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Deutsche Zusammenfassung

Enthaltenseinsprobleme gehören zu den klassischen Problemen der (konvexen) Geometrie.
Im eigentlichen Sinne ist ein Enthaltenseinsproblem die Frage nach der mengentheoretischen
Inklusion zweier gegebener Mengen. Diese Aufgabe ist im Allgemeinen sowohl vom theore-
tischen als auch vom praktischen Standpunkt aus schwer. Im weiteren Sinne gehören auch
Radien- [GK92] und Packungsprobleme [BCS99] zu dieser Klasse von Problemen. Für einige
Klassen konvexer Mengen wurden Enthaltenseinsprobleme intensiv untersucht. Dazu gehören
unter anderem Enthaltenseinsprobleme für Polyeder und Kugeln [FO85] sowie Enthalten-
seinsprobleme für Polyeder [GK94], die vor allem gegen Ende des 20. Jahrhunderts wegen
ihrer inhärenten Bedeutung in der linearen Optimierung und der Kombinatorik untersucht
wurden. Seitdem war der Fortschritt bei der Untersuchung von Enthaltenseinsproblemen
dieser Art eher gering. In den letzten Jahren ist großes Interesse an Enthaltenseinsproblemen
von Spektraedern, die eine natürliche Verallgemeinerung von Polyedern bilden, aufgekom-
men [BTN02, HKM13]. Dieses Interesse ist unter anderem in der intrinsischen Bedeutung
von Spektraedern und deren Projektionen in der polynomiellen Optimierung [Ble12, GPT10]
und der konvexen algebraischen Geometrie [HV07] begründet. Die bisherigen Untersuchungen
beschränken sich jedoch auf spezielle Klassen oder Enthaltenseinssituationen, demgegenüber
hat eine übergreifende Betrachtung derartiger Probleme noch nicht stattgefunden.

In der vorliegenden Arbeit betrachten wir das Enthaltenseinsproblem für Polyeder, Spektra-
eder und deren Projektionen aus dem Blickwinkel semialgebraischer Probleme und studieren
algebraische Zertifikate für Enthaltensein. Dies führt zu einer neuen und systematischen Her-
angehensweise an Enthaltenseinsprobleme von (Projektionen von) Polyedern und Spektra-
edern, und liefert neue und teilweise unerwartete Resultate.

Wir wollen zunächst den Hauptansatz dieser Arbeit skizzieren. Dieser Ansatz ist im Bereich
der polynomiellen Optimierung mittlerweile üblich, aber in Bezug auf geometrische Probleme
kleinen Grades noch immer wenig verstanden. Wir verstehen lineare Optimierung als eine
Anwendung des Lemmas von Farkas, das die (Un-)Lösbarkeit eines Systems linearer Unglei-
chungen beschreibt. Die affine Version von Farkas’ Lemma charakterisiert lineare Polynome,
die nichtnegativ auf einem gegebenen Polyeder sind. Lassen wir die Linearitätsbedingung
weg, so erhalten wir eine Nichtnegativitätsbedingung auf einer semialgebraischen Menge.
Dies führt zu sogenannten Positivstellensätzen (oder genauer Nichtnegativstellensätzen). Ein
Positivstellensatz liefert ein Zertifikat in Form einer polynomiellen Identität für die Positi-
vität eines Polynoms auf einer semialgebraischen Menge. Wie im linearen Fall sind Positiv-
stellensätze die Grundlage der polynomiellen Optimierung und von Relaxierungsmethoden.
Der Übergang von Positivität zu Nichtnegativität ist eine der größten Herausforderungen im
Bereich der reellen algebraischen Geometrie und der polynomiellen Optimierung.

Im Bezug auf Enthaltenseinsprobleme ergeben sich daraus mehrere Hauptfragen: Kann das
jeweilige Enthaltenseinsproblem als ein polynomielles Nichtnegativitätsproblem (oder Zuläs-
sigkeitsproblem) formuliert werden? Falls ja, welchen Zusammenhang zwischen Positivität
und Nichtnegativität auf der einen Seite und Enthaltensein auf der anderen Seite gibt es, ins-
besondere im Hinblick auf deren geometrische Bedeutung? Gibt es einen geeigneten Positiv-
stellensatz für das jeweilige Problem? Den Grad der semialgebraischen Zertifikate betreffend,
welcher Grad ist notwendig, welcher hinreichend, um Enthaltensein zu zertifizieren?
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Tatsächlich können (nahezu) alle Enthaltenseinsprobleme, die in dieser Arbeit untersucht
werden, als ein polynomielles Nichtnegativitätsproblem formuliert werden, was die Anwen-
dung von Positivstellensätzen erlaubt. Im Gegensatz zu diesem allgemeinen Resultat, hängt
die Beantwortung der anderen Fragen stark vom jeweiligen Enthaltenseinsproblem, insbeson-
dere im Hinblick auf die zugrunde liegende Geometrie des Problems, ab. Ein wichtiger Punkt
ist, ob die Hierarchien, die durch Erhöhen der Grade in den polynomiellen Relaxierungen
entstehen, Enthaltensein immer nach endlich vielen Schritten zertifizieren. Wir verstehen
endliche Konvergenz einer Hierarchie in diesem Sinne (im Gegensatz zu asympotischer Kon-
vergenz).

In den nachfolgenden Abschnitten erläutern wir die Hauptprobleme dieser Arbeit und
stellen unseren Beitrag zu deren Verständnis aus dem Blickwinkel der semialgebraischen
Geometrie dar. Wir konzentrieren uns auf die folgenden Enthaltenseinsprobleme. Das Ent-
haltenseinsproblem für Polytope stellt die Frage, ob einH-Polytop in einem V-Polytop
enthalten ist. Die Frage ob ein Spektraeder in einem Spektraeder enthalten ist, bezeichnen
wir als das Enthaltenseinsproblem für Spektraeder. Zudem behandeln wir Enthal-
tenseinsprobleme für Projektionen von Polyedern und Spektraedern. Die Auswahl be-
gründet sich unter anderem auf der wenig untersuchten Geometrie dieser Probleme und deren
komplexitätstheoretischer Klassifizierung als schwere Probleme. Für algorithmische Frage-
stellungen nehmen wir immer an, dass die Eingabedaten rationale Zahlen sind.

Das Enthaltenseinsproblem für Polytope. Ein Polytop kann sowohl als konvexe Hülle
endlich vieler Punkte (“V-Polytop”) als auch als Durchschnitt endlich vieler Halbräume (“H-
Polytop”) dargestellt werden. Für Polytope wurden die algorithmische Geometrie und Kom-
plexität von Enthaltenseinsproblemen eingehend untersucht. Ein prominentes Problem in der
algorithmischen Polytop-Theorie ist das Folgende.

Enthaltenseinsproblem für Polytope:
Eingabe: d ∈ N, ein H-Polytop P ⊆ Rd und ein V-Polytop Q ⊆ Rd.
Aufgabe: Entscheide, ob P ⊆ Q.

Gemäß einem Resultat von Freund und Orlin [FO85] ist das Enthaltenseinsproblem
für Polytope co-NP-vollständig (während die Beantwortung der umgekehrten Frage trivial
ist). Wenn die Dimension von zumindest einem Polytop fest gewählt ist, dann kann das Ent-
haltenseinsproblem für Polytope in polynomieller Zeit gelöst werden (Theorem 3.1.3).
Trotz seiner grundlegenden Natur ist das Enthaltenseinsproblem für Polytope noch
nicht umfassend untersucht worden.

Wir formulieren das Problem als ein bilineares Zulässigkeitsproblem mit zwei disjunkten
Familien linearer Nebenbedingungen. Äquivalent dazu können wir das Problem als ein Ma-
ximierungsproblem über dem Produkt zweier H-Polytope auffassen (Proposition 4.1.1). Die
Formulierung als bilineares Problem erlaubt die Anwendung linearer und semidefiniter Re-
laxierungen. Während im Fall von starkem Enthaltensein, das heißt P ⊆ Q und ∂P ∩∂Q = ∅,
die Konvergenz der Hierarchien beziehungsweise die Existenz von Zertifikaten aus den Posi-
tivstellensätzen von Handelman [Han88] und im anderen Fall von Putinar [Put93] folgen, ist
der Fall nicht-starken Enthaltenseins nicht durch die allgemeine Theorie beantwortet.

Handelmans Positivstellensatz (Proposition 2.4.1) liefert Zertifikate für die Positivität von
Polynomen auf Polytopen. Die Zertifikate können mithilfe einer Hierarchie linearer Pro-
gramme bestimmt werden. Neben einem grundlegenden Konvergenzresultat (Theorem 4.2.1)
diskutieren wir die weitgehend offene Frage von Gradschranken (Theorem 4.2.5).

II



Putinars Positivstellensatz (Proposition 2.4.3) liefert Zertifikate für die Positivität von
Polynomen auf semialgebraischen Mengen. Die Zertifikate können mithilfe einer Hierarchie
semidefiniter Programme bestimmt werden. Als ein Hauptresultat beweisen wir, dass unter
schwachen (geometrischen) Voraussetzungen die semidefinite Relaxierung in endlich vielen
Schritten ein Zertifikat für Enthaltensein liefert (Theoreme 4.3.1 und 4.3.6). Der Beweis
dieser Aussage basiert auf einem hinreichenden Kriterium von Marshall [Mar08].

Das Enthaltenseinsproblem für Spektraeder. Ein Spektraeder S kann sowohl als Schnitt
des Kegels positiv semidefiniter Matrizen mit einem affinen Unterraum als auch als Positivi-
tätsregion eines linearen (Matrix-)Büschels dargestellt werden. Ein lineares Büschel ist dabei
eine symmetrische Matrix mit linearen Polynomen als Einträgen. Von letzterer Darstellung
lässt sich leicht erkennen, dass jedes Polyeder (in H-Darstellung) ein Spektraeder ist. Dazu
schreibt man die definierenden linearen Polynome des H-Polyeders auf die Diagonale. Wir
definieren das folgende Problem.

Enthaltenseinsproblem für Spektraeder:
Eingabe: d ∈ N, Spektraeder SA ⊆ Rd und SB ⊆ Rd.
Aufgabe: Entscheide, ob SA ⊆ SB.

Da Polyeder eine Spezialklasse von Spektraedern bilden, umfasst das Enthaltenseins-
problem für Spektraeder insbesondere die Fälle H-in-H, H-in-S und S-in-H. Während
das erste Problem in polynomieller Zeit entscheidbar ist, ist das zweite Problem co-NP-schwer.
Somit ist das allgemeine Enthaltenseinsproblem für Spektraeder co-NP-schwer. Der
Komplexitätsstatus des dritten Problems ist noch nicht vollständig klassifiziert (vgl. Kapitel 3
und [KTT13]).
Ben-Tal und Nemirovski [BTN02] haben das sogenannte Matrixwürfel-Problem unter-

sucht. Dies entspricht dem Enthaltenseinsproblem für Spektraeder unter der Ein-
schränkung, dass das innere Spektraeder ein Würfel ist. Für das Matrixwürfel-Problem haben
Ben-Tal und Nemirovski ein hinreichendes semidefinites Kriterium angegeben. Helton, Klep
und McCullough [HKM12, HKM13] haben das Enthaltenseinsproblem für sogenannte freie
Spektraeder untersucht. Ein freies Spektraeder lebt in der Vereinigung von Vektorräumen un-
terschiedlicher Dimension. Aus ihren Untersuchungen konnten Helton et al. ein hinreichendes
Kriterium für das Enthaltenseinsproblem für Spektraeder ableiten. Ist das innere
Spektraeder ein Würfel (in Standarddarstellung), dann stimmt das hinreichende Kriterium
mit jenem von Ben-Tal und Nemirovski überein.
Unser Ausgangspunkt für die Untersuchung des Enthaltenseinsproblem für Spek-

traeder ist das Enthaltenseinsproblem für H-Polyeder, das als lineares Zulässigkeitspro-
blem (LFP) formuliert werden kann (Theorem 5.1.1) und daher in polynomieller Zeit lösbar
ist. Aus diesem LFP leiten wir ein hinreichendes semidefinites Kriterium zur Entscheidung
des Enthaltenseinsproblems für Spektraeder ab. Da das Kriterium im Allgemeinen
nicht notwendig für Enthaltensein ist – das gilt bereits in einem geometrisch einfachen,
2-dimensionalem Beispiel –, kommen in natürlicher Weise zwei Hauptfragen auf. Erstens
unter welchen zusätzlichen Voraussetzungen das Kriterium notwendig ist und zweitens ob ein
besseres Kriterium existiert, in dem Sinne dass es sowohl hinreichend als auch notwendig ist.
Um die zweite Fragestellung anzugehen, formulieren wir das Enthaltenseinsproblem

für Spektraeder als ein polynomielles Zulässigkeitsproblem (beziehungsweise als ein quan-
tifiziertes polynomielles Optimierungsproblem). Darauf basierend geben wir eine Hierarchie
semidefiniter Zulässigkeitsprobleme an, deren positive Lösung ein hinreichendes Kriterium für
Enthaltensein ist. Da für lineare Büschel kein vollwertiges Analogon des Lemmas von Farkas
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existiert, ergibt sich die Existenz eines Zertifikates im Falle starken Enthaltenseins, das heißt
SA ⊆ intSB, nicht unmittelbar aus der allgemeinen Theorie. Unter einer schwachen Zusatzbe-
dingung an das Büschel des äußeren Spektraeders und der Voraussetzung der Beschränktheit
an das innere Spektraeder, liefert der Positivstellensatz von Hol und Scherer die Existenz
eines Zertifikates für starkes Enthaltensein (Theorem 5.1.8). Daraus lässt sich die asympto-
tische Konvergenz der Optimierungsversion ableiten. Endliche Konvergenz oder die Existenz
eines Zertifikates im Fall von nicht-starkem Enthaltensein ist ein offenes Problem. Wie im
skalaren Fall stellt der Übergang von Positivität zu Nichtnegativität eine der größten Heraus-
forderungen dar.

Aufgrund der Komplexität hoher Relaxierungsstufen und im Hinblick auf die zuvor genann-
ten Probleme, fokussieren wir unsere Untersuchungen auf den initialen Relaxierungsschritt
der Hierarchie. Wir stellen fest, dass der initiale Relaxierungsschritt mit dem hinreichenden
semidefiniten Kriterium übereinstimmt, welches wir zuvor vom H-in-H Problem abgeleitet
haben (Theorem 5.1.11). Die Untersuchung des initialen Relaxierungsschrittes erlaubt uns
die Angabe von Zertifikaten für Enthaltensein in einigen wichtigen Fällen und Beispielen.

Im Spezialfall S-in-H des Enthaltenseinsproblems für Spektraeder genügt unter
schwachen – in der semidefiniten Optimierung üblichen – Voraussetzungen die Betrachtung
des initialen Relaxierungsschrittes, um das Enthaltenseinsproblem zu entscheiden (Theo-
rem 5.2.3). Die Aussage gilt auch in dem Fall, dass die Koeffizienten des äußeren Büschels
simultan diagonalisierbar sind. Der Beweis beruht auf dem geometrischen Verhalten des
initialen Relaxierungsschrittes in Kombination mit der Dualitätstheorie semidefiniter Op-
timierung. Die Aussage ist insofern bemerkenswert, als das Kriterium im Allgemeinen von
der Büschel-Darstellung der Spektraeder abhängt.

Im Fall von Spektratopen, das heißt beschränkten Spektraedern, existiert immer ein posi-
tiver Skalierungsfaktor, so dass nach der Skalierung eines der beiden Spektratope Enthalten-
sein in der initialen Relaxierung zertifiziert wird (Theorem 5.3.1).

Das Enthaltenseinsproblem für Spektraeder kann auch vom Standpunkt posi-
tiver linearer Abbildungen aus betrachtet werden. Diesen Ansatz haben zuerst Helton et
al. [HKM13] – in einem allgemeineren Kontext – gewählt. Eine wohlbekannte Relaxierung
der Positivität ist die vollständige Positivität einer linearen Abbildung. Man kann zeigen, dass
vollständige Positivität äquivalent zur initialen Relaxierungsstufe ist. Unsere Hierarchie für
das Enthaltenseinsproblem für Spektraeder ist daher auch eine Hierarchie zwischen
Positivität und vollständiger Positivität. Andererseits erlaubt die Theorie positiver linearer
Abbildungen interessante Einblicke in das Enthaltenseinsproblem für Spektraeder.
Im Besonderen zeigen wir, dass die initiale Relaxierungsstufe nicht nur hinreichend, sondern
auch notwendig für eine bestimmte Familie 2-dimensionaler Spektratope ist (Theorem 5.4.10).

Die Enthaltenseinsprobleme für Projektionen. Die Projektion eines Polyeders ist wieder
ein Polyeder, demgegenüber ist die Projektion eines Spektraeders im Allgemeinen kein Spek-
traeder. Insbesondere ist die Projektion eines Spektraeders nicht notwendigerweise abgeschlos-
sen. Für eine Menge S ⊆ Rd+m bezeichnen wir mit π(S) ⊆ Rd die Projektion von S. Da
projizierte Polyeder eine Unterklasse von projizierten Spektraedern bilden, fassen wir die
genannten Enthaltenseinsprobleme wie folgt zusammen.

Enthaltenseinsprobleme für Projektionen:
Eingabe: d,m, n ∈ N, Spektraeder SA ⊆ Rd+m und SB ⊆ Rd+n.
Aufgabe: Entscheide, ob π(SA) ⊆ π(SB).
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Der Komplexitätsstatus von Enthaltenseinsproblemen ändert sich mit dem Übergang vom
nicht-projektiven auf den projektiven Fall nicht wesentlich. Während jedoch das Enthalten-
seinsproblem zweierH-Polyeder in polynomieller Zeit entscheidbar ist, ist das Enthaltenseins-
problem zweier projizierter H-Polyeder, πH-in-πH, co-NP-vollständig (Theorem 3.2.4).
Das πH-in-πH Enthaltenseinsproblem kann auf einfache Weise als ein bilineares Zulässig-

keitsproblem mit zwei disjunkten Familien an Nebenbedingungen geschrieben werden. Interes-
santerweise sind die linearen Bedingungen des äußeren Polyeders nicht Teil des Zulässigkeits-
systems, sondern ausschließlich die Koeffizientenmatrizen der projizierten Variablen. Dafür
tauchen neue Variablen auf, deren Anzahl durch die Anzahl der linearen Bedingungen an das
äußere Polytop bestimmt ist. Vom Standpunkt der computerorientierten Berechenbarkeit
ergeben sich aus dieser Formulierung zwei Probleme. Zum einen sind die neuen Variablen
unbeschränkt, zum anderen erfordert das Enthaltenseinszertifikat den Nachweis, dass ein
Polynom auf einer polyedrischen Menge identisch null ist. Um diese Probleme zu umgehen,
führen wir eine zusätzliche Voraussetzung ein und studieren ihre geometrische Bedeutung
(Theorem 6.1.1).
Beim Übergang zum πS-in-πS Problem ergibt sich das zusätzliche Problem, dass Projektio-

nen von Spektraedern im Allgemeinen nicht abgeschlossen sind. Unter einer zusätzlichen An-
nahme an das lineare Büschel, können wir dieses Problem jedoch umgehen (Theorem 6.2.1).
Wir betrachten die gleichen Probleme wie für den πH-in-πH Fall und diskutieren kurz eine
alternative Formulierung unter Anwendung des Lemmas von Ramana, einer alternativen Vari-
ante des Lemmas von Farkas für Spektraeder (Proposition 6.2.5).
Während wir im allgemeinen Fall, dem πS-in-πS Problem, auf Probleme in Form des

Fehlens einer sauberen Version von Farkas’ Lemma und eines auf die Situation passenden
Positivstellensatzes stoßen, können wir in den Fällen πH-in-H und πS-in-S verschiedene
Resultate aus den nicht-projektiven Fällen übertragen.
Zunächst geben wir ein lineares Kriterium für das πH-in-H Enthaltenseinsproblem an

(Theorem 6.3.1) und leiten davon ein hinreichendes semidefinites Kriterium für den πS-in-S
Fall ab (Theorem 6.3.3).
Die Formulierung des πS-in-S Enthaltenseinsproblems als ein polynomielles Optimierungs-

problem erlaubt die Anwendung des Positivstellensatzes von Hol und Scherer. Der Nachteil
dieser Herangehensweise ist das Auftauchen der Projektionsvariablen im quadratischen Modul
und daher in der Relaxierung durch Summe von Quadraten. Einer Idee von Gouveia und
Netzer folgend, beweisen wir eine verfeinerte Version des Positivstellensatzes von Hol und
Scherer für diese Situation, in der die Projektionsvariablen nicht auftreten (Theorem 6.3.5).
Wie im nicht-projektiven Fall stimmt der initiale Relaxierungsschritt (basierend auf dem ver-
feinerten Ansatz) mit dem hinreichenden, geometrischen Kriterium überein. Wir zeigen auch,
dass der initiale Relaxierungsschritt im Spezialfall πS-in-H nicht nur hinreichend sondern
auch notwendig ist (Theorem 6.3.8).
Abschließend diskutieren wir die mögliche Verallgemeinerung des Konzepts positiver line-

arer Abbildungen auf den projektiven Fall.

Gliederung der Dissertation. In die für diese Arbeit relevanten Teile der Theorie über
Polyeder und Spektraeder sowie über lineare und semidefinite Optimierung führen wir in
Kapitel 2 ein.
Kapitel 3 ist der Komplexität von Enthaltenseinsproblemen gewidmet. In Abschnitt 3.1

wiederholen wir bekannte Komplexitätsresultate für den polyedrischen Fall, insbesondere für
das Enthaltenseinsproblem für Polytope. Die Abschnitte 3.2 und 3.3 klassifizieren die
Komplexität der Enthaltenseinsprobleme für Projektionen von Polyedern und Spektraedern.
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Kapitel 4 behandelt das Enthaltenseinsproblem für Polytope. Die Formulierung als
bilineares Zulässigkeitsproblem ist in Abschnitt 4.1 zu finden. Die Abschnitte 4.2 und 4.3
behandeln die Anwendung der Positivstellensätze von Handelman beziehungsweise Putinar
auf das bilineare Problem.
Das Enthaltenseinsproblem für Spektraeder diskutieren wir in Kapitel 5. Wir un-

tersuchen eine Hierarchie semidefiniter Relaxierungen zur Entscheidung des Enthaltenseins-
problems in Abschnitt 5.1. In den Abschnitten 5.2 und 5.3 behandeln wir Zertifikate für den
Fall S-in-H und einige Beispiele. Die Verbindungen des Enthaltenseinsproblems für
Spektraeder und der Theorie positiver linearer Abbildungen sind in Abschnitt 5.4 for-
muliert. Abschnitt 5.5 diskutiert einen skalarisierten Ansatz basierend auf der Formulierung
des Enthaltenseinsproblems für Spektraeder als bilineares Problem.
In Kapitel 6 diskutieren wir die Erweiterung der Konzepte und Resultate aus den vorange-

gangenen Kapiteln auf die Enthaltenseinsprobleme für Projektionen. Wir beginnen
mit dem πH-in-πH-Problem in Abschnitt 6.1 und behandeln dann das πS-in-πS-Problem
in Abschnitt 6.2. Für den Fall πS-in-S formulieren und beweisen wir eine Erweiterung des
Positivstellensatzes von Hol und Scherer in Abschnitt 6.3. In Abschnitt 6.4 stellen wir den
Zusammenhang zwischen einer Verallgemeinerung positiver linearer Abbildungen und dem
Enthaltenseinsproblem von Projektionen von Spektraedern dar.
Abschließende Bemerkungen und eine kurze Diskussion offener Fragen sind in Kapitel 7 zu

finden.

VI
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1 Introduction

Containment problems belong to the classical problems of (convex) geometry. In the proper
sense, a containment problem is the task to decide the set-theoretic inclusion of two given
sets, which is hard from both the theoretical and the practical perspective. In a broader
sense, this includes, e.g., radii [GK92] or packing problems [BCS99], which are even harder.
For some classes of convex sets there has been strong interest in containment problems.
This includes containment problems of polyhedra and balls [FO85], and containment of poly-
hedra [GK94], which have been studied in the late 20th century because of their inherent
relevance in linear programming and combinatorics. Since then, there has only been limited
progress in understanding containment problems of that type. In recent years, containment
problems for spectrahedra, which naturally generalize the class of polyhedra, have seen great
interest [BTN02, HKM13]. This interest is particularly driven by the intrinsic relevance of
spectrahedra and their projections in polynomial optimization [Ble12, GPT10] and convex
algebraic geometry [HV07]. Except for the treatment of special classes or situations, there
has been no overall treatment of that kind of problems, though.

In this thesis, we provide a comprehensive treatment of containment problems concerning
polyhedra, spectrahedra, and their projections from the viewpoint of low-degree semialgebraic
problems and study algebraic certificates for containment. This leads to a new and systematic
access to studying containment problems of (projections of) polyhedra and spectrahedra, and
provides several new and partially unexpected results.

The main idea – which is meanwhile common in polynomial optimization, but whose un-
derstanding of the particular potential on low-degree geometric problems is still a major
challenge – can be explained as follows. One point of view towards linear programming is
as an application of Farkas’ Lemma which characterizes the (non-)solvability of a system of
linear inequalities. The affine form of Farkas’ Lemma characterizes linear polynomials which
are nonnegative on a given polyhedron. By omitting the linearity condition, one gets a poly-
nomial nonnegativity question on a semialgebraic set, leading to so-called Positivstellensätze
(or, more precisely, Nichtnegativstellensätze). A Positivstellensatz provides a certificate for
the positivity of a polynomial function in terms of a polynomial identity. As in the linear
case, these Positivstellensätze are the foundation of polynomial optimization and relaxation
methods; see, e.g., [BPT13, Las10, Lau09]. The transition from positivity to nonnegativity is
still a major challenge in real algebraic geometry and polynomial optimization.

With this in mind, several principal questions arise in the context of containment problems:
Can the particular containment problem be formulated as a polynomial nonnegativity (or,
feasibility) problem in a sophisticated way? If so, how are positivity and nonnegativity related
to the containment question in the sense of their geometric meaning? Is there a sophisticated
Positivstellensatz for the particular situation, yielding certificates for containment? Concern-
ing the degree of the semialgebraic certificates, which degree is necessary, which degree is
sufficient to decide containment?

Indeed, (almost) all containment problems studied in this thesis can be formulated as poly-
nomial nonnegativity problems allowing the application of semialgebraic relaxations. Other
than this general result, the answer to all the other questions (highly) depends on the spe-
cific containment problem, particularly with regard to its underlying geometry. An important
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1 Introduction

point is whether the hierarchies coming from increasing the degree in the polynomial relax-
ations always decide containment in finitely many steps. We understand finite convergence
in this sense, as opposed to asymptotic convergence.
In the subsequent paragraphs, we outline the main problems tackled in this thesis and our

contribution in their understanding from the viewpoint of semialgebraic geometry. We focus
on the containment problem of an H-polytope in a V-polytope and of a spectrahedron in
a spectrahedron, henceforth referred to as the Polytope containment problem and the
Spectrahedron containment problem, respectively. Moreover, we address containment
problems concerning projections of H-polyhedra and spectrahedra, which we subsume under
the label Projection Containment problems. This selection is justified by the fact that
the mentioned containment problems are computationally hard and their geometry is not
well understood. For computational questions, we always assume that the input data is given
in terms of rational numbers.

The Polytope containment Problem. A polytope can be represented as the convex
hull of finitely many points (“V-polytope”) or as the intersection of finitely many halfspaces
(“H-polytope”). For polytopes, the computational geometry and computational complexity
of containment problems have been studied in detail. A prominent problem in algorithmic
polytope theory is the following.

Polytope containment:
Input: d ∈ N, an H-polytope P ⊆ Rd and a V-polytope Q ⊆ Rd.
Task: Decide whether P ⊆ Q.

Due to Freund and Orlin [FO85], the Polytope Containment problem is known to be
co-NP-complete; note that the converse question Q ⊆ P is trivial to decide. If the dimension
of one (or both) polytopes is fixed, then the Polytope Containment problem is solvable
in polynomial time (Theorem 3.1.3). For the Polytope Containment problem, despite of
its fundamental nature, there seems to be only limited progress on that problem so far.
We formulate the Polytope Containment problem as a disjointly constrained bilinear

feasibility problem (or, equivalently, as the maximization problem of a bilinear function on
the product of two H-polytopes; Proposition 4.1.1). The bilinear formulation of the problem
allows to apply linear relaxations based on Handelman’s Positivstellensatz [Han88] respec-
tively semidefinite relaxations based on Putinar’s Positivstellensatz [Put93]. While in the case
of strong containment (i.e., P ⊆ Q and ∂P ∩ ∂Q = ∅) finite convergence comes out of the
general theory, in the case of non-strong containment this is a critical issue.
Handelman’s Positivstellensatz (Proposition 2.4.1) deals with positivity of polynomials on

polytopes and provides a hierarchy of linear programs. Beyond a standard convergence result
(Theorem 4.2.1), we provide characterizations on the (widely open) question of degree bounds
(Theorem 4.2.5).
Putinar’s Positivstellensatz (Proposition 2.4.3) deals with more general, semialgebraic con-

straint sets and provides a hierarchy of semidefinite programs. As a main result, we show
that under mild and explicitly known conditions the Putinar relaxation converges in finitely
many steps (Theorems 4.3.1 and 4.3.6), based on the so-called boundary Hessian condition
stated by Marshall [Mar08].
While it is a fundamental geometric problem by itself, we sketch an exemplary application

scenario in which the Polytope Containment problem occurs. Generally, many applica-
tions in data analysis or shape analysis of point clouds involve the convex hull of point sets
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(see, e.g., [BK01]), and a Polytope Containment problem can be used to answer questions
about certain (polyhedral) properties on the set.
A textbook type example in diet realization.We consider d different food types and k underly-

ing basic nutrients. Assume that each unit of food j contains Aij units of the ith nutrient ai. A
dietary requirement is described by linear inequalities of the form

∑d
j=1Aijxj ≥ ai, 1 ≤ i ≤ k,

with positive Ai1, . . . , Aid for a minimum of a requirement and negative Ai1, . . . , Aid for a
maximum of a requirement. Thus the requirements define an H-polytope P . Moreover, as-
sume we are given l fixed combinations of can food, each can containing one unit. Type s
consists of an amount of b(s)t of food t. The convex combinations of the vectors b(1), . . . , b(l)

correspond to the food which can be combined from the can food, where the convex combi-
nation signifies that the resulting food has also the size of one unit. The question is, if every
food combination satisfying the dietary constraints can be assembled from the can food in
that way. This is a Polytope Containment problem. Similar scenarios occur, e.g., in the
mixing of liquids (such as oil).

The Spectrahedron containment Problem. A spectrahedron can be represented as the
slice of the cone of positive semidefinite matrices with an affine subspace or as the positivity
region of a linear (matrix) pencil, i.e., a symmetric matrix with linear polynomial entries.
From this it is evident that every polyhedron (in H-representation) is a spectrahedron, just
by writing the linear polynomials defining the halfspaces onto the diagonal. We define the
following problem.

Spectrahedron containment:
Input: d ∈ N, spectrahedra SA ⊆ Rd and SB ⊆ Rd.
Task: Decide whether SA ⊆ SB.

Since polyhedra are special cases of spectrahedra, the Spectrahedron Containment
problem covers, in particular, the H-in-H, H-in-S, and S-in-H containment problems. While
the first problem is known to be solvable in polynomial time, the second problem is co-NP-
hard, implying the co-NP-hardness of the Spectrahedron containment problem. The
complexity status of the third problem is not completely solved.
Ben-Tal and Nemirovski studied the matrix cube problem [BTN02], which corresponds to

the Spectrahedron Containment problem where SA is a cube. They derived a sufficient
semidefinite criterion to decide containment in this situation. In a much more general setting,
Helton, Klep, and McCullough [HKM12, HKM13] studied containment problems of matricial
positivity domains, also called free spectrahedra, which live in a union of spaces of different
dimensions. As a byproduct, they also derived some implications for containment of spec-
trahedra. In the case of the matrix cube problem, the sufficient criterion of Helton et al.
coincides with Ben-Tal-Nemirovski’s criterion.
Our point of departure is the containment problem for pairs of H-polyhedra, which can

be decided in polynomial time by solving a linear feasibility problem (Theorem 5.1.1). From
that we derive a sufficient semidefinite criterion to decide the Spectrahedron Contain-
ment problem (Theorem 5.1.3). As the semidefinite feasibility criterion coming from the
geometric approach is only sufficient for the Spectrahedron Containment problem and
fails to certify containment already in two-dimensional examples (Example 5.1.7), two prin-
cipal questions arise. First, under which additional assumptions necessity holds, and, second,
whether there is a better criterion in the sense that necessity can be achieved.
To tackle the second question, we formulate the Spectrahedron Containment prob-

lem in terms of a polynomial feasibility problem (or, equivalently, as a quantified polynomial
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optimization problem), yielding a hierarchy of sufficient semidefinite criteria to decide con-
tainment. Due to the absence of a clean Farkas-type Lemma for linear pencils (i.e., a Farkas
Lemma without preconditions) and contrary to the scalar setting, finite convergence in the
case of strong containment (i.e., SA ⊆ int(SB)) is not an immediate consequence of the gen-
eral theory. However, under a mild technical assumption, called reducedness of a linear pencil,
finite convergence in the strong containment case can be achieved by applying Hol-Scherer’s
Positivstellensatz (Theorem 5.1.8). From this asymptotic convergence can be deduced if the
inner set is a spectratope (i.e., a bounded spectrahedron). This being said, the behavior of the
hierarchy for non-strong containment or non-containment is uncertain. As in the scalar case,
the transition from positive definiteness to positive semidefiniteness is a major challenge.

With this in mind and in order to tackle the mentioned problems, we study the initial
relaxation step of the hierarchy in more detail. We start by a fundamental result that stresses
the importance of the initial relaxation step of the Hol-Scherer hierarchy. It turns out that
the initial step of the hierarchy coincides with the solitary semidefinite criterion coming from
the geometric approach (Theorem 5.1.11). Thus studying the initial relaxation step is the
same as studying the quality of the solitary criterion. We develop some auxiliary results on
the containment criteria, showing that they behave geometrically. From that analysis, we are
able to provide (partially explicit) containment certificates for some structured examples and
important cases.

Specializing the Spectrahedron Containment problem to the case S-in-H, the con-
tainment question can be decided with the initial relaxation step if some mild assumptions
hold (Theorem 5.2.3). This remains true if the outer set is given by a linear pencil whose
coefficient matrices are simultaneously diagonalizable. The proof of the statement is based
on various properties of the containment criteria and combining them with duality theory of
semidefinite programming. The exactness for the S-in-H case is particularly surprising, since
a priori the criteria depend on the linear pencil representation of the spectrahedron.

In the case of bounded spectrahedra, certifying containment can always be achieved by an
appropriate scaling of one of the spectrahedra involved (Theorem 5.3.1).

Containment of spectrahedra is also linked to positivity of linear maps. This has first been
investigated by Helton, Klep, and McCullough [HKM13] in a much more general setting. A
well-known relaxation in this setting is complete positivity of a linear map, which can be tested
by a semidefinite program. It transpires that complete positivity is equivalent to containment
being certified by the initial relaxation step. Thus our hierarchy for the Spectrahedron
Containment problem also serves as a hierarchy between positivity and complete positivity.
On the other hand, the theory of positive linear maps gives some interesting insights into the
Spectrahedron Containment problem. Most notably, we can prove necessity of the initial
Hol-Scherer relaxation for a special family of 2-dimensional spectratopes (Theorem 5.4.10).

The Projection Containment Problems. It is well-known that the projection of a poly-
hedron is again a polyhedron. For a spectrahedron this is no longer true. In particular, the
projection of a spectrahedron is not necessarily closed. For a set S ⊆ Rd+m, denote by π(S)
the projection of S onto Rd. Since πH-polyhedra build a subclass of πS-spectrahedra, we
subsume the mentioned problems under the following label.

Projection Containment:
Input: d,m, n ∈ N, spectrahedra SA ⊆ Rd+m and SB ⊆ Rd+n.
Task: Decide whether π(SA) ⊆ π(SB).
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1.1 Structure of the Thesis

Most results on the complexity classification for containment problems involving polyhedra
and spectrahedra can be brought forward to Projection Containment. However, while
the H-in-H containment problem is solvable in polynomial time, deciding containment of two
projected H-polytopes (i.e., πH-in-πH) turns out to be co-NP-complete (Theorem 3.2.4).

The πH-in-πH containment problem can be formulated as a disjointly constrained bilin-
ear feasibility problem in a straightforward way. Interestingly, the projection of the outer
polyhedron do not appear in the feasibility system, only the corresponding coefficients in
the H-representation and some new variables depending on the size of the representation.
From a computational viewpoint, this formulation lacks in two ways. First, the new variables
are unbounded and, second, certifying containment requires to test whether a polynomial is
identically zero on a polyhedral set. To tackle these problems, we introduce an additional
precondition and study its geometric meaning (Theorem 6.1.1).

Continuing with the πS-in-πS containment problem, a polynomial formulation lacks in
the fact that projected spectrahedra are not closed in general. However, under an addi-
tional assumption, which is common in semidefinite programming, the statement holds (The-
orem 6.2.1). We treat the same problems as for πH-in-πH and discuss briefly an alternative
approach based on the Farkas-type Lemma of Ramana (Proposition 6.2.5).

While for the general case, the πS-in-πS containment problem, we hit on problems like
the lack of a clean Farkas Lemma for cones as well as the absence of a sophisticated Posi-
tivstellensatz, retreating to the πH-in-H and πS-in-S containment problems allows to bring
forward several results from the non-projected case.

To begin with, we establish a linear feasibility criterion for the πH-in-H containment prob-
lem (Theorem 6.3.1). From that we deduce a sufficient semidefinite criterion for the πS-in-S
containment problem (Theorem 6.3.3).

The formulation of the πS-in-S containment problem as a polynomial optimization prob-
lem allows to apply Hol-Scherer’s Positivstellensatz. The drawback of this approach is the
appearance of the projection variables in the quadratic module and thus in the sum of squares
hierarchy. Following a result of Gouveia and Netzer [GN11], we establish a more sophisticated
Hol-Scherer like Positivstellensatz for this situation, removing the projection variables from
the quadratic module (Theorem 6.3.5). As in the non-projected case, the initial step of the
sum of squares hierarchy coincides with the sufficient semidefinite criterion coming from the
geometric approach. Moreover, as in the non-projected situation, if the outer set is a poly-
hedron (i.e., the πS-in-H containment problem), then the initial relaxation step is not only
sufficient for containment but also necessary (Theorem 6.3.8).

To some extent, the concept of positive linear maps can also be generalized to the projected
case (Theorem 6.4.1).

1.1 Structure of the Thesis

We start with the preliminary Chapter 2 introducing notation and relevant background on
polyhedra and spectrahedra, as well as linear, semidefinite, and polynomial optimization.

In Chapter 3, we review the complexity classification for containment problems concerning
polyhedra and extend it to projections of polyhedra and spectrahedra. The complexity clas-
sification of the Polytope Containment problem is reviewed in Section 3.1. Section 3.2
approaches the case involving only polyhedra and their projections. Section 3.3 contains the
complexity classification involving also projections of spectrahedra.
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Chapter 4 discusses the Polytope Containment problem. The reformulation of the
problem as a bilinear feasibility problem is stated in Section 4.1. The Sections 4.2 and 4.3
deal with the application of Handelman’s and Putinar’s Positivstellensatz, respectively, to
the bilinear reformulation.
The Spectrahedron Containment problem is dealt with in Chapter 5. We state and

study a hierarchy of semidefinite relaxations coming from a sum of squares approach in
Section 5.1. Sections 5.2 and 5.3 show the effectiveness of the approach by providing finite
convergence in several important cases, including containment of a spectrahedron in an H-
polyhedron. The connections between containment of spectrahedra and positive linear maps
are given in Section 5.4. In Section 5.5, we discuss briefly a scalarized sum of squares approach
coming from a bilinear formulation of the Spectrahedron Containment problem.
In Chapter 6, we discuss extensions of the concepts and results stated in Chapter 5 to

the Projection Containment problems. Starting from the reformulation of the πH-in-πH
containment problem as a polynomial feasibility problem in Section 6.1, we discuss the adap-
tion to the πS-in-πS containment problem in Section 6.2. For the case πS-in-S, an extension
of Hol-Scherer’s Positivstellensatz is stated and proved in Section 6.3. In Section 6.4, the
connections between (a generalization of) positive linear maps and containment of projected
spectrahedra are outlined.
Final remarks and a short discussion of open questions can be found in Chapter 7.

1.2 Publication in Advance

Parts of this thesis are published or submitted in advance. Chapter 4 is based on a joint
work with Thorsten Theobald that is available online as a preprint and has been accepted
for a contributed talk at the MEGA conference series (Trento, 2015) but is yet not pub-
lished [KT14]. The content of Chapter 5 is based on joint works with Thorsten Theobald and
Christian Trabandt [KTT13, KTT15], both published in the SIAM Journal on Optimization.
The complexity classification of containment problems involving polyhedra and spectrahe-

dra as stated in [KTT13] is part of Christian Trabandt’s PhD thesis [Tra14]. In Chapter 3,
we extend the results to projections of polyhedra and spectrahedra.
[KTT15] is concerned with an optimization approach based on Lasserre’s moment method

for polynomial matrix inequalities [HL06]. As this is part of [Tra14], we do not state these
parts here but have a brief look at some of them from the viewpoint of the thesis at hand in
Section 5.5.
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2 Basic Facts on Polyhedra, Spectrahedra, and
Optimization

In this chapter, we fix terminology and recall the basic concepts of linear, semidefinite, and
polynomial optimization. Most proofs of the statements are omitted. We do not give refer-
ences to all facts stated here as they belong to the basics of the respective theory but give
general references at the beginning of the subsections. For an overall survey of linear and
semidefinite programming see, e.g., the monograph of Tunçel [Tun10]; regarding semidefinite
and polynomial optimization, we refer to the book of Blekherman et. al. [BPT13].

2.1 Notation

The set of positive (resp. nonnegative) integers is denoted by N (resp. N0). For two nonneg-
ative integers m ≤ n, we write [m,n] = {m,m+ 1, . . . , n} and [n] = [1, n] = {1, 2, . . . , n}.
For a set M ⊆ Rd, the convex hull of M , denoted by convM , is the set of all convex

combinations
m∑
i=1

λixi with 1Tmλ = 1, λi ≥ 0 ∀i ∈ [m] for some xi ∈M,

where 1m denotes the all-ones vector in Rm. The linear span or linear hull, spanM , of M
is the smallest linear subspace containing M . The smallest affine subspace containing M is
referred to as the affine span aff M of M . For a subspace V ⊆ Rd, V ⊥ denotes the orthogonal
complement of V with respect to the Euclidean inner product. The interior (resp. closure) of
a set M is denoted by intM (resp. clM).
By Rd+ and Rd++ we denote the closed convex cone of componentwise nonnegative and

positive vectors, respectively.
The (geometric) polar of a subset M ⊆ Rd is defined as the set

M◦ =
{
y ∈ Rd | yTx ≤ 1 ∀x ∈M

}
⊆ Rd.

It is easy to see that M◦ is a closed convex set containing the origin.

Proposition 2.1.1. Let M,N ⊆ Rd.
(1) M ⊆ N implies N◦ ⊆M◦.
(2) M◦◦ = cl conv(M∪{0}). In particular, ifM is a closed convex set containing the origin,

then M◦◦ = M .
(3) M◦ is bounded if and only if 0 ∈ intM .

The kernel or nullspace (resp. span or range) of a matrix M ∈ Rk×l is defined as the set
kerM = {x ∈ Rl |Mx = 0} (resp. the linear span of its columns, i.e., spanM = {y ∈ Rk | y =
Mx, x ∈ Rl}).
For a matrix A, the (i, j)th entry of A is labeled by Aij as usual. For a block matrix B,

we label the (i, j)th block by Bij and the (s, t)th entry of Bij by (Bij)st. A square matrix
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2 Basic Facts on Polyhedra, Spectrahedra, and Optimization

with 1 in the entry (i, j) and zeros otherwise is denoted by Eij . The n× n identity matrix is
denoted by In.
For a square matrix A ∈ Rk×k, we call tr(A) =

∑k
i=1Aii the trace of A. For square matrices

A,B ∈ Rk×k, we define the scalar product

〈A,B〉 = tr(BTA) =
k∑

i,j=1
AijBij .

Let Sk be the space of symmetric k × k-matrices with real entries. For A ∈ Sk, we write
A � 0 (resp. A � 0) if A is positive semidefinite (resp. positive definite). The (non-)closed,
convex cone of positive semidefinite (resp. definite) matrices is denoted by Sk+ (resp. Sk++).
For x = (x1, . . . , xd), Sk[x] denotes the space of symmetric k× k-matrices with entries in the
polynomial ring R[x] = R[x1, . . . , xd].
For matrices A ∈ Rk×k and B ∈ Rl×l, their Kronecker product A⊗B is the kl× kl-matrix

A⊗B =

A11B . . . A1k B
... . . . ...

Ak1B . . . Akk B

 . (2.1.1)

It is well-known (see, e.g., [HJ94, Corollary 4.2.13]) that the Kronecker product of two sym-
metric (positive semidefinite) matrices is again symmetric (positive semidefinite).
Given matrices M1 ∈ Rk1×l1 , . . . ,Md ∈ Rkd×ld , we denote by

d⊕
i=1

Mi =

M1 0 0

0 . . . 0
0 0 Md


their direct sum, which is a blockdiagonal matrix with

∑d
i=1 ki rows and

∑d
j=1 lj columns.

2.2 Polyhedra and Linear Programming

We recall relevant notation, existing fundamental results on the theory of polyhedra, and
sketch the basic concepts of linear programming as they are relevant to us. As general refer-
ences, we refer to the books of Schrijver [Sch86] and Ziegler [Zie95].
For a ∈ Rk and A ∈ Rk×d, an (H-)polyhedron is defined as the intersection of finitely many

affine halfspaces,

PA =
{
x ∈ Rd | a−Ax ≥ 0

}
, (2.2.1)

and a bounded polyhedron is called an H-polytope. For B ∈ Rd×l, the set

QB = conv(B) =
{
x ∈ Rd | ∃λ ∈ Rl+ : x = Bλ, 1Tl λ = 1

}
(2.2.2)

is called a V-polytope, where 1l denotes the all-ones vector in Rl. The subscript in the notion of
PA and QB indicates the dependency on the specific representation (a,A) and B, respectively,
of the polytopes involved. However, if there is no risk of confusion, we often state P and Q
without subscript. Every H-polytope is a V-polytope and vice versa.
A face of a polyhedron P is the (nonempty) intersection of P with an affine hyperplane

8



2.2 Polyhedra and Linear Programming

H such that P is contained in one of the closed halfspaces defined by H. The empty set is
an improper face, called the empty face. A face is called vertex (resp. facet) if its dimension,
i.e., the dimension of its affine span, is zero (resp. dim(P )− 1). We denote by V (P ) the set
of vertices of a polytope P , and by F (P ) the set of facets. Clearly, every H-representation
of a polytope contains all facet defining inequalities (up to a scalar multiple) and every
V-representation contains all the vertices. Inequalities (resp. points) not defining a facet
(resp. vertex) are called redundant constraints. Note that removing redundant constraints is
a polynomial time process; see, e.g., [GK93, Theorem 2.1] for a constructive proof.
By McMullen’s Upper bound Theorem [McM70], any d-dimensional polytope, d-polytope

for short, with k vertices (resp. facets) has at most(
k −

⌊
1
2(d+ 1)

⌋
k − d

)
+
(
k −

⌊
1
2(d+ 2)

⌋
k − d

)

facets (resp. vertices). This bound is sharp for neighborly polytopes, such as cyclic polytopes.
Thus a V-representation of a given H-polytope (or vice versa) can be exponential in the
dimension d and the number of facets k (resp. the number of vertices).
An H-polyhedron P = {x ∈ Rd | a − Ax ≥ 0} contains the origin if and only if a ≥ 0.

Moreover, P contains the origin in its interior intP if and only if a > 0. In this situation,
P = {x ∈ Rd | 1k −Ax ≥ 0} after an appropriate scaling of the inequalities.
If P ⊆ Rd and Q ⊆ Re are polytopes, then their product P × Q ⊆ Rd+e is a polytope of

dimension dimP + dimQ, whose nonempty faces are the products of nonempty faces of P
and nonempty faces of Q; see for example [Zie95, Page 10].
The next lemma plays a prominent role in polyhedral and linear programming theory.

Lemma 2.2.1 (Farkas’ Lemma I [Zie95, Proposition 1.7]). Let A ∈ Rk×d and z ∈ Rk. Then
exactly one of the following two systems has a solution.

∃x ∈ Rd : Ax ≤ z (2.2.3)
∃c ∈ Rk : c ≥ 0, cTA = 0, cT z < 0 (2.2.4)

There are many equivalent formulations of Farkas’ Lemma (see, e.g., [Zie95, Proposition
1.8 ff.]). For us the affine form of Farkas’ Lemma is often more suitable.

Lemma 2.2.2 (Affine form of Farkas’ Lemma [Sch86, Corollary 7.1h]). Let the polyhedron
P = {x ∈ Rd | li(x) ≥ 0, i ∈ [m]} with affine functions li : Rd → R be nonempty. Then every
affine l : Rd → R that is nonnegative on P can be written as l(x) = c0 +

∑m
i=1 cili(x) with

nonnegative coefficients ci.

The following lemma characterizes boundedness of polyhedra using the so-called recession
cone or characteristic cone.

Lemma 2.2.3 ([Sch86, Section 8.2]). Let PA = {x ∈ Rd | a − Ax ≥ 0} be a nonempty
polyhedron. PA is bounded if and only if its recession cone RA = {x ∈ Rd | Ax ≤ 0} is
zero-dimensional, i.e., RA = {0}.

From the above lemma it follows that boundedness of a polyhedron can be formulated as a
linear feasibility problem (LFP), which is solvable in polynomial time [Sch86, Theorem 13.4].
The next lemma is a special case of Motzkin’s transposition theorem [Sch86, Corollary

7.1k]; see also [Sch86, Section 7.8] and the references therein.
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2 Basic Facts on Polyhedra, Spectrahedra, and Optimization

Lemma 2.2.4 (Stiemke’s Transposition Theorem). Let A ∈ Rk×d and a ∈ Rk. Then

∃x ∈ Rd : x > 0, Ax = 0 ⇐⇒
{
y ∈ Rk | yTA ≥ 0

}
=
{
y ∈ Rk | yTA = 0

}
A famous and fundamental polytope is the (standard) d-simplex

∆d =
{
x ∈ Rd | 1Td x = 1, x ≥ 0

}
. (2.2.5)

Here the prefix d denotes the dimension of the simplex plus one, i.e., dim ∆d = d− 1.

Linear Programming. Linear Programming (LP) is the problem of maximizing (resp. mini-
mizing) a linear function over a polyhedron. In this situation the linear function is referred to
as the objective function. A point of the polyhedron is called feasible solution. If the objective
function attains its optimum value in a feasible point, then the point is called an optimal
solution.

Given an H-polyhedron PA = {x ∈ Rd | a−Ax ≥ 0} and a vector c ∈ Rd, we call

sup cTx

s.t. x ∈ PA
(2.2.6)

the primal LP. To the primal problem, we associate the so-called dual problem

inf aT y

s.t. yTA = c

y ≥ 0.
(2.2.7)

The set of feasible solutions {y ≥ 0, yTA = c} for (2.2.7) is again a polyhedron (dependent
on c).

It is evident from the construction of the problems, that weak duality holds, i.e., for every
pair of primal and dual feasible solutions (x, y) ∈ Rd × Rk, it holds that cTx ≤ aT y. If both,
x and y, are not only feasible but also optimal, then we get a stronger result.

Proposition 2.2.5 (Strong Duality in Linear Programming [Sch86, Corollary 7.1g]). Let PA
be a nonempty H-polyhedron. Assume that the dual polyhedron is also nonempty. Let c ∈ Rd
be fixed. Then

max
{
cTx | x ∈ PA

}
= min

{
aT y | y ≥ 0, AT y = c

}
.

In particular, for every pair of primal and dual optimal solutions (x, y), we have cTx = aT y.

An LP can be solved efficiently from both the theoretical and the practical perspective. In
the late 1970s, Khachiyan [Kha80] proved that linear programming (with rational input) is
solvable in polynomial time using the ellipsoid method (see also [Sch86, Theorem 13.4]). In
practice, however, the ellipsoid method turns out to be impracticable. On the other hand, the
famous simplex algorithm (see, e.g., [Sch86, Chapter 11]) is highly efficient in practice while
its complexity is unknown. In recent years, interior point algorithms provide (alongside with
the simplex algorithm) the most effective solution technique; see, e.g., [GM07]. For a brief
history of linear programming we refer to [Bix12]. Latest benchmarks on linear programming
can be found on Mittelmann’s homepage [Mit].
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2.3 Spectrahedra and Semidefinite Programming

Projection of Polyhedra. Denote by π : Rd+m → Rd, (x, y) 7→ x the linear coordinate
projection map. First we treat the case of V-presented polytopes.

Lemma 2.2.6. Let B = {b(1), . . . , b(l)} ⊆ Rd+m with b(i) = (x(i), y(i)). Denote by π(Q) the
projection of the V-polytope Q = conv(B). Then π(Q) = conv{x(1), . . . , x(l)}.

Proof. Write X := conv{x(1), . . . , x(l)} and let p ∈ X. Then there exists a λ ∈ Rl+ such that
1Tl λ = 1 and p =

∑l
i=1 λix

(i). Define q =
∑l
i=1 λiy

(i). Then (p, q) ∈ Q and hence p ∈ π(Q).

For the converse, let p ∈ π(Q). Then there exists q ∈ Rm such that (p, q) ∈ Q, i.e., there
exists a vector λ ∈ Rl+ such that 1Tl λ = 1 and (p, q) =

∑l
i=1 λib

(i) =
∑l
i=1 λi(x(i), y(i)) =

(
∑l
i=1 λix

(i),
∑l
i=1 λiy

(i)). Thus p ∈ conv{x(1), . . . , x(l)} = X.

While for V-polytopes the situation is straightforward, the situation changes for projec-
tions of H-polytopes. By Fourier-Motzkin elimination, given an H-polyhedron P = {(x, y) ∈
Rd+m | a−Ax−A′y ≥ 0}, the projection of P onto the x coordinates, π(P ), is again an H-
polyhedron. Unfortunately, a quantifier-free H-description of π(P ) can be exponential in the
input size (d,m, k) respectively (d, n, l); see [Zie95, Sections 1.2 and 1.3] and the references
therein.

From Farkas’ Lemma one can deduce a description of the polar of a polyhedron and its
projection.

Proposition 2.2.7. Let π(PA) = {x ∈ Rd | ∃y ∈ Rm : a−Ax−A′y ≥ 0} be the projection
of a polyhedron with a ∈ Rk+. Define I = {i ∈ [k] | ai > 0} and Ī = [k]\I = {j ∈ [k] | aj = 0}.
Set AT = [AT , A′T ]. Then, after an appropriate rescaling of the rows of A and A′,

PA
◦ = conv

(
AT
I ∪ {0}

)
+ cone

(
AT
Ī

)
and π(PA)◦ = π

(
PA
◦ ∩

(
Rd × {0}

))
Furthermore, PA◦ is bounded if and only if a > 0.

The decomposition of a polar polyhedron can be seen as the sum of a linear image of the
|I|-dimensional simplex ∆|I| ⊂ R|I|+1 and a linear image of the cone R|[n]\I|

+ .

2.3 Spectrahedra and Semidefinite Programming

We state fundamental results on the theory of spectrahedra and sketch the basic concepts
of semidefinite programming. As general references we refer to the books of de Klerk [dK02]
and Tunçel [Tun10].

For real symmetric matrices A0, . . . , Ad ∈ Sk, an (affine) linear matrix polynomial

A(x) = A0 +
d∑
p=1

xpAp ∈ Sk[x] (2.3.1)

is called a linear (matrix) pencil. The positivity domain of A(x) is defined as the set of all
points in Rd for which A(x) is positive semidefinite, i.e.,

SA =
{
x ∈ Rd | A(x) � 0

}
,

11



2 Basic Facts on Polyhedra, Spectrahedra, and Optimization

where A(x) � 0 denotes positive semidefiniteness of the linear pencil evaluated in the point
x ∈ Rd. A linear matrix pencil is strictly feasible if it evaluates positive definite at some point,
i.e., A(x) � 0 for some x ∈ Rd. Note that strict feasibility implies full-dimensionality of SA,
but the converse is not true in general.
The closed, convex and basic closed semialgebraic set SA is called a spectrahedron. Fol-

lowing the notation for bounded polyhedra, we call a bounded spectrahedron a spectratope.
Sometimes, we are interested in the homogeneous case, i.e.,

A(x0, x) = x0A0 +
d∑
p=1

xpAp ∈ Sk[x0, x].

The solution set {(x0, x) ∈ Rd+1 | A(x0, x) � 0} of the homogeneous pencil is a closed convex
cone.
Back to the late 1970s, semidefinite programming entered the field of combinatorial op-

timization through Lovász’ semidefinite relaxation on the Shannon capacity of a graph;
see [Lov79]. Since then it has been studied as a relaxation technique for many computa-
tionally hard combinatorial problems as, e.g., the MAX-CUT problem [GW95]. In the last
years, there has been strong interest in understanding the geometry of spectrahedra and their
projections (see, e.g., [Bar12, GN11, HN10]), particularly driven by their intrinsic relevance
in polynomial optimization [Ble12, GPT10] and convex algebraic geometry [HN12, HV07].
See also Section 2.4.
Every polyhedron PA = {x ∈ Rd | a+ Ax ≥ 0} has a natural representation as a spectra-

hedron called the normal form of the polyhedron PA as a spectrahedron,

PA =

x ∈ Rd | A(x) =
k⊕
i=1

ai(x) =

a1(x) 0
. . .

0 ak(x)

 � 0

 , (2.3.2)

where ai(x) = (a + Ax)i for i ∈ [k]. However, the converse is not true, i.e., there exists
nondiagonal linear matrix pencils describing polyhedra. Ramana [Ram97b] showed that the
Polyhedrality Recognition Problem (PRP) for spectrahedra is NP-hard. Extending Ramana’s
ideas, Bhardwaj, Rostalski, and Sanyal [BRS11] reduced PRP to an H-in-S containment
problem (cf. Section 5.2.2).

Proposition 2.3.1 ([BRS11, Corollary 2.4]). Let SA = {x ∈ Rd | A(x) � 0} be a spectrahe-
dron with the origin in its interior. SA is a polyhedron if and only if there exists M ∈ GLk(R)
such that

MA(x)MT = D(x)⊕Q(x)

with a diagonal linear matrix pencil D(x) and SA = SD.

We call a non-diagonal linear pencil describing a polyhedron an S-representation of the
polyhedron, or S-polyhedron for short.
A spectrahedron SA = {x ∈ Rd | A(x) � 0} contains the origin if and only if A0 is positive

semidefinite. Since the class of spectrahedra is closed under translation, this can always be
achieved (assuming that SA is nonempty). Indeed, there exists a point x′ ∈ Rd such that
A(x′) � 0 if and only if the origin is contained in the set {x ∈ Rd | A(x + x′) � 0}. In
particular, the constant term in the linear pencil A′(x) = A(x+ x′) is positive semidefinite.
Contrary to the polyhedral situation, positive definiteness of A0 is only sufficient for the

origin being an interior point. However, SA contains the origin in its interior if and only if

12



2.3 Spectrahedra and Semidefinite Programming

there is a linear pencil A′(x) with the same positivity domain such that A′0 = Ik; see [HV07].
We refer to such a pencil as a monic linear pencil.
More generally, the interior of SA does not have to coincide with the positive definiteness

region of the pencil (but the interior contains the latter set).

Proposition 2.3.2 ([GR95, Corollary 5]). Let A(x) ∈ Sk[x] be a linear pencil and let N =⋂d
i=0 ker(Ai) be the intersection of the coefficient nullspaces. Define A′(x) = V TA(x)V , where

V is a basis of the orthogonal complement N⊥. If SA is full-dimensional, then SA = SA′ and
intSA = intSA′ = {x ∈ Rd | A′(x) = V TA(x)V � 0}.

We call a linear pencil with the property intSA = {x ∈ Rd | A(x) � 0} a reduced linear
pencil.
We occasionally assume the matrices A1, . . . , Ad to be linearly independent. This assump-

tion is not too restrictive. In order to see this, denote by Ã(x) = A(x)−A0 the pure-linear part
of the linear pencil A(x). Recall the well-known fact that the lineality space LA of a spectrahe-
dron SA, i.e., the largest linear subspace contained in SA, is the set LA = {x ∈ Rd | Ã(x) = 0};
see [GR95, Lemma 3]. Obviously, if the coefficient matrices A1, . . . , Ad are linearly indepen-
dent, then the lineality space is zero-dimensional, i.e., LA = {0}. In particular, this is the
case whenever the spectrahedron SA is bounded (and A0 � 0); see Lemma 2.3.6. Conversely,
if there are linear dependencies in the coefficient matrices, then we can simply reduce the
containment problem to lower dimensions.

Proposition 2.3.3. Let A(x) ∈ Sk[x] and B(x) ∈ S l[x] be linear pencils such that SA is
nonempty.
(1) LA = {0} if and only if A1, . . . , Ad are linearly independent.
(2) If SA ⊆ SB, then LA ⊆ LB.
(3) If LA ⊆ LB, then SA ⊆ SB holds if and only if SA′ ⊆ SB′ holds, where SA′ = SA ∩ L⊥A

and SB′ = SB ∩ L⊥A.

To prove the proposition, we need a result concerning the lineality space of a closed convex
set.

Lemma 2.3.4 ([Web94, Theorem 2.5.8]). Let S be a nonempty closed convex set in Rd with
lineality space L. Then S = L+ (S ∩ L⊥) and the convex set S ∩ L⊥ contains no lines.

Proof of Proposition 2.3.3.
To (1): This follows directly from LA = {x ∈ Rd | Ã(x) = 0} and the definition of linear
independence.
To (2): If LA = {0}, then LA ⊆ LB is obviously true. Therefore, assume LA 6= {0}. Let
x̄ ∈ SA ⊆ SB and 0 6= x ∈ LA. As above, denote by B̃(x) = B(x)−B0 =

∑d
p=1 xpBp the pure-

linear part of B(x). Then A(x̄+ tx) � 0 for all t ∈ R and hence B(x̄)± tB̃(x) = B(x̄± tx) � 0
for all t ∈ R. Consequently, ±B̃(x) � 0, i.e., B̃(x) = 0. Thus the linear subspace span x
is contained in LB. Since 0 6= x ∈ LA was arbitrary and LB is a linear subspace, we have
LA ⊆ LB.
To (3): Assume first SA ⊆ SB holds. Then SA′ = SA∩L⊥A ⊆ SB∩L⊥A = SB′ . For the converse,
note that SA = LA + SA′ . Let x ∈ SA. Then x = x1 + x2 with x1 ∈ LA and x2 ∈ SA′ . Since
x1 ∈ LA ⊆ LB and x2 ∈ SA′ ⊆ SB′ ⊆ SB, we have x ∈ LB + SB = SB.

If A0 ∈ span{A1, . . . , Ad}, then SA is an affine cone. A cone is called pointed if the lineality
space is zero-dimensional.
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2 Basic Facts on Polyhedra, Spectrahedra, and Optimization

Proposition 2.3.5. Let A(x) ∈ Sk[x]. SA is an affine cone if and only if A0 =
∑
i∈[d] λiAi

for some λ ∈ Rd, i.e., A0 ∈ span{A1, . . . , Ad}. In this case, SA equals the shifted recession
cone SA = RA−λ. Moreover, SA is pointed if and only if A1, . . . , Ad are linearly independent.

Proof. By Ramana [GR95, Lemma 3], the recession cone RA of SA has the form RA = {x ∈
Rd | Ã(x) � 0}. Let x ∈ SA. Then 0 � A(1, x) =

∑
i∈[d] λiAi+

∑
i∈[d] xiAi =

∑
i∈[d](xi+λi)Ai,

implying x + λ ∈ RA. Conversely, let x ∈ RA. Then A(1, x − λ) =
∑
i∈[d] λiAi +

∑
i∈[d](xi −

λi)Ai =
∑
i∈[d] xiAi � 0, implying x− λ ∈ SA. Therefore SA = RA − λ. By [GR95, Corollary

6], SA is (linear) conical if and only if SA = RA. Hence SA is affine conical if and only if
SA = RA − λ. The statement concerning pointedness follows from Proposition 2.3.3.

As opposed to the polyhedral case, deciding boundedness of a spectrahedron is somewhat
tricky. It can be formulated as a semidefinite feasibility problem (2.3.13), whose complexity
is not fully classified. Linear independence of A0, A1, . . . , Ad is a necessary condition for
boundedness of the spectrahedron SA.

Lemma 2.3.6 ([HKM13, Proposition 2.6]). Let A(x) ∈ Sk[x] be a linear pencil. If A0 � 0
is nonzero and the spectrahedron SA is bounded, then the coefficient matrices A0, . . . , Ad are
linearly independent.

Proof. First note that because of A0 � 0, we have 0 ∈ SA 6= ∅.
Let 0 6= (x0, x) ∈ Rk+1 with x0A0 + · · · + xdAd = 0. Then x 6= 0 (since x = 0 and A0 6= 0

implies x0 = 0). If x0 = 0, then A0+
∑d
i=1 txiAi = A0 � 0 for all t ∈ R. Thus SA is unbounded.

Otherwise, x0 6= 0, we have A0 +
∑d
i=1(1/x0)xiAi = 0. Therefore

∑d
i=1(−t/x0)xiAi = tA0 � 0

for all t > 0, and hence A0 +
∑d
i=1(−t/x0)xiAi � 0 for all t > 0 which again implies

unboundedness of SA.

The converse of the above statement is not true. Too see this, assume A0, A1, . . . , Ad to be
linearly independent and positive semidefinite. (Note that this is possible since the cone of
positive semidefinite matrices is full-dimensional in the space of symmetric matrices.)
We state analogs of Farkas’ Lemma for the spectrahedral situation.

Lemma 2.3.7 (Farkas’ Lemma for cones I [GM12, Lemma 4.5.6]). Let Ã(x) =
∑d
i=1 xiAi ∈

Sk[x] be a pure-linear pencil and let c ∈ Rd. Then exactly one of the following two systems
has a solution.

∃(Zj)j ∈ Sk+ : lim
j→∞

〈Ai, Zj〉 = ci ∀i ∈ [d] (2.3.3)

∃x ∈ Rd : Ã(x) ∈ Sk+, 〈x, c〉 < 0 (2.3.4)

Lemma 2.3.8 (Farkas’ Lemma for cones II [Tun10, Theorem 2.22]). Let A(x) ∈ Sk[x] be a
linear pencil and denote by Ã(x) =

∑d
i=1 xiAi the pure-linear part. Then exactly one of the

following two systems has a solution.

∀ε > 0 ∃A′0 ∈ Sk, ∃x ∈ Rd : ‖A0 −A′0‖ < ε, A′0 + Ã(x) ∈ Sk+ (2.3.5)
∃Z ∈ Sk : Z � 0, 〈Ai, Z〉 = 0 ∀i ∈ [d], 〈A0, Z〉 < 0 (2.3.6)

The Farkas type lemmas (and thus the theory of semidefinite programming, see below) lack
in the fact that the linear image of the cone of positive semidefinite matrices is not closed in
general (cf. Lemma 2.3.9). Additional conditions which leads to more clean formulations are
called constraint qualification.
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Lemma 2.3.9 ([BPT13, Theorem 2.28]). Let A(x) ∈ Sk[x] be a strictly feasible pure-linear
pencil. Then the set {(〈Ai, Z〉)di=1 | Z ∈ Sk+} is closed and thus either (2.3.4) holds or the set
{Z ∈ Sk+ | 〈Ai, Z〉 = ci, i ∈ [d]} is nonempty.

Lemma 2.3.10 ([BV04, Example 5.14]). Let A(x) ∈ Sk[x] be a linear pencil. Assume the
condition

d∑
i=1

xiAi � 0 =⇒
d∑
i=1

xiAi = 0

holds for any x. Then either (2.3.6) has a solution or SA is nonempty. If A1, . . . , Ad are
linearly independent, then the above condition can be replaced by the condition

d∑
i=1

xiAi � 0 =⇒ x = 0.

In view of Propositions 2.3.3 and 2.3.5, the constraint qualification stated in Lemma 2.3.10
says that the recession cone RA of SA coincides with the lineality space LA of SA or, in the
case of linearly independent A1, . . . , Ad, RA = LA = {0}. We use this constraint qualification
in Section 6.2.

In the late 1990s, Ramana stated a new Farkas’ type lemma for spectrahedra which closes
the gap in the straightforward version of Farkas’ Lemma for cones. Unfortunately, Ramana
introduces a high amount of additional variables and constraints. It turns out that this is
exactly the face reduction method studied by Borwein and Wolkowicz; see [RTW97].

Lemma 2.3.11 (Ramana’s Lemma [RTW97, Section 4.1]; see also [Ram97a]). Let A(x) ∈
Sk[x] be a linear pencil. Then exactly one of the following two systems has a solution.

∃x ∈ Rd : A(x) ∈ Sk+ (2.3.7)
∃W ∈ Wt, U ∈ Sk+ : 〈Ai, U +W 〉 = 0 ∀i ∈ [d], 〈A0, U +W 〉 < 0, (2.3.8)

where Wt is defined as

Wt =
{
Wt +W T

t ∈ Sk | ∃(U1,W1; . . . ;Ut,Wt) ∈ Sk ⊕ Rk×k ⊕ · · · ⊕ Sk ⊕ Rk×k :

W0 = 0,
〈
Aj , Ui +Wi−1 +W T

i−1

〉
= 0 ∀j ∈ [d],〈

A0, Ui +Wi−1 +W T
i−1

〉
= 0, Ui �WiW

T
i , ∀i ∈ [t]

}
,

for some t ≥ 1.

Since in Lemma 2.3.11 the first three conditions are linear and the last condition can be
rephrased as [

I W T
i

Wi Ui

]
� 0,

the set of all (U1,W1; . . . ;Ut,Wt) is closed and convex. Moreover, (Wt)1≤t≤d defines an in-
creasing chain of linear subspaces, i.e., W1 ⊆ · · · ⊆ Wd ⊆ Sk. The proof of these facts is
not hard but sophisticated; see [Ram97a]. By a dimension counting argument, the number of
iterations t in Lemma 2.3.11 is bounded from above by the minimum of the number of vari-
ables d and the size of the linear pencil k, i.e., t ≤ min{d, k}. As mentioned by Sturm [Stu00],
the so-called degree of singularity ds(A(x)) equals the minimum number of steps t needed in
Ramana’s Lemma. Computing ds(A(x)) is itself a hard problem.
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Lemma 2.3.12 (Ramana’s Lemma - Dual [RTW97, Section 4.2]). Let Ã(x) =
∑d
i=1 xiAi ∈

Sk[x] be a pure-linear pencil and let c ∈ Rd. Then exactly one of the following two systems
has a solution.

∃Z ∈ Sk+ : 〈Ai, Z〉 = ci ∀i ∈ [d] (2.3.9)
∃Z ∈ Zt, x ∈ Rd : Z + Ã(x) � 0, 〈c, x〉 < 0, (2.3.10)

where Zt is defined as

Zt =
{
Zt + ZTt ∈ Sk | ∃(x1, Z1; . . . ;xt, Zt) ∈ Rd ⊕ Rk×k ⊕ · · · ⊕ Rd ⊕ Rk×k : Z0 = 0,

Ã(xi) + Zi−1 + ZTi−1 � 0, Ã(xi) � ZiZTi , xTi c = 0 ∀i ∈ [t]
}
,

for t ≥ 1.

Recently, Liu and Pataki consider a new approach based on “elementary reformulations”;
see [LP14]. For a sum of squares formulation of semidefinite programming see Klep and
Schweighofer [KS13].
From Farkas’ Lemma for cones we can deduce a description of the polar of a spectrahedron.

This goes back to Goldman and Ramana [GR95]. Define the setQA = {Z ∈ Sk+ | 〈A0, Z〉 ≤ 1}.
The image of QA under the linear map (〈Ai, ·〉)i : Sk → Rd is called the algebraic polar of
SA, denoted by

S∗A =
{
x ∈ Rd | ∃Z ∈ Sk+ : 〈A0, Z〉 ≤ 1 and xi = −〈Ai, Z〉 ∀i ∈ [d]

}
.

It always contains the origin but is not closed in general; see [GR95, Section 3]. It can be shown
that the closure of the algebraic polar is equal to the (geometric) polar, SA◦ = clS∗A, provided
that A0 ∈ Sk+. We are now able to state the desired description of the polar spectrahedron.

Proposition 2.3.13. Let A(x) ∈ Sk[x] be a linear pencil with A0 ∈ Sk+. Then

S◦A = clS∗A = cl
{
v ∈ Rd | ∃Z ∈ Sk+ : vi = −〈Ai, Z〉 ∀i ∈ [d], 〈A0, Z〉 ≤ 1

}
.

Furthermore, if A(x) is strictly feasible, then S◦A = S∗A.

The condition A0 ∈ Sk+ ensures that the origin is contained in the spectrahedron SA. If this
is not the case, one can translate the set by any point of SA (provided the set is nonempty).
Note that this is a semidefinite feasibility problem (2.3.13).
Using Ramana’s Lemma for spectrahedra 2.3.11, we can describe the polar of the spectra-

hedron more explicit in the sense that the closure can be omitted.

Corollary 2.3.14 ([Ram97a, Theorem 2]). Let A(x) ∈ Sk[x] be a linear pencil with A0 ∈ Sk+.
The polar of SA has the form

SA
◦ =

{
v ∈ Rd | ∃W ∈ Wt, Z ∈ Sk+ : vi = −〈Ai, U +W 〉 ∀i ∈ [d], 〈A0, U +W 〉 ≤ 1

}
for all t ≥ d− 1.

Note that computing the subspaces Wt for t ≥ d− 1 is computationally expensive.

Semidefinite Programming. A (linear) semidefinite program (SDP) is an optimization prob-
lem of maximizing a linear objective function over a spectrahedron. As in the situation of
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linear programming a point in the spectrahedron is called feasible solution and a feasible
point in which the objective attains its optimum value is referred to as an optimal solution.
Given a spectrahedron SA = {x ∈ Rd | A(x) � 0} and a vector c ∈ Rd, the optimization

problem

sup cTx

s.t. x ∈ SA
(2.3.11)

is called the primal SDP. The associated dual problem is

inf 〈A0, Y 〉
s.t. 〈Ai, Y 〉 = ci, i ∈ [d]

Y ∈ Sk+.
(2.3.12)

The set of dual feasible solutions can easily be rewritten in terms of a linear pencil and thus
is a spectrahedron.
As for linear programming, weak duality holds, i.e., cTx ≤ 〈A0, Y 〉 for all pairs (x, Y ) of

feasible solutions. Strong duality, however, does not hold in this generality. It can be achieved
under the assumption of strict feasibility. Recall that for every strictly feasible linear pencil
the spectrahedron is full-dimensional but the converse has not to be true.
Proposition 2.3.15 (Strong Duality in Semidefinite Programming [dK02, Theorem 2.2]).
Let A(x) ∈ Sk[x] be a linear pencil and let c ∈ Rd be fixed.
(1) Assume A(x) ∈ Sk[x] is strictly feasible and the primal SDP (2.3.11) has a finite optimal

value. Then

sup
{
cTx | x ∈ SA

}
= min {〈A0, Y 〉 | Y � 0, 〈Ai, Y 〉 = ci, i ∈ [d]} .

In particular, there exists a dual optimal solution.
(2) Assume the dual problem is strictly feasible, i.e., set of dual feasible solutions contains

a positive definite matrix, and the optimal value of the dual problem (2.3.12) is finite.
Then

max
{
cTx | x ∈ SA

}
= inf {〈A0, Y 〉 | Y � 0, 〈Ai, Y 〉 = ci, i ∈ [d]} .

In particular, there exists a primal optimal solution.

In theory, SDPs with rational input data are solvable in polynomial time (up to a given
ε > 0) by the ellipsoid method. If both the primal and the dual SDP are strictly feasible, the
optimal value of the semidefinite programs can be approximated up to a given additive error
ε in polynomial time using an interior point method [GM12, Corollary 6.5.3]; see [dK02] for
a more detailed treatment.
A Semidefinite Feasibility Problem (SDFP) is defined as the following decision problem

(see, e.g., [KP97, Ram97a]).

Given d, k ∈ N and rational symmetric k × k-matrices A0, . . . , Ad,

decide whether there exist x ∈ Rd such that A(x) � 0.
(2.3.13)

Equivalently, one can ask whether the spectrahedron SA is nonempty. Although checking
positive semidefiniteness can be done in polynomial time by computing a Cholesky factoriza-
tion, the complexity classification of the problem SDFP is one of the major open complexity
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questions related to semidefinite programming (see [dK02, Ram97a]). Using semidefinite pro-
gramming techniques, a SDFP can be solved efficiently in practice. In our model of computa-
tion, the binary Turing machine (cf. Chapter 3), the following is known. (In the BSS-model,
SDFP lies in the intersection of NP and co-NP; see [Ram97a, Theorem 25]).

Proposition 2.3.16 ([Ram97a, Theorem 25] and [KP97, Theorem 7]). SDFP is in NP if
and only if it is in co-NP. Moreover, unless NP = co-NP, SDFP is neither NP-complete nor
co-NP-complete.
If the number of variables d or the matrix size k is fixed, then SDFP is solvable in polynomial

time.

As seen by a standard example in semidefinite programming (see, e.g., [Ali93, GR95]),
there exists a spectrahedron whose elements have a coordinate of double-exponential size in
the number of variables and hence double-exponential distance to the origin in the number
of variables. Therefore we cannot in general expect to attain a certificate for feasibility (or
boundedness) of a spectrahedron in the sense of an explicit point x ∈ Rd that is polynomial
in the input size.
Using different solvers, there may be significant differences in the time need for computation.

For example, while for small problems the SDP-solver SDPT3 and SeDuMi have a similar
time need, the latter solver is significantly worse in higher dimensions. Mittelmann gives
an overview on “The-State-of-the-Art in Conic Optimization Software” in [Mit12]. On his
homepage, he states benchmarks for the most common SDP solvers; see [Mit]. As one can see
there, at present, the free solver SDPT3 [TTT99] and the commercial solver Mosek [AA00]
(free academic licenses available) are the best performing SDP solvers.
Due to Mittelmann’s benchmarks and the experiences of the author, Mosek seems to out-

performing SDPT3 for most semidefinite programming problems coming from polynomial
optimization problems (see Section 2.4). Thus Mosek is the solver of choice for all examples
stated in this thesis.

Examples of Spectrahedra. We fix the notation of some well-known spectratopes, which
we use in later examples.
An ellipsoid with the origin in its interior can be written as the spectratope SA given by

the linear pencil

A(x) = A0 ⊕ r +
d∑
p=1

xp(Ep,d+1 + Ed+1,p) ∈ Sd+1[x]

with A0 ∈ Sd++ and r > 0. If the ellipsoid has axis-aligned semiaxes, then it has the form

A(x) = Id+1 +
d∑
p=1

xp
ap

(Ep,d+1 + Ed+1,p) ∈ Sd+1[x] (2.3.14)

with (a1, . . . , ad) > 0. We call (2.3.14) the normal form of the ellipsoid. Specifically, for the
case a1 = . . . = ad =: r this gives the normal form of a ball with radius r centered at the
origin.
The d-elliptope is defined by the monic linear pencil

A(x) = Ik +
∑

1≤i<j≤k
xij(Ei,j + Ej,i) ∈ Sk[x], (2.3.15)
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where d = k(k − 1)/2 is the dimension of the spectratope. It appears in many applica-
tions of semidefinite programming to combinatorial problems as, e.g., the MAX-CUT prob-
lem [GW95].
The spectratope (of dual form)

Tk =
{
X ∈ Sk | X � 0, 〈Ik, X〉 = 1

}
(2.3.16)

is called the k-spectraplex (of dimension k(k+1)/2) and can be seen as a spectrahedral analog
of the simplex (2.2.5).

Projections of Spectrahedra. Given a linear pencil A(x, y) ∈ Sk[x, y] with x = (x1, . . . , xd)
and y = (y1, . . . , ym) for some nonnegative integer m, a projection of the spectrahedron SA
is its image under an affine map. By an elementary observation, without loss of generality,
we can assume that the affine projection is a coordinate projection.

Proposition 2.3.17 ([GN11, Section 2]). If a set T ⊆ Rd is the image of a spectrahedron S
under an affine map, then there exists a linear pencil A(x, y) ∈ Sk[x, y] with x = (x1, . . . , xd)
and y = (y1, . . . , ym) for some nonnegative integer m such that T is a coordinate projection
of SA ⊆ Rd+m. Furthermore, if T and S have nonempty interior, then this can be assumed
for SA too.

Due to the proposition, we always assume that the projection of spectrahedron SA as given
by the linear pencil A(x, y) ∈ Sk[x, y] with x = (x1, . . . , xd) and y = (y1, . . . , ym), m ≥ 0, is
the set

π(SA) =
{
x ∈ Rd | ∃y ∈ Rm : A(x, y) � 0

}
, (2.3.17)

where π : Rd+m → Rm denotes the coordinate projection. Note that π(SA) = SA holds for
m = 0. Hence, if we do not state the converse, all statements for projections of spectrahedra
hold for spectrahedra.
While projections of polyhedra are again polyhedral, this is not true for spectrahedra (see,

e.g., [BPT13, Section 6.3.1]). Moreover, whereas spectrahedra are basic closed semialgebraic
sets (the semialgebraic constraints are given by the nonnegativity condition on the principal
minors), projected spectrahedra are generally not. Though they are semialgebraic, they are
not closed in general; see Example 6.2.2.

Lemma 2.3.18. Let A(x, y) ∈ Sk[x, y] be a linear pencil.
(1) SA 6= ∅ ⇐⇒ π(SA) 6= ∅.
(2) If SA is bounded, then π(SA) is bounded.

Proof. The first part of the statement is obvious.
Let π(SA) be unbounded, i.e., there exists x̄ ∈ Rd such that x+tx̄ ∈ π(SA) for all x ∈ π(SA)

and t > 0. By definition, for all t > 0 there exists y ∈ Rm such that A(x+ tx̄, y) � 0, implying
the unboundedness of SA.

The converse of part (2) in the previous lemma is not true in general.

Example 2.3.19. Consider the linear pencil

A(x, y) =

1− x 0 0
0 1 + x 0
0 0 y

 .
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For all t ∈ R+ is (x, y) = (0, t) ∈ SA, i.e., SA is unbounded, but its projection π(SA) = [−1, 1]
is bounded. �

2.4 Polynomial Optimization and Positivstellensätze

Given a set of polynomials G ⊂ R[x] in the variables x = (x1, . . . , xd), a polynomial optimiza-
tion problem is to infimize (or supremize) a objective function f ∈ R[x] on the semialgebraic
set SG = {x ∈ Rd | g(x) ≥ 0 ∀g ∈ G}. Most times we only consider finite sets G.
In the subsequent sections we introduce well-known relaxation techniques to polynomial

optimization problems based on so-called Positivstellensätze. We refer to the books of Blekher-
man et. al. [BPT13], Lasserre [Las10] and Marshall [Mar08].

2.4.1 Handelman’s Positivstellensatz

For a polytope P = {x ∈ Rd | a−Ax ≥ 0}, define the cone

H(P ) =

p ∈ R[x] | p =
∑
α∈Nk

cα

k∏
j=1

(a−Ax)αjj , cα ∈ R+

 (2.4.1)

in the ring R[x] of real polynomials in x = (x1, . . . , xd). Here we assume implicitly that only
finitely many scalar multipliers cα are nonzero.

Proposition 2.4.1 (Handelman’s Positivstellensatz [Han88]). Given a nonempty polytope
P = {x ∈ Rd | a − Ax ≥ 0}, the cone H(P ) contains every polynomial f ∈ R[x] positive on
P .

Handelman’s original statement deals with subfields of the real numbers. This, in particular,
implies that whenever a ∈ Qk, A ∈ Qk×d, and f ∈ Q[x] are rational, then there is a (rational)
certificate for membership of f in the cone H(P ) ⊆ Q[x] and thus for positivity of f on P .
We denote by Ht(P ) the truncated cone

Ht(P ) =

p ∈ R[x] | p =
∑

α∈Nk,|α|≤t
cα

k∏
j=1

(a−Ax)αjj , cα ∈ R+

 ,
where |α| := α1 + · · · + αk. Observe that membership of a polynomial to some fixed Ht(P )
can be decided by comparing coefficients, which is a linear programming problem. For the
maximization problem max{f(x) | x ∈ P}, this leads to a hierarchy of linear programming
relaxations

max {f(x) | x ∈ P} = inf {ν | ν − f ∈ H(P )} ≤ inf {ν | ν − f ∈ Ht(P )} .

Since in the latter program all information is encoded in the coefficients of the polynomials
involved, it reduces to a (finite dimensional) linear program. Clearly, it does not make sense
to consider a relaxation order t less than the degree of f . Thus we always assume t ≥ deg(f)
and call t = deg(f) the initial relaxation order.
There are some advantages and disadvantages of the LP-approach based on Handelman’s

Theorem (as compared, e.g., with the semidefinite approach in the subsequent section). Since,
both in theoretical issues (such as exactness of duality theory) and in practical speed, linear
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programming has advantages compared to semidefinite programming, this makes the Han-
delman approach attractive.
On the other hand, if for one of the global maximizers the set of active constraints is empty,

i.e., a global maximizer lies in the interior of the polytope, then no Handelman representation
exists; see [Las02, Theorem 3.1]. Since in our specific problem (cf. Chapter 4) all maximizers
are part of the boundary, this obstacle does not occur. However, because of the large binomial
coefficients involved, the LP relaxation is ill conditioned in general. In practice, setting up
the problem, i.e., extracting the linear program from the input, takes a lot more time than
actually solving the resulting LP.
The Handelman relaxation can also be applied to general semialgebraic sets as in the

subsequent section. We do not need this here and refer to Lasserre’s book [Las10].

2.4.2 Putinar’s Positivstellensatz

Consider a set of polynomials G = {g1, . . . , gk} ⊂ R[x] in the variables x = (x1, . . . , xd). The
quadratic module generated by G is defined as

QM(G) =
{
σ0 +

k∑
i=1

σigi | σi ∈ Σ[x], i ∈ [k]
}
, (2.4.2)

where Σ[x] ⊂ R[x] is the set of sum of squares polynomials. A polynomial p ∈ R[x] is called
sum of squares (sos) if it can be written in the form p =

∑
i hi(x)2 for some hi ∈ R[x].

Equivalently, p has the form [x]Tt Q[x]t, where [x]t is the vector of all monomials in x up to
half the degree of p, deg(p) = 2t, and Q is a positive semidefinite matrix of appropriate size.
Checking whether a polynomial is sos is an SDFP (2.3.13). We denote by Σt[x] the set of sos
polynomials of degree at most 2t.
If a polynomial f(x) ∈ R[x] lies in QM(G), then we say f has a sum of squares decompo-

sition in g1, . . . , gk. Obviously, every element in QM(G) is nonnegative on the semialgebraic
set SG = {x ∈ Rd | g(x) ≥ 0 ∀g ∈ G}. Putinar [Put93] showed that the converse is true under
some regularity assumption.

Definition 2.4.2. A quadratic module QM is called Archimedean if one of the following
equivalent conditions holds.
(1) There is a polynomial p(x) ∈ QM such that the level set {x ∈ Rd | p(x) ≥ 0} is compact.
(2) n− (x2

1 + · · ·+ x2
d) ∈ QM for some integer n ≥ 1.

(3) n± xi ∈ QM for i ∈ [d] and some integer n ≥ 1.

For a proof that these conditions are indeed equivalent, we refer to Marshall’s book [Mar08].

Proposition 2.4.3 (Putinar’s Positivstellensatz [Put93] – see also [Mar08, Theorem 5.6.1]).
Let SG = {x ∈ Rd | g1(x) ≥ 0, . . . , gk(x) ≥ 0} for some polynomials g1, . . . , gk ∈ R[x]. If the
quadratic module QM(G) is Archimedean, then QM(G) contains every polynomial f ∈ R[x]
positive on SG.

The Archimedean condition in the proposition is not very restrictive. Since every com-
pact semialgebraic set is contained in a scaled unit ball by the definition of boundedness,
Archimedeanness can always be achieved by adding the ball defining polynomial to the con-
straint set. However, in the general situation, the radius is not known a priori. In the case of
linear polynomials gi, the condition is always fulfilled.
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Corollary 2.4.4 ([Mar08, Theorem 7.1.3]). If the polynomials gi in Proposition 2.4.3 are
linear and P = SG is a polytope, then the quadratic module QM(P ) is Archimedean.

Proof. Let P = {x ∈ Rd | a−Ax ≥ 0} be a nonempty polytope in H-description. Compute
the minimum c > 0 such that P ⊆ {x ∈ Rd | c ± xi ≥ 0, i ∈ [d]}. By Farkas’ Lemma 2.2.2,
every linear polynomial c ± xi is a nonnegative combination of the rows in a − Ax. Thus
c± xi ∈ QM(P ).

We illustrate this fact by an example.

Example 2.4.5. The d-dimensional unit cube is given by the 2d inequalities 1± xi. Since

2(1− x2
i ) = (1− xi)2(1 + xi) + (1 + xi)2(1− xi) ∈ QM(1± xi)

for i ∈ [d], the quadratic module is Archimedean.

Nie and Schweighofer [NS07] stated an exponential upper bound on the degree of a sos-
representation for all polynomials f positive on a certain nonempty semialgebraic set S
rescaled to fit in the open unit cube. However, in practice, often a small degree suffices;
see [NS07, Theorem 6].
Powers recently showed that if the polynomials f, g1, . . . , gk have only rational coefficients

and the polynomial gk+1 = N − xTx is a member of the quadratic module for some positive
integer N , then there exists a rational certificate, i.e., σi ∈ Q[x], for f to be positive on S in
the terms of g1, . . . , gk, gk+1; see [Pow11, Theorem 7].
In order to apply Proposition 2.4.3 to polynomial optimization, consider an optimization

problem

sup {f(x) | gi(x) ≥ 0, i ∈ [k]} (2.4.3)

with f, g1, . . . , gk ∈ R[x]. Clearly, this is the same as to infimize a scalar µ such that
µ− f(x) ≥ 0 on the set SG. A natural relaxation of the latter reformulation is to replace the
nonnegativity condition by an sos-condition. This is a semi-infinite program since deciding
membership can be rephrased as a semi-infinite feasibility problem (i.e., an infinite dimen-
sional semidefinite program). In order to get a (finite-dimensional) semidefinite program, we
truncate the quadratic module QM(G) by considering only monomials up to a certain degree
2t,

QMt(G) =
{
σ0 +

k∑
i=1

σigi | σ0 ∈ Σt[x], σi ∈ Σt−dtG/2e[x] for i ∈ [k]
}
⊆ R[x],

where tG denotes the maximum degree of the polynomials g1, . . . , gk. The tth sos-relaxation
of the polynomial optimization problem (2.4.3) has the form

µ(t) = inf {µ | µ− f(x) ∈ QMt(G)} . (2.4.4)

Clearly, the sequence of truncated quadratic modules is increasing with respect to inclusion
as t grows. Thus the sequence of optimal values µ(t) is monotone decreasing and bounded
from below by the optimal value of (2.4.3).
The dual problem to (2.4.4) can be formulated in terms of moment matrices, again leading

to an SDP relaxation of the polynomial optimization problem (2.4.3). From a computational
point of view it is often easier (i.e., faster) to compute the dual side. But extracting a sos-
certificate out of the dual optimal solution is not an easy task in general. Since we do not use
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the dual side here, we refer interested readers to Lasserre’s fundamental work [Las01]. See
also Lasserre’s book on polynomial optimization [Las10].

To end this subsection and to illustrate the approach based on sum of squares techniques,
we state a famous example of a globally nonnegative polynomial which is not a sum of squares.
In fact, this polynomial stated by Motzkin is the first example of such a polynomial. The
example shows the possible advantages of testing nonnegativity with respect to semialgebraic
sets.

Example 2.4.6. The Motzkin polynomial is (globally) nonnegative but not a sum of squares
(of polynomials),

f(x, y) = x4y2 + x2y4 − 3x2y2 + 1.

However, it is a sum of squares of rational functions

f(x, y) = (x2 + y2 − 3)x2y2 + 1

=
[
x2 − y2

x2 + y2

]2

+
[
xy(x2 + y2 − 2)

x2 + y2

]2

+
[
x2y(x2 + y2 − 2)

x2 + y2

]2

+
[
xy2(x2 + y2 − 2)

x2 + y2

]2

.

Thus the Motzkin polynomial multiplied by p2 = (x2 + y2)2 is a sum of squares

p2f(x, y) =
[
(x2 − y2)2 + (xy(x2 + y2 − 2))2 + (x2y(x2 + y2 − 2))2 + (xy2(x2 + y2 − 2))2

]
(implying nonnegativity of f). After homogenization, the Motzkin polynomial is the form

fh(x, y, z) = x4y2 + x2y4 − 3x2y2z2 + z6.

Of course, it is again nonnegative but not a sum of squares. On the other hand, since fh
is homogeneous, it is globally nonnegative if and only if it is nonnegative on the unit ball
defined by the polynomial g = 1− x2− y2− z2. By definition, the quadratic module generated
by g is Archimedean and hence a sos-relaxation (based on a homogeneous version of Putinar’s
Positivstellensatz) yields lower bounds and converges to the optimal value as the relaxation
order goes to infinity. For example, using degree four polynomials (the lowest reasonable
relaxation degree), YALMIP [L0̈4] computes the lower bound µ(4) = −0.0045964 in 0.41
seconds (for d = 6, we get µ(6) = −0.00020332 in 0.73 seconds).

2.4.3 Hol-Scherer’s Positivstellensatz

Consider a matrix polynomial G = G(x) ∈ Sk[x] in the variables x = (x1, . . . , xd), i.e., a
matrix whose entries lie in the polynomial ring R[x]. We say G has degree t if the maximum
degree of the entries is t, i.e., t = max{deg(Gij) | i, j ∈ [k]}. The quadratic module generated
by G(x) is defined as

QM(G) =
{
s0(x) + 〈S(x), G(x)〉 | s0(x) ∈ Σ[x], S(x) ∈ Σk[x]

}
⊆ R[x], (2.4.5)

where Σk[x] ⊆ Sk is the set of sum of squares k×k-matrix polynomials. A matrix polynomial
S = S(x) ∈ Sk[x] is called sum of squares (sos-matrix for short) if it has a decomposition
S = U(x)U(x)T with U(x) ∈ Rk×m[x] for some positive integer m. Equivalently, S has
the form (Ik ⊗ [x]t)TZ(Ik ⊗ [x]t), where [x]t denotes the monomial basis in x up to t =
max{deg(Sij(x))/2 | i, j ∈ [k]} and Z is a positive semidefinite matrix of appropriate size.
For k = 1, S is a sos polynomial as defined in Section 2.4.2. As in the scalar case, checking
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whether a matrix polynomial is a sos-matrix is an SDFP (2.3.13). We denote by Σk
t [x] the

set of sos k × k-matrices of degree at most 2t.
If a polynomial f(x) ∈ Rl[x] lies in QM(G), then we say f has a sum of squares decom-

position in G(x). Obviously, every element in QM(G) is nonnegative on the semialgebraic
set SG := {x ∈ Rd | G(x) � 0}. As in Section 2.4.2, the quadratic module QM(G) is called
Archimedean if N − xTx ∈ QM(G) for some positive integer N . Hol and Scherer [HS04]
showed that for polynomials positive on SG the converse is true under the Archimedeanness
condition. Henrion and Lasserre described the dual approach (in terms of moment matrices);
see [HL06].
Since spectrahedra are defined by linear pencils, we are also interested in matrix polynomials

positive semidefinite on a spectrahedron or, more general, on a semialgebraic set. To that end,
for matrices M = (Mij)li,j=1 ∈ Skl and N ∈ Sk, define

〈M,N〉l := (〈Mij , N〉)li,j=1 =
l∑

i,j=1
Eij · 〈Mij , N〉 , (2.4.6)

where Eij denotes the l× l-matrix with one in the (i, j)th entry and zero otherwise. We refer
to (2.4.6) as the lth scalar product. It can be seen as a generalization of the Gram matrix
representation of a positive semidefinite matrix. Indeed, for positive semidefinite matrices M
and N the l × l-matrix 〈M,N〉l is positive semidefinite as well.
For any positive integer l, define the quadratic module

QMl(G) =
{
S0(x) + 〈S(x), G(x)〉l | S0(x) ∈ Σl[x], S(x) ∈ Σkl[x]

}
⊆ S l[x]. (2.4.7)

Note that QM1(G) = QM(G) as in (2.4.5). If a matrix polynomial F (x) ∈ S l[x] lies in
QMl(G), then we say F has a sum of squares decomposition in G(x). Obviously, every ele-
ment in QMl(G) is positive semidefinite on the semialgebraic set SG. Hol and Scherer [HS06]
showed that for matrix polynomials positive definite on SG the converse is true under the
Archimedeanness condition, analog to Putinar’s Positivstellensatz 2.4.3. See [CT14, Proposi-
tion 3] for an analog statement to Definition 2.4.2.
Interestingly, the usual quadratic module QM1(G) = QM(G) is Archimedean if and only if

QMl(G) is for any positive integer l.

Proposition 2.4.7. The following two statements are equivalent.
(1) For some positive integer l, the quadratic module QMl(G) is Archimedean.
(2) For all positive integers l, the quadratic module QMl(G) is Archimedean.

Furthermore, assume G is a linear pencil. QM(G) (and thus QMl(G) for any l) is Archime-
dean if and only if the spectrahedron SG is bounded.

The equivalence of the first two statements was proved by Helton, Klep, and McCullough
for monic linear matrix pencils in the language of their matricial relaxation; see [HKM13,
Lemma 6.9]. We recapitulate the proof and extend it to quadratic modules generated by
arbitrary matrix polynomials.

Proof. The implication (2) =⇒ (1) is obvious. To show the reverse implication, note first
that QMl(G) is Archimedean if and only if (N − xTx)Il ∈ QMl(G) for some positive integer
N . Let m ∈ N be arbitrary but fixed. We have to show that (N − xTx)Im ∈ QMm(G).
Denote by E1 the m ×m-matrix with one in the entry (1, 1) and zero elsewhere and let Q
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be the l×m-matrix with one in the entry (1, 1) and zero elsewhere. Clearly, E1 = QTQ. Let
(N − xTx)Il = S0 + 〈S,G〉l with S = (Sij)li,j=1 be the desired sos-representation. Setting
S̃0 := QTS0Q = (S0)11E1 ∈ Σm[x] and S̃ = E1 ⊗ S11 ∈ Σm[x], we get

(N − xTx)E1 = QT (N − xTx)IlQ = QT (S0 + 〈S,G〉l)Q = S̃0 +E1 〈S11, G〉 = S̃0 +
〈
S̃, G

〉
m
.

Applying the same to Ei for i ∈ [m] and using additivity of the quadratic module QMm(G)
yields (N − xTx)Im ∈ QMm(G).
The last statement follows from [KS13, Corollary 4.4.2] (see also [KS11]).

We state the desired Positivstellensatz of Hol and Scherer. See [KS10] for an alternative
proof by Klep and Schweighofer using the concept of pure states.

Proposition 2.4.8 (Hol-Scherer’s Positivstellensatz [HS06, Corollary 1]). Let l be a positive
integer and let SG = {x ∈ Rd | G(x) � 0} for a matrix polynomial G ∈ Sk[x]. If the quadratic
module QMl(G) (2.4.7) is Archimedean, then it contains every matrix polynomial F ∈ S l[x]
positive definite on SG.

In [HS06, Section 3.4], Hol and Scherer stated an upper bound on the degree of an sos-
representation. Among others, the bound depends on the degree of the Archimedeanness
certificate, i.e., the degree of an sos polynomial s0 and an sos-matrix S in a representation
N − xTx = s0 + 〈S,G〉 for some positive integer N as well as some Pólya-type quantities.
For l = 1 the application of Proposition 2.4.8 to a polynomial optimization problem (2.4.3)

is similar to the scalar case in Section 2.4.2. For l > 1, there is no natural optimization
formulation. But a feasibility problem of the form “Is the matrix polynomial F ∈ S l[x]
positive semidefinite on SG = {x ∈ Rd | G(x) � 0}?” can be relaxed to “Is F ∈ QMl

t[x] for
some t?”, where the truncated quadratic module QMl

t(G) is defined as

QMl
t(G) =

{
S0(x) + 〈S(x), G(x)〉l | S0(x) ∈ Σl

t[x], S(x) ∈ Σkl
t [x]

}
⊆ S l[x]. (2.4.8)
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3 Complexity of Containment Problems for Projected
Polytopes and Spectrahedra

In this chapter, we review known complexity classifications and classify the complexity of
several containment problems for projections of polytopes and spectrahedra. In particular,
the Polytope Containment problem and the Spectrahedron Containment problem
are known to be co-NP-complete and co-NP-hard, respectively.
Concerning only polytopes, the computational complexity of containment problems strongly

depends on the type of input representations; see [FO85] and [GK93]. Except for the Poly-
tope Containment problem, i.e., H-polytope in V-polytope, all cases are solvable in poly-
nomial time. The situation remains if the inner set is a projected H-polytope (πH) or a pro-
jected V-polytope (πV). In the setting of deciding containment of two projected H-polytopes
(i.e., πH-in-πH), however, the situation changes significantly as the problem turns out to be
co-NP-complete (Theorem 3.2.4).
Concerning containment problems involving spectrahedra, the V-in-S containment problem

can be decided in polynomial time and the S-in-H containment problem can be formulated
by the complement of semidefinite feasibility problems (involving also strict inequalities).
The remaining cases are co-NP-hard. The transition to projections of spectrahedra does not
change the situation significantly. The classification involving polytopes and spectrahedra
(but not their projections) is part of [KTT13, Tra14].
Our model of computation is the binary Turing machine: projections of polytopes are

presented by certain rational numbers, and the size of the input is defined as the length of
the binary encoding of the input data (see, e.g., [GK92]). Consider the linear projection map
π : Rd+m → Rd, (x, y) 7→ x. A πV-polytope P is given by a tuple (d;m; k; v(1), . . . , v(k))
with d,m, k ∈ N, and v(1), . . . , v(k) ∈ Qd+m such that P = π(conv{v(1), . . . , v(k)}) is the
projection of the convex hull onto the first d coordinates. An πH-polytope P is given by a
tuple (d;m; k;A;A′; a) with d,m, k ∈ N, matrices A ∈ Qk×d and A′ ∈ Qk×m, and a ∈ Qk

such that P = {x ∈ Rd | ∃y ∈ Rm : a + Ax + A′y ≥ 0} is bounded. For algorithmic
questions, a linear pencil is given by a tuple (d;m; k;A0, . . . , Ad, A

′
1, . . . , A

′
m) with d,m, k ∈ N

and A0, . . . , Ad, A
′
1, . . . , A

′
m ∈ Qk×k rational symmetric matrices such that the projected

spectrahedron S is given by S = {x ∈ Rd | ∃y ∈ Rm : A(x, y) � 0}.
Section 3.1 reviews the complexity classifications of the Polytope Containment problem,

and links it with related problems in polytope theory. In the subsequent two sections, we
extend the complexity classification to containment problems involving projected polytopes
(Section 3.2), and projected spectrahedra (Section 3.3). See Table 3.1 for a summary.
We use the shortcuts (co-)NPH and (co-)NPC for (co-)NP-hard and (co-)NP-complete,

respectively. Recall the definition of a semidefinite feasibility problem (SDFP) in (2.3.13).

3.1 Complexity of the Polytope Containment Problem

The computational complexity of containment problems concerning polytopes (or, polyhe-
dra) has been studied extensively by Freund and Orlin [FO85] as well as Gritzmann and
Klee [GK93, GK94, GKL95]. The main results are the following.
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3 Complexity of Containment Problems

Proposition 3.1.1 ([FO85, GK94]). The containment problems H-in-H, V-in-V, and V-in-H
can be decided in polynomial time.

This positive result is contrasted by the following hardness statement.

Proposition 3.1.2 ([FO85, GK94]). The Polytope Containment problem, i.e., the de-
cision problem whether an H-polytope is contained in a V-polytope, is co-NPC.
This hardness persists even if the H-polytope is a (standard) cube and the V-polytope is

(the affine image of) a cross polytope.

To prove the co-NP-hardness, Freund and Orlin give a reduction of the so-called integer
containment problem to the Polytope Containment problem. The integer containment
problem asks whether for a given rational matrix A there exists a ±1-vector x such that
the system of linear inequalities Ax ≤ 1 has a solution. This problem is known to be NP-
complete. The membership of the Polytope Containment problem in the class co-NP is
then easily seen, as “H not in V“ can be shown by the existence of an extreme point of the
H-polytope that is not an element of the V-polytope. Thus co-NP-completeness follows. Note
that the co-NP-completeness statement remains valid in the unbounded case, i.e., for H- and
V-polyhedra. See [FO85] for a detailed proof.
In general dimension (i.e., if the dimension is not fixed but part of the input) the size of

one presentation can be exponential in the size of the other [McM70]. In fixed dimension, H-
and V-presentations of a rational polytope can be converted into each other in polynomial
time. Consequently, if the dimension of the polytopes is fixed, the Polytope Containment
problem can be decided in polynomial time. That result can be strengthened slightly.

Theorem 3.1.3. Let P and Q be an H-polytope and a V-polytope, respectively. If the dimen-
sion of P or the dimension of Q is fixed, then the Polytope Containment problem P ⊆ Q
can be decided in polynomial time.

Proof. If the dimension of P is fixed, then first compute the affine hull of P . This can be
done in polynomial time. Taking that affine hull as ambient space in fixed dimension, P can
be transformed into a V-representation in polynomial time. It remains to decide containment
of a V-polytope in a V-polytope, which can be done in polynomial time.
Similarly, if the dimension of Q is fixed, an H-representation of Q can be computed in

polynomial time, and the resulting problem of deciding whether an H-polytope is contained
in an H-polytope can be decided in polynomial time.

⊆ H V S πH πV πS

H P co-NPC co-NPH co-NPC co-NPC co-NPH
V P P P P P SDFP
S SDP co-NPH co-NPH co-NPH co-NPH co-NPH

πH P co-NPC co-NPH co-NPC co-NPC co-NPH
πV P P P P P SDFP
πS SDP co-NPH co-NPH co-NPH co-NPH co-NPH

Table 3.1: Computational complexity of containment problems for (projected) polytopes and
(projected) spectrahedra.
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3.2 Complexity Concerning Projected Polytopes

While in this thesis we concentrate on the Polytope Containment problem, let us briefly
mention some related problems. Finding the largest simplex in a V-polytope is an NP-hard
problem [GKL95]. However, for that problem Packer has given a polynomial-time approxi-
mation [Pac04]. It is well known that the problem of enumerating all facets of a V-polytope
(or, equivalently, enumerating all vertices of an H-polytope) can be polynomially reduced
to the so-called polytope verification problem, i.e., the decision problem whether a given H-
polytope and a given V-polytope coincide; see Avis et. al. [ABS97], Kaibel and Pfetsch [KP03].
Note that enumerating the vertices of an (unbounded) polyhedron is hard [BBE+08]. More-
over, Joswig and Ziegler [JZ04] showed that the polytope verification problem is polynomially
equivalent to a geometric polytope completeness problem. Recently, Gouveia et. al. have stud-
ied the question which nonnegative matrices are slack matrices [GGK+13], and they establish
equivalence of the decision problem to the polyhedral verification problem.

3.2 Complexity Concerning Projected Polytopes

We first extend the complexity classification concerning only polytopes to projected poly-
topes, starting with the positive results.

Theorem 3.2.1. The following containment problems can be decided in polynomial time.
(1) πV-in-H,
(2) πV-in-πV, or V-in-πV, or πV-in-V,
(3) πV-in-πH, or V-in-πH.

Proof. By Lemma 2.2.6, all stated problems reduce to the case concerning V-polytopes
instead of a πV-representation. Hence parts (1) and (2) of the theorem follow from Propo-
sition 3.1.1. Part (3) reduces to a linear feasibility problem (LFP) which can be solved in
polynomial time, e.g., by the ellipsoid method; see [Sch86, Theorem 13.4].

As for the Polytope Containment problem, the situation changes if the inner set is (the
projection of) an H-polytope.

Theorem 3.2.2 (πH-in-πV). Deciding whether an (projected) H-polytope is contained in a
(projected) V-polytope is co-NPC.

Proof. By Lemma 2.2.6, the problems reduce to H-in-V and πH-in-V. The first one is part
of Proposition 3.1.2. Concerning the second statement, it is co-NPH since H-in-V is co-NPC.
Given a certificate for non-containment, i.e., a point p of the πH-polytope which is not in the
V-polytope, one has to solve two LFP’s. Thus the problem is in co-NP.

In the latter theorems, the statements do not differ from the non-projected cases. The next
two theorems show a significant change in the complexity classification when passing from
H-polytopes to projected H-polytopes.

Theorem 3.2.3 (πH-in-H). Deciding whether a projected H-polytope is contained in an
H-polytope can be done in polynomial time.

Proof. Let π(P ) = {x ∈ Rd | ∃y ∈ Rm : a+ Ax+ A′y ≥ 0} be a projected H-polytope and
let Q = {x ∈ Rd | b + Bx ≥ 0} be an H-polytope. Embed Q into Rd+m by Q′ = {(x, y) ∈
Rd+m | b+Bx+0y ≥ 0}. Then the containment problem π(P ) ⊆ Q is equivalent to theH-in-H
containment problem P ⊆ Q′. The statement then follows from Proposition 3.1.1.
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3 Complexity of Containment Problems

An algorithmic proof of the above statement is given in Theorem 6.3.1 using Farkas’
Lemma. While the containment problem πH-in-H is decidable in polynomial time, the situ-
ation changes surprisingly for the reverse containment problem H-in-πH.

Theorem 3.2.4 (πH-in-πH). Deciding whether an (projected) H-polytope is contained in a
projected H-polytope is co-NPC.

Proof. Consider a V-polytope. It has a representation as the projection of an H-polytope
polynomial in the input data. Thus the containment problem H-in-πH is co-NPH since H-
in-V is co-NPC. It is also in the class co-NP since given a certificate for ’H not in πH’, i.e.,
a point p, one can test whether p ∈ H and p 6∈ πH by evaluating the linear constraints of
H (all have to be satisfied) and by solving a LFP, which both is in P by [Sch86, Theorem
13.4]. Therefore H-in-πH is co-NPC. Obviously, the proof remains valid when passing to
πH-in-πH.

3.3 Complexity Concerning Projected Spectrahedra

Theorems 3.3.1 – 3.3.3 give the results concerning (projected) spectrahedra and (projected)
V-polytopes. Theorems 3.3.4 – 3.3.7 state the complexity classification concerning (projected)
spectrahedra and (projected) H-polytopes.

Theorem 3.3.1 (πV-in-S). Deciding whether a V-polytope or its projection πV is contained
in a spectrahedron can be done in polynomial time.

Proof. Consider a V-polytope P = conv{v(1), . . . , v(k)} with v(i) ∈ Qd+m for i ∈ [k]. By
Lemma 2.2.6, its projection to the first d coordinates equals the convex hull of the projection
of the defining points, i.e., π(P ) = conv{π(v(1)), . . . , π(v(k))}. Consequently, π(P ) is contained
in a given spectrahedron if and only if the k points π(v(1)), . . . , π(v(k)) are elements of the
spectrahedron. This can be checked by evaluating the linear pencil defining the spectrahedron
at the k points which can be decided in polynomial time [GVL96].

The positive result is contrasted by the subsequent hardness statement.

Theorem 3.3.2 (πS-in-πV). Deciding whether a (projected) spectrahedron is contained in a
(projected) V-polytope is co-NPH.

Proof. By Lemma 2.2.6, the problem reduces to πS-in-V. Deciding whether a (projected)
spectrahedron is contained in a V-polytope is co-NPH since already the Polytope Con-
tainment problem (Proposition 3.1.1) is co-NPC.

Containment questions for spectrahedra are connected to feasibility questions of semidef-
inite programs in a natural way. Due to Proposition 2.3.16, the subsequent statements on
containment of a (projected) V-polytope in a projected spectrahedron and on containment
of a spectrahedron in an H-polytope do not give a complete answer concerning polynomial
solvability of these containment questions in the Turing machine model.

Theorem 3.3.3 (πV-in-πS). Deciding whether (the projection of) a V-polytope is contained
in a projected spectrahedron is an SDFP (2.3.13), whose size is polynomial in the description
size of the input data.
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3.3 Complexity Concerning Projected Spectrahedra

Proof. By Lemma 2.2.6, the problem reduces to V-in-πS. The latter is a semidefinite fea-
sibility problem. Indeed, let V = {v(1), . . . , v(k)} be a set of distinct points in Qd and let
B(x, y) ∈ S l[x, y] be a linear pencil. Then convV ⊆ π(SB) if and only if for all i ∈ [k] there
exists yi ∈ Rm such that B(v(i), yi) is positive semidefinite. Thus the V-in-πS containment
problem is equivalent to k SDFPs.

In the remaining part of the section, we study the complexity of containment problems
involving (projected) spectrahedra and (projected) H-polyhedra.

Theorem 3.3.4 (πS-in-H). The problem of deciding whether a projected spectrahedron is
contained in an H-polytope can be formulated by the complement of semidefinite feasibility
problems (involving also strict inequalities), whose sizes are polynomial in the description size
of the input data.

Proof. Consider a spectrahedron SA given by the linear matrix pencil A(x, y) and the coordi-
nate projection of SA onto the x-variables π(SA). Given anH-polytope P = {x ∈ Rd | b+Bx ≥
0} with rational input b ∈ Ql and B ∈ Ql×d, construct for each i ∈ [l] the semidefinite feasi-
bility problem

bi +
d∑
j=1

bijxj < 0, A(x, y) � 0

involving a strict inequality. Then π(SA) 6⊆ P if one of the l SDFPs is not solvable.

Ben-Tal and Nemirovski showed that the H-in-S containment problem is co-NPH as the
co-NPH problem of maximizing a positive definite quadratic form over the unit cube can be
formulated as the containment question whether the unit cube is contained in a spectrahe-
dron (defined by a linear pencil with rank-2 coefficient matrices) [GK89, BTN02]. Theobald,
Trabandt, and the author of the thesis at hand give a reduction of the NPC 3-satisfiability
problem (3-SAT) to the containment problem of an H-polytope in a ball [KTT13, Tra14].
From that we deduce the subsequent statements for containment of projected spectrahedra.

Theorem 3.3.5 (πH- or πS-in-S). Deciding whether an (projected) H-polytope or a (pro-
jected) spectrahedron is contained in a spectrahedron is co-NPH. This hardness statement
persists if the H-polytope is a standard cube or if the outer spectrahedron is a ball.

Proof. Since the problem H-in-S is co-NPH (see [BTN02, Proposition 4.1] and [KTT13,
Theorem 3.4]), deciding whether a projected H-polytope or projected spectrahedron is con-
tained in a spectrahedron is co-NPH as well.

While the πS-in-H containment problem is efficiently solvable in practice (due to Theo-
rem 3.3.4), the situation changes if the outer set is given as the projection of an H-polytope.

Theorem 3.3.6 (πS-in-πH). Deciding whether a (projected) spectrahedron is contained in
the projection of an H-polytope is co-NPH.

Proof. The statement follows immediately from Theorem 3.2.4 as H is a subclass of S
(respectively πS).

Theorem 3.3.7 (πH- or πS-in-πS). Deciding whether an (projected) H-polytope or a (pro-
jected) spectrahedron is contained in the projection of a spectrahedron is co-NPH.

Proof. The statement is a consequence of Theorem 3.3.5.
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3 Complexity of Containment Problems

Recall from Section 2.3 that while every H-polytope can be rewritten in terms of a linear
pencil representation, there exist linear pencil representations of polytopes which cannot be
reduced to a diagonal pencil. We call this a S-representation of a polytope (see Proposi-
tion 2.3.1). Since, given a linear pencil, the polyhedral recognition problem (PRP) is NPH,
we do not expect to find a polynomial time algorithm for this containment problem.
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4 Positivstellensatz Certificates for the Polytope
Containment Problem

The Polytope Containment problem can be formulated as a disjointly constrained bilinear
feasibility problem or, equivalently, as the maximization problem of a bilinear function on
the product of two H-polytopes living in different spaces (of the same dimension). While
for linear programs Farkas’ Lemma provides a perfect duality theory, the standard Lagrange
duality fails for bilinear programs.

One way to tackle this problem is the application of a Positivstellensatz in order to get
Farkas’ type certificates for positivity of a (bilinear) polynomial on a given set. For the
Polytope Containment problem, the general theory automatically implies the existence of
such certificates in the situation of strong containment. However, the transition from positivity
to nonnegativity, or, in our geometric situation, the transition from strong containment to
non-strong containment, is a major challenge.

First we treat Handelman’s Positivstellensatz which deals with positivity of polynomials on
polytopes and provides hierarchies of linear programs. We show that the approach behaves
geometrically. From that we deduce a necessary condition for the set of H-polytopes whose
containment in a fixed V-polytope is certified by the tth relaxation step of the Handelman
hierarchy (Theorem 4.2.4). Besides a standard convergence result (Theorem 4.2.1), we discuss
the (widely open) question of degree bounds (Theorem 4.2.5) based on Averkov’s proof of
Handelman’s Positivstellensatz.

Subsequently, we consider Putinar’s Positivstellensatz. That theorem deals with more gen-
eral, semialgebraic constraint sets and it provides hierarchies of semidefinite programs. As in
the Handelman case, the approach behaves geometrically in our setting and thus allows to
state an analog of the necessary condition for the tth relaxation step of the Putinar hierarchy
(Theorem 4.3.5). Based on the study of geometric properties of the bilinear reformulation, we
extend the convergence result for the strong containment case (Theorem 4.3.1) to the case
where the polytopes have (at most) finitely many common boundary points (Theorem 4.3.6).

The chapter is structured as follows. We study geometric properties of a natural bilinear
programming formulation in Section 4.1. Section 4.2 deals with linear relaxations of the
Polytope containment problem, as based on Handelman’s Positivstellensatz. Section 4.3
deals with semidefinite relaxations, as based on Putinar’s Positivstellensatz. In Sections 4.2.2
and 4.3.2, we outline the general behavior of the approaches by providing certificates in
certain specific structured examples (such as cubes and cross polytopes).

4.1 A Bilinear Programming Approach to the Polytope
Containment Problem

For a ∈ Rk, A ∈ Rk×d, and B = [b(1), . . . , b(l)] ∈ Rd×l let

P = PA =
{
x ∈ Rd | a−Ax ≥ 0

}
and Q = QB = conv(B) = conv(b(1), . . . , b(l))
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4 The Polytope Containment Problem

be an H-polytope and a V-polytope, respectively. The subscript in the notion of P and Q
indicates the dependency on the specific representation of the polytopes involved. However,
if there is no risk of confusion, we often state P and Q without subscript.

Throughout the chapter, we assume boundedness and nonemptyness of P , which both can
be tested in polynomial time [Kha80]. W.l.o.g. we assume 0 ∈ Q. If this is not the case, one
can translate Q and P by the centroid of the vertices of Q. The centroid is clearly contained in
Q, and it is an interior point of Q whenever Q has an interior point. Note that by definition,
a V-polytope is never empty. Recall that the polar polyhedron of Q is

Q◦ =
{
z ∈ Rd | 1l −BT z ≥ 0

}
,

where 1l is the all-ones vector in Rl. For a polytope P , the set of vertices and the set of facets
are denoted by V (P ) and F (P ), respectively.

We first collect some geometric properties of the Polytope Containment problem. Our
starting point is the following reformulation as a bilinear feasibility problem.

Proposition 4.1.1. Let the H-polytope P = PA be nonempty and let the V-polytope Q = QB
contain the origin.

(1) P is contained in Q if and only if

xT z ≤ 1 for all (x, z) ∈ P ×Q◦.

(2) We have
sup{xT z | (x, z) ∈ P ×Q◦} = 1

if and only if P ⊆ Q and ∂P ∩ ∂Q 6= ∅.

Proof. To (1): If P ⊆ Q, then for any x ∈ P we have xT z ≤ 1 for all z ∈ Q◦. Conversely, if
xT z ≤ 1 holds for all z ∈ Q◦, then for any x ∈ P we have x ∈ Q◦◦ = Q.

To (2): Let P ⊆ Q and ∂P ∩ ∂Q be nonempty. Then there exists a vertex v ∈ V (P ) and
a facet F ∈ F (Q) such that v ∈ F . F defines a vertex f of the polar Q◦. Further, fT v = 1
implies that the supremum is at least one. By part (1) of the statement, the supremum must
be exactly one.

Conversely, if the supremum is one, then xT z ≤ 1 for all (x, z) ∈ P ×Q◦ and since the set
P ×Q◦ is closed, there exists a point (x̄, z̄) ∈ P ×Q◦ such that x̄T z̄ = 1. Hence x̄T z ≤ 1 for
all z ∈ Q◦ and x̄T z̄ = 1, i.e., x̄ defines a supporting hyperplane of Q◦. Thus x̄ is a boundary
point of Q. Similarly, xT z̄ ≤ 1 for all x ∈ P and x̄T z̄ = 1, implying x̄ ∈ ∂P . Consequently,
x̄ ∈ ∂Q ∩ ∂P .

We record the following slightly more general version for the case that the precondition
0 ∈ intQ is not satisfied.

Corollary 4.1.2. Let QB be an irredundant representation and let the interior of QB be
nonempty. Denote by c = 1

l

∑l
i=1 b

(i) the centroid of QB. Then PA ⊆ QB if and only if

xT z ≤ 1 for all (x, z) ∈ (PA − c)×Q◦B−c ,

where PA − c = {x ∈ Rd | a−A(x+ c) ≥ 0} and B − c = B − c1d×l.
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4.1 A Bilinear Programming Approach to the Polytope Containment Problem

Proposition 4.1.1 suggests to formulate the Polytope containment problem via a dis-
jointly constrained bilinear program

µ∗ = sup xT z

s.t. (x, z) ∈ P ×Q◦.
(4.1.1)

Since 0 ∈ Q◦, the supremum is nonnegative whenever P is nonempty. By Proposition 4.1.1,
P ⊆ Q if and only if the supremum of (4.1.1) is at most 1. The following characterization of
the optimal solutions is based on Konno’s work [Kon76] on bilinear programming.

Proposition 4.1.3. Let P be a nonempty polytope. If the origin is an interior point of Q,
then the set of optimal solutions for (4.1.1) is a set of proper faces F ×G of P ×Q◦, and the
supremum is finite and attained at a pair of vertices of P and Q◦.

For the convenience of the reader, we recall the short proof.

Proof. The objective function attains its maximum since it is continuous and the feasible
region is nonempty, compact by 0 ∈ intQ.
Let (x̄, z̄) ∈ P × Q◦ be an optimal solution. The linear program max{x̄T z | z ∈ Q◦} has

a finite optimal value since its feasible region is nonempty and bounded. Hence there exists
a vertex ẑ of Q◦ at which the optimal value of the LP is attained. Since z̄ ∈ Q◦, we get
x̄T ẑ ≥ x̄T z̄. Analogously, there exists a vertex x̂ ∈ P at which the optimal value of the LP
max{xT ẑ | x ∈ P} is attained. Consequently, x̂T ẑ ≥ x̄T ẑ ≥ x̄T z̄ and, by the optimality of
(x̄, z̄), the pair of vertices (x̂, ẑ) is an optimal solution for (4.1.1).
From the above, it is obvious that the set of optimal solutions is contained in the boundary

∂P × ∂Q◦. Consider an optimal solution (x̄, z̄) ∈ P × Q◦ to (4.1.1). Let Fx̄ (resp. Fz̄) be
the minimal face of P (resp. Q◦) containing x̄ (resp. z̄). For all x ∈ Fx̄, we have x̄T z̄ =
sup{xT z | z ∈ Q◦}. The same holds for all z ∈ Fz̄. Thus Fx × Fz is contained in the set of
the optimal soltions. For the converse, note that every boundary point of a polytope has an
unique minimal face containing it.

There is a nice geometric interpretation of the latter proposition. Since, in the case 0 ∈
intQ, each vertex of Q◦ corresponds to a facet of Q and vice versa, an optimal solution
(x, z) ∈ V (P ) × V (Q◦) of (4.1.1) yields a pair of a vertex of P and a facet defining normal
vector of Q which either certify containment or non-containment. However, since computing
the set of vertices V (Q◦) is an NP-hard problem, it is not reasonable to reduce the problem
to the set of vertices, in general.
The (sign-)oriented Euclidean distance of a point v and a hyperplane H given by H =
{x | 1− hTx = 0} is defined as

dist(v,H) = 1− hT v
‖h‖

.

If the hyperplane defines a facet of a certain polytope, we call this the distance between the
point and the facet. Given two polytopes P and Q, the minimum oriented distance of the
vertices of P and the facets of Q is denoted by

d(P,Q) := min{dist(v, F ) | x ∈ V (P ), F ∈ F (Q)}.

Corollary 4.1.4. Let the origin be an interior point of Q. Denote by (x̄, z̄) ∈ V (P )×V (Q◦) an
optimal solution of (4.1.1). Then the minimum (sign-)oriented distance between the vertices
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of P and the facets of Q is given by the distance of x̄ and Fz̄ = Q ∩ {x ∈ Rd | 1− z̄Tx = 0},
i.e., d(P,Q) = dist(x̄, Fz̄) = 1−z̄T x̄

‖z̄‖ .

Proof. Let (v, f) ∈ V (P )× V (Q◦). Since 0 ∈ intQ, f defines a facet F = Q ∩ {x ∈ Rd | 1−
fTx = 0} of Q. The oriented Euclidean distance dist(v, F ) of v and F is dist(v, F ) = 1−fT v

‖f‖ .
For a given F , the distance has a nonnegative value if and only if v is contained in the positive
halfspace, i.e., v ∈ {x | 1− fT v ≥ 0}.
By Proposition 4.1.1, P is contained in Q if and only if vT f ≤ 1 for every (v, f) ∈ V (P )×

V (Q◦). Thus P ⊆ Q if and only if the oriented distance dist(v, F ) is nonnegative for all
vertices of P and all facets of Q.
Consider an optimal solution (x̄, z̄) ∈ V (P ) × V (Q◦), which exists by Proposition 4.1.3.

Then the distance dist(x̄, Fz̄) = 1−z̄T x̄
‖z̄‖ is minimal over the set of vertices V (P ) and the set

of facets F (Q).

The optimal value of problem (4.1.1) might be attained by other boundary points than
vertices, and, moreover, there might be infinitely many optimal solutions. From a geometric
point of view, this only occurs in somewhat degenerate cases.

Lemma 4.1.5. Let the interior of P be nonempty and let 0 ∈ intQ. The following statements
are equivalent.
(1) Problem (4.1.1) has finitely many optimal solutions.
(2) Every optimal solution of Problem (4.1.1) is a pair of vertices of P and Q◦.
(3) Let α > 0 be the unique minimal factor so that ∂P ∩ ∂(αQ) 6= ∅. ∂P ∩ ∂(αQ) is a finite

set and every v ∈ ∂P ∩ ∂(αQ) lies in the relative interior of a facet of αQ.
(4) Let α > 0 be the unique minimal factor so that ∂P ∩ ∂(αQ) 6= ∅. ∂P ∩ ∂(αQ) is a finite

set and for every v ∈ ∂P ∩ ∂(αQ) the outer normal cone of v with respect to αQ is
1-dimensional.

Proof. We consider the equivalence of the first two statements. Clearly, if the set of optimal
solutions is a subset of V (P ) × V (Q), then there are only finitely many solutions. For the
converse, assume there exists an optimal solution (x̄, z̄) ∈ P × Q◦ which is not a pair of
vertices. Since z̄ is an optimal solution of the LP max{x̄T z | z ∈ Q◦}, every point in the
minimal face F (z̄) of Q◦ containing z̄ is an optimal solution of the LP with the same optimal
value µ∗ = x̄T z̄. Thus the number of optimal solutions is unbounded.
Equivalence of the other statements can be shown in a similar way and is left to the

reader.

Remark 4.1.6. To some extent, all in this section holds for the unbounded case as well, i.e.,
given a nonempty H-presented polyhedron P and a V-presented polyhedron Q = conv(B) +
cone(C) containing the origin, P is contained in Q if and only if

sup{xT z | x ∈ P, 1l −BT z ≥ 0, −CT z ≥ 0} ≤ 1 .

Proposition 4.1.3 indicates to consider vertex tracking algorithms. There is rich literature
of cutting plane and branch-and-bound algorithms for bilinear programming following this
approach; see, e.g., [GU77, Kon76]. Unfortunately, for bilinear programming problems La-
grange duality fails. So far, no converging algorithm is known based on this approach. In the
subsequent sections, we study the bilinear reformulation of the Polytope Containment
problem from the viewpoint of algebraic certificates and (linear and semidefinite) relaxations.
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4.2 Handelman Certificates for the Polytope Containment Problem

4.2 Handelman Certificates for the Polytope Containment
Problem

We study and discuss certificates for the Polytope Containment Problem coming from
Handelman’s Positivstellensatz 2.4.1. This approach leads to a hierarchy of LP-relaxations
to decide the Polytope Containment question. Besides a standard convergence result
(Theorem 4.2.1), we discuss degree bounds on the Handelman representation (Theorem 4.2.5).
To keep notation simple, we denote the (truncated) Handelman cone (2.4.1) generated by

the linear constraints a − Ax and 1 − BT z by Ht(P,Q). The Handelman relaxation for the
bilinear program (4.1.1) is

ν(t) = inf{ν | ν − xT z ∈ Ht(P,Q)}. (4.2.1)

Since the objective function xT z has degree two, the initial relaxation step is t = 2.
Asymptotic convergence of the relaxation in the general case and finite convergence in the

strong containment case are direct consequences of Handelman’s Positivstellensatz. Here we
understand finite convergence in the sense of deciding containment in finitely many steps.
Theorem 4.2.1. Let P be an H-polytope and Q be a V-polytope with 0 ∈ intQ.
(1) If ν(t) ≤ 1 for some integer t ≥ 2, then P ⊆ Q.
(2) The relaxation (4.2.1) converges asymptotically from above to the optimal value µ∗ of

problem (4.1.1).
(3) If P is strongly contained in Q (i.e., P ⊆ Q and ∂P∩∂Q = ∅), then the hierarchy (4.2.1)

certifies containment in finitely many steps, i.e., there exists an integer t ≥ 2 such that
ν(t) ≤ 1.

Proof. The first statement is clear by construction of the relaxation.
For the third statement, let P be strongly contained in Q. Then the optimal value µ∗ of

problem (4.1.1) is less than one by part (2) of Proposition 4.1.1 and thus the polynomial
1− xT z is positive on P ×Q◦. Handelman’s Positivstellensatz 2.4.1 implies the claim.
The second statement follows by blowing up Q such that P ⊆ Q and ∂P ∩ ∂Q = ∅.

In the following, we deduce a necessary condition for the set of H-polytopes whose contain-
ment in a fixed V-polytope is certified by the tth relaxation step of the Handelman hierarchy
(see Theorem 4.2.4 below). Before proving this criterion, we collect some relevant proper-
ties of relaxation (4.2.1) in the forthcoming lemmas. These properties also show that the
relaxation behaves geometrically in a natural way. Recall that every H-representation of a
certain polytope contains the facet defining halfspaces. Similarly, the vertices are part of each
V-representation.
Lemma 4.2.2 (Redundant constraints). Let PA = {x ∈ Rd | a−Ax ≥ 0} and QB = conv(B)
be nonempty polytopes with a ∈ Rk+1, A ∈ R(k+1)×d, and B ∈ Rd×(l+1).
(1) If (a − Ax)k+1 ≥ 0 is a redundant inequality in the H-representation of PA, then it is

also redundant in the Handelman representation (4.2.1), i.e., the inclusion of PA in QB
is certified by a certain relaxation step if and only if it is certified by the same relaxation
step considering PA\Ak+1 instead.

(2) If b(l+1) is a redundant point in the V-representation of QB, then it is also redundant in
the Handelman representation (4.2.1), i.e., PA ⊆ QB is certified by a certain relaxation
step if and only if it is certified by the same relaxation step considering QB\b(l+1) instead.
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Proof. We only prove statement (1), the proof of part (2) is analogous. Let

ν(t)− xT z =
∑

|α,β,γ|≤t
cα,β,γ(a−Ax)α(1−BT z)β(a−Ax)γk+1 ∈ Ht(PA, QB)

with nonnegative cα,β,γ be a Handelman representation of ν(t) − xT z for some t ≥ 2. Since
(a− Ax)k+1 is redundant in the description of PA, we can write it as a convex combination
of the remaining linear polynomials,

(a−Ax)k+1 = λT (a−Ax), λT1k = 1, λ ∈ Rk+.

The multinomial theorem implies

(a−Ax)γk+1 =
∑
|δ|=γ

(
γ

δ1, . . . , δk

)
k∏
j=1

(λj(a−Ax)j)δj .

Replacing (a− Ax)γk+1 in the Handelman representation by the above term for any γ yields
a Handelman representation of the form

ν(t)− xT z =
∑

|α′,β′|≤t
cα′,β′

k∏
i=1

(a−Ax)α
′
i
i (1−BT z)β′ ∈ Ht(PA\Ak+1 , QB)

with cα′,β′ ≥ 0.

Removing redundant constraints, which is a polynomial time process, may lead to faster
computations; see, e.g., [GK93, Theorem 2.1].

Lemma 4.2.3 (Transitivity).

(1) Given a V-polytope Q and H-polytopes P and P ′ such that P ′ ⊆ P ⊆ Q. If there is a
Handelman representation of a certain degree t ≥ 2 certifying containment of P in Q,
then it also certifies containment of P ′ in Q.

(2) Given V-polytopes Q and Q′, and an H-polytope P such that P ⊆ Q ⊆ Q′. If there is a
Handelman representation of a certain degree t ≥ 2 certifying containment of P in Q,
then it also certifies containment of P in Q′.

Proof. Assume ν(t) − xT z ∈ Ht(P,Q) for some t ≥ 2. By Farkas’ Lemma, we can write
the linear polynomials defining P as convex combinations of the one defining P ′. Using the
multinomial theorem as in Lemma 4.2.2 yields a Handelman representation ν(t) − xT z ∈
Ht(P ′, Q). This proves part (1) of the lemma. The proof of part (2) is analog.

To end this subsection, we state a necessary characterization for the set of H-polytopes
whose containment in a fixed V-polytope is certified by the tth relaxation step of the Handel-
man hierarchy. The underlying idea is to consider the H-polytope as a union of points and
interpreting each of these points as a (degenerated) polytope in H-representation.

We define the (formal) natural H-representation of a point x̄ considered as a d-dimensional
cube with edge length 0,

Cd(x̄) :=
{
x ∈ Rd |

(
−x̄
x̄

)
− Idx ≥ 0

}
, Id =

[
−Id
Id

]
, (4.2.2)
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where Id is the d× d-identity matrix. For t ≥ 2 and a matrix B ∈ Rd×l, let Q = conv(B) and
define the set

RtB =
{
x̄ ∈ Rd | 1 ≥ inf{ν | ν − xT z ∈ Ht(Cd(x̄), Q)}

}
.

Clearly, RtB is a subset of Q for each t ≥ 2.

Theorem 4.2.4. Let Q = convB be a fixed V-polytope. If the containment of an H-polytope
P in Q is certified by the tth relaxation step of the Handelman hierarchy (4.2.1), then P is a
subset of the polytope RtB.

Proof. Assume that the inclusion P ⊆ Q is certified by the tth relaxation step, i.e.,

1 ≥ inf{ν | ν − xT z ∈ Ht(P,Q)} , (4.2.3)

and assume P 6⊆ RtB. Then there exists x̄ ∈ P\RtB. Considering x̄ as fixed, we have

1 < α := inf{ν | ν − xT z ∈ Ht(Cd(x̄), Q)}.

But, by Lemma 4.3.4, this implies a contradiction to (4.2.3).
In order to show that RtB is a polytope, observe that the set {(x̄, ν) ∈ Rd ×R : ν − xT z ∈

Ht(Cd(x̄), Q)} is a polyhedron, and RtB is the projection of this set on the x̄-variables. Since
RtB is bounded, it is a polytope.

4.2.1 Degree Bounds

The computational efforts to compute (good) certificates depends on the degree of a Han-
delman representation for the polynomial 1 − xT z. We are not aware of an explicit degree
bound for a Handelman representation of this polynomial. However, a quantitative treat-
ment of Averkov’s proof of Handelman’s Theorem ([Ave13], cf. also [PR01]) allows at least to
provide an upper bound related to the Pólya exponent of a suitable polynomial. Here, for a
homogeneous polynomial f : Rd → R positive on a simplex {x ∈ Rd+|

∑d
i=1 xi = α} the Pólya

exponent Pólya(f) of f is defined as the minimum N such that (x1 + · · ·+xd)Nf(x) has only
nonnegative coefficients. The existence of such an N is guaranteed by a classical Theorem of
Pólya. Note that due to the homogeneity of f the Pólya exponent is independent of α.
In order to state the connection in an appropriate way, assume that we apply a translation

on P and Q◦ so that they are contained in the positive orthant. Let τ be sufficiently large
such that

τ −
k∑
i=1

(a−Ax)i −
l∑

i=1
(1−BT z)i −

d∑
i=1

xi −
d∑
i=1

zi > 0

on P ×Q◦, and set h : Rd+k × Rd+l → R,

h(x, z) = 1− xT z + c
k∑
i=1

(xd+i − (a−Ax)i)2 + c
l∑

i=1
(zd+i − (1−BT z)i)2

for some constant c > 0. Let h̄(x, z, w) be the homogenization of h with respect to 1
τ (w +∑d+k

i=1 xi +
∑d+l
i=1 zi), which is positive on the simplex ∆ = {(x, z, w) ∈ R2d+k+l+1

+ | w +∑d+k
i=1 xi +

∑d+l
i=1 zi = 1}.

Theorem 4.2.5. Let P and Q◦ be in the positive orthant and let P be strongly contained in
Q. Then there exists a Handelman representation of the polynomial 1− xT z whose degree is
bounded by 2 + Pólya(h̄(x, z, w)).
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Proof. This follows from Averkov’s proof of Handelman’s Theorem in connection with the
observation that in our situation, the re-substitutions xd+i 7→ (a−Ax)i, zd+i 7→ (1−BT z)i,
w 7→ 1 do not increase the degree.

In [PR01, Theorem 1], Powers and Reznick stated a bound on the Pólya exponent in
dependence of the minimum objective value (on the underlying ground simplex).

4.2.2 Examples

To illustrate the behavior of the approach, we discuss some (structured) examples.

Example 4.2.6. Let P = {−1 ≤ xi ≤ 1, i ∈ [d]} be the d-dimensional unit cube and let
Q◦ = {−1 ≤ ezi ≤ 1, i ∈ [d]}, i.e., Q is the d-dimensional unit cross polytope scaled by e > 0.
Then

d

e
− xT z = 1

2e

d∑
i=1

(1− xi)(1 + ezi) + 1
2e

d∑
i=1

(1 + xi)(1− ezi) ∈ H2(P,Q)

is a Handelman representation (2.4.1) of order t = 2 certifying the containment P ⊆ Q for
e ≥ d. Indeed, if e ≥ d, then 1 − xT z ≥ d

e − x
T z ≥ 0, certifying the inclusion P ⊆ Q (with

strong containment if e > d). If e < d, then 1 − xT z < d
e − x

T z. This is not a certificate
for non-containment since there might be a different Handelman representation. However, in
this case, P ⊆ Q if and only if e ≥ d.

Interestingly, while the hardness result in Proposition 3.1.2 indicates the combinatorial
complexity of this problem, the order of the Handelman representation is low (t = 2) and the
number of summands is only linear in the dimension. �

Example 4.2.7. Let P be the d-dimensional unit cube in H-representation as in Exam-
ple 4.2.6, and Q = conv({−1, 1}d) be the d-dimensional unit cube in V-representation. Denote
by rP := {x ∈ Rd | − r ≤ xi ≤ r, i ∈ [d]} the r-scaled unit cube with edge length 2r. Clearly,
rP ⊆ Q if and only if 0 ≤ r ≤ 1. This containment problem is combinatorially hard since
the number of inequalities is equal to 2d + 2d and thus exponential in the dimension. Con-
sequently, setting up a Handelman representation of degree t considers

(
2d+ 2d + t

t

)
possible

terms.

We are interested in the maximal r such that the containment rP ⊆ Q is certified by a
certain relaxation degree t. On the other hand, we can ask for the minimal relaxation order t
such that P = 1P ⊆ Q is certified. Note that such a t only exists in case of finite convergence.

We show that for t = 2, 1
dP ⊆ Q is certified and for t = d + 1, the maximal inclusion

P ⊆ Q is certified. Moreover, in our numerical computations, we get that the tth relaxation
step certifies containment of t−1

d P ⊆ Q; see Table 4.1. The bottleneck of computation is
extracting the LP from the input. Solving the LP is pretty fast.

We write 1 ◦xi, where ◦ ∈ {+,−}, to denote the constraints of P and 1 ◦ zi ∗ zj 6=i to denote
the constraints of Q where ◦ ∈ {+,−} is fixed and ∗ ∈ {+,−}d−1 is arbitrary. For ∗ ∈ {+,−},
denote by ∗−1 the opposite sign (i.e., if ∗ = +, then ∗−1 = −, and vice versa).

For r ≤ 1/d, rP ⊆ Q is certified by the Handelman representation

dr − xT z = 1
2d

d∑
i=1

∑
(◦,∗)∈{+,−}d

(r ◦ xi)
(
1 ◦−1 zi ∗ zj 6=i

)
∈ H2(P,Q).
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d \ t 2 3 4 5

2 1/2 1
3 1/3 2/3 1
4 1/4 2/4 3/4 1

Table 4.1: Computational test of containment of r-scaled H-unit cube in V-unit cube as de-
scribed in Example 4.2.7. The entries denote the maximal r such that containment
in dimension d is certified by relaxation order t.

The maximal inclusion P ⊆ Q is certified by the Handelman representation of degree t =
d+ 1

1− xT z = 1
2d

∑
∗∈{+,−}d

(1 ∗1 x1) · · · (1 ∗d xd)
(
1 ∗−1

1 z1 · · · ∗−1
d zd

)
∈ Hd+1(P,Q). (4.2.4)

Table 4.1 shows the maximal values for r such that containment in dimension d is certified
by a given relaxation order t.
While the example problem seems to be easier than the cube-in-crosspolytope problem in

Example 4.2.6, the Handelman representation in (4.2.4) has an exponential number of sum-
mands, and we are not aware of a more compact Handelman representation. �

We end this section with the numerical behavior of the Handelman relaxation (4.2.1) for
two non-symmetric examples.

Example 4.2.8. Consider the H-polytope P = {x ∈ R2 | 14 −Ax ≥ 0} and the V-polytopes
Q1 = convB1 and Q2 = convB2 defined by

A =


−1 −1
0 −1
1 0
−1 1

 , B1 =
[
−1 0 2 2 −1
1 3 1 −1 −1

]
, B2 =

[
−1 −2 1 2 1
2 0 −2 1 2

]
.

P is contained in both Q1 and Q2 but not strongly contained. Q1 and P share infinitely many
boundary points, in fact, the boundary of Q1 contains a facet of P . Q2 and P intersect in a
single vertex. See Figure 4.2.1.
While for the second problem P ⊆ Q2, we get a numerical certificate even in the initial

relaxation step t = 2, the first problem P ⊆ Q1 is not certified for t = 2. If we scale P as in
Example 4.2.7, the maximum scaling factor for which containment is certified is r = 0.8409.
For t = 3, P ⊆ Q1 is certified. �

4.3 Putinar Certificates for the Polytope Containment Problem

In this section, we apply Putinar’s Positivstellensatz 2.4.3 to the Polytope Containment
problem yielding a hierarchy of semidefinite feasibility problems to decide containment. Our
main goal is to show that in generic cases (in a well-defined sense) Putinar’s approach yields
a certificate for containment after finitely many steps; see Theorems 4.3.1 and 4.3.6.
To keep notation simple, we denote the (truncated) quadratic module (2.4.2) generated by

the linear constraints a−Ax and 1−BT z by QMt(P,Q). The Putinar (or sos) relaxation of
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(a) P (grey area) in Q1 (doted). (b) P (grey area) in Q2 (dashed).

Figure 4.2.1: Two non-symmetric examples as defined in Example 4.2.8.

problem (4.1.1) reads as

µ(t) = inf
{
µ | µ− xT z ∈ QMt(P,Q)

}
. (4.3.1)

Denote the ith constraint defining P ×Q◦ by gi. Let µ − xT z = σ0 +
∑k+l
i=1 σigi be an sos

decomposition. Assume t = 1. Then monomials of degree at most 2 appear, i.e., deg(σ0) ∈
{0, 2} and deg(σigi) ≤ 2. Since deg(gi) = 1 and σi is sos, σi must be constant (otherwise
deg(σi) = 2 and deg(σigi) = 3, i.e., monomials of degree greater than 2 appear). Thus
deg(

∑
i σigi) ≤ 1. Moreover, if deg(σ0) = 2, then purely quadratic terms like x2

j or z2
j appear

for some j. Thus σ0 is constant as well. As a consequence, the first relaxation order making
sense is t = 2. We call t = 2 the initial relaxation order.
As for the application of Handelman’s Positivstellensatz, asymptotic convergence of the

relaxation in the general case and finite convergence in the strong containment case, i.e.,
certification of containment in finitely many steps, follow from the general theory. We have
the following analog of Theorem 4.2.1.

Theorem 4.3.1. Let P be an H-polytope and Q be a V-polytope with 0 ∈ intQ.
(1) If µ(t) ≤ 1 for some integer t ≥ 2, then P ⊆ Q.
(2) The relaxation (4.3.1) converges asymptotically from above to the optimal value µ∗ of

problem (4.1.1).
(3) If P is strongly contained in Q (i.e., P ⊆ Q and ∂P∩∂Q = ∅), then the hierarchy (4.3.1)

certifies containment in finitely many steps, i.e., there exists an integer t ≥ 2 such that
µ(t) ≤ 1.

Proof. The first statement is clear by construction of the relaxation.
Consider the third statement. Since all constraints are linear in x, z and the feasible re-

gion is bounded, the quadratic module generated by the constraints of problem (4.1.1) is
Archimedean, see Corollary 2.4.4, and thus contains all polynomials f(x, z) ∈ R[x, z] strongly
positive on P ×Q◦ by Putinar’s Positivstellensatz 2.4.3.
Let P be strongly contained in Q. Then the optimal value µ∗ of problem (4.1.1) is less

than one by part (2) of Proposition 4.1.1. Thus the polynomial 1−xT z is positive on P ×Q◦
and, by the above, has a sos-representation of certain degree. This proves part (3) of the
statement.
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The second statement follows by blowing up Q such that P ⊆ Q and ∂P ∩ ∂Q = ∅.

A priori it is not clear whether in the non-strong case finite convergence holds. In fact, for
general polynomials, there are examples where finite convergence is not possible. We have a
deeper look at this in Section 4.3.1 where we prove an extension of Theorem 4.3.1.

Similar to Section 4.2, we deduce in Theorem 4.3.5 a necessary condition for the set of
H-polytopes whose containment in a fixed V-polytope is certified by the tth relaxation step
of Putinar’s hierarchy. Here, the criterion will employ the projection of a spectrahedron. To
prepare for this criterion, we show several properties of Putinar’s hierarchy for the Poly-
tope Containment problem in Lemmas 4.3.2–4.3.4, which are the semidefinite analogs to
Lemmas 4.2.2–4.2.3.

First, we see that in our situation the moment relaxation is invariant under redundant
constraints, i.e., redundant inequalities in the H-representation of P or redundant points in
the V-representation of Q. Note that for a general semialgebraic constraint set, this is not
always true, even in the case of optimizing a linear function over it; see [Hen08, Section 5.2]
for a well-known example (cf. also [AGV11]).

Lemma 4.3.2 (Redundant constraints). Let PA = {x ∈ Rd | a−Ax ≥ 0} and QB = conv(B)
be nonempty polytopes with a ∈ Rk+1, A ∈ R(k+1)×d, and B ∈ Rd×(l+1).

(1) If (a − Ax)k+1 ≥ 0 is a redundant inequality in the H-representation of PA, then it
is also redundant in the sos representation (4.3.1), i.e., the inclusion of PA in QB is
certified by a certain step of the hierarchy if and only if it is certified by the same step
considering PA\Ak+1 instead.

(2) If b(l+1) is a redundant point in the V-representation of QB, then it is also redundant
in the sos representation (4.3.1), i.e., PA ⊆ QB is certified by a certain step of the
hierarchy if and only if it is certified by the same step considering QB\b(l+1) instead.

Proof. We only prove statement (1), the proof of part (2) is analogous. Consider an sos
representation of µ(t)− xT z for some t ≥ 2,

µ(t)− xT z = σ0 +
k+1∑
i=1

σi (a−Ax)i +
l∑

i=1
σk+1+i

(
1−BT z

)
i
∈ QM(A,B) ,

where σ0, . . . , σk+l+1 ∈ Σ[x, z] are sos polynomials with deg σ0 ≤ 2t and deg σi ≤ 2t − 2 for
i ∈ {1, . . . , k + l + 1}. Since (a−Ax)k+1 is redundant in the description of PA, we can write
it as a conic combination of the remaining linear polynomials,

(a−Ax)k+1 = λ0 + λT (a−Ax), λ ∈ Rk+, λ0 ∈ R+.

Replacing σk+1(a−Ax)k+1 in the sos representation by

σk+1 (a−Ax)k+1 = λ0σk+1 +
k∑
i=1

λiσk+1 (a−Ax)i

yields an sos representation of the form

µ(t)− xT z = σ′0 +
k∑
i=1

σ′i (a−Ax)i +
l∑

i=1
σk+i

(
1−BT z

)
i
∈ QM(A\Ak+1, B),
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where σ′i = λiσk+1 + σi ∈ Σ[x, z] with degree deg(σ′i) = max{deg(λiσk+1), deg(σi)} ≤ 2t− 2
for i ∈ {i, . . . , k}.

Lemma 4.3.3 (Monotonicity). Let PA = {x ∈ Rd | a − Ax ≥ 0} be a polytope and let
ak+1 ∈ R, Ak+1 ∈ R1×d such that P ′ := PA ∩ {x ∈ Rd | (a − Ax)k+1 ≥ 0} is a proper
subset of PA. If for a certain relaxation order t ≥ 2 relaxation (4.3.1) with respect to PA has
an optimal value of at most one, then this holds when considering P ′, i.e., if the relaxation
certifies containment of PA in a V-polytope Q, then containment of P ′ in Q is certified as
well.

Proof. Given an sos representation of µ(t) − xT z w.r.t. PA, by setting the additional sos
polynomial σk+1 to the zero-polynomial this yields an sos decomposition w.r.t. P[A,Ak+1].

Lemma 4.3.4 (Transitivity).
(1) Given a V-polytope Q and H-polytopes P and P ′ such that P ′ ⊆ P ⊆ Q. If for a certain

relaxation order t ≥ 2 relaxation (4.3.1) certifies containment of P in Q, then it also
certifies containment of P ′ in Q.

(2) Given V-polytopes Q and Q′, and an H-polytope P such that P ⊆ Q ⊆ Q′. If for a
certain relaxation order t ≥ 2 relaxation (4.3.1) certifies containment of P in Q, then
it also certifies containment of P in Q′.

Proof. Starting with P , incorporate the defining inequalities of P ′ into the representation
of P step-by-step. By Lemma 4.3.3, in every step the lower bound of the optimal value
in (4.3.1) cannot increase. At the end of this process the defining inequalities of P are all
redundant (since P ′ ⊆ P ) and thus can be dropped by Lemma 4.3.2. This proves part (1) of
the statement. The proof of (2) is analog.

Similar to Theorem 4.2.4 for the Handelman situation, we can now state a necessary char-
acterization for the set of H-polytopes whose containment in a fixed V-polytope is certified
by the tth relaxation step of Putinar’s hierarchy.
Recall from (4.2.2) that Cd(x̄) denotes the (formal) natural H-representation of a point x

considered as d-dimensional cube with edge length 0. For t ≥ 2 and a matrix B ∈ Rd×l, let
Q = conv(B) and define the set

StB =
{
x̄ ∈ Rd | 1 ≥ inf{µ | µ− xT z ∈ QMt(Cd(x̄), Q)}

}
.

Clearly, StB is a subset of Q for each t ≥ 2. Moreover, StB is the projection of a set defined by
semidefinite conditions, i.e., the projection of a spectrahedron.

Theorem 4.3.5. Let Q = conv(B) be a fixed V-polytope. If the containment of an H-polytope
P in Q is certified by the tth relaxation step of Putinar’s hierarchy (4.3.1), then P is a subset
of StB.

Proof. Assume that the inclusion P ⊆ Q is certified by the tth relaxation step, i.e.,

1 ≥ inf
{
µ | µ− xT z ∈ QMt(P,Q)

}
, (4.3.2)

and assume P 6⊆ StB. Then there exists x̄ ∈ P\StB. Considering x̄ as fixed, we have

1 < α := inf
{
µ | µ− xT z ∈ QMt(Cd(x̄), Q)

}
.
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4.3 Putinar Certificates for the Polytope Containment Problem

But, by Lemma 4.3.4, this implies a contradiction to (4.3.2).

4.3.1 Finite Convergence

By Theorem 4.3.1, there exists a Putinar representation of the polynomial 1−xT z w.r.t. P×Q◦
whenever P is strongly contained in Q. This is a severely limited case. It does not take into
account that P and Q may have common boundary points (implying sup{xT z | (x, z) ∈
P × Q◦} ≥ 1) or P is not contained in Q. In this section, we prove a partial extension of
Theorem 4.3.1 to the case where the bilinear optimization problem (4.1.1) has only finitely
many optimal solutions (as characterized in Lemma 4.1.5).
Theorem 4.3.6. Let PA = {x ∈ Rd | a−Ax ≥ 0} be an H-polytope with nonempty interior
and let QB = conv(B) be a V-polytope containing the origin in its interior. Assume that one
of the equivalent statements in Lemma 4.1.5 holds (e.g., there are only finitely many optimal
solutions to problem (4.1.1)). Then µ∗ − xT z ∈ QM(PA, QB), and thus relaxation (4.3.1)
converges in finitely many steps to the optimal value of (4.1.1).

To prove the theorem, we introduce a sufficient convergence condition by Marshall (see
[Mar08]), which is based on a boundary Hessian condition.
Given g1, . . . , gk ∈ R[x] and a boundary point x̄ of S = {x ∈ Rd | g1(x) ≥ 0, . . . , gk(x) ≥ 0}.

We assume that (say, by an application of the inverse function theorem), there exists a local
parameterization for x̄ in the following sense: There exist open sets U, V ⊆ Rd such that
x̄ ∈ U , φ : U → V, x 7→ t := (t1, . . . , td) is bijective, the inverse φ−1 : V → U is a
continuously differentiable function on V , and the region R defined by t1 ≥ 0, . . . , tr ≥ 0 (for
some r ∈ {1, . . . , d}) equals the set S ∩U . Given a polynomial f ∈ R[x], denote by f1 and f2
the linear and quadratic part of f in the localizing parameters t1, . . . , td, respectively.
Condition 4.3.7 (Boundary Hessian condition, BHC). If the linear form f1 = c1t1 + · · ·+
crtr has only positive coefficients and the quadratic form f2(0, . . . , 0, tr+1, . . . , td) is negative
definite, then the restriction f|R has a local maximum in x̄.

Using this condition, the following generalization of Putinar’s Theorem can be stated.
Proposition 4.3.8 ([Mar08, Theorem 9.5.3]). Let f, g1, . . . , gk ∈ R[x], and suppose that the
quadratic module QM(G) generated by G = {g1, . . . , gk} is Archimedean. Further assume that
for each global maximizer x̄ of f over S = {x ∈ Rd | g(x) ≥ 0 ∀g ∈ G} there exists an index
set I ⊆ {1, . . . , k} such that (after renaming the variables w.r.t. the indices in I and w.r.t.
the indices not in I) f satisfies BHC at x̄. Denote by fmax the global maximum of f on S.
In this situation, fmax − f ∈ QM(G).

Our goal is to show that under the assumptions of Theorem 4.3.6 the boundary Hessian
condition holds. We will use the following version of the Karush-Kuhn-Tucker conditions
adapted to the bilinear situation.
Lemma 4.3.9. Let f(x, z) ∈ R[x, z] be a continuously differentiable function and let P :=
PA × PB = {(x, z) ∈ R2d | a − Ax ≥ 0, b − Bz ≥ 0} be the product of two nonempty
polytopes. If f attains a local maximum in (x̄, z̄) on P, i.e., there exists ε > 0 such that for
all (x, z) ∈ P ∩ Uε(x̄, z̄) the relation f(x̄, z̄) ≥ f(x, z) holds, then there exists (α, β) such that

∇f(x̄, z̄) =
[
AT 0
0 BT

](
α
β

)
0 = αi(a−Ax̄)i = βj(b−Bz̄)j , i ∈ [k], j ∈ [l] (4.3.3)
α ≥ 0, β ≥ 0,
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4 The Polytope Containment Problem

and the positive multipliers correspond to linearly independent columns in A and B, respec-
tively.

In the lemma, only multipliers corresponding to active constraints can be positive since
otherwise one of the equations (4.3.3) is violated.

Proof. Denote by I and J the index sets of the active constraints in x̄ and z̄, respectively.
We only have to show the linear independence statement since all other parts of the lemma
are the Karush-Kuhn-Tucker conditions together with the well-known fact that in case of
linear constraints a constraint qualification in the KKT Theorem is not required (see, e.g.,
[BSS06, Section 5.1]).
By Carathéodory’s Theorem [Sch86, Corollary 7.1l], there exist subsets of (I, J) such that

the corresponding columns are linearly independent and ∇f(x̄, z̄) is a strictly positive com-
bination of these columns. Hence, (α, β) can be chosen in this way.

We are now able to prove Theorem 4.3.6. In a more general setting, Nie used the Karush-
Kuhn-Tucker optimality conditions to certify the BHC; see [Nie12]. Because of the special
structure of problem (4.1.1), we do not need the whole machinery used by Nie. In particular,
the local parameterization needed for the BHC (see the paragraph before Condition 4.3.7)
comes from an affine variable transformation. As a consequence, for Polytope Contain-
ment, our direct approach allows to prove a stronger result than we would obtain just by
applying Nie’s Theorem. Specifically, we obtain a geometric characterization of the degenerate
situations as given in Theorem 4.3.6.

Proof (of Theorem 4.3.6). Let (x̄, z̄) ∈ PA ×Q◦B be an arbitrary but fixed optimal solu-
tion. By Lemma 4.3.9, there exists (α, β) ∈ Rk+l such that

(z̄, x̄) = (ATα,Bβ)
0 = αi(a−Ax̄)i = βj(1−BT z̄)j , i ∈ [k], j ∈ [l]
α ≥ 0, β ≥ 0,

(4.3.4)

and the set of positive multipliers corresponds to linearly independent rows in A and BT ,
respectively. As mentioned before, only multipliers corresponding to active constraints can
be positive. Denote by I and J the index sets of linearly independent, active constraints in x̄
and z̄, respectively. Then |I| ≤ d and |J | ≤ d.
Assume |I| < d. Since z̄ ∈ cone{ATi α | i ∈ I}, z̄ lies in the outer normal cone of an at least

one-dimensional face F of PA containing x̄. Thus xT z̄ = x̄T z̄ for all x ∈ F , in contradiction
to the assumption of the theorem and Lemma 4.1.5. By a symmetric argument, |J | < d is
not possible either.
We apply the affine variable transformation φ : R2d → R2d defined by

φ(x, z) =
[

(a−Ax)I
(1l −BT z)J

]

and denote the new variables by (s, t) := (s1, . . . , sd, t1, . . . , td) = (φ1(x, z), . . . , φ2d(x, z)). It
is apparent that φ is a local parameterization at (x̄, z̄) in the sense of Condition 4.3.7. The
inverse of φ is given by

(s, t) 7→
[
A−1
I (s− aI)

(BT
J )−1(t− 1J)

]
.
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d \ t 2 3 4 5

2 0.7071 0.9937 0.9994 0.9999
3 0.5774 0.8819 0.9949 0.9994
4 0.5000 0.7906 0.9461
5 0.4472 0.7211

Table 4.2: Computational test of containment of r-scaled H-unit cube in V-unit cube as
described in Example 4.3.11. The entries denote the maximal r (rounded to four
decimal places) such that containment in dimension d is certified by the respective
relaxation order t.

Setting M := B−1
J A−1

I , the objective xT z has the form

f(s, t) :=
(
A−1
I (s− aI)

)T (
(BT

J )−1(t− 1J)
)

= sTMT t− sTMT1J − aTIMT t+ aTIM
T1J

in the local parameterization space. Denote by f1 the homogeneous part of degree 1. Then
(x̄, z̄) = φ−1(0) = (−A−1

I aI ,−(BT
J )−11J) implies

∇s,tf1(0) = (−1TJB−1
J A−1

I ,−B−1
J A−1

I aI) = (z̄TA−1
I , B−1

J x̄) = (αI , βJ),

where the last equation follows from the first identity in (4.3.4). Thus the first part of Con-
dition 4.3.7 is satisfied. Since |I| + |J | = r = 2d (where r is from Condition 4.3.7), the
second assumption in the condition is obsolete. Therefore, by Proposition 4.3.8, µ∗ − xT z ∈
QM(PA, QB).

4.3.2 Examples

We apply the semidefinite hierarchy to the examples in Section 4.2.2.

Example 4.3.10. Let P = {−1 ≤ xi ≤ 1, i ∈ [d]} be the d-dimensional unit cube and let
Q◦ = {−1 ≤ ezi ≤ 1, i ∈ [d]}, i.e., Q is the d-dimensional unit cross polytope scaled by a
positive integer e. Clearly, P ⊆ Q if and only if e ≥ d.

Consider the Putinar representation of order t = 2

d

e
− xT z = 1

8e

d∑
i=1

[
(1− xi)[(1 + xi)2 + (1 + ezi)2] + (1 + xi)[(1− xi)2 + (1− ezi)2]

]

+ 1
8e

d∑
i=1

[
(1− ezi)[(1 + xi)2 + (1 + ezi)2] + (1 + ezi)[(1− xi)2 + (1− ezi)2]

]
.

If e ≥ d, then 1 − xT z ≥ d
e − xT z ≥ 0, certifying the containment P ⊆ Q (with strong

containment if e > d). If e < d, then 1 − xT z < d
e − x

T z. This is not a certificate for non-
containment, since there might be a different sos-representation. However, in this case this is
not possible since e ≥ d is a necessary condition for containment.

Note that like in the application of Handelman’s Positivstellensatz, Example 4.2.6, the nec-
essary relaxation order is low and the number of terms is linear in the dimension. �
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Example 4.3.11. Consider the d-dimensional r-scaled unit cube rP in H-representation and
the unit cube Q in V-representation as defined in Example 4.2.7. Again, we are interested in
the maximal r such that the containment rP ⊆ Q is certified by a certain relaxation degree
t. On the other hand, we could ask for the minimal t such that PA = 1PA ⊆ QB is certified.
Note that, for r = 1, a priori the existence of such a t is not clear since neither Theorem 4.3.1
nor Theorem 4.3.6 applies.
Modifying the Handelman representation, we get the same bound for Putinar’s hierarchy.

Recall the notation from Example 4.2.7. Then, for r ≤ 1/d, rP ⊆ Q is certified by the Putinar
representation

dr − xT z = 1
2d+1

d∑
i=1

∑
(◦,∗)∈{+,−}d

(r ◦ xi)
(
1 ◦−1 zi ∗ zj 6=i

)2

+ dr

2d+1

∑
∗∈{+,−}d

(1 ∗1 z1 · · · ∗d zd)
(
1 ∗−1

1 z1 · · · ∗−1
d zd

)2
∈ QM2(P,Q).

We are not aware of a more compact Putinar representation. Numerically, for t = 2 and
d ≤ 5, we get r(d) =

√
d/d; see Table 4.2. Comparing the table with Table 4.1, we see that

in this situation, the initial Putinar relaxation is strictly better than the initial Handelman
relaxation. On the other hand, while the (d+1)st Handelman relaxation is exact (see (4.2.4)),
it is not clear whether this is true for Putinar’s relaxation. �

Example 4.3.12. Consider the H-polytope P = {x ∈ R2 | 14−Ax ≥ 0} and the V-polytopes
Q1 = convB1 and Q2 = convB2 as defined in Example 4.2.8. See also Figure 4.2.1.
Recall that P is contained in both Q1 and Q2. Q1 and P share infinitely many boundary

points. Q2 and P intersect in a single vertex. Thus in both examples, we are not in the
situation of Theorem 4.3.6.
As for Handelman’s relaxation, the first problem P ⊆ Q1 is not certified with the initial

Putinar relaxation t = 2. If we scale P , the maximum scaling factor for which containment is
certified is r = 0.9271, which is better than for Handelman’s relaxation (r = 0.8409). While
for the second problem P ⊆ Q2, the initial Handelman relaxation certifies containment, the
first Putinar relaxation does only for a scalarization up to r = 0.9996. Thus, in contrast to
Example 4.3.11, the Handelman relaxation outperforms the Putinar relaxation. �
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5 Positivstellensatz Certificates for the
Spectrahedron Containment Problem

This chapter deals with the Spectrahedron Containment problem. Starting from a geo-
metric viewpoint, we state connections to real algebraic geometry (leading to an asymptoti-
cally convergent hierarchy of sufficient semidefinite programs) and to operator theory. Usage
of this triad allows to state several exactness and finite convergence results, partially yielding
explicit certificates for containment.
While the containment problem concerning only H-polyhedra is solvable in polynomial

time, the Spectrahedron Containment problem is a co-NP-hard problem (cf. Chapter 3).
Starting from the H-in-H containment problem, we deduce a sufficient semidefinite criterion
for the Spectrahedron Containment problem (Theorem 5.1.3). Unfortunately, necessity
of the criterion fails in general. Thus two principal questions arise. First, under which ad-
ditional assumptions necessity holds, and, second, whether there is a better criterion in the
sense that necessity can be achieved.
To tackle the second question, we formulate the Spectrahedron Containment problem

in terms of a polynomial feasibility problem, yielding a hierarchy of sufficient semidefinite
criteria to decide containment. Contrary to the scalar case, finite convergence in the strong
containment case is not an immediate consequence of the general theory. However, if the
inner set is a spectratope and some mild additional assumption holds, then finite conver-
gence for strong containment can be achieved by applying Hol-Scherer’s Positivstellensatz
(Theorem 5.1.8). From that asymptotic convergence in the general case can be deduced.
The 0th relaxation step of the hierarchy turns out to be the semidefinite feasibility criterion

coming from the geometric approach as described above. Thus answering the first question
(regarding necessity of the solitary criterion) is equivalent to stating Hol-Scherer certificates
of degree zero.
In Section 5.2 we take a look at the Spectrahedron Containment problem involving

a polyhedron. Containment of a spectrahedron in an H-polyhedron is certified in the 0th
step of the hierarchy if the spectrahedron has an interior point and the polyhedron is given
in normal form (Theorem 5.2.3). We show the effectiveness of the approaches by providing
(partially explicit) certificates for some structured cases. As a consequence of the connection
between the Spectrahedron Containment Problem and positivity of linear maps, we get
finite convergence for a special family of 2-dimensional spectrahedra (Theorem 5.4.10).

5.1 Hol-Scherer Certificates for the Spectrahedron
Containment Problem

Motivating the Spectrahedron Containment problem by developing a necessary and suf-
ficient condition for containment of H-polyhedra (and H-polytopes), we deduce a sufficient
condition to decide the Spectrahedron Containment problem. We then introduce a hi-
erarchy of semidefinite feasibility problems sufficient for Spectrahedron Containment
coming from a sums of squares approach.
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5 The Spectrahedron Containment Problem

5.1.1 From the Polyhedral Case to the Spectrahedral Case

Our point of departure is the containment problem for pairs of H-polyhedra, which by Propo-
sition 3.1.1 can be decided in polynomial time. Theorem 5.1.1 below is a slight extension of a
statement in [KTT13]. (Namely, here we drop the condition b = 1l as well as the boundedness
condition.)
To be consistent with the notation of a linear matrix inequality (and contrary to Chapter 4),

throughout this chapter H-polyhedra (2.2.1) are denoted by inequalities a+Ax ≥ 0 (instead
of a−Ax ≥ 0). Given an H-representation of a polyhedron PA = {x ∈ Rd | a+Ax ≥ 0} with
coefficient matrix A ∈ Rk×d and a ∈ Rk, we call

â+ Âx :=
(

1
a

)
+
[
01×d
A

]
x (5.1.1)

the extended representation of the polyhedron PA.

Theorem 5.1.1. Let PA = {x ∈ Rd | a+ Ax ≥ 0} 6= ∅ and PB = {x ∈ Rd | b+Bx ≥ 0} be
polyhedra.
(1) PA is contained in PB if and only if there exists a nonnegative matrix C ∈ Rl×(k+1)

with b = Câ and B = CÂ.
(2) Let PA be a polytope that is not a singleton. PA is contained in PB if and only if there

exists a nonnegative matrix C ∈ Rl×k with b = Ca and B = CA.

Testing whether PA is a singleton is easy as one has to check that the system of equalities
a+Ax = 0 has a single solution. Certainly, in this situation, checking containment is trivial
as PA ⊆ PB is equivalent to test whether a single point has nonnegative entries. The precon-
dition in part (2) of Theorem 5.1.1, however, cannot be removed in general; see part (1) of
Example 5.1.2.
For unbounded polyhedra, the extended representation of a + Ax is required in order for

the criterion to be exact. Without it, already in the simple case of two half spaces defined
by two parallel hyperplanes, the restriction of the condition in part (1) of Theorem 5.1.1 to
part (2) can fail to be feasible; see part (2) of Example 5.1.2.

Example 5.1.2.
(1) Consider the polytopes PA and PB given by the systems of linear inequalities

(
1
−1

)
+
[
−1 −1
1 0

]
x ≥ 0 and

0
2
2

+

 1 0
−1 −1
−1 1

x ≥ 0,

respectively. PA is the singleton {(1, 0)} and PB is a simplex containing PA. There is no
matrix C satisfying the conditions in part (2) of Theorem 5.1.1. Indeed, b = Ca implies
0 = C11 − C12 and B = CA implies (1, 0) = (−C11 + C12,−C11), a contradiction.
Moreover, it is easy to see, that for any PB = {x ∈ R2 | b + Bx ≥ 0} containing PA

containment is certified if and only if B has the form B = [−b, c], where c is a nonpositive
vector.
(2) Consider the half space given by the linear polynomial a(x) = 1 − x1 − x2. Let b(x) =
b+ [B1, B2]x be any half space. The condition in part (2) of the Theorem 5.1.1 is satisfied if
and only if b = c, B1 = −c, B2 = −c and c ≥ 0. Thus either b(x) ≡ 0 or b(x) is a positive
multiple of a(x). �
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For preparing related statements in more general contexts below, we review the proof of
Theorem 5.1.1 which uses the affine version of Farkas’ Lemma 2.2.2.

Proof. If B = CA and b = Ca (or B = CÂ and b = Câ) with a nonnegative matrix C, for
any x ∈ PA we have

b+Bx = C (a+Ax) ≥ 0,

i.e., PA ⊆ PB.

Conversely, if PA ⊆ PB, then any of the linear polynomials (b+Bx)i, i ∈ [l], is nonnegative
on PA. Hence, by Lemma 2.2.2, (b+Bx)i can be written as a linear combination

(b+Bx)i = c′i0 +
k∑
j=1

c′ij(a+Ax)j =
k∑
j=0

c′ij(â+ Âx)j

with nonnegative coefficients c′ij . Comparing coefficients yields bi = c′i0 +
∑k
j=1 c

′
ijaj for i ∈ [l],

implying part (1) of the statement.

To prove the second part, first translate both PA and PB to the origin. By assumption, there
exists x̄ ∈ PA. Define ā := a+ Ax̄ and b̄ := b+Bx̄. Then ā ≥ 0, 0 ∈ {x ∈ Rd | ā+ Ax ≥ 0}
and

b̄ = Cā, B = CA ⇐⇒ b+Bx̄ = Ca+ CAx̄, B = CA ⇐⇒ b = Ca, B = CA.

Thus w.l.o.g. let a ≥ 0.

Since PA is a polytope, Lemma 2.2.3 implies {0} = {x ∈ Rd | Ax ≥ 0} = {x ∈ Rd | xTAT ≥
0}. By Stiemke’s Transposition Theorem (cf. Lemma 2.2.4) there exists λ > 0 such that
ATλ = 0. For that λ we have

λT (a+Ax) = λTa > 0

whenever a 6= 0. We can scale λ such that λT (a+Ax) = λTa = 1. By multiplying that equation
with c′i0 from above, we obtain nonnegative c′′ij with

∑k
j=1 c

′′
ij(a+Ax)j = c′i0, yielding

(b+Bx)i =
k∑
j=1

(c′ij + c′′ij)(a+Ax)j .

Hence, C = (cij)ki,j=1 with cij := c′ij + c′′ij is a nonnegative matrix with B = CA and
(Ca)i =

∑k
j=1(c′ij + c′′ij)aj = bi − c′i0 + c′i0 λ

Ta = bi for every i ∈ [l].

It is apparent from the proof that instead of using the extended representation (5.1.1),
part (1) of Theorem 5.1.1 can be stated as the existence of a matrix C ∈ Rl×k+ and a vector
c0 ∈ Rl+ such that b = c0 + Ca and B = CA.

The sufficiency part from Theorem 5.1.1 can be extended to the case of spectrahedra in a
natural way. The normal form of a polyhedron PA as a spectrahedron, as defined in (2.3.2),
is given by

PA =
{
x ∈ Rd | A(x) =

k⊕
i=1

ai(x) � 0
}
,

where ai(x) is the ith entry of the vector a + Ax. Then, as in the definition of a linear
pencil (2.3.1), Ap is the diagonal k × k-matrix diag(A:, p) of the pth column of A. Proceed
in the same way with PB. Now define a kl × kl-matrix C̃ by writing the entries of C on the
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diagonal, i.e., C̃ = diag(c11, . . . , cl1, . . . , c1k, . . . , clk). Then the condition from Theorem 5.1.1
translates to the existence of a diagonal matrix C with

C = (Cij)ki,j=1 � 0, ∀p ∈ [0, d] : Bp =
k∑
i=1

(Ap)iiCii,

where Cij ∈ Rl×l and (Ap)ij is the (i, j)th entry of Ap.
Theorem 5.1.3 below tells us that C does not need to be diagonal in order to yield a sufficient

condition for the Spectrahedron Containment problem. Subsequently, the indeterminate
matrix C = (Cij)ki,j=1 is a symmetric kl × kl-matrix, where the Cij are l × l-blocks.

As introduced in the preliminary Section 2.4.3, denote by Sk the set of all real symmetric
k × k-matrices and by Sk[x] the set of symmetric k × k-matrices with polynomial entries in
x = (x1, . . . , xd). As for polyhedra, given a linear pencil A(x) ∈ Sk[x], we call

Â(x) :=
[
1 0
0 A(x)

]
∈ Sk+1[x] (5.1.2)

the extended linear pencil of the spectrahedron SA = S
Â
. (The spectrahedra coincide, since

the 1 we add for technical reasons is redundant.) The coefficient matrices of the pencil Â(x) =
Â0 +

∑d
p=1 xpÂp are denoted by Âp for p ∈ [0, d], as usual.

Theorem 5.1.3. Let A(x) ∈ Sk[x] and B(x) ∈ S l[x] be linear pencils. If there exists a
symmetric matrix C = (Cij)ki,j=1 ∈ Skl such that

C � 0, Bp =
k∑

i,j=1
(Ap)ijCij for p ∈ [0, d], (5.1.3)

then SA is contained in SB.

The criterion in Theorem 5.1.3 can also be stated for the extended representation Â. But,
since the representation plays a role only in the necessity part, we drop this here for simplicity.
Helton, Klep, and McCullough proved Theorem 5.1.3 by very different methods in the

setting of so-called “matricial spectrahedra” (or, free spectrahedra); see [HKM13, Theorem
3.5]. We present a more streamlined proof here.

Proof. From the linear constraints, we get

B(x) = B0 +
d∑
p=1

xpBp =
k∑

i,j=1
(A0)ij Cij +

d∑
p=1

k∑
i,j=1

xp (Ap)ij Cij

=
k∑

i,j=1
(A(x))ij Cij = IT

(
(A(x))ij Cij

)k
i,j=1

I

with I = [Il, . . . , Il]T ∈ Rkl×l. Thus to prove the claim, it suffices to show that the matrix(
(A(x))ij Cij

)k
i,j=1

is positive semidefinite. Indeed, then

vTB(x)v = vT
(
IT
(
(A(x))ij Cij

)k
i,j=1

I
)
v

=
(
vT , . . . , vT

) (
(A(x))ij Cij

)k
i,j=1

(v, . . . , v)T ≥ 0
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for every v ∈ Rl.
Let x ∈ SA. Since A(x) and C are positive semidefinite, the Kronecker product A(x) ⊗ C

is positive semidefinite as well, see (2.1.1). As a consequence, all principal submatrices of
A(x)⊗C are positive semidefinite. A(x)⊗C is a k2l× k2l-matrix with k2-blocks of the form

(A(x))ijC =


(A(x))ijC11 · · · (A(x))ijC1k

... (A(x))ijCij
...

(A(x))ijCk1 · · · (A(x))ijCkk

 ∈ Skl.
(Remember that (A(x))ij is a scalar). Consider the principal submatrix where we take the
(i, j)th subblock of every (i, j)th block (A(x))ijC, i.e., (A(x))ijCij . Since ((A(x))ijCij)kij=1 is
a principal submatrix of A(x)⊗ C, B(x) is positive semidefinite as well.

Combining the above Theorems 5.1.1 and 5.1.3, we get the next corollary.

Corollary 5.1.4. Let A(x) ∈ Sk[x] and B(x) ∈ S l[x] be normal forms of polyhedra (2.3.2).
(1) SA is contained in SB if and only if system (5.1.3) has a solution with respect to Â(x)

and B(x).
(2) Let SA be a polytope that is not a singleton. SA ⊆ SB if and only system (5.1.3) has a

solution with respect to A(x) and B(x).

In our approach it becomes apparent that we can relax the criterion by replacing the linear
constraint on the constant matrices in (5.1.3) with semidefinite constraints,

C = (Cij)ki,j=1 � 0, B0 −
k∑

i,j=1
(A0)ijCij � 0, ∀p ∈ [d] : Bp =

k∑
i,j=1

(Ap)ijCij . (5.1.4)

If SA is contained in the positive orthant, we can give a stronger version of the criterion
introduced in Theorem 5.1.3.

Corollary 5.1.5. Let A(x) ∈ Sk[x] and B(x) ∈ S l[x] be linear pencils and let SA be contained
in the positive orthant. If the following system is feasible, then SA ⊆ SB.

C = (Cij)ki,j=1 � 0, B0 −
k∑

i,j=1
(A0)ijCij � 0, ∀p ∈ [d] : Bp −

k∑
i,j=1

(Ap)ijCij � 0. (5.1.5)

Proof. The proof is along the lines of the proof of Theorem 5.1.3. Indeed, since SA lies in
the positive orthant, we have x ≥ 0 for all x ∈ SA and hence,

B(x) = B0 +
n∑
p=1

xpBp �
k∑

i,j=1
(A0)ij Cij +

n∑
p=1

k∑
i,j=1

xp (Ap)ij Cij =
k∑

i,j=1
(A(x))ij Cij .

By relaxing system (5.1.3) to (5.1.5) the number of scalar variables remains 1
2kl(kl + 1),

whereas the 1
2(n+ 1)l(l+ 1) linear constraints are replaced by n+ 1 semidefinite constraints

of size l × l.
If containment restricted to the positive orthant implies containment everywhere else, cri-

terion (5.1.5) can be applied, even if the spectrahedron is not completely contained in the
positive orthant. To make use of this fact, we have to premise a certain structure of the
spectrahedra. We give an example for this in the following corollary.

53



5 The Spectrahedron Containment Problem

Corollary 5.1.6. Let A(x) ∈ Sk[x] and B(x) ∈ S l[x] be linear pencils defining spectrahedra
with a reflection symmetry with respect to all coordinate hyperplanes. If system (5.1.5) is
feasible, then SA ⊆ SB.

Criterion (5.1.3) is not necessary for Spectrahedron Containment in general, even
when a constraint qualification (e.g., as in Lemma 2.3.10 or Lemma 2.3.9) is satisfied. Sub-
sequently, we review an example from [HKM13, Example 3.1, 3.4] which shows that the
containment criterion is not exact in general.

Example 5.1.7. Consider the monic linear pencils A(x) = I3 + x1(E1,3 +E3,1) + x2(E2,3 +
E3,2) ∈ S3[x] and

B(x) =
[
1 0
0 1

]
+ x1

[
1 0
0 −1

]
+ x2

[
0 1
1 0

]
.

Clearly, both define the unit disc, i.e., SA = SB. First, we look into the inclusion SB ⊆ SA.
Claim. The containment question SB ⊆ SA is certified by criterion (5.1.3).
Note that the roles of A and B in (5.1.3) have to be interchanged. Criterion (5.1.3) is

satisfied if and only if there exist c1, c2, c3 ∈ R such that

C =



1
2 0 1

2 0 c1 c2
0 1

2 0 −c1 0 c3
1
2 0 1

2 −c2 1− c3 0

0 −c1 −c2
1
2 0 −1

2
c1 0 1− c3 0 1

2 0
c2 c3 0 −1

2 0 1
2


∈ R6×6

is positive semidefinite. Since the 2 × 2-block in the top left corner is positive definite, the
matrix C is positive semidefinite if and only if the Schur complement (see, e.g., [dK02, The-
orem A.9]) with respect to this block is positive semidefinite. One can easily check that this is
the case if and only if c1 = c3 = 1

2 and c2 = 0.
Claim. The reverse containment question SA ⊆ SB is not certified by criterion (5.1.3).
SA ⊆ SB is certified by (5.1.3) if and only if there exist c1, . . . , c12 ∈ R such that

C =



c1 c2 c9 c10
1
2 c7

c2 c3 c11 c12 −c7 −1
2

c9 c11 c4 c5 0 c8
c10 c12 c5 c6 1− c8 0

1
2 −c7 0 1− c8 1− c1 − c4 −c2 − c5
c7 −1

2 c8 0 −c2 − c5 1− c3 − c6


∈ R6×6

is positive semidefinite. We show the infeasibility of system (5.1.3).
Assume that C is positive semidefinite. Then all principal minors are nonnegative. In par-

ticular, the diagonal minors are nonnegative. Consider the (leading) principal minor∣∣∣∣∣c1
1
2

1
2 1− c1 − c4

∣∣∣∣∣ = c1(1− c1 − c4)− 1
4 =

[
c1(1− c1)− 1

4

]
− c1c4.

Since the expression in the brackets as well as the second term are always less than or equal
to zero, the minor is nonpositive. Therefore, c1(1− c1)− 1

4 = 0 and c1c4 = 0, or equivalently,
c1 = 1

2 and c4 = 0. Recall that whenever a diagonal element of a positive semidefinite matrix
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is zero, the corresponding row is the zero vector, that is c5 = c8 = c9 = c11 = 0. Now, we get
a contradiction since nonnegativity of the (leading) principal minor∣∣∣∣∣ c6 1− c8

1− c8 1− c1 − c4

∣∣∣∣∣ =
∣∣∣∣∣c6 1
1 1

2

∣∣∣∣∣ = 1
2 c6 − 1

implies that c6 ≥ 2 and thus 1−c3−c6 ≤ −1−c3. Therefore either c3 ≤ −1 or 1−c3−c6 < 0,
which both contradicts positive semidefiniteness. This proves the claim.

This example is not only a counterexample for the necessity of criterion (5.1.3) for con-
tainment but serves also as a counterexample for necessity under validity of a constraint
qualification. Indeed, both constraint qualifications, Lemma 2.3.10 and Lemma 2.3.9, are sat-
isfied by the pencil A(x) but, as seen above, certification of containment fails.

In Example 5.3.5, we contrast this phenomenon by showing that for this example there exists
a scaling factor r for one of the spectrahedra so that the containment criterion is satisfied
after this scaling. �

5.1.2 Hol-Scherer Certificates for Spectrahedron Containment

In the subsequent sections, we study a sum of squares relaxation for Spectrahedron Con-
tainment based on a quantified polynomial (in fact, semidefinite) optimization problem.
The hierarchy of semidefinite feasibility problems coming out of this approach is at least as
powerful as the solitary semidefinite criterion (5.1.3).

Let A(x) ∈ Sk[x] and B(x) ∈ S l[x] be linear pencils (2.3.1). For nonnegative integers t ≥ 0,
consider the hierarchy of semidefinite feasibility problems

B(x) = S0(x) + 〈S(x), A(x)〉l ∈ QMl
t(A), S0 ∈ Σl

t[x], S ∈ Σkl
t [x], (5.1.6)

where QMl
t(A) is the truncated quadratic module as defined in (2.4.8) and 〈·, ·〉l is the lth

scalar product (2.4.6). Clearly, if B(x) has such a representation, then SA is contained in SB.
Applying Hol-Scherer’s Positivstellensatz 2.4.8, the converse holds for the strong containment
case under mild additional assumptions. Recall that a bounded spectrahedron is called a
spectratope.

Theorem 5.1.8. Let A(x) ∈ Sk[x] be a linear pencil.

(1) If B(x) ∈ QMl
t(A) for some t ≥ 0, then SA ⊆ SB.

(2) Let B(x) ∈ QMl
t(A). If S0(x) � 0 for all x ∈ SA, then SA ⊆ intSB.

(3) Let SA be a spectratope and B(x) ∈ S l[x] be a reduced linear pencil (cf. Proposi-
tion 2.3.2). If SA is strongly contained in SB (i.e., SA ⊆ SB and ∂SA ∩ ∂SB = ∅),
then B(x) ∈ QMl(A).

Proof. The first statement is clear by construction of the relaxation and by definition of the
lth scalar product (2.4.6).

If B(x) = S0(x) + 〈S(x), A(x)〉l ∈ QMl
t(A) with S0(x) � 0 for all x ∈ SA, then B(x) � 0

for all x ∈ SA. Thus SA ⊆ {x ∈ Rd | B(x) � 0} ⊆ intSB.

Consider the third statement. By Proposition 2.4.7, boundedness of SA implies Archime-
deanness of QMl(A). Since strong containment and reducedness of B(x) implies B(x) � 0 on
SA, the statement follows from Hol-Scherer’s Positivstellensatz 2.4.8.
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For computational reasons it is interesting to have an optimization version of the hierar-
chy (5.1.6).

Proposition 5.1.9. Let A(x) ∈ Sk[x] and B(x) ∈ S l[x] be linear pencils. Consider the
quantified polynomial optimization problem

µ∗ = sup µ

s.t. B(x)− µIl � 0 ∀x ∈ SA.
(5.1.7)

(1) µ∗ ≥ 0 if and only if SA ⊆ SB.

(2) µ∗ > 0 implies SA ⊆ intSB. If B(x) is reduced (cf. Proposition 2.3.2), then the converse
holds true.

Proof. By definition, SA ⊆ SB if and only if B(x) � 0 for all x ∈ SA. Thus the first statement
is clear. If µ∗ > 0, then B(x) � µ∗Il � 0 for all x ∈ SA, implying B(x) � 0 on SA.

Let B(x) be reduced. Assume µ∗ ≤ 0. Clearly, if µ∗ < 0, then SA is not contained in SB.
If µ∗ = 0, then for every ε > 0 there exists x ∈ SA such that B(x) − εIl has a negative
eigenvalue. By tending ε ↓ 0, continuity implies that B(x) has zero as an eigenvalue.

By replacing the positive semidefiniteness condition B(x)− µIl � 0 on SA with the mem-
bership in the truncated quadratic module QMl

t(A) for some t ≥ 0, Problem (5.1.7) leads to
the hierarchy

µsos(t) = sup µ

s.t. B(x)− µIl = S0(x) + 〈S(x), A(x)〉l
S0(x) ∈ Σl

t[x], S(x) = (Si,j(x))li,j=1 ∈ Σkl
t [x]

(5.1.8)

for t ≥ 0. We refer to the 0th step of the hierarchy or, equivalently, to the 0th feasibil-
ity/membership problem (5.1.6) as the initial relaxation step of the Hol-Scherer relaxation.

The statements for the feasibility problem (5.1.6) can be brought forward to the optimiza-
tion version (5.1.8). Clearly, if µsos(t) ≥ 0 for some integer t ≥ 0, then SA ⊆ SB. Applying
Hol-Scherer’s Positivstellensatz, finite convergence in the case of strong containment (under
the reducedness assumption) and asymptotic convergence in the general (bounded) case can
be achieved.

Corollary 5.1.10. Let SA be a spectratope given by the linear pencil A(x) ∈ Sk[x].

(1) The optimal value of the sos-relaxation (5.1.8) converges asymptotically from below to
the optimal value µ∗ of the quantified semidefinite optimization problem (5.1.7).

(2) Let B(x) ∈ S l[x] be a reduced linear pencil (cf. Proposition 2.3.2). If SA is strongly
contained in SB, then hierarchy (5.1.8) certifies containment in finitely many steps,
i.e., there exists an integer t ≥ 0 such that µsos(t) ≥ 0.

Proof. By [HS06, Theorem 1], relaxation (5.1.8) converges asymptotically to the optimal
value of the quantified optimization problem (5.1.7) if the quadratic module is Archimedean.
By Proposition 2.4.7, the latter holds if SA is a spectratope.

Since B(x) is reduced, strong containment implies B(x) � 0 on SA. By Theorem 5.1.8,
B(x) ∈ QMl(A).
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5.1.3 The Initial Step of the Hol-Scherer Hierarchy

We start by a fundamental result that stresses the importance of the initial relaxation step
of the Hol-Scherer hierarchy (5.1.6). Namely, the initial step of the hierarchy coincides with
the semidefinite criterion coming from the geometric approach in Section 5.1.1.
It is easy to see that a matrix polynomial S ∈ Skl[x] is sos if and only if there exists a

positive semidefinite matrix Z such that S(x) = (Ikl ⊗ [x]t)T Z (Ikl ⊗ [x]t), where [x]t denotes
the truncated monomial basis as in Section 2.4; see [HS06, Lemma 1]. Analogously, S0(x) =
(Il ⊗ [x]t)T Z0 (Il ⊗ [x]t) for some positive semidefinite matrix Z0 of appropriate size. By an
easy computation, one can see that S(x) = 〈Z, [x]t[x]Tt 〉kl and S0(x) = 〈Z0, [x]t[x]Tt 〉. Write

[x]t[x]Tt =
∑
|α|≤2t

xαP 0
α,

where P 0
α are

(
d+ t
t

)
×
(
d+ t
t

)
-matrices with entries indexed by α equal to one and zero

elsewhere. Similarly,

(Ik ⊗ [x]t)A(x) (Ik ⊗ [x]t)T = A(x)⊗ [x]t[x]Tt =
∑
|α|≤2t

xαPα

and B(x) = B0 +
∑d
i=1 xiBi +

∑
2≤|α|≤2t x

α · 0. The membership problem B(x) ∈ QMl
t(A)

(cf. (5.1.6)) for some t ≥ 0 is then equivalent to the semidefinite feasibility problem

∃Z0, Z � 0 :
〈
Z0, P 0

α

〉
l
+ 〈Z,Pα〉l =


B0 |α| = 0,
Bp |α| = 1, αp = 1, p ∈ [d],
0 else.

∀|α| ≤ 2t

For more details we refer to [HS06, Section 5]. We obtain the following statement.

Theorem 5.1.11. Let A(x) ∈ Sk[x] and B(x) ∈ S l[x] be linear pencils. The following are
equivalent.

(1) B(x) ∈ QMl
0(A)

(2) ∃C ′ ∈ Skl+ , C
′
0 ∈ S l+ : B0 = C ′0 +

〈
A0, C

′〉
l , Bp =

〈
Ap, C

′〉
l ∀p ∈ [d]

(3) ∃C = (Cij)ki,j=0 ∈ S
(k+1)l
+ : B0 =

k∑
i,j=0

(Â0)ijCij , Bp =
k∑

i,j=0
(Âp)ijCij ∀p ∈ [d]

where Â(x) denotes the extended linear pencil (5.1.2).
In particular, the initial relaxation step (5.1.6) certifies containment if and only if the

semidefinite feasibility criterion (5.1.3) does when applied to the extended linear pencil Â(x).
Moreover, the initial relaxation step (5.1.6) certifies containment with S0 = 0 if and only

if the semidefinite feasibility criterion (5.1.3) does when applied to A(x).

Part (3) of the theorem can equivalently be stated as

∃C = (Cij)ki,j=0 ∈ S
(k+1)l
+ : B0 = C00 +

k∑
i,j=1

(A0)ijCij , Bp =
k∑

i,j=1
(Ap)ijCij ∀p ∈ [d],

where C00 becomes obsolete, if applied to A(x) instead of Â(x).
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Proof. Consider the first equivalence. Let t = 0 and set x0 ≡ 1. Then [x]0 = 1 and [x]0[x]T0 =
1 = 1x0 +

∑d
p=1 0xp. Thus the coefficient matrices P 0

p (as introduced before Theorem 5.1.11)
are scalars with P 0

0 = 1 and P 0
p = 0 for p ∈ [d]. For the term involving A(x), we get

A(x)⊗ [x]0[x]T0 = A(x) =
d∑
p=0

Apxp.

Thus Z ∈ Skl and Z0 ∈ S l. The constraints in the semidefinite feasibility system read as

Bp − 〈Z,Ap〉l =
〈
Z0, P 0

p

〉
l

= P 0
pZ

0 =
{
Z0 p = 0
0 p 6= 0

.

Thus Bp = 〈Z,Ap〉l for p ∈ [d] and B0 = Z0 + 〈Z,A0〉. Rewriting Â0 = 1⊕A0, Âp = 0⊕Ap,
and defining Ẑ = (Ẑij)i,j by Ẑs,t = Z0

s,t ⊕ Zs,t ∈ Sk+1, we get that the initial step of the
hierarchy (5.1.6) certifies containment if and only if there exists a positive semidefinite matrix
Ẑ ∈ S(k+1)l

+ such that

B0 =
〈
Ẑ, Â0

〉
l
and Bp =

〈
Ẑ, Âp

〉
l
for p ∈ [d].

To prove the equivalence of (2) and (3), consider a matrix C = (Cij)ki,j=1. We define C ′ by
permuting rows and columns simultaneously, i.e., C ′ = (C ′st)

l
s,t=1. It is a well-known fact that

this operation preserves positive semidefiniteness since any permutation matrix is invertible.
Hence, C � 0 if and only if C ′ � 0. Moreover,

(Bp)s,t =
k∑

i,j=1
(Ap)ij(C ′st)i,j =

〈
Ap, C

′
st

〉
for p ∈ [0, d]. This proves the claim.

In order to state certificates for some structured examples and important cases in the
forthcoming sections, we have to develop some auxiliary results on the behavior of the initial
Hol-Scherer relaxation (5.1.6) and criterion (5.1.3), which are also of independent interest.
While we state all statements only for the initial Hol-Scherer relaxation, by Theorem 5.1.11
they are also valid for the solitary criterion (5.1.3) and its refinements (5.1.4) and (5.1.5).
Throughout the chapter, we mostly use the reformulations of the initial step given in Theo-
rem 5.1.11 when we refer to the initial Hol-Scherer relaxation.

Theorem 5.1.12. Let A(x) ∈ Sk[x] and B(x) ∈ S l[x] be linear pencils. The initial Hol-
Scherer relaxation (5.1.6) is
(1) invariant under translation.
(2) invariant under non-singular congruence transformation of A(x).
(3) invariant under non-singular congruence transformation of B(x).
(4) transitive.

In particular, statements (2) and (3) include invariance under orthogonal transformation.

For reasons of clarity, we prove the statements in the theorem separately.
The subsequent statement shows that the initial Hol-Scherer relaxation (5.1.6) is invariant

under translation. Let SA be a spectrahedron defined by the linear pencil A(x) = A0 +
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p=1 xpAp. To translate SA by a vector v = (v1, . . . , vd) we substitute x − v into the pencil

A(x),

A(x− v) = A0 −
d∑
p=1

vpAp +
d∑
p=1

xpAp.

Lemma 5.1.13 (Translation symmetry). The initial Hol-Scherer relaxation (5.1.6) is invari-
ant under translation.

Proof. Given linear pencils A(x) and B(x), let C be a solution to system (5.1.3). Then it
is also a solution for the translated pencils A(x− v) and B(x− v) for any v ∈ Rd. Since the
translation only has an impact on the constant matrix, we only have to show

B0 −
d∑
p=1

vpBp −

 k∑
i,j=1

(A0)ij −
d∑
p=1

vp(Ap)ij

Cij
 = 0. (5.1.9)

Since Bp =
∑k
i,j=1(Ap)ijCij for all p ∈ [d], (5.1.9) is equivalent to B0 −

∑k
i,j=1(A0)ijCij = 0,

which is the condition on the constant matrices before translating.

Lemma 5.1.14 (Non-singular congruence invariance). Let A(x) ∈ Sk[x] and B(x) ∈ S l[x] be
linear pencils. The initial Hol-Scherer relaxation is invariant under non-singular congruence
transformation of A(x) respectively B(x). To be more precise,

(1) B(x) ∈ QMl
0(A) if and only if B(x) ∈ QMl

0

(
MTA(x)M

)
for any M ∈ GLk(R).

(2) B(x) ∈ QMl
0(A) if and only if MTB(x)M ∈ QMl

0(A) for any M ∈ GLl(R)

Proof.
To (1): Let M ∈ GLk(R). Then the linear condition in part (2) of Theorem 5.1.11 reads as

Bp =
(〈
MApM

T , C ′st

〉)
s,t=1

=
(〈
Ap,M

TC ′stM
〉)
.

Set C ′′ = (MTC ′stM)ls,t=1 = (M ⊕ · · · ⊕M)T C ′M⊕· · ·⊕M . SinceMT⊕· · ·⊕MT ∈ GLkl(R),
C ′′ is positive semidefinite if and only if C ′ is positive semidefinite, implying the claim.
To (2): Let M ∈ GLl(R). Then the linear condition in system (5.1.3) reads as

MTBpM =
k∑

i,j=1
(Ap)ijCij ⇐⇒ Bp =

k∑
i,j=1

(Ap)ij(MT )−1CijM
−1.

Define C ′′ = ((MT )−1CijM
−1)ki,j=1. The claim follows as in part (1).

Next we discuss the transitivity behavior of the Hol-Scherer relaxation. This completes the
proof of Theorem 5.1.12.

Theorem 5.1.15 (Transitivity). Let E ∈ Se[x], F ∈ Sf [x], and G ∈ Sg[x] be linear pencils
such that SE ⊆ SF ⊆ SG holds. Assume F ∈ QMf

s (E) and G ∈ QMg
t (F ) for some nonnegative

integers s, t.
(1) G ∈ QMg

u(E) for some s+ t ≥ u ≥ max{s, t}.

(2) u = max{s, t} if and only if F ∈ QMf
0(E) or G ∈ QMg

0(F ).

(3) If F ∈ QMf
0(E) and G ∈ QMg

0(F ), then G ∈ QMg
0(E).
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Proof. Consider the sos decompositions F = S0 + 〈S,E〉f and G = T0 + 〈T, F 〉g with S0 ∈
Σf
s [x], S = (Skl)fk,l=1 ∈ Σef

s [x] and T0 ∈ Σg
t [x], T = (Tij)gi,j=1 ∈ Σfg

t [x]. Define U = (Uij)gi,j=1
by Uij =

∑f
k,l=1 Skl(Tij)k,l and U0 = T0 + 〈T, S0〉g.

We show U ∈ Σeg[x]. Note that after simultaneous permutation of rows and columns, T
can be written as T ′ = (T ′kl)

f
k,l=1 ∈ Σfg[x] with (T ′kl)i,j = (Tij)k,l. Thus U =

∑f
k,l=1 Skl ⊗ T ′kl.

Since S ∈ Σef [x], there exists a polynomial matrix V ∈ Ref×m[x] for some positive integer m
such that S = V V T . Clearly, the entries in V have degree at most bs/2c. Decompose V into
blocks V1, . . . , Vf ∈ Re×m[x]. Then Skl = VkV

T
l . Similarly, T ′ ∈ Σfg[x] implies T ′ = WW T

with T ′kl = WkW
T
l for some polynomial matrix W = [W1, . . . ,Wf ]T ∈ Rfg×n[x] and some

positive integer n. Then

U =
f∑

k,l=1
Skl ⊗ T ′kl =

f∑
k,l=1

VkV
T
l ⊗WkW

T
l =

f∑
k,l=1

(Vk ⊗Wk) (Vl ⊗Wl)T

is a sum of squares eg×eg-matrix, where we used the mixed-product property of the Kronecker
product [Lau05, Theorem 13.3].
From the construction it follows immediately that the degree of U is bounded by

deg(S) + deg(T ) = s+ t ≥ deg(U) ≥ max{s, t} = max{deg(S),deg(T )}.

If S or T is of degree one or higher, i.e., at least one entry is of degree one or higher, then
by the definition of U every block in U has degree at least one. Obviously, if S and T are
constant (i.e., s = t = 0), then u = 0 = max{s, t}.
U0 ∈ Σg[x] can be proved in a similar way.
Using the sos decomposition of F , we get

U0 + 〈U,E〉g = U0 + (〈Uij , E〉)gi,j=1

= U0 +

 f∑
k,l=1

(Tij)k,l 〈Skl, E〉

g
i,j=1

= T0 + 〈T, S0〉g +
(〈
Tij , 〈S,E〉f

〉)g
i,j=1

= T0 + 〈T, S0〉g + 〈T, F − S0〉g
G = T0 + 〈T, F 〉g .

If a pencil has a block structure, we can use this to reduce the number of variables in the
initial Hol-Scherer relaxation (5.1.6).

Proposition 5.1.16 ([HKM13, Propositions 4.1 and 4.2]). Let A(x) ∈ Sk[x], B(x) ∈ S l[x]
and Gq(x) ∈ Sdq [x] be linear pencils with Gq(x) = Gq0 +

∑d
p=1 xpG

q
p for q ∈ [m].

(1) Assume B(x) =
⊕m

q=1G
q(x) is the direct sum with l =

∑m
q=1 dq. Then B(x) ∈ QMl

0(A)
if and only if Gq(x) ∈ QMdq

0 (A) for q ∈ [m], i.e.,

∃Cq = (Cqij)
k
i,j=1 � 0 : Gqp =

k∑
i,j=1

(Ap)ijCqij ∀p ∈ [0, d]. (5.1.10)

(2) Assume A(x) =
⊕m
q=1G

q(x) is the direct sum with k =
∑m
q=1 dq. Then B(x) ∈ QMl

0(A)
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if and only if B(x) ∈ QMl
0(Gq) for q ∈ [m], i.e.,

∃Cq = (Cqij)
dq
i,j=1 � 0 : Bp =

m∑
q=1

dq∑
i,j=1

(Gqp)ijC
q
ij ∀p ∈ [0, d]. (5.1.11)

(Note that C =
⊕m
q=1C

q � 0 is a block diagonal matrix and each Cqij is of size l × l.)

Since [HKM13] does not contain a proof of statement (1), we provide a short one. The
proof of statement (2) is given in [HKM13, Proposition 4.1].

Proof. Let C1, . . . , Cm be solutions to (5.1.10), and set C =
⊕m

q=1C
q. Define C ′ as the

direct sum of blocks of C, C ′ij =
⊕m

q=1C
q
ij . Then C ′ is a solution to (5.1.3). C ′ results by

simultaneously permuting rows and columns of C and is thus positive semidefinite. We have
Bp =

⊕m
q=1D

q
p =

⊕m
q=1

∑k
i,j=1(Ap)ijCqij =

∑k
i,j=1(Ap)ijC ′ij .

Conversely, let C ′ be a solution to (5.1.3). We are interested in the m diagonal submatrices
of each block C ′ij , defined as follows. For q ∈ [m], let C ′qij be the dq × dq-submatrix of C ′ij
with row and column indices {

∑q−1
r=1 dr + 1, . . . ,

∑q
r=1 dr}. Now the submatrix Cq = (C ′qij )ki,j=1

consisting of the qth diagonal blocks of each matrix C ′ij is a solution to (5.1.10). Cq is a
principal submatrix of C ′ and thus positive semidefinite. The equations in (5.1.10) are a
subset of the equations in (5.1.3) and remain valid.

5.2 Certificates for Containment of H-Polyhedra and Spectrahedra

Specializing the Spectrahedron Containment problem to the case where one of the
linear pencils involved defines an H-polyhedron, allows to reduce the complexity of the initial
Hol-Scherer relaxation (5.1.6) in the sense that the number of variables in the semidefinite
feasibility system is reduced. If the outer set is an H-polyhedron and some mild assumptions
are fulfilled, the containment question can be decided with the initial relaxation step.
If a family of symmetric matrices B0, B1, . . . , Bd ∈ S l commutes (pairwise), then the ma-

trices are simultaneously diagonalizable, i.e., there exists an orthogonal matrix Q ∈ Ol(R)
such that for p ∈ [0, d] there is some diagonal matrix Dp ∈ S l with Bp = QTDpQ. Since
Ol(R) ⊂ GLl(R), this implies that the spectrahedron SB is a polyhedron. By the invariance
Theorem 5.1.12, Corollary 5.1.4 on the containment of H-polyhedra can be generalized from
pencils in normal form to pencils with coefficient matrices simultaneously congruent to a
diagonal matrix.

Lemma 5.2.1. Let A(x) ∈ Sk[x] and B(x) ∈ S l[x] be linear pencils. Assume A0, . . . , Ad and
B0, . . . , Bd are two families of matrices simultaneously congruent to a diagonal matrix (i.e.,
SA and SB are polyhedra).
(1) SA ⊆ SB if and only if B(x) ∈ QMl

0(A).
(2) Assume, in addition, SA is bounded and not a singleton. SA ⊆ SB if and only if B(x) ∈

QMl
0(A) with S0 = 0.

In particular, if all coefficients are diagonal matrices, membership of B(x) in the truncated
quadratic module QMl

0(A) is equivalent to the inclusion SA ⊆ SB.

Proof. Since A0, . . . , Ad are simultaneously congruent to a diagonal matrix, there exists a
non-singular matrix Q ∈ GLk(R) and diagonal matrices D0, . . . , Dd such that QTAiQ = Di
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5 The Spectrahedron Containment Problem

for i ∈ [0, d]. Applying the same to B(x), yielding a diagonal pencil E(x) :=
∑d
p=1 xpEp,

Lemma 5.1.14 implies the equivalence of B(x) ∈ QMl
0(A) and E(x) ∈ QMl

0(D), where
D(x) := D0 +

∑d
p=1 xpDp. Thus the two statements reduce to diagonal pencils and we are in

situation of Corollary 5.1.4, implying the claims.

As we have seen in Section 5.1.1, for polyhedra in normal form (2.3.2) there is a diagonal
solution to (5.1.6). Thus it is sufficient to check the feasibility of the restriction of (5.1.6) to
the diagonal and checking inclusion of polyhedra reduces to a linear program. Note that for
rational polyhedra in normal form, the certificate is again rational. For unbounded polyhedra,
the term S0(x) (resp. the extended normal form of A(x)) is required in order for the criterion
to be exact; see Example 5.1.2.

As every symmetric matrix is diagonalizable, an immediate consequence of Lemma 5.2.1 is
the somewhat artificial statement on univariate linear pencils defining unbounded intervals.

Corollary 5.2.2. Let A(x) = x1A1 ∈ Sk[x] and B(x) = x1B1 ∈ S l[x]. Then SA ⊆ SB if and
only if B(x) ∈ QMl

0(A).

5.2.1 Spectrahedron in H-Polyhedron

Helton, Klep, and McCullough [HKM13, Proposition 5.3] showed that the containment crite-
rion (5.1.3) is exact in an important case, namely if SB is the cube given by the monic linear
pencil

B(x) = I2d + 1
r

d∑
p=1

xp (Ep,p − Ed+p,d+p) . (5.2.1)

The goal of this section is to generalize this to all polyhedra SB given by a linear pencil with
coefficient matrices simultaneously congruent to a diagonal matrix, particularly for polyhedra
in normal form (2.3.2).

Theorem 5.2.3. Let A(x) ∈ Sk[x] be a strictly feasible linear pencil and let the coefficients
of the linear pencil B(x) ∈ S l[x] be simultaneously congruent to a diagonal matrix.

(1) SA ⊆ SB if and only if B(x) ∈ QMl
0(A).

(2) Assume SB is a polytope with nonempty interior. Then SA ⊆ SB if and only if B(x) ∈
QMl

0(A) with S0 = 0.

In particular, the statements hold for a diagonal linear pencil B(x), i.e., a polyhedron in
normal form (2.3.2).

This theorem can also be deduced from results of Klep and Schweighofer in [KS11]. A
linear scalar-valued polynomial is positive on a spectrahedron if and only if it is positive on
the matricial version of the spectrahedron.

In order to prove this statement (where the sufficiency-parts are clear from the construction
of the hierarchy (5.1.6)), we use some of the auxiliary results on the behavior of the criterion
with regard to block diagonalization and transitivity proved in Section 5.1.3.

Proof. Suppose B0, B1, . . . , Bd ∈ S l are simultaneously congruent to a diagonal matrix, i.e.,
there exists a non-singular matrixQ ∈ GLl(R) such thatQTBpQ = Dp is a diagonal matrix for
all p ∈ [0, d]. Since the linear pencils B(x) and QTB(x)Q have the same positivity domain, the
spectrahedron is polyhedral. By Theorem 5.1.12, the initial Hol-Scherer step (5.1.3) certifies
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containment with respect to B(x) and A(x) if and only if it does when considering the pencil
D(x) instead of B(x). Thus w.l.o.g. let B(x) be diagonal.

Let B(x) =
⊕l

q=1 b
q(x) ∈ S l[x] with bq(x) = bq0 + xT bq for q ∈ [l] be the normal form of a

polyhedron (2.3.2). Assume w.l.o.g. that the H-representation of SB is reduced, i.e., SB has
l facets and each bq is an inner normal vector of one of the facets. Denote by bq0, b

q
1, . . . , b

q
d the

coefficients of the linear form bq(x) = (b0 +Bx)q. Set bq := (bq1, . . . , b
q
d).

Proposition 5.1.16 implies that the initial Hol-Scherer relaxation is feasible if and only if
the system

Cq = (Cij)ki,j=1 � 0, ∀p ∈ [0, d] : bqp =
k∑

i,j=1
(Ap)ijCqij

is feasible for all q ∈ [l]. Note that Cq is in Sk. Hence, the system has the form

Cq = (Cij)ki,j=1 � 0, ∀p ∈ [0, d] : bqp = 〈Ap, Cq〉 . (5.2.2)

We show the existence of a solution by duality theory of semidefinite programming and
transitivity of the criterion; see Theorem 5.1.15. For q ∈ [l], consider the semidefinite program

rq := max 〈−bq, x〉
s.t. A(x) � 0.

(5.2.3)

By assumption, the primal problem (5.2.3) is strictly feasible and the optimal value is finite.
Hence, by Proposition 2.3.15, the dual problem

min 〈A0, Y
q〉

s.t. 〈Ap, Y q〉 = bqp for p ∈ [d]
Y q � 0

(5.2.4)

has the same optimal value rq and attains it. (Note that by duality 〈−Ap, Y q〉 = −bqp.)
Consequently, for all q ∈ [l] there exists a symmetric k × k-matrix Cq such that

Cq � 0, rq = 〈A0, C
q〉 , bqp = 〈Ap, Cq〉 .

As mentioned before (5.2.2), the matrices Cq certify the inclusion SA ⊆ SB′ , where B′(x) is
defined as the linear pencil

B′(x) =
l⊕

q=1

rq +
d∑
p=1

bqpxp

 .
Now we have to distinguish between the two cases in the statement of the theorem.

First consider the case that SB is a polytope containing the origin in its interior. Since B(x)
is in normal form, we have maxx∈SB 〈−bq, x〉 = bq0. Further, since SA ⊆ SB, the definition of
rq implies rq ≤ bq0 and hence SB′ ⊆ SB. By transitivity and by exactness of the criterion for
polytopes, see Theorem 5.1.15 and Lemma 5.2.1, respectively, there is a initial Hol-Scherer
certificate for the inclusion SA ⊆ SB.

To prove the unbounded case in the theorem, we construct a certificate (5.1.6) for the
inclusion S

Â
⊆ S

B̂′ , where B̂′(x) = 1 ⊕ B′(x) denotes the extended normal form (5.1.2).
Then the claim follows by Lemma 5.2.1 and Theorem 5.1.15 as above.

First note that S
Â
⊆ SB is equivalent to SA ⊆ SB. Denote by C ′ the matrix that certifies
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the inclusion SA ⊆ SB′ . Then the symmetric (k + 1)(l + 1)× (k + 1)(l + 1)-matrix

Ĉ := E11 ⊕
[
0 0
0 C ′ij

]k
i,j=1

,

where E11 and the blocks
[

0 0
0 C′

ij

]k
i,j=1

are of size (l + 1) × (l + 1), certifies the inclu-

sion S
Â
⊆ S

B̂′ . Indeed, adding zero-columns and zero-rows simultaneously preserves positive
semidefiniteness and, clearly, the sum of the diagonal blocks of Ĉ equals the extended con-
stant term 1 ⊕ B0. Since in every Âp the first column and the first row are the zero vector,
we get

k∑
i,j=0

(Âp)ij Ĉij = 0 · E11 +
[
0 0
0
∑k
i,j=1 a

p
ijC
′
ij

]
= B̂′p.

If the description of the polyhedron in Theorem 5.2.3 cannot be transformed to a pencil in
normal form, the situation changes. Recall that there exist representations of polyhedra, called
S-representations (cf. Proposition 2.3.1), for which it is not possible to achieve a normal form
by simultaneous congruence transformation. As mentioned in Section 2.3, the polyhedrality
recognition problem (PRP) is an NPH problem. Therefore, we cannot expect to deduce a
normal form representation from a general S-representation of a polyhedron. However, if
polyhedrality of the set SB is known a priori, Proposition 2.3.1 allows to reduce the problem
to a blockdiagonal pencil. Application of Proposition 5.1.16 yields then a smaller problem.

5.2.2 H-Polyhedron in Spectrahedron – A Note on the Polytope Recognition
Problem

Let A(x) ∈ Sk be a linear pencil such that SA is a polyhedron containing the origin. By
Proposition 2.3.1, there exists a non-singular matrix M ∈ GLk(R) and linear pencils D(x) ∈
Sm and S(x) ∈ Sk−m for some k ≥ m ≥ 1 such that D(x) is diagonal and

MTA(x)M = D(x)⊕ S(x) and SA = SD.

Thus the pencil D(x) is another representation of the spectrahedron SA. Consider another
pencil B(x) ∈ S l. Using Proposition 5.1.16 and Lemma 5.1.14, system (5.1.3) can be reduced
to test whether

C1, . . . , Cm ∈ S l+, ∀p ∈ [0, d] : Bp =
m∑
q=1

Dq
pC

q

has a solution, where Dq(x) = Dq
0 +

∑d
p=1 xpD

q
p with Dq

p ∈ R – a decrease in the number
of variables from 1

2kl(kl + 1) to 1
2ml(l + 1). Note that this can only be done if a priori the

polyhedrality of SA is known.

However, even if polyhedrality of SA is unknown, the approach based on Proposition (2.3.1)
still yields a reduction to the SDFP

C1, . . . , Cm ∈ S l+, Cm+1 ∈ S(k−m)l
+ ,

∀p ∈ [0, d] : Bp =
m∑
q=1

Dq
pC

q +
k−m∑
i,j=1

(Sp)ijCm+1.
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The number of variables decreases from 1
2kl(kl + 1) to 1

2 l
(
l(k −m)2 +ml + k

)
.

If a priori polyhedrality of SA is unknown and one wants to solve the polytope recognition
problem (PRP), the problem can be simplified by using Proposition (2.3.1). SA is a poly-
hedron if and only if SD ⊆ SS . (Note that the reverse inclusion is clear by construction;
see [BRS11].) Applying Proposition 5.1.16, the semidefinite feasibility problem

∃C1, . . . , Cm ∈ Sk−m+ : Sp =
m∑
q=1

Dq
pC

q ∀p ∈ [0, d]

yields a sufficient criterion for polyhedrality of SA.

5.3 Containment Certificates for Some Structured Classes

It turns out that the initial Hol-Scherer relaxation (5.1.6) even provide containment certifi-
cates in several structured cases. Detailed statements of these results and their proofs will be
given in Lemma 5.3.2, Lemma 5.3.4, and in Section 5.4. A summary is given in Theorem 5.3.1.

For ease of notation, most statements in this section are given for monic pencils. While the
statements are only stated for the initial Hol-Scherer relaxation, all the results are valid for
the solitary criterion (5.1.3) and its refinement (5.1.4). In order to prove the statements, we
use the equivalent descriptions of the initial step stated in Theorem 5.1.11.

Theorem 5.3.1. Let A(x) ∈ Sk[x] and B(x) ∈ S l[x] be monic linear pencils. In the following
cases, containment SA ⊆ SB is certified by the initial relaxation step (5.1.6).

(1) A(x) and B(x) are normal forms of ellipsoids (2.3.14) (both centrally symmetric with
axis-aligned semi-axes).

(2) A(x) is the normal form of an ellipsoid and the coefficients of B(x) are simultaneously
congruent to a diagonal matrix.

(3) A(x) = A0 + x1A1 + x2A2 ∈ S2[x] with span{A0, A1, A2} = S2, and SA is a nonempty
spectratope.

In this section, we provide the proofs of (1) and (2), where the sufficiency parts follow from
the construction of the Hol-Scherer relaxation and by Theorem 5.1.3. Case (3) is treated in
Section 5.4.

5.3.1 Some Exact Cases

The following statement on ellipsoids uses the normal form (2.3.14).

Lemma 5.3.2. Let two ellipsoids SA and SB be given by the normal forms

A(x) = Id+1 +
d∑
p=1

xp
ap

(Ep,d+1 + Ed+1,p) and B(x) = Id+1 +
d∑
p=1

xp
bp

(Ep,d+1 + Ed+1,p),

respectively. Here (a1, . . . , ad) > 0 and (b1, . . . , bd) > 0 are the vectors of the length of the
semi-axes. Then SA ⊆ SB if and only if B(x) ∈ QMl

0(A).
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Proof. Note first that k = l = d + 1. It is obvious that SA ⊆ SB if and only if bp − ap ≥ 0
for every p ∈ [d]. The matrices underlying the matrix pencils A(x) and B(x) are

Ap = 1
ap

(Ep,d+1 + Ed+1,p) and Bp = 1
bp

(Ep,d+1 + Ed+1,p)

for all p ∈ [d]. Now define an (d+ 1)2 × (d+ 1)2-block matrix C by

(Ci,j)s,t =



1 i = j = s = t,
aj
bj

i = s = d+ 1, j = t ≤ d,
ai
bi

i = s ≤ d, j = t = d+ 1,
ai aj
bi bj

i = s ≤ d, j = t ≤ d, i 6= j,

0 otherwise.

We show that C is a solution to (5.1.3). Decompose x ∈ R(d+1)2 in blocks of length d+ 1 and
write xi,j for the jth entry in the ith block. The matrix C is positive semidefinite since

xTCx =
d+1∑
i=1

x2
i,i + 2

∑
i<j≤d

ai aj
bi bj

xi,ixj,j + 2
d∑
i=1

ai
bi
xi,i xd+1,d+1

=
(

d∑
i=1

ai
bi
xi,i + xd+1,d+1

)2

+
d∑
i=1

(
1− a2

i

b2i

)
x2
i,i ≥ 0

for all x ∈ R(d+1)2 . Clearly, the sum of the diagonal blocks is the identity matrix Id+1. Since
every Ap has only two non-zero entries, every Bp is a linear combination of only two blocks
of C,

Bp = 1
ap
Cd+1,p + 1

ap
Cp,d+1.

This equality is true by the definition of C.

Remark 5.3.3. Using the square matrices Ei,j of size (d+1)×(d+1) introduced in Chapter 2,
the matrix C in the proof of Lemma 5.3.2 has the form

E1,1 f1,2E1,2 · · · f1,dE1,d
a1
b1
E1,d+1

f2,1E2,1 E2,2
. . . ...

...
... . . . . . . fd−1,dEd−1,d

...
fd,1Ed,1 · · · fd,d−1Ed,d−1 Ed,d

ad
bd
Ed,d+1

a1
b1
Ed+1,1

a2
b2
Ed+1,2 · · · ad

bd
Ed+1,d Ed+1,d+1


∈ S(d+1)2

,

where fi,j := ai aj
bi bj

.

Now we prove exactness of the initial Hol-Scherer relaxation (5.1.6) for the containment of
an ellipsoid in an H-polyhedron. Our result slightly generalizes [KTT13, Lemma 4.13].

Lemma 5.3.4. Let SA be an ellipsoid given by the linear pencil

A(x) =
[
A 0
0 r

]
+

d∑
p=1

xp(Ep,d+1 + Ed+1,p)

with A ∈ Sd++ and r > 0. Let B(x) be a strictly feasible linear pencil whose coefficient
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matrices are simultaneously congruent to a diagonal matrix (i.e., SB is an H-polyhedron).
Then SA ⊆ SB if and only if B(x) ∈ QMl

0(A).

Proof. We first reduce the problem using Theorem 5.1.12 to the case of monic linear pencils.

Since B0, . . . , Bd are simultaneously congruent to a diagonal matrix, i.e., there exist a non-
singular matrix Q ∈ GLl(R) and diagonal matrices D0, . . . , Dd such that QTBiQ = Di for i ∈
[0, d], Theorem 5.1.12 implies that B(x) ∈ QMl

0(A) is equivalent to D(x) ∈ QMl
0(A), where

D(x) := D0 +
∑d
p=1 xpDp. As B(x) is strictly feasible, (possibly after an affine translation)

D0 � 0. Thus w.l.o.g. assume B(x) to be the normal form of an H-polyhedron (2.3.2) with
B0 = Il.

Since A ∈ Sd++, there exists a non-singular matrix Q ∈ GLd(R) such that QAQT = Id.
By applying Theorem 5.1.12, the membership problem B(x) ∈ QMl

0(A) can be reduced to
B(x) ∈ QMl

0(A′), where

A′(x) =
[

Id S−1Qx
(S−1Qx)T r

]
.

After a coordinate transformation, x = S−1Qx, we end up with the question whether the r-
scaled unit ball is contained in the polyhedron PB (in the new coordinate system). Therefore,
assume A(x) to be the normal form of a ball (2.3.14) of radius r, i.e., SA = Br(0).

Since B(x) is monic, the linear polynomials describing SB are of the form bi(x) = 1 +∑d
p=1 bi,pxp for i ∈ [l]. If SA′ ⊆ SB, we have S◦B ⊆ S◦A′ = B1/r(0). As −bi ∈ S◦B for i ∈ [l], we

have bTi bi = ‖ − bi‖22 ≤ 1/r2.

We give a feasible matrix C to system (5.1.3) to show exactness of the criterion. In this
case, C is an (d+ 1)l × (d+ 1)l-block matrix defined as follows:

(Ci,j)s,t =



r2b2
s,i

2 i = j < k, s = t,

1− r2

2
∑d
p=1 b

2
s,i i = j = k, s = t,

r2bs,ibs,j
2 i < k, j < k, i 6= j, s = t,

r bs,j
2 i = k, j < k, s = t,

r bs,i
2 j = k, i < k, s = t,

0 otherwise.

To show positive semidefiniteness of C, consider a vector x ∈ R(d+1)l. Decompose x into
blocks of length l, and we write xi,j for the jth entry in the ith block. Now C is positive
semidefinite since

xTCx =
l∑

s=1

[ ∑
i=j<k

x2
i,s

r2b2s,i
2 + x2

k,s

1− r2

2

d∑
p=1

b2s,p


+ 2

∑
i<j<k

xi,sxj,s
r2bs,ibs,j

2 + 2
∑
i<k

xi,sxk,s
r bs,i

2

]

=
l∑

s=1

[ ∑
i=j<k

xi,s
r bs,i√

2
+ xk,s√

2

2

+ 1
2x

2
k,s

1− r2
d∑
p=1

b2s,p

] ≥ 0

for all x ∈ R(d+1)l. The term 1 − r2∑d
p=1 b

2
s,p is nonnegative since the ball of radius r is

contained in SB and therefore 1
r2 ≥

∑d
p=1 b

2
s,p. By construction, the sum of the diagonal
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blocks is the identity matrix Il. Every Bp is a linear combination of only two blocks of C,

Bp = 1
r
Cd+1,p + 1

r
Cp,d+1.

Observe that in Lemmas 5.3.2 and 5.3.4, for rational input, C is rational as well.

5.3.2 Containment of Scaled Spectrahedra

Surprisingly, certifying containment can always be achieved by an appropriate scaling of one
of the spectrahedra involved, leading to an optimization version of the initial step (5.1.6) and
the solitary criterion (5.1.3). We start by revisiting Example 5.1.7.

Example 5.3.5 (Example 5.1.7 revisited). Let A(x) and B(x) be the linear pencil represen-
tations of the 2-dimensional unit ball as in Example (5.1.7). Generalizing A(x), let Ar(x) be
the linear pencil of the ball with radius (1 >)r > 0 in normal form. With regard to the con-
tainment question SAr = rSA ⊆ SB, we show the feasibility of system (5.1.3) for r sufficiently
small.

Claim. The containment problem rSA ⊆ SB is certified by criterion (5.1.3) and by the initial
Hol-Scherer relaxation (5.1.6) for 0 < r ≤ 1

2
√

2.

Consider the matrix

C =



c 0 0 c r
2 0

0 c −c 0 0 − r
2

0 −c c 0 0 r
2

c 0 0 c r
2 0

r
2 0 0 r

2 1− 2c 0
0 − r

2
r
2 0 0 1− 2c


∈ R6×6.

Obviously the equality constraints in (5.1.3) are fulfilled. If one of the diagonal entries is
zero, i.e., c = 0 or 1 − 2c = 0, then r = 0. Therefore, 0 < c < 1

2 and the 2 × 2-block in
the top left corner C11 is positive definite. Thus the matrix C is positive semidefinite if and
only if the Schur complement (see, e.g., [dK02, Theorem A.9]) with respect to C11 is positive
semidefinite. This is the case if and only if

1− 2c− r2

4c ≥ 0 ⇔ f(c) := 8c2 − 4c+ r2 ≤ 0.

Assume r > 1
2
√

2. Then f(c) > 0 for all c since f has no real roots and the constant term
f(0) = r2 is positive. Otherwise, f(1

4) = −1
2 + r2 ≤ 0. Hence, system (5.1.3) is feasible for

0 < r ≤ 1
2
√

2.

Alternatively, we can prove the positive semidefiniteness of C in the same manner as in
the proofs of Lemmas 5.3.2 and 5.3.4. To do this, set 2

√
c(1− 2c) = r. Since 0 < r by

assumption, the equation has real solutions in c if and only if 0 < r ≤ 1
2
√

2. Equivalently,
c ∈ (0, 1

2). Let x ∈ R6. Then

xTCx = c x2
1 + c x2

4 + (1− 2c)x2
5 + 2c x1x4 + r x1x5 + r x4x5

+ c x2
2 + c x2

3 + (1− 2c)x2
6 − 2c x2x3 − r x2x6 + r x3x6

=
(√

c x1 +
√
c x4 +

√
1− 2c x5

)2
+
(
−
√
c x2 +

√
c x3 +

√
1− 2c x6

)2
≥ 0
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for c ∈ (0, 1
2).

The problem of maximizing r such that containment is certified by (5.1.3) and (5.1.6)
can be formulated as a semidefinite program. A numerical computation yields an optimal
value of 0.707 ≈ 1

2
√

2. Note that we are in the situation of Corollary 5.1.6. For the relaxed
version (5.1.5), a numerical computation gives the optimal value of 0.950 ≈ 19

20 . In particular,
this shows that the relaxed criterion (5.1.5) can be satisfied in cases where the non-relaxed
criterion (5.1.3) does not certify an inclusion. It is an open research question to establish a
quantitative relationship comparing criterion (5.1.3) to (5.1.5) in the general case. �

Generalizing the observation from Example 5.3.5, we show that for two spectrahedra SA
and SB containing the origin in their interior, there always exists some scaling factor ν such
that the initial Hol-Scherer relaxation (5.1.6) and criterion (5.1.3) (and (5.1.4)) certify the
inclusion νSA ⊆ SB. This extends the following result of Ben-Tal and Nemirovski, who treated
containment of a cube in a spectrahedron.

For a linear pencil A(x) ∈ Sk[x] with positive definite constant term A0 � 0 and a positive
constant ν > 0, define the ν-scaled (linear) pencil as

Aν(x) := A

(
x

ν

)
= A0 + 1

ν

d∑
p=1

xpAp. (5.3.1)

Similarly, we denote by νSA := {x ∈ Rd | Aν(x) � 0} the corresponding ν-scaled spectrahe-
dron.

Proposition 5.3.6 ([BTN02, Thm. 2.1]). Let SA be the cube in normal form (5.2.1) with edge
length r > 0 and consider a linear pencil B(x) with B0 � 0. Let µ = max{rankBp | p ∈ [d]} be
the maximum rank of the coefficient matrices of B(x). If SA ⊆ SB, then B(x) ∈ QMl

0(Aν(µ))
with regard to the ν(µ)-scaled pencil Aν(µ), where ν(µ) is given by

ν(µ) = min
y∈Rµ,‖y‖1=1

{∫
Rµ

∣∣∣∣∣
µ∑
i=1

yiu
2
i

∣∣∣∣∣
( 1

2π

)µ
2

exp
(
−u

Tu

2

)
du

}

and ‖y‖1 =
∑µ
i=1 |yi|. For all µ > 0 the bound ν(µ) ≥ 2

π
√
µ holds.

Recently, Helton, Klep, McCullough, and Schweighofer presented a new proof of Ben-Tal-
Nemirovski’s scaling result based on a new dilation theorem and “very subtle non-trivial
properties of Binomial and Beta distributions”; see [HKMS14, Theorems 5.8 and 5.9]. This
allows to derive a more explicit description of the constant ν(µ) if µ is even, namely

ν(µ) =
√
π Γ

(
1 + µ

4
)

Γ
(

1
2 + µ

4

) ,

where Γ denotes the Euler gamma function; see [HKMS14, Theorem 13.1]. Moreover, the
approach of Helton et al. allows them to improve the statement in the sense that the given
bound ν(µ) is the best possible for the criterion (5.1.3), and thus for the initial Hol-Scherer
relaxation (5.1.6).

Helton et al. also get a bound for all centrally symmetric matricial spectrahedra [HKMS14,
Proposition 8.1]. (Note that so far it is unknown whether for a centrally symmetric spectrahe-
dron, the matricial version is again centrally symmetric.) A quantitative result is not known
for the general case. However, combining Proposition 5.3.6 with our results from Sections 5.1
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and 5.2.1 we get that for spectrahedra with nonempty interior, there is always a scaling factor
such that system (5.1.3) and thus also system (5.1.4) hold.

Proposition 5.3.7. Let A(x) and B(x) be linear pencils with A0 � 0 and B0 � 0. Assume
that SA is bounded. Then there exists a constant ν > 0 such that for the scaled spectrahedron
νSA the inclusion νSA ⊆ SB is certified by the initial Hol-Scherer relaxation (5.1.6) and by
system (5.1.3).

We provide a proof based on the framework established in the previous sections. Alterna-
tively, for monic linear pencils, the result can be deduced from statements about the matri-
cial relaxation of criterion (5.1.3) given in the work by Helton and McCullough [HM04], see
also [HKM13]. Criterion (5.1.3) is satisfied for monic linear pencils Aν(x) and B(x) if and
only if the matricial version of νSA is contained in the matricial version of SB.

Proof. Denote by SD the cube, defined by the monic linear pencil (5.2.1), with the minimal
edge length such that SA is contained in it. Since B0 � 0, there is an open subset around the
origin contained in SB. Thus there is a scaling factor ν1 > 0 so that ν1SA ⊆ ν1SD ⊆ SB.
By Proposition 5.3.6, there exists a constant ν2 > 0 such that B(x) ∈ QMl

0(Dν) with
ν = ν1ν2. By Theorem 5.2.3, Dν(x) ∈ QM2d

0 (A). Finally, Theorem 5.1.15 implies B(x) ∈
QMl

0(Aν), certifying the inclusion νSA ⊆ SB.

In the proof of Proposition 5.3.7, we scale the spectrahedron SA by a certain factor ν. Since
νSA ⊆ SB is equivalent to SA ⊆ 1

νSB, the initial Hol-Scherer relaxation and criterion (5.1.3)
remain a positive semidefinite condition even in the presence of the factor ν. Moreover, we
can optimize for ν such that the criterion remains satisfied. Proposition 5.3.7 implies that
for bounded spectrahedra containing the origin, the maximization problem for ν always has
a positive optimal value.
This yields a natural framework for the approximation of smallest enclosing spectrahedra

and largest enclosed spectrahedra. In [HKM13, Section 4], an example of computing a bound
for the norm of the elements of a spectrahedron SA (represented by a monic linear pencil)
is provided. This can be achieved by choosing SB to be the ball centered at the origin,
see (2.3.14). For the criterion (5.1.3), we obtain a particularly nice representation, it reduces
to the semidefinite system

C = (Cij)ki,j=1 � 0,

Id+1 =
k∑
i=1

Cii,

∀p ∈ [d] ∀ (s, t) ∈ [d+ 1]2 : k∑
i,j=1

(Ap)ijCij


st

=
{1
r if (s, t) ∈ {(p, d+ 1), (d+ 1, p)} ,
0 else.

(5.3.2)

5.4 Containment of Spectrahedra and Positive Linear Maps

As we will see in this section, checking positivity of a linear map on matrix subspaces is
equivalent to checking containment for spectrahedra. We can thus apply our hierarchy for
the containment question. On the other hand, the theory of positive linear maps gives some
interesting insights into the Spectrahedron Containment problem. Most notably, we
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prove necessity of the initial Hol-Scherer relaxation (5.1.6) for a family of 2-dimensional
spectrahedra where the inner set is a spectratope with nonempty interior given by a linear
pencil of size 2× 2; see Theorem 5.4.10.
After reviewing the general theory of (completely) positive linear maps (on subspaces) in

Section 5.4.1, we study the containment criterion based on complete positivity of operators
that was studied in [HKM13].

5.4.1 Positive Linear Maps

The concepts discussed in this subsection can be defined in a much more general setting, using
the language of operator theory. For an introduction to positive and completely positive maps
on C∗-algebras (and, in particular, Hermitian matrix algebras), we refer to [Pau03]. For our
needs, we restrict ourselves to linear maps between real (symmetric) matrix spaces.

Definition 5.4.1. Let A ⊆ Rk×k and B ⊆ Rl×l be linear subspaces and consider a linear
map Φ : A → B.
(1) Φ is called positive if the image of any positive semidefinite matrix in A under Φ is

positive semidefinite in B as well, i.e., Φ(A ∩ Sk+) ⊆ B ∩ S l+.
(2) Φ is called r-positive if the map Φr : Rr×r ⊗ A → Rr×r ⊗ B is positive, i.e., for all

(Aij)ri,j=1 ∈ (Rr×r ⊗A) ∩ Srk+ we have (Φ(Aij))ri,j=1 ∈ (Rr×r ⊗ B) ∩ Srl+ .
(3) If Φ is r-positive for all r ∈ N, then Φ is called completely positive.

Naturally, every d-positive map is e-positive for all positive integers e ≤ d. While complete
positivity implies positivity, the converse is not always true. We now provide a condition
under which those two notions are equivalent.

Proposition 5.4.2. Let Φ : Sk → S l be a linear map. Assume min{k, l} ≤ 2. Then Φ is
positive if and only if Φ is completely positive.

Proof. Let k = 1. Then Φ is completely positive if and only if Φk = Φ1 : R1×1 ⊗ R →
R1×1 ⊗ S l is positive. Clearly, Φ1 = Φ.
Let l = 1. Then Φ is completely positive if and only if yT (Φ(Aij))i,jy ≥ 0 for all y ∈ Rk

and (Aij)i,j ∈ Sk+. Define I = (Ik, . . . , Ik)T . Then

yT (Φ(Aij))i,j y =
k∑

i,j=1
yiyjΦ (Aij) = Φ

 k∑
i,j=1

yiyjAij

 = Φ
(
IT (yiyjAij)i,jI

)

is nonnegative since (yiyjAij)i,j is a principal submatrix of the positive semidefinite matrix
yyT ⊗ (Aij)i,j and Φ is a positive map.
The case min{k, l} = 2 is more involved. We refer to [Cho75a, Theorem 7].

Choi showed the connection between positivity of linear maps and nonnegativity of bi-
quadratic forms as well as complete positivity and a biquadratic form being a sum of squares
of bilinear forms.

Proposition 5.4.3 ([Cho75b, Section 3]). A linear map Φ : Sk → S l is a positive map if
and only if the biquadratic form F (x, y) = yTΦ(xxT )y : Rk ⊗ Rl → R is nonnegative.
A positive linear map Φ : Sk → S l is completely positive, i.e., Φ(A) =

∑
s V

T
s AVs for

some matrices Vs ∈ Rk×l, if and only if the corresponding biquadratic form F (x, y) is a sum
of squares of bilinear forms, F (x, y) =

∑
s(xTVsy)2.
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As a corollary, we get an (incomplete) complexity classification of deciding (complete)
positivity of linear maps.

Corollary 5.4.4. Let Φ : Sk → S l be a linear map. Deciding positivity of Φ is an NP-hard
problem. Deciding complete positivity of Φ can be formulated as an SDFP (2.3.13) whose size
is polynomial in the description size of the input data.

Proof. The first follows from the fact that deciding nonnegativity of a polynomial is NP-
hard. Since deciding whether a polynomial is a sum of squares is an SDFP (2.3.13), the second
statement follows.

For the cases min{k, l} > 2, there exist examples of positive maps which are not completely
positive; see [Ter39, Satz 9] for Terpstra’s example. However, since deciding positivity of linear
maps is NP-hard, only few examples are known that are not completely positive. Stinespring
and Arveson stated examples of positive but not completely positive maps; but all these
examples fail to be 2-positive. Choi [Cho75a] stated the first example of a 2-positive map
that is not completely positive (for k = l = 3); see also Example 5.4.11 below. See [Cho72]
for a generalization to (k − 1)-positive maps which are not k-positive; and [CKL92] for a
generalization of “Choi’s map” (for k = l = 3) to a parametric family of (2-)positive maps
which are not completely positive. The structure of positive maps on higher dimensional
spaces is not completely understood; see, e.g., [SSŻ09, Stø63].
Provided that A contains a positive definite matrix, complete positivity of Φ is equivalent

to k-positivity. Interestingly, in this situation every completely positive map does have a
completely positive extension to the full matrix space and can therefore be represented by
a positive semidefinite matrix. This is well-known in the general setting of C∗-algebras, and
persists in our real setting.

Proposition 5.4.5 ([Pau03, Theorems 6.1 and 6.2.]). Let A ⊆ Rk×k be a linear subspace
containing a positive definite matrix.
(1) A linear map Φ : A → S l is completely positive if and only if it is k-positive.
(2) Each completely positive map Φ : A → S l has an extension to a completely positive

map Φ̃ : Rk×k → Rl×l. Moreover, complete positivity of the map Φ̃ is equivalent to
positive semidefiniteness of the matrix C = (Cij)ki,j=1 = (Φ̃(Eij))ki,j=1 ∈ Skl.

A significant implication of Proposition 5.4.5 is the following. Given a linear subspace A
containing a positive definite matrix, a linear map Φ : A → Rl×l is completely positive if
and only if at least one of all possible extensions of Φ to the whole matrix space is com-
pletely positive. The set of extensions is determined by linear equations, fixing some (but
not all) of the entries in the matrix C. Testing the partially indeterminate matrix C for a
positive semidefinite extension is a semidefinite feasibility problem (SDFP). Recall from the
preliminary Section 2.3 that while the computational complexity of solving SDFPs is open, in
practice it can be done efficiently by semidefinite programming. Surprisingly, the same is not
true for positive maps. Positive maps on subspaces do not always have a positive extension
to the full space, even if the subspace contains a positive definite matrix; see, e.g., [Stø86,
Example 3.16].

5.4.2 Containment of 2-dimensional Spectrahedra

Our main goal is to prove necessity of the initial Hol-Scherer relaxation (5.1.6) for a special
family of 2-dimensional spectrahedra. For the convenience of the reader, we first collect the
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relevant connections between the containment problem and (complete) positivity of maps on
matrix subspaces.

By showing the equivalence of containment of the so-called matricial relaxations (also called
free spectrahedra) of two spectrahedra SA, SB given by monic linear pencils and the existence
of a completely positive unital linear map

Φ : span{Ik, A1, . . . , Ad} → span{Il, B1, . . . , Bd}, Ap 7→ Bp,

the authors of [HKM12, HKM13] proved that the system

C = (Cij)ki,j=1 ∈ S
kl
+ , Il =

k∑
i=1

Cii, ∀p ∈ [d] : Bp =
k∑

i,j=1
(Ap)ijCij

has a solution if and only if the matricial relaxation of SA is contained in the one of SB. In this
case SA ⊆ SB. Clearly, this is the sufficient semidefinite containment criterion (5.1.3) stated
in Section 5.1.1 when restricted to monic linear pencils. Thus Theorem 5.1.3 serves as an
extension and a more streamlined proof of the Helton-Klep-McCullough criterion. Moreover,
in our approach it becomes apparent that we can relax the criterion given by Helton, Klep
and McCullough by replacing the linear constraints on the constant matrices in (5.1.3) with
semidefinite constraints.

Given the linear pencils A(x) ∈ Sk[x] and B(x) ∈ S l[x], define the corresponding linear
subspaces

A = span(A0, A1, . . . , Ad) ⊆ Sk,
Â = span(1⊕A0, 0⊕A1, . . . , 0⊕Ad) ⊆ Sk+1, and
B = span(B0, B1, . . . , Bd) ⊆ S l.

Recall from Section 5.1.1 the definition of the extended linear pencil Â(x) = 1⊕A(x).

For linearly independent A1, . . . , Ad, let Φ̂AB : Â → B be the linear map defined by

Φ̂AB(1⊕A0) = B0, ∀p ∈ [d] : Φ̂AB(0⊕Ap) = Bp.

Note that since every linear combination 0 = λ0(1 ⊕ A0) +
∑d
p=1 λp(0 ⊕ Ap) for real scalars

λ0, . . . , λd yields λ0 = 0, it suffices to assume the linear independence of the coefficient
matrices A1, . . . , Ad to ensure that Φ̂AB is well-defined. To obtain linear independence, the
lineality space can be treated separately, as described in Proposition 2.3.3. Note that the
lineality space for the extended pencil is the same as for the actual pencil.

If additionally, A0, A1, . . . , Ad are linearly independent, we can retreat to the simpler map
ΦAB : A → B defined by

ΦAB : Ap 7→ Bp ∀p ∈ [d].

In [HKM13, Theorem 3.5] the authors state the relationship between r-positive maps and
the question of containment of (bounded) matricial positivity domains. For r = 1, this con-
tains the case of spectrahedra. Their proof is based on operator algebra. We give a more
streamlined proof concerning only positive maps and spectrahedra.

Proposition 5.4.6. Let A(x) ∈ Sk[x] and B(x) ∈ S l[x] be linear pencils.

(1) If ΦAB or Φ̂AB is positive, then SA ⊆ SB.
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(2) If SA 6= ∅, then SA ⊆ SB implies positivity of Φ̂.
(3) If SA 6= ∅ is bounded, then SA ⊆ SB implies positivity of Φ.

Proof. Set Â(x0, x) := x0(1⊕A0) +
∑d
p=1 xp(0⊕Ap) ∈ Sk+1

+ ∩ Â.

To (1): Let ΦAB be positive. Fix x ∈ SA. Then B(x) = Φ(A(x)) ∈ S l+ ∩B and hence x ∈ SB.
If Φ̂AB is positive, the proof is verbatim the same.

To (2): Since the spectrahedra defined by A(x) and Â(x) coincide, we have S
Â
⊆ SB. Let

Â(x0, x) ∈ Sk+1
+ ∩ Â. Then x0 ≥ 0.

Case x0 > 0. Scaling of the linear pencil with 1/x0 preserves positive semidefiniteness.
Thus, Â(1, x/x0) = 1/x0 · Â(x0, x) ∈ Sk+1

+ ∩ Â and x/x0 ∈ SA ⊆ SB. Scaling B(x/x0) by x0
yields Φ̂(Â(x0, x)) = x0B0 +

∑d
p=1 xpBp = x0B(x/x0) ∈ S l+ ∩ B.

Case x0 = 0. If (x, x0) = (0, 0), the statement is obvious. Let x 6= 0. By assumption, SA
is nonempty. Fix a point x̄ ∈ SA. Then Â(1, x̄ + tx) = Â(1, x̄) + Â(0, tx) � 0 for all t > 0,
implying x̄+ tx ∈ SA ⊆ SB for all t > 0. Thus x is a point of the recession cone of SA which
clearly is contained in the recession cone of SB. Indeed, 1

tB(1, x̄) +B(0, x) = 1
tB(x̄+ tx) � 0

for all t > 0. By closedness of the cone of positive semidefinite matrices, we get B(0, x) � 0.
Hence, Φ̂(Â(x0, x)) = Φ̂(Â(0, x)) = B(0, x) � 0.

To (3): Let A(x0, x) = x0A0 +
∑d
p=1 xpAp be in Sk+∩A. We distinguish between the following

two cases.
Case x0 > 0. This case follows by a similar scaling argument as in part (2). (Note that

A0 6= 0 by linear independence.)
Case x0 ≤ 0. Since SA is nonempty, there exists x̄ ∈ SA and hence

A(0, x+ |x0|x̄) = A(0, x) +A(0, |x0|x̄)
� |x0|A0 +A(0, |x0|x̄) = |x0| ·A(1, x̄) � 0.

For A(0, x+ |x0|x̄) 6= 0, one has an improving ray of the spectrahedron SA, in contradiction
to the boundedness of SA. For A(0, x+ |x0|x̄) = 0, linear independence of A0, . . . , Ad implies
x+ |x0|x̄ = 0. But then x0A(1, x̄) = A(x0, x) � 0 together with x0 ≤ 0 and A(1, x̄) � 0 imply
either A(1, x̄) = 0, in contradiction to linear independence, or (x0, x) = 0. Clearly, in this
case, ΦAB(0) = 0.

The assumptions in parts (2) and (3) of Proposition 5.4.6 may not be omitted in general,
as the next examples show.

Example 5.4.7.
(1) Consider the two linear pencils

A(x) =

−3 + x1 + x2 0 0
0 −1 + x1 0
0 0 −1 + x2

 and B(x) =

−1 + x1 + x2 0 0
0 x1 0
0 0 x2

 ,
defining unbounded, nonempty polyhedra in R2. It is easy to see that the coefficient matrices
are linearly independent and that SA does not contain the origin.
While SA is contained in SB, the linear map ΦAB is not positive. Indeed, the homogeneous

pencil A(x0, x) evaluated at the point (x0, x1, x2) = (−1,−1/2,−1/2) is positive definite while
B(x0, x) is indefinite.
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5.4 Containment of Spectrahedra and Positive Linear Maps

Therefore, the boundedness assumption in part (3) of Proposition 5.4.6 cannot be omitted
in general. Using the extended linear pencil Â(x) = 1 ⊕ A(x) instead of A(x), the resulting
constraint x0 ≥ 0 yields the positivity of Φ̂AB. In fact, Φ̂AB is completely positive, which can
be checked by the SDFP (5.1.3).

(2) Consider the two linear pencils

A(x) =
[
x 1
1 0

]
and B(x) =

[
1 −x
−x 1

]
.

with linearly independent coefficient matrices. The corresponding spectrahedra are the empty
set SA = ∅ and the interval SB = [−1, 1]. Thus SA ⊆ SB. However, the linear map ΦAB is
not positive since the homogeneous pencil A(x0, x1) is positive semidefinite at (x0, x1) = (0, 1)
but B(x0, x1) is not. Note that this holds for the extended pencil as well. Thus nonemptyness
of the inner spectrahedron cannot be dropped. �

If our setting is changed from the case of linear subspaces to the case of affine subspaces,
with a natural adaption of the notion of positivity to affine maps, Proposition 5.4.6 has a
slightly easier formulation and proof.

Lemma 5.4.8. Let A(x) ∈ Sk[x] and B(x) ∈ S l[x] be linear pencils. Define the affine
subspaces Ā = 1

dA0 + span(A1, . . . , Ad) and B̄ = 1
dB0 + span(B1, . . . , Bd) for linearly inde-

pendent A1, . . . , Ad. Then SA ⊆ SB if and only if the affine function Φ̄AB : Ā → B̄ defined
by 1

dA0 +Ap 7→ 1
dB0 +Bp for i ∈ [d] is positive.

Proof. First, let Φ̄AB be positive and let x ∈ SA. Since Φ̄AB is positive, we have B(x) =
Φ̄AB(A(x)) � 0, thus x ∈ SB. Conversely, let 1

dA0+
∑d
p=1 xpAp ∈ Ā∩Sk+. Then dx ∈ SA ⊆ SB

and hence Φ̄AB

(
1
dA0 +

∑d
p=1 xpAp

)
= 1

dB0 +
∑d
p=1 xpBp � 0.

Example 5.4.9. Consider part (2) of Example 5.4.7. In the affine case, we get

Ā =
{
A | A =

[
0 1
1 0

]
+ x

[
1 0
0 0

]}
and B̄ =

{
B | B =

[
1 0
0 1

]
+ x

[
0 −1
−1 0

]}

with Ā ∩ S2
+ = ∅ and Φ̄AB(∅) = ∅ ⊆ B ∩ S2

+. �

Unfortunately, checking if a given linear map between operator systems is positive is not
an easy task in general. Showing that it has the stronger property of being completely posi-
tive can be done using the semidefinite feasibility problem (5.1.3) (cf. Proposition 5.4.5 and
Theorem 5.1.3). As a consequence of Proposition 5.4.2 and Proposition 5.4.6, we get the fol-
lowing statement on the Spectrahedron Containment problem concerning 2-dimensional
spectrahedra.

Theorem 5.4.10. Let A(x) = A0 + x1A1 + x2A2 ∈ S2[x] be strictly feasible and let B(x) ∈
S l[x] be a linear pencil. Assume A = S2 and that SA is bounded. Then SA ⊆ SB if and only
if B(x) ∈ QMl

0[x].

Proof. By the assumptions, SA is contained in SB if and only if the map ΦAB : S2 → S l
is positive. In this case, positivity of ΦAB is equivalent to complete positivity; see Proposi-
tion 5.4.2. As complete positivity is equivalent to the feasibility of the SDFP (5.1.3) and thus
to the initial Hol-Scherer relaxation (5.1.6), the claim follows by the equivalence of the Spec-
trahedron Containment problem and positivity of linear maps, Proposition 5.4.6.

75



5 The Spectrahedron Containment Problem

Note that the first part of Example 5.1.7 belongs to the situation of Theorem 5.4.10.
To close the section, we apply our hierarchy to a well-known example of a 2-positive but

not completely positive linear map.

Example 5.4.11. Consider the linear map

Φ : S3 → S3, A 7→ 2

A11 +A22
A22 +A33

A33 +A11

−A.
Due to Choi [Cho75b], the map Φ is (1- and 2-)positive but not completely positive. Indeed,
neither the SDFP (5.1.3) nor the initial Hol-Scherer relaxation (5.1.6) are feasible but for
t = 1 the relaxation yields a small positive value implying positivity of Φ. �

5.5 A Bilinear Programming Approach to the Spectrahedron
Containment Problem

Besides the relaxation approach based on Hol-Scherer’s Positivstellensatz, one could wonder
whether it is possible to apply a bilinear programming approach using the polar of the outer
spectrahedron, as used in Chapter 4. The problem to overcome here is that the best known
representation of the polar spectrahedron is as (the closure of) a projected spectrahedron.
Recall from Section 2.3 that given a linear pencil B(x) ∈ S l[x] with B0 � 0, the polar of

the spectrahedron SB is

S◦B = cl
{
z ∈ Rd | ∃Y ∈ S l+, y0 ∈ R+ : zp = −〈Bp, Y 〉 , 〈B0, Y 〉+ y0 = 1

}
.

Our starting point is the following reformulation of the Spectrahedron Containment
problem as a bilinear feasibility problem.

Proposition 5.5.1. Let A(x) ∈ Sk[x] and B(x) ∈ S l[x] be linear pencils such that SA is
nonempty and that SB contains the origin, i.e., B0 � 0. SA is contained in SB if and only if

xT z ≤ 1 for all (x, z) ∈ SA × S◦B.

Proof. If SA ⊆ SB, then for any x ∈ SA we have xT z ≤ 1 for all z ∈ S◦B. Conversely, if
xT z ≤ 1 holds for all z ∈ S◦B, then for any x ∈ SA we have SA ⊆ S◦◦B = SB.

The problem occurring with this formulation is, for one thing, the fact that the polar S◦B is
not closed in general, for another thing, that the number of variables increases significantly
as one has to consider the optimization variables z = (z1, . . . , zd) as well as the projection
variables Y = (Yij)li,j=1 and y0. However, both problems can easily be tackled. By assuming
0 ∈ int(SB), the first problem can be avoided. (Note that the computational complexity of
testing whether the origin (or any point) is contained in the interior of a spectrahedron has
not been classified so far.) A way around the second problem, yielding a substantial reduction
on the number of additional variables, is explained in the following.
Denote by B̃(x) =

∑d
i=1 xiBi the pure-linear part of B(x). By Proposition 5.5.1, SA ⊆ SB

if and only if

0 ≤ inf
{

1− xT z | A(x) � 0, zp = −〈Bp, Y 〉 , 〈B0, Y 〉+ y0 = 1, Y ∈ S l+, y0 ∈ R+
}
.
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5.5 A Bilinear Programming Approach to Spectrahedron Containment

Substituting 1 and z in the objective, and using the fact that
〈
x, LT (y)

〉
= 〈L(x), y〉 for a

linear operator L, yields

SA ⊆ SB ⇔ 0 ≥ sup
{〈
−B̃(x), Y

〉
− 〈B0, Y 〉 − y0 | A(x) � 0, Y ∈ S l+, y0 ∈ R+

}
.

Clearly, y0 is superfluous and thus SA ⊆ SB if and only if

0 ≤ inf
{
〈B(x), Y 〉 | A(x) � 0, Y ∈ S l+

}
.

Since the set of rank-1 matrices generates the cone of positive semidefinite matrices, this can
equivalently stated as

0 ≤ inf
{
zTB(x)z | A(x) � 0, z ∈ Rl

}
. (5.5.1)

In fact, this last expression can easily be seen from the definition of containment and positive
semidefiniteness. Using Putinar’s Positivstellensatz, one gets another hierarchy of semidefi-
nite programs to decide containment of spectrahedra. This is the basis for the optimization
approach in Trabandt’s PhD thesis [Tra14]. See [KTT15] for the dual relaxation based on
Lasserre’s moment approach for matrix polynomials [HL06].
The bilinear approach seems to be the scalarized version of the Hol-Scherer based approach

in Section 5.1.2 as the following theorem indicates.

Theorem 5.5.2 ([KTT15, Theorem 4.9]). Let A(x) ∈ Sk[x] be a linear pencil. If B(x) ∈
QMl

0(A), then the infimum of the initial relaxation step of the Putinar based relaxation is
nonnegative (and thus certifies containment).
The converse is not true in general. Let A(x) ∈ S16[x] be the normal form of the ball in

R15 with radius r = 1/2 centered at the origin and let B(x) ∈ S6[x] be the normal form of the
elliptope. Then the initial Putinar relaxation of problem (5.5.1) certifies containment while
the initial Hol-Scherer relaxation (5.1.6) does not.

Due to Theorem 5.5.2, all convergence results stated in this chapter (in particular, Theo-
rem 5.3.1) can be brought forward to the scalarized approach.
A crucial point in the polynomial optimization approach based on Putinar’s Positivstel-

lensatz is the introduction of additional variables z = (z1, . . . , zl) already in the original,
unrelaxed polynomial formulation. While in the quantified semidefinite program (5.1.7) no
additional variables z = (z1, . . . , zl) are needed, the number of unknowns of the relaxation
grows not only in the number of variables d and the relaxation order t, i.e., half the degree
of the entries in S(x), but also in the size of both the outer pencil l and the inner pencil k.
To be more precise, using the approach of Hol and Scherer, the number of unknowns in the
SDP coming from the sos-relaxation is generically

1 + 1
2

(
d+ t

t

)
·
[
k2l2

(
d+ t

t

)
+ l2

(
d+ t

t

)
+ kl + l

]
−ml(l + 1),

where m denotes the number of affine equation constraints arising in the Hol-Scherer formu-
lation; see [HS06, Section 5]. In Putinar’s approach there are

1
2

(
d+ l + t

t

)[(
d+ l + t

t

)
− 1

]

variables. On the other hand, in certain situations with small t (i.e., t ∈ {0, 1}), the Hol-
Scherer based approach may lead to SDPs with a simpler structure than the Putinar based
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5 The Spectrahedron Containment Problem

relaxation. But if t ∈ {0, 1} does not give an answer to the containment question, in our
computational examples the Hol-Scherer method with t ∈ {2, 3} is significantly slower than
the Putinar based approach. Nevertheless, in almost all examples we were able to compute
the sum of squares decomposition in moderate time, we got the same optimal value.
For more details on the relaxation based on Putinar’s Positivstellensatz see [KTT15,

Tra14].
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6 The Projection Containment Problems

For containment problems concerning H-polyhedra and spectrahedra, including the Spec-
trahedron Containment problem, clean formulations as polynomial feasibility problems
are available. In this chapter, we show that this persists if the inner set is the projection of
an H-polyhedron or a spectrahedron. If the outer set is a projection, then the containment
problem is more involved (already in the case H-in-πH). An aim of this chapter is to give a
starting and motivation point for the study of Positivstellensätze on projected convex sets,
such as πH-polyhedra and πS-spectrahedra.

The πH-in-πH containment problem can be formulated as a bilinear feasibility problem
(Theorem 6.1.1). Continuing with the πS-in-πS containment problem, a polynomial formula-
tion lacks in the fact that projected spectrahedra are not closed in general. However, under an
additional assumption, which is common in semidefinite programming, the statement holds
(Theorem 6.2.1).

While for the general case, the πS-in-πS containment problem, we hit on problems, like
the lack of a clean Farkas type Lemma for cones as well as the absence of a sophisticated
Positivstellensatz, retreating to the πH-in-H and πS-in-S containment problems allows to
bring forward results from the non-projected case. More precisely, for the πH-in-H contain-
ment problem, we establish an analog statement as for the H-in-H containment problem
(Theorem 6.3.1). Among others, this serves as an algorithmic proof of Theorem 3.2.3. From
that we deduce a sufficient semidefinite criterion for the πS-in-S containment problem (The-
orem 6.3.3).

In principle, the application of Hol-Scherer’s Positivstellensatz to the πS-in-S containment
problem is possible. The drawback of this approach is that it relies on the geometry of the
inner spectrahedron rather than its projection, namely boundedness of the spectrahedron
as well as the appearance of the projection variables in the quadratic module. To address
this, we establish a refinement of Hol-Scherer’s Positivstellensatz that allows to reduce the
complexity of the problem significantly. Particularly, the projection variables do not appear
in the quadratic module or the relaxation anymore (Theorem 6.3.5).

This chapter is structured as follows. First, we have a look at the πH-in-πH containment in
Section 6.1. We then extend our results to the case of projected spectrahedra; see Section 6.2.
Section 6.3 deals with the πH-in-H and πS-in-S containment problems. We close the chapter
with discussing a possible extension of the connection between positive linear maps and
containment of spectrahedra (as shown in Section 5.4) to the projected case.

6.1 A Bilinear Formulation of the πH-in-πH Containment Problem

For a ∈ Rk, A ∈ Rk×d, A′ ∈ Rk×m and b ∈ Rl, B ∈ Rl×d, B′ ∈ Rl×n, let

π(PA) =
{
x ∈ Rd | ∃y ∈ Rm : a+Ax+A′y ≥ 0

}
and π(PB) =

{
x ∈ Rd | ∃y′ ∈ Rn : b+Bx+B′y′ ≥ 0

} (6.1.1)
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6 The Projection Containment Problems

be projections of the H-polyhedra PA and PB, respectively. Note that both π(PA) and π(PB)
are H-polyhedra themselves (and thus closed sets). A quantifier-free H-description however
can be exponential in the input size (d,m, k) respectively (d, n, l); cf. Section 2.2.

Our starting point is the formulation of the containment problem as a bilinear feasibility
problem. Interestingly, the projection variables y′ of the outer polyhedron do not appear in
the feasibility system (or the optimization version below) only the corresponding coefficients
B′.

Theorem 6.1.1. Let π(PA) and π(PB) be as defined in (6.1.1) and π(PA) be nonempty.

(1) π(PA) is contained in π(PB) if and only if

zT (b+Bx) ≥ 0 on π(PA)×
(
ker(B′T ) ∩ Rl+

)
.

(2) Assume ker(B′T ) ∩ Rl+ = span(B′)⊥ ∩ Rl+ 6= {0}. Then π(PA) ⊆ π(PB) if and only if

zT (b+Bx) ≥ 0 on π(PA)×
(
ker(B′T ) ∩∆l

)
,

where ∆l = {z ∈ Rl | 1Tl z = 1, z ≥ 0} is the l-simplex (2.2.5).

The additional assumption on the kernel of B′T seems to be somewhat artificial, however,
if the projection of PB to the x-coordinates is bounded, then the condition holds. The two
main advantages of part (2) in Theorem 6.1.1 are the boundedness of the z variables and that
the condition zT (b+Bx) ≥ 0 is indeed an inequality. (Note that in part (1), containment is
equivalent to zT (b + Bx) ≡ 0 on π(PA) × (span(B′)⊥ ∩ Rl+), as (x, z) = (x, 0) is a feasible
solution for all x ∈ π(PA).) The next lemma serves as a first step in a geometric interpretation
of this precondition.

Lemma 6.1.2. Let π(PB) be as in (6.1.1). Then ker(B′T ) ∩ Rl+ = span(B′)⊥ ∩ Rl+ = {0} if
and only if span(B′) ∩ Rl++ 6= ∅. In this case, π(PB) = Rd.

In particular, if π(PB) is bounded, then ker(B′T ) ∩ Rl+ = span(B′)⊥ ∩ Rl+ 6= {0}.

Proof. The equivalence ker(B′T ) ∩ Rl+ = span(B′)⊥ ∩ Rl+ = {0} ⇐⇒ span(B′) ∩ Rl++ 6= ∅
is easy to see. If so, then there exists y′ ∈ Rl such that B′y′ > 0. Thus, for every x ∈ Rd,
there exists t > 0 sufficiently large such that b+Bx+B′(ty′) ≥ 0. This implies π(PB) = Rd.
Thus, for bounded π(PB), ker(B′T ) ∩ Rl+ 6= {0}.

Before proving Theorem 6.1.1, we observe that neither the implication “span(B′)∩Rl++ 6=
∅ =⇒ π(PB) = Rd” nor the implication “π(PB) is bounded =⇒ ker(B′T ) ∩ Rl+ 6= {0}” in
Lemma 6.1.2 is an equivalence. Example 6.1.3 also shows that the precondition in part (2) of
Theorem 6.1.1 cannot be dropped.

Example 6.1.3.
(1) Consider the polyhedron

P1 =
{(

x
y

)
∈ R2 |

(
1
1

)
+
(
−1
1

)
x+

(
1
1

)
y ≥ 0

}
.

P1 is a pointed polyhedral cone; see Figure 6.1.1 (a). We have span(B′) ∩ R2
++ 6= ∅ and thus

the intersection of ker(B′T ) = ker(1, 1) and the nonnegative real numbers is zero-dimensional,
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6.1 A Bilinear Formulation of the πH-in-πH Containment Problem

(a) P1 as defined in Example 6.1.3. (b) P2 as defined in Example 6.1.3.

Figure 6.1.1

i.e., ker(B′T ) ∩ R2
+ = {0}. Moreover, in this case, the restriction to the 1-simplex as in part

(2) of Theorem 6.1.1 is not possible.

(2) Consider the polyhedron

P2 =


(
x
y

)
∈ R2 |

1
1
0

+

−1
1
1

x+

1
1
0

 y ≥ 0

 ,
which is unbounded but not a cone; see Figure 6.1.1 (b). We have span(B′) ∩ R3

++ = ∅ and
thus, by Lemma 6.1.2, ker(B′T ) ∩ R3

+ 6= {0}. Indeed, for every t ≥ 0, we have (0, 0, t) ∈
ker(B′T )∩R3

+ 6= {0}. On the other hand, π(PB) = R shows that the reverse of the other (and
above mentioned) implications in Lemma 6.1.2 are not equivalences. �

Proof of Theorem 6.1.1.

To (1): π(PA) 6⊆ π(PB) if and only if there exists a point x ∈ π(PA)\π(PB), i.e., for x ∈ π(PA)
there exists no y′ ∈ Rn with b+Bx+B′y′ ≥ 0. By Farkas’ Lemma 2.2.1 this is equivalent to
the existence of a point z ∈ Rl+ with zTB′ = 0 such that zT (b+Bx) < 0 holds. Equivalently,
there exists (x, z) ∈ π(PA)× (ker(B′T ) ∩ Rl+) such that zT (b+Bx) < 0.

To (2): If there exists (x, z) ∈ π(PA)×
(
ker(B′T ) ∩ Rl+

)
such that zT (b+Bx) < 0, then z 6= 0

and thus z′T (b+Bx) < 0 for z′ = z
|z| ≥ 0 with |z′| =

∑l
i=1 z

′
i = 1

|z|
∑l
i=1 z

′
i = 1.

Assume zT (b + Bx) ≥ 0 holds for all (x, z) ∈ π(PA) ×
(
ker(B′T ) ∩ Rl+

)
. By assumption,

there exists 0 6= z ∈ ker(B′T )∩Rl+. Applying the same scaling as above yields zT (b+Bx) ≥ 0
for every z′ ∈ ∆l, implying the claim.

Note that the set ker(B′T ) ∩ ∆l
+ is intrinsically linked to the polar of π(PB). Namely, it

is the set of convex combinations of the columns in B′T that are equal to the origin, i.e.,
0 = B′T z with 1 = 1Tl z and z ≥ 0. Thus ker(B′T ) ∩∆l

+ is a polytope.

Recall Konno’s result on disjointly constrained bilinear programs (cf. Proposition 4.1.3).
As it only depends on the structure of the problem rather than on the explicit representation
of the polytopes involved, it is possible to state a similar result for πH-in-πH as for the
Polytope Containment problem in Chapter 4. To do so, consider the optimization version
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of Theorem 6.1.1

inf zT (b+Bx)
s.t. (x, y, z) ∈ PA ×QB,

(6.1.2)

where we define QB := ker(B′T ) ∩ ∆l
+ = {z ∈ Rl | B′T z = 0, 1Tl z = 1, z ≥ 0}. Assuming

nonemptyness of QB, Theorem 6.1.1 implies that π(PA) ⊆ π(PB) if and only if the infimum
is nonnegative.

Proposition 6.1.4. Let PA be a nonempty polytope and assume ker(B′T )∩∆l 6= ∅ (e.g., PB
is bounded). The infimum of problem (6.1.2) is finite and attained at a pair of vertices of PA
and QB.

Clearly, by application of Putinar’s Positivstellensatz (also allowing equality constraints)
the sum of squares relaxation converges asymptotically to the optimal value of problem (6.1.2).
Unfortunately, so far it is not clear whether finite convergence in the strong containment case
occurs.

6.2 A Bilinear Formulation of the πS-in-πS Containment Problem

The πS-in-πS containment problem is slightly more involved than the πH-in-πH problem
as the natural extension of Theorem 6.1.1 fails in general. However, under an additional
assumption the statement holds.
Throughout the section, let

A(x, y) = A0+
d∑
i=1

Aixi+
m∑
j=1

A′jyj ∈ Sk[x, y] and B(x, y′) = B0+
d∑
i=1

Bixi+
n∑
j=1

B′jy
′
j ∈ S l[x, y′]

be linear pencils with y = (y1, . . . , ym) and y′ = (y′1, . . . , y′n) for n ≥ 1. Denote the projection
of the corresponding spectrahedra onto the x-variables by

π(SA) =
{
x ∈ Rd | ∃y ∈ Rm : A(x, y) � 0

}
and π(SB) =

{
x ∈ Rd | ∃y′ ∈ Rn : B(x, y′) � 0

}
.

Recall from Section 2.3 that the projection of a spectrahedron is not necessarily closed and
thus, in general, not a spectrahedron itself.
Define B̄ = span{B′1, . . . , B′n} and recall the equivalence

〈B′i, Z〉 = 0 ∀i ∈ [n] ⇐⇒ Z ∈ B̄⊥.

We state the following generalization of Theorem 6.1.1.

Theorem 6.2.1. Let A(x, y) ∈ Sk[x, y] and B(x, y′) ∈ S l[x, y′] be linear pencils such that
π(SA) 6= ∅. Define Z = B̄⊥ ∩ S l+.
(1) If π(SA) is contained in π(SB), then 〈B(x, 0), Z〉 ≥ 0 on π(SA)×Z.
(2) If 〈B(x, 0), Z〉 ≥ 0 on π(SA)×Z, then π(SA) ⊆ cl π(SB).
(3) Assume the constraint qualification in Lemma 2.3.10 holds for the y′-part of B(x, y′)

(i.e., whenever
∑n
i=1B

′
iyi � 0, then

∑n
i=1B

′
iyi = 0). Then π(SA) ⊆ π(SB) if and only

if 〈B(x, 0), Z〉 ≥ 0 on π(SA)×Z.
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As in the πH-in-πH problem, the projection variables y′ of the outer spectrahedron do not
appear in the polynomial formulation, only the corresponding coefficient matrices B′1, . . . , B′n.

Proof.
To (1): Assume π(SA) ⊆ π(SB). Let x ∈ π(SA) ⊆ π(SB). Then there exists y′ ∈ Rn such that
B(x, y′) � 0. For all Z ∈ Z it holds that

〈B(x, 0), Z〉 =
〈
B(x, y′), Z

〉
≥ 0.

Since x ∈ π(SA) is arbitrary, 〈B(x, 0), Z〉 is nonnegative on π(SA)×Z.
To (2): Assume 〈B(x, 0), Z〉 ≥ 0 on π(SA) × Z. Let x ∈ π(SA) be fixed but arbitrary and
set B′0 = B(x, 0). By Farkas’ Lemma 2.3.8, there exist B′′0 ∈ S l and y′ ∈ Rn such that
B′′0 +

∑n
i=1B

′
iy
′
i ∈ S l+ and ‖B′0 −B′′0‖ < ε for all ε > 0. By letting ε tend to zero, there exists

a sequence (y′ε)ε ⊆ Rn such that limε→0B(x, y′ε) � 0. As x ∈ π(SA) is arbitrary, the claim
follows.
To (3): Assume 〈B(x, 0), Z〉 ≥ 0 on π(SA) × Z. Let x ∈ π(SA) be fixed but arbitrary. By
Lemma 2.3.10 (i.e., Farkas’ Lemma for cones under the constraint qualification stated in part
(3) of the statement), the spectrahedron {y′ ∈ Rn | B′0 +

∑n
i=1B

′
iy
′
i � 0} is nonempty. Thus

there exists y′ ∈ Rn such that B(x, y′) � 0.

Unfortunately, the reverse implication in part (1) of Theorem 6.2.1, or, equivalently, part
(2) without taking the closure of π(SB) is generally not true as the next example shows.

Example 6.2.2. Consider the linear pencil

B(x, y′) =

−y′1 x 0
x 1− y′2 0
0 0 −x+ y′2

 =

0 x 0
x 1 0
0 0 −x

+ y′1

−1 0 0
0 0 0
0 0 0

+ y′2

0 0 0
0 −1 0
0 0 1


and let A(x) be the univariate linear pencil

A(x) =
[
1− x 0

0 1 + x

]
=
[
1 0
0 1

]
+ x

[
−1 0
0 1

]

describing the interval SA = [−1, 1]. By inspecting the principal minors of B, the spectrahe-
dron SB has the form {(x, y′) ∈ R3 | y′1 ≤ 0, x ≤ y′2 ≤ 1, y′1(1−y′2)+x2 ≤ 0}. For x = 1, the
second condition implies y′2 = 1 and thus the third condition reads as x2 ≤ 0, a contradiction.
Thus SA 6⊆ π(SB).
For every Z ∈ B̄⊥ ∩ S3

+ it holds that

0 =
〈
Z,B′1

〉
= −Z11 =⇒ Z12 = 0, 0 =

〈
Z,B′2

〉
= Z33 − Z22

implying 〈B(x, 0), Z〉 = Z22 + x(−Z33 + 2Z12) = Z22(1− x) ≥ 0 for all x ∈ SA.
It should not be surprising that the constraint qualification on the pencil B(x, y′) is not

satisfied. Indeed, for (y′1, y′2) = (y′1, 0) with y′1 < 0,

B′1y
′
1 +B′2y

′
2 =

−y′1 x 0
x −y′2 0
0 0 −x+ y′2

 =

−y′1 0 0
0 0 0
0 0 0


is positive semidefinite but not identically zero. �

83



6 The Projection Containment Problems

An issue when considering the practical utility of Theorem 6.2.1 is the unboundedness of the
set Z. Under an analog condition as in Theorem 6.1.1, Z can be replaced by the spectrahedral
analog of the simplex. Recall from the preliminary Section 2.3 that Tl = {Z ∈ S l+ | 〈Il, Z〉 = 1}
is a nonempty spectratope, called spectraplex (2.3.16).

Corollary 6.2.3. Let A(x, y) ∈ Sk[x, y] and B(x, y′) ∈ S l[x, y′] be linear pencils such that
π(SA) 6= ∅. Assume Z = B̄⊥ ∩ S l+ 6= {0} and let Tl = {Z ∈ S l+ | 〈Il, Z〉 = 1}. Then
π(SA) ⊆ π(SB) if and only if 〈B(x, 0), Z〉 ≥ 0 on π(SA)× (B̄⊥ ∩ T).

Proof. Since B̄⊥ ∩ T ⊆ Z, the “only if”-part follows from Theorem 6.2.1.
For the converse, first suppose there exists (x, Z) ∈ π(SA)×Z such that 〈B(x, 0), Z〉 < 0.

Then 0 6= Z ∈ S l+ and thus tr(Z) = 〈Il, Z〉 > 0. This implies 〈B(x, 0), Z ′〉 < 0 for Z ′ = Z
tr(Z)

with tr(Z ′) = 〈Il, Z ′〉 = 1
tr(Z)〈Il, Z〉 = 1.

Assume 〈B(x, 0), Z〉 ≥ 0 on π(SA)×Z. By assumption, there exists 0 6= Z ∈ Z = B̄⊥∩S l+.
Applying the above scaling, the claim follows.

Clearly, as for the polynomial formulation of the πH-in-πH containment problem, an opti-
mization version of Theorem 6.2.1 respectively Corollary 6.2.3 is available.
Restricting the πS-in-πS containment problem to the special case πS-in-πH allows to state

improved versions of Theorem 6.2.1 and Corollary 6.2.3.

Proposition 6.2.4. Let π(PB) be as in (6.1.1) and let A(x, y) ∈ S l[x, y] be a linear pencil.
(1) π(SA) ⊆ π(PB) if and only if zT (b+Bx) ≥ 0 on π(SA)× (ker(B′T ) ∩ Rl+).
(2) Assume ker(B′T ) ∩ Rl+ 6= {0}. Then π(SA) ⊆ π(PB) if and only if zT (b + Bx) ≥ 0 on

π(SA)× (ker(B′T ) ∩∆l).

Proof. π(SA) 6⊆ π(PB) if and only if there exists x ∈ π(SA) such that @y′ ∈ Rn : b +
Bp + B′y′ ≥ 0. By Farkas’ Lemma 2.2.1, this is equivalent to the existence of a z ∈ Rl+
with zTB′ = 0 and zT (b+Bp) < 0. The claim follows as in the proofs of Theorem 6.2.1 and
Corollary 6.2.3.

6.2.1 An Alternative Approach to the πS-in-πS Containment Problem

Inspecting Example 6.2.2, the cause of failure in the sufficiency part of the polynomial feasi-
bility criterion in Theorem 6.2.1 is the absence of a clean Farkas’ Lemma for linear pencils.
However, as seen in Chapter 2, the gap in Farkas’ Lemma can be closed. Using Ramana’s
Lemma 2.3.11, we get the following polynomial reformulation of the containment problem for
projected spectrahedra.

Proposition 6.2.5. Let A(x, y) ∈ Sk[x, y] and B(x, y′) ∈ S l[x, y′] be linear pencils such that
π(SA) 6= ∅. Let Wl be as defined in Ramana’s Lemma 2.3.11. Then π(SA) is contained in
π(SB) if and only if

〈B(x, 0), U +W 〉 ≥ 0 on π(SA)× S l+ ×Wl with
〈
B′i, U +W

〉
= 0 ∀ i ∈ [n].

Proof. π(SA) 6⊆ π(SB) if and only if there there exists x ∈ π(SA) such that there is no
y′ ∈ Rn with B(x, y′) � 0. By Ramana’s Lemma 2.3.11, for fixed but arbitrary x ∈ π(SA),
this is equivalent to the existence of a tuple (U,W ) ∈ S l+ × Wl with 〈B′i, U +W 〉 = 0 for
i ∈ [n] and 〈B(x, 0), U +W 〉 < 0, implying the claim.

84



6.3 Positivstellensatz Certificates for the πS-in-S Containment Problem

From a computational point of view, the approach based on Ramana’s Lemma needs a too
high amount of extra variables even in the polynomial formulation of the problem. Alter-
natively, one could use the recent approach of Liu and Pataki [LP14] based on ”elementary
reformulations“ (of the dual spectrahedron).

6.3 Positivstellensatz Certificates for the πS-in-S Containment
Problem

Retreating to the special cases πH-in-H and πS-in-S allows to bring forward several results
from the non-projected case. We start with the first problem. Afterwards, we state and prove
a Positivstellensatz for the second problem.

6.3.1 From the πH-in-H to the πS-in-S Containment Problem

As for the non-projected case (Section 5.1.1), we start with the polyhedral situation in The-
orem 6.3.1. It also serves as an algorithmic proof of Theorem 3.2.3, classifying the πH-in-H
containment problem as decidable in polynomial time. As the proofs of the statements in
this section are very similar to the ones given in Section 5.1.1, we only stress the emerging
differences in the proofs.

Theorem 6.3.1. Consider PA = {(x, y) ∈ Rd+m | a + Ax + A′y ≥ 0} and PB = {x ∈
Rd | b+Bx ≥ 0}. Let PA be nonempty. Denote by â+ Âx+ Â′y the extended representation
of PA; see (5.1.1).
(1) π(PA) is contained in PB if and only if there exists a nonnegative matrix C ∈ Rl×(k+1)

with b = Câ, B = CÂ, and 0 = CÂ′.
(2) Let PA be a polytope that is not a singleton. Then π(PA) is contained in PB if and only

if there exists a nonnegative matrix C ∈ Rl×k with b = Ca, B = CA, and 0 = CA′.

If specialized to polyhedra (i.e., m = 0), Theorem 6.3.1 coincides with Theorem 5.1.1.
Recall from Example 5.1.2 that the preconditions in part (2) cannot be dropped.

Proof. If B = CA, 0 = CA′, and b = Ca (or B = CÂ, 0 = CÂ′, and b = Câ) with a
nonnegative matrix C, for any x ∈ π(PA) we have

b+Bx+ 0y = C
(
a+Ax+A′y

)
≥ 0,

i.e., π(PA) ⊆ PB.
Conversely, if π(PA) ⊆ PB, then any of the linear polynomials (b + Bx + 0y)i, i ∈ [l],

is nonnegative on PA. Hence, by Lemma 2.2.2, (b + Bx + 0y)i can be written as a linear
combination

(b+Bx+ 0y)i = c′i0 +
k∑
j=1

c′ij(a+Ax+A′y)j =
k∑
j=0

c′ij(â+ Âx+ Â′y)j

with nonnegative coefficients c′ij . Comparing coefficients yields bi = c′i0 +
∑k
j=1 c

′
ij for i ∈ [l],

implying part (1) of the statement.
To prove the second part, recall from the proof of Theorem 5.1.1 that after an appropriate

translation we can w.l.o.g. assume that a ≥ 0. Then Stiemke’s Transposition Theorem (cf.
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6 The Projection Containment Problems

Lemma 2.2.4) implies the existence of a λ > 0 such that [AT , A′T ]λ = 0, and thus

λT (a+Ax+A′y) = λTa = 1

after an appropriate rescaling. By multiplying that equation with c′i0 from above, we obtain
nonnegative c′′ij with

∑k
j=1 c

′′
ij(a+Ax+A′y)j = c′i0, yielding

(b+Bx)i =
k∑
j=1

(c′ij + c′′ij)(a+Ax+A′y)j .

Hence, C = (cij)ki,j=1 with cij := c′ij + c′′ij is a nonnegative matrix with B = CA, 0 = CA′,
and (Ca)i =

∑k
j=1(c′ij + c′′ij)aj = bi − c′i0 + c′i0 λ

Ta = bi for every i ∈ [l].

As in the non-projected case, the sufficiency part of Theorem 6.3.1 can be extended to
the case of projected spectrahedra via the normal form of a (projected) polytope PA as a
(projected) spectrahedron,

π(PA) =
{
x ∈ Rd | ∃y ∈ Rm : A(x, y) = diag(a1(x, y), . . . , ak(x, y)) � 0

}
,

where ai(x, y) is the ith entry of the vector a+Ax+A′y. This yields the following analog of
Corollary 5.1.4

Corollary 6.3.2. Let A(x, y) ∈ Sk[x, y] and B(x) ∈ S l[x] be the normal form of polyhe-
dra (2.3.2).

(1) π(SA) is contained in SB if and only if the system

C � 0, ∀p ∈ [0, d] : Bp =
k∑
i=1

(Ap)iiCii, ∀p ∈ [m] : 0 =
k∑
i=1

(A′p)iiCii, (6.3.1)

has a solution with respect to Â(x, y) and B(x).

(2) Let SA be a polytope that is not a singleton. π(SA) ⊆ SB if and only if system (6.3.1)
has a solution with respect to A(x) and B(x).

We get an analog of Theorem 5.1.3 for the πS-in-S containment problem.

Theorem 6.3.3. Let A(x, y) ∈ Sk[x, y] and B(x) ∈ S l[x] be a linear pencils. Denote by
π(SA) the coordinate projection of the spectrahedron SA. π(SA) is contained in SB if there
exists a symmetric matrix C = (Cij)ki,j=1 ∈ Skl such that

C � 0, Bp =
k∑

i,j=1
(Ap)ijCij for p ∈ [0, d],

k∑
i,j=1

(A′p)ijCij = 0 for p ∈ [m]. (6.3.2)

Proof. As in the proof of Theorem 5.1.3, we get

B(x) = B0 +
d∑
p=1

xpBp +
m∑
p=1

yp0

=
k∑

i,j=1
(A(x, y))ij Cij = IT

(
(A(x, y))ij Cij

)k
i,j=1

I

(6.3.3)
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with I = [Il, . . . , Il]T .
Let x ∈ π(SA). By definition, there exists y ∈ Rm such that A(x, y) � 0. Thus, as in the

proof of Theorem 5.1.3, A(x, y) ⊗ C is positive semidefinite. Since ((A(x, y))ijCij)ki,j=1 is a
principal submatrix of A(x, y)⊗ C, B(x) is positive semidefinite as well.

6.3.2 The Naive Way

Consider the linear pencils A(x, y) ∈ Sk[x] and B(x) ∈ S l[x]. Then π(SA) is contained in
SB if and only if B(x) � 0 on π(SA). Equivalently, the quantified polynomial optimization
problem

µ∗ = sup µ

s.t. B(x)− µIl � 0 ∀x ∈ π(SA)
(6.3.4)

has a nonnegative optimal value.
In order to relax the above optimization problem, consider, for l ∈ N, the quadratic module

QMl(A) associated to A(x, y),

QMl(A) =
{
S0 + 〈S,A(x, y)〉l | S0 ∈ Σl[x, y], S ∈ Σkl[x, y]

}
,

as defined in (2.4.7). Clearly, if B(x) ∈ QMl(A) for a linear pencil B(x) ∈ S l[x], then
cl π(SA) ⊆ SB. Thus Statements 5.1.8 and 5.1.10 for the Spectrahedron Containment
problem remain valid in this case.
The drawback of this approach to the πS-in-S containment problem is that it relies on the

geometry of the spectrahedron SA rather than its projection, namely the boundedness as-
sumption on SA in the above mentioned statements as well as the appearance of the projection
variables y in the quadratic module. In the next subsection, we address this by developing a
refinement of Hol-Scherer’s Positivstellensatz allowing to reduce the complexity of the prob-
lem significantly. Particularly, we can eliminate the variables y in the sense that they neither
appear in the quadratic module nor in the relaxation.
Before that, we point to the fact that the bilinear approach and thus the Putinar based

relaxation, as discussed in Section 5.5, can also be used in this case.

6.3.3 A more Sophisticated Positivstellensatz

Gouveia and Netzer [GN11] derived a Positivstellensatz for polynomials positive on the closure
of a projected spectrahedron.

Proposition 6.3.4 ([GN11, Theorem 5.1]). Let A(x, y) ∈ Sk[x, y] be a strictly feasible linear
pencil. Define the quadratic module

QM(π,A) =
{
s0 + 〈A(x, 0), S〉 |

〈
A′i, S

〉
= 0 for i ∈ [m], s0 ∈ Σ[x], S ∈ Σk[x]

}
.

If π(SA) is bounded, then QM(π,A) is Archimedean and thus contains all polynomials positive
on the closure of π(SA).

So far neither a version of Proposition 6.3.4 for linear pencils positive definite on cl π(SA)
nor a version without preconditions, namely strict feasibility, is known. Subsequently, we
state and proof an extension to linear pencils positive definite on a projected spectrahedron.
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Define the quadratic module

QMl(π,A) =
{
S0 + 〈S,A(x, 0)〉l |

〈
S,A′i

〉
l = 0 ∀i ∈ [m], S0 ∈ Σl[x], S ∈ Σkl[x]

}
. (6.3.5)

It is easy to see that QMl(π,A) is in fact a quadratic module. Note that QMl(π,A) does not
have to be finitely generated; see [GN11, Section 5]. Clearly, every element of QMl(π,A) is
positive semidefinite on the closure of π(SA).

Theorem 6.3.5. Let A(x, y) ∈ Sk[x, y] be a strictly feasible linear pencil such that π(SA) is
bounded. For l ∈ N, the quadratic module QMl(π,A) is Archimedean and thus contains every
matrix polynomial positive definite on cl π(SA).

Proof. By boundedness of π(SA), there exists N ∈ N sufficiently large such that N ± xi
is nonnegative on π(SA) for all i ∈ [d]. If N ± xi ∈ QMl(π,A) for all i ∈ [d], then by
Definition 2.4.2 the quadratic module is Archimedean. We show that under the preconditions
in the theorem QMl(π,A) contains every linear polynomial nonnegative on π(SA).

Let b(x) = b0 + bTx ∈ R[x]1 be a fixed but arbitrary affine linear polynomial nonnegative
on π(SA). Consider the following primal-dual pair of SDPs.

p∗ := inf b(x)
s.t. A(x, y) � 0

sup 〈−A0, Z〉
s.t. 〈Ai, Z〉 = bi ∀i ∈ [d]〈

A′i, Z
〉

= 0 ∀i ∈ [m]
Z ∈ Sk+

Since A(x, y) is strictly feasible by assumption, the dual problem (on the right-hand side)
has the optimal value p∗− b0 and attains it; see Proposition 2.3.15. Since b(x) ≥ 0 on π(SA),
we have −b0 ≤ p∗ − b0 and thus

b0 − z0 = 〈A0, Z〉 , 〈Ai, Z〉 = bi ∀i ∈ [d],
〈
A′i, Z

〉
= 0 ∀i ∈ [m]

for some Z ∈ Sk+ and z0 ≥ 0. Define S(x) as the blockdiagonal kl × kl-matrix with l copies
of Z on its diagonal, i.e., S(x) = ⊕lj=1Z, and S0(x) = z0Il. Then

S0(x) + 〈S(x), A(x, 0)〉l = z0Il +
l⊕

j=1
〈Z,A(x, 0)〉l

= z0Il +
l⊕

j=1

(
b0 − z0 +

d∑
i=1

bixi

)
= b(x)Il

and 〈S(x), A′i〉l = ⊕lj=1〈Z,A′i〉 = 0 for i ∈ [m]. This implies b(x) ∈ QMl(π,A). By Hol-
Scherer’s Theorem, every matrix polynomial positive definite on cl π(SA) is contained in
QMl(π,A).

Theorem 6.3.5 leads to the following hierarchy for the πS-in-S containment problem.

Proposition 6.3.6. Let A(x, y) ∈ S l[x, y] be a strictly feasible linear pencil such that π(SA)
is bounded, and let B(x) ∈ S l[x] be a linear pencil. Consider the truncated quadratic module

QMl
t(π,A) =

{
S0 + 〈S,A(x, 0)〉l |

〈
S,A′i

〉
l = 0 ∀i ∈ [m], S0 ∈ Σl

t[x], S ∈ Σkl
t [x]

}
. (6.3.6)
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If π(SA) ⊆ SB, then the optimal value of the problem

µ(t) = sup µ

s.t. B(x)− µIl ∈ QMl
t(π,A)

converges to the optimal value of problem (6.3.4).

It is evident from the definition of the quadratic modules in Sections 6.3.2 and 6.3.3 that
the latter approach is preferable to the naive way from the theoretical viewpoint (provided
that A(x, y) is strictly feasible). So far, it is not clear whether there is a connection between
B(x) being positive definite on cl π(SA) and strong containment.
As in the non-projected case, the 0-th step of the hierarchy based on (6.3.5) is exactly the

containment criterion in Theorem 6.3.3 when applied to the extended linear pencil (5.1.2).

Proposition 6.3.7. Let A(x, y) ∈ Sk[x, y] and B(x) ∈ S l[x] be linear pencils. Assume A(x, y)
is strictly feasible. The following are equivalent.
(1) B(x) ∈ QMl

0(π,A).
(2) There exist C ′ ∈ Skl+ and C ′0 ∈ S l+ such that

B0 = C ′0 +
〈
A0, C

′〉
l , Bp =

〈
Ap, C

′〉
l ∀p ∈ [d], 0 =

〈
A′q, C

′
〉
l
∀q ∈ [m].

(3) There exists C ∈ S(k+1)l
+ such that

B0 =
k∑

i,j=0
(Â0)ijCij , Bp =

k∑
i,j=0

(Âp)ijCij ∀p ∈ [d], 0 =
k∑

i,j=0
(Â′q)ijCij ∀q ∈ [m],

where Â(x, y) denotes the extended linear pencil (5.1.2).
In particular, the initial relaxation step (6.3.6) certifies containment if and only if the semidef-
inite feasibility criterion (6.3.2) does when applied to the extended linear pencil Â(x).

We skip the proof of Proposition 6.3.7 as it is very similar to the one for Theorem 5.1.11.
The proof of Theorem 6.3.5 evidently yields an analog of Theorem 5.2.3. This, in particular,

shows the (theoretical) effectiveness of the approach based on Theorem 6.3.5.

Theorem 6.3.8. Let A(x, y) ∈ Sk[x, y] be a strictly feasible linear pencil and let the coeffi-
cients of the linear pencil B(x) ∈ S l[x] be simultaneously congruent to a diagonal matrix.
(1) π(SA) ⊆ SB if and only if B(x) ∈ QMl

0(π,A).
(2) Assume SB is a polytope with nonempty interior. Then π(SA) ⊆ SB if and only if

B(x) ∈ QMl
0(π,A) with S0 = 0.

In particular, the statements (1) and (2) hold for a diagonal linear pencil B(x), i.e., a poly-
hedron in normal form (2.3.2).

In order to prove Theorem 6.3.8, we use natural adaptions of the auxiliary results on the
behavior of the initial Hol-Scherer relaxation 5.1.6 with regard to block diagonalization and
transitivity. Using Proposition 6.3.7, it is easy to verify the validity of these statements.

Proof. As in the proof of Theorem 5.2.3, we can retreat to the normal form (2.3.2) B(x) =⊕l
q=1 b

q(x) ∈ S l[x] with bq(x) = bq0 + xT bq for q ∈ [l]. Denote by bq0, b
q
1, . . . , b

q
d the coefficients

of the linear form bq(x) = (b0 +Bx)q. Set bq := (bq1, . . . , b
q
d).
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The proof of Theorem 6.3.5 yields certificates

bq0 − z
q
0 = 〈A0, Z

q〉 , 〈Ai, Zq〉 = bqi ∀i ∈ [d],
〈
A′i, Z

q〉 = 0 ∀i ∈ [m]

for some Zq ∈ Sk+ and zq0 ≥ 0. Setting S(x) =
⊕l
q=1 Z

q and S0(x) =
⊕l

q=1 z
q
0, this implies

part (1) of the statement.
To prove the second part, let S(x) as before and set S0(x) to be zero. Then

〈S(x), A(x, 0)〉l =
l⊕

q=1
〈A(x, 0), Zq〉l =

l⊕
q=1

(
f0 − zq0 +

d∑
i=1

bqixi

)

certifies the containment π(SA) ⊆ SB′ , where B′(x) is defined as

B′(x) =
l⊕

q=1

rq +
d∑
p=1

xp

 .
As in the proof of Theorem 5.2.3, assuming that SB is a polytope, we have SB′ ⊆ SB and
thus, by transitivity and exactness of the initial Hol-Scherer step for polytopes, there is a
certificate for the containment question π(SA) ⊆ SB of degree zero with S0(x) = 0.

As a special case of Theorem 6.3.5, we gain a Positivstellensatz for polynomials on projected
polyhedra having boundedness as its only precondition.

Proposition 6.3.9. Let PA = {(x, y) ∈ Rd+m | a+Ax+A′y ≥ 0} be a nonempty polyhedron
such that π(PA) is bounded. The quadratic module

QM1(π,A) =
{
s0 +

k∑
i=1

si(x)(a+Ax)i |
k∑
i=1

si(x)(A′i,j) = 0 ∀j ∈ [m], s0, . . . , sk ∈ Σ[x]
}

is Archimedean and thus contains every polynomial positive on π(PA).

Proof. The proof follows from the proof of Theorem 6.3.5 by retreating to diagonal pencils
and the fact that strong duality holds for linear programming (cf. Proposition 2.2.5).

6.3.4 Examples

We discuss some academic examples for the hierarchy stated in Proposition 6.3.6.
In the tables, “time (sec)” states the time in seconds for setting up the problem in YALMIP

and solving it with Mosek (cf. Sections 2.3 and 2.4). All computations are made on a desktop
computer with Intel Core i3-2100 @ 3.10 GHz and 4 GB of RAM.

Example 6.3.10. The so-called TV screen (see, e.g., [BPT13, Section 6.3.1]) is the projec-
tion of the spectrahedron

SA =
{

(x, y) ∈ R2+2 | A(x, y) =
[
1 + y1 y2
y2 1− y1

]
⊕
[

1 x1
x1 y1

]
⊕
[

1 x2
x2 y2

]
� 0

}
,

onto the x variables; see Figure 6.3.1a.
Note that while the TV screen is centrally symmetric (as its boundary equals the variety

defined by the polynomial 1−x4
1−x4

2), its defining spectrahedron is not (as the point (1, 0, 1, 0)
is contained in SA but its negative (−1, 0,−1, 0) is not).
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π(SA) rSB r t time (sec) µ(t)

TV screen 2-ball 1.18 0 0.8514 −0.0078
4√2 0 2.0564 −1.3621 · 10−08

1.19 0 0.9964 6.6628 · 10−04

1.2 0 0.9854 0.0090
SA rSB

4-ball 1.55 0 1.1036 −0.0024√√
2 + 1 0 0.9373 3.1037 · 10−09

1.56 0 1.0723 0.0040

Table 6.1: Computational test of containment for the TV screen in the 2-ball of radius r and
for its defining spectrahedron in the 4-ball of radius r. See Example 6.3.10.

As one can see in Table 6.1, the circumradius of the TV screen is at most 4√2 ≈ 1.1892,
while the “centrally symmetric circumradius” of the defining spectrahedron SA is at most√√

2 + 1 ≈ 1.5538. Here we used the normal form of a ball (2.3.14).
Actually, the computed values for the (centrally symmetric) circumradius are exact. For

p =
(

1
4√2
, 1

4√2
, 1√

2 ,
1√
2

)
∈ SA we have ‖π(p)‖2 = 4√2 and ‖p‖2 =

√√
2 + 1, implying that the

circumradius of the TV screen is at least 4√2 and that
√√

2 + 1 is the smallest possible radius
of a ball (centered at the origin) containing SA. �

π(SA) rSB r t time (sec) µ(t)

two disks 2-ball 1.99 0 0.7978 −0.0050
2 0 0.8215 5.9978 · 10−08

2.01 0 0.9173 0.0050
SA rSB

3-ball 2.23 0 0.8690 −0.0027
2.2361 0 0.7470 1.4339 · 10−05

2.24 0 0.8803 0.0018

Table 6.2: Computational test of containment as described in Example 6.3.11.

Example 6.3.11. Let M be the convex hull of the shifted unit disks D1 and D2 defined by
the identities 1− (x1 +1)2−x2

2 = 0 and 1− (x1−1)2−x2
2 = 0, respectively; see Figure 6.3.1b.

M is a projected spectrahedron. Indeed, considering only D1 and shifting it along the segment
[−1, 1] × {0} yields M . Thus M =

{
x ∈ R2 | ∃y ∈ R : 1− (x− y)2 − x2

2 ≥ 0, −1 ≤ y ≤ 1
}

is the projection of the 3-dimensional cylinder, see Figure 6.3.1c, defined by the linear pencil

A(x, y) =
[
1− x2 x1 − y
x1 − y 1 + x2

]
⊕
[
1− y 0

0 1 + y

]
.

Consider the 2-ball of radius r > 0. It follows from the construction of M = π(SA) that it
is centrally symmetric and that its circumradius is 2. Up to numerical accuracy, this value is
computed by our approach; see Table 6.2. �
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6 The Projection Containment Problems

(a) TV screen in a 4
√

2-ball as defined in Example 6.3.10.

(b) The convex hull of two disks in a 2-ball (a) as defined in Example 6.3.11.

(c) The algebraic surface defined by the determinant of A(x, y) with SA being the grey cylinder in the
middle of the picture as defined in Example 6.3.11.

Figure 6.3.1
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6.4 Containment of Projected Spectrahedra and Positive Linear
Maps

In this section, we discuss possible extentions of the concept of positive linear maps (as
introduced in Section 5.4) to projected spectrahedra.

Given two linear pencils A(x, y) ∈ Sk[x, y] and B(x, y′) ∈ S l[x, y′] with y = (y1, . . . , ym)
and y′ = (y′1, . . . , y′n), define the linear subspaces

A = span{A0, . . . , Ad, A
′
1, . . . , A

′
m},

B = span{B0, . . . , Bd}, and B̄ = span{B′1, . . . , B′n}.

Every element inA can be associated to a homogeneous linear pencil A(x0, x, y) ∈ Sk[x0, x, y].
As introduced in (5.1.2), the linear pencil

Â(x0, x, y) := x0Â0 +
d∑
p=1

xpÂp +
m∑
q=1

yqÂ
′
q

:= x0(1⊕A0) +
d∑
p=1

xp(0⊕Ap) +
m∑
q=1

yq(0⊕A′q)

is called the extended linear pencil associated to A(x0, x, y). The associated linear subspace
is Â = span{Â0, Â1, . . . , Âd, Â

′
1, . . . , Â

′
m}.

For linearly independent A1, . . . , Ad, A
′
1, . . . , A

′
m, let Φ̂AB : Â → B be the linear map

defined by

Φ̂AB(1⊕A0) = B0, ∀p ∈ [d] : Φ̂AB(0⊕Ap) = Bp and ∀p ∈ [m] : Φ̂AB(0⊕A′p) = 0.

Note that since every linear combination 0 = λ0(1⊕A0)+
∑d
p=1 λp(0⊕Ap)+

∑m
q=1 λd+q(0⊕A′q)

for real scalars λ0, . . . , λd+m yields λ0 = 0, it suffices to assume the linear independence of
the coefficient matrices A1, . . . , Ad, A

′
1, . . . , A

′
m to ensure that Φ̂AB is well-defined. Recall the

discussion on the lineality space from Section 2.3 (see also Section 5.4).

π(SA) is contained in π(SB) if and only if for all (x0, x, y) ∈ R×Rd×Rm with Â(x0, x, y) ∈
Â ∩ Sk+1

+ the set
(
Φ̂(A(x0, x, y)) + B̄

)
∩ S l+ =

(
B(x0, x, 0) + B̄

)
∩ S l+ is nonempty. The last

statement says that the spectrahedron S = {y′ ∈ Rn | B(x0, x; y′) � 0} is nonempty for
any fixed but arbitrary (x0, x, y) with (x, y) ∈ SA. A necessary condition for this is the
non-existence of a matrix Z ∈ B̄⊥ ∩ S l+ with 〈B(x0, x, 0), Z〉 < 0. Unfortunately, the reverse
implication is not true as seen in Example 6.2.2 above.

However, if we restrict the outer set to be a spectrahedron (instead of a projection of one),
then π(SA) ⊆ SB if and only if for all (x0, x, y) ∈ R × Rd × Rm with A(x0, x, y) ∈ A ∩ Sk+
the single matrix Φ(A(x0, x, y)) = B(x0, x) is positive semidefinite. We formalize this in
Theorem 6.4.1 below.

Given the linear pencils A(x, y) ∈ Sk[x, y] and B(x) ∈ S l[x], let

Â(x, y) = 1⊕A(x) = 1⊕A0 +
d∑
p=1

xp(0⊕Ap) +
m∑
q=1

yq(0⊕A′q)

be the extended linear pencil of A(x, y). As in Section 5.4, if A0, A1, . . . , Ad+m are linearly
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independent, then we can retreat to the simpler map ΦAB : A → B defined by

∀p ∈ [d] : ΦAB : Ap 7→ Bp and ∀q ∈ [m] : Φ̂AB(A′q) = 0.

We have the following extension of Proposition 5.4.6.

Theorem 6.4.1. Let A(x, y) ∈ Sk[x, y] and B(x) ∈ S l[x] be linear pencils.
(1) If ΦAB or Φ̂AB is positive, then π(SA) ⊆ SB.
(2) If π(SA) 6= ∅, then π(SA) ⊆ SB implies positivity of Φ̂.
(3) If π(SA) 6= ∅ and SA is bounded, then π(SA) ⊆ SB implies positivity of Φ.

The proof follows along the same lines as the proof of Proposition 5.4.6.

Proof. Set Â(x0, x, y) := x0(1⊕A0) +
∑d
p=1 xp(0⊕Ap) +

∑m
q=1 yq(0⊕A′q) ∈ Sk+1

+ ∩ Â.
To (1): Let ΦAB be positive. For every point x ∈ π(SA) there exists y ∈ Rm such that
A(x, y) � 0, i.e., A(x, y) ∈ Sk+∩A. Then B(x) = B(x)+

∑m
q=1 yqΦ(A′q) = Φ(A(x, y)) ∈ S l+∩B

and hence x ∈ SB. There is no difference in the proof if Φ̂AB is positive.

To (2): Since the spectrahedra defined by A(x, y) and Â(x, y) coincide, their projections equal,
and hence we have π

(
S
Â

)
⊆ SB. Let Â(x0, x, y) ∈ Sk+1

+ ∩ Â. Then x0 ≥ 0.

Case x0 > 0. By scaling the linear pencil with 1/x0 the positive semidefiniteness is pre-
served. Thus, Â(1, x/x0, y/x0) = Â(1, x/x0, y/x0) ∈ Sk+1

+ ∩ Â and x/x0 ∈ π(SA) ⊆ SB.
Scaling B(x/x0) by x0 yields Φ̂(Â(x0, x, y)) = x0B0 +

∑d
p=1 xpBp = x0B(x/x0) ∈ S l+ ∩ B.

Case x0 = 0. If (x, x0) = (0, 0), the statement is obvious. Let x 6= 0. By assumption,
π(SA) is nonempty. Fix a point x̄ ∈ π(SA). Then, for some ȳ, y ∈ Rm, Â(1, x̄+ tx, ȳ + ty) =
Â(1, x̄, ȳ) + Â(0, tx, ty) � 0 for all t > 0, implying x̄ + tx ∈ π(SA) ⊆ SB for all t > 0. Thus
x is a point of the recession cone of π(SA) which clearly is contained in the recession cone
of SB. Indeed, 1

tB(1, x̄) + B(0, x) = 1
tB(x̄ + tx) � 0 for all t > 0. By closedness of the cone

of positive semidefinite matrices, we get B(0, x) � 0. Hence, Φ̂(Â(x0, x, y)) = Φ̂(Â(0, x, y)) =
B(0, x) � 0.

To (3): Let A(x0, x, y) = x0A0+
∑d
p=1 xpAp+

∑m
q=1 yqA

′
q be in Sk+∩A. We distinguish between

the following two cases.
Case x0 > 0. This case follows by a similar scaling argument as in part (2).
Case x0 ≤ 0. Since π(SA) is nonempty, there exists x̄ ∈ π(SA) and hence, for some ȳ ∈ Rm,

A(0, x+ |x0|x̄, y + |x0|ȳ) = A(0, x, y) +A(0, |x0|x̄, |x0|ȳ)
� |x0|A0 +A(0, |x0|x̄, |x0|ȳ) = |x0| ·A(1, x̄, ȳ) � 0.

For A(0, x + |x0|x̄, y + |x0|ȳ) 6= 0, one has an improving ray of the spectrahedron SA, in
contradiction to the boundedness of SA. For A(0, x+ |x0|x̄, y+ |x0|ȳ) = 0, linear independence
of A0, . . . , Ad+m implies (x+ |x0|x̄, y+ |x0|ȳ) = (0, 0). But then x0A(1, x̄, ȳ) = A(x0, x, y) � 0
together with x0 ≤ 0 and A(1, x̄, ȳ) � 0 imply either A(1, x̄, ȳ) = 0, in contradiction to linear
independence, or (x0, x) = 0. Clearly,in this case, ΦAB(0) = 0.

If, as in Lemma 5.4.8, our setting is changed from the case of linear subspaces to the case of
affine subspaces, Theorem 6.4.1 has a slightly easier formulation. As the proof is very similar
to the one given for Lemma 5.4.8, we omit it.
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6.4 Containment of Projected Spectrahedra and Positive Linear Maps

Lemma 6.4.2. Let A(x, y) ∈ Sk[x] and B(x) ∈ S l[x] be linear pencils. Define the affine
subspaces Ā = 1

dA0 + span(A1, . . . , Ad, A
′
1, . . . , A

′
m) and B̄ = 1

dB0 + span(B1, . . . , Bd) for lin-
early independent A1, . . . , Ad, A

′
1, . . . , A

′
m. Then π(SA) ⊆ SB if and only if the affine function

Φ̄AB : Ā → B̄ defined by 1
dA0 +Ap 7→ 1

dB0 +Bp for i ∈ [d] and 1
dA0 +A′p 7→ 1

dB0 for i ∈ [m]
is positive.
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7 Final Remarks and Open Questions

We close with a short discussion of open questions related to the containment problems
studied in the previous chapters.
We studied Handelman certificates and Putinar certificates for Polytope Containment.

In Theorem 4.3.6, we saw that the Putinar relaxation always finitely converges (under mild
preconditions). Does the Handelman relaxation always finitely converge for Polytope Con-
tainment? Note that by Theorem 4.1.3, the optima of the bilinear programming formulation
are always attained at the boundary, which would allow for a positive answer to the ques-
tion. (Recall that the Handelman hierarchy cannot finitely converge whenever there exists an
optimizer in the interior of the feasible region).
For the Polytope Containment problem, can the structure of the certificates be bet-

ter characterized? Such as, what are improved degree bounds with regard to Polytope
Containment or, somewhat more general, with regard to general bilinear programming
problems? How is Fourier-Motzkin-elimination (as an H-in-V conversion algorithm) related
to the Handelman certificates for Polytope Containment?
The treatment of the H-in-V and πH-in-πH containment problems show that disjointly

constraint bilinear programming is intrinsically linked to geometric problems. On this basis,
it is natural to ask for a Positivstellensatz for bilinear polynomials on linearly constrained
sets. In this context, can the finite convergence result for the Putinar relaxation in the H-in-V
setting be extended to πH-in-πH containment, or more generally, to bilinear programming
problems with disjointly constrained sets?
We stated an asymptotically convergent hierarchy to decide the Spectrahedron Con-

tainment problem based on Hol-Scherer’s Positivstellensatz. If the outer set is given by a
diagonal linear pencil (describing an H-polyhedron) and some mild and common precondi-
tions on the inner linear pencil hold, the initial relaxation step decides containment. As the
proof is intrinsically based on Farkas’ Lemma, we ask for a more complete statement with-
out preconditions using Ramana’s Lemma. For that, the sum of squares formulation of SDP
duality by Klep and Schweighofer [KS11, KS13] might be interesting.
Concerning the general Spectrahedron Containment problem, can the convergence

behavior of the Hol-Scherer relaxation be characterized, in particular, with regard to the
initial relaxation step? Such as, are there properties of the linear pencils serving as sufficient
conditions for the initial relaxation step to be exact? Moreover, regarding the connection
of Spectrahedron Containment and positivity of linear maps, we ask for the relation
between the exactness of the tth relaxation step and (k− t)-positivity of the particular linear
map.
Regarding the S-in-πS containment problem, we showed a refinement of Hol-Scherer’s

Positivstellensatz under the additional assumption of strict feasibility. Can the precondition
in Theorem 6.3.5 be dropped? Note that this question is related to the above discussion of
exactness for the S-in-H containment problem using Ramana’s Lemma. The questions from
the non-projected case can also be stated here. Moreover, (under what preconditions) does
strong containment imply the existence of a Hol-Scherer certificate?
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