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Abstract

Purpose

In secondary progressive Multiple Sclerosis (SPMS), global neurodegeneration as a driver

of disability gains importance in comparison to focal inflammatory processes. However, clin-

ical MRI does not visualize changes of tissue composition outside MS lesions. This quanti-

tative MRI (qMRI) study investigated cortical and deep gray matter (GM) proton density

(PD) values and T1 relaxation times to explore their potential to assess neuronal damage

and its relationship to clinical disability in SPMS.

Materials and Methods

11 SPMS patients underwent quantitative T1 and PD mapping. Parameter values across

the cerebral cortex and deep GM structures were compared with 11 healthy controls, and

correlation with disability was investigated for regions exhibiting significant group

differences.

Results

PD was increased in the whole GM, cerebral cortex, thalamus, putamen and pallidum. PD

correlated with disability in the whole GM, cerebral cortex, putamen and pallidum. T1 relaxa-

tion time was prolonged and correlated with disability in the whole GM and cerebral cortex.

Conclusion

Our study suggests that the qMRI parameters GM PD (which likely indicates replacement of

neural tissue with water) and cortical T1 (which reflects cortical damage including and
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beyond increased water content) are promising qMRI candidates for the assessment of dis-

ease status, and are related to disability in SPMS.

Introduction
MS is an immune-mediated chronic disease of the CNS. The diagnosis and treatment of MS is
based on clinical observations and supported by MRI [1]. As WM lesions are the most promi-
nent MS-related pathology, MS was initially considered to be primarily a WM disease. How-
ever, more recent histopathological and MRI findings have demonstrated extensive gray
matter (GM) involvement in MS [2]. In routine clinical practice, conventional MRI contrasts
are the basis for diagnosis and evaluating lesion load, also identifying new lesions in longitudi-
nal investigations [3]. Unfortunately, the association between clinical disability and conven-
tional radiological findings is poor [4].

The transition to secondary progression is important clinically, because therapy options are
limited for this phase. Importantly, the transition to Secondary Progressive Multiple Sclerosis
(SPMS) can be delayed by disease modifying therapy [5]. In SPMS, diffuse inflammation
accompanied by a widespread neurodegenerative component resulting in global axonal loss
seems to become more prominent than in relapsing-remitting MS (RRMS), and is thought to
be the primary cause of disability progression in SPMS [6–8]. At this stage of the disease, an
intact blood brain barrier is thought to compartmentalize inflammation within the CNS, which
might explain the low effectiveness of most of the current therapies [8]. Diffuse microstructural
changes in GM, caused by global inflammation and neurodegeneration, are not visible on rou-
tine clinical MRI. Therefore, as opposed to relapsing-remitting MS, the monitoring of SPMS
patients is primarily based on clinical measurements. Changes of tissue composition in GM,
where this pathology actually takes place, cannot be assessed directly with conventional MRI.

Quantitative MRI (qMRI) techniques allow for the direct measurement of tissue parameters
in vivo, providing a window into the microstructural tissue composition and its changes in MS.
qMRI detects pathological processes in tissue that appears normal on conventional MR images,
and the measured tissue parameters have been shown to correlate with disability in RRMS and
mixed collectives:

Prolongation of the T1 relaxation time in normal appearing brain tissues has been shown
for various collectives of MS patients, including primary-progressive MS patients [9,10], SPMS
patients [9,11] and RRMS patients [12–14]. Parry et al. demonstrated a correlation of T1 relax-
ation times in normal appearing white matter and MS lesions with disability in a mixed collec-
tive of RRMS and SPMS patients [11]. Normal appearing white matter T1 values correlated
with disability in a collective of primary-progressive MS patients [10]. Furthermore, cortical T1
histogram mode was shown to be associated with clinical disability in a mixed RRMS and
SPMS group [9], and whole-brain T1 correlated with results of the nine-hole peg test [15], an
index of arm function, but not the Expanded Disability Status Scale (EDSS), a multimodal,
integrative index of global disability, in a group of early RRMS patients [13].

In RRMS patients, the proton density (PD) in the frontal white matter inside and adjacent
to the corpus callosum was found to correlate strongly with EDSS [16].

In summary, a correlation between T1 values measured in various regions and the degree of
disability has been shown in mixed collectives including RRMS and SPMS patients, but it is
unclear whether these results are representative for SPMS patients, or whether the correlation
with disability was driven by the combination of patients at early and late stages of disease. For
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the parameter PD, which indicates replacement of neural tissue by water in the cortex, no data
specific to SPMS patients are available.

There is an as yet unmet need for better imaging surrogates of disease state in SPMS, where
information from conventional MRI does not sufficiently reflect the ongoing pathology. In this
study, we explore qMRI measurements taken from cortical and subcortical GM regions of
interest (ROIs) in SPMS patients. We assess parameter changes relative to a collective of
healthy subjects, and explore the relationship between qMRI tissue parameters and clinical dis-
ability in SPMS. The hope is to provide clinicians and researchers with a means to measure
neurodegeneration directly, and to provide a suitable and clinically relevant imaging surrogate
of neuronal damage in SPMS.

The study presented here aims at an assessment of microstructural changes in cerebral tis-
sue apart fromMS lesions. T1 and PD values in the cerebral cortex and deep GM of SPMS
patients were systematically investigated with advanced qMRI and segmentation methods,
comparing the results with values measured on a matched collective of healthy controls and
evaluating the correlation with the EDSS.

Materials and Methods

Participants
11 patients (4 male) with SPMS and 11 age-matched healthy control subjects (5 male) partici-
pated in the study. Healthy controls were free from neurological or psychiatric disease, as
assessed by systematic history evaluation and clinical examination. Further exclusion criteria
were: brain surgery, drug abuse, diabetes mellitus and severe arterial hypertension. Data from
an overlapping collective have been reported earlier, evaluating the predictive value of qMRI
regarding gadolinium enhancing lesions [17]. Patients were scored on the EDSS by an MS spe-
cialist [18]. Written informed consent was given, and the study was approved by the ethics
committee of the State Medical Association of Rhineland-Palatine and by the Institutional
Review Board. The study was conducted according to the principles expressed in the Declara-
tion of Helsinki.

Data acquisition
Measurements were performed on a 3 Tesla whole body MR scanner (Trio, Siemens Medical
Solutions, Erlangen, Germany; radiofrequency transmission: body coil, radiofrequency recep-
tion: 8-channel phased-array head coil).

The variable flip angle method was applied for T1 and PD mapping [19]. This method is
based on two spoiled 3D gradient echo acquisitions at different excitation angles, resulting in a
PD-weighted and a T1-weighted data set. A FLASH-EPI hybrid readout was applied [20] to
increase the signal-to-noise ratio. The parameters were: isotropic spatial resolution of 1mm,
field-of-view 256 x 224 x 160 mm3, TR/TE/α1/α2 = 16.4 ms/6.7 ms/4°/24°, BW = 222 Hz/
Pixel. The total scan duration for both data sets was 9:48 min.

Non-uniformities of the transmitted radiofrequency field (B1) were measured as described
before [21]: two multi-slice gradient echo data sets are recorded, one after full spin relaxation
and one after radiofrequency irradiation which rotates the longitudinal magnetization by a cer-
tain angle. As the quotient of both data sets yields the cosine of this angle, B1 can be obtained
by comparing the local angle with the nominal value which was set to 45°. The parameters
were: isotropic spatial resolution: 4 mm, field-of-view as above, TR/TE/α = 11 ms/5 ms/11°,
BW = 260 Hz/Pixel. The duration of B1 mapping was 0:53 min.

For the evaluation of residual signal losses induced by T2� relaxation effects during the finite
TE of 6.7 ms, two multi-slice gradient echo data sets with different TE were recorded with the
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following parameters: isotropic spatial resolution: 2 mm, field-of-view as above, TR/TE1/TE2/α =
1336 ms/4.3 ms/11 ms/50°, BW = 292 Hz/Pixel. The scan duration for both data sets was 5 min.

Data processing and analysis
Data processing was performed with custom-built functions written for Matlab (MathWorks,
Natick, MA) and shell scripts using tools from the FMRIB Software Library [22].

B1 was obtained as described above and in the literature [21]. Quantitative T1-maps were
calculated from the variable flip angle data [19]. In detail, Si/tan(αi) was plotted versus Si/sin
(αi) where S1/2 are the local signal amplitudes in the PD and T1 weighted data sets, respectively,
and α1/2 are the respective excitation angles, corrected for B1 inhomogeneities. Additionally,
data were corrected for the effect of insufficient spoiling of transverse magnetization [23]. PD
maps were derived as reported before [24]: in summary, the PD weighted data set was cor-
rected for any T1, T2� and B1 bias and non-uniformities of the receive coil sensitivity profile
[24]. PD values were normalized by defining a value of 100% in CSF.

Synthetic T1-weighted anatomical MP-RAGE data sets were calculated from the quantita-
tive T1 and PD maps, following the procedure described in [25]. The calculation was per-
formed for the following parameters: isotropic spatial resolution: 1 mm, field-of-view as above,
TR/TI/α = 1900 ms/900 ms/9°. Since the input maps were corrected for T2� effects, the nomi-
nal TE value of the synthetic MP-RAGE data is zero.

After skull-stripping the data sets using the FMRIB Software Library tool “BET” for every
participant, the software “FAST” [26] was applied and the anatomical MP-RAGE data set was
segmented into GM, WM and CSF partial volume estimate (PVE) maps. The calculated GM
PVE map was used to create a cortex PVE map, eliminating all voxels with a PVE< 0.95 and
voxels belonging to non-cortical structures. The latter was achieved by eliminating all voxels
that were part of an exclusion mask, comprising masks of deep GM (calculated with “FIRST”),
masks of the white matter with filled ‘holes’ to eliminate lesions (obtained with “FAST”) and
masks of the cerebellum and the ventricles. For removal of artefacts and non-cortical tissue
from the cortex PVE map, a threshold of absolute T1 between 1200 and 1600ms was applied to
the final map [24,27]. Lesions still remaining in the cortical PVE maps were manually removed
as described in detail below. The value of this cortical segmentation method has been demon-
strated earlier for cohorts of RRMS patients [28–30]. The final cortical PVE maps were inter-
sected with the T1 and PD maps, and cortical mean values of these parameters were
determined by calculating weighted averages of the individual maps using the local values of
the cortical PVE maps as weighting factors.

Additionally, for every single participant, a segmentation of the deep GM structures, which
are anatomically best suited for an accurate segmentation (thalamus, caudate nucleus, putamen
and globus pallidus), was generated with “FIRST” [31]. To avoid partial voluming with CSF,
the outermost voxels of the respective ROI were removed by morphological erosion with a
3-dimensional 3x3x3 mm3 kernel. The respective deep GM structures of both hemispheres
were combined to yield one ROI per structure. Additionally, a global GMmap was created
from the deep GM and cortex maps. After removal of lesions as described below, the respective
maps were applied to the T1 and PD maps and mean values for T1 and PD across each ROI
were calculated. The study focused on GM changes, as GM pathology is not well respresented
by clinical MRI. Still, in order to also investigate normal appearing WM (NAWM) separately,
WMmasks were obtained with ‘FAST’ from the FSL toolbox and eroded with a 6x6x6 mm3

kernel in order to reduce partial volume effects. After manual removal of any remaining MS
lesions (see below), the masks were applied to the T1 and PD maps and the mean T1 and PD
values in NAWMwere extracted.
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In detail, the manual removal of lesions still remaining in the GM andWM ROIs was per-
formed as follows: the respective GM andWM ROIs were carefully inspected together with the
MP-RAGE datasets by a researcher experienced in the management of patients with MS. If a
remaining MS lesion was identified within those ROIs, these were manually edited with
‘FSLVIEW’ and all voxels of the ROI overlapping with the identified MS lesion were removed.
S1 Fig demonstrates examples of the final ROIs.

To assess T1 and PD values in the whole brain, voxels containing CSF only needed to be
excluded. For this purpose, a threshold was applied to the skull-stripped quantitative maps
removing voxels with T1 values above 1600ms [24,27] from the T1 maps, and voxels with PD
values above 84.44 pu from the PD maps. The PD value 84.44 pu was chosen as it corresponds
to a T1 value 1600ms according to the Fatouros equation [32] with the parameters proposed
for 3 Tesla [33]. Afterwards, mean T1 and PD values across the whole brain were calculated.

Statistics
Statistical analyses were carried out with SPSS for Windows (20.0.0). Non-parametric testing
was used (Mann-Whitney-U) for group comparisons of the respective mean parameter values.
As evaluation of the relationship between quantitative and clinical parameters is only meaning-
ful for ROIs in which T1 or PD are significantly increased in the MS group as compared to the
control group, correlations of T1 and PD with EDSS, disease duration, gender and age were
assessed only for the respective regions, using Spearman’s rank correlation coefficient. For all
statistical procedures, tests where p was<0.05 were considered significant.

Results
Average age, EDSS and disease duration of the 11 patients examined (mean ± standard devia-
tion) were: Age 46.8±11.03 years, EDSS 5.8±1.88, range 3–8.5, disease duration 15.3±6.75
years. The healthy control group did not differ in age (43.6±11.17 years; p = 0.70). Fig 1 shows
the calculation and segmentation of the synthetic anatomical MP-RAGE data set and the quan-
titative maps for a representative subject. The synthetic MP-RAGE is overlaid with the masks
used for the cortex and deep GM structures (top), the PD map (second row) and the T1 map
(bottom). The data sets are shown for three orthogonal slices in MNI 152 standard space
(x = 19.00, y = -2.00, z = 3.00).

Table 1 lists absolute T1 and PD values in the different ROIs (mean ± standard deviation)
for the SPMS and control cohorts. PD was significantly increased in the MS group in the whole
normal appearing GM (NAGM), cerebral cortex, pallidum, putamen, thalamus, NAWM and
the whole brain, but not in the caudate nucleus. T1 increase was significant in the NAGM, cere-
bral cortex, NAWM and whole brain only. Furthermore, there was a trend for increased T1 in
the thalamus.

There was no significant correlation between the tissue parameters and age, gender, or dis-
ease duration for any ROI.

Table 2 lists the correlation coefficients between EDSS and the tissue parameters T1 and PD
for regions in which T1 or PD are significantly increased in the MS group. EDSS was correlated
with PD values for the whole NAGM, cerebral cortex, pallidum and putamen, but not for the
thalamus, NAWM or whole brain tissue. Correlations between EDSS and T1 were found for
the whole NAGM and cerebral cortex. Furthermore, a trend could be observed for the whole
brain. Neither GM T1 (r = 0.13, p = 0.70) nor PD (r = 0.17, p = 0.62) values were correlated
with the disease duration.

For the whole NAGM, Figs 2 and 3 show the relationship between EDSS and PD (Fig 2),
and between EDSS and T1 (Fig 3).

The Relationship between qMRI and Disability in SPMS
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Discussion
This study investigates cortical and deep GM damage in SPMS patients using qMRI measure-
ments of absolute PD and T1 values as potential imaging surrogates of disease state and disabil-
ity. When MS patients enter the secondary chronic progressive phase, neurodegeneration,
rather than localized inflammatory disease activity, appears to drive progression of clinical dis-
ability [6,7]. Diffuse neuronal damage, unlike the localized loss of myelin and axons produced
in focal lesions, is understood to play an important role in the accumulation of disability [34].

So far, radiological assessment in SPMS patients relies on conventional MRI, usually by
comparing the lesion load with previous scans and visually estimating the global brain atrophy.
However, it is the tissue outside of these lesions where the pathogenic processes mainly occur
in SPMS–indeed, disability is driven by damage to tissue outside overt lesions that remains
inaccessible to routine MRI assessment [34]. Clearly, there is a need for new imaging surrogates

Fig 1. Representative example for calculated quantitativemaps and segmentation of the synthetic
anatomical MP-RAGE data set. synthetic MP-RAGE data (top) with an overlay showing the identified
volumes of the cortex (red) and deep gray matter structures in colors (caudate nucleus in blue, thalamus in
yellow, putamen in pink and pallidum in green), the PDmap (second row) and T1 map (bottom). All data are
shown for three orthogonal slices in MNI 152 standard space (center x = 19.00, y = -2.00, z = 3.00).

doi:10.1371/journal.pone.0161036.g001
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of diffuse neuronal damage in SPMS. qMRI offers a window of insight into such microstruc-
tural changes.

Our data show that PD in the cerebral cortex, thalamus, putamen and pallidum is increased
in our cohort of SPMS patients. Previous histopathological studies have identified neurodegen-
eration and subsequent loss of neurons as defining pathological processes in SPMS. The quan-
titative parameter PD assesses the tissue water content. For SPMS patients, PD might be
sensitive to replacement of neural tissue by interstitial water, thus being sensitive to neuronal
loss, but also to loss of supporting glial structures or myelin, or cell swelling. Gross edema is
unlikely to occur in SPMS, but could form an alternative explanation for increased PD in other
conditions. Attractively, our observations suggest that PD may be a suitable parameter to assess
neurodegenerative changes in SPMS.

T1 measurements in the cortex inform about the actual composition of tissue, including,
but also reaching beyond water content. T1 reflects a complex interplay of factors such as

Table 1. Mean T1 relaxation times and proton densities. Data are shown in the different regions for the patients and the healthy controls (mean and stan-
dard deviation across group). * indicates significant group comparisons. NAGM = normal appearing gray matter. NAWM = normal appearing white matter.

Parameter ROI Patients/HC Mean SD p value

PD NAGM Patients 83.6 1.93 0.002*

HC 80.7 1.60

Cortex Patients 83.8 1.91 0.001*

HC 80.8 1.67

Caudate nucleus Patients 81.8 2.51 0.151

HC 80.2 2.01

Pallidum Patients 77.1 2.63 0.013*

HC 74.4 1.76

Putamen Patients 82.5 2.91 0.023*

HC 79.7 1.69

Thalamus Patients 78.7 2.01 0.005*

HC 75.6 2.60

NAWM Patients 71.7 2.49 0.001*

HC 67.9 1.68

Whole Patients 72.5 1.36 0.008*

Brain HC 70.9 0.85

T1 NAGM Patients 1415.9 30.25 0.016*

HC 1390.7 16.79

Cortex Patients 1425.9 27.09 0.019*

HC 1403.0 15.93

Caudate nucleus Patients 1326.7 48.93 0.652

HC 1343.1 43.30

Pallidum Patients 1003.4 49.08 0.478

HC 1016.2 42.15

Putamen Patients 1264.5 54.64 0.401

HC 1278.6 39.96

Thalamus Patients 1252.6 83.98 0.065

HC 1184.4 54.55

NAWM Patients 911.0 41.16 0.005*

HC 865.8 28.75

Whole Patients 1161.6 33.79 0.047*

Brain HC 1134.4 16.65

doi:10.1371/journal.pone.0161036.t001
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myelin content, iron deposits, axonal density and cellularity. T1 changes in MS indicate loss of
myelin, neuronal/axonal loss and gliosis [35,36]. Cortical and whole GM T1 relaxation time
was prolonged in our SPMS group, and there was a trend for T1 prolongation in the thalamus.
Previous investigations [9,11] have reported similar results, demonstrating T1 increase for the
cortex and thalamus but not for other deep GM structures in SPMS. It is quite possible that
power issues prevented detection of thalamic T1 changes in our study (p = 0.065), owing to the
relatively small group size.

Table 2. Spearman’s rank correlation coefficients for correlations between EDSS score and the tissue parameters T1 and PD for regions in which
T1 or PD are significantly increased in the MS group. * indicates significant correlations. NAGM = normal appearing gray matter. NAWM = normal
appearing white matter.

ROI PD T1

NAGM EDSS correlaton coefficient r 0.629* 0.779*

p value 0.038 0.005

Cortex EDSS correlaton coefficient r 0.606 0.779

p value 0.048* 0.005*

Pallidum EDSS correlaton coefficient r 0.661

p value 0.027*

Putamen EDSS correlaton coefficient r 0.670

p value 0.024*

Thalamus EDSS correlaton coefficient r 0.401

p value 0.222

NAWM EDSS correlaton coefficient r 0.469 0.383

p value 0.145 0.245

Whole EDSS correlaton coefficient r 0.205 0.588

brain p value 0.545 0.057

doi:10.1371/journal.pone.0161036.t002

Fig 2. Scatter plot showing EDSS and PD values in the gray matter.

doi:10.1371/journal.pone.0161036.g002
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While both T1 and PD changes were observed in the cerebral cortex, the question arises
why PD only was increased in three out of four deep GM regions studied (Table 1). A common
source of error in T1 quantification via the variable flip angle method is a lack of accuracy in
the underlying B1 maps. In fact, an error of only 5% in B1 would yield a 10% deviation between
real and apparent T1 values. B1 errors may occur in the vicinity of bones and fat due to suscep-
tibility and chemical shift effects, respectively. Furthermore, longitudinal relaxation effects may
yield errors inside or close to CSF, due to long T1 values. However, it is unlikely that any of
these effects played a major role for the data acquired here: the B1 mapping method employs a
very short TE of 5ms and is based on the quotient of two data sets, so signal losses due to sus-
ceptibility and chemical shift effects would have rather minor effects. In addition, data are care-
fully corrected for longitudinal relaxation effects in tissue and CSF, applying the approximate
respective T1 values [21]. Furthermore, it should be taken into account that PD maps are
derived from PD-weighted data sets via correction for T1 and B1 effects, such that an error in
B1 and therefore in T1 would also yield erroneous PD values.

A nother factor for the differences observed for T1 and PD increases might be that, even
though T1 values are affected by the water content, other processes driving T1 changes in
SPMS, such as gliosis, myelin loss and reduced axonal density, play a more prominent role in
the cerebral cortex than in the deep gray. Moreover, an increased deposition of iron in the deep
GM [37] could shorten T1 [38], and counteract the T1 prolonging effects of the processes listed
above, thus producing contrasting observations in the cortical and deep GM.

In contrast to the situation with T1, increased water content in tissue, as reflected by
increased PD, appears to be widespread in both the cortex and deep GM ROIs. While it is not
possible to isolate a single cause of the T1 changes from our data, they suggest that the patho-
logical processes in cortical and deep grey are not identical. An alternative explanation would
be a higher sensitivity of PD in the detection of neurodegeneration in SPMS.

Fig 3. Scatter plot showing EDSS and gray matter T1 values.

doi:10.1371/journal.pone.0161036.g003
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To investigate the clinical relevance of our findings, we performed correlation analysis
between the qMRI measurements in the GM regions identified above and EDSS, a score for the
assessment of disability in MS (Table 2). EDSS was correlated with whole NAGM PD, cortical
PD and the PD in two out of the three deep GM structures that showed significant differences
between the groups. In conclusion, the quantitative tissue parameter PD in GM was closely
related to disability in our SPMS cohort while sampling from tissue outside of lesions, i.e. in
the areas where neurodegeneration primarily takes place.

In the study presented here, a significant correlation with the EDSS could also be shown for
cortical and whole NAGM T1. These results are congruent to a previous study showing cortical
T1 to be correlated with disability in a mixed RRMS and SPMS group [9]. Interestingly, GM T1
and PD values were not correlated with the disease duration. This result might be explained by
the fact that patients with a less aggressive course of disease would accumulate a lower degree
of disability and tissue damage even after a long disease duration.

Naturally, patients with higher EDSS scores tend to be older than patients with lower EDSS
scores. However, as GM T1 and PD values decrease with age [39,40], this age-dependence
would not explain the positive correlation between EDSS scores and T1 or PD values.

Interestingly, T1 and PD values were increased in NAWM, but a relationship with the
degree of disability could only be observed for the respective values in NAGM. In NAWM, no
such relationship was found, which indicates that GMmight be a more relevant target for the
assessment of global neurodegenerative processes with qMRI techniques in SPMS.

We also found T1 and PD increases across the whole brain. These, however, would strongly
depend on the macroscopic lesion load. No correlation of T1 and PD values with the EDSS
could be observed for the whole brain. These results suggest that the analysis of clearly defined
anatomical regions with similar microstructural properties outside of MS lesions is of advan-
tage for the assessment of neurodegeneration in relation to the clinical status in SPMS.

While the present study focuses on GM pathology, previous work performed a more com-
plex WM analysis subdividing the WM outside of MS lesions into NAWM and diffusely abnor-
mal white matter, which seem to reflect independent pathological entities in MS [41].

Our study has some methodological innovations that help avoid partial volume effects and
missegmentation, especially in the thin cortical ribbon. Segmentation and ROI definition was
performed on synthetic MP-RAGE data sets directly calculated from the T1 and PD maps.
Therefore, the quantitative maps share the coordinate space with the anatomical data set, and
no registration was required. This reduces the risk of misregistration, partial volume effects,
and also of misclassification due to applying segmentation steps in different reference frames.
Furthermore, artifacts and misclassified voxels were carefully removed, which is of special
importance for the cortical volume which is close to CSF (cf. methods). The removal of non-
cortical structures was performed mostly automatically, which is required to pave the way for
quantitative T1 and PD mapping towards a potential clinical application.

In contrast to magnetization transfer ratio [42], the tissue parameters T1 and PD can be
sampled independent of sequence and hardware parameters with some effort, and the results
of an individual patient or of patient groups are then comparable across different sites.

Conventional MRI is widely available and represents standard in clinical routine. Clinical
studies might benefit from including qMRI protocols to assess properties of normal appearing
tissues, opening a separate window for assessment of the disease. One benefit of the qMRI tech-
nique is the ability to provide synthetic anatomies from the data, such as performed in the
study presented here. This approach reduces the total MR examination time [43], because con-
ventional MRI data do not need to be acquired separately. Another advantage is the improved
contrast that can be obtained by selecting appropriate parameters when calculating these
images, and the lack of coil sensitivity artifacts [25]. One disadvantage is that qMRI protocols
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approved for clinical use are currently only implemented on select commercial MRI scanners.
In addition, a widespread application of qMRI techniques in MS is currently difficult as the
software packages available from the MRI manufacturers are not optimized for neurological
applications. In the light of increased interest in qMRI, as evidenced by our and other groups’
studies [9,11], and existing packages for orthopaedic applications, we hope that qMRI will
become more readily available outside of a research environment.

Our study is not without limitations. The number of patients examined is small and the
cohort examined might therefore not be representative for SPMS patients in general. Neverthe-
less, correlations of PD and T1 relaxation time with disability measurements were present in
our study group. This fact is encouraging, as the use of MRI surrogates which become signifi-
cant only in a very large collective would have been more limited. Furthermore, increased par-
tial volume effects in the SPMS group caused by atrophy can never be fully excluded when
analyzing the thin cortical ribbon, which might have contributed to the cortical T1 and PD
increase. However, this argument would not apply for the deep GM ROIs, where partial vol-
ume effects were avoided by performing morphological erosion.

Identification of lesions for exclusion from the ROIs was based on routine MR images, but
did not involve special sequences to facilitate the detection of cortical lesions, such as double
inversion recovery. However, even DIR detects only 37% of the GM lesions identified by histo-
pathology [44]. Accordingly, the analysis of “normal appearing” tissue does not imply that
these tissues are free of lesions. In fact, diffuse small lesions undetectable by MRI are an impor-
tant pathological hallmark of GM damage in MS [45,46] and would also have contributed to
the results in the presented study.

While the degree of disability was quantified with the EDSS in our work, future studies
might benefit from more detailed neuropsychological data and other clinical scores such as the
Multiple Sclerosis Functional Composite Measure (MSFC) when assessing the relationship of
behavioural measures to GM T1 and PD changes in SPMS. Moreover, imaging at higher field
strengths might even allow a discrimination of different cortical layers, and their discrete analy-
sis in SPMS.

The study presented here focuses on T1 relaxometry and PD mapping. Future studies may
also benefit from incorporating the parameter T2, which has been shown to decrease in the
deep GM of MS patients [37], but to increase in NAWM [47] and NAGM [30], potentially
reflecting the complex interplay of subcortical iron deposition, increased water content and
demyelination.

In conclusion, this study assessed the parameters PD, a potential indicator of replacement
of tissue by water, and T1, an indicator of compositional changes including but also beyond
increased water content such as gliosis, demyelination and axonal loss. Our results suggest
that, cortical and deep GM PD values and cortical T1 values provide biologically meaningful
insights into disease status in SPMS. Quantitative T1 and PD mapping helps elucidate patho-
logical processes in SPMS beyond the lesion load, and could potentially allow for the measure-
ment of ongoing pathology in SPMS.

In the future, we hope that clinical studies in SPMS can use qMRI tools to assess ongoing tis-
sue damage, and perhaps even efficacy of treatment as new treatment strategies for SPMS
become available. Eventually, qMRI may even help to guide the therapy for individual patients.

Supporting Information
S1 Fig. Examples of final cortical (a) and white matter (b) ROIs. Efforts were taken to exclude
lesions (some are marked with red arrows) from the ROIs.
(PDF)
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