 
format 

Group discussion in 
two groups 

Discussion in groups of 2-3 
experts, jointly filling in 

tables  

Using the final BN in 
groups of 2-3 experts 

Results Two causal networks 23 values (0-1), 60 ratings 
(– to +++) from 5 

participants; 5 CPTs 
(44 conditional probability 
values) from 7 participants 

Evaluation of BN 
method and results for 

local environmental 
management 

 

The final BN includes estimates of Expert groups A and B (WS 2) as well as estimates 

of an expert who could not attend the workshop: Expert C (1 person) – an urban 

ecology scientist who originally comes from the case study region but works in 

Germany. To be able to combine the elicited estimates, the expert groups were asked 

how confident they were in their estimates (Table 17). For the calculation of weighted 

averages, “very confident” expert estimates were weighted three times; “confident” 

estimates two times; “rather unconfident” estimates once; and “very unconfident” 

estimates not at all (see Table D - 3 and Table D - 4 in Appendix D). 

 

Table 17: Confidence of expert groups in their own estimates. 

Expert groups could decide whether they were very unconfident (-), rather unconfident (+), 

rather confident (++), or very confident (+++). 

 Expert Group A Expert Group B Expert C 

Plant-specific irrigation needs 
(urban and peri-urban) 

++ +++ ++ 

Plant-specific shade ++ +++ +++ 

Plant-specific soil protection ++ +++ ++ 

Plant-specific wind protection ++ +++ +++ 

Plant-specific dust filter ++ +++ +++ 
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Conversion of experts’ estimates into probability values 

After WS 2, the elicited values between 0-1 and 0-3 (–, +, ++, +++) needed to get 

converted into conditional probability values. The first conversion step was to decide 

on the number of states for the expert-based nodes. For plant-specific irrigation needs, 

five states were used as the experts could use every numerical value between 0-1 to 

express their knowledge. For all plant-specific characteristics, three states were used 

as the experts could only choose from four fixed categories.  

The second step was to develop conversion tables that allow the systematic translation 

of all weighted average values of expert groups A, B, and C into conditional 

probability values. For this purpose, the range between 0-1 was divided into sub-

ranges that equal the five states. With 0 being the lowest and 1 being the highest 

irrigation need, the sub-ranges represented “very low” (0-0.20), “low” (0.21-0.40), 

“medium” (0.41-0.60), “high” (0.61-0.80), and “very high” (0.81-1) irrigation needs 

(Table 18). Each row in a CPT has to sum up to 100%. This is why two probability 

distributions were defined for each sub-range (two rows in Table 18), e.g. the sub-

range “low” (0-0.2) is divided into 0-0.1 and 0.11-0.2 to acknowledge whether a value 

lies in the higher or lower part of the sub-range and to distribute the major part of the 

100% accordingly. 

 

Table 18: Conversion table for values 0-1 for nodes with five states. 

Sub-ranges very low 
(0-0.2) 

low 
(0.21-0.4) 

medium 
(0.41-0.6) 

high 
(0.61-0.8) 

very high 
(0.81-1) 

very low 
(0-0.2) 

0-0.1 90 10 0 0 0 

0.11-0.2 80 15 5 0 0 

low 

(0.21-0.4) 

0.21-0.3 15 80 5 0 0 

0.31-0.4 5 80 15 0 0 

medium 
(0.41-0.6) 

0.41-0.5 0 15 80 5 0 

0.51-0.6 0 5 80 15 0 

high 

(0.61-0.8) 

0.61-0.7 0 0 15 80 5 

0.71-0.8 0 0 5 80 15 

very high 
(0.81-1) 

0.81-0.9 0 0 5 15 80 

0.91-1 0 0 0 10 90 

 

This conversion table was used to convert the weighted average values of the two 

nodes on “Plant-specific irrigation needs” for plant species in the urban and the peri-

urban area. For example, the weighted average value for the irrigation need of 

Ailanthus altissima (M.) Swing. is 0.23 (see Table D - 5). This value lies in the sub-

range low (0.21-0.40). As it lies in higher end of the sub-range (0.21-3), the probability 

distribution in the CPT is: 15% very low, 80% low, 5% medium (Table 19).  
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With the same procedure, a conversion table for values between 0-3 for nodes with 

three states was created (Table 20). This conversion table was used to convert the 

weighted average values of “Plant-specific shading”, “Plant specific soil protection”, 

“Plant-specific wind protection”, and “Plant specific dust filter”. 

 

Table 19: Conditional probability values for three peri-urban plant species. 
Plant species Weighted 

average 
Sub-
range 

Irrigation needs of plant species 
 

very 
low 
(0-
0.2) 

low 
(0.21-
0.4) 

medium 
(0.41-
0.6) 

high 
(0.61-
0.8) 

very 
high 

(0.81-1) 

Ailanthus 
altissima (M.) 
Swing. 

0.23 0.21-0.3 15 80 5 0 0 

Elaeagnus 
augustifolia L. 

0.13 0.11-0.2 80 15 5 0 0 

Fraxinus 
sogdiana 
Bunge.  

0.56 0.51-0.6 0 5 80 15 0 

 

Table 20: Conversion table for values 0-3 for nodes with three states. 

 low (0-1) medium (1.1-2) high (2.1-3) 
0-1.0 80 15 5 

1.1-2.0 10 80 10 
2.1-3 5 15 80 
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4.2.3.2 Building conditional probability tables from equations 

Six child nodes (●) are parameterized with the help of simple equations that equally 

weight their incoming parent nodes (see Table B - 3 in Appendix B). All equations 

represent positive correlations. The higher the “Shade by urban vegetation” and the 

“Dust weather mitigation by vegetation”, the higher the level of “Ecosystem services” 

provided. The higher the “Plant-specific irrigation needs” and the “Vegetation cover 

in % of urban area”, the higher the “Irrigation needs in urban area”. The node “Dust 

weather mitigation by plants” is summarizing the impacts of its three parent nodes. 

For this summary node, the participants of WS 2 and 3 were asked which parent node 

was more influential than the others. Due to lack of consensus among the experts, the 

parent nodes were equally weighted to have an unbiased version.  

For equations in Netica, each state of the parent nodes need assigned state values 

(“state numbers”). For “Plant-specific soil protection”, the state “low” has the state 

value 0, “medium” 1, and “high” 2. For this purpose, all states of the parent nodes need 

to be arranged in the same order. For the node “Dust weather mitigation by plants”, 

the following equation is entered in the respective window of its node dialog box: 

plant_dust_mitigation (plant_dust_filter, plant_soil_protection, 

plant_wind_protection) = plant_dust_filter+plant_soil_protection+ 

plant_wind_protection)/6 

Using the names of the nodes, the equation says that the sum of the state values of the 

parent nodes should be divided by 6 which is the highest number that can be reached. 

If all parent nodes were in state “low” (state value 0), the calculation would be 

(0+0+0)/6 = 0; if all parent nodes were in state “high” (state value 2) the calculation 

would be (2+2+2)/6 = 1. This way, the result lies between 0-1. Therefore, the states of 

the child node needed assigned discretization intervals between 0-1, such as “low” (0-

0.33), “medium” (0.33-0.66), and “high” (0.66-1). In a last step, Netica needs to be 

told to derive the CPT from the equation with the command “Equation to table”. 

To derive CPTs from equations in Netica, some nodes need to be discrete while others 

need to be continuous. The parent nodes, e.g. “Plant-specific soil protection”, need to 

be discrete as each state gets only one assigned state number. The child node for which 

the CPT is derived by an equation, e.g. “Dust weather mitigation by plants”, needs to 

be continuous as the result of the equation could be any number between 0 and 1. The 

assigned discretization intervals of the continuous node make sure that the result of the 

equation can be represented by three discrete states. In the final BN, three nodes 

needed to be child and parent nodes for equations at the same time. As the nodes could 

not be discrete and continuous at once, three additional nodes were created (see Figure 

30). 
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Deterministic CPTs ensured that these three additional nodes had exactly the same 

probability distribution as their respective parent node (Figure 29). These nodes solely 

served as discrete parent nodes for the next equations and were hidden in the final BN 

to avoid confusion (see Figure 28). In Netica, nodes can easily be positioned above 

other nodes without leaving a trace – the BN could still be used to compare the impact 

of different root nodes on the leaf nodes. 

The BN that was presented and used at WS 3 needed to consist of 16 nodes in order to 

be able to use Netica’s “Limited mode”. For this purpose, the CPTs that were created 

by the equations were copied into a version without these three additional nodes.   

 
Figure 29: Deterministic conditional probability table for “Dust weather mitigation 

by plants”. 
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Figure 30: Final ESS BN with additional deterministic nodes disclosed. 
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4.3. Model application 

The parameterized ESS BN can be used top-down to compare the impact of different 

states of the four root nodes on the leaf nodes “Ecosystem services” and “Irrigation 

needs” (urban and peri-urban). Whenever the probability distribution in one of the root 

nodes is changed, Netica recalculates the probability distributions of all child and leaf 

nodes. The ESS BN can be used to compare single plant species with each other or to 

compare combinations of plant species. In addition, the extent of peri-urban vegetation 

and the vegetation cover in the peri-urban area can be increased or decreased. An 

increase of vegetation basically leads to increased “Ecosystem services” but also to 

increased “Irrigation needs”. A decrease of vegetation has the opposite effect. 

The plan was to ask the participants of the final workshop (1) to get acquainted with 

Netica by doing exercises with simple BN examples, (2) to compare single plant 

species with the ESS BN, and (3) to find combinations of urban and peri-urban plant 

species that provided a “high” level of “Ecosystem services” with “very low” or at 

least “low” irrigation needs. Setting the probability of a single plant species to 100% 

would mean that only this one plant species was planted in the whole urban or peri-

urban area. Of course, such a monoculture was neither realistic nor desirable. The 

100% should be distributed across more than one state which was difficult due to the 

high number states. To assist the WS participants in solving this third task, two 

Bayesian Decision Networks (BDNs) were developed in addition to the already 

existing ESS BN. This chapter introduces the two BDNs (Chapter 4.3.1) and presents 

how the final ESS BN and the results from the BDNs were applied during WS 3 in 

March 2014 (Chapter 4.3.2). 
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4.3.1. Add-on: Bayesian Decision Networks  

BDNs are mainly used to assess which management option has the highest benefit at 

the lowest monetary costs. Here, the idea was to conduct a cost-benefit analysis for 

plant species.  

 

4.3.1.1 Bayesian Decision Network “Dust” 

The Dust BDN aims at identifying which peri-urban plant species is most suitable for 

dust weather mitigation (= utility) while needing the least irrigation (= costs). 

Therefore, the root node “Plant species in peri-urban area” is used as decision node 

and the plant species can be seen as management options. A directed link points from 

the decision node to the utility node for costs (Figure 31). For each plant species a 

value between -1 and 0 was entered in the utility table. As expert group A, B, and C 

assigned the minimum (0 = lowest need) and maximum (1 = highest need) to the same 

peri-urban plant species, the weighted average values could easily be turned into 

negative values and used as input for the utility node “Irrigation needs (= costs)”. Only 

for five plant species the irrigation needs were elicited twice and therefore averaged 

(see Table D - 7 and Table D - 8).  

 

 
Figure 31: Bayesian Decision Network “Dust”. 

Irrigation needs (=costs)

Plant species in peri-urban area

Ailanthus altissima (Mill.)...
Elaeagnus augustifolia L.
Juglans regia L.
Lawn
Malus sieversii (Ledeb.) ...
Morus alba L.
Platanus orientalis L. 
Populus alba L.
Populus euphratica Olivier
Tamarix ramosissima L...
Ulmus pumila L. 

0.27000
0.87000
0.38000
-0.5000
0.20000
0.62000
0.26000
0.41000
0.91000
1.00000
0.99000

▲ Plant-specific dust filter 

low
medium
high

9.09
27.3
63.6

1.55 ± 0.66

● Plant-specific dust weather mitigation 

low
medium
high

   0
18.2
81.8

0.769 ± 0.16

Dust weather mitigation (= utility)

▲ Plant-specific wind protection

low
medium
high

9.09
36.4
54.5

1.45 ± 0.66

▲ Plant-specific soil protection

low
medium
high

   0
45.5
54.5

1.55 ± 0.5
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Another link points from the leaf node “Plant-specific dust weather mitigation” to the 

utility node for benefits. For each state of the leaf node a numerical value between 0 

and +1 was entered in the table of “Dust weather mitigation (= utility)”: the minimum 

(0) was assigned to “low”, the maximum (+1) to “high”, and the mean value 0.5 to 

“medium”.  

For the expert-based nodes (▲), the weighted average of the experts’ estimates was 

used. However, the conversion into conditional probability values was changed to 

calibrate the BDN in a way that the most effective plant species reached 100% “high” 

plant-specific dust weather mitigation and therefore the highest utility. The new 

conversion table (Table 21) leads to deterministic CPTs which ensure that the highest 

utility (+1) is put on a par with the highest costs (-1). The leaf node (●) uses the same 

equation as the ESS BN which equally weights its three parent nodes. 

Table 21: Bayesian Decision Network conversion table for values between 0-3 for 

nodes with three states. 

 low (0-1) medium (1.1-2) high (2.1-3) 

0-1.0 100 0 0 

1.1-2.0 0 100 0 

2.1-3 0 0 100 

 

 
Figure 32: Results of the Bayesian Decision Network “Dust”. 

The green bars represent the utility (0 to 1), the red bars the costs (0 to -1), and the graph 

shows the total expected utility for 11 peri-urban plant species. 
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The values in the decision node show the total expected utility for each state. As Netica 

does not change the order of the states according to their net benefits, the results were 

presented to the WS participants in three forms: (1) Print-outs of both BDNs, (2) bar 

charts (Figure 32), and (3) simple rankings.  

 

4.3.1.2 Bayesian Decision Network “Shade” 

The Shade BDN compares ten urban plant species in their ability to provide shade 

(= utility) and their irrigation needs (= costs) (Figure 33). The Heat BDN was 

developed in a similar way as the Dust BDN – with the same conversion table and the 

same values in the table of “Plant-specific shade (= utility)”. Only the experts’ 

estimates on urban irrigation needs could not be directly entered into the utility table 

of “Irrigation needs (= costs)”. When the experts’ estimates on urban irrigation needs 

were elicited at WS 2, the table still included “lawn” due to the cooling effect of 

evapotranspiration. After the variable “Evapotranspiration” had not been transferred 

to the ESS BN, there was no urban plant species with maximum irrigation needs (1) 

left. Therefore, the values for the utility node “Irrigation needs (= costs)” needed to be 

standardized (see Table D - 9 and Table D - 10 in Appendix D).  

 

  

 
Figure 33: Bayesian Decision Network “Shade”. 

Plant species in urban area

Fraxinus sogdiana Bunge. 
Juglans regia L.
Morus alba L.
Platanus orientalis L. 
Populus alba L.
Robinia pseudoacacia L. 
Salix alba L. 
Sophora japonica L. 
Ulmus pumila L. 
Zizyphus jujuba Mill. 

0.31000
0.23000
0.53000
0.08999
0.27000
0.35000

      0
-0.1700
1.00000
-0.1300

▲ Plant-specific shade

low
medium
high

   0
20.0
80.0

Irrigation needs (= costs)

Plant-specific shade (= utility)
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4.3.2. Bayesian Network application during expert workshop 3 

WS 3 took place in Urumqi on 11th March 2014 and was titled “Sino-German 

Workshop on Ecosystem Services of Urban and Peri-urban Forests in Oasis Cities of 

Xinjiang: The role of forests in relieving dust & urban heat” (Table C - 3). The aim of 

WS 3 was to first make the participants acquainted with the BN software Netica in 

order to enable them to use and evaluate the final ESS BN.  

 

As only four of the seven participants attended either WS 1 or WS 2, the workshop 

started with an introduction to the SuMaRiO project and a thorough introduction to 

BN modeling during which the experts had to do little exercises with small example 

BNs in Netica’s limited mode. After they had become familiar with Netica’s most 

important functionalities, the ESS BN was presented. In groups of 2-3 experts, they 

were asked to compare single plant species and to find good combinations of plant 

species that provided “high” levels of ecosystem services while having “low” or “very 

low” irrigation needs (Figure 34). After 10-15 minutes, the BDN method and the results 

of the two BDNs were introduced to the participants. After the participants received 

print-outs of the BDNs and the resultant rankings, they again worked with Netica for 

another 15-20 minutes. The groups took notes and discussed the outcomes among as 

well as between the small groups.  

In the retrospect, the documentation of results could have been improved. If each group 

would have written on cards (1) which combination of plant species they have chosen 

(by manually changing the tables of the root nodes) and (2) how the probability 

distributions in the leaf nodes changed, overlaps could have been prevented. Without 

such documentation, groups chose and tested very similar combinations. A collection 

of results on a pin board could also have served as basis for a final group discussion. 

However, such an improved documentation and discussion of results would have 

required more time.   

 
Figure 34: Bayesian Network application during WS 3, Urumqi, 11th March 2014. 
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4.4. Model evaluation 

The expert-based BN was evaluated in different ways. This chapter first presents how 

model sensitivity was analyzed with conventional sensitivity analysis tools and newly 

developed methods which specifically address the conversion into conditional 

probability values (Chapter 4.4.1). Then, it summarizes how participants of WS 3 

evaluated the usefulness of the model output for local vegetation management and the 

BN method for environmental management in general (Chapter 4.4.2). 

 

4.4.1. Sensitivity analyses 

The model sensitivity was tested in three different ways. First, the sensitivity to 

findings was analyzed. Then, the sensitivity of the model to changes in the conversion 

method was tested. In absence of validation data, the sensitivity of the output variables 

to input from expert groups A, B, and C was finally compared.  

 

4.4.1.1 Sensitivity to findings 

To analyze the sensitivity of a query node to findings in other nodes, Netica uses 

variance reduction calculations for continuous variables and entropy reduction 

calculations for discrete variables (Chen and Pollino, 2012). With this, it is possible to 

generate a ranking that shows how much the query node is influenced by the other 

nodes. The values for variance reduction and entropy reduction can range between 0 

which means the variable has no influence on the query node to the value of full 

variance or full entropy of the query node (see Chapter 2.4.2).  

Here, two child nodes were selected to check whether the ESS BN as well as the inbuilt 

equations functioned well. Three rankings were created for the continuous variables 

“Ecosystem services”, and “Dust weather mitigation by plants”. The node “Ecosystem 

services” is more sensitive to findings at “Shade by urban vegetation” than by “Dust 

weather mitigation by vegetation” (Figure 35). This seems surprising at first as the 

CPT of “Ecosystem services” was generated with the help of an equation that equally 

weighted the parent nodes. This shows the difference between the strength of causal 

relationships between variables (represented by the CPTs) and sensitivity between 

variables.  

The sensitivity analysis reveals how sensitive the query node reacts to changes in other 

nodes given the findings entered at the time. Here, the probability distribution of 

“Shade by urban vegetation” is rather flat (see Figure 30). This is why alterations in 

its probability distribution, e.g. to 100% low or 100% high, would lead to more distinct 
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changes in the probability distribution of “Ecosystem services” than changes in the 

other direct parent node.  

 

Sensitivity to findings can also be used to check if parts of the network which should 

be independent of each other are successfully d-separated by the network structure. 

The fact that “Dust weather mitigation by plants” solely reacts to changes in nodes 

related to peri-urban vegetation (Figure 36, at the top) highlights that the two parts of 

the ESS BN – dust weather mitigation by peri-urban vegetation and the provision of 

shade by urban vegetation – do not influence each other. In addition, sensitivity to 

findings was used to check whether the inbuilt equations work as they are supposed 

to. For example, when Ailanthus altissima (Mill.) Swingle is selected as state of the 

node “Peri-urban plants”, the three child nodes have exactly the same probability 

distributions (according to the weighted average of the experts’ estimates) and 

therefore exactly the same influence on their child node (Figure 36, at the bottom). 

These analyses confirmed that the BN performs exactly the way it should. With a high 

number of equations in place, the selection of states in the four root nodes highly 

influences the resultant rankings. The sensitivity of each query node would have 

looked differently if the PTs were changed before Netica performs the variance 

reduction calculations.  

 

 
Figure 35: Sensitivity analysis results for “Ecosystem services”. 

Given the same probability tables (PTs) as in Figure 30. 
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4.4.1.2 Sensitivity to conversion tables  

The final ESS BN consists of 19 nodes with 4 unconditional probability tables (PTs) 

and 15 conditional probability tables (CPTs). Nine of these CPTs are deterministic due 

to the use of six equations (●) and the addition of three deterministic nodes to realize 

the equations (see Chapter 4.2.3.2). The probability distributions of these nine nodes 

 

 
Figure 36: Sensitivity analysis results for “Dust weather mitigation by plants”. 

At the top, given the same probability tables (PTs) as in Figure 30; at the bottom, given 

the root node “Plant species in peri-urban area” is in state Ailanthus altissima (Mill.) 

Swingle (100%) and other probability tables (PTs) as in Figure 30. 
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in the lower part of the BN are determined by their CPTs which result from in-built 

equations. The six remaining CPTs (▲) are probabilistic and result from the 

conditional probability values conversion method introduced in Chapter 4.2.3.1. As 

this high number of deterministic CPTs impedes analyzing the sensitivity to 

parameters, the sensitivity of the leaf nodes to changes in the conversion is analyzed 

instead. 

Converting the weighted average values of experts’ estimates into conditional 

probability values gives a lot of responsibility or power back to the modeler. Whether 

values are converted into distinct (or “sharp”) probability distributions such as 90:10 

or 80:20 or very flat distributions such as 60:40 or 50:50 can make all the difference. 

This is why, four different conversion tables were created for values between 0-1 and 

values between 0-3 (Table 22; see also Table E - 1 and Table E - 2 in Appendix E). 

The conditioning or auxiliary node “Confidence in experts’ estimates” was added to 

give the model user the possibility to decide which conversion table should be used 

(Figure 37). The model user can choose between the states “very low”, “rather low”, 

“rather high”, and “very high” according to his or her confidence in the experts’ 

estimates.  

Table 22: Conversion tables for values between 0-3 for nodes with 3 states for 

four levels of confidence in experts’ estimates. 
very unconfident low (0-1) medium (1.1-2) high (2.1-3) 

0-1 50 30 20 
1.1-2 25 50 25 

2.1-3 20 30 50 
rather unconfident low (0-1) medium (1.1-2) high (2.1-3) 

0-1 60 25 15 
1.1-2 20 60 20 

2.1-3 15 25 60 
rather confident low (0-1) medium (1.1-2) high (2.1-3) 

0-1 70 20 10 
1.1-2 15 70 15 

2.1-3 10 20 70 
very confident low (0-1) medium (1.1-2) high (2.1-3) 

0-1 80 15 5 
1.1-2 10 80 10 

2.1-3 5 15 80 

 

The less confident the model user is in the experts’ estimates, the wider is the 

probability distributed over the output states. For example, if the “Confidence in 

experts’ estimates” is “very low”, the BN uses the respective “very unconfident” 

conversion tables for all expert-based CPTs. The “very unconfident” conversion table 

for values between 0.41-0.5 distributes only 50% in the “medium” state, whereas the 

“very confident” conversion table distributes 80% in the “medium” state (see Figure 

38). 
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Figure 37: Final ESS BN with auxiliary node “Confidence in experts’ estimates”. 

Given the same probability tables (PTs) as in Figure 30. 
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The output variable “Ecosystem services” is very sensitive to changes in this 

confidence-based conversion method. With increasing confidence in the experts’ 

estimates, the probability of “high” “Ecosystem services” provided by certain urban 

and peri-urban plant species increases from 59.6% to 87.3% (Figure 39). In contrast, 

the probability of “very low” “Plant-specific irrigation needs” only increases from 

24% to 32.2% (see Figure 40). This is related to the fact that the probability distribution 

of “Plant-specific irrigation needs” for the selected peri-urban plants was widely 

distributed – no matter which conversion table was used.  

The extra node “Confidence in experts’ estimates” with its six links to the expert-based 

nodes (▲) leads to an increase of probability values in the ESS BN. Whereas the final 

ESS BN has 600 conditional and unconditional probability values; the ESS BN with 

the extra node has 1306 probability values. For example, after the inclusion of the extra 

node the CPTs of “Plant-specific soil protection”, “Plant-specific wind protection”, 

and “Plant-specific dust filter” has 3x44 conditional probability values each.  

 

 

 
Figure 38: Probability distributions for values between 0.41-0.5 based on four 

conversion tables for values between 0-1 for nodes with 5 states. 

The columns represent the four conversion tables (“very unconfident”, “rather 

unconfident”, “rather confident”, “very confident”) (see Table E - 1). 
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Confidence Conversion table ESS 

 
 

very 
uncon-
fident 

low 
(0-1) 

medium 
(1.1-2) 

high 
(2.1-3) 

0-1 50 30 20 

1.1-2 25 50 25 

2.1-3 20 30 50 

rather 
uncon-
fident 

low  
(0-1) 

medium  
(1.1-2) 

high  
(2.1-3) 

0-1 60 25 15 

1.1-2 20 60 20 

2.1-3 15 25 60 

rather 
confi-
dent 

low  
(0-1) 

medium  
(1.1-2) 

high  
(2.1-3) 

0-1 70 20 10 

1.1-2 15 70 15 

2.1-3 10 20 70 

very 
confi-
dent 

low  
(0-1) 

medium  
(1.1-2) 

high  
(2.1-3) 

0-1 80 15 5 

1.1-2 10 80 10 

2.1-3 5 15 80 

 

Figure 39: Sensitivity of “Ecosystem Services” to different conversion tables. 

Given the same probability tables (PTs) as in Figure 30. 

 

Due to time constraints, the ESS BN with the additional node “Confidence in experts’ 

estimates” could not be presented during the final expert workshop. For the BN that 

was presented during WS 3 (see Figure 28), the “very confident” conversion tables 

were used (see Table 22).  

  

Confidence in experts' estimates

very low
rather low
rather high
very high

 100
   0
   0
   0

Confidence in experts' estimates

very low
rather low
rather high
very high

   0
 100

   0
   0

Confidence in experts' estimates

very low
rather low
rather high
very high

   0
   0

 100
   0

Confidence in experts' estimates

very low
rather low
rather high
very high

   0
   0
   0

 100

  

● Ecosystem services

low
medium
high

3.11
15.0
81.9

0.759 ± 0.19

● Ecosystem services

low
medium
high

6.00
20.4
73.6

0.722 ± 0.22

● Ecosystem services

low
medium
high

9.76
25.1
65.1

0.681 ± 0.24

● Ecosystem services

low
medium
high

14.4
29.0
56.6

0.637 ± 0.26
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Confidence  Conversion table Plant specific peri-

urban irrigation 

needs 

 

 

very 
unconfi-

dent 

very 
low 

(0-0.2) 

low 
(0.21-

0.4) 

medium 
(0.41-0.6) 

high 
(0.61-

0.8) 

very 
high 

(0.81-
1) 

0-0.1 60 40 0 0 0 

0.11-0.2 50 30 20 0 0 

0.21-0.3 30 50 20 0 0 

0.31-0.4 20 50 30 0 0 

0.41-0.5 0 30 50 20 0 

0.51-0.6 0 20 50 30 0 

0.61-0.7 0 0 30 50 20 

0.71-0.8 0 0 20 50 30 

0.81-0.9 0 0 20 30 50 

0.91-1 0 0 0 40 60 

 

 

 

very 

confi-
dent 

very 

low 
(0-0.2) 

low 

(0.21-
0.4) 

medium 

(0.41-0.6) 

high 

(0.61-
0.8) 

very 

high 
(0.81-

1) 

0-0.1 90 10 0 0 0 

0.11-0.2 80 15 5 0 0 

0.21-0.3 15 80 5 0 0 

0.31-0.4 5 80 15 0 0 

0.41-0.5 0 15 80 5 0 

0.51-0.6 0 5 80 15 0 

0.61-0.7 0 0 15 80 5 

0.71-0.8 0 0 5 80 15 

0.81-0.9 0 0 5 15 80 

0.91-1 0 0 0 10 90 

 

Figure 40: Sensitivity of “Plant-specific irrigation needs” to different conversion tables. 

Given the same probability tables (PTs) as in Figure 30. 

 

4.4.1.3 Sensitivity to expert groups 

Another recommendation given during the research stay in Australia was to compare 

the estimates of the different expert groups. As the estimates of expert groups A, B, 

and C were the only input data, the results of the ESS BN could be easily contested. 

However, showing that different expert groups come to very similar outcomes could 

improve the reliability or explanatory power of the ESS BN. Therefore the 

conditioning or auxiliary node “Expert groups” was added to the network structure 

(see Figure 42). Exactly as the node “Confidence in experts’ estimates” (see 

Chapter 4.4.1.2), the node has four states and is linked to the six expert-based nodes 

(▲). This extra node also increases the number of probability values from 600 to 1306.  

 

Estimates and confidence of expert groups  

Expert group A mainly used the medium categories (+ and ++), expert group B 

straightforwardly used the highest category (+++), and expert C tended to use the 

medium category (++) to rate the plant-species (Figure 41). While evaluating the 

11 peri-urban and 10 urban plant species in their ability to stabilize the soil, to protect 

Confidence in experts' estimates

very low
rather low
rather high
very high

 100
   0
   0
   0

Confidence in experts' estimates

very low
rather low
rather high
very high

   0
   0
   0

 100

▲ Plant-specific irrigation needs

very low
low
medium
high
very high

24.0
25.0
20.9
20.7
9.40

1.67 ± 1.3

  

▲ Plant-specific irrigation needs

very low
low
medium
high
very high

32.2
16.8
19.9
24.9
6.25

1.56 ± 1.3
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from wind, to filter dust and to provide shade, expert group B assigned the highest 

ratings. In average, they assessed the ability of all plants to perform these plant-specific 

services between “high” (++ or 2) and “very high” (+++ or 3) (see Figure 43).  

Despite the different use of the categories between the expert groups, the highest and 

lowest values were assigned to the same plant species. For example, all expert groups 

identified Tamarix ramosissima Ledeb. as peri-urban plant with the lowest and lawn 

as peri-urban plant with the highest irrigation need. In the same way, the node “Dust 

weather mitigation by plants” revealed that the peri-urban plants Populus euphratica 

OLIVIER and Elaeagnus augustifolia L. were most suitable to mitigate dust weather 

according to all experts’ assessment. The variations in confidence lead to different 

probability distributions in the node “Dust weather mitigation by plants” but the 

estimates of each group identified the same two plant species to be most effective13. 

 

                                              
13 Expert groups A and B identified more than two plant species leading to the highest “Dust weather mitigation 

by plants”.  

 
Figure 41: Used categories (-, +, ++, +++) to express the plant-specific services for 

all plant species by expert group. 

 

 

Expert group A Expert group B

Expert C

-

+

++

+++
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Figure 42: Final ESS BN with auxiliary node “Expert groups”. 

Given the same probability tables (PTs) as in Figure 30. 
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The expert groups also agreed on “Plant-specific soil protection” of peri-urban plant 

species. The elicited ratings on a scale of – to +++ (0-3) do not differ by more than one 

unit for each plant species. This clearly shows which plant species are perceived to be 

most and least suitable to stabilize the soil (Figure 44). All expert groups stated that 

Populus alba L. has a “high” (++) capacity to stabilize the soil. Only in this case, the 

weighted average is the same as the average. For all other estimates, the weighted 

average is slightly above the average. This deviation is mainly influenced by expert 

group B which used the highest categories and had the highest confidence in all of 

their estimates. Expert groups A was “rather confident” and expert group B was “very 

confident” in all of their estimates; only expert C differentiated the confidence by 

reflecting on experience in each field (see Table 17). These confidence levels 

determined which conversion tables were used to generate the CPTs.  

All estimates of expert group A were converted with the “rather confident” conversion 

table, all estimates of expert group B were converted with the “very confident” 

conversion tables, and the estimates of expert C were either converted with “rather 

confident” or “very confident” conversion tables consequently. To make different 

levels of confidence transparent, the node “Confidence of expert group” was linked to 

the node “Expert groups” in the ESS BN (Figure 45).  

 
Figure 43: Average values for all plant species by expert group. 
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Figure 45: Extra node “Confidence of expert groups” added to the final ESS BN 

with the auxiliary node “Expert groups” (see Figure 42). 

Expert groups

A
B
C
weighted average

 100
   0
   0
   0

Confidence of expert group

very unconfident
unconfident
confident
very confident

   0
   0

 100
   0

 
Figure 44: Values for “Plant-specific soil protection” of 11 peri-urban plants by 

expert group. 

** and *** indicate confidence of expert groups (see Table 17). 
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Comparison of BN outputs by expert groups 

Due to the differences in confidence and the related use of different conversion tables, 

the probability distributions in the output variable “Ecosystem Services” differs 

between the expert groups. With the same selection of states in the root nodes, the 

estimates of expert group A and expert C lead to wide probability distributions over 

all states, whereas the estimates of expert group B lead to a high probability in one 

state (“high”, 83.4%) (Figure 46). 

The estimates of expert group A result in the highest “Ecosystem services” when 

Morus alba L. is selected as urban and Populus euphratica OLIVIER as peri-urban plant 

species (82.8%). According to expert group B, Fraxinus sogdiana Bunge. as well as 

seven other urban plant species and Populus euphratica OLIVIER as peri-urban plant 

species lead to the highest “Ecosystem services” (90.7%). The estimates of Expert C 

leads to the highest score if Platanus orientalis L. or Populus alba L. are selected as 

urban and Populus alba L. as peri-urban plant species (83.3%). 

 

  

Expert group Confidence of expert 

group (in average) 

Ecosystem services 

 

Figure 46: Probability distribution of “Ecosystem Services” and average 

confidence by expert groups. 

   

   

   

Expert groups

A
B
C
weighted average

 100
   0
   0
   0

Confidence of expert group

very unconfident
unconfident
confident
very confident

   0
   0

 100
   0

● Ecosystem services

low
medium
high

27.2
34.7
38.0

0.532 ± 0.28

Expert groups

A
B
C
weighted average

   0
 100

   0
   0

Confidence of expert group

very unconfident
unconfident
confident
very confident

   0
   0
   0

 100

● Ecosystem services

low
medium
high

2.87
13.7
83.4

0.765 ± 0.18

Expert groups

A
B
C
weighted average

   0
   0

 100
   0

Confidence of expert group

very unconfident
unconfident
confident
very confident

   0
   0

40.0
60.0

● Ecosystem services

low
medium
high

23.3
37.6
39.1

0.549 ± 0.27
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4.4.2. Evaluation by experts  

During WS 3, the participants were asked to evaluate the usefulness of BN and BDN 

results and the applicability of BNs in general (see Figure C - 4 in Appendix C). With 

regard to the BDNs, five out of seven participants stated that the ranking of plant 

species (total expected utility) was “very useful” for local urban landscape planning 

and management. Most participants found it “much easier” to use the ESS BNs after 

they had been provided with the results from the BDNs (Figure 47). Here, a common 

mistake in questionnaire design was made. The questionnaire should have asked how 

easy it was for them to use the BN – both with and without the BDN results provided.  

With regard to the ESS BN, again five out of seven thought that the BN output was 

“very useful” for local urban landscape planning and management. Four participants 

stated that their system understanding of the problem fields improved “very much” by 

applying BNs during the workshop (Figure 48). 

Five out of seven participants agreed that the BN method had a “very high” potential 

to be used more often for environmental management in the future (Figure 49). Most 

of the participants identified “improvement of systems understanding”, their potential 

for the “visualization of complex problems” and the “possibility to integrate experts’ 

knowledge” as benefits of BN modeling. Two participants viewed “difficulties in 

understanding conditional probabilities” and “difficulties with model output 

(probability distribution)” as challenges of BN modeling. One participant added 

another challenge in the empty field: “The reliability of the input data”.  

 
Figure 47: Results of the Bayesian Decision Network evaluation (n = 7). 

 
Figure 48: Results of the ESS BN evaluation (n = 7). 
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4.5. Bayesian Networks training course in Urumqi 

To introduce the BN method to interested local students and researchers, a 4-hour 

training course on BN modeling was organized in Urumqi on 11th March 2013. As the 

course took place on the same day and in the same venue as WS 3, three WS 

participants spontaneously decided to attend the BN training as well. 

The BN training course was very successful as it attracted 19 participants from four 

different universities and research institutes in Urumqi (Figure 50). Among the 

participants were three post-doctoral researchers, 5 Ph.D. students and 11 Master 

students. The idea to strengthen local research capacities with a BN training course 

was highly appreciated by our local project partner.  

 

 
Figure 49: Results of the evaluation of the BN method in general (n = 7). 

 
Figure 50: Bayesian Network training course in Urumqi, 11th March 2013. 
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4.6. Discussion 

From a methodological perspective, the case study in Xinjiang was used to analyze 

how parameters of expert-based BN models can be improved (RQ 1). To improve the 

efficiency of BN modeling processes for expert-based models (RQ 1.1), a new method 

for the model parameterization with expert knowledge was developed (see 

Chapter 4.2.3.1). To increase the reliability of expert-based BNs (RQ 1.2), new 

methods for the evaluation of expert-based parameters were applied (see 

Chapter 4.4.1.2 and Chapter 4.4.1.3). This chapter discusses different elicitation 

formats (Chapter 4.6.1), questions the procedure of combining expert beliefs 

(Chapter 4.6.2), and reflects on the combined application of Bayesian Networks (BNs) 

and Bayesian Decision Networks (BDNs) (Chapter 4.6.3). 

 

4.6.1. Ease of expert elicitation and conversion of expert knowledge 

Conditional probability values can be elicited directly or derived from other elicitation 

formats. The direct elicitation of conditional probability values is demanding and very 

time-consuming. One strategy to ease the elicitation is to reduce the number of values 

that need to be directly elicited with the structured elicitation and interpolation method 

devised by Cain (2001). Another strategy is to elicit expert knowledge in other formats, 

e.g. to derive conditional probability values from linguistic expressions in reports or 

interviews (Moglia et al., 2012), to ask experts for frequencies (Borsuk et al., 2001), 

to ask experts for unconditional probability tables and weights for parent nodes (Baran 

et al., 2006; Baynes et al., 2011) instead of eliciting probabilities or percentage values. 

Independent from the elicitation format, a high ratio of assistants to experts can make 

the elicitation much easier for experts (Baynes et al., 2011; Catenacci and Giupponi, 

2013). 

It is rarely evaluated to which degree experts feel comfortable with getting involved 

in modeling processes. Drew and Collazo (2012) revealed that experts were most 

comfortable when they solely had to identify variables, already less comfortable when 

they had to rank these variables, and least comfortable when they were asked to 

provide probability values. In the case study Northwest China, the experts who 

attended WS 2 were asked which of the three elicitation formats used (0-1,– to +++, 

and conditional probability values) they preferred. Half of the experts favored to 

provide estimates in numerical values and the other half preferred to use the scale from 

– to +++. As expected, no one favored filling in conditional probability tables. The 

low number of experts involved in both case studies, e.g. four experts in the work of 

Drew and Collazo (2012), makes it difficult to generalize these results. 
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With extremely short workshop durations and only few workshop assistants during 

WS 2, it was necessary to establish a novel elicitation format that was easily 

understandable and foremost time-efficient. The idea to elicit ratings on a scale of – to 

+++ and numerical values (0-1) suited this purpose (see Chapter 4.2.3.1). The 

categories are similar to elicitation formats used in related modeling approaches. For 

example, Varis et al. (2012) used assigned numerical values (-1 to +1) to describe the 

strengths between variables within a matrix representation of the model structure and 

Martin et al. (2005) elicited positive (+1), zero (0), and negative scores (-1) as input 

for their statistical model.  

The review of 50 expert-based BN applications revealed that only two case studies 

elicited the preferences and estimates from experts and stakeholders using numerical 

values between -1 to 1 (Pellikka et al., 2005) and -2 to 2 (Newton et al., 2007). 

However, in these applications the numerical values represented the states of the child 

node. By selecting one of the numerical values, the respective child node gets assigned 

100%. In contrast, the conversion method introduced in this thesis allows the 

translation of each numerical value in a probability distribution – with the possibility 

to convert single values into probability distributions across several states. This has 

the advantage that few elicited values can be used to generate a large number of 

conditional probability values. In a first step, probability ranges (“sub-ranges”) were 

defined for the expert-based parameters. For this, the numerical values (0-1) were 

more suitable than the ratings (–, +, ++, +++). As the experts could express their belief 

in any value between 0-1, the nodes for “Irrigation needs” could easily have five states 

or even more. In contrast, the ratings could only be converted into probability 

distributions across three states. Otherwise the BN would suggest an accuracy that 

cannot be justified by the elicitation format. In a second step, single values were 

converted into conditional probability values. This clearly bears the risk of 

arbitrariness. To minimize this risk, the auxiliary node “Confidence in experts’ 

estimates” (see Chapter 4.4.1.2) can be used to decide whether the distributions of the 

expert-based parameters should be flat or distinct.  

There are many ways to improve expert-based parameters in BN models (RQ 1) but 

with regard to extremely short workshop durations (3hours, including translations) and 

no other chances to meet the experts for additional interviews, the combination of a 

simplified elicitation and the “outsourcing” of the conversion was very successful. It 

allowed the development of a fully functioning BN under data scarcity and time 

constraints. Applying these methods for the parameterization of BNs was presumably 

more time-efficient (RQ 1.1) than other indirect elicitation formats (although the 

duration of the elicitation was not explicitly mentioned in the cited publications). 

However, despite being time-efficient and less onerous, the novel elicitation and 

conversion method has its limitations. It can only be applied for nodes with one parent 

node and only to compare the states of the parent node, e.g. management options, with 
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each other. Therefore, this elicitation method is not necessarily a substitute for other 

elicitation formats but an addition for this particular case of parent-child node-

relationship.  

 

4.6.2. Combination and comparison of experts’ beliefs 

Expert beliefs from more than one expert can either be elicited separately (Catenacci 

and Giupponi, 2013) or in the form of consensual estimates reached through group 

discussion (Baran et al., 2006). The first alternative does not require the organizational 

challenge of convening all experts at one place and one point in time. The latter is 

known to improve the elicited estimates substantially (Burgman et al., 2011) and to 

support learning within the group. In the presented case study, it was impossible to 

invite all experts to WS 2. Therefore, expert beliefs of two small groups were elicited 

in a workshop setting and the estimates of another expert were elicited during an 

interview.  

The elicitation of several expert beliefs raises the question of how to combine these 

estimates. Whereas Martin et al. (2005) calculated an unweighted average; Pollino et 

al. (2007) weighted the elicited conditional probability values according to the experts’ 

own confidence in their estimates. Drew and Perera (2012) criticized the self-

assessment of expertise because “expert self-confidence can vary by gender, age and 

personality type (…)” (Drew and Perera, 2012: 234). They suggested assessing the 

experts’ expertise by asking where, when, and how the experts acquired their 

knowledge. This can be seen as a call for conducting not only stakeholder analyses but 

also expert analyses at the very beginning of research projects. An indirect self-

assessment, e.g. by asking experts to only fill in conditional probability values they 

felt “comfortable” with, is the most elegant solution. However, this is only possible if 

enough experts are involved (e.g. 19 experts as in Catenacci and Giupponi, 2013). 

In this case study, the calculation of weighted averages based on self-assessed 

confidence turned out to be problematic, too. The expert group which gave rather low 

ratings had the least confidence (Expert group A), whereas the expert group which 

assigned the highest ratings was most confident (Expert group B). Although the expert 

groups shared the same opinion on most plant species, the different use of scale led to 

different probability distributions in the leaf nodes – and the calculation of weighted 

averages was dominated by the most confident group. However, the self-assessment 

of confidence gives experts the opportunity to formulate the degree to which they 

regard their knowledge as certain. It is possible that experts appreciate the possibility 

to dilute their estimates; especially if they feel uncomfortable with providing 

probability values (see Chapter 4.6.1). Here, the final solution was to use the self-

assessed confidence for the selection of four different conversion tables (see 
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Chapter 4.4.1.2) and to give different expert opinions as well as differing levels of 

confidence transparent with two auxiliary variables: “Expert groups” and “Confidence 

of expert groups”. Such a transparency helps to improve the reliability of expert-based 

BNs (RQ 1.2).  

Most experts involved were very confident, maybe overconfident, in their own 

estimates but did not expect other experts to have equal expertise. In their perspective, 

calculating weighted average values “spoiled” their estimates. Therefore, the BN with 

the “Expert group” node (see Figure 42) was shown during a personal interview with 

expert C and during WS 3. After having conducted this case study, the author 

recommends using BNs to compare expert beliefs rather than using combined expert 

beliefs in a BN. A BN that shows all (conflicting) expert beliefs with an auxiliary node 

is probably more feasible to facilitate group discussions than averaged values. In 

addition, a BN that makes differing expert beliefs transparent also conveys the insight 

that the explanatory power of the model is limited by data and knowledge uncertainty 

and should not be interpreted as “absolute truth”. 

 

4.6.3. Bayesian Networks and Bayesian Decision Networks 

The two small Bayesian Decision Networks (BDNs) were developed as add-ons for 

the ESS BN (see Chapter 4.3.1). The rankings from the BDNs served as orientation 

for the experts who applied the ESS BN during WS 3. This might have enhanced the 

user-friendliness (RQ 2) but also entailed difficulties. There are convincing arguments 

for and against applying BDNs (RQ 2.1). On the one side, the total expected utility 

values provided by the decision node were interesting for the workshop participants 

(see Chapter 4.4.2). On the other side, there is a high risk that these values are accepted 

as an “ultimate answer”; this is the reason why Cain et al. (2003) decided against 

applying BDNs in their case study. To avoid this, the BDN results were used in 

combination with a BN. Due to the broad labels used as states in the ESS BN, its model 

output is automatically understood as trends or tendencies and not absolute numbers.  

This case study shows that BDNs can easily be adapted to various problem fields, even 

if no monetary costs are involved. For future combined applications of BNs and BDNs, 

the author recommends an extended introduction to (deterministic) BDN modeling. In 

alignment with Chapter 4.6.2, it would be useful to develop various BDNs for the 

estimates of each expert group instead of only developing one BDN based on weighted 

average values. Having several rankings instead of a single “answer” could encourage 

the BN model user to iteratively change the probability distribution across different 

states in the root nodes of the BN to find an optimal combination.  
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4.7. Conclusion  

Drew and Perera (2012) stipulated that the performance of expert-based models should 

not be compared with data-based models because in most cases expert knowledge 

substitutes for data that is not available. Therefore, having an expert-based model 

should rather be compared to not having a model. In this case study, it was the choice 

between developing an expert-based BN with a high number of deterministic CPTs 

and building no model at all.  

One could question the necessity of a model that solely compares plant species with 

each other. Why not ask experts directly which plant species are most suitable to 

mitigate dust weather and provide shade? For simple ratings of the plant-species, each 

expert might have used different selection criteria. However, by eliciting their 

estimates on “Plant-specific soil protection”, “Plant-specific wind protection”, and 

“Plant-specific dust filter”, the experts could reflect on each parameter separately. The 

added value of the BN was that the experts had a visual causal network as a basis for 

discussions and that the problem field was broken down into parameters which made 

it easier to understand and quantify complex cause-effect-relationships. 

The truth be told, it is very unlikely that the ESS BN will ever be used again. There 

are several reasons for this appraisal. For example, no future model user was defined 

at the very beginning of the research project (with interest and financial capacities to 

understand and maintain the BN). In addition, the BN modeling process was not an 

ideal “participatory” process in which the participants get to know each other, start to 

trust each other and develop a sense of ownership towards the modeling process and 

the model.  

With regard to expert-based Bayesian Network modeling, the following conclusions 

can be drawn from this case study:  

(1) Elicitation and conversion method: Alternative elicitation formats, such as 0-1 

and – to +++, can easily be used to elicit expert’s estimates on the impact of 

different management options (or states) of single parent nodes. The elicited 

estimates can subsequently be converted into conditional probability tables. 

These alternative elicitation formats were less time-consuming, less fault-

prone, and preferred by the experts in comparison to the elicitation of 

conditional probabilities. The elicitation of numerical values (0-1) allows the 

conversion into conditional probability values for a higher number of states than 

fixed elicitation categories (–, +, ++, +++).  

(2) Conflicting estimates and different levels of confidence: Auxiliary variables 

with states that represent expert groups separately are more suitable to compare 

and discuss conflicting estimates than using the average values of diverging 

expert beliefs. Auxiliary variables also prove to be useful to show the varying 
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levels of confidence of different expert groups. This made the uncertainty of 

the input data, here expert knowledge, very transparent.  

(3) Bayesian Decision Networks: The cost-benefit analysis performed by Bayesian 

Decision Networks can be applied if no monetary costs are involved. 

Interpreting ecosystem services as “benefits” and irrigation needs as “costs” 

prove to be very useful for the comparison of different plant species in their 

ability to mitigate dust weather and to provide shade in oasis towns in NW 

China. 

Apart from new methods of expert elicitation and conversion of estimates into 

probability values, what has been learnt in the course of this case study? Due to the 

ever-changing composition of workshop participants, the modeling process focused 

on knowledge elicitation of each workshop group and knowledge exchange between 

the workshop groups. The workshop participants learnt from each other by exchanging 

their domain knowledge in a very structured way. The expert workshops offered a 

platform to discuss the role of urban and peri-urban vegetation in mitigating dust 

weather and urban heat stress as well as the provision of ecosystem services in general. 

Local researchers learnt about BN modeling during the training course in Urumqi in 

2014. For the author, the most valuable lessons were taught by the research conditions 

in Xinjiang; to stay calm in case of unexpected complications, to react with serenity, 

and to make the best out of it. In the end, great teamwork and good relationships to 

local partners are the prerequisites to successfully resolve such a case study. 
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5. Case Study Australia: Ecosystem services of environmental 
flows in the Murray-Darling Basin14 

5.1. Introduction 

Environmental flows are defined as “quantity, timing, and quality of water flows 

required to sustain freshwater and estuarine ecosystems and the human livelihoods and 

well-being that depend on these ecosystems“ (Brisbane Declaration, 2007). This 

definition acknowledges not only the environment as a legitimate water user by itself 

but also emphasizes that human well-being depends on goods and services of healthy 

ecosystems. Much of the environmental flow research focuses on the linkages between 

environmental flows and ecosystem condition, e.g. environmental flow requirements 

and ecological responses to environmental flows (Arthington et al., 2006; Pahl-Wostl 

et al., 2013; Poff and Zimmerman, 2010). One approach that could be suitable to 

analyze the linkages between ecosystem condition and human well-being is the 

concept of ecosystem services.  

Ecosystem services (ESS) are broadly defined as benefits that people obtain from 

ecosystems (Millennium Ecosystem Assessment, 2005) and can be grouped into 

provisioning, regulating, cultural, and supporting services. Provisioning services are 

benefits from the provision of natural resources, such as food, freshwater and timber. 

Regulating services are benefits from the regulation of ecosystem processes, such as 

maintenance of hydrological regimes or regulation of local climate. Cultural services 

are recreational and spiritual benefits of intact ecosystems. Supporting services, such 

as nutrient cycling and soil formation, are necessary for the provision of all other 

ecosystem services.  

The Economics of Ecosystems and Biodiversity (TEEB) for water and wetlands report 

2013 also stipulated that water-related ESS should become an integral part of water 

resource management (Russi et al., 2013). The difficulty in modeling and managing 

ESS is the need to first assess and quantify them. In fact, the relationships between 

environmental flows, ecosystem conditions and ESS are highly uncertain and difficult 

to quantify (Pahl-Wostl et al., 2013). Probabilistic models, such as Bayesian Networks 

(BNs), provide the opportunity to explicitly express this uncertainty. Therefore BNs 

are increasingly used to model ESS (Landuyt et al., 2013) and to support 

environmental flow management (Shenton et al., 2014).  

This case study is the result of a three-month research stay in Australia. The task was 

to identify the broad range of services provided by ecosystems in the Murray-Darling 

                                              
14 Parts of this chapter, namely text passages of Chapter 5.1, are extracted from the author’s contributions to 

Frank et al. (2014b). 
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Basin (MDB), and to develop a BN that shows the links between environmental flows, 

the ecosystem condition and ESS.  

This chapter briefly introduces how environmental flows are managed in the MDB 

(Chapter 5.1.1) and which ESS are provided by some of the Basin’s Ramsar sites 

(Chapter 5.1.2). 

 

5.1.1. Environmental flow management in the Murray-Darling Basin 

The Murray-Darling Basin (MDB), named after the Murray River and the Darling 

River, comprises about one-seventh of Australia's land mass and lies in the four states 

of Queensland (QLD), New South Wales (NSW), Victoria (VIC), South Australia 

(SA), and the Australian Capital Territory (ACT) (Murray-Darling Basin Authority, 

n.d.).  

The Murray-Darling Basin Authority (MDBA), established by the Water Act 2007, is 

responsible for basin-wide water resources management and planning. With regard to 

managing environmental flows, the MDBA needs (1) to identify the environmental 

flow requirements of the Basin, and (2) to set sustainable diversion limits for the 

amount of water that can be taken for industry, agriculture and other consumptive 

water uses accordingly (Murray-Darling Basin Authority, 2011). These 

environmentally sustainable levels of take (ESLT) should leave enough water to the 

environment to sustain ecosystems and to ensure the provision of ESS. The Basin Plan 

2012 was passed to establish and legally enforce environmentally sustainable levels of 

take for each catchment and the whole Basin.  

The Basin Plan also aims at giving effect to international agreements such as the 

Convention on Wetlands or the Ramsar Convention (1971). This treaty calls for a 

“wise use” of all wetlands and requests the member countries to maintain the 

“ecological character” of Wetlands of International Importance, so-called Ramsar 

sites. By now, the definitions used for “wise use” and “ecological character” have been 

aligned with the more widely used terms of the ESS concept (Ramsar, 2005). 

Therefore, the ESS concept is widely used in Australia to manage environmental flows 

and to implement the Ramsar Convention.  

In 2012, the MDBA commissioned a research project on ecological and economic 

benefits of environmental flows in the Murray-Darling Basin (CSIRO, 2012). The 

“CSIRO Multiple Benefits of the Basin Plan Project” identified and quantified ESS 

expected to arise from recovering more water, namely 2800 GL/year, for the 

environment in the Basin. This short-term research project solely focused on 10 rather 

broad provisioning, regulating, and cultural services (CSIRO, 2012: 9).  
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Figure 51: Map of the Murray-Darling Basin and its Ramsar sites (Murray-Darling 
Basin Authority, n.d.). 
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5.1.2. Ecosystem services in the Murray-Darling Basin 

As the “Multiple Benefits” project analyzed a very limited number of ESS, the first 

task was to identify more Basin-specific ESS by reading through all available 

Ecological Character Descriptions (ECDs) of the Ramsar sites in the MDB. As the 

“ecological character” of Ramsar sites is defined as “the combination of ecosystem 

components, processes and services that characterize the wetland at any given point of 

time” (Ramsar, 2005), the ECDs provide a good overview of water-related and 

wetland ESS in the MDB.  

At that time, eleven of the 16 existing Ramsar sites in the MDB were described in 

ECDs. Ten of these ECDs used the ESS concept to describe the ecological character 

of the wetlands. Therefore, the ECDs of the ten Ramsar sites were screened for ESS 

to be included in the BN on ecosystem services in the Murray Darling Basin, the 

“MDB BN”. 

The ten ECDs of Banrock Station Wetland Complex, Barmah Forest, Blue Lake, 

Currawinya Lakes, Ginini Flats Wetland Complex, Hattah-Kulkyne Lakes, Kerang 

Wetlands, Macquarie Marshes, Paroo River Wetlands, and Riverland are not 

standardized (see Figure 51 for locations). The authors of these reports – working for 

commissioned environmental consultancies and state departments – used different 

terms to describe the same ESS. In addition, some provisioning and regulating 

services, such as fresh water supply or sediment trapping, are most likely provided by 

all Ramsar sites but not mentioned in all ECDs. Only few provisioning services, such 

as salt harvesting, and most cultural services are site-specific and probably cannot be 

found in all Ramsar sites (see Table 23 and Table 24).  
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Table 23: Provisioning and regulating services mentioned in 10 Ecological 

Character Descriptions (ECDs). 
 

*included as floating node in MDB BN, **not included in MDB BN 

1Banrock Station Wetland Complex (Butcher et al., 2009), 2Barmah Forest (Hale and Butcher, 2011), 3Blue Lake 

(Department of Environment and Climate Change NSW, 2008), 4Currawinya Lakes (Fisk, 2009), 5Ginini Flats 

Wetland Complex (Wild et al., 2010), 6Hattah-Kulkyne Lakes (Butcher and Hale, 2011), 7Kerang Wetlands 

(Department of Sustainability and Environment VIC, 2010), 8Macquarie Marshes (Office of Environment and 

Heritage NSW, 2012), 9Paroo River Wetlands (Kingsford and Lee, 2010), 10Riverland (Newall et al., 2008).  

 ESS mentioned in the ECDs of Ramsar sites 

Ecosystem services R11 R22 R33 R44 R55 R66 R77 R88 R99 R1010 

Provisioning services 

Apiculture  x       x  

(Biochemical products and 

genetic resources)* 
   x    x   

Cattle grazing   x x    x  x x 

Firewood collecting  x         

Fresh water supply    x x x x x x x x 

Fresh water storage (emergency 

stock) 
     x x x   

Salt harvesting       x    

Timber production  x         

Regulating services 

Biological control of pests and 

diseases 
   x    x   

Carbon sequestration  x x x x x     x 

Erosion protection     x   x   

Groundwater recharge  x     x    

Maintenance of hydrological 

regimes (incl. flood control) 
x x x x x x x x x x 

Maintenance of local climate    x    x   

(Reduction in fire intensity when 

wet)** 
       x   

Regulation of water temperature   x        

Sediment trapping/retention   x x  x  x  x 

Salinity water disposal       x   x 

Water quality maintenance 

(incl. pollution control, 

detoxification, and sewerage 

disposal) 

   x x  x x  x 
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Table 24: Cultural services mentioned in 10 Ecological Character Descriptions (ECDs). 

*included as floating node in MDB BN 

**for names of Ramsar sites and references for ecological character descriptions see footnote below Table 23.  

 ESS mentioned in the ECDs of Ramsar sites** 

Ecosystem services R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 

Aboriginal cultural heritage x x    x x x x x 

Aboriginal hearths x          

Aboriginal scar trees x x        x 

Burial sites  x        x 

Dreaming tracks         x  

Ground stone artefacts x x         

Mounds  x         

Shell middens x x        x 

Stone tools x          

Aboriginal heritage – not specified      x x x   

 

Educational value (conservation 
education) 

x x x x  x x x x x 

European heritage (historic relics) x x x      x x 

Scenic values/Aesthetic amenity/ 
Appreciation of natural features 

 x  x  x x x  x 

(Scientific research)* x x x x   x x x x 

Sense of place/Spiritual and inspirational  x  x x   x   

 

Recreation and (Eco-)Tourism x x x x x x x x x x 

Alpine sports (rock/ice climbing, skiing)   x  x  x    

Camping    x  x x  x x 

Cycling/Driving/Horse riding x x    x     

Hunting x x     x    

Nature observation (incl. bushwalking and 
bird watching) 

 x x x x x   x  

Recreational fishing/yabbying (incl. bait 
collecting) 

x x  x  x x x x x 

Tourism (touring)  x  x  x   x  

Water sports (swimming, scuba diving, 
wind surfing, boating, house-boating, 
canoeing) 

  x x  x    x 
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5.2. Model development 

The MDB BN was developed in close collaboration with Carmel A. Pollino who 

hosted the author during the research stay at CSIRO (Land and Water) in Canberra, 

Australia. This chapter first describes the structure of the four sub-networks and 

highlights how these sub-networks are linked together to form the final network 

structure (Chapter 5.2.1). It also presents how the CPTs were populated with the help 

of expert knowledge, information from the ECDs, and equations (Chapter 5.2.2). 

All BNs presented in this chapter have uniform probability distributions in the root 

nodes. The model-user can compare scenarios with the root nodes by setting the 

probability of a certain state to 100% or by changing the probability distributions in 

their probability tables (PTs). 

 

5.2.1. Development of the network structure  

5.2.1.1. Sub-network on ecosystem condition 

Supporting services, such as nutrient cycling and soil formation, are necessary for the 

provision of all other ecosystem services. Here, the concept of supporting services is 

replaced by the term “ecosystem condition”. Whether the ecosystem is in a poor or 

healthy condition depends on whether it performs certain functions (“Function 

components”), exhibits biodiversity, and supports ecological connectivity (“Structure 

components”). From bottom to top, the sub-network suggests that the ecosystem 

condition depends on its structural and functional components, all depicted in green 

(Figure 52).  

In which state these components are hinges on how much water is available for a 

certain period of time. The impact of low or high water availability is very different 

whether a condition remains unchanged for one year or up to five or ten years. The 

water availability is influenced by annual water supply, environmental flows and the 

duration. This way, the BN highlights what difference environmental flows can make 

if the annual water supply was low for a certain period of time. As a healthy ecosystem 

is the starting point for the provision of most ESS, the sub-network on ecosystem 

condition serves as input for the sub-networks on provisioning, regulating, and cultural 

services (see Figure 53 and Figure 54). 
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5.2.1.2. Sub-network on provisioning services 

The sub-network on ecosystem condition, here visualized with green circles, serves as 

input for the sub-network on provisioning services which is depicted in blue (Figure 

53). The sub-network includes eight provisioning services and their so-called summary 

node “Provisioning services” (see Chapter 5.2.2.3). 

 
Figure 53: Sub-network on provisioning services. 
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Figure 52: Sub-network on ecosystem condition. 

● Function components

poor
healthy

49.8
50.2

0.501 ± 0.29

Duration

One yr
Successive yrs up to 5
Successive yrs up to 10

33.3
33.3
33.3

Soil formation

poor
good

50.0
50.0

0.5 ± 0.5

Organic carbon cycling

poor
good

49.8
50.2

0.502 ± 0.5

Nutrient cycling

poor
good

49.8
50.2

0.502 ± 0.5

Biodiversity

low
high

45.4
54.7

Ecological connectivity

poor
good

37.5
62.5

Structure components

poor
healthy

47.5
52.5Ecosystem condition

poor
healthy

57.1
42.9

Water availability (surface, annual)

low dry
medium average
high wet

24.4
39.6
36.0

Annual water supply (non-environmental)

low dry

medium average

high wet

33.3

33.3

33.3

Environmental flows

Current
Basin Plan (2800)

50.0
50.0



97 

 

The sub-network indicates that two ESS, namely “Fresh water supply” and “Fresh 

water storage”, directly depend on “Water availability”. Three ESS, among others 

“Apiculture”, depend on a healthy “Ecosystem condition”. The remaining two ESS, 

“Firewood collecting” and “Salt harvesting”, are rather independent of water 

availability and the ecosystem condition. To reduce the number of links in the MDB 

BN, the “Ramsar sites” node is solely linked to site-specific ESS that only exist in few 

Ramsar sites, such as “Salt harvesting”. “Fresh water supply” and “Fresh water 

storage” are most likely provided by all Ramsar sites and therefore not connected to 

the “Ramsar sites” node. Some ECDs mention the potential existence of “Biochemical 

products and genetic resources” for medicine (Table 23). As this cannot be quantified, 

it is solely indicated by a floating node.  

Ramsar sites are usually not used for irrigated agriculture. This is why only “Cattle 

grazing” is included in the sub-network on provisioning services. With regard to basin-

wide agricultural production, increasing environmental flows in the MDB would 

require a shift from irrigated agricultural production towards dryland agricultural 

production in the Basin in the long-term (CSIRO, 2012). 

 

5.2.1.3. Sub-network on regulating services 

The sub-network on regulating services also builds on the sub-network on ecosystem 

condition. The sub-network includes ten regulating services and their summary node 

“Regulating services”– all depicted in yellow. Seven of these services depend on a 

healthy “Ecosystem condition”, whereas “Groundwater recharge” is solely dependent 

on “Water availability” (Figure 54, on top).  

Except for “Salinity water disposal”, all regulating services are not site-specific but 

presumably provided by all Ramsar sites. The node “Maintenance of hydrological 

regimes” is connected to the “Ramsar sites” node to indicate in which Ramsar sites 

this service has been modified by anthropogenic influences. 

 

5.2.1.4. Sub-network on cultural services 

The sub-network on cultural services is very complex (Figure 54, at the bottom). It 

consists of 22 cultural services and their summary nodes “Recreation & (Eco-) 

Tourism”, “Aboriginal cultural heritage”, and “Cultural services” – all depicted in 

purple. This sub-network is a first attempt to define the linkages between cultural 

services, water availability, and a healthy ecosystem condition which are very difficult 

to quantify. 
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In this sub-network, the node “Education sites” and all nodes related to cultural 

heritage are not dependent on “Water availability” or “Ecosystem condition”. 

However, they are site-specific and therefore connected to the “Ramsar sites” node. 

Most nodes related to “Recreation & (Eco-) Tourism” either depend on a healthy 

“Ecosystem condition”, e.g. “Nature observation”, or on “Water availability”, e.g. 

 
 

 

 
Figure 54: Sub-network on regulating services (on top) and sub-network on cultural 

services (at the bottom). 
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“Water sports”. Some activities, such as “Camping”, are presumably also influenced 

by the “Scenic value/Aesthetic amenity”; while other activities, such as “Hunting”, 

could probably be done in a less aesthetic landscape.  

 

5.2.1.5. Final network structure 

The combined BN consists of 63 nodes15, 122 links, and 8176 probability values. Out 

of all ESS mentioned in the 10 ECDs, the MDB BN includes 7 provisioning, 

10 regulating (see Table 23), and 21 cultural services (see Table 24). The four root 

nodes can be used to analyze the impact of annual water supply on the ecosystem 

condition and all ESS simultaneously (Figure 55). For example, the MDB BN can be 

used to see the impact of low water availability for different periods of time and to 

show how environmental flows can help to sustain a healthy ecosystem condition and 

to provide ESS in case of low water availability. As the MDB BN models all ESS for 

all Ramsar sites, it is possible to compare different Ramsar sites with each other.  

 

                                              
15 Five of these nodes are hidden as they are only used for the equations (see Chapter 5.2.2.3). 

 
Figure 55: Simplified version of the MDB BN. 
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However, the size of the MDB BN has become too large. The combined BN can only 

be shown in a simplified version that depicts most variables as circles16 (Figure 55). It 

would also be too large to be presented to stakeholders, such as the MDBA that 

commissioned the CSIRO Multiple Benefits project in the first place. To address this 

shortfall, the author developed a nested BN with different BN software (see Chapter 

5.3).   

                                              
16 Netica ► Right-click on node ► Style ► Circle. 



101 

 

5.2.2. Model parameterization  

To parameterize the MDB BN, different data and knowledge sources were used. For 

the linkages between annual water supply, environmental flows, water availability, 

ecosystem condition, and ESS that are provided by all wetlands, expert judgments 

were elicited from Carmel A. Pollino, henceforth referred to as the expert. For all 

variables that are linked to the “Ramsar sites” node, information from ecological 

character descriptions (ECDs) was used. For all summary nodes, the conditional 

probability tables (CPTs) were built from equations.  

 

5.2.2.1. Model parameterization with data 

The information on which ecosystem services (ESS) can be found in each Ramsar sites 

was derived from ten ecological character descriptions (ECDs). Some ESS are just not 

mentioned in all ECDs but most likely provided by all Ramsar sites (see Table 23). In 

these cases, the ESS are not linked to the Ramsar sites node to reduce the number of 

links to keep the CPTs manageable. Other ESS, such as timber production and salt 

harvesting, cannot be found in all wetlands. Only in these cases, the variables are 

linked to the “Ramsar sites” node and the CPTs were populated with the information 

provided by the ECDs.  

Here, three examples show how information from the ECDs was used to fill in the 

CPTs. The first example is “Timber production”. This variable depends on the Ramsar 

site and the ecosystem condition. As timber is solely produced in Barmah Forest, the 

conditional probability values are 100% “no” for all other Ramsar sites – no matter 

which ecosystem condition prevails (Table 25). In Barmah Forest, the ecosystem 

condition strongly influences the timber production. This is why the 90:10 ratio 

reverses if the ecosystem condition changes from poor to healthy and vice versa.  

Table 25: Conditional probability table of “Timber production”. 
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The second example is “Water sports”. The conditional probability values in each row 

result from both expert judgments and information in the ECDs. To fill in this large 

CPT, the expert used simple rules of thumb. For example, “If the water availability is 

low, it is impossible to do water sports”. With increasing water availability and rising 

scenic value, the probability of water sports being practiced increases – but only in 

these Ramsar sites for which the possibility for water sports is mentioned in the ECDs 

(Table 26).  

The third example is “Aboriginal scar trees”. All variables which have “Ramsar site” 

as only parent node have deterministic CPTs – either the ESS is mentioned in an ECD 

or not. Aboriginal scar trees are mentioned in three ECDs and are most likely not 

existent in the others. Therefore, 100% “yes” is assigned to these three Ramsar sites 

and 100% “no” is assigned to the other sites (Table 27).  

Table 26: Conditional probability table of “Water sports”. 
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5.2.2.2. Model parameterization with expert knowledge  

Most CPTs were directly elicited from Carmel A. Pollino who is an expert in the fields 

of environmental flow management and BN modeling. Whereas the quantification of 

some relationships required her specific expertise, other relationships could be filled 

in by logic reasoning and were solely reviewed by her. For example, the quantification 

of the relationship between water availability, duration of water availability, and the 

three function components required expert knowledge. The CPT of “Organic carbon 

cycling” reflects how an ecosystem can perform its functions as long as the water 

availability is not too low and not too high. In one year with high water availability, 

the ecosystem is still functioning well but if this high water availability persists for 

more than 5 years it affects ecosystem functions just as low water availability (Table 

28).  

In contrast, the CPT of “Alpine sport” being performed in the Ramsar sites under 

conditions of poor and good “Scenic value/Aesthetic amenity” is highly subjective. 

These CPTs were populated with the help of ECDs (“Is alpine sports possible in this 

Ramsar site?”) and generic qualitative assumptions by the author (“How could the 

scenic value influence the willingness to perform alpine sports?”) – and were solely 

revised by the expert. The “Scenic value” itself depends on the “Ecosystem condition” 

– if the ecosystem condition is healthy, the scenic value is good with an 80% 

probability. The CPT of “Scenic value” is used to express that healthy ecosystem 

conditions do not necessarily lead to a high scenic value.  

Table 27: Deterministic conditional probability table of “Aboriginal scar trees”. 

 
 

Table 28: Conditional probability table of “Organic carbon cycling”. 
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5.2.2.3. Model parameterization with equations  

There are seven so-called summary nodes in the MDB BN (●). Summary nodes are 

intermediate variables that summarize the impact of all parent nodes – here with the 

help of simple equations. For all these nodes, the CPTs were built with equations that 

equally weight the incoming parent nodes (see Chapter 2.2.2). The application of 

equations allowed the use of more than three states and parent nodes. For example, the 

leaf nodes “Ecosystem services” and its parent nodes “Provisioning services”, 

“Regulating services”, and “Cultural services” could have four states each. The 

resultant CPT of the leaf node “Ecosystem services” consists of 256 conditional 

probability values and would have been too complex for expert elicitation. Instead, the 

following equation was used: 

ecosystem_services (cultural_services2, provisioning_services2, 

regulating_services2) = 

(cultural_services2+provisioning_services2+regulating_services2)/9 

This way, the MDB BN treats all ESS as equally important. The possibility to have 

more than three parent nodes allowed the summary node “Aboriginal cultural heritage” 

to summarize the input of 9 parent nodes, and the node “Regulating services” to 

process 10 parent nodes.  

The nodes “Aboriginal cultural heritage”, “Recreation & (Eco-) Tourism”, 

“Provisioning services”, “Regulating services”, and “Cultural services” exist two 

times in the MDB BN. One is needed as continuous summary node; the other as 

discrete node which serves as input to the summary nodes “Cultural services” and 

“Ecosystem services”. To avoid confusion, the extra nodes are hidden below their 

counterparts (compare Chapter 2.2.2 and Chapter 4.2.3.2). 
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5.3. Add-on: Nested MDB BN 

At the end of the research stay in Australia, the network structure of the MDB BN had 

become too large to be presented to stakeholders or scientists at conferences. To 

improve its manageability, the MDB BN was rebuilt using GeNIe 2.0 

(https://dslpitt.org/genie/), a free software tool developed at the University of 

Pittsburgh. Two versions of the MDB BN were developed using GeNIe – one as 

“normal” BN (see Figure 56) and one as nested BN (see Figure 57). The nested MDB 

BN consists of a main model and five sub-models. The software either shows the main 

model (Figure 57) or a sub-model (Figure 58) at a time.  

  

 
Figure 56: Screenshot of MDB BN in GeNIe.  

 

 
Figure 57: Screenshot of main model of nested MDB BN. 

https://dslpitt.org/genie/
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All variables that belong to the sub-models “Ecosystem condition”, “Provisioning 

services”, “Regulating services”, and “Cultural services” are hidden when the main 

model is shown (Figure 57). Sub-models are denoted by blue rounded squares. Sub-

models are positioned at another “level” but can be opened by clicking on the sub-

models listed on the left. It is also possible to build sub-models within sub-models. For 

example, the sub-model “Aboriginal cultural heritage” within the sub-model on 

“Cultural services” (Figure 58). 

While rebuilding the MDB BN, some differences between Netica and GeNIe stood 

out. For example, in Netica, single nodes of a BN can be quantified with the help of 

equations, whereas in GeNIe, either all nodes use equations or none. To solve this 

software problem, all CPTs that were built from equations in Netica were copied into 

the BN in GeNIe. A minor difference is that the CPTs are organized the other way 

around. CPTs in Netica are row-wise, CPTs in GeNIe are column-wise (Figure 59).   

 
 

 
Figure 59: Conditional probability tables in Netica and GeNIe. 

At the top, conditional probability table of “Ecosystem condition” in Netica; at the 

bottom, the same conditional probability table in GeNIe. 

 

 
Figure 58: Screenshot of sub-model on cultural services.  
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5.4. Discussion 

Although BNs could easily be used to model several ESS simultaneously, most BN 

applications focus on one or two ESS only (Landuyt et al., 2013). In this case study, a 

BN was developed to quantify the relationships between environmental flows, water 

availability, ecosystem condition and 38 provisioning, regulating and cultural services. 

These 38 ESS have a high number of incoming links from their parent nodes “Ramsar 

sites” (26 links), “Ecosystem condition” (15 links), and “Water availability” (10 links). 

This makes it difficult to present the final network. 

There are two ways how to make large BNs more user-friendly or intelligible to those 

who view and use the model (RQ 2). One solution is to present simplified versions of 

large BNs by visualizing some of the nodes as circles or labeled boxes (e.g. Kumar et 

al., 2012). This brings the attention to the more important nodes but also leads to a loss 

of information. Another solution is to create a nested BN – a main model with several 

sub-models (e.g. Penman et al., 2011). With respect to model application and user-

friendliness, there is a trade-off between clarity and accurate visualization of causal 

relationships. Whereas a “normal” BN confronts the model user with the whole 

network structure by showing all links and nodes at a time, the software GeNIe either 

shows the main model or a sub-model of the nested BNs.  

The visualization of causal links is limited in nested BNs. Links between nodes in the 

main model and a sub-model are not represented by single links. Instead, all inter-

model links are summarized into the main model in one link pointing to the sub-model 

(see Figure 57). In the sub-model, incoming inter-model links are solely depicted by 

little triangles on the left side of the node; outgoing links are shown by triangles on the 

right side of the node (Figure 58). The cursor of the computer mouse can be used to 

display a list with further information of the origin and the destination of these links. 

Having less nodes and links to look at is presumably less confusing for the model user. 

However, the visualization of causal relationships with triangles is not as expressive 

as causal links. The model user needs to switch between main model and sub-models 

to understand how the whole model is connected.  

Thus, developing BNs with Netica and nested BNs with GeNIe entails advantages and 

disadvantages for the development and application of large BNs (RQ 2.2). Except for 

minor differences in the layout of CPTs, developing the MDB BN in Netica and GeNIe 

was quite similar. Only the possibility of building some CPTs from equations while 

deriving others from different sources was missing in GeNIe (see Chapter 5.3). 

However, GeNIe offers many other opportunities that were not exhausted in this case 

study. For example, GeNIe can be used to develop Object-Oriented Bayesian 

Networks (OOBNs) or Dynamic Bayesian Networks (DBNs). With more data on each 

Ramsar site, the nested MDB BN could be rebuild as an OOBN, with ten identical 

“objects” for the Ramsar sites (see Chapter 2.5.2).  
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5.5. Conclusion  

Chen and Pollino (2012) highlighted that the possibility to iteratively update BNs with 

new data gives BNs a longer lifespan than most other models. As the research stay in 

Australia was limited to three months, the MDB BN represents a body of knowledge 

that was easily accessible and processible in a very short time. At the end of the 

research stay, the MDB BN was fully parameterized with the help of estimates of one 

expert, information derived from ten ecological character descriptions, and seven 

equations. The MDB BN can therefore be regarded as “alpha-level model” (Marcot et 

al., 2006) or “first generation model” (Amstrup et al., 2008). The 8128 probability 

values of the MDB BN could be replaced or complemented with additional data or 

expert and stakeholder knowledge in the future.  

This thesis highly benefited from the research stay in Australia. The exchange with 

Australian BN modelers improved the expert-based BN which was developed in NW 

China (see Chapter 4). In addition revisiting the “Multiple Benefits” project provided 

the opportunity to compare BN software tools with respect to user-friendliness of large 

BNs. In contrast to the BNs developed in the case study Northwest China, the MDB 

BN is in the “good hands” of experienced modelers. Due to their expertise in BN 

modeling and their interest in environmental flows and ecosystem services in the 

Murray-Darling Basin in general, there is a high chance that the results of this case 

study will be of use in the future. 
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6. Conclusion  

The case studies conducted in Northwest China and Australia aimed at further 

developing expert-based Bayesian Network modeling techniques. Due to differing 

project time, the depth of study and the subsequent contributions to science and 

environmental management vary between the case studies.  

 

6.1. Scientific contribution 

The scientific contribution of the case study in Northwest China consists of the design 

and application of an elicitation and conversion method that complements existing 

expert elicitation techniques. The key characteristics of this method are its time-

efficiency and the approach to use different conversion tables based on varying levels 

of confidence. In addition, this monograph provides the opportunity to share all the 

intricacies faced during the challenging case study in Northwest China. Fragmented or 

complicated participatory processes, e.g. with a high fluctuation of participants, are 

rarely published; yet they provide a notion of how participatory processes can take 

unexpected turns and how to find a way to successfully complete them nonetheless.  

The scientific contribution of the case study in Australia consists of the development 

of a “first-generation” Bayesian Network on ecosystem services of environmental 

flows in the Murray-Darling Basin. Due to the short project time, most conditional 

probability tables were filled by an expert; however, they could be complemented by 

data in the future. This case study also broaches the issue of user-friendliness of large 

Bayesian Networks and nested Bayesian Networks. The short comparison neither 

advocates a Bayesian Network type nor software; it rather highlights the need to 

consider the applicability and presentation clarity of large models.  

 

6.2. Contribution for environmental management 

The real-world purpose of the case study in Northwest China was to support and 

inform local vegetation managers and planners. It is difficult to assess the contribution 

of this case study for local environmental management. The high fluctuations of 

workshop participants reduced the perceived “ownership” of the modeling process and 

model results. Nevertheless, each workshop provided a platform for discussion and 

mutual learning. As in many other participatory Bayesian Network applications, the 

knowledge exchange during the modeling process was at least as valuable to the 

workshop participants as model results.  
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Appendices 

Appendix A Literature review 

Table A - 1: List of 50 expert- and stakeholder-based Bayesian Network applications published from 2003-2013. 

(DAG = directed acyclic graph/network structure, CPT = conditional probability table, E = expert, D = empirical data, M = model simulations, 

L = scientific literature, S = stakeholder)  

Author; 
Case 
study 
(CS) 

BN facts 
(BN soft-
ware) 

Knowledge 
source 

Number and 
background of 
experts/stakeholders 

Consultation 
format 

Elicitation format Derivation of 
probability 
values 

Combination of 
DAGs and 
probability 
values 

Allan et 
al. (2012); 
CS 1 

BN with 
24 nodes 

DAG E  Stream ecologists Group meeting 
with group 
discussions 
(2-day WS) 

 Validation of preliminary 
DAG 

  

CPT E Other 

 Quantile elicitation (Allan et 
al., 2012: 62) 

Amstrup 
et al. 
(2008) 

BN with 
38 nodes 
(Netica) 

DAG E 1 Polar bear expert Individual 
meetings 

Probability tables 

 Step-by-step guidance 
through whole BN modeling 
process  

  

CPT E 

Baran et 
al. (2006) 

BN with 
43 nodes 
(Netica) 

DAG S 10-15 Fishers, farmers, 
aquaculturists, 
representatives of 
local 
organizations 

Group meetings 
with group 
discussions 
(6 half-day 
consultations in 
3 communes)  

 Development of DAG from 
scratch (after task was 
introduced with example 
DAG) 

  

CPT D,M,S 
 

10-15 Weights 

 Elicitation of unconditional 
probabilities for root nodes 

 Elicitation of weights for 
each parent node (Baran et 
al., 2006: 214ff.) 

 Probability 
values derived 
from 
probabilities of 
parent nodes 
and weights 

 Group 
consensus; 
averaging of 
probability values 
only in case of 
disagreement 

Bashari et 
al. (2009) 

BN with 
21 nodes 

DAG E,L,S  WS I: Livestock 
owners, WS II: 
Rangeland 
scientists 

Group meeting 
with group 
discussions 
(2 WS) 

 Development of a state and 
transition model (STM) 

 Conversion of 
STM into DAG 

 

CPT E  Rangeland 
scientists 

Unknown Probability tables 

 Elicitation of conditional 
probability values for a 
reduced number of 
scenarios (p. 26ff) 

 Interpolation of 
other 
probability 
values (Cain 
2001) 
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Table A - 1: List of 50 expert- and stakeholder-based Bayesian Network applications published from 2003-2013 (continued). 

Author; 
Case 
study 
(CS) 

BN facts 
(BN soft-
ware) 

Knowledge 
source 

Number and background 
of experts/stakeholders 

Consultation 
format 

Elicitation format Derivation of 
probability 
values 

Combination 
of DAGs and 
probability 
values 

Baynes et 
al. (2011) 

4 BNS with 
15, 8, 9, 
and 13 
nodes 
(Netica) 

CPT D,S 7 
7 
 

Farmers 
Non-farmers who 
employed farm labor 

Group meeting 
with one-to-one 
sessions (1 WS) 

Probability tables 

 Elicitation of unconditional 
probability values with Likert 
scale (incl. comment ) 

 Elicitation of conditional 
probability values for a 
reduced number of scenarios  

 Elicitation of weights for each 
parent node (Baynes et al., 
2011: 362ff.) 

 Interpolation 
of other 
probability 
values (Cain 
2001) 

 Averaging of 
valid Likert 
scale 
responses 

Borsuk et 
al. (2004) 
(incl. 
Borsuk et 
al., 2001) 

BN with 8 
sub-models 
(Analytica) 

CPT D,E,M 2 
2 

Marine biologists 
Estuarine fisheries 
researchers 

Unknown 
(“series of 
meetings”) 

Frequencies  

 Example: “If you were to 
observe 100 vertical mixing 
events, how many do you 
think would be less than x 
days apart?” (Borsuk et al., 
2001: 365) 

  

Cain et al. 
(2003) 

6 DAGs 
(Hugin and 
Netica) 

DAG S 30 
 
 
9 
 
11 

Representatives of 
gov. organizations 
(WS 1); 
Farmers from head of 
the basin (WS 2); 
Farmers from tail of 
the basin (WS 3) 

Group meetings 
with group 
discussions 
(WS 1, 6h; 
WS 2, and 
WS 3, 
4.5h each) 

 WS 1: Development of 4 
DAGs in 4 groups 

 WS 2 and 3: Semi-structured 
discussions to elicit 
information necessary for 
facilitators to develop DAGs 

  

CPT S 30 
 

Representatives of 
gov. organizations 
(WS 1) 

Probability tables 

 WS 1: One group defined 
probability values 

Carmona et 
al. (2013) 
(CS 1) 
 

OOBN with 
32 nodes 
coupled 
with other 
model 
(Hugin) 

DAG E,S 9 + 6 Representatives of 
the River Basin 
Authority, regional 
government 
organizations, main 
irrigation 
communities, 
environmental NGOs, 
researchers 

Group meetings 
with group 
discussions 

 Development of two DAGs in 
two separate sessions with 
different stakeholder groups  

  

12 Individual 
meetings  

 Validation of combined DAG 

CPT E,M,S 11 Group meeting  Probability tables 
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Table A - 1: List of 50 expert- and stakeholder-based Bayesian Network applications published from 2003-2013 (continued). 

 

Author; 
Case 
study 
(CS) 

BN facts 
(BN soft-
ware) 

Knowledge 
source 

Number and 
background of 
experts/stakeholders 

Consultation 
format 

Elicitation format Derivation of 
probability 
values 

Combination of 
DAGs and 
probability 
values 

Castelletti 
and 
Soncini-
Sessa 
(2007b) 

BN with 
5 nodes 
coupled with 
other 
models 
(Hugin) 

CPT S  Farmers Individual 
meetings 
(interviews) 

Probability tables 

 Some probability values a 
priori fixed as either null or 
irrelevant 

 Elicitation of remaining 
probability values 

 CPTs based on 
the computed 
convolution for 
elicited 
probability 
distributions 
(Castelletti and 
Soncini-Sessa, 
2007b: 1123) 

 

Catenacci 
and 
Giupponi 
(2013) 

BDN with 
17 nodes, 
24 links 
(GeNIe) 

DAG E 19 Researchers with 
(multidisciplinary) 
backgrounds in 
24 disciplines 

Group meeting  Development of conceptual 
maps using Cmap software 

 Elicitation of rankings of 
variables which were 
translated into an 
“objectives’ hierarchy chart”  

 Development of 
DAG with 
selected nodes 
from the 
“objectives’ 
hierarchy chart” 

 

CPT E   Individual 
meetings 
(interviews) 

Probability tables 

 Elicitation according to 
expertise 
 

  Averaging of 
probability 
values by using 
linear opinion 
pooling (Clemen 
and Winkler, 
1999: 189) 

Chan et al. 
(2010) 

BN with 
49 nodes 
(Netica) 

CPT D,E  “Expert” subset of 
stakeholders with 
technical 
backgrounds  

Group meeting 
with group 
discussion and 
individual 
meetings  

Probability tables 

 Elicitation according to 
expertise 

  Averaging of 
probability 
values  

Chan et al. 
(2012)  

2 BNs: 
24 and 
27 nodes 

DAG E  Fish experts Group meeting 
(WS) 

 Development of DAG 
 

  

CPT E,M Fish experts Unknown Probability tables 

Donald et 
al. (2009); 
Model 1 

2 BNs with 
14 nodes 
each 
(Winbugs) 

CPT D,E 1 Population health 
researcher 

Individual meeting Probability tables    
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Table A - 1: List of 50 expert- and stakeholder-based Bayesian Network applications published from 2003-2013 (continued). 

Author; 
Case 
study (CS) 

BN facts 
(BN soft-
ware) 

Knowledge 
source 

Number and 
background of 
experts/stakeholders 

Consultation 
format 

Elicitation format Derivation of 
probability 
values 

Combination 
of DAGs and 
probability 
values 

Drew and 
Collazo 
(2012)  

BN 
(Netica) 
 

DAG 
and 
CPT 

D,E,L 4 Biologists 
(„experienced wildlife 
professionals“) 

Individual 
meetings 

 “Discussion interviews” (Drew 
and Collazo, 2012: 90ff.) 

 Identification of variables 

 Probability tables  

  

Other 

 “Image-based interviews” (Drew 
and Collazo, 2012: 93) 

 Elicitation of probability classes 
(low, moderate, high) to 
preselected potential habitat sites 
visualized using aerial images 

Florin et al. 
(2013)  
 

BN with 
31 nodes 
(Netica) 

CPT E,S 6 
2 
2 

Technical assistants; 
Local researchers; 
Industry players  
 

Unknown 
(questonnaire) 

Frequencies 

 Example: “Out of n number of 
farmers how many (x) do you 
expect to increase their yields?” 
(Florin et al., 2013: 85) 

 Elicitation of frequencies for a 
reduced number of scenarios 

 Elicitation according to expertise 

 Interpolation 
of other 
probability 
values (Cain, 
2001) 

 Averaging of 
probability 
values after 
the exclusion 
of some 
estimates 

Grêt-
Regamey et 
al. (2013)  

GIS-based 
BN with 35 
nodes 
(Hugin) 

CPT E,S  Local stakeholders 
Environmental 
economists 

Individual 
meetings 
(“expert survey”) 
 

Probability tables 

 Elicitation of probability values for 
each state of the 5 nodes 

  Averaging of 
probability 
values  

Haapasaari 
and 
Karjalainen 
(2010)  

BDN with 
5 nodes 

CPT   Experts in salmon 
management in the 
Baltic Sea  

No meeting 
(questionnaire 
sent by email) 
 

Other 

 Selection (ticking) of preferred 
alternatives, incl. explanation of 
selections 

 Frequency of 
preferences 
counted 

 Probability 
distribution 
smoothed 
using Dirichlet 
formula 

Haapasaari 
et al. (2013)  
 

6 BNs DAG 
and 
CPT 

E,S 1 
 
1 
1 
 
1 
2 

Commercial fisherman; 
Government officer; 
Representative of an 
environmental NGO;  
Officer of a fishermen’s 
org.; 
Researchers  

Individual 
meetings 
(6 “individual 
WS”, 4-6 h 
each) 
 

Probability tables   
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Table A - 1: List of 50 expert- and stakeholder-based Bayesian Network applications published from 2003-2013 (continued). 

 

Author; 
Case 
study (CS) 

BN facts 
(BN 
soft-
ware) 

Knowledge 
source 

Number and 
background of 
experts/stakeholders 

Consulta-
tion format 

Elicitation format Derivation 
of 
probability 
values 

Combination 
of DAGs and 
probability 
values 

Hamilton et 
al. (2007)  
 

BN with 
23 nodes 
(Netica) 

DAG E  Group of individuals with 
specialist scientific, 
planning and impacts 
knowledge of Lyngbya 
majuscula 

Group 
meetings 
(3 WS) 
 

 Identification of a hierarchy of 
variables 

 Development of DAG 

  Group 
consensus 

 Changes 
made by 
individuals 
were revised 
and confirmed 
by entire 
group 

CPT D,E,M  Group and 
individual 
meetings  

Probability tables 
 

Holzkämper 
et al. (2012) 
 

BN 
coupled 
with other 
models 
(Netica) 

DAG E 9 Experts from different 
policy groups within the 
Environment Agency; 
Researchers 

Group 
meetings 

 Identification of variables 

 Development of DAG 

  

CPT D,E,M 5 Experts in freshwater 
ecology 

Unknown Weights 

 Elicitation of relative weights by 
using a modified version of the 
method introduced by Das (2004) 

Iqbal and 
MacLean 
(2010) 
 

GIS-
based BN 
with 
10 nodes 
(Netica) 

DAG  6 Experts with >15 years 
of defoliation prediction 
experience 

Group 
meetings 

 Development of preliminary DAG by 
one expert which was iteratively 
revised by the others 

  

CPT     Probability tables 

Jensen et al. 
(2009) 
 

OOBN 
with 
2 classes 
(Esthauge 
LIMID 
Software 
System) 

CPT E,L 9 Experts with specialist 
knowledge of leg 
disorders in finishers 

Individual 
meetings 

Probability scales 

 Standardized probability scale from 
0 to 100% with verbal expressions 
(“verbal anchors“) added to points 
and intervals on the scale, using the 
method introduced by van der Gaag 
et al. (2002)  

 Elicitation of  values according to 
expertise 

  Averaging of 
probability 
values if ≥1 
estimates 
available 
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Table A - 1: List of 50 expert- and stakeholder-based Bayesian Network applications published from 2003-2013 (continued). 

Author; 
Case 
study 
(CS) 

BN facts 
(BN soft-
ware) 

Knowledge 
source 

Number and 
background of 
experts/stakeholders 

Consul-
tation 
format 

Elicitation format Derivation of 
probability 
values 

Combination 
of DAGs and 
probability 
values 

Johnson et 
al. (2010) 

 

BN with 
29 nodes 
(Hugin) 

DAG E  Cheetah experts 
Statisticians 

Group 
meeting  
(4-day 
WS) 

 Definition of variables 

 Development of DAG 

  

CPT E Probability tables 

 Elicitation of some probability values 

 Elicitation of weights for parent 
nodes of variables 

Kumar et al. 
(2012) 
 

BN DAG E,S 26 Experts in ecology, 
water science, 
planning, 
development, 
urban design, 
engineering, social 
science, and 
history 

Individual 
meetings  
 

 Development of conceptual networks 
(“mind maps”) by each expert 

  Mind maps of 
experts 
merged into 
DAG 

CPT E,S Unknown Weights 

 Elicitation of relative weights by 
using a modified version of the 
method introduced by Das (2004) 

  Averaging of 
probability 
values 

Liu et al. 
(2013) 
 

BN with 
14 nodes 
(Hugin) 

CPT D,E   Unknown Other 

 Elicitation of worst-case morbidities 
and mortality for six diseases 

 Estimation of 
probability values 
between 
baseline and 
worst-case 

 

McCloskey 
et al. (2011)  
 

2 GIS-
based BNs 
with 12 and 
8 nodes 
(Netica) 

CPT D,E  Several experts Unknown Probability tables   Averaging of 
probability 
values 

McDowell 
et al. (2009)  
 

BN with 
41 nodes 
(Netica) 

CPT D,E   Unknown Rankings 

 Combinations of states of parent 
nodes ranked from greatest positive 
to greatest negative effect on the 
child node (McDowell et al., 2009: 
1977) 
 

 Probability 
values assigned 
to rankings 
based on 
literature and 
experts 

 Interpolation of 
some values 
(Cain, 2001) 
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Table A - 1: List of 50 expert- and stakeholder-based Bayesian Network applications published from 2003-2013 (continued). 

Author; 
Case 
study 
(CS) 

BN facts 
(BN soft-
ware) 

Knowledge 
source 

Number and background 
of experts/stakeholders 

Consultation 
format 

Elicitation format Derivation of 
probability 
values 

Combination 
of DAGs and 
probability 
values 

Money et 
al. (2012) 

BN with four 
components 
(Netica) 

DAG E 5 
7 
3 
2 

Microbiologists; 
Ecotoxicologists; 
Chemists/engineers; 
Experts in risk analysis 

Group meetings 
(42 meetings) 
 

 Elicitation of four 
components of the DAG 
separately from subsets of 
the domain experts 
(according to expertise) 

  4 components 
combined in 
final DAG 

CPT E Frequencies 

 Example: „Given that A has 
a value between 0 and 25 
and B is ‘Low’, out of 100 
independent experiments, 
how many times would you 
expect C to be between 0 
and 10?“ (p.438)  

 Application of Noisy-max 
distributions to complex 
CPTs by assuming 
independence of causal 
influence (ICI)  elicitation 
of frequencies given the 
states of one parent node 
only 

 

Montewka 
et al. 
(2013) 
 

BDN with 
35 nodes 
(Hugin) 

CPT E,L 15 Professionals in the 
field of environmental 
issues 

Group meeting 
with group 
discussions 
(1-day WS) 

Probability tables   

Murray et 
al. (2012) 
 

BN with 
8 nodes 
coupled with 
other model 
(Netica) 

DAG E 4 
1 
 
6 

Academics; 
Land management 
officer; 
Landholders with 
active research or 
direct experience with 
lippia management 
 
 
 
 

Group meeting 
with small group 
discussions and 
entire group 
discussions 
(2-day WS)  

 Identification and ranking of 
key variables 

  Group 
consensus 

CPT D,E,M Probability tables 
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Table A - 1: List of 50 expert- and stakeholder-based Bayesian Network applications published from 2003-2013 (continued). 

Author; 
Case 
study (CS) 

BN facts 
(BN soft-
ware) 

Knowledge 
source 

Number and background 
of experts/stakeholders 

Consultation 
format 

Elicitation format Derivation of 
probability 
values 

Combination 
of DAGs and 
probability 
values 

Nash et al. 
(2010)  

BN with 
31 nodes 
(Netica) 

DAG D,L,S 14 Farmers and farm 
advisors (WS 1) 

Group meetings 
(2 WS) with 
group 
discussions 

 Discussion of preliminary 
DAG (based on data and 
literature) 

  

 4 Crop researchers 
(WS 2) 

 Discussion of preliminary 
DAG (based on data, 
literature, and previous 
WS) 

CPT D,E   Unknown Rankings 

 Combinations of states of 
parent nodes were ranked 
from greatest positive to 
greatest negative effect on 
the child node  

 Probability 
values 
assigned to 
rankings based 
on information 
from literature 
and experts 

 Interpolation of 
some values 
(Cain, 2001)  

 

Newton et 
al. (2007); 
CS 3 

3 BNs with 
2 nodes 
(Hugin) 

CPT E,L 17 Conservation 
practitioners 

No meeting 
(questionnaire) 
 
 

Other 

 Assessment of 
effectiveness of 
13 methods using a 
standard scale:  
-2 (very effective);  
-1 (effective); 0 (no impact); 
1 (ineffective); 2 (very 
ineffective) representing 
the states of the child node 

 Probability 
values 
calculated by 
counting the 
questionnaire 
responses 

 

Nolivos et al. 
(2011) 
 

BN with 
14 nodes 
(GeNIe) 

DAG E,S  Local government, 
banana farmers, 
rural population living 
near the basin outlet, 
experts from related 
fields 

Individual 
meetings  

 Identification of variables    

CPT D,E Unknown Probability tables 

 Application of Noisy-AND 
and Noisy-OR 
approximation by assuming 
independence of causal 
influence (ICI) among  
five parent nodes  
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Table A - 1: List of 50 expert- and stakeholder-based Bayesian Network applications published from 2003-2013 (continued). 

 

 

Author; 
Case 
study 
(CS) 

BN facts 
(BN soft-
ware) 

Knowledge 
source 

Number and background 
of experts/stakeholders 

Consultation 
format 

Elicitation format Derivation 
of 
probability 
values 

Combination of 
DAGs and 
probability 
values 

Pellikka et 
al. (2005)  
 

8 BNs with 22-
72 links (FC 
BeNe) 

DAG E 5 
 
2 
 
 
1 

Scientists focusing on 
wildlife populations; 
Experts working in the 
administration of game 
management; 
Journalist with 
academic background 
in wildlife ecology 

Group meeting  Development of 
preliminary DAG 

  

CPT E Individual 
meeting (5-8 h 
interviews) 

Other 

 Elicitation of link values for 
each pair of variables by 
using a cross-impact 
matrix with a scale ranging 
from -1 (complete negative 
interdependence), 0 (no 
interdependence), to 1 
(complete positive 
interdependence); 

 Elicitation of unconditional 
probability values for PTs 

Penman et 
al. (2011) 
 

BN with 5 sub-
networks 
(GeNIe) 

DAG D,E,L   Individual 
meetings 

 Early versions of DAG 
discussed with domain 
experts and BN experts 

  Averaging of 
probability values 
from 2 WS; DAG 
and combined 
probability values 
assessed by 
independent 
reviewer 

CPT D,E 5 Staff from a 
governmental fire-
suppression agency  

Group meeting  
(1-day WS) 

Probability scales 

 Elicitation of probability 
values using standardized 
probability scales that 
relate verbal expressions 
to quantitative values using 
the method from  Pollack 
(2003) as cited in Penman 
et al. (2011)  

 Elicitation of probability 
values for a reduced 
number of scenarios (135 
extreme and mid-range 
scenarios instead of 
375 scenarios) 

7 Staff from a land-
management agency 
with responsibilities 
for fire management  

Group meeting  
(1-day WS) 
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Table A - 1: List of 50 expert- and stakeholder-based Bayesian Network applications published from 2003-2013 (continued). 

 

 

Author; 
Case 
study 
(CS) 

BN 
facts 
(BN 
soft-
ware) 

Knowledge 
source 

Number and 
background of 
experts/stakeholders 

Consultation 
format 

Elicitation format Derivation 
of 
probability 
values 

Combination of 
DAGs and 
probability 
values 

Pike 2004  10 BNs 
(Hugin) 

DAG E 10 Operators at water 
systems 

Individual meetings 
(interviews) 

 Structured interview followed by 
guided development of DAGs 

  DAGs not 
combined 

CPT E Probability scales 

 Using standardized probability 
scales that relate verbal 
expressions to quantitative values 
using the method from Renooij and 
Witteman (1999) 

  Probability 
values not 
averaged 

Ren et al. 
2008 
 

BN with 
11 nodes 

CPT E  Experts in offshore 
safety assessment 

Individual meetings 
(interviews) 

Other 

 Elicitation of conditional fuzzy 
probabilities by using fuzzy 
membership functions in the form 
of triangular fuzzy numbers 
consisting of the lower least likely 
value, the most likely value, and 
the upper least likely value (Ren et 
al., 2008: 93) 

 Transformat
ion of fuzzy 
values into 
crisp values 
with 
equation 
(Ren et al., 
2008: 97) 

 

Richards 
et al. 2013  

22 BNs 
(Netica) 

DAG E,S 66 Representatives of 
government 
agencies, NGOs 
and the private 
sector – working in 
the field of climate 
change adaptation 
management and/or 
policy 
development 

Group meetings 
(6 WS with different 
participants) 
 

 Development of 6 conceptual 
models with 245 variables on paper 
and Vensim software 

  Probability 
values not 
averaged 

 Integration of 
values from all 
stakeholders 
into one BN 
with 
conditioning or 
auxiliary 
variables for 
each child node 
(Kjaerulff and 
Madsen, 2008) 

 Identification of 22 “priority issues” 

 Identification of 3 parent nodes for 
each priority issue and up to 3 
parent nodes for each identified 
parent node by small groups with 
at least 3 persons  

CPT E,S Individual meetings 
during or after WS 

Probability tables 
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Table A - 1: List of 50 expert- and stakeholder-based Bayesian Network applications published from 2003-2013 (continued). 

Author; 
Case 
study 
(CS) 

BN facts 
(BN soft-
ware) 

Knowledge 
source 

Number and 
background of 
experts/stakeholders 

Consultation 
format 

Elicitation format Derivation 
of 
probability 
values 

Combination of 
DAGs and 
probability 
values 

Schmitt 
and 
Brugere 
(2013)  

BN with 
34 nodes, 
incl. 
9 utility 
nodes and 
25 chance 
nodes 
(GeNIe) 

DAG E 42 Senior experts in 
coastal aquaculture 
from academia, 
research institutes 
and industry 

No meeting (through 
email) 

 Validation of preliminary DAG by 
42 experts 

 Refinement of DAG by 12 experts  

  

CPT D,E,
L 

4 Individual meetings 
(“in-depth dialogue”) 

Probability tables 

 Direct elicitation of probability 
values for all chance nodes from 
four experts 

 Averaging of 
probability 
values 

Seidel et 
al. (2003)  

BN with 
8 nodes 
(Hugin) 

CPT E 3 Equine clinicians with 
10–20 years of 
practical experience  
 

Individual meetings 
(interviews) 

Probability tables  

 Questionnaire 

  Averaging of 
probability 
values 

Shenton et 
al. (2011); 
ecological 
sub-model 

BN with 
20 nodes 

CPT D,E,
M 

6 
 

Fish experts  Individual meetings 
(interviews) 

Probability tables   Averaging of 
probability 
values 

Smith et 
al. (2007) 

GIS-based 
BN with 
12 nodes 
(Netica) 

DAG E,L 10 
2 

Ecologist; 
Leading experts in 
the ecology of the 
Julia Creek dunnart 

No meeting  
(questionnaire survey) 
 

 Review of preliminary DAG 
(based on literature and feedback 
from 1 expert) 

 Review of DAG (based on 
literature and feedback from 10 
ecologists) 

  Integration of 
feedback from 
12 experts into 
final DAG 

CPT D,E  Ecologist Individual meetings Probability tables 

 Elicitation of values for a reduced 
number of scenarios (Smith et al., 
2007: 338) 

 Interpolation 
of other 
probability 
values 
(Cain, 2001)  

 

Smith et 
al. (2012)  

BN with 
15 nodes 
(Netica) 

DAG E 3 
 
3 
 
3 

Local extension 
officers; 
 Local property 
managers;  
Weed ecologists 

Group meeting (1 WS)  Identification of key variables with 
the help of group engagement 
techniques (Smith et al., 2012: 
820) 

  

CPT E Unknown Probability tables 

 Elicitation of values for a reduced 
number of scenarios (Smith et al., 
2012: 821) 

 Interpolation 
of other 
probability 
values 
(Cain, 2001)  
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Table A - 1: List of 50 expert- and stakeholder-based Bayesian Network applications published from 2003-2013 (continued). 

Author; 
Case 
study 
(CS) 

BN facts 
(BN soft-
ware) 

Knowledge 
source 

Number and background 
of experts/stakeholders 

Consultation 
format 

Elicitation format Derivation of 
probability 
values 

Combination of 
DAGs and 
probability 
values 

Tiller et al. 
(2013)  
 

BN with 
15 nodes, incl. 
1 auxiliary 
variable 
(Netica) 

DAG S 10 Local commercial 
fishermen 

Group meeting 
with group 
discussions 
(1 WS) 

 Identification of 3 parent 
nodes of an variable of 
interest (“Income”) plus 
identification of up to 
3 parent nodes for each 
parent node 

 Elicitation of percentages 
reflecting the proportional 
influence of parent nodes 

  Probability 
values not 
averaged 

 Integration of 
probability values 
from all 
stakeholders into 
one BN with 
conditioning or 
auxiliary variable 
(Kjaerulff and 
Madsen, 2008) 

CPT S 8 Local commercial 
fishermen 

Individual 
meetings after 
WS 

Probability tables  

 Elicitation supported by 
first ranking combinations 
of states of the parent 
nodes from most desirable 
to least desirable 

 

Troldborg 
et al. 
(2013)  

BN with 
32 nodes and 
48 links 
(Netica) 

DAG E  Experts from the fields 
of risk analysis, 
modeling, soil science, 
land use and crop 
systems  

Unknown 
(3 formal 
meetings) 

 Development of DAG   

CPT D,E,L Unknown Probability tables  
 

Uusitalo et 
al. (2005) 

BN with 
10 nodes, incl. 
2 auxiliary 
variables 
(Hugin) 

DAG E 5 Salmon experts Group meeting 
with individual 
elicitation of 
probability 
values (2-day 
WS) 

 Group discussion: 
Development of DAG 

  

CPT E Probability tables  

 Elicitation of probability 
values from each expert 
with questionnaire 

 Averaging of 
probability values 

van Dam 
et al. 
(2013) 

BN with 
34 nodes 
(Netica) 

DAG D,E,S  Representatives of the 
community and NGOs, 
government officials, 
“experts” and scientists 

Unknown  Development of DAG 
based on group 
discussions with the 
community, individual 
interviews and field 
observations 

  

CPT D,E,S “experts” and scientists Group meeting 
with small group 
discussions  

Probability tables  

 Elicitation according to 
interest and expertise 
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Table A - 1: List of 50 expert- and stakeholder-based Bayesian Network applications published from 2003-2013 (continued). 

 

 

 

 

Author; 
Case 
study 
(CS) 

BN facts (BN 
soft-ware) 

Knowledge 
source 

Number and background 
of experts/stakeholders 

Consultation 
format 

Elicitation format Derivation of 
probability 
values 

Combination of 
DAGs and 
probability 
values 

Vilizzi et al. 
(2012) (incl. 
Beesley et 
al., 2011)  

4 BNs with 39, 
37, 31 and 
31 nodes 
(Netica) 

DAG E,S  Fish experts and 
managers 

Unknown    

CPT E 8 Experts in fish ecology 
and limnology (5-7 
experts per BN) 

Unknown Other 

 Elicitation of graphical 
relationships in the form 
of bars in a coordinate 
system, with states of the 
parent nodes being 
represented on the x-axis 
and states of the child 
node being represented 
on the y-axis (see 
Beesley et al., 2011: 96) 

Conversion of 
graphical 
relationships into 
estimated 
probability ranges 
and probability 
values 

 Averaging of 
probability 
values 

Wang et al. 
(2009a)  

BN with 
5 interlinked 
components 
(Netica) 

DAG E,L 14 Local experts with 
experience in farm 
management, 
development and 
implementation of 
catchment strategies 
and biophysical 
research 

Individual 
meetings (semi-
structured 
interviews) 

 Development and 
Revision of DAG based 
on expert interviews and 
scientific literature 

  

CPT D,E Probability tables 

 Elicitation of probability 
values for a reduced 
number of scenarios 
 

Interpolation of 
other probability 
values (Cain, 
2001) 

Williams 
and Cole 
(2013) 

BN with 
17 nodes 
(Netica) 

CPT E 3 Experts in blue-green 
algal blooms 

Individual 
meetings 
(structured 
interviews) 

Probability tables 

 Direct elicitation of 
probability values 

  Averaging of 
probability 
values 
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Appendix B Case study NW China: Bayesian Network 
documentation 

 

Table B - 1: Input used to develop the preliminary Bayesian Networks (Dust BN and Heat 

BN) which were presented at WS 1. 

 

Nodes in Dust BN and Heat BN 

No. Node References/Input 

1 Urban vegetation Expert interviews 2011; SuMaRiO PhD Seminar 

2011 

2 Rooftop greening * 

3 Natural peri-urban vegetation Literature review (Luo et al., 2011) 

4 Overgrazing Literature review (Fang, 2008; Gao and Jing, 2009) 

5 Shelterbelt forests Literature review (Qi, 2009; Yan, 2010) 

6 Education Literature review (Huo, 2009; Pan, 2010; Qi, 2009; 

Zhou et al., 2010) 

7 Human health impacts Literature review (Pan, 2010; Shi et al., 2000; Zhou 

et al., 2010) 

8 Crop damages Literature review (Wang and Shi, 2010; Yan, 2010), 

SuMaRiO PhD Seminar 2011 

9 Environmental damages SuMaRiO PhD Seminar 2011 

10 Irrigation needs? Expert interviews 2011 

Additional nodes in Dust BN 

11 Dust weather in oasis town * 

12 Wind soil erosion Literature review (He et al., 2011) 

13 Soil stability Literature review (He et al., 2011) 

14 Soil type/texture Literature review (He et al., 2011) 

15 Soil moisture Literature review (He et al., 2011; Luo et al., 2011) 

16 Regional air temperature Literature review (Pan, 2010) 

17 Precipitation Literature review (He et al., 2011; Tao, 2009) 

18 Ground wind speed Literature review (He et al., 2011; Luo et al., 2011) 

19 Tropospheric wind speed Input from supervisor 

20 Dust filtered Expert interviews 2011 

21 Fine dust filtered Expert interviews 2011 

22 Early warning system Literature review (Huo, 2009; Pan, 2010; Yan, 

2010) 

23 Infrastructure damages Literature review (Huo, 2009; Wang and Shi, 2010) 
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Table B - 1: Input used to develop the preliminary Bayesian Networks (Dust BN and Heat 

BN) which were presented at WS 1 (continued). 

Additional nodes in Heat BN 

No. Node References/Input 

11 Urban heat island in the oasis town * 

12 Regional air temperature Literature review (Pan, 2010)  

13 Cooling effects * 

14 Wind flow * 

15 Wind channels Literature review (Hu and Li, 2011)  

16 Narrow construction of 

skyscrapers  

(to create downslope winds) 

Literature review (Klimacampus, 2011) 

17 Shade  * 

18 Evapotranspiration * 

19 Narrow roads & narrow 

construction 

* 

20 Heat on roofs * 

21 Light-colored/reflective material Literature review (Kang et al., 2011; Wang et 

al., 2009b) 

22 Asphalt heat * 

23 Watering roads Expert interviews 2011 

24 Rejected heat Literature review (Klimacampus, 2011) 

25 Air conditioning SuMaRiO PhD Seminar 2011 

26 Improve heat insulation * 

27 Energy consumption * 

28 Industry  Literature review (Kang et al., 2011)  

 

*Nodes without a reference in the right column were either added due to qualitative 

assumptions, such as “buildings can provide shade in narrow roads”, or serve as summary 

nodes, such as “Cooling effects” or “Wind flow”. 
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Table B - 2: List of nodes of final ESS BN. 
Node title  Node name  Node type No. of 

states 

States  

Plant species in 

peri-urban area 

periurban_plants  Root node 

 Discrete 

11 Ailanthus altissima (Mill.) 

Swingle, Elaeagnus 

augustifolia L., Juglans 

regia L., Lawn, Malus sieversii 

(Ledeb.) M. Roem., Morus 

alba L., Platanus orientalis L., 

Populus alba L., Populus 

euphratica OLIVIER., Tamarix 

ramosissima Ledeb., Ulmus 

pumila L 

Plant species in 

urban area 

urban_plants  Root node 

 Discrete 

10 Fraxinus sogdiana Bunge., 

Juglans regia L., Morus alba 

L., Platanus orientalis L., 

Populus alba L., Robinia 

pseudoacacia L., Salix alba L. 

Sophora japonica L., Ulmus 

pumila L., Zizyphus jujuba Mill. 

Vegetation 

cover in % of 

urban area 

extent_urban_veg  Root node 

 Discrete 

3 low (<30%), medium (30-45%), 

high (>45%) 

Extent of peri-

urban 

vegetation 

extent_periurban

_veg 

 Root node 

 Discrete 

3 small, medium, large (medium 

being anchored to current 

state, low being a decrease, 

high being an increase) 

▲ Plant-specific 

irrigation needs 

(urban) 

irri_urban_plants  Discrete 5 very low, low, medium, high, 

very high 

● Irrigation 

needs in urban 

area 

irri_urban  Leaf node 

 Continuous 

5 very low, low, medium, high, 

very high 

▲ Plant-specific 

irrigation needs 

(peri-urban) 

irri_periurban_ 

plants 

 Discrete 5 very low, low, medium, high, 

very high 

● Irrigation 

needs in peri-

urban area 

irri_periurban  Leaf node 

 Continuous 

5 very low, low, medium, high, 

very high 

▲ Plant-specific 

shade 

plant_shade  Discrete 3 low, medium, high 

● Shade by 

urban 

vegetation 

veg_shade  Continuous 3 low, medium, high 

Shade by urban 

vegetation* 

veg_shade2  Discrete 3 low, medium, high 
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Table B - 2: List of nodes of final ESS BN (continued). 

Node title  Node name  Node type No. of 
states 

States  

▲ Plant-
specific soil 
protection 

plant_soil_protection  Discrete 3 low, medium, high 

▲ Plant-
specific wind 
protection 

plant_wind_protection  Discrete 3 low, medium, high 

▲ Plant-
specific dust 
filter 

plant_dust_filter  Discrete 3 low, medium, high 

● Dust 
weather 
mitigation by 
plants 

plant_dust_mit  Continuous 3 low, medium, high 

Dust weather 
mitigation by 
plants* 

plant_dust_mit2  Discrete 3 low, medium, high 

● Dust 
weather 
mitigation by 
vegetation 

veg_dust_mit  Continuous 3 low, medium, high 

Dust weather 
mitigation by 
vegetation* 

veg_dust_mit2  Discrete 3 low, medium, high 

● Ecosystem 
services 

ESS  Leaf node  

 Continuous 

3 low, medium, high 

 

▲ Conditional probability table derived from expert estimates 

● Conditional probability table built from equation 

* not shown in ESS BN that was presented at WS 3; each of these nodes is a copy of its continuous 

parent node and serves as discrete parent node to its child node (see Chapter 2.2.2) 
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Table B - 3: Equations used in the final ESS BN. 

Node name Node title Equation 

● Ecosystem 

services 

ESS ESS (veg_dust_mit2, veg_shade2) = 

(veg_dust_mit2+veg_shade2)/4 

● Shade by urban 

vegetation 

veg_shade veg_shade (extent_urban_veg, plant_shade) = 

(extent_urban_veg+plant_shade)/4 

● Dust weather 

mitigation by 

vegetation 

veg_dust_mit veg_dust_mit (extent_periurban_veg, 

plant_dust_mit2) = 

(extent_periurban_veg+plant_dust_mit2)/4 

● Dust weather 

mitigation by 

plants 

plant_dust_mit plant_dust_mit (plant_dust_filter, 

plant_soil_protection, plant_wind_protection) =  

(plant_dust_filter+plant_soil_protection+plant_win

d_protection)/6 

● Irrigation needs 

in peri-urban area 

irri_periurban irri_periurban (irri_periurban_plants, 

extent_periurban_veg) = 

(irri_periurban_plants+extent_periurban_veg)/6 

● Irrigation needs 

in urban area 

irri_urban irri_urban (irri_urban_plants, extent_urban_veg) = 

(irri_urban_plants+extent_urban_veg)/6 

 

 

Tables B-3 to B-9: Conditional probability tables derived from expert estimates 

 

Table B - 4: Conditional probability table “Plant-specific shade” based on weighted 

average of expert estimates (A,B,C) and “very confident” conversion table.  
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Table B - 5: Conditional probability table “Plant-specific soil protection” based on 

weighted average of expert estimates (A,B,C) and “very confident” conversion table. 

 

 

 

 

 

 

 

 

Table B - 6: Conditional probability table “Plant-specific wind protection” based on 

weighted average of expert estimates (A,B,C) and “very confident” conversion table. 

 

 

 

 

 

 

 

Table B - 7: Conditional probability table “Plant-specific dust filter” based on weighted 

average of expert estimates (A,B,C) and “very confident” conversion table.  
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Table B - 8: Conditional probability table “Plant-specific irrigation needs” (peri-urban) 

based on weighted average of expert estimates (A,B,C) and “very confident” 

conversion table. 

 

Table B - 9: Conditional probability table “Plant-specific irrigation needs” (urban) based 

on weighted average of expert estimates (A,B,C) and “very confident” conversion  table. 
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Tables B-10 to B-15: Conditional probability tables build from equations 

 

Table B - 10: Conditional probability table “Dust weather mitigation by plants” build 

from an equation (see Table B - 3). 

 

Table B - 11: Conditional probability table “Dust weather mitigation by vegetation” 

build from an equation (see Table B - 3). 
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Table B - 12: Conditional probability table “Shade by urban vegetation” build from an 

equation (see Table B - 3). 

 

Table B - 13: Conditional probability table “Irrigation needs in peri-urban area” build from 

an equation (see Table B - 3). 

 

Table B - 14: Conditional probability table “Irrigation needs in urban area” build from an 

equation (see Table B - 3). 
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Table B - 15: Conditional probability table “Ecosystem services” build from an equation 

(see Table B - 3). 
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Appendix C Case study NW China: Workshop materials 

 

Table C - 1 to Table C - 3: Anonymized workshop programmes  

 

 

Table C - 1: Anonymized programme of the first Workshop, Urumqi, 25th May 2012. 
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Table C - 1: Anonymized programme of the first Workshop, Urumqi, 25th May 2012 

(continued). 
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Table C - 1: Anonymized programme of the first Workshop, Urumqi, 25th May 2012 

(continued). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table C - 2: Anonymized programme of the second Workshop, Korla, 

10th March 2013. 
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Table C - 2: Anonymized programme of the second Workshop, Korla, 

10th March 2013 (continued). 
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Table C - 3: Anonymized programme of the third Workshop, Urumqi, 

11th March 2014. 
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Table C - 3: Anonymized programme of the third Workshop, Korla, 11th March 2014 

(continued). 
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Figure C-1 to Figure C-2: Results of the workshop evaluations  

Figure C - 1: Results of the evaluation of WS 1 (n = 15).  

1. Overall design, structure, contents of the Workshop 

2. Participatory methods 

 

3. Additional questions 
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Figure C - 2: Results of the evaluation of WS 2 (n = 6). 

 

 

 

 

 

 

 

1. Overall design, structure, contents of the Workshop 

 

2. Participatory methods 

 

3. Additional questions 
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Figure C - 3: Results of the evaluation of WS 3 (n = 7). 

 

 

 

 

 

1. Overall design, structure, contents of the Workshop 

 

2. Participatory methods 

 

3. Additional questions 
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Figure C - 4: Results of the evaluation of Bayesian Networks and Bayesian Decision 

Networks during WS 3 (n = 7). 

 

 

 

 

  

1. Bayesian Decision Networks 

 

2. Bayesian Networks 

 

 

 

 

 



 

163 

 

Appendix D Case study NW China: Expert elicitation materials 

Table D - 1: Estimates on characteristics of peri-urban plant species elicited from three 

expert groups (A,B,C). 
Plant species in peri-urban area Irrigation needs 

 
 

(between 0 - 1) 
1 highest need 
0 lowest need 

Soil 
stability 

Wind 
protection 

Dust 
filter 

very high +++ (3) 
high ++ (2) 

rather high + (1) 
low – (0) 

1 臭椿 Ailanthus altissima (M.) 

Swing. 

A: 0.45 A: 1 A: 1 A: 1 

B: 0.1 B: 2 B: 2 B: 2 

C: 0.2 C: 1 C: 1 C: 2 

2 沙枣 Elaeagnus augustifolia L. A: 0.3 A: 2 A: 3 A: 2 

B: 0.1 B: 3 B: 3 B: 2 

C: 0 C: 2 C: 2 C: 3 

3 核桃 Juglans regia L. A: 0.4 A: 2 A: 2 A: 1 

B: 0.6 B: 2 B: 2 B: 3 

C: 0.7 C: 1 C: 2 C: 2 

4 草地 Lawn A: 1 A: 3 A: 0 A: 0 

B: 1 B: 3 B: 2 B: 0 

C: 1 C: 2 C: 0 C: 1 

5 苹果 Malus sieversii (Ldb.) M. 

Roem 

A: 0.7 A: 1 A: 1 A: 1 

B: 0.8 B: 2 B: 2 B: 3 

C: 0.9 C: 1 C: 2 C: 3 

6 桑树 Morus alba A: 0.3 A: 2 A: 2 A: 2 

B: 0.4 B: 3 B: 2 B: 3 

C: 0.4 C: 2 C: 2 C: 2 

7 法国梧桐 Platanus orientalis L. A: 0.6 A: 1 A: 2 A: 1 

B: 0.6 B: 2 B: 3 B: 3 

C: 1 C: 1 C: 2 C: 2 

8 新疆杨 Populus alba A: 0.35 A: 2 A: 2 A: 3 

B: 0.5 B: 2 B: 3 B: 3 

C: 0.9 C: 2 C: 2 C: 3 

9 胡杨 Populus euphratica A: 0.1 A: 3 A: 3 A: 3 

B: 0 B: 3 B: 3 B: 3 

C: 0.2 C: 2 C: 2 C: 2 

10 多枝柽柳 Tamarix ramosissima 

Ledeb. 

A: 0 A: 3 A: 2 A: 2 

B: 0 B: 3 B: 3 B: 0 

C: 0 C: 2 C: 2 C: 2 

11 白榆 Ulmus pumila L. A: 0.2 A: 2 A: 2 A: 2 

B: 0.3 B: 3 B: 3 B: 2 

C: 0 C: 2 C: 2 C: 2 

How confident are you with your 
estimates? (per column) 
++ very confident  
+ rather confident  
- rather unconfident  
-- very unconfident  

A: + A: + A: + A: + 

B: ++  B: ++  B: ++  B: ++  

C: + C: + C: ++  C: ++  
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Table D - 2: Estimates on characteristics of urban plant species elicited from three expert 

groups (A,B,C). 

 

Plant species in urban area Irrigation needs 
 

(between 0 - 1) 
1 highest need 
0 lowest need 

 

Provision of shade 
 

very high +++ (3) 
high ++ (2) 

rather high + (1) 
low – (0) 

1 小叶白蜡 Fraxinus sogdiana Bunge. A: 0.6 A: 2 

B: 0.5 B: 3 

C: 0.6 C: 2 

2 核桃 Juglans regia L. A: 0.7 A: 1 

B: 0.6 B: 3 

C: 0.7 C: 2 

3 桑树 Morus alba A: 0.5 A: 3 

B: 0.3 B: 2 

C: 0.4 C: 2 

4 法国梧桐 Platanus orientalis L. A: 0.8 A: 1 

B: 0.6 B: 3 

C: 1 C: 3 

5 新疆杨 Populus alba A: 0.3 A: 2 

B: 0.6 B: 3 

C: 0.9 C: 3 

6 刺槐 Robinia pseudoacacia L. A: 0.6 A: 2 

B: 0.5 B: 3 

C: 0.5 C: 2 

7 白柳 Salix alba L. A: 0.65  A: 2 

B: 1 B: 3 

C: 0.7 C: 2 

8 槐树/国槐 Sophora japonica L. A: 0.65 A: 2 

B: 0.5 B: 3 

C: 0.5 C: 1 

9 白榆 Ulmus pumila L. A: 0 A: 3 

B: 0 B: 3 

C: 0 C: 2 

10 枣树 Zizyphus jujuba Mill.  A: 0.5 A: 2 

B: 0.6 B: 2 

C: 0.4 C: 1 

How confident are you with your estimates? 
(per column) 
++ very confident  
+ rather confident  
- rather unconfident  
-- very unconfident 

A: + A: + 

B: ++ B: ++ 

C: + C: ++ 
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Table D - 3: Calculation of weighted average values of estimates on characteristics of peri-urban plant species 

elicited from expert groups A, B, and C. 

 
 Plant species in peri-urban area Irrigation needs 

1 highest need  
0 lowest need 

Soil stability Wind protection Dust filter 

very high +++ (3), high ++ (2), rather high + (1), low – (0) 

1 臭椿 Ailanthus altissima (M.) Swing. A: 0.45 x 2 = 0.9 A: 1 x 2 = 2 A: 1 x 2 = 2 A: 1 x 2 = 2 

B: 0.1 x 3 = 0.3 B: 2 x 3 = 6 B: 2 x 3 = 6 B: 2 x 3 = 6 

C: 0.2 x 2 = 0.4 C: 1 x 2 = 2 C: 1 x 3 = 3 C: 2 x 3 = 6 

∑ = 1.6 ∑ = 10 ∑ = 11 ∑ = 14 

1.6 / 7 = 0.23 10 / 7 = 1.43 11 / 8 = 1.38 14 / 8 = 1.75 

2 沙枣 Elaeagnus augustifolia L. A: 0.3 x 2 = 0.6 A: 2 x 2 = 4 A: 3 x 2 = 6 A: 2 x 2 = 4 

B: 0.1 x 3 = 0.3 B: 3 x 3 = 9 B: 3 x 3 = 9 B: 2 x 3 = 6 

C: 0 x 2 = 0 C: 2 x 2 = 4 C: 2 x 3 = 6 C: 3 x 3 = 9 

∑ = 0.9 ∑ = 17 ∑ = 21 ∑ = 19 

0.9 / 7 = 0.13 17 / 7 = 2.43 21 / 8 = 2.63 19 / 8 = 2.38 

3 核桃 Juglans regia L. 

 

A: 0.4 x 2 = 0.8 A: 2 x 2 = 4 A: 2 x 2 = 4 A: 1 x 2 = 2 

B: 0.6 x 3 = 1.8 B: 2 x 3 = 6 B: 2 x 3 = 6 B: 3 x 3 = 9 

C: 0.7 x 2 = 1.4 C: 1 x 2 = 2 C: 2 x 3 = 6 C: 2 x 3 = 6 

∑ = 4 ∑ = 12 ∑ = 16 ∑ = 17 

4 / 7 = 0.57 12 / 7 = 1.71 16 / 8 = 2 17 / 8 = 2.13 

4 草地 Lawn A: 1 x 2 = 2 A: 3 x 2 = 6 A: 0 x 2 = 0 A: 0 x 2 = 0 

B: 1 x 3 = 3 B: 3 x 3 = 9 B: 2 x 3 = 6 B: 0 x 3 = 0 

C: 1 x 2 = 2 C: 2 x 2 = 4 C: 0 x 3 = 0 C: 1 x 3 = 3 

∑ = 7 ∑ = 19 ∑ = 6 ∑ = 3 

7 / 7 = 1 19 / 7 = 2.71 6 / 8 = 0.75 3 / 8 = 0.38 

5 苹果 Malus sieversii (Ldb.) M. Roem A: 0.7 x 2 = 1.4 A: 1 x 2 = 2 A: 1 x 2 = 2 A: 1 x 2 = 2 

B: 0.8 x 3 = 2.4 B: 2 x 3 = 6 B: 2 x 3 = 6 B: 3 x 3 = 9 

C: 0.9 x 2 = 1.8 C: 1 x 2 = 2 C: 2 x 3 = 6 C: 3 x 3 = 9 

∑ = 5.6 ∑ = 10 ∑ = 14 ∑ = 20 

5.6 / 7 = 0.8 10 / 7 = 1.43 14 / 8 = 1.75 20 / 8 = 2.5 

6 桑树 Morus alba A: 0.3 x 2 = 0.6 A: 2 x 2 = 4 A: 2 x 2 = 4 A: 2 x 2 = 4 

B: 0.4 x 3 = 1.2 B: 3 x 3 = 9 B: 2 x 3 = 6 B: 3 x 3 = 9 

C: 0.4 x 2 = 0.8 C: 2 x 2 = 4 C: 2 x 3 = 6 C: 2 x 3 = 6 

∑ = 2.6 ∑ = 17 ∑ = 16 ∑ = 19 

2.6 / 7 = 0.37 17 / 7 = 2.43 16 / 8 = 2 19 / 8 = 2.38 
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Table D - 3: Calculation of weighted average values of estimates on characteristics of peri-urban plant species 

elicited from expert groups A, B, and C (continued). 
 Plant species in peri-urban area Irrigation needs 

1 highest need  
0 lowest need 

Soil stability Wind protection Dust filter 

very high +++ (3), high ++ (2), rather high + (1), low – (0) 

7 法国梧桐 Platanus orientalis L. 

 

A: 0.6 x 2 = 1.2 A: 1 x 2 = 2 A: 2 x 2 = 4 A: 1 x 2 = 2 

B: 0.6 x 3 = 1.8 B: 2 x 3 = 6 B: 3 x 3 = 9 B: 3 x 3 = 9 

C: 1 x 2 = 2 C: 1 x 2 = 2 C: 2 x 3 = 6 C: 2 x 3 = 6 

∑ = 5 ∑ = 10 ∑ = 19 ∑ = 17 

5 / 7 = 0.71 10 / 7 = 1.43 19 / 8 = 2.38 17 / 8 = 2.13 

8 新疆杨 Populus alba 

 

A: 0.35 x 2 = 0.7 A: 2 x 2 = 4 A: 2 x 2 = 4 A: 3 x 2 = 6 

B: 0.5 x 3 = 1.5 B: 2 x 3 = 6 B: 3 x 3 = 9 B: 3 x 3 = 9 

C: 0.9 x 2 = 1.8 C: 2 x 2 = 4 C: 2 x 3 = 6 C: 3 x 3 = 9 

∑ = 4 ∑ = 14 ∑ = 19 ∑ = 24 

4 / 7 = 0.57 14 / 7 = 2 19 / 8 = 2.38 24 / 8 = 3 

9 胡杨 Populus euphratica 

 

A: 0.1 x 2 = 0.2 A: 3 x 2 = 6 A: 3 x 2 = 6 A: 3 x 2 = 6 

B: 0 x 3 = 0 B: 3 x 3 = 9 B: 3 x 3 = 9 B: 3 x 3 = 9 

C: 0.2 x 2 = 0.4 C: 2 x 2 = 4 C: 2 x 3 = 6 C: 2 x 3 = 6 

∑ = 0.6 ∑ = 19 ∑ = 21 ∑ = 21 

0.6 / 7 = 0.09 19 / 7 = 2.71 21 / 8 = 2.63 21 / 8 = 2.63 

10 多枝柽柳 Tamarix ramosissima Ledeb. A: 0 x 2 = 0 A: 3 x 2 = 6 A: 2 x 2 = 4 A: 2 x 2 = 4 

B: 0 x 3 = 0 B: 3 x 3 = 9 B: 3 x 3 = 9 B: 0 x 3 = 0 

C: 0 x 2 = 0 C: 2 x 2 = 4 C: 2 x 3 = 6 C: 2 x 3 = 6 

∑ = 0 ∑ = 19 ∑ = 19 ∑ = 10 

0 / 7 = 0 19 / 7 = 2.71 19 / 8 = 2.38 10 / 8 = 1.25 

11 白榆 Ulmus pumila L. 

 

A: 0.2 x 2 = 0.4 A: 2 x 2 = 4 A: 2 x 2 = 4 A: 2 x 2 = 4 

B: 0.3 x 3 = 0.9 B: 3 x 3 = 9 B: 3 x 3 = 9 B: 2 x 3 = 6 

C: 0 x 2 = 0 C: 2 x 2 = 4 C: 2 x 3 = 6 C: 2 x 3 = 6 

∑ = 1.3 ∑ = 17 ∑ = 19 ∑ = 16 

1.3 / 7 = 0.19 17 / 7 = 2.43 19 / 8 = 2.38 16 / 8 = 2 

How confident are you with your estimates? (per column) 
++ very confident (x3) 
+ rather confident (x2) 
- rather unconfident (x1) 
-- very unconfident (x0) 

A: +(x 2) A: +(x 2) A: +(x 2) A: +(x 2) 

B: ++ (x 3) B: ++ (x 3) B: ++ (x 3) B: ++ (x 3) 

C: +(x 2) C: +(x 2) C: ++ (x 3) C: ++ (x 3) 
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Table D - 4: Calculation of weighted average values of estimates on characteristics of 

urban plant species elicited from expert groups A, B, and C. 

  

Plant species in urban area Irrigation needs 
(between 0 - 1) 
1 highest need  
0 lowest need 
 

Provision of shade 
very high +++ (3) 
high ++ (2) 
rather high + (1) 
low – (0) 

1 小叶白蜡 Fraxinus sogdiana Bunge. A: 0.6 x 2 = 1.2 A: 2 x 2 = 4 

B: 0.5 x 3 = 1.5 B: 3 x 3 = 9 

C: 0.6 x 2 = 1.2 C: 2 x 3 = 6 

∑ = 3.9  ∑ = 19 

3.9 / 7 = 0.56 19 / 8 = 2.38 

2 核桃 Juglans regia L. 

 

A: 0.7 x 2 = 1.4 A: 1 x 2 = 2 

B: 0.6 x 3 = 1.8 B: 3 x 3 = 9 

C: 0.7 x 2 = 1.4 C: 2 x 3 = 6 

∑ = 4.6 ∑ = 17 

4.6 / 7 = 0.66 17 / 8 = 2.13 

3 桑树 Morus alba 

 

A: 0.5 x 2 = 1 A: 3 x 2 = 6 

B: 0.3 x 3 = 0.9 B: 2 x 3 = 6 

C: 0.4 x 2 = 0.8 C: 2 x 3 = 6 

∑ = 2.7 ∑ = 18 

2.7 / 7 = 0.39 18 / 8 = 2.25 

4 法国梧桐 Platanus orientalis L. 

 

A: 0.8 x 2 = 1.6 A: 1 x 2 = 2 

B: 0.6 x 3 =1.8 B: 3 x 3 = 9 

C: 1 x 2 = 2 C: 3 x 3 = 9 

∑ = 5.4 ∑ = 20 

5.4 / 7 = 0.77 20 / 8 = 2.5 

5 新疆杨 Populus alba 

 

A: 0.3 x 2 = 0.6 A: 2 x 2 = 4 

B: 0.6 x 3 = 1.8 B: 3 x 3 = 9 

C: 0.9 x 2 = 1.8 C: 3 x 3 = 9 

∑ = 4.2 ∑ = 22 

4.2 / 7 = 0.6 22 / 8 = 2.75 

6 刺槐 Robinia pseudoacacia L. 

 

A: 0.6 x 2 = 1.2 A: 2 x 2 = 4 

B: 0.5 x 3 = 1.5 B: 3 x 3 = 9 

C: 0.5 x 2 = 1 C: 2 x 3 = 6 

∑ = 3.7 ∑ = 19 

3.7 / 7 = 0.53 19 / 8 = 2.38 

7 白柳 Salix alba L. 

 

A: 0.65 x 2 = 1.3 A: 2 x 2 = 4 

B: 1 x 3 = 3 B: 3 x 3 = 9 

C: 0.7 x 2 = 1.4 C: 2 x 3 = 6 

∑ = 5.7 ∑ = 19 

5.7 / 7 = 0.81 19 / 8 = 2.38 

8 槐树/国槐 Sophora japonica L. A: 0.65 x 2 = 1.3 A: 2 x 2 = 4  

B: 0.5 x 3 = 1.5 B: 3 x 3 = 9 

C: 0.5 x 2 = 1 C: 1 x 3 = 3 

∑ = 3.8 ∑ = 16 

3.8 / 7 = 0.54 16 / 8 = 2 

9 白榆 Ulmus pumila L. A: 0 x 2 = 0 A: 3 x 2 = 6 

B: 0 x 3 = 0 B: 3 x 3 = 9 

C: 0 x 2 = 0 C: 2 x 3 = 6 

∑ = 0  ∑ = 21 

0 / 7 = 0 21 / 8 = 2.63 

10 枣树 Zizyphus jujuba Mill.  A: 0.5 x 2 = 1 A: 2 x 2 = 4 

B: 0.6 x 3 = 1.8 B: 2 x 3 = 6 

C: 0.4 x 2 = 0.8 C: 1 x 3 = 3 

∑ = 3.6 ∑ = 13 

3.6 / 7 = 0.51 13 / 8 = 1.63 
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Table D - 4: Calculation of weighted average values of estimates on characteristics of 

urban plant species elicited from expert groups A, B, and C (continued). 

 

 

 

  

Plant species in urban area Irrigation needs 
(between 0 - 1) 
1 highest need  
0 lowest need 
 

Provision of shade 
very high +++ (3) 
high ++ (2) 
rather high + (1) 
low – (0) 

How confident are you with your estimates? 
(per column) 
++ very confident (x3) 
+ rather confident (x2) 
- rather unconfident (x1) 
-- very unconfident (x0) 

A: + (x2) A: + (x2) 

B: ++ (x3) B: ++ (x3) 

C: + (x2) C: ++( x3) 
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Table D - 5: Weighted average values of estimates on characteristics of peri-urban plant 

species elicited from expert groups A, B, and C. 

 

Plant species in peri-urban area Irrigation needs 
 
 

(between 0 - 1) 
1 highest need 
0 lowest need 

Soil 
stability 

Wind 
protection 

Dust 
filter 

very high +++ (3) 
high ++ (2) 

rather high + (1) 
low – (0) 

1 臭椿  Ailanthus altissima (M.) 

Swing. 

0.23 1.43 1.38 1.75 

2 沙枣 Elaeagnus augustifolia L. 0.13 2.43 2.63 2.38 

3 核桃 Juglans regia L. 0.57 1.71 2 2.13 

4 草地 Lawn 1 2.71 0.75 0.38 

5 苹果 Malus sieversii (Ldb.) M. 

Roem 

0.8 1.43 1.75 2.5 

6 桑树 Morus alba 0.37 2.43 2 2.38 

7 法国梧桐 Platanus orientalis L. 0.71 1.43 2.38 2.13 

8 新疆杨 Populus alba 0.57 2 2.38 3 

9 胡杨 Populus euphratica 0.09 2.71 2.63 2.63 

10 多枝柽柳 Tamarix ramosissima 

Ledeb. 

0 2.71 2.38 1.25 

11 白榆 Ulmus pumila L. 0.19 2.43 2.38 2 

How confident are you with your 
estimates? (per column) 
++ very confident  
+ rather confident  
- rather unconfident  
-- very unconfident  

A: + A: + A: + A: + 

B: ++  B: ++  B: ++  B: ++  

C: + C: + C: ++  C: ++  
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Table D - 6: Weighted average values of estimates on characteristics of urban plant 

species elicited from expert groups A, B, and C 

 

 

 

 

 

 

 

 

 

 

 

  

Plant species in urban area Irrigation needs 
 

(between 0 - 1) 
1 highest need 
0 lowest need 

 

Provision of shade 
 

very high +++ (3) 
high ++ (2) 

rather high + (1) 
low – (0) 

1 小叶白蜡 Fraxinus sogdiana Bunge. 0.56 2.38 

2 核桃 Juglans regia L. 

 

0.66 2.13 

3 桑树 Morus alba 

 

0.39 2.25 

4 法国梧桐 Platanus orientalis L. 

 

0.77 2.5 

5 新疆杨 Populus alba 

 

0.6 2.75 

6 刺槐 Robinia pseudoacacia L. 

 

0.53 2.38 

7 白柳 Salix alba L. 

 

0.81 2.38 

8 槐树/国槐 Sophora japonica L. 0.54 2 

9 白榆 Ulmus pumila L. 

 

0 2.63 

10 枣树 Zizyphus jujuba Mill.  

 

0.51 1.63 

How confident are you with your estimates? 
(per column) 
++ very confident  
+ rather confident  
- rather unconfident  
-- very unconfident 

A: + A: + 

B: ++ B: ++ 

C: + C: ++ 
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Table D - 7: Calculation of average irrigation need for 5 urban and peri-urban plant 

species for which two values were elicited. 

 

 

 

 

Table D - 8: Utility table of “Irrigation needs” in the Dust BDN. 

 

 

 

 

 

 

 

  

Plant species Irrigation need elicited 

(peri-urban) 

Irrigation need elicited 

(urban) 

Average 

value 

核桃 Juglans regia L. 0.57 0.66 0.62 

桑树Morus alba 0.37 0.39 0.38 

法国梧桐 Platanus 

orientalis L. 
0.71 0.77 0.74 

新疆杨 Populus alba 0.57 0.6 0.59 

白榆 Ulmus pumila L. 0.19 0 0.01 
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Table D - 9: Standardization of values to be used in the utility table “irrigation needs” of 

the Shade BDN. 

Plant species Irrigation needs Irrigation needs/0.81 Irrigation need in 
Shade BDN 

Fraxinus sogdiana Bunge.  0.56 0.69 -0.69 

Juglans regia L. (Avg) 0.62 0.77 -0.77 

Morus alba L. (Avg) 0.38 0.47 -0.47 

Platanus orientalis L. (Avg) 0.74 0.91 -0.91 

Populus alba L. (Avg) 0.59 0.73 -0.73 

Robinia pseudoacacia L.  0.53 0.65 -0.65 

Salix alba L.  0.81 1 -1 

Sophora japonica L.  0.54 0.67 -0.67 

Ulmus pumila L. (Avg) 0.01 0.01 0 

Zizyphus jujuba Mill.  0.51 0.63 -0.63 

 

The highest “irrigation needs” value (Salix alba L., 0.81) was set to 1; the other values were 

divided by 0.81 accordingly. The lowest “irrigation needs” value (Ulmus pumila L. (Avg), 

0.01) was rounded to 0. This way, the irrigation needs of the plant species ranged from 0 to 1 

and could be entered into the utility table (see Table D - 10). 

 

 

Table D - 10: Utility table “Irrigation needs” of the Shade BDN. 
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Appendix E Case study NW China: Conversion tables 

Table E - 1: Conversion tables for values between 0-1 for nodes with 5 states for four 

levels of confidence in experts’ estimates. 

(“very unconfident”, “rather unconfident”, “rather confident”, and “very confident”).  

 

very unconfident very low 
(0-0.2) 

low 
(0.21-0.4) 

medium 
(0.41-0.6) 

high 
(0.61-0.8) 

very high 
(0.81-1) 

0-0.1 60 40 0 0 0 

0.11-0.2 50 30 20 0 0 

0.21-0.3 30 50 20 0 0 

0.31-0.4 20 50 30 0 0 

0.41-0.5 0 30 50 20 0 

0.51-0.6 0 20 50 30 0 

0.61-0.7 0 0 30 50 20 

0.71-0.8 0 0 20 50 30 

0.81-0.9 0 0 20 30 50 

0.91-1 0 0 0 40 60 

rather unconfident very low 
(0-0.2) 

low 
(0.21-0.4) 

medium 
(0.41-0.6) 

high 
(0.61-0.8) 

very high 
(0.81-1) 

0-0.1 70 30 0 0 0 

0.11-0.2 60 25 15 0 0 

0.21-0.3 25 60 15 0 0 

0.31-0.4 15 60 25 0 0 

0.41-0.5 0 25 60 15 0 

0.51-0.6 0 15 60 25 0 

0.61-0.7 0 0 25 60 15 

0.71-0.8 0 0 15 60 25 

0.81-0.9 0 0 15 25 60 

0.91-1 0 0 0 30 70 

rather confident very low 
(0-0.2) 

low 
(0.21-0.4) 

medium 
(0.41-0.6) 

high 
(0.61-0.8) 

very high 
(0.81-1) 

0-0.1 80 20 0 0 0 

0.11-0.2 70 20 10 0 0 

0.21-0.3 20 70 10 0 0 

0.31-0.4 10 70 20 0 0 

0.41-0.5 0 20 70 10 0 

0.51-0.6 0 10 70 20 0 

0.61-0.7 0 0 20 70 10 

0.71-0.8 0 0 10 70 20 

0.81-0.9 0 0 10 20 70 

0.91-1 0 0 0 20 80 

very confident very low 
(0-0.2) 

low 
(0.21-0.4) 

medium 
(0.41-0.6) 

high 
(0.61-0.8) 

very high 
(0.81-1) 

0-0.1 90 10 0 0 0 

0.11-0.2 80 15 5 0 0 

0.21-0.3 15 80 5 0 0 

0.31-0.4 5 80 15 0 0 

0.41-0.5 0 15 80 5 0 

0.51-0.6 0 5 80 15 0 

0.61-0.7 0 0 15 80 5 

0.71-0.8 0 0 5 80 15 

0.81-0.9 0 0 5 15 80 

0.91-1 0 0 0 10 90 
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Table E - 2: Conversion tables for values between 0-3 for nodes with 3 states for four 

levels of confidence in experts’ estimates. 

(“very unconfident”, “rather unconfident”, “rather confident”, and “very confident”).  

very unconfident low (0-1) medium (1.1-2) high (2.1-3) 

0-1 50 30 20 
1.1-2 25 50 25 
2.1-3 20 30 50 
rather unconfident low (0-1) medium (1.1-2) high (2.1-3) 

0-1 60 25 15 
1.1-2 20 60 20 
2.1-3 15 25 60 
rather confident low (0-1) medium (1.1-2) high (2.1-3) 

0-1 70 20 10 
1.1-2 15 70 15 
2.1-3 10 20 70 
very confident low (0-1) medium (1.1-2) high (2.1-3) 

0-1 80 15 5 
1.1-2 10 80 10 
2.1-3 5 15 80 
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Appendix F Case study NW China: Miscellaneous  

Table F - 1: References for violent incidents in Xinjiang, 2011-07 – 2014-06. 

(see Figure 17). 

Date of 

incident 

Location Number of people References 

injured dead 

2011-07-18 Hotan   14 BBC News (2011a) 

2011-07-30 Kashgar  28 8 BBC News (2011b), BBC News (2011c), 

BBC News (2011d) 2011-07-31 Kashgar  12 13 

2011-12-28 Hotan 

prefecture 

5 8 BBC News (2011e) 

2012-02-28 Kashgar 

prefecture 

 20 BBC News (2012a), BBC News (2012b) 

2012-06-07 Hotan  17  BBC News (2012c) 

2013-03-07 Korla 8 4 BBC News (2013a) 

2013-04-23 Kashgar 

prefecture 

 21 BBC News (2013b) 

2013-06-26 Turpan 

prefecture 

 35 BBC News (2013c), BBC News (2013d) 

2013-11-17 Kashgar 

prefecture 

2 11 BBC News (2013e) 

2013-12-15 Kashgar   16 BBC News (2013f) 

2013-12-30 Kashgar 

prefecture 

 8 BBC News (2013g) 

2014-01-24 Aksu 

prefecture 

 12 BBC News (2014a) 

2014-02-14 Aksu 

prefecture 

4 11 BBC News (2014b) 

2014-03-17 Urumqi  2 BBC News (2014c) 

2014-04-30 Urumqi 79 3 BBC News (2014d) 

2014-05-22 Urumqi 90 39 BBC News (2014e), BBC News (2014f) 

2014-06-21 Kashgar 

prefecture 

8 13 BBC News (2014g) 
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