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Introduction

The analysis of algorithms is a field in theoretical computer science and applied mathematics
dedicated to the study of space and time requirements of algorithms. A detailed analysis reveals
the advantages and weaknesses of different algorithms, making it possible to compare their
performance on the same task. This knowledge in return offers computer scientists an efficient
way to choose an algorithm for a particular application, avoiding results which in the end would
be anything but efficient.

Typically, the theoretical study of algorithms is focused on a parameter which is independent of
the particular implementation, such as the number of comparisons made by comparison-based
sorting algorithms. These parameters usually depend on the input of the algorithm. In some
applications, there is a “worst case” input in the sense that the parameter is maximized for a
typical kind of input. For randomized algorithms, there might also be a worst case behavior of
the algorithm that maximizes the running time. However, focusing the study solely on the worst
case behavior of algorithms for comparison reasons is not always the best choice.

Quicksort is a very famous example for an algorithm that requires Θ(n2) comparisons for sorting
n elements in the worst case but still, most of the time, beats many other sorting algorithms
with a Θ(n log n) worst case. Thus, it is reasonable to discuss the running time of algorithms
applied to a “typical” input and, for randomized algorithms, to focus on the “typical” running
time. Since the number of comparisons made by Quicksort is only dependent upon the ranks of
the elements that need to be sorted, there are only a finite number of essentially different inputs
of n elements, namely the n! different permutations of 1, . . . , n. Therefore, a “typical” input may
be modeled to be a uniformly chosen permutation of 1, . . . , n.

In other applications, such as the non-comparative sorting algorithm Radix Sort or the storage of
strings in Tries, the input has a more complicated influence on the running time. In particular,
the running time may change drastically for inputs drawn according to different distributions
on [0, 1]. For instance, Luc Devroye’s paper [8] implies that the expected number of Bucket
operations performed by Radix sort (details given in the next chapter) on n i.i.d. numbers drawn
from [0, 1] according to some density f might be either infinite or n log2 n+ O(n), depending on
whether f is very “peaky” or not (the case n log2(n) includes all densities with

∫
(f(x))2dx <∞;

the first case includes decreasing densities with
∑∞
k=1(

∫ 2−k

0
f(x)dx)2 =∞).

Thus, the choice of the input model is of significant importance in order to obtain reliable
predictions about how an algorithm performs in practice. However, a theoretical study of an
algorithm usually requires some restrictions on the input model in order to make detailed (and
provable) statements about its performance. The work of Luc Devroye on the Density Model
covers a quite general input model for numbers in the unit interval [0, 1]. Since atoms in the
distribution of the input should be excluded (in order to avoid the possibility of two equal
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ii INTRODUCTION

numbers in the input), the assumption of a density for the distribution of each number is very
natural.

However, this thesis is focused on data structures and algorithms that operate on strings which,
in many applications, are considered to model words. More precisely, a string is a sequence of
symbols drawn from an alphabet Σ. If Σ is ordered, there is an induced lexicographical order on
the set of all strings. A very basic model for random strings is given by the Memoryless Source
Model (for Σ = {0, 1} also called the Bernoulli Source Model), in which each string is considered
to be a sequence of i.i.d. symbols drawn from Σ. Obviously, this is not a realistic model for words
in practice (e.g. English words) due to the lack of dependence between consecutive symbols. But
still, it captures several informative features (and methodical limitations) which may be extended
to more realistic models. A step towards a more realistic model is made by the Markov Source
Model. Within this model, the symbols of each string are considered to be distributed according
to a Markov chain on Σ.

The classical Radix Sort induces a sorting algorithm on strings, sometimes called Triesort. The
performance of Radix Sort is closely related to tree-like data structures known as Digital Trees.
The first part of this thesis is dedicated to the analysis of Radix Sort and the path length of
Digital Trees under the Markov Source Model. This includes an asymptotic analysis of the mean
and variance and a limit law as the number of strings tends to infinity. The second part is focused
on Radix Select, an algorithm that selects an element of a given rank instead of sorting the entire
list. There are three different kinds of models discussed in this thesis, all of them considering
strings generated by a Markov source:

• the worst case study considers maximal cost of selecting an element of rank 1, . . . , n,
(thus, the cost is maximized over the possible ranks; the strings remain randomly generated)

• the Grand Averages Model investigates the cost of selecting a uniformly distributed rank
(the distribution of the rank is independent of the strings),

• the Quantile Model is based on the study of all quantiles btnc+ 1, t ∈ [0, 1], as the number
n of strings tends to infinity.

Despite the very successful application of complex analytical methods to the moment analysis of
random recursive structures, all asymptotic results on mean and variance given in this thesis are
based on transfer theorems derived from well known tail inequalities of the binomial distribution.
These transfer results are fitted to enable a limit law with the Contraction Method, a method
introduced by Uwe Rösler in 1991 and successfully generalized and applied to a variety of random
recursive structures and algorithms.

A very brief summary of what is known about Digital Trees

More than fifty years ago, in 1963, Don Knuth wrote his “Notes on Open Addressing”, starting
his pioneer work in a field nowadays called the analysis of algorithms. Since then, a variety
of different methods were applied to analyze algorithms, including analytical methods such as
Singularity Analysis, Saddle Point Strategies, Mellin Transforms, Rice Method and probabilistic
methods such as Renewal Theory, Moment Methods and the Contraction Method.

Many analytical techniques in the analysis of algorithms are based on the work of Ph. Flajolet.
His pioneer work in the field of Analytic Combinatorics enabled a systematic average case analysis
of recursive structures and algorithms with a precision that often cannot be achieved by most
of the other methods. A survey on the field of Analytic Combinatorics is given in the book [18]
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of Flajolet and Sedgewick. An introduction into several analytical and probabilistic methods is
given in Szpankowski’s book [67]. Moreover, there is a very informative article [19] by Fuchs,
Hwang and Zacharovas showing how analytical methods may be applied to analyze the variance
of a large family of recursive structures and algorithms.

Concerning probabilistic methods, Janson illustrates in his article [38] how results from Renewal
Theory may be applied to the analysis of Tries. Applications of the First and Second Moment
Method and the Inclusion-Exclusion Principle are given in Szpankowski’s book [67]. The Con-
traction Method, a method which many results in this thesis rely on, was introduced by Rösler in
[59] in order to derive a limit law for the complexity of the Quicksort algorithm. Since then, sev-
eral applications and extensions of this method were made, cf. [12, 14, 39, 54, 55, 56, 57, 60, 61].
In the context of this method Neininger and Rüschendorf developed in [54] the use of a different
kind of metric, replacing the Wasserstein `p metrics with the Zolotarev metrics. This change
allowed them to cover a large class of recursive structures and algorithms (including those with
a normal limit) which till then could not be handled by the Wasserstein metrics.

Many of these methods were successfully applied to the analysis of Digital Trees. This brief
summary contains some of the results on Tries and Digital Search Trees for different input
models:

Memoryless/Bernoulli Sources: Jacquet and Régnier gave several limit laws for Trie para-
meters based on analytical methods, including a normal limit law for the size and external path
length in the Bernoulli Source Model in [28] and a limit law for the depth and height in [27].
Some of these results were re-derived with the Contraction Method in [54]. Moreover, Jacquet
and Régnier studied the size of a Trie in [30], focused on an asymptotic expansion of the variance.

There are several publications by Szpankowski that deal with Digital Trees, not only restricted
to Memoryless Sources. In particular, he considered the depth and path length of Tries for
Memoryless Sources in [64]. Results on the profile of Tries are given by several authors in [26].

Note that the external path length of Tries follows the same distribution as the number of Bucket
Operations performed by Radix Sort. Thus, all results on the path length also hold for Radix
Sort.

In the case of Digital Search Trees, Kirschenhofer and Prodinger gave an asymptotic expansion
of mean and variance of the depth for a Symmetric Bernoulli Source in [40]. Louchard added
a limit theorem under the same assumption in [49]. This result was extended to Asymmetric
Bernoulli Sources in [50]. In fact, it turns out that the limit is gaussian if and only if the source
is asymmetric.

The profile was studied for Symmetric Bernoulli Sources by Knessel and Szpankowski in [45] and
extended to Asymmetric Bernoulli Sources in [13]. Moreover, the variance of the path length
for a Symmetric Bernoulli Source was studied by Fuchs, Lee and Prodinger in [20] (based on a
work of Hwang, Fuchs and Zacharovas). A result on Asymmetric Bernoulli Sources is given by
Hubalek in [24]. Finally, Szpankowski and Louchard derived a gaussian limit law for the path
length under the Bernoulli Source Model in [36].

Markov Sources: The analysis of the depth of Tries under the Markov Source Model was done
by Jacquet and Szpankowski in [31]. In particular, they showed a gaussian limit law for Markov
Sources (excluding the Symmetric Bernoulli Source) and derived an asymptotic expansion of
mean and variance. These results were based on the Inclusion-Exclusion Rule.

Moreover, the depth of Digital Search Trees was studied for Markov Sources in [37]. There seems
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to be no publication on the path length of Digital Trees for Markov Sources so far, a gap that
was recently filled by [48]. The results in [48] are based on a particular case pertaining to the
methods presented in this thesis.

Additional results regarding Markov Sources may be deduced from the corresponding results on
the more general Dynamical Sources Model. These results mainly cover asymptotic expansions
of the mean of several tree parameters.

Density Model: The Density Model was introduced and analyzed by Devroye. Several results
on this model are given in [6, 7, 8].

More General Sources: The Dynamical Sources Model is more of a general input model
introduced by Vallée in [68]. The analysis of Tries under the Dynamical Sources Model started
with the work of Clément, Flajolet and Vallée in [2], focusing on the asymptotic analysis of the
expectation of several parameters, such as height, depth and size. Moreover, there is a recently
published work [1] on Tame Sources by Cesaratto and Vallée and a result on the depth of Tries
and Digital Search Trees in [25] by Vallée and Hun.

A Remark on Comparison-based Algorithms: Typically, the analysis of comparison-based
algorithms is focused on the number of key comparisons. However, since a key comparisons
usually involves several bit comparisons, it takes a more detailed study of these algorithms
in order to compare them with Radix Sort. Some results on the number of bit comparisons
performed by some sorting algorithms (including Quicksort and Quickselect) are given in [3] and
[4].

Notation

Throughout this thesis, P denotes the set of all probability measures on R. Moreover, Ps ⊂ P
denotes the set of all probability measures on R with finite s-th moment for s > 0. The following
abbreviations are used for some well known probability distributions:

• δx denotes the Dirac measure in x ∈ R,

• B(n, p) is the binomial distribution with n ∈ N trials and success probability p ∈ [0, 1],

• B(p) := B(1, p) denotes the Bernoulli distribution with success probability p ∈ [0, 1],

• Π(λ) denotes the Poisson distribution with mean λ > 0,

• N (µ, σ2) denotes the normal distribution with mean µ ∈ R and variance σ2 > 0,

• unif(M) denotes the uniform distribution on M , where M is either a finite set or an
interval of finite length.

The distribution of a random variable X is denoted by L(X). Equality in distribution is abbre-

viated by
d
=, i.e. for the random variables X and Y

X
d
= Y ⇐⇒ L(X) = L(Y ).

Moreover, the Ls norm of a random variable X with L(X) ∈ Ps is denoted by

‖X‖s := E[|X|s]min{1,1/s}, s > 0.
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Types of convergence: Weak convergence of measures µn, µ ∈ P, n ≥ 1, is denoted by
µn

w−→ µ. If (Xn)n≥0 is a sequence of random variables and X is a possible limit, the following
standard notation for different kinds of convergence is used as n→∞:

• Convergence in distribution: Xn
d−→ X if and only if L(Xn)

w−→ L(X).

• Convergence in probability: Xn
P−→ X if and only if P(|Xn − X| ≥ ε) → 0 for all

ε > 0.

• Convergence in Lp: Xn
Lp−→ X if and only if ‖Xn −X‖p → 0.

Big O notation: The following notation is used for real valued sequences (an)n≥0 and (bn)n≥0:

an = O(bn) ⇐⇒ there exist n0 ∈ N and C > 0 such that |an| ≤ C|bn| for all n ≥ n0,

an = o(bn) ⇐⇒ |bn| > 0 for all but finitely many n and
an
bn
→ 0 as n→∞,

an ∼ bn ⇐⇒ |bn| > 0 for all but finitely many n and
an
bn
→ 1 as n→∞,

an = Θ(bn) ⇐⇒ an = O(bn) and bn = O(an).

If |bn| > 0 for all n ≥ 0, an = O(bn) is equivalent to the existence of a constant C > 0 such that
|an| ≤ C|bn| for all n ≥ 0.

The typical Bachmann-Landau notation is also used for functions f : D → R and g : D → R
with D ⊂ R. The limiting behavior of f(x) and g(x) is always meant as x → ∞ if not stated
otherwise.

Some more notations. Finally, a small list of frequently used notations:

• x ∨ y := max{x, y} denotes the maximum of two numbers x, y ∈ R.

• x ∧ y = min{x, y} denotes the minimum of two numbers x, y ∈ R.

• ∆a(n) := a(n+ 1) − a(n) denotes the (forward) difference of a sequence (a(n))n≥0. Note
that ∆a(mn) = a(mn + 1)− a(mn) for another sequence (mn)n≥0.

• D[0, 1] denotes the space of all càdlàg functions f : [0, 1]→ R.

• dsk denotes the Skorokhod distance on D[0, 1].
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Chapter 1

Models and Results

This chapter is dedicated to the presentation of the type of random recursive structures and
algorithms which are examined throughout the thesis. Radix Sort is a prime example for such a
recursive algorithm. The performance of those structures and algorithms depends on the input
which may be modeled in different ways. Therefore, there are several random input models
summarized in section 1.2 including the most common Bernoulli Source Model and the Markov
Source Model.

Motivated by the analysis of the Radix Sort performance under random input, section 1.3 deals
with the presentation of distributional recursions covered by the results of this thesis.

These results are presented in section 1.4 including the first order asymptotic of mean and
variance and a limit theorem as the size of the input tends to infinity.

Aside from Radix Sort, applications such as the study of the path length in Tries, PATRICIA
Tries and Digital Search Trees are presented in chapter 2.

The proof of the results rely on some transfer techniques derived in chapter 3 and on the Con-
traction Method introduced in section 3.3. Complete proofs of the results are given in chapter
4.

There are some other results on a selection algorithm called Radix Select that are shown in
chapter 5. The recursive behavior of Radix Select differs from the other structures discussed in
this chapter and requires a readjustment of the techniques presented in chapter 3.

1.1 Radix Sort

The classical way to think of Radix Sort is as a non-comparative integer sorting algorithm.
However, there are several other variants of Radix Sort with an input that may either be a list
[u1, . . . , un] ∈ [0, 1]n of n numbers in the unit interval [0, 1] or a list [w1, . . . , wn] of n words
with symbols in some finite (ordered) alphabet. For words, the output is a list of words that are
sorted in lexicographical order.

Radix Sort on [0, 1]: The Radix Sort algorithm applied to a list [u1, . . . , un] of numbers in [0, 1]
works as follows: Fix a base b ≥ 2 and derive the b-ary expansion of u1, . . . , un, i.e. determine

1
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sequences (u
(i)
k )k≥1 in {0, . . . , b− 1} such that for all i = 1, . . . , n

ui =

∞∑
k=1

u
(i)
k b−k.

Afterwards, distribute u1, . . . , un into b sublists (also called Buckets) according to their first
symbol in the b-ary expansion, i.e. divide u1, . . . , un into lists L0, . . . , Lb−1 such that uj is in list

Li if and only if u
(j)
1 = i. The elements in the lists are partially sorted in the sense that for any

i < j, all elements of Li are smaller than any element of Lj .

The algorithm is iterated in each list Lj with at least two elements by dividing the elements
into lists/Buckets Lj,0, . . . , Lj,b−1 according to their second symbol in the b-ary expansion. The
iteration continues until each sublist holds at most one element.

A natural measure for the complexity of the algorithm is the number of Bucket Operations where
a Bucket Operation denotes the placement of an element into a sublist. An example for Radix
Sort (b = 2) and the number of Bucket Operations is given in figure 1.1.

For simplicity and due to the fact that a binary representation of numbers is natural in computer
science, we only consider Radix Sort with b = 2 Buckets.

Figure 1.1 The Radix Sort algorithm on 6 strings represented by the splitting of the lists. Each
string may also be interpreted as a binary expansion of a number in the unit interval. The total
number of Bucket Operations is 6 + 3 · 3 + 3 · 2 = 21.

1101 . . .
0001 . . .
0110 . . .
0000 . . .
1111 . . .
1110 . . .

0001 . . .
0110 . . .
0000 . . .

0001 . . .
0000 . . .

0001 . . .
0000 . . .

0000 . . . 0001 . . .

0110 . . .

1101 . . .
1111 . . .
1110 . . .

1101 . . .
1111 . . .
1110 . . .

1101 . . .
1111 . . .
1110 . . .

1110 . . . 1111 . . .

Radix Sort on words: Suppose that Σ is some finite, ordered alphabet, e.g. Σ = {0, . . . , b−1}
for some b ≥ 2. Consider a list [w1, . . . , wn] of words/strings of infinite length, i.e.

wj =
(
w

(j)
k

)
k≥1

with w
(j)
k ∈ Σ for every j = 1, . . . , n and k ∈ N.

The lexicographical order of words is given by: (vk)k≥1 < (wk)k≥0 if and only if there exists a
k0 ∈ N such that

vk = wk for all k < k0 and vk0 < wk0 .



1.2. INPUT MODELS 3

The Radix Sort algorithm presented for numbers in [0, 1] may also be applied to words by directly
taking the words w1, . . . , wn instead of the b-ary expansions of u1, . . . , un.

Setting in this thesis: Throughout this thesis, the input of Radix Sort is a finite list X =
[Ξ1, . . . ,Ξn] of n (distinct) strings Ξ1, . . . ,Ξn such that each string is a sequence of symbols taken
from the binary alphabet Σ = {0, 1}. The output is a reordered list [Ξσ(1), . . . ,Ξσ(n)] such that σ
is some permutation on {1, . . . , n} and Ξσ(1) < Ξσ(2) < . . . < Ξσ(n) are in lexicographical order.

The complexity of the algorithm is measured in the number of Bucket Operations. A Bucket
Operation denotes the placement of a string into a sublist (also called Bucket).

The strings Ξ1, . . . ,Ξn may either be interpreted as words or as the binary expansion of numbers
u1, . . . , un in the unit interval. Note that the lexicographical order of the binary expansion
coincides with the regular order of u1, . . . , un.

The study of the performance requires a model for the input list X . The next section presents
some reasonable models to randomly generate a string Ξ. In these models, the list X is considered
to contain n independent copies of Ξ.

1.2 Input Models

All input models presented in this section describe how a single string Ξ = (ξj)j∈N is generated.
Strings Ξ1, . . . ,Ξn in these models are considered to be independent and identically distributed
with the same distribution as Ξ.

However, there are some other models where Ξ1, . . . ,Ξn are not independent. An example for
a model with dependent strings is the Suffix Tree Model. Here, one considers strings Ξ1, . . . ,Ξn
where Ξi is the i-th suffix of a given string Ξ. Some details on suffix trees can be found in
[11, 33, 66].

The Bernoulli Source Model is one of the simplest stochastic models for strings. In this model,
the strings are independent and identically distributed as a string Ξ that is generated as follows:

Definition 1.2.1. A (random) string Ξ = (ξj)j∈N is generated by a Bernoulli Source with success
probability p ∈ (0, 1) if Ξ is a sequence of independent and identically distributed random variables
such that P(ξj = 1) = p = 1 − P(ξj = 0) for all j ∈ N. A Bernoulli Source is called symmetric
if p = 1

2 .

Note that, depending on p, one expects independent copies Ξ1, . . . ,Ξn of Ξ to either have long
common prefixes (if p is close to 0 or 1) or to be well balanced (if p is close to 1

2 ) in the sense
that each split in the Radix Sort algorithm leads to two sublists of nearly equal size. One of the
key parameters that captures this effect of p is the Source Entropy given by

HBer(p) = −p log p− (1− p) log(1− p). (1.1)

Most of the work dealing with Radix Sort and related problems is done under this model, see
e.g. [28, 16, 41, 42, 46, 51, 19] and the references therein for some results on Digital Trees.

However, a Bernoulli Source is not very realistic in modeling words of a given language due to
the lack of dependence between the symbols in each string. One step towards a more realistic
model is to generate each symbol ξj depending on the value of the previous symbol. The Markov
Source Model allows such a dependence. There, each of the n independent strings is generated
as follows:
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Definition 1.2.2. Let P = (pij)i,j∈{0,1} be a stochastic matrix and µ = αδ0+(1−α)δ1, α ∈ [0, 1],
be a probability distribution on {0, 1}. A (random) string Ξ = (ξj)j∈N is generated by a Markov
Source with initial distribution µ and transition matrix P if (ξj)j∈N is a Markov chain with initial
distribution µ and transition matrix P , i.e. if for any n ∈ N and (x1, . . . , xn) ∈ {0, 1}n

P

 n⋂
j=1

{ξi = xi}

 = µ({x0})
n∏
j=2

pxj−1xj .

Note that not all choices for P are reasonable. In fact, the presented version of Radix Sort only
works on a list of distinct strings (this is even more important for the other structures presented
in chapter 2). Hence, in any reasonable stochastic model, two independent copies Ξ1 and Ξ2 of
Ξ should satisfy

P(Ξ1 = Ξ2) = 0.

This requires that the distribution L(Ξ) of the entire string has no atoms. Therefore, stochastic
matrices P with p00 = 1 or p11 = 1 are excluded to avoid absorbing states in the Markov chain.
Moreover, one needs to exclude the alternating case where p10 = 1 = p01. For simplicity, the
cases p01 = 1 or p10 = 1 are also excluded to avoid deterministic transitions.

Hence, any transition matrix P = (pij)i,j∈{0,1} considered in this thesis satisfies

pij > 0 for all i, j ∈ {0, 1}.

In particular, the Markov chain is aperiodic and irreducible and has a unique stationary distri-
bution π = π0δ0 + π1δ1 given by

π0 =
p10

p10 + p01
, π1 =

p01

p10 + p01
. (1.2)

Once again, a key parameter appearing in the analysis under the Markov Source Model is the
Source Entropy H. Conditioned on the previous symbol in the string, there are two possible
entropies compared to a Bernoulli Source

H0 = −p00 log(p00)− p01 log(p01), H1 = −p10 log(p10)− p11 log(p11). (1.3)

The Source Entropy for the Markov Source Model is a weighted average of H0 and H1:

H := π0H0 + π1H1 (1.4)

where π0 and π1 denote the weights of the stationary distribution given in (1.2) and H0, H1 are
given in (1.3).

Note that the Markov Source Model covers the Bernoulli Source Model by choosing p01 = p11 = p
and µ = (1−p)δ0 +pδ1. However, the results in section 1.4 do not cover the symmetric Bernoulli
Source Model (i.e. pij = 1/2 for all i, j ∈ {0, 1}). This is due to the fact that the asymptotic
behavior of the variance of the structures in the symmetric model differs from the behavior in
the asymmetric case.

The analysis of the symmetric Bernoulli Source Model can be found in the literature, cf. [17]
for results on the mean of the depths in Digital Trees, [41] for the variance of the path length
and [54] for a limit law derived with the Contraction Method. The connection between the path
length in Digital Trees and the Radix Sort algorithm is explained in section 2.2.1.



1.3. DISTRIBUTIONAL RECURSIONS 5

The Density Model (Devroye 1982): The Density Model is an input model that is especially
well suited when each string is considered to be the binary representation of a number in the unit
interval [0, 1). Let f be a density function on [0, 1) and let X be a random variable with density
f . The strings Ξ1, . . . ,Ξn are distributed according to the Density Model if they are independent
and distributed as the binary expansion of X. More details on the Density Model can be found
in [6, 7, 8].

Dynamical Sources (Vallée 2001): Dynamical Sources generalize the generator presented in
the Density Model. As in the Density Model, let f be a density function on [0, 1) and let X be
a random variable with density f . Moreover, let M be an arbitrary mechanism that associates
a real number in [0, 1) with a (infinite) string, i.e.

M : [0, 1) −→ {(ξi)i∈N : ξi ∈ Σ for all i ∈ N} .

Details on such mechanisms are given in [2].

In the Dynamical Sources Model, strings Ξ1, . . . ,Ξn are considered to be independent and dis-
tributed as M(X).

This covers the Density Model by choosing M(x) to be the binary expansion of the real number
x ∈ [0, 1). It also covers the Bernoulli and Markov Source Model as explained in [2]. Mostly the
first order asymptotic of the expectation of several parameters are derived in [2]. In particular,
a limit law (and the asymptotic of the variance) for Radix Sort under the Markov Source Model
was an open problem that is solved in this thesis.

1.3 Distributional Recursions

The recursive structure of Radix Sort leads to a distributional recursion for the number of Bucket
Operations in the Markov Source Model. This section provides a description which explains how
to derive such a distributional recursion and how this recursion needs to be generalized in order
to cover similar recursive structures that appear in chapter 2.

Throughout this section, let Σ = {0, 1} denote the binary alphabet and let P = (pij)i,j∈Σ be
a (fixed) stochastic matrix. For any initial distribution µ = µ0δ0 + µ1δ1 and any integer n let
X µn = [Ξ1, . . . ,Ξn] be a list of n independent and identically distributed strings Ξ1, . . . ,Ξn where
each string is generated by a Markov Source with initial distribution µ and transition matrix P
(cf. definition 1.2.2).

Let Bµn denote the number of Bucket operations performed by Radix Sort with input X µn . More-
over, let Kµ

n be the number of strings among X µn that start with the symbol 0.

Note that, conditioned on Kµ
n = k, the algorithm performs n Bucket Operations in order to split

X µn into a list X (0)
k of k strings that start with the symbol 0 and a list X (1)

n−k of n− k strings that
start with the symbol 1.

Also note that, by the Markov property, each string in X (0)
k is a concatenation of the symbol 0 and

a Markov chain with initial distribution p00δ0 +p01δ1 and transition matrix P (the independence

assumption is also still valid for the strings in X (0)
k ). Since the recursive call of Radix Sort in the

sublist X (0)
k does not consider the first symbol anymore, the number B0

k of Bucket Operations

recursively sorting X (0)
k is distributed as the number of Bucket Operations performed by Radix
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Sort when sorting k independent and identically distributed strings generated by a Markov Source
with initial distribution p00δ0 + p01δ1.

Similarly, the number of Bucket Operations recursively sorting the sublist X (1)
n−k is distributed as

the number of Bucket Operations performed by Radix Sort when sorting n− k independent and
identically distributed strings generated by a Markov Source with initial distribution p10δ0+p11δ1.

Finally, due to the independence between the strings, the number of Bucket Operations performed
in the two sublists are independent (conditioned on Kµ

n) and Kµ
n follows the binomial distribution

B(n, µ0).

This leads to the following distributional recursion for the number of Bucket Operations:

Bµn
d
= B0

Kµ
n

+B1
n−Kµ

n
+ n, n ≥ 2, (1.5)

with (B0
0 , . . . B

0
n), (B1

0 , . . . , B
1
n), Kµ

n independent and with distributions

L(Kµ
n) = B(n, µ0) and L

(
Bik
)

= L
(
Bpi0δ0+pi1δ1
k

)
, i ∈ Σ, k ≥ 0.

In this context, the additive term n in (1.5) is sometimes called toll term because it covers the
“cost” that is needed to split the problem of sorting the complete list into sorting two sublists.
In other applications this cost may vary and does not need to be deterministic either.

The analysis of PATRICIA Tries in chapter 2 requires the consideration of more general toll
terms than the constant n appearing in (1.5). Thus, this constant is replaced by a more general
term ηµn which might depend on Kµ

n . More precisely, the toll term ηµn is considered to have the
representation

ηµn = gµn(Kµ
n) for a (deterministic) function gµn : {0, . . . , n} → R. (1.6)

Some additional requirements on gµn are given in in section 1.4. In particular, the results in this
thesis are restricted to linear growing toll terms in the sense that E[ηµn] ∼ n as n→∞.

In some other related recursive structures, such as Digital Search Trees, not all of the elements are
distributed to the subproblems. In order to cover such problems as well, a generalized recursion
of (1.5) needs to allow that only n out of n+ d elements are distributed to the subproblems for
some fixed d ∈ N0.

Hence, the general framework of this thesis is to study a sequence (Xµ
n )n≥0 of random variables

depending on a initial distribution µ that satisfy the distributional recursion

Xµ
n+d

d
= X0

Kµ
n

+X1
n−Kµ

n
+ ηµn n ∈ N (1.7)

with (X0
0 , . . . , X

0
n), (X1

0 , . . . , X
1
n) and Kµ

n independent, L(Kµ
n) = B(n, µ0) and

L
(
Xi
k

)
= L

(
Xpi0δ0+pi1δ1
k

)
for i ∈ Σ and k ≥ 0.

Here, d ≥ 0 is a fixed integer and ηµn is a toll term with a representation given in (1.6).

The crucial part in the study of (Xµ
n )n≥0 is to handle the special cases (X0

n)n≥0 and (X1
n)n≥0

with initial distributions p00δ0 + p01δ1 and p10δ0 + p11δ1. The recursion (1.7) for these initial
distributions becomes

X0
n+d

d
= X0

I0n
+X1

n−I0n + η0
n,

X1
n+d

d
= X0

I1n
+X1

n−I1n + η1
n,

(1.8)
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with (X0
0 , . . . , X

0
n), (X1

0 , . . . , X
1
n) and (I0

n, I
1
n) independent, L(Iin) = B(n, pi0) and ηin = gin(Iin)

for i ∈ Σ. The integer d ≥ 0 and the functions gin := gpi0δ0+pi1δ1
n depend on the underlying

recursive structure.

All results in the next section are derived by first studying X0
n and X1

n via (1.8). Afterwards,
these results are transfered to arbitrary initial distributions via (1.7).

1.4 Results on Radix Sort and Related Problems

Before stating the main results concerning sequences (Xµ
n )n≥0 with distributional recursions

(1.7), there are some additional assumptions needed concerning the integrability of Xµ
n and

restrictions to the toll term ηµn.

Let Σ = {0, 1} denote the binary alphabet and let P = (pij)i,j∈Σ be a fixed transition matrix
(stochastic matrix) that satisfies the conditions

pij ∈ (0, 1) for all (i, j) ∈ Σ2, pij 6=
1

2
for some (i, j) ∈ Σ2. (1.9)

Assume that (Xµ
n )n≥0 satisfies for any initial distribution µ the initial conditions

Xµ
n = 0 for all n ≤ max{d, 1}, (1.10)

where d ≥ 0 is the fixed integer that appears in the distributional recursion (1.7).

Moreover, assume that there exists an s ∈ (2, 3] such that

E [|Xµ
n |
s
] <∞ for all n ∈ N. (1.11)

The restrictions on the toll term ηµn occurring in the recursion (1.7) are mainly needed for the
special cases µ = pi0δ0 +pi1δ1, i ∈ Σ, in order to analyze the system (1.8). The only assumptions
needed for general µ in the transfer are that, as n→∞,

E[ηµn] = O(n), Var(ηµn) = O(n). (1.12)

Additionally, assume that there exist constants ε > 0 and C > 0 such that the toll terms η0
n and

η1
n appearing in the system (1.8) satisfy, as n→∞,

E[ηin] = n+ O
(
n

1
2−ε
)
, E[∆ηin] = 1 + O

(
n−ε

)
,

Var(ηin) = O
(
n1−ε) , Var(∆ηin) = O(1),

‖ηin − E[ηin]‖3 = o(
√
n log n), |ηin| ≤ Cn

(1.13)

where ∆ηin := ηin+1 − ηin denotes the (forward) difference of the sequence (ηin)n≥0 for i ∈ Σ. To
be precise about the embedding of ηin+1 and ηin into a common probability space, recall that
ηin = gin(Iin) for some function gin : {0, . . . , n} → R.

Therefore, let Ji be a random variable with Bernoulli distribution B(pi0) that is independent of
Iin and define

∆ηin
d
= gin+1(Iin + Ji)− gin(Iin).

The following holds under these assumptions:
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Theorem 1.4.1. For arbitrary initial distributions µ let (Xµ
n )n≥0 be a sequence of real valued

random variables that satisfies the stochastic recursion (1.7). Assume that the conditions (1.10)-
(1.13) hold.

Then, mean and variance of Xµ
n satisfy, as n→∞,

E [Xµ
n ] =

1

H
n log n+ O(n), Var (Xµ

n ) = σ2n log n+ O
(
n
√

log n
)

where the entropy rate H is defined in (1.4) and σ2 is given by

σ2 =
π0p00p01

H3

(
log(p00/p01) +

H1 −H0

p01 + p10

)2

+
π1p10p11

H3

(
log(p10/p11) +

H1 −H0

p01 + p10

)2

.

Moreover, as n→∞,

Xµ
n − E[Xµ

n ]√
Var(Xµ

n )

d−→ N (0, 1)

where N (0, 1) denotes a random variable with the standard normal distribution.

The proof of theorem 1.4.1 is done in chapter 4 with techniques presented in chapter 3. Chapter
4 starts with the analysis of X0

n and X1
n. In particular, the asymptotic analysis of the mean is

done in section 4.1, the analysis of the variance is done in section 4.2 and the limit law is derived
in section 4.3. These results are transfered to arbitrary initial distributions in section 4.4.

Note that the analysis of E[X0
n] and E[X1

n] also involves a more detailed study of the O(n) error
term in their asymptotic representation. In fact, it is shown that fi(n) := E[Xi

n]− 1
Hn log n has

bounded increments for both i ∈ Σ. This more detailed result is needed for the analysis of the
variance and the limit law.

1.5 Results on Radix Select

The distributional equations discussed in the previous sections covered the Radix Sort algorithm.
Radix Select is a one-sided version of this algorithm to select an element of a given rank:

Input: A list Xn = [Ξ1, . . . ,Ξn] of n strings on an alphabet Σ = {0, . . . , b − 1} and a rank
` ∈ {1, . . . , n}.

Output: The `-th smallest element Ξ(`) among the strings in Xn (in lexicographical order).

The algorithm:

• Split Xn into b sublist Xn,0, . . . ,Xn,b−1 such that string Ξj is in list Xn,i if and only if the
first symbol of Ξj is i, j ∈ {1, . . . , n}, i ∈ Σ.

• Determine

m(`) := min

{
k ∈ Σ :

k∑
i=0

|Xn,i| ≥ `

}

where |Xn,i| denotes the number of strings in the i-th sublist. Note that the `-th smallest

element in X equals the `−
∑m(`)−1
i=0 |Xn,i| smallest element in the sublist Xn,m(`).



1.5. RESULTS ON RADIX SELECT 9

• If |Xn,m(`)| = 1, return the string in Xn,m(`). Otherwise, search for the `−
∑m(`)−1
i=0 |Xn,i|-

th smallest element in Xn,m(`) by applying the Radix Select algorithm with a splitting
according to the next symbol of each string in Xn,m(`).

Once again, it is quite natural to study the number of Bucket Operations performed by this
algorithm where a Bucket Operation denotes the placement of a string into a sublist. Figure 1.2
shows an application of Radix Select on n = 6 strings.

Figure 1.2 The Radix Select algorithm on 6 strings searching for rank 2. Only the list that con-
tains the element with rank 2 (green) is recursively split. The total number of bucket operations
is 6 + 3 + 2 · 2 = 13.

1101 . . .
0001 . . .
0110 . . .
0000 . . .
1111 . . .
1110 . . .

0001 . . .
0110 . . .
0000 . . .

0001 . . .
0000 . . .

0001 . . .
0000 . . .

0000 . . . 0001 . . .

0110 . . .

1101 . . .
1111 . . .
1110 . . .

Input models: The list Xn may be modeled in several different ways. A few common stochastic
models are summarized in section 1.2. The analysis in this thesis is focused on the Markov Source
Model and a binary alphabet Σ = {0, 1}. Thus, it is assumed that Xn contains n independent
and identically distributed strings Ξ1, . . . ,Ξn where the symbols of each string are distributed
as a Markov chain on Σ. Details on the Markov Source Model are given in section 1.2.

Let Y µn (`) denote the number of Bucket Operations performed by Radix Select when searching for
the element of rank ` among n i.i.d. strings generated by a Markov Source with initial distribution
µ = µ0δ0 + µ1δ1 and transition matrix P = (pij)i,j∈Σ.

Moreover, let Y in(`) := Y pi0δ0+pi1δ1
n (`) for n ∈ N and ` ∈ {1, . . . , n}.

Throughout this section, it is assumed that the transition matrix satisfies

pij < 1 for all i, j ∈ Σ.

The following result is shown in section 5.2.2:

Theorem 1.5.1. The number of Bucket Operations performed by Radix Select when searching
for an element of rank btnc+ 1 among n independent strings generated by a Markov Source with
initial distribution pi0δ0 + pi1δ1 satisfies for all t ∈ [0, 1] and i ∈ Σ, as n→∞,

E[Y in(btnc+ 1)] = mi(t)n+ o(n)
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with Y in(n+ 1) := Y in(n) and functions mi : [0, 1]→ (0,∞) defined in section 5.2.2.

In particular, mi is a bounded function which is continuous on [0, 1]\Di∞. Here, Di∞ is a countable
set determined by the transition matrix P . For any t ∈ Di∞, the limits mi(t−) := lims↑tmi(s)
and mi(t+) := lims↓tmi(s) exist and the function satisfies mi(t) = (mi(t−) +mi(t+))/2.

Moreover, the result also holds for an arbitrary initial distribution µ = µ0δ0 + µ1δ1 and any
t ∈ [0, 1]\Dµ∞ where Dµ∞ = (µ0D0

∞) ∪ (µ1D1
∞ + µ0): in this case, the mean satisfies

E[Y µn (btnc+ 1)] = mµ(t)n+ o(n)

where the function mµ : [0, 1]\Dµ∞ → R is given by

mµ(t) =

 µ0m0

(
t
µ0

)
+ 1, if t < µ0,

(1− µ0)m1

(
t−µ0

1−µ0

)
+ 1, if t > µ0.

The theorem is shown by a suitable iteration of a distributional recursion of (Y in(`))`∈{1,...,n},n∈N.
The proof also requires some knowledge about the worst case behavior of Radix Select:

Theorem 1.5.2. Let M i
n := max`∈{1,...,n} Y

i
n(`), i ∈ Σ, denote the maximal number of Bucket

Operations performed by Radix Select. Then, as n→∞,

M i
n

n

d−→ mi, i ∈ Σ,

where mi = supt∈[0,1]mi(t) with mi : [0, 1]→ R given in theorem 1.5.1.

Moreover, for any p > 0,

lim
n→∞

1

np
E[(M i

n)p] = mpi .

In the special case p00 = p10 (which corresponds to the Bernoulli Source Model), it is observed
in [47] that

Xi
n :=

(
Y in(btnc+ 1)−mi(t)n√

n

)
t∈[0,1]

, n ∈ N,

converges in distribution (in the space of all càdlàg functions endowed with the Skorokhod
topology) towards a centered Gaussian process. However, this does not hold for Markov Sources
with p00 6= p10:

Theorem 1.5.3. Consider a Markov Source with p00 6= p10. Then, for both i ∈ Σ, the family
{‖Xi

n‖∞ : n ∈ N} is not tight. In particular, the processes (Xi
n)n≥0, i ∈ Σ, do not converge in

distribution in (D[0, 1], dsk). Here, D[0, 1] denotes the space of all càdlàg functions f : [0, 1]→ R
and dsk denotes the Skorokhod distance on D[0, 1].

In fact, the proof of the previous theorem also shows that any process(
Y in(btnc+ 1)−mi(t)n

αn

)
t∈[0,1]

with αn = o(n) cannot converge in distribution. A convergence of the marginals of Xi
n is not

excluded by the previous theorem and remains an open problem not covered by this thesis.
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Finally, there are some results on the Grand Averages Model: If the chosen rank is assumed to
be uniformly distributed on {1, . . . , n} and independent of the strings Ξ1, . . . ,Ξn, the following
result holds for Markov Sources:

Theorem 1.5.4. Let W i
n = Y in(Un) where Un is uniformly distributed on {1, . . . , n} and inde-

pendent of Y in.

Then, as n→∞,

W i
n

n

d−→ Zi, i ∈ Σ,

where L(Zi) = L(mi(U)) with the function mi given in theorem 1.5.1 and a uniformly on [0, 1]
distributed random variable U .

Moreover, the convergence also holds with all moments:

E[(W i
n)p]

np
−→ E[(Zi)p], i ∈ Σ, p > 0.

The limits Z0 and Z1 may be characterized as the unique pair of integrable solutions to a system
(5.26) introduced in section 5.3. In particular, the expectations κi := E[Zi], i ∈ Σ, are given by

κ0 =
1 + p2

01 − p2
11

2(p00 + p11)(1 + p00p11)− 2(p00 + p11)2
,

κ1 =
1 + p2

10 − p2
00

2(p00 + p11)(1 + p00p11)− 2(p00 + p11)2
.

Most of the results on the Grand Averages Model are covered by a more detailed study of the
process in theorem 1.5.1. However, all results on that model are (re-)derived in section 5.3 with
the Contraction Method since this method provides an easy way to obtain the convergence of all
moments combined with a characterization of the limiting distribution that allows to determine
the moments of Zi.
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Chapter 2

Applications

There are several applications of theorem 1.4.1 in the field of random recursive structures and
algorithms. In this chapter, the Radix Sort algorithm is studied in detail including the proof of
the integrability condition (1.11).

Moreover, the asymptotic behavior of the path length in Tries, PATRICIA Tries and Digital
Search Trees is discussed and analyzed by theorem 1.4.1. There is a generalization of Digital
Search Trees where the capacity of each internal node in the tree is b ≥ 1 including the standard
Digital Search Tree with b = 1. Theorem 1.4.1 also applies to these structures by simply replacing
the integer d = 1 in the analysis of the standard Digital Search Tree with d = b.

Some results on the related b-Tries under the Bernoulli Source Model can be found in [64] and
the references therein.

Another application which, however, is not discussed in this thesis, is the analysis of the Lempel-
Ziv’78 Parsing Scheme developed by the two authors in [69]. For the Bernoulli Source Model
there is a well known transfer of results on the path length in Digital Trees to the asymptotic
behavior of the number of blocks required by the Lempel-Ziv’78 Parsing Scheme to encode a
random message of length n generated by a Bernoulli Source. An explanation of this connection
and some results on other parameters in the Markov Source Model (excluding the number of
blocks required) can be found in [37].

The transfer of the results concerning the path length in Digital Search Trees to the Lempel-
Ziv’78 Parsing Scheme in the Markov Source Model turns out to be more difficult than in the
Bernoulli Source Model due to the additional dependency between the parsed blocks. Therefore,
the Lempel-Ziv’78 Parsing Scheme is not discussed at this point and details are left for further
publications.

All applications are data structures and algorithms that rely on an input Ξ1, . . . ,Ξn of strings
where each string is a sequence of symbols drawn from a (finite) alphabet Σ. Throughout this
chapter, only the binary alphabet Σ = {0, 1} is considered. Moreover, Ξ1, . . . ,Ξn are independent
and distributed as a string Ξ that is generated by a Markov Source with an arbitrary initial
distribution µ and a transition matrix P = (pij)i,j∈Σ (see definition 1.2.2 on page 4 for details
on Markov Sources).

13
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The transition matrix P needs to satisfy the conditions (1.9), i.e.

pij ∈ (0, 1) for all (i, j) ∈ Σ2, pij 6=
1

2
for some (i, j) ∈ Σ2.

2.1 Radix Sort

The first application is Radix Sort, the prime example given in chapter 1. Recall that Bµn denotes
the number of Bucket Operations performed by Radix Sort applied to a list of n independent
and identically distributed strings generated by a Markov Source with initial distribution µ and
transition matrix P .

Theorem 1.4.1 yields the following result:

Corollary 2.1.1. The number Bµn of Bucket operations performed by Radix Sort in the Markov
Source Model satisfies for any initial distribution µ and any transition matrix P with conditions
(1.9) that

E [Bµn ] =
1

H
n log n+ O(n), Var (Bµn) = σ2n log n+ O

(
n
√

log n
)

with constants H and σ2 given in theorem 1.4.1. Moreover, as n→∞,

Bµn − E[Bµn ]√
Var(Bµn)

d−→ N (0, 1)

where N (0, 1) denotes a random variable with the standard normal distribution.

Proof. Let Ξ1, . . . ,Ξn denote the n independent and identically distributed input strings gener-
ated by a Markov Source with

Ξj =
(
ξ

(j)
k

)
k≥1

, j = 1, . . . , n.

As shown in section 1.3, Bµn satisfies the distributional recursion (1.5) which is

Bµn
d
= B0

Kµ
n

+B1
n−Kµ

n
+ n, n ≥ 2.

The only non-trivial condition that needs to be checked in order to apply theorem 1.4.1 is the
integrability condition (1.11).

To this end, let D
(i)
n be the number of Bucket operations involving Ξi. This leads to the decom-

position

Bµn =

n∑
i=1

D(i)
n .

Note that D
(1)
n , . . . , D

(n)
n are identically distributed since the performance of Radix Sort is unaf-

fected by any reordering of the strings Ξ1, . . . ,Ξn.

Hence, the integrability condition (1.11) follows if, for some s ∈ (2, 3] and all n ∈ N,

E
[∣∣∣D(1)

n

∣∣∣s] <∞.
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In fact, this condition can be verified by the following equivalent description of D
(1)
n (also moti-

vated by the connection to Tries in section 2.2.1):

Note that D
(1)
n ≥ k if and only if there is at least one string with the same first k − 1 symbols

as Ξ1 (such that the sublist containing Ξ1 still needs to be sorted after k − 1 iterations of the

algorithm). Therefore, D
(1)
n coincides with the length of the shortest prefix of Ξ1 that does not

appear in Ξ2, . . . ,Ξn.

Also note that, for any (s1, . . . , sk) ∈ Σk and k ≥ 1, by the i.i.d. assumption on Ξ2, . . . ,Ξn

P

(
n⋂
i=2

{(
ξ

(i)
1 , . . . , ξ

(i)
k

)
6= (s1, . . . , sk)

})
=
(
P
((
ξ

(2)
1 , . . . , ξ

(2)
k

)
6= (s1, . . . , sk)

))n−1

=

1− µs1
k∏
j=2

psj−1sj

n−1

≥
(
1− pk−1

∨
)n−1

with p∨ = max{pij : i, j ∈ Σ} < 1. Hence, one obtains by conditioning on Ξ1 that

P
(
D(1)
n ≤ k

)
= P

(
n⋂
i=2

{(
ξ

(1)
1 , . . . , ξ

(1)
k

)
6=
(
ξ

(j)
1 , . . . , ξ

(j)
k

)})
≥
(
1− pk−1

∨
)n−1

≥ 1− (n− 1)pk−1
∨

where the last bound holds by Bernoulli’s inequality.

This yields

P(D(1)
n > k) ≤ (n− 1)pk−1

∨ , k ≥ 1,

and therefore the finiteness of all moments of D
(1)
n due to the exponential decay of the tails of

the distribution.

This implies that Bµn has finite moments of any order. Hence, all conditions of theorem 1.4.1 are
satisfied and the assertion follows.

2.2 Digital Trees

The next application is the analysis of Digital Trees. The purpose of these trees is to store a
finite set X = {Ξ1, . . . ,Ξn} of strings (words) with symbols in some finite alphabet Σ. Although
the analysis is only done when Σ = {0, 1}, the definition of Digital Trees is given with respect to
an arbitrary alphabet Σ = {σ1, . . . , σm}, m ≥ 2, .

There are three kinds of Digital Trees considered in this section: Tries, PATRICIA Tries and
Digital Search Trees.
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Tries: A Trie is an ordered, rooted tree structure that stores strings. The term Trie comes from
(information) retrieval and is chosen due to the fact that Tries allow an efficient search for stored
strings. The construction of a Trie is done recursively:

If the set X of strings is empty, then Trie(X ) is empty as well. If |X | = 1, then Trie(X ) is
a single node storing the string Ξ1 ∈ X . If X contains at least two strings, X is divided into
Xa = {(ξj)j≥2 : (a, ξ2, ξ3, . . .) ∈ X}, a ∈ Σ, and Trie(X ) is a tree that consists of a root node
and subtrees Trie(Xσ1

), . . . , T rie(Xσm).

Hence, in the special case Σ = {0, 1} a Trie storing more than one string consists of a root
and two subtrees, the left subtree storing every string that starts with symbol 0 and the right
subtree storing every string that starts with symbol 1. The edges in a Trie refer to symbols in
the alphabet. In particular, the edge connecting the left subtree to the root refers to the first
symbol which is 0 for all strings stored in the left subtree.

Note that only the leaves of a Trie contain strings. These nodes are called External Nodes. All
non-External nodes are called Internal Nodes. Figure 2.1 shows a Trie that stores the strings
Ξ1, . . . ,Ξ6 with prefixes given by

Ξ1 = 1101 . . . , Ξ2 = 0001 . . . , Ξ3 = 0110 . . . ,

Ξ4 = 0000 . . . , Ξ5 = 1111 . . . , Ξ6 = 1110 . . .
(2.1)

The black nodes in figure 2.1 are Internal Nodes and the blue nodes are External Nodes.

Figure 2.1 A Trie (a) and its reduction to a PATRICIA Trie (b). Both of them are storing the
strings Ξ1, . . . ,Ξ6 listed in (2.1).
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(a) Trie
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(b) PATRICIA trie

PATRICIA Tries: A PATRICIA Trie is a compressed version of a Trie that eliminates nodes
with a single branch. The term PATRICIA is an acronym for “Practical Algorithm To Retrieve
Information Coded In Alphanumeric”. The reduction from a Trie into a PATRICIA Trie works
as follows: For each node u in the Trie that has exactly one child, merge u with its child, i.e. delete
u and replace it by its child. Figure 2.1 shows the compressed version of the Trie containing the
list (2.1).

There is also a direct recursive construction of PATRICIA Tries. For simplicity, only the case
Σ = {0, 1} is considered:
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If the set X of strings is empty, then the PATRICIA Trie PAT (X ) is empty as well. If X contains
a single string Ξ1, then PAT (X ) is a single node storing Ξ1. If X contains at least two strings,
X is divided into X0 = {(ξj)j≥2 : (0, ξ2, ξ3, . . .) ∈ X} and X1 = {(ξj)j≥2 : (1, ξ2, ξ3, . . .) ∈ X} and
there are three cases depending on the size of X0:

• If X0 is empty, let PAT (X ) = PAT (X1);

• if X1 is empty, let PAT (X ) = PAT (X0);

• otherwise, PAT (X ) consists of a root node with subtrees PAT (X0) and PAT (X1).

As in Tries, only the leaves of a PATRICIA Trie store strings. These leaves are called External
Nodes.

Digital Search Trees: The strings in a Digital Search Tree are directly stored in the Internal
Nodes of the tree. For simplicity, the construction of a Digital Search Tree is only described for
the binary alphabet Σ = {0, 1}.

A Digital Search Tree that stores strings Ξ1, . . . ,Ξn is constructed as follows: the first string Ξ1

is stored in the root of the Digital Search Tree. Then, Ξ2 is stored in a node which is either the
left or the right child of the root, depending on whether the first symbol of Ξ2 is 0 or 1. The
remaining strings traverse the tree according to their leading symbols (where 0 leads the string
to the left child and 1 to the right child of a node) and are stored in the first empty position they
visit. The maximal number of children per node increases for larger alphabets. An example for
a Digital Search Tree that stores the strings (2.1) is given in figure 2.2.

Note that, other than in Tries and PATRICIA Tries, the shape of a Digital Search Tree depends
on the ordering of Ξ1, . . . ,Ξn.

Figure 2.2 A Digital Search Tree storing the strings listed in (2.1).
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Parameters and Input Models: There are several parameters to study in Digital Trees. One

of the most basic parameters is the depth D
(i)
n of the node storing the i-th string in a Digital

Tree holding n strings. Here, the depth of a node denotes its distance (number of edges) to the

root. In the context of data structures, D
(i)
n represents the searching cost when searching for

string i.

The height Hn is another natural parameter when analyzing Digital Trees. It is given by

Hn = max
{
D(1)
n , . . . , D(n)

n

}
.

As the depths represent the searching costs, the height represents the worst case searching cost
in a Digital Tree.
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In addition to these two parameters, there is another depth-related parameter known as the
(external) path length. The path length Ln of a Digital Tree is defined as

Ln =

n∑
i=1

D(i)
n

and represents the construction cost of the Digital Tree. This parameter also encodes the average
searching cost 1

nLn.

There are several other parameters not mentioned here, for example the profile and the size of
Digital Trees. In fact, the distributional recursion (1.7) with a linear toll term is designed to
cover the path length in Digital Trees and does not cover the other parameters.

Most of the studies of Digital Trees were done under the Bernoulli Source Model, see, e.g.,
[28, 16, 41, 42, 46, 51] for the examination of several parameters in Tries, PATRICIA Tries and
Digital Search Trees under the Bernoulli Source Model. See also [19] for a general approach
studying several parameters in Digital Trees with analytical methods and [54] for some general
results derived by the Contraction Method.

Results for the height and depths of nodes in Tries, PATRICIA Tries and Digital Search Trees
under the Density Model are given in [7, 8]. The external path length (or equivalently the average
depth) of Tries under the Density Model is discussed in [6] including the first order asymptotic
of the mean.

An asymptotic expansion for the mean of several parameters in Tries under the more general
Dynamical Sources Model can be found in [2]. Moreover, there are laws of large numbers and
concentration inequalities for the height and depth of Tries and PATRICIA Tries under a very
general input model assumption given in [9, 10].

There are some results on the depth of Tries and Digital Search Trees for Markov Sources given
in [31, 37] if the initial distribution of the source is the stationary distribution π given in (1.2)
on page 4. Those results also cover asymptotic expansions for the mean of the path length in
Tries and Digital Search Trees but they do not cover any results on the variance and limit laws
for Ln.

For the remainder of this section, asymptotic results on mean and variance and a limit law is
derived for the path length in Tries, PATRICIA Tries and Digital Search Trees under the Markov
Source Model.

2.2.1 Analysis of Tries

The analysis of the external path length in Tries is covered by the result on Radix Sort given in
section 2.1. This leads to the following result (which may also be shown by theorem 1.4.1):

Corollary 2.2.1. Let TLµn be the external path length of a Trie storing n independent and
identically distributed strings where each string is generated by a Markov Source with an arbitrary
initial distribution µ and a transition matrix P that satisfies the conditions (1.9).

Then, mean and variance satisfy, as n→∞,

E [TLµn] =
1

H
n log n+ O(n), Var (TLµn) = σ2n log n+ O

(
n
√

log n
)
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with constants H and σ2 given in theorem 1.4.1. Moreover, as n→∞,

TLµn − E[TLµn]√
Var(TLµn)

d−→ N (0, 1)

where N (0, 1) denotes a random variable with the standard normal distribution.

Proof. Let X µn = [Ξ1, . . . ,Ξn] be a list of n independent and identically distributed strings
Ξ1, . . . ,Ξn where each string is generated by a Markov Source with initial distribution µ and
transition matrix P .

Moreover, let D
(i)
n denote the smallest integer k such that the k-prefix of string Ξi differs from the

k-prefixes of each other string Ξj , j ∈ {1, . . . , n}\{i}. Here, the k-prefix of a string Ξ = (ξ`)`≥1

denotes the vector (ξ1, . . . , ξk) of the first k-symbols of Ξ.

Finally, let TLµn denote the external path length of a Trie storing the strings listed in X µn and
let Bµn be the number of Bucket operations performed by Radix Sort with input X µn .

The assertion then follows from corollary 2.1.1 and the equality

TLµn =

n∑
i=1

D(i)
n = Bµn .

This equality is quite obvious by the definition of Radix Sort and the Trie. It holds due to the fact
that the splitting of the list into sublists in Radix Sort follows the same rules as the distribution
of strings in Tries to the subtrees of the root which leads to the equality of the depth of Ξi
in a Trie and the number of Bucket Operations involving Ξi. An illustration of the connection
between Tries and Radix Sort is given in figure 2.3.

Figure 2.3 Radix Sort and a Trie with input Ξ1, . . . ,Ξ6 given in (2.1). Note that Ξ1 appears in
four sublists (marked red) whereas the first three lead to a Bucket Operation involving Ξ1. On
the other hand, Ξ1 has depth three in the corresponding Trie.
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2.2.2 Analysis of PATRICIA Tries

As a preparation for the analysis, the recursive description of PATRICIA Tries needs to be
transformed into a distributional recursion of the external path length under the Markov Source
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Model.

To this end, fix an initial distribution µ = µ0δ0 +µ1δ1 and a transition matrix P = (pij)i,j∈Σ and
let X = {Ξ1, . . . ,Ξn} be a set of n independent and identically distributed strings Ξ1, . . . ,Ξn
where each string is generated by a Markov Source with initial distribution µ and transition
matrix P .

Recall that X is split into the subsets

Xi = {(ξj)j≥2 : (i, ξ2, ξ3, . . .) ∈ X} , i ∈ Σ,

and PAT (X ) is constructed out of PAT (X0) and PAT (X1) according to the following rule that
depends on the size Kµ

n of the subset X0:

(i) If Kµ
n = 0, let PAT (X ) = PAT (X1),

(ii) if Kµ
n = n, let PAT (X ) = PAT (X0),

(iii) otherwise, let PAT (X ) consist of a root node with the two subtrees PAT (X0) and PAT (X1).

Moreover, note that the independence and Markov property of the strings imply that, conditioned
on Kµ

n = k, X0 and X1 are two independent sets of strings where X0 holds k independent strings
generated by a Markov Source with initial distribution p00δ0 + p01δ1 and X1 holds n− k strings
generated by a Markov Source with initial distribution p10δ0 + p11δ1. Both sources keep the
original transition matrix P .

Also note that in the cases (i) and (ii), the path length of the complete PATRICIA Trie equals
the path length of the non-empty subtree and in case (iii), the path length may be computed by
deriving the path length of each subtree and adding the missing edge for each string. Therefore,
the external path length PLµn of a PATRICIA Trie with input X satisfies

PLµn
d
= PL0

Kµ
n

+ PL1
n−Kµ

n
+ n1{Kµ

n /∈{0,n}} (2.2)

with (PL0
k)k≥0, (PL1

k)k≥0 and Kµ
n independent and L(PLik) = L(PLpi0δ0+pi1δ1

k ) for k ≥ 0 and
i ∈ Σ. Also note that Kµ

n follows the binomial distribution B(n, µ0) because all n strings are
independent and the probability that a single string starts with symbol 0 equals µ0.

Theorem 1.4.1 yields the following result for PATRICIA Tries:

Corollary 2.2.2. Let PLµn be the external path length of a PATRICIA Trie storing n independent
and identically distributed strings where each string is generated by a Markov Source with an
arbitrary initial distribution µ and a transition matrix P that satisfies the conditions (1.9).

Then, mean and variance satisfy, as n→∞,

E [PLµn] =
1

H
n log n+ O(n), Var (PLµn) = σ2n log n+ O

(
n
√

log n
)

with constants H and σ2 given in theorem 1.4.1. Moreover, as n→∞,

PLµn − E[PLµn]√
Var(PLµn)

d−→ N (0, 1)

where N (0, 1) denotes a random variable with the standard normal distribution.
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Proof. Recall that PLµn satisfies the distributional recursion (2.2). Therefore, the only remaining
task is to show that the conditions (1.10)-(1.13) of theorem 1.4.1 hold for PLµn.

The initial condition (1.10) holds trivially for PATRICIA Tries (note that a PATRICIA Trie
holding n ≤ 1 strings is either empty or consists of a single root node).

The integrability condition (1.11) is implied by the integrability of the external path length in
Tries. This is due to the fact that the PATRICIA Trie is a compressed version of a Trie and
therefore,

PLµn ≤ TLµn

where TLµn denotes the external path length of a Trie with the same input as the PATRICIA
Trie. The integrability of TLµn (or equivalently the integrability of Bµn in Radix Sort) is discussed
in the proof of corollary 2.1.1.

For the conditions on the toll term, note that Kµ
n follows the binomial distribution B(n, µ0)

which yields

E
[
n1{Kµ

n /∈{0,n}}
]

= n− n (µn0 + µn1 ) ,

Var
(
n1{Kµ

n /∈{0,n}}
)

= n2 (µn0 + µn1 ) (1− µn0 − µn1 ) ,∥∥n1{Kµ
n /∈{0,n}} − E

[
n1{Kµ

n /∈{0,n}}
]∥∥

3
= n

∥∥1{Kµ
n /∈{0,n}} − (1− µn0 − µn1 )

∥∥
3

≤ n
(

(µn0 + µn1 )
3

+ (µn0 + µn1 )
)1/3

Hence, the toll term satisfies for any µ = µ0δ0 + µ1δ1 with µ0 ∈ (0, 1) that

E
[
n1{Kµ

n /∈{0,n}}
]

= n+ o
(
n−1

)
,

Var
(
n1{Kµ

n /∈{0,n}}
)

= o
(
n−1

)
,∥∥n1{Kµ

n /∈{0,n}} − E
[
n1{Kµ

n /∈{0,n}}
]∥∥

3
= o

(
n−1

)
and therefore, conditions (1.12) and (1.13) hold for all µ /∈ {δ0, δ1}. For the conditions on the
differences note that

E[∆ηµn] = E[ηµn+1]− E[ηµn], Var(∆ηµn) = Var(ηµn+1) + Var(ηµn) + 2Cov(ηµn+1, η
µ
n)

with Cov(ηµn+1, η
µ
n) ≤

√
Var(ηµn+1)Var(ηµn) by the Cauchy-Schwarz inequality.

Finally, note that the result also holds for µ ∈ {δ0, δ1} since in these cases the root always merges
with its subtree and therefore

PLδ0n
d
= PL0

n, PLδ1n
d
= PL1

n.

2.2.3 Analysis of Digital Search Trees

The last application is the analysis of the path length in Digital Search Trees. The recursive
behavior in Digital Search Trees is similar to the behavior in Tries with the slight difference that
the first string is stored in the root instead of being distributed to the subtrees of the root.
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Once again, let µ = µ0δ0 + µ1δ1 be an arbitrary initial distribution and P = (pij)i,j∈Σ be a
transition matrix. Moreover, let X = [Ξ1, . . . ,Ξn+1] be a list of n+1 independent and identically
distributed strings generated by a Markov Source with initial distribution µ and transition matrix
P .

Note that Ξ1 is stored in the root of the Digital Search Tree and the remaining strings are
distributed into the sublists

Xi = [(ξj)j≥2 : (i, ξ2, ξ3, . . .) ∈ {Ξ2, . . . ,Ξn+1}] , i ∈ Σ.

The Digital Search Tree DST (X ) then consists of a root node with two subtrees DST (X0) and
DST (X1) each of them following the same construction rule as the original Digital Search Tree
with the changed input X0 and X1.

Using the same arguments as in the previous section, the path length DLµn+1 of a Digital Search
Tree storing the strings listed in X satisfies

DLµn+1
d
= DL0

Kµ
n

+DL1
n−Kµ

n
+ n (2.3)

with (DL0
k)k≥0, (DL1

k)k≥0 andKµ
n independent, L(Kµ

n) = B(n, µ0) and L(DLik) = L(DLpi0δ0+pi1δ1
k )

for k ≥ 0 and i ∈ Σ.

Theorem 1.4.1 yields:

Corollary 2.2.3. Let DLµn be the external path length of a Digital Search Tree storing n in-
dependent and identically distributed strings where each string is generated by a Markov Source
with an arbitrary initial distribution µ and a transition matrix P that satisfies the conditions
(1.9).

Then, mean and variance satisfy, as n→∞,

E [DLµn] =
1

H
n log n+ O(n), Var (DLµn) = σ2n log n+ O

(
n
√

log n
)

with constants H and σ2 given in theorem 1.4.1. Moreover, as n→∞,

DLµn − E[DLµn]√
Var(DLµn)

d−→ N (0, 1)

where N (0, 1) denotes a random variable with the standard normal distribution.

Proof. Recall that DLµn satisfies the distributional recursion (2.3). Hence, the only non trivial
condition of theorem 1.4.1 that needs to be checked is the integrability condition (1.11).

However, the integrability of DLµn is implied by the integrability of the external path length TLµn
of a Trie with the same input (it is also not hard to check that DLµn is bounded by n(n− 1)/2).
More precisely,

DLµn ≤ TLµn
because each string Ξi is stored at the position in a Trie that corresponds to the shortest prefix
of Ξi which is unique among the prefixes of the input strings Ξ1, . . . ,Ξn. This position cannot be
occupied by Ξ1, . . . ,Ξi−1 in a Digital Search Tree and therefore, Ξi is either stored at the same
position in the Digital Search Tree or at another position which is closer to the root.

Hence, the analysis of Tries (or Radix Sort) implies that all moments of DLµn are finite and
theorem 1.4.1 yields the assertion.



Chapter 3

Techniques

This chapter contains the tools required to derive the asymptotic of mean and variance as well
as the limit theorems in chapter 4. The techniques introduced here focus on the analysis of the
sequences (X0

n)n≥0 and (X1
n)n≥0. The transfer to arbitrary initial conditions does not need any

particular preparation and is done in section 4.4.

Recall that (X0
n)n≥0 and (X1

n)n≥0 are considered to be sequences of real valued random variables
that satisfy the initial conditions X0

n = X1
n = 0 for n ≤ max{d, 1} and the distributional recursion

(1.8) given by

X0
n+d

d
= X0

I0n
+X1

n−I0n + η0
n,

X1
n+d

d
= X0

I1n
+X1

n−I1n + η1
n,

(3.1)

with (X0
0 , . . . , X

0
n), (X1

0 , . . . , X
1
n), (I0

n, I
1
n) independent and L(Iin) = B(n, pi0), i ∈ Σ. Here,

ηin = gin(Iin), n ∈ N0, i ∈ Σ, denotes a toll term that might depend on Iin.

Moreover, X0
n and X1

n are s-integrable for some s ∈ (2, 3] and constants ε > 0 and C > 0 exist
in a way that the toll terms satisfy for both i ∈ Σ, as n→∞,

E[ηin] = n+ O
(
n

1
2−ε
)
, E[∆ηin] = 1 + O

(
n−ε

)
,

Var(ηin) = O
(
n1−ε) , Var(∆ηin) = O(1),

‖ηin − E[ηin]‖3 = o(
√
n log n), |ηin| ≤ Cn

with ∆ηin := gin+1(Iin + Ji)− gin(Iin) for Iin and Ji independent, L(Ji) = B(pi0), i ∈ Σ.

Note that (3.1) implies recursive equations for mean and variance of Xi
n:

Lemma 3.0.4. Let νi : N0 → R and Vi : N0 → R+
0 , i ∈ Σ, be defined as

νi(n) := E[Xi
n], Vi(n) := Var(Xi

n).

Then, (3.1) implies for all n ∈ N and i ∈ Σ

νi(n+ d) = E[ν0(Iin)] + E[ν1(n− Iin)] + E[ηin] (3.2)

Vi(n+ d) = E[V0(Iin)] + E[V1(n− Iin)] + Var(ν0(Iin) + ν1(n− Iin) + ηin) (3.3)

23
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Proof. Recall that in (3.1)

(a) Xi
n+d

d
= X0

Iin
+X1

n−Iin
+ ηin, n ∈ N, i ∈ Σ,

(b) (X0
n)n≥0, (X1

n)n≥0 and (I0
n, I

1
n)n≥0 are independent.

Equation (3.2) is a direct consequence of taking the expectation in (a) and the fact that

E
[
X0
Iin

]
= E

[
E
[
X0
Iin
|Iin
]]

(b)
= E

[
ν0(Iin)

]
,

E
[
X1
n−Iin

]
= E

[
E
[
X1
n−Iin

|Iin
]]

(b)
= E

[
ν1(n− Iin)

]
,

n ∈ N, i ∈ Σ.

For (3.3) note that for any n ∈ N and i ∈ Σ

Vi(n+ d)
(a)
= E[(X0

Iin
+X1

n−Iin
+ ηin − E[Xi

n+d])
2]

= E[(X0
Iin
− ν0(Iin) +X1

n−Iin
− ν1(n− Iin) + ν0(Iin) + ν1(n− Iin) + ηin − E[Xi

n+d])
2]

(b)
= E[V0(Iin)] + E[V1(n− Iin)] + E[(ν0(Iin) + ν1(n− Iin) + ηin − E[Xi

n+d])
2]

(3.2)
= E[V0(Iin)] + E[V1(n− Iin)] + Var(ν0(Iin) + ν1(n− Iin) + ηin)

which is the assertion.

The asymptotic analysis of the mean requires a technique that transfers (3.2) and the asymptotic
E[ηin] = n+ O

(
n1/2−ε) into an asymptotic result for E[Xi

n]. Such transfer lemmas (and similar
lemmas for the study of the increments (∆νi(n))n≥0) are given in section 3.1.

The study of the variance is more involved because it takes a very detailed asymptotic expansion
of ν0 and ν1 in order to derive the first order asymptotic of Var(ν0(Iin)+ν1(n−Iin)+ηin) in (3.3).
Such an expansion seems far out of reach, at least with the methods presented in this thesis.
Therefore, some additional methods are required for the variance.

In fact, by extending an idea in [63] it is possible to split Xi
n into a sum of two random variables

Y in +Zin such that an exact formula for the mean of (Y 0
n )n≥0 and (Y 1

n )n≥0 can be derived giving
an opportunity to apply the transfer lemmas of section 3.1 to (Var(Y 0

n ))n≥0 and (Var(Y 1
n ))n≥0.

Moreover, Zin has an asymptotically negligible variance which is shown by another transfer result
giving a connection between small toll terms (with small mean and variance) and a linear upper
bound on the variance. This result relies on a Poissonization argument and some lemmas given
in section 3.2.

The limit law for (X0
n)n≥0 and (X1

n)n≥0 is derived from an application of the Contraction Method.
This method has successfully been applied to several parameters in the Bernoulli Source Model,
see [54] for a general approach. An introduction to the Contraction Method is given in 3.3. There,
the method is also extended to the Markov Source Model.

The adjustment to the Markov Source Model also includes a discussion on an appropriate study
of the mean. In particular, section 3.3.3 gives an explanation why bounded increments in the
error term fi(n) = E[Xi

n] − 1
Hn log n allow to apply the contraction method without a more

detailed asymptotic expansion of the mean.
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3.1 Asymptotic Analysis

Throughout this section, let (a0(n))n∈N0 and (a1(n))n∈N0 be two real valued sequences satisfying
some sort of recursive equations. Typical examples are

ai(n) = E[Xi
n], ai(n) = Var(Xi

n), ai(n) = ∆E[Xi
n].

Moreover, let (ε0(n))n∈N0
and (ε1(n))n∈N0

be two real valued sequences that appear in the
recursive equations of (a0(n))n∈N0 and (a1(n))n∈N0 as toll terms. Toll terms appearing in lemma
3.0.4 are

εi(n) = E[ηin], εi(n) = Var(ν0(Iin) + ν1(n− Iin) + ηin), εi(n) = E[∆ηin].

Finally, let (I0
n)n∈N0

and (I1
n)n∈N0

denote the binomial splitters in the recursive equations with
distributions given by

L(Iin) = B(n, pi), n ∈ N0, i ∈ Σ,

for some p0, p1 ∈ (0, 1). In the study of a Markov Source with transition matrix P = (pkl)k,l∈Σ,
pi = pi0 for both i ∈ Σ.

The first lemma is a basic transfer between upper bounds on the toll terms and upper bounds
(a0(n))n∈N0

and (a1(n))n∈N0
:

Lemma 3.1.1. Assume that there exists an integer d ∈ N0 such that for all n ∈ N

a0(n+ d) = E[a0(I0
n)] + E[a1(n− I0

n)] + ε0(n),

a1(n+ d) = E[a0(I1
n)] + E[a1(n− I1

n)] + ε1(n).
(3.4)

If furthermore εi(n) = O(nα) for an α ∈ R and both i ∈ Σ, then, as n→∞,

ai(n) =


O(n), if α < 1,

O(nα), if α > 1,

O(n log n), if α = 1.

Proof. The proof relies on the fact that I0
n and I1

n are concentrated around their means p0n and
p1n. This leads to a geometric decay in the size of the toll term when iterating (3.4) on the right
hand side.

It is more convenient to work with the monotone sequences given by

Ci(n) := sup{|ai(k)| : 0 ≤ k ≤ n}, C(n) := max{C0(n), C1(n)}, i ∈ Σ, n ∈ N0.

Due to the upper bound |ai(n)| ≤ C(n) for both i ∈ {0, 1}, an upper bound on C(n) is sufficient
to prove the assertion.

To this end, let δ ∈ (max{p0, p1, 1 − p0, 1 − p1}, 1) be a constant (the exact value of δ does not
matter) and decompose (3.4) into

ai(n+ d) = E[(a0(Iin) + a1(n− Iin))1{Iin∈[(1−δ)n,δn]}]

+ E[(a0(Iin) + a1(n− Iin))1{Iin /∈[(1−δ)n,δn]}] + εi(n).
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By assumption, there exists a constant L > 0 such that for all n ∈ N and i ∈ Σ

|εi(n)| ≤ Lnα.

Applied to the decomposition above, the monotonicity of C0(n) and C1(n) yields

|ai(n+ d)| ≤ E[(C0(Iin) + C1(n− Iin))1{Iin∈[(1−δ)n,δn]}]

+ (C0(n+ d) + C1(n+ d))P(Iin /∈ [(1− δ)n, δn]) + Lnα

≤ E[(C(Iin) + C(n− Iin))1{Iin∈[(1−δ)n,δn]}]

+ 2C(n+ d)P(Iin /∈ [(1− δ)n, δn]) + Lnα

Note that at least one of the following three equalities needs to hold by definition:

C(n) = |a0(n)| or C(n) = |a1(n)| or C(n) = C(n− 1).

Therefore, for all n ≥ 1 at least one of the following two bounds holds

β(n)C(n+ d) ≤ max
i∈Σ

{
E[(C(Iin) + C(n− Iin))1{Iin∈[(1−δ)n,δn]}] + Lnα

}
C(n+ d) ≤ C(n+ d− 1),

(3.5)

where β(n) := 1− 2 maxi∈Σ{P(Iin /∈ [(1− δ)n, δn])} satisfies

β(n)
n→∞−→ 1.

Now (3.5) and the upper bound E[(C(Iin) + C(n − Iin))1{Iin∈[(1−δ)n,δn]}] ≤ 2C(bδnc) imply for
any ε > 0 by induction on n that

C(n) ≤ Dnmax{− log 4
log δ ,2α}(1 + ε)n

where D = D(ε) > 0 is a sufficiently large constant. This yields for any K > 1 the rough upper
bound C(n) = O(Kn).

To refine this bound, note that by Chernoff’s bound on the binomial distribution (see theorem
A.1.1) there exists a constant c > 0 such that for all n ≥ 0

|β(n)− 1| ≤ 4e−cn

which together with C(n) = O(Kn) for 1 < K < ec implies that there exists a constant L′ > 0
such that

|β(n)− 1|C(n+ d) ≤ L′nα, n ∈ N.

Now this bound and (3.5) yield that at least one of the following bounds holds

C(n+ d) ≤ max
i∈Σ

{
E[(C(Iin) + C(n− Iin))1{Iin∈[(1−δ)n,δn]}] + (L+ L′)nα

}
C(n+ d) ≤ C(n+ d− 1),

which implies by induction on n that

C(n) ≤ L̃n
b− logn/ log δc∑

j=0

(δ1−α)j
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where L̃ = max
{
C(d+ 1), (L+ L′) max{δα−1, 1}

}
. Finally, note that

b− logn/ log δc∑
k=0

δ(1−α)j =


O(1), if α < 1,

O(log n), if α = 1,

O(nα−1), if α > 1.

which yields the assertion.

The next lemma transfers the first order asymptotic of linear toll terms into a result on the first
order asymptotic of (a0(n))n≥0 and (a1(n))n≥0. In particular, this lemma and lemma 3.0.4 yield
the first order asymptotic of E[X0

n] and E[X1
n].

Lemma 3.1.2. Assume that there exists an integer d ∈ N0 such that for all n ∈ N

a0(n+ d) = E[a0(I0
n)] + E[a1(n− I0

n)] + ε0(n),

a1(n+ d) = E[a0(I1
n)] + E[a1(n− I1

n)] + ε1(n).
(3.6)

Moreover, assume that there exist constants c0, c1 ∈ R and α < 1 such that εi(n) = cin+ O(nα)
for both i ∈ Σ. Then, ai(n) satisfies for both i ∈ Σ, as n→∞,

ai(n) =
π0c0 + π1c1

H
n log n+ O(n)

with constants π0, π1 and H given by π0 = p1
p1+1−p0 , π1 = 1−p0

p1+1−p0 and

H = (−p0 log(p0)− (1− p0) log(1− p0))π0 + (−p1 log(p1)− (1− p1) log(1− p1))π1.

Proof. Let h : [0,∞)→ R be defined as

h(x) =

{
0, if x = 0,

x log x, if x > 0.

Moreover, let Hi = −h(pi)− h(1− pi), i ∈ Σ, i.e. H = π0H0 + π1H1. Consider the transformed
sequences (ã0(n))n≥0 and (ã1(n))n≥0 defined as

ãi(n) := ai(n)− ch(n) +
c1−iHi

(p1 + 1− p0)H
n

with c = π0c0+π1c1
H . Note that the transformed sequences satisfy for all n ∈ N and i ∈ Σ

ãi(n+ d) = E[ã0(Iin)] + E[ã1(n− Iin)] + ε̃i(n)

with

ε̃i(n) = εi(n)− c
(
h(n+ d)− E[h(Iin) + h(n− Iin)]

)
+

c1−iHi

(p1 + 1− p0)H
n− c1H0

(p1 + 1− p0)H
npi −

c0H1

(p1 + 1− p0)H
n(1− pi).

By lemma 3.1.1 and the definition of (ã0(n))n≥0 and (ã1(n))n≥0, it is sufficient to show

ε̃i(n) = O
(
nmax{α,1/3}

)
.
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To this end, note that

h(n+ d)− E[h(Iin) + h(n− Iin)]

= −E[nh(Iin/n) + nh(1− Iin/n)] + h(n+ d)− h(n)

= Hin− nE[h(Iin/n)− h(pi) + h(1− Iin/n)− h(1− pi)] + h(n+ d)− h(n)

= Hin+ h(n+ d)− h(n) + O
(
n1/3

)
where the last equality holds by the concentration of the binomial distribution and the asymptotic
of log(1 + x) as x → 0 (note that log(Iin/n) − log(pi) = log(1 + (Iin − npi)/(npi))). Details can
be found in lemma A.2.2 in the appendix. Finally,

h(n+ d)− h(n) = d log n+ n log

(
1 +

d

n

)
= O(log n)

and therefore, by the assumption on εi(n):

ε̃i(n) = cin− cHin+
c1−iHi

(p1 + 1− p0)H
n− c1H0

(p1 + 1− p0)H
np0 + O

(
nmax{α,1/3}

)
= n

(
ci −

p1c0 + (1− p0)c1 − c1−i
(p1 + 1− p0)H

Hi −
pic1H0 + (1− pi)c0H1

(p1 + 1− p0)H

)
+ O

(
nmax{α,1/3}

)
= O

(
nmax{α,1/3}

)
where the last equality can easily be seen by considering the cases i = 0 and i = 1 separately.
The assertion follows by lemma 3.1.1 and the definition of (ã0(n))n≥0 and (ã1(n))n≥0.

The next lemma is a useful tool in the analysis of the increments of sequences that satisfy (3.4).
These increments satisfy similar recursive equations covered by the following transfer result:

Lemma 3.1.3. Assume that there exist constants d ∈ N0 and cl ∈ (0, 1), l ∈ Σ such that for all
n ∈ N

a0(n+ d) = c0E[a0(I0
n)] + (1− c0)E[a1(n− I0

n)] + ε0(n),

a1(n+ d) = c1E[a0(I1
n)] + (1− c1)E[a1(n− I1

n)] + ε1(n).
(3.7)

Then, as n→∞, ε0(n) = O(nα) and ε1(n) = O(nα) imply for both i ∈ Σ

ai(n) =


O(1) if α < 0,

O(nα) if α > 0,

O(log n) if α = 0.

Proof. The idea is essentially the same as in the proof of lemma 3.1.1. However, there are a few
changes due to the coefficients c0 and c1.

Once again, it is more convenient to work with the monotone sequences (Ci(n))n≥0 and (C(n))n≥0

given by

Ci(n) := sup{|ai(k)| : 0 ≤ k ≤ n}, C(n) := max{C0(n), C1(n)}, n ∈ N0, i ∈ Σ.

Then, upper bounds on C(n) also yield upper bounds on |ai(n)| ≤ C(n) for both i ∈ Σ. Therefore,
it only remains to derive upper bounds for C(n).
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To this end, let δ ∈ (max{p0, p1, 1− p0, 1− p1}, 1) be a fixed constant and decompose (3.7) into

ai(n+ d) = E[(cia0(Iin) + (1− ci)a1(n− Iin))1{Iin∈[(1−δ)n,δn]}]

+ E[(cia0(Iin) + (1− ci)a1(n− Iin))1{Iin /∈[(1−δ)n,δn]}] + εi(n).

Together with the assumption εi(n) = O(nα) and the monotonicity of (C0(n))n≥0 and (C1(n))n≥0,
this implies for all n ≥ d+ 1

|ai(n)| ≤ ciCi(bδnc) + (1− ci)C1−i(bδnc)
+ (ciCi(n) + (1− ci)C1−i(n))P(Iin−d /∈ [(1− δ)(n− d), δ(n− d)]) + Lnα

(3.8)

where L > 0 is some constant. The upper bound is derived in two steps: first, a rough up-
per bound C(n) = O(Kn) for any K > 1 is derived; afterwards, the rough upper bound and
Chernoff’s bound on P(Iin /∈ [(1−δ)n, δn]) are taken to derive a refined upper bound out of (3.8).

For the first step, note that (3.8) implies for all n ≥ d+ 1

|ai(n)| ≤ C(bδnc) + C(n)P(Iin−d /∈ [(1− δ)(n− d), δ(n− d)]) + Lnα.

The definition of C(n) yields for all n ∈ N

C(n) = |a0(n)| or C(n) = |a1(n)| or C(n) = C(n− 1)

and therefore,
β(n)C(n) ≤ C(bδnc) + Lnα or C(n) = C(n− 1) (3.9)

where β(n) is given by

β(n) = 1−max
i∈Σ

P(Iin−d /∈ [(1− δ)(n− d), δ(n− d)])
n→∞−→ 1.

Now, (3.9) implies for any ε > 0 by induction on n ∈ N that

C(n) ≤ C̃ · (1 + ε)−
logn
log δ

b− logn/ log δc∑
k=0

δ−αk

where C̃ = C̃(ε) is a sufficiently large constant. This yields a polynomial upper bound and, in
particular,

C(n) = O(Kn) for all K > 1.

In order to improve this bound, note that Chernoff’s bound on P(Iin /∈ [(1−δ)n, δn]) (see theorem
A.1.1) implies that a constant c > 0 exists such that for all n ∈ N, i ∈ Σ

P(Iin /∈ [(1− δ)n, δn]) ≤ 2e−cn.

This fact, (3.8) and the rough upper bound with 1 < K < ec yield that

|ai(n)| ≤ ciCi(bδnc) + (1− ci)C1−i(bδnc) + L̂nα

where L̂ > 0 is a sufficiently large constant.

Hence, C(n) = max{C0(n), C1(n)} satisfies

C(n) ≤ C(bδnc) + L̂nα or C(n) = C(n− 1)
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which implies by induction on n that

C(n) ≤ L̃
b− logn/ log δc∑

k=0

δ−αj

where L̃ = max{C(d+ 1),max{δ−α, 1}L̂}.

Finally, the asymptotic behavior of the sum implies the assertion.

There is also a transfer result on bounded toll terms with given first order asymptotic:

Lemma 3.1.4. Assume that there exist constants d ∈ N0 and cl ∈ (0, 1), l ∈ Σ such that for all
n ∈ N

a0(n+ d) = c0E[a0(I0
n)] + (1− c0)E[a1(n− I0

n)] + ε0(n),

a1(n+ d) = c1E[a0(I1
n)] + (1− c1)E[a1(n− I1

n)] + ε1(n).
(3.10)

Moreover, assume that ε0(n) = ε0 + O(n−α) and ε1(n) = ε1 + O(n−α) for some constants
ε0, ε1 ∈ R and α > 0.

Then, as n→∞,
ai(n) = L log n+ O(1), i ∈ Σ,

with a constant L ∈ R given by

L =
c1ε0 + (1− c0)ε1

−c1(c0 log p0 + (1− c0) log(1− p0))− (1− c0)(c1 log p1 + (1− c1) log(1− p1))
.

Remark 3.1.5. In particular, lemma 3.1.4 yields for constants c0, c1, ε0, ε1 with

c1ε0 + (1− c0)ε1 = 0

that ai(n) = O(1) for both i ∈ Σ.

Proof of lemma 3.1.4. Let g : N0 → R be defined as

g(x) = log(x+ 1).

Consider the rescaled sequences (ã0(n))n∈N0
and (ã1(n))n∈N0

given by

ã0(n) := a0(n)− Lg(n)− ε1 (c0 log p0 + (1− c0) log(1− p0))

C
,

ã1(n) := a1(n)− Lg(n)− ε0 (c1 log p1 + (1− c1) log(1− p1))

C

with C = −c1(c0 log p0 + (1− c0) log(1− p0))− (1− c0)(c1 log p1 + (1− c1) log(1− p1)).

Then, (3.10) implies

ã0(n) = c0E[ã0(I0
n)] + (1− c0)E[ã1(n− I0

n)] + ε̃0(n)

with a toll term given by

ε̃0(n) = ε0(n)− Lg(n) + c0LE[g(I0
n)] + (1− c0)LE[g(n− I0

n)]

+ (1− c0)
ε0 (c1 log p1 + (1− c1) log(1− p1))− ε1 (c0 log p0 + (1− c0) log(1− p0))

C
.
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Note that Chernoff’s bound on the binomial distribution implies E[g(I0
n)] = g(n) + log(p0) +

O
(
n−1/2

)
and E[g(n − I0

n)] = g(n) + log(1 − p0) + O
(
n−1/2

)
(details given in lemma A.2.2).

Hence, the assumption on ε0(n) yields

ε̃0(n) =
Cε0 + (c1ε0 + (1− c0)ε1) (c0 log p0 + (1− c0) log(1− p0))

C

+ (1− c0)
ε0 (c1 log p1 + (1− c1) log(1− p1))− ε1 (c0 log p0 + (1− c0) log(1− p0))

C

+ O
(
n−min{α,1/2}

)
= O

(
n−min{α,1/2}

)
.

A similar calculation reveals that

ã1(n) = c1E[ã0(I1
n)] + (1− c1)E[ã1(n− I1

n)] + O
(
n−min{α,1/2}

)
.

Hence, lemma 3.1.3 yields that (ã0(n))n∈N0
and (ã1(n))n∈N0

are bounded and the assertion
follows.

The last transfer result in this section is dedicated to the analysis of Radix Select in chapter 5.

Lemma 3.1.6. Let (a(n))n∈N0
be a real valued sequence and In a binomial B(n, p) distributed

random variable for some p ∈ (0, 1). Suppose that there exists a real valued sequence (ε(n))n∈N
such that for all n ∈ N

a(n) = E[a(In)] + ε(n).

Then, as n→∞, ε(n) = O (nα) for some α ∈ R implies

a(n) =


O(1), if α < 0,

O(log n), if α = 0,

O (nα) , if α > 0.

Proof. Let C(n) := sup{|a(k)| : 0 ≤ k ≤ n} and δ ∈ (p, 1). As in the previous proof, note that

C(n) ≤ C(n− 1) or β(n)C(n) ≤ C(bδnc) + Lnα

with β(n) = 1− P(In > δn)→ 1.

Note that this bound also appeared in (3.9). As it is shown there, one obtains the upper bound

C(n) = O(Kn) for all K > 1.

Moreover, the arguments in the proof of lemma 3.1.3 also yield the refined upper bound

C(n) ≤ L̃
b− logn/ log δc∑

k=0

δ−αj

for some suitable constant L̃ > 0 and the assertion follows.
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3.2 Poissonization and Depoissonization

A very useful tool in the asymptotic analysis of variances is Poissonization. The idea of Pois-
sonization is to replace the fixed number n with a Poisson Π(λ) distributed random variable Nλ
and derive the (first order) asymptotic of Var(Xi

Nλ
) as λ→∞.

This turns out to be easier than analyzing the stochastic recursion (3.1), at least for toll terms
with small mean and variance.

More precisely, for any λ > 0, let Nλ be a Poisson Π(λ) distributed random variable that is
independent of {X0

n, X
1
n, I

0
n, I

1
n : n ∈ N0}. Then, (3.1) implies for both i ∈ Σ and any λ > 0

Xi
Nλ+d

d
= X0

Nλpi0
+X1

Mλpi1
+ ηiNλ (3.11)

where Nλpi0 := IiNλ,0, Mλpi1 := IiNλ,1 and (X0
n)n≥0, (X1

n)n≥0, (Iin)n≥0 and Nλ are independent.

Note that, as a well known fact from Poisson Processes (marking each point with probability
pi0), Nλpi0 and Mλpi1 are independent and Poisson distributed. Hence, X0

Nλpi0
and X1

Mλpi1
are

independent even without conditioning on Nλpi0 and Mλpi1 .

The transfer result in this section is done for functions

hi : R+ → R, ηi : R+ → R, i ∈ Σ

that satisfy for all x ∈ R+

h0(x) = h0(xp00) + h1(xp01) + η0(x),

hi(x) = h0(xp10) + h1(xp11) + ηi(x)
(3.12)

with constants pi0 ∈ (0, 1) and pi1 = 1− pi0 for both i ∈ Σ.

Indeed, hi(x) = Var(Xi
Nx

), i ∈ Σ, satisfies (3.12) for sequences (X0
n)n≥0 and (X1

n)n≥0 such that
(3.11) holds with d = 0. For d ≥ 1, one additionally needs upper bounds on the difference
|Var(Xi

Nλ+d) − Var(Xi
Nλ

)|. Such bounds can be derived by the conditioning on Nλ and the
following lemma:

Lemma 3.2.1. Let (a(n))n∈N0
be a real valued sequence and d ∈ N be some constant. Moreover,

let Nλ be Poisson(λ) distributed for λ > 0.

Then, a(n) = O(n log n) implies for all ε > 0, as λ→∞,

E[a(Nλ + d)] = E[a(Nλ)] + O
(
λ

2
3 +ε
)
.

Proof. First note that a(n) = O(n log n) implies that a constant C > 0 exists such that

|E[a(Nλ + d− 1)]| ≤ CE[(Nλ + d− 1) log(Nλ + d− 1)] = O(λ log λ) (3.13)

where the last equality is easy to check (see appendix, lemma A.2.3). Moreover, an easy calcu-
lation (also known from Stein’s method) reveals

E[a(Nλ + d)] =
1

λ
E[Nλa(Nλ + d− 1)].
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The assertion follows by induction on d and the following bound:∣∣∣∣ 1λE[Nλa(Nλ + d− 1)]− E[a(Nλ + d− 1)]

∣∣∣∣ = O
(
λ

2
3 +ε
)
. (3.14)

Therefore, it is sufficient to show that

E[Nλa(Nλ + d− 1)] ≤
(
λ+ λ

2
3

)
E[a(Nλ + d− 1)] + O

(
λ

5
3 +ε
)
, (3.15)

E[Nλa(Nλ + d− 1)] ≥
(
λ− λ 2

3

)
E[a(Nλ + d− 1)] + O

(
λ

5
3 +ε
)
, (3.16)

which combined with (3.13) yields the desired bound (3.14).

Both bounds can be computed by the following decompositions

E[Nλa(Nλ + d− 1)] ≤ E[(λ+ λ2/3)a(Nλ + d− 1)] + E[Nλa(Nλ + d− 1)1{Nλ>λ+λ2/3}],

E[Nλa(Nλ + d− 1)] ≥ E[(λ− λ2/3)a(Nλ + d− 1)]− E[(λ− λ2/3)a(Nλ + d− 1)1{Nλ<λ−λ2/3}].

The bounds on the remaining terms

E[Nλa(Nλ + d− 1)1{Nλ>λ+λ2/3}], E[(λ− λ2/3)a(Nλ + d− 1)1{Nλ<λ−λ2/3}]

follow from Hölder’s inequality, an upper bound on P(Nλ > λ + λ2/3) and P(Nλ < λ − λ2/3)
given by Chebyshev’s inequality, the asymptotic of a(n) and the fact that, as λ→∞,

E
[
Nα
λ (logNλ)β

]
= O

(
λα(log λ)β

)
for all α, β > 0.

Details on the asymptotic behavior of E[Nα
λ (logNλ)β ] are given in lemma A.2.3 on page 115.

The next lemma provides a way to deduce the asymptotic behavior of functions hi that satisfy
(3.12).

Lemma 3.2.2. Let h0 and h1 be some functions that satisfy (3.12) and supx≤a |hi(x)| <∞ for
all i ∈ Σ and a ∈ R+.

Then, as x→∞, ηi(x) = O(x1−α) for some α > 0 and both i ∈ Σ implies

hi(x) = O(x), i ∈ Σ.

Proof. Let p ∈ (0, 1) and n0 ∈ N be defined as

p := max{pij : i, j ∈ Σ}, n0 := dlog(min{pi,j : i, j ∈ Σ})/ log pe,

i.e. pijx ≥ 1 for all x ≥ p−n0 .

The assertion follows if the following holds for some constant C > 0 and all n ∈ N:

|h0(x)| ≤ Cx
b− log x

log pc∑
j=0

pαj , x ∈ [1, p−n],

|h1(x)| ≤ Cx
b− log x

log pc∑
j=0

pαj , x ∈ [1, p−n].

(3.17)
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The proof of (3.17) is done by induction on n.

Note that, by assumption, there exists a constant C̃ > 0 and an integer n1 ≥ n0 such that
|ηi(x)| ≤ C̃x1−α for all x > p−n1 and i ∈ Σ. In particular,

|hi(x)| ≤ |h0(xpi0)|+ |h1(xpi1)|+ C̃x1−α for all x > p−n1 and i ∈ Σ. (3.18)

Now let
C := max

{
C̃,max{|hi(x)| : i, j ∈ Σ, x ∈ (0, p−n1 ]}

}
<∞.

Then, (3.17) holds trivially for n ≤ n1.

For n > n1 and x ∈ (p−(n−1), p−n], note that pijx ∈ [1, p−(n−1)] for all i, j ∈ Σ and therefore, by
(3.18) and the induction hypothesis

|hi(x)| ≤ Cxpi0

⌊
− log(xpi0)

log p

⌋∑
j=0

pαj + Cxpi1

⌊
− log(xpi1)

log p

⌋∑
j=0

pαj + C̃x1−α

≤ Cx
b− log x

log pc−1∑
j=0

pαj + C̃x1−α

≤ Cx
b− log x

log pc∑
j=0

pαj

where the last inequality holds because C̃ ≤ C and x1−α ≤ xpαb− log x/ log pc.

Finally, (3.17) implies the assertion since
∑∞
j=0 p

αj = 1
1−pα <∞.

After getting asymptotic results for the Poissonized case via lemma 3.2.2, one needs to trans-
fer these results to the original problem of analyzing Var(Xi

n). This transfer is usually called
Depoissonization.

In fact, bounds on Var(Xi
Nλ

) imply upper bounds on E[Vi(Nλ)], Vi(n) := Var(Xi
n), which may

be transfered to Var(Xi
n) by the following lemma:

Lemma 3.2.3. Let (a(n))n∈N0
be a real valued sequence. Furthermore, let Nλ be Poisson Π(λ)

distributed for λ > 0. Then, as n→∞, ∆a(n) = O(
√
n) implies

|a(n)− E[a(Nn)]| = O (n) .

Proof. First note that ∆a(n) = O(
√
n) implies that there exists a constant C > 0 such that for

all n,m ∈ N0

|a(n)− a(m)| =

∣∣∣∣∣
m∨n−1∑
i=m∧n

∆a(i)

∣∣∣∣∣ ≤ C√n+m|n−m|.

This yields

|a(n)− E[a(Nn)]| ≤ E[|a(n)− a(Nn)|] ≤ CE[
√
n+Nn|Nn − n|]

and the Cauchy-Schwarz inequality implies the assertion.
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3.3 The Contraction Method

The Contraction Method was introduced in 1991 by Uwe Rösler [59] for the analysis of the
complexity of the Quicksort algorithm. There have been several publications [12, 14, 39, 54, 55,
56, 57, 60, 61] in the last two decades that extend the Contraction Method to cover many other
recursive structures and algorithms. An extension to systems of distributional equation as they
appear in the analysis under the Markov Source Model was simultaneously developed in [44, 48].

The introduction of the contraction method requires some notation. Throughout this section,
let P denote the set of all probability distributions on R and

Ps := {L(Z) ∈ P : E[|Z|s] <∞}, s > 0,

the set of all probability distributions on R with finite s-th moment. For M1 ∈ R and M2 ≥ 0
let

Ps(M1) := {L(Z) ∈ Ps : E[Z] = M1}, s ≥ 1,

Ps(M1,M2) := {L(Z) ∈ Ps : E[Z] = M1,E[Z2] = M2}, s ≥ 2.

Finally, let ‖ · ‖p denote the p-norm on Pp which, for L(W ) ∈ Pp and p > 0, is given by

‖W‖p := ‖L(W )‖p := (E [|W |p])min{ 1
p ,1} .

3.3.1 Contraction Method in the Bernoulli Source Model

The Contraction Method is an approach to derive a (weak) limit of a sequence (Yn)n≥0 that
satisfies some sort of distributional recursion. Under a quite general framework, such a recursion
might be

Yn
d
=

K∑
i=1

A(i)
n Y

(i)

I
(i)
n

+ bn

where (Y
(1)
n )n≥0, . . . , (Y

(K)
n )n≥0, (A

(1)
n , . . . , A

(K)
n , bn, I

(1)
n , . . . , I

(K)
n ) are independent, I

(i)
n is a ran-

dom variable on {0, . . . , n} and L(Y
(i)
` ) = L(Y`) for i ∈ {1, . . . ,K} and ` ≥ 0. In most applica-

tions, K is a fixed integer. However, there are generalizations to integers K = Kn that depend on
n and might be random. Also note that Yn does not need to be real-valued. A general approach
(also covering d-dimensional vectors) is given in [54] including several applications in the field of
random structures and algorithms. A functional approach (where Yn might be a continuous or
càdlàg function) is given in [56].

The analysis of Radix Sort and Digital Trees in the Bernoulli Source Model is such an application.
In this model (embedded in the Markov Source Model by choosing p01 = p11 =: p), the system
(3.1) is reduced to a single distributional equation for a sequence (Xn)n≥0 that is

Xn+d
d
= XIn + X̃n−In + ηn, n ∈ N, (3.19)

where (X`)`≥0, (X̃`)`≥0 and (In, ηn) are independent, L(In) = B(n, p) and L(X̃`) = L(X`) for
all ` ≥ 0.
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The upcoming step by step introduction sketches the Contraction Method approach. There,
mean and variance of Xn are abbreviated by

ν(n) := E[Xn], σ(n) :=
√

Var(Xn), n ∈ N0.

1. Rescaling: Typically, the quantity Xn needs to be rescaled before weak convergence occurs.
If a normal limit is expected, exact normalization is necessary. In this case, the rescaled random
variable is defined as

Yn :=

{
Xn−ν(n)
σ(n) , if σ(n) > 0,

0, otherwise.

In other applications, such as the original work on Quicksort [59], a proper rescaling might be
“guessed” and Yn does not have to be centered or normalized. In fact, it depends on the metric
chosen in step 4 whether Yn needs to be centered and normalized or not.

After rescaling, the stochastic recursion (3.19) provides a similar recursion for (Yn)n≥0:

Yn+d
d
= An,1YIn +An,2Ỹn−In + bn (3.20)

where (Yn)n≥0, (Ỹn)n≥0 and (An,1, An,2, bn, In) are independent, L(Ỹn) = L(Yn) and L(In) =
B(n, p). The coefficients are given by

An,1 =
σ(In)

σ(n+ d)
, An,2 =

σ(n− In)

σ(n+ d)
, bn =

ν(In) + ν(n− In) + ηn − ν(n+ d)

σ(n+ d)
. (3.21)

2. Asymptotic behavior of the coefficients: The asymptotic behavior of the coefficients
in (3.20) determines a possible weak limit of Yn (step 3). Therefore, limits A1, A2 and b are
required such that

(An,1, An,2, bn) −→ (A1, A2, b).

The type of convergence that is needed depends on the chosen metric (discussed in step 4). Typi-
cally, convergence in ‖·‖p is sufficient for some p > 2 and a suitable realization of (An,1, An,2, bn)n≥0,
A1, A2, b in a common probability space.

In many applications, these limits are easy to obtain, in particular, if no exact normalization
is needed. However, the asymptotic analysis of (3.21) requires the first order asymptotic of the
variance and a sufficiently detailed asymptotic expansion of the mean in order to determine the
limit of bn.

A discussion on such an expansion is given in section 3.3.3. With a bounded increments argument
on the error term in the asymptotic expansion of ν(n) one can show that

(An,1, An,2, bn)
L3−→ (
√
p,
√

1− p, 0).

3. The limit equation: The convergence of the coefficients and (3.20) suggest that if Yn
converges to a limit Y , this limit should satisfy

Y
d
=
√
pY +

√
1− pỸ , (3.22)
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where Y and Ỹ are independent and identically distributed. Hence, the limiting distribution
L(Y ) should be a fixed point of the following map:

T : P −→ P,

ρ 7→ L
(√

pZ +
√

1− pZ̃
)
,

(3.23)

where Z and Z̃ are independent and identically distributed with L(Z) = ρ.

4. Choice of a proper metric. The next step is to endow (a subspace of) P with a metric
d such that T is a contraction with respect to that metric. Since T is an approximation of the
stochastic recursion (3.19) for large n, Banach’s fixed-point theorem suggests that (L(Yn))n≥0

should converge with respect to d. Convergence in the metric d should at least imply weak
convergence. There are two types of metrics used in context of the contraction method: the
Wasserstein metric `p, p > 0, and the Zolotarev metric ζs, s > 0.

The Wasserstein metric: In his original work [59] on the Contraction Method, Uwe Rösler
derived a limit for the Quicksort complexity in the Wasserstein metric. For a given p > 0, the
Wasserstein distance of µ, ρ ∈ Pp is defined as

`p(µ, ρ) = inf{‖W − Z‖p : L(W ) = µ,L(Z) = ρ}

where the infimum is taken over all random vectors (W,Z) on a common probability space with
marginals L(W ) = µ and L(Z) = ρ. It is a well known fact that there are optimal Lp-couplings,
i.e. for every p > 0 exists a vector (W0, Z0) with marginals L(W0) = µ, L(Z0) = ρ and

`p(µ, ρ) = ‖W0 − Z0‖p.

For real valued random variables and p ≥ 1 the infimum is attained by choosing (W0, Z0) =
(F−1
W (U), F−1

Z (U)) where U is uniformly distributed on [0, 1], FW and FZ are the distribution
functions of L(W ) and L(Z) and F−1(x) := inf{y ∈ R : F (y) ≥ x} for x ∈ [0, 1] and a function
F : R→ [0, 1].

In particular, convergence in `p implies weak convergence and convergence of the p-th moment.
For maps

T ′ : Pp −→ Pp,

ρ 7→ L(A1Z +A2Z̃ + b)

with independent Z, Z̃, (A1, A2, b) and L(Z) = L(Z̃) = ρ there is the following bound to verify
contraction:

For µ, ρ ∈ Pp let (W0, Z0) and (W̃0, Z̃0) be two independent optimal Lp couplings of µ and ρ

and let (A1, A2, b) be independent of (W0, Z0, W̃0, Z̃0) and distributed as in T ′. Then,

`p(µ, ρ) ≤ ‖A1W0 +A2W̃0 + b− (A1Z0 +A2Z̃0 + b)‖p ≤ ‖A1‖p`p(µ, ρ) + ‖A2‖p`p(µ, ρ)

which implies that T ′ is a contraction with respect to `p if ‖A1‖p + ‖A2‖p < 1.

For p = 2 and µ, ν ∈ P2(0) one also has the better bound

(`2(µ, ρ))
2 ≤ E[(A1W0 +A2W̃0 + b− (A1Z0 +A2Z̃0 + b))2]

= E[A2
1] (`2(µ, ρ))

2
+ E[A2

2] (`2(µ, ρ))
2

+ 2E[A1A2]E[W0 − Z0]︸ ︷︷ ︸
=0

E[W̃0 − Z̃0]
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which implies that T ′
∣∣
P2(0)

is a contraction if E[A2
1] + E[A2

2] < 1.

However, the map T in (3.23) violates both conditions. In fact, T cannot be a contraction on
Pp(0) with respect to any metric because all distributions N (0, σ2) ∈ Pp(0), σ ≥ 0, are fixed
points of T which is a contradiction to the uniqueness of fixed points in contractions.

Therefore, a different kind of a metric and further restrictions on Pp are needed in order to
restrict T to a contracting map. The authors in [57] proposed to work with a metric developed
by Zolotarev in [70].

The Zolotarev metric: The Zolotarev metric ζs is an ideal metric of order s. Here, s ∈ R+ is
a parameter which is typically chosen to be s ∈ (0, 3] when applying the Contraction Method.

Recall that, for M1 ∈ R and M2 ≥ 0,

Ps(M1) := {L(Z) ∈ Ps : E[Z] = M1}, s ≥ 1,

Ps(M1,M2) := {L(Z) ∈ Ps : E[Z] = M1, E[Z2] = M2}, s ≥ 2.

For s = m+ α, m ∈ N0 and α ∈ (0, 1], the Zolotarev distance of distributions L(W ),L(Z) ∈ Ps

is defined as

ζs(L(W ),L(Z)) := sup
f∈Fs

|E[f(W )]− E[f(Z)]| (3.24)

where

Fs := {f ∈ Cm(R,R) : |f (m)(x)− f (m)(y)| ≤ |x− y|α}

is the set of all m-times differential functions whose m-th derivative is Hölder continuous with
Hölder exponent α and Hölder constant 1.

A priori, the distance (3.24) might not be well-defined or finite. A Taylor expansion of f reveals
that

• for s ∈ (0, 1], ζs(ν, ρ) is well-defined by (3.24) and finite if ν, ρ ∈ Ps,

• for s ∈ (1, 2], ζs(ν, ρ) is well-defined by (3.24) and finite if ν, ρ ∈ Ps(M1) for some M1 ∈ R,

• for s ∈ (2, 3], ζs(ν, ρ) is well-defined by (3.24) and finite if ν, ρ ∈ Ps(M1,M2) for some
M1 ∈ R and M2 ≥ 0.

More generally, ζs(ν, ρ) is well-defined and finite if ν and ρ have finite s-th moment and if the
k-th moments of ν and ρ are equal for all k ∈ {1, . . . , dse − 1}.

The Zolotarev distance between random variable W and Z with E[|W |s] <∞, E[|Z|s] <∞ and
E[W k] = E[Zk] for k = 1, . . . ,m is defined as

ζs(W,Z) := ζs(L(W ),L(Z)).

There are several useful properties of the Zolotarev metric when deriving limits with the Con-
traction Method. First of all, ζs is a metric:

Lemma 3.3.1. Let M1 ∈ R, M2 ∈ R+ and s ∈ (0, 3]. Moreover, let

S :=


Ps, if s ≤ 1,

Ps(M1), if s ∈ (1, 2],

Ps(M1,M2), if s ∈ (2, 3].

Then, ζs is a metric on S.
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Proof. Definition (3.24) immediately yields for any µ, ν, ρ ∈ S

ζs(µ, µ) = 0, ζs(µ, ν) = ζs(ν, µ), ζs(µ, ρ) ≤ ζs(µ, ν) + ζs(ν, ρ).

It remains to show that

ζs(µ, ν) = 0 =⇒ µ = ν

which can be done by considering the characteristic functions of µ and ν. To this end, let X and
Y have distribution µ and ν. For any x 6= 0, consider the functions

fx : R −→ [−1, 1], y 7→ sin(xy), gx : R −→ [−1, 1], y 7→ cos(xy).

The mean value theorem reveals that, for suitable constants cx, dx > 0 depending on s, cxfx ∈ Fs
and dxgx ∈ Fs and therefore, by ζs(µ, ν) = 0,

E[exp(ixX)] =
1

dx
E[dxgx(X)] +

i

cx
E[cxfx(X)] =

1

dx
E[dxgx(Y )] +

i

cx
E[cxfx(Y )] = E[exp(ixY )].

Hence, µ and ν have the same characteristic functions and thus have to be equal.

With similar arguments concerning the characteristic functions one obtains that convergence in
ζs implies weak convergence:

Lemma 3.3.2. With the notation from lemma 3.3.1, the following holds for any ρn, ρ ∈ S,
n ≥ 1:

lim
n→∞

ζs(ρn, ρ) = 0 =⇒ ρn
w→ ρ.

Proof. Convergence in ζs implies the (pointwise) convergence of the characteristic functions of ρn
and ρ by considering the functions presented in the proof of lemma 3.3.1. Thus, Lévy’s continuity
theorem yields the assertion.

The next property is crucial when showing that a map T is a contraction with respect to ζs. The
proof is done in [70, Lemma 3].

Lemma 3.3.3. ζs is ideal of order s, i.e.

(i) ζs(cX, cY ) = |c|sζs(X,Y ),

(ii) ζs(X + Z, Y + Z) ≤ ζs(X,Y )

for all c ∈ R\{0}, L(X),L(Y ) ∈ Ps with E[Xk] = E[Y k] for k = 1, . . . , dse−1 and Z independent
of (X,Y ) with L(Z) ∈ Ps.

An immediate consequence of lemma 3.3.3 is the following result on sums of independent random
variables:

Corollary 3.3.4. Let (X1, Y1) and (X2, Y2) be two independent random variables in R2 such
that the marginals satisfy, for some s > 0,

E[|Xi|s] <∞, E[|Yi|s] <∞, E[Xk
i ] = E[Y ki ], for i = 1, 2 and k ∈ {1, . . . , dse − 1}.

Then, the Zolotarev distance of the sums satisfies

ζs(X1 +X2, Y1 + Y2) ≤ ζs(X1, Y1) + ζs(X2, Y2).
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Proof. The triangle inequality and lemma 3.3.3(ii) imply

ζs(X1 +X2, Y1 + Y2) ≤ ζs(X1 +X2, Y1 +X2) + ζs(Y1 +X2, Y1 + Y2)

≤ ζs(X1, Y1) + ζs(X2, Y2)

which is the assertion. Note that all ζs-distances are well-defined and finite because X1 + X2,
Y1 +X2, Y1 +X2, Y1 + Y2 have finite s-th moments and

E[(X1 +X2)k] = E[(Y1 +X2)k] = E[(Y1 + Y2)k] for k = 1, . . . ,m

by independence and the assumption on the moments of X1, X2, Y1, Y2.

In the applications, it is more convenient to bound some of the Zolotarev distances with the
Wasserstein metric instead. There is the following connection between ζs and `s:

Lemma 3.3.5. Let X and Y be two real valued random variables that satisfy, for some s > 1,

E[|X|s] <∞, E[|Y |s] <∞, E[Xk] = E[Y k], for k ∈ {1, . . . , dse − 1}.

Then, the Zolotarev distance of X and Y is bounded by

ζs(X,Y ) ≤ (E[|X|s]1−1/s + E[|Y |s]1−1/s)`s(X,Y ) (3.25)

where `s denotes the Wasserstein metric given by

`s(X,Y ) := `s(L(X),L(Y )) := inf{‖X ′ − Y ′‖s : X ′
d
= X,Y ′

d
= Y }.

Proof. Fix s > 1 and an arbitrary f ∈ Fs. Let g : R→ R be defined by

g(x) = f(x)−
m∑
k=0

f (k)(0)

k!
xk

where f (k) denotes the k-th derivative of f . Note that

g(j)(x) = f (j)(x)− f (j)(0)−
m∑

k=j+1

f (k)(0)

(k − j)!
xk−j , 0 ≤ j ≤ m

which yields g(j)(0) = 0 for j = 0, . . . ,m and

|g(m)(x)− g(m)(y)| = |f (m)(x)− f (m)(y)| ≤ |x− y|α.

Since the mean value theorem implies for any j ≤ m− 1 and x ∈ R

|g(j)(x)| = |g(j)(x)− g(j)(0)| ≤ sup
|y|≤x

|g(j+1)(y)| · |x|,

one obtains by a backward induction on j that

|g(j)(x)| ≤ |x|s−j , 0 ≤ j ≤ m.

Hence, Z := Y −X and the mean value theorem yield for some suitable constant 0 ≤ ϑ ≤ 1

|g(Y )− g(X)| = |g(X + Z)− g(X)| = |g(1)(X + ϑZ)| · |Z|

≤ |X + ϑZ|s−1 · |Z| ≤
(
|X|s−1 + |Y |s−1

)
|Z|
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where the last inequality holds because |X +ϑZ| ≤ max{|X|, |Y |} and therefore, |X + ϑZ|s−1 ≤
max{|X|s−1, |Y |s−1}. Since the first m moments of X and Y are equal, Hölder’s inequality
implies

|E[f(Y )− f(X)]| = |E[g(Y )− g(X)]|
≤ E

[(
|X|s−1 + |Y |s−1

)
· |Z|

]
= E[|X|s−1|Z|] + E[|Y |s−1|Z|]
≤ E[|X|s]1−1/sE[|Z|s]1/s + E[|Y |s]1−1/sE[|Z|s]1/s.

Note that this holds for any coupling (X,Y ). In particular, if (X,Y ) is an optimal Ls-coupling,

|E[f(Y )− f(X)]| ≤
(
E[|X|s]1−1/s + E[|Y |s]1−1/s

)
`s(X,Y )

which yields the assertion by taking the supremum over all f ∈ Fs.

5. Limit laws for a contracting map: The map T defined in (3.23) is a contraction on
Ps(0, 1) with respect to the Zolotarev metric ζs for s ∈ (2, 3]. The contraction property follows
by corollary 3.3.4 and lemma 3.3.3(i) which yields for any L(W ),L(Z) ∈ Ps(0, 1)

ζs
(
T (L(W )), T (L(Z))

)
= ζs

(√
pW +

√
1− pW̃ ,

√
pZ +

√
1− pZ̃

)
≤
(√
p
)s
ζs(W,Z) +

(√
1− p

)s
ζs(W̃ , Z̃)

=
(
ps/2 + (1− p)s/2

)
︸ ︷︷ ︸

<1 for s>2

ζs(L(W ),L(Z)).

In particular, N (0, 1) ∈ Ps(0, 1) is the unique fixed point of T
∣∣
Ps(0,1)

. In other applications with

non-normal limits, the existence of a fixed point needs to be proven first. For distributions on
R, the completeness of (Ps(0, 1), ζs) implies the existence of the fixed point.

Intuitively, T approximates the distributional recursion (3.20) for large n. Iterating (3.20) on
the right hand side therefore suggests, by Banach’s fixed point theorem, that L(Yn) converges to
the unique fixed point N (0, 1) of T

∣∣
Ps(0,1)

. Note that the exact normalization in the definition

of Yn is required to ensure that L(Yn) ∈ Ps(0, 1) (for all n with σ(n) > 0).

A rigorous proof in the Markov Source Model is done in section 4.3.

3.3.2 Generalization to the Markov Source Model

In the framework presented so far, only a single sequence (Xn)n≥0 with a distributional recursion
is discussed. Recall that in the Markov Source Model, sequences (X0

n)n≥0 and (X1
n)n≥0 appear

that satisfy a system of distributional recursions. This system is given by

X0
n+d

d
= X0

I0n
+X1

n−I0n + η0
n,

X1
n+d

d
= X0

I1n
+X1

n−I1n + η1
n,

(3.26)

with (X0
n)n≥0, (X1

n)n≥0 and (I0
n, I

1
n, η

0
n, η

1
n)n∈N0

independent and L(Iin) = B(n, pi0), i ∈ Σ.
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The previous strategy (1.-5.) remains the same. Mean and variance ofX0
n andX1

n are abbreviated
by

νi(n) := E[Xi
n], Vi(n) := Var(Xi

n), σi(n) :=
√
Vi(n), n ∈ N0, i ∈ Σ.

1. Rescaling: The study of the Bernoulli Source Model suggests that an exact normalization
is required to enable finite ζs distances for s ∈ (2, 3]. Therefore, one considers the normalized
sequences (Y 0

n )n≥0 and (Y 1
n )n≥0 which, for n ∈ N0 and i ∈ Σ, are defined as

Y in :=

{
Xin−νi(n)
σi(n) , if σi(n) > 0,

0, otherwise.

System (3.26) leads to a similar system of distributional equations for the rescaled quantities:
(Y 0
n )n≥0 and (Y 1

n )n≥0 satisfy for all n ∈ N with σ0(n+ d) > 0 and σ1(n+ d) > 0

Y 0
n+d

d
= A0

n,1Y
0
I0n

+A0
n,2Y

1
n−I0n + b0n,

Y 1
n+d

d
= A1

n,1Y
0
I1n

+A1
n,2Y

1
n−I1n + b1n,

(3.27)

where (Y 0
n )n≥0, (Y 1

n )n≥0 and (Iin, A
i
n,1, A

i
n,2, b

i
n) are independent for both i ∈ Σ.

Here, the coefficients are given by

Ain,1 =
σ0(Iin)

σi(n+ d)
, Ain,2 =

σ1(n− Iin)

σi(n+ d)
, bin =

ν0(Iin) + ν1(n− Iin) + ηin − νi(n+ d)

σi(n+ d)
.

2. Asymptotic behavior of the coefficients: The study of the asymptotic behavior of the
coefficients requires the first order asymptotic of the variances and a sufficiently detailed asymp-
totic study of the means. The results derived in sections 4.1 and 4.2 lead to a limit that is, as
n→∞,

(Ain,1, A
i
n,2, b

i
n)

L3−→ (
√
pi0,
√
pi1, 0), i ∈ Σ.

3. The limit system. The asymptotic behavior of the coefficients and (3.27) suggest that if
(Y 0
n )n≥0 and (Y 1

n )n≥0 converge to limits Y 0 and Y 1, these limits should satisfy

Y 0 d
=
√
p00Y

0 +
√
p01Y

1,

Y 1 d
=
√
p10Y

0 +
√
p01Y

1.

The corresponding limit map is given by

T : P×P −→ P×P,(
ρ1

ρ2

)
7→
(
L(
√
p00Z1 +

√
p01Z2)

L(
√
p10Z1 +

√
p11Z2)

)
(3.28)

with Z1, Z2 independent and L(Z1) = ρ1, L(Z2) = ρ2.

4. Choice of a proper metric: The study of the Bernoulli Source Model suggests to work
with Zolotarev distances. A possible generalization of ζs to P ×P is given by the maximum of
the distances in each component. More precisely, for s ∈ (2, 3] and ρ1, ρ2, µ1, µ2 ∈ Ps(0, 1), let
the ζ∨s distance of (ρ1, ρ2) and (µ1, µ2) be defined as

ζ∨s

((
ρ1

ρ2

)
,

(
µ1

µ2

))
:= max

{
ζs(ρ1, µ1), ζs(ρ2, µ2)

}
. (3.29)
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This endows Ps(0, 1) ×Ps(0, 1) with a metric. Convergence in ζ∨s implies weak convergence of
each component by lemma 3.3.2.

5. Limit laws for a contracting map: The map T defined in (3.28) is a contraction on
Ps(0, 1)×Ps(0, 1) with respect to ζ∨s , s ∈ (2, 3]: Note that

ζ∨s

(
T

((
ρ1

ρ2

))
, T

((
µ1

µ2

)))
= max

{
ζs(
√
p00Z1 +

√
p01Z2,

√
p00W1 +

√
p01W2),

ζs(
√
p10Z1 +

√
p11Z2,

√
p10W1 +

√
p11W2)

}
with independent Z1, Z2,W1,W2 and L(Zi) = ρi, L(Wi) = µi for i ∈ Σ. This yields by lemma
3.3.3 and corollary 3.3.4

ζ∨s

(
T

((
ρ1

ρ2

))
, T

((
µ1

µ2

)))
≤ max

{
p
s/2
00 ζs(Z1,W1) + p

s/2
01 ζs(Z2,W2),

p
s/2
10 ζs(Z1,W1) + p

s/2
11 ζs(Z2,W2)

}
≤ max

{
p
s/2
00 + p

s/2
01 , p

s/2
10 + p

s/2
11

}︸ ︷︷ ︸
<1 for s>2

ζ∨s

((
ρ1

ρ2

)
,

(
µ1

µ2

))

A complete proof of the convergence of (L(Y 0
n ),L(Y 1

n )) in ζ∨s is given in section 4.3.

Remark on a multivariate approach: The analysis of the Markov Source Model was proposed
to be done by considering the system (3.27). One could also consider two dimensional vectors

Yn :=

(
Y 0
n

Y 1
n

)
by introducing a suitable (in-)dependence between Y 0

n and Y 1
n in a common probability space.

Any reasonable embedding should lead to the limit equation

Y
d
= A1Y +A2Ỹ

with Y , Ỹ independent, L(Ỹ ) = L(Y ) and 2× 2 matrices A1, A2 given by

A1 =

(√
p00 0
0

√
p11

)
, A2 =

(
0

√
p01√

p10 0

)
. (3.30)

Such equations are covered by a multivariate approach of the Contraction Method presented in
[54]. There, a sufficient condition for a ζ3-contraction is given by [54, condition (25)] which is

‖A1‖3op + ‖A2‖3op < 1.

The operator norms of the matrices (3.30) are

‖A1‖op =
√

max{p00, p11}, ‖A2‖op =
√

max{p01, p10}.

Hence, [54, condition (25)] requires

(max{p00, p11})3/2
+ (max{p01, p10})3/2

< 1.

Such an additional restriction on the transition matrix P is avoided when working with the
system (3.27) and the ζ∨s metric.
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3.3.3 Lipschitz-Continuity in the Asymptotic Analysis

Deriving limit laws with the Contraction Method requires an understanding of the asymptotic
behavior of the coefficients that appear after rescaling. Recall that the typical coefficients after
normalization are given by

Ain,1 =
σ0(Iin)

σi(n+ d)
, Ain,2 =

σ1(n− Iin)

σi(n+ d)
, bin =

ν0(Iin) + ν1(n− Iin) + ηin − νi(n+ d)

σi(n+ d)
.

The analysis of Ain,1 and Ain,2 only involves the first order asymptotic of σ0(n) and σ1(n) as
n→∞. In fact, the first order asymptotic of the variance derived in section 4.2 is given by

σi(n) ∼ σ
√
n log n, i ∈ Σ,

for some constant σ > 0. Hence, the law of large numbers yields almost surely, as n→∞,

Ain,1 −→
√
pi0, Ain,2 −→

√
pi1, i ∈ Σ.

which may also be extended to convergence in Lp by the dominated convergence theorem. A
more detailed discussion on the asymptotic behavior is given in lemma 4.3.2.

The analysis of bin is more involved due to the fact that the complete asymptotic expansion of
νi(n) up to the order of o(

√
n log n) is relevant for the asymptotic behavior of bin. However, even

in the study of the path length in Tries under the (asymmetric) Bernoulli Source Model such an
expansion seems far out of reach.

Even very powerful analytical approaches lead to an asymptotic expansion of the mean that is

1

H
n log n+ χ(log n)n+ o(n)

where χ is some bounded, periodic function (that might be constant depending on the source).
Details on a general analytical approach for Bernoulli Sources can be found in [19].

Therefore, a different structural property of the error terms

fi(n) = E[Xi
n]− 1

H
n log n, i ∈ Σ,

is needed. Such a property should at least imply∥∥∥∥f0(Iin)− E[f0(Iin)]√
n log n

+
f1(n− Iin)− E[f1(n− Iin)]√

n log n

∥∥∥∥
3

−→ 0 (3.31)

in order to derive the asymptotic behavior of b0n and b1n as n→∞.

Recall that Iin follows the binomial distribution B(n, pi0). Hence, any property that keeps the
fluctuation of f0(Iin) and f1(n − Iin) of the same order as the fluctuation of Iin should help to
obtain (3.31).

A useful property in this context is Lipschitz-continuity:

Definition 3.3.6. Let S ⊂ R. A function f : S → R is called Lipschitz-continuous with
Lipschitz-constant C if

|f(x)− f(y)| ≤ C|x− y|, x, y ∈ S.

Moreover, f is called Lipschitz-continuous if there exists a constant C > 0 such that f is
Lipschitz-continuous with Lipschitz-constant C.
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There is one simple criterion for Lipschitz-continuity if the domain of the function is N0:

Lemma 3.3.7. Let f : N0 → R be some function. Then, f is Lipschitz-continuous if and only
if the sequence (|f(n+ 1)− f(n)|)n∈N0 is bounded.

Proof. Suppose that the sequence (|f(n+1)−f(n)|)n∈N0
is bounded by a constant C > 0. Then,

the differences satisfy for all m,n ∈ N0, m > n,

|f(m)− f(n)| =

∣∣∣∣∣
m−1∑
k=n

f(k + 1)− f(k)

∣∣∣∣∣ ≤
m−1∑
k=n

|f(k + 1)− f(k)| ≤ C|m− n|.

Therefore, f is Lipschitz-continuous with Lipschitz-constant C.

On the other hand, if f is Lipschitz-continuous with Lipschitz-constant C, (|f(n+1)−f(n)|)n∈N0

is obviously bounded by C.

Indeed, f0 and f1 have bounded increments. This is shown in section 4.1 and only requires the
transfer lemma 3.1.3.

Finally, the asymptotic behavior of b0n and b1n is derived by the following lemma:

Lemma 3.3.8. Let S ⊂ R and f : S → R be a Lipschitz-continuous function with Lipschitz-
constant C. Moreover, let X be a S-valued random variable that is p-integrable for some p ≥ 1.
Then,

‖f(X)− E[f(X)]‖p ≤ 2C‖X − E[X]‖p.

Proof. Let X̃ be an independent copy of X. Jensen’s inequality implies

‖f(X)− E[f(X)]‖p = E[|E[f(X)− f(X̃)|X]|p]1/p

≤ E[|f(X)− f(X̃)|p]1/p.

Moreover, the Lipschitz-continuity of f yields

|f(X)− f(X̃)| ≤ C|X − X̃|

and therefore,

‖f(X)− E[f(X)]‖p ≤ CE[|X − X̃|p]1/p

= C‖X − E[X]− (X̃ − E[X̃])‖p
≤ 2C‖X − E[X]‖p.
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Chapter 4

Moments and Limit Theorems

The study of parameters in several structures under the Markov Source Model leads to a random
variable Xµ

n that satisfies a distributional equation (1.7) given by

Xµ
n+d

d
= X0

Kµ
n

+X1
n−Kµ

n
+ ηµn, n ∈ N.

Hence, the crucial part in the analysis of Xµ
n is a better understanding of the asymptotic behavior

of X0
n and X1

n. Such asymptotic results are entirely based on the system (1.8) which is

X0
n+d

d
= X0

I0n
+X1

n−I0n + η0
n,

X1
n+d

d
= X0

I1n
+X1

n−I1n + η1
n,

(4.1)

with (X0
0 , . . . , X

0
n), (X1

0 , . . . , X
1
n) and (I0

n, I
1
n) independent, L(Iin) = B(n, pi0) and ηin = gin(Iin)

for some function gin : {0, . . . , n} → R, i ∈ Σ.

The analysis of E[X0
n] and E[X1

n] in section 4.1 works with some simple transfer lemmas presented
in the previous chapter. The analysis of Var(X0

n) and Var(X1
n) in section 4.2 requires a more

careful use of the transfer results including a Poissonization argument and a suitable splitting
of the random variables X0

n and X1
n. Finally, a limit law of X0

n and X1
n is derived via the

Contraction Method in section 4.3. These results on mean, variance and weak convergence are
transferred to Xµ

n for arbitrary µ in section 4.4.

Recall that Σ = {0, 1} denotes the binary alphabet and X0
n, X1

n satisfy the initial conditions
X0
n = X1

n = 0, n ≤ max{d, 1}, and are s-integrable for some s ∈ (2, 3] and all n ∈ N0.

Also recall that η0
n and η1

n satisfy the conditions

E[ηin] = n+ O
(
n

1
2−ε
)
, E[∆ηin] = 1 + O

(
n−ε

)
,

Var(ηin) = O
(
n1−ε) , Var(∆ηin) = O(1),

‖ηin − E[ηin]‖3 = o(
√
n log n), |ηin| ≤ Cn

(4.2)

where ∆ηin := ηin+1 − ηin = gin+1(Iin + Ji)− gin(Iin) with Iin and Ji independent and Ji Bernoulli
B(pi0) distributed.

47
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4.1 Analysis of the Mean

In addition to a first order asymptotic of the expectation of X0
n and X1

n, the crucial result in this
section is a bound on the increments of the error term that occurs in the asymptotic expansion.
Such a bound is needed to derive the limit laws in section 4.3.

Note that the only condition in (4.2) that is required for the analysis in this section is

E[∆ηin] = 1 + O(n−ε).

Recall that ∆an := an+1 − an for any real valued sequence (an)n≥0. If more than one index is
involved, the difference is defined as ∆a(mn) = a(mn + 1)− a(mn) for sequences (a(k))k≥0 and
(mn)n≥0.

Theorem 4.1.1. Let (X0
n)n≥0 and (X0

n)n≥0 be sequences of integrable real valued random vari-
ables that satisfy the initial conditions X0

n = X1
n = 0 for n ≤ max{d, 1} and the distributional

recursions (4.1). Suppose there exists a constant ε > 0 such that for all i ∈ Σ

E[∆ηin] = 1 + O(n−ε).

Then, the expectation of Xi
n, i ∈ Σ, satisfies

E[Xi
n] =

1

H
n log n+ O(n).

Here, H denotes the Source Entropy defined in (1.4).

More precisely, let f0 : N0 → R and f1 : N0 → R be given by

fi(n) := E[Xi
n]− 1

H
n log n, i ∈ Σ, n ∈ N0.

Then, f0 and f1 are Lipschitz-continuous, i.e. there exists a constant C > 0 such that, for every
i ∈ Σ and n,m ∈ N0,

|fi(n)− fi(m)| ≤ C|n−m|.

Remark 4.1.2. Theorem 4.1.1 also yields bounds in the case E[∆ηin] = c+ O(n−ε), c ∈ R\{0}
by applying 4.1.1 to Xi

n/c. In these cases, the expectations are given by

E[Xi
n] =

c

H
n log n+ O(n)

with a Lipschitz-continuous error term. Moreover, by similar arguments one also obtains bounds
in the case E[∆ηin] = O(n−ε) which are

E[Xi
n] = O(n)

and, more precisely, n 7→ E[Xi
n] is Lipschitz-continuous. Note, however, that in the latter case

one usually has Var(Xi
n) = O(n) and the Lipschitz-continuity is not sufficient to derive limit

laws for Xi
n with the methods presented in section 4.3.

The analysis of the increments of fi requires a lemma which is a special case of [63, lemma 2]:

Lemma 4.1.3. Let (a(m))m∈N0
be a real valued sequence and In follow the binomial distribution

B(n, p) with p ∈ (0, 1) and n ∈ N. Then,

∆E[a(In)] = pE[∆a(In)], n ∈ N.
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Proof. Note that In+1
d
= In + Bn+1 where Bn+1 is independent of In and Bernoulli B(p) dis-

tributed. Hence, for all n ∈ N,

∆E[a(In)] = E[a(In +Bn+1)− a(In)]

= pE[a(In + 1)− a(In)]

= pE[∆a(In)]

which is the assertion.

Proof of theorem 4.1.1. Let h : [0, 1] → R be the function h(x) := x log x with the convention
that h(0) = 0. Recall that the entropy defined in (1.4) is given by

Hi = −
∑
j∈Σ

h(pij), i ∈ Σ, H = π0H0 + π1H1

where π = π0δ0 + π1δ1 denotes the stationary distribution of P given by

π0 =
p10

p10 + p01
, π1 =

p01

p10 + p01
.

As shown in lemma 3.0.4, the system (4.1) implies a similar system of equations for E[X0
n] and

E[X1
n]. Combined with lemma 3.1.2, this system yields E[Xi

n] = 1
Hn log n+ O(n) for both i ∈ Σ.

For the Lipschitz-continuity of the error terms, first note that the system of equations for E[X0
n]

and E[X1
n] yields a similar system for fi(n) = E[Xi

n]− 1
H h(n), i ∈ Σ. More precisely, f0 and f1

satisfy for all n ∈ N0 and i ∈ Σ

fi(n+ d) = E[f0(Iin) + f1(n− Iin)] + E[ηin]− 1

H

(
h(n+ d)− E[h(Iin)]− E[h(n− Iin)]

)
. (4.3)

Also note that the Lipschitz-continuity of f0 and f1 is equivalent to (see lemma 3.3.7 for details)

sup
n∈N
|∆f0(n)| <∞, sup

n∈N
|∆f1(n)| <∞.

Taking the increments in (4.3) yields by lemma 4.1.3 and the assumption on E[∆ηin] that

∆fi(n+ d) = pi0E[∆f0(Iin)] + pi1E[∆f1(n− Iin)] + εi(n), n ∈ N0, (4.4)

where εi(n), i ∈ Σ, n ∈ N0 satisfies

εi(n) = 1− 1

H

(
∆h(n+ d)−∆E[h(Iin)]−∆E[h(n− Iin)]

)
+O(n−ε).

The assertion follows from lemma 3.1.4 (remark 3.1.5) and the following asymptotic expansion
of εi(n), i ∈ Σ, which is shown next:

εi(n) = π1−i
H1−i −Hi

H
+ O

(
n−min{ 1

2 ,ε}
)
, (n→∞). (4.5)

Such an expansion requires bounds on ∆E[h(Iin)] and ∆E[h(n−Iin)]. Since Iin follows the binomial
distribution B(n, pi0), lemma 4.1.3 yields

∆E[h(Iin)] = pi0E[h(Iin + 1)− h(Iin)]

= pi0E[log(Iin + 1)] + pi0E[Iin(log(Iin + 1)− log Iin)]

= pi0(log(n+ 1) + log pi0 + 1) + pi0E
[
log

(
Iin + 1

n+ 1

)
− log pi0

]
+ pi0

(
E[Iin(log(Iin + 1)− log Iin)]− 1

)
.
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Note that Chernoff’s bound on the tail of the binomial distribution and a Taylor expansion of
the logarithm reveal that the remaining expectations are negligible as n→∞. More precisely, a
simple calculation that is given in lemma A.2.2 in the appendix shows that

∆E[h(Iin)] = pi0(log(n+ 1) + log pi0 + 1) + O
(
n−

1
2

)
.

A similar result also holds for the binomial B(n, pi1) distributed n− Iin. Hence,

∆E[h(n− Iin)] = pi1(log(n+ 1) + log pi1 + 1) + O
(
n−

1
2

)
.

Also note that

log(n+ d+ 1)− log(n+ d) = log

(
1 +

1

n+ d

)
=

1

n+ d
+ O

(
n−2

)
which yields for εi(n), as n→∞,

εi(n) = 1− 1

H
(log(n+ d+ 1) + 1− h(pi0)− h(pi1)− log(n+ 1)− 1) + O

(
n−min{ 1

2 ,ε}
)

= 1− Hi

H
+ O

(
n−min{ 1

2 ,ε}
)

= π1−i
H1−i −Hi

H
+ O

(
n−min{ 1

2 ,ε}
)
.

Finally, note that

p10π1
H1 −H0

H
+ p01π0

H0 −H1

H
=

p10p01

p10 + p01

(
H1 −H0

H
+
H0 −H1

H

)
= 0

which in combination with remark 3.1.5 yields the assertion.

4.2 Analysis of the Variance

The analysis of the variance requires some of the notation from the previous section. Recall that
π = π0δ0 + π1δ1 denotes the stationary distribution of P and that the Source Entropy is defined
as

H =
∑
i∈Σ

πiHi, Hi = −
∑
j∈Σ

pij log(pij), i ∈ Σ.

The main result in this section is the following theorem:

Theorem 4.2.1. Let (X0
n)n≥0 and (X1

n)n≥0 be sequences of real valued random variables with
finite mean and variance that satisfy the initial conditions X0

n = X1
n = 0 for n ≤ max{d, 1} and

the distributional recursions (4.1). Assume that the toll functions η0
n and η1

n in (4.1) satisfy the
conditions (4.2). Then, as n→∞,

Var(Xi
n) = σ2n log n+ O

(
n
√

log n
)
, i ∈ Σ, (4.6)

where the constant σ2 is given by

σ2 =
π0p00p01

H3

(
log(p00/p01) +

H1 −H0

p01 + p10

)2

+
π1p10p11

H3

(
log(p10/p11) +

H1 −H0

p01 + p10

)2

. (4.7)

In particular, σ2 > 0 holds for any transition matrix P that satisfies (1.9).
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The proof of theorem 4.2.1 is a bit more complicated than the analysis of the mean. First note
that, by lemma 3.0.4, the variances Vi(n) := Var(Xi

n), n ∈ N0, i ∈ Σ satisfy

Vi(n+ d) = E[V0(Iin)] + E[V1(n− Iin)] + Var(ν0(Iin) + ν1(n− Iin) + ηin)

where νi(n) := E[Xi
n]. This suggests a similar approach to the one in section 4.1. However, the

expansions derived for ν0 and ν1 in theorem 4.1.1 only yield that

Var(ν0(Iin) + ν1(n− Iin) + ηin) = O(n).

Hence, it is not directly possible to apply lemma 3.1.2 to derive the first order asymptotic
of the variances. A direct application of lemma 3.1.1 only yields that Var(Xi

n) = O(n log n),
i ∈ Σ. In order to apply lemma 3.1.2 it is necessary to derive the first order asymptotic of
Var(ν0(Iin) + ν1(n − Iin) + ηin) which requires an expansion of ν0 and ν1 up to an error term

of order O(n
1
2−δ) for some δ > 0. As already discussed in section 3.3.3, such an asymptotic

expansion presently seems to be far out of reach.

The approach presented in this section avoids this problem. Motivated by an approach in [63]
which deals with the Bernoulli Source Model, Xi

n is split into a sum Y in +Zin in a way that E[Y in]
has a closed form that allows the derivation of the first order asymptotic of Var(Y in) and that
Var(Zin) = o(Var(Y in)).

To this end, let (Y in, Z
i
n)n≥0, i ∈ Σ be sequences of pairs of real valued random variables with

finite second moments that satisfy the initial conditions

Y in = Zin = 0, n ≤ max{d, 1}, i ∈ Σ, (4.8)

as well as for all n ≥ 1 and i ∈ Σ the distributional recursions(
Y in+d

Zin+d

)
d
=

(
Y 0
Iin
Z0
Iin

)
+

(
Y 1
n−Iin
Z1
n−Iin

)
+

(
ηi,1n
ηi,2n

)
, (4.9)

where (Y 0
n , Z

0
n)n≥0, (Y 1

n , Z
1
n)n≥0 and (I0

n, I
1
n) are independent, (ηi,1n )n≥0 is some real valued se-

quence and ηi,2n = ηin − ηi,1n , i ∈ Σ.

A discussion on the existence of sequences (Y in, Z
i
n)n≥0, i ∈ Σ with finite second moments that

satisfy (4.8) and (4.9) is done in lemma 4.2.9 at the end of the section.

Note that the sums Sin := Y in + Zin, i ∈ Σ, satisfy the initial conditions

Sin = 0, n ≤ max{d, 1}, i ∈ Σ,

and moreover, by (4.9) for all n ≥ 1 the stochastic recursions

S0
n+d

d
= S0

I0n
+ S1

n−I0n + η0
n,

S1
n+d

d
= S0

I1n
+ S1

n−I1n + η1
n.

The initial conditions and the system of distributional recursions uniquely define E[(S0
n)m] and

E[(S1
n)m], n ≥ 0, for all m ∈ N such that E[(Sin)m] is finite for all n ∈ N, i ∈ Σ. This can be

shown by an induction on m and n which is done for mean and variance in lemma 4.2.9 at the
end of the section.

Hence, the variance of Xi
n coincides with the variance of Y in +Zin. The proof of theorem 4.2.1 is

done by determining the first order asymptotic of Y in, bounding the variance of Zin and combining
these results via the next lemma:
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Lemma 4.2.2. Let X and Y be two real valued random variables with a finite second moment.
Then, (√

Var(X)−
√

Var(Y )
)2

≤ Var(X + Y ) ≤
(√

Var(X) +
√

Var(Y )
)2

. (4.10)

In particular, if sequences (Xn)n≥0, (Yn)n≥0 of real valued random variables with finite second
moments satisfy Var(Yn) = o(Var(Xn)), then, as n→∞,

Var(Xn + Yn) = Var(Xn) + O
(√

Var(Xn)Var(Yn)
)
. (4.11)

Proof. The Cauchy-Schwarz inequality yields

|Cov(X,Y )| ≤
√

Var(X)
√

Var(Y )

which together with Var(X + Y ) = Var(X) + Var(Y ) + 2Cov(X,Y ) implies (4.10). Moreover,
(4.10) obviously implies (4.11).

Now, the crucial part is to choose ηi,1n in a way that for all n ∈ N0 and i ∈ Σ

(a) E[Y in] is easy to compute in order to deduce the asymptotics of Var(Y in),

(b) ηi,1n = n+ O(n1/2−ε) which implies E[ηi,2n ] = O(n1/2−ε) and therefore Var(Zin) = O(n).

First note that (b), lemma 3.0.4 and transfer lemma 3.1.1 yield E[Zin] = O(n) for both i ∈ Σ.
Since E[Y in + Zin] = E[Xi

n], ηi,1n has to be chosen in a way that E[Y in] = 1
Hn log n+ O(n).

Now let h(n) := n log n for n ∈ N0. A choice of ηi,1n that leads to E[Y in] = h(n)
H is given by

ηi,1n =
1

H
(h(n+ d)− E[h(Iin) + h(n− Iin))

because the function h(n)
H solves the recursions occurring for E[Y in] (with some minor adjustments

in order to include the initial conditions E[Y in] = 0 for n ≤ max{d, 1}).

However, the choice 1
H (h(n + d) − E[h(Iin) + h(n − Iin)) ∼ Hi

H n still violates condition (b) for
p10 6= p00 (i.e. except for the Bernoulli Source Model).

A choice for ηi,1n that leads to E[Y in] = 1
Hn log n+ cin for some constants c0 and c1 is given by

ηi,1n =
1

H
(h(n+ d)− E[h(Iin) + h(n− Iin)) + ci(n+ d)− c0pi0n− c1pi1n.

Such a toll term satisfies ηi,1n ∼ Hi
H n + pi 1−i(ci − c1−i)n. Hence, condition (b) holds when

ci = − Hi
(p01+p10)H for both i ∈ Σ (recall that H = π0H0 + π1H1 with π0 = p10/(p01 + p10) and

π1 = 1− π0).

The approach given above ignores the (asymptotically negligible) effect of the initial conditions

E[Y in] = 0 for n ≤ max{d, 1}. In order to cover this condition and to obtain E[Y in] = h(n)
H + cin

for n ≥ max{d, 1}+ 1, the toll terms need to be chosen as follows:

For all n ≥ 1 and i ∈ Σ let

ηi,1n :=

{
0, if n = 1, d = 0,
h(n+d)−E[h(Iin)+h(n−Iin)]

H + π1−i
H1−i−Hi

H n+ δi(n), otherwise
(4.12)
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with functions h, δ0 and δ1 given by h(n) := n log n and

δi(n) =
E[h(Iin)1{Iin≤max{d,1}} + h(n− Iin)1{n−Iin≤max{d,1}}]

H

−
H0E[Iin1{Iin≤max{d,1}}] +H1E[(n− Iin)1{n−Iin≤max{d,1}}]

(p01 + p10)H

− Hi

(p01 + p10)H
d.

This choice leads to the following result on the mean of Y in which, in particular, paves the way
for a result on the first order asymptotic of the variance.

Lemma 4.2.3. With the choice (4.12), the expectations νiY (n) := E[Y in], i ∈ Σ, are given by

νiY (n) =

{
0, if n ≤ max{d, 1},
1
Hn log n− Hi

(p01+p10)Hn, if n ≥ max{d, 1}+ 1.
(4.13)

Proof. Recall that Y 0
n = Y 1

n = 0 for n ≤ max{d, 1} by the initial conditions (4.8). Moreover,
note that the recursions (4.9) imply that (Y 0

n )n≥0 and (Y 1
n )n≥0 satisfy for all n ≥ 1

Y 0
n+d

d
= Y 0

I0n
+ Y 1

n−I0n + η0,1
n ,

Y 1
n+d

d
= Y 0

I1n
+ Y 1

n−I1n + η1,1
n

with (Y 0
n )n≥0, (Y 1

n )n≥0 and (I0
n, I

1
n) independent. As shown in lemma 3.0.4, this implies that the

expectations satisfy for all n ≥ 1 (recall that η0,1
n and η1,1

n are not random)

ν0
Y (n+ d) = E[ν0

Y (I0
n)] + E[ν1

Y (n− I0
n)] + η0,1

n ,

ν1
Y (n+ d) = E[ν0

Y (I1
n)] + E[ν1

Y (n− I1
n)] + η1,1

n .

These recursions and the initial conditions ν0
Y (n) = ν1

Y (n) = 0 for n ≤ max{d, 1} uniquely define
ν0
Y and ν1

Y which is obvious for d ≥ 1 and easy to show for d = 0. A proof of the uniqueness is
given for the sum Y in+Zin in the second part of lemma 4.2.9 at the end of the section. Essentially
the same proof also holds for Y in.

Now let ϕi : N0 → R, i ∈ Σ be defined as

ϕi(n) =

{
0, if n ≤ max{d, 1},
1
Hn log n− Hi

(p01+p10)Hn, if n ≥ max{d, 1}+ 1.

Note that η0,1
n and η1,1

n are chosen in such a way that for all n ≥ 1

ϕ0(n+ d) = E[ϕ0(I0
n)] + E[ϕ1(n− I0

n)] + η0,1
n ,

ϕ1(n+ d) = E[ϕ0(I1
n)] + E[ϕ1(n− I1

n)] + η1,1
n ,

which together with the initial conditions ϕi(n) = 0 = νiY (n), i ∈ Σ, implies νiY = ϕi. The
assertion follows by the definition of ϕ0 and ϕ1.

Lemma 4.2.4. The variance of Y 0
n and Y 1

n satisfies, as n→∞,

Var
(
Y in
)

= σ2n log n+ O(n), i ∈ Σ,
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where σ2 is given by

σ2 =
π0p00p01

H3

(
log(p00/p01) +

H1 −H0

p01 + p10

)2

+
π1p10p11

H3

(
log(p10/p11) +

H1 −H0

p01 + p10

)2

.

Proof. Recall that Y 0
n and Y 1

n satisfy the initial conditions Y 0
n = Y 1

n = 0 for n ≤ max{d, 1} and,
for all n ≥ 1, the distributional recursions

Y 0
n+d

d
= Y 0

I0n
+ Y 1

n−I0n + η0,1
n ,

Y 1
n+d

d
= Y 0

I1n
+ Y 1

n−I1n + η1,1
n .

Let mean and variance of Y in be denoted by

νiY := E[Y in], V iY (n) := Var(Y in), n ∈ N0, i ∈ Σ.

Then, lemma 3.0.4 implies for all n ≥ 1 and i ∈ Σ

V iY (n+ d) = E[V 0
Y (Iin)] + E[V 1

Y (n− Iin)] + Var(ν0
Y (Iin) + ν1

Y (n− Iin) + ηi,1n ). (4.14)

Lemma 3.1.2 shows how to transfer the first order asymptotic of Var(ν0
Y (Iin) + ν1

Y (n− Iin) + ηi,1n )
into an asymptotic result concerning V iY . Hence, it only remains to calculate the first order
asymptotic of Var(ν0

Y (Iin) + ν1
Y (n− Iin) + ηi,1n ) for both i ∈ Σ.

Note that ηi,1n is not random by the choice (4.12), i.e. Var(ηi,1n ) = 0 for all n ∈ N0, i ∈ Σ.
Therefore, with the notation h(n) := n log n lemma 4.2.3 yields

Var(ν0
Y (Iin) + ν1

Y (n− Iin) + ηi,1n )

= Var

(
h(Iin) + h(n− Iin)

H
− H0

(p01 + p10)H
Iin −

H1

(p01 + p10)H
(n− Iin) +Rin

)
with an error term Rin that occurs because νiY (n) = 0 for n ≤ max{d, 1}. This error term is
given by

Rin = −
(
h(Iin)

H
− H0

(p01 + p10)H
Iin

)
1{Iin≤max{d,1}}

−
(
h(n− Iin)

H
− H1

(p01 + p10)H
(n− Iin)

)
1{n−Iin≤max{d,1}}.

Note that Rin is bounded by C(1{Iin≤max{d,1}} + 1{n−Iin≤max{d,1}}) for a constant

C =
h(max{d, 1})

H
+

H0 +H1

(p01 + p10)H
max{d, 1}

and therefore, Var(Rin) = O(P(Iin ∈ [0,max{d, 1}] ∪ [n − max{d, 1}, n])) which together with a
standard Chernoff bound on Iin given in lemma A.1.1 implies

Var(Rin) = O
(
e−p

2
∧n
)

(4.15)

with p∧ = min{pkl : k, l ∈ Σ} > 0 on assumption (1.9). Next, note that

h(Iin) + h(n− Iin) = Iin log(Iin/n) + (n− Iin) log(1− Iin/n) + h(n)

= Iin log(pi0/pi1) + n log pi1 + Iin(log(Iin/n)− log pi0)

+ (n− Iin)(log(1− Iin/n)− log pi1) + h(n)
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which leads to

Var(ν0
Y (Iin) + ν1

Y (n− Iin) + ηi,1n ) = Var

(
1

H

(
log(pi0/pi1)− H1 −H0

p01 + p10

)
Iin + R̃in +Rin

)
with a second error term R̃in that is given by

R̃in =
Iin(log(Iin/n)− log pi0) + (n− Iin)(log(1− Iin/n)− log pi1)

H
.

An easy calculation reveals (details are given in lemma A.2.1 in the appendix)

Var(Iin(log(Iin/n)− log pi0) + (n− Iin)(log(1− Iin/n)− log pi1)) = O(logn)

and therefore,
Var(R̃in) = O(log n).

This bound combined with (4.15), Var(Iin) = npi0pi1 and lemma 4.2.2 yields

Var(ν0
Y (Iin) + ν1

Y (n− Iin) + ηi,1n ) =
1

H2

(
log(pi0/pi1) +

H1 −H0

p01 + p10

)2

pi0pi1n+ O
(√

n log n
)

and the assertion follows by (4.14) and lemma 3.1.2.

The analysis of Var(Zin) requires a more detailed result on mean and variance of ηi,2n for both
i ∈ Σ. Asymptotic results on E[ηi,2n ] and Var(ηi,2n ) are deduced from the assumption on ηin and
the following result on ηi,1n :

Lemma 4.2.5. The choice (4.12) yields for both i ∈ Σ, as n→∞,

ηi,1n = n+ O(n1/3).

Proof. Let h : R+
0 → R be defined as h(x) = x log x for x > 0 and h(0) = 0. Recall that

Hi := −
∑
j∈Σ

h(pij), i ∈ Σ, H := π0H0 + π1H1,

where π = π0δ0 + π1δ1 is the stationary distribution of the Markov chain which is given by

π0 =
p10

p10 + p01
, π1 = p01p10 + p01.

Note that a standard Chernoff bound on the binomial distribution given in lemma A.1.1 implies
for δ0(n) and δ1(n) in (4.12) that

δi(n) = O(1), i ∈ Σ.

Moreover, a Taylor expansion on the logarithm reveals

h(n+ d)− h(n) = d log n+ n (log(n+ d)− log n) = O(log n).

Hence, it is sufficient to show that

h(n)− E[h(Iin) + h(n− Iin)]

H
+ π1−i

H1−i −Hi

H
n = n+ O(n1/3).
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The identity h(n) = E[Iin log n+ (n− Iin) log n] yields for all n ∈ N and i ∈ Σ

h(n)− E[h(Iin) + h(n− Iin)] = −E[Iin log(Iin/n) + (n− Iin) log(1− Iin/n)]

= nHi − nE[h(Iin/n)− h(pi0) + h(1− Iin/n)− h(pi1)].

An easy calculation including the concentration of the binomial distribution and the Taylor
expansion of the logarithm reveals that

E[h(Iin/n)− h(pi0)] = O(n−2/3)

and similarly, since n− Iin follows the binomial distribution B(n, pi1),

E[h(1− Iin/n)− g(pi1)] = O(n−2/3).

Details on the calculation are given in lemma A.2.2 in the appendix.

These bounds imply

h(n)− E[h(Iin) + h(n− Iin)]

H
+ π1−i

H1−i −Hi

H
n =

Hi

H
n+ π1−i

H1−i −Hi

H
n+ O(n1/3)

= n+ O
(
n1/3

)
which yields the assertion.

Corollary 4.2.6. Assume that η0
n and η1

n satisfy the conditions (4.2). Then, the choice (4.12)
and ηi,2n = ηin − ηi,1n imply for both i ∈ Σ, as n→∞,

E[ηi,2n ] = O(n1/2−ε), Var(ηi,2n ) = O(n1−ε), Var(∆ηi,2n ) = O(1),

where 0 < ε ≤ 1/6 is the constant in (4.2).

Proof. Recall that ηi,1n is not random and therefore,

E[ηi,1n ] = ηi,1n , Var(ηi,1n ) = 0.

This yields for all n ∈ N and i ∈ Σ

E[ηi,2n ] = E[ηin]− ηi,1n , Var(ηi,2n ) = Var(ηin), Var(∆ηi,2n ) = Var(∆ηin)

and the assertion follows from the assumption (4.2) on ηin and lemma 4.2.5.

The next step in the analysis of the variance is an upper bound on mean and variance of Zin:

Lemma 4.2.7. Let νiZ : N0 → R, i ∈ Σ, be defined as

νiZ(n) := E[Zin].

Then, the functions ν0
Z and ν1

Z are Lipschitz-continuous, i.e. a constant C > 0 exists in a way
that, for all n,m ∈ N0 and i ∈ Σ,

|νiZ(n)− νiZ(m)| ≤ C|n−m|.
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Proof. Recall that
E[Y in + Zin] = E[Xi

n]

which yields the assertion by theorem 4.1.1 and lemma 4.2.3.

Lemma 4.2.8. The choice (4.12) and ηi,2n = ηin − ηi,1n yield for both i ∈ Σ

Var
(
Zin
)

= O(n).

Proof. The proof is done in three steps. In the first step, an upper bound Var(Zin) = O(n log n)
is derived by the transfer lemma 3.1.1. Afterwards, this bound is improved for the Poissonized
variance Var(ZiN ) with N Poisson distributed. Finally, the result is transferred to Var(Zin) by
the Depoissonization lemma 3.2.3.

To this end, first note that (4.9) implies for all n ≥ 1 and i ∈ Σ

Zin+d
d
= Z0

Iin
+ Z1

n−Iin
+ ηi,2n (4.16)

where (Z0
n)n≥0, (Z1

n)n≥0 and (Iin, η
i,2
n )n≥0,i∈Σ are independent. Now let

νiZ(n) := E[Zin], V iZ(n) := Var(Zin) n ∈ N0, i ∈ Σ.

Then, (4.16) and lemma 3.0.4 yield

V iZ(n+ d) = E[V 0
Z (Iin)] + E[V 1

Z (n− Iin)] + Var(ν0
Z(Iin) + ν1

Z(n− Iin) + ηi,2n ). (4.17)

Since ν0
Z and ν1

Z are Lipschitz-continuous (lemma 4.2.7), lemma 3.3.8 and the fact that Iin and
n− Iin follow the binomial distribution imply

Var(ν0
Z(Iin)) = O(n), Var(ν1

Z(n− Iin)) = O(n), i ∈ Σ.

Moreover, lemma 4.2.6 yields Var(ηi,2n ) = O(n1−ε) and therefore, combined with lemma 4.2.2,

Var(ν0
Z(Iin) + ν1

Z(n− Iin) + ηi,2n ) = O(n).

Hence, (4.17) and the transfer lemma 3.1.1 imply that

V iZ(n) = O(n log n), i ∈ Σ. (4.18)

In order to refine this bound, let Nλ be a Poisson Π(λ) distributed random variable that is
independent of (Zin, I

i
n, η

i,2
n )n≥0,i∈Σ. Then, (4.16) implies

ZiNλ+d
d
= Z0

Nλpi0
+ Z1

Mλpi1
+ ηi,2Nλ (4.19)

where Nλpi0 := IiNλ and Mλpi1 := Nλ − Nλpi0 . It is a well known fact, e.g. from Poisson
Processes (marking each point with probability pi0), and easy to compute that Nλpi0 and Mλpi1

are independent, Nλpi0 is Poisson Π(λpi0) distributed and Mλpi1 is Poisson Π(λpi1) distributed.

Now let Ṽi : R+ → R+
0 , i ∈ Σ, be the variances after Poissonization defined as

Ṽi(λ) := Var(ZiNλ).

The next step in the proof is to show the upper bound Ṽi(λ) = O(λ) for both i ∈ Σ (as λ→∞).
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Such an upper bound follows by the transfer lemma 3.2.2 and the following recursive system
which is shown next:

Ṽ0(λ) = Ṽ0(λp00) + Ṽ1(λp01) + O
(
λmax{3/4,1−ε/2}

√
log λ

)
(λ→∞),

Ṽ1(λ) = Ṽ0(λp10) + Ṽ1(λp11) + O
(
λmax{3/4,1−ε/2}

√
log λ

)
(λ→∞).

(4.20)

First note that the bound (4.18) implies a similar upper bound on Ṽi(λ): A decomposition of
the variance reveals

Ṽi(λ) = E[(ZiNλ − ν
i
Z(Nλ) + νiZ(Nλ)− E[ZiNλ ])2] = E[V iZ(Nλ)] + Var(νiZ(Nλ))

where the last equality holds since Nλ is independent of (Zin)n≥0 and

E[ZiNλ ] = E[E[ZiNλ |Nλ]] = E[νiZ(Nλ)].

The Lipschitz-continuity of νiZ (lemma 4.2.7) and lemma 3.3.8 yield, as λ→∞,

Var(νiZ(Nλ)) = O(Var(Nλ)) = O(λ).

Moreover, the rough upper bound V iZ(n) = O(n log n) implies, as λ→∞,

E[V iZ(Nλ)] = O(E[Nλ logNλ]) = O(λ log λ)

where the second bound follows by an easy calculation on the Poisson distribution that can be
found in the appendix, lemma A.2.3. Therefore, the Poissonized variance is bounded by

Ṽi(λ) = O(λ log λ), i ∈ Σ, (λ→∞) (4.21)

and, in particular, supλ∈(0,a] Ṽi(λ) <∞ for all a ∈ R+.

Furthermore, lemma 4.2.6 implies

Var(ηi,2Nλ) = E[E[(ηi,2Nλ − E[ηi,2Nλ |Nλ])2|Nλ]] + Var(E[ηi,2Nλ |Nλ])

= O(E[N1−ε
λ ]) = O(λ1−ε) (4.22)

where E[N1−ε
λ ] = O(λ1−ε) is not hard to compute and can be found in the appendix, lemma

A.2.3.

The distributional equation (4.19) and the upper bounds (4.21) and (4.22) yield by lemma 4.2.2
that

Var(ZiNλ+d) = Var(Z0
Nλpi0

+ Z1
Mλpi1

+ ηi,2Nλ)

= Var(Z0
Nλpi0

+ Z1
Mλpi1

) + O
(√

λ2−ε log λ
)

= Ṽ0(λpi0) + Ṽ1(λpi1) + O
(√

λ2−ε log λ
)

where the last equality holds because Z0
Nλpi0

and Z1
Mλpi1

are independent.

Finally, it only remains to show that Var(ZiNλ+d) = Ṽi(λ) + O(λ3/4) in order to get (4.20). By

the identity Var(ZiNλ+d) = E[V iZ(Nλ + d)] + Var(νiZ(Nλ + d)) it is sufficient to show that
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(a) E[V iZ(Nλ + d)] = E[V iZ(Nλ)] + O(λ3/4),

(b) Var(νiZ(Nλ + d)) = Var(νiZ(Nλ)) + O(
√
λ).

Note that (a) follows from the rough upper bound V iZ(n) = O(n log n) and lemma 3.2.1 and (b)
from the Lipschitz-continuity of νiZ (lemma 4.2.7) since the Lipschitz-continuity implies

Var(νiZ(Nλ)) = O(Var(Nλ)), Var(νiZ(Nλ + d)− νiZ(Nλ)) = O(1)

and therefore, by lemma 4.2.2,

Var(νiZ(Nλ + d)) = Var(νiZ(Nλ) + νiZ(Nλ + d)− νiZ(Nλ)) = Var(νiZ(Nλ)) + O(
√
λ).

Combined with the previous observations, this yields the recursive system (4.20). Lemma 3.2.2
implies for such a system that

Ṽi(λ) = O(λ), i ∈ Σ (λ→∞).

The last step of the proof is to Depoissonize this result, i.e. to transfer the upper bound on Ṽi(λ)
into the upper bound V iZ(n) = O(n).

Recall that Ṽi(λ) = E[V iZ(Nλ)] + Var(νiZ(Nλ)) and that the Lipschitz-continuity of νiZ yields

Var(νiZ(Nλ)) = O(Var(Nλ)) = O(λ).

Hence, the upper bound on Ṽi(λ) implies, as λ→∞,

E[V iZ(Nλ)] = Ṽi(λ)−Var(νiZ(Nλ)) = O(λ), i ∈ Σ. (4.23)

The assertion follows from the Depoissonization lemma 3.2.3 and the following bound on the
increments which is shown next:

∆V iZ(n) = O(
√
n).

To this end, note that (4.17) and lemma 4.1.3 imply

∆V iZ(n+ d) = pi0E[∆V 0
Z (Iin)] + pi1E[∆V 1

Z (n− Iin)] + ∆Var(ν0
Z(Iin) + ν1

Z(n− Iin) + ηi,2n ).

Hence, by lemma 3.1.3 it is sufficient to show that

∆Var(ν0
Z(Iin) + ν1

Z(n− Iin) + ηi,2n ) = O(
√
n). (4.24)

The Lipschitz-continuity of νiZ , corollary 4.2.6 and lemma 4.2.2 imply

Var(ν0
Z(Iin) + ν1

Z(n− Iin) + ηi,2n ) = O(n), Var(∆ν0
Z(Iin) + ∆ν1

Z(n− Iin) + ∆ηi,2n ) = O(1).

Therefore, lemma 4.2.2 yields

Var(ν0
Z(Iin+1) + ν1

Z(n+ 1− Iin+1) + ηi,2n+1)

= Var(ν0
Z(Iin) + ν1

Z(n− Iin) + ηi,2n + ∆ν0
Z(Iin) + ∆ν1

Z(n− Iin) + ∆ηi,2n )

= Var(ν0
Z(Iin) + ν1

Z(n− Iin) + ηi,2n ) + O(
√
n)

which is (4.24). Hence, the Depoissonization lemma 3.2.3 applied to (4.23) yields that

|V iZ(n)− E[V iZ(Nn)]| = O(n).

Finally, the bound E[V iZ(Nn)] = O(n) given in (4.23) implies the assertion.
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Proof of theorem 4.2.1. Let (Y in, Z
i
n)n≥0,i∈Σ be chosen such that (4.8) and (4.9) hold with toll

terms given by (4.12). Consider the sum

Sin := Y in + Zin, i ∈ Σ, n ∈ N0.

Note that (4.8) and (4.9) imply for both i ∈ Σ that Sin = 0 for all n ≤ max{d, 1} and

Sin+d
d
= S0

Iin
+ S1

n−Iin
+ ηin, n ≥ 2−min{d, 1}.

It is not hard to check that this implies E[Sin] = E[Xi
n] and Var(Sin) = Var(Xi

n) which is discussed
in detail in the second part of lemma 4.2.9 at the end of the section.

Hence, the lemmata 4.2.4, 4.2.8 and 4.2.2 yield of both i ∈ Σ, as n→∞,

Var(Xi
n) = Var(Y in + Zin) = σ2n log n+ O

(
n
√

log n
)

which is the assertion.

We finish the analysis of the variances with the missing proof for the existence of (Y in, Z
i
n)n≥0:

Lemma 4.2.9. There exist sequences (Y 0
n , Z

0
n)n≥0 and (Y 1

n , Z
1
n)n≥0 of pairs of real valued ran-

dom variables with finite second moments that satisfy the initial conditions (4.8) and the system
(4.9) of distributional equations.

Moreover, suppose that (X0
n)n≥0 and (X1

n)n≥0 are sequences of real valued random variables with
finite second moments that satisfy the initial conditions X0

n = X1
n = 0 for n ≤ max{d, 1} and the

distributional recursions (4.1). Then, for all n ∈ N0 and i ∈ Σ,

E[Xi
n] = E[Y in + Zin], Var(Xi

n) = Var(Y in + Zin).

Proof. First note that in the case d ≥ 1 the existence of proper pairs of random variables is
trivial because (Y in, Z

i
n), i ∈ Σ, may be recursively defined as(

Y in
Zin

)
:=

(
0
0

)
, n ≤ d

and, for all n ≥ d+ 1

L
((

Y in
Zin

))
:= L

((
Y 0
Iin−d

Z0
Iin−d

)
+

(
Y 1
n−d−Iin−d
Z1
n−d−Iin−d

)
+

(
ηi,1n−d
ηi,2n−d

))
.

with (Y 0
0 , Z

0
0 , . . . , Y

0
n−d, Z

0
n−d), (Y 1

0 , Z
1
0 , . . . , Y

1
n−d, Z

1
n−d) and (Iin, η

i
n) independent.

Recall that, for all n ∈ N0 and i ∈ Σ, ηi,1n is some constant defined in (4.12) and that ηin = gin(Iin)
for some function gin : {0, . . . , n} → R. Therefore, |ηin| ≤ Cin for some constant given by
Cin = max{gin(m) : 0 ≤ m ≤ n}. This implies that ηi,2n = ηin− ηi,1n is also bounded which implies
by induction on n that Zin and Y in are bounded (by a constant that depends on n). In particular,
Y in and Zin have finite moments of any order for all n ∈ N0 and i ∈ Σ which finishes the proof of
the existence for d ≥ 1.

The main idea of the proof for d = 0 is to define (Y in, Z
i
n) for n ≥ 2 as the series that appears

when the right hand side of (4.9) is iterated infinitely many times. To this end, some notation is
required:
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For n ∈ N0 and i ∈ Σ let Ii(n) :=
∑n
j=1 L

i
j where (Lij)j∈N is a sequence of independent

Bernoulli B(pi0) distributed random variables. Moreover, for every k ≥ 1 and J ∈ {0, 1}k
let (IJi,0(n), IJi,1(n))n≥0 be an independent copy of (Ii(n), n− Ii(n))n≥0. Then, for any k ≥ 1 and

J = (j1, . . . , jk) ∈ {0, 1}k, recursively define random variables IJi (n) as

IJi (n) :=


Ii(n), if k = 1 and j1 = 0,

n− Ii(n), if k = 1 and j1 = 1,

I
(j1,...,jk−1)
jk−1,jk

(
I

(j1,...,jk−1)
i (n)

)
, otherwise.

In the context of Radix Sort, these random variables can be interpreted as follows: consider a

set X in = {Ξ(i)
1 , . . . ,Ξ

(i)
n } of n independent and identically distributed random strings where each

string is generated by a Markov Source with initial distribution µ = pi0δ0 + pi1δ1 and transition
matrix (pkl)k,l∈{0,1} (see definition 1.2.2). Then, IJi (n) with J = (j1, . . . , jk) denotes the number
of strings that start with prefix J , i.e.

IJi (n)
d
= |{(ξj)j≥1 ∈ X in : (ξ1, . . . , ξk) = J}|. (4.25)

Now let g̃in : {0, . . . , n} → R2 be defined as

g̃in(m) =

(
ηi,1n

gin(m)− ηi,1n

)
.

Since ηin = gin(Iin), this yields for n ≥ 2 and i ∈ Σ(
ηi,1n
ηi,2n

)
= g̃in(Iin).

With the convention g̃i0(0) = g̃i1(0) = g̃i1(1) = (0, 0)T , let the random variables (Y in, Z
i
n) for n ≥ 2

and i ∈ Σ be defined as(
Y in
Zin

)
:= g̃in

(
I

(0)
i (n)

)
+

∞∑
k=1

∑
J∈{0,1}k

(j1,...,jk):=J

g̃jk
IJi (n)

(
I

(j1,...,jk,0)
i (n)

)
. (4.26)

Note that (4.26) also holds for n ≤ 1 since in this case all summands are zero. The following
properties need to be shown for the random variables defined in (4.26) in order to finish the proof
of the existence (d = 0):

(a) Almost surely, a (random) integer N exists such that

g̃jk
IJi (n)

(
I

(j1,...,jk,0)
i (n)

)
= 0, J = (j1, . . . , jk) ∈ {0, 1}k, k ≥ N. (4.27)

In particular, (Y in, Z
i
n) is well-defined and almost surely finite.

(b) The definition (4.26) yields random variables (Y 0
n , Z

0
n)n≥0 and (Y 1

n , Z
1
n)n≥0 that satisfy the

system (4.9) of distributional recursions.

(c) The constructed random variables have E[(Y in)2] <∞ and E[(Zin)2] <∞ for all n ∈ N and
i ∈ Σ.
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For part (a) recall that g̃in = (0, 0)T for n ≤ 1. Moreover, note that IJi (n) is decreasing for
increasing J in the sense that J = (j1, . . . , jk) and J ′ = (j1, . . . , jk, j

′
k+1, . . . , j

′
k+l) for some

k, l ∈ N implies IJi (n) ≥ IJ
′

i (n).

Hence, (4.27) holds for all k ≥ N with

N = min
{
` ≥ 1 : IJi (n) ≤ 1 for all J ∈ {0, 1}`

}
.

It only remains to show that N <∞ almost surely holds for N defined as above. Connected to
Radix Sort, N = ∞ implies that Radix Sort does not terminate because a pair of strings with
common `-prefix exists for all ` ≥ 1. In particular,

P(N =∞) ≤ P(Bin =∞)

where Bin denotes the number of bucket operations performed by radix sort under the Markov
Source Model with initial distribution pi0δ0 + pi1δ1.

As already shown in the proof of corollary 2.1.1, Bin has a finite expectation and therefore,
P(N = ∞) ≤ P(Bin = ∞) = 0. Moreover, note that N is a lower bound on the number of
recursive calls of Radix Sort (more precisely, N equals the height of the corresponding Trie,
see section 2.2 for a definition) and therefore, N is bounded by Bin when coupled properly. In
particular, the square integrability of Bin discussed in corollary 2.1.1 implies that E[N2] <∞.

For part (b) let (IJ0 (n))n≥0,J∈
⋃
k≥1{0,1}k , (IJ1 (n))n≥0,J∈

⋃
k≥1{0,1}k and Ĩin be independent with Ĩin

following the binomial distribution B(n, pi0). Moreover, for k ≥ 1 and J = (j1, . . . , jk) ∈ {0, 1}k,
let ĨJi (n) be defined as

ĨJi (n) :=


Ĩin, if k = 1, j1 = 0,

n− Ĩin, if k = 1, j1 = 1,

I
(j2,...,jk)
0 (Ĩin), if k ≥ 2, j1 = 0,

I
(j2,...,jk)
1 (n− Ĩin), if k ≥ 2, j1 = 1.

Note that (ĨJi (n))n≥0,J∈∈
⋃
k≥1{0,1}k is distributed as (IJi (n))n≥0,J∈∈

⋃
k≥1{0,1}k .

Hence, definition (4.26) yields(
Y 0
Ĩin
Z0
Ĩin

)
+

(
Y 1
n−Ĩin
Z1
n−Ĩin

)
+ g̃in

(
Ĩin

)
d
= g̃0

Ĩ
(0)
i (n)

(
Ĩ

(0,0)
i (n)

)
+

∞∑
k=1

∑
J∈{0,1}k

(j1,...,jk):=J

g̃jk
Ĩ
(0,j1,...,jk)

i (n)

(
Ĩ

(0,j1,...,jk,0)
i (n)

)

+ g̃1

Ĩ
(1)
i (n)

(
Ĩ

(1,0)
i (n)

)
+

∞∑
k=1

∑
J∈{0,1}k

(j1,...,jk):=J

g̃jk
Ĩ
(1,j1,...,jk)

i (n)

(
Ĩ

(1,j1,...,jk,0)
i (n)

)

+ g̃in

(
Ĩ

(0)
i (n)

)
.

= g̃in

(
Ĩ

(0)
i (n)

)
+

∞∑
k=1

∑
J∈{0,1}k

(j1,...,jk):=J

g̃jk
Ĩ
(j1,...,jk)

i (n)

(
Ĩ

(j1,...,jk,0)
i (n)

)

d
=

(
Y in
Zin

)
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where the rearrangement of the series in the second equality is justified by part (a) and the last
equality in distribution holds by definition (4.26). Hence, (Y 0

n , Z
0
n)n≥0 and (Y 1

n , Z
1
n)n≥0 satisfy

the system (4.9) of distributional recursions.

For part (c) note that definition (4.12) and lemma 4.2.5 yield for both i ∈ Σ that ηi,1n = 0 for
n ≤ 1 and

|ηi,1n | ≤ Cn, n ≥ 2,

with a suitable constant C > 0. Let N be chosen as in (a). Then,

|Y in| ≤ Cn+

N∑
i=1

∑
J∈{0,1}k

(j1,...,jk):=J

CIJi (n)

= Cn+

N∑
i=1

Cn

= C(N + 1)n

where the second equality holds because (IJi (n))J∈{0,1}k follows the multinomial distribution for

any k ≥ 1. Therefore, the integrability of Y in is implied by the integrability of N which was
discussed in part (a).

The integrability of Zi is shown by the same arguments and |ηi,2n | ≤ |ηin| + |ηi,1n | which has a
linear upper bound by the previous observation on ηi,1n and assumption (4.2) on ηin.

Now let Sin := Y in +Zin for n ∈ N0 and i ∈ Σ. It remains to show that Sin and Xi
n have the same

mean and variance. Note that the initial conditions (4.8) and taking the sum in (4.9) imply that
Sin = 0 for n ≤ d and that for n ≥ 1

S0
n+d

d
= S0

I0n
+ S1

n−I0n + η0
n,

S1
n+d

d
= S0

I1n
+ S1

n−I1n + η1
n,

(4.28)

with (S0
n)n≥0, (S1

n)n≥0 and (I0
n, I

1
n) being independent. Hence, (Sin)n≥0, i ∈ Σ satisfies the same

initial conditions and the same system of distributional equations as (Xi
n)n≥0, i ∈ Σ. It only

remains to show that these equations uniquely define the first two moments of (Xi
n)n≥0, i ∈ Σ.

For d ≥ 1 the initial conditions and distributional equations uniquely define the distribution of
Xi
n for all n ∈ N0 and i ∈ Σ which implies the equality of all moments in this case.

For d = 0 note that

E[Xi
n] =

n∑
k=0

P(Iin = k)

(
E[X0

k +X1
n−k] + gn(k)

)
, n ≥ 2,

and therefore

(1− pn00)E[X0
n]− pn01E[X1

n] =

n−1∑
k=1

P(I0
n = k)

(
E[X0

k +X1
n−k] + g0

n(k)

)
,

−pn10E[X0
n] + (1− pn11)E[X1

n] =

n−1∑
k=1

P(I1
n = k)

(
E[X0

k +X1
n−k] + g1

n(k)

)
.
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Given (E[X0
k ],E[X1

k ])0≤k≤n−1, this system has a unique solution for (E[X0
n],E[X1

n]) because, for
any p00, p11 ∈ (0, 1),

det

((
1− pn00 −pn01

−pn10 1− pn11

))
= (1− pn00)︸ ︷︷ ︸
>(1−p00)n

(1− pn11)︸ ︷︷ ︸
>(1−p11)n

−pn01p
n
10 > 0.

Hence, the initial conditions and (4.1) uniquely define the first moment of X0
n and X1

n for n ∈ N0.
Similar arguments also work for the second moments: the independence of (X0

n)n≥0, (X1
n)n≥0

and Iin in (4.1) yields for both i ∈ Σ

E[(Xi
n)2] =

n∑
k=0

P(Iin = k)E[(X0
k +X1

n−k + gin(k))2]

=

n∑
k=0

P(Iin = k)

(
E[(X0

k)2] + E[(X1
k)2] + 2E[X0

k ]E[X1
n−k]

+ (gin(k))2 + 2gin(k)E[X0
k ] + 2gin(k)E[X1

n−k]

)
which, given (E[(X0

k)2],E[(X1
k)2])0≤k≤n−1 and (E[X0

k ],E[X1
k ])0≤k≤n, has a unique solution for

(E[(X0
n)2],E[(X1

n)2]).

Therefore, the initial conditions and (4.1) uniquely define the first two moments of X0
n and X1

n

which yields the second part of the assertion by (4.28) and the initial conditions therein.

4.3 Limit Theorems (Contraction Method)

The previous results on mean and variance enable an application of the Contraction Method pre-
sented in section 3.3. Recall that (X0

n)n≥0 and (X1
n)n≥0 satisfy the system (4.1) of distributional

recursions with toll terms that satisfy the conditions (4.2). Moreover, recall that X0
n and X1

n

have a finite s-th moment for all n ∈ N0 and some s ∈ (2, 3].

The transition matrix P = (pij)i,j∈Σ of the Markov Source satisfies the conditions (1.9):

pij ∈ (0, 1) for all (i, j) ∈ Σ2, pij 6=
1

2
for some (i, j) ∈ Σ2.

Throughout the section, mean and variance of Xi
n are abbreviated by

σi(n) :=
√

Var(Xi
n), νi(n) := E[Xi

n], n ∈ N0, i ∈ Σ.

As mentioned in section 3.3, an application of the contraction method in this context requires
an exact normalization. To this end, let (Y in)n≥0, i ∈ Σ, be defined as

Y in :=

{
0, if σi(n) = 0,
Xin−νi(n)
σi(n) , if σi(n) > 0.

(4.29)

The main result in this section is the following limit theorem:
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Theorem 4.3.1. Let (X0
n)n≥0 and (X1

n)n≥0 be sequences of real valued random variables with
finite s-th moments for some s ∈ (2, 3] that satisfy the initial conditions X0

n = X1
n = 0 for

n ≤ max{d, 1} and the distributional recursions (4.1). Assume that the toll functions η0
n and η1

n

in (4.1) satisfy the conditions (4.2).

Then, the normalized random variables defined in (4.29) satisfy for both i ∈ Σ, as n→∞,

Y in
d−→ N (0, 1).

Here, N (0, 1) denotes a random variable with the standard normal distribution.

Note that the system (4.1) yields a similar system for Y 0
n and Y 1

n after rescaling:

Y 0
n+d

d
=

σ0(I0
n)

σ0(n+ d)
Y 0
I0n

+
σ1(n− I0

n)

σ0(n+ d)
Y 1
n−I0n + b0(n), n ∈ {m ∈ N : σ0(m+ d) > 0},

Y 1
n+d

d
=

σ0(I1
n)

σ1(n+ d)
Y 0
I1n

+
σ1(n− I1

n)

σ1(n+ d)
Y 1
n−I1n + b1(n), n ∈ {m ∈ N : σ1(m+ d) > 0},

(4.30)

where (Y 0
n )n≥0, (Y 1

n )n≥0 and (Iin, bi(n))i∈Σ are independent, Iin follows the binomial distribution
B(n, pi0) and bi(n) is given by

bi(n) =
ν0(Iin) + ν1(n− Iin) + ηin − νi(n+ d)

σi(n+ d)
.

The asymptotic behavior of mean and variance and the assumption on ηin lead to the following
limits for the coefficients:

Lemma 4.3.2. The coefficients appearing in (4.30) satisfy for both i ∈ Σ, as n→∞,

σ0(Iin)

σi(n+ d)
→ √pi0 a.s. and in Lp for any p ≥ 1,

σ1(n− Iin)

σi(n+ d)
→ √pi1 a.s. and in Lp for any p ≥ 1,

‖bi(n)‖3 → 0.

Proof. Recall that σi(n) ∼ σ
√
n log n by theorem 4.2.1. The identity

logm

log n
= 1 +

logm− log n

log n
= 1 +

log(m/n)

log n
, m, n ∈ N

yields almost surely, as n→∞,

σ0(Iin)

σi(n+ d)
=

√
Iin
n

(
1 +

log(Iin/n)

log n

)
(1 + o(1)).

The strong law of large numbers implies that almost surely, as n→∞,

σ0(Iin)

σi(n+ d)
→ √pi0.
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This result may also be transferred to Lp-convergence by the dominated convergence theorem:
note that σi(n) ∼ σ

√
n log n implies the existence of constants C1, C2 > 0 and n1 ∈ N such that

σi(n) ≤ C1

√
(n+ 1) log(n+ 1) for all n ∈ N0, i ∈ Σ,

σi(n) ≥ C2

√
(n+ 1) log(n+ 1) for all n ≥ n1, i ∈ Σ,

which yields that σ0(Iin)/σi(n) is bounded by C1/C2 for all n ≥ n1, i ∈ Σ.

One obtains by the same arguments, as n→∞,

σ1(n− Iin)

σi(n+ d)
→ √pi1 a.s. and in Lp for any p ≥ 1.

It remains to show the L3-convergence of b0(n) and b1(n). To this end, let h : [0, 1] → R be
defined as

h(x) =

{
0, if x = 0,

x log x, otherwise.

Note that lemma 3.0.4 and theorem 4.1.1 yield

‖bi(n)‖3 =
1

σi(n+ d)
‖ν0(Iin)− E[ν0(In)] + ν1(n− Iin)− E[ν1(n− Iin)] + ηin − E[ηin]‖3

≤ 1

Hσi(n+ d)
‖(h(Iin) + h(n− Iin)− E[h(Iin) + h(n− Iin)])‖3

+
1

σi(n+ d)

(
‖f0(Iin)− E[f0(Iin)]‖3 + ‖f1(n− Iin)− E[f1(n− Iin)]‖3 + ‖ηin − E[ηin]‖3

)
where fi : N0 → R, n 7→ νi(n) − 1

Hn log n, i ∈ Σ, are Lipschitz-continuous functions. Hence, it
only remains to show that, as n→∞

(a) 1
Hσi(n+d)‖(h(Iin) + h(n− Iin))− E[h(Iin) + h(n− Iin)]‖3 → 0,

(b) 1
σi(n+d)‖f0(Iin)− E[f0(Iin)]‖3 → 0, 1

σi(n+d)‖f1(n− Iin)− E[f1(n− Iin)]‖3 → 0,

(c) 1
σi(n+d)‖η

i
n − E[ηin]‖3 → 0.

For part (a) note that (adding n log n− (Iin + n− Iin) log n = 0)

‖h(Iin) + h(n− Iin)− E[h(Iin) + h(n− Iin)]‖3
= ‖nh(Iin/n) + nh(1− Iin/n)− E[nh(Iin/n) + nh(1− Iin/n)]‖3
≤ n

(
‖h(Iin/n)− E[h(Iin/n)]‖3 + ‖h(1− Iin/n)− E[h(1− Iin/n)]‖3

)
.

Since h is Lipschitz-continuous on [ε, 1] for any ε > 0 and Iin/n > ε with high probability for any
ε < pi0, it is not hard to check that, similar to lemma 3.3.8 on Lipschitz functions,

‖h(Iin/n)− E[h(Iin/n)]‖3 = O
(
‖Iin/n− E[Iin/n]‖3

)
= O

(
n−

1
2

)
,

‖h(1− Iin/n)− E[h(1− Iin/n)]‖3 = O
(
‖1− Iin/n− E[1− Iin/n]‖3

)
= O

(
n−

1
2

)
,

where the O
(
n−

1
2

)
upper bound holds by the central limit theorem. A version of the central

limit theorem that includes convergence of the moments is given in [23, Theorem 4.2]. Details
on the calculation are given in lemma A.2.2.
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Thus, the asymptotic σi(n) ∼ σ
√
n log n yields part (a).

Similarly, the Lipschitz-continuity of f0 and f1 implies by lemma 3.3.8 that

‖f0(Iin)− E[f0(Iin)]‖3 = O
(
‖Iin − E[Iin]‖3

)
= O

(√
n
)
,

‖f1(n− Iin)− E[f1(n− Iin)]‖3 = O
(
‖n− Iin − E[n− Iin]‖3

)
= O

(√
n
)

where the O (
√
n) upper bound holds by the central limit theorem [23, Theorem 4.2]. Once

again, the asymptotic of σi(n) yields (b).

Finally, (c) holds by assumption (1.13) on ηin.

In the spirit of the contraction method presented in section 3.3.2, (weak) limits Y 0 and Y 1 of
(Y 0
n )n≥0 and (Y 1

n )n≥0 should satisfy

Y 0 d
=
√
p00Y

0 +
√
p01Y

1,

Y 1 d
=
√
p10Y

0 +
√
p11Y

1,
(4.31)

with Y 0 and Y 1 independent.

The corresponding limit map T is defined as

T : P×P→ P×P,(
ρ1

ρ2

)
7→
(
L(
√
p00Z1 +

√
p10Z2)

L(
√
p10Z1 +

√
p11Z2

)
,

(4.32)

where Z1 and Z2 are independent and L(Z1) = ρ1, L(Z2) = ρ2.

Such a limit map was already introduced in section 3.3.2. There, the Zolotarev metric ζs was
generalized to a metric ζ∨s on Ps(0, 1) × Ps(0, 1) for s ∈ (2, 3] by taking the maximum of the
ζs-distances in each component. Recall that T is a contracting map on Ps(0, 1)×Ps(0, 1) with
respect to ζ∨s . The unique fixed point of T in Ps(0, 1) × Ps(0, 1) is a pair of standard normal
distributions (N (0, 1),N (0, 1)).

Also recall that ζs(X,Y ) := ζs(L(X),L(Y )) for random variables X, Y .

Proof of theorem 4.3.1. Convergence in ζ∨s implies weak convergence in each component (lemma
3.3.2). Therefore, it is sufficient to show that for some s ∈ (2, 3], as n→∞,

ζs
(
Y 0
n , N0

)
−→ 0,

ζs
(
Y 1
n , N1

)
−→ 0

(4.33)

with L(Ni) = N (0, 1) for both i ∈ Σ.

To this end, fix s ∈ (2, 3] such that ‖Y in‖s < ∞ for all n ∈ N0 and i ∈ Σ (which exists by
condition (1.11)). Let n0 be chosen in such a way that

σi(n) > 0 for all n ≥ n0, i ∈ Σ.

Such an integer exists because σi(n)→∞ for both i ∈ Σ by theorem 4.2.1.

In order to handle the convergence of the coefficients in the distributional equations (4.30) sepa-
rately, one usually introduces a accompanying sequence (cf. the analysis of the Bernoulli Source
Model in [54]).
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Here, two accompanying sequences (Q0
n)n≥0 and (Q1

n)n≥0 are defined as

Qin+d :=
σ0(Iin)

σi(n+ d)
N0 +

σ1(n− Iin)

σi(n+ d)
N1 + bi(n), n ≥ n0 − d, i ∈ Σ, (4.34)

where N0, N1 follow the standard normal distribution N (0, 1), (Iin, bi(n))i∈Σ are defined as in
(4.30) and N0, N1 and (Iin, bi(n))i∈Σ are independent. The definition of Qin for n < n0 does not
matter for the asymptotic analysis.

Recall that, for s ∈ (2, 3],

Ps(0, 1) := {L(X) ∈ Ps : E[X] = 0,Var(X) = 1}

where Ps denotes the set of all probability distributions on R with finite s-th moment.

Note that the accompanying sequences satisfy L(Q0
n),L(Q1

n) ∈ Ps(0, 1) for n ≥ n0:

• since (Y 0
n )n≥0 and (Y 1

n )n≥0 are centered, the expectation of (4.30) yields E[bi(n)] = 0 and
therefore E[Qin] = 0,

• comparing the second moments in (4.30) conditioned on Iin with the conditioned second
moments in (4.34) yields Var(Qin) = Var(Y in) = 1 because

• E[Y jk ] = 0 = E[Nj ] and Var(Y jk ) = 1 = Var(Nj) if σj(k) > 0,

• σj(k)/σi(n+ d) = 0 otherwise,

• ‖Qin‖s ≤ ‖Qin‖3 <∞ by lemma 4.3.2 and E[|N0|3] = E[|N1|3] <∞.

Hence, the distances ζs(Y
i
n, Q

i
n), ζs(Q

i
n, Ni) and ζs(Y

i
n, Ni) are finite for all n ≥ n0 and i ∈ Σ

with ζs defined in (3.24).

The proof of the assertion is split into two parts that yield (4.33) by the triangle inequality:

(a) ζ∨s

((
L(Q0

n+d)
L(Q1

n+d)

)
,

(
L(N0)
L(N1)

))
n→∞−→ 0,

(b) ζ∨s

((
L(Y 0

n+d)
L(Y 1

n+d)

)
,

(
L(Q0

n+d)
L(Q1

n+d)

))
n→∞−→ 0.

For part (a) note that the convergence of ‖σ0(Iin)/σi(n+ d)‖s, ‖σ1(n− Iin)/σi(n+ d)‖s and
‖bi(n)‖s imply that ‖Qin+d‖s is uniformly bounded in n for both i ∈ Σ. Hence, by lemma 3.3.5
it is sufficient to show that

`s(Q
i
n+d, Ni)→ 0, i ∈ Σ.

Since (L(N0),L(N1) is a fixed point of the limit map T , the Wasserstein distance is bounded by
the Ls-distance of Qin+d and

√
pi0N0 +

√
pi1N1 which yields

`s(Q
i
n+d, Ni) ≤

∥∥∥∥( σ0(Iin)

σi(n+ d)
−√pi0

)
N0

∥∥∥∥
s

+

∥∥∥∥(σ1(n− Iin)

σi(n+ d)
−√pi1

)
N1

∥∥∥∥
s

+ ‖bi(n)‖s

=

∥∥∥∥ σ0(Iin)

σi(n+ d)
−√pi0

∥∥∥∥
s

‖N0‖s +

∥∥∥∥σ1(n− Iin)

σi(n+ d)
−√pi1

∥∥∥∥
s

‖N1‖s + ‖bi(n)‖s. (4.35)

This bound, ‖N0‖s = ‖N1‖s <∞ and the asymptotic behavior of the coefficients (lemma 4.3.2)
imply `s(Q

i
n+d, Ni)→ 0, i ∈ Σ which yields (a).
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For part (b) first note that (4.30) and (4.34) imply for both i ∈ Σ and all n ≥ 2n0

ζs(Y
i
n+d, Q

i
n+d)

= ζs

(
σ0(Iin)

σi(n+ d)
Y 0
Iin

+
σ1(n− Iin)

σi(n+ d)
Y 1
n−Iin

+ bi(n),
σ0(Iin)

σi(n+ d)
N0 +

σ1(n− Iin)

σi(n+ d)
N1 + bi(n)

)
(∗)
≤

n∑
k=0

P(Iin = k)ζs

(
σ0(k)

σi(n+ d)
Y 0
k +

σ1(n− k)

σi(n+ d)
Y 1
n−k + b̃i(n, k),

σ0(k)

σi(n+ d)
N0 +

σ1(n− k)

σi(n+ d)
N1 + b̃i(n, k)

)
where b̃i(n, k) is independent of (Y 0

k , Y
1
n−k, N0, N1) and L(b̃i(n, k)) = L(bi(n)|Iin = k) for every

k ∈ {0, . . . n}. More precisely, the assumption on the toll term yields that b̃i(n, k) is a constant
that occurs when Iin is replaced by k in the definition of bi(n).

The upper bound (∗) holds by conditioning on Iin in the definition of ζs and then using Jensen’s
inequality.

Note that either σ0(k) > 0 or σ1(n−k) > 0 for n ≥ 2n0. Hence, splitting the sum into J1 := {k ∈
{0, . . . , n} : σ0(k) = 0}, J2 := {k ∈ {0, . . . , n} : σ1(n − k) = 0} and J3 = {0, . . . , n}\(J1 ∪ J2)
yields

ζs(Y
i
n+d, Q

i
n+d)

≤
∑
k∈J1

P(Iin = k)ζs

(
σ1(n− k)

σi(n+ d)
Y 1
n−k + b̃i(n),

σ1(n− k)

σi(n+ d)
N1 + b̃i(n)

)
+
∑
k∈J2

P(Iin = k)ζs

(
σ0(k)

σi(n+ d)
Y 0
k + b̃i(n),

σ0(k)

σi(n+ d)
N0 + b̃i(n)

)
+
∑
k∈J3

P(Iin = k)ζs

(
σ0(k)

σi(n+ d)
Y 0
k +

σ1(n− k)

σi(n+ d)
Y 1
n−k + b̃i(n),

σ0(k)

σi(n+ d)
N0 +

σ1(n− k)

σi(n+ d)
N1 + b̃i(n)

)
.

With the notation

di(n) :=

{
ζs(Y

i
n, Ni), if σi(n) > 0,

0, otherwise,

one obtains by lemma 3.3.3 and corollary 3.3.4 that

ζs(Y
i
n+d, Q

i
n+d) ≤ E

[(
σ1(n− Iin)

σi(n+ d)

)s
d1(n− Iin)1{Iin∈J1}

]
+ E

[(
σ0(Iin)

σi(n+ d)

)s
d0(Iin)1{Iin∈J2}

]
+ E

[((
σ0(Iin)

σi(n+ d)

)s
d0(Iin) +

(
σ1(n− Iin)

σi(n+ d)

)s
d1(n− Iin)

)
1{Iin∈J3}

]
= E

[(
σ0(Iin)

σi(n+ d)

)s
d0(Iin) +

(
σ1(n− Iin)

σi(n+ d)

)s
d1(n− Iin)

]
. (4.36)

Now let d(n) := max{d0(n), d1(n)}. Note that, for all n ≥ n0,

d(n) = ζ∨s

((
L(Y 0

n )
L(Y 1

n )

)
,

(
L(N0)
L(N1)

))
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and therefore, it is sufficient to show that d(n)→ 0. The triangle inequality, part (a) and taking
the maximum in (4.36) yield for both i ∈ Σ and all n ≥ 2n0

di(n+ d) ≤ E
[((

σ0(Iin)

σi(n+ d)

)s
+

(
σ1(n− Iin)

σi(n+ d)

)s)
1{Iin∈{1,...,n−1}}

]
sup

0≤j≤n−1
d(j)

+

(
pni0

(
σ0(n)

σi(n+ d)

)s
+ pni1

(
σ1(n)

σi(n+ d)

)s)
d(n) + o(1).

With the notation

ξ(n) := max
i∈Σ

E
[((

σ0(Iin)

σi(n+ d)

)s
+

(
σ1(n− Iin)

σi(n+ d)

)s)
1{Iin∈{1,...,n−1}}

]
,

ε(n) := max
i∈Σ

(
pni0

(
σ0(n)

σi(n+ d)

)s
+ pni1

(
σ1(n)

σi(n+ d)

)s)
,

one obtains

d(n+ d) ≤ ξ(n) sup
0≤j≤n−1

d(j) + ε(n)d(n) + o(1).

Note that the asymptotic behavior of the coefficients (lemma 4.3.2) and σi(n) ∼ σ
√
n log n

(theorem 4.2.1) imply for ξ(n) and ε(n) the following asymptotic as n→∞:

ξ(n)→ ξ := max
i∈Σ

(
p
s/2
i0 + p

s/2
i1

)
, ε(n)→ 0. (4.37)

In particular, one obtains ε(n) < 1 for large n and therefore,

d(n+ d) ≤

{
ξ(n)

1−ε(n) sup0≤j≤n−1 d(j) + o(1), if d = 0,

(ξ(n) + ε(n)) sup0≤j≤n d(j) + o(1), if d ≥ 1.
(4.38)

This bound, ξ(n)/(1 − ε(n)) → ξ < 1 and ξ(n) + ε(n) → ξ < 1 imply by induction on n that
(d(n))n≥0 is bounded.

Now let η := supn∈N0
d(n) and λ := lim supn→∞ d(n). Moreover, for any ε > 0, let mε ≥ n0 be

chosen in such a way that d(n) ≤ λ + ε for all n ≥ mε. Then, (4.36) (and part (a) combined
with the triangle inequality) implies for n > 2mε that

di(n+ d) ≤ E
[((

σ0(Iin)

σi(n+ d)

)s
+

(
σ1(n− Iin)

σi(n+ d)

)s)
1{Iin /∈{mε,...,n−mε}}

]
η + ξ(n)(λ+ ε) + o(1)

= ξ(n)(λ+ ε) + o(1).

Maximizing over i ∈ Σ and letting n→∞ yields

λ ≤ ξ(λ+ ε).

Recall that ξ < 1 and that ε > 0 may be chosen arbitrarily small. Hence, the bound implies that
λ = 0. Therefore,

lim
n→∞

ζ∨s

((
Y 0
n+d

Y 1
n+d

)
,

(
N0

N1

))
= lim
n→∞

d(n) = 0

which implies weak convergence of each component by lemma 3.3.2.
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4.4 Transfer to Arbitrary Initial Distributions

Recall that the results so far only concerned the sequences (X0
n)n≥0 and (X1

n)n≥0 that correspond
to the initial distributions pi0δ0 + pi1δ1, i ∈ Σ.

A transfer to (Xµ
n )n≥0 with arbitrary initial distribution µ = µ0δ0 +µ1δ1, µ0 ∈ [0, 1], µ1 = 1−µ0,

relies on the distributional equation (1.7) which is

Xµ
n+d

d
= X0

Kµ
n

+X1
n−Kµ

n
+ ηµn, n ∈ N (4.39)

where (X0
n)n≥0, (X1

n)n≥0 and (Kµ
n , η

µ
n) are independent and Kµ

n follows the binomial distribution
B(n, µ(0)).

Recall that the assumptions (1.12) on the toll term ηµn are

E[ηµn] = O(n), Var(ηµn) = O(n) (n→∞)

whereas in the special cases µ = pi0δ0+pi1δ1, i ∈ Σ the toll terms satisfy the additional conditions
(1.13).

With the conditions above, the following holds for any initial distribution µ and any transition
matrix P that satisfies (1.9):

Theorem 4.4.1. Mean and variance of Xµ
n satisfy, as n→∞,

E[Xµ
n ] =

1

H
n log n+ O(n), Var(Xµ

n ) ∼ σ2n log n

where H is the entropy rate of the source defined in (1.4) and σ2 > 0 is given by

σ2 =
π0p00p01

H3

(
log(p00/p01) +

H1 −H0

p01 + p10

)2

+
π1p10p11

H3

(
log(p10/p11) +

H1 −H0

p01 + p10

)2

.

Moreover, as n→∞,
Xµ
n − E[Xµ

n ]√
Var(Xµ

n )

d−→ N (0, 1)

where N (0, 1) denotes a random variable with the standard normal distribution.

Proof. For i ∈ Σ and n ∈ N0 let

νi(n) := E[Xi
n], Vi(n) := Var(Xi

n).

Note that, similarly to lemma 3.0.4, the distributional equation (4.39) and the independence
therein implies

E[Xµ
n+d] = E[ν0(Kµ

n) + ν1(n−Kµ
n)] + E[ηµn]

with E[ηµn] = O(n) by condition (1.12).

Theorem 4.1.1 yields νi(n) = 1
Hn log n+ O(n) and therefore,

E[Xµ
n+d] =

1

H
E[Kµ

n log(Kµ
n) + (n−Kµ

n) log(n−Kµ
n)] + O(n)

=
1

H
n log n+

n

H
E
[
Kµ
n

n
log

(
Kµ
n

n

)
+

(
1− Kµ

n

n

)
log

(
1− Kµ

n

n

)]
+ O(n).
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Note that x 7→ x log x+ (1− x) log(1− x) is bounded on [0, 1] (with the convention 0 log 0 := 0).
Hence, the equation above yields

E[Xµ
n+d] =

1

H
n log n+ O(n)

and the assertion follows since (n+ d) log(n+ d) = n log n+ O(log n).

For the variance note that by the same arguments as in lemma 3.0.4

Var(Xµ
n+d) = E[V0(Kµ

n)] + E[V1(n−Kµ
n)] + Var(ν0(Kµ

n) + ν1(n−Kµ
n) + ηµn)

= σ2E[Kµ
n log(Kµ

n) + (n−Kµ
n) log(n−Kµ

n)]

+ Var(ν0(Kµ
n) + ν1(n−Kµ

n) + ηµn) + O
(
n
√

log n
)

where the last equality holds by theorem 4.2.1. Hence, it is sufficient to show

(a) E[Kµ
n log(Kµ

n) + (n−Kµ
n) log(n−Kµ

n)] = n log n+ O(n),

(b) Var(ν0(Kµ
n) + ν1(n−Kµ

n) + ηµn) = O(n).

Part (a) was already shown in the analysis of E[Xµ
n+d]. For part (b) note that theorem 4.1.1

yields νi(n) = 1
Hn log n+fi(n), i ∈ Σ, where f0 and f1 are Lipschitz-continuous. Therefore, part

(b) follows by lemma 4.2.2 and the bounds

(b1) Var(Kµ
n log(Kµ

n) + (n−Kµ
n) log(n−Kµ

n)) = O(n),

(b2) Var(f0(Kµ
n)) = O(n), Var(f1(n−Kµ

n)) = O(n),

(b3) Var(ηµn) = O(n).

For (b1) note that√
Var(Kµ

n log(Kµ
n) + (n−Kµ

n) log(n−Kµ
n))

= ‖Kµ
n log(Kµ

n)− E[Kµ
n log(Kµ

n)] + (n−Kµ
n) log(n−Kµ

n)− E[(n−Kµ
n) log(n−Kµ

n)]‖2
= ‖Kµ

n log(Kµ
n/n)− E[Kµ

n log(Kµ
n/n)] + (n−Kµ

n) log(1−Kµ
n/n)− E[(n−Kµ

n) log(1−Kµ
n/n)]‖2

≤ n (‖h(Kµ
n/n)− E[h(Kµ

n/n)]‖2 + ‖h(1−Kµ
n/n)− E[h(1−Kµ

n/n)]‖2)

where h(x) := x log x (and h(0) = 0).

Bounds on ‖h(Kµ
n/n)−E[h(Kµ

n/n)]‖2 and ‖h(1−Kµ
n/n)−E[h(1−Kµ

n/n)]‖2 may be computed
as in the analysis of the coefficients in lemma 4.3.2. More precisely, an easy calculation given in
lemma A.2.2 reveals that

‖h(Kµ
n/n)− E[h(Kµ

n/n)]‖2 = O
(
n−

1
2

)
, ‖h(1−Kµ

n/n)− E[h(1−Kµ
n/n)]‖2 = O

(
n−

1
2

)
and therefore, (b1) holds.

Moreover, (b2) follows by the Lipschitz-continuity of f0 and f1 and lemma 3.3.8.

Finally, (b3) holds by assumption (1.12) on ηµn which finishes the asymptotic analysis of the
variance.

It remains to show that, as n→∞,

Xµ
n − E[Xµ

n ]√
Var(Xµ

n )

d−→ N (0, 1).
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To this end, consider the normalized random variables (Y 0
n )n≥0 and (Y 1

n )n≥0 defined as

Y in :=


Xin−E[Xin]√

Var(Xin)
, if Var(Xi

n) > 0,

0, otherwise.

Theorem 4.3.1 yields Y in
d−→ N (0, 1) for both i ∈ Σ. Moreover, the distributional equation (4.39)

implies that

Xµ
n+d − E[Xµ

n+d]√
Var(Xµ

n+d)

d
=

√
V0(Kµ

n)

Var(Xµ
n+d)

Y 0
Kµ
n

+

√
V1(n−Kµ

n)

Var(Xµ
n+d)

Y 1
n−Kµ

n
+ bµ(n)

where bµ(n) is given by

bµ(n) =
ν0(Kµ

n)− E[ν0(Kµ
n)] + ν1(n−Kµ

n)− E[ν1(n−Kµ
n)] + ηµn − E[ηµn]√

Var(Xµ
n+d)

.

By Slutsky’s theorem it is sufficient to show that, as n→∞,

(I)

√
V0(Kµ

n)
Var(Xµn+d)

Y 0
Kµ
n

+

√
V1(n−Kµ

n)
Var(Xµn+d)

Y 1
n−Kµ

n

d−→ N (0, 1),

(II) bµ(n)
P−→ 0.

Part (I) is a consequence of the independence and asymptotic normality of (Y 0
n )n≥0 and (Y 1

n )n≥0:
For µ0 = 1 (or µ0 = 0) part (I) directly follows from the asymptotic normality of Y 0

n (or Y 1
n )

and the asymptotic behavior of the variances.

Now let µ0 ∈ (0, 1) and An := [µ0n− n2/3, µ0n+ n2/3] ∩ N0. Chernoff’s bound on the binomial
distribution (or the central limit theorem) implies that P(Kµ

n ∈ An)→ 1 and therefore, for any
x ∈ R,

P

(√
V0(Kµ

n)

Var(Xµ
n+d)

Y 0
Kµ
n

+

√
V1(n−Kµ

n)

Var(Xµ
n+d)

Y 1
n−Kµ

n
≤ x

)

= o(1) +
∑
j∈An

P(Kµ
n = j)P

(√
V0(j)

Var(Xµ
n+d)

Y 0
j +

√
V1(n− j)

Var(Xµ
n+d)

Y 1
n−j ≤ x

)

Also note that, for j ∈ An,√
V0(j)/Var(Xµ

n+d)→
√
µ(0),

√
V1(n− j)/Var(Xµ

n+d)→
√

1− µ(0)

and (Y 0
j , Y

1
n−j)

d−→ (N0, N1) where N0 and N1 are two independent N (0, 1) distributed random

variables. The convolution property
√
µ(0)N0 +

√
1− µ(0)N1

d
= N0 yields

P

(√
V0(Kµ

n)

Var(Xµ
n+d)

Y 0
Kµ
n

+

√
V1(n−Kµ

n)

Var(Xµ
n+d)

Y 1
n−Kµ

n
≤ x

)
= o(1) +

∑
j∈An

P(Kµ
n = j)(P(N0 ≤ x) + o(1))

= P(N0 ≤ x) + o(1)
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where the last equality is justified by the dominated convergence theorem. Since this holds for
any x ∈ R, part (I) follows.

Part (II) is a consequence of Markov’s inequality and the following result which is shown next:

‖bµ(n)‖1 → 0 (n→∞). (4.40)

Recall that νi(n) = n log n/H+fi(n), i ∈ Σ, by theorem 4.1.1 with Lipschitz-continuous functions
f0 and f1. Hence, with the notation h(x) := x log x for x > 0 and h(0) = 0,

‖bµ(n)‖1 =

∥∥∥∥∥∥ν0(Kµ
n)− E[ν0(Kµ

n)] + ν1(n−Kµ
n)− E[ν1(n−Kµ

n)] + ηµn − E[ηµn]√
Var(Xµ

n+d)

∥∥∥∥∥∥
1

≤ 1

H
√

Var(Xµ
n+d)

(‖h(Kµ
n)− E[h(Kµ

n)] + h(n−Kµ
n)− E[h(n−Kµ

n)]‖1)

+
1√

Var(Xµ
n+d)

(‖f0(Kµ
n)− E[f0(Kµ

n)] + f1(n−Kµ
n)− E[f1(n−Kµ

n ]‖1)

+
1√

Var(Xµ
n+d)

‖ηµn − E[ηµn]‖1.

Therefore, it only remains to show that, as n→∞

(II.1) ‖h(Kµ
n)− E[g(Kµ

n)] + h(n−Kµ
n)− E[g(n−Kµ

n)]‖1 = o(
√
n log n),

(II.2) ‖f0(Kµ
n)− E[f0(Kµ

n)]‖1 = o(
√
n log n), ‖f1(n−Kµ

n)− E[f1(n−Kµ
n ]‖1 = o(

√
n log n),

(II.3) ‖ηµn − E[ηµn]‖1 = o(
√
n log n).

The bounds (II.1)-(II.3) follow from (b1)-(b3) in the asymptotic analysis of the variance and the
fact that, by Jensen’s inequality,

‖X − E[X]‖1 ≤ ‖X − E[X]‖2 =
√

Var(X)

for any real valued random variable X. Finally, combining (II.1)-(II.3) and Markov’s inequality

yields bµ(n)
P−→ 0 and therefore the asymptotic normality by part (I) and Slutsky’s theorem.



Chapter 5

The Radix Selection Algorithm

The algorithm Radix Select is a one-sided version of the sorting algorithm introduced in section
1.1. Given a list X = [Ξ1, . . . ,Ξn] of strings (or binary expansions of numbers) and a rank
k ∈ {1, . . . , n}, Radix Select returns the element Ξ(k) of rank k. Here, the ranking of strings is
determined by their lexicographical order.

There are several stochastic models for X summarized in section 1.2. The results in this chapter
focus on the Markov Source Model. Recall that strings in this model are considered to be
independent and identically distributed. The distribution of each string is given by a Markov
chain with an arbitrary initial distribution µ and a transition matrix P = (pij)i,j∈{0,1}.

In addition to the model for the list X , the analysis of Radix Select requires a model for the rank
k. In a rather simple model, the rank is assumed to be independent of the list X and uniformly
distributed on {1, . . . , n}. Such a model was proposed and studied for a list generated by a
symmetric Bernoulli Source in [15]. Due to the fact that such a model averages the complexity
over the possible ranks, the model is called the Grand Averages Model.

A more detailed study of the complexity is given when considering all ranks btnc+ 1 simultane-
ously as a process in t ∈ [0, 1). Results on that process may be transferred to the Grand Averages
Model by choosing t = U where U is uniformly distributed on [0, 1) and independent of the input
list X . For further references, a model that considers all ranks btnc + 1, t ∈ [0, 1), is called the
Quantile Model.

The next section gives an introduction to the Radix Select algorithm. Afterwards, the average
complexity in the Quantile Model is studied for Markov Sources. The study of the Quantile Model
also requires a bound on the average worst case complexity of Radix Select which is done in section
5.2.1. Finally, an asymptotic expansion of the mean and a weak limit for the complexity in the
Grand Averages Model with Markov Sources are given in section 5.3. Section 5.3.3 provides an
explanation why the complexity in the Grand Averages Model is less concentrated when sources
other than the symmetric Bernoulli Source are considered.

The results in this chapter were recently presented in the Analysis of Algorithms conference
[47]. Aside from the study of Markov Sources, [47] includes a limit law for the complexity in
the Quantile Model with a symmetric Bernoulli Source and several path properties of the limit
process.
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5.1 Introduction

Let X = [Ξ1, . . . ,Ξn] be a list of n strings where each string Ξi is a sequence (ξ
(i)
k )k≥1 of symbols

drawn from a finite, ordered alphabet Σ. For simplicity, the symbols in Σ are considered to be
renamed such that Σ = {0, . . . , b − 1} with b = |Σ|. The elements of X may be interpreted as
words from a given language or b-ary expansions of numbers in the unit interval.

Moreover, let k ∈ {1, . . . , n} be the rank of the element sought after. Here, the rank of an element
is determined by the lexicographical order of Ξ1, . . . ,Ξn.

Radix Select is a one-sided version of Radix Sort introduced in section 1.1. As in the sorting
algorithm, the list X is split into sublists (Buckets) X0, . . . ,Xb−1 such that Ξi is placed in list

Xj if and only if ξ
(i)
1 = j. Afterwards, the algorithm determines the sublist that contains the

element of rank k by considering the sizes of the sublists. More precisely, let

m(k) := min

{
i ∈ {0, . . . , b− 1} :

i∑
`=0

|X`| ≥ k

}

where |X`| denotes the number of strings in sublist |X`|. Then, as long as Xm(k) contains more
than one element, the algorithm is recursively applied to the sublist Xm(k) searching for the

string with rank k −
∑m(k)−1
`=0 |X`|. The recursive call of the algorithm ignores the first symbol

of each element in Xm(k) in the sense that the strings are distributed into sublists according to
their second symbol.

Figure 5.1 gives an example for Radix Select on six strings. The complexity of the algorithm is
measured by the number of Bucket Operations. Here, a Bucket Operation denotes the placement
of a string into a sublist.

For simplicity, all results on Radix Select are only derived for the binary alphabet Σ = {0, 1}.

Figure 5.1 The Radix Select algorithm on 6 strings searching for rank 2. Only the list that con-
tains the element with rank 2 (green) is recursively split. The total number of Bucket Operations
is 6 + 3 + 2 · 2 = 13.

1101 . . .
0001 . . .
0110 . . .
0000 . . .
1111 . . .
1110 . . .

0001 . . .
0110 . . .
0000 . . .

0001 . . .
0000 . . .

0001 . . .
0000 . . .

0000 . . . 0001 . . .

0110 . . .

1101 . . .
1111 . . .
1110 . . .
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5.1.1 The Wasserstein Metric

Most of the results are derived by the Contraction Method introduced in section 3.3. However,
the proofs are done in the Wasserstein metric and do not require the Zolotarev metric which
appeared in the analysis of Radix Sort. This section contains all definitions and basic properties
needed to derive limit laws in the Wasserstein metrics.

Let p ≥ 1 and X and Y be two real valued random variables with E[|X|p] <∞ and E[|Y |p] <∞.
Then, the Wasserstein distance of X and Y is defined as

`p(X,Y ) := `p(L(X),L(Y )) := inf{‖W − Z‖p : L(W ) = L(X),L(Z) = L(Y )} (5.1)

where the infimum is taken over all random vectors (W,Z) on a common probability space with
marginals L(W ) = L(X) and L(Z) = L(Y ). Here, ‖ · ‖p denotes the Lp-norm which, for p ≥ 1,
is given by

‖W − Z‖p = E [|W − Z|p]1/p .

Recall that Pp denotes the set of all probability distributions on R with finite p-th moment.

Lemma 5.1.1. Let p ≥ 1 andM⊂ Pp be a family of distributions on R with finite p-th moment.
Then, there exists a family {Xρ : ρ ∈ M} of random variables on a common probability space
such that L(Xρ) = ρ for all ρ ∈M and

`p(ρ1, ρ2) = E[|Xρ1 −Xρ2 |p]1/p, ρ1, ρ2 ∈M.

The family {Xρ : ρ ∈M} is called an optimal `p-coupling of M.

Proof. Let Fρ : R→ [0, 1] denote the distribution function of ρ ∈M which is given by

Fρ(x) = ρ((−∞, x)), x ∈ R.

Moreover, let F−1
ρ : [0, 1]→ R denote its generalized inverse given by

F−1
ρ (y) = sup{x ∈ R : Fρ(x) ≤ y}, y ∈ [0, 1].

Then, {F−1
ρ (U) : ρ ∈M} is an optimal `p-coupling for M where U is uniformly distributed on

[0, 1]. More precisely, the following holds for all ρ1, ρ2 ∈M by [52, Theorem 8.1]:

`p(ρ1, ρ2) =

(∫ 1

0

|F−1
ρ1 (x)− F−1

ρ2 (x)|pdx
)1/p

.

Thus, {F−1
ρ (U) : ρ ∈M} is an optimal `p coupling since the right hand side coincides with the

Lp-distance of F−1
ρ1 (U) and F−1

ρ2 (U).

Lemma 5.1.2. The metric space (Pp, `p) is complete for any p ≥ 1.

Proof. The completeness follows from the existence of optimal `p-couplings on a common proba-
bility space (Ω,A,P) and the completeness of the space (Lp(Ω,A,P), ‖ · ‖p) given by the Riesz-
Fischer theorem.
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Corollary 5.1.3. For p ≥ 1, let `∨p be the the metric on Pp ×Pp given by

`∨p
(
(µ1, ρ1), (µ2, ρ2)

)
:= max {`p(µ1, µ2), `p(ρ1, ρ2)} , µ1, µ2, ρ1, ρ2 ∈ Pp.

Then, (Pp ×Pp, `
∨
p ) is a complete metric space.

Proof. Let ((µn, ρn))n≥1 be a Cauchy sequence in (Pp×Pp, `
∨
p ). Then, both (µn)n≥1 and (ρn)n≥1

are Cauchy sequences in (Pp, `p) which yields the existence of `p-limits µ and ρ by lemma 5.1.2.
The pair (µ, ρ) ∈ Pp ×Pp is the `∨p limit of ((µn, ρn))n≥1.

Lemma 5.1.4. Let (ρn)n≥1 be a sequence in Pp for p ≥ 1. Assume that there exists a limit
ρ ∈ Pp such that

`p(ρn, ρ) −→ 0 (n→∞).

Then, as n→∞,

ρn
w−→ ρ,

∫
|x|pdρn(x) −→

∫
|x|pdρ(x)

where
w−→ denotes weak convergence.

Proof. Let {X,Xn : n ≥ 1} be an optimal `p coupling of {ρ, ρn : n ≥ 1}. Such a coupling
exists by lemma 5.1.1. Then, ‖Xn − X‖p → 0 implies convergence in probability by Markov’s
inequality and, in particular, weak convergence.

Moreover, the triangle inequality implies

|‖Xn‖p − ‖X‖p| ≤ ‖Xn −X‖p −→ 0 (n→∞)

which yields the second part of the assertion.

5.2 The Quantile Model

In this section, the first order asymptotic of the mean is derived for the complexity of Radix
Select in the Quantile Model with a Markov Source. Unlike Bernoulli Sources, the asymptotic of
the mean is not continuous in t for Markov Sources (with p00 6= p10) where btnc+ 1 is the rank
sought after. This makes an analysis concerning weak limits more involved than the analysis
presented in [47]. In fact, the rescaling known from the analysis of Bernoulli Sources does not
lead to weak convergence for Markov Sources (with p00 6= p10).

Throughout this section, Σ = {0, 1} denotes the binary alphabet and P = (pij)i,j∈Σ is a fixed
transition matrix that satisfies

pij > 0 for all i, j ∈ Σ.

Let Y µn (`) be the number of Bucket Operations performed by Radix Select when searching for
the `-th smallest element in a list of n independent and identically distributed strings generated
by a Markov Source with initial distribution µ = µ0δ0 + µ1δ1 and transition matrix P .

The recursive behavior of the algorithm leads to a distributional recursion for (Y µn (`))`∈{1,...,n}
that is similar to the recursion on Radix Sort given in (1.5) on page 6:

Note that the algorithm performs n Bucket Operations in the first split of the list and recursively
continues searching in either the left or the right sublist depending on whether ` is at most the
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size of the left sublist or not. Let Kµ
n denote the size of the left sublist. Also note that if ` > Kµ

n ,
the algorithm searches the right sublist for the element with rank `−Kµ

n . Conditioned on Kµ
n ,

both sublists are independent and correspond to lists generated by Markov Sources with initial
distribution p00δ0 + p01δ1 and p10δ0 + p11δ1 respectively (cf. the analysis of Radix Sort in section
1.3).

This leads to the following distributional recursion on Y µn := (Y µn (`))`∈{1,...,n} for any n ≥ 2:

Y µn
d
=
(
1{`≤Kµ

n}Y
0
Kµ
n

(`) + 1{`>Kµ
n}Y

1
n−Kµ

n
(`−Kµ

n) + n
)
`∈{1,...,n} (5.2)

with (Y 0
n )n≥0, (Y 1

n )n≥0 and Kµ
n independent, Y in

d
= (Y pi0δ0+pi1δ1

n (`))`∈{1,...,n} for both i ∈ Σ and
L(Kµ

n) = B(n, µ0).

In particular, Y 0
n and Y 1

n satisfy for n ≥ 2

Y 0
n

d
=
(
1{`≤I0n}Y

0
I0n

(`) + 1{`>I0n}Y
1
n−I0n(`− I0

n) + n
)
`∈{1,...,n}

Y 1
n

d
=
(
1{`≤I1n}Y

0
I1n

(`) + 1{`>I1n}Y
1
n−I1n(`− I1

n) + n
)
`∈{1,...,n}

(5.3)

with (Y 0
n )n≥0, (Y 1

n )n≥0 and (I0
n, I

1
n) independent and L(Iin) = B(n, pi0) for i ∈ Σ.

5.2.1 Worst Case Behavior

The analysis of the Quantile Model requires some knowledge about the worst case behavior of
Radix Select. The only result needed for the analysis in section 5.2.2 is a linear upper bound
on the average worst case behavior in the Markov Source Model. Nevertheless, a simple proof
relying on the Contraction Method yields a law of large numbers that also holds for all moments.

To this end, let M0
0 = M1

0 := 0 and

M i
n := max

1≤`≤n
Y in(`), i ∈ Σ, n ∈ N,

denote the maximal number of Bucket Operations performed by Radix Select under a Markov
Source with initial distribution pi0δ0 + pi1δ1.

The system (5.3) implies a similar system of distributional recursions for M0
n and M1

n, n ≥ 2:

M0
n
d
= M0

I0n
∨M1

n−I0n + n,

M1
n
d
= M0

I1n
∨M1

n−I1n + n,
(5.4)

with (M0
k )k≥0, (M1

k )k≥0 and (I0
n, I

1
n) independent and L(Iin) = B(n, pi0) for i ∈ Σ. Here,

x ∨ y := max{x, y} denotes the maximum of x, y ∈ R.

Consider the rescaling

V in :=

{
0, if n = 0,
Mi
n

n , if n ≥ 1,
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and note that (5.4) implies

V 0
n

d
=

(
I0
n

n
V 0
I0n

)
∨
(
n− I0

n

n
V 1
n−I0n

)
+ 1,

V 1
n

d
=

(
I1
n

n
V 0
I1n

)
∨
(
n− I1

n

n
V 1
n−I1n

)
+ 1,

(5.5)

with (V 0
k )k≥0, (V 1

k )k≥0 and (I0
n, I

1
n) independent and L(Iin) = B(n, pi0) for i ∈ Σ.

The law of large numbers suggests that limits V 0 and V 1 should satisfy

V 0 d
=
(
p00V

0
)
∨
(
p01V

1
)

+ 1,

V 1 d
=
(
p10V

0
)
∨
(
p11V

1
)

+ 1,
(5.6)

with V 0, V 1 independent. In fact, there is a deterministic solution to (5.6): Note that (V 0, V 1) =
(a, b) solves (5.6) for a, b ∈ R if and only if (a, b) is a fixed point to the map

T2 : R2 → R2, (x, y) 7→
(
(p00x) ∨ (p01y) + 1 , (p10x) ∨ (p11y) + 1

)
. (5.7)

Thus, the existence of a (deterministic) solution may be deduced from an analysis of T2. More
precisely, it is sufficient to show that T2 is a contraction with respect to a complete metric on
R2. This holds for the metric induced by the maximum norm ‖ · ‖∞ and is deduced from the
next lemma.

Lemma 5.2.1. For all p ≥ 1 and a, b, c, d ∈ R,

|a ∨ b− c ∨ d|p ≤ |a− c|p + |b− d|p.

Here, x ∨ y := max{x, y} denotes the maximum of x, y ∈ R.

Proof. By symmetry, one may assume without loss of generality that a ≥ b.

If c ≥ d, the assertion holds trivially. Otherwise, it remains to show

|a− d|p ≤ |a− c|p + |b− d|p, a ≥ b, d > c.

This upper bound may be seen by the case analysis

|a− d|p =

{
(a− d)p ≤ (a− c)p = |a− c|p, if a ≥ d,
(d− a)p ≤ (d− b)p = |b− d|p, if a < d

which implies the assertion.

Corollary 5.2.2. Let P = (pij)i,j∈Σ be a transition matrix that satisfies

max{pi,j : i, j ∈ Σ} < 1.

Then, T2 is a contraction on (R2, ‖ · ‖∞). In particular, T2 has a unique fixed point.

Proof. Lemma 5.2.1 implies for any a, b, c, d ∈ R,

‖T2(a, b)− T2(c, d)‖2∞ = |(p00a) ∨ (p01b)− (p00c) ∨ (p01d)|2 ∨ |(p10a) ∨ (p11b)− (p10c) ∨ (p11d)|2

≤
(
(p2

00 + p2
01) ∨ (p2

10 + p2
11)
)
‖(a− c , b− d)‖2∞ .
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Hence, T2 is a contraction since max{pi,j : i, j ∈ Σ} < 1 and p00 + p01 = 1 = p10 + p11.

Moreover, T2 has a unique fixed point by Banach’s fixed point theorem and the completeness of
(R2, ‖ · ‖∞).

An application of the Contraction Method leads to the following result for the worst case behavior:

Theorem 5.2.3. Let M i
n, i ∈ Σ, denote the maximal number of Bucket operations performed by

Radix Select when searching for any rank among n independent strings generated by a Markov
Source with initial distribution pi0δ0 + pi1δ1 and transition matrix P = (pkl)k,l∈Σ. Assume that
P satisfies

max{pi,j : i, j ∈ Σ} < 1.

Then, as n→∞,

M i
n

n

d−→ mi, i ∈ Σ,

where (m0,m1) ∈ R2 denotes the unique fixed point of the map T2 given in (5.7).

Moreover, for any p > 0,

lim
n→∞

1

np
E[(M i

n)p] = mpi .

The required linear upper bound on the average worst case is an immediate consequence of the
convergence given in theorem 5.2.3:

Lemma 5.2.4. Consider a Markov Source that satisfies the assumptions in theorem 5.2.3. Then,
there exists a constant C > 0 such that for all n ∈ N and both i ∈ Σ

E

[
sup

`∈{1,...,n}
Y in(`)

]
≤ Cn.

Proof. Theorem 5.2.3 implies that(
1

n
E

[
sup

`∈{1,...,n}
Y in(`)

])
n≥1

is a convergent sequence for both i ∈ Σ. In particular, both sequences are bounded.

Proof of theorem 5.2.3. Recall that the rescaled random variables

V in :=

{
0, if n = 0,
Mi
n

n , if n ≥ 1,

satisfy the system (5.5) which is

V 0
n

d
=

(
I0
n

n
V 0
I0n

)
∨
(
n− I0

n

n
V 1
n−I0n

)
+ 1,

V 1
n

d
=

(
I1
n

n
V 0
I1n

)
∨
(
n− I1

n

n
V 1
n−I1n

)
+ 1,
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with (V 0
k )k≥0, (V 1

k )k≥0 and (I0
n, I

1
n) independent and L(Iin) = B(n, pi0) for i ∈ Σ.

Also recall that (m0,m1) ∈ R2 is the unique solution to the system

m0 = (p00m0) ∨ (p01m1) + 1,

m1 = (p10m0) ∨ (p11m1) + 1.
(5.8)

Moreover, note that it is sufficient to show for all p > 1, as n→∞,

`p(V
i
n,mi) −→ 0, i ∈ Σ, (5.9)

where `p denotes the Wasserstein metric given in (5.1). This is due to the fact that convergence
in `p implies weak convergence and convergence of the p-th moment by lemma 5.1.4 (also note
that convergence in `p implies convergence in `q for q < p).

To this end, consider the accompanying sequences

Q0
n :=

(
I0
n

n
m0

)
∨
(
n− I0

n

n
m1

)
+ 1,

Q1
n :=

(
I1
n

n
m0

)
∨
(
n− I1

n

n
m1

)
+ 1.

It is sufficient to show

(i) `p(V
i
n, Q

i
n) −→ 0 for both i ∈ Σ as n→∞ ,

(ii) `p(Q
i
n,mi) −→ 0 for both i ∈ Σ as n→∞,

since (i) and (ii) combined with the triangle inequality imply (5.9).

The convergence in (ii) is a simple consequence of the strong law of large numbers and lemma
5.2.1: Equation (5.8) and the definition of Qin yield

(
`p(Q

i
n,mi)

)p
=

∥∥∥∥(Iinn m0

)
∨
(
n− Iin
n

m1

)
− (pi0m0) ∨ (pi1m1)

∥∥∥∥p
p

≤ E
[∣∣∣∣Iinn − pi0

∣∣∣∣p] |m0|p + E
[∣∣∣∣n− Iinn

− pi1
∣∣∣∣p] |m1|p.

Hence, (ii) follows from the strong law of large numbers and the dominated convergence theorem.

In order to obtain the convergence in (i), consider the coupling of V in and Qin when taking the
same Iin in the right hand side of (5.5) and in the definition of Qin:

(
`p(V

i
n, Q

i
n)
)p ≤ E

[∣∣∣∣(Iinn V 0
Iin

)
∨
(
n− Iin
n

V 1
n−Iin

)
−
(
Iin
n
m0

)
∨
(
n− Iin
n

m1

)∣∣∣∣p]
≤ E

[(
Iin
n

)p ∣∣∣V 0
Iin
−m0

∣∣∣p +

(
n− Iin
n

)p ∣∣∣V 1
n−Iin

−m1

∣∣∣p]
where the second bound holds by lemma 5.2.1. Since m0 and m1 are deterministic, note that

di(n) := `p(V
i
n,mi) = ‖V in −mi‖p, i ∈ Σ, n ∈ N.
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The previous upper bound on `p(V
i
n, Q

i
n), the convergence in (ii) and the triangle inequality yield

for both i ∈ Σ

di(n) ≤ `p(V in, Qin) + o(1)

≤ E
[(

Iin
n

)p ∣∣∣V 0
Iin
−m0

∣∣∣p +

(
n− Iin
n

)p ∣∣∣V 1
n−Iin

−m1

∣∣∣p]1/p

+ o(1).

Let d(n) := d0(n) ∨ d1(n). Then,

E
[∣∣∣V 0

Iin
−m0

∣∣∣p∣∣∣ Iin] =
(
d0(Iin)

)p ≤ (d(Iin)
)p
, i ∈ Σ,

E
[∣∣∣V 1

n−Iin
−m1

∣∣∣p∣∣∣ Iin] =
(
d1(n− Iin)

)p ≤ (d(n− Iin)
)p
, i ∈ Σ,

and therefore, for both i ∈ Σ,

di(n) ≤ E
[(

Iin
n

)p (
d(Iin)

)p
+

(
n− Iin
n

)p (
d(n− Iin)

)p]1/p

+ o(1). (5.10)

It only remains to deduce d(n)→ 0 from (5.10) which is done in two steps:

(a) The sequence (d(n))n≥0 is bounded,

(b) d(n)→ 0 as n→∞.

For the first step, note that (5.10) implies

di(n) ≤ E
[(

Iin
n

)p
+

(
n− Iin
n

)p]1/p

sup
0≤k≤n−1

d(k) + (pni0 + pni1)d(n) + o(1).

Maximizing over i ∈ Σ yields for d(n), n ≥ 2,

d(n) ≤ (1− (pn00 + pn01) ∨ (pn10 + pn11))
−1

max
i∈Σ

E
[(

Iin
n

)p
+

(
n− Iin
n

)p]1/p

sup
0≤k≤n−1

d(k) + o(1)

where, as n→∞,

(1− (pn00 + pn01) ∨ (pn10 + pn11))
−1

max
i∈Σ

E
[(

Iin
n

)p
+

(
n− Iin
n

)p]1/p

−→ max
i∈Σ

(ppi0 + ppi1)1/p < 1.

Thus, an induction on n gives an upper bound for (d(n))n≥0.

The upper bound implies that both

η := sup
n∈N0

d(n), λ := lim sup
n→∞

d(n)

are finite. For part (b) let ε > 0 be an arbitrary small constant and n0 = n0(ε) ∈ N be chosen
in such a way that

d(n) ≤ λ+ ε for all n ≥ n0.

Then, since P(Iin /∈ [n0, n− n0])→ 0 and (d(n))n≥0 is bounded, (5.10) implies

di(n) ≤ E
[(

Iin
n

)p
+

(
n− Iin
n

)p]1/p

(λ+ ε) + o(1), n > 2n0, i ∈ Σ.
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Maximizing over i ∈ Σ and letting n→∞ yield

λ ≤ max
i∈Σ

(ppi0 + ppi1)1/p(λ+ ε)

which implies λ = 0 because ε > 0 may be chosen arbitrarily small and

max
i∈Σ

(ppi0 + ppi1)1/p < 1

for all p > 1 and all transition matrices with pij ∈ (0, 1). Thus,

lim sup
n→∞

`p(V
i
n,mi) = 0

and the assertion follows.

Remark 5.2.5. The next section provides an asymptotic result on the average number of Bucket
Operations depending on the rank ` = btnc+ 1, t ∈ [0, 1]. If Y in(`) denotes the number of Bucket
Operations when selecting rank ` among n strings generated by a Markov Source with initial
distribution pi0δ0 + pi1δ1, it is shown that, as n→∞,

E[Y in(btnc+ 1)]

n
−→ mi(t), t ∈ [0, 1], i ∈ Σ,

where mi : [0, 1]→ R+
0 , i ∈ Σ, are functions that satisfy for all t ∈ [0, 1] \ {pi0},

mi(t) = 1[0,pi0)(t)pi0m0

(
t

pi0

)
+ 1(pi0,1](t)pi1m1

(
t− pi0
pi1

)
+ 1.

Moreover mi(pi0) = (limt↑pi0 mi(t) + limt↓pi0 mi(t))/2, and thus, si := supt∈[0,1]mi(t) satisfy

si = sup
t∈[0,1]\{pi0}

mi(t) = (pi0s0) ∨ (pi1s1) + 1, i ∈ Σ.

Therefore, (s0, s1) is the unique fixed point of the map T2 given in (5.7) and the constants of
theorem 5.2.3 are given by

mi = sup
t∈[0,1]

mi(t), i ∈ Σ.

5.2.2 Selection of Quantiles in the Markov Source Model

This section provides a discussion on the expected number of Bucket Operations performed by
Radix Select when searching for an element of rank btnc+1, t ∈ [0, 1), among n independent and
identically distributed strings (on Σ = {0, 1}) generated by a Markov Source with some initial
distribution µ = µ0δ0 + µ1δ1 and transition matrix P = (pij)i,j∈Σ.

Starting with the special cases µ = pi0δ0 + pi1δ1, i ∈ Σ, the first order asymptotic of the
expectation is derived. A similar asymptotic expansion also holds for arbitrary µ which is
connected to the special cases via (5.2).

Recall that Y in(`) denotes the number of Bucket Operations performed by Radix Select when
searching for an element with rank ` among n independent and identically distributed strings
generated by a Markov Source with initial distribution pi0δ0 + pi1δ1.

The simplest case in the analysis of Y in(`) is the case ` ∈ {1, n}:
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Lemma 5.2.6. The expected number of Bucket Operations performed by Radix Sort satisfies, as
n→∞,

E[Y 0
n (1)] =

n

p01
+ O(1), E[Y 0

n (n)] =

(
p01

p10
+ 1

)
n+ O(1),

E[Y 1
n (1)] =

(
p10

p01
+ 1

)
n+ O(1), E[Y 1

n (n)] =
n

p10
+ O(1).

Proof. First note that the distributional equations (5.3) imply for any n ≥ 2

Y 0
n (1)

d
= 1{I0n>0}Y

0
I0n

(1) + 1{I0n=0}Y
1
n−I0n(1) + n,

Y 1
n (1)

d
= 1{I1n>0}Y

0
I1n

(1) + 1{I1n=0}Y
1
n−I1n(1) + n.

Let νin(1) := E[Y in(1)] for i ∈ Σ. Then, conditioning on I0
n yields:

ν0
n(1) = E[ν0

I0n
(1)] + E

[
1{I0n=0}(ν

1
n−I0n(1)− ν0

I0n
(1))

]
+ n.

Note that lemma 5.2.4 implies∣∣∣E [1{I0n=0}

(
ν1
n−I0n(1)− ν0

I0n
(1)
)]∣∣∣ ≤ E

[
1{I0n=0}

(
C(n− I0

n) + CI0
n

)]
= CnP

(
I0
n = 0

)
and therefore

ν0
n(1) = E[ν0

I0n
(1)] + n+ ε0(n)

with |ε0(n)| ≤ Cnpn00. Now let an := ν0
n(1)− n

p01
. Then, an satisfies

an = E[aI0n ] + n+ ε0(n)− n

p01
+
np00

p01
= E[aI0n ] + ε0(n)

which by lemma 3.1.6 implies an = O(1) and therefore,

E[Y 0
n (1)] =

n

p01
+ an =

n

p01
+ O(1) (5.11)

which is the assertion for E[Y 0
n (1)]. Moreover, the equality

ν1
n(1) = E[ν0

n(I1
n)] + E

[
1{I1n=0}

(
ν1
n−I1n(1)− ν0

I1n
(1)
)]

+ n

yields the assertion for E[Y 1
n (1)] by (5.11) and

∣∣∣E [1{I1n=0}

(
ν1
n−I1n

(1)− ν0
I1n

(1)
)]∣∣∣ ≤ Cnpn10.

Finally, note that

Y 0
n (n)

d
= 1{I0n=n}Y

0
I0n

(n) + 1{I0n<n}Y
1
n−I0n(n− I0

n) + n,

Y 1
n (n)

d
= 1{I1n=n}Y

0
I1n

(n) + 1{I1n<n}Y
1
n−I1n(n− I1

n) + n

which, by using similar arguments (replacing the role of 0 and 1 as well as Iin and n− Iin), yields
the assertion for E[Y 0

n (n)] and E[Y 1
n (n)].
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The analysis of Y in(btnc+1) for arbitrary t ∈ (0, 1) requires some notation. Recall that the input
of the algorithm is a list X in := [Ξ1, . . . ,Ξn], i ∈ Σ, of n independent strings Ξ1, . . . ,Ξn that
are generated by a Markov Source with initial distribution pi0δ0 + pi1δ1 and transition matrix
P = (pkl)k,l∈Σ.

Let IJi (n) denote the number of strings in X in that have the prefix J , i.e. for k ≥ 1 and J =
(j1, . . . , jk) ∈ {0, 1}k let

IJi (n) =
∣∣{(ξj)j≥1 ∈ X in : (ξ1, . . . , ξn) = J

}∣∣ .
The relation “<” for vectors I = (i1, . . . , ik) ∈ {0, 1}k and J = (j1, . . . , jk) ∈ {0, 1}k, k ≥ 1 is
determined by the lexicographical order which is: I < J if and only if there exists an integer
l ≤ k such that

(i1, . . . , il−1) = (j1, . . . , jl−1) and il < jl.

Within this ordering, the number of strings with a prefix less than J ∈ {0, 1}k is defined as

AJi (n) =
∣∣{(ξj)j≥1 ∈ X in : (ξ1, . . . , ξk) < J

}∣∣ .
Moreover, the number of strings with a prefix which is at most J ∈ {0, 1}k is defined as

BJi (n) =
∣∣{(ξj)j≥1 ∈ X in : (ξ1, . . . , ξk) ≤ J

}∣∣ .
Note that BJi (n)−AJi (n) = IJi (n) is the number of strings with the prefix J ∈ {0, 1}k and that
the independence and equality in distribution among the strings in X in imply that BJi (n), AJi (n)
and IJi (n) follow binomial distributions with n trials and success probabilities piB(J), piA(J) and
piI(J) given by

piI(J) = pij1

k∏
`=2

pj`−1j` , piB(J) =
∑
J̃≤J

piI(J̃), piA(J) = piB(J)− piI(J).

Here, the second sum is taken over all J̃ ∈ {0, 1}k with J̃ ≤ J .

Note that if the element with rank ` has a prefix J = (j1, . . . , jm) ∈ {0, 1}m, the m-th recursive
call of Radix Select causes IJi (n) Bucket Operations if IJi (n) ≥ 2 and the algorithm terminates
otherwise. Also note that the element with rank ` has prefix J if and only if AJi (n) < ` ≤ BJi (n).

Hence, generalizing (5.3) into distributional equations after k ≥ 1 recursive calls leads to the
system

Y in
d
=

( ∑
J∈{0,1}k

1{AJi (n)<`≤BJi (n)}Y
J
IJi (n)

(
`−AJi (n))

)
+ n+

k−1∑
l=1

∑
J∈{0,1}l

1{AJi (n)<`≤BJi (n)}∩{IJi (n)≥2}I
J
i (n)

)
`∈{1,...,n}

(5.12)

where {(Y Jn )n≥0 : J ∈ {0, 1}k} and (IJi )J∈{0,1}l,l∈{1,...,k} are independent and {(Y Jn )n≥0 : J ∈
{0, 1}k} is a family of independent random variables with distributions

L
(
Y (j1,...,jk)
n

)
= L

(
Y jkn

)
, n ≥ 0, (j1, . . . , jk) ∈ {0, 1}k.
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Considering the quantiles ` = btnc+1, t ∈ [0, 1), one obtains for any k ≥ 1 and J = (j1, . . . , jk) ∈
{0, 1}k

{AJi (n) < btnc+ 1 ≤ BJi (n)} =

{
AJi (n)

n
≤ t < BJi (n)

n

}
.

Note that the strong law of large numbers yields for any fixed k ≥ 1 and J = (j1, . . . , jk) ∈ {0, 1}k

AJi (n)

n
−→ piA(J),

BJi (n)

n
−→ piB(J), almost surely, as n→∞,

which leads to the deterministic intervals

hJi :=

{[
piA(J), piB(J)

)
, J ∈ {0, 1}k\{(1, . . . , 1)}[

piA(J), piB(J)
]
, J = (1, . . . , 1).

(5.13)

However, if t ∈ (0, 1) hits the boundary of one of the limit intervals, i.e. if t = piA(J0) for some
J0 ∈ {0, 1}k, the following two events are both very likely (in fact, the probability of both events
converges to 1/2): {

AJ0i (n)

n
≤ t < BJ0i (n)

n

}
,

{
A
J−0
i (n)

n
≤ t < B

J−0
i (n)

n

}

where J−0 is the largest vector in {0, 1}k with J−0 < J0 (and therefore AJ0i (n) = B
J−0
i (n)).

Thus, the boundary points of the limit intervals (5.13) need a special treatment. For further
references, these points are denoted by

Din :=
{
piA(J), piB(J) : J ∈ {0, 1}n

}
\ {0, 1}, n ≥ 1, i ∈ Σ

Di∞ :=

∞⋃
n=1

Din, i ∈ Σ.
(5.14)

Remark 5.2.7. There is an easy recursive construction of the limit intervals: Initialize

h
(0)
i = [0, pi0) and h

(1)
i = [pi0, 1].

If h
(j1,...,jk)
i = [a, b) for some a, b ∈ [0, 1] and k ≥ 1, the interval is split into

h
(j1,...,jk,0)
i =

[
a, a+ pjk0(b− a)

)
, h

(j1,...,jk,1)
i =

[
a+ pjk0(b− a), b

)
,

which also holds for h
(j1,...,jk)
i = [a, 1] (i.e. (j1, . . . , jk) = (1, . . . , 1)) by taking

h
(j1,...,jk,0)
i =

[
a, a+ pjk0(1− a)

)
, h

(j1,...,jk,1)
i = [a+ p10(1− a), 1].

Thus, J = (j1, . . . , jk) encodes the position of hJi in this splitting procedure where jl = 0 cor-
responds to the left interval in the l-th splitting.

Let J ik(t) be the unique vector in {0, 1}k such that t ∈ hJ
i
k(t)
i . Moreover, for t ∈ Dik, let J ik(t−)

be the largest vector in {0, 1}k that is smaller than J ik(t) and therefore, t = piB(J ik(t−)).
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Finally, let λ([a, b)) = b− a denote the Lebesgue measure of an interval [a, b) and

λik(t+) = λ
(
h
Jik(t)
i

)
= piI(J

i
k(t)),

λik(t−) =

{
λ
(
h
Jik(t−)
i

)
= piI(J

i
k(t−)), if t ∈ Dik,

λik(t+), otherwise.

Then, the crucial parameter in the complexity of Radix Select in the Quantile Model is

λik(t) =
λik(t+) + λik(t−)

2
, t ∈ [0, 1], i ∈ Σ (5.15)

with the convention λi0(t) = 1 for all i ∈ Σ and t ∈ [0, 1]. Equation (5.12) leads to the following
result on the asymptotic behavior of the average complexity:

Theorem 5.2.8. The number of Bucket Operations performed by Radix Select when searching
for an element of rank btnc+ 1 among n independent strings generated by a Markov Source with
initial distribution pi0δ0 + pi1δ1 satisfies for all t ∈ [0, 1] and i ∈ Σ, as n→∞,

E[Y in(btnc+ 1)] = mi(t)n+ o(n)

with Y in(n+ 1) := Y in(n) and functions mi : [0, 1]→ (0,∞) given by

mi(t) = 1 +

∞∑
`=1

λi`(t).

Here, λi`(t) denotes the averaged interval length defined in (5.15).

Remark 5.2.9. The proof of theorem 5.2.8 may be extended to obtain a law of large numbers:
For any i ∈ Σ and t ∈ (0, 1) \ Di∞

Y in(btnc+ 1)

n

L1−→ mi(t), n→∞,

where
L1−→ denotes convergence in ‖ · ‖1. In particular, the convergence holds in probability.

Figure 5.2 provides plots of m0 and m1 for some transition matrices P . Moreover, the next
lemma contains several properties of m0 and m1:

Lemma 5.2.10. The functions m0 and m1 of theorem 5.2.8 have the following properties:

(i) The functions m0 and m1 are bounded. More precisely,

mi(t) ≤
1

p∧
, i ∈ Σ, t ∈ [0, 1]

where p∧ := min{pkl : k, l ∈ Σ}.

(ii) For both i ∈ Σ, mi is continuous in t for all t ∈ [0, 1] \ Di∞. Moreover, the following limits
exist for all i ∈ Σ and t ∈ Di∞:

mi(t−) := lim
s↑t

mi(s) = 1 +

k0∑
j=1

λik(t) + λik0(t)pjik0 (t)0

(
1 +

p01

p10

)

mi(t+) := lim
s↓t

mi(s) = 1 +

k0∑
j=1

λik(t) + λik0(t)pjik0 (t)1

(
1 +

p10

p01

)
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where k0 = k0(i, t) ∈ N0 is the smallest integer with t ∈ Dik0+1. Here, J ik0(t) = (ji1(t), . . . jik0(t))

denotes the unique vector J ∈ {0, 1}k0 such that t ∈ hJi with hJi given in (5.13).

In particular, if p01 6= p11 then mi is continuous in t if and only if t /∈ Di∞.

(iii) For all i ∈ Σ and t ∈ Di∞,

mi(t) =
1

2
(mi(t−) +mi(t+)).

(iv) For all i ∈ Σ and t ∈ [0, 1] \ {pi0},

mi(t) = 1[0,pi0)(t)pi0m0

(
t

pi0

)
+ 1(pi0,1](t)pi1m1

(
t− pi0
pi1

)
+ 1.

(v) If p01 = p11 =: p, the function m := m0 = m1 is given by

m(t) =
2p− 1

p(1− p)
t+

1

p
, t ∈ [0, 1].

Figure 5.2 Plots of m0 (red) and m1 (blue) for different Markov Sources. Note that both
functions tend to the affine linear function given in lemma 5.2.10 as p10 → p00.
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(d) p00 = 0.6, p10 = 0.65

The proof of lemma 5.2.10 is done at the end of the section. The result in theorem 5.2.8 also
holds for arbitrary initial distributions and almost all t ∈ [0, 1]:

Theorem 5.2.11. Let Y µn (`) denote the number of Bucket Operations of Radix Select selecting
a rank 1 ≤ ` ≤ n among n independent data generated from a Markov Source with initial
distribution µ = µ0δ0 + µ1δ1 where µ0 ∈ [0, 1] and transition matrix (pij)i,j∈{0,1} with pij < 1
for all i, j = 0, 1. Moreover, let Dµ∞ = (µ0D0

∞)∪ (µ1D1
∞+µ0) with D0

∞ and D1
∞ given in (5.14).

Then, the expectation of the quantiles satisfies for all t ∈ [0, 1] \ Dµ∞, as n→∞,

E[Y µn (btnc+ 1)] = mµ(t)n+ o(n)

with

mµ(t) =

 µ0m0

(
t
µ0

)
+ 1, if t < µ0,

(1− µ0)m1

(
t−µ0

1−µ0

)
+ 1, if t > µ0.

The functions m0,m1 : [0, 1]→ (0,∞) are given in theorem 5.2.8.
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Proof of theorem 5.2.8. First of all, note that (5.12) implies for the rank ` = btnc+ 1, t ∈ [0, 1),
and for any k ≥ 2

Y in(btnc+ 1)
d
=

∑
J∈{0,1}k

1{AJ
i
(n)

n ≤t<
BJ
i

(n)

n

}Y JIJi (n)

(
btnc+ 1−AJi (n))

)
+ n+

k−1∑
l=1

∑
J∈{0,1}l

1{AJ
i
(n)

n ≤t<
BJ
i

(n)

n

}
∩{IJi (n)≥2}

IJi (n)

(5.16)

with the same independence as in (5.12).

The main strategy of the proof is to choose k sufficiently large so that the first sum in (5.16) is
negligible as n→∞. Moreover, the law of large numbers ensures that the remaining sum tends
to
∑k−1
l=1 λ

i
l(t).

To this end, let ε > 0 be an arbitrarily small constant. The proof is done by choosing k to be
sufficiently large so that

(a) S
(1)
n :=

∑
J∈{0,1}k 1

{
AJ
i
(n)

n ≤t<
BJ
i

(n)

n

}Y J
IJi (n)

(
btnc+ 1−AJi (n))

)
satisfies

1

n
E[S(1)

n ] ≤ ε for all sufficiently large n.

(b) S
(2)
n,l :=

∑
J∈{0,1}l 1

{
AJ
i
(n)

n ≤t<
BJ
i

(n)

n

}
∩{IJi (n)≥2}

IJi (n) satisfies for all l ≥ 1

∣∣∣∣E [ 1

n
S

(2)
n,l − λ

i
l(t)

]∣∣∣∣ ≤ ε

k
for all sufficiently large n.

The study of the worst case behavior in lemma 5.2.4 implies for all J ∈ {0, 1}k

E

[
1{AJ

i
(n)

n ≤t<
BJ
i

(n)

n

}Y JIJi (n)

(
btnc+ 1−AJi (n))

)]

= E

[
E

[
1{AJ

i
(n)

n ≤t<
BJ
i

(n)

n

}Y JIJi (n)

(
btnc+ 1−AJi (n))

) ∣∣∣∣(IJ′i (n))J′∈{0,1}k

]]

≤ CE

[
1{AJ

i
(n)

n ≤t<
BJ
i

(n)

n

}IJi (n)

]
.

In particular, the expectation of the first sum in (5.16) is bounded by

1

n
E[S(1)

n ] ≤ CE
[

max
J∈{0,1}k

IJi (n)

n

]
.

The strong law of large numbers and the dominated convergence theorem yield

lim
n→∞

E
[

max
J∈{0,1}k

IJi (n)

n

]
= max
J∈{0,1}k

piI(J) ≤ pk∨
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with p∨ = max{plm : l,m ∈ Σ} < 1. In particular, if k ∈ N is chosen in such a way that
Cpk∨ < ε, an integer n0 exists such that for all n ≥ n0

1

n
E[S(1)

n ] ≤ ε. (5.17)

Now let t ∈ (0, 1) \ Di∞. Recall that J ik(t) denotes the unique vector J ∈ {0, 1}k so that

t ∈ [piA(J), piB(J)).

For each ` ∈ {1, . . . , k − 1}, the summand in the second sum of (5.16) has the expectation

1

n
E[S

(2)
n,l ] = piI(J

i
l (t))− E

[
1{

tn/∈
[
A
Ji
l
(t)

i (n),B
Ji
l
(t)

i (n)
)}
∪{I

Ji
l
(t)

i (n)≤1}

I
Jil (t)
i

n

]
+

1

n

∑
J∈{0,1}l\{Jil (t)}

E

[
1{AJ

i
(n)

n ≤t<
BJ
i

(n)

n

}
∩{IJi (n)≥2}

IJi (n)

]
.

Since λil(t) = piI(J
i
l (t)) for t /∈ Di∞, one obtains the upper bound∣∣∣∣ 1nE[S

(2)
n,l ]− λ

i
l(t)

∣∣∣∣ ≤ 1

n
P
(
I
Jil (t)
i (n) ≤ 1

)
+ E

[
1{

tn/∈
[
A
Ji
l
(t)

i (n),B
Ji
l
(t)

i (n)
)} ∑

J∈{0,1}l

IJi (n)

n

]

≤ 1

n
+ P

(
A
Jil (t)
i (n) > tn

)
+ P

(
B
Jil (t)
i (n) ≤ tn

)
.

Finally, since t > piA(J il (t)) and t < piB(J il (t)) (case t /∈ Di∞), the remaining probabilities converge
to zero exponentially fast (e.g. with a standard Chernoff bound given in lemma A.1.1). Thus,
there exists an integer n1 such that (b) holds for all n ≥ n1.

Combining equation (5.16), (a) and (b) yield for t ∈ (0, 1) \ Di∞ and any n ≥ n0 ∨ n1∣∣∣∣ 1nE [Y in(btnc+ 1)
]
−mi(t)

∣∣∣∣ ≤ 2ε+

∞∑
l=k

λil(t)

which, up to a suitable increase of k, is bounded by 3ε since λil(t) ≤ pl∨ for all l ≥ 1. Thus, the
assertion holds for all t ∈ (0, 1) \ Di∞. Note that this proof may be extended to obtain

lim
n→∞

E
[∣∣∣∣Y in(btnc+ 1)

n
−mi(t)

∣∣∣∣] = 0, t ∈ (0, 1) \ Di∞,

which requires the stronger criterion

(b’) S
(2)
n,l :=

∑
J∈{0,1}l 1

{
AJ
i
(n)

n ≤t<
BJ
i

(n)

n

}
∩{IJi (n)≥2}

IJi (n) satisfies for all l ≥ 1

E
[∣∣∣∣ 1nS(2)

n,l − λ
i
l(t)

∣∣∣∣] ≤ ε

k
for all n sufficiently large.

However, (b’) holds by similar arguments and the fact that, for any B(n, p) distributed random
variable Bn,p,

E
[∣∣∣∣Bn,pn − p

∣∣∣∣] = O
(
n−

1
2

)
.
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The assertion also holds for t ∈ {0, 1} using similar arguments. However, this case is covered
by the elementary proof given in lemma 5.2.6 and the fact that J il (0) = (0, . . . , 0) and J il (1) =
(1, . . . , 1) for all l ≥ 1.

Finally, let t ∈ Di∞. Let k0 be the smallest integer such that t ∈ Dik0 . Note that (a) still holds
for all sufficiently large k and that (b) holds for all l < k0 by applying the same proof as for
t /∈ Di∞. Recall that for l ≥ k0

λil(t) =
1

2
λil(t+) +

1

2
λil(t−) =

1

2
piI(J

i
l (t)) +

1

2
piI(J

i
l (t−))

where J ik(t−) is the largest vector J ∈ {0, 1}l with J < J il (t) (in lexicographical order). Thus,

t = piB(J ik(t−)) = piA(J ik(t)).

Once again, by a standard tail bound of the binomial distribution

P
(
B
Jik(t)
i (n) ≤ tn

)
−→ 0, P

(
A
Jik(t−)
i (n) ≥ tn

)
−→ 0, l ≥ k0,

which implies for l ≥ k0∣∣∣∣ 1nE[S
(2)
n,l ]− λ

i
l(t)

∣∣∣∣ ≤
∣∣∣∣∣E
[
1
{tn≥A

Ji
k
(t)

i (n)}

I
Jik(t)
i (n)

n

]
− 1

2
piA(J ik(t))

∣∣∣∣∣
+

∣∣∣∣∣E
[
1
{tn<A

Ji
k
(t)

i (n)}

I
Jik(t−)
i (n)

n

]
− 1

2
piB(J ik(t))

∣∣∣∣∣+ o(1).

Hence, part (b) also holds for l ≥ k0 if the following holds for any B(n, p) distributed random
variable Bn,p as n→∞, p ∈ (0, 1) fixed:

(i) E
[
1{Bn,p≥np}

Bn,p
n

]
=
p

2
+ o(1), (ii) E

[
1{Bn,p<np}

Bn,p
n

]
=
p

2
+ o(1).

Since (ii) follows from (i) and E[Bn,p] = np, it only remains to show (i) in order to finish the
proof: The central limit theorem yields P (Bn,p ≥ np)→ 1/2 and therefore,∣∣∣∣E [1{Bn,p≥np}Bn,pn

]
− p

2

∣∣∣∣ =

∣∣∣∣E [1{Bn,p≥np}Bn,p − npn

]∣∣∣∣+ o(1) ≤ E
[∣∣∣∣Bn,p − npn

∣∣∣∣]+ o(1) −→ 0

where the convergence is justified by the law of large numbers and the dominated convergence
theorem.

Thus, (a) and (b) also holds for t ∈ Di∞ which yields the assertion using the same arguments as
for the first case.

The transfer to arbitrary initial distributions requires a more careful study of the continuity-
points t /∈ Di∞:

Lemma 5.2.12. Let (tn)n≥0 be a convergent sequence in [0, 1] with limit

t := lim
n→∞

tn.

Then, for any i ∈ Σ, t /∈ Di∞ implies

lim
n→∞

1

n
E[Y in(btnnc+ 1)] = mi(t)

with Y in and mi(t) given in theorem 5.2.8.
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Proof. The proof is very similar to the proof of the case t /∈ Di∞ in theorem 5.2.8.

In fact, part (a) in the proof remains valid without any changes. For part (b) note that

piA(J ik(t)) < t < piB(J ik(t))

and tn → t implies the existence of constants δ > 0 and n0 ∈ N such that

piA(J ik(t)) + δ < tn < piB(J ik(t))− δ, n ≥ n0.

In particular, for any l ∈ {1, . . . , k − 1}

P
(
tnn /∈

(
A
Jil (t)
i (n), B

Jil (t)
i (n)

))
≤ P

(
tnn /∈

(
A
Jik(t)
k (n), B

Jik(t)
i (n)

))
−→ 0, n→∞.

Thus, (b) remains valid for tn and the assertion is given by the proof of theorem 5.2.8.

Proof of theorem 5.2.11. Recall that (5.2) yields for all n ≥ 2

Y µn
d
=
(
1{`≤Kµ

n}Y
0
Kµ
n

(`) + 1{`>Kµ
n}Y

1
n−Kµ

n
(`−Kµ

n) + n
)
`∈{1,...,n}

with (Y 0
n )n≥0, (Y 1

n )n≥0 and Kµ
n independent and L(Kµ

n) = B(n, µ0).

This implies for µ0 = 0 and any t ∈ [0, 1] that

Y µn (t)
d
= Y 1

n (t) + n

and the assertion is given by theorem 5.2.8 in this case. Similarly, the assertion follows for µ0 = 1

by the fact that Y µn (t)
d
= Y 0

n (t) + n.

Now let µ0 ∈ (0, 1) and consider the functions νin : [0, 1] −→ R, n ∈ N0, i ∈ Σ, defined as

νin(t) =
1

n
E[Y in(btnc+ 1)], t ∈ [0, 1],

with the convention Y in(n+ 1) := Y in(n) and νi0(t) = 0 for all t ∈ [0, 1].

Then, (5.2) implies by conditioning on Kµ
n

1

n
E[Y µn (btnc+ 1] = E

[
1{tn<Kµ

n}
Kµ
n

n
ν0
Kµ
n

(
tn

Kµ
n

)
+ 1{tn≥Kµ

n}
n−Kµ

n

n
ν1
n−Kµ

n

(
tn−Kµ

n

n−Kµ
n

)]
+ 1.

The strong law of large numbers and lemma 5.2.12 yield for any t /∈ Dµ∞ almost surely, as n→∞,

1{tn<Kµ
n}
Kµ
n

n
ν0
Kµ
n

(
tn

Kµ
n

)
−→ 1{t<µ0}µ0m0

(
t

µ0

)
1{tn≥Kµ

n}
n−Kµ

n

n
ν1
n−Kµ

n

(
tn−Kµ

n

n−Kµ
n

)
−→ 1{t≥µ0}µ1m1

(
t− µ0

µ1

)
.

Finally, the assertion follows from the dominated convergence theorem and the fact that ν0
n and

ν1
n are bounded by the worst case behavior discussed in lemma 5.2.4.

We finish the section with the missing proof of lemma 5.2.10:
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Proof of lemma 5.2.10. For the first part recall

mi(t) = 1 +

∞∑
k=1

λik(t)

with λik(t) given in (5.15). Moreover, recall that

piI(J) = pij1

k∏
`=2

pj`−1j` ≤ pk∨, J = (j1, . . . , jk) ∈ {0, 1}k, k ≥ 1,

with p∨ = max{pij : i, j ∈ Σ} = 1− p∧. This yields the upper bound

λik(t) ≤ pk∨, k ≥ 1,

which implies (i) by the convergence of the geometric series.

For part (ii) let t ∈ [0, 1] \Di∞ and let ε > 0 be an arbitrarily small constant. Then, by the proof
of part (i), there exists an integer n0 ∈ N such that for all s ∈ [0, 1]

|mi(s)−mi(t)| ≤
n0∑
k=1

∣∣λik(s)− λik(t)
∣∣+ ε. (5.18)

Recall that J in0
(t) ∈ {0, 1}k denotes the unique vector J ∈ {0, 1}n0 with t ∈ hJi = [piA(J), piB(J))

(or hJi = [piA(J), piB(J)] if J = (1, . . . , 1)) and that t ∈ [0, 1] \ Di∞ implies

piA(J in0
(t)) < t < piB(J in0

(t)).

For t ∈ (0, 1) let δ > 0 be chosen in such a way that

[t− δ, t+ δ] ⊂ h
Jin0

(t)

i .

Then, for all s ∈ [t− δ, t+ δ] and k ≤ n0,

λik(s) = λik(t)

which implies |mi(s) − mi(t)| ≤ ε by (5.18). Thus, mi is continuous in t ∈ (0, 1) \ Di∞. The

continuity in 0 and 1 holds by using similar arguments (pick δ > 0 such that [0, δ] ⊂ h(0,...,0)
i for

t = 0 and [1− δ, 1] ⊂ h(1,...,1)
i for t = 1).

Now let t ∈ Di∞. Recall that k0 is the smallest integer with t ∈ Dik0+1. In particular, t hits the

boundary of the interval h
Jik(t)
i if and only if k ≥ k0 + 1. Thus, for all s that are sufficiently close

to t,

λik(s) = λik(t), k ≤ k0.

On the other hand, if k ≥ k0 + 1,

t = inf h
Jik(t)
i = suph

Jik(t−)
i .

Hence, for all k ≥ k0 + 1 and s sufficiently close to t,

s ∈

{
h
Jik(t−)
i , if s < t,

h
Jik(t)
i , if s > t
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which implies with the notation in (5.15)

λik(s) =

{
λik(t−), if s < t,

λik(t+), if s > t.

Thus,

lim
s↑t

mi(s) = 1 +

k0∑
j=1

λik(t) +

∞∑
j=k0+1

λik(t−),

lim
s↓t

mi(s) = 1 +

k0∑
j=1

λik(t) +

∞∑
j=k0+1

λik(t+)

and therefore, (iii) holds by the definition of λik(t). For the second part of (ii) it remains to show

∞∑
j=k0+1

λik(t−) = λik0(t)pjik0 (t)0

(
1 +

p01

p10

)
,

∞∑
j=k0+1

λik(t+) = λik0(t)pjik0 (t)1

(
1 +

p10

p01

)
.

(5.19)

To this end, note that, as described in the recursive representation of the intervals given in remark
5.2.7, t hits the boundary of an interval in the k0 + 1-st splitting (which is the right subinterval
in that splitting, causing J ik0+1(t) = (ji1(t), . . . , jik0(t), 1) with J ik0(t) = (ji1(t), . . . , jik0(t))). After

hitting the boundary of h
Jik0+1(t)

i , t is located in the leftmost interval in every other splitting
which yields

J ik(t) = (ji1(t), . . . , jik0(t), 1, 0, . . . , 0), k ≥ k0 + 1.

Moreover, J ik(t−) is the largest vector (in lexicographical order) which is smaller than J ik(t).
Thus,

J ik(t−) = (ji1(t), . . . , jik0(t), 0, 1, . . . , 1), k ≥ k0 + 1

and (5.19) follows from the definition

λik(t+) = piji1(t)

k∏
`=2

pji`−1(t)ji`(t)
, (ji1(t), . . . , jtk(t)) := J ik(t),

λik(t−) = piji1(t−)

k∏
`=2

pji`−1(t−)ji`(t−), (ji1(t−), . . . , jtk(t−)) := J ik(t−),

and the limit of the geometric series. In particular, mi is continuous in t ∈ Di∞ if and only if

pjik0 (t)0

p10
=
pjik0 (t)1

p01

which, for jik0(t) = 0, requires p00 = p10 and, for jik0(t) = 1, requires p11 = p01. Since pj0+pj1 = 1

for both j ∈ Σ, continuity in t ∈ Di∞ is equivalent to p00 = p10.
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Part (iv) is an immediate consequence of the next property which holds for all k ≥ 1, i ∈ Σ and
t 6= pi0:

λik(t) =

pi0λ
0
k−1

(
t
pi0

)
, if t < pi0,

pi1λ
1
k−1

(
t−pi0
pi1

)
, if t > pi0.

Once again, this property is best seen by considering the recursive representation of the intervals
given in remark 5.2.7. If t < pi0, t is located in the left interval of the first splitting (i.e. in the
interval [0, pi0)). The relative location of t within this interval is given by t/pi0 and the interval
is split into a left subinterval with a relative length of p00 (relatively to the length of the interval
[0, pi0)) and a right subinterval with a relative length of p01. This corresponds to the splitting
of the unit interval and the case i = 0 and therefore,

λik(t) = pi0λ
0
k−1

(
t

pi0

)
, t < pi0.

Similar arguments also hold for the case t > pi0.

Finally, part (v) may be deduced from (iv) and a uniqueness argument: Obviously, m0 = m1 for
Bernoulli Sources since p00 = p10 =: q and p01 = p11 =: p. Moreover, m := m0 = m1 satisfies by
(iv)

m(t) = 1[0,q)(t)qm

(
t

q

)
+ 1[q,1](t)pm

(
t− q
p

)
+ 1, t ∈ [0, 1] \ {q}. (5.20)

It is not difficult to see that

f : [0, 1]→ R, t 7→ 2p− 1

pq
t+

1

p

also satisfies (5.20). Thus, for all t 6= q,

|m(t)− f(t)| ≤ (q‖m− f‖∞) ∨ (p‖m− f‖∞) = (p ∨ q)‖m− f‖∞ (5.21)

where x∨y := max{x, y} denotes the maximum and ‖·‖∞ denotes the supremum norm. Moreover,
(ii) implies

m(q) = 1 + q

(
1 +

p

q

)
= 2 = f(q).

Therefore, taking the maximum in (5.21) yields

‖m− f‖∞ ≤ (p ∨ q)‖m− f‖∞

which implies m = f for all p ∈ (0, 1).

5.2.3 A Remark on Convergence in D[0, 1]

The observations in the previous section include a law of large numbers which is

Y in(btnc+ 1)

n

d−→ mi(t), t ∈ [0, 1] \ Di∞
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where mi : [0, 1] → R is some bounded function. Thus, it is natural to ask if there is a proper
rescaling factor αn = o(n) such that the process

Xi
n :=

(
Y in(btnc+ 1)−mi(t)n

αn

)
t∈[0,1]

, n ∈ N,

converges in distribution in (D[0, 1], dsk) to a non-degenerate limit. Here, D[0, 1] is the space of
all càdlàg functions on [0, 1] and dsk denotes the Skorokhod distance on D[0, 1]. It is observed
in [47] that this is true for Bernoulli Sources (i.e. the special case p00 = p10) and the rescaling
αn =

√
n. In this case, the rescaled process Xi

n converges in distribution to a centered Gaussian
process.

However, it turns out that such a convergence does not hold for the case p00 6= p10. More
precisely, the process

Xi
n :=

(
Xi
n(t)

)
t∈[0,1]

:=

(
Y in(btnc+ 1)−mi(t)n√

n

)
t∈[0,1]

, n ∈ N, (5.22)

(with the convention Y in(n + 1) := Y in(n)) cannot converge in distribution for p00 6= p10 due to
the next theorem:

Theorem 5.2.13. Consider a Markov Source with p00 6= p10. Then, for both i ∈ Σ, the family
{‖Xi

n‖∞ : n ∈ N} is not tight where Xi
n denotes the process defined in (5.22). In particular, the

processes (Xi
n)n≥0, i ∈ Σ, do not converge in distribution in (D[0, 1], dsk).

Proof. First of all, recall that Y 0
n and Y 1

n satisfy the system (5.3) which is

Y 0
n

d
=
(
1{`≤I0n}Y

0
I0n

(`) + 1{`>I0n}Y
1
n−I0n(`− I0

n) + n
)
`∈{1,...,n}

Y 1
n

d
=
(
1{`≤I1n}Y

0
I1n

(`) + 1{`>I1n}Y
1
n−I1n(`− I1

n) + n
)
`∈{1,...,n}

with (Y 0
n )n≥0, (Y 1

n )n≥0 and (I0
n, I

1
n) independent and L(Iin) = B(n, pi0) for i ∈ Σ.

Now (5.3) implies similar equations for the rescaled quantities Xi
n, i ∈ Σ:

Xi
n
d
=

(
1{t<Iin/n}

√
Iin
n
X0
Iin

(
t

Iin/n

)
+ 1{t≥Iin/n}

√
n− Iin
n

X1
n−Iin

(
t− Iin/n
1− Iin/n

)
+ τ in(t)

)
t∈[0,1]

with (X0
k)k≥0, (X1

k)k≥0, Iin independent and

τ in(t) =
n−mi(t)n+ 1{t<Iin/n}m0

(
t

Iin/n

)
Iin + 1{t≥Iin/n}m1

(
t−Iin/n
1−Iin/n

)
(n− Iin)

√
n

, t ∈ [0, 1].

Now assume that {‖X0
n‖∞ : n ∈ N} was tight. Then, for ε ∈ (0, 1/2) there exists a constant

K > 0 such that P(‖X0
n‖∞ > K) ≤ ε for all n ∈ N. The distributional recursion for X0

n yields

P(‖X0
n‖∞ > K)

= P

(
max
t∈[0,1]

∣∣∣∣∣1{t<I0n/n}
√
I0
n

n
X0
I0n

(
t

I0
n/n

)
+ 1{t≥I0n/n}

√
n− I0

n

n
X1
n−I0n

(
t− I0

n/n

1− I0
n/n

)
+ τ0

n(t)

∣∣∣∣∣ > K

)
≥ P

(
‖τ0
n1[0,I0n/n)‖∞ > 2K, ‖X0

I0n
‖∞ ≤ K

)
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where the last inequality is justified by a reduction of the maximum to the regime t ∈ [0, I0
n/n)

and by the triangle inequality. Moreover, the tightness assumption implies

P(‖X0
n‖∞ > K) ≥ P

(
‖τ0
n1[0,I0n/n)‖∞ > 2K, ‖X0

I0n
‖∞ ≤ K

)
≥ P

(
‖τ0
n1[0,I0n/n)‖∞ > 2K

)
− ε.

Thus, P
(
‖τ0
n1[0,I0n/n)‖∞ > 2K

)
has to be bounded by 2ε. However, the definition of τ0

n yields
on {t < I0

n/n} for t < p00:

τ0
n(t) =

n−m0(t)n+m0

(
t

I0n/n

)
I0
n

√
n

=
m0

(
t

I0n/n

)
I0
n − p00m0

(
t
p00

)
n

√
n

(lemma 5.2.10 (iv))

=
I0
n − np00√

n
m0

(
t

I0
n/n

)
+
√
np00

(
m0

(
t

I0
n/n

)
−m0

(
t

p00

))
.

Skorokhod’s representation theorem gives an embedding of (I0
n)n≥0 into a common probability

space such that

I0
n − np00√

n
−→ N

where N follows the normal distribution N (0, p00(1−p00)). Since m0 is bounded (lemma 5.2.10),
the first summand of τ0

n(t) is bounded. The almost sure convergence

m0

(
t

I0
n/n

)
= m0

(
t

p00 + (I0
n − np00)/n

)
−→ m0

(
t

p00
−
)
1{N>0} +m0

(
t

p00
+

)
1{N<0}

and the double jump of m0 at t ∈ D0
∞ (lemma 5.2.10 (ii)+(iii)) imply almost surely (within the

Skorokhod representation)

‖τ0
n1[0,I0n/n)‖∞ −→∞.

Hence, P(‖τ0
n1[0,I0n/n)‖∞ > 2K)→ 1 for any K > 0 contradicting

ε ≥ P(‖X0
n‖∞ > K) ≥ P

(
‖τ0
n1[0,I0n/n)‖∞ > 2K

)
− ε, n ∈ N,

for ε < 1/2. Therefore, (‖X0
n‖∞)n≥0 is not tight. Similar arguments reveal that (‖X1

n‖∞)n≥0 is
not tight either.

Remark 5.2.14. The proof of theorem 5.2.13 may be generalized to hold for any sequence

X̃i
n(t) :=

Y in(btnc+ 1)−mi(t)n

αn
, t ∈ [0, 1],

with αn = o(n).

5.3 Grand Averages

Recall that Y µn (`) denotes the number of Bucket Operations performed by Radix Select when
selecting the element of rank ` among n independent strings generated by a Markov Source with
initial distribution µ = µ0δ0 + µ1δ1 and transition matrix P = (pij)i,j∈Σ.
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The Grand Averages Model considers the sequence (Wµ
n )n≥0 given by Wµ

0 := 0 and

Wµ
n = Y µn (Un), n ≥ 1, (5.23)

with (Y µn (`))`∈{1,...,n} and Un independent, L(Un) = unif{1, . . . , n}.

As in the other section, the analysis is based on a system of distributional recursions. First of
all, note that the distributional recursion (5.2) implies

Wµ
n

d
= 1{Un≤Kµ

n}Y
0
Kµ
n

(Un) + 1{Un>Kµ
n}Y

1
n−Kµ

n
(Un −Kµ

n) + n

with Y 0
n , Y 1

n , Kµ
n and Un independent.

This distributional equation may be simplified since for any ` ∈ {1, . . . , n}

L(Un|Un ≤ `) = unif{1, . . . , `}

where L(Un|Un ≤ `) denotes the conditional distribution of Un on {Un ≤ `}.

Hence, conditioned on Kµ
n and Un ≤ Kµ

n , the distribution of Y 0
Kµ
n

(Un) equals the distribution of

W 0
Kµ
n

where (W 0
` )`∈{0,...,n} is independent of Kµ

n and L(W 0
` ) = L(W p00δ0+p01δ1

` ).

Similarly, conditioned on Kµ
n and Un > Kµ

n , the distribution of Y 1
n−Kµ

n
(Un − Kµ

n) equals the

distribution of W 1
n−Kµ

n
where (W 1

` )`≥0 is a sequence that is independent of Kµ
n and has the

distribution L(W 1
` ) = L(W p10δ0+p11δ1

` ).

Therefore, Wµ
n satisfies the following distributional recursion:

Wµ
n

d
= 1{Un≤Kµ

n}W
0
Kµ
n

+ 1{Un>Kµ
n}W

1
n−Kµ

n
+ n, n ≥ 2, (5.24)

with (W 0
` )`∈{0,...,n}, (W 1

` )`∈{0,...,n}, K
µ
n , Un independent and L(W i

` ) = L(W pi0δ0+pi1δ1
` ) for i ∈ Σ.

In particular, W 0
n and W 1

n satisfy for n ≥ 2

W 0
n
d
= 1{Un≤I0n}W

0
I0n

+ 1{Un>I0n}W
1
n−I0n + n,

W 1
n
d
= 1{Un≤I1n}W

0
I1n

+ 1{Un>I1n}W
1
n−I1n + n

(5.25)

with (W 0
` )`∈{0,...,n}, (W 1

` )`∈{0,...,n}, Un and (I0
n, I

1
n) independent and L(Iin) = B(n, pi0) for both

i ∈ Σ.

5.3.1 Transfers from the Quantile Model

The analysis of the Quantile Model immediately yields a weak convergence result for the Grand
Averages Model given by the next lemma:

Lemma 5.3.1. Let {(Zn(t))t∈[0,1] : n ≥ 1} be a family of real valued random processes and
(Z(t))t∈[0,1] be some limit process such that, as n→∞,

Zn(t)
P−→ Z(t), for all t ∈ [0, 1] \A

where A ⊂ [0, 1] is some set and
P−→ denotes convergence in probability. Moreover, let U be

uniformly distributed on [0, 1] and independent of {(Z(t))t∈[0,1], (Zn(t))t∈[0,1] : n ≥ 1}.
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Then, P(U ∈ A) = 0 implies, as n→∞,

Zn(U)
P−→ Z(U).

Proof. Let ε > 0 be an arbitrarily small constant. The independence between U and the processes
implies

P(|Zn(U)− Z(U)| > ε) = P(|Zn(U)− Z(U)| > ε,U /∈ A) =

∫
[0,1]\A

P(|Zn(t)− Z(t)| > ε)dt

Now, P(|Zn(t) − Z(t)| > ε) converges to 0 for all t ∈ [0, 1] \ A by assumption. Thus, by the
dominated convergence theorem,∫

[0,1]\A
P(|Zn(t)− Z(t)| > ε)dt −→ 0

which yields the assertion.

Corollary 5.3.2. The random variables (Wµ
n )n≥0 defined in (5.23) satisfy for µ = pi0δ0 +pi1δ1,

i ∈ Σ, as n→∞,

Wµ
n

n

d−→ mi(U)

where mi : [0, 1]→ R denotes the function given in theorem 5.2.8.

Proof. Recall that theorem 5.2.8 and remark 5.2.9 yield, as n→∞,

Y in(btnc+ 1)

n

P−→ mi(t), for all t ∈ [0, 1] \ Di∞.

Hence, lemma 5.3.1 yields the assertion since W pi0δ0+pi1δ1
n

d
= Y in(bUnc + 1) for a uniformly on

[0, 1] distributed U that is independent of (Y in)n≥1 and since Di∞ is countable which implies
P(U ∈ Di∞) = 0.

Although weak convergence in the Grand Averages Model is covered by the transfer with lemma
5.3.1, there are several reasons to still study Wµ

n by using the Contraction Method:

• The upcoming analysis implies that the convergence in corollary 5.3.2 also holds for all
moments.

• A characterization of the limit as a fixed point of some system of distributional equations
provides an easy way to derive the moments of the limits.

• Convergence in the Wasserstein metric may easily be transferred to arbitrary initial dis-
tributions.

However, note that the fixed point equation may also be deduced from the recursion on mi given
in lemma 5.2.10 (iv) and that the transfer of weak convergence (/convergence in probability)
towards arbitrary initial distributions may also be done directly. Finally, the convergence of the
moments may be done by generalizing the result in the Quantile Model into

Y in(btnc+ 1)

n

Lp−→ mi(t), for all t ∈ [0, 1] \ Di∞ and p > 0,
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where Lp denotes convergence in ‖ · ‖p. The proof of lemma 5.3.1 may be adapted to transfer Lp
convergence by adding the following uniform bound for the dominated convergence theorem∥∥∥∥Y in(btnc+ 1)

n
−mi(t)

∥∥∥∥
p

≤ 1

n

∥∥Y in(btnc+ 1)
∥∥
p

+ |mi(t)| ≤ C, t ∈ [0, 1] \ Di∞

where the last inequality holds for some constant C > 0 by the worst case analysis in theorem
5.2.3 and a bound on sup |mi(t)| given in lemma 5.2.10 (i).

5.3.2 Analysis with the Contraction Method

The main result in the Grand Averages Model for Markov Sources is a limit theorem for (Wµ
n /n)n≥0.

The system (5.25) and the strong law of large numbers suggest that the limits Z0, Z1 of W 0
n/n

and W 1
n/n should satisfy the limit system

Z0 d
= 1{U≤p00}p00Z

0 + 1{U>p00}p01Z
1 + 1,

Z1 d
= 1{U≤p10}p10Z

0 + 1{U>p10}p11Z
1 + 1,

(5.26)

where Z0, Z1 and U are independent and U has the uniform distribution on [0, 1].

The upcoming convergence result holds in the Wasserstein metric `p for any p ≥ 1. Recall that
the Wasserstein distance for X and Y with E[|X|p] <∞, E[|Y |p] <∞ is defined as

`p(X,Y ) := `p(L(X),L(Y )) = inf{‖W − Z‖p : L(W ) = L(X),L(Z) = L(Y )}

where the infimum is taken over all random vectors (W,Z) on a common probability space with
marginals L(W ) = L(X) and L(Z) = L(Y ). Here, ‖ · ‖p denotes the Lp norm which, for p ≥ 1,
is given by

‖W − Z‖p = E [|W − Z|p]1/p .

Theorem 5.3.3. Let W i
n, i ∈ Σ, denote the number of Bucket Operations of Radix Select

searching for an element of a uniformly distributed rank among n independent strings generated
by a Markov Source with initial distribution pi0δ0 +pi1δ1 and transition matrix (pkl)k,l∈{0,1} with
pkl < 1 for all k, l ∈ Σ.

Then, the following convergence holds in the `p-metric for any p ≥ 1, as n→∞:

`p

(
W i
n

n
,Zi
)
−→ 0, i ∈ Σ

where the distributions of Z0 and Z1 are the unique integrable solutions of the system (5.26).

In particular, the expectations κi := E[Zi], i ∈ Σ, are given by

κ0 =
1 + p2

01 − p2
11

2(p00 + p11)(1 + p00p11)− 2(p00 + p11)2
,

κ1 =
1 + p2

10 − p2
00

2(p00 + p11)(1 + p00p11)− 2(p00 + p11)2
.
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Remark 5.3.4. Convergence in `p implies weak convergence as well as the convergence of the
p-th moments. Hence, theorem 5.3.3 implies, as n→∞,

W i
n

n

d−→ Zi, E
[(

W i
n

n

)p]
−→ E[(Zi)p], i ∈ Σ.

Proof of theorem 5.3.3. Consider the rescaled random variables Zi0 := 0 and

Zin :=
W i
n

n
, n ≥ 1, i ∈ Σ.

The system (5.25) leads to a similar system for the rescaled random variables:

Z0
n
d
= 1{Un≤I0n}

I0
n

n
Z0
I0n

+ 1{Un>I0n}
n− I0

n

n
Z1
n−I0n + 1,

Z1
n
d
= 1{Un≤I1n}

I1
n

n
Z0
I1n

+ 1{Un>I1n}
n− I1

n

n
Z1
n−I1n + 1,

(5.27)

with (Z0
n)n≥0, (Z1

n)n≥0, (I0
n, I

1
n) and Un independent.

The strong law of large number yields for a proper realization of I0
n, I1

n and Un = dUne with
L(U) = unif(0, 1] that almost surely, as n→∞,(

1{Un≤I0n}
I0
n

n
, 1{Un>I0n}

n− I0
n

n

)
−→

(
p001{U≤p00} , p011{U>p00}

)
,(

1{Un≤I1n}
I1
n

n
, 1{Un>I1n}

n− I1
n

n

)
−→

(
p101{U≤p10} , p111{U>p10}

)
.

(5.28)

Moreover, the convergence in (5.28) also holds in Lp for any p ≥ 1 by the dominated convergence
theorem.

In the spirit of the Contraction Method, the asymptotic behavior of the coefficients suggests that
limits Z0 and Z1 of Z0

n and Z1
n should satisfy the system (5.26) which is given by

Z0 d
= 1{U≤p00}p00Z

0 + 1{U>p00}p01Z
1 + 1,

Z1 d
= 1{U≤p10}p10Z

0 + 1{U>p10}p11Z
1 + 1,

with Z0, Z1 and U independent.

However, working with the system (5.26) requires an argument for the existence of a pair
(L(Z0),L(Z1)) that solves (5.26). In this case, Banach’s fixed point theorem and the com-
pleteness of (Pp ×Pp, `

∨
p ) guarantees the existence of a solution to (5.26):

Consider the limit map

T : Pp ×Pp −→ Pp ×Pp,(
ρ1

ρ2

)
7→
(
L(1{U≤p00}p00W + 1{U>p00}p01Z + 1)
L(1{U≤p10}p10W + 1{U>p10}p11Z + 1)

)
with W,Z,U independent, L(W ) = ρ1, L(Z) = ρ2 and L(U) = unif [0, 1].

The map T is a contraction with respect to the metric `∨p . More precisely, let µ1, µ2, ρ1, ρ2 ∈ Pp

and consider (W1,W2), (Y1, Y2), U independent such that (W1,W2) is an optimal `p-coupling of
µ1, ρ1 and (Y1, Y2) is an optimal `p-coupling of µ2, ρ2.
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Then, 1{U≤pi0}pi0W1 +1{U>pi0}pi1Y1 +1 and 1{U≤pi0}pi0W2 +1{U>pi0}pi1Y2 +1 are realizations
of the i-th component of T (µ1, µ2) and T (ρ1, ρ2) for i ∈ Σ. Thus, the Wasserstein distance is
bounded by

`∨p (T (µ1, µ2), T (ρ1, ρ2)) ≤ max
{
‖1{U≤p00}p00(W1 −W2) + 1{U>p00}p01(Y1 − Y2)‖p,
‖1{U≤p10}p10(W1 −W2) + 1{U>p10}p11(Y1 − Y2)‖p

}
.

Moreover, the independence between U and (W1,W2, Y1, Y2) implies for both i ∈ Σ

‖1{U≤pi0}pi0(W1 −W2) + 1{U>pi0}pi1(Y1 − Y2)‖pp = pi0E [(pi0|W1 −W2|)p] + pi1E [(pi1|Y1 − Y2|p]

= pp+1
i0 (`p(µ1, ρ1))

p
+ pp+1

i1 (`p(µ2, ρ2))
p

≤
(
pp+1
i0 + pp+1

i1

) (
`∨p ((µ1, µ2), (ρ1, ρ2))

)p
.

This yields the upper bound

`∨p (T (µ1, µ2), T (ρ1, ρ2)) ≤
(

max{pp+1
i0 + pp+1

i1︸ ︷︷ ︸
<pi0+pi1=1

: i ∈ Σ}
)1/p

`∨p ((µ1, µ2), (ρ1, ρ2)).

Hence, T is a contraction with respect to `∨p and has a unique fixed point by Banach’s fixed point
theorem and corollary 5.1.3.

Let (L(Z0),L(Z1)) be the unique fixed point. Then, Z0 and Z1 satisfy the system (5.26) of
distributional equations.

Similar to the other proofs involving the Contraction Method, consider the accompanying se-
quences (Q0

n)n≥0 and (Q1
n)n≥0 defined as

Qin = 1{Un≤Iin}
Iin
n
Z0 + 1{Un>Iin}

n− Iin
n

Z1 + 1, i ∈ Σ, n ≥ 0,

with Z0, Z1, (I0
n, I

1
n) and Un being independent.

First of all, note that the asymptotic of the coefficients imply `p(Q
i
n, Z

i)→ 0 for both i ∈ Σ:

Consider the following coupling of L(Qin),L(Zi):

1{dUne≤Iin}
Iin
n
Z0 + 1{dUne>Iin}

n− Iin
n

Z1 + 1, 1{U≤pi0}pi0Z
0 + 1{U>pi0}pi1Z

1 + 1

with U,Z0, Z1, Iin being independent and distributed according to the definition of Qin and Zi.

Then, the Wasserstein distance is bounded by

`p(Q
i
n, Z

i) ≤
∥∥∥∥(1{dUne≤Iin}

Iin
n
− 1{U≤pi0}pi0)Z0 + (1{dUne>Iin}

n− Iin
n

− 1{U>pi0}pi1)Z1

∥∥∥∥
p

≤
∥∥∥∥1{dUne≤Iin} Iinn − 1{U≤pi0}pi0

∥∥∥∥
p

∥∥Z0
∥∥
p

+

∥∥∥∥1{dUne>Iin}n− Iinn
− 1{U>pi0}pi1

∥∥∥∥
p

∥∥Z1
∥∥
p

−→ 0,

where the convergence holds by (5.28).
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Hence, the triangle inequality yields

`p(Z
i
n, Z) ≤ `p(Zin, Qin) + o(1), i ∈ Σ. (5.29)

Now let (Z0
n)n≥0, (Z1

n)n≥0, Z0, Z1, (I0
n, I

1
n) and U be independent and (Zin)n≥0, Zi be an

optimal `p coupling of {L(Zin),L(Zi) : n ≥ 0}. Then, the definition of Qin and the distributional
recursion (5.27) yield for both i ∈ Σ

`p(Z
i
n, Q

i
n) ≤

∥∥∥∥1{Un≤Iin} Iinn (Z0
Iin
− Z0) + 1{Un>Iin}

n− Iin
n

(Z1
n−Iin

− Z1)

∥∥∥∥
p

.

Note that either 1{Un≤Iin} or 1{Un>Iin} equals zero and therefore,

E
[(

1{Un≤Iin}
Iin
n

(Z0
Iin
− Z0) + 1{Un>Iin}

n− Iin
n

(Z1
n−Iin

− Z1)

)p]
= E

[
1{Un≤Iin}

(
Iin
n

)p
(Z0

Iin
− Z0)p + 1{Un>Iin}

(
n− Iin
n

)p
(Z1

n−Iin
− Z1)p

]
.

Let ∆i(n) := `p(Z
i
n, Z

i) for n ≥ 0. Then, conditioning on Iin and Un and applying (5.29) yield

∆i(n) ≤ E
[
1{Un≤Iin}

(
Iin
n

)p (
∆0(Iin)

)p
+ 1{Un>Iin}

(
n− Iin
n

)p (
∆1(n− Iin)

)p]1/p

+ o(1).

(5.30)

The proof is finished by a couple of standard arguments to show that (5.30) implies for the
sequence (∆(n))n≥1 given by ∆(n) := max{∆0(n),∆1(n)} that ∆(n) converges to zero. The
assertion follows from the definition of ∆(n).

The convergence is shown in two steps:

(a) The bound (5.30) implies that (∆(n))n≥0 is a bounded sequence,

(b) The bounded sequence (∆(n))n≥0 converges to zero.

To this end, the upper bound (5.30) is split into the regimes {Iin = 0}, {Iin = n} and {1 ≤ Iin ≤ n− 1}:

∆i(n) ≤ (pni0 + pni1) ∆(n) + E
[
1{Un≤Iin}

(
Iin
n

)p
+ 1{Un>Iin}

(
n− Iin
n

)p]1/p

max
k≤n−1

∆(k) + o(1).

Maximizing over i ∈ Σ yields

∆(n) ≤ (1− 2pn∨)
−1
αn max

k≤n−1
∆(k) + o(1)

with αn = max
i∈Σ

{
E
[
1{Un≤Iin}

(
Iin
n

)p
+ 1{Un>Iin}

(
n−Iin
n

)p]1/p}
and p∨ = max

l,m∈Σ
plm.

Note that the convergence of the coefficients given in (5.28) implies that, as n→∞,

αn −→ max
i∈Σ

{(
pp+1
i0 + pp+1

i1

)1/p
}
< 1.
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Moreover, the assumption p∨ < 1 yields (1− 2pn∨)
−1 → 1. In particular, there exists an ε > 0

and n0 ∈ N such that (1− 2pn∨)
−1
αn ≤ 1− ε for n ≥ n0 and therefore,

∆(n) ≤ (1− ε) max
k≤n−1

∆(k) + o(1), n ≥ n0.

With M ≥ max
k≤n0−1

∆(k) (and a suitable increase of n0 such that the o(1) term is bounded by

εM) this yields

sup
n∈N

∆(n) ≤M <∞.

It remains to show the convergence stated in (b). To this end, let

β = lim sup
n→∞

∆(n).

For any δ > 0, there exists a constant n1 ∈ N such that ∆(n) ≤ β + δ for all n ≥ n1. Splitting
the upper bound (5.30) into the regimes {Iin < n1}, {Iin > n − n1} and {n1 ≤ Iin ≤ n − n1}
yields for any n ≥ n1 and i ∈ Σ

∆i(n) ≤ αn(β + δ) +M(P(Iin < n1) + P(Iin > n− n1)) + o(1)

with αn = max
i∈Σ

{
E
[
1{Un≤Iin}

(
Iin
n

)p
+ 1{Un>Iin}

(
n−Iin
n

)p]1/p}
.

Note that, as n → ∞, P(Iin < n1) + P(Iin > n − n1) = o(1) for fixed n1. Hence, by taking the
maximum over i ∈ Σ,

∆(n) ≤ αn(β + δ) + o(1).

Recall that αn → α < 1 and therefore, for suitable ñ1 ≥ n1 and all n ≥ ñ1,

∆(n) ≤ (α+ δ)(β + δ) + o(1).

This implies for β = lim sup
n→∞

∆(n) that

β ≤ (α+ δ)(β + δ).

Note that this holds for all δ > 0 and thus, letting δ ↓ 0,

β ≤ αβ

which implies β = 0 since α < 1.

Hence, as n→∞,

`p(Z
i
n, Z

i) = ∆i(n) ≤ ∆(n) −→ 0, i ∈ Σ,

which is the desired result.

It remains to compute E[Z0] and E[Z1]. One obtains by taking the expectation in (5.26) and by
plugging in the independence of the random variables that κi = E[Zi], i ∈ Σ, satisfy

κ0 = p2
00κ0 + p2

01κ1 + 1,

κ1 = p2
10κ0 + p2

11κ1 + 1.

This system of linear equations is easy to solve and leads to the results for κ0 and κ1 stated in
the theorem. Note that higher moments of Z0 and Z1 may also be calculated through the use
of similar arguments.
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Theorem 5.3.3 may be transfered to arbitrary initial distributions:

Theorem 5.3.5. Let Wµ
n denote the number of Bucket Operations of Radix Select searching for

an element of a uniformly distributed rank among n independent strings generated by a Markov
Source with initial distribution µ = µ0δ0 + µ1δ1, µ0 ∈ [0, 1], and transition matrix (pij)i,j∈{0,1}
with pij < 1 for all i, j = 0, 1. Then, as n→∞,

Wµ
n

n

d−→ Z,

where the convergence also holds for all moments. The distribution of Z is given by

Z
d
= Bµ0

µ0Z
0 + (1−Bµ0

)(1− µ0)Z1 + 1, (5.31)

where Bµ0 , Z
0, Z1 are independent, Bµ0 follows the Bernoulli distribution B(µ0) and Z0, Z1 are

the limits given in Theorem 5.3.3.

In particular, the expectation satisfies

E[Wµ
n ] = (µ2

0κ0 + µ2
1κ1 + 1)n+ o(n)

with κ0 and κ1 given in theorem 5.3.3.

Proof. By lemma 5.1.4 it is sufficient to show that for any p ≥ 1, as n→∞,

`p

(
Wµ
n

n
, Z

)
−→ 0 (5.32)

where `p denotes the Wasserstein metric.

Note that this implies in particular, as n→∞,

1

n
E[Wµ

n ] −→ E[Z] = E[Bµ0
µ0Z

0 + (1−Bµ0
)(1− µ0)Z1 + 1] = µ2

0κ0 + µ2
1κ1 + 1

where the second equality holds for κi = E[Zi], i ∈ Σ, due to the independence between Z0, Z1

and Bµ0
.

Hence, it only remains to show (5.32). To this end, let (Qµn)n≥0 be the accompanying sequence
defined as

Qµn = 1{Un≤Kµ
n}
Kµ
n

n
Z0 + 1{Un>Kµ

n}
n−Kµ

n

n
Z1 + 1

where Un, Kµ
n , Z0, Z1 are independent, Z0 and Z1 denote the limits given in theorem 5.3.3, Un

is uniformly distributed on {1, . . . , n} and Kµ
n follows the binomial distribution B(n, µ0).

The coupling Un = dUne and Bµ0
= 1{U≤µ0}, with U uniformly distributed on [0, 1] and inde-

pendent of Kµ
n , Z0, Z1, yields

`p(Q
µ
n, Z) ≤

∥∥∥∥1{dUne≤Kµ
n}
Kµ
n

n
− 1{U≤µ0}µ0

∥∥∥∥
p

∥∥Z0
∥∥
p

+

∥∥∥∥1{dUne>Kµ
n}
n−Kµ

n

n
− 1{U>µ0}µ1

∥∥∥∥
p

∥∥Z1
∥∥
p

with Z0, Z1, U and Kµ
n being independent and L(U) = unif(0, 1]. Therefore, the strong law of

large numbers and the dominated convergence theorem imply, as n→∞,

`p(Q
µ
n, Z) −→ 0.
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In accordance with the triangle inequality, it only remains to show, as n→∞,

`p

(
Wµ
n

n
, Qµn

)
−→ 0.

To this end, note that

`p

(
Wµ
n

n
, Qµn

)
≤
∥∥∥∥1{Un≤Kµ

n}
Kµ
n

n

(
Z0
Kµ
n
− Z0

)∥∥∥∥
p

+

∥∥∥∥1{Un>Kµ
n}
n−Kµ

n

n

(
Z1
n−Kµ

n
− Z1

)∥∥∥∥
p

≤
∥∥Z0

Kµ
n
− Z0

∥∥
p

+
∥∥Z1

n−Kµ
n
− Z1

∥∥
p
.

Theorem 5.3.3 yields that the distances ∆i(n) := `p(Z
i
n/n, Z

i), i ∈ Σ, converge to zero and
therefore, by conditioning on Kµ

n ,

∥∥Z0
Kµ
n
− Z0

∥∥
p

= E
[(
Z0
Kµ
n
− Z0

)p]1/p
= E [(∆0(Kµ

n))
p
]
1/p −→ 0

where the exchange of limit and expectation is justified by the dominated convergence theorem
(note that (∆0(n))n≥0 is bounded) and Kµ

n →∞ almost surely as n→∞.

Similar arguments reveal ∥∥Z1
n−Kµ

n
− Z1

∥∥
p
−→ 0 (n→∞)

and the assertion follows.

5.3.3 A Remark on the Concentration for Grand Averages

Note that for the special case pij = µi = 1
2 , i, j ∈ Σ, the Markov Source Model reduces to the

symmetric Bernoulli Source Model. In this case it was shown in [15] that the complexity Wn in
theorem 5.3.5 satisfies, as n→∞,

Wn − 2n√
2n

d−→ N (0, 1). (5.33)

Theorem 5.3.5 also applies to the symmetric Bernoulli Source Model: In this case, the system
(5.26) is solved by the deterministic limit Z0 = Z1 = 2. Hence, the result of theorem 5.3.5 yields
for a symmetric Bernoulli Source

Wn

n

d−→ 2.

However, for (p00, p01, p10, p11) 6= ( 1
2 ,

1
2 ,

1
2 ,

1
2 ) the system (5.26) has no deterministic solution and

theorem 5.3.5 yields

Wn

n

d−→ Z

for some limit Z with Var(Z) > 0. Hence, Wn is less concentrated for any Markov Source other
than the symmetric Bernoulli Source. The study of the Quantile Model provides an explanation
to this phenomena:
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Let Y µn (`) denote the number of Bucket Operations performed by Radix Select when searching
for an element of rank ` among n independent strings generated by a Markov Source with initial
distribution µ and transition matrix P . Recall that theorem 5.2.11 yields for almost all t ∈ [0, 1]

1

n
E[Y µn (btnc+ 1)] −→ mµ(t)

with mµ(t) given in theorem 5.2.11. Note that mµ(t) = 2 for all t ∈ [0, 1] if the source is a
symmetric Bernoulli Source (i.e. µ = 1

2δ0 + 1
2δ1 and pij = 1

2 for all i, j ∈ Σ). For any other
Markov Source, mµ is not constant. Thus, choosing t = U with a uniformly on [0, 1] distributed
U leads to a linear fluctuation of Y µn (bUnc + 1) which coincides with the fluctuation of Wn

because bUnc+ 1 is uniformly distributed on {1, . . . , n}.

This observation coincides with the representation of the limits given in corollary 5.3.2: For any
i ∈ Σ and initial distribution µ = pi0δ0 + pi1δ1,

Y in(bUnc+ 1)

n

d−→ mi(U)

with U uniformly distributed on [0, 1] and independent of (Y in(t))t∈[0,1],n∈N. Therefore, the weak
limits of W 0

n and W 1
n given in theorem 5.3.3 satisfy L(Zi) = L(mi(U)) which may also be

extended to hold for any initial distribution.



Chapter 6

Conclusions

Mainly two types of algorithms on words were discussed in this thesis: The sorting algorithm
Radix Sort, which is also connected to the path length in Digital Trees, and the selection algorithm
Radix Select. A study of these algorithms requires a suitable (stochastic) model for the input.
Most of the literature is focused on the analysis of the Bernoulli Source Model. This thesis is
focused on the analysis of the Markov Source Model, which unlike the Bernoulli Source Model
allows dependencies between two consecutive symbols in each string.

It turns out that most of the methods involved in the analysis of the Bernoulli Source Model may
be generalized to the analysis of Markov Sources. In particular, the asymptotic results derived
for Radix Sort on Markov Sources coincide with the results for the asymmetric Bernoulli Source
Model. One of the major difficulties in the analysis of Radix Sort is the derivation of a proper
asymptotic expansion of the mean, which is usually required up to the order of the standard
deviation in order to apply the Contraction Method. Since such an expansion seems far out of
reach with the current methods, a slightly different approach was developed within this thesis.

This approach is based on the fact that Lipschitz-continuity of the error term in the expansion
of the mean is easy to verify but still a sufficiently powerful tool in the analysis of the variance
and the application of the Contraction Method. In fact, this approach seems promising for other
recursive structures which have splitter (subproblem sizes) that are more concentrated than
the quantity itself (e.g. in Radix Sort, the subproblem size Kµ

n follow the binomial distribution
and thus Var(Kµ

n) = O(n) whereas the number Bµn of Bucket Operations satisfies Var(Bµn) =
Θ(n log n) for any Markov Source other than the symmetric Bernoulli Source). Moreover, Hölder-
continuity with some Hölder-exponent β < 1 of error terms might also be helpful for other
recursive structures Xn which have a splitter Kn with E[|Kn−E[Kn]|2β ] = o(Var(Xn)). However,
Lipschitz-continuity of functions on N0 is easier to verify due to the fact that this only requires
a bound on the increments.

Not all results known from the analysis of the Bernoulli Source Model also hold for Markov
Sources: The analysis of Radix Select on Markov Sources reveals some features which do not
appear in the analysis of Bernoulli Sources. In particular, the limiting behavior of the mean in
the Quantile Model leads to a discontinuous function for Markov Sources which becomes an affine
linear function when considering Bernoulli Sources. Moreover, there is no weak convergence of
the rescaled process, which is known to converge to a Gaussian limit for Bernoulli Sources.

109



110 CHAPTER 6. CONCLUSIONS

Although all results were only proven for the binary alphabet Σ = {0, 1}, a generalization to
larger alphabets seems to be straightforward, at least for most of the proofs. However, some
results rely on an explicit calculation involving the stationary distribution of the Markov chain
(e.g. the transfer lemmas 3.6 and 3.1.4 for the first order asymptotic of mean, variance and the
Lipschitz-continuity). Proving these results might become more challenging for larger alphabets
but they should be fairly easy to achieve with analytical methods.

6.1 Open Problems

Mainly three aspects of algorithms were discussed in this thesis: mean, variance and weak limits.
Other aspects, such as tail bounds on the performance of any of these algorithms, still need to
be discussed.

Moreover, there are several open questions about Radix Select:

• Is there convergence in distribution of the marginals Y µn (btnc+ 1)−mµ(t))/
√
n, t ∈ [0, 1]?

Does the limit depend on whether mµ is continuous in t or not? Is the limit Gaussian (as
it is in the Bernoulli Source Model) for some/all t?

• The analysis of Mµ
n = max`∈{1,...,n} Y

µ
n (`) only considered the moments of Mµ

n since the
expectation is relevant for the analysis of the quantile model. What is the asymptotic
behavior of Var(Mµ

n )? Is there a limit law for Mµ
n after rescaling?

• In the Grand Averages Model, a weak limit Zi of Y in(Un)/n was derived, where Un is
uniformly distributed on {1, . . . , n}. This limit was characterized by a fixed point equation
and by the representation L(Zi) = L(mi(U)), where mi(t) = lim→∞ E[Y in(btnc+1)]/n and
L(U) = unif [0, 1]. The fixed point equation gave some information about the moments of
Zi and some properties of mi may be transferred to Zi. However, there might be some
other interesting properties of Zi which are not known so far: Is there a density fi for the
distribution of Zi? Is this density fi a smooth function?

Moreover, there are a few gaps that need to be filled in order to transfer the result on Digital
Search Trees to the performance of the Lempel-Ziv’78 Parsing Scheme. This compression algo-
rithm fragments the message into blocks which is described in detail in [69]. The distribution of
the number of blocks starting with symbol zero becomes harder to handle for Markov Sources
(obviously, this quantity follows the binomial distribution for Bernoulli Sources) which makes a
transfer of the result on Digital Search Trees more complicated than for Bernoulli Sources.



Appendix

A.1 Tail Bounds for the Binomial Distribution

Most of the asymptotic results on mean and variance in this thesis rely on the concentration of
the binomial distribution. A useful tail bound in many applications was derived by Chernoff in
1952:

Theorem A.1.1 (Chernoff, 1952). Let X be a binomial B(n, p) distributed random variable for
p ∈ (0, 1) and n ∈ N. Then, for all ε > 0

P (X − np ≥ εn) ≤ exp
(
−2nε2

)
,

P (X − np ≤ −εn) ≤ exp
(
−2nε2

)
.

Note that this upper bound does not depend on p. This causes the upper bound to be very
rough for p that are close to 0 or 1. A tail bound that takes the effect of p into account is given
by Bernstein in 1924:

Theorem A.1.2 (Bernstein, 1924). Let X1, . . . , Xn be independent random variables that satisfy
E[Xi] = 0 and |Xi| ≤ c almost surely for some constant c > 0 and all i ∈ {1, . . . , n}. Moreover,
let σ2 = 1

n

∑n
i=1 Var(Xi). Then, for all ε > 0,

P

(
n∑
i=1

Xi ≥ εn

)
≤ exp

(
− nε2

2σ2 + 2cε/3

)
.

Bernstein’s inequality implies the following tail bounds for the binomial distribution:

Corollary A.1.3. Let X be a binomial B(n, p) distributed random variable for p ∈ (0, 1) and
n ∈ N. Then, for all ε > 0

P(X ≥ (1 + ε)E[X]) ≤ exp

(
− nε2p

2(1− p) + 2ε/3

)
,

P(X ≤ (1− ε)E[X]) ≤ exp

(
− nε2p

2(1− p) + 2ε/3

)
.

Proof. Let B1, . . . , Bn be independent Bernoulli B(p) distributed random variables and consider
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the centered random variables Xi := Bi− p for i = 1, . . . , n. Theorem A.1.2 implies (with c = 1)

P(X ≥ (1 + ε)E[X]) = P

(
n∑
i=1

Xi ≥ εpn

)

≤ exp

(
− nε2p2

2p(1− p) + 2εp/3

)
= exp

(
− nε2p

2(1− p) + 2ε/3

)
.

For the second bound note that

P(X ≤ (1− ε)E[X]) = P
(
n−X ≥

(
1 +

εp

1− p

)
E[n−X]

)
which yields the assertion by the first bound and the fact that n − X follows the binomial
distribution B(n, 1− p).

A.2 Moment Bounds

The concentration of the binomial distribution causes several moments in the calculation of mean
and variance to be asymptotically negligible. For the sake of completeness, there are full proofs
for all upper bound given in this section. Recall that x log x := 0 for x = 0.

Lemma A.2.1. Let p ∈ (0, 1) be some constant and Bn,p be binomial B(n, p) distributed for
n ∈ N. Then, as n→∞,

Var (Bn,p(log(Bn,p/n)− log p) + (n−Bn,p)(log(1−Bn,p/n)− log(1− p))) = O(log n).

Proof. Consider the function φp : [0, 1]→ R defined as

φp(x) = x(log x− log p) + (1− x)(log(1− x)− log(1− p)).

Note that φp is bounded by 2p/e and that the derivative of φp is given by

φ′p(x) = log x− log p− log(1− x) + log(1− p) = log

(
1 +

x− p
p

)
− log

(
1− x− p

1− p

)
.

Recall that log(1 + x) ∼ x as x→ 0 and therefore, there exists a constant C > 0 and an integer
n0 ∈ N such that

|φ′p(x)| ≤ C
√

log n

n
, x ∈ [p−

√
log n/n, p+

√
log n/n], n ≥ n0. (A.1)

Finally, note that, for any random variable X with E[X2] <∞ and an independent copy X̃,

E[(X − X̃)2] = E[(X − E[X]− (X̃ − E[X̃]))2]

= 2Var(X)− 2E[(X − E[X])(X̃ − E[X̃])]

= 2Var(X).
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Now let B̃n,p be an independent copy ofBn,p. Then, in accordance with the previous observations,

Var(φp(Bn,p)) =
1

2
E[(φp(Bn,p/n)− φp(B̃n,p))2]

≤ 1

2
E[(φp(Bn,p/n)− φp(B̃n,p))21{|Bn,p−np|≤

√
n logn}∩{|B̃n,p−np|≤

√
n logn}]

+ (2p/e)2P(|Bn,p − np| >
√
n log n)

≤ C2 log n

2n
E[(Bn,p/n− B̃n,p)2] + (2p/e)2P(|Bn,p − np| >

√
n log n)

where the last bound holds by (A.1) and the mean value theorem.

Hence, E[(Bn,p/n− B̃n,p)2] = 2Var(Bn,p/n) = 2p(1− p)/n and a standard Chernoff bound given
in theorem A.1.1 yield

Var(φp(Bn,p)) ≤
C2p(1− p) log n

n2
+ 2(2p/e)2 exp

(
−2(log n)2

)
= O

(
log n

n2

)
.

This yields

Var (Bn,p(log(Bn,p/n)− log p) + (n−Bn,p)(log(1−Bn,p/n)− log(1− p))) = Var(nφp(Bn,p/n))

= O(log n)

which is the assertion.

Lemma A.2.2. Let p ∈ (0, 1) be some constant and Bn,p be binomial B(n, p) distributed for
n ∈ N. Moreover, let s ≥ 1 and h : [0, 1] → R be defined as h(x) := x log x with the convention
x log x := 0 for x = 0. Then, the following bounds hold as n→∞:

E
[
log

(
Bn,p + 1

n+ 1

)
− log p

]
= O

(
n−

1/2
)
, (A.2)

E
[
Bn,p(log(Bn,p + 1)− log(Bn,p))1{Bn,p≥1}

]
= 1 + O

(
n−1

)
, (A.3)

‖h(Bn,p/n)− E [h(Bn,p/n)]‖s = O
(
n
−1/2
)
, (A.4)

E[h(Bn,p/n)− h(p)] = O(n−2/3). (A.5)

Proof. Proof of (A.2): The mean value theorem yields for all ε ∈ (0, 1)

| log(x)− log(y)| ≤ ε−1|x− y|, x, y ∈ [ε, 1].

Hence, ∣∣∣∣E [log

(
Bn,p + 1

n+ 1

)
− log p

]∣∣∣∣
≤ E

[∣∣∣∣log

(
Bn,p + 1

n+ 1

)
− log p

∣∣∣∣1{Bn,p≥np/2}]+ O (log nP(Bn,p < np/2))

≤ 2

p
E
[∣∣∣∣Bn,p + 1− np− p

n+ 1

∣∣∣∣]+ O (log nP(Bn,p < np/2)) .

The assertion follows because E[|(Bn,p−np)/
√
np(1− p)|] converges to the first absolute moment

of the standard normal distribution (see [23, Theorem 4.2]) and a standard Chernoff bound given
in theorem A.1.1 implies log nP(Bn,p < np/2) = o(n−1/2).
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Proof of (A.3): Note that x 7→ x(log(x+ 1)− log x) is bounded on (0,∞) and therefore,

E [Bn,p(log(Bn,p + 1)− log(Bn,p))]

= E
[
Bn,p(log(Bn,p + 1)− log(Bn,p)1{Bn,p≥np/2})

]
+ O (nP(Bn,p < np/2))

= 1 + E
[
Bn,p(log(1 + 1/Bn,p)− 1/Bn,p)1{Bn,p≥np/2})

]
+ O (nP(Bn,p < np/2))

which implies the assertion since log(1+x)−x = O(x2) as x→ 0 and the bound given in theorem
A.1.1 yields nP(Xn,p < np/2) = o(n−1).

Proof of (A.4): First note that h is bounded on [0, 1] and that the derivative satisfies for all ε > 0

|h′(x)| ≤ log(1/ε) + 1, x ∈ [ε, 1].

In particular, the mean value theorem implies

|h(x)− h(y)| ≤ (log(1/ε) + 1)|x− y|, x, y ∈ [ε, 1]. (A.6)

Let B̃n,p be an independent copy of Bn,p. Then, Jensen’s inequality and (A.6) yield

‖h(Bn,p/n)− E [h(Bn,p/n)]‖ss
= E[(E[h(Bn,p/n)− h(B̃n,p/n)|Bn,p])s]

≤ E[(h(Bn,p/n)− h(B̃n,p/n))s]

= E[(h(Bn,p/n)− h(B̃n,p/n))s1{Bn,p,B̃n,p∈[np/2,n]}] + O(P(Bn,p ≤ np/2))

≤ (log(2/p) + 1)sE[(Bn,p/n− B̃n,p/n)s] + O(P(Bn,p ≤ np/2))

≤
(

log(2/p) + 1√
n

)s
(2‖(Bn,p − E[Bn,p])/

√
n‖s)s + O(P(Bn,p ≤ np/2)).

The assertion is derived from a standard Chernoff bound on P(Xn,p ≤ np/2) that is given in
theorem A.1.1 and ‖(Bn,p−E[Bn,p])/

√
n‖s → ‖Z‖s where Z is N (0, p(1−p)) distributed (cf. [23,

Theorem 4.2] for details).

Proof of (A.5): It is sufficient to show that

(a) h(p)− pE[log(Bn,p/n)1{Bn,p≥1}] = O(n−2/3),

(b) E[h(Bn,p/n)− p log(Bn,p/n)1{Bn,p≥1}] = O(n−2/3).

For the first part note that∣∣h(p)− pE[log(Bn,p/n)1{Bn,p≥1}]
∣∣

= p

∣∣∣∣E [log

(
Bn,p
np

)
1{Bn,p≥1}

]∣∣∣∣+ O ((1− p)n)

= p

∣∣∣∣E [(log

(
1 +

Bn,p − np
np

)
− Bn,p − np

np

)
1{Bn,p≥1}

]∣∣∣∣+ O ((1− p)n)

≤ p
∣∣∣∣E [(log

(
1 +

Bn,p − np
np

)
− Bn,p − np

np

)
1{|Bn,p−np|≤n2/3}

]∣∣∣∣
+ (log(np) + 1/p)P(|Bn,p − np| > n2/3) + O ((1− p)n) .

The upper bounds log(1 + x) − x = O(x2) for x → 0 and P(|Xn,p − np| > n2/3) = o(n−1) by
theorem A.1.1 imply

h(p)− pE[log(Bn,p/n)1{Bn,p≥1}] = O(n−2/3).
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In order to obtain bound (b), note that

E[h(Bn,p/n)− p log(Bn,p/n)1{Bn,p≥1}]

= E
[
(h(Bn,p/n)− p log(Bn,p/n))1{Bn,p≥1}

]
+ O ((1− p)n)

=
1√
n
E
[
Bn,p − np√

n
log

(
Bn,p
n

)
1{Bn,p≥1}

]
+ O ((1− p)n)

=
1√
n
E
[
Bn,p − np√

n
log

(
Bn,p
n

)
1{|Bn,p−np|≤n2/3}

]
+ o

(
n−2/3

)
=

1√
n
E
[
Bn,p − np√

n
log(p)1{|Bn,p−np|≤n2/3}

]
+

1√
n
E
[
Bn,p − np√

n
log

(
1 +

Bn,p − np
np

)
1{|Bn,p−np|≤n2/3}

]
+ o

(
n−2/3

)
.

Since log(1+x) = O(x) as x→ 0 and E[|(Xn,p−np)/
√
n|] converges to the first absolute moment

of the N (0, p(1− p)) distribution, the second summand is bounded by

1√
n
E
[
Bn,p − np√

n
log

(
1 +

Bn,p − np
np

)
1{|Bn,p−np|≤n2/3}

]
= O(n−5/6).

For the first summand note that E[(Bn,p − np)/
√
n] = 0 which implies

1√
n
E
[
Bn,p − np√

n
log(p)1{|Bn,p−np|≤n2/3}

]
= − 1√

n
E
[
Bn,p − np√

n
log(p)1{|Bn,p−np|>n2/3}

]
= O(P(|Bn,p − np| > n2/3))

= o(n−2/3).

This yields the upper bound E[g(Xn,p/n)−p log(Xn,p/n)1{Xn,p≥1}] = O(n−2/3) which combined
with the first result implies the assertion.

The next lemma provides asymptotic results for the Poisson distribution that are needed for
Poissonization in the analysis of the variance:

Lemma A.2.3. For λ > 0 let Nλ follow the Poisson distribution Π(λ). Then, the following
bounds hold for all α, β > 0 as λ→∞:

E[Nα
λ ] = O(λα),

E
[
Nα
λ (logNλ)β

]
= O

(
λα(log λ)β

)
.

Proof. The upper bound on E[Nα
λ ] is derived in three steps:

(1) For α ∈ N the assertion is shown by an induction on α and the fact that, for every n ∈ N0,

E

[
n∏
i=0

(Nλ − i)

]
=

∞∑
k=n+1

e−λ
λk

k!

n∏
i=0

(k − i)

= λn+1
∞∑

k=n+1

e−λ
λk−(n+1)

(k − (n+ 1))!

= λn+1.
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The induction relies on the identity

E[Nα
λ ] +

α−1∑
k=0

(
α

k

)
E[Nk

λ ](−α)α−k = E[(Nλ − α)α] ≤ E

[
α−1∏
i=0

(Nλ − i)

]
= λα.

(2) For α ∈ (0, 1) note that x 7→ xα is concave on [0,∞) and therefore, by Jensen’s inequality

E[Nα
λ ] ≤ (E[Nλ])

α
= λα.

(3) For α ∈ (1,∞) ∩ Nc note that x 7→ xα/dαe is concave on [0,∞) which yields

E[Nα
λ ] ≤ (E[N

dαe
λ ])α/dαe

and the assertion follows from part (1).

The upper bound for E
[
Nα
λ (logNλ)β

]
is derived from the following decomposition:

E
[
Nα
λ (logNλ)β

]
= E

[
Nα
λ (logNλ)β1{Nλ≤λα+1}

]
+ E

[
Nα
λ (logNλ)β1{Nλ>λα+1}

]
≤ (α+ 1)β(log λ)βE[Nα

λ ] + E
[
Nα
λ (logNλ)β1{Nλ>λα+1}

]
= O(λα(log λ)β) + E

[
Nα
λ (logNλ)β1{Nλ>λα+1}

]
,

where the last step holds since E[Nα
λ ] = O(λα). Hence, it is sufficient to show that

E
[
Nα
λ (logNλ)β1{Nλ>λα+1}

]
= O(λα).

The upper bound nα(log n)β ≤ Cαβn
3α/2 for a sufficiently large constant Cαβ and all n ∈ N0

yields

E
[
Nα
λ (logNλ)β1{Nλ>λα+1}

]
≤ CαβE

[
N

3α/2
λ 1{Nλ>λα+1}

]
≤ Cαβ

√
E[N3α

λ ]P(Nλ > λα+1)

where the last inequality holds by the Cauchy-Schwarz inequality. Together with the previous
result E[N3α

λ ] = O(λ3α) and Markov’s inequality one obtains

E
[
Nα
λ (logNλ)β1{Nλ>λα+1}

]
= O(λα)

and the assertion follows.
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Zusammenfassung

Diese Arbeit handelt von der Analyse von Algorithmen und Datenstrukturen unter Annahme
einer Markovschen Quelle zum Generieren einer zufälligen Eingabe. Hierbei wird angenom-
men, dass der Algorithmus n unabhängige, identisch verteilte Datenfolgen (Strings) übergeben
bekommt, die gemäß einer Markovkette auf einem Alphabet/Zustandsraum Σ verteilt sind. Die
betrachteten Algorithmen sind der Sortieralgorithmus Radix Sort, die damit verwandten Daten-
strukturen Trie, PATRICIA Trie und Digitaler Suchbaum, sowie der Selektieralgorithmus Radix
Select. Zur besseren Übersicht wird ausschließlich der binäre Fall Σ = {0, 1} betrachtet.

Als typische Fragestellung beschäftigt man sich mit dem asymptotischen Aufwand der Algorith-
men bei wachsender Eingabelänge (n→∞), wobei der Aufwand der Algorithmen in sogenannten
Bucket-Operationen gemessen wird. Eine Bucket-Operation beinhaltet das Lesen eines Zeichens
und das Platzieren eines Strings in einer Teilliste. Für die baumartigen Datenstrukturen Trie,
PATRICIA Trie und Digitaler Suchbaum wird stattdessen die (externe) Pfadlänge betrachtet, ein
Parameter, der die Kosten zum Erstellen der jeweiligen Datenstruktur repräsentiert und zudem
eng verwandt mit den benötigten Bucket-Operationen von Radix Sort ist.

Hauptsächlich werden in dieser Arbeit asymptotische Aussagen zu Erwartungswerten, Varianzen
und Konvergenzen in Verteilung gemacht. Als Ausgangspunkt der Analyse verwendet man
Verteilungsrekursionen der Parameter, die sich aus der rekursiven Struktur der jeweiligen Algo-
rithmen ergeben. Bezeichnet Xµ

n einen der Parameter (Bucket Operationen von Radix Sort oder
Pfadlänge eines Tries/PATRICIA Tries/Digitalen Suchbaum) bei einer Eingabe von n Strings,
die von einer Markovquelle mit fixierter Übergangsmatrix P = (pij)i,j∈Σ und Startverteilung
µ = µ0δ0 + µ1δ1 erzeugt wurden, so erhält man eine Rekursion der Form

Xµ
n+d

d
= X0

Kµ
n

+X1
n−Kµ

n
+ ηµn, n ∈ N, (A.7)

wobei d ∈ N0 eine Konstante ist, (X0
k)k≥0, (X1

k)k≥0 und Kµ
n unabhängig sind, ηµn = gµn(Kµ

n) für
eine Funktion gµn : {0, . . . , n} → R, Kµ

n binomial B(n, µ0) verteilt ist und

L
(
Xi
k

)
= L

(
Xpi0δ0+pi1δ1
k

)
, k ≥ 0, i ∈ Σ.

Für den Selektieralgorithmus tritt ein etwas anderer Typ einer Rekursion auf. Bezeichnet Y µn (`)
die Anzahl der Bucket-Operationen bei Selektion des `. kleinsten Elementes in einer Liste von
n Strings, die von einer Markovquelle mit fixierter Übergangsmatrix P und Startverteilung µ =
µ0δ0 + µ1δ1 erzeugt wurden, so gilt für alle n ≥ 2

(Y µn (`))`∈{1,...,n}
d
=
(
1{`≤Kµ

n}Y
0
Kµ
n

(`) + 1{`>Kµ
n}Y

1
n−Kµ

n
(`−Kµ

n) + n
)
`∈{1,...,n} , (A.8)

wobei (Y 0
k )k≥0, (Y 1

k )k≥0 und Kµ
n unabhängig sind, Kµ

n binomial B(n, µ0) verteilt ist und

L
(
(Y ik (`))`∈{1,...,k}

)
= L

(
(Y pi0δ0+pi1δ1
k (`))`∈{1,...,k}

)
, k ≥ 0, i ∈ Σ.

Die Gleichungen (A.7) und (A.8) bieten die Grundlage zur Analyse der Momente und schwacher
Konvergenz. Auf Grund der Änderung der Startverteilung bei den Rekursionen bietet es sich
an, zunächst die Startverteilungen µ = pi0δ0 + pi1δ1, i ∈ Σ, zu studieren. Gleichung (A.7) liefert
dann die Rekursionen

X0
n+d

d
= X0

I0n
+X1

n−I0n + η0
n,

X1
n+d

d
= X0

I1n
+X1

n−I1n + η1
n,

(A.9)



ZUSAMMENFASSUNG 123

wobei (X0
k)k≥0, (X1

k)k≥0 und (I0
n, I

1
n) unabhängig sind mit einem binomial B(n, pi0) verteilten

Iin, i ∈ Σ. Wieder ist ηin = gin(Iin) für eine Funktion gin : {0, . . . , n} → R. Ist nun νi(n) := E[Xi
n],

so liefern die Rekursionen (A.9) unmittelbar das Gleichungssystem

ν0(n+ d) = E[ν0(I0
n)] + E[ν1(n− I0

n)] + E[η0
n],

ν0(n+ d) = E[ν0(I1
n)] + E[ν1(n− I1

n)] + E[η1
n].

(A.10)

In der Anwendung lassen sich E[η0
n] und E[η1

n] oft leicht bestimmen. Für die Pfadlänge in Tries,
PATRICIA Tries und Digitalen Suchbäumen sowie die Anzahl an Bucket Operationen von Radix
Sort sieht man leicht, dass E[ηin] = n + o(n−1) gilt (abgesehen von PATRICIA Tries gilt sogar
ηin = n).

Ein zentrales Thema in der Analyse der Momente sind daher Transfer-Resultate, die asympto-
tische Aussagen über E[ηin] mittels (A.10) auf νi(n) übertragen. Die Transfer-Resultate in dieser
Arbeit werden elementar hergeleitet und basieren auf der Konzentration der Binomialverteilung.
Insbesondere erhält man für die Erwartungswerte

νi(n) =
1

H
n log n+ O(n), i ∈ Σ,

wobei die Konstante H die Entropie der Markovquelle ist und sich aus der Übergangsmatrix P
berechnet. Für die Analyse von Varianz und schwacher Konvergenz ist es wichtig, den Fehlerterm
fi(n) := νi(n) − n log n/H genauer zu analysieren. Betrachtet man die Inkremente ∆fi(n) :=
fi(n+1)−fi(n), so lässt sich anhand eines weiteren Transfer-Resultates feststellen, dass die Folge
(∆fi(n))n≥0 beschränkt ist. Diese Lipschitz-Stetigkeit in dem Fehlerterm ermöglicht es Resultate
über schwache Konvergenz mittels der Kontraktionsmethode zu erzielen, die typischerweise das
Bestimmen aller Terme in νi(n) bis zu einer Ordnung o(

√
n log n) erfordern.

Die Analyse der Varianzen von Xi
n erfolgt recht ähnlich, allerdings treten hier zusätzliche Schwie-

rigkeiten auf, die durch eine geschickte Zerlegung von Xi
n = Y in+Zin sowie einer als Poissonisieren

bekannten Technik gelöst werden, bei der der deterministische Index n durch eine Poisson Π(λ)
verteilte Zufallsvariable Nλ ersetzt wird. Anschließend werden asymptotische Aussagen über
die Varianz von Xi

Nλ
getroffen. Diese Größe ist typischerweise leichter zu behandeln, da die

Größen der beiden Teilprobleme (vorher Iin und n − Iin) nach dem Poissonisieren unabhängig
von einander sind. In einem letzten Schritt werden die Ergebnisse über die Varianz von Xi

Nλ

auf die ursprüngliche Größe Xi
n übertragen. Es ergibt sich für Markovsche Quellen, bei denen

die Übergangsmatrix nur positive Einträge hat und bei denen pkl 6= 1/2 für mindestens ein
(k, l) ∈ Σ2, dass

Var(Xi
n) ∼ σ2n log n, i ∈ Σ,

wobei σ2 > 0 eine von P abhängige Konstante ist. Der symmetrische Fall pkl = 1/2 für
alle k, l ∈ Σ wird in dieser Arbeit nicht behandelt, ist aber durch diverse Arbeiten über das
symmetrische Bernoulli Modell abgedeckt: Asymptotiken zu den Erwartungswerten finden sich
z.B. in [17], Varianzen werden in [41] besprochen und Grenzwertsätze werden in [54] über die
Kontraktionsmethode hergeleitet (welche mit anderen Methoden bereits früher bekannt waren).

Als letzten Teil in der Analyse von Xi
n wird ein Grenzwertsatz hergeleitet:

Xi
n − E[Xi

n]√
Var(Xi

n)

d−→ N (0, 1).
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Der Beweis dieser Konvergenz basiert auf Ideen, die als Kontraktionmethode bekannt wurden.
Ursprünglich in [59] von Uwe Rösler zur Laufzeitanalyse des Quicksort Algorithmus entwickelt,
wurde diese Methodik in den letzten 20 Jahren erfolgreich verallgemeinert und auf viele Probleme
angewandt. Typische Anwendungen der Kontraktionmethode beziehen sich allerdings auf eine
einzige Rekursion in Verteilung anstelle eines Systems, wie es in (A.9) auftritt. Da diese Gleichung
aber nicht auf reellwertige Zufallsvariablen beschränkt ist (siehe z.B. [54] für einen Ansatz, in
dem auch d-dimensionale Vektoren zulässig sind), lassen sich klassische Ansätze auch auf Xn :=
(X0

n, X
1
n) übertragen.

Es stellt sich jedoch heraus, dass ein solcher multivariater Ansatz zusätzliche Restriktionen an P
erfordert. Um solche Restriktionen zu vermeiden, wird in dieser Arbeit ein etwas anderer Ansatz
gewählt, der mit Metriken auf P×P arbeitet, wobei P der Raum aller Wahrscheinlichkeitsmaße
auf R ist. Ein solcher Ansatz wurde zeitgleich für die Analyse von Markovquellen in diesem
Kontext und für die Analyse von Pólya-Urnen in [44] entwickelt. Die Beweisstrategie lässt sich
wie folgt skizzieren:

1. Reskalierung: Bevor sich schwache Konvergenz beobachten lässt, muss Xi
n passend skaliert

werden. Anders als bei manch anderen Anwendungen der Kontraktionsmethode ist hier eine
exakte Standardisierung der Zufallsvariable nötig um im späteren Verlauf mit der Zolotarev
Metrik (mit Parameter s ∈ (2, 3]) weiterarbeiten zu können. Deshalb betrachtet man im weiteren
Verlauf die Zufallsvariablen

Zin :=


Xin−E[Xin]√

Var(Xin)
, falls Var(Xi

n) > 0,

0, sonst.

Das System (A.9) impliziert nun recht ähnliche Rekursionen für Z0
n und Z1

n:

Z0
n+d

d
= A0

n,1Z
0
I0n

+A0
n,2Z

1
n−I0n + b0n,

Z1
n+d

d
= A1

n,1Z
0
I1n

+A1
n,2Z

1
n−I1n + b1n,

(A.11)

wobei (Y 0
n )n≥0, (Y 1

n )n≥0 und (Iin, A
i
n,1, A

i
n,2, b

i
n) unabhängig sind und sich die Koeffizienten un-

mittelbar aus der Skalierung ergeben.

2. Asymptotik der Koeffizienten: Der zweite Schritt erfordert eine hinreichend detaillierte
Kenntnis über Erwartungswert und Varianz um das asymptotische Verhalten der Koeffizien-
ten Ain,1, A

i
n,2, b

i
n zu bestimmen. Man beachte, dass an dieser Stelle die Lipschitz-Stetigkeit

des Fehlerterms in der asymptotischen Entwicklung des Erwartungswertes einfließt, da man an-

sonsten wegen der Reskalierung um den Faktor
√

Var(Xi
n+d) ∼ σ

√
n log n eine Entwicklung

des Erwartungswertes bis zu einer Ordnung o(
√
n log n) benötigt, die mit den bisher bekannten

Methoden kaum möglich scheint.

Mit den Asymptotiken zu Erwartungswert und Varianz lässt sich zeigen, dass für n→∞

(Ain,1, A
i
n,2, b

i
n)

L3−→ (
√
pi0,
√
pi1, 0), i ∈ Σ,

wobei
L3→ die Konvergenz in der ‖ · ‖3-Norm bezeichnet.

3. Die Limes-Gleichungen: Die Asymptotik der Koeffiziente legt nahe, dass die potentiellen
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Limiten Zi von (Zin)n≥0 folgende Gleichungen erfüllen:

Z0 d
=
√
p00Z

0 +
√
p01Z

1,

Z1 d
=
√
p10Z

0 +
√
p01Z

1,

wobei Z0 und Z1 unabhängig sind. Die Verteilung der potentiellen Limiten lässt sich demnach
als Fixpunkt einer Abbildung T charakterisieren, die gegeben ist durch

T : P×P −→ P×P,(
ρ1

ρ2

)
7→
(
L(
√
p00Z1 +

√
p01Z2)

L(
√
p10Z1 +

√
p11Z2)

)
,

wobei Z1, Z2 unabhängig sind mit Verteilungen L(Z1) = ρ1, L(Z2) = ρ2.

4. Wahl einer passenden Metrik: Die Limes-Gleichungen legen einen normalverteilten Grenz-
wert nahe, da die Faltungseigenschaft der Normalverteilung garantiert, dass (N (0, σ2),N (0, σ2))
für jedes σ2 > 0 ein Fixpunkt von T ist. Im Kontext von normalverteilten Grenzwerten hat sich
die Zolotarev-Metrik in früheren Arbeiten zur Kontraktionsmethode als sehr nützlich erwiesen.
Für einen Parameter s ∈ (2, 3] bezeichne dazu Ps(0, 1) den Raum aller Wahrscheinlichkeitsmaße
auf R, die Erwartungswert 0, Varianz 1 und ein endliches s-tes Moment besitzen. Dann ist mit

ζs(L(W ),L(Z)) := sup
f∈Fs

|E[f(W )]− E[f(Z)]| , L(W ),L(Z) ∈ Ps(0, 1)

eine (s,+)-ideale Metrik auf Ps(0, 1) gegeben, wobei die Testklasse Fs für s = 2 + α, α ∈ (0, 1],
definiert ist als

Fs := {f ∈ C2(R,R) : |f (2)(x)− f (2)(y)| ≤ |x− y|α}.

Um diese Metrik auch für die Abbildung T verwenden zu können, nutzt man folgende kanonische
Verallgemeinerung auf Ps(0, 1) × Ps(0, 1): Für beliebige ρ1, ρ2, µ1, µ2 ∈ Ps(0, 1) ist der ζ∨s
Abstand von (ρ1, ρ2) und (µ1, µ2) definiert als

ζ∨s

((
ρ1

ρ2

)
,

(
µ1

µ2

))
:= max

{
ζs(ρ1, µ1), ζs(ρ2, µ2)

}
.

5. Grenzwertsätze und Kontraktion: Über elementare Eigenschaften von ζs lässt sich zeigen,
dass die Abbildung T auf Ps(0, 1) × Ps(0, 1) eine Kontraktion bezüglich ζ∨s ist. Insbesondere
hat T auf Ps(0, 1)×Ps(0, 1) einen eindeutigen Fixpunkt, welcher (N (0, 1),N (0, 1)) ist.

Da T für große n eine Approximation der Rekursionen (A.11) darstellt, lässt sich diese Kontrak-
tionseigenschaft nutzen um Konvergenz von (L(Z0

n),L(Z1
n)) gegen den Fixpunkt in ζ∨s nachzuweisen.

Es folgt schwache Konvergenz, da diese durch Konvergenz in ζs impliziert wird.

Nachdem man die Momente und Konvergenz von X0
n und X1

n analysiert hat, lässt sich dies recht
elementar über die Rekursion (A.7) auf beliebige Startverteilungen µ übertragen.

Der zweite Teil der Arbeit beschäftigt sich mit der Analyse von (Y µn (`))`∈{1,...,n}, welche bei
Radix Select unter Markovquellen auftreten. Einige Größen wie Mµ

n := max`∈{1,...,n} Y
µ
n (`)

(worst case Analyse) und Wµ
n := Y µn (Un), Un unabhängig von (Yn(`))`∈{1,...,n} und uniform auf

{1, . . . , n}, lassen sich recht simpel mit Hilfe der Kontraktionsmethode analysieren. Für das
worst case Verhalten erhält man beispielsweise ein Gesetz großer Zahlen, also

Mµ
n

n

P−→ mµ,
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wobei mµ > 0 eine von µ und P abhängige Konstante ist. Ebenso lässt sich mit der Kontrak-
tionsmethode zeigen, dass

Wµ
n

n

d−→Wµ,

wobei sich der Grenzwert Wµ implizit als Lösung einer Fixpunktgleichung ergibt. Insbesondere
ist Var(Wµ) > 0 für alle Übergangsmatrizen mit pkl 6= 1/2 für mindestens ein (k, l) ∈ Σ2. Im
symmetrischen Fall pkl = 1/2 ist der Grenzwert deterministisch und das obige Resultat liefert
lediglich ein Gesetz großer Zahlen. Tatsächlich wurde der symmetrische Fall bereits in [15]
behandelt und insbesondere gezeigt, dass man bei feinerer Skalierung asymptotische Normalität
erhält.

Etwas komplizierter wird die Studie von (Y µn (`))`∈{1,...,n} als passend skalierter Prozess. Zunächst
lassen sich über elementare Rechnungen die Grenzwerte

mi(t) := lim
n→∞

E[Y in(btnc+ 1)]

n
, t ∈ [0, 1], i ∈ Σ

bestimmen, wobei Y in(`) = Y pi0δ0+pi1δ1
n (`) ist und die Konvention Y in(n + 1) := Y in(n) im Fall

t = 1 verwendet wird. Diese Funktionen mi : [0, 1]→ R sind i.A. nicht stetig, allerdings besitzen
sie höchstens abzählbar viele Sprungstellen t, an denen linke und rechte Limiten existieren und
mi(t) = (lims↑tmi(s) + lims↓tmi(s))/2 gilt. Genauer gesagt ist mi genau dann eine stetige

Funktion, wenn für die Übergangsmatrix (pkl)k,l∈Σ die Gleichheit p00 = p10 gilt. In diesem Fall
lässt sich mit einer auf Prozesse angepassten Version der Kontraktionsmethode zeigen, dass(

Y in(btnc+ 1)−mi(t)n√
n

)
t∈[0,1]

d−→ Gi, i ∈ Σ,

wobei Gi ein zentrierter Gaußprozess ist. Für p00 6= p10 lässt sich hingegen zeigen, dass bei
beliebiger Skalierung αn = o(n) der Prozess(

Y in(btnc+ 1)−mi(t)n

αn

)
t∈[0,1]

wegen der Unstetigkeit von mi nicht schwach als Prozess in (D[0, 1],dsk) konvergieren kann, da
die Maxima des Prozesses keine straffe Folge bilden. Hierbei bezeichnet (D[0, 1],dsk) den Raum
aller càdlàg-Funktionen auf [0, 1] ausgestattet mit der Skorokhod-Metrik dsk.

Eine offene Frage bleibt, ob die endlichdimensionalen Randverteilungen konvergieren und ob hier
Unterschiede zwischen Stetigkeitspunkten und Unstetigkeitspunkten von mi auftreten.


