
Sharing Decorations for Improvements in a Functional Core
Language with Call-By-Need Operational Semantics

Manfred Schmidt-Schauß and David Sabel

Goethe-University, Frankfurt, Germany

Technical Report Frank-56

Research group for Artificial Intelligence and Software Technology
Institut für Informatik,

Fachbereich Informatik und Mathematik,
Johann Wolfgang Goethe-Universität,

Postfach 11 19 32, D-60054 Frankfurt, Germany

September 7, 2015

Abstract. This report documents the extension LRPw of LRP by sharing decorations. We show correct-
ness of improvement properties of reduction and transformation rules and also of computation rules for
decorations in the extended calculus LRPw. We conjecture that conservativity of the embedding of LRP
in LRPw holds.

1 Introduction

In this technical report we consider improvements in the polymorphically typed, extended call-by-need
functional language LRP and its extension by shared-worked decorations LRPw. The goal of the report
is to show that known improvement laws for LRP also hold in the extended calculus LRPw, that a
context lemma for improvement holds in LRPw and that several computation rules which simplify the
reasoning with decorated expressions are invariant w.r.t. the improvement relation. The results of this
report allow to use shared work decorations as a reasoning tool, e.g. for proving improvement laws on
list-processing expressions and functions.

For reasoning on the correctness of program transformations, a notion of program semantics is
required. We adopt the well-known and natural notion of contextual equivalence for our investigations:
Contextual equivalence identifies two programs as equal if exchanging one program by the other
program in any surrounding larger program (the so-called context) is not observable. Due to the
quantification over all contexts it is sufficient to only observe the termination behavior of the programs,
since e.g. different values like True and False can be distinguished by plugging them into a context C
s.t. C[True] terminates while C[False] diverges. A program transformation is correct if it preserves the
semantics, i.e. it preserves contextual equivalence. For reasoning whether program transformation are
also optimizations, i.e. so-called improvements, we adopt the improvement theory originally invented
by Moran and Sands [2], but slightly modified and adapted in [7] for the calculus LR. The calculus
LR [9] is a untyped call-by-need lambda calculus extended by data-constructors, case-expressions,
seq-expressions, and letrec-expressions. This calculus e.g. models the (untyped) core language of
Haskell. In [9] the calculus LR was introduced and analyzed in the setting of a strictness analysis using
abstract reduction where also several results on the reduction length w.r.t. program transformation
were proved. The calculus LRP is the polymorphically typed variant of LR. Typing in LRP is by let-
polymorphism [3, 4, 1, 10]. Polymorphism is made explicit in the syntax and there are also reduction
rules for computing the specific types of functions. The type erasure of reduction sequences exactly
leads to the untyped reduction sequences in LR, so that the untyped and typed calculus are compatible.
The transfer of the results on improvement in LR to LRP is straightforward and can be found in [8].

2 M. Schmidt-Schauß and D. Sabel

In [2] a tick-algebra was introduced to prove correctness of improvement laws in a modular way.
A tick Xn can be attached to an expression to add a fixed amount of work to the expression (i.e.
n execution steps). Several laws for computing with ticks are formulated and proved correct. In this
paper we introduce the calculus LRPw which extends LRP in a similar way, where ticks are called
decorations, but they are extended to a formalism that can express work which is shared between
several subexpressions, which makes reasoning more comfortable and also more exact. In LRPw there
are the two new (compared to LRP) constructs: Bindings of the form a := n and decorations of the
form s[a]. Here s[a] means that the work expressed by the binding for a (i.e. n essential steps, if the
binding is a := n) has to be done before the expression s can be further evaluated. If decoration a
occur at several subexpression, then the work is shared between the subexpressions (and thus at most
performed once). The bindings a := n occur in usual letrec-expressions and thus also define the
scope of the sharing, and a notion of α-equivalence w.r.t. the labels a. This makes a formal treatment
possible. As shorthand notation we will use the notation s[a7→n] for shared work. However, this notation
is imprecise and requires a definition of its semantics in the calculus LRPw (to fix the scoping of a).

As an example for the usefulness of shared-work decoration, consider the expression
let from x = x : (from (x + 1)) in from (2 ∗ 21) which generates an infinite list of numbers
[42, 43, . . .]. For simplicity in this example we assume a work amount of 1 for arith-
metic operations. The work for computing the product (2*21) is shared between all
list elements, which can be expressed by our decorations: we can rewrite this list as
(42[a7→1]: let from x = x : (from (x + 1)) in from (43[1,a7→1])[a

′ 7→1] which exactly shows that there is
shared work between the head and the tail of the list. Clearly, this can be iterated for further partial
evaluation of the tail. Moreover, since we provide computation rules for the shared decorations, we can
further compute with the decorations. Using the tick-notation of [2] such exact computations seem to
be impossible.

We develop the improvement theory in the calculus LRPw and prove correctness and result w.r.t.
improvement for the reduction rules and for several other program transformations. We develop com-
putation rules for the shared-work decoration and proof their soundness.

Outline. Section 2 introduces the different calculi LRP and LRPw, and transfers the basic defini-
tions, lemmas and correctness proofs of program transformations from LRP to LRPw. Section 3 defines
the work decorations and proves a theorem that provides several computation rules for work decora-
tions. Section 4 contains a proof that an improvement simulation on lists is correct for improvement
and can be used as a tool. Some lengthy proofs can be found in the appendix.

2 The Polymorphically Typed Lazy Lambda Calculus LRPw

The extended call-by-need lambda calculus LRP (see e.g. [8, 6]), is a polymorphically typed variant of
the calculus LR [9].

The calculus LRPw extends the calculus LRP by shared work decorations, where the decoration of
the shared position is explicitely represented by two new constructs: There are new letrec-bindings
ai := ni meaning that a work load of n essential reduction steps is associated with label a where the
shared position is the top of the letrec-expression, the construct s[a] means that before expression s
can be evaluated the work associated with label a has to be evaluated.

Let K be a fixed set of type constructors, s.t. every K ∈ K has an arity ar(K) ≥ 0 and an
associated finite, non-empty setDK of data constructors, s.t. every cK,i ∈ DK has an arity ar(cK,i) ≥ 0.
We assume that K includes type constructors for lists, pairs and Booleans together with the data
constructors Nil and Cons, where we often use the Haskell notation of an infix colon; pairs as mixfix
brackets, and the constants True and False.

The syntax of expressions and types of LRPw is defined in Fig. 1, where we assume that variables
have a fixed type, written as x :: ρ. The calculus LRPw extends the lambda-calculus by recursive let-
expressions, data constructors, case-expressions (for every type constructor K), seq-expressions and
by type abstractions Λa.s and type applications (s τ) in order to express polymorphic functions and

Sharing Decorations for Improvements 3

Variables: We assume type variables a, ai ∈ TVar and term variables x, xi ∈ Var

Labels: We assume label names a, b, ai, bi used for sharing work.

Types: Types Typ and polymorphic types PTyp are generated by the following grammar:

τ ∈ Typ ::= a | (τ1 → τ2) | K τ1 . . . τar(K)

ρ ∈ PTyp ::= τ | λa.ρ

Expressions: Expression ExprF , patterns patK,i, and polymorphic abstractions PExprF are generated by the follow-
ing grammar:

s, t ∈ ExprF ::= u | x :: ρ | (s τ) | (s t) | (seq s t) | (letrec Bind1, . . . ,Bindn in t)

| (s[a])
| (cK,i :: τ s1 . . . sar(cK,i)) | (caseK s of (patK,1 -> t1) . . . (patK,|DK | -> t|DK |))

patK,i ::= (cK,i :: τ x1 :: τ1 . . . xar(cK,i) :: τar(cK,i))

Bind i ::= xi :: ρi = s1 | ai := ni where ai is a label and ni is a nonnegative integer

u ∈ PExprF ::= Λa1.Λak.λx.s

Typing rules:

s :: ρ

Λa.s :: λa.ρ

s :: τ1 pat i :: τ1 ti :: τ2

(caseK s of (pat1 -> t1) . . . (pat |DK | -> t|DK])) :: τ2

s :: τ2

(λx :: τ1.s) :: τ1 → τ2

s :: λa.ρ

(s τ) :: ρ[τ/a]

s :: τ1 → τ2 t :: τ1

(s t) :: τ2

s :: τ

(letrec a1 := n1, . . . , am := nm in s) :: τ

(letrec Env in s) :: τ

(letrec Env , a1 := n1, . . . , am := nm in s) :: τ

s1 :: ρ1 . . . sn :: ρn t :: ρ

(letrec x1 :: ρ1 = s1, . . . , xn :: ρn = sn in t) :: ρ

s :: τ t :: τ ′

(seq s t) :: τ ′

s1 :: τ1, . . . , sar(c) :: τar(c) τ = τ1 → . . .→ τar(c) → τar(c)+1

type(c) = λa1, . . . , am.τ
′′ ∃τ ′1, . . . , τ ′m : τ ′′[τ ′1/a1, . . . , τ

′
m/am] = τ

(c :: τ s1 . . . sar(c)) :: τar(c)+1

Labeling algorithm: Labeling of s starts with stop. The rules from below are applied until no more labeling is possible
or until a fail occurs, where a ∨ b means label a or label b.

(s t)sub∨top → (ssub t)vis s 6= Λa.e′

((Λa.u) τ)sub∨top → ((Λa.u)sub τ)vis; then stop with success

(letrec Env in s)top → (letrec Env in ssub)vis

(letrec x = s,Env in C[xsub]) → (letrec x = ssub,Env in C[xvis])

(letrec x = s, y = C[xsub],Env in t) → (letrec x = ssub, y = C[xvis],Env in t), if C 6= [·]
(letrec x = s, y = xsub,Env in t) → (letrec x = ssub, y = xnontarg,Env in t)

(seq s t)sub∨top → (seq ssub t)vis

(caseK s of alts)sub∨top → (caseK ssub of alts)vis

letrec x = svis∨nontarg, y = C[xsub] . . . → Fail

letrec x = C[xsub],Env in t → Fail

Fig. 1. Syntax of expressions and types, typing rules, and rules for labeling

4 M. Schmidt-Schauß and D. Sabel

type instantiation, and by the shared work-decorations a := n and [a]. Polymorphically typed variables
are only permitted for usual bindings of let-environments; at other places, the language is monomorphic
where the concrete types can be computed through type reductions. For example, the identity can be
written as Λa.λx :: a.x, and an application to the constant True is written (Λa.λx :: a.x) Bool True.
The reduction is (Λa.λx :: a.x) Bool True → (λx :: Bool.x) True → (letrec x = True in x). An
expression s is well-typed with type τ (polymorphic type ρ, resp.), written as s :: τ (or s :: ρ, resp.), if
s can be typed with the typing rules in Fig. 1 with type τ (ρ, resp.).

The calculus LR [9] is the untyped variant of LRPw (without shared work-decorations), where
types and type-reduction are removed. In the following we often ignore the types and omit the types
at variables and also sometimes omit the type reductions. We use some abbreviations: We write
λx1, . . . , xn.s instead of λx1.λxn.s. A letrec-environment (or a part of it) is abbreviated by
Env , and with {xg(i) = sf(i)}mi=j we abbreviate the bindings xg(j) = sf(j), . . . , xg(m) = sg(m). We
write if s then t1 else t2 instead of caseBool s of (True -> t1) (False -> t2). Alternatives of case-
expressions are abbreviated by alts. Constructor applications (cK,i s1 . . . sar(cK,i)) are abbreviated
using vector notation and omitting the index as c−→s .

We use FV (s) and BV (s) to denote the free and bound variables of an expression s, and FN (s)
and BN (s) to denote the free and bound label-names of an expression s. An expression s is closed iff
FV (s) = ∅ and FN (s) = ∅. In an environment Env = {xi = ti}ni=1, we define LV (Env) = {x1, . . . , xn}.

A value is an abstraction λx.s, a type abstraction Λa.u, or a constructor application c−→s .
A context C is an expression with exactly one hole [·] at expression position. The reduction rules of

the calculus are in Fig. 2. The operational semantics of LRPw is defined by the normal order reduction
strategy which is a call-by-need strategy, i.e. a call-by-name strategy adapted to sharing. The labeling
algorithm shown in Fig. 1 is used to detect the position to which a reduction rule is applied according
to normal order, and the labelings in the expressions in Fig 2 indicate the exact place and positions of
the expressions and subexpressions involved in the reduction step. It uses the labels: top,sub,vis,nontarg
where top means reduction of the top term, sub means reduction of a subterm, vis marks already visited
subexpressions, and nontarg marks already visited variables that are not target of a (cp)-reduction.
Note that the labeling algorithm does not descend into sub-labeled letrec-expressions. The rules of
the labeling algorithm are in Fig. 1. If the labeling algorithm terminates, then we say the termination
is successful, and a potential normal order redex is found, which can only be the direct superterm
of the sub-marked subexpression. It is possible that there is no normal order reduction: in this case
either the evaluation is already finished, or it is a dynamically detected error (like a type-error), or
the labeling fails.

Definition 2.1. Let t be an expression. Then a normal order reduction step t
LRPw−−−−→ t′ is defined by

first applying the labeling algorithm to t, and if the labeling algorithm terminates successfully, then one
of the rules in Fig. 2 has to be applied resulting in t′, if possible, where the labels sub, vis must match
the labels in the expression t.

A weak head normal form (WHNF) is a value v, or an expression letrec Env in v, where v is a
value, or an expression letrec x1 = c

−→
t , {xi = xi−1}mi=2,Env in xm.

An expression s converges, denoted as s↓LRPw, iff there is a normal-order reduction s
LRPw,∗−−−−−→ s′,

where s′ is a WHNF. This may also be denoted as s ↓LRPw s′. With ⊥ we denote a diverging, closed
expression.

The calculus LRP is the subcalculus of LRPw which does not have the syntactic constructs a := n
and s[a], and the operational semantics of LRP does not have the reduction rules (letwn) and (letw0).
WHNFs are defined as in LRPw. Convergence ↓LRP is defined accordingly.

Lemma 2.2. For every LRPw-expression s which is also an LRP-expression (i.e. s has no decorations
and no a := n-construct): s ↓LRPw ⇐⇒ s ↓LRP.

Remark 2.3. The relation between the typed reduction in LRP and the untyped reduction in LR [9,
7] is that the removal of types and the reduction (Tbeta) results exactly in the untyped normal-order

Sharing Decorations for Improvements 5

(lbeta) C[((λx.s)sub r)]→ C[letrec x = r in s]

(Tbeta) ((Λa.u)sub τ)→ u[τ/a]

(cp-in) letrec x1 = (λy.t)sub, {xi = xi−1}mi=2,Env in C[xvism]→ letrec x1 = λy.t, {xi = xi−1}mi=2,Env in C[λy.t]

(cp-e) letrec x1 = (λy.t)sub, {xi = xi−1}mi=2,Env , y = C[xvism] in r
→ letrec x1 = λy.t, {xi = xi−1}mi=2,Env , y = C[λy.t] in r

(llet-in) (letrec Env1 in (letrec Env2 in r)sub)→ (letrec Env1,Env2 in r)

(llet-e) letrec Env1, x = (letrec Env2 in t)sub in r → letrec Env1,Env2, x = t in r

(lapp) C[((letrec Env in t)sub s)]→ C[(letrec Env in (t s))]

(lcase) C[(caseK (letrec Env in t)sub alts)]→ C[(letrec Env in (caseK t alts))]

(seq-c) C[(seq vsub t)]→ C[t] if v is a value

(seq-in) (letrec x1 = (c−→s)sub, {xi = xi−1}mi=2,Env in C[(seq xvism t)])→ (letrec x1 = (c−→s), {xi = xi−1}mi=2,Env in C[t])

(seq-e) (letrec x1 = (c−→s)sub, {xi = xi−1}mi=2,Env , y = C[(seq xvism t)] in r)
→ (letrec x1 = (c−→s), {xi = xi−1}mi=2,Env , y = C[t] in r)

(lseq) C[(seq (letrec Env in s)sub t)]→ C[(letrec Env in (seq s t))]

(case-c) C[caseK (c
−→
t)sub . . . ((c−→y)→ t) . . .]→ C[letrec {yi = ti}ar(c)i=1 in t] if ar(c) ≥ 1

(case-c) C[(caseK csub . . . (c→ t) . . .)]→ C[t] if ar(c) = 0

(case-in) letrec x1 = (c
−→
t)sub, {xi = xi−1}mi=2,Env in C[caseK xvism . . . ((c−→z)→ t) . . .]

→ letrec x1 = (c−→y), {yi = ti}ar(c)i=1 , {xi = xi−1}mi=2,Env

in C[letrec {zi = yi}ar(c)i=1 in t] if ar(c) ≥ 1 and where yi are fresh variables

(case-in) letrec x1 = csub, {xi = xi−1}mi=2,Env in C[caseK xvism . . . (c→ t) . . .]
→ letrec x1 = c, {xi = xi−1}mi=2,Env in C[t] if ar(c) = 0

(case-e) letrec x1=(c
−→
t)sub, {xi=xi−1}mi=2, u=C[caseK xvism . . . ((c−→z)→ r) . . .],Env in s

→ letrec x1=(c−→y), {yi=ti}ni=1, {xi=xi−1}mi=2, u=C[letrec {zi=yi}ni=1 in r],Env
in s where n = ar(c) ≥ 1 and yi are fresh variables

(case-e) letrec x1 = csub, {xi = xi−1}mi=2, u = C[caseK xvism . . . (c→ r1) . . .],Env in r2
→ letrec x1 = c, {xi = xi−1}mi=2 . . . , u = C[r1],Env in r2 if ar(c) = 0

(letwn-in) letrec Env , a := n, in C[(s[a])sub]→ letrec Env , a := n− 1 in C[s[a]] if n > 0

(letwn-e) letrec a := n, x = C[(s[a])sub],Env in r → letrec a := n− 1, x = C[s[a]],Env in r if n > 0

(letw0-in) letrec Env , a := 0, in C[(s[a])sub]→ letrec Env , a := 0 in C[s]

(letw0-e) letrec a := 0, x = C[(s[a])sub],Env in r → letrec a := 0, x = C[s],Env in r

Fig. 2. Reduction rules

reduction. This also holds for WHNFs and the convergence notions. An immediate consequence is that
the untyped contextual approximations and equivalences can be inherited to the typed LRP, since the
typed contexts are also untyped ones.

We define some special context classes:

Definition 2.4. A reduction context R is any context, such that its hole will be labeled with sub or
top by the labeling algorithm in Fig. 1. A weak reduction context, R−, is a reduction context, where
the hole is not within a letrec-expression. Surface contexts S are contexts where the hole is not in an
abstraction, top contexts T are surface contexts where the hole is not in an alternative of a case, and
weak top contexts are top contexts where the hole does not occur in a letrec. A context C is strict
iff C[⊥] ∼c ⊥.

A program transformation P is binary relation on expressions. We write s
P−→ t, if (s, t) ∈ P . For

a set of contexts X and a transformation P , the transformation (X,P) is the closure of P w.r.t. the

contexts in P , i.e. s
X,P−−→ t iff there exists C ∈ X with C[s]

P−→ C[t].

Definition 2.5. We define several unions of the program transformations in Figs. 2 (ignoring the
labels) and 3: (case) is the union of (case-c), (case-in), (case-e); (seq) is the union of (seq-c), (seq-in),
(seq-e); (cp) is the union of (cp-in), (cp-e); (llet) is the union of (llet-in), (llet-e); (lll) is the union of
(lapp),(lcase),(lseq),(llet-in),(llet-e); (letwn) is the union of (letwn-in), (letwn-e); (letw0) is the union
of (letw0-in), (letw0-e); (letw) is the union of (letwn), (letw0); (gc) is the union of (gc1), (gc2); (cpx)

6 M. Schmidt-Schauß and D. Sabel

(gc1) letrec {xi = si}ni=1,Env in t→ letrec Env in t, if for all i : xi 6∈ FV (t,Env)

(gc2) letrec x1 = s1, . . . , xn = sn in t→ t, if for all i : xi 6∈ FV (t)

(gcW1) letrec Env , a1 := n1, . . . , am := nm in s→ letrec Env in s, if labels a1, . . . , am do not occur in Env or t
(gcW2) letrec a1 := n1, . . . , am := nm in s→ s, if labels a1, . . . , am do not occur in t
(cpx-in) letrec x = y,Env in C[x]→ letrec x = y,Env in C[y], if y ∈Var , x 6= y

(cpx-e) letrec x=y, z=C[x],Env in t→ letrec x=y, z=C[y],Env in t, if y ∈Var , x 6= y

(cpax) letrec x = y,Env in s→ letrec x = y,Env [y/x] in s[y/x],
if y ∈ Var , x 6= y, y ∈ FV (s,Env)

(cpcx-in) letrec x = c
−→
t ,Env in C[x]→ letrec x = c−→y , {yi = ti}ar(c)i=1 ,Env in C[c−→y]

(cpcx-e) letrec x = c
−→
t , z = C[x],Env in t

→ letrec x = c−→y , {yi = ti}ar(c)i=1 , z = C[c−→y],Env in t

(abs) letrec x = c
−→
t ,Env in s→ letrec x = c−→x , {yi = ti}ar(c)i=1 ,Env in s

(abse) (c
−→
t)→ letrec {yi = ti}ar(c)i=1 in c−→x

(xch) letrec x = t, y = x,Env in r → letrec y = t, x = y,Env in r

(lwas) T [letrec Env in t]→ letrec Env in T [t]
if T is a weak top context with hole depth 1

(letsh1) letrec Env ,Env ′ in T [s]→ letrec Env ′ in T [(letrec Env in s)]

(letsh2) letrec Env ,Env ′, y = T [s] in r → letrec Env ′, y = T [(letrec Env in s)] in r

(letsh3) letrec Env in T [s]→ T [(letrec Env in s)]
where in the (letsh)-rules, the variables LV (Env) only occur in s,
and T is weak top context that does not bind the variables in Env .

(ucp1) letrec Env , x = t in S[x]→ letrec Env in S[t]

(ucp2) letrec Env , x = t, y = S[x] in r → letrec Env , y = S[t] in r

(ucp3) letrec x = t in S[x]→ S[t]
where in the (ucp)-rules, x 6∈ FV (S,Env , t, r) and S is a surface context

Fig. 3. Extra Transformation Rules

is the union of (cpx-in), (cpx-e); (cpcx) is the union of (cpcx-in), (cpcx-e); (letsh) is the union of
(letsh1), (letsh2), (letsh3), and (ucp) is the union of (ucp1), (ucp2), (ucp3).

2.1 Improvement in LRP and LRPw

The main measure for estimating the time consumption of computation in this paper is a measure
counting essential reduction steps in the normal-order reduction of expressions. We omit the type
reductions in this measure, since these are always terminating and usually can be omitted after com-
pilation. See [8] for more detailed explanations.

We define the essential reduction length for both calculi:

Definition 2.6. Let L ∈ {LRP,LRPw} and let t be a closed L-expression with t↓Lt0. Then rln(t) is
the number of (lbeta)-, (case)-, (seq)-, and (in LRPw) (letwn)-reductions in the normal order reduction

t↓Lt0. It is consistent to define the measure as ∞, if t↑L. For a reduction t
L,∗−−→ t′, we define rln(t

L,∗−−→
t′) as the number of (lbeta)-, (case)-, (seq)-, and (in LRPw) (letwn)-reductions in it.

We define contextual equivalence and the improvement relation for both calculi LRPw and LRP:

Definition 2.7. For L ∈ {LRP,LRPw} Let s, t be two L-expressions of the same type ρ.

– s is contextually smaller than t, s ≤c,L t, iff for all L-contexts C[· :: ρ]: C[s]↓L =⇒ C[t]↓L.

– s and t are contextually equivalent, s ∼c,L t, iff for all L-contexts C[· :: ρ]: C[s]↓L ⇐⇒ C[t]↓L.

– s improves t, s �L t, iff s ∼c,L t and for all L-contexts C[· :: ρ] s.t. C[s], C[t] are closed: rln(C[s]) ≤
rln(C[t]). If s �L t and t �L s, we write s ≈L t.

A program transformation P is correct (in L) if P ⊆ ∼c,L and it is an improvement iff
P−→ ⊆ (�L)−1.

Sharing Decorations for Improvements 7

The following context lemma for contextual equivalence holds in LRP and also in LRPw. The proof
is standard, so we omit it.

Lemma 2.8 (Context Lemma for Equivalence). Let L ∈ {LRP,LRPw} and let s, t be L-
expressions of the same type. Then s ≤c t iff for all C ∈ {R,S, T}: C[s] ↓L =⇒ C[t] ↓L.

Let η ∈ {≤,=,≥} be a relation on non-negative integers and X be a class of contexts X (we will
instantiate X with: all contexts C; all reduction contexts R; all surface contexts S; or all top-contexts
T). For expressions s, t of type ρ, let s ./η,X t iff for all X-contexts X[· : ρ], s.t. X[s], X[t] are closed:
rln(X[s]) η rln(X[t]). In particular, ./≤,C = �, ./≥,C = �, and ./=,C = ≈.

In the following we formulate statements for the calculus LRPw, if not stated otherwise.

The context lemma for improvement shows that it suffices to take reduction contexts into account
for proving improvement. Its proof is similar to the ones for context lemmas for contextual equivalence
in call-by-need lambda calculi (see [7, 9, 5]).

Lemma 2.9 (Context Lemma for Improvement). Let s, t be expressions with s ∼c t, η ∈ {≤,=
,≥}, and let X ∈ {R,S, T}. Then s ./η,X t iff s ./η,C t.

Proof. The proof is nearly a complete copy of the proof of the context lemma for improvement in LRP
(see [7]). However, for the sake of completeness we include it:

One direction is trivial. For the other direction we prove a more general claim using multicontexts:

For all n ≥ 0 and for all i = 1, . . . , n let si, ti be expressions with si ∼c ti and si ./η,R ti.
Then for all multicontexts M with n holes such that M [s1, . . . , sn] and M [t1, . . . , tn] are closed:
rln(M [s1, . . . , sn]) η rln(M [t1, . . . , tn]).

The proof is by induction on the pair (k, k′) where k is the number of normal order reductions
of M [s1, . . . , sn] to a WHNF, and k′ is the number of holes of M . If M (without holes) is a WHNF,
then the claim holds. If M [s1, . . . , sn] is a WHNF, and no hole is in a reduction context, then also
M [t1, . . . , tn] is a WHNF and rln(M [s1, . . . , sn]) = 0 = rln(M [t1, . . . , tn]).

If in M [s1, . . . , sn] one si is in a reduction context, then one hole, say i of M
is in a reduction context and the context M [t1, . . . , ti−1, ·, ti+1, . . . , tn] is a reduction
context. By the induction hypothesis, using the multi-context M [. . . , ·, si, ·, . . .], we have
rln(M [s1, . . . , si−1, si, si+1, . . . , sn]) η rln(M [t1, . . . , ti−1, si, ti+1, . . . , tn]), and from the assump-
tion we have rln(M [t1, . . . , ti−1, si, ti+1, . . . , tn]) η rln(M [t1, . . . , ti−1, ti, ti+1, . . . , tn]), and hence
rln(M [s1, . . . , sn]) η rln(M [t1, . . . , tn]).

If in M [s1, . . . , sn] there is no si in a reduction context, then M [s1, . . . , sn]
LRPw,a−−−−−→M ′[s′1, . . . , s

′
n′],

may copy or shift some of the si where s′j = ρ(si) for some permutation ρ on variables and on
the sharing labels. However, the reduction type is the same for the first step of M [s1, . . . , sn] and

M [t1, . . . , tn], i.e. M [t1, . . . , tn]
LRPw,a−−−−−→M ′[t′1, . . . , t

′
n′] with (s′j , t

′
j) = (ρ(si), ρ(ti)). We take for granted

that the renaming can be carried through. The rln(.)-count on both sides ism = 0 orm = 1, depending
on a. Thus we can apply the induction hypothesis to M ′[s′1, . . . , s

′
n′] and M [t′1, . . . , t

′
n′], and so we have

rln(M [s1, . . . , sn]) = m+ rln(M ′[s′1, . . . , s
′
n′]) η m+ rln(M ′[t′1, . . . , t

′
n′]) = rln(M [t1, . . . , tn]).

We now use the context lemma and the context lemma for improvement to show several properties
about the reduction rules and the additional transformation rules.

8 M. Schmidt-Schauß and D. Sabel

Lemma 2.10. A complete set of forking and commuting diagrams for internal (letw)-transformations
applied in reduction contexts can be read off the following diagrams:

·
LRPw,a

��

iR,b // ·
LRPw,a

��
·
iR,b
// ·

b ∈ {letwn, letw0}, a arbitrary

·
LRPw,a

��

iR,letw// ·

LRPw,a��
·

a arbitrary

·
LRPw,a

��

iR,b // ·

LRPw,a

��

·
LRPw,b

��
·

b ∈ {letwn, letw0}, a arbitrary

·
LRPw,cp

��

iR,letw0 // ·
LRPw,cp

��
·
iR,letw0

// ·
iR,letw0

// ·

Proof. The first diagram describes the case where the transformation and the normal order reduc-
tion commute. It also includes cases where a (letw-in)-transformation is flipped into an (letw-e)-
transformation, if the normal order reduction is (LRPw,llet). The second diagram describes the case
where the a-labeled expression of the (letw)-transformation is removed by the normal order reduction,
which may be the case if the expression is inside an unused alternative of case or inside the first
argument of seq. The third diagram describes the case where the internal (letw)-transformation be-
comes a normal-order reduction. There are several cases where this may happen, e.g. for expressions
of the form letrec Env in letrec a := n in C[s[a]] where the normal order reduction is (LRPw,llet).
The fourth diagram describes the case where an a-labeled expression is inside an abstraction which
is copied by (LRPw,cp). If the transformation is a (letwn), then the transformations commute, but if
the transformation is (letw0), then the transformation is duplicated, since it has to remove the a-label
twice.

Lemma 2.11. If s
iR,letw−−−−→ t then s is a WHNF iff t is a WHNF.

Lemma 2.12. Let R be a reduction context and s
letw−−→ t. Then R[s] ↓ ⇐⇒ R[t] ↓.

Proof. We split the proof in several parts:

– R[s] ↓ =⇒ R[t] ↓: Assume that R[s] ↓ holds, and let R[s]
LRPw,k−−−−−→ r where r is a WHNF. We show

R[t]
LRPw,k′−−−−−→ r′ where r′ is a WHNF, and k′ ≤ k. We use induction on k. The base case k = 0 is

covered by Lemma 2.11. For the induction step let R[s]
no−→ r1

LRPw,k−1−−−−−−−→ r. If R[s]
LRPw,letw−−−−−−−→ R[t],

then r1 = R[t] and R[t]
LRPw,k−1−−−−−−−→ r and thus the claim holds. If the reduction is internal, then

apply a forking diagram to r1
no←− R[s]

LRPw,letw−−−−−−−→ R[t].

1. If the first diagram is applied, then r1
iR,letw−−−−→ r′1, R[t]

no−→ r′1 and r1
LRPw,k−1−−−−−−−→ r. We apply

the induction hypothesis to r1 and r′1 which shows r′1
LRPw,k′′−−−−−−→ r′ where r′ is a WHNF and

k′′ ≤ k − 1. Thus R[t]
LRPw,k′−−−−−→ r′ where r′ is a WHNF and k′ ≤ k

2. If the second diagram is applied, then R[t]
no−→ r1

LRPw,k−1−−−−−−−→ r and thus the claim holds.

3. If the third diagram is applied, then R[t]
no−→ r2

LRPw,k−2−−−−−−−→ r (where r1
no−→ r2) and the claim

holds.
4. In case of diagram (4) we apply the induction hypothesis twice for each (iR, letw)-

transformation, which shows that R[t]
LRPw,cp−−−−−→ r′1

LRPw,k′′−−−−−−→ r′ where r′ is a WHNF, k′′ ≤ k−1.
Thus the claim holds.

– R[t] ↓ =⇒ R[s] ↓. Let #cp(r) be the number of (LRPw,cp) reductions in the normal order

reductions from r to a WHNF and #cp(r) = ∞ if r ↑ Assume that R[t]
LRPw,k−−−−−→ r where r is a

WHNF. We show R[s] ↓ and #cp(R[s]) ≤ #cp(R[t]) by induction on the measure (#cp(R[t]), k).
For the base case (0,0) R[t] is a WHNF and thus by Lemma 2.11 also R[s] is a WHNF and the

claim holds. For the induction step let (l, k) > (0, 0). Then R[t]
no−→ t′

LRPw,k−1−−−−−−−→ r where r is a

WHNF. If R[s]
LRPw,letw−−−−−−−→ R[t] then the claim holds: R[s] ↓ and #cp(R[s]) = #cp(R[t]). If the

transformation is internal, then we apply a commuting diagram to R[s]
iR,letw−−−−→ R[t]

no−→ t1.

Sharing Decorations for Improvements 9

1. For the first diagram we have an expression s1 s.t. R[s]
LRPw,a−−−−−→ s1, s1

iR,letw−−−−→ s2 and the
measure for t1 is (#cp(t1), k− 1) which is strictly smaller than (l, k) (since #cp(t1) ≤ l). Thus
we can apply the induction hypothesis and derive s1 ↓ and #cp(s1) ≤ #cp(t1). This shows
R[s] ↓ and #cp(R[s]) ≤ #(R[t]).

2. For the second diagram the claim obviously holds.
3. For the third diagram, the claim also holds.
4. For the last diagram, we apply the induction hypothesis twice, which is possible since #cp(·)

is strictly decreased.

Theorem 2.13. The transformations (letw0) and (letwn) are correct.

Proof. Correctness of the transformation (letw) follows from Lemma 2.12 and the context lemma.

Lemma 2.14. If s
letw0−−−→ t, then for all reduction contexts R, s.t. R[s], R[t] are closed: rln(R[s]) =

rln(R[t])

Proof. Since (letw0) is correct we know that rln(R[s]) = ∞ ⇐⇒ rln(R[t]) = ∞. So suppose that

rln(R[s]) = n. We show rln(R[t]) = n by induction on a normal order reduction R[s]
LRPw,k−−−−−→ s′

where s′ is a WHNF. The base case is covered by Lemma 2.11. For the induction step, let R[s]
no−→

s1
LRPw,k−1−−−−−−−→ s′. If R[s]

LRPw,letw0−−−−−−−→ R[t], then rln(R[s]) = rln(R[t]) = rln(s1) and the claim holds. If
the transformation is internal, then we apply a forking diagram to s1. For the first diagram we have

s1
iR,letw0−−−−−→ t1 and we apply the induction hypothesis to s1 and thus have rln(s1) = rln(t1). This also

shows rln(R[s]) = rln(R[t]). For the second diagram the claim holds. For the third diagram the claim
also holds, since the additional (LRPw,letw0)-reduction in the normal order reduction for R[s] is not

counted in the rln-measure. For the fourth diagram we have s1
iR,letw0−−−−−→ s′1

iR,letw0−−−−−→ t1
LRPw,cp←−−−−− R[t].

We apply the induction hypothesis twice: For s1 we get rln(s1) = rln(s′1) and for s′1 we get rln(s′1) =
rln(t1) which finally shows rln(R[t]) = rln(t1) = rln(s1) = rln(R[s]).

The context lemma for improvement and the previous lemma imply:

Corollary 2.15. (letw0) ⊆ ≈.

Lemma 2.16. If s
letwn−−−→ t, then for all reduction contexts R s.t. R[s] and R[t] are closed: rln(R[s]) =

rln(R[t]) or rln(R[s]) = 1 + rln(R[t]).

Proof. Since (letwn) is correct we know that rln(R[s]) = ∞ ⇐⇒ rln(R[t]) = ∞. So suppose that
rln(R[s]) = n. We show rln(R[t]) = n or rln(R[t]) = n+ 1 by induction on a normal order reduction

R[s]
LRPw,k−−−−−→ s′ where s′ is a WHNF. The base case is covered by Lemma 2.11. For the induction step,

let R[s]
no−→ s1

LRPw,k−1−−−−−−−→ s′. If R[s]
LRPw,letwn−−−−−−−−→ R[t], then rln(R[s]) = 1 + rln(R[t]) and the claim

holds. If the transformation is internal, then we apply a forking diagram to s1. For the first diagram we

have s1
iR,letwn−−−−−→ t1 and we apply the induction hypothesis to s1 and thus have rln(s1) = 1+rln(t1) or

rln(s1) = rln(t1). This also shows rln(R[s]) = 1+rln(R[t]) or rln(R[s]) = rln(R[t]). For the second
diagram we have rln(R[s]) = rln(R[t]). For the third diagram we have rln(R[s]) = 1 + rln(R[t]).
The fourth diagram is not applicable, since the given transformation is (letwn).

Corollary 2.17. (letwn) ⊆ �.

Proposition 2.18. All reduction rules are correct.

Proof. For the (letwn)-rules this is already proved. For the other rules, correctness was shown in the
untyped calculus LR in [9], which can be directly transfered to LRP. However, LRPw has shared-work
decorations and the (letwn)-rules as normal order reduction. To keep the proof compact, we only
consider these new cases. The reasoning to show correctness of the reduction rules in LRPw is the

10 M. Schmidt-Schauß and D. Sabel

same as for LR, since all additional diagrams between an internal transformation step (i, b) and a
(LRPw, letw)-reduction are:

·
LRPw,a

��

i,b // ·
LRPw,a

��
·

i,b
// ·

a ∈ {letwn, letw0}, b ∈ {lbeta, cp, case, seq, lll}

·
LRPw,letw0

��

i,b // ·

LRPw,letw0

��

·
LRPw,T

��
·

b ∈ {lbeta, cp, case, seq, lll}

The first case is the case where the (LRPw,letw) and the transformation commute, the second case
is that the internal transformation becomes a normal order reduction after removing the a label.
However, these cases are already covered by the diagram proofs in LR (see [9]) and thus can easily
added.

We define a translation from expressions with work-decorations into decoration-free expressions,
by removing the work-decorations and the corresponding bindings:

Definition 2.19. Let t be an expression in LRPw, and rmw(t) be derived from t by removing the
work-syntax, i.e.

rmw(letrec x1 = s1, . . . , xn = sn, a1 := n1, . . . , am := nm in s) =
letrec x1 = rmw(s1), . . . , xn = rmw(sn) in rmw(s) for m ≥ 0, n ≥ 1

rmw(letrec a1 := n1, . . . , am := nm in s) = rmw(s),

rmw(s[a]) = rmw(s)
rmw(f [s1, . . . , sn]) = f [rmw(s1), . . . , rmw(sn)]

for all other language constructs f .

Proposition 2.20. Let t be an expression in LRPw, then t ↓LRPw ⇐⇒ rmw(t) ↓LRPw.

Proof. Observing that t
LRPw−−−−→ t′ implies rmw(t) = rmw(t′) or rmw(t)

LRPw−−−−→ rmw(t′), the proof is obvious.

An immediate consequence is the following theorem:

Theorem 2.21. The embedding of LRP into LRPw w.r.t. ∼c is conservative.

We do not know whether the embedding of LRP into LRPw is conservative w.r.t. the improvement
relation �. We conjecture that the embedding of LRP into LRPw is conservative w.r.t. the improve-
ment relation �. However, we did not find a proof. A naive proof which tries to encode the work
decorations by usual expressions fails, since there are work decorations which cannot be encoded (see
Proposition 3.8). However, conservativity is not really necessary. It would allow to lift results on im-
provements from LRP to LRPw more easily. Our goal to use the calculus LRPw as a proof technique
to show results on improvements for LRP is possible:

Lemma 2.22. Let s, t be LRP-expressions s.t. s �LRPw t. Then also s �LRP t holds.

Proof. This holds, since every LRP-context is also an LRPw-context and on decoration-free expressions
the rln-length is the same in both calculi.

We prove correctness and (invariance w.r.t. ≈) for (gcW), the transformation which performs
garbage collection of a := n-bindings which have no corresponding [a]-label.

Sharing Decorations for Improvements 11

Lemma 2.23. A complete set of forking and commuting diagrams for (S,gcW) can be read off the
following diagrams:

· S,gcW //

LRPw,a

��

·
LRPw,a

��
·
S,gcW

// ·

a arbitrary

· S,gcW //

LRPw,a

�� LRPw,a��
·

a arbitrary

·S,gcW2//

LRPw,lll

��

·

·
S,gcW2

@@

Proof. The first diagram covers the case where the transformation and the reduction commute. There
are also cases where a (gcW2) becomes a (gcW1)-transformation, e.g. in letrec x = (letrec a :=

n in s) in r
S,gcW2−−−−−→ letrec x = s in r where letrec x = (letrec a := n in s) in r

LRPw,llet−−−−−−→
letrec x = s, a := n in r. The second diagram covers the case where the (gcW)-redex is removed by
the normal order reduction, e.g. if it is in an unused alternative of case or inside the first argument
of seq. The last diagram covers the case where the letrec-expression of the redex of (LRPw,lll) is
removed by (gcW2).

Lemma 2.24. If s
S,gcW−−−−→ t then

– If s is a WHNF, then t is a WHNF.

– If t is a WHNF, then s
LRPw,llet,0∨1−−−−−−−−−→ s′ where s′ is a WHNF

Proof. The first item can be easily verified. For the second item it may be the case that s is not a

WHNF, but t is a WHNF, e.g. letrec a := n in r
gcW2−−−→ r where r is a WHNF.

Proposition 2.25. The transformation (gcW) is correct and (gcW) ⊆ ≈.

Proof. We first show correctness. Let s
S,gcW−−−−→ t

– s ↓ =⇒ t ↓: This can be shown by induction on the length k in s
LRPw,k−−−−−→ s′ where s′ is a WHNF.

For the base case Lemma 2.24 shows t ↓. For the induction step we apply a forking diagram. For the

first diagram we have s
LRPw,a−−−−−→ s1, s1

S,gcW−−−−→ t1, t
LRPw,a−−−−−→ t1. Applying the induction hypothesis

to s1 and t1 shows t1 ↓ and thus t ↓. For the second diagram t ↓ obviously holds. For the third

diagram we have s
LRPw,lll−−−−−→ s1, s1

gcW2−−−→ t. We apply the induction hypothesis to s1 and t which
shows t ↓.

– t ↓ =⇒ s ↓: We use an induction in the length k in t
LRPw,k−−−−−→ t′ where t′ is a WHNF. For the base

case k = 0 Lemma 2.24 shows that s ↓. For the induction step we apply a forking diagram. For the
first and the second diagram the cases are analogous to the previous part. For the third diagram
we apply the diagram as long as possible which terminates, since there are no infinite sequences

of (LRPw, , lll)-reductions. Then we get an expression s′ with either s
LRPw,lll,+−−−−−−−→ s′ where s′ is a

WHNF and thus s ↓, or we apply the first or second diagram to t and s′, and then the induction
hypothesis (in case of diagram 1). In any case we derive s ↓.

The two items and the context lemma for ∼c show that (gcW) is correct. Now we consider improve-

ment. Let s
S,gcW−−−−→ t. We show rln(s) = rln(t). The context lemma for improvement then implies

(gcW) ⊆ ≈. Since (gcW) is correct we already have rln(s) = ∞ ⇐⇒ rln(t) = ∞. Now let

s ↓ s′ (where s
LRPw,k−−−−−→ s′) and rln(s) = n. We show rln(t) = n by induction on k. If k = 0 then

Lemma 2.24 shows rln(s) = 0 = rln(t). If k > 0 then we again apply the forking diagrams. The
cases are completely analogous as for the correctness proof, where have to verify, that the first and
the second diagram do either introduce nor remove normal order reductions, and the third diagram
may only remove (LRPw, , lll)-reduction which are not counted by the rln-measure.

12 M. Schmidt-Schauß and D. Sabel

The following results from [9, 8] on the lengths of reductions also hold in the calculus LRPw, since
the overlappings for (LRPw, letw) and the corresponding transformation are analogous to already
covered cases.

Theorem 2.26. Let t be a closed LRP-expression with t ↓ t0.

1. If t
C, a−−−→ t′, and a ∈ {case, seq, lbeta}, then rln(t) ≥ rln(t′).

2. Let t be a closed LR-expression with t ↓ t0 and t
C,cp−−→ t′, then rln(t) = rln(t′).

3. If t
S,a−−→ t′, and a ∈ {case, seq, lbeta}, then rln(t) ≥ rln(t′) ≥ rln(t)− 1.

4. If t
C, a−−−→ t′, and a ∈ {lll, gc}, then rln(t) = rln(t′).

5. If t
C,a−−−→ t′, and a ∈ {cpx, cpax, xch, cpcx, abs, lwas}, then rln(t) = rln(t′).

6. If t
C, ucp−−−−→ t′, then rln(t) = rln(t′).

Corollary 2.27. 1. If s
S,a−−→ s′ where a is any rule from Figs. 2 and 3, then s′ � s.

2. If s
C,a−−→ s′ where a is (lll), (cp), (letw0) or any rule of Fig. 3. Then s′ ≈ s.

Proof. The claims follow from Theorem 2.26 and the context lemma, and for the rule (letsh) the
claim holds, since it is a composition of (lwas) and (llet) and their inverses. For (gcW) this follows
from Proposition 2.25. For (letw0) it follows from Corollary 2.15, and for (letwn) it follows from
Corollary 2.17.

3 Work Decorations

In this section we consider another notation for work decorations.

Definition 3.1. For LRPw we use the following notation:

rln-decoration : If n ∈ N, then s[n] is an expression, where [n] is called a rln-decoration. The
semantics of s[n] is letrec a := n in s[a] where a is a fresh label.

sharing decoration : If a is label and n ∈ N, then C[s
[a7→n]
1 , . . . , s

[a7→n]
m] is an expression. The se-

mantics of C[s
[a7→n]
1 , . . . , s

[a7→n]
m] is letrec a := n in C[s

[a]
1 , . . . , s

[a]
m]

further notation: For convenience, we also write several decorations in the form [n, a1 7→
m1, . . . , ak 7→ mk] (where the ai are distinct). The semantics of the expressions can be derived
from the previous cases, where the nondeterminism in the translation is irrelevant, since (lll)-
transformations allow to reorder and combine the corresponding environments without changing
the rln-measure. We may also use the abstract notation [n, p] for a sharing decoration with con-
stant n, and further sharing decorations p.

Note that LRPw contains expressions, which cannot be expressed by this notation. E.g., the expres-
sion λx.letrec a = n in C[s[a], t[a]], since the semantic translation of λx.C[s[a], t[a]] is letrec a =
n in λx.C[s[a], t[a]] which is a different expression.

We show that the (non-shared) rln-decorations are redundant, and can be encoded by usual LRP-
expressions.

Proposition 3.2. The (sharing) rln-decorations s[n] can be encoded as letrec x = (idn) in (x s)
and thus are redundant.

Proof. The proof is in Appendix A.

Sharing Decorations for Improvements 13

3.1 Computation Rules for Decorations

In this section we develop the computation rules with decorations.
First we define a combination of labels, since addition has to be modified. Here we assume that

labels are sets consisting of exactly one nonnegative integer (a rln-decoration) and several rln-sharing
decorations.

Definition 3.3. The combination p1 ⊕ p2 of two decorations p1 = [n1, p
′
1] and p2 = [n2, p

′
2] is defined

as [n1 + n2, p3], where p3 = p1 ∪ p2. ut

For example, [1, a1 7→ 3, a2 7→ 5]⊕ [2, a1 7→ 3, a3 7→ 7] = [3, a1 7→ 3, a2 7→ 5, a3 7→ 7].
A corollary from the theorem on reduction lengths (Theorem 2.26) is:

Corollary 3.4. Let S be a surface context. If s
S−→ s′ by any reduction or transformation rule from

Figs. 2 and 3, then s′ � s and s � s′[1].

In Appendix Bthe following computation rules are proved:

Theorem 3.5. 1. If s
LRPw,a−−−−−→ t with a ∈ {lbeta, case, seq, letwn}, then s ≈ t[1].

2. R[letrec a := n in s[a]] ≈ letrec a := n in R[s][a] and thus in particular R[s[n]] ≈ R[s][n].
3. rln(letrec a := n in s[a]) = n+rln(s′) where s′ is s where all [a]-labels are removed. In particular

this also shows rln(s[n]) = n+ rln(s)
4. For every reduction context R: rln(R[letrec a := n in s[a]]) = n+ rln(R[s′]) where s′ is s where

all [a]-labels are removed. In particular, this shows rln(R[s[n]]) = n+ rln(R[s]).
5. (s[n])[m] ≈ s[n+m]

6. For all surface contexts S1, S2: S1[letrec a := n in S2[s
[a]]] � letrec a := n in S1[S2[s]]

[a] and
if S1[S2] is strict, also S1[letrec a := n in S2[s

[a]]] ≈ letrec a := n in S1[S2[s]]
[a].

In particular, this shows for all surface contexts S and expressions s: S[s[k]] � S[s][k], and if S is
strict, then S[s[k]] ≈ S[s][k].

7. letrec a := n, b := m in (s[a])[b] ≈ letrec a := n, b := m in (s[b])[a]

8. letrec a := n in (s[a])[a] ≈ letrec a := n in (s[a])
9. (tp1)p2 ≈ tp1⊕p2.
10. Let S[·, . . . , ·] be a multi-context where all holes are in surface position. Then letrec a :=

n in S[s
[a]
1 , . . . , s

[a]
n] � letrec a := n in S[s1, . . . , sn][a]. If some hole ·i with i ∈ {1, . . . , n}

is in strict position in S[. . . . , .], then letrec a := n in S[s
[a]
1 , . . . , s

[a]
n] ≈ letrec a :=

n in S[s1, . . . , sn][a].
11. Let S[·, . . . , ·] be a multi-context where all holes are in surface position. Let S[s1, . . . , sn] be closed.

Then S[s
[p1,a7→m]
1 , . . . , s

[pn,a7→m]
n] � S[sp11 , . . . , s

pn
n][m].

If some hole ·i with i ∈ {1, . . . , n} is in strict position in S[. . . . , .], then S[s
[p1,a 7→m]
1 , . . . , s

[pn,a7→m]
n] ≈

S[sp11 , . . . , s
pn
n][m].

By iteratively applying the claim this shows for all surface contexts S and expressions s: S[sp] �
S[s]p, and if S is strict, then S[sp] ≈ S[s]p.

12. The following transformation is correct w.r.t. ≈: Replace (letrec x = s[n,p],Env in t) by
letrec x = s[x[a7→n,p]/x], Env [x[a7→n,p]/x] in t[x[a7→n,p]/x], where a is a fresh label and all oc-
currences of x are in surface position.

13. If a label-name a occurs exactly once in a surface context, then it can be changed into an unshared
decoration.

An immediate consequence is:

Proposition 3.6. The following variant of reduction is correct w.r.t. the LRPw-semantics:

The reduction on LRP expressions with work decorations is as follows: If n > 0 and t = R[t
[n]
1],

then R[t
[n]
1]

LRPw−−−−→ R[t
[n−1]
1] where this reduction counts to the rln-measure. If n = 0 then

R[t
[0]
1]

LRPw−−−−→ R[t1] where this reduction is not counted.

14 M. Schmidt-Schauß and D. Sabel

(cp-in) letrec x1 = (λy.t)[n,p1], {xi = xi−1}mi=2,Env in C[xp2m]

→ letrec x1 = λy.t[a7→n,p1], {xi = xi−1}mi=2,Env in C[(λy.t)([a7→n,p1]⊕p2]

where p2 is nontrivial only if xp2m is not the right hand side of a binding

(llet-e) (letrec Env1, x = (letrec Env2 in t)p in r)→ (letrec Env1,Env2, x = tp in r)

The standard cases are usually dealt with shifting the decoration up, since the decoration is in a strict position,
and/or using further rules (locally) from Theorem 3.5.

Fig. 4. The non-standard cases of decoration modification of reduction rules of LRPw (variants omitted)

If n > 0 and t = R[t
[a7→n]
1] where R is a reduction context, where no decorations are on the

path to the hole, then R[t[a7→n]]
LRPw−−−−→ R′[t[a7→n−1]], where all [a 7→ n]-decorations in R and t

are changed into [a 7→ n − 1]. The reduction step also counts as one rln-reduction step, i.e.

rln(R[t[a7→n]]) = 1+rln(R[t[a7→n−1]]). If t = R[t
[a7→0]
1] where R is a reduction context, where no

decorations are on the path to the hole, then R[t[a7→0]]
LRPw−−−−→ R′[t], this reduction is not counted

by the rln-measure.

Remark 3.7. For a surface context C, the rln-sharing decorated expression s :=

C[s
[n1,a7→h]
1 , . . . , s

[nm,a 7→h]
m] can be given a semantics in the case ni > 0 for all i.: Define

sem(s) := letrec x0 = id[h] in C[(x0 s
[n1−1])
1 , . . . , (x0 s

[nm−1]
m)]).

In the case ni = 0 for some i, the equivalence classes of expressions w.r.t. ≈ are properly extended
(see Proposition 3.8)

It can easily be verified, that sem(s)
T,∗−−→ s′ with s′ ≈ C[s1, . . . , sm], where the reduction requires

h +
∑m

i=1 ni rln-reduction steps: h + ni steps for each (x0 s
[ni−1]
i) where h is the number of shared

rln-reduction steps.
In the exceptional case n1 = 0 there are some cases, which can be given a semantics: for example

(Z [a7→1], Z [a7→1]) ≈ letrec x = id Z in (x, x). Generalizing, if the sharing decorated subexpressions
are syntactically equal, then the construction may be applied in certain cases.

Proposition 3.8. The decorated expression (Z [a7→1], Nil[a7→1]) is not equivalent w.r.t. ≈ to any LRP-
expression.

Proof. Assume there is such an expression s. Then s ∼c (Z, Nil) and rln(s) = 0, so we can assume
that s is a WHNF. Using the correctness w.r.t. ≈ of program transformations and that Z 6∼c Nil,
we can assume that s is of the form let x = s1, y = s2,Env in (x, y). We see that s1 as well
as s2 alone have rln-count 1. Using that (lll) is a correct program transformation, we obtain that
s1, s2 can only be applications, a seq- or a case-expressions. But then every of them requires at
least one rln-reduction that is independent of the other to become a WHNF. Hence the context
C := let z = [·] in seq (fst z) (snd z) applied to (Z [a7→1], Nil[a7→1]) requires 6 = 5 + 1 steps: 2
for fst, 2 for snd, 1 for seq, and 1 for the shared evaluation of Z [a7→1], whereas s requires at least
7 = 5 + 2: the 2 reductions are the minimum to reach a WHNF for the first as well for the second
component.

We show how the decorations are implicitly modified under reductions and transformations, where
the reduction are invariant under ≈. See figure 4 for the reduction rules of LRP w.r.t. decorations.

3.2 More Transformations and Improvements

Let (caseId) be defined as:

(caseK s of (pat1 → pat1) . . . (pat|DK | → pat|DK |))→ s

Sharing Decorations for Improvements 15

(cpcx-in) letrec x = c
−→
t

[n,p1]
,Env in C[xp2]→ letrec x = c−→y [a7→n,p1], {yi = ti}ar(c)i=1 ,Env in C[c−→y [a7→n,p1]⊕p2]

(xch) letrec x = tp, y = x,Env in r → letrec y = tp, x = y,Env in r where y = xq is not permitted.

(lwas) T [letrec Env in tp]→ letrec Env in T [tp]
if T is a weak top context with hole depth 1

(ucp1) letrec Env , x = tp in S[x]→ letrec Env in S[tp]

The standard cases are usually dealt with shifting the decoration up, since the decoration is in a strict position,
and/or using further rules (locally) from Theorem 3.5.

Fig. 5. Non-standard cases of decoration modification in the Extra Transformation Rules (variants omitted)

·
T,caseId//

LRP,a ��

·
LRP,a��

·
T,caseId

// ·

(1)

·
T,caseId//

LRP,lcase ��

·

· T,caseId

::

(2)

·
T,caseId//

LRP,case−c ��

·

T,absezz·

(3)

·
T,caseId //

LRP,case ��

·
T,cpcx
ss·

· T,gc,∗
33

· T,cpx,∗
33

(4)

·
LRP,case �� T,caseId

zz·

(5)

Fig. 6. Diagrams for (caseId)

The rule (caseId) is the heart (of the correctness proof) of other type-dependent transformations, like
rules involving map, filter, fold, asf., and it is only correct under typing, i.e. in LRP and LRPw, but
not in LR, which can be seen by trying the case s = λx.t.

We show that (caseId) is an improvement in LRPw.

Lemma 3.9. Let s
T,caseId−−−−−→ t. If s is a WHNF, then t is a WHNF. If t is a WHNF, then

s
LRPw,lll,∗−−−−−−→ LRPw,case,0∨1−−−−−−−−−→ LRPw,lll,∗−−−−−−→ s′ where s′ is a WHNF.

Lemma 3.10. If s↓ ∧ s T,caseId−−−−−→ t, then t↓ and rln(s) ≥ rln(t).

Proof. Let s
T,caseId−−−−−→ t and s

LRPw,k−−−−−→ s′ where s′ is a WHNF. We use induction on k. For k = 0

Lemma 3.9 shows the claim. For the induction step, let s
LRPw−−−−→ s1. The diagrams in Fig. 6 describe

all cases how the fork s1
LRPw←−−−− s

T,caseId−−−−−→ can be closed. For diagram (1) we apply the induction

hypothesis to s1
T,caseId−−−−−→ t1 which shows t1↓, rln(s1) ≥ rln(t1) and thus also t↓ and rln(s) ≥ rln(t).

For diagram (2) the induction hypothesis shows the claim. For diagram (3) we have t↓, since (abse) is

correct. Moreover, t
T,abse−−−−→ s′ is equivalent to s′

T,ucp∨gc,∗−−−−−−−→ t and Theorem 2.26 shows rln(s′) = rln(t).
Thus also rln(s) ≥ rln(t). For diagram (4) we have t↓, since (cpcx), (gc), and (cpx) are correct.
Theorem 2.26 shows that rln(s) > rln(s′) = rln(t), since (cpcx), (cpx) and (gc) do not change the
measure rln(·). For diagram(5) the claim obviously holds.

Theorem 3.11. (caseId) is an improvement.

Proof. Lemma 3.9 and the diagrams in Fig. 6 can be used to show (by induction on the sequence

for t) that if s
T,caseId−−−−−→ t and t↓, then s↓, since the used existentially quantified transformations are

correct and diagram 2 can only be applied finitely often. Then the context lemma for ∼c (which states
that convergence preservation and reflection in reduction contexts suffices to ∼c, see e.g. [5]) and
Lemma 3.10 show that (caseId) is correct. Finally, the context lemma for improvement (Lemma 2.9)
and Lemma 3.10 show that (caseId) is an improvement.

4 A Head-Centered Improvement Simulation for Lists

We define an improvement simulation vh,τ on lists of the same type, List τ , for proving �-relations
between functions on lists.

16 M. Schmidt-Schauß and D. Sabel

Definition 4.1. Let τ be a type, and Lτ := {(s, t) | s, t are closed, s, t :: List(τ), s ∼c t}. We define
the following operator Fh :: Lτ → Lτ : Let η ⊆ Lτ , and s η t.

1. If s ∼c ⊥ ∼c t, then s Fh(η) t.
2. If s ≈ Nil[k], t ≈ Nil[k

′] and k ≤ k′, then s Fh(η) t.

3. If s � (s
[k1,aj 7→mj for j=1,...
1] : s

[k2]
2)[k3], and

(t
[k′1,aj 7→m′j for j=1,...]

1 : t
[k′2]
2)[k

′
3] � t, for some expressions s1, s2, t1, t2, and numbers where s2, t2

may contain further sharing decorations, but only in surface context positions; and the following
conditions hold:

– ki ≤ k′i for i = 1, 2, 3,
– mj ≤ m′j for all j.
– s1 � t1 and s1, t1 are decoration-free, and
– s2 η t2.

Then s Fh(η) t.

Let vh,τ be the greatest fixpoint of Fh. ut

To ease reading we leave out the index τ in the following and simply write vh instead of vh,τ unless
the type τ becomes relevant.

Clearly, the operator Fh is monotone, and thus vh is well-defined, i.e. the fixpoint exists.
Moreover, due to determinism of normal-order reduction, Fh is lower-continuous, and thus Kleene’s

fixpoint theorem can be applied, which implies the following inductive characterization of vh: Let
vh,0= Lτ , and vh,i= F (vh,i−1) for i > 0. Then vh=

⋂∞
i=0 vh,i. Thus for (s, t) ∈ Lτ we can show

s vh t by proving s vh,i t for all i.
Note that the same sharing label may occur in several elements of the list.

The following is required in the proof below, where the formulation of the second claim is w.r.t.
the inductively generated relations.

Theorem 4.2. If s vh t, then also s � t.

Proof. We show a generalized claim. Using this claim with a single-hole surface-context T and
n = 1 shows that s �T t, and thus using the context lemma for improvement, also the claim of the
theorem follows. The claim is:

Let C[·, . . . , ·] be a multicontext, where the holes are in surface-contexts, for i = 1, . . . , n let
si, ti be closed and of the same type such that for each pair si, ti either si vh ti (and thus si, ti ::
List(τ)), or si � ti (and thus si, ti :: τ) holds. Let the expressions si be decorated with di and
the expressions ti with ei, where di is [ns,i, ai,j 7→ ms,i,j] or no label, and ei is [nt,i, ai,j 7→ mt,i,j]
or no label according to the rules above: i.e., ns,i ≤ nt,i holds and ms,i,j ≤ mt,i,j in all cases.

Then rln(C[sd11 , . . . , s
dn
n]) ≤ rln(C[te11 , . . . , t

en
n]) holds.

For the proof we assume that for the first input pair (s, t), the infinite sequence of the expansion
(including the decorations asf.) according to Definition 4.1 is fixed, and so we make the same choices
even if copies of s, t appear in the expressions. So we can use the Kleene-criterion for computing the
fixed point.
First observe that rln(C[te11 , . . . , t

en
n]) = ∞ if, and only if rln(C[sd11 , . . . , s

dn
n]) = ∞, which follows

from finiteness of decorations and from si ∼c ti.
In other cases we show the claim by induction on the lexicographically ordered measure

(µ1, µ2, µ3, µ4) where µ1 = rln(C[te11 , . . . , t
en
n]), µ2 = rln(C[sd11 , . . . , s

dn
n]), µ3 is the number of holes

in C and µ4 = rlnall(C[sd11 , . . . , s
dn
n]).

For the base case, let µ1 = µ2 = 0, i.e. rln(C[sd11 , . . . , s
dn
n]) = 0. Then the claim 0 =

rln(C[sd11 , . . . , s
dn
n]) ≤ rln(C[te11 , . . . , t

en
n]) is obvious.

Sharing Decorations for Improvements 17

For the induction step, assume that (µ1, µ2) 6= (0, 0).

If no hole of C is in a reduction context, then C[te11 , . . . , t
en
n]

no−→ C ′[te11 , . . . , t
en
n] as well as

C[sd11 , . . . , s
dn
n]

no−→ C ′[sd11 , . . . , s
dn
n], where C ′ has n or less than n holes, since all holes are in surface

contexts. We can apply the induction hypothesis after the reduction, since µ1,µ2 remain equal or
both are decreased by 1, µ3 remains equal or is decreased, and µ4 is strictly decreased. Note that the
case µ1 = 0, µ2 > 0 is not possible in this case.

Now we consider the case that some t
ej
j is in a reduction context in C[te11 , . . . , t

en
n] or s

dj
j is in a

reduction context in C[sd11 , . . . , s
dn
n]. Then we can assume w.l.o.g. that the hole j is in a reduction

context in C, independent of the expressions in the holes. Hence s
dj
j as well as t

ej
j are in a reduction

context in C[sd11 , . . . , s
dn
n] and C[td11 , . . . , t

dn
n], respectively.

1. If tj (and / or) sj are nontrivially decorated, then there are two cases:

(a) The decoration may be constants md,me with me > 0. Then md < me, and we can use the
induction hypothesis, since the measure µ1 is strictly smaller.

(b) The decoration is a sharing one: a 7→ md in s and a 7→ me in t. Then we have md ≤ me, and
me > 0. Then remove the sharing for a in C[sd11 , . . . , s

dn
n] and also in C[te11 , . . . , t

en
n].

Let d′i, e
′
i be the accordingly modified decorations at the other expressions si and ti, and

s′i, t
′
i be the expressions after the removal. The expressions are C[s

′d′1
1 , . . . , s′j , . . . , s

′d′n
n] and

C[t
′e′1
1 , . . . , t′j , . . . , t

′e′n
n].

Since nt,j > 0 and / or ns,j > 0 the measure (µ1, µ2, µ3, µ4) is strictly decreased. The induction
hypothesis applies, since µ1 is strictly reduced. We also have to verify that the modified sequence
of the derived sequences after setting a label value to zero, still satisfies the conditions of vh.
But this holds, since the inequations are still valid, and the labels are only in surface contexts,
so the computation rules say that � of the components is invariant (see Theorem 3.5.)

The induction hypothesis shows rln(C[s
′d′1
1 , . . . , s′j , . . . , s

′d′n
n]) ≤ rln(C[t

′e′1
1 , . . . , t′j , . . . , t

′e′n
n]

which also implies rln(C[sd11 , . . . , s
dn
n]) ≤ rln(C[te11 , . . . , t

en
n]).

2. Now assume that sj and tj are not decorated, and sj � tj , and there are no further dec-
orations in sj , tj . Then the context C ′ = C[·1, . . . , ·j−1, sj , ·j+1, . . . , ·n] has (n − 1) holes

and the induction hypothesis shows rln(C[sd11 , . . . , sj , . . . , s
dn
n] ≤ rln(C[te11 , . . . , sj , . . . , t

en
n]).

Note that the induction hypothesis is applicable, since rln(C[te11 , . . . , sj , . . . , t
en
n]) ≤ µ1, µ2

is unchanged, but µ3 is strictly decreased). Since sj � tj , we also have rln(C ′′[sj]) ≤
rln(C ′′[tj]) for C ′′ = C ′[te11 , . . . , t

ej−1

j−1 , ·j , t
ej+1

j+1 , . . . , t
ej
n] and thus rln(C[sd11 , . . . , sj , . . . , s

dn
n]) ≤

m+ rln(C[te11 , . . . , tj , . . . , t
en
n]).

3. Now assume that sj and tj are not decorated and sj vh tj .
By our assumptions, sj vh tj holds. We check the cases from the definition of vh.

(a) If sj ∼c ⊥, then tj ∼c ⊥, and C[sd11 , . . . , sj , . . . s
dn
n] ∼c ⊥ ∼c C[te11 , . . . tj , . . . , t

en
n].

(b) If sj ≈ Nil, then tj ≈ Nil. (Due to our assumptions, the decorations are already dealt with)
and we can integrate sj , tj into the context, which makes µ3 strictly smaller.

(c) If sj � (s
dj,1
j,1 : s

dj,2
j,2) with dj,1 = [ns,j,1, ps,j,1] and dj,2 = [ns,j,2, ps,j,2], then due to the

preconditions there is a representation (t
ej,1
j,1 : t

ej,2
j,2)[k

′] � tj with ej,1 = [nt,j,1, pt,j,1] and
ej,2 = [nt,j,2, pt,j,2]) such that ns,j,1 ≤ nt,j,1, ns,j,2 ≤ nt,j,2, and ps,j,1 ≤ pt,j,1, ps,j,2 ≤ pt,j,2,
and sj,1 � tj,1 and sj,2 vh tj,2.
It suffices to show that rln(C[sd11 , . . . , (s

dj,1
j,1 : s

dj,2
j,2), . . . , sdnn]) ≤ rln(C[te11 , . . . , (t

ej,1
j,1 :

t
ej,2
j,2), . . . , tenn]) to prove the claim.

Now consider the next normal order reduction for C[te11 , . . . , (t
ej,1
j,1 : t

ej,2
j,2), . . . , tenn]. If there is

no such reduction, then C[te11 , . . . , (t
ej,1
j,1 : t

ej,2
j,2), . . . , tenn] is a WHNF. Then C[sd11 , . . . , (s

dj,1
j,1 :

s
dj,2
j,2), . . . , sdnn] is also a WHNF and the measure (µ1, µ2) is strictly decreased. Applying the

18 M. Schmidt-Schauß and D. Sabel

induction hypothesis to C[sd11 , . . . , (s
dj,1
j,1 : s

dj,2
j,2), . . . , sdnn] and C[te11 , . . . , (t

ej,1
j,1 : t

ej,2
j,2), . . . , tenn]

shows the claim.
If a normal order reduction for C[te11 , . . . , (t

ej,1
j,1 : t

ej,2
j,2), . . . , tenn] exists, then – due to typing – it

must be a (seq)- or (case)-reduction.
If the reduction is a (seq)-reduction, then it strictly decreases the measure µ1. If the (seq)-

reduction removes (s
dj,1
j,1 : s

dj,2
j,2) and (t

ej,1
j,1 : t

ej,2
j2

), then we can apply the induction hypothesis.

If the (seq)-reduction does not remove (s
dj,1
j,1 : s

dj,2
j,2) and (t

ej,1
j,1 : t

ej,2
j2

), then the number of holes
is increased, but all preconditions also hold for sj,i and tj,i and the induction hypothesis is
applicable.
If the reduction is a (case)-reduction, then the expressions sj,1, sj,2 and also tj,1, tj,2 are moved
into a letrec-environment and remain in surface-context position. Since µ1 is strictly de-
creased, the preconditions hold for sj,i and tj,i, we can apply the induction hypothesis which
shows the claim. 2

5 Conclusion

We have provided the necessary proofs of all the computation rules for unshared and shared decora-
tions. There is also a proof of the simulation proof method for improvement.

References

1. Simon Marlow, editor. Haskell 2010 – Language Report. 2010. www.haskell.org.
2. Andrew Moran and David Sands. Improvement in a lazy context: An operational theory for call-by-need. In Proc.

POPL 1999, pages 43–56. ACM Press, 1999.
3. Benjamin C. Pierce. Types and Programming Languages. The MIT Press, 2002.
4. Andrew M. Pitts. Parametric polymorphism and operational equivalence. Math. Structures Comput. Sci., 10:321–

359, 2000.
5. Manfred Schmidt-Schauß and David Sabel. On generic context lemmas for higher-order calculi with sharing. Theoret.

Comput. Sci., 411(11-13):1521 – 1541, 2010.
6. Manfred Schmidt-Schauß and David Sabel. Contextual equivalences in call-by-need and call-by-name polymorphi-

cally typed calculi (preliminary report). In Proc. WPTE 2014, volume 40 of OASICS, pages 63–74. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 2014.

7. Manfred Schmidt-Schauß and David Sabel. Improvements in a functional core language with call-by-need operational
semantics. In Elvira Albert, editor, Proc. PPDP ’15, pages 220–231, New York, NY, USA, 2015. ACM.

8. Manfred Schmidt-Schauß and David Sabel. Improvements in a functional core language with call-by-need opera-
tional semantics. Frank report 55, Institut für Informatik, Goethe-Universität Frankfurt am Main, March 2015.
http://www.ki.informatik.uni-frankfurt.de/papers/frank/.

9. Manfred Schmidt-Schauß, Marko Schütz, and David Sabel. Safety of Nöcker’s strictness analysis. J. Funct. Pro-
gramming, 18(04):503–551, 2008.

10. Dimitrios Vytiniotis and Simon Peyton Jones. Evidence Normalization in System FC (Invited Talk). In Femke
van Raamsdonk, editor, Proc. RTA 2013, volume 21 of LIPIcs, pages 20–38, Dagstuhl, Germany, 2013. Schloss
Dagstuhl–Leibniz-Zentrum für Informatik.

Sharing Decorations for Improvements 19

A Redundancy of rln-Decorations

We prove Proposition 3.2:

Proposition A.1. The sharing rln-decorations s[n] can be encoded as letrec x = (idn) in (x s) and
thus are redundant.

Proof. We show that s[n] = letrec a := n in s[a] ≈ letrec x = (idn) in (x s):
Let R be a reduction context. It suffices to show R[letrec a := n in s[a]] ∼c R[letrec x =
(idn) in (x s)] and rln(R[letrec a := n in s[a]]) = rln(R[letrec x = (idn) in (x s)]), since
then the context lemma for ∼c and the context lemma for improvement show the claim.

– If R is a weak reduction context, then

R[letrec a := n in s[a]]
LRPw,lll,∗−−−−−−→ letrec a := n in R[s[a]]

and thus rln(R[letrec a := n in s[a]]) = rln(letrec a := n in R[s[a]]). Now

letrec a := n in R[s[a]]
LRPw,letwn,n−−−−−−−−−→ letrec a := 0 in R[s[a]]

LRPw,letw0−−−−−−−→ letrec a := 0 in R[s]

and thus rln(R[letrec a := n in s[a]]) = n + (R[letrec a := 0 in s]). Now Proposition 2.25
shows rln(R[letrec a := n in s[a]]) = n+ (R[s]).
For R[letrec x = (idn) in (x s)] one can verify that

R[letrec x = (idn) in (x s)]
LRPw,lll,∗−−−−−−→ (

LRPw,lbeta−−−−−−−→ LRPw,llet−−−−−−→)n−1
LRPw,cp−−−−−→ LRPw,lbeta−−−−−−−→ LRPw,lll,∗−−−−−−→

letrec x = x1, x1 = x2, xn−1 = id, xn = s in R[xn]

and thus rln(R[letrec x = (idn) in (x s)]) = n + rln(letrec x = x1, x1 = x2, xn−1 = id, xn =
s in R[xn]). Finally, since

letrec x = x1, x1 = x2, xn−1 = id, xn = s in R[xn]
ucp−−→ letrec x = x1, x1 = x2, xn−1 = id, xn = s in R[s]
gc2−−→ R[s]

and Theorem 2.26 shows that (ucp) and (gc2) do not change the rln-measure, we have
rln(R[letrec x = (idn) in (x s)]) = n + rln(R[s]). Concluding, this shows R[letrec a :=
n in s[a]] ∼c R[letrec x = (idn) in (x s)] since the left expression can be transformed into
the right expression by correct program transformations and it also shows rln(R[letrec a :=
n in s[a]]) = rln(R[letrec x = (idn) in (x s)]).

– If R is not a weak reduction context, then there are two cases:

1. R[letrec a := n in s[a]]
LRPw,lll,∗−−−−−−→ letrec Env , a := n in R−1 [s[a]] and

R[letrec x = (idn) in (x s)]
LRPw,lll,∗−−−−−−→ letrec Env , x = (idn) in R−1 [(x s)] where R−1 is a

weak reduction context.
For the left expression:

letrec Env , a := n in R−1 [s[a]]
LRPw,letwn,n−−−−−−−−−→ letrec Env , a := 0 in R−1 [s[a]]
LRPw,letw0−−−−−−−→ letrec Env , a := 0 in R−1 [s]
gcW−−−→ letrec Env in R−1 [s]

and thus R[letrec a := n in s[a]]) ∼c letrec Env in R−1 [s] and rln(R[letrec a :=
n in s[a]]) = n+ rln(letrec Env in R−1 [s]).

20 M. Schmidt-Schauß and D. Sabel

For the right expression

letrec Env , x = (idn) in R−1 [(x s)]

(
LRPw,lbeta−−−−−−−→ LRPw,llet−−−−−−→)n−1 letrec Env , x = x1, x1 = x2, . . . , xn−1 = id in R−1 [(x s)]

LRPw,cp−−−−−→ letrec Env , x = x1, x1 = x2, . . . , xn−1 = id in R−1 [(id s)]
LRPw,lbeta−−−−−−−→ letrec Env , x = x1, x1 = x2, . . . , xn−1 = id in R−1 [letrec xn = s in xn]
LRPw,lll,∗−−−−−−→ letrec Env , x = x1, x1 = x2, . . . , xn−1 = id, xn = s in R−1 [xn]
ucp−−→ letrec Env , x = x1, x1 = x2, . . . , xn−1 = id in R−1 [s]
gc−→ letrec Env in R−1 [s]

and thus R[letrec x = (idn) in (x s)] ∼c letrec Env in R−1 [s] and rln(R[letrec x =
(idn) in (x s)]) = n+ rln(letrec Env in R−1 [s])
Together this shows R[letrec a := n in s[a]] ∼c R[letrec x = (idn) in(x s)] and
rln(R[letrec a := n in s[a]]) = rln(R[letrec x = (idn) in (x s)]).

2.
R[letrec a := n in s[a]]

LRPw,lll,∗−−−−−−→ letrec Env , a := n, y1 = R−1 [s[a]], {yi = R−i [yi−1]}mi=2, in R
−
0 [ym]

and
R[letrec x = (idn) in (x s)]

LRPw,lll,∗−−−−−−→ letrec Env , x = (idn), y1 = R−1 [(x s)], {yi = R
yi−1

i }mi=2 in R−0 [ym]

where R−0 , . . . , Rm are weak reduction contexts.
For the left expression:

letrec Env , a := n, y1 = R−1 [s[a]], {yi = R−i [yi−1]}mi=2 in R−0 [ym]
LRPw,letwn,n−−−−−−−−−→ letrec Env , a := 0, y1 = R−1 [s[a]], {yi = R−i [yi−1]}mi=2 in R−0 [ym]
LRPw,letw0−−−−−−−→ letrec Env , a := 0, y1 = R−1 [s], {yi = R−i [yi−1]}mi=2 in R−0 [ym]
gcW−−−→ letrec Env , y1 = R−1 [s], {yi = R−i [yi−1]}mi=2 in R−0 [ym]

and thus

R[letrec a := n in s[a]] ∼c letrec Env , y1 = R−1 [s], {yi = R−i [yi−1]}mi=2 in R−0 [ym]

and

rln(R[letrec a := n in s[a]]) = n+rln(letrec Env , y1 = R−1 [s], {yi = R−i [yi−1]}mi=2 inR
−
0 [ym])

For the right expression:

letrec Env , x = (idn), y1 = R−1 [(x s)], {yi = R−i [yi−1]}mi=2 in R−0 [ym]

(
LRPw,lbeta−−−−−−−→ LRPw,llet−−−−−−→)n−1 letrec Env , x = x1, {xi = xi+1}n−2i=1 , xn−1 = id,

y1 = R−1 [(x s)], {yi = R−i [yi−1]}mi=2

in R−0 [ym]
LRPw,cp−−−−−→ LRPw,lbeta−−−−−−−→ lll,∗−−→ letrec Env , x = x1, {xi = xi+1}n−2i=1 , xn−1 = id, xn = s,

y1 = R−1 [xn], {yi = R−i [yi−1]}mi=2

in R−0 [ym]
ucp−−→ gc−→ letrec Env , y1 = R−1 [s], {yi = R−i [yi−1]}mi=2 in R−0 [ym]

and thus

R[letrec x = (idn) in (x s)] ∼c letrec Env , y1 = R−1 [s], {yi = R−i [yi−1]}mi=2 in R−0 [ym]

Sharing Decorations for Improvements 21

and

rln(R[letrec x = (idn) in (x s)]) = n+rln(letrec Env , y1 = R−1 [s], {yi = R−i [yi−1]}mi=2 inR
−
0 [ym])

Together this shows

R[letrec a := n in s[a]] ∼c R[letrec x = (idn) in (x s)]

and
rln(R[letrec a := n in s[a]]) = rln(R[letrec x = (idn) in (x s)])

B Proofs of Computation Rules

The following theorem summarizes the results proved in this section.

Theorem B.1. 1. If s
LRPw,a−−−−−→ t with a ∈ {lbeta, case, seq, letwn}, then s ≈ t[1].

2. R[letrec a := n in s[a]] ≈ letrec a := n in R[s][a] and thus in particular R[s[n]] ≈ R[s][n].
3. rln(letrec a := n in s[a]) = n+rln(s′) where s′ is s where all [a]-labels are removed. In particular

this also shows rln(s[n]) = n+ rln(s)
4. For every reduction context R: rln(R[letrec a := n in s[a]]) = n+ rln(R[s′]) where s′ is s where

all [a]-labels are removed. In particular, this shows rln(R[s[n]]) = n+ rln(R[s]).
5. (s[n])[m] ≈ s[n+m]

6. For all surface contexts S1, S2: S1[letrec a := n in S2[s
[a]]] � letrec a := n inS1[S2[s]]

[a] and if
S1[S2] is strict, also S1[letrec a := n in S2[s

[a]]] ≈ letrec a := n inS1[S2[s]]
[a].

7. letrec a := n, b := m in (s[a])[b] ≈ letrec a := n, b := m in (s[b])[a]

8. letrec a := n in (s[a])[a] ≈ letrec a := n in (s[a])
9. (tp1)p2 ≈ tp1⊕p2.
10. Let S[·, . . . , ·] be a multi-context where all holes are in surface position. Then letrec a :=

n in S[s
[a]
1 , . . . , s

[a]
n] � letrec a := n in S[s1, . . . , sn][a]. If some hole ·i with i ∈ {1, . . . , n}

is in strict position in S[. . . . , .], then letrec a := n in S[s
[a]
1 , . . . , s

[a]
n] ≈ letrec a :=

n in S[s1, . . . , sn][a].
11. Let S[·, . . . , ·] be a multi-context where all holes are in surface position. Let S[s1, . . . , sn] be closed.

Then S[s
[p1,a7→m]
1 , . . . , s

[pn,a7→m]
n] � S[sp11 , . . . , s

pn
n][m].

If some hole ·i with i ∈ {1, . . . , n} is in strict position in S[. . . . , .], then S[s
[p1,a 7→m]
1 , . . . , s

[pn,a7→m]
n] ≈

S[sp11 , . . . , s
pn
n][m].

12. The following transformation is correct w.r.t. ≈: Replace (letrec x = s[n,p],Env in t) by
letrec x = s[x[a7→n,p]/x], Env [x[a7→n,p]/x] in t[x[a7→n,p]/x], where a is a fresh label and all oc-
currences of x are in surface position.

13. If a label-name a occurs exactly once in a surface context, then it can be changed into an unshared
decoration.

Proof. (1) is proved in Theorem B.8.
(2) is proved in Proposition B.3.
(3) is proved in Lemma B.4.
(4) is proved in Corollary B.5.
(5) is proved in Proposition B.6.
(6) is proved in Corollary B.12.
(7) and (8) are proved in Proposition B.13, and (9) holds by iteratively applying items (4), (7) and

(8) and by applying (lll) and (gcW)-transformations which are invariant w.r.t. ≈.
(10) is proved in Proposition B.14.
(11) is proved in Corollary B.15.
(12) is proved in Proposition B.16.
(13) follows from the semantics of the labels.

22 M. Schmidt-Schauß and D. Sabel

Proposition B.2. If s
LRPw,letwn−−−−−−−−→ t, then s ≈ t[1]

Proof. We use the context lemma for improvement and thus have to show for all reduction contexts
R:

rln(R[s]) = rln(R[letrec a := 1 in t[a]])

There are three general cases for the reduction context R and two cases for s and t:

1. s = letrec b := n,Env in R−0 [r[b]],

t = letrec b := n− 1,Env in R−0 [r[b]]

(a) R is a weak reduction context. Then rln(R[s]) = rln(R[letrec a := 1 in t[a]]), since:

R[s]
LRPw,lll,∗−−−−−−→ letrec b := n,Env in R[R−0 [r[b]]]
LRPw,letwn−−−−−−−−→ letrec b := n− 1,Env in R[R−0 [r[b]]]

R[letrec a := 1 in t[a]]
LRPw,lll,∗−−−−−−→ letrec a := 1 in R[(letrec b := n− 1,Env in R−0 [r[b]])[a]]
LRPw,lll,∗−−−−−−→ letrec a := 1, b := n− 1,Env in R[R−0 [r[b]])[a]]
LRPw,letwn−−−−−−−−→ letrec a := 0, b := n− 1,Env in R[R−0 [r[b]])[a]]
LRPw,letw0−−−−−−−→ letrec a := 0, b := n− 1,Env in R[R−0 [r[b]])]
gcW−−−→ letrec b := n− 1,Env in R[R−0 [r[b]])]

(b) R = letrec Env ′ in R′[·], where R′ is a weak reduction context. Then rln(R[s]) =
rln(R[letrec a := 1 in t[a]]), since:

letrec Env ′ in R′[s]
LRPw,lll,∗−−−−−−→ letrec b := n,Env ,Env ′ in R′[R−0 [r[b]]]
LRPw,letwn−−−−−−−−→ letrec b := n− 1,Env ,Env ′ in R′[R−0 [r[b]]]

letrec Env ′ in R′[letrec a := 1 in t[a]]
LRPw,lll,∗−−−−−−→ letrec Env ′, a := 1 in R′[(letrec b := n− 1,Env in R−0 [r[b]])[a]]
LRPw,lll,∗−−−−−−→ letrec Env ′, a := 1, b := n− 1,Env in R′[R−0 [r[b]])[a]]
LRPw,letwn−−−−−−−−→ letrec Env ′, a := 0, b := n− 1,Env in R′[R−0 [r[b]])[a]]
LRPw,letw0−−−−−−−→ letrec Env ′, a := 0, b := n− 1,Env in R′[R−0 [r[b]])]
gcW−−−→ letrec Env ′, b := n− 1,Env in R′[R−0 [r[b]])]

(c) R = letrec Env ′, x = R′[·] in u, where R′ is a weak reduction context. Then rln(R[s]) =
rln(R[letrec a := 1 in t[a]]), since:

letrec Env ′, x = R′[s] in u
LRPw,lll,∗−−−−−−→ letrec b := n,Env ,Env ′, x = R′[R−0 [r[b]]] in u
LRPw,letwn−−−−−−−−→ letrec b := n− 1,Env ,Env ′, x = R′[R−0 [r[b]]] in u

letrec Env ′, x = R′[letrec a := 1 in t[a]] in u
LRPw,lll,∗−−−−−−→ letrec Env ′, a := 1, x = R′[(letrec b := n− 1,Env in R−0 [r[b]])[a]] in u
LRPw,lll,∗−−−−−−→ letrec Env ′, a := 1, b := n− 1,Env , x = R′[R−0 [r[b]][a]] in u
LRPw,letwn−−−−−−−−→ letrec Env ′, a := 0, b := n− 1,Env , x = R′[R−0 [r[b]][a]] in u
LRPw,letw0−−−−−−−→ letrec Env ′, a := 0, b := n− 1,Env , x = R′[R−0 [r[b]]] in u
LRPw,gcW−−−−−−−→ letrec Env ′, b := n− 1,Env , x = R′[R−0 [r[b]]] in u

2. s = letrec b := n,Env , y1 = R−0 [r[b]], {yi = R−i [yi−1]}mi=2 in R−m+1[ym]

t = letrec b := n− 1,Env , y1 = R−0 [r[b]], {yi = R−i [yi−1]}mi=2 in R−m+1[ym]

Sharing Decorations for Improvements 23

(a) R is a weak reduction context. Then rln(R[s]) = rln(R[letrec a := 1 in t[a]]), since:

R[s]
LRPw,lll,∗−−−−−−→ letrec b := n,Env , y1 = R−0 [r[b]], {yi = R−i [yi−1]}mi=2 in R[R−m+1[ym]]
LRPw,letwn−−−−−−−−→ letrec b := n− 1,Env , y1 = R−0 [r[b]], {yi = R−i [yi−1]}mi=2 in R[R−m+1[ym]]

R[letrec a := 1 in t[a]]
LRPw,lll,∗−−−−−−→ letrec a := 1 in

R[(letrec b := n− 1,Env , y1 = R−0 [r[b]], {yi = R−i [yi−1]}mi=2 in R−m+1[ym])[a]]
LRPw,letwn−−−−−−−−→ letrec a := 0 in

R[(letrec b := n− 1,Env , y1 = R−0 [r[b]], {yi = R−i [yi−1]}mi=2 in R−m+1[ym])[a]]
LRPw,letw0−−−−−−−→ letrec a := 0 in

R[(letrec b := n− 1,Env , y1 = R−0 [r[b]], {yi = R−i [yi−1]}mi=2 in R−m+1[ym])]
gcW−−−→ R[(letrec b := n− 1,Env , y1 = R−0 [r[b]], {yi = R−i [yi−1]}mi=2 in R−m+1[ym])]
LRPw,lll,∗−−−−−−→ letrec b := n− 1,Env , y1 = R−0 [r[b]], {yi = R−i [yi−1]}mi=2 in R[R−m+1[ym])]

(b) R = letrec Env ′ in R′[·], where R′ is a weak reduction context. Then rln(R[s]) =
rln(R[letrec a := 1 in t[a]]), since:

letrec Env ′ in R′[s]
LRPw,lll,∗−−−−−−→ letrec Env ′, b := n,Env , y1 = R−0 [r[b]], {yi = R−i [yi−1]}mi=2 in R′[R−m+1[ym]]
LRPw,letwn−−−−−−−−→ letrec Env ′, b := n− 1,Env , y1 = R−0 [r[b]], {yi = R−i [yi−1]}mi=2 in R′[R−m+1[ym]]

letrec Env ′ in R′[letrec a := 1 in t[a]]
LRPw,lll,∗−−−−−−→ letrec Env ′, a := 1 in R′[t[a]]
LRPw,letwn−−−−−−−−→ letrec Env ′, a := 0 in R′[t[a]]
LRPw,letw0−−−−−−−→ letrec Env ′, a := 0 in R′[t]
gcW−−−→ letrec Env ′ in R′[t]
LRPw,lll,∗−−−−−−→ letrec Env ′, b := n− 1,Env , y1 = R−0 [r[b]], {yi = R−i [yi−1]}mi=2 in R′[R−m+1[ym]]

(c) R = letrec Env ′, x = R′[·] in u, where R′ is a weak reduction context. Then rln(R[s]) =
rln(R[letrec a := 1 in t[a]]), since:

letrec Env ′, x = R′[s] in u
LRPw,lll,∗−−−−−−→ letrec Env ′, b := n,Env , y1 = R−0 [r[b]], {yi = R−i [yi−1]}mi=2, x = R′[R−m+1[ym]] in u
LRPw,letwn−−−−−−−−→ letrec Env ′, b := n− 1,Env , y1 = R−0 [r[b]], {yi = R−i [yi−1]}mi=2, x = R′[R−m+1[ym]] in u

letrec Env ′, x = R′[letrec a := 1 in t[a]] in u
LRPw,lll,∗−−−−−−→ letrec Env ′, a := 1, x = R′[t[a]] in u
LRPw,letwn−−−−−−−−→ letrec Env ′, a := 0, x = R′[t[a]] in u
LRPw,letw0−−−−−−−→ letrec Env ′, a := 0, x = R′[t] in u
gcW−−−→ letrec Env ′, x = R′[t] in u
LRPw,lll,∗−−−−−−→ letrec Env ′, b := n− 1,Env , y1 = R−0 [r[b]], {yi = R−i [yi−1]}mi=2, x = R′[R−m+1[ym]] in u

Proposition B.3. R[letrec a := n in s[a]] ≈ letrec a := n in R[s][a] and thus in particular
R[s[n]] ≈ R[s][n]

Proof. We show R[letrec a := n in s[a]] ≈ letrec a := n in R[s][a] by induction on n. If n = 0 then
the claim holds, since (letw0) ⊆≈.

For the induction step assume that the claim holds for all k, with k ≤ n− 1.
We make a case distinction on the reduction context R.

24 M. Schmidt-Schauß and D. Sabel

1. R is a weak reduction context. Then

R[letrec a := n in s[a]]

≈ letrec a := n in R[s[a]] (since (lll) ⊆≈)

≈ letrec b := 1 in (letrec a := n− 1 in R[s[a]])[b] (by Proposition B.2)

≈ letrec b := 1 in R[letrec a := n− 1 in s[a]][b] (since (lll) ⊆≈)

≈ letrec b := 1 in (letrec a := n− 1 in (R[s][a]))[b] (induction hypothesis)

≈ letrec a := n in (R[s][a]) (by Proposition B.2)

2. R = letrec Env in R′[·] where R′ is a weak reduction context.

R[letrec a := n in s[a]]

= letrec Env in R′[letrec a := n in s[a]]

≈ letrec a := n,Env , R′[s[a]] (since (lll) ⊆≈)

≈ letrec b := 1 in (letrec a := n− 1,Env in R′[s[a]])[b] (by Proposition B.2)

≈ letrec b := 1 in R[letrec a := n− 1 in s[a]][b] (since (lll) ⊆≈)

≈ letrec b := 1 in (letrec a := n− 1 in R[s][a])[b] (induction hypothesis)

= letrec b := 1 in (letrec a := n− 1 in (letrec Env in R′[s])[a])[b]

≈ letrec a := n in (letrec Env in R′[s])[a]) (by Proposition B.2)

= letrec a := n in (R[s])[a]

3. R = letrec Env , x = R′[·] in u where R′ is a weak reduction context.

R[letrec a := n in s[a]]

= letrec Env , x = R′[letrec a := n in s[a]] in u

≈ letrec Env , a := n, x = R′[s[a]] in u (since (lll) ⊆≈)

≈ letrec b := 1 in (letrec Env , a := n− 1, x = R′[s[a]] in u)[b] (by Proposition B.2)

≈ letrec b := 1 in (letrec Env , x = (R′[letrec a := n− 1 in s[a]]) in u)[b] (since (lll) ⊆≈)

= letrec b := 1 in (R[letrec a := n− 1 in s[a]])[b]

≈ letrec b := 1 in (letrec a := n− 1 in R[s][a]])[b] (induction hypothesis)

= letrec b := 1 in (letrec a := n− 1 in (letrec Env , x = R′[s] in u)[a])[b]

≈ letrec a := n in (letrec Env , x = R′[s] in u)[a] (by Proposition B.2)

= letrec a := n in R[s][a]

Lemma B.4. rln(letrec a := n in s[a]) = n+ rln(s′) where s′ is s where all [a]-labels are removed.
In particular this also shows rln(s[n]) = n+ rln(s)

Proof. The reduction letrec a := n in s[a]
LRPw,letwn,n−−−−−−−−−→ C,letw0,∗−−−−−−→ letrec a := 0 in s′ shows

rln(s[n]) = n+ rln(letrec a := 0 in s). Finally, (gcW) ⊆≈ shows the claim.

Corollary B.5. For every reduction context R: rln(R[letrec a := n in s[a]]) = n+rln(R[s′]) where
s′ is s where all [a]-labels are removed. In particular, this shows rln(R[s[n]]) = n+ rln(R[s]).

Proof. By Proposition B.3 we have rln(R[letrec a := n in s[a]]) = rln(letrec a := n in R[s][a])
and by Lemma B.4 we have rln(letrec a := n in R[s][a]) = n+ rln(R[s′]).

Proposition B.6. (s[n])[m] ≈ s[n+m]

Proof. Clearly (s[n])[m] ∼c s[n+m] Let R be a reduction context, then rln(R[(s[n])[m]]) = m +
rln([R[s[n]]) = m + n + rln(R[s]) = R[s[n+m]] by Corollary B.5. Now the context lemma for im-
provement shows the claim.

Lemma B.7. If s
LRPw,a−−−−−→ t with a ∈ {lbeta, case− c, seq − c}, then s ≈ t[1]

Sharing Decorations for Improvements 25

Proof. We use the context lemma for improvement and thus have to show for all reduction contexts
R:

rln(R[s]) = rln(R[t[1]])
By Corollary B.5 we have rln(R[t[1]]) = 1 + rln(R[t]) and thus it suffices to show
rln(R[s]) = 1 + rln(R[t])
Let s0

a−→ t0 for a ∈ {lbeta, case− c, seq}. We go through the case for s and t;

1. s = R−0 [s0],
t = R−0 [t0]

Then R[s]
LRPw,a−−−−−→ R[t] and thus rln(R[s]) = 1 + rln(R[t]).

2. s = letrec Env in R−0 [s0],
t = letrec Env in R−0 [t0]

We go through the cases for R:

(a) R is a weak reduction context. Then

R[s]
LRPw,lll,∗−−−−−−→ letrec Env in R[R−0 [s0]]
LRPw,a−−−−−→ letrec Env in R[R−0 [t0]]
LRPw,lll,∗←−−−−−− R[letrec Env in R−0 [t0]] = R[t]

(b) R = letrec Env ′ in R′, where R′ is a weak reduction context. Then

R[s]
LRPw,lll,∗−−−−−−→ letrec Env ,Env ′ in R′[R−0 [s0]]
LRPw,a−−−−−→ letrec Env ,Env ′ in R′[R−0 [t0]]
C,lll,∗←−−−− letrec Env ′ in R′[letrec Env in R−0 [t0]]

= R[t]

(c) R = letrec Env ′, u = R′ in r, where R′ is a weak reduction context. Then rln(R[s]) =
rln(R[letrec a := 1 in t[a]]), since:

R[s]
LRPw,lll,∗−−−−−−→ letrec Env ,Env ′, u = R′[R−0 [s0]] in r
LRPw,a−−−−−→ letrec Env ,Env ′, u = R′[R−0 [t0]] in r
C,lll,∗←−−−− letrec Env ′, u = R′[letrec Env inR−0 [t0]] in r

= R[t]

3. s = letrec Env , y = R−0 [s0] in u0
t = letrec Env , y = R−0 [t0] in u0

We go through the cases for R:

(a) R is a weak reduction context. Then

R[s]
LRPw,lll,∗−−−−−−→ letrec Env , y = R−0 [s0] in R[u0]
LRPw,a−−−−−→ letrec Env , y = R−0 [t0] in R[u0]
C,lll,∗←−−−− R[t]

(b) R = letrec Env ′ in R′, where R′ is a weak reduction context.

R[s]
LRPw,lll,∗−−−−−−→ letrec Env ′,Env , y = R−0 [s0] in R

′[u0]
LRPw,a−−−−−→ letrec Env ′,Env , y = R−0 [t0] in R

′[u0]
C,lll,∗←−−−− R[t]

(c) R = letrec Env ′, u = R′ in r, where R′ is a weak reduction context. Then

R[s]
LRPw,lll,∗−−−−−−→ letrec Env ′,Env , y = R−0 [s0], u = R′[u0] in r
LRPw,a−−−−−→ letrec Env ′,Env , y = R−0 [t0], u = R′[u0] in r
C,lll,∗←−−−− R[t]

26 M. Schmidt-Schauß and D. Sabel

Theorem B.8. If s
LRPw,a−−−−−→ t with a ∈ {lbeta, case, seq, letwn}, then s ≈ t[1]

Proof. For (letwn) this was proved in Proposition B.2, for (case-c), (seq-c), and (lbeta) this was
proved in Lemma B.7. For the remaining (case) and (seq)-reductions, it suffices to observe that these
transformation can be expressed by using one (LRPw,case-c)-reduction (or (LRPw,seq-c)-reduction
respectively) and (cpcx), (gc), and (lll) transformations. Since for all these transformation we have

u
C,cpcx∨gc∨lll−−−−−−−−→ u′ implies u ≈ u′ (Theorem 2.26) the claim follows.

Proposition B.9. For any strict surface context S: S[letrec a := n in s[a]] ≈ letrec a :=
n in S[s][a] and thus in particular S[s[n]] ≈ S[s][n]

Proof. If S[r] ∼c ⊥ for all r, then S[letrec a := n in s[a]] ∼c ⊥ ∼c letrec a := n in S[s][a] and since
for any reduction context R: R[⊥] ↑, R[S[letrec a := n in s[a]]] ↑ and R[letrec a := n in S[s][a]] ↑
and thus rln(R[letrec a := n in s[a]]) = ∞ = rln(R[letrec a := n in S[s][a]]) and the context
lemma for improvement shows S[letrec a := n in s[a]] ≈ letrec a := n in S[s][a].

Otherwise, for every r and any reduction context R: R[S[r]]
LRPw,k−−−−−→ R′[r] where R′ is a reduction

context. and rln(R[S[r]]
LRPw,k−−−−−→ R′[r]) = m for some m ≤ k.

ForR[S[letrec a := n in s[a]]], we have rln(R[S[letrec a := n in s[a]]]) = m+rln(R′[letrec a :=
n in s[a]]) and by Proposition B.3 we have rln(R′[letrec a := n in s[a]]) = rln(letrec a :=
n in R′[s][a]). By Lemma B.4 we have rln(letrec a := n in R′[s][a]) = n + rln(R′[s′]) where s′ is s
where all [a]-labels are removed. Thus R[S[letrec a := n in s[a]]] = m+ n+ rln(R′[s′])

For R[letrec a := n in S[s][a]], we have by Corollary B.5 rln(R[letrec a := n in S[s][a]]) =
n+rln(R[S[s′]]) where s′ is s where all [a]-labels are removed. Since rln(R[S[s′]]) = m+rln(R′[S[s′])
we have rln(R[letrec a := n in S[s][a]]) = n+m+ rln(R′[S[s′]).

Concluding we have shown rln(R[S[letrec a := n in s[a]]]) = rln(R[letrec a := n in S[s][a]])
and clearly also R[S[letrec a := n in s[a]]] ∼c R[letrec a := n in S[s][a]] holds. Thus the context
lemma for improvement shows the claim.

Proposition B.10. Let S be a surface context. Then S[letrec a := n in s[a]] � letrec a :=
n in S[s][a] and in particular S[s[n]] � S[s][n].

Proof. Let R be a reduction context. If R[S] is strict, then Proposition B.9 shows R[S[letrec a :=
n in s[a]]] � R[letrec a := n in S[s][a]] and thus rln(R[S[letrec a := n in s[a]]]) ≤
rln(R[letrec a := n in S[s][a]]) for all reduction contexts.

If R[S] is non-strict, then rln(R[S[r]]) = mR for any R and where mR depends only depends
the context R[S]. Then rln(R[S[letrec a := n in s[a]]]) = mR. From Corollary B.5 we have
rln(R[letrec a := n in S[s][a]]) = n+rln(R[S[s′]]) where s′ is s where all [a]-labels are removed. Thus
rln(R[letrec a := n in S[s][a]]) = n+mR. Since S[letrec a := n in s[a]] ∼c letrec a := n in S[s][a]

(by correctness of (letw) and (gcW)), the context lemma for improvement shows the claim.

Proposition B.11. Let S be a surface context. Then letrec a := n in S[s[a]] � letrec a :=
n in S[s][a], and if S is strict, then letrec a := n in S[s[a]] ≈ letrec a := n in S[s][a].

Proof. First assume that S is strict. Let R be a reduction context. Then S′ := R[letrec a := n in S[·]
is also strict. If S′[r] ∼c ⊥ for all r, then rln(R[letrec a := n in S[s[a]])) =∞ and rln(R[letrec a :=
n in S[s])[a]) = n+ rln(R[S[s]]) = n+∞ =∞

Now assume that S is not strict. Let R be a reduction context. By (lll)-transformations we have
R[letrec a := n in S[s[a]]] ≈ letrec a := n in R[S[s[a]].

If R[S[·]] is strict, then we have letrec a := n in R[S[s[a]]] ≈ letrec a := n in R[S[s]][a] (since
R[S[·]] is a strict surface context) and letrec a := n in R[S[s]][a] ≈ letrec a := n in R[S[s][a]] (since
R is a strict surface context).

By (lll)-transformations we have letrec a := n in R[S[s][a]] ≈ R[letrec a := n in S[s][a]]. thus
rln(R[letrec a := n in S[s[a]]]) = rln(R[letrec a := n in S[s][a]]).

Sharing Decorations for Improvements 27

If R[S[·]] is non-strict, then rln(R[S[r]]) = mR for any r and where mR only depends on the
context R[S]. Then rln(R[letrec a := n in S[s[a]]]) = rln(letrec a := n in R[S[s[a]]]]) = mR, since
rln-length of the normal order reduction for R[S[r]] is the same for letrec a := n in R[S[r]], since
only (lll)-reduction may be added. We also have rln(R[letrec a := n in S[s][a]]) = n+rln(R[S[s]]) =
n+mR by Corollary B.5.

Thus in any case rln(R[letrec a := n in S[s[a]]]) ≤ rln(R[letrec a := n in S[s][a]]) and the
expressions are contextually equivalent and thus the context lemma for improvement shows the claim.

Corollary B.12. For all surface contexts S1, S2: S1[letrec a := n in S2[s
[a]]] � letrec a :=

n inS1[S2[s]]
[a] and if S1[S2] is strict, also S1[letrec a := n in S2[s

[a]]] ≈ letrec a := n inS1[S2[s]]
[a].

Proof. This follows from Propositions B.10 and B.11.

Proposition B.13. 1. letrec a := n, b := m in (s[a])[b] ≈ letrec a := n, b := m in (s[b])[a]

2. letrec a := n in (s[a])[a] ≈ letrec a := n in (s[a])
3. (tp1)p2 ≈ tp1⊕p2.

Proof. 1. Let R be a reduction context. Then R[letrec a := n, b := m in (s[a])[b]] ≈ R[letrec b :=
m in (letrec a := n in (s[a])[b]]), since (llet) ⊆≈. Applying Corollary B.5 two times shows
rln(R[letrec b := m in (letrec a := n in (s[a])[b]])) = m + rln(R[letrec a := n in (s′[a])]) =
m + nrln(R[s′′]) where s′′ is s where all label [a] and [b] are removed. Completely analogously
it can be shown that rln(R[letrec a := n, b := m in (s[b])[a]]) = n + m + rln(R[s′′]). Clearly,
letrec a := n, b := m in (s[a])[b] ∼c letrec a := n, b := m in (s[b])[a] and thus the context lemma
for improvement shows the claim.

2. Corollary B.5 shows that for all reduction contexts R the equation rln(R[letrec a :=
n in (s[a])[a]]) = n + rln(R[s′]) = rlnR[letrec a := n in (s[a])] holds, where s′ is s where
all [a]-labels are removed. The expressions are also contextually equivalent and thus the context
lemma for improvement shows the claim.

3. This follows from the previous parts and from Proposition B.6.

Proposition B.14. Let S[·, . . . , ·] be a multi-context where all holes are in surface position. Then

letrec a := n in S[s
[a]
1 , . . . , s

[a]
n] � letrec a := n in S[s1, . . . , sn][a]. If some hole ·i with i ∈

{1, . . . , n} is in strict position in S[. . . . , .], then letrec a := n in S[s
[a]
1 , . . . , s

[a]
n] ≈ letrec a :=

n in S[s1, . . . , sn][a].

Proof. This follows by repeated application of Corollary B.12 and Proposition B.13.

Corollary B.15. Let S[·, . . . , ·] be a multi-context where all holes are in surface position. Let

S[s1, . . . , sn] be closed. Then S[s
[p1,a7→m]
1 , . . . , s

[pn,a 7→m]
n] � S[sp11 , . . . , s

pn
n][m].

If some hole ·i with i ∈ {1, . . . , n} is in strict position in S[. . . . , .], then S[s
[p1,a 7→m]
1 , . . . , s

[pn,a7→m]
n] ≈

S[sp11 , . . . , s
pn
n][m].

Proposition B.16. The following transformation is correct w.r.t. ≈: Replace
(letrec x = s[n,p],Env in t) by letrec x = s[x[a7→n,p]/x], Env [x[a7→n,p]/x] in t[x[a7→n,p]/x],
where a is a fresh label and all occurrences of x are in surface position.

Proof. Let R be a reduction context. If all occurences of x in R[(letrec x = s[n,p],Env in t)]
are in non-strict positions, then rln(R[(letrec x = s[n,p],Env in t)]) =
rln(R[(letrec x = s,Env in t)]) = rln(R[letrec x = s[x[a7→n,p]/x],
Env [x[a7→n,p]/x] in t[x[a7→n,p]/x]]). If there is a strict position of x in R[(letrec x = s[n,p],Env in t)],
then rln(R[(letrec x = s[n,p],Env in t)]) = letrec x = s[x[a7→n,p]/x],
Env [x[a7→n,p]/x] in t[x[a7→n,p]/x], since the work corresponding to labels in p are evaluated once
and also the work n is only evaluated once. The context lemma for improvement thus shows the
claim.

