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Abstract. Various static analyses of functional programming languages
that permit infinite data structures make use of set constants like Top,
Inf, and Bot, denoting all terms, all lists not eventually ending in Nil, and
all non-terminating programs, respectively. We use a set language that
permits union, constructors and recursive definition of set constants with
a greatest fixpoint semantics in the set of all, also infinite, computable
trees, where all term constructors are non-strict. This internal report
proves decidability, in particular DEXPTIME-completeness, of inclusion
of co-inductively defined sets by using algorithms and results from tree
automata and set constraints, and contains detailed proofs. The test for
set inclusion is required by certain strictness analysis algorithms in lazy
functional programming languages and could also be the basis for further
set-based analyses.

1 Introduction

The compilation of programming languages requires static analysis for the pur-
pose of error-detection and for improving the optimization possibilities. In non-
strict functional languages like Haskell [Pey03] or Clean [PvEO03] the compiler
requires so-called strictness analysis that statically determines whether an ar-
gument of a function f can be evaluated before evaluating the body of the

3 This document is a revised version of an earlier version originally published on the
web in August 2005.
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function. There are different variants of strictness analysis methods, based
on abstract interpretation (e.g. [BHA85,AH87,Bur91,CC77,Myc81,Wad87]),
projections (e.g. [WHS87,Pat96,LPJ95]), non-standard type systems (e.g.
[KM89,Jen98, GNN98,CDG02]) or abstract reduction [N6c92]. A comparison of
several approaches can be found in [Pap98,Pap00].

To find out whether a unary function f is strict, one has to check the termi-
nation behavior of f(L), where L is a non-terminating expression. If f(L) does
not terminate, then f is strict in its argument, and the compiler can exploit this
knowledge by generating more efficient code by rearranging the evaluation order
by evaluating the argument before entering the body of f. The test whether a
binary function f is strict in its second argument means to check (f t L) for non-
termination for all arguments ¢, which will be represented as testing (f T L). We
are particularly interested in static analysis methods based on the operational
semantics, where the domain of expressions is used. Since non-strict functional
languages permit to program with streams, i.e. infinite (lazy) lists, the domain
of all computable, finite and infinite, data-terms is a natural choice. Since we
address analysis in non-strict functional languages, where all constructors are
non-strict, all the data terms are lifted, which means that non-terminating ex-
pressions, represented by the symbol L, can occur everywhere in a data term.

Static analysis in lazy functional languages uses abstract sets, such as Top
(also denoted as T) for all expressions, Bot (also denoted as L) for all non-
terminating expressions, and Inf for all infinite lists (lists for which the length-
computation does not terminate). There is a proposal for static analyses includ-
ing structured data based on 4 predefined sets [Wad87]. In [N90,N6c92,N5¢93],
strictness analysis used a language for abstract sets extending the 4 fixed sets,
where the language of sets enforces 1. C A C T for all definable sets A. How-
ever, only the inclusions that syntactically follow from 1. C A C T for all A, like
(Cons L u) C (Cons u T) are used, but no attempt is made to exploit other valid
inclusions. The strictness analysis in [Sch00,SSPS95] used an inclusion check for
set constants in the most powerful version of its loop detection rules, but relied
on an incomplete decision algorithm to detect these inclusions. A language for
sets is also used in the reconstruction and correctness proof of Nocker’s strictness
analysis [SSSS05]. In most cases, these are recursive definitions of sets with a
greatest fixed-point semantics in the domain of computable (also infinite) data
terms over non-strict constructors. Strictness analysis usually requires that the
set of expressions that are the semantics of set constants are down-closed w.r.t.
an ordering inherited from 1 < ¢ for all ¢, since then continuity arguments can
be used for correctness proofs. Translated into a term language, this means that
L can be used for cutting trees.

In this paper we formulate the set constants inclusion problem (SCIP) as
follows: Assume given a language that can define sets of (finite and infinite) terms
over a signature of constructors including the special constant L, and given an
admissible subset 7 of all (including infinite) trees, and two set constants uy, ug
together with their recursive definition. The set 7 may e.g. be the set of all
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computable finite and infinite trees. First an interpretation 7 for the two sets
is computed using the greatest fixpoint of the definitional equations w.r.t. 7,
and then an inclusion test y(u1) C y(uz2) has to be performed. We assume that
the set definitions u are restricted to down-closed sets, i.e., if ¢ € u, then also
t[L/p] € u for every position p. This is required for correct application of the
inclusion problem within strictness analysis as it is formulated in [SSSS05]. In
a first order language of terms, the inclusion problem can be reconstructed over
finite and infinite terms with L-entries that play the role of cut-markers.

A main result is that the inclusion problem for set constants can be solved
by computing the least fixpoint instead of the greatest fixpoint (Theorem 2.17).
The proof method is via cuts of trees and elementary set theory arguments. Since
we can use the computation of least fixpoints for SCIP, we can apply tree au-
tomata techniques to solve the inclusion problem: A straightforward translation
shows that the SCIP is in DEXPTIME (Proposition 2.26). The hardness result
for the set constant inclusion problem is derived from the DEXPTIME-hardness
of the problem whether all terms are accepted by non-deterministic tree au-
tomata [CDG*97]. This finally shows that the set constant inclusion problem
is DEXPTIME-complete (Theorem 2.29). The technique also allows to prove
that the inclusion problem for bot-free SCIP is DEXPTIME-complete (Theo-
rem 2.29), i.e. where no L is used in the defining equations, and the greatest
fixpoint is computed. Since we can vary the base set 7, the results hold for all
infinite trees over the signature as well as for all computable trees of the given
signature. In the case of all infinite trees, there is a connection to tree languages
accepted by special Biichi-automata (see Remark 2.30).

A formalism related to our set constant inclusion problem are set constraints.
Set constraints [Aik94,AKVW93] is a formalism that can express subset relations
between sets of terms, and provides methods for solving these constraints. It can
be applied in a class of static program analysis methods (set-based analysis).
In general, sets of finite terms are considered, but there are also results for infi-
nite trees: the co-definite set constraints in [CP98], and an extension in [DTT98].
Other work on set constraints using infinite (regular) trees is [Mau00] and [RT04].
The paper [RT04] defines a constraint language which allows complements and
intersections and shows that the satisfiability problem of set constraints is unde-
cidable in the domain of regular terms. For our 1-free set constants definitions
the satisfiability problem in the set of regular terms is decidable, since the set
of regular terms is admissible (see Definition 2.1).

The variant of SCIP with a computation of least fixpoint can be encoded as
a set constraint problem, however, in general, our SCIP rather is a “two-stage
set constraint”: first compute a (unique) solution, then apply the solution to a
further constraint, which in our case is an inclusion constraint.

This paper is structured as follows. First the language for defining set con-
stants is given. Subsection 2.2 defines the inclusion problem for set constants. In
subsection 2.3 explore the properties of least and greatest fixpoint in detail and
give proofs of continuity of the fixpoint operators. In subsection 2.4 we show the
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close relationship between bot-closed and bot-free set constants definition for our
inclusion problem w.r.t. the greatest fixpoint semantics. Based on these results,
in subsection 2.5 we show that the set constant inclusion problem can be solved
by set constraints as well as tree automata, and its complexity be determined
using results from tree automata, where also detailed proofs are given. In section
3 we show how the results are transferred into and used in untyped extended
lambda-calculi, and also in static analyses, in particular for strictness analysis
in lazy functional programming languages.

2 The Language and the Inclusion Problem

2.1 Syntax of the Language of Values

We use a finite signature X' of function symbols ¢ coming with an arity ar(c) > 0.
There is one special constant | with ar(.L) = 0. The function symbols in X'\ { L}
are called constructors. The syntax for terms F is:

E = (c Ey... Ey () where ¢ € X' is a function symbol

We define 7(X) as the set of all (finite) terms F that can be generated using
this grammar. We use positions in terms, denoted p, ¢, as sequences of positive
integers following Dewey notation. The concatenation of two sequences p, q is
written p.q, the subtree of ¢ at position p is denoted as t),, and the label at
position p as t(p). The set of all positions of a term ¢ is denoted as D(t), which is
a prefix-closed set. This also allows to define and treat infinite terms, where D(t)
is an infinite prefix-closed set of positions, and the arities of function symbols
are respected. The set of all trees over the signature X is denoted as 7o, (X).
Maximal positions correspond to leaves in trees. The depth of a finite tree ¢ is
the maximal length of a position in D(t).

Definition 2.1. A subset T C T(X) is called subtree-closed, iff every subtree
of atreet € T is also contained in T. A subset T C Too(X) is called admissible,
i T(X) C T, and T is subtree-closed.

In the following we are particularly interested in the set 7copm, of all com-
putable trees, which is admissible. We will also exploit the fact that the set
Too(X) is admissible.

Definition 2.2. A tree t’ € Too(X) is a cut of a tree t, if D(t') C D(t), and
Wp € D(') 1, # by, =1, = L.

A tree t' is a finite cut of a tree t, if t' is a finite tree and a cut of t. A tree t'
1s a finite cut of a tree t at depth k, if t’ is a finite cut of t, t' has depth k and

Vpe D({t') : ), #t;, = |p| = k.
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A finite cut can be seen as cutting away subtrees by replacing them with a
L -leaf until the resulting tree is finite.

Ezample 2.3. Let True,cons € X be constants with ar(True) = 0 and
ar(cons) = 2. Let ¢ be the infinite tree with D(¢) being inductively defined
as 1 € D(t) and p.1 € D(t) = p.1.1 Ap.1.2 € D(t). Further let ¢(p.1) = cons,
t(p.2) = True. The tree ¢ is represents the infinite list where all elements are
True. Let ¢’ be a tree with D(¢') = {1,1.1,1.2,1.1.1,1.1.2} and

iy Jtp),iftp#1.1.1
t'(p) = {J_, ifp=11.1

Then t'is a finite cut of ¢ at depth 3, whereas the tree ¢ with D(t") = D(¥') and

wen L, ifp=p.2
rp) = {t’(p), otherwise

is a finite cut of ¢, but not a finite cut of ¢ at depth k for all k.

Note that for every admissible set 7 of trees, all finite cuts are also contained
in 7, however, arbitrary cuts are not necessarily in 7.

2.2 Set Constants

In this and the following subsection the definitions, lemmas and theorems are
parameterized by an admissible set 7 C 7, (X). Later we will show that the
results are independent of the specific set 7. If necessary, we will indicate with
an index 7 in the notation the dependence on 7.

Definition 2.4 (Set Constants Definition). A set constants definition is a
tuple (X, 7T,U,EQ) where X is a finite signature of function symbols, T is an
admissible set of possibly infinite trees, U = {uq,...,ux} are finitely many set
constants withU N X =0, and EQ = {Eqq,..., Eqx} is a set of defining rules,
where for every set constant u; € U there is rule, named (Eq;)

U; = 74,1 U...uU Timng
where r; ; is L or an expression (cug.. .uar(c)), and u; € U are set constants.
With rhsgq(u) we denote the right-hand side of Eq;, if u = u;.
A set constants definition is called bot-closed if Vi € {1,..., K} there exists
i with r; ; = L. It is called bot-free if for alli,j : r; ; # L.

A mapping ¢ : U — P(7T), where P(-) denotes the powerset, is called
an interpretation. For interpretations 1,1, we write ¥ < o, iff for all

1= 1,...,K : w1<ul) g ’(/)2(’[1,0
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We extend interpretations ¢ to ¢¢ as follows:

Pe(L) ={Ll}
Ye(cur .. Uar(e)) = {(c a1... aare)) | @i € Y(us)}
Ye(r1Urs) =% (r1) Ude(rs)

In abuse of notation, we write v instead of ¢ in the following.

For all 7 the equations Eg; for set constants define an operator ¥ on interpreta-
tions as follows:

G () (ui) := (rhs gq(ui)).
Let SC7 be the set of all interpretations.

Lemma 2.5. (SCr1,<) is a partially ordered set.

Proof. We have to show that < is a partial order on SC:

A

— < is reflexive: Vip € SCr : Yu € U : p(u) C ¢(u), i.e. Yop € SCr : ¢ <.

— < is transitive: Let 91,%9,%3 € SCr with 1 < 1 and 19 < 1p5. Then
Vu € U :h1(u) C aha(u) C hg(u), hence 91 < 3.

— < is antisymmetric: Let 1,12 € SCr with ¢; < ¥y and s < 1. Then

Vu e U :i(u) C Pa(u) Aa(u) C ¢ri(u). Hence, 1 = ¢o.

Furthermore, every S C SCr has a least upper bound ub(S) € SCr as well as
a greatest lower bound g¢lb(S) € SCr given by the definitions:

wb(S)(ui) = () w(u)  and  gIb(S)(ui) = ) v(ws)

PeES PYES

Lemma 2.6. Let (X,7,U,EQ) be a set constants definition. S C SCr. Then
lub(8S) and glb(S) are a least upper bound and the greatest lower bound of S.

Proof. First we show that lub(S) is a least upper bound of S, i.e. we need to
show that

(1) lub(S) is an upper bound of S.
(2) lub(S) is smaller than every other upper bound.

(1): Let u € U be arbitrary but fixed, then obviously V¢ € S : ¢(u) € U5 ¥(u)
holds. Since this holds for all u € U we have Vi) € S : ¢ < lub(S).

(2): Let ¢’ be an upper bound of § and let u € U be arbitrary but fixed. From
Vip € § i) < 9 we have Vip € S : ¢(u) C ¢’'(u). Moreover, we have
Uyes ¥(u) € ¢'(u). Since this holds for all u € Y. we have lub(S) < ¢'.

Now we show that glb(S) is a greatest lower bound, hence we need to show:
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(1) glb(S) is a lower bound of S.
(2) glb(S) is larger than every other lower bound.

(1): Let u € U be arbitrary but fixed. Obviously V¢ € S : [\,c59(u) € P(u),
ie Vi € S : ¢glb(S)(u) C 9(u). Since this holds for all v € U, we have
Vi € S:glh(S) <.

(2): Let 9" be a lower bound of & and let u € U be arbitrary but fixed. From
Vi € S <1 we have Vi) € S : ¢'(u) C ¢(u). Thus, we have ¢'(u) C
Nyes ¥(uw). This holds for all u € U and thus ¢’ < glb(S).

Corollary 2.7. The partially ordered set (SCr,<) is a complete lattice, iso-
morphic to (T,C)K.

Lemma 2.8. The operator ¥ is monotone.

Proof. Let 11,19 € SCr with 1)1 < 1hg. We start with transforming ¥ () (u;)
for some u; € U:

@ (1) (wi) = ¥i(rhs(Eq;))
:’l,/)f(?"i,l Uu...uU TiJ)
:Uke{l,“.,j} Yi(rik)
=Ureqr,..jy Y1(Cik Uik - Uikar(er))

=Ureqr,..jp{cik aint - Qipar(en) | @ik € ¥1(uiga)}
Analogously
U (2)(ui) =Ureqa,... j3tCin Qi1 - Qikar(e ) | @ikt € Y2(Uina)}

Now let t € ¥(11(u;)). If t is a constant ¢ (i.e. ar(c) = 0) then obviously ¢ €
W(1ha(ui)). Otherwise let ¢ = (cix Gik1 -+ Gigar(e ) With a;x1 € ¥1(uik)-
Then 91 < 1) implies a; 1 € P2(u; k) and thus t € ¥(¢a(u,)). Since this holds
for all u; € U, we have ¥(1)1) < ¥(1)2), i.e. ¥ is monotonous.

Since ¥ is monotone, we can apply the Knaster-Tarski fixpoint theorem and
thus the least and the greatest fixpoint of ¥ exist. We define o7 and 7 to be
respectively the least and greatest fixed points of ¥. The index 7 will be omitted
if it is clear from the context.

Now we can state our inclusion problem:
Definition 2.9 (Set Constant Inclusion Problem (SCIP)). Given a set

constants definition (X,7,U,EQ) and two set-constants u;,u; € U. The set
constant inclusion problem is the question whether or not yr(u;) C v (u;).

The set constant T with definition T = LU(¢; T... T)U...(exy T...T) for
Y ={l,c1,...,cn} is the full set 7 under the greatest fixpoint semantics and
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the set of finite trees under the least fixed point semantics. Le. o(T) = 7 (X),
and v(T)=7.

In the following we distinguish two kinds of SCIPs: A SCIP is called bot-closed
(bot-free, respectively) if the corresponding set constants definition is bot-closed
(bot-free, respectively).

Note that the bot-free case is the general one if the special properties of L
as cut-marker are not used, which is the case if 7 = 7o (X).

We extend the application of ¥ to sets as usual as ¥(S) := {¥(¢) | ¥ € S}.
We will now prove continuity of ¥ which implies that the least and the greatest
fixpoint of ¥ can be represented as the infinite union and intersection of the
j-fold application of V.

Lemma 2.10. The operator ¥ is (upper) continuous [DP92], i.e. for every di-
rected set S C SCr: lub(¥(S)) = ¥(lub(S))

Proof. Since lub(S) is a least upper bound of S, we have Vi) € S : ¢ < lub(S)
and with monotonicity of ¥ Vip € S : ¥(¢p) < ¥(lub(S)), i.e. for an arbitrary
but fixed u; € U: Vip € S : T(¢)(u;) € P(lub(S))(u;). Thus it follows that
Uyes Z(@)(ui) C ¥ (lub(S))(ui), hence lub(¥(S)) < ¥(lub(S)). For the other
direction let ¥ € S and u; € U be arbitrary but fixed. Transforming ¥ (¢)(u;)
and ¥ (lub(S))(u;) gives the equations:

() (uwi) =Ureqr,.. nip{Cik Qi Gigar(e ) | @ikt € Y(Uika)}
U (lub(S))(ui) :Uke{l,...,ni}{cﬁk Qi k1« Qi kar(cir) | aigg € wb(S)(wik)}

Now let ¢ € W(lub(S))(u;). If t is a constant then obviously ¢ € ¥(¢)(u;).
Otherwise ¢ = c¢i @ik1 ---Gikar(c,,) Where a;r; € lub(S)(uir,;) for | =
1,...,ar(ci k), 1€ aip; € Uwesw(ui,k,l). Le., there exist ®1,...1; in S with
a; k1 € Yi(uikg). Since S is directed, there exists v, € S with ¢ < ¢,
for ¥ = 1,...,1. Thus, a;r; € Ym(uiry) for I = 1,...,ar(c; k). Hence,
t € U(Ym)(u;). Since ¥ (¢m)(ui) C Uyes ¥ (¥)(uwi), we have t € lub(¥(S))(us).
Thus we have shown ¥ (lub(S))(u;) C wb(¥(S))(u;). Since this holds for all
u; € U, we have ¥(lub(S)) < lub(¥(S)).

Corollary 2.11. By Kleene’s fixpoint theorem and since ¥ is continuous, the
least fixpoint o of ¥ can be computed as follows: Let ¢g be the interpretation with
bo(u;) =0 fori=1,..., K. With W (¢o) for j > 0, the j-fold application of ¥,
the equation o(u;) = U, Wi (u;) holds for everyi=1,..., K.

This representation of the least fixpoint allows induction proofs. For the least
fixpoint o of equations we have o(u) C 7(X) for all w € U. So in this case only
finite trees are required.

Lemma 2.12. For every non-empty countably infinite descending chain S C
SCr: glb(¥(S)) =P (glb(S)).
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Proof. Let S be a non-empty countably infinite descending chain. ¥ (glb(S)) <
glb(¥(S)) follows using monotonicity of ¥. For the other direction let u; € U be
arbitrary but fixed. Transforming ¥ (glb(S))(u;) and ¥())(u;) for some ¢ € S
gives the equations:

U(glb(S))(u;) ZUZ;l{Ci,k @ide1 - Qikar(ens) | Gkt € Nypes ¥ (Wik)}
() (wi) =Upiq{Cik @ik - Gigar(ess) | @ikt € Y(uigg)}

Let t € glb(¥(S)). If ¢ is a constant then obviously t € W(glb(S)). If ¢t =
Cik Qik1---Qikar(c;,), then t € W(P(u;)) for all ¢ € S, i.e. there exists in-
dices ky for every 1 € S such that

Vw eS:te {Ci,kw ai,kw,l “e. a)i,kd,,ar(ci’k) ‘ a’i,ku”l S ¢(ui7kw,l)}

and a; 1 € Y(Uir,1), | =1,...,ar(c;x) for all ¥ € S. Since the sum of all r; ;
is finite, there exists an infinite set S’ C S with

Vipe S te{ciw aipn O ar(es ) | @ik € W(uik 1)}

for a fixed index k' and S’ is an infinite set. Hence, it holds that a;; €
ﬂwes/ Y(ui ) for 1 =1,...,ar(c k). Since S’ is an descending chain and the
set S is countable, we have ﬂweS' Y(uig ) = cs Y(uip ). Thus we have
t € U(glb(S))(u;). Since this holds for all u,, glb W S)) <¥( glb(S)) follows.

Corollary 2.13. The greatest fixpoint v of ¥ can be computed as follows. Let
Yo be the interpretation with vo(u;) =T fori =1,...,K. With ¢; := ¥ (1)
for j >0, the j-fold application of ¥, the equation y(u;) = (1;¢;j(u;) holds for
everyi=1,..., K .

Proof. g > 11 ... is a countably infinite descending chain, since for all u €
U : Yo(u) 2 ¥1(u) and since ¥ is monotonous. Then glb({¢); | j € No}) is the
greatest fixpoint of ¥: From ¥ being lower continuous w.r.t to countably infinite
chains, we have for all u € U W((; oy, ¥5) (W) = Njen, (Wi+1) (W) = MN;en, ¥i(w),
ie. glb({y; | j € No}) is a fixpoint of ¥. Let § be a fixpoint of ¥ then ¥ (3) = 3
for all n and also 19 > (. Using monotonicity of ¥ we have ™ (i) > ¥"(3) = S,
and thus for all w € U : (), ¥, (¢o)(u) 2 B(u). Hence, glb({¢); | j € No}) is a
greatest fixpoint.

2.3 Properties of Least and Greatest Fixpoints for bot-closed SCIPs

In this subsection we show for bot-closed set constants definitions that there is
a tight connection between least and greatest fixpoint:

The set o7 (u) is exactly the subset of all finite cuts of trees in vy (u), which
has as corollary that the inclusion problem for the greatest fixpoint can be trans-
lated into an inclusion problem for the least fixpoint. The latter problem is
independent of the particular choice of 7.
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Lemma 2.14. Let (X, U,T,EQ) be a bot-closed set constant definition. Then
for all w € U the following holds:

t' is a finite cut of a tree in y(u)}.

Proof. (1) For every u € U, the set o(u) can be described as all finite trees that
can be inductively constructed using the equations Egq, (see Corollary 2.11).
Hence for every interpretation v that is a fixpoint of ¥, and for all ©w € U we
have o(u) C t(u), and hence o(u) C vy(u).

(2) The direction “C” is trivial, since it follows from (1)

We show D by induction: Suppose there is a tree ¢t € y(u), and a finite cut ¢’ of
t, such that ¢’ & o(u). Assume that the depth of ¢’ is minimal with this property.
Since t' # L, there is a constructor ¢ with t = (¢ t1...¢,), t' = (¢t} ...t},), and
t} is a finite cut of ¢; for all i = 1,...,n. The fixpoint equations show that there
is a component (¢ ug ...u,) in the right-hand side of the equation for u with
(ctr...tn) € ¥(c uy...up), and so ¢; € y(u;). Thus, by induction t; € o(u;)
for all # = 1,...,n. The fixpoint equations again show that this implies that
(cty...t)) € o(u). This is a contradiction. Hence the claim is proved.

Corollary 2.15. Let (X, U, T,£Q) be a bot-closed set constants definition.
Then for all uw € U: All finite cuts of trees in o(u) are also in o(u).

Proof. Follows from Lemma 2.14.

Lemma 2.16. Let (X, U,T,£Q) be a bot-closed set constant definition and u €
U. Then v(u) ={t € T | all finite cuts of t are in o(u)}.

Proof. From Lemma 2.14 we obtain y(u) C {t € T | all finite cuts of ¢ are in
o(u)}.

Let £ be the interpretation that is defined for all © € U by
&(u) == {t € T | all finite cuts of ¢ are in o(u)}. We show that £ is a fixpoint
of ¥: First, it is obvious that o(u) C &(u) for all w € U. Let u € U and let the
equation for u be: u = LUr U...Ury,. Then ¥(&)(u) = {L}UE(r1)U. .. UE(rm).
The goal is to show that ¥(£)(u) = £(u):

1. (&) (u) C &(u): Let t € ¥(§)(u). The case t = L is trivial, so assume
t=(cty...ty), and wlo.g. t € &(r1) with 1 = (c uy ...up). We obtain
t; € £(u;) for all ¢ = 1,... h. Hence all finite cuts of ¢; are in o(u;) for
i=1,...,h, and since o(u) = {L} Uo(ry) U...Uo(ry), we have that all
finite cuts of ¢ are in o(u). This means ¢ € &(u).

2. &(u) C P(E)(u): Let t € &(u). If t = L, then there is nothing to prove.
If t = (¢ ty...t,), then consider a sequence of finite cuts as follows: For
all i = 0,1,2,... let s; be the finite cut of (¢ t;...t,) at depth i. Since
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o(uj) C &(uy) for all uj € U, we have s; € o(u) C &(u) for all i. Then there
is a component (¢ uj ...u,) among the 7q,..., 7y, such that for infinitely
many indices 7, the tree s; is also in o(c u; ... uy,). This, however, means that
all the finite cuts of s; are also in o(c uy ...u,) by Corollary 2.15, and so
all the finite cuts of ¢ are in o(c ug ...u,). Hence all the finite cuts of t; are
in o(u;) for all ¢ = 1,...,n. Since 7 is subtree-closed, ¢; € 7. This implies
t; € &(u;). Hence t = (c t1...ty) € &(c uy ... uy), and thus ¢t € ¥(§)(u).

Summarizing, ¢ is a fixpoint of ¥, and hence &(u) C ~y(u) for all u € Y.

Note that Lemma 2.14 and Corollary 2.15 do not require admissibility of 7,
whereas this is required in the proof of Lemma 2.16.

Theorem 2.17. Let (XU, T,EQ) be a bot-closed set constant definition. Then
for all uy,us € U: y(u1) C y(uz) iff o(ur) C o(ua).

Proof. «<: From o(u1) C o(uz) the relation vy(u1) C v(uz) follows by Lemma
2.16, since the construction {t | all finite cuts of ¢ are in o(u)} is monotone in
u.

=: Let y(u1) € v(uz2). Since o(u1) C ~y(u1), we obtain o(u;) C ~y(ug).
Lemma 2.14 shows that o(uz) is the subset of finite cuts of trees in v(uz), hence
o(ur) C o(ug).

We have the following immediate consequences:

Corollary 2.18. Given two admissible sets Ty, Ty. Then the inclusion problem
for a bot-closed set constants definition (X,U,T1,EQ) is equivalent to the in-
clusion problem for the set constants definition (X,U,T3,EQ). In particular the
following hold:

— Assume given a bot-closed set constants definition. Then the inclusion prob-
lem for set constants is equivalent to the inclusion problem for set constants
w.r.t. the least fized-point semantics.

— Assume given a bot-closed set constants definition. Then the inclusion prob-
lem for set constants is equivalent to the inclusion problem for set constants
w.T.t. the greatest fized-point semantics where T = T, (X).

2.4 Reducing bot-free SCIPs to bot-closed SCIPs

In this subsection we show the relationship between bot-closed and bot-free set
constants definitions.

To ease reading, we assume in this subsection that we have a bot-free SCIP
and consider also the corresponding bot-closed SCIP with equations Egq, ; €
£Q, that are determined from Fgq, € £Q by adding a L-component. We use
V¥, ~ as notations for the operator and the greatest fixpoint, respectively, and
V¥, ,~, for the notions for the corresponding bot-closed SCIP.
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Lemma 2.19. Let (X,U,T,EQ) be a bot-free set constants definition,
(XU, T,EQL) be the corresponding bot-closed set constants definition, and let
u€U. Then y(u) ={t | t € viL(u) and t has no occurrence of 1}

Proof. Let v/ be the interpretation defined as
v (u) :={t | t € y1(u) and ¢ has no occurrence of 1}.

Then it is easy to see that + is a fixpoint of ¥. This follows from the fixpoint-
property of v, and the fact that ¥ does not introduce L’s in the interpretations.
We have shown that " < ~.

For all set constants u; we obviously have ~(u;) C (¥, o 7v)(u;), since
Y(u;) = (P ov)(u;) C (¥ o7)(u;). Hence, by the Knaster-Tarski fixpoint the-
orem, we have v(u) C v, (u) for all u, since v, (u) is a greatest fixpoint of ¥, .

This implies y(u) = 4/(u) for all set constants u.

Lemma 2.20. Let (XU, T,EQ) be a bol-free set constants definition,
(XU, T,EQ,) be the corresponding bot-closed set constants definition, and let
u€U. Then vy (u)={t' €T |t €y(u) and t' is cut of t}.

Proof. Let 4" be the interpretation defined as v'(uw;) = { € T | t €
~v(u;) and t' is cut of ¢} for all u;. Then ' is a fixpoint of ¥, , which follows
from the fixpoint-property of . Hence v/ < v, .

Since v is the maximal extension of 4 by adding cuts, and using Lemma

2.19, we obtain that v/ =, .

Theorem 2.21. Let (X, U,T,EQ) be a bot-free set constants definition and
uy,ug € U. Then y(uy) C y(u2) iff y1(ur) C 1 (uz).

Proof. This follows from Lemmas 2.19 and 2.20 .

This theorem allows to test for inclusion in bot-free SCIP using the greatest
fixpoint by reducing this problem to the corresponding bot-closed SCIP.

Ezample 2.22. Theorem 2.21 cannot be extended to SCIPs that are
neither bot-closed nor bot-free. Consider the set constants definition
({L,coms, c}, Too(X), {u, Inf, Inf'}, {u = ¢,Inf = L U (cons u Inf),Inf’ =
(cons u Inf’)}). Then v, (Inf) = v, (Inf'), since the definitions of Inf and Inf’
are identical after adding L-components, but v(Inf) # ~v(Inf’).

Ezample 2.23. We show that in Theorem 2.21 the greatest fixpoint cannot
be replaced by the least fixpoint: Let X := {1, c1,c2}. We consider the
set constants definition (X, 7o (X)), {ur,ua}t,{fu1 = L U (¢1 ug),us = L U
(ca u1)}). Then ~y(uy) consists of the infinite tree ¢; (c2 (c1 (...))) and
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all its finite cuts, and 7(ug) consists of the infinite tree co (¢1 (c2 (...)))
and all its finite cuts, which makes wuy,us different w.r.t. the great-
est fixpoint semantics. The according bot-free set constants definition is
({L,c1, 2}, Too (X)), {ur, ua}t, {ur = (e1 u2),u2 = (c2 u1)}). Using the least fix-
point semantics ui,us are the empty set, and thus equal.

2.5 Decidability and Complexity

In this subsection we show DEXPTIME-completeness as complexity of the (bot-
closed as well as bot-free) set constant inclusion problem by using results from
tree automata.

Proposition 2.24. Let 7 be an admissible set. Then every bot-closed inclusion
problem for set constants can be solved by encoding it in linear time as satisfia-
bility of a set-constraint.

Proof. Given our definitional equations and the question u;, C u;,, we define a
linear translation into a set constraint Cl,:

Every equation Fg; is in a canonical way translated into subset-constraints u; C
rhs(Eq;), the constraints L C u; and for (¢ ui...uar () as a part of rhs(Eq;)
the constraint (c u; ... uar(e)) € u;. Also the constraint uj, C uj, is added. This
defines Cl..

Suppose that the translated set-constraint has a solution o where only finite
terms are considered. Then it is easy to see that « is the least fixpoint of the
definitional equations, which can be proved by an induction on the depths of
terms. Note that the restricted structure of the definitional equations in bot-
closed SCIPs is essential for this argument.

We have to show equivalence of satisfiability.

— If uj, € uy, holds for the set constants, then by Corollary 2.18, it also has a
greatest solution in 75 (X).
By Theorem 2.17, the equation u;, C uj, also holds w.r.t. the least fixed-
point, hence the set-constraint Cl, is also satisfied.

— Let Cy. be solvable with a solution «. The argument above shows that this
is also a least fixpoint o of the definitional equations, hence u;, C u;, holds
w.r.t. o, and hence also for v by Theorem 2.17.

Note that it appears to be not possible to encode SCIPs as co-definite set-
constraints [CP98], though the problems have a certain similarity.

Our set constant inclusion problem can be solved as an inclusion prob-
lem of the accepted languages of non-deterministic bottom-up tree automata
[CDGT97].

A non-deterministic bottom-up tree automata A consists of finitely many
states, some are accepting ones, and rules of the form ¢(q1,...,¢,) — ¢, where
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c € XY, and q,q; are states. A finite tree t is accepted by A, if it is possible,
in a bottom-up fashion, to reach ¢(t) for an accepting state ¢, where a sin-
gle application of a rule is like ¢(q1(t1),...,qn(tn)) — q(c(t1,...,t,)), where
c(qry.--,qn) — gisarulein A, and c(t1,...,t,) is a subterm of ¢. The accepted
language of A is the set of all trees ¢, such that ¢(¢) can be reached for some
accepting state g of A.

By a straightforward encoding where set-constants are the states of the au-
tomata and the definitions of set constants are translated into the rules of the
automata, and using Theorem 2.17 we obtain:

Proposition 2.25. Fvery bot-closed SCIP can be solved by encoding it in linear
time as an inclusion problem of the language accepted by non-deterministic tree
automata.

Proof. Given the set constants U with the according definitional equations and
the question u; C u;, we construct two non-deterministic tree-automata A;, A;,
where the set of states is U for both automata, the accepting states are {u;}
for A; and {u;} for A;. The transition rules are identical for both automata
and are constructed as follows: For every u € U add the rule L — wu. For
every part r;, = (¢ up...up) of a right hand side of rhs(Eq) add the rule
C(Ul, cen ,un) — Uy.

Let — be a single application of a rule, = be the reflexive-transitive closure.

If t = wu; then t € o(u;): We use induction on the length of =. If t — u; by
one application, then ¢ must be a constant, i.e. t = 1 or t = ¢, and obviously
t € o(u;), since a rule ¢ — w; only exists if ¢ is a part of the right hand side of Eg;.

it Es u; with & > 1 then ¢ must be a constructor application (¢ t; .. .t,), hence
the last application of a rule of ¢ £, w, must be of the form (cui(ty) ... un(tn)) —
uy(t), Hence there are applications ¢; <k, u;(t;) for i = 1,...n. By the induction
hypothesis ¢; € o(u;) and thus there exist I’ with t; € ¥ (¢g)(u;) for all I” > I'.
Now, it easy to verify that t € ¥' +1(¢g)(w;) and thus t € o(u;).

Let t € o(u;) then there exist applications of transitions rules using automata
A; or Aj, respectively with ¢ 5

We use induction on j with ¢t € ¢;(w): If j = 0 then ¢ is a constant and
hence there exits a transition rule ¢ — u;. Now we assume that the claim holds
for all k < j and let ¢ € ¢;(w;). If t is a constant then it is obvious that ¢ — w;
by a transition rule. If ¢ = (¢ t1,...%,), then there exist set constants u; ... uy,
with t; € ¢;_1(u;). Using the induction hypothesis we have ¢; % ;. Hence,
(cty...ty) B (cuq...uy,) and since rule c(ug, ..., u,) — wu; is a transition rule
of the automata we have ¢ — wu;. Hence, a solution of the inclusion problem

whether the language recognized by A; is a subset of the language recognized
by A; is also a solution for the inclusion problem for set constants.

Proposition 2.26. The bot-closed as well as bot-free SCIP is in DEXPTIME.
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Proof. This follows from Proposition 2.25, since the inclusion problem of the
languages of two non-deterministic tree automata is in DEXPTIME [CDG*97].

Remark 2.27. 1If in the inclusion test u; C us, the set constant uy corresponds
to a top-down deterministic tree automaton, then the language inclusion test
can be done using a fixpoint iteration in polynomial time. This case may also
occur in practice and potentially alleviates the high worst case complexity of the
SCIP.

A lower bound on the complexity can be obtained using the problem whether
a bottom-up nondeterministic tree automata accepts the full language of closed
terms. Note that an encoding of the inclusion problem for tree automata into a
set constant inclusion problem is not easily possible, since we require 1 as part
of every defining equation.

Proposition 2.28. The set constant inclusion problem T C u is equivalent to
the problem for tree automata, whether the accepted languages of a tree automa-
ton is the full set of all ground terms.

Proof. Let A be a tree automaton, where we assume that there is no L in the
rules and in the signature of the tree automaton. We assume that A has at least
one accepting state, otherwise we have a trivial case. By a polynomial translation
of the automaton by adding so-called e-rules and then constructing an e-free
automaton using the algorithm of [CDG'97, Theorem 1], we can assume that
there is only one accepting state.

We translate the automaton A into set-constant definitions where for every
state @), there is a set constant ug, and every rule ¢(Q1, . .. Q) — Q is translated
into a component (c ug, ...ug,) of the right hand side of the equation Eg;. Of
course the right hand side also has a 1-component.

Let t be a L-free finite term. If ¢ is accepted by A, say by the state @ finai,
then ¢ is also an element of o(ug). In fact, the converse also holds. Thus, if
Q final is the set of all ground terms without L, then o(ug) is the set of all finite
terms over X' including 1. The converse also holds, since | -free terms can only
be included in o(ug) if there is a fixed-point computation not using L.

Theorem 2.29. If the signature contains at least one function symbol ¢ with
ar(c) > 2, then the bot-closed as well as botl-free set-constant inclusion problem
is DEXPTIME-complete.

Proof. Since T can be encoded, the SCIP “T C u” is equivalent to the prob-
lem whether an appropriately encoded tree automaton, where u corresponds to
the accepting state, accepts all terms. DEXPTIME-hardness follows since the
problem of acceptance of all ground terms by a non-deterministic tree automa-
ton is DEXPTIME-hard [CDG™97], provided the signature contains at least one
function symbol of arity at least 2. DEXPTIME-completeness now follows from
Proposition 2.26.
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The theorem above on the relation between bot-free and bot-closed SCIPs is
also correct under the slight generalization that bot-free set constants definitions
may have an empty right hand side. However, we do not provide an explicit
proof since it only obscures the arguments by several extra case distinctions in
the proofs.

Remark 2.30. Theorem 2.29 restricted to the set of all infinite trees 7o (X) and
for bot-free SCIP shows that the inclusion of infinite tree languages that are
accepted by Biichi-automata for infinite trees [Tho90], in which every state is
accepting, is also in DEXPTIME. This holds perhaps after some recoding of
signature constants as infinite trees. We do not expand on this, since it is beyond
the scope of this paper to explore the exact relationship to the inclusion problem
of infinite tree languages and of languages accepted by automata for infinite trees
[Tho90].

Remark 2.31. The bot-closed set constant inclusion problem can also be solved
by encoding it as satisfiability of a set-constraint consisting of the straightforward
encoding of the equations together with the constraint u; C us. The encoding
of the equations ensures that every solution must be the least fixpoint, and the
constraint u; C wus then can only contribute a yes/no decision. The derived
complexity is NEXPTIME [Aik94, AKVW93].

Remark 2.32. Tt is no problem to also allow definitional equations of the form
u; = wug in bot-closed SCIP, since they can be treated as the so-called e-
transitions for tree automata. Their removal is a polynomial action. Note, how-
ever, that there is a difference during removal of set-constants whether the great-
est fixpoint or the least fixpoint is considered. Constants in cyclic definitions are
to be set to T. If the least fixpoint is considered, the constants in cyclic defini-
tions are to be set to L instead.

Remark 2.33. An alternative way to obtain the equivalence of least fixpoint and
greatest fixpoint would be to use notions from cpos and continuity: It may
roughly work as follows: The set of terms 7,,(X) can be made a cpo by us-
ing an ordering inherited from 1 < ¢ for all ¢, and s; < t; fori =1,...,n =
¢Sy ... S, <cty ... t,. Then the continuity of all constructors can be shown.
This would allow to switch between least fixpoint and greatest fixpoint seman-
tics.

3 Application to an Extended Lambda-Calculus with
Case and Constructors

In this section we illustrate and explain strictness analysis as a static analysis
method and show the use of the set constant inclusion problem and the conse-
quences of the solution algorithms and the complexity results.
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First we will give a sketch of an extended untyped lambda calculus and how
the set constant inclusion problem arises. In the second subsection, instead of
expressions, a set of terms is given together with a relation to the expressions,
hence we be more rigorous.

3.1 Example of an Untyped Call-By-Need Lambda-Calculus

There are several extended call-by-name and call-by-need lambda
calculi  with  case-expressions and  constructors with a  thor-
ough  investigation of  their  operational  semantics (see  e.g.
[N6c92,N6¢93,AK97, CHH00,AB97,Sch00,MSC03,SSSS05)).

We explicitly define the syntax of a deterministic, untyped call-by-need
lambda-calculus with case and constructors.
There is a finite set of constructors as before. There is an infinite set )V of vari-
ables. The syntax of expressions F and patterns P, where V, V; are non-terminals
for variables, is as follows:

Eu=V |AV.E|(EE)|(cEr... Buw) | (case E (P=>E))...(Pa->E,))
| (letrec {(Vi = Ey;...;V, = E,} in E)
Pi=(cVi... Vi)

There is the usual notion of free and bound variables in expressions and the
notion of closed expressions. The set of all expressions is denoted as A, and the
set of all closed expressions as Ag. The reduction rules are variants of beta- and
case-reductions and several reduction rules for letrec-expressions.

There is a notion of evaluation, which is a sequence of particularly cho-
sen reductions (so-called normal order reductions) to a weak head normal form
(WHNF), which is defined as follows.

Definition 3.1. A constructor expression is an erpression (c ti...ta (). A
constructor weak head normal norm (CWHNF ) is a constructor expression, or
a letrec-expression (letrec Env in (c ty...ta())), or a letrec-expression
(letrec z = (¢ t1...ta(e)), Env in z). A functional weak head normal
form (FWHNF ) is either an abstraction Ax.t or an expression of the form
(letrec Env in Az.t). An expression is a weak head normal form (WHNF )
if it is a CWHNF or an FWHNEF. If an expression t evaluates to a WHNF, then
this is denoted as til.

Equality of expressions is defined using the contextual preorder:

s <.t iff for all contexts C : C[s]{ = C[t[}
and
s~ tiff s < tAt<.s.



18 M. Schmidt-Schauf$, D. Sabel, M. Schiitz

Here a context C' means an expression with a single hole, where an expression
can be plugged in.

We define 2 := (Az.(z x)) (Ay.(y y)), which will later be represented by L.
Note that based on the definition of normal order reduction the cyclic expression
(letrec z = z in z) is ~c-equivalent to {2, and that also other expressions like
((cti...tar(e)) t') and (case (Az.t) ...) are ~.-equivalent to (2.

The following classification of expressions holds [SSSS05]:
Proposition 3.2. For every closed expressiont € Ay one of the following holds:

1.t~ 2
2. t ~.t' wheret is a closed constructor expression.
3. t ~.t', wheret is a closed FWHNF.

Furthermore, the constructors are “free”: Le. w.r.t. equivalence ~., the
following inequalities hold: (¢ ty...tn) #e 2 e dxt e (¢ t1...t,), and
(c1 81...8n) ~c(caty . itm) & ca=coyyn=mandVi=1,...,n:58; ~1t.

A consequence is that we can reason over sets of finite and infinite terms
instead of closed expressions, where terms are built from constructors, L, and
abstractions, where an outer let-environment can be ignored due to the classifi-
cation property.

In order to apply the results from subsection 2.5, there is one last simplifying
step: we have to put all closed FWHNF's into one set, represented by the new
0-ary constant Fun. In addition, the expression {2 is represented by the symbol
L, which is a 0-ary constant, but not a constructor in the language Ag.

3.2 Consequences for Extended Lambda Calculi

The final set of terms Z¢omp is the set of all closed finite and infinite computable
terms according to the syntax E = 1 | (¢ By ... Eu()) | Fun. As mentioned
above, the set 7comp can also be obtained as a quotient of Ay by ~, and then
by putting all closed FWHNFSs into one set, represented by the constant Fun.
Hence every expression in Ay is represented.

The set Tcomp contains all finite trees and also the computable infinite trees
over the constructors, Fun and L, and it is admissible. This follows easily from
the properties of expressions in Ay, and since A is a programming language.
Note that the set 7o, does not contain all infinite trees. An example for an
expression equivalent to an infinite tree in 7oy is (letrec = cons 1 x in z),
for the binary list-constructor cons, which corresponds to an infinite list of 1s
as entries.

Now the set constants can be defined as in subsection 2.2, however, as bot-
closed. Using the greatest fixpoint to compute the contained equivalence classes
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is appropriate, since a non-strict semantics is used. Note that since the construc-
tors are non-strict also infinite trees are included, where looping expressions are
represented by L. Theorem 2.29 justifies the use of algorithms from tree au-
tomata to solve the set constant inclusion problem. Since in general the binary
list-constructor is available, the set constant inclusion problem is DEXPTIME-
complete. In lambda-calculi where the classification property (see Proposition
3.2) holds, there is a potential to apply more static analyses, since every expres-
sion t is equivalent to some term in Zeomp.

For example, the following set constants that are analogous to constants in
[Wad87,N6¢93] can be defined as:

T =1lUPunU(cr T...T)U...U(cx T...T)
Bot =1

Inf = 1 U (cons T Inf)

List = LUNilU (cons T List)

BotElem = L U (cons Bot List) U (cons T BotElem)

An example for a nontrivial inclusion is BotElem C List, which can be proved
using the methods from tree automata as well as by directly using co-induction.
Note that this is not an example for a hard inclusion test, since it falls into the
category that can be solved in polynomial time, see Remark 2.27.

Ezxample 3.3. A slightly more complex example is a tree data structure, given
in the typed Haskell notation by

data Tree a = Leaf a | Node (Tree a) (Tree a)

where Tree a is a type with a type variable a, and Leaf and Node are construc-
tors. We assume that only Booleans and the trees are available. Assuming typed
trees of Haskell-type (Tree Boolean), some set constants are:

T = _1U(Leaf B)U (Node T T)
B = _1UTrueUFalse
BF = 1 UFalse
BT = 1 UTrue
TF = L U (Leaf BF)U (Node TF TF)
TT = LU (Leaf BT)U (Node TT T) U (Node TF TT)
TO = L U (Leaf B) U (Node TO TO)
TW = L U (Leaf 1)U (Node TW T) U (Node TO TW)

TT corresponds to a function that scans the tree from left to right and loops,
if a leaf with value True is encountered, and TW corresponds to a function
that completely scans the tree from left to right. The test could be whether an
inclusion TT C TW holds, which is not covered by the polynomial subcases.



20 M. Schmidt-Schauf$, D. Sabel, M. Schiitz

The strictness analyses [N6¢93,Sc¢h00,SSPS95,SSSS05] employ abstract re-
duction. This is a method to extend expressions by set constants and to evalu-
ate them in all possible ways, where also loop detection rules are applied. This
kind of strictness analysis has a non-termination analysis as its core, and the
used set constants are defined by recursive definitions, exactly as bot-closed set
constants definition in subsection 2.2. E.g. to check whether a defined binary
function f (i.e. an expression) is strict in its second argument, show that there
are no successful evaluations of a term matching (f T L). Also other questions
could be answered by this kind of analysis: If (¢ Inf) results in nontermination,
then during evaluation of an expressions (g s), g can safely evaluate the spine
of the input-list before evaluating the function call, i.e. first compute the length
without evaluating the elements. If (¢ BotElem) results in nontermination, then
during evaluation of (g s), g can safely evaluate the spine of the input-list, and
also the elements before evaluating the expression (g s).

There are at least two situations during the run of a strictness analyzer
using abstract reduction, where an algorithm to solve the set constant inclusion
problem is useful:

1. If during abstract reduction, an expression of the form Cluy,...,u,] has
a successor in the (non-deterministic) abstract reduction of the form
Clul,...,ul], where u;, u; are set constants and u; C u;, 4 =1,...,n can be
proved, then the branch where C[u}, ..., u/,] occurs, can be stopped by loop
detection.

This loop detection is the main use of the inclusion problem.

2. If for a defined function f, it is already known that f(u1) does not terminate,
then also f(u2) does not terminate, provided us C wj. There is a trade-off
between again checking non-termination (which is undecidable), or using the
algorithm for the set inclusion problem, which is DEXPTIME and has a high
worst case complexity.

Note that the loop detection accounts for much of the strength of the strict-
ness analyzers using abstract reduction, and that the set constants inclusion
check contributes to increasing their power. The strictness problem as such is
undecidable, and the hope is that the increase in power using the algorithms from
tree automata outweighs the added exponential worst case complexity. From a
practical point of view, this is no real problem, since a strictness analyzer per-
forms under resource restrictions.

4 Conclusion and Further Research

We have proved how methods from tree automata can be used to solve the
inclusion-problem for co-inductively defined set constants in static analysis of
lazy functional programming languages. The set constants inclusion problem is
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shown to be DEXPTIME-complete. Practical examples have to be analyzed to
check whether the worst-case running time shows up in practice.

Future work may investigate the set constants inclusion problem for more
expressive languages, e.g. also for non-bot-closed set constants definition, or if
intersections and/or complements are permitted or for the full demand language
in [Sch00]. The latter is a notable exception to the down-closed condition, and
has to define semantics by using an alternation between fixpoint computation
and continuity and closure properties w.r.t. an approximation ordering.

Another line of research would be to investigate the connection of Theorem
2.21 with the inclusion problem for infinite tree languages and for languages
accepted by automata for infinite trees [Tho90].
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