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0 Deutsche Zusammenfassung:
Anzestrale Linien unter dem Einfluss von
Mutation und Selektion

Die Populationsgenetik beschaftigt sich mit dem Einfluss von zufalliger deigjgtion, Mutation,

Selektion, Rekombination und Migration auf die genetische Struktur eined&am (vergleiche z.B.
[Dur08, Ewe04]). In dieser Arbeit wird das Zusammenspiel von zugdlReproduktion, Selektion
und Zweiwegmutation untersucht.

Dazu betrachten wir eine haploide Populatider GroReN € N im Moran-Modell, in der jedes Indi-
viduum einen von zwei Typen a&= {0, 1} tragt. Die Mutationsrate pro Individuum pro Generation
nach Typ 0 seliiyVp und nach Typ Liyvy mit uy, v, Vo > 0, Vo+ vi = 1. Sei 0 der selektiv bevorzugte
(‘gute’) Typ mit Selektionsvorteity und 1 der benachteiligte (‘schlechte’) Typ. Dann ist die Dyna-
mik des Modells die folgende (siehe Abbildung 0.1): Jedes Individuunorbait unabhéngig von
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Abbildung 0.1: Das Moran-Modell mit Zweiwegmutation und Selektion. Matan nach Ty® werden durch
Kringel dargestellt, Mutationen nach Tylbdurch Kreuzchen. Neutrale Reproduktionsereig-
nisse sind durch Pfeile mit keilféormigem Kopf dargest@&klektive Reproduktionspfeile mit
sternformigem Kopf durfen nur von Individuen des T9enutzt werden. Im Bild ist M 5,

K5 = 3 auf der linken Seite und¥= 4 auf der rechten Seite.

allen anderen Individuen mit Rat¢2 ein Kind desselben Typs. Dieses ersetzt ein rein zufallig aus
der Population gewahltes Individuum (dargestellt dupédile mit keilférmigem Kopf). Zusatzlich zu
dieser neutralen Komponente der Reproduktion gibt es eine selektivedtamnie der Reproduktion
mit Ratesy pro Individuum (dargestellt durcBternchenpfeiledie nur dann genutzt werden dirfen,
wenn das Individuum am Pfeilschaft Typ O trigiAuRerdem mutiert jedes Individuum unabhéngig
mit RateuyVvg nach Typ O (dargestellt durckringel) und mit Rateuyvy nach Typ 1 (dargestellt

IHaploid heiRt, dass jedes Individuum nur eine Kopie jedes Chromosesitzt(z.B. kénnte man sagen eine Mutter) hat.
2Diese Arbeit beschaftigt sich niertility Selektion.



0 Deutsche Zusammenfassung

durchKreuzcheh SeiKN die Anzahl der Individuen vom Typ O zur Zeit> 0, K{! = ko, fiir ein
ko€ {0,1,...,N}, undXN := KN /N der Typ-0-Anteil in der Population. Dann i&N) ein Geburts-
und Todesprozess mit Geburtenraﬁéund Todesratelli\‘, gegeben durch

Aszik(N—k)ij(N—k)ﬂ + (N—K) - unvo,
21\' N (0.1)
up = o KN =K+ k-uvs.

Wir nehmen an, dadg/N — xp € [0,1], Nuy — 6 > 0 undNsy — 0 > O fir N — . Dann kon-
vergiert der ProzesgX\\,)t>o in Verteilung gegen eine Wright-Fisher-Diffusion mit Mutation und
Selektion(X;)i>o mit StartwertXo = Xo und GeneratoGyx, gegeben durch

Gxg(X) = %x(l —x)g"(X) + [(L—=X)8vp—xBvy + ox(1—x)]d (x), firge €?[0,1. (0.2)
Die zugehorige Gleichgewichtsverteilung wird als Wright-Verteilung bezxsitisie hat die Dichte

W(X) = G- (1—x)20V1~1x20v%-1. exp{20x}, (0.3)

-1
mit der Normierungskonstanteg = | f5 (1—x)20V1-1x%%-1.exp{20x}dx|  (siehe auch [Dur08,
Kapitel 7.2] oder [KHB13, Sektion 2]).

In einer Population, die sich geman der eben beschriebenen Dynamik laitwgibt es zu jedem
Zeitpunktt genau ein Individuum, dessen Nachkommen ab einem bestimmten zukuinféigewrikt

s> 1 die gesamte Population ausmachen werden. Wir nennen dieses Indivitdungemeinsamen
Vorfahren (common ancestozum Zeitpunktr, da alle Individuen zu allen Zeitpunktén> s von

ihm abstammen (vgl. Abbildung 0.2). S8} dessen Typ zum Zeitpunkt In Abbildung 0.1 ist der
gemeinsame Vorfahre auf der linken Seite des Bildes das zweite Individanmben, also vom Typ
0. Die Linie, die durch alle gemeinsamen Vorfahren durch die Zeit gehtlendich also zu jedem

1

CA

 —
T S t

Abbildung 0.2: Der gemeinsame Vorfahre zur Zeittt (CA) ist das Individuum, dessen Nachkommen ab
dem Zeitpunkt & s die gesamte Population ausmachen. Die Linie durch alleegiegsamen
Vorfahren durch die Zeit ist die unsterbliche Linie (fetigik im Bild).

Zeitpunkt genau das Individuum befindet, dessen Nachkommen zu eindinftigen Zeitpunkt in
der Population fixiert sein werden, nennen wirsterbliche Linie (immortal linehzw. (der Notation



von Fearnhead [FeaO2] folgenaelle Linie (real line) Da die anzestrale Linie jedes Individuums
nach fast sicher endlicher Zeit in die unsterbliche Linie hinein verschmiatn kman den gemein-
samen Vorfahren zum Zeitpunktauch bestimmen, indem man ein beliebiges Individuum zur Zeit
t = +o0 aus der Population auswahlt und dessen anzestrale Linie aus derfthikuur Zeitt = 1
zurtck verfolgt.

0O.B.d.A. seit = 0 und der ProzesX zum Zeitpunkt O im Gleichgewicht. Dann definieren wir die
Wahrscheinlichkeit, dass die unsterbliche Linie zum Zeitpunkt O Typ O legeligenXy = X, durch
h(x) .= P(Ry = 0| Xo = X). Eine Darstellung vorn(x) wurde bereits von Fearnhead [Fea02] und
Taylor [Tay07] gefunden und dort vorwiegend mit Mitteln der Analysisigsen. In dieser Arbeit
entwickeln wir ein neues Teilchenbild, dpruned LD-ASGder fur sich selbst genommen interessant
ist und eine neue probabilistische Interpretation der Darstellund@griiefert.

Die Struktur dieser Arbeit I&sst sich als Diagramm mit kurzen Stichworterefalgrmalen darstel-
len. Dabei baut jedes Kapitel auf allen Kapiteln auf, die sich jeweils in dirdlmge weiter oben im
Baumdiagramm befinden.

’ Kapitel 2: Modelle und Literaturresultake

|

’ Kapitel 3: pruned LD—AS(%

Kapitel 4: pruned LDA-ASG‘ ’ Kapitel 5: killed ASG‘ Kapitel 6: (X,R,V)

|

Kapitel 7: (KN, RY)

Kapitel 1 ist eine Einleitung mit Eingliederung dieser Arbeit in den historisétertext und Kapitel

2 enthalt eine Einfuhrung in die Hauptmodelle, die in dieser Arbeit verwtendeden. Aul3erdem
werden einige Resultate aus der Literatur kurz vorgestellt. In Kapitel &digbeit entwickeln
wir ein neues Teilchenbild zur Bestimmung vbfx), das wir in Kapitel 4 von klassischen Wright-
Fisher-Diffusionen auf\-Wright-Fisher-Diffusionen erweitern. Die sogenannte Siegmund Dualitat
ist in diesem Fall ein wichtiges Hilfsmittel.

In Kapitel 5 entwickeln wir einen Algorithmus zur perfekten Simulation der Tiypimer Stichprobe
vonme N Individuen, die aus einer Wright-Fisher-Population mit Mutation und SelektoGleich-
gewicht gezogen werden.

Eine Verbindung zwischen Ideen von Taylor [Tay07], der den geragies Prozess, R) untersucht
hat, und einem von Fearnhead [Fea02] betrachteten Prd28s§ der die Entwicklung des TyR
der unsterblichen Linie in einer Umgebung Wdrsogenannten virtuellen Linien beschreibt, stellen
wir in Kapitel 6 her. Dort bestimmen wir die gemeinsame Dynamik des TripelR, V). In Kapitel

7 kommen wir zurtick zum diskreten Bild mit endlicher Populationsgfmd schlagen dort eine
Briicke zu Resultaten von Kluth, Hustedt und Baake [KHB13].

Die Resultate von Kapitel 3 basieren auf gemeinsamer Arbeit mit Sandra i&iéim Baake und
Anton Wakolbinger und sind publiziert in [LKBW15]. Kapitel 4 basiert aggmeinsamer Arbeit
mit Ellen Baake und Anton Wakolbinger und ist zur Veroffentlichung eiaipét [BLW16]. Die
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Inhalte der Kapitel 5, 6 und 7 sind hach gemeinsamen Diskussionen mit Else Bad/oder Anton
Wakolbinger entstanden.

0.1 Ein probabilistischer Zugang zur Bestimmung des Typs des
gemeinsamen Vorfahren

Um die Verteilung des Typs des gemeinsamen Vorfahren einer WrightrHesipilation mit Muta-
tion und Selektion zum Zeitpunkt ohne Beschrankung der Allgemeinheit 0, im Gleichgewicht
zu bestimmen, kann man sich alle Individuen der Population zu einem in dan#likgenden Zeit-
punkts > 0 anschauen und deren Ahnenlinien zuriick bis zum Zeitpunkt O venfolyenns (in
Abhéngigkeit von der Realisierung) gro3 genug gewahlt ist, dannnhalbe Individuen einen ein-
deutigen gemeinsamen Vorfahren zum Zeitpunkt O.

Der gemeinsame Prozess der (potentiellen) Ahnenlinien einer StichprodreSedektion im Teil-
chenbild wurde erstmals von Krone und Neuhauser erforscht [KN8®,7]. Der sogenannt&nze-
strale Selektionsgraph (ancestral selection graphirz ASG ist ein Graph mit Verzweigungen und
Verschmelzungen von Linien. Ein Reproduktionsereignis zwischen kingin im Moran-Modell
vorwarts in der Zeit (Pfeil mit keilférmiger Spitze) fuhrt zu einem Verschregsereignis im ASG
riickwarts in der Zett Ein selektiver Sternchenpfeil wird genau dann benutzt, wenn dasfeitn P
schaft sitzende Individuum vom Typ O ist. Kennt man dessen Typ jed@mtit, so kommen zwei
potentielle Vorfahren des Individuums an der Pfeilspitze als Mutter in Fuagees kommt zu einer
Verzweigung im ASG. Die Linie des potentiellen Vorfahren an der Pfeilspiizé continuing line
genannt, die Linie, von der der Pfeil stammt, heifsoming line

Wenns grol3 genug gewahlt ist, dann muss man sich zur Bestimmung des Typs dessgemen
Vorfahren zur Zeit 0 nicht die Ahnenlinien aller Individuen zur Zgih der Population anschauen.
Da bis zur Zeit 0 zurlick alle Ahnenlinien in die unsterbliche Linie verschnmodzén werden, reicht
es, sich eine beliebige Linie zur Zsizu ziehen und dessen ASG zu betrachten. (In Abbildung 0.3 ist
der ASG der zweitobersten Linie am rechten Rand von Abbildung 0.1 ge2éfig betrachten daher
immer den mit nur einer Linie zu einer sehr groRen Agjestarteten ASG.

Mutationen werden im ASG folgendermalRen modelliert: Fir jede Linie gibt @neinabhangigen

L
N

—t
f

Ia
A
e
\9,
«-—
r

Abbildung 0.3: ASG mit Mutationen auf den Linien. Es sind alle potentieNMenfahren des zweitobersten
Individuums aus Abbildung 0.1 gezeigt.

3In dieser Arbeit indizieren wir Riickwértszeit stets mitnd Vorwartszeit mit. In den Abbildungen lauft die Riickwérts-
zeit immer von rechts nach links und Vorwartszeit von links nach rechts.



0.1 Ein probabilistischer Zugang zur Bestimmung des Typs des gemeinsainiair&o

Poissonschen Punktprozess von Typ-0-Mutationen (Kringeln) mit Rataund Typ-1-Mutationen
(Kreuzchen) mit Rat@v;.

Eine Realisierung der Typen der Linien im ASG zur Zeit 0, gegeXes X, kann man durch ein
Bernoulliexperiment mit Erfolgsparametebekommen. Kennt man dann die Typen aller Linien im
ASG zur Zeit 0, so kann man den Typ des gemeinsamen Vorfahren zud Aeid den Typ des In-
dividuums zur Zeits) bestimmen. Dies ist im Fall ohne Mutationen einfach (vgl. [Man09, Theorem
2.1]): Der Typ des gemeinsamen Vorfahren zur Zeit O ist genau daweify; mindestens eine der
Linien im ASG zum Zeitpunkt O Typ 0 trAgt. Denn Typ 0 setzt sich immer durcivakl entweder
die continuing line oder die incoming line vom Typ 0 ist, ist auch der Nachkomnes eielektiven
Ereignisses vom Typ 0.

Im Fall mit Mutationen ist die Bestimmung des gemeinsamen Vorfahren zur Zéi¢Oracht kom-
plex. Man muss zuerst die Typen aller potentiellen Vorfahren zur Zeitnbéde (bzw. mit einem
Bernoullix)-Experiment simulieren indem man die potentiellen Vorfahren gemalR delyé&nfand
Misserfolgen des Experiments mit den Typen 0 odemfarbf). Diese Typen werden dann vorwérts
in der Zeit entlang der Linien des ASG unter Respektierung der Mutatioserullem Individuum
zur Zeitstransportiert. Dann wird der wahre Vorfahre zu jedem selektiven Risergickwarts in der
Zeit bis zur Zeit 0 bestimmt und somit die unsterbliche Linie zurlck bis zur Zedtrfolgt.

Diese recht komplizierte Prozedur wird in Kapitel 3 dieser Arbeit durceuneues Teilchenbild, den
pruned LD-ASGerheblich vereinfacht. Dazu starten wir mit dem ASG und fiihren eina@glder
Linien (inspiriert von Donnelly und Kurtz [DK99a]) ein: Bei einem selgkt Verzweigungsereignis
zeichnen wir die incoming line immer direkt unter die continuing line (vgl. Abbild@). Bei
einem Verschmelzungsereignis fihren wir immer die untere der beiden keteilinien weiter,
d.h. es verschmilzt stets die obere der beiden beteiligten Linien in die unteia.Hiim zu jedem

—]

Abbildung 0.4: Geordnete Version des in Abbildung 0.3 dargestellten ASG.

Zeitpunkt eine Nummerierung der Linien zu bekommen, platzieren wir die Liniehevel 1.2, .. ;

und zwar so, dass zu jedem Zeitpunkt die unterste Linie auf Level 1 istwsddunterste auf Level

2, u.s.w. Somit gibt also zu jedem Zeitpunkt die Nummer des hochsten bedetxds die Anzahl
der vorhandenen Linien im ASG an. Dies fuhrt dazu, dass bei einlektisen Verzweigungsereignis
auf Levelk € N die incoming line auf Levek platziert wird, die continuing line auf Levél+ 1 und

alle Linien auf den Level€ > k um ein Level nach oben adf+ 1 geschoben werden. Bei einem
Verschmelzungsereignis der Linien auf Lekelind Levelk, > k; verschmilzt die Linie auf Levdt,

in die Linie auf Levelk;. Um den freien Platz aufzufillen werden alle Linien auf den Levelsk,

um ein Level nach unten af— 1 geschoben (vgl. Abbildung 0.5). Den auf diese Art und Weise
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entstandenen Graphen nennenlarkdown ASGder kurzLD-ASG in Anlehnung an dawokdown
Modellvon Donnelly und Kurtz [DK99a].

Abbildung 0.5: LD-ASG zu Abbildung 0.4. Die Levels sind von unten nach obeshdummeriert.

Im Fall ohne Mutationen fiihrt die spezielle Ordnung der Linien bereita ddass wir die unsterbli-
che Linie im lookdown ASG zur Zeit 0 direkt angeben kdnnen, wenn wifTgiigen der Linien zur
Zeit 0 kennen. Dazu sei diemmune Linie(immune ling zu jeder gegeben Zeit die Linie, die die
unsterbliche Linie zu dieser Zeit ist, falls alle Linien zu dieser Zeit vom Tymd.Bei jedem auf
ihrem aktuellen Level stattfindenden selektiven Ereignis rutscht siemmnea mit der continuing line
dieses Ereignisses um ein Level nach oben. Ansonsten verhalt seosich jede andere Linie auch.

Proposition 0.1 Fur fast alle Realisierungen des LD-ASG im Gleichgewicht im Fall ohne Munatio
ist das Level der unsterblichen Linie zur Z@ientweder das niedrigste Ty(ptevel zur ZeiO oder,
falls alle Linien zur Zei mit Typ1 gefarbt sind, das Level der immmunen Linie zur Beit

Der Beweis von Proposition 0.1 wird induktiv von Ereignis zu Ereignis ZWeigung oder Ver-

schmelzung) geflihrt. Dabei nutzt man aus, dass die incoming line (die imne&t ditterhalb der

continuing line liegt) bei jedem selektiven Verzweigungsereignis genan dazestral ist, wenn sie
vom Typ 0 ist.

Im Fall mit Mutationen muss der LD-ASG weiter modifiziert werden. Jede Mutdigdert namlich
neue Informationen Uber die Typen der Linien. Daher fallen manche Laiggpotentielle Vorfahren
weg und kdnnen aus dem Graphen geléscht werden. Die Prunizgd®m die vom LD-ASG zum
pruned LD-ASJuhrt, ist die folgende (vgl. Abbildung 0.6): Wird eine Linie, die nicht die imraun

Abbildung 0.6: Pruned LD-ASG abgeleitet aus Abbildung 0.5. Die immunegelistifett markiert.

Vi



0.1 Ein probabilistischer Zugang zur Bestimmung des Typs des gemeinsainiair&o

Linie ist, von einer Typ-1-Mutation (Kreuzchen) getroffen, so wird diéie abgeschnitten. Alle

anderen Linien auf hdheren Levels rutschen um ein Level nach umeatieufrei gewordene Licke
wieder aufzufillen. Wenn eine Typ-1-Mutation auf der immunen Linie petssi@nn wird diese nicht

abgeschnitten (daher auch der Name der Linie). Damit allerdings die Qgater Linien respektiert

wird, rutschen alle Linien, die auf hdheren Levels als die immune Linie sitzerin Level nach un-

ten. Die immune Linie selber wird dann auf das vor der Umordnung hochsetve Level platziert.

Wird eine Linie von einer Typ-0-Mutation (Kringel) getroffen, so werddle Linien auf héheren

Levels abgeschnitten. Die Linie auf dem Level des Kringels setzt die immimiefort.

Durch das Abschneiden von Linien nach Mutationen tbertréagt sich dieage von Proposition 0.1
dann auch auf den Fall mit Mutationen.

Theorem 0.2 Fir fast alle Realisierungen des pruned LD-ASG im Gleichgewicht ist dasllder
unsterblichen Linie zur Zeld entweder das niedrigste TypLtevel zur ZeilD oder, falls alle Linien
zur ZeitO mit Typ 1 gefarbt sind, das Level der immmunen Linie zur Zeitnsbesondere ist die
unsterbliche Linie zur Zeid genau dann und nur dann vom T¢pwenn alle Linien zur Zeid vom
Typ1sind.

Fur den Beweis von Theorem 0.2 nutzt man einerseits aus, dass eine igdomijrdie durch eine
Typ-1-Mutation schlecht gefarbt wurde, nicht anzestral sein kAmdererseits bewirkt jede inco-
ming line, die durch eine Typ-0-Mutation gut geféarbt wurde, dass dielziigge continuing line kein
potentieller Vorfahre mehr sein kann.

Seil der Linienzahlprozess des pruned LD-ASG. Dann sind UbergategsvanL gegeben durch

g.(n,n—1) = }n(n— 1)+ (n—1)6vy + By,

2
a.(nn+1) = no, ©4)
g.(n,n—¢) = Bvy, 2</<n, neN.

Mithilfe von Theorem 0.2 ist es nun mdglich eine Interpretation der Wahnslattekeit h(x) und
gleichzeitig das Haupttheorem von Kapitel 3 anzugeben.

Theorem 0.3 Fir die Wahrscheinlichkeit, dass der gemeinsame Vorfahre zur0OA&m TypO ist,
gegeben die Frequenz der T@dndividuen zur ZeiD ist X = X, erhélt man

h(x) =y x(1-x)"*P(Lo > n), (0.5)

n>1

wobei Ly die Anzahl der Linien eines stationdren pruned LD-ASG zur@isit.
Die Tailwahrscheinlichkeitenja= P(Lo > n) sind eindeutig bestimmt durch die Rekursion

(n+1+20vy)a, ., —(n+1+20+20)a,+20a, =0, n>1, (0.6)
mit den Randbedingungen
=1, r!@ a,=0. (0.7)
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Eine Reihendarstellung vom h(x) = ¥,-1X(1 —x)"a,, wobei die Koeffizienter(a,) - die wir
‘Fearnhead Koeffizientémennen - durch die Rekursion (0.6) gegeben sind, kann man bereits in
[Fea02] und [Tay07] finden. Die probabilistische Interpretation ajeals Tailwahrscheinlichkei-

ten und der pruned-LD-ASG selbst sind neue Resultate dieser Arlzsit (ter Veroffentlichung
[LKBW15]).

0.2 Der Typ des gemeinsamen Vorfahren einer
N-Wright-Fisher-Diffusion
In Kapitel 4 dieser Arbeit erweitern wir die Resultate des Kapitels 3 (und sancih die Resulta-

te von Fearnhead [Fea02] und Taylor [Tay07]) &4¥Wright-Fisher-Diffusionen mit Mutation und
Selektion.

Wir betrachten Populationen dessen Typ-0-Frequenz sich gemaigkrsfen Generators entwickelt
(vgl. [EGT10, Gri14)),

A(d2)
2

Gxg(x) = / X(9(x+2Z(1=x)) = g(x)) + (1= X)(9(x— 2% — g(x))]
©4] (0.8)

+A({0})- %x(l—x)g”(x) + [oX(1—x) — Bvix+ Bvo(1—x)|d (X),

g € 2, wobei dasReproduktionsma® ein WahrscheinlichkeitsmaR a{d, 1] ist. Der Spezialfall
N\ = & ist der in Kapitel 3 (vgl. Sektion 0.1) behandelte Fall.

Sei weiterhinh(x) = P(Ry = 0 | Xp = X) die Wahrscheinlichkeit, dass die unsterbliche Linie in ei-
ner stationaren Situation zur Zeit 0 Typ 0 hat, gegeKgr- x. Man beachte nur, dass§ jetzt ei-

ne A-Wright-Fisher-Diffusion (mit Generator (0.8)) ist. Dann gilt unter dedBgung 0< o <

— J3log(1—x) %X die folgende Aussage.

Theorem 0.4 Die Wahrscheinlichkeit (x) hat die Reihendarstellung

h(x) = ZJx(l—x)”an, (0.9)

n=

wobei die Koeffizientenyan (0.9) monoton fallend sind und die eindeutige Lésung des folgenden
Systems von Gleichungen,

l/c-1
[ > n (C_ n) )\c,cn] (8n—a8c_1) + (0 + 0)an = Oan_1+ Ovians1, n>1,
n+1<c<eo

ap=1 a,:=Ilima,=0, (0.10)
n—-co
mit der Konvention

c0o—1 0 fallsd=1
= und  Awoe =A({1}). 0.11
<°°—d+1) {1 fallsd> 2 ' ({1 ( )
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0.2 Der Typ des gemeinsamen Vorfahren eivétright-Fisher-Diffusion

Der Beweis von Theorem 0.4 fiihrt Gber eine Erweiterung des prubed:G auf denA-Fall, den
pruned lookdowm\-ASG Dieser verhalt sich bei Mutationen und selektiven Ereignissen gemau s
wie der pruned LD-ASG. Zusatzlich zu den Koaleszenzereignisserzwen Linien gibt es Ver-
schmelzungsereignisse beliebiger Gré3e. Diese werden wie im von Pitit@d],[Bagitov [Sag99]
und Donnelly und Kurtz [DK99b] eingefuihrtef-Koaleszentemodelliert. Die Rate mit der jedes
beliebige aber feste Tupel vgrausb Linien in eine verschmilzt ist gegeben durch

1. .
. ::/0 Z(1-2 iz 2A(d2), j<b. (0.12)

r

Abbildung 0.7: Ausschnitt einer Realisierung eines pruned REASG. Die immune Linie ist fett mar-
kiert.

Ein Ausschnitt einer Realisierung eines pruned ABASG ist in Abbildung 0.7 gezeigt. Bei einem
Verschmelzungsereignis werden alle teilnehmenden Linien mit einem fetteki Pankiert. Alle
punktierten Linien verschmelzen dann in die Linie mit Punkt, die das niedrigstel besetzt.

Sei (L )r>o der Linienzéhlprozess des pruned I/DASG, der sich zur Zeit 0 im Gleichgewicht be-
finde, unda, :=P(Lo > n), n > 0. Der GeneratoG, vonL ist dann gegeben durch

(-1 /
Gual0)= 3 (g g ) hciala(®) - a(0)] + fola(e+1) - g(0)

c=1
s (0.13)

+(=1)8v1[g(f—1)—g(O)]+ kz Bvo[9(¢ — k) —g(0)].
=1

AulBerdem Ubertragt sich Theorem 0.2 und somit auch Theorem 0.&a0fHall.

Corollary 0.5 Fir die Wahrscheinlichkeit, dass die unsterbliche Linie im stationaren rwme/A-
ASG zur Zeid vom Typ0 ist, gegeben die Frequenz der T9pndividuen zur ZeiD ist Xp = X, erhalt
man

h(x) = Zox(l—x)”an. (0.14)

Um ein Gleichungssystem fir die Tailwahrscheinlichkeiten) zu bekommen, konstruieren wir
einen ProzesB, der in Siegmund-Dualitdézum Prozess steht, d.hP,(L, > d) = Py4(Dy < ¢) fiir
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alleu>0,¢,d e N (vgl. [Sie76] oder Sektion 4.1 in der Ubersichtsarbeit von Jansen umtdifer
Dualitat [JK14]).

Denn dann kénnen wir die Tailwahrscheinlichkeiten \ditber Treffwahrscheinlichkeiten des dualen
Prozesse® ausrechnen. Genauer gilt (siehe auch [CR84, Thmagl}} Pn.1(3t > 0: Dy = 1) fur
allen>0.

Einer Idee von Clifford und Sudbury folgend [CS85] beschreibenenst den Prozeds tiber soge-
nannteFlightsund konstruieren dann den dualen ProZ2sber die zugehdorigedualen Flights Ein
Flight f ist eine ordnungserhaltende Abbildung (alg&) < f(¢) fir alle k < ¢), die eine Menge in
sich selber abbildet (hiefr : NU {0} — NU{e0}). Wir setzen zusétzlicli(«) = « und nehmen an,
dassw fur den Prozesk unerreichbar ist.

Ein Flight, der zur Zeit auftaucht, induziert einen Ubergang ndgh= f(¢), gegeber, = ¢ (und

zwar fur alle/ € N). Grafisch stellen wir einen Flight als eine Menge simultaner Pfeile dar (siehe
Abbildung 0.8).

L
W

W

m

Y
|
v
|

Vv

I
v

1

>

Abbildung 0.8: Grafische Darstellung der vier Arten von Flights, die zur &esibung von L not-
wendig sind (hellbraune Pfeile), und deren duale Flightsnkelgrine Pfeile) zu-
sammen mit den zugehdrigen Pfadstiicken von L (hellbrawhPudunkelgrin).
Die Pfade von L folgen den Pfeilen in Richtung der Rickwéitsz(von rechts
nach links) und von D in Richtung der Vorwartszeit t (vondimiach rechts).

Die Dynamik des Prozesseskodnnen wir nun durch Poissonsche Punktprozesse von vier Typen vo
Flights beschreiben, die Verschmelzungen, selektive Verzweiguigpri,-Mutationen und Typ-0-
Mutationen représentieren. Die Realisierung eines Pfades des R®izdg€snen wir auf zweistu-
fige Weise bekommen. Zuerst generieren wir eine Realisierung der Reissm Punktprozesse der
Flights. Gegeben diese Realisierung lesen wir dannLdBfad direkt von den Flights ab: Wir fan-
gen mit einem vorgegebenen Startlevel an und gehen dann in Ricleitiithzung induktiv von
Flight zu Flight. Bei jedem Flight folgen wir jeweils dem Pfeil, der vom aktuellexel ded_-Pfades
ausgeht.

Zu jedem Flight f definieren wir fir d € N den dualen Flight f durch
f(d) = min(f~1({d,d+1,...})), mit der Konvention mif@) = « (vgl. auch Abbildung 0.8).

Zu einem aus einer Realisierudgder Poissonschen Punktprozesse der Flights abgelekepfzu
definieren wir einerD-Pfad, der auf folgende Weise ebenfalls v@rabgelesen werden kann: Zu
der Realisierungp definieren wir eine duale Realisierudy Diese geht au® durch die Abbildung



0.3 Das Simulieren von Stichproben mit dem killed ASG

(r,f) s (—r,f) =: (t, ) hervor. DerD-Pfad wird nun vor®d abgelesen, indem man zur Zeit 0
bei einem vorgegebenen Level startet und dann induktiv in Vorwgittezhtung von dualem Flight
zu dualem Flight geht und bei jedem dualen Flight jeweils dem Pfeil folgtyole aktuellen Level
desD-Pfades ausgeht.

In Kapitel 4 zeigen wir dann, dass der auf diese Art und Weise defifieReozess in (pfadweiser)
Siegmund-Dualitat zurh-Prozess steht. Den Generaf&y von D bekommt man dann tber die Form
der dualen Flights und die Ubergangsraten kon

0o0@)= 5 (4% )Aec-aralo(e) 0@+ (0~ Dolad 1) ~g(a)

+(d—1)8vi[g(d+1) —g(d)] + (d—1)Bvo[g() —g(d)] ,
deN,g:NU{oo} - R.

(0.15)

Eine ‘Zerlegung nach dem ersten Schritt’ des Ereigni$ses 0 : D; = 1}, gegeberDg = n+ 1, mit
den Raten (0.15) vob fuhrt dann schlie3lich zum Gleichungssystem (0.10).

0.3 Das Simulieren von Stichproben mit dem killed ASG

Kapitel 5 dieser Arbeit steht in keinem direkten Zusammenhang zu Kapitet 4ann daher auch
direkt nach Kapitel 3 gelesen werden

In Kapitel 5 betrachten wir eine klassische Wright-Fisher-Diffugi>o mit Mutation und Selek-
tion, dessen Generat@yx gegeben ist durch

Gxg(X) = %x(l—x)g”(x) +[(1—=x)8vo—xBv1 + ox(1—x)]d (x), ge €?[0,1]. (0.16)

Dabei verstehen wiKy wieder als die Frequenz der Typ-0-Individuen in einer Population gitr(Z
und nehmen an, dass die Verteilung vanim Gleichgewicht ist. In diesem Kapitel sind wir inter-
essiert arE [ () X{(1—Xo)™ ], in Worten also an der Wahrscheinlichkeit, dass gehedlividuen
einer Stichprobe der Groffeaus der Population zur Zeit 0 vom Typ 0 sind.

Eine Rekursion dieser Wahrscheinlichkeit wurde bereits von NeuhauseKrone tber den ASG
hergeleitet [KN97, Theorem 5.2]. Wir entwickeln eine neue Rekursi@n éime modifizierte Version
des ASG, derkilled ASG die auch gleichzeitig ein einfach implementierbarer Simulationsalgorith-
mus ist. Im Spezialfalm = 1 entspricht unser Algorithmus einem bereits bekannten Resultat von
Shiga [Shi88, Theorem 4.1], [SU86, Lemma 2.1].

Theorem 0.6 Sei me N die GroR3e einer Stichprobe von Individuen, die aus einer stationar verteilte
Wright-Fisher-Population mit Selektion und Mutation gezogen wird. Die ¥éhtainlichkeit, dass es
in der Stichprobe genatiindividuen vom Ty@ gibt,0 < ¢ <m,

m

e (102 m).0)) = | (7 )62 20m .

4Auch die Inhalte des Kapitels 3 sind nicht zwingend zum Verstandnis vpitdéd& notwendig. Wir betrachten zwar den
ASG in seiner geordneten Variante, wie sie in Kapitel 3 beschrieben wad kann hier jedoch jederzeit auch an den
‘ungeordneten’ ASG von Neuhauser und Krone [KN97, NK97] aemk

Xi
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erflllt das folgende System von Gleichungen,

dme (b1, i), )

20 K .
- k(k—1)+2k9+2kai;dm’[((bl"”’b'_l’b"b"b'ﬂ’”"bk)’J)
2 K .
+ KK 1)+ 2K0 1 20, ’i<pdm,£((b17~--abi—l;biprybi+la-~-7bp—l;bp+la--~abk)aJ)
29V1 k .
+k(k—1)+2k6+2k0 i;dm,f((bla'-~,blfl>bl+17"'abk)7J)
29V0

k
+ Kk_1) 1 2k6 1 2ko i;dm,ﬁ((bl\bia~~-abi—1\bi7bi+l\bi7--~7bk\bi)aJ+#bi)a

j€{0,1,....m}, by C{1,....mVv=1... k k>0,

Une(2,0) =1, dume(2,]) =Ofiiralle j # . (0.17)

Den Beweis von Theorem 0.6 fuhrt Gber die Konstruktion unseékiled ASG. Da der ‘normale’
ASG von Krone und Neuhauser [KN97, NK97] (im Gleichgewicht) alle pt&tlen Vorfahren von
allenm Individuen in der Stichprobe enthalt, lohnt es sich mit ihm bzw. seinerdgeden Varian-
te (vgl. Kapitel 3) anzufangen. Verfolgt man die potentiellen Ahnenliniexkwidirts in die Zeit, so
trifft man nach f.s. endlicher Zeit bei jeder Linie auf eine erste Mutations®i€arbungen der Li-
nien jeweils mit Typ 0 oder 1 wird dann wiederum vorwarts in der Zeit untespRktierung der
Verzweigungs- und Verschmelzungsereignisse entlang des Gragheur iZeit 0 und somit bis zu
den Individuen in der Stichprobe propagiert. Da die Farbung der hmen jenseits der ersten Mu-
tation keinen Einfluss mehr auf die Typen aetndividuen zur Zeit O hat, kann man sie bei dieser
ersten Mutation abschneiden. Da auf diese Art und Weise Linien ‘gekilldiare heil3t der entstande-
ne Graplkilled ASG Eine Ahnenlinie im ASG wird nach einer Typ-1-Mutation abgeschnittenjela s
nicht mehr dazu beitragt, dass irgendein Individuum der Stichproh&eitl® mit Typ O gefarbt wird.
Eine Typ-0-Mutation hingegen sorgt sogar dafir, dass alle Individiee Stichprobe, die die nach 0
mutierte Linie als potentiellen Vorfahren haben, zur Zeit 0 Typ 0 bekommen. Rdan also nicht
nur die mutierte Linie selber abschneiden, sondern auch alle Linien, dietigtiee Vorfahren der
betroffenen Individuen der Stichprobe zur Zeit 0 sind (vgl. AbbildOr®). Um zu jedem Zeitpunkt

r > 0 Buch darlber fihren zu kdnnen, welche Linie zur Zeftotentieller Vorfahre von welchen
Individuen der Stichprobe zur Zeit O ist, versehen wir jede Linie mit einesé@izlichen Label. Das
Label einer Linie zur Zeit enthalt die Nummern aller Nachkommen in der Stichprobe zur Zeit 0.
AuRerdem definieren wir noch den Zahlproze}®),~o. Die ZahlJ" gibt die Anzahl der Individuen
aus dem-Stichprobe an, bei denen zur Zeibereits klar ist, dass sie vom Typ 0 sind. Seier
Zeitpunkt, zu dem die letzte noch vorhandene Linie durch eine Mutation gekillt Dann istJ" die
Anzahl der Individuen dem-Stichprobe zur Zeit 0, die Typ 0 tragen.
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........................................ ﬁ_@\xﬁ} 6
..................... /_(EL\_/ {5h7 (SN {5} .
................ {4+ \/ {4}j {4} {4} 4
................ {2} \_/ {3}j {3} {3} 3
......... {2,4y {2} *\ J {2}j {2} {2} 5
% {47} 4{2} /C {1,3,5} j {1,51 {1} {1} 1
4 4 3 0 0 0 0o J6
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Abbildung 0.9: Realisierung eines killed ASG, der zur Zeimit einer Stichprobe der Gré3e m6 startet.
Die Startlabel auf der rechten Seite des Bildes sfigl, {2},...,{6} und es ist § = 0. Bei
einem durch einen Stern symbolisierten selektiven Eriggizweigt die Linie in sich selbst
und einen Klon mit identischem Label. Bei einem Koaleszeigrés tragt die resultierende
Linie als Label die Vereinigung der Labels beider betedigt.inien. Wird eine Linie von einer
Typ-1-Mutation (Kreuzchen) getroffen, so wird sie geléschteJegpo-Mutation bewirkt die
Erhéhung von 9 um die Méachtigkeit ihres Labels. Gleichzeitig werden dieliesem Label
enthaltenen Zahlen aus allen Labels geléscht und Linierleeien Labels werden komplett
weggeschnitten. In diesem Bild weden die Individué&y5, 2 der Stichprobe mit Typ geférbt.
Daher ist P auf der rechten Seite des Bildes gerade

Startet man einen killed ASG zur Zeit O mmitLinien, so fuhrt eine ‘Zerlegung nach dem 1. Schritt’
des Ereignissef)" = ¢} mit den Raten des ASG auf das System (0.17) von Gleichungen.

In Kapitel 5 dieser Arbeit zeigen wir dann noch Simulationsergebnisseil®ingen 5.3, 5.4 und 5.5)
und zeigen eine Verbindung zum sogenanmtecision tredm neu erschienenen Buch von Dawson
und Greven [DG14] auf.

0.4 Der Typ des gemeinsamen Vorfahren und die virtuellen Linien
in einer Wright-Fisher-Umgebung

In Kapitel 6 schlagen wir eine Briicke zwischen den HerangehensweiseFearnhead [Fea02] und
Taylor [Tay07] mithilfe des in Kapitel 3 diskutierten pruned LD-ASG. Die Hexte der Kapitel 4
und 5 werden hierfir nicht benétigt.

Um die Verteilung des Typs des gemeinsamen Vorfahren in einer (stapdaight-Fisher-Population
mit Mutation und Selektion im Gleichgewicht zur Zeit 0, gegebgnr= x, zu bekommen, untersucht
Fearnhead [Fea02] einen Markovschen ProzBs3/ ) cr, WobeiR, der Typ der unsterblichen Li-
nie (der reellen Linie) zur Zeit ist undV; die Anzahl sogenannter virtueller Linien zur ZeitEine

virtuelle Linie ist bei Fearnhead stets vom Typ 1 und verhdlt sich (rligkwé der Zeit) ansonsten
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genau so wie eine Linie im gefarbten ASG: Sie kann mit anderen virtuellenrLader der reellen
Linie, wenn diese gerade Typ 1 hat, verschmelzen, in sich selbst undheireLinie vom Typ 1
verzweigen, und von Typ 1 weg-mutieren. Passiert allerdings solchviitetion, so wird die Linie
einfach abgeschnitten - denn virtuelle Linien dirfen ja nur vom Typ 1 Seiarnhead bekommt dann
die Wahrscheinlichkeih(x), indem er die Gleichgewichtsverteilung des Proze$Reg) berechnet
und Gber die Verteilung voX integriert:h(x) = 3,-0P(Ro = 0,Vo = V).

Taylor hingegen betrachtet den ProzéXs R, );cr des TypsR der reellen Linie in seiner Wright-
Fisher Umgebung¥; ist die Frequenz der Typ-0-Individuen zur Zejtmit Dynamik gegeben durch
den GeneratoBx in (0.2). Er bestimmt den Generator des gemeinsamen ProZés$8s stellth(x)
als bestimmte Treffwahrscheinlichkeit dar, |6st ein Randwertproblem akdrbmt so eine Lésung
far h(x).

In Kapitel 6 kombinieren wir beide Ansétze, indem wir die Dynamik des TripaigssesX,R,V)
rickwarts und auch vorwarts in der Zeit untersuchen. Durch diesgsré Bild bekommt man einen
weiteren Einblick in die Dynamik des Typs der unsterblichen Linie.

Wir bestimmen zuerst die Dynamik vdiX,R,V) ruckwarts in der Zeitund bekommen folgendes
Resultat, welches wir dann auch intuitiv begrtinden.

Lemma 0.7 Der GeneratorG(XRN) des Prozesses, Vi, R ) cr ruckwarts in der Zeit ist gegeben
durch

~ 1-x
G(X7R,V)g(xa O’ V) = Gxg(xv 07 V) + TOVO [g (Xa 17V) - g(X7 07 V)]

+(v+1)o(1-x)[g(x,0,v+1) —g(x,0,V)] (0.18)
+ [vevl + %v(v— 1)] ﬁ [9(%,0,v—1) —g(x,0,V)]

G\(X,RV)g (Xa 1, V) = Gxg (Xv 1, V) + %(evl [g (X, 07V) -9 (X7 17V)]
+(v+1)o(1-x)[g(x,Lv+1)—g(x1,v)] (0.19)

1 1
+ [vevl + év(v+ 1)] T x 9(x,1,v—1)—g(x,1,v)]
fur alle ge €2 (0,1) x {0,1} x No.

Dieser Generator hat eine stationare Verteilung, die man durch Disintegretah der stationéren
Verteilung (siehe (0.3)) des Prozes3¥e®lgendermalRen schreiben kann.

Theorem 0.8 Die Dichte¢ der stationéren Verteilung des Prozesé¥sR,V ) ist gegeben durch

¢ (x,0,v) = w(x) -ax(1—x)",

d)(X, 1,V) :W(X) . (av_av+1)(1_x)v+l’ (0.20)
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fir x € [0,1], v € No, wobei die Koeffizientefay)ven, bestimmt sind durch

1 1
[2(v+ 1)+0+ 6} ay = [2(v+ 1)+9V1:| a1toa-1, v>1

mit ag=1 und lima, =0.
V—o0

(0.21)

(Die Koeffizienterja, ) erweisen sich somit als die ‘Fearnhead Koeffizienten’ aus Theorejn 0.3

Die Dynamik von(X,R V) vorwarts in der Zeitbbekommt man, indem man den Genera(/ﬁ@gw)
in der Zeit bezuglich der stationéaren Verteiluigdes ProzessdX, R V) umkehrt. Der Vorwartsge-
neratorGx ryv) muss also die Gleichung

/gl(G(X,R,V)QZ)dw = /(é(X,R,V)gl)gzdw (0.22)

fur alle Testfunktionem;, g, € €20, 1] x Ng x {0, 1} erfullen. Auf analytischem Weg erhélt man das
folgende Resultat.

Theorem 0.9 Der Generator Gy ry) des Prozessess, i, R)ier vorwarts in der Zeit ist gegeben
durch

G(X.R,V)g (Xa 0’ V) = Gxg (Xa 07 V) + (1_ X— VX)g/ (X7 Oa V)
+03, 22 g 1,v) ~g(x.0.v)

o2 g(x,0v—1)~g(x.0,v) ©29)
A
1 Ay+1
=+ (V+ 1)6V1 + EV(V+ 1) [g (Xa 0>V+ 1) - g(X7 07 V)]
A
G(X,R,V)g (X7 17 V) = GXg (Xa l> V) - X(V+ 1)g/ (X7 17 V)
ay
+0vo———[g(x,0,v) —g(x, 1, v
P [9(x,0,v) —g(x,1,v)]
oG (%, 1,v—1) — g(x, 1,V 0.24)
Ay — Av+1

1 Ayl — 42
+ [(v+1)0vi+ = (v+1)(v+2)| ——=
(v D)Ova+ 5 (v D(v+2)| S =

fur alle g€ €2[0,1] x {0,1} x No.

g(x,1,v+1)—g(x,1,v)]

Die Gleichungen (0.23) und (0.24) lassen sich auch anschaulich mit Héferdeed LD-ASG erkl&-

ren. Dazu betrachtet man fir jede einzelne Ubergangsrate, die eimeuligdvonR oderV bewirkt,

den Startzustand und den Endzustand des Prozesses. Diese Zbstigtdaan dann jeweils in einen
pruned LD-ASG ein. Das Ereign{gR V) = (1,v)} impliziert {L = v+ 1} und aus{(R,V) = (0,v) }

folgt {L > v}, wobeilL der Linienzahlprozess des pruned LD-ASG ist. Diese Uberlegungsamzu
men mit den Ubergangsraten vhriiihren dann auf eine anschauliche Interpretation der Ubergangs-
raten von(X,R V).
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0 Deutsche Zusammenfassung

Am Ende von Kapitel 6 beschéaftigen wir uns dann noch mit der Dynamik affererprozesses
(L,X,R V). Dessen stationare Verteilung bekommt man wieder, indem (Rav)) in den pruned
LD-ASG einbettet.

Lemma 0.10 Die Dichte w der stationaren Verteilung des ViererprozessesX,V,R) ist gegeben
durch

(D(ﬁ, X, V) = W(X) [I {r=0v<£}Pr - X(l - X)V+ I {r=1v+1=0}P¢" (1 - X)V+1] ) (0.25)
wobeip die diskrete Dichte der stationaren Verteilung von L t=P(Lo=/¢) =ay_1 —ay, ¢ € N.

Es zeigt sich allerdings, dass der Viererprozés¥X, R, V) kein Markovprozess ist.

0.5 Der Typ des gemeinsamen Vorfahren in einer Population
endlicher Grol3e

Kapitel 7 dieser Arbeit beschéftigt sich mit einer Population endlicher &M& N, die einem
Moran-Modell mit Zweiweg-Mutation und Selektion folgt, wie zu Beginn dielkapitels beschrie-
ben. Die AnzahKN der Individuen vom Typ 0 ist dann ein Geburts- und TodesprozessemiRaten
(0.2).

Kapitel 7 baut auf den Kapiteln 2 und 3 auf und ist unabhangig von denitéda 4 und 5. Es ist
empfehlenswert vorher Kapitel 6 zu lesen, da es besonders in AtistidnVerweise auf Kapitel 6
gibt.

Um eine Bruicke zwischen den Arbeiten von Taylor [Tay07] und Kluthstddt und Baake [KHB13]
(und auch zu Kapitel 6) zu schlagen, bestimmen wir die Ubergangsraten&ts und auch riick-
warts in der Zeit) eines Doppelprozess&$', RY) g, wobei RN der Typ der unsterblichen Linien
im diskreten Modell ist. Die Raten bekommt man direkt Uber die Raten der Pfailgréle Re-

produktion), Sternchenpfeile (selektive Reproduktion), Kreuzdhigp-1-Mutationen) und Kringel

(Typ-0-Mutationen) im Moran-Modell. Es ergeben sich folgende Gaoegn.

Lemma 0.11 Der Generatoé(KN,RN) des Prozessd&N, RN) riickwarts in der Zeit ist gegeben durch

wN(k+1)

é(KN,RN)g(kaO): Ry 1 i WN(K) [9(k+1,0) —g(k,0)]
+ gk 1D g 1.2) - gk
# A= -k )] D gk 1.0~ gk 0,
Gonrealic D) = vl 1>WNW(,L‘(I)” 9(k+1.0) ~g (k)
|: UNvl(k+1)] W'\VIV(W [g(k+17 1)_g(k7 1)]

XVi



0.5 Der Typ des gemeinsamen Vorfahren in einer Population endlicheeGréf3

wN(k— 1)
wN (k)

mit der Testfunktion gNp x {0,1} — R und ke {0,1,...,N}.

+AC e 9(k—=1,1) —g(k 1)],

Den Vorwartsgeneratdgkn gvy bekommt man wieder durch Zeitumkehr des Ruckwartsgenerators
é(KNRN) Uber die stationare Verteilung mit der Dichte

(k1) =wWN(K) [L—o i + Lir—gy (1— Q)] - (0.26)

Lemma 0.12 Der Generator Gen gy des Prozessd&N, RV) vorwarts in der Zeit ist gegeben durch

N 1 hk+1
G ry)9(k,0) = A — mUNVO(N —k) h [9(k+1,0)—g(k,0)]
1 1-h,
+N_k+lqulk h||2| [g(k—l,l)—g(k,O)]

gt k=10 ~g(k ).

1 i1
Gnrid(k,1) = mUNVO(N —k) [9(k+1,0) —g(k,1)],

.
1 hk+l

1 k L-he k—1,1)—g(k 1

Ilk mUNvl W[g( )—9(k,1)],

mit der Testfunktion g und& {0,1,...,N}.

Dabei isthl, k € {0,1,...,N}, das diskrete Analogon Zu(x), also die Wahrscheinlichkeit, dass der
gemeinsame Vorfahre in einer Gleichgewichtssituation zu einer beliebigefeaten Zeit vom Typ 0
ist, gegeben die Anzahl der Typ-0-Individuen zu dieser Zek.ig¥ir zeigen dann, dagé )k—01..n
die Lésung des Gleichungssystems

e (A + )

k N—k (0.27)
= AR+ + (1-hy) UNVI T Ry 1UNVoT— 1
mit den Randwertehy =0, hN = 1 ist. Dies wurde auch von Kluth, Hustedt und Baake bewiesen

[KHB13, (21)], allerdings mit anderen Methoden.

Qie Verbindung zu Taylor [Tay07] bauen wir auf, indem wir den Diffusitmes der Generatoren
Gkn ry) UNdGkn gyy berechnen. Wir erhalten durch Ubergang zum Grenzwert gerad@etierato-

renGx r) UNdGx g [Tay07, (4) und (15)].
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0 Deutsche Zusammenfassung

Im letzten Abschnitt von Kapitel 7 skizzieren wir die Bestimmung der Dynamiksetfiskreten
Tripelprozesse&N, RN VN). Dabei beschreibttN das diskrete Analogon atin Kapitel 6, namlich
die Anzahl virtueller Linien im Modell mit GesamtpopulationsgraeAuf diese Weise lassen sich
durch Ubergang zum Diffusionslimes alternative Beweise fiir Lemma 0.Thadrem 0.9 erhalten.

XViii



1 Introduction

Population genetics plays an important role in biological and mathematicalechsdaprovides a
basis for understanding evolutionary processes and features lpmtiregntal and theoretical com-
ponents. This thesis deals with the theoretical side. As the processedudi@vare very complex, it
is almost impossible to model them mathematically in all details. Nevertheless, mathématieds
are often helpful to understand (at least qualitatively) the interplay leetwiiferent evolutionary
factors. In addition, the models are building elements of fundamental obsear

Today, mathematical population genetics research deals, amongst ofbsy wah the influence of
random neutral reproduction, selective reproduction, recombinatiggration, and mutation onto
the genetic structure of a population; see e.g. [Dur08] or [Ewe04].i¢rtllesis, we concentrate on
the interplay of random neutral reproduction, selective reproductind,mutation. We consider a
population with two types; the deleterious type 1 and the beneficial (selyaiteantaged) type 0.

A basic model for analysing the influence of random reproduction in allptipn is the classical
Wright-Fisher modelintroduced in the 1920’s and named after Sewall Wright and RonaldrFishe
deals with a haploid population of finite and fixed sit@vhere time is measured in terms of discrete
generations. Reproduction is modelled in the following way: In each ggoeraach child chooses
its single parent independently and uniformly at random amony edtlividuals in the previous gen-
eration. This model was generalised by Chris Cannings in the 1960’s e l@ahnings modelthe
offspring vector per generation is not necessarily multinomially (as in thelRgher model) but
still exchangeably distributed.

In 1958, Pat Moran provided a new model that goes with a continuous tiate pdor58]. In the
Moran model each individual reproduces independently at a constant ratefdigiofy then replaces

a randomly chosen individual from the population. Selection and mutatiobeadded in a natural
way to all these models (see e.g. [Dur08, Ewe04]). In the Moran modekxample, Selection
is visualised either by additional reproduction events only of individualseokficial type (fertility
selection) or by additional death events only of individuals of deleteriques tyiability selection).
When considering large populations, it may be convenient to pass to tfigsialif) limit N — co.
Then, with a convenient rescaling of time, the proportion of type 0 indivgcanverges in distribu-
tion to aWright-Fisher diffusioriDur08, Chapter 7.2]. There even exists a model with which one may
(in the absence of selection) gain this convergence in the ‘strong’ $e@esation by realisation).
Thelookdown modelintroduced by Stephen Donnelly and Tom Kurtz, arises from the Moratemo
basically by a rearrangement of the lines [DK99b, DK99al].

So far, all of the above models describe the evolution of populations frermrésent into the future
(or from the past to the present). Thus, they can be classifiédraard in timemodels. When
interested in genealogies, i.e. in the evolution of ancestral lines, one haktoackward in time

In the absence of selection, the genealogy of a (yet untyped) raratopiesof individuals is modelled



1 Introduction

by aKingman coalescenintroduced by John Kingman in 1982 [Kin82]: Each pair of ancestrasline
coalesces independently at a constant rate (say at rate 1). The fypesmaividuals in the sample
are then determined by adding a type to the most recent common ancestonallgtioutations may
also be added to the lines (modelled by independent Poisson point prgcaesthen selection comes
into play, the Kingman coalescent has to be extended by additional brgnelemts of ancestral
lines. This branching and coalescing graph,dheestral selection graph (ASGyas introduced in
1997 by Stephen Krone and Claudia Neuhauser [KN97, NK97]. ThHe 8% (yet untyped) sample
contains all potential ancestors of this sample, it consists of so-caitedl andreal branches. The
true ancestors, the real branches, can only be resolved when agdegyto the graph (see also
[BBO3]).

At each time, there exists a unique individual whose progeny will eventtalbyover in the popula-
tion. Since eventually, at some later time, all individuals in the population aseraify of children

of this single individual, it is called theommon ancestoin this thesis, we are especially interested
in the stationary probabilitii(x) that the common ancestor is of the beneficial type 0 at a given time,
given the frequency of type-0 individuals at that time.idn the case with selection, this probability
is larger than in the case without selection. The intuition behind this fact is thaidoals of the
beneficial type have higher reproduction rates and therefore aresmoressful in the long run.

The common ancestor type distribution was first investigated in 2002 by Pautlread [Fea02]. His
approach uses a pruned version of the ASG ctiamon ancestor proce$éR,V). Re {0,1} is the
type of the single real line (thus the common ancestor)\armdNg a number of virtual lines that is
needed in order for the process to be Markovian. In 2007, Jesser Tegs able to gain the com-
mon ancestor type distribution using a different approach [Tay07]. t&yirsg from thestructured
coalescenfBES04], he derived and solved a boundary value problen{XoR), whereR is again
the type of the common ancestor aXdhe type-0 frequency in the entire population. Then, in 2013,
the common ancestor type distribution was investigated by Sandra Kluth, Thiastedt, and Ellen
Baake via a discrete approach [KHB13]. They worked all the way tittdn the discrete Moran
model with population siz8dl and passed to the diffusion limdit — co only in the very end.

In Chapters 3, 6, and 7, we build a bridge between these three appsoach

Chapter 3 gives a probabilistic approach to the common ancestor type distribWe develop the
pruned lookdown ancestral selection graph (pruned LD-AZ3)article picture that lies behind a
recursion that is part of the formula determinimg). This way, we are able to give a probabilistic
meaning to Taylor’'s and Fearnhead’s results on the probalbi(ity. Inspired by Donnelly’s and
Kurtz’s idea to order the lines [DK99a], the pruned LD-ASG arises floeASG by a rearrangement
of the lines and additional pruning of lines upon mutation. Although our ordés a different one,
we borrow the name ‘lookdown’ from [DK99a]. In the classical ASG in tase with mutations,
it is rather involved to find the line of the common ancestor. Namely one hasitmdgpes to all
ancestors, let the types propagate forward in time along the lines of the AtBGespecting the
mutations, and resolve afterwards each branching event backward inltirttee pruned LD-ASG,
the line of the common ancestor can be found quite easily. It is just, if such eXists, the type-0
line that occupies the lowest level. If all lines are of type 1, it is the so-caitedune line Therefore,
we believe that our pruned LD-ASG is interesting in its own right.

Chapter 6 links Fearnhead’s common ancestor proded6) and Taylor’s proceséX, R). Namely,
we define the triple procegX,R,V) and describe the evolution of the type-0 frequeKctogether



with the typeR of the immortal line and the numb¥rof Fearnhead’s virtual lines. We determine the
backward and forward in time generators(¥f R V) and its stationary distribution.

Then, in Chapter 7, we start with a discrete approach that links [Tay@i7[KHB13]. We investigate
the procesgkN,RY), a discrete version ofX,R) for a population of finite siz&l. We recapitulate
results by Kluth, Hustedt, and Baake [KHB13] on the probabhﬁythat the common ancestor is of
beneficial type, given the number of type-0 individuals at that timle By taking the limitN — oo

for the backward and forward in time generators of the progg¥sRY) we regain Taylor’s [Tay07]
generators of the procetX, R).

While the pruned LD-ASG is introduced in Chapter 3 for classical Wrighitétipopulations only,
we extend it to the case with heavy tailed offspring in Chapter 4.

In a classical Wright-Fisher population, at a reproduction event, onlinfamtesimal size of the
population is replaced by offspring of the single individual that repcedu But it is also conve-
nient to consider reproduction events where the offspring in a singtedaption event replaces a
macroscopic fraction of the population. We are then in the more generabsetilaWright-Fisher
processes They belong to the larger class AfFleming-Viot processes. WhilEleming-Viot pro-
cessegnamed after Wendell H. Fleming and Michel Viot [FV79], see also [EXK@H®pw for each
individual to inherit a type that is chosen out of a a continuum of types {leegtype space can be the
unit interval[0, 1]), we again stick to the Wright-Fisher case in Chapter 4 and only allow for tpesty

0 and 1. The symbol/A’ in * A-Wright-Fisher process’ indicates that we are dealing with a general
reproduction measur& that also models the case when a single individual produces offsprihg tha
replaces a macroscopic fraction of the population at a single birth event.

Backward in time, in the case without selection and mutation, the ancestralsgescare so-called
N-coalescents They were introduced independently by Jim Pitman [Pit99], Serik Sagitag9d9,
and Peter Donnelly and Tom Kurtz [DK99b] (see also [Ber09] for arodhictory review). In com-
parison to Kingman’s coalescent, they also include multiple mergers. In teendtisselection, the
situation becomes rather involved: For example, one has to include brgrestgints to the coalescent
and again deal with an ancestral graph of potential parents. Althoughunch is known on thé\-
coalescent with selection, some progress has been made recently (§8&8%p, EGT10, DGP12,
Foul3, Gril4, BP15]).

We enlarge the collection of results. With the help of the phgned LDA-ASG our extension of
the pruned LD-ASG to thé-case, we determine the type distributidnix), x € [0, 1]) of the com-
mon ancestor of &-Wright-Fisher processes. In order to determine the stationary distribotion
the line counting process of the pruned IXBASG, we use Siegmund duality techniques (see e.g.
[Sie76, CR84], or [JK14] for a survey the notion(s) of duality for ar processes).

To this end, in the footsteps of Peter Clifford and Aidan Sudbury [CS88]exploit the Siegmund
dual process of the pruned LD-ASG. As it turns out, the latter procasbe seen as a generalisation
of the fixation line. The latter was introduced by Peter Pfaffelhnuber aridrAWakolbinger [PWO06]

for Kingman coalescents, and generalisedtooalescents by Olivier Hénard [Hén15].

We restrict again to the classical Wright-Fisher case in Chapter 5. Bubwetdonsider the immortal
line any more; we investigate sampling probabilities for samples ofreizeN. Namely, we think
of samplingm individuals uniformly at random out of a stationary Wright-Fisher poputatigth
selection and mutation and ask for the probability of obtairirigdividuals of type 0 andn— ¢
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of type 1. While this probability was computed already by Neuhauser andek[foN97, Theorem
5.2] in the form of a recursion that is rather difficult to handle, we devel@mulation algorithm
via the so-callekilled ASG We also show simulation results. In addition, we show a link to Don
Dawson’s and Andreas Grevemlgscision tregthat is part of their recently published book [DG14]
on Fleming-Viot processes.

The structure of this thesis is shortly visualised in following diagram. Eachteh& based on all
chapters that are in direct line above this chapter in the tree diagram. &opk it is recommended
to read Chapters 2, 3, and 6 before reading Chapter 7.

Chapter 2: main models and some results in Iiterz%ture

|

’ Chapter 3: pruned LD—AS@

Chapter 4: pruned LD\-ASG‘ ’Chapter 5: killed Asqt Chapter 6:(X,R,V)

|

Chapter 7:(KN,RVY)

The thesis is organised as follows. In Chapter 2, we introduce the main meottkkhe quantities
that we are interested in. We review the Wright-Fisher model, the Moran mibgegncestral se-
lection graph, the lookdown modelp\{) Wright-Fisher diffusions and thA-coalescent. We also
present results on the common ancestor type distribution by FearnhediP]F€aylor [Tay07], and
Kluth, Hustedt, and Baake [KHB13]. In Chapter 3, we introduce the guiuookdown ancestral
selection graph and develop a probabilistic meaning for the common ancesgadisgribution in a
Wright-Fisher population with two-way mutation and selection. This chapter@adyrpublished in
[LKBW15]. We further extend these results to the case with heavy-tailisgririg distributions in
Chapter 4. To gain the common ancestor type distribution far\&right-Fisher process with mu-
tation and selection, we exploit Siegmund duality. Chapter 4 is submitted for ptibhkdBLW16].
Chapter 5 then deals with the probability of taking a sample of sizeN with ¢ < mindividuals
of type 0. A simulation algorithm for this sampling probabilities is gained via a killediga of the
ancestral selection graph. We build a bridge between the approaclies common ancestor type
distribution by Fearnhead [Fea02] and Taylor [Tay07] in Chapter 6ufiyg a discrete approach in
Chapter 7, we extend this bridge towards Kluth, Hustedt, and Baake [RHB1



2 Main models and some mathematical
background

In population geneticsinter alia, the evolution of the frequency of alleles within a population is
analysed. In this thesis, we will consider a haploid populdtiwhere each individual inherits one
of two possible types. We will then analyse the evolution of the frequen€ig® awo alleles under
genetic drift, mutation and selection.

Our main processes will be th@right-Fisher diffusiondescribing the frequency evolutidorward

in time, and a modification of thancestral selection graphdescribing the genealogy of a sample
backwardin time.

In this chapter we will introduce our main models and quantities, and review sesuks available
in the recent literature. Some models will be reviewed again when they adedéaethe different
chapters.

2.1 Main models

2.1.1 Discrete Wright-Fisher model and Wright-Fisher diffusion

Let us consider a haploid population of fixed sitec N with discrete generations. In generation O,
each individual gets one of two types, either 0 or 1. Then the Wright-Frebeel evolves (forward
in time) from generation to generation as follows (compare also [Eth11,t&had], or [Dur08,
Chapter 1.2]). Independently in each generation and independentlye afthier individuals, each
individual picks a uniformly chosen mother (with replacement) and copiesype. Then, for all

g € N, the number of children in generatigna+ 1 of an arbitrary but fixed individual in generatign

is binomially distributed with parameteksand I/N.

The number of type-0 individuals in generatigis a Markov chain as well as a (bounded) martingale.
As such, it converges to one of the two boundary points ONifat g — o a.s. Eventually one of the
two types dies out and the other type fixates (i.e. takes over the entire poplias.

When considering large populations, it is convenient to renormalise theeruwhtype-0 individuals
and speed up time. This way, we thinkMfgenerations per time interval of unit length and)fé[f'),

t € {0,1/N,2/N,...} be the proportion of type-0 individuals in generat@a- Nt. It is then easily
calculated that

B XU K =X and B | (X0 %) KO =X (1-X0) o as @)

SHaploid individuals have only one parent. Diploid individuals have two opiechromosomes from two different
parents.
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with At = .

By taking the limitN — oo in the discrete Wright-Fisher model, one arrives at a diffusion process
with diffusion coefficientx(1 — x). Namely, when the initial proportiof(éN) of type-0 individuals
converges to some € [0, 1], then()?t(N))te{07l/N7,__} converges tdX; );>0 asN — o where the Markov
procesgX;) has initial statéy = xo and generator

= 2X(1-Xg'(x) (2.2)

Gx9(x)
with test functiong in %2[0, 1], the set of all continuous and twice differentiable functiong@a]
(see e.g. [Dur08, Chapter 7.2]). Tiéright-Fisher diffusionX;) describes the evolution of the type-

0 individuals in the population (in the absence of mutation and selection).

In fact, there is not only one model but a class of discrete models tha¢into the Wright-Fisher
diffusion. However, for the purpose of this thesis one may think of the Ktfigsher diffusion as ap-
proximating either as a large population evolving according to the discretétAFigher mechanism
with N generations per time unit or of a large population in a Moran model, which iled in the
next paragraph.

2.1.2 Moran model

The Moran model again deals with a haploid population of fixed KizeN but now in continuous
time [Mor58] (compare also [Dur08, Chapter 1.5]). Therefore, gatiwars may overlap but we think

of an average of one generation per time interval of length one. Thak,iedividual reproduces
independently at rate/2 and its single offspring replaces one uniformly chosen individual in the
population (possibly its own parent).

N W A~ O
le—T—1—]

' B — e
0 t S
Figure 2.1: Moran model with population size N 5. The individuals are placed on levels and reproduction
events are indicated by arrows. (Forward) time t runs froffib (ie= 0) to right (t = s).

Graphically, this process can be realised by placingNMhiadividuals on levels labelled with the
numbers 1...,N. For example, given the proportion of type-0 individuals at ttrae0 is X} = ko/N,
ko uniformly chosen levels at time= 0 are coloured with type 0. The population then evolves forward
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—
>
o O

—

o
—T
] [

o o

Figure 2.2: Transportation of types in the Moran model. TyPeand1 are marked orange and blue, respec-
tively.

in time. A reproduction event is indicated by an arrow pointing from the locatfdhe parent to the
location of the child (compare also Figs. 2.1 and 2.2). The individual at thef tipe arrow dies
and is replaced by a copy of the individual at the tail of the arrow. Each arrow pointing from
individuali to j #1, 1, ] € N, appears independently at rat§ 2N). This way, the lines in the Moran
model are exchangeable at all tintes 0, and type 0 eventually again either dies out or fixates in the
population. In Fig. 2.2 type 1 dies out and type O fixates.

Then the birth rate at which the proportion of type-0 individuals is incr@&mn% to % is given
by - - k- (N —k) and the death rate at which it is decreasefgbis also given bysk - (N — k) - k.
The ‘plain’ Moran model describes the evolution of type frequencies iopaulation with reproduc-
tion events only. But it can be extended by including mutation and selectiodo $0, we continue
with the Moran model with finite population siaéand take the diffusion limiN — co afterwards.

Here, we consider parent independent two-wiaytation Each individuals mutates independently
to type O at rataiyVp and to type 1 at raten vy, with uy € [0,0), andvp,v1 € [0,1]. This way,
the overall mutation rate per individual ig; and the probabilities for a mutation to be to type O
is Vo and to type 1 isv1, vo+ v1 = 1. Silent mutations from type 0 to 0 and from type 1 to 1 are
included. Graphically, mutations are visualised by independent Poissonppocesses of ‘circles’
and ‘crosses’ at ratas Vg anduyVv; per line (see Fig. 2.3). In the case of a strictly positive mutation
rate to typd, i € {0,1}, typei a.s. cannot die out in the population any more.

1«0 0
: T SN
o bt iy
1e J 0
0 1 O l 0

Figure 2.3: Moran model with mutation. Mutations to typeare indicated by circles, mutations to tyfédy
crosses.

When speaking of selection in this thesis we always deal géthic selectiorfwhich is also named
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directional selection In addition, we focus offertility selection onl§. This is modelled in the
following way. Let O be the beneficial and 1 the deleterious type such thatGyeproduces faster
than type 1. As the reproduction rate of a type-1 individual is only the alkxatte /2, an individual

of type O reproduces at rat¢ A+ sy. This is visualised by including selective arrows into the model.
A selective arrow from individualto j, i # |, i,] € N comes at ratey/N. In comparison to neutral
ones, they have star-shaped heads (compare Fig. 2.4) and theyigae osed by propagating type
0 from its tail to its tip. If the individuals at the tail of the selective arrow inheyfge 1, no birth
event happens and the arrow is just ignored.

0 IR PR

o b ) X

1 ) ] ] .
]

0

Figure 2.4: Moran model with mutation and selection. Selective repatidn events are marked by arrows
with star shaped heads. They can only be used by individdiype0.

Mutation and selection preserves the exchangeability property of times at all times. The number
of type-0 individuals in the Moran model with mutation and selection is a birth @athdprocess
with birth rateA and death ratgly, k € {1,2,...,N},

1

Aszsz(kaHk(ka)ﬂ + (N=K)-unvo,
i\' N (2.3)
N_i _— .
He = 2N K(N—K) + k-unVs.

Let XN be the proportion of type-0 individuals at tinhe [0, ] in the Moran model with mutation
and selection with population si2é&

To analyse large populations, we want to take the diffusion ko XN := (XN )i~o. Therefore, time
is speeded up by a factdlr such that we again have an averagé&ajenerations per time interval of
unit length. The corresponding time scale is denoted by ‘evolutionary timeutrsl and selective
reproduction arrows can then be seen at raf@sahdsy per ordered pair of lines, respectively.

To take the limitN — o, we assume that the proportion of type-0 individuals at tirrbéo"t),converges
to xp € [0,1]. In addition, let

Nuy—v and Nsy— o, asN — .

6Speaking offertility selectionmeans that individuals of beneficial type have a higher reproductientman those of
deleterious type. In returwjability selectionmeans that individuals of deleterious type die at a higher rate than those
of beneficial type.
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Then(XN)>o converges to a Wright-Fisher diffusion with mutation and selectons (X )t>o, With
generatoGy given by

Gxg(X) = }x(l— x)g"(X) + [(1—x)Bvp — xBv1 + ox(1—X)]d (X), ge €?0,1],

5 (2.4)

compare also [Dur08, Chapter 7.2], or [KHB13, Sectioh ZThere exists a stationary probability
measure for the generatB, Wright's density, which is given by [Dur08, (7.28)]

W(X) = G- (1—x)20171x20v%~1 exp{20x}, (2.5)
-1
with the normalising constart, = | [o(1— x)20V1~1x20%-1.expf20x}dx| . In other words, the

frequency of type-0 individuals in a stationary population evolving atiogrto the Wright-Fisher
generator with mutation and selection (2.4) has dengi) (examples are shown in Fig. 2.5).
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Figure 2.5: Stationary density w of a Wright-Fisher process with motatand selection given bi2.5) for
different combinations of the parameters6, andv.

2.1.3 Neutral Genealogies: Kingman’s Coalescent

So far, the evolution of type frequencies was modelted/ard in time. But we also want to analyse
genealogies in the Moran model (and in particular in its diffusion limit with infinitpylation size).
Genealogical processes evolvackwardin time. To differentiate between the two, we use through-
out this thesis the variabtefor forward andr for backward time. When illustrating two time scales
in one single picture, we insinuate= —t.

"Note that there is a difference of a factof2lin the scaling of the diffusion term in (2.4) and [Tay07, BLW16] in
comparison to [KN97, Fea02, KHB13, KB13, LKBW15]. This is beaatise four last mentioned papers use the
diffusion part of the Wright-Fisher generator without the factor 1/2. Thisesponds to a pair coalescence rate of 2,
while in this thesis we assume pair coalescence rate 1 in the diffusion limit.
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N

-—
0 r -s

Figure 2.6: Kingman'’s coalescent. The corresponding Moran model isvshia Fig. 2.1). (Backward) time
r runs from right to left. The genealogy of the individualslewelsl, 3, and4 between times
r = —s and r= 0is shown (green lines).

Let us start with the neutral Moran model (i.e. the Moran model without Set§cand without
mutation. We want to consider the genealogy of a sampteinflividuals (see Fig. 2.6) on the evo-
lutionary time scale. This genealogical process was first investigated lgyriéin in 1982 [Kin82].
It evolves backward in time and is driven by the reproduction arrowsthAgates of Poisson point
processes are the same forward and backward in time, also backward ieattnerrow pointing
from individuali to j (and also fromj to i), i,j € N, i # |, appears at rate/2. Thus, backward in
time, each unordered pair of individudlsj) independently coalesces at rate 1 into a common parent.
In fact, the genealogical process of a sampla ofdividuals, denoted b¥Kingman coalescents a
pure coalescing process. The Kingnagealescent starts withlines (or individuals or blocks) and
eventually gets absorbed in only one remaining line. Its line counting précekas the generator
Go,

n
Guogm = (5 [aln-1) - g, g: 1> R @)
and the expected time till atl lines have merged into one common ancesto{ls—Z%], thus finite.

In the case without mutations, the type of each ancestor is directly handedoo#ll its offspring.
Therefore, to determine the distribution of the types of a sampterahdomly chosen individuals
taken at time = sfrom a population evolving according to a Wright-Fisher diffusion one may als
start a Kingmam-coalescent at time = —s with KP:,S = n individuals, let it evolve backward in
time, and then colour its random remainihﬁ&O lines at timer =t = 0 with types 0 and 1 according
to a Bernoulli experiment with success probabily = xo, the frequency of type-0 individuals at
time 0.

Indeed, these heuristics are formalised in the well-known moment duality &etive Wright-Fisher
diffusion and the Kingman coalescent

E[X | % =] =[x Ko =n], (2.7)

or equivalently
E[(1-%)" | %o =%] =E[(1-%)¢ |[K%=n]. (2.8)

10



2.1 Main models

All nindividuals are of type 0O (or 1) if and only if all ancestors are of type)0 (1

Itis then straight forward to add mutations to the Kingman coalescent. In tha@haodel, mutations
come at ratefvgy and 6v; independently per line. Thus, backward in time, these Poisson point
processes run independently on the lines of the Kingman coalescent.

Since there are mutations on the ancestral lines, the type of one individaaaimple and the type

of its ancestor may differ. Therefore the moment duality (2.8) becomes riféicaltl To determine

the type of an individual in a Wright-Fisher population at tiilme s, given the type of its ancestor

at timet = 0, one has to take a closer look at the whole ancestral line betweengamneisO. If the

line is not affected by any mutation, the type of the individual in the sample lgxhe type of the
ancestor. If there is at least one mutation, then the type of the individua isetimple is determined

by the most recent mutation before time

More formally, letK%¢" be a modified version of the Kingman coalescent. To be more precise, in
addition to the coalescing dynamics, a pruning procedure is added: affedeleterious mutation,
the affected line is deleted from the graph. T has generator

Gyocug(n) = Kg) +n9vl} [g(n—1)—g(n)], g:N—=R, (2.9)

and the duality Equation (2.8) can be adapted to the case with mutations (cd®ipi@& Theorem
4.1] in the case without mutation, without migration, and with only one colony),

Cu 0
E[(1—X)" | Xo=Xo] =E [(1—x0)K3’ t-exp{—evo/ Kf}c“tdu} ‘K?ﬁ“t:n} : (2.10)
-s

where the dynamics of are determined by the generator (2.4) with= 0 andé, v, v1 > 0.

Indeed, the left-hand side of (2.10) is the probability thatndomly chosen individuals at time
t = sin a Wright-Fisher population are of type 1, given the frequency of tyjredividuals at time
0 isxp. On the right-hand side of (2.10), the teRr{(l—xo)Kg'cuWKg’g“t = n} is the probability that

all remaining (and therefore not deIeteKig’CUt ancestors at backward tinme= 0 of a Kingmann-

coalescent started at time= —s are of type 0. The remaining ancestral lines are those lines that are
not already assigned type 1 by a deleterious mutation between ttimess andr = 0. In addition,

the remaining ancestors can only push their deleterious types throughrteainepled individuals if

no mutation to type 0 can be found anywhere on the pruned Kingman grapén tBe sum of the
lengths of all lines in the pruned graphdisthis has probability exp—0vol}, which completes the
explanation of the right-hand side of (2.10).

When selection is included, the backward in time picture which contains alktomseof a sample
becomes rather involved. It is briefly reviewed in the following section.
2.1.4 Genealogies with selection: The ancestral selection graph

In the Moran model, forward in time, selection is represented by selectiveskvhich can only be
used for reproduction events of type-0 individuals. Thus, in the udtgase, at each selective event,
the child at the tip of the arrow (also namddscendanthas two potential parents. The line at the

11



2 Main models and some mathematical background

tail of the arrow is denoteshcoming branchand the line hit by the tip of the arrow is tleentinuing
branch When types are assigned to the lines, the ‘pecking’ order is the followirige incoming
branch is of type 0, it is the parental one. If it is of type 1, the continuigdh is the true parent of
the selective event (see also Fig. 2.7). Branches that are true parentsnotedeal branches, and
potential ancestral branches that are not parental are céitadl branches [KN97].

1 T 0 1 0
1 1 J oJ 0 J
Figure 2.7: Selective reproduction events. At each of the four picttiresncoming branch is drawn below

the continuing branch. Real branches (true parents andefedants) are marked bold, slim lines
are virtual lines.

)-
(0)
D%
N w N (6]

0 r -S

Figure 2.8: Ancestral selection graph. The corresponding Moran mosishiown in Fig. 2.4. All potential
ancestors of the single individual on leviebetween times + —s and r= 0 are shown (green
lines).

When keeping track of all (potential) ancestors of a sample ofrsimea Wright-Fisher population
with selection, the Kingman coalescent has to be extended by the seleetinte @ompare Fig. 2.8).
Thus, backward in time, in addition to the coalescing structure of the neatsal branching events
come into play. Note that, in the discrete model with populationNizEn the genealogical time scale,
each line is hit by a star-shaped arrow that indicates a potential seleativeat ratgN — 1) - sy /N.

In the diffusion limit, this rate converges tbon the evolutionary time scale. But, in a sample of size
n, on the genealogical time scale in the finite-size model, selective arrowsarehanged between
any two individuals in the sample at ratéh— 1) - sy /N. On the evolutionary time scale, the diffusion
limit of this rate is just 0. Thus, a.s. selective arrows are not interchamgf@geen individuals among
the sample but only hit sampled individuals from the outside. Quantitativedig,lege in the ancestral
graph branches independently at rate This way, a branching and coalescing graph arises. This
graph is denotedncestral selection grapbr ASGand was introduced by Neuhauser and Krone in
1997 [KN97, NK97]. Its line counting proceg&shas the generator

Gk g(n) = <2> g(n—1)—g(n)] +no[g(n+1)—g(n)], g:N—=R. (2.11)

12



2.1 Main models

As the coalescence rate léfis quadratic and the branching rate is only linear, the process a.s. does
not explode and we hau& € N for all r > 0. In addition, forg > 0, the ASG is recurrent. It has a
stationary distribution, the Poisson distributionl§ni.e. g(n) := P(K; =n) = 0" /[nl(exp(0) —1)],

n> 1 (compare [PP13]).

Without mutations, the duality result (2.8) for the Kingman coalescent holdsalso for the ASG:
E[(1-Xs)" [ Xo=Xo] = E[(1—X0)* | K_s=n] (see e.g. [Man09, Theorem 2.1]). At a branching
event, the descendant is of type 1 if and only if incoming and continuingchrare both of type 1.
Note that (2.7) is not valid in the ASG, since the descendant also has typmy ibne of the two
branches is of type 0 and one of type 1.

Mutations are added to the ASG in the same way as to the Kingman coalescentohe at rates

6vp and@v; independently on the lines. A modified duality for the ASG with mutations may again be
gained in the same way as for the Kingman coalescent: delete each line adtetaaidus mutation

to get a pruned versiok" of the ASG,

2

Then again alh individuals in the sample are of type 1 if all remaining ancestors after théngrun
are of type 1 and no mutation to type 0 appears on the pruned graph (eofivzar09, Eq. (2.23)]
or [Shi88, Theorem 4.1] specialised to the case with only one colony).

0
E[(1-X)" [ Xo=x] =E {(l_XO)Kgm : eXp{—GVO/SKSutdu}

Gkeug(n) = Kn> +n9vl} [g(n—1)—g(n)] +no[g(n+1)—g(n)], g:N—R. (2.12)

Ko = n] . (2.13)

The connection between the Wright-Fisher diffusion (with mutation and set¢aiwd the modified
processK of the ASG is a useful tool to analyse types of individuals of a sample. Menve
Equation (2.13) only allows for the probability that all individuals are of t¥pe

Given the frequencygy = X of type 0 in a Wright-Fisher population with mutation and selection at
timet = 0, the types oh randomly chosen individuals at time= s can be gained in distribution
using the ASG with mutations in the following way. First, start wikhg = n lines and generate
their potential ancestry from time= —s up tor = 0 backward in time using the ASG-dynamics
(2.11). Then, given a realisation of the ASG, add mutations to the lines ugslegendent Poisson
point processes. Add types to &l potential ancestors according to a Bernoulli experiment with
success probabilitgy. Then propagate the types forward in time from timeO (r = 0) to timet =s
(r=-9).

In an equilibrium situation, lep(¢,m— ¢) be the probability that a sample af individuals in a

Wright-Fisher population carrieé individuals of type 0 andn— ¢ individuals of type 1,m > 1,

7 <m, |
m!
) =———E|X/(1-X)™" 2.14
P(Em—0) = = E X (1=X) (2.14)
Krone and Neuhauser have shown [KN97, Thm. 5.2] that the samplilgpildgies p(m,m— ¢) then
satisfy the recursion

26
m+260+20—1

Zalp(£+1,mf€fl)+m_T£+1p(€f1,mf€+1)

p(f’m—f) =

13



2 Main models and some mathematical background

m—1 -1 m—/¢—1
+m+2e+2o—1[m_l"’“‘l’m‘fHm_lp(fvm—f—l)]
20 (et (m—£+1)(m—0)
Tmi28+20-1 m(erl)'o(E“Ll’m_f)Jr m(m+ 1) p({,m—{+1)
{(m—0+41)
Wp(f,m—£+l) : (2.15)

with p(k, j) := 0 fork < 0 or j < 0. The probabilistic prodfof (2.15) uses the structure of the ASG
[KN97, page 230] by using a ‘first step decomposition’ with respect tartbst recent event back in
time. Let us briefly review the intuition behind the first term in (2.15). Givemdlaem lines in the
ASG at timet = 0, the (forward in time) rates for mutation, branching, and coalesceeece@amao,
andm(m—1)/2. Thus, the probability that the first event back in time before timé is a mutation

is given by D/(m—+26 +20 —1). If the first event back in time was a mutation to type 1 at time
t = —1, there must have beén- 1 individuals of type 0 anch— ¢ — 1 of type 1 at timg —1)—, which

by stationarity has the probabilify(¢ 4+ 1,m— ¢ —1). In addition, one of the type-0 individuals has
to be chosen for the mutation at probability+ 1) /m. Taking factors together yields the first term in
(2.15). The other terms can be derived by drawing analogous thoughts.

In Chapter 5, we give an alternative representation of sampling probabildgether with some
simulation results.

When determining the types of a sample with the help of the ASG, one is in neeel glidpe of the
whole graph in the time interval of lengitogether with the types. This may get really involved for
larges. In Chapter 3, a refined construction of the ASG (the pruned LD-AS@esented. It allows
for determining the type distribution of the ancestor of one individual or s&mple of arbitrary
size for large times without knowing the shape of the whole graph. Since our constructioneof th
LD-ASG is inspired by an ordering of the lines as it is done in the so-callektlmen model, some
aspects of the latter model are explained in the following section.

2.1.5 Lookdown model

Thelookdown modelvas introduced by Donnelly and Kurtz [DK99b, DK99a]. Similar to the Moran
model, it also is a particle picture which can be used for describing the evolotitype frequen-
cies in a Wright-Fisher populatidn Let us start with a population of fixed finite sitec N in the
absence of selection. Again, the individuals are identified with levels N. But now we start in
the evolutionary time scale right from the beginning (not in the genealogicalsitale as in Section
2.1.2). A reproduction event is modelled as follows: Two levels are selegtdéormly at random
without replacement; each (unordered) pair of levels independentbtatlt Then the individual
at the lower of these two levelg,, gives birth to a child which is placed at the larger le¥igyn.

8Since the scalings of the pair coalescence rate in [KN97] and this thesis loffa factor 2, this factor has to be taken
into account again when looking-up the proof of recursion (2.15) N9K, Thm. 5.2].

9Note that the model by Donnelly and Kurtz is much more general, butlhaspects are needed for the purpose of this
thesis.
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2.1 Main models

In comparison to the Moran model (without selection), reproduction @& man only point in one
direction in the lookdown model (without selection): upwards with ta#i@ and tip at/nigh. The
higher level 'looks down’ at the lower level and adopts its type. In otddweep the population size
constant, one individual has to die in the lookdown model as well. This is rahthividual at level
Ihigh but the individual at levelN. At the same time, all individuals at leveks> /g are shifted one
level upwards tk+ 1 (compare Fig. 2.9). The Poisson point processes of reproductmusafrom

i to j come at rate 1, independently for each orderedipgie N, i < j. Therefore, a line on levélis
pushed to levef + 1 at rate/(¢ — 1) /2.

~——
-

(@]

N W A~ O

O
7

Figure 2.9: Lookdown model with population size-N5. Reproduction arrows are always pointing from
lower to higher levels.

Mutations are modelled the same way as in the Moran model: Mutations to typeslOcamde as
independent Poisson point processes at tgsand v, independently per level.
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Figure 2.10: Transportation of types in the lookdown model. Since theslin this picture can be gained by
a rearrangement of the lines in the corresponding Moran rh@ég. 2.3), also the genealogies
agree.
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Donnelly and Kurtz [DK99b, Thm. 1.1] proved that if the types are assign¢heN lines attime 0 in
an exchangeable way, then the lines stay exchangeable for allttim@sin addition, the proportion
of type-0 individuals in the population in the lookdown model has the same ditribas the type-0
proportion in the Moran model, given the initial frequencies agree. bhdatuitively, the realisation
of the lookdown model can be gained from a realisation of the Moran mgdeldydering the lines
(compare Figs. 2.3 and 2.10). The individual which dies first is placeldw N, the individuals
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with the second shortest lifetime on leWet 1, . . ., the individual whose descendants have the longest
lifetime (and therefore live forever) on level 1.

Since the line on level 1 in the lookdown model without selection is never hinigyaarow, it lives
forever. As it is the only line that never dies and whose offspring fixateélse population at some
future time, it is namednmortal lineor line of the common ancestor

Indeed, all lines at higher levels are affected at least by arrows atiginfrom level 1. In fact, the
higher the occupied level of a line, the faster this line is pushed to even héayleds until it dies when
pushed above levéll. The distribution of the time until a line on levéldies at leveN is given by
EUL)+EU+1)+...+&(N), whered(]) is an exponential random variable with paraméteFhis
time is finite a.s. forall € {2,3,...,N} (and for all 2< N < ) with expectation 21/(¢{—1) —1/N).

The immortal line also exists in the Moran model. But it is not located on one dissimg level
and its location changes throughout times, always depending on the. fitbheeadvantage in the
lookdown model (with mutations) that the immortal line is always located on levbwsafor an
easy study of the type of the common ancestor of a future population:

Let, for some fixed times, h(x) be the probability that the immortal line is of type O, given the
proportion of type-0 individuals at timeis x. Thenh(x) = x, independent of the time and the
population sizeéN. Indeed, since the lines in the lookdown model are exchangeable at al] 6awds
line (including the immortal line) has the same probability of being of type O.

In an equilibrium situation, the probability that the immortal line is of type O isﬁogf’e—w = Vp, the
probability that the most recent mutation on the ancestral line was to type 0.

Another advantage of the lookdown model in comparison to the Moran mivdiiig case without
selection) is its consistency when adding individuals. The ordering of the Iimsures that the ge-
nealogy of the first individuals is not affected by individual+ 1. All arrows with tips at most at
level n have tails below leveh. Therefore, when increasing the population size fidto N + 1, the
genealogy of the firdtl individuals does agree in the pictures wiNrand withN + 1 lines not only in
distribution but realisation by realisation.

To arrive again at a diffusion limit, one may take the lifNit— o in the lookdown model with muta-
tion (this is done e.g. in [DK99b]). One then arrives again at a Wright-Fidiffeision with mutation
with diffusion coefficientx(1 — x) and drift coefficien{ 1 — x) vy — x8v;. But now this is a ‘strong’
limit (realisation by realisation) whereas it was only a weak limit (limit in distributiorthie Moran
model.

Adding selectionto the lookdown model was done first by Donnelly and Kurtz [DK99a] in9.99
Whereas they focus on viability selection, we again concentrate on fertiliggts® (as done in
Section 2.1.2). In the viability selection case, type-1 individuals die at a higite than type-0
individuals. Thus, in addition to the neutral reproduction arrows, sekedeath indicators at rate
per level are added. These indicators can only be used by individilpes1l and are ignored by
individuals of type 0. At each death event, the free space is filled by @ dba randomly chosen
individual before the event (maybe a copy of the dying individual itsét®rtility selection means
that type-0 individuals reproduce at a higher rate than type-1 indiidia comparison to neutral
reproduction arrows, the added selective arrows in the lookdown nmeaglpoint in both possible
directions: upwards or downwards. Therefore, (fertility) selectiom loa modelled exactly as in

16
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the Moran model. In addition to the reproduction arrows, independentliepel, a Poisson point
process of selective arrows originates from each level aiaraféhe tip of a selective arrow points to
a uniformly chosen level. An example is shown in Fig. 2.11.

T
]

T —)

o

Figure 2.11:Lookdown model with selection and mutation. Reproductimoves always point upwards but
selective arrows may point in both vertical directions. Spicture emerges from Fig. 2.4 by a
rearrangement of the lines.

Donnelly and Kurtz [DK99a] show (for viability as well as fertility selectionatlexchangeability is
preserved and the type frequency process in the infinite-population limiisgdnt-Fisher diffusion
with mutation and selection; its generator is given by (2.4). In addition, theadegy of each sample
of sizen performs an ancestral selection graph started withes.

A slightly different lookdown model with selection was introduced by Bahw,Sand Pardoux
[BPS12] in 2012. In their model, which deals with viability selection, each idda of type 1

dies at rateg. But it is not that level at which a clone of a randomly chosen individuabis. In-

stead, when an individual at levéldies due to a selective event, all individuals at levetls ¢ are

shifted one level downwards to leveds- 1. The empty space at levllis filled by a child that is a
copy of a randomly chosen individual.

v

t

Figure 2.12: Lookdown model with (viability) selection with populatisize N= 2 in the version by Bah,
Sow, and Pardoux [BPS12]. The tyfidine at levell dies. The line at leve? is shifted down to
1 and a copy of a randomly chosen individual (here of the tyjredividual that was available
at levell just before the death event) is placed on level N. This seteevent is followed by a
birth event at which it is the newly born line at level N thasha die a.s.

Bah, Sow, and Pardoux show that their version of a lookdown model wiithiten population size
preserves the exchangeability of the lines at all times. In addition, the pi@pof type-0 individuals
in the finite population model with population siikkconverges in probability to a type frequency
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process which is again a Wright-Fisher diffusion with selection. Howa@vegmparison to the finite
population version of the lookdown model by Donnelly and Kurtz [DK9%aé version by Bah et
al. [BPS12] (or [BP15] in the special casé(0,1]) = 0) in the case of finite population size is not a
representation of the Moran model. It is not Markovian any more butdrae predictable elements
that yield a bias at level. Indeed, at neutral reproduction events, the line that dies is alwagtetbc
at levelN. At selective death events, the free space that is filled with a new child idcalated at
level N. Therefore, if there was a selective death event forward in time leaditigetbirth of the
line on levelN, this newly born line (and not a randomly chosen one) is for sure the linie ibttlis
selective event is followed by a neutral reproduction event. A minimal el@imphown in Fig. 2.12:
The line that dies is the line that was born in the last step a.s. In a Moran motleldssible lines
(the newly born one or the older line) would die with probabili$21

Although the model by Bah, Sow and Pardoux is not a representation Mdhen model, we will
use some similar ideas when defining taokdown ASGn Chapter 3.

A different approach of ordering the lines in the Moran model with (fertilgg)ection (and with-
out mutation) was introduced by Kluth and Baake [KB13]. In tHalvelled Moran modekvery
individual is assigned a label (in addition to its level). Reproduction evertsliatinguished as ei-
ther ‘neutral’ or ‘selective’ ones. In contrast to the rules in the lookdomodel of Donnelly and
Kurtz, neutral reproduction arrows can point in all directions but sekeceproduction arrows are
only allowed from lower to higher labels. Although this approach lacks impbpeoperties of the
lookdown model (e.g. exchangeability of the lines), it gives some insightlmet@mumber and nature
of selective events that yield fixation of one of two possible types.

2.1.6 A-Wright-Fisher diffusion and  A-coalescent

So far, forward in time, we only considered binary reproduction everitsaérMoran and lookdown
model. At each reproduction event, the mother has only one single offspFims assumption will
be made through Chapters 3, 5, and 6. But as we will also analyse biritsevith more than one
child in Chapter 4, let us briefly give some insight into the Moran model withodyrction events of
arbitrary size and the genealogical process backward in time here.

In the Moran model, a birth event witih 1 children,j > 2, is modelled by a ‘multi-arrow’ with one
tail (emanating from the level of the parent) hut 1 tips pointing to the locations of the newly born
children. In order to make space for the children, the individuals locdtdtedevels of the tips of
the arrows die (compare Fig. 2.13).

Let us model the rates of the reproduction events according to a probaféégure of0, 1], denoted
by A. LetApj,

Mo, ::/ Z(1- 2>z 2A(d2), j<b, (2.16)
01
be the rate at which a ‘multi-arrow’ is interchanged betwegdixed lines among a collection df
lines in total. Consequently, in a population of si¢gthe Poisson point process of arrows with tail at

level £ and tips at levelé,, (2, ..., £j_1 comes independently at ratg j/  for each arbitrary but fixed
and pairwise disjoint tuplé/, /1,...,¢j_1) € {1,...,N}). The lines at levelg, ¢4, ...,¢;_1 merge into
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Figure 2.13: Moran Model with mutation and selection with birth eventsipto three children.

one line at rate\y ; and the probability that the parent is located at leviel1/j.
Selection and mutation is modelled the same way as already described in Secfion 2.1

Ordering again the lines in the Moran model by persistence results in theowokdodel, we get the
following: At a reproduction event with involved lines, the parent is always the individual that is
located at the lowest participating level. It placeg sl children at all other affected levels (compare
also [DK99a, DK99b]). That way, the location of the parent of eapihaduction event is determined
by the locations of all participating levels. For clarity, when drawing a reédisaf a lookdown
model with birth events of arbitrary size, we omit the reproduction arrowsoaty draw bullet$ at

all affected levels (as shown in Fig. 2.14). In order to make space farewy born children, lines
again do not die but are shifted upwards. Mutation and selection is modsledeady described in
Section 2.1.5.
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Figure 2.14:Lookdown model with mutation and selection. Neutral repathn events are modelled by
bullets. The parent of each birth event is always the indiaidt the lowest level with a bullet.
This picture emerges from Fig. 2.13 by a rearrangement ofities.

The frequencyX of type 0 individuals in a population of infinite size with birth events according to
the reproduction measure is then a so-called-Wright-Fisher diffusiorwith mutation and selection

10The drawing of bullets instead of arrows at reproduction events is alsivates] by the Poissonian construction of the
N-coalescent (reviewed e.g. in [Ber09]).
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with generator given by

A(d2)
2

Gxg(x) = / X(9(x+2(1=X)) = 9(x)) + (1 =) (g(x— 29 — 9(x))]
1] (2.17)

+A({0}).%x(1—x)g”(x) + [oX(1—X) — Bvix+ Bvp(1—x)]d (¥),

g < ©2[0,1] (see for example [Gri14]). As this generator is further investigated irp@nd, we omit
the details here and continue with theWright-Fisher proceswithout mutation and selection (i.e.
6=0=0).

By the analogy with the Kingman coalescent being the moment dual to the WiigltgsFfprocess
with binary reproduction events only (compare (2.7) and (2.8) in Sectio8)2theA-Wright-Fisher
process has a moment dual as well: Theoalescentvas introduced in 1999 in three independent
papers by Pitman [Pit99], Sagitov [Sag99], and Donnelly and Kurtz [K94. Berestycki worked
out a general review [Ber09].

The A-n-coalescent evolves backward in time and gives the genealogy of a safnpledividuals

in a A-Wright-Fisher population (see Fig. 2.15, top, for a realisation in the loekdmodel). By
definition, the Markovian family oA\-n-coalescents takes values in the set of partitionslof. ., n}.

It starts with the set of all singletog1},...,{n}} and finally gets absorbed in the trivial partition
{1,...n}, when all blocks (or ancestral lines of individuals) have coalesckd.blocks (or lines) are
required to be exchangeable at all times. The consistency property tatiss theA-n-coalescent
restricted to the firstnlines is a\-m-coalescent for alin€ {1,...,n}. In addition, the rates at which
any arbitrary but fixed tuple of out of b blocks (or lines) merges into one is given hy; as defined
in (2.16).

When the measurk takes certain values, some special classes of coalescents appeaarfpte, in
the case\ = &y, the Dirac mass at 0, the Kingman coalescent (described in Section 2i$e3). ae
will refer to this case aKingman caseWhenA = 1, we have the so-callestar-shaped-coalescent
This coalescent is remindfull of a star because at rate 1 all lines coaéstee into one single
line. ForA =unif|0, 1], the uniform measure, th-coalescent is 8olthausen-Sznitman coalescent
[BS98]. In the case whef is a Betd2 — a, a) distribution, the class dBeta-coalescentarises. A
review on all just described types of coalescents can be found in9Ber0

The intuition behind (2.16), concentrated @) 1], becomes transparent when considering the Pois-
sonian construction of th&-coalescent (e.g. in the lookdown representation shown in Fig. 2.15): In
the first stage, generate a random configuration of point® &r(0, 1] according to a Poisson point
process with intensity measude- A(dz) /2. Given the point configuration, in the second stage, per-
form for each pointr,z) a Bernoulli experiment at time with success probabilitg on the levels
1,2,.... Then, given the successful levels diels, 43, ..., the lines at level$,, /3, ... merge into the

line at level/;.

Given the parameter of the Bernoulli experimerg,ithe probability that exactly fixed levels out of

b are successful i8 (1— 2)°~I. Integrating over all possible success probabilitigs/es (2.16).
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2.2 The common ancestor type distribution
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¢ 0.5
° )
o [ ]
® _lo

Figure 2.15: Poissonian construction of th&-coalescent. Bottom: The Poisson point process of coalgsci
times and coalescing probabilities per level. Top: Thedtslare the successes of the Bernoulli
experiment, the green lines are the lines of the correspmgWi5-coalescent.

The generator of the line counting procé&ssf the A-coalescent is given by

b-1
Gealt) = 5 (g, y ) ocralo®—a(B)]. g:NE 218

because there ar(%_EH) different tuples ob—c+ 1 out ofb lines, each of them coalesces at rate
Abb—c+1 iNto one single line, and the remaining number of lines after such a coalesisenc

Again, like in the case with only binary birth events, when selection and mutatiaddsd to the
N-Wright-Fisher diffusion, it becomes rather involved to find the true gexggeof a sample. The
N\-coalescent with mutation and selection is investigated in Chapter 4.

All results in this thesis require the assumption that a.s. there are no simukamediiple birth
events, i.e. at each point in time, there is at most one birth event with a singlemmoth

When thinking of a scenario with simultaneous multiple birth events forward in tireegehealogy
of a sample backward in time has to perform simultaneous multiple mergers. Afttloisgs not a
subject here, let us briefly note that one then arrives at the classoafleol=-coalescents, a general-
isation of A-coalescents. These coalescents with simultaneous multiple mergers wetadatidy
Schweinsberg in 2000 [Sch00].

2.2 The common ancestor type distribution

In this section we come back to the classical Wright-Fisher diffusion. Weepteéhe main quantity
of this thesis, namely the type distribution of the common ancestor (or immortal Weegalready
outlined for the Wright-Fisher diffusion without selection on page 16, atengtimes, the probabil-
ity that the common ancestor is of type 0 is denoteth(y, given the type-0 frequency at tinsés x.
We also review results by Kluth, Hustedt and Baake [KHB13], Feawhffeza02], and Taylor [Tay07].
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2 Main models and some mathematical background

2.2.1 The common ancestor’s type in a population of finite size N

In a population with particle representation given by the Moran model ordowok model with
selection and mutation with population sikec N, at any timet > O there a.s. exists a unique
individual whose progeny will take over the whole population at some #imd. All individuals

at times will then have this single individual as their ancestor at timdherefore, this individual

is denoted bycommon ancestoat timet. For example, the common ancestor in the Moran model
in Fig. 2.4 (at the time that corresponds to the left-hand side of the picturey tgpk-0 individual
located at level 4, and in the lookdown model in Figs. 2.11 and 2.14 (on thidetl side of both
pictures) it is located at level 1. Since such a common ancestor existsraal.timest > 0, the line

of the common ancestor throughout times is also denotaohimortal line

In a population of size\, let hY be the probability that the common ancestor has type 0 attime
given the proportion of type-0 individuals at timés k/N. As already explained on page 16, in the
case without selectiors( = 0), we haveh}y = k/N, due to exchangeability of the lines.
When selection is present, the type of the immortal line has a tendency towardsrtgficial type
such thath’lz' > k/N. This scenario was analysed by Kluth, Hustedt and Baake [KHB13] 1320
Using ‘first-step analysis’ methods, they derived a system of equatmm{:‘f[KHBll%, Equation
(21)],

N

1-h hi
)\N N hN :)\NhN NhN k = k=1 N —k k+1 k<N
(A + M )y k Mcrr T Hic Ny + UNVlN_(k_l) ( >uNVOkJrl’ O<k<N, (2.19)

hy =0, hy=1

Substituting! = hi! —k/N, 0< k < N, one can speak @fN as the additional absorption probability
of type 0 individuals due to selection. Using then the ansatz

‘ - -
YN = (N—K) _;a}“ klglk(N i)'l')'_('i.((N'fi? (2.20)

gives a recursion for the coefficier&%, 1<n<N-1, compare [KHB13, Theorem 2],
ap =1, a)=N¢n_1,
n N n N-(n-1) N N—(n—1)
_ _ N e I S R S = > 2.
(N n)[<N+qul)an <N+ N SNHUN ) g1+ N N, »| =0, n>2
(2.21)

Kluth, Hustedt and Baake also show that for— « andk/N — x, x € [0, 1], the equations in their
discrete setting converge to the equations given in the continuous settirgnalyded by Fearnhead
and Taylor. Namelhl! = ¢} +k/N (determined by (2.20)) convergeshigx) (given by Equation
(2.48)) and the system of Equations (2.19) converges the the recwfskarnhead’s coefficients
(2.33). The continuous setting with infinite popolation size is presented in Kis®eetions.

2.2.2 The ASG as a backbone for a population of infinite size

In an (infinite size) Wright-Fisher population with selection and mutation, the f&8&ted withn
lines) contains all information about the genealogy of a sampteindlividuals. Foro < «, as the

22



2.2 The common ancestor type distribution

coalescence rate of the ASG is quadratic but the branching rate only, Imea is an entrance
boundary. We can start the ASG at time: —swith all individuals in the population (infinitely many
lines). Then, for alle > 0, there are only finitely many lines left at times+ €. The ASG is said
to come down from infinityln addition, the time lengthya until all lines have coalesced into one

= =

I 1 [T

rTua 0 r Tvrca o r Tvrca 0

Figure 2.16: The time to the ultimate ancestor and the most recent commaestor of a sample @findivid-
uals taken at time & 0 (for simplicity in the case without mutations). Left: AS@r{taining all
potential ancestors). The timgAis the first time at which all lines have merged into one single
line. The types of all individuals are unknown. Middle: Tgenealogy in the case that the type
of the ultimate ancestor @ The time fjrcato the most recent common ancestor in this example
coincides with §a. Right: True genealogy in the case when the type of the ukimacestor is
1. In this example we have kca < Tua.

single line (theultimate ancestqgrfor the first time, satisfie3ya < © a.s. (compare [KN97, Thm.
3.2]). Note that a common ancestor of the whole population is the single line at-timelya (see
also Fig. 2.16 in the case= 0). The time—s+ Tyrcatill the most recentommon ancestor of the
population (sampled at time= —s) is bounded by-s+ Tya from above. In addition, for all times

r > —s+ Turca the (unique) line of the common ancestor (the immortal line) is embedded in the
ASG started with the single line at times+ Tya. Therefore, letting — o, the immortal line exists

at all times and is included in the ASG started with one single line atttise-c«. At all timesr € R,

the number of lines in this ASG at timrds distributed according to the stationary distribution. Thus,
we term the ASG that is started with one single line at timee—co equilibrium ASGIn some sense,
we can think of the equilibrium ASG as the backbone of the population; ea#ntilne ancestral line

of any individual sampled at any tinte< o coalesces into one line of this ASG a.s. (compare Fig.
2.17).

Since the immortal line is included in the equilibrium ASG at all times, the distributioneofytbe

of the common ancestor of a stationary Wright-Fisher process can benitetdrby analysing the
equilibrium ASG instead of regarding the whole population. Such an apipas carried out by
Fearnhead in 2002 [Fea02].

2.2.3 Fearnhead’s approach to the common ancestor type distribution

Fearnhead’s analysis of the type of the immortal line in a stationary WrigheFstpulation starts
with the ASG of Krone and Neuhauser [KN97]. In detail, it starts with theildgium ASG. As
Fearnhead wants to determine the distribution of the type of the common anbestimes not need
to construct the ancestral graph of a sample of arbitrary size but itesiffo choose sample size
1 (as explained in the last preceding paragraph). The ASG of Neehand Krone is an untyped
branching and coalescing graph: in the first step, each branchingreveains unresolved. Without
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2 Main models and some mathematical background

N

r

Figure 2.17:The ASG started with one single line at time-r—o is a backbone of the population (green
lines). The ancestral lines of all individuals eventualbatesce into this ASG (some ancestral
lines are drawn in black).

types, it is not clear whether the incoming or continuing line is the true parémé toranching event.
To determine the real branch (i.e. the true ancestral line), types aressigyad to a given realisation
of the ASG. In his graph, instead of using an a priori untyped situaticerifhead keeps track of the
types of all lines at all times. This also amounts to keeping track of which besnare virtual (i.e.
those potential ancestors, that turn out to not be ancestral at all) anoH tatanch is the single real
branch (the immortal line). The state space is th@nnog,n1) | r € {0,1},ng, N1 € No}, wherer is the
type of the real line, andy andn; are the numbers of virtual lines of types 0 and 1, respectively.
Remember from Equation (2.14) thatng,n;) was the stationary probability of drawing a sample
with n; individuals of typej, j € {0,1}, in a Wright-Fisher population and Igt(j | (no,n1)) =
p(no + djo, N1+ &j1)/p(no, 1) be the conditional probability of drawing an individual of typegiven
already a sample of configuratidng, n;). When the current state {§ ng,n;), the transition rates of
the typed version of the ASG are then givertby

(a) coalescence of two branches of tyjpe
transititon to statéi; no — djo, N1 — dj1):
(Nj+3&j)(nj+&; —1) p(No+ &o— Sjo,M + &1 — j1)
2 ' p(no + &io, N+ &i1)
(b) mutation of the real branch to type# i;
transititon to staték; np,n;):

oy P(o+30,M +da)
' p(no+ o, M1+ &1)

(2.22)

(2.23)

(c) mutation of a virtual branch from typeto k # |;
transition to statéi; no + Ao — djo, N1 + & — Oj1):
p(no + 8o — djo + Ao, N1 + &1 — Oj1 + A1)

n;ov; -
1= p(no + &0, M+ &i1)

(2.24)

INote that there are some small typos in the rates of [Fea02, p. 42/43].
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2.2 The common ancestor type distribution

(d) selective event, the incoming branch being of type 1 and the continuamgHp of typek;
transition to stateéi;no,ny + 1):

P(No+ &0, N1 + 14 41)
Nk + o- 2.25
(0T ot G0 + 8) (2.23)
(e) selective event, the incoming branch being of type 0 and the continfitpgek;
transition to statéi; no + &o, N1+ O1):
No+ 8o + o, N1+ Gz +
(n0+dO)O-' p( 0 do d(o 1 dl d(l) . p(k| (n0+a07nl+dl)) (226)

P(no + &io, N1 + 1)

For a formal derivation of these rates, Fearnhead refers to [SO00, T]. Intuitively, the rates are
again evident from a ‘first step decompaosition’ according to the firsttdvack in time (compare the
paragraph following Equation (2.15) on page 14).

Theoretically, to find the common ancestor type distribution, one may now ceddbla stationary
distribution with respect to these rates and then integrate over the typesvirttiadlines. But as the
rates are rather involved, it is not clear how that should work in practice.

Fearnhead’s idea is then to simplify the typed ASG and arrive at a Markpv@acess which he calls
common ancestor proce§SAP). The CAP arises from the ASG by deleting some virtual lines that
do not influence the evolution of the immortal line. In detail, all virtual lines okt@pare deleted
from the graph such that only virtual lines of type 1 remain in the ASG. Famge, a virtual line
that mutates to type 1 is deleted directly after the mutation and branching eveatsiyaallowed to
result in an additional line of type 1. This results in the state spéce) | r € {0,1},v € No}, where

r is the type of the real line andthe number of virtual lines, all of type 1.

If the current state igr,v), the transition rates of the CAP are given by

(i) mutation of the real branch to type# r;
transititon to stat¢k, v):

P(&o,V+ &1)
P(o,V+ dr1)

(i) coalescence of two branches of type 0 or mutation of a virtual brantp®0;

Gvr . (227)

transititon to statér,v—1):

(V+ &) (V+E1—-1) P(&o,v+&1—-1)
2 YOV Govt 8)

(iii) selective event, the additional branch being of type 1;

(2.28)

transition to statér; v+ 1):

' p(&o,V+1+ 1)
VD e o+ a0)

Rate (i) coincides with rate (b) and rate (iii) with rate (d) of the ASG, rate (ifesrfrom rates (a)

and (c). Since branching events with an additional line of type 0 are fdebith the CAP, rate (e) is
not present among the rates of the CAP.

(2.29)

25



2 Main models and some mathematical background

Fearnhead shows that indeed the CA&V ), whereR is the type of the real line and the number

of virtual lines, is a Markov process. In addition, he shows that bremcif type 0 (except for the
real line) in the typed ASG contain no further information on the history of treedinthe common

ancestor. The ancestry of the immortal line (real line) in the CAP coincidestintancestry of the
immortal line in the ASG [Fea02, Thm. 1].

The CAP describes the distribution of the type prodess the immortal line, it is a Markov process
that includes less lines than the ASG, and is therefore an object much simgtedyse than the typed
ASG. With the CAP, Fearnhead succeeds to specify the distribgiipn) := P((R V) = (r,v)) of
the type of the common ancestor together with the number of virtual lines in a statisituation
[Fea02, Theorem 3].

In detaif?, for 8 > 0 and 0< v; < 1, the probability weightgp of the unique stationary common
ancestor type distribution together with the number of virtual lines is given by

(v+1)!
r,v) = aly— — oy | — 2.30
0:9) = (8l-o) + (B0 )Ty ) o B v-+ B (2.30
with the coefficientga,) given by
n
a=1 a,=[]A, n=1,..., (2.31)
,Il i

andi; = Iimk_m)\i(k) specified by)\lﬂfl = 0 and the recursion
A =- 2 e 1=2 (2.32)
i+20+20 — (i+26v1)A

For the proof, Fearnhead states that the common ancestor procesdusible and recurrent and
that((p(r, v)) defines a probability distribution. Then, in the main part of the proof, helchihat the
stationarity condition is true,

Z @(r,v)q((r,v), (r',v)) =0, forall (r',V) € {0,1} x Ny,
(r,v)

whereq((r,v),(r',V)) is the 'Q-matrix’ with the ratei) — (iii ) given by Equations (2.27), (2.28),
and (2.29).

Although this calculation works quite straight forward, a probabilistic inttgiion of the coefficients
(Ai) or (an) does not become clear from the proof.

Remark 2.1 (Fearnhead’s recursion)Note that the definition of the coefficierits,) in Equations
(2.31)and(2.32)is equivalent to defining them via

n+1 n+1
<2+9vl> ant1— <Z+o+ 9> ah+0a,-1=0, n>1 (2.33)

with the constraints @= 1, limn e %:2 = 0.

12Typographically, the mutation probability4’ to type 1 and the variable/ that stands for the number of virtual lines
may not be easy to distinguish on the first sight. But note that only the mufatability, v1 or vg, always goes with
an index.

26



2.2 The common ancestor type distribution

The coefficientga,) are calledrearnhead’s coefficientdRelation (2.33) is denoted Hyearnhead’s
recursion

Writing out (2.30) for the two casas= 0 andr = 1 (and using the definition g in Equation (2.14))
yields the following representation ¢f

®(0,v) = a,- E[X(1-X)"],

P(L,v) = (av—avs1) -E[(1-X)".

The stationary distribution of the type of the common ancestor, which we dbgdtecan then be
gained by summing over the number of virtual lines.

(2.34)

P(l =0) = Z)(p(o,v) = Z)av- /le(l—x)"- (1—x)26v1=1y26vo~Lexpf 20X} dx,
Y= =0 . (2.35)
P(l=1)= Z)qo(l,v) = % ay—ayi1) - /0 (1— X)L (1—x)201~1x20v~Lexp{20x} dx

>(

In [Fea02, Remark 3], Fearnhead gives a simulation algorithm for a stayioealisation of R,V)
according to 2.34. TheéFearnhead simulatdras we call it here) works as follows:

1. Start withn = 0 virtual lines.
2. Take one individual at random from the stationary population.

3. Ifitis of type O, call it the common ancestor. We hdve/) = (0,n) and are done.
Ifitis of type 1,

« call it the common ancestor with probability—l%, we have(r,v) = (1,n) and are done.

« call it a virtual line with probabilit %, taken = n+ 1 and continue with step 2.

2.2.4 Taylor's approach to the common ancestor type distribution

In 2007, J. Taylor published a new approach to the distribution of the conanoastor’s type in
a stationary Wright-Fisher population [Tay07]. While Fearnhead'stansses a pruned version of
the ASG with the immortal line evolving in the environment of some virtual lines, Taytmncept
starts with a structured coalescent of the immortal line in the random envirerohtire frequency
of type-0 individuals.

Remember that the frequency proces®sf type-0 individuals in a Wright-Fisher population with
selection and mutation has drift coefficigiit— x) Ovo — x6v1 + ox(1 — x) and diffusion coefficient
X(1—x). The (forward in time) generat@y is given by (2.4) and its stationary probability density
w(x) by (2.5). But genealogies evolve backward in time. One important propgtite Wright-Fisher
diffusion is its invariance under time reversal (compare [BES04, SecfjoTBus, the backward in
time generat&?’ éx coincides with the forward in time generatey.

13Throughout, generators or rates indexed with ~ are always defingdvaed in time. The symbol " is used to
distinguish them from the forward in time quantities.
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2 Main models and some mathematical background

In the random environment of the backward in time Wright-Fisher diffusitih mutation and selec-
tion one may consider the dynamics of typed ancestral lines. In a sdmpie) of sizeny+ ny, let
np andn; be the number of lines of types 0 and 1, respectively. backward in time, thedimnting
process of the sample performstauctured coalescerih the random environmet with generator
given by (compare [Tay07, eq. (3)])

G(x,No,Np) 9(X,No, N1) = Gx g(X, o, Ny)

+ (nzo> )% [g(x, No — 1’ I'l]_) - g(X, No, nl)]
- (nzl) %( [9(x,n0, N1 — 1) — (X, No, Ny ) (2.36)

1-x
+ noevoT [9(x,no—1,n1 + 1) — g(X,No, Ny ) |

X
+ nlevlm [g(x7 No + 17 ng— 1) - g(X, n07 nl)] )

with the test functiory € %2(0,1) x No x Np and the conventiorfy) = (3) = 0. The first part of
(2.36) is the usual Wright-Fisher generator with mutation and selection tisatrathe type frequency
process. The parts with binomial factors describe the coalescence bhésmf type 0 or two lines

of type 1, at type-O frequency Lines of different types are not allowed to coalesce. The last two
terms in (2.36) represent mutations of a line from type 0 to 1 or from 1 to 0.eSuscare working

in the typed case, the parent of an individual at a selective eventecdatbrmined directly (it is the
incoming branch if and only if the incoming branch is of type 0). Thus, bthemrevents do not
appear here.

We will take a closer look at the shape of the rateég{Nle) in Chapter 6 when analysing the triple
procesgX,R,V).

For considering the line of the common ancestor, a sample of size 1 (éither) = (0,1) or
(ng,n1) = (1,0)) suffices. Note that the evolution of the immortal line coincides with the evolu-
tion of the ancestral line of a randomly sampled individual. This is due to thligdampare also
Taylor's explanation [Tay07, p. 817]) that eventually the line of anydcemly sampled individual
coalesces into the immortal line.

Taylor expands the proceg% )cr, the frequency of type 0 individuals (evolving backward in time),
by adding the typ&; of the immortal line (real line) at backward timeThis yields the backward in
time generator ([Tay07, eq. (4)])

A 1-x
G(X,R) g(X, O) = Gx g(X7 O) + GVOT [g(X, 1) - g(X7 0)]

] X (2.37)
G(X7R) g(X, 1) = GX g(X7 1) + evlm [g(X, O) - g(X7 1)] ) ge ng [07 1} X {Oa l} :

Therefore, the proces$X, R) backward in time is a jump diffusion process: the type frequency pro-
cessX performs a Wright-Fisher diffusion and the type procBsm the real line is a jump process
on {0, 1} with rates depending on the current stateof
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2.2 The common ancestor type distribution

Let (7(X,T))xe[0.1],re{0,1} D€ the stationary distribution ¢K;,R;). Due to the shape of the generator
é‘(X,R)1 it is possible to write the density in terms of its factors,

(X, 1) = W(X) - [h(X) 1y + (1~ h(x))l{rzl}] , (2.38)
with w(x) being the equilibrium distribution (2.5) of andh(x) again defined as
h(x) := P (immortal line is of type 0 at timg | Xs = X). (2.39)
In order to gain a representationtufx), Taylor investigates the stationarity condition. Sinces the
equilibrium distribution foiGx g, it is true that

0= Gxr 9(x.1)m(dxr) Vge ©?[0,1] x {0,1}. (2.40)

re{qu} /xe[oyl]

Using some algebra and reordering the terms, Taylor proves that Eq(2#@) is equivalent to the
boundary value problem [Tay07, eq. (9)]

Gx h(X) — h(x) [evol;x + evllﬁx] — Bu-—X—, h0)=h1)=0.  (2.41)

Taylor shows that the solution to (2.41) is unique. Before reviewing thigisaluet us mention that
Taylor also calculates the genera@¥ g, of the process$X, R) forward in time [Tay07, Section 2.2].
This can be done by reversing time with respect to the stationary distrilbmtion

/gl-(G(x’R) g2) drr= /(G(X’R) 01)-02dm for all test functiong,, go. (2.42)

This results in the following representation of the gener@g(g, of the procesgX,R) forward in
time,

Gix 9%.0) = G GX.0) +X(1- X JG(x.0) + Tt i oulgx 1) ~g(c0)] (249
Gix 90X 1) = O g 1) ~X(1-X) 7 (1) + Sl ewla(c0) - g(x 1) (244)

forallge ¢2]0,1] x {0,1}. We will take a closer look at the rates of this generator when investigating
the triple proces$X,R,V) in Section 6.4.

To solve the boundary value problem (2.41), Taylor tries the ansatzrgg aspower series i for
h(x). Indeed, the calculations then yield the solution

X

h(x) =X+ 20/0

Vo . 26v,
(X—0)exp(20(q—x)) (2)29 <1_2> dg, (2.45)
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2 Main models and some mathematical background

wherex’is the conditional expectation of drawing the third individual in a sample of /frem a
stationary population given the first two individuals in the sample are ofrdiftaypes,

Jod*(1-aw(a)dg _ E[X*1-X)]

x= Joal-gw(adg  EX@-X)]’

(2.46)

with the Wright densityw given by (2.5).

The stationary distribution of the tydeof the common ancestor, can then be gained by integrating
over the frequency of type-0 individuals,

P(l = 0) = /0 “heow(x)dx
1

(2.47)
P(] :1):/0 (1— h(x))w(x)dx

Comparing his results fdr(x) with Fearnhead’s aproach, Taylor shows [Tay07, Lemma 4.1] that the
boundary value problem (2.41) is also solved by the function

h(x) =x+ % x(1—x)"-an, (2.48)

n>1

where the coefficienta, are Fearnhead’s coefficients determined by Fearnhead’s rec(2saa).
Since the solution to the boundary value problem is unique, the right-haea®{@.45) equals the
right-hand side of (2.48) and we have

X3 @02 =20 [ qexp(2a(a-x) (3" (M)Zewdq (2.49)

n>1 1-x
d Z an(l—x)” )
Xx=1 \n>1

and applying some algebra, Taylor develops from (2.49) a representatia,,

With the help of rewritinga,,

20

=1 g, 1%

(2.50)

Taking the results of Fearnhead and Taylor together, for each triplarafqetergo, 6, vp), Fearn-
head’s coefficients, can be derived recursively via Fearnhead’s recursion (2.33) usastarting
valuesag = 1 anda; as in (2.50). Once the coefficients are calculated, the stationary type ulistnib
of the common ancestor can be determined either with Fearnhead’s dppraaatual lines (Equa-
tion (2.35)) or with Taylor's approach via the frequency of type-0 iitiials (Equations (2.45) and
(2.47)).
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2.2 The common ancestor type distribution

So far, the results by Fearnhead and Taylor are only valid for WrighteFdiffusions with mutation

and selectionvith binary birth eventslt is a priori not clear how to extend them feWright-Fisher
diffusions with reproduction measufe# &. To some extend, this is due to the fact that so far there
is no explicit probabilistic interpretation of Fearnhead’s coefficieqts terms of a particle picture.
Since the representation bfx) in Equation (2.48) has a somehow geometric structure and we have
an € [0,1] for all n > 0, the curiosity of finding a probabilistic meaning @ )n>o strongly motivated

us for discovering the results given in Chapter 4 of this thesis.

A slightly different step towards the interpretation of Fearnhead’s @iefiis is done by Kluth,
Hustedt, and Baake in terms of taking limits in the finite population size case. IBIRHTheo-

rem 3] they show that recursion (2.21) for the coefficigaty) in the discrete setting with population
size N converges to Fearnhead’s recursion in the lifit> . As reviewed in Section 2.2.1, the
coefficients(al), 1 < n <N, in the finite population size case appear as factors in Equation (2.20).
They somehow quantify the additional probability for the common ancestor o thee beneficial
type due to selectiofo > 0) in comparison with the neutral cage = 0). They also show that their
representatiom = ¢ with ¢ given by (2.20) of the probability that the immortal line is of type
0, given the proportion of type-0 individuals in the siXepopulation isk/N converges td(x), as

N — o0 andk/N — x.
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3 Looking down in the ancestral selection
graph: A probabilistic approach to the
common ancestor type distribution

The results presented in this chapter are based on joint work with Sahaig Ellen Baake, and
Anton Wakolbinger. They are published in [LKBW 18]

In this chapter, we deal with a (two-type) Wright-Fisher diffusion with dimwal selection and two-
way mutation. In detail, we investigatéx), the probability that among all individuals of today’s
population, the individual whose progeny will eventually take over in thmufadion is of the benefi-
cial type, given today’s frequency of the beneficial typ&.idVe develop a construction that allows
a transparent derivation of Fearnhead’s coeffici€atg, the series coefficients df(x), and gives
them a probabilistic meaning. This construction, pinened lookdown ancestral selection grafph
LD-ASG) contains elements of both the ancestral selection graph and #uolen construction and
includes pruning of certain lines upon mutation.

3.1 Introduction

The understanding of ancestral processes under selection and migatimong the fundamental
challenges in population genetics. Two central concepts are the ahsestdion graph (ASG) and
the lookdown (LD) construction. The ancestral selection graph ([JN®IK97]; see also [SU86]
for an analogous construction in a diffusion model with spatial structwesgribes the set of lines
that are potential ancestors of a sample of individuals taken from anpnespulation. In contrast,
the lookdown construction [DK99b, DK99a] is an integrated represent#imt makes all individual
lines in a population explicit, together with the genealogies of arbitrary santpdes|Eth11, Chapter
5] for an excellent overview of the area.

Both the ASG and the LD are important theoretical concepts as well as \atoals in applications.
Interest is usually directed towards the genealogy of a sample, backwtarte until the most recent
common ancestor (MRCA). However, the ancestral line that continuemteyre MRCA into the
distant past is of considerable interest on its own, not least becaudesithmmgenealogy (of a sample
from a population) to the longer time scale of phylogenetic trees. The extdimde horizon then
shifts attention to the asymptotic properties of the ancestral process. Tibaatatype distribution
on the ancestral line may differ substantially from the stationary type distriburtithe population.
This mirrors the fact that the ancestral line consists of those individudlatdauccessful in the long
run; thus, its type distribution is expected to be biased towards the faveuyales.

1MRemember that the scaling of this thesis (including this chapter) is choskittsi the pair coalescence rate is 1 whereas
itis 2 in [LKBW15].
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3 A probabilistic approach to the common ancestor type distribution

When looking at the evolution of the system in (forward) tif@o), one may ask for properties of the
so-calledmmortal ling which is the line of descent of those individuals whose offspring eadigtu
takes over the entire population. In other words, the immortal line restrictedytdirae interval
[0,t] is the common ancestral line of the population back from the far future. it tinekes sense
to consider the type of the immortal line at time 0. To be specific, let us considéight-Fisher
diffusion with two types of which one is more and one is less fit. bemon ancestor type (CAT)
distributionat time 0, conditional on the type frequencigsl — x), then has weightg(x),1— h(x)),
whereh(x) is the probability that the population ultimately consists of offspring of an ind&iiaf
the beneficial type, when starting with a frequeraf beneficial individuals at time 0.

The quantityh(x) can also be understood as the limiting probabilitygas «) that the ancestor at
time 0 of an individual sampled from the population at the future siseof the beneficial type, given
that the frequency of the beneficial type at time @.i€quivalently,h(x) is the limiting probability
(ass— ) that the ancestor at the past times of an individual sampled from the population at time
0 is of the beneficial type, given that the frequency of the beneficial &gpime—s wasx.

Fearnhead [Fea02] computed the common ancestor type distribution forttitimnary type frequen-
cies, representing it in the forrfg,l(h(x),l— h(x))w(dx) (wherew is Wright's equilibrium distribu-

tion) and calculating a recursion for the coefficients of a series reptagen ofh(x). Later,h(x) has

been represented in terms of a boundary value problem [Tay07, KHBd&also Section 3.7.

In the case without mutations (in whidfix) coincides with the classical fixation probability of the
beneficial type starting from frequenay, Mano [Man09] and Pokalyuk and Pfaffelhuber [PP13]
have representdux) in terms of theequilibrium ASG making use of a time reversal argument (see
Section 3.2.2). However, the generalisation to the case with mutation is anythtiogwous. One
purpose of this article is to solve this problem. A key ingredient will be a contibimaf the ASG
with elements of the lookdown construction, which also seems of interest inntsigt.

The chapter is organised as follows. In Section 2, we start by briefipredating the ASG (starting
from the Moran model for definiteness). We then recall the Fearnfiagld+r representation df(x)
and give its explanation in terms of the equilibrium ASG in the case without mutafitsgred by
[PP13]. In Section 3, we prepare the scene by ordering the lines of $it2 iA a specific way; in
Section 4, we then represent the ordered ASG in terms of a fixed amangef levels, akin to a
lookdown construction. In Section 5, a pruning procedure is descthmdeduces the number of
lines upon mutation. The stationary number of lines in the resulting pruned $G-#ill provide
the desired connection to the (conditional) common ancestor type distribugonely, the tail prob-
abilities of the number of lines appear as the coefficients in the serieseafagsn. In Section 6,
the graphical approach will directly reveal various monotonicity propexiethe tail probabilities
as functions of the model parameters, which translate into monotonicity fiexpef the common
ancestor type distribution. Section 7 is an add-on, which makes the conmexfiaylor's boundary
value problem foh(x) explicit; Section 8 contains some concluding remarks.
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3.2 Concepts and models

3.2 Concepts and models

3.2.1 The Moran model and its diffusion limit

Let us consider a haploid population of fixed sike N in which each individual is characterised by
atypei € S:={0,1}. Anindividual of typei may, at any instant in continuous time, do either of two
things: it may reproduce, which happens atrgt2 it i = 1 and at rate 22+ s, sy > 0, if i = 0; or

it may mutate to typg at rateuy Vi, Uy > 0,0< v; < 1,vy+ v, = 1. If anindividual reproduces, its
single offspring inherits the parent’s type and replaces a randomly chodigidual, maybe its own
parent. Concerning mutations,, is the total mutation rate and the probability of a mutation to
type j. Note that the possibility of silent mutations from typto type j is included.
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Figure 3.1: The Moran model with two-way mutation and selection. Thedygre indicated for the initial
population (left) and the final one (right). Crosses represautations to typé, circles mutations
to type0. Selective events are depicted as arrows with star-shapad

The Moran model has a well-known graphical illustration as an interactimicleasystem (cf.
Fig. 3.1). The individuals are represented by horizontal line pieces fertard time running from

left to right in the figure. Arrows indicate reproduction events with the miaat its tail and the
offspring at its head. For later use, we decompose reproduction emémtseutral and selective
ones. Neutral arrows appear at raf¢2N), selective arrows (those with a star-shaped arrowhead in
Fig. 3.1) at ratesy /N per ordered pair of lines, irrespective of their types. The rates speeiiove

are obtained by the convention that neutral arrows may be used by aildinglis, whereas selective
arrows may only be used by type-0 individuals and are ignored othenMsigations to type 0 are
marked by circles, mutations to type 1 by crosses.

The usual diffusion rescaling in population genetics is applied, i.e. ratgesescaled such that
limyseNsy =0 and limyLeNuy =8, 0< 0,8 < o, and time is sped up by a factor bif Let

X be the frequency of type-0 individuals at tihé this diffusion limit. Then, the process )icr

is a Wright-Fisher diffusion which is characterised by the drift coefficex) = (1 — x)0v, —
x0v,; +x(1—x)o and the diffusion coefficiend(x) = x(1 — x). The stationary density is given

by w(x) = C(1— x)29V1~1x20v0~1exp(20x), whereC is a normalising constant (cf. [Dur08, Chapters
7, 8] or [Ewe04, Chapters 4, 5]).
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3 A probabilistic approach to the common ancestor type distribution

3.2.2 The ancestral selection graph

The ancestral selection grapWas introduced by Krone and Neuhauser [KN97, NK97] to construct
samples from a present population, together with their ancestries, in thsidifflimit of the Moran
model with mutation and selection. The basic idea is to understand selectwsas unresolved
reproduction events backward in time: the descendant hagpotential ancestorsthe incoming
branch(at the tail) and theontinuing branch(at the tip), see also Fig. 3.2. The incoming branch is
the ancestor if it is of type 0, otherwise the continuing one is ancestral. Ran@s-on exposition,

see [Wak09, Chapter 7.1].
1 C 1 C
1 J 1 J
1 C C
7 7

Figure 3.2: Incoming branch (1), continuing branch (C), and descend@jt The ancestor is marked bold.

D

The ASG is constructed by starting from the (as yet untyped) sample aridgiiaack the lines of

all potential ancestors. In the finite graphical representation, a neutoal that joins two potential
ancestral lines appears at ratéNlper currently extant pair of potential ancestral lines, then giving
rise to acoalescence everte. the two lines merge into a single one. In the same finite setting, a
selective arrow that emanates from outside the current sepofential ancestral lines and hits this
set appears at ratgéN — n)s, /N. This gives rise to &ranching event.e., viewed backward in time,
the line that is hit by the selective arrow splits into an incoming and continuinghras described
above. Thus, in the diffusion limit, sindé —n ~ N asN — o, the process$K, ), ., wherekK; is the
number of lines in the ASG at tinte= —t, evolves backward in time with rates

1
qK(n,n—l)zén(n—l), Ok (n,n+1) =no, neN. (3.1)
At a coalescence event a randomly chosen pair of lines coalescesaivhilgranching event a ran-
domly chosen line splits into two.
The (reversible) equilibrium distribution of the dynamics (3.1) turns out taheePoisson(2)-
distribution conditioned t41,2,...}, i.e.
(20)"

P(K, =n) = ni{exp20) — 1)’ neN. (3.2)

We may construct thequilibrium ASGas in [PP13] in two stages: first take a random path
(Kr)—w<r<e, and then fill in the branching and coalescence events, with a randoiceabfoone
of theK; lines at each upward jump, and of one of t(@) pairs at each downward jump OK;).
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3.2 Concepts and models

Mutation events (at rate®v, and@v,) are superposed on the lines of the (equilibrium) ASG by Pois-
son processes with rat@s, and6v;. Given the frequency of the beneficial type at time 0, one then
assigns types to the lines of the ASG in the (forward) time intefa$) by first drawing the types

of the lines at time 0 independently and identically distributed (i.i.d.) from the wejghts- x), and
propagates the types forward in time, respecting the mutation events. In thithegbackward in
time) branching events may now be resolved into the true parent and a fichaoerst.

Note that there are various ways to illustrate the same realisation of the ApGiaaily. See, for
instance, Fig. 3.3, with backward timeunning from right to left. The left and right panels of Fig. 3.3
represent the same realisation of the ASG, but differ in the ordering difite

) | | )
> J \J_\I
| ] - 1

«— «—

r r

3
<

O
\

Figure 3.3: Different representations of the same ASG realisation witherimposed mutation. All potential
ancestors of the line next to the top in Fig. 3.1 are shownoflealesolution into true and fictitious
parents).

3.2.3 The common ancestor

In the population, at any time there almost surely exists a unique individual that is, at some time
s>t, ancestral to the whole population; cf. Fig. 3.4. The descendants of tinvidnal become fixed,
and we call it theeommon ancestor at time The lineage of these distinguished individuals over time
defines the so-calleahcestral(or immorta) line.

1

t=0 S t

Figure 3.4: The common ancestor at time-t0 (CA) is the individual whose progeny will eventually fix ie th
population (at time s).

Looking at the population at timg sayt = 0, we are interested ih(x), the probability that the
common ancestor is of type 0, givé¥g = x. Equivalently, one may understah(k) as the probability
that the offspring of all type-0 individuals (regardless of the offggsartypes) will ultimately be
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3 A probabilistic approach to the common ancestor type distribution

ancestral to the entire population)Xf = x. The probabilityh(x) does depend on the type-0 frequency
x at that time but not on the time itself. According to previous results by Fead{rea02] and Taylor
[Tay07], it reads

) = 3 ax(1-x)" (3.3)
n>
where the coefficienta,, n > 0, are characterised by the recursion
(n+1+26vy)a,, . — (n+1+20+260)a,+208, ,=0, n>1 (3.4)
under the constraints a,
_ ; +1
ap=1, r!m — 0. (3.5)
Also, it is shown in [Fea02] that (3.4) and (3.5) imply
l=g>a >, lima,=0. (3.6)

n—o0

These results were reviewed by Baake and Bialowons in 2008 [BBA8],exobtained with the help
of adescendant procegforward in time) by Kluth, Hustedt, and Baake in 2013 [KHB13].

Eqg. (3.3) quantifies the bias towards type O on the immortal line. M term on the right-hand
side of (3.3) isagx = X, which coincides with the fixation probability in the neutral cage< 0).
Indeed, foro = 0, we haveag = 1,8 = 0 fori > 1 (this is easily seen to satisfy (3.3) and (3.4)). For
o > 0, however, alb; are positive (again by inspection of (3.3) and (3.4)), and the terms ot in

(3) quantify the long-term advantage of the favourable type.

In order to get a handle on the representation (3.3) and the recursf)in(8rms of the equilibrium
ASG, one observes that the type of the common ancestor at tirf@may be recovered in the fol-
lowing way. In the equilibrium ASG marked with the mutation events (as descinkfection 3.2.3),
assign i.i.d types to the lines at time 0 and propagate them forward in time, regptbelimutation
events. The immortal line is then encoded in the realisation of the marked ASG.

The event of fixation of the beneficial type is easily described in the caBewt mutations. First, re-
call that, as stated in Section 3.2.3, the nunifgeof lines in the equilibrium ASG at time 0 is Poisson
distributed with parameterd® conditioned to be positive. Next, observe that, with probability 1, the
equilibrium ASG has bottlenecks, i.e. times at which it consists of a single liridg be the smallest
among all the non-negative times at which there is a bottleneck (see FigTRiS)way, the unique
individual is identified that is the true ancestor of the single individual mvdod timet, and, at the
same time, of the entire equilibrium ASG at any later time (and ultimately of the entitdgimm).

As observed by Mano [Man09] and Pokalyuk and Pfaffelhuber 8pR¢pe 0 becomes fixed if and
only if the single line at time,, carries type 0, and this, in turn, happens if and only if at least one
ancestral line at time= 0 is of type 0. The latter probability is-1 (1 —x)%o, given that the frequency
of type-0 individuals i at this time. Therefore, with the help of (3.2), the fixation probability can
be obtained as

h(x) =E(1— (1—x)%0) = 1 (1-(1-x)")

(20)"  1—exp(—20x)
~ exp(20) -1 n;

n 1-exp—20)’

(3.7)
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3.3 The ordered ASG

0 t
Figure 3.5: A realisation of the equilibrium ASG, with its first bottlekeafter time0) at time §,.

which coincides with the classical result of Kimura [Kim62]. Puttipng= P(K, > n), n > 0, the
left-hand side of (3.7) may also be expressed as

h() =Y (1-(21-x)")[P(Ky=>n)—P(Ky > n+1)] = ZDVnX(l—X)”,
n>1 n>

which is the representation (3.3). (Indeed, one checks readily thatitpeaabilities y;, satisfy the

recursion (3.4) in the cage=0.) The elegance of this approach lies is the fact that one does not need

to know the full representation of the ASG, in particular one does not teddstinguish between

incoming and continuing branches. As soon as mutations are includedvémWeeping track of the

hierarchy of the branches becomes a challenge. We thus aim at antaleerapresentation of the

ASG that allows for an orderly bookkeeping leading to a generalisatioreatlda above, and yields

a graphical interpretation of (3.3)-(3.5). This will be achieved in the tieete sections.

3.3 The ordered ASG

In the previous section, we have reminded ourselves that one mayerptiee same realisation of
one ASG in different ways. In the following, we propose a constructidrich we call theordered
ASG and which is obtained backward in time from a given realisation of the ASGlaw/s (compare
Fig. 3.6).

» CoalescenceEach coalescence event is represented by a (neutral) arrow poirdingtie
lower participating line to the upper one. The (single) parental line contimaisin time from
the lower branch.

¢ Branching: A selective arrow with star-shaped head is pointed towards the splitting lime at
branching event. The incoming branch is always placed directly beneatiotiinuing branch
at the tail of the arrow; in particular, there are no lines between incomingamtthuing branch
at the time of the branching event.

« Mutation: Mutations, symbolised here by circles and crosses, occur along the $iriegtee
original ASG.
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3 A probabilistic approach to the common ancestor type distribution

Figure 3.6: The ordered ASG corresponding to Fig. 3.3 or directly deduoem Fig. 3.1.

The ordered ASG corresponding to both representations in Fig. 3.3visishd-ig. 3.6.

3.4 The lookdown ASG

To each point in the ordered ASG, let us introduce two coordinatesinmitsand itslevel the latter
being an element of1, 2, ...} which coincides with the number of lines in the ASG. Since this is in
close analogy to ideas known from the lookdown processes by Donmelliartz [DK99b, DK99a],

we call this construction thiwokdown ASG (LD-ASG])t can be obtained backward in time from a
given realisation of the ordered ASG, or it may as well be constructed tiribdison via Poissonian
elements representing coalescence, branching, and mutation. The ikiljjies are described in
Sections 3.4.1 and 3.4.2, respectively.

3.4.1 Construction from a given realisation of the ordered ASG

Backward in time, the realisation of the LD-ASG corresponding to a givalisegion of the ordered
ASG is obtained in the following way. Start with alindividuals (respectively lines) that are present
in the (ordered) ASG and place them at levels f by adopting their vertical order from the ordered
ASG. Then let the following events happen (backward in time):

» CoalescenceCoalescence events between levelad j > i are treated the same way as in the
ordered ASG: The remaining branch continues at levéh addition, all lines at levelk > |
are shifted one level downwardske- 1 (cf. Fig. 3.7, left).

« Branching: A selective arrow with star-shaped head in the ordered ASG is translated in
star at the level of the branching line. The incoming branch emanates out of the star at the
same level and all lines at levets> i are pushed one level upwardskie- 1. In particular, the
continuing branch is shifted to level- 1 (cf. Fig. 3.7, right).

« Mutation: Mutations (symbolised again as circles and crosses) are taken fronddred ASG.

Fig. 3.8 gives a realisation that corresponds to the realisation of theedrd&G in Fig. 3.6. Note
that we obviously have a bijection between realisations of the ordered A&@ea LD-ASG and that
the LD-ASG is just a neat arrangement of the ordered ASG.
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3.4 The lookdown ASG

,,,,,,, — _§

Figure 3.7: Coalescence (left) and branching event (right) in the LDEAS

Figure 3.8: LD-ASG corresponding to Fig. 3.6. Levels are numbered frottom to top.

3.4.2 Construction from elements of Poisson point processes

The LD-ASG may, in distribution, as well be constructed backward in time vialgraents ‘arrows’,
‘stars’, ‘circles’, and ‘crosses’ arising as representations ofpeddent Poisson point processes:

» Coalescencefor each ordered pair of leve(s j), wherei < j and levelj is occupied by a
line, arrowsfrom leveli to j emerge independently according to a Poisson point prd‘tffea:s
rate 1. An arrow from to j is understood as a coalescence of the lines at lé\aatsl j to a
single line on level. In addition, all lines at levelk > j are shifted one level downwards to
k—1 (cf. Fig. 3.7, left).

« Branching: On each occupied levelstars appear according to independent Poisson point
processe§ at rateg. A star at level indicates a branching event, where a new line, namely
the incoming branch, is inserted at levednd all lines at level& > i are pushed one level
upwards tok+ 1. In particular, the continuing branch is shifted to level1 (cf. Fig. 3.7,
right).

< Mutation: Mutations to type 0 and type 1, i.e. circles and crosses, occur via independ
Poisson point processEs$ at ratefv, andl"“ at ratefvy, respectively, on each occupied level
i

The independent superposition of these Poisson point processteeareffects on the lines charac-
terises the LD-ASG. Recall théK;), i, is the line counting process of the (ordered) ASG and thus
K; is also the highest occupied level of the LD-ASG at timelt evolves backward in time with
transition rates given by (3.1).

Note that, although we will ultimately rely on the ASG in equilibrium only, neither trdedng of

the ASG nor the LD-ASG construction are restricted to the equilibrium situafitve. equilibrium
comes back in when we search for the immortal line, which will be done next.
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3 A probabilistic approach to the common ancestor type distribution

3.4.3 The immortal line in the LD-ASG in the case without mutations

We consider a realisatio# of the equilibrium LD-ASG, writeK, for its highest occupied level at
(backward) timer, and again write

to=10(¥) ;== —sup{r <0:K, =1} (3.8)

for the smallest (forward) time at whic# has a ‘bottleneck’, see Fig. 3.9.

0 to

Figure 3.9: LD-ASG (without mutations) corresponding to Fig. 3.6. Timeniune line is marked bold.

The level of the immortal line at time 0 does not only dependobut also on the types, ..., 1% ¢

{0,1} that are assigned to the level2l .. ,Kq at time 0. We now define a distinguished line which
we call theemmune line The reason for this naming will become clear in the next section: the immune
line will be exempt from the pruning.

Definition 3.1 At any given time, themmune lineis the line that will be immortal if all lines at that
time are of type 1.

The following is immediate from the construction of the LD-ASG: back fromhdaattleneck of7,
the immune line goes up one level at each branching event that hapeleveltsmaller or equal to
its current level, and follows the coalescence events in a lookdown masegethe bold line in the
right panel of Fig. 3.10. In particular, the immune line follows the continuiranbh whenever it is
hit by a branching event at its current level.

The next proposition is illustrated by Fig. 3.10.

Proposition 3.2 In the absence of mutations, for almost every realisa#oaf the equilibrium LD-
ASG with types assigned at tifigthe level of the immortal line at tim&is either the lowest typé-
level at time0 or, if all lines at time0 are of typel, it is the level of the immune line at tinfe

Proof. We proceed by induction along the Poissonian elements “branching” adescence” de-
scribed in Sec. 3.4.2, backward fragthe first time after time 0 at which the number of line&ims

one. Letty <0< ty_1 < --- <tg be the times at which these elements occur (note that for almost every
realisation® the numbek is finite, and all the; are distinct) and choose times0s < --- < s
witht; <sj <tj_1, 1< j <k. We claim that for allj = 1,...,k, when assigning types at tinsg, the
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3.5 The pruned equilibrium LD-ASG and the CAT distribution

level of the immortal line at tims; is either the lowest type-0 level at tinsgor, if all lines at times;

are of type 1, itis the level of the immune line at tigje

The assertion is obvious fgr= 1, since by assumption no event has happened betajemmdt,.
Now consider the induction step fromto j +1. If all lines at times;j;; are assigned type 1, then
the level of the immortal line at timgy ;1 is by definition that of the immune line at tinsg, ;. Now
assume that at least one line at tigpe; is assigned type 0. If the event at tiavas a coalescence
(such as the leftmost event in Fig. 3.10), then by the induction assumptionvéietehe immortal

line at times; is the lowest type-0 level at ting., 1 (this is because the types are propagated along
the lines, in particular along the line at the tail of the arrow). If, on the othadhthe event at time

Figure 3.10:LD-ASG with types. The level of the immortal line (solidytatg out from time0 depends on the
type assignment at tin The immune line is marked bold (and is the immortal line mrilght
picture).

t; was a branching, then again by the induction assumption and by the “pemklag’ illustrated
in Fig. 3.11, the level of the immortal line at tinsg, ; is the lowest type-0 level at timg_ 1. This

completes the proof of the proposition. O
1
L annnnn S EEE R .
* *

Figure 3.11:Branching event in the LD-ASG. The four possible combinatf types are shown (in analogy
with Fig. 3.2). The parental branch (bold line) is the incoigpione (upper two diagrams) if it is
of type0, and the continuing one (lower two diagrams) if the incontingnch is of typel.

Proposition 3.2 specifies the immortal line in the case of selection only. The aira ettt section
is to establish an analogous statement in the case of selectimutation.

3.5 The pruned equilibrium LD-ASG and the CAT distribution

We now consider the equilibrium LD-ASG marked with the mutation events. Wgrkackward
from the bottleneck tim& (see Eq. (3.8) and Figs. 3.8 and 3.9), we see that the mutation events that
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3 A probabilistic approach to the common ancestor type distribution

occur along the lines may eliminate some of them as candidates for being the imimert&lutting
away certain branches that carry no information has been used, explicitiyplicitly, in various
investigations of the ASG (e.g. by Slade [SIa00], Fearnhead [Fea@#kyea and Swart [AS05], and
Etheridge and Griffiths [EG09]), but our construction requires aiipgruning proceduravhich we
now describe.

3.5.1 Pruning the LD-ASG

In addition to the eventsranchingandcoalescenceve now have theleleterious mutationand the
beneficial mutations As in the proof of Proposition 3.2, léf < 0 <ty 1 < --- < tg be the times
at which all these events occur, and choose times § < --- < s witht; <sj <tj_;, 1< j <k
Assume branching and coalescence events (but no mutation eventehtegpe times,, ..., t_1,
and a mutation event happens at titneRecall from Definition 1 that at any given time the immune
line is the line that will be immortal if all lines at that time are of type 1; but now the faile¢he
immune line must be adapted due to the impact of mutations. First consider thie edsieh our
first mutation is deleterious (symbolised by a cross). Since there is no mutatwedn time$ and
to, Proposition 3.2 applies (with time O replaced by tisng ), showing that the line that is hit by the
deleterious mutation at tintecannot be the immortal one unless it is the immune line. In our search
for the true ancestor of the line that goes back from tigrvee can thereforerasethe line segment to
the left oft;, unless the line in question is the immune one; all lines above the one that id slidse
down one level to fill the space, see Fig. 3.12 (left). If the immune line is hitdsieterious mutation
att;, it is the immortal line at times 1 if and only if all the other lines at timg_; are of type 1. In
order to tie in with our picture that the level of the immortal line at any time is the loleest that
is assigned type O (given there is at least one lineage at this time that issasiga 0), weaelocate
our mutated immune line to the currently highest level of the LD-ASG at tinwehereby the levels
of all the other lines that were above the immune line at tyrage shifted down by 1 (compare Fig.
3.13).

Next consider the case in which the mutation occurring at tinsdbeneficial (symbolised by a circle)
and happens at levélsay. Then, again appealing to Proposition 3.2, we see that none of théhlate
occupy levels> ¢ at timet; can be parental to the single line that exists at tign&\Ve can therefore
erase all these lines from the list of candidates for the ancestors. Watmthds by inserting a barrier
of infinite height above the circle, see Fig. 3.12 (right). If all lines at tsne are assigned type 1,
then the line on level becomes the only one that carries type 0 at tgraend therefore is immortal.
Thus, the immune line is relocated to levelt timet;.

,,,,,,, — B
4

O
/N A

Figure 3.12: Pruning procedure in the LD-ASG due to deleterious (lefg Beneficial (right) mutations that
appear on lines that are not immune.
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3.5 The pruned equilibrium LD-ASG and the CAT distribution

Figure 3.13:Relocation procedure in the LD-ASG due to deleterious rianaton the immune line (bold).

Proceeding to the next mutation event on the remaining lines back fromt;tijwhich happens at
timety, at level?’, say), we can iterate this procedure: if the mutation is deleterious, the line i kille
unless it is the immune one. If the immune line is hit by a deleterious mutation, thenliiéated to

the currently highest level of the LD-ASG. If the mutation is beneficial, alllithes at higher levels

are killed, with the line starting back frotg, at level?’ being declared the new immune line.

Having worked back toé = 0, we arrive at theoruned LD-ASCGoetween times 0 antd. Note that
except for the immune line, due to the pruning procedure there are no mstaticeny line of the
pruned LD-ASGIn other words, each line present at time 0 is either the immune line, or has-no mu

Figure 3.14:Pruned LD-ASG derived from Fig. 3.8. The immune line is nabiad.

tations on it between times 0 add where( is the time when that line was incoming to a branching
event with the immune line. Note also that beneficial mutations can only be paséme current
top level of the pruned LD-ASG.

As in Section 3.4.2 we can construct the pruned LD-ASG (together with teédéthe immune line)
backward in time in a Markovian way, using the Poisson procd‘q%mdr;* (for all occupied levels

i andj, cf. Fig. 3.7), and”; andl'?, where the pruning procedure is applied as described above (cf.
Fig. 3.12). Fig. 3.14 gives a realisation that corresponds to the realigdtibe LD-ASG in Fig. 3.8.

3.5.2 The line-counting process of the pruned LD-ASG

The construction of the previous subsection shows that the procgss,, whereL, is thelevel of
the top line(which coincides with the number of lines) at the backward time —t, evolves with
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3 A probabilistic approach to the common ancestor type distribution

transition rates
1

q.(n,n—1) = En(n— 1)+ (n—1)6vi + Oy,
q.(n,n+1) =na, (3.9)
q.(n,n—¢) = B, 2</¢<n, neN.

In words, when the top level is currentty it decreases by one when either a coalescence event
happens between any pair of lines (ratea— 1)/2), or one of then— 1 lines that are not immune
experiences a deleterious mutation (rate- 1)8vy), or linen— 1 experiences a beneficial mutation
(rate Bvp). The top level increases by one when one of the lines branches@atét decreases by

£, 2<{ < n,when leveln— ¢ experiences a beneficial mutation (réte) .

Remark 3.3 The process L is stochastically dominated by the process K (the highekbfethe
unpruned LD-ASG). In fact, using the above-described pruninggulae in a time-stationary picture
between all the bottlenecks of the equilibrium ASG line counting process§i), ., we obtain that
Ly <K, forallr e R.

The stochastic dynamics induced by (3.9) thus has a unique equilibrium dlistribwhich we denote
by p. In the following, letl = (L), be the time-stationary process with jump rates (3.9). We then
have

phn=P(Lo=n), neN, (3.10)
andp = (py) is the probability vector obeying
pQ=0, (3.11)

with Q being the generator matrix determined by the jump rates (3.9).

3.5.3 The type of the immortal line in the pruned LD-ASG

We will now show that the type of the immortal line at time 0 is determined by the typiggcoation
assigned at time 0 in a way quite similar to the case without mutations.

Theorem 3.4 For almost every realisatioff of the pruned equilibrium LD-ASG with types assigned
at timeO, the level of the immortal line at tim@&is either the lowest typ8evel at time0 or, if all
lines at timeQ are of typel, it is the level of the immune line at tinGe In particular, the immortal
line is of typel at timeO if and only if all lines in& at time0 are assigned the typk

Proof. We proceed by induction along the Poissonian elements described in Sdcb&ckward
from tg, the first time after time 0 at which the number of lines4nis one. As in Sec. 3.5.1, let
tk <0< ty_1 < - - <tgbethe times at which these elements occur, and choose timex & --- < §
withtj <sj <tj_1, 1 < j <k We will prove that for allj = 1,..., k the level of the immortal line at
time s; is either the lowest type-0 level at time O or, if all lines at tispare of type 1, it is the level
of the immune line at tims;.

If the event that occurs &tis a branching or a coalescence, then the induction step jfitom + 1 is
precisely as in the proof of Proposition 3.2. If the event at tijrie a deleterious mutation, then we
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3.5 The pruned equilibrium LD-ASG and the CAT distribution

distinguish two cases. In the first case, assume that this deleterious mutgijenis on the immune
line. Then, according to the rule prescribed in Sec. 3.5.1, the immune lineéatedbto the top level

of & at timet; (compare Fig. 3.13). If there is a line that is assigned type O atdjmg then the
immortal line at times;j,1 is found at the lowest type-0 level. (In particular, if the uppermost line at
time sj1 is assigned type 0, then it is the immortal line if and only if all other lines at meare
assigned type 1. This is due to the deleterious mutation attfiaed the relocation to the top level.)

In the second case assume that the deleterious mutation happens on adieatiifom the immune
one. Then the number of lines at tinsg 1 is one less than the number of lines at tisje more
specifically, all the lines from tims;; can be found in the same order also at tepeand in addition

at times; there is one line carrying type 1 which cannot be ancestral since it is @anthune line.
Thus the induction assumption from tirsgcarries over to give the required assertion for tspg .
Finally, assume that the event at timjés a beneficial mutation. In this case, if at tigg type 0 is
assigned to a levelthat is occupied by one of the lines that remain after the pruning attfinra@d

if all the levels below/ are assigned type 1, then we can infer from the induction assumption that the
line at levell at times;. 1 is the immortal one. On the other hand, if all the lines that remain at time
Sj+1 are assigned type 1, then, because of the beneficial mutation & fithe top line at times;_ ;

is the immortal one, and due to our relocation rule this is also the immune line atjtimerhus, the
induction step is completed, and the theorem is proved. O

3.5.4 The CAT distribution via the pruned equilibrium LD-ASG

With the help of Theorem 3.4, it is now possible to provide an interpretationegptbbabilityh(x)
that the common ancestor is of type 0, given that the frequency of théidiahiype at time 0 i.

Theorem 3.5 Given the frequency of the beneficial type at thiex, the probability that the common
ancestor at tim@ is of beneficial type is

h(x) = Y x(1-x)"*P(Lo > n), (3.12)

n>1
where lg is the number of lines at tim&in the time-stationary pruned LD-ASG, see form{#al0)

Proof. Let1X € {0,1} be the type that is assigned to the individual at léveK 1,. .., L4} in the pruned
equilibrium LD-ASG at time 0. According to Theorem 3.4, the event that tlrengon ancestor at
time 0 is of type 0 equals the event that at least one of'thke € {1,...,L,}, is 0. Conditional on
the initial frequency of the beneficial type beirgthese types are assigned in an i.i.d. manner with
P(1k = 0) = x. The quantityh(x) thus is the probability that at least one of a random number of
i.i.d. trials is a success, where the success probabilityrisa random number of triallsy (which is
independent of the Bernoulli sequence with parameéteA decomposition oh(x) according to the
first level which is occupied by type 0 yields

h(x)= Y P(I"=0, 1"=1vk<n, Lo>n)
n>1
= 5 P("=0, 1"=1vk<n) P(Ly>n).

n>1

(3.13)
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3 A probabilistic approach to the common ancestor type distribution

The right hand side of (3.13) equals that of (3.12), which completes tu# pf the theorem. O

To compare (3.12) with (3.3), we rewrite its right-hand sidesasox(1—x)"P(Lo > n+1). Itis
then clear from the comparison with (3.3) that the tail probabilitgs= P(Lo > n),n > 0, agree
with Fearnhead’s coefficients,. They must therefore obey the recursion (3.4). The proof of the
following proposition gives a direct argument for this.

Proposition 3.6 The tail probabilitiesa, = P(Lo > n), n > 0, obey the recursio(3.4).
Proof. Let p = (pn) be the probability vector determined by (3.11). We then have
n=7%p, nNeNp. (3.14)

i>n
Forn > 2, then!" entry of the vectopQ is
(PQ)n = pn-10(N—=1,n) + pnad(N+ 1,0+ 5 pja(j.n)

j>nt2
n-2

— Pn [qL(n,n—l)Jqu(n,nJr 1)+/Z qL(n,é)] .
=0

Thus, plugging in the jump rates (3.9), Eq. (3.11) is equivalent to

1
0=pn-1(n—1)0+ pPni1 [n(n+1)+n9v1]+9vo Z Pj
2 j>n+1

— Pn [;n(n—l)+(n—1)6+na} , h>2

Writing this in terms of the tail probabilities (3.14), rearranging terms, and shittie index, we
obtain
O=n{—an[n+1+26+20]+ dns1[N+1+20v1]+ an_120}
+(n+1){ans1[n+2+20+20] — dni2[N+2+20vq] —an20}, n>1,
which we abbreviate by
N(aF)n=(n+1)(aF)n1
with the (tridiagonal) matri¥ that appears in the recursion (3.4). In view of these equalities, the
proposition is proved if we can show that fmw. n(aF), = 0, or, even better, that

lim nay, = 0. (3.15)

n—o0

To see (3.15), recall that as stated in Remark13;3s stochastically dominated by the numlbgrof
lines in the equilibrium ASG, which has distribution (3.2). In particulgarhas a finite third moment.
From this, (3.15) is immediate since for any non-negative integer-valunetbna variableé one has
E[&(E —1)(§ —2)] =335 on(n—1)P( > n). Thus, Proposition 3.6 is proved. O

The proof of Proposition 3.6 allows us to conclude the following
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Corollary 3.7 The solution(a,) of (3.4) and (3.5) is also characterised b{3.4) together with the
constraint(3.6).

Proof. The constraint (3.6) ensures that=a,_1 —an, N > 1, r, are probability weights olN. Start-
ing from (3.4) and working back in the proof of Proposition 3.6 we arat&q. (3.11), which (by
irreducibility and recurrence @) has a unigue solution among all the probability vector&ofthis
shows that the solution of the recursion (3.4) is unique also under tha@ion$3.6). O

It is worth noting that property (3.5 must hold for the tail probabilities
an =P(Lo > n), n> 0, as well since they agree with tlag. This translates into an assertion on
the asymptotics of the hazard functionLgf

1

. . _q
lim P(Lo=n+1|Lo>n) =1— lim P(Lo > n+1|Lo > n) = 1— lim —% =
n—sc0 n—o n—o Oy

3.6 Monotonicities in the model parameters

The (conditional) probabilith(x) that the immortal line at time O carries the beneficial type does
not only depend on the frequengyf this type but also on three parameters: selection coefficient
mutation ratef, and mutation probability; to the deleterious type. As shown in Fig. 3.15, some
monotonicity properties apply. Sin¢gx) = 5 -0 anX(1—x)" depends on the tail probabiliti¢s)
monotonically, an increase of, for all n € N yields an increase df(x) as well. Let us now explain
how the dependence of the tail probabilities on the three parameters caddrstood in terms of the
pruned equilibrium LD-ASG.

To this end, we consider the tail probabilities as functions of the parame¢ere, = an(o, 8, v1).

* If o1 > oy, thenan(o1,60,v1) > an(02,60,v1). This is due to the fact that higher selection
coefficients result in higher intensities of the Poisson point procésd stars (compare Sec-
tion 3.4.2). Since each star indicates the birth of a line in the pruned LD-ASdstimbution
more lines are born, which increases the tail probabilities of the top Lgvel

» For 6, > 6,, one observea, (0, 61,v1) < an(0,62,v1). This is because each mutation results
in deleting lines from the pruned LD-ASG (unless it is a deleterious mutationeoimtimune
line or a beneficial mutation on the top line), and a higher mutation rate results elimes
being cut away (in distribution). This decreases the tail probabilitiesgor

» Forviy > vip, one hasay(0,0,v11) > an(0,0,v12). The reason is that increasing (at
constantd) means replacing each circle in a realisation of the Poisson point pred¢ésksg a
cross (with a given probability), which thus addsltd. Since the pruning procedure can cut
away more than one line at each circle but at most one line at each ceogstvin distribution,
more lines at highev;, which explains the increased tail probabilities.

To summarise: For fixed, the quantityh(x), as a function of one of the parameters6, andv;
(with the other two parameters being fixed), is strictly increasing,istrictly decreasing i and
strictly increasing irvy. We will comment on the third of these monotonicity relations in Sec. 3.7.2.

49



3 A probabilistic approach to the common ancestor type distribution

1,

0.81

[G, 0, V1]
0.6 [1,5,0.5]
h [1,1,05]
0.41 [5,5,0.1]
[5,5,09]
0.2 [5,1,0.5]
[7,1,0.5]

0 : : : : ‘

0 0.2 0.4 0.6 0.8 1

n
-
0.8 [c.6,v]
[1,5,05]
0.6 [1,1,05]
o [5,5,0.1]
0.4 e [5,5,09]
e [5,1,05]
0.2\ — - [7,1,05]
. 1 ——— - R ~
0 ‘ ESSS S —— = ——
2 4 6 8 10 12 14

Figure 3.15: Probability h(x) that the immortal line at tim® carries the beneficial type, given the frequency
of this type is x (top), tail probabilitiea, = P(Lo > n), n> 0, of the stationary distribution of the
highest occupied level in the pruned LD-ASG (middle), amdbability weightso, = P(Lo = n)
(bottom), n> 1. Results are shown for different combinations of seleat@efficiento, mutation
rate 6, and mutation probability, to typel.
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3.7 Taylor’s representation of the CAT distribution via a boundary valoblpm

An illustration of the probability weightgo,) of Lo (i.e., pn = an—1 — an,n > 1) for various parameter
combinations is also included in Fig. 3.15 (bottom).

3.7 Taylor’s representation of the CAT distribution via a boundary
value problem

Taylor [Tay07] shows by analytic methods (see also [KHB13]) that thaditional) common ances-
tor type probabilitiehi(x) arise as the solution of the boundary value problem

Ah(x) =0, 0<x<1 (3.16)
limh(x) =0, limh(x) =1, (3.17)

where, forg € C%([0,1],R),
Ap(x) = A(x) + 8uo™ (9(0) ~ 9)) + Bvag— (0(1) ~ 9(x). (3.18)

andA is the generator of the Wright-Fisher diffusion

2
Ap(x) := <;x(1—x)§lx2 + (Bvo(1—x) — Bvix+ ox(l—x)):X> o, (3.19)

see [Tay07, Proposition 2.4]. Together with his Proposition 2.5, Taylor shhggests the following
interpretation of (3.16): Given the frequency of the beneficial type at@imse, sample two lineages
at time 0, one of the beneficial type and one of the unfavourable typeyracethem back into the
past. He writes: “By comparing this generator with that of the structuretescent for a sample
of size 2 ... [with two different alleles], it is evident that the type of the commuresator has the
same distribution as the type of the sampled lineage which is of the more anciemit roi¢ggn.”
While Taylor here proposes to take the type frequency path obsergadtime O back into the
past as a background process for the structured coalescent, hisadsao a direct derivation and
interpretation of (3.16) after a time reversal and a time shift (see Fig. 3Vi€)take the chance to
briefly explain this derivation here, as an add-on to [Tay07] and to tpeoaph developed in the
previous sections. For this we start from the illustration in the right partgpf3:16.

3.7.1 Arepresentation of h(x) as a hitting probability

Let us fixx € (0,1) and consider the following two-stage experiment: In the first stage, genar
random Wright-Fisher path = (X )t>o started inXp = x with generator (3.19). In the second stage,
givenX, we consider the ancestral lineage of an individual sampled at randomthe population at

a late times> 0. For 0< u <s, letJ3_, be the type of that lineage at tinse- u, i.e. u units of time

back from the time of sampling. In particuldg € {0, 1} is the type at time 0. We abbrevidigx) :=
(1—x)/x. Then, conditioned on the path = (X )i>o0 of the frequency of the beneficial type, the
dynamics ofJ® := (J3)o<u<s arises when restricting the structured coalescent investigated by Barton,
Etheridge and Strum [BES04] and Taylor [Tay07] to a single ancesteddje: It is a0, 1}-valued
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Figure 3.16: Taylor’s interpretation of(3.16) after a time-reversal (betweent —s and t= 0) (left) and a
time shift by sright), see Sec. 3.7.1. The type frequency path X of the benefipalifigures
as a background process. In this realisation, the type ofcthramon ancestor i8 because the
(backward in time) jump attime T is to type

jump chain with time-inhomogeneous backward-in-time jump rﬁfé%:: Bvob(X;) fromOto 1 and
AL = Bv1/b(X) from 1 to O at time = s—u € [0, ], compare Fig. 3.16, right part. Conditioned on
X, the processe¥, s> 0, can be coupled, i.e. constructed on the same probability space, by using
two independent Poisson point procesS8€ andM'* on R with time-inhomogeneous intensities
A%XandA X, This coupling works as follows: backward in time, each of the procelgemps to
1 at any pointrg < s of M%X (or remains in 1 if it was already there), and jumps to 0 at any point
11 < sof MYX (or remains in 1 if it was already there). Let us note that such a couplingowmt be
possible if one considers the time intervpls, 0] as in Fig. 3.16, right part, since then the distribution
of (an initial piece of )X would vary withs. Thus, while the interpretation that goes along with the left
part of Fig. 3.16 is more appealing from a biological point of view, the (nmmattially equivalent)
picture after the translation to the time interf@Jo) (Fig. 3.16, right part) makes the analysis more
convenient.
In the above-described coupling, the common ancestor at time 0 is of typedaidy if lims .. JS =
0, which happens if and only if the point in the unionf@?* andMN** that is closest to 0 belongs to
MiX. As a matter of fact, such a closest point to 0 exists: sigce x € (0,1) and since the rates
A%% andA1X are bounded as long &sis bounded away from the poin{®, 1}, there is a minimal
point To in N%* and a minimal poind; in NYX, Let T := min{To, T;}. We have thus derived the
representation

h(x) = Ex[P(T =Ty | X)]. (3.20)

Now consider a jump-diffusion proceXswith generatofA that starts irx, and letT be the time of its
first jump to the boundary. We then claim that

(ozter. Tr—my ) & (K)o 7% ). (3.21)
wherel is the indicator function.
To see this equality in law, recall that, givén points of[1%% arrive at rateA %%, while a jump ofX
to the boundary point 0 occurs at ratéX, and that, giverx, points off1%* arrive at rateA °%, while
a jump ofX to the boundary point 1 occurs at raté*.
In view of (3.21), the representation (3.20) translates into
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3.8 Conclusion

h(x) = Px(Xe = 1). (3.22)

This shows thah is a hitting probability ofX, and thus satisfies the Dirichlet problem (3.16). The
boundary conditions (3.17) are explained by the fact that the jump Batgs(x) and Bvib(x) !
converge teo asx converges to 0 and 1, respectively.

Thus the “forward picture” of Fig. 3.16 leads to the same characterisatibifio terms of a hitting
probability of a jump-diffusion process) as Taylor's above-mentionedKivard picture”. The rea-
son for this is the time-reversibility of the one-dimensional Wright-Fisher siiffio. This symmetry
breaks down when the allele frequency dynamics are not invariant tinae reversal (e.g., with
multiple alleles and parent-dependent mutation). Still, a two-stage construbdiug the lines of
Fig.3.16 might, in connection with a suitable “coupling from the future”, lead telated (but then
more complicated) characterisation of the multitype analogue>of

3.7.2 Discussion of monotonicities in the parameter V1

We have proved in Sec. 3.6 thafx) is monotonically increasing im; (for every fixedx). At first
sight, this may seem paradoxical: how can it be that an increase in the mutaéaowards the
disadvantageous type increases the probability that the common ancedttiasbeneficial type?
The representation (3.20) resolves at least part of this paradox:

For fixed X, an increase of; yields an increase of %X and a decrease @f®X. This results in
an enhancement & (T =Ty | X). In other words, giverX, the intensity of mutations “back to the
beneficial type” increases &g increases.

Since, undefPy, X; (fort > 0) has a tendency to become smallewasncreases, the monotonicity
of (3.20) for fixedX is not quite sufficient to prove the monotonicity lefx). Still, the explanation
invoking the intensity of mutations “back to the beneficial type” gives some intwitioy h(x) should
be increasing irvy - a result which we have derived in Sec. 3.6 via the line counting prodehks o
pruned equilibrium ASG.

Let us now turn to the common ancestor type distribution. To this end, we makiepemdence of
the stationary density oK (mentioned at the end of Sec. 3.2.1) explicit and denote iviyx),
0<x< 1. Considem,, := f[o,l] hy, (X)wy, (X)dx, that is the probability that, in the equilibrium of
X, the common ancestor’s type is beneficial. We now have two opposing maritésn On the
one handhy, (x) increases with botlv; andx; on the other hand, largerget lower weight under
wy, (X)dxasv; increases. The monotonicity gf, is therefore not obvious. As noticed by Jay Taylor,
it is plausible to conjecture that, should be decreasing with, which then would be an instance of
Simpson’s paradox.

3.8 Conclusion
The aim of this contribution was to find a transparent graphical method tdifidéime common
ancestor in a model with selection and mutation, and in this way to obtain the typbudistr on

the immortal line at some initial time, given the type frequencies in the populatiorattithe.
This ancestral distribution is biased towards the favourable type. Thiswlash is quantified in
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the series representation (3.3), reflects its increased long-terminffgxpectation (relative to the
neutral case). A closely related phenomenon is well known from multi-tygedbing processes and
deterministic mutation-selection models (see [BG07] and references therein)

Our construction relies on the following key ingredients. We start fronethglibriumASG (without
types), and from the insight that the immortal line is the one that is ancestrad faghbottleneck
of this ASG. Identifying this ancestral line had previously appeared taffieudt, since it requires
keeping track of the hierarchy of (incoming and continuing) branchaghaquickly may become
confusing. We overcome this problem bydering the lines, in this way introducing a lookdown
version of the ASG and a neat arrangement of the lines according to tbeirdhy. Next, wanark
the lines of the equilibrium ASG by theutation eventand, working backward in time, apply a
pruningprocedure, which cuts away those branches that cannot be ahdestaily, weassign types
at time O to the lines of the resulting pruned LD-ASG by drawing the types of its fioen the initial
frequency and thus determine the type of the immortal line at time 0.

This equilibrium lookdown ASG is the principal (and new) tool in our analybeckward in time,
the top level in the pruned ASG performs a Markov chain whose equilibriistnilzition can be
computed, and the tail probabilities of this equilibrium distribution are showndy tite Fearnhead-
Taylor recursion. This provides the link to the simulation algorithm descrilgdeclarnhead [Fea02]
for the common ancestor type distribution in the stationary case. More dyecse Theorems 3.4
and 3.5 together connect the LD-ASG to the simulation algorithm and thus praytbbabilistic
derivation for it. At the same time, they imply a generalisation to an arbitraryrtibe a stationary
initial type distribution. Furthermore, Theorem 3.5 sheds new light on tiessepresentation for the
conditional CAT distribution, whose coefficients now emerge as the tailgmibties of the number
of lines in the pruned LD-ASG. As a nice by-product, the graphical @ggr directly reveals various
monotonicity properties of the tail probabilities depending on the model paresneftaich translate
into monotonicity properties of the common ancestor type distribution.

We believe that the pruned equilibrium (lookdown) ASG has potential fogthphical analysis of
type distributions and genealogies also beyond the applications considettesl present chapter.
Let us also emphasise that, unlike Fearnhead'’s original approach tailds on the stationary type
process (and unlike other pruning procedures that workstationary typedsituation), we start out
from the untypedlookdown ASG which then is marked and pruned, with the assignment of types
at the fixed (initial) time being delayed until the very last step of the construcfibis is essential
to be able to assign the types i.i.d. with a given frequency, and in this wayive atrthe desired
probabilistic derivation of the conditional common ancestor type distribution.
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4 The common ancestor type distribution of a
N\-Wright-Fisher process with selection and
mutation

The results presented in this chapter are based on joint work with EllereBaak Anton Wakol-
binger. They are submitted for publication and can be found on arXiWB&].

In this chapter, we extend the results from the previous chapter [LKBWd16e case of heavy-tailed
offspring, directed by a reproduction measixeWe obtain a representation of the type distribution
of the ancestor in a two-typ&-Wright-Fisher population with mutation and selection, conditional on
the overall type frequency in the old population. This representation isnmstef the equilibrium
tail probabilities of the line-counting proces®f the graph. We identify a strong pathwise Siegmund
dual ofL, and characterise the equilibrium tail probabilitiesd.af terms of hitting probabilities of
the dual process.

4.1 Introduction

We consider a Wright-Fisher process with two-way mutation and selectias isTa classical model

of mathematical population genetics, which describes the evolution, foimtnde, of the type com-
position of a population with two types. Individuals reproduce and chaypge and the reproduction
rate depends on the type (the beneficial type reproduces faster tHasdlavourable one).

In a previous paper [LKBW15], we have presented a graphicaltaai®on, termed theruned look-
down ancestral selection graph (p-LD-AS@hich allows us to identify the common ancestor of a
population in the distant past, and to represent its type distribution. Thisrgotien keeps track

of the collection of allpotentialancestral lines of an individual. As the hame suggests, the p-LD-
ASG combines elements of tlancestral selection graph (AS®f Krone and Neuhauser [KN97]
and thelookdown constructionf Donnelly and Kurtz [DK99a], which here leads to a hierarchy that
encodes who is thieue ancestor once the types have been assigned to the lines. In additioniragpru
procedure is applied to reduce the graph.

A key quantity is the proceds which counts the number of potential ancestors at any given time. The
ancestraltype distribution is expressed in terms of the stationary distributidntofether with the
overalltype distribution in the past population. The two distributions may be substantifiiyeaht.

This mirrors the fact that the true ancestor is an individual that is suctésshe long run; thus,

its type distribution is biased towards the favourable type. Explicitly, the tnatégpe distribution

is represented as a series in terms of the frequency of the beneficiaintype past, where the
coefficients are the tail probabilities of the stationary distributioh aihd are known in terms of a
recursion.
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4 The common ancestor type distribution dkaNright-Fisher process with selection and mutation

The results obtained so far referred to Wright-Fisher processesseTdmése as scaling limits of
processes in which an individual that reproduces has a single ioffstirat replaces a randomly
chosen individual (thus keeping population size constant); in the aatpstcess, this corresponds
to a coalescence event of a pair of individuals. Here we will considetaral generalisation, the
so-called\-Wright-Fisher processes. These include reproduction events alieretionz > 0 of the
population is replaced by the offspring of a single individual; this leadautiiple merger events
the ancestral process.

The A-Wright-Fisher processes belong to the larger clasi-&feming-Viot processes (which also
include multi-(and infinite-)type generalisations). These, together with thegsdral processes, the
so-called\-coalescents, have become objects of intensive research in the pastaaes. Although
less is known for the case with selection, progress has been made in toisodirgs well (see for
example [BP15, DGP12, DK99a, EGT10, Gril4]).

Besides deriving our main result on tkemmon ancestor type distributimf a A-Wright-Fisher
process (stated in Sec. 4.2), the purpose of our paper is twofold: Wwestyill extend the p-LD-
ASG to include multiple-merger events; this will lead to h&.D-A-ASG Second, in the footsteps
of Clifford and Sudbury [CS85], we will construct@iegmund duabf the line-counting proceds
of the p-LDA-ASG. In line with a classical relation between entrance laws of a monot@uess
and exit laws of its Siegmund dual (discovered by Cox and Résler [QRB® tail probabilities of
L at equilibrium correspond to hitting probabilities of the Siegmund dual. Thisn8ied dual is a
new element of the analysis: In [LKBW15], the recursions for the taibphilities were obtained
from the generator of, in a somewhat technical manner. The duality provides a more conceptual
approach, which is interesting in its own right, and yields the recursion ifega®t way, even in the
more involved case including multiple mergers. It will also turn out that the Siegndual ofL is

a natural generalisation (to the case with selection) of the so-datiitbn line (or fixation curve),
introduced by Pfaffelhuber and Wakolbinger [PWO06] for Kingman ceadats and investigated by
Hénard [Hén15] fo\-coalescents.

The paper is organised as follows. In Section 4.2, we recapitulatd-theight-Fisher model with
mutation and selection, and the corresponding ancestral procegsAB6; we also provide a pre-
view of our main results. In Section 4.3, we extend the p-LD-ASG to the ciakemwltiple mergers.
Section 4.4 is devoted to the Siegmund dual. The dynamics of this dual pieddsstified via a
pathwise construction and thus yields a strong duality. Once the dual is idéntifieads to the tail
probabilities ofL with little effort.

4.2 Model and main result

We will consider a population consisting of individuals each of which is eitlieteleterious type
(denoted by 1) or of beneficial type (denoted by 0). The populatiolves@ccording to random
reproduction, two-way mutation, and fertility selection (that is, the benefigisd reproduces at a

higher rate), with constant population size over the generations. Thep#ars of the model are

« thereproduction measurA, which is a probability measure @6, 1], and whose meaning will
be explained along with that of the generaBx below Eq. (4.1),
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4.2 Model and main result

« the selective advantage (a hon-negative constant that quantifies the reproductive advantage
of the beneficial type and is scaled with population size),

« themutation ratefvy and6vy, wheref, vy, andv; are non-negative constants with+ v =
1. Thus,v;, i € {0,1}, is the probability that the type isafter a mutation event; note that this
includessilent eventswhere the type remains unchanged.

We will work in a scaling limit in which the population size is infinite and time is scaledh shat
the rate at which a fixed pair of individuals takes part in a reproductientds 1. The process :=
(X)ter describing the type-0 frequency in the population then has the generatf@GT10, Gril4])

Gxg(X) = ./(0,1] [X(9(X+2(1— X)) — g(X)) + (1= X)(g(x— 2X) — g(x))] /\(chz)

4.1)
+A({0})- %x(l— X)g"(X) + [0X(1—X) — Bvix+ Bvp(1—x)| g/ (x).

The first and second terms of this generator describe the neutralf plaetreproduction. In the case

N\ = & (to which we refer as th&ingman casg the first term vanishes anXl is a Wright-Fisher

diffusion with selection and mutation. Concerning the parf\afoncentrated o0, 1], the measure

dtA(dz) /2 figures as intensity measure of a Poisson process, where a(paint < R,z < (0,1],

means that at time a fractionz of the total population is replaced by the offspring of a randomly

chosen individual. Consequently, if the fraction of type-0 individuabs a timet—, then at timet

the frequency of type-0 individuals in the populatiorxis z(1 — x) with probability x andx(1 — z)

with probability 1— x. The third term of generator (4.1) describes the systematic (logistic) serea

of the frequency due to selection, and the type flow due to mutation.

In the absence of both selection and mutation (i.e. wiiea 8 = 0), the moment dual of thA-

Wright-Fisher process is the line-(or block-)counting process oftfemalescent The latter was

introduced independently by Pitman [Pit99], Sagitov [Sag99], and DonaethKurtz [DK99b], see

[BerQ9] for an introductory review.

The rate at which any given tuple pout of b blocks merges into one is

1 .
Apj ::/ Z(1-2"172A(d2), j<b. 4.2)
' 0

Thus the transition rate of the line-counting process from dtate statec < b is given by
(bfgﬂ))\b’b,cﬂ. Note that/\ = & corresponds to Kingman’s coalescent; hevg; = &, for all

b > 2. The measura is said to have the property CDI if thie-coalescentomes down from infinity
i.e. o is an entrance boundary for its line-counting process.

Whenselectionis present (i.e.0 > 0), an additional component of the dynamics of the genealogy
must be taken into account. In this case, in addition to the (multiple) coalesgesteescribed, the
lines (or blocks) may also undergo a binary branching at eaper line. The resulting branching-
coalescing system of lines is a straightforward generalisation of thetealceslection graph (ASG)
of Krone and Neuhauser [KN97] to the multiple-merger case; we will caleitttASG TheA-ASG
belonging to a sample ofindividuals taken from the population at tihe- 0 describes all potential
ancestors of this sample at times: 0. Throughout we use the variablesndr for forward and
backwardtime, respectively.
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4 The common ancestor type distribution dkaNright-Fisher process with selection and mutation

We denote the line-counting process of (RASG by K = (K;)r>o. It takes values ifN and its
generator is

b—1 b
GealB) = 3 (, o, 1) oo-calole)—glbl]+bofgb+ D —gb). @3

The procesK is the moment dual of thA-Wright-Fisher process with selection coefficientand
mutation ratef = 0, in the sense that

E[(1-%)"[Xo =X =E[(1-x)[Ko =n, (4.4)

see e.g. [EGT10, Thm. 4.1].
Throughout we will work under the

A(dx)
X2

Assumption4.10< o0 < 0" := — j’ollog(l— X)

Combining results of [Foul3] and [Gril4], one infers that Assumption 4€ljisvalent to the pos-
itive recurrence of the proce$s on N. Indeed, it is proved in [Gril4, Theorem 3] (for the case
0" < o) and [Foul3, Theorem 1.1] (for the case = ) that Assumption 4.1 igquivalentto
PXo =1|Xo =X < 1 for all x < 1, whereX, denotes the a.s. limit of ast — «. Combined
with the moment duality (4.4), this readily implies that Assumption 4.1 is equivalenttpdhitive
recurrence oK onN if g > 0.

A direct proof that Assumption 4.impliesthe positive recurrence ¢f on N in the caseo > 0 is
provided by [Foul3, Lemma 2.4]. (Note in this context tKats clearly non-explosive because it
is dominated by a pure birth process with birth rate b € N; this makes the first assumption in
[Foul3, Lemma 2.4] superfluous).

For o = 0, the proces¥, when started irb € N, is eventually absorbed in 1. This complements
the previous argument in showing that under Assumption 4.1 the prideas a unique equilibrium
distribution and a corresponding time-stationary version indexedebR. Similarly, there exists a
time-stationary version of thA-ASG, which we call theequilibrium A-ASG and which will be a
principal object in our analysis.

Remark 4.2 It is proved in [HM12] thato™ = limy .« %, where 7 is the first time at which the
line-counting process of thie-coalescent hit4. In particular, if the measuré has the property CDI,

theng* = o and hence Assumption 4.1 is satisfied foraft O.

Mutationscan be superimposed as independent point processes on the lineg\eA8@: On each
line, independent Poisson point processes of mutations to type 0 (‘tiahafutation events’) come
at rateBvp and to type 1 (‘deleterious mutation events’) at ratg.

Fort <t and for a given frequency of type-0 individuals in the population at tintethe A-ASG
may be used to determine the types in a sampleaken at timd, together with its ancestry between
timest andt, by the following generalisation of the procedure in [KN97]. Each line e/APASG at
timet is assigned type 0 with probabilityand type 1 with probability X, in an iid fashion. Let
the types then evolve forward in time along the lines: after each benefiaikleterious mutation,
the line takes type 0 or 1, respectively. At each neutral reproductientéwhich is a coalescence
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4.2 Model and main result

event backward in time), the descendant lines inherit the type of thetpaieis is also true for the
(potential) selective reproduction events (the branching events betthméime), but here one first
has to decide which of the two lines is parental. The rule is thaintt@ming branchthe line that
issues the potential reproduction event) is parental if it is of type 0; oteerthecontinuing branch
(the target line on which the potential offspring is placed) is parental. Vdtieselective events
have been resolved this way, the lines that are not parental are renaovedne is left with thérue
genealogyof the sample? .

Because of the positive recurrence (and the assumed time-stationarity}heof line-
counting proces$K;)_«<r<w, there exists a.s. a sequence of positive (random) times, < ...
such thatt, — « andK;, = 1 for all n. Thus, for a given assignment of types to the lines of the
stationaryA-ASG ¢ at time 0, and for alh € N, removing the non-parental lines leaves exactly
one true ancestral line, between the tihes0 andt = t,,, of the single individual ine at timet,,.
The resulting line between timés= 0 andt = o« is called theimmortal lineor line of the common
ancestolin the stationary\-ASG.

Our main result is a characterisation of its type distribution at time 0, condition#h® type fre-
guency in the population at that time. For the following definition]{dte the type of the immortal
line in the stationary\-ASG at timet.

Definition 4.3 (Common ancestor type distribution) In the regime of Assumption 4.1, and for
x € [0,1], let h(x) :=P(lo = 0 | Xo = X) be the probability that the immortal line in a stationary
N-ASG with two-way mutations carries typat time0, given the type frequency in the population
at timeO s x.

By shifting the time intervalO,t] back to[—t, 0], it becomes clear tha(x) is also the limiting prob-
ability (ast — o) that the ancestor at the past time of the population at time 0 is of the beneficial
type, given that the frequency of the beneficial type at timhevasx.

Theorem 4.4 The probability iix) has the series representation

h(x) = Z}x(l—x)”an, (4.5)

=

where the coefficients,an (4.5) are monotone decreasing, and the unique solution to the system of
equations

1/c-1
[ < ))‘c,c—n] (@h—ac-1)+(0+6)an =01+ Oviani1, n>1,
n+1<c<oo n\c—n
=1 a,:=Ilma,=0, (4.6)
n—o0

with the convention

wo—1 1\ O ifd=1 _
<00—d+1> = {l td>2 andAe o == A({1}). (4.7)

Let us discuss some special cases. Innbetral casewe clearly haveyg = 1 anda, = 0 forn > 0,
soh(x) = x, which is the neutral fixation probability. For > 0, we havea, > 0 for all n, soh(x) > x
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4 The common ancestor type distribution dkaNright-Fisher process with selection and mutation

due to the higher-order terms in the series (4.5). Inkimgman casgethe system of equations (4.6)
simplifies to

1/n+1 1/n+1
L‘< 5 >+a+9]an:n< 5 )an+1+oan_1+6vlan+1, n>1, (4.8)

and we immediately obtain

Corollary 4.5 (Fearnhead's recursion) In the Kingman case, the coefficientg45) satisfy the re-
cursion

2 2
with ag = 1 andlimp_ean = 0.

1 1
[(n+ 1)+o+ 9} an = [(n+1)+6vl] a1+ 081, N=1, (4.9)

The case\(dz) =dz 0< z< 1, leads to the so calldBolthausen-Sznitman coalesceAithough
the latter does not have the property CDI, we still have= . In this case one has the identity

%(E:ﬁ)Ac,c_n = WM (cf. [Ber09] Sec. 6.1), and the system (4.6) simplifies to
> 1
1+0+0]ay=0an_1+06v + Y —an+j, h>1 4.10
[ Jan an—1 18n+1 JZlJ(J+1)an+J . ( )

with ag =1 and lim_«a, = 0.

Recursion (4.9) appears in [Fea02] in connection with a time-stationaryhtigher diffusion (with
selection and mutatiortf. In [Tay07], the representation (4.5) together with (4.9) was derived by
analytic methods. In [LKBW15], again for the Kingman case, we gave a nawe probabilistic
proof, interpreting the coefficient, asequilibrium tail probabilitiesof the line-counting process

of the pruned lookdown AS@Gee Sec. 4.3). In the present paper we give a twofold extension: (i)
we include the case of multiple mergers, and (ii) we use a strong Siegmund daatityhus a fully
probabilistic method) in order to derive the recursion (4.6).

An analogue of the quantitiy(x) can also be defined for a Moran model with finite population size
N: for k € {0,1,...,N}, leth} be the probability that the individual whose offspring will take over
the whole population at some later time is of type 0 at time 0, given the number edtymhviduals

in the population at time 0 ik. In [KHB13] it is shown (for the Kingman case) thial converges to
h(x) asN — « andk/N — x. Here, we work in the infinite-population limit right away, in order to
carve out some important features of the underlying mathematical structure.

4.3 The pruned lookdown- A-ancestral selection graph

In the previous section, we have outlined the construction of the equilibhuh$G and layed out
how the immortal line within it may be identified: Types are assigned at time 0, are/thation is

15Note that there is a difference of a factof2lin the scaling of (4.9) in comparison to [Fea02, LKBW15, Tay07]. This
is because these papers use the diffusion part of the Wright-Fisheragen(see (4.1)) without the factor 1/2. This
corresponds to a pair coalescence rate of 2 in the Kingman case, whitepresent paper we assume pair coalescence
rate 1 throughout.
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4.3 The pruned lookdown-ancestral selection graph

then followed forward in time. In practice, however, this procedure iswea due to the nested case
distinctions required to identify the parental branch (incoming or contingiegending on the type).

In the Kingman case, we have solved this problemokyering the lines, and bypruning certain
lines upon mutation [LKBW15]. Therderingis achieved by arranging the coalescence events in
a lookdown manner, and by inserting the incoming branch below the contitmwargeh at every
selection event. Theruningtakes care of the fact that the mutations convey information on the types
of lines; this entails that some lines in the ASG can never be ancestral, no mhitértypes are
assigned at time 0, and can thus be deleted from the set of potential asc@staonstruction, this
removal does not affect the immortal line.

More precisely, consider a realisatianof the ordered equilibrium ASG, decorated with the mutation
events. The corresponding lookdown version is obtained by placing & din consecutive levels,
starting at level 1. We now proceed fram= 0 in the direction of increasing When a beneficial
mutation event is encountered, we delete all lines above it. When a deletenitation event occurs,
we erase the line that carries it; the lines above the affected line slide dowirtie Space. One of
the lines, called thémmune lingis distinguished in that it imot killed by mutations; rather, it is
relocated to the top. Let us anticipate that this is the line that is immortal if all lines atOtiane
assigned type 1. For illustrations and more details about the pruning pre¢sdée [LKBW15].

The resultingoruned lookdown ASGan also be generated in one step, backward in time, in a Marko-
vian manner. In what follows, we review this construction and extend it tgotheed lookdown
N-ASG.

At each timer, the pruned lookdowN-ASG ¢ consists of a finite numbér; of lines i.e. the process

(Lt )rer takes values in the positive integers dnds the number of lines i at timer. The lines

are numbered by the integers. 1,L,, to which we refer asevels The evolution of the lines as
increases is determined by a point configuratioriRon (2?(N) U (N x {x, x,0})), where 2 (N) is

the set of subsets df and #(N) is equipped with thes-algebra generated by — 1,(i), i € N,

n € Z(N). Each of the point$r, 7) stands for dransition element occurring at time, that is, a
merger aselective branchingadeleterious mutatioror abeneficial mutatiorat timer. The level of

the immune line at time is denoted by, ; its precise meaning will emerge from Proposition 4.6.
Let us now detail the transition elements and their effect¥ ¢eee Figs. 4.1 and 4.2):

» A mergerat timer is a pair(r,n), wheren is a subset oN. If [{1,...,L;,—} N n| <1, then
¢ is not affected. If, howeve{l,....L,_} N n ={j1,...,Jk} With j; <--- < jx andk > 2,
then the lines at levelp, . .., j« merge into the line at levglh. The remaining lines it¥ are
relocated to ‘fill the gaps’ while retaining their original order; this rendgrs- L, — K + 1.
The immune line simply follows the line on levis; _.

* A selective branchingt timer is a triple(r,i,*), withi € N. If L,_ < i, then¥ is not affected.
If L,_ >1i, then a new line, namely the incoming branch, is inserted at ieaatl all lines
at levelsk > i (including the immune line iM,_ > i) are pushed one level upward ker 1,
resulting inL; = L;_ + 1. In particular, the continuing branch is shifted from levd i + 1.

* A deleterious mutatioat timer is a triple(r,i, x ), withi € N. If L,_ < i, then¥ is not affected.
If L,_ >iandi # M,_, then the line at levalis killed, and the remaining lines i (including
the immune line) are relocated to ‘fill the gaps’ (again in an order-presgway), rendering
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4 The common ancestor type distribution dkaNright-Fisher process with selection and mutation

Lr =L, — 1. If, however,i = M;_, then the line affected by the mutation is not killed but
relocated to the currently highest level, i, = L,_. All lines abovei are shifted one level
down, so that the gaps are filled, and in this dase- L, _.

* A beneficial mutatiomt timer is a triple(r,i,o), withi € N. If L,_ < i, then¥ is not affected.
If L,_ >1i, then all the lines at levels i are killed, renderind., = i, and the immune line is
relocated tdvl; = .

Proposition 4.6 Assume that for somg kK 0 we have Lk, = 1, and assume there are finitely many
transition elements that affe@t between timesgrand 0. Consider an arbitrary assignment of types
to the Lg lines at time r= 0. Then the level of the immortal line at tidds either the lowest typ6-
level at time0 or, if all lines at time0 are of typel, it is the level M of the immune line at tim@. In
particular, the immortal line is of typ& at time0 if and only if all lines in& at time0 are assigned
typel.

Proof. In the absence of multiple mergers (i.e. if all mergers have exactly two elem#hits)s
Theorem 4 in [LKBW15]. In its proof, the induction step for binary meggdirectly carries over to
multiple mergers. 0

= —

/,

s
NN

r

Figure 4.1: Transitions of the pruned lookdowk-ASG. Since the graph evolves ‘into the past’, time r runs
from right to left in the figure. The value of L is 6 before thejy the immune line is marked in
bold. From left to right: A ‘merger’ of the lines on levels3, and5 (indicated by bullets); a ‘star’
at level3; a ‘cross’ at level3, outside the immune line; a ‘cross’ on the immune line atll&ya
‘circle’ at level 3.

Taking together the above descriptionfand the rates defining the-ASG (Sec. 2), we can now
summarise and formalise the lawfas follows. The transition elements arrive via independent Pois-
son processes: For eaich N, the ‘stars’, ‘crosses’, and ‘circles’ at levietome as Poisson processes
with intensitieso, 8vi and Bvy, respectively. For each 2-element subgeatf N, the ‘n-mergers’
come as a Poisson process with intengity0}). In addition, we have a Poisson process with inten-
sity measura{bo}z%/\(dz) dr, where eaclzgenerates a random subbKt) := {i: Vi = 1} C N, with
(Vi)ien being a Bernoulliz)-sequence, and the poifrt z) gives rise to the mergér,H(z)). All these
Poisson processes are independent. The p@int$ constitute a Poisson configuratitiy, whose
intensity measure we denote iy p, whereu is Lebesgue measure & With the transition rules
described above, this induces Markovian jump rates wpand(L,, M;). With the help of (4.2), it
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Figure 4.2: A cut-out of a realisation of the pruned lookdowrASG. The immune line is marked in bold.

is easily checked that the genera@rof L is given by

-1 /¢
Guol0) = 3 (g y)Mcnalole)—g(0)] +foli-+1 ~g(0)

o (4.11)

+({=1)8v1[g(¢—1) —g(O)] + kz Bvo[g(¢ —k) —g(f)].
=1

Due to Assumption 4.1 and Remark 4.2b), and becdugse stochastically dominated b, the
procesd. obeys

Ey[T1] < oo, feN. (4.12)

ThusL has a time-stationary versian(which isL = 1 if o = 0), and likewise the pruned lookdown
N-ASG has an equilibrium version as well. We now kgf:= Lo and denote the tail probabilities of

Leq by
an:=P(Leg>n), neNp. (4.13)

Because of (4.12), for almost all realisations[ofthere exists amg < 0 such thaitro = 1. Hence,
arguing as in [LKBW15, proof of Theorem 5], we conclude from Rrsiion 4.6 the following

Corollary 4.7 Given the frequency of the beneficial type at tibrie X, the probability that the im-
mortal line in the equilibrium p-LDA-ASG at timé) is of beneficial type is

h(x) = Z)x(l—x)”an. (4.14)
n>
In order to further evaluate the representation (4.14), we need infommettiout the equilibrium tail

probabilitiesan. This is achieved in the following sections via a prod@sshich is a Siegmund dual
for L.

4.4 An application of Siegmund duality

A central point in our proof of Theorem 4.4 will be that the equilibrium tadhmbilities ofL can
be expressed as certain hitting probabilities of a pro@esghich is a so-called Siegmund dual of
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4 The common ancestor type distribution dkaNright-Fisher process with selection and mutation

L. The relationship between the transition semigroupis afhdD is given by formula (4.15) below.
Intuitively, the proces® may be seen as going into the opposite time directiobh. als a suitable
representation via stochastic flows, which turns out to be available for tmom@rocesses, (4.15)
means that the paths Bfremain ‘just above’ those df, see Sec. 4.4.2 below.

4.4.1 Tail probabilities and hitting probabilities

It is clear thatL is stochastically monotone, that B,(L; > i) > Py(Ls > 1) for n > mand for all
i € S(where the subscript refers to the initial value of the process). It iskmellvn [Sie76] that such
a process has a Siegmund dual, that is, there exists a piDceah that

Py(Ly > d) = Pg(Dy < ) (4.15)

forallu>0,¢,d e N.

Lemma 4.8 The tail probabilities of the stationary distribution of L are hitting probabilities of th
dual process D. To be specific,

On=Pn1(3t>0:D;=1) V¥n>0. (4.16)

Proof. This is a special case of [CR84, Thm. 1] for entrance and exit lawsulcase the entrance
law is the equilibrium distribution of, the exit law is a harmonic function (in terms of hitting proba-
bilities), and the proof reduces to the following elementary argument. Nanvelyating the duality
condition (4.15) fo =1 andd =n+1,n > 0, gives

Pi(Ly >n+1)=Py1(Dy=1) forallu>0,n>0. (4.17)

Taking the limitu — oo, the left-hand side convergesgLeq > n) = a, by positive recurrence and
irreducibility. Settingl =d =1 in (4.15), we see that 1 is an absorbing statdXoHence we have
for the right-hand side of (4.17)

and the lemma is proven. O
Next we want to show that the (shifted) hitting probabilities
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4.4 An application of Siegmund duality

satisfy the system of equations (4.6). More precisely, (4.6) will emergefiest-step decomposition
of the hitting probabilities. For this purpose, we first have to identify the jurtgsrafD. This can be
done via a generator approach that translates the jump rates of thegirdeddch appear in (4.11))
into their dual jump rates, see, for instance, formula (12) in [CS85] origfg. For the jump rates
coming from the mergers this is somewhat technical, see the calculations irpéred@pin [HEN15].
Inspired by [CS85] we will therefore take a ‘strong pathwise appradaeth consists in decomposing
the dynamics oL into so-calledflights, which can be ‘dualised’ one by one. While Clifford and
Sudbury, starting from the generator of a monotone process, in [C386,1] construct a special
Poisson process of flights for which they form the duals ([CS85, THmr2dur situation the Poisson
process of flights is naturally given (being induced by the transition elerfa@r##sdefined in Sec. 4.3,
see Sec. 4.4.3 below). Consequently, we will show in Proposition 4.10 thaipibroach of [CS85,
Thm 2] works also when starting from a more general Poisson pro€égsghts.

4.4.2 Flights and their duals

In [CS85], Clifford and Sudbury introduced a graphical repregamtahat allows us to construct a
monotone homogeneous Markov procgédogether with its Siegmund du& on one and the same
probability space. The method requires that the state spat¢he processes” and Z is (totally)
ordered. We restrict ourselves to the c8se NU {0}, which is the relevant one in our context (and
which is prominent in [CS85] as well).

The basic building blocks of Clifford and Sudbury’s construction arealtedflights A flight f is

a mapping fronSinto itself that is order-preserving, sak) < f(¢) for all k < £ with k, ¢ € S, let
us add that each flight leaves statenvariant, sof (o) = . By the construction described below,
a flight f that appears at timewill induce the transition taZ; = f(¢), given.4_ = ¢. This way,
transitions from different initial states will be coupled on the same probabpigge. A flightf is
graphically represented as a set of simultaneous arrows pointing/ftorfi(¢), for all £ € S, so that
the process simply follows the arrows. Examples are shown in Fig. 4.3.

We denote the set of all flights b, and consider a Poisson proc&B®n R x .% whose intensity
measure is of the formx ® y, wherep is again Lebesgue measure Rnand the measurng has the

property
Y{f€Z f(0)#£0}) <w, (€N (4.19)

Property (4.19) implies that with probability 1, for dlle N andr € R, among all the pointss, f)
in @ with s> r and f(¢) # ¢, there is one whose is minimal. We denote this time by(r, /).
Forr € R and/ € N, we define inductively a sequent®, {o), (S1,¢1),... Withr =:sg <51 < -+,
0=:0p,l1,02,...€ S bysettings :=V(S_1,¢-1), 4 .= f({i_1), with (5, f) € ®. (Note this procedure
will terminate if ; = oo for somei € N.)

With the notation just introduced} induces a semi-group {w) of mappings, indexed hy< se R,
and defined by

Fo(0) = ¢ ifs<s<syq, (4.20)
P oo if limiLes < S '
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4 The common ancestor type distribution dkaNright-Fisher process with selection and mutation

Assuming property (4.19), we say thatrepresentshe process? if for all s> 0 the distribution of
Fos(¢) is a version of the conditional distribution ofs given { % = ¢}, ¢ € N. Equivalently, for all
r e Randu> 0,

Po(Lue (1) =P(Frru(f) € (). (4.21)

We now describe, in the footsteps of Clifford and Sudbury [CS85], timstruction of a strong path-
wise Siegmund dua¥, based on the same realisation of the flights as for the original pra¢ess
Def. 4.9a) formalises the statement at the beginning of Sec. 4.4 that the paftbgerhain ‘just
above’ those of, see also Fig. 4.3 for an illustration.

Definition 4.9 (Dual flights) a) For aflight f: S— S, itsdual fIighthis defined by
f(d) =min(f*({d,d+1,...})), deS (4.22)

with the conventiomin(@) = co. R
b) For a Poisson proces® on R x 7, we define® as the result of® under the mapping
(r,f)— (—r, f) =:(t, f). Moreover, under the assumption

v({feZ:f(d)#d}) <o, deN, (4.23)
we define in terms of® in the same way as F was defined in termeddy (4.20)

It is clear thatf is order preserving. Sincé is monotone increasing by assumption, we have
max(f~1({1,...,d—1})) <min(f1({d,d+1,...})). Asf1({1,...,d—1})nf1{d,d+1,...}) =
gandf~1({1,...,d-1})uf-1({d,d+1,...}) =S we see that (4.22) is equivalent to

fld)=maxf({1...,d—1}))+1, deS (4.24)
with the convention max) = 0. Note further that (4.23) is implied by (4.19) together with
y{fe.Z:3k> (st f(k)</l}) <o, ¢eN. (4.25)

The following proposition is an adaptation of [CS85, Theorem 2] to our gettiGompare also
[JK14, Section 4.1].

Proposition 4.10 Assumg4.19) and (4.25) and assume thab is unattainable for the proces¥’
represented by the Poisson proc@ssvith intensity measurg ® y. Then the following strong path-
wise duality relation is valid: For all s> 0; /,d € N,

LiE so0>d} = L& (ay<ey almost surely. (4.26)

Proof. LetY 1= (V)rcj—s0 ‘= (F-sr(£))re[-s0), andY 1= (M)iejo,g ‘= (Fot(d))iejo,g, fOr given’, d,

ands. Due to (4.19) and the assumption tlats unattainableY has a.s only finitely many jumps;

let us denote the jump times byrq,...,—r,. We write J for the union of{ry,...,rn} and the set of
jump times ofY. Because of (4.23)] has a smallest element, a second-smallest element, and so on.
We denote these elementsiy< u, < ..., and show that

Yo>Yoifandonly ifY_ >Y,, i=12... (4.27)
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4.4 An application of Siegmund duality

Proceeding by induction, for (4.27) it is sufficient to show
Litt)=k = Lieng<py (4.28)
for all flights f, andj,k € N. Let f € .%#. On the one hand;(j) > kyields
f(l) < F(£(1)) =min(f1({F(}), F()+1,... ) =min(f2(F(})) <],

where we have used order preservatiorfAm‘ndf as well as (4.22). On the other harfd,j) < k is
equivalent tof (j) +1 < k. By order preservation and (4.24), this entails

f(k) > F(F(j+1) =max(f 1({1,....f(j)})) +1=max(f L(f(}))) +1>j+1>].

We have thus shown (4.28), and hence also (4.27).

If (uj) has no accumulation point, then it has a maximal elementygag€hoosing = min the r.h.s.

of (4.27) yields (4.26) (sincen, # swith probability 1). If(u;) has an accumulation point, saythen,
because of (4.23), we have Itlm\A(t = IimHm\?ui = o0, Because¥ remains bounded by assumption,
this together with (4.27) enforces thét < Yo. This means that the L.h.s. of (4.26) takes the value 0.
However, this is the case also for the r.h.s of (4.26), sineeY; = Ys > /. O

In view of (4.21) we immediately obtain the following

Corollary 4.11 In the situation of Proposition 4.10, l&? be a process represented Ey Then.?
and 2 satisfy the duality relatioii4.15) with L and D replaced by? and 2.

4.4.3 A Siegmund dual for the process L

Let us now turn to our case whet€ = L. With each of the transition elemems (i,*), (i, x), (i,0)
introduced in Sec. 4.3 we associate a flight defined as folléwsi € N):

fn(0) =0—|{1,.....0}NH|, wheref] :==n\ {min(n)},

¢ 0 <i ¢ 0<i 0, 0<i (4.29)
fa(0)=1" b g ={" =b =0 =t
{+1, (>1, ' £—1, £>1, ’ i, £>1,

compare also Fig. 4.3. The flights are indeed order preserving. Tretwstwf f,, fi ., andfi, is
clearly inherited from that of the corresponding transition elements. Thedlig, (¢) forget about

the position (but not about the existence) of the immune line within the pALASG. Indeed, recall
that the downward jump rate @fdue to deleterious mutations(i&— 1)8vy; this reflects the fact that
crosses arrive at ratv; per line, but are ignored on the immune line, no matter where it is located.
This is taken into account in the definition of the flight, by settingf, .. (¢) = ¢.

Let us now start from the Poisson configurati8r{of points(r, ) with intensity measurg ® p), as
described in Sec. 4.3. Lgtbe the image of the measysaunder the mapping — f;, wheref; is the
flight belonging to the transition elementas defined in (4.29). The measwréas property (4.19).

To see this we write/ = yin+ Vi + ¥« + Vo, Where the 4 summands describe the intensity measures
of the flights stemming from the mergers, the selective branchings, the dmlsterutations and the

67



4 The common ancestor type distribution dkaNright-Fisher process with selection and mutation

beneficial mutations. It is straightforward that y.. andy, obey (4.19). To see that algg, obeys
(4.19), note that fof € N

(1€ Z 10 £ =p(n:Inn (Ll 22 < (). (4.30)
since{n : [N N{L,...,0}| > 2} CUs<icj<¢{n : {i,j} C n} and because for all< j € N
plin iy = [ 2EA©2+A>0] =1 (4.31)
Writing @ for the Poisson point process with intensity meaguggy, it is now clear thatb represents

the process in the sense of (4.20) and (4.21), because the jump rates match thoseérapethe
generator (4.11).

....... > |
> le- - —— > —_—— > ——— >
> - - > —_—— > - ——— c

Figure 4.3: Graphical representation of the four types of flights defimgd.29)(light brown arrows) and their
dual flights as defined i(4.34) (dark green arrows), together with the resulting paths ofight
brown) and D (dark green). The flights displayed aggWithnN{1,...,6} ={1,3,5}), f3., f3 x,
fso; and fy, fa., fax, fao. The flightfs, maps all states d> 3 to the absorbing state. The
paths of L and D follow the arrows in the direction of backwardl forward time, respectively.

Let us now check that also satisfies assumption (4.25). It is straightforward fhat. andy, obey
(4.25). To see that alsg, obeys (4.25), we note that fer> 2/ +2 andn C N the inequalityf, (k) < ¢
implies thatjn N{1,...,4+ 1} > 1land|nN{f+2,...,2(+2}| > 1. LetH, denote the set of all
n € Z(N) having the latter property. Then we have foréad N the estimate

ym({f €7 3Fk> st f(k) </})
20+1

< Yn({F €71 (K £K) +ym({f € Z:Tk>20+2s1f(K) <(})
k=/+1
ZZJ:L Kk H

< 0

_k_;l(z)w( ) <o,

because of (4.30) and (4.31), siféeC Us<j</11<j<ar21n * {i,J} C N}

Following Definition 4.9, we can now consider a procBsgepresented bﬁ). According to Corol-
lary 4.11,L andD then obey the duality relation (4.15). It remains to read off the jump rat& of
from the intensities of the (dual) flights.
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4.4 An application of Siegmund duality

Lemma 4.12 The generator @ of the process D is given by

Gogld) = 5 (¢ Sqta)Pee-ernlold - g + @~ Dolgid -1 - g(o)]

(4.32)
+(d-1)6vi[g(d+1)—g(d)] + (d—1)Bvo[g(w) —g(d)] , dEN,g:S—R,
where we again use the conventi@n?).
Proof. We claim that the flights that are dual to those in (4.29) are of the form
fn(d) =min{¢: |[{1,...,.6}N(N\ )| =d}, again withij = n \ {min(n)}, (4.33)
~ d d<i ~ d d<i ~ d, d<i
fi.(d)=< "’ - fix(d)=< "’ - fio(d)=< " = 4.34
() {d—l, d>i e(9) {d+1, d>i »(9) {oo, i, &Y

d e Sie N (see Fig. 4.3).
The expressions in (4.34) are obvious consequences of (4.22%&%).(To verify (4.33), we first

note that, due to Definition 4.9, we haf?@(d) =min(f,(d)), sincef, is surjective and monotone
increasing. Consequently, in the cagg,...,d}Nn| <1we havefAn (d) =d, whereas otherwise we
haveﬂ, (d)=min{¢: [{1,....,4} N Q| = ¢—d} > d, both in accordance with (4.33).

Let us now considAer the contribution of the various types of flight§go Forc # d € N we have

to computey({f : f(d) =c}). Itis clear that the contributions from, y. andy, yield the last
3 summands in (4.32). For the contribution coming frgmwe have fod < ¢ < oo

m({f: F(d)=ch) =p({n:c¢n|{l...c-1}nn|=c—d+1}). (4.35)
The contribution from the Kingman mergers to the right-hand side of (4.39)({0}) (%%
if c=d+1, and 0 otherwise. Far > 0, the probability that @-merger does not affect level
but does affect —d + 1 out of the levels 1..,c—1 is (Cfail)f*d+1(l— 2)9-1. Integrating this
with respect toz%/\(dz) and adding the Kingman component shows that the right-hand side of (4.35)

equals(cf;il))\cjc,dﬂ. These are the jump rates frairto ¢ < o that appear in the first sum on the

rh.s. of (4.32). It remains to take into account the jump rate @bm d to . For this we note that

fy(f)=1,¢=1,2,..., and consequently(d) =1 if d =1 andf(d) = « if d > 2. These flights
appear at rat&({1}), and thus fod > 2 add the ternig(c) — g(d))A({1}) to the generator. [

Remark 4.13 In the case without selection and mutation (thaidss: 6 = 0), our process D shifted
by one, that is, D- 1, is equal to the so-callefixation linein [Hén15]. In this case one has no
pruning, and the line-counting process K has generdto8) (with o = 0). The (Siegmund) duality
between K and D is stated in [Hén15, Lemma 2.4]. For a correspondirigratent on the still more
general class of exchangeable coalescents see [GM, Thm 2.3].

We now come to the
Proof of Theorem 4.4Consider the tail probabilitieg, = P(Leq > n), n € No, as defined in (4.15).
Lemma 4.15 allows us to write them as hitting probabilitie®oSpecifically, with

w(n):=P,(3t >0:D; =1),
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4 The common ancestor type distribution dkaNright-Fisher process with selection and mutation

we havew(n) = an_1. The hitting probabilitieso(n), 2 < n < o, constitute &p-harmonic function,
that is,
Gpw(n)=0, n>2 (4.36)

It is this relation that is equivalent to the system (4.6). Indeed, (4.36I&ts into the system

an

c—-1
Ac.c—n+Na +nBvy +nBvy
n+-1<c<oo c—n /

(4.37)
c-1

= Acc—nOc—1+N00p_1+NBV1OnL1, N>1,
n+1<c<oo c—n

again using the convention (4.7). Being tail probabilities,dhen > 0, are monotone, witkrg = 1,

anda. :=limj_., a; = 0. Together with these boundary conditions, Eq. (4.37) divided diyes the
system (4.6) witha, replaced byay,.

To prove uniqueness, l&tr,) be as abovea,) be a solution of (4.6), and pbf :=a,-1—an—1. Then
we have the boundary conditiobs = 0 andb,, — O for n — . In addition, since botlian_1)2<n<w

and(an_1)2<n<w areGp-harmonic,(bn)2<n<e is Gp-harmonic as well. LeT (k) := min{t > 0:D; €

{Lk,k+1,...}}. Note thatT (k) is finite a.s. for everk > 1. Since, giverDg = ¢, (bp,)i>0 is a
bounded martingale, due to the optional stopping theorem we H)yweE[bDT(k) | Do = /] for all

k> 1. BecausebDT(k) — 0 ask — o, by dominated convergence this implies= 0 for all ¢, and
hence the desired uniqueness. O
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5 The killed ASG and a representation of
sampling probabilities

In this chapter we again deal with a classical two-type Wright-Fisher ptpnl&ith mutation and
selection in the notation of Chapter 3. The gener@giof the frequency of beneficial individuals
(of type 0) is then given by (2.4) and its stationary distributiois determined by (2.5).

While we have determined the type distribution of the common ancestor in the ysdwio chapters,
in this chapter we investigate the type configurations of samples ofsizé&N taken uniformly at
random out of a Wright-Fisher population.

We derive a representation of sampling probabilities. In detail, we are stéeren the probability of
choosing exactly € {0,...,m} individuals of the beneficial type 0 in a sample of size N drawn
from a stationary population.

As already described in Chapter 2 on page 13, a recursion for thidityusngiven by [KN97,
Theorem 5.2] ((2.15) in this thesis) in terms of the ancestral selection ¢h&h).

Since working with this equation may become rather involved, we here deeivea recursion that
yields an easily implementable simulation algorithm, and also show some simulation.r@3u#ts
is done by using a rather detailed model (with labelled lines on levels) whichenetekilled ASG
It arises by starting with the (lookdown) ASG, adding a label process @tirtas that keeps track
of the ancestors to each individual in the sample, and cutting away lines viamag@ procedure.
This pruning procedure is interlaced with the label process and resulevéoy realisation of the
(lookdown) ASG in deleting at least as many lines as it is done by the prumogggure of the
pruned LD-ASG. Thus, the killed ASG can be embedded in the pruned 8B-A

5.1 The killed ASG

Let us consider a Wright-Fisher process with two-way mutation and seledfiendenote the fre-
quency of type-0 individuals again By := (X );cr. Let the process be in a stationary situation at
timer = 0. At time 0, we choosen € N different individuals uniformly at random. Léf € {0,1}

be the type of individuaj, j = 1,...,m. We are interested in the distribution of the random variable
5™ 11j. In detail, we want to gain a representation of the probability weiBH(g') X} (1 — Xo)™ ‘] =
P(m—3M 1 =10).

In the footsteps of Shiga [Shi88], to catch the idea and since it is interestitsgawn right, we start
this section with the killed ASG with sample size= 1.
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5.1.1 Sample size one

Let us sample one single individual at random out of a Wright-Fisheulatipn in equilibrium and
denote its type byi. In this section we want to compute the distribution of the type of this single
individual. Namely, we are interested in

P(l1 = 0) = E(Xo). (5.1)

Let w be the Wright density with mutation and selection, given by (2.5). Then thectiion (5.1)
may naturally be computed via solving the integral

E(Xo) = /olx w(dy). (5.2)

But this cannot be done in an easy way analytically. Thus, here, wetwante a way to geE(Xp)
via solving a recursion. As a by-product, the mom@{sﬁl—xo)k] drop out of the calculation as
well. Let us first state the result, then introduce the killed ASG with sample siedtbat is the
particle picture behind [Shi88, Theorem 4.1], compare also (2.13) in $e2tio4), and give the
proof afterwards.

Theorem 5.1 The moments of the distribution @f—Xo), d(k) :=E [(1— Xo)¥], satisfy the recursion

B 20 k—1+20vy,
“ k1205200 YV i 2520
with boundary conditions

d(k) dk—1), k>1, (5.3)

d(0)=1, limd(k)=0.

k—00

Note that the recursion (5.3) has a shape similar to the recursion of earastcoefficients (2.33).

The killed ASG of one single individual

The sample to start with is one randomly chosen individual from the statigrgoylation at time
r =0. We want to determine its type by following each of its potential ancestoistbatie most
recent mutation.

The collection of all potential ancestors of this individual in an untyped sitnagigiven by the ASG
started at time 0 with one single line and constructed backward in time. Thelggné&athen typed
by beneficial or deleterious mutations which come as independent Poigsdrppcesses at rates
Bvp andBv; along the lines of the ASG.

The type of the single individual at tinte= 0 is O if and only if there is at least one line among all
potential ancestors on which the most recent (considered forward infn@Yion is to type 0. The
distribution of the sampled individual may be determined in the following way.

First, generate a realisation of a lookdown ASG (as explained in Sectigrsgadked with one single
(yet untyped) individual at time = 0, and with mutations on the lines. Then, given this realisation,
letry be the time of the first mutation after time 0, and inductiwgly be the time of the first mutation
after timer;, i > 1. Thekilled ASG of one single individuakn then be constructed from this given
realisation of the lookdown ASG in the following way (compare also Figure 5.1)
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5.1 The killed ASG

1. Start withi =1 and go to step 2.

2. If the mutation at time; is a beneficial mutation (a ‘circle’), we are done. Since then there is
one ancestor carrying the beneficial type, the individual at time 0 hastggewell. We can
delete all remaining potential ancestors, stop the procedure, and cehciad.

If the mutation at time; is a deleterious mutation (a ‘cross’), then the first mutation backward
in time (which is the most recent mutation forward in time) on the affected brariohype 1.
Since this branch does not contribute to the event that the sampled indigtdiraer = 0 is

of type 0 any more, it may not be considered further and can be enasadie graph. Go to
step 3.

3. If no more branches are left after the pruning, we are done. Tlhpatantial ancestors of the
sample of size one inherit type 1. Therefore, the single sampled individisaio be of type 1
aswell,l; = 1.

If there is at least one branch left, $et i + 1 and continue with step 2.

Figure 5.1: Killed ASG of one single individual. The first mutation aftiene O is a deleterious mutation at
time r;.. The mutation at timexris beneficial. It assigns typ@to the single individual at tim@
and kills all remaining lines.

The killed ASG of one single individual can reach its absorbing state (imbeuof lines is equal to
zero) via two different possibilities. Either a beneficial mutation hits the grapbn the sampled in-
dividual holds type 0. Or all lines are erased due to deleterious mutatiéore laebeneficial mutation
appears. In this second case the sampled individual inherits type 1.

Let (K;) be the line counting process of the killed ASG with sample size 1Jaad{0,1}; J, := 0 if

K; > 0 and if there is no beneficial mutation between timasd 0. Otherwise, K, =0, J, :=0 if

I, =1, andJ, := 1if I, = 0'6. Then, due to the construction of the killed ASG with sample size one,
the generatoG ;) of the joint procesgK, J) is given by

Gk, f(k, j) =ko[f(k—1,0)— f(k,0)]+ %k(k—1)+l{k>1}k6v1 [f(k—1,0) — f(k,0)] (5.4)

+l{k:1}6V1[f(O, 0) - f(l,O)] —i—keVo[f(O, 1) — f(k, 0)} .

With the help of the killed ASG of one single individual, we can now state theffmfobheorem 5.1.

Proof of Theorem 5.1Letd(k) :=E [(1— Xo)¥] be the probability that randomly chosen individuals
from a stationary population at tintre= 0 are all of type 1. The types of thekdndividuals can

163 counts the number of type-0 individuals in the sample (also in the gersmalteeated in Section 5.1.2).
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5 The killed ASG and a representation of sampling probabilities

be determined by constructing an ASG withines backward in time, marked with beneficial and
deleterious mutations. Then, to read off whether all individuals are ofttypkeck if the most recent
mutation back from time 0 on each line is deleterious. Thus, we are exactly iattimgof the killed
ASG of one single individual but now started withines at timer = 0 and with dynamics given by
(5.4).

All lines are of type 1 if and only if the killed ASG gets absorbed in st&tel) = (0,0) and not in
state(K,J) = (0,1). Therefore, we may define the event

E := {The killed ASG gets absorbed in stg®0) and not in(0,1)} (5.5)
and get
d(k) =P(E | (K,J) = (k,0)).
We haved(0) = 1 and lim_,. d(k) = 0 sinceXp # 0 a.s. A ‘first step decomposition’ of the evdnt
by using the rates given by (5.4) yields

<;k(k— 1) +ka+k9> d(k) = kod(k+1) + (;

which is equivalent to (5.3) and the proof is complete. O

k(k—l)+k9v1> dk—1), k>1, (5.6)

5.1.2 Sample size m>1

If we have a sample of size larger than one, there may be some individugjsedf and some of type
0 in the sample. To identify the types of all individuals in the sample, we againvatarthe (yet
untyped) ASG. But in contrast to the killed ASG with sample size one, it is notertent here to
kill the complete graph at a single beneficial mutation. Potential ancestors wfdividuals that are
not affected by the mutation should not be deleted.

We introduce an additional label to each ancestor to keep track of the nslaitiobetween its de-
scendants and the individuals in the sample. These labels then determiramalids that should be
deleted at a beneficial mutation. In detail, the label at any arbitrary but éineestral line consists
of a subset of1,2,...,m}. This subset contains the numbers of all individuals in the sample that are
offspring of this potential ancestor. At a beneficial mutation, the numbatsriitluded in the label of
the line that is affected by the mutation are erased from all labels. Lines witty éainels are deleted
from the graph. Deleterious mutations are treated in the same way as for tded&l@& with sample
size 1. the affected branch (together with its label) is pruned. We denoteghking labelled and
pruned version of the (lookdown) ASG thkéled ASG(for an example see Fig. 5.2). Its transition
rates are given and explained in detail in the proceeding section.

The killed ASG

The state space’™ x [0, ] of the killed ASG started with sample sizeat time O consists of a time
coordinater € [0,] and a collection of tuples whose entries are subsefd,& ...,m} (the labels)
together with a natural number (the number of individuals in the sample thatraesly identified to
inherit type 0),

SM= & U {(by,by,....b) |b C{0,1,... . mvi=1... k, k=12..12{01,...,m.
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5.1 The killed ASG

Let (BM),>o be the configuration of labelled lines of the killed ASG with sample sizand let
(JM)r>0 be the random variable which counts the number of type-0 individuals iretinels, these
are the first and second component6f', (B",J") € ™ for allr > 0.

The starting configuration of the killed ASG (8, J0") = (({1},{2},...,{m}),0), and the set x
{0,1,...,m} C .¥™Mis absorbing. The killed ASG can be constructed from a given realisatitheo
ASG with mutations in the following way.

........................................ ﬁi}\xﬁ} 6
..................... /_{EL\_/ (5re (SN {5} ¢
................ {4+ \/ {4}j {4} {4} 4
................ {2} \_/ {3}j {3} {3} 3
......... {2,43 {2} *\ J {2}j {2} {2} 5
% {47} 4{2} /C {1,3,5} j {1,51 {1} {1} 1
4 4 3 0 0 0 0o J8
: o

Figure 5.2: Realisation of the killed ASG started with-m6 lines. The starting configuration on the right
hand side of the picture i§({1},{2},...,{6}),0). At a branching event (symbolised by star), the
affected line branches into itself and a clone with ideritiedel. Arrows indicate coalescence
events of lines. The new label is the union of the labels ¢f lixés. Each line hit by a deleterious
mutation (symbolised by a cross) is deleted. Each benefiuightion (symbolised by a circle),
yields the removal from all labels of all numbers includedha label of the line affected by the
mutation. Lines with empty lables are deleted. In additidve, variable I is increased by the
cardinality of the label of the mutating line. Here, sinceay is assigned to the labelk 3,5,2
due to beneficial mutations, the absorbing state (on thehiafid side of the picture) i&z,4).
Labels4 and6 are coloured with typd due to deleterious mutations.

In the first step, generate a realisation of a lookdown ASG (compare Se&ctpnvith mutations
started withm individuals at timerg := 0 (an example is shown in Fig. 3.14). The elements of this
realisation are coalescence events, selective branching eventsrideteteutations, and beneficial
mutations. Let us arrange them according to their appearance in time ane tehés be G< ry <
fro<....

We read off the corresponding realisation of the killed ASG from the gigahsation of the lookdown
ASG by starting at timeg = 0 with BJ' = ({1},{2},...,{m}), thus assigning labelsl}, {2},...{m}

to the lines on levels,2, ..., m. In addition, we sef' = 0.

We then proceed inductively from tintg_; to timer;, i < 1, until the absorbing stateBT", J;") =
(2,v), v € Ny, is reached at time; for somet > 0. In the example shown in Fig. 5.2 the process
gets absorbed in statey, 4). Labels always stick to their lines such that if a line changes its level, the
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5 The killed ASG and a representation of sampling probabilities

corresponding label moves to the same new level together with its line. Tiableg}™ only changes
its value at beneficial mutations. If the element at timm@oes affect a line of the lookdown ASG that
is not included in the killed ASG any more at timenothing happens. Otherwise:

« If the element at time; is aselective branchingevent of the line at leve], j > 1, the labels of
the lines on levelg andj + 1 at timer; are both a copy of the label of the line at leyedt time
ri—. The lines at level& > j together with their labels are shifted one level upwards to make
space for the newly born line.

« If the element at time; is acoalescenc®f the lines at levelg andk, 1 < j <k, the label on
the remaining line at levejl at timer; is the union of the labels of the lines at levg¢landk at
timer;—. All lines at levels? > k together with their labels are shifted down to level 1 to
fill the free space.

« If the element at time; is adeleterious mutationon the line at levej, proceed exactly as in
the pruned LD-ASG and delete the label at leyébgether with the line at level (but note
that the line is also deleted if it is the immune line). All lines at levels j together with their
labels are shifted down to leviel- 1 to fill the free space.

« If the element at time; is a beneficial mutation on the line at levelj, j > 1, the new value
of IJ™, J7, is gained by adding" and the cardinality of the label at levgl In addition, all
numbers that are contained in the label on lgvate deleted from the labels of all remaining
lines. This yields at least one line with an empty label (the line on Igvelll lines with empty
labels are deleted from the graph and all remaining lines together with thels Efgeshifted
down in an order preserving way such that the free spaces are filénl ag

The transition rates of the killed ASG are directly passed on from the ratiee gfookdown) ASG
with mutations. For, p € {1,...,k} we have

a) coalescence of the lines with labbjsandby, i < p:

q( ((by,...,bx), §), ((by,...,bi_1,b6:Ubp,bita,... . bp 1,511, bi), ) ) —1,
b) branching of a line with labe; :

a( (01,5, 1), (B bi-1,Bb3, By, b)) ) = 0,
c) killing of line with labelb; due to a deleterious mutation :

q( ((b17"‘7bk)7j)7 ((bla'”7bi—17bi+17"'7bk)7j) ) = BV]_,

d) colouring with type 0 of all sampled individuals with ancestor on the line witkllgb
due to a beneficial mutation :

q( ((by,....b), ), (b \br,....bi 1\ bi,biia\bi,.... b\ by), | +#0y) ) — Bvp. (5.7)

Now, the killed ASG is an helpful tool to gain the distribution of the number of {ypedividuals in
a sample of sizen (drawn from a stationary Wright-Fisher population with mutation and selection)
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5.1 The killed ASG

Lemma 5.2 Lett :=min{r > 0:B" = &} be the absorption time of a killed AS8/", J")>0, Started
with m lines labelled witH 1},...{m} at time r=0. Then

m

par—0-&|(7)xa-x0m]. o<i<m (5.8)

where X% is the frequency of the beneficial type in a sationary Wright-Fisher diffusitinselection
and mutation at time & 0.

Proof. It is well known (compare [KN97], for example) that a system of equation the sampling
probabilities

E [(7)X(1—X0)™ ], 0< £ < m, can be gained in terms of an ASG with mutations, started with
mlines.

In a first step, one starts with an untyped sample ofsiaétimer = 0. The genealogy of this sample
forms an ASG, evolving in backward timme> 0. Given this ASG, one assigns mutations to the lines
independently according to Poisson point processes with atgand6v,. Then, for almost every
realisation of the ASG with mutations, there exists a teeR™ (chosen large enough) such that
each potential ancestral line inherits at least one mutation betweenrtisn@sandr = s. On each
potential ancestral line, the mutation that is closest to time 0 determines the tyjtthasported
forward in time on this line from the time of the mutation towards time 0. To determine tles tyjp
themindividuals at time 0, one may therefore cut away all branches after thainfutation. On the
remaining (now typed) graph, each selective event can be resoltedrde parent to each selective
event (and therefore also the child) is of type O if and only if at least éits two potential parents
inherits type 0. Inductively, by resolving the true parent to all selectrea®s in the remaining graph,
one gets that each individual in the sample of sizie of type 0 if and only if the closest mutation to
time O is to type 0 on at least one of its potential ancestral lines.

In the killed ASG, the label on an arbitrary but fixed line marks all individirathe sample of sizen

at timer = 0 that are offspring of this corresponding ancestral line. Due to astgin, the variable
J" gives the number of individuals in the sample that have at least one aldiestrassigned type 0
due to having the closest mutation to time O to the beneficial type. As all potentiedtans to the
sample at time 0 are marked by mutations at timé"" gives the number of type-0 individuals in the
sample. ThusP (3" = ¢) is the probability that individuals are of type 0 among a sample of size
taken from a stationary Wright-Fisher population. O

Lemma 5.2 yields the following representation of a random type configuratiais@mple of sizen.

Theorem 5.3 (Representation of sampling probabilities)Let me N be the size of a random sam-
ple of individuals out of a stationary Wright-Fisher population with selectiod arutation. The
probability that there are exactl§individuals of type) in this samplep </ <m,

e (10 2. m).0)) = | (7 )62 - 30m .

can be determined by solving the following system of equations,

dm,((((bl7' . ‘7bk)7 J)

20

k
- k(k_1)+2ke+2ko_i;dm,ﬁ((bly"-abiflvbivbiabiley'"7bk)7J)
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5 The killed ASG and a representation of sampling probabilities

2 K ,
+ k(k_ 1) _|_2k9_|_2ko' Ip: ‘I<pdm7£((bl’ . .,b|_1,b| pr7b|+l7. . .7bp_l,bp+1, .. .7bk), J)
29V1 K .
+ k(k— 1) —|—2k9+2k0 i;dm,f((bla .- .,b|,1,b|+]_7 ey bk)7 J)

4 29V0
k(k— 1) + 2k6 + 2ko

K
de,é((bl\bia~-abi—l\bi7bi+1\bia--wbk\bi)aj+#bi)7
=

j€{0,1,....m}, by C{1,....mVv=1... k k>0,

e (2,0) =1, dme(2,]) =0forall j £ 2. (5.9)

Proof. Let dm¢((by, ..., bx), j) be the probability that the killed ASG started in stétb, ..., bx), j)
gets absorbed in statey, /),

dm,f((blr--vbk)? J) ::P(Elr > 0: (B:nv‘er) = (Qvg) ‘ (BOmﬂ]Cr)n) = ((bla'“)bk)? J))v (510)
meN, j,£€{0,1,....m}, b, C{1,....m}forallv=1,... k, k> 0.
Then we haveE [(T)X§(1—Xo)™ ] = dm,g<(({1},{2},...,{m}),O)). Since the statéo, i) is ab-

sorbing for every € No, dm¢(2,£) = 1, anddm(2, j) =0 for all j # ¢. A first step decomposition’
of dm¢ according to the rates (5.7) yields (5.9). O

Lemma 5.2 may also be used in terms of simulating sampling probabilities for a sampie of s
m with the help of the killed ASG. The results of such a simulation algorithm are shiovec-
tion 5.2. The algorithm gets along with rates of the killed ASG only and is not inl néa re-
alisation of the frequencyg of type 0 individuals in the whole population. To get a realisation
of the number of type-0 individuals in a sample of size m, start a killed ASG wittiiguration
(BFLI = (({1}.{2},...,{m}),0) and let the algorithm evolve according to the ratps d) of the
killed ASG, given on page 76. When arrived at its final (absorbindg $BY" = & for somet > 0),

the algorithm outputs a perfect samplelfffrom the stationary distribution.

Remark 5.4 The killed ASG inherits properties from the ASG, e.g. the two following ones.

(i) The killed ASG may be started with m lines€mY), but one may also use a sample of infinitely
many lines at tim®. The quadratic death but only linear birth rates ensure that the killed ASG
comes down from infinity. Therefore, there are only finitely many lines Idfinate for all
£>0.

(i) One may run the killed ASG for a given time horizon 0. If not all lines are killed until time r,
the types of all (potential) ancestors (that are not typed until time r) cadémtified by adding
types to the remaining lines at time r: tyPevith probability X and 1 with probability 1 — X,
independently per line.
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5.2 Simulation results

5.2 Simulation results

In this section we present some simulation results for sample size8, 5,20 and for various com-
binations of the parametefs v;, ando. The algorithm encoded in Theorem 5.3 was implemented
in the programming language R. In Figs. 5.3, 5.4, and 5.5, simulations of theemwhtype-0 in-
dividuals in a sample drawn from a stationary Wright-Fisher population withtiontand selection
are displayed.

The green diagrams on the top of Figures 5.3, 5.4, and 5.5 show that higtiomutdes (together
with v; = 0.5) shift the simulated densities towards shapes that look similar to Binomial digiribu
This observation may be explained intuitively in the following way. For large timurtaiates, the role
of the selective advantage becomes very small as each line changes itsetypmtly. Thus, the
type of each line is mostly determined by its most recent mutation. Since this mutatiotyjgeto
with probability Q5 (almost) independently for each sampled individual, the simulated distribution is
similar to a Binomial distribution with parameters 3, 5, or 20 arigl 0

The brown diagrams in the middle of the Figures indicate that a high mutationiplibbto type 1
shifts the simulated density to to the left: More individuals in the population aredhigpe 1 such
that it becomes less probable to sample individuals of type O.

The blue diagrams at the bottom of the three Figures show that a large selsmtificient results
in a shift of the simulated density towards more individuals of type 0. This isavibecause a big
selective advantage increases the number of type-0 individuals in tisagop.

In the next section, we close this chapter with a glimpse on the so-addieidion treeby Dawson
and Greven [DG14, Chapter 5]. It is also a tool that can be used toxdatethe types of individuals
of a sample. The decision tree is a collection of all potential histories of thislsgmiph an a priori
unknown type configuration). One can think of it as being some kind ot#te&8ome potential type
configurations of the sample do not fit into the decision tree and can thetefaemoved from the
collection of all possible type configurations of the sample.
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5.3 Dawson’s and Greven'’s decision tree

5.3 Dawson’s and Greven'’s decision tree

Recently, Dawson and Greven published a monograph on spatial Flenahmdtels with selection
and mutation [DG14]. In Chapter 5, they introduce duality as a basic toahfalysing Fleming-Viot
processes (and therefore also the special case of Wright-Fishesidif§) with selection, mutation,
and migration. This way, they also consider samples of individuals draavn & (stationary) pop-
ulation and analyse their ancestry. The sampling probabilities can then kel dgirsumming over
all potential histories weighted with their probabilities. In Section 5.5.4, DawsonGreven explain
how to get these potential histories in terms of a marked graph, denotitiason tregcf. [DG14,
picture on page 141]).

The decision tree may (like the killed ASG) be used for investigating the distribofidhe types
of individuals in a sample. Therefore, we review the construction of &idectree in our special
case of a Wright-Fisher diffusion (with two types) with mutation and selectios.thds gets very
voluminous for large samples, we consider only sample size 1 here. Thisfitsite the setting of
[DG14, picture on page 141] and is also comparable with Section 5.1.1 ohthyxear.

To this end, we construct the decision tree for the following example (illustiaté&ig. 5.6): A
single individual is sampled at tinte= 0. In order to determine its type, take a look at all its potential
ancestors. In the example, the (lookdown) ASG of this individual consfsasselective branching
event at times; on level 1, a selective branching event at timaen level 2, a deleterious mutation
on level 3 at timesz, a coalescence between levels 1 and 2 at tima selective branching event on
level 1 at timess, and a beneficial mutation at level 1 at tige

[\ VA ﬁ\_Lz
O;\ T ) 1
T % S % 8 & 5 0

Figure 5.6: (Lookdown) ASG of a single individual sampled at tidr{¢he corresponding killed ASG is shown
in Fig. 5.1).

For a test functiorg : {0,1} — {0,1}, let (g), := g(ir), with i; being the type of the line at level

¢. Especially, let(x), := 1;,—0y- The decision tree for the just described example looks as follows.
Timer goes down from top to bottom. Let us identify the first row wita: 0, the second row with

r =si, ..., and the seventh row with= s;. We adopt notation from [DG14]: The varialjtealways
stands for a line of type 0, and-1x for a line of type 1.

We first show the diagram and then explain its entries and the notation.
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5 The killed ASG and a representation of sampling probabilities

(@ 0190-x29@s]  [A-X180@22Ms] | 9181-x20Ws] | (@1 (029 (5]

| | | |

[(1-X0120-X029 (1-X09) | [@1-X12(x9221L-x)s | [@181-X)28@-X)s | | X912 0029 (1= x)s ]

1-x)1®((1-x)9)2 (X91©(1-X)2
’ ‘

| |

|- x191-X)28((1-x)9)5 | [0] [(1-019 (X928 (1-x)3 | | (Xg1® (D20 (L-X)s]

|
ﬁ ﬁ ’ (X9)1®(1)2®(1—X)3‘

Attimer = 0, we start with the single sampled line on level 1. This is shown at the top ofdgeadh,
(9)1. The index always indicates the level, which in this case is 1.

Then this line branches into two lines (at time=;): The incoming branch on level 1 and the
continuing branch on level 2. There are two potential parents now: Ifnib@ming branch is of
type 1 (which is indicated in the diagram 0% — x)1), the parental branch is the continuing one.
Therefore, the functiog is now assigned to the continuing branch on level@;. Thus, this case
coincides with(1 — x)1 ® (g)2 (first entry in the second row, compare also Fig. 5.7, left). In the
second case, if the incoming branch is of type 0 (indicateg byt is the parental one. So, we have
the componentxg):. The type of the continuing branch is not specified; it may be either 0 or 1,
thus we have the componeit + (1— x))2 = (1)2. Together, this case gives the second entry in the
second row(xg)1 ® (1), (compare also Fig. 5.7, right).

(9)2 (1)2
1 ﬂ* (9 1 0 X9:__\__(9: L

Figure 5.7: Selective branching event of the line on leteleft: The incoming branch is of tyde the true
parent is the continuing line on lev2l Right: The incoming branch is of tyfleand thus the true
parent. The labels on the branches are the entries of Dawsamd Greven'’s decision tree.

The branching event at ting is followed by another branching event a tiset level 2 which gives
the third row in the decision tree.

Then a deleterious mutation at tirggon level 3 assigns type 1 to the line on level 3. This is indicated
by the additional factofl — x) in the component§ )3 in the fourth row of the decision tree.

Then, at timesy, the lines on levels 1 and 2 coalesce. But this can only happen if both liaex ar
the same type (compare Fig. 5.8). If both lines are of type 1 (as in the firgtiariourth row), they
coalesce into one line of type 1 and the line on level 3 moves to level one. iVhsthe first entry
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5.3 Dawson’s and Greven'’s decision tree

in the fifth row!”. If both lines are of type 0 (as in the last entry in fourth row), they coalésio one
line of type 0 yielding the last entry in the fifth row. Otherwise, if the two lines\cdifferent types,
they cannot coalesce. The second and third entry in the fifth row afonejust O.

(1-X)2 (X)2
2 T 2

1 (1—X)1 (1—Xx)1 1 0 (X)1 (X)1 1

Figure 5.8: Coalescence of the lines at levéland 2 is only possible if both lines inherit the same type. Two
lines of typel (indicated by(1— x)) or of typeO (indicated by(x)) coalesce.

At time ss there is again a branching event at level 1 which gives the sixth rows@émnd entry is 0
because a line of type 1 is not allowed to branch into an incoming branchebtyp

Then a mutation at time; assigns type 0 to the line on level 1. As this is only compatible with the
right branch in the tree, this branch gives the true ancestry. As we(lyaye, the true parent at time

ss of the individual sampled at time O is located at level 1 and inherits type O.

This way, the decision tree gives a possibility to determine types of samplettiunals. In compar-
ison to the killed ASG, mutations are treated differently. For example, a lineigthat the immune
one) is pruned from the killed ASG at a deleterious mutation. But in the dedigerit is not deleted
in all cases.

17Note that we are working in the framework of the lookdown ASG. Theeefae indicate the lines by their levels. At
a coalescence event, free levels are filled again by lines at higher IBaison and Greven do not place the lines on
levels but number the lines. Therefore, their first entry in the fifth rowld&eep the index 31— x)1 ® ((1— x)9)s.
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6 The evolution of the common ancestor
process together with its Wright-Fisher
background

In the setting of Chapter 3, we come back to a classical (two-type) Wrighefdiffusion with
two-way mutation and directional selection. Fearnhead [Fea02] deddhibesvolution of the type
processgR; )<k 0N the line of the common ancestor together with a proféss-r of so-called ‘vir-
tual lines’.

In this chapter, we analyse the joint evolution(8 ),cr, (Vi )rer, and the joint Wright-Fisher back-
ground (X;)rer. Using time-reversal in equilibrium, we derive the backward and forimrime
generators of the triple proceg¥,R V) (taking values in0,1] x {0,1} x Np) and explain all rates
heuristically with the help of the pruned lookdown ASG (introduced in ChapteiTBis approach
also allows for new insights into the probabilltyx) = P(Ry = 0| Xo = x). In addition, it ties together
results by Fearnhead [Fea02] (who analysed the pr@&e¥3g) and Taylor [Tay07] (who investigated
the procesgX,R)).

6.1 Introduction

Let us deal with the same setting as in the previous chapter: We consides@aléwvo-type Wright-
Fisher population with two-way mutation and selection (in the notation of Chapter 3

Remember thafv, and 8vy are the mutation rates per line to types 0 and 1, and that type 0 is the
beneficial type with selective advantageX; is the frequency of type 0 individuals in the population
attimet € R andX = (%) evolves according to the genera@®y, given by (2.4),

1
Gxg(x) = SX(1-X)g’(x) +[(1-X)8vo—xBv1 + ox(1-X)]g(x), ge 4?01,  (6.1)
The stationary probability measunefor this generator is given by (2.5),
W(X) = Gy - (1—x)?0171x20v0~1 . exp{20x}, x€[0,1]. (6.2)
-1
with oy = | fo (1 —x)20V1~ 1201 expf20x}dx| .
In this chapter, we are not only interested in the stationary distribt@ti(x), 1- h(x)) of the type of
the common ancestor but also in the evolution backward and forward in tingetdil, we want to
take a closer look at the evolution of the common ancestor pr@ée¥s (introduced by Fearnhead

[Fea02], compare also Chapter 2, especially Section 2.2.3) together wigmitem Wright-Fisher
environmeniX.
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6 The common ancestor process in its Wright-Fisher background

This gives the triple procegX, R,V ) which may also arise by incorporating the num¥esf virtual
lines into the proces&X, R) that was introduced by Taylor [Tay07].

With the help of thepruned LD-AS@compare Chapter 3), we build a bridge between the two ap-
proaches by Fearnhead [Fea02] (reviewed already in Section 2l Jpatlor [Tay07] (reviewed in
Section 2.2.4).

Recall that Fearnhead defines t@mmon ancestor proce§SAP), a modification of the ancestral
selection graph ([KN97]), which includes the tyR®f the common ancestor (ogal line) and a num-
berV of so-called virtual lines. The proceé’,V,);cr is Markovian and its stationary distribution
can be calculated from the generator matrix (given by the rates (2.228)(and (2.29)).

Taylor considers the typR of the immortal line together with the frequency prockssie calculates
the stationary distribution of the Markovian proc€xgs R, );cr by solving a boundary value problem.
In this chapter, we tie together all three variables. We will analyse the evolotithe triple process
(X, R, Vi )rer backward and forward in time and identify its stationary distribution. Via afyéina
proof, we will also see that this stationary distribution can also be gained veithetp of the pruned
LD-ASG directly and intuitively without many calculations.

6.2 The backward in time generator of (X,R,V)

(Rr,Vr) is just a typed sample of individuals (or lines) for all tinres 0. Thus, backward in time, the
triple procesgX,R V) is a structured coalescent process in a random Wright-Fisher envinbnme
Such a structured coalescent was introduced and analysed by Bzttteridge and Sturm [BES04],
compare also [TayQ7, Section 2].

Here, in the cas€Ry, Vo) = (0,v), the structured coalescent starts witlines of type 1 and one
line of type 0. In the caséRy, Vo) = (1,v) the initial state consists of+ 1 lines of type 1. When

there is a mutation to type 0 on any line (except for the real line), this virtualdinkeleted. Due

to selection, each branching event may result in an additional virtual lindéstmaquired to be of

type 1 (compare also Section 2.2.3). The generator of the triple pro§eRsV) is therefore given

by adding the mutation and selection dynamics of the virtual lines to the genefakar structured

coalescent (given by (2.36) in this thesis, Lemma 3.1 in [BESO04], or (3)apd7]).

Lemma 6.1 The generatoé(xﬂv) of the proces$X,V;, R )rcr backward in time is given by

~

1-x
G(X,R,V)g(xv 0, V) = Gxg(xv Oa V) + TGVO [g (Xa 1,V) - g(X, 0, V)]

+(v+1)o(1—x)[g(x,0,v+1)—g(x,0,v)] (6.3)
+ [v@vl + %v(v— 1)] flx [9(%,0,v—1) —g(x,0,v)]

G(X,R,V)g(xv 1, V) = GXg(Xa 1, V) + %(evl [g (Xa 07V) - g(X, 1,V)]
+(v+1)o(1-x)[g(x,1,v+1) —g(x,1,v)] (6.4)

+ [v9v1+ %v(v+ 1)] % 9(x,1,v—1)—g(x,1,v)]
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6.2 The backward in time generator(of,R V)

forallg € €2(0,1) x {0,1} x No.

The (analytic) proof of Lemma 6.1 can be carried out analogously to thef pfd.emma (3.1) in
[BES04] as a diffusion limit of the discrete model.

Instead of reviewing the analytic calculations here, we verify the rate&mgdeuristic and intuitive
arguments.

~

Interpretation of the generator  Gx ry)

The rates of the generatér(XRV) can be interpretéd in terms of the possible transitions @,V),
givenX. Letus decomposé(xﬂ\,) into its different summands and look at them separately:

é(XR,V)g(Xa I',V) = Gx g(X7 r, V) + I\//I\RX [g (Xv r_,V) - g(X, I',V)]
@D @
+ B [g(xrv+1) —g(xrv)] + G [g(xr,v—1) —g(x,1,V)]

® @

(6.5)

. — 0, ifr=1
withr = )
1 ifr=0.

1. The first part of the generator describes the dynamics oithight-Fisher diffusion processx.
Due to time reversibility, we hav@y = Gy.

2. The second part is the generator of thatation process on the real ling givenX = x,
Mg:};fewybm+1§§9wqbn. (6.6)

The factors(1— x)/x andx/(1 —x) in front of the forward in time mutation rateé&vy and 8v; are

time change factors of a structured coalescent (they also appear &K@HB8, (6) and (7)]) and can

be understood intuitively in the following manner.

The forward in time mutation rate per line to type 088, (silent mutations from type O to type O

included). Mutation events from type 1 to type 0 (forward in time) happemwhe line hit by the

mutation carries type 1. As, for each line, the probability to inherit type Lig (when the frequency

of type 0 in the population at the time of the mutatiox)isthe overall rate at which a mutation from

type 1 to type O happens (& —x)6vp per line. Thus, backward in time the overall mutation rate from

type O to type 1 per line should l§& — x) Bvg as well. But as such a mutation can only affect a line of

type 0 (at probabilit), the backward in time mutation rate to type 1 of each type-0 line has to equal

Ovo (1—x)/x.

In detail, the quantity lim,oP(Ry = 1,R = 0| Xp = X)/t can be calculated by starting with one

line of type 1 and letting it mutatorward in timeto type 0. This yields lim,oP(Ry=1,R =0

Xo =X)/t = (1—x)Bvp. Or it can be evaluated by starting with one line of type 0 and letting it

mutatebackward in timeto type 1, which gives lin,oP(Ry = 0,R: = 1| Xp = X)/r = x- mMZ(0,1).

18Remember that the index ' indicates the directiofackward in time
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6 The common ancestor process in its Wright-Fisher background

Thus, the backward in time mutation ratg'(0,1) on the real line from type 0 to type 1 is given by
Bvo (1—x)/x. Equivalently, we havé3(1,0) = Ovy x/(1—X).

3. The third part of the generator describes an increase of the numbietuad lines due teselection
givenX =X,

B = (Vv+1)o(1-x). (6.7)

A branching event backward in time is the analogue to a selective reprodwstent forward in
time (compare e.g. [KN97], [Fea02]). The forward in time rate of a selectiproduction event
concerning one particular particle is given oy Since we have virtual lines and the real line, the
total rate at which selective events arrive forward in timévis- 1)o. Backward in time a branching
means an appearance of one additional line. Here, the branching kahampen if this line is
a virtual one and has type 1, which has probability £ Therefore the overall branching rate is
(Vv+1)o(1—Xx).

4. The fourth part describes a decrease of the number of virtual linet®doalescence or mutation
givenX = x,

C)" = |vOvy + ; V(v—1)1{_g) + %v %( .
Forwards in time, a mutation to type 1 (from type O or a silent mutation from typerdlje arrives
at ratefv;. Thus, the overall mutation rate to type 1wdines forward in time is/8v,. Therefore, the
backward in time mutation rate from type 1 (to type 0 or 1) must be equawg/(1— x), because
the probability for one particle to be of type 1 is-Xand(1—x) -vOv;/(1—X) = vOv;.
The rate for a branching event forward in time is just the number of (@med) pairs (between which
the "reproductive arrow" can be interchanged). Backward in time we V(@ — 1) /2 of these pairs
of type-1 particles if the real line is of type 0 anfv+ 1)/2 if the real line is of type 1. Since
the vanishing line is of type 1, this rate has to be multiplied again &f + x). We have the total
backward in time coalescence rdté/2)v(v— 1)1 _qy + (1/2)(V+ 1)Vl _gy] /(1—X).

(V+ 1)1{r:1} (6.8)

Remark 6.2 Backward in time, the proces$X,R,V) can be decomposed in the following way:

1. In the first step, generate a random environmegt XX; ),cr With respect to the Wright-Fisher
generator .

2. Then, in the second step, given X, generate the common ancesiessmra Vi )rer in this
random environment with respect to the conditioned genefdidr- B, +CVXr

6.3 Stationary distribution of the triple process (X,RV)

Let ¢(x,r,v) be the density of the equilibrium distribution (with respect to the Lebesgueureas
on [0,1] times counting measure dif, 1} x Np) of the triple proces$X,R,V). Following Taylor's
ideas of using a product ansatz for the stationary distribution ((2.38) inthibgs), we consider a
disintegration forp,

¢ (x,n,r) =w(x)- @ (n,r), (6.9)
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6.3 Stationary distribution of the triple procd3§ R,V)

with the stationary density w of the process X, given by (6.2) and
@*(r,v) = P((Rs,Vs) = (r,v) | Xs = x). Taking a closer look at (2.34) or [Fea02, Remark 3], one
can make the educated guess

q)x(ov V) = aVX<1_ X)Vv

P(LV) = (av—avs1)(1—x)"*,
with Fearnhead’s coefficientsy)ven, determined by Remark 2.1,

(6.10)

1 1
[2(v+ 1)+o0+ 6} ay = [2(v+ 1)+6V1:| avr1toa-1, v>1

with ag=1 and lima, =0.
V—00

(6.11)

Indeed, we have the following theorem.

Theorem 6.3 The density of the stationary distribution of the proce€s,R,V) is given by
9 (x,0,v) = w(x) -ax(1—x)",
9 (% 1,v) = W(X) - (& — ays1) (1 - X)L,

for x € [0,1], v € Np, and with Fearnhead’s coefficienta,) defined by(6.11)

(6.12)

Let us first explain (6.12) intuitively before giving an analytical proof.

The intuition behind this theorem becomes clear when considering the folldaétsy The common
ancestor proced®, V; )rcr can be embedded in the pruned LD-ASG with the line counting process
(Ly)rer (introduced in Chapter 3). Let us assume that we are in an equilibrium sitgttiime O.
Then a realisation dfXo, Ro, Vo) can be gained by first generating a realisatioXpénd a realisation
of Lo independently. Then, in the footsteps of fearnhead simulato(see Page 27), givexy = X
andLo = /¢, we can get the realisation & and\Vj via a Bernoulli experiment. In detalil, we toés
times a coin with success probability If there is at least one success amongadbesses, we saf
equal to the number of unsuccessful tosses before the first syaoels) = 0. If all £ tosses were
unsuccessful, we s&p = ¢ — 1 andRy = 1.

Let Cy be the time of the first success in a coin tossing experiment with succesbpitybXg and
remember from Section 3 that Fearnhead’s coefficients are tail probabditle, a, = P(Lo > V).
Then we havé((Ro,Vo) = (0,V) | Xo =X) =P(Co =Vv+1,Lg > v | Xo = X) andP((Ro, Vo) = (1,V) |
Xo=X) =P(Co>V+1,Lo=V+1]| X =Xx). Therefore, we get

P((Xo,Ro,Vo) = (x,0,v)) =w(x) -a,P(Co =Vv+1| X =X),
P((X0,Ro,Vo) = (%,1,V)) =W(X) - (& — av+1)P(Co > v+ 1| Xo = X),
which is exactly (6.12).

(6.13)

Proof of Theorem 6.34 is the density of the stationary distribution of the triple proc@AS,sR,V)

if and only if fjo 1) dX3 (01} Yvz0 [Gix.rv)IX, T, V)] @ (X,1,v) = O for all g in the domain oG gy
(compare [EK86, Theorem 9.17, Chapter 4]). For this, via integratigoalots, it suffices to show

~

Gixrv)®(X.1,v) =0 (6.14)

for all x € (0,1), r € {0,1}, v € No, whereGy ) is the formal adjoint operator d(x ry)- To
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6 The common ancestor process in its Wright-Fisher background

simplify this condition we decompoﬁ(xﬂv) into two parts:
G(X,R,V) = Gx + I/:\ (615)
with the Wright-Fisher generat@y given by (6.1) and the jump generat%r

= 1-x X _
Fg(X7 r V) = [XGVOl{r—O} + ]__Xevll{r—l}] [g (Xv I’,V) —4d (X7 r, V)]
+(v+1)o(1-x)[g(x,r,v+1) —g(x.r,V)] (6.16)
L
1-—
forall g e €2(0,1) x {0,1} x No; F = 1if r = 0 andr = 0 if r = 1. Note thaf depends om but we
omit the index here for simplicity.
The formal adjoint operatdBy /) 0f Gx rv) can therefore be written as

1 1
+ [vevl + év(v— Dlj—o + Ev(v+ 1) l{r_l}] [9(x,r,v—1) —g(x,r,V)]

Thus, (6.14) is satisfied if

(Gx*+F*)¢ =0. (6.18)
As w is stationary density, it follows by the same argument as in (6.14)Ghaiw(X)g(X)] = w(X) -
Gxg(x) Vge %?[0,1], which again simplifies (6.18) into

(Gx +F*)*=0. (6.19)

Note thatF is a generator matrix (also known as a ‘Q-matrix’). Thus, the formal adq'm'atatonf*
of F is just given by the transposition &f.

Now, here we only showGx + F*)@*(0,v) = 0. The proof of(Gx + F*)@*(1,v) = 0 works com-
pletely analogously.

To calculateGx ¢*(0, V), we first need the derivatives gf(0,v), expressed in terms @f(0,v),

d 1 v

&QDX(QV) = <x_1—x> @(0,v),
d? V(X—24Vx)
W‘PX(QV) = W‘PX(ON)-

We have
2
Gx@*(0,v) = %x(l— x)%(px(O, V) +[BVo(1—X) — Bvix+ ox(1—X)] %{p’((o, V),
which is equal to
Gx¢@*(0,v) = @*(0,v) | (v+1)o(1—X)+ [;v(v— 1) +v9v1] %(-i- Gvo)—l( - %(v+ v—-06(v+1)—vo|.
(6.20)

To express$*@*(0,v) in terms of@*(0,v), the following equalities are helpful,

g(O,v+1) = %<l—x>mo,v>,
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6.4 The forward in time generator 6K, R,V)

ay-1 1
¢(0v-1) = EE‘PX(ON),
F(LV) = 1%( (1— a‘;j) F(O,v) .

Thus,

F*0(0,v) = evlg(cpxa,v) + [(v+ 1)0v; + %v(v+ 1)] %(q)x(o,v—k 1) +vo(1—x)@*0,v—1)

— [Qvol_xx - [v@vl + %v(v— 1)} %( +(v+1)o(1- x)} ®*(0,v),
which reads in terms of factors gf(0,v)
F*¢*(0,v) = ¢(0, v){e +v6v1% + %v(v+ 1)% +va%

(6.21)

2 1-x
Taking (6.20) and (6.21) together, we see that all terms dependirgnotime sum of both generator
parts cancel each other,

- [Gvo)l(Jr [v9v1+1v(v—1)] i+(v+ 1)0(1—x)] }

= a1 1 av+1 a1 1 ]
Gx+F o,v) = o,v) |vOvi——+ -v(v+1)— +vo— — - (v+1)v—vO —vOo|.
(Gx+FIF03) = 070 [von 224 Juv+ D2 ot vy
Therefore,@’{xﬂv)rp(x, 0,v) =0 if and only if
Ozvevlﬁ +v(v+1)% —i—VO‘M—(V—I-l)V—VQ—VG (6.22)
ay ay ay
which is equivalent to Fearnhead’s recursion (6.11). 0

6.4 The forward in time generator of (X,R)V)

In this section we reverse time and discuss the evolution of the triple pro§eBsV) forward in
time. We first state the theorem that gives the generator. Then we diseussutistics and intuition
and we end this section with proving the theorem.

Theorem 6.4 The generator & gy of the proces$X;, 4, R )tcr forward in time is given by

G(X,R,V)g (X7 0, V) - GXg (Xa 07\/) + (1 —X— VX)g/ (X7 0, V)

n leav_awl [
Ay

+v0 22 (g, 0.v—1) =g (x.0.V)

g (X’ 17 V) -9 (Xv O’ V)]
(6.23)

Av+1

vV

+ | (v+ 1)9v1+%v(v+ 1) [9(x,0,v+1) —g(x,0,V)]
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6 The common ancestor process in its Wright-Fisher background

G(X,R,V)g (X7 17 V) = Gxg (Xv 17 V) - X(V+ 1)9/ (Xa 17 V)

dy
+0vg———[g(x,0,v) —g(X,1,v
O —ay, 9OV —9LV)
VoL g0 1,y 1) - g(x,1,)] (6.24)
Ay — Ay+1
1 _
+ (v D)Bv+ S (v D) (v42) | 222 g0 1 v 1) — g (x, L)
2 Ay — ay41
for allg € ¥2]0,1] x {0,1} x No.
Lemma 6.5 Gx ry) can be decomposed in the following way
/
GixRrv)9 = GX9+X(1—X)((I;XX9/+F97 (6.25)
with the generator matrix F, defined by
Ay — dy+1 Ay —
Fagx,r,v) = |Ovi———1_on + Ovg———— 1, _ X,r,v)—g(xr,v
g(x,r,v) [ 1=, L0} O g 1}] [g(x,F,v) —g(x,rV)]
ay—1 dy—1—ay
+ |vO—14_qy +VO———1;_ X,r,v—1)—g(xr,v
[ a, Lr=0) 2 a0 1}] [a( ) —g(x,rV)]
(6.26)

1
+ ((V-‘r 1)9V1 + *V(V-l- 1)) %1“:0}

2

1 _
+ <(V+ 1)6vi+ = (v+1)(v+ 2)>M1{r_1} [g(x, rv+1) —g(x, I’,V)]
2 Qv —av+1
_ |o, ifr=1
forall g € ¢2[0,1] x No x {0, 1} with = -~ '~
1, ifr=0.

Note that Lemma 6.5 is equivalent to Theorem 6.4 because we have

X(1—Xx) ZXX((\\//:%))/ =1-x—vx, X(1-X) (ZXX((\\I/’E)), = —X(v+1). (6.27)

Let us first explain the rates of the genera®y r\/ before proving Theorem 6.4.
Note that the rates dBx ry) that indicate a change ¢R,V) do not depend oiX. Therefore, we

have the following remark.

Remark 6.6 Forward in time, the processX,R,V) can be decomposed in the following way:

1. Inthe first step, generate the common ancestor praé®ss, ), cr With respect to the generator
F.

2. Then, in the second step, givegRV), generate the conditioned Wright-Fisher diffusion with
selection and mutatio(X; )<k in the (R V)-environment with respect to the conditioned gen-

erator G+ x(1— x)%%.
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6.4 The forward in time generator 6K, R,V)

Interpretation of the generator  Gx rv)

For understanding the genera@y ry) intuitively, it is essential to point out the following two facts
connecting the common ancestor process and the pruned LD-ASG (ttrebimeady discussed on
Page 91): The evedt(R,V) = (1,v)} yields{L =v+1} and{(R V) = (0,v) } results in{L > v}.

The forward in time generatdgx ry) of the procesgX,V,R) can be interpreted in terms of its
different transition rates. To this end, let us decompBgery) into its different summands:

Gix.rv)9(X,TV) = Gxg(x,r,v) + AY'g(x,r,v) + MRIG(X,T,v) —g(xr,V)]
@© @ ®
+ B{/ [g(X7 rv— 1) _g(X7 I',V)] + C\r/ [g(X, rv+ 1) _g(X7 r,v)]

~~

©®

1. The first part of the generator describes just the unconditioned dysarhibe Wright-Fisher
diffusion X with selection and mutation.

(6.28)

2. The second part gives auditional drift term for X, given(R)V) = (r,v),

!

A&V:x(l—x)(g)xx(i(. (6.29)
This term already appears in the forward in time generator of the pr@g¥e& (compare [Tay07,
Equation (15)]) and Taylor explains that it “reflects the fact that beedlhe common ancestor con-
tributes more offspring to the population than an individual chosen abranthe population has a
tendency to evolve towards the type of the common ancestor” [Tay07 4p. 82
The random environmeriR V) applies a drift on the frequencg of type-0 individuals. As shown in
[HP86, Theorem2.1] (compare also [FW86] for the case of a Browniaiomothis additional drift
coefficient is given by a product of the diffusion coefficient of theighit-Fisher diffusion times the
gradient of the logarithm of the stationary distributionBfV). This is equal to(1 — x)dlog(¢*) =

X(1— x)%.
3. The third part is the generator of theutation process along the real linegiven(R)V) = (r,v),
Ay —ay+1 Ay
Mg = 60vi———=1_on + Ovgp———— 11y . 6.30
R N 0 —ag = (6.30)

Let us consider the case= 0. The additional factofa, — a,.+1)/ay to the mutation rat@v, per line
is comparable to the structured coalescent faderx) /x of the backward in time genera@x7R7V).
The explanation of this factor is therefore analogous to the explanatiomoRiten Page 89:

We have two possibilities to calculate imyP((Ro, Vo) = (0,v), (R, ) = (1,V) | Xo = x) /t. On the
one hand, backward in time, we can start the pruned LD-ASG wtl lines, colour them all with

type 1, and let the real line mutate to type 0. This results in

1 X
On the other hand, forward in time, we can start with the pruned LD-AS@@famore tharv lines,
colour the firstv lines with type 1 and line+ 1 with type 0, and then let the real line mutate to type
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6 The common ancestor process in its Wright-Fisher background

1 at ratemy (0, 1) Then

lim ]P’((RoVo) (O,v), (R:M) = (Lv) | Xo =x) = a-x(1-x)"-mg(0,1)

which results irmg(0,1) = Bvi(ay — av4+1)/av. The explanation of the rate in the case 1 follows
the same line of argument.

4. The fourth part is the generator describing a decrease of the numbieiuaf lines due teselective
eventsgivenX = X,

ay-1 ay-1

Let us again consider the case: 0. (The case = 1 then works analogously). Backward in time, we
can start the pruned LD-ASG with at leadines, colour the firsv — 1 with the deleterious type and
line v with the beneficial one. Then, as a branching event happens abrgite- x),

lim IP’((RO Vo) = (0,v—1),(R,V;) = (0,V) | Xo =X) = a_1-X(1—x)""-vo(1—x).

r—0r
Forward in time, the pruned LD-ASG can be started with more thiames, v of them at type 1 and
linev+1 at type 0. Then

!m) P((RO VO) ( 7V)> (RUVI) = (07\/_ 1) | Xo = X) = aV'X(l_X>v' b\c}(V,V— 1))

and therefordd (v,v— 1) = vaa,_1/ay.

5. The fifth part describes an increase of the number of virtual particlesaheutral reproduction
or mutation, givenX = x,

C, = (v+1)9v1+% (v+1)] a, 1{r o+ {(v+1)9v1+;(v+1)(v+2)

(6.32)
We consider again = 0. Backward in time, when starting the pruned LD-ASG with at leas®?
lines (at leasv+ 1 of type 1 and one of type 0) and considering coalescence betweelrtwal ines
or the removal of one line due to a deleterious mutation,

lim P((Rovo) (0,v+1),(R,Vr) = (0,v),| Xo = X)

r—or
=ay1-x(1—x)VL. <;v(v+1) (v+1)6v1> 1 x

Forwards in time, when starting with the pruned LD-ASG with more thénes (at leasv of type 1
and one of type 0), we have

lim ]P’((ROVO) (0,v),(R,M) = (0,v+1) | Xo=X) =ay-X(1—x)"-c)(\,V+1).

t—0t
This yieldscd (v, v+ 1) = (3v(v+1) + (V+1)0v1) avs1/ay.

Proof of Theorem 6.4.To prove Theorem 6.4, we have to reverse in time the backward in time
generatoiGx ryv) With respect to its equilibrium distribution; we are searching for the time ralers

of the generatoGx rv) given by Theorem 6.1. Since Theorem 6.4 is equivalent to Lemma 6.5, we
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6.4 The forward in time generator 6K, R,V)

here prove the decomposition Gfx ry) given by (6.25),

/
G(X,R,V) = Gy +X(1 X)((’;)xxd+|: (633)

The first termGyx of the backward in time generat@x’R,V) describes the evolution of according

to the Wright-Fisher dynamics. As the Wright-Fisher diffusion is time reversilitle respect taw,

one part of the forward in time generat8fy rv) is required to be agaiGx. But since the evolution

of RandV inﬂuences the dynamics of, two additional summands arise. We will see that they are

given byx(1— x) (WhICh is the second part of the generator in the decomposition above) and
%. The ratesin the last part of the generator, the Q-mé&triare the time reversal of the backward

in time rates given by the Q-matrix. But because a Q-matrix has to benservativdi.e. has row
sum zero), the diagonal elementsFirare not just the diagonal elementsfin It turns out that the
compensating summands are jusipxﬁ which cancel out with the additional summands of the time
reversal of the conditioned genera@®y, givenR)V.

We now prove these statements properly.

Let H be a forward in time generator with stationary distributipn Then the backward in time
generatoH has to fulfil (compare [Nag64, (3.7)] or [Nel58])

/gl(ng)dw = /(ﬁgl)gzdw for all test functiong;, g, in the domain oH. (6.34)

In our casey is the stationary distribution of the proces§ R,V), we haveH = é(va_’V), and the

generator we want to calculate b= CA;(X’R’V) = Gx,rv)- Our test functions (whose linear span is
dense in?[0,1] x {0,1} x No) are

g:(xnv)=hi(x)-lgy, xe€[0,1],re{0,1}, veNy, i=12 (6.35)

Let 61’(‘R7V)((j,l), (k,m)) be the backward in time angy, ((k,m),(j,1)) the forward in time transi-
tion rate of(R V) from state(j,l) to state(k,m) and from staték, m) to state(j,l), givenX, thus
the element(j,1), (k,m)) of the Q-matrixF, (6.16), and the elemeiitk,m), (j,!)) of the Q-matrix
F (that we want to prove to be equal to (6.26)), respectively.

For the test functionsgi(x,r,v) = hi(x) - ln(nv),  G(xrnv) = ha(x) - Ligemy(rV),
hy(x), h2(x) € €2[0, 1], we can distinguish between the two caggs) # (k,m) and(j,1) = (k,m).

Let us start with the casg,|) # (k,m). By using the decomposition (6.15) 6§X Rv), We get

/91 (X,Rv) G2)dy = / Zhl gy V)<G(XRV)h2( X) - |{(km)}>(f V)W(X) @*(r,v)dx

_/ ha(X)ha(x F I{(km)}>(L')W(X)fﬂx(j,l)dx
+/O (Z) he (X) -1y (KV) - Legeomyy (V) (thZ(X)>W(X)(pX(I’,V)dx7

and since we are dealing with the cd$d ) # (k, m), the second term on the right-hand side is equal
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6 The common ancestor process in its Wright-Fisher background

to zero. Rewritinglf in terms of its rateﬁ’(‘RV) yields

[ oG o) = ) (T (1), () S Yo gm0

On the other hand, by using the decomposition ansa@&pfk, into a generator matrik of (R,V)
and some generator that works ¥n and keeping in mind that all summands containing operators
that leaveR andV invariant vanish due t6j,1) # (k, m), we have

1
/(G(XR,V)gl)gZdw ZA > <G(X7R,V)h1(x)'I{(jJ)})(raV)hZ(X)'I{(k,m)}(r7V)W<X>(px(raV)dX
(rv)

_ /01 s (9h2() - (@) (kM) (1,1)) )W) @(k, m)dx-+0.

Thus, we require

q)((R7V) ((k’ m)v (Jal)) = q\)((RN) ((Jvl)a (k7 m))

(j.1) # (k,m). (6.36)

The part of the forward in time generatG{x ry) only concerning changes iV,R), givenX, can
therefore be calculated easily by just plugging the backward in tlmeaﬁ{g (see Lemma 6.1) and
the weightsp* (see (6.10)) into (6.36). We arrive exactly at the generator (6 26).

Let us now continue with the cagg,l) = (k,m): To get the drift and diffusion part concerning
X, given (R)V), of the forward in time generator, we now choas&x,r,v) = hy(x) - Iy (1, V),
92(%,1,V) = ha(X) - 15y, (r,v) for j € {0,1}, | € No andhy(x), hz(x) € %710,1]. With the decompo-
sition (6.15) ofG(x ry) We have

/gl(é(X,RV) gz)dw:/gl(Gxgz)der/gl('Egz)dlIJ- (6.37)

For the first term on the right-hand side of (6.37),46t) := [(1—x)6vy +X08Vv1 + 0X(1—X)]. Then,
using the generatdsy (6.1), we have

2
/gl Gx02)dy = / w(X) @*(r,v)hy( )(; X(1— x):zh (x)+b(x):Xh2(x)>dx,

and integration by parts gives

JGxaadn = [ [ £ (Gxa-xmoom ) - o (Boomihs (99 et

An application of the product rule and rearrangement of the summands yield

JEACTALTE / [ (G (0) + 22 (1)) 31 —xwx) & (m(x)
+ 2E ((px(r v)) b(x)w(x)hy (x) + }x(l— x)w(x)hl(x)d—2 (qox(r v))
dx ’ 2 dx? ’

— b(X)W(X) hl(x)%( ((px(r, v))} ha(X)dx
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6.4 The forward in time generator 6K, R,V)

- [ (evmoomam ) + <p*<r,v>w<x>-x<1—x>wj'x(m(x))
+ (9w G;X"Exrf:/’)") hl(x))} o (x)dx
_ /01 [thl(x)+x(1—x)wci((hl(x)>
+ (S h0) [ a0 g vwia
Thus, we have
JEACTALTE /<[Gx+x(1 X)wadﬁeéﬂ 1> oy, (6.38)

The second term on the right-hand side of (6.37) is equal to

~ 1 A~
[aFeay= | 3 o 3 (6) (FR209 - Ty ) (R v WO @, v)dx

1 A~
:/0 (F'{u,w}(J}')'hl(X)>hz(X)‘W(X)(px(r,v)dx (6.39)
Further, using (6.16) and (6.20), we have

(Ifl {0,v}> Ov) + G;X(;ZXO(’%)V) ~1-x

1
1—-x

1 1 1
+(v+1)o(1-x)+ [zv(v— 1) +v9v1] 1T x + Gvo;

Ovo— (V+1)o(1—x)— [v9v1+;v(v—1)}

- %(er 1v—0(v+1)—

Summing up terms and using Fearnhead’s recursion (6.11) then gives

(Ifl {0’\,}> (0,v) + SAC —}(v+ 1)v—vO — Bvy —vo

g@Oyv) 2
_ } Av+1 Qy—1 Ay — Ay41
= {[Zv(v+1)+(v+1)6v1] a +vo a +0vy a }

v

= (Flow) (O.). (6.40)

Analogue, we also have

(Friaw ) v+ G;X"le(,l\;)v) — (Fly) (LV). (6.41)

Therefore, (6.37), (6.38), (6.39), and (6.4(®.41) together yield

/91 (x,Rv)92)dY = /<[Gx+X1 quxd+F]gl) gedy,

which completes the proof. d
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6 The common ancestor process in its Wright-Fisher background

6.5 The quadruple process (L, X,RV)

So far, we have analysed the Markovian proge§$k,V) and interpreted its dynamics with the help
of the stationary distribution of the line counting process the pruned LD-ASG. Now, we want to
take a closer look at the evolution of all four components jointly together.

Recall from (3.9) in Chapter 3 the genera@r of the line counting process (or the top levielpf the
pruned LD-ASG,

GLg(f) =[£(t—=1)+ (£ —=1)6v4] - [g(¢ — 1) —g(0)]
-1 (6.42)
+eo-[g(l+1)—g(0)] + 5 6vo-[g(¢—k)—g()].
K=1
Recall from Section 3.5 the stationary tail probabilities of the line countinggz®oof the pruned
LD-ASG, (a/)een, &1 = P(L > ¢), and the stationary probability weightg,), pr = P(L =/¢) =

-1 — .

Before discussing the (not any more Markovian) dynamics of the qpéprocesgL, X, R, V) we
identify its stationary distributiom in the following section.

6.5.1 The stationary distribution of (L, X,R V)

Throughout this section we assume all four procets¥sR,V to be together in equilibrium at time
0. To simulate a sample from the stationary distributior{laiX,R V), first generate a realisation
Xp of the frequency of type-0 individuals in the population at time O accordingytight's density
(6.2) and an independent realisationLadccording to the probability weighfs Then, in the second
step, givenXg = x andLg = ¢, the number of virtual line¥y and the type of the immortal linBy
can be simulated according to Remark 3 in [Fea02] (Fearnhead’s simebgttained on Page 27 and
already used on Page 91 in this chapter) as follows:

Toss/ times a coin with success probability If there is no success at all among theosses, set
Ro=1,Vp=/¢—1. Otherwise Ry = 0 andV; is the number of unsuccessful tries prior to the first
success.

We havev virtual lines and the immortal line has type 0 if and only if the top level of the ptune
LD-ASG is at leastv+ 1, the firstv lines in the pruned LD-ASG are assigned type 1, and the line on
levelv+ 1 is of type 0. This yields

P((Ro,Vo) = (0,) | Lo = £, X0 = X) = | fyeyX(1—X)" . (6.43)

The type of the immortal line is 1 and the number of virtual lines equalif@nd only if there are
exactlyv+ 1 lines in the pruned LD-ASG and all lines are assigned type 1,

P((Ro,Vo) = (L,V) | Lo =£,X0 =X) = I {410} (1= %) (6.44)
This yields the following lemma.
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6.5 The quadruple procefs,X,R,V)

Lemma 6.7 The densityo of the stationary distribution of the quadruple procéksX,V,R) is given
by
@ (€, 1,V) = W(X) [Lr—oner1Pr- X(L=X)"+ 1 rogvra—gype- (1=3)VF1] (6.45)

Proof. Lemma 6.7 is implied by
@ (0,%,V,r) =P((Ro,Vo) = (1,V) | Lo =, X0 =X) - P(Lo = ¢) - P(Xo = X).

6.5.2 The dynamics of the process (L, X,V,R)

In Sections 6.2 and 6.4 we have analysed the backward and forward indimaeagors of the Marko-
vian triple proces$X,R V).

But incorporating the line counting procels®f the pruned LD-ASG into this triple leads us away
from the class of Markov processes. Namely, the pro@ess, V. R) is not Markovianany more.

Indeed, the following (backward in time) counterexample shows that thelrgple process
(L, X, Vi, R )rer is not Markovian. Let us choose the initial stéte, Xo, Ro, Vo) = (V+ 1,Xo,0,V).
Let 11 :=min{r > 0: (L;,R,Wt) # (Lo,Ro,Vo)} and (L, X¢;, Rey, Vo) = (V4 2,X,,0,v). Thus, at
time 11 there is a branching event to an additional line that is included in the prubefSG but
not included as a virtual line in the common ancestor process. Thus, smdimdhthat branches
is a virtual line of the common ancestor process but the newly born line is claded, this newly
born line is required to be of type 0. This yields additional informatitwat is not coded in the state
(v+2,X,,0,v) ) which changes the transition rates. For example, each line of unknowmgypée
hit by a ‘cross’ backward in time with positive probability. But when a line iswn to be of type 0,
such a backward mutation has probability O.

Let o :=min{r > 11: (L;,R,V}) # (L, Rr,, Ve, ) }. Then, the probability for the transition at tirmg
from state(L,, Xr,, Re,,Vr,) = (V+2,X;,,0,V) to be to statéL,, X, Ry,,Vr,) = (V+1,Xy,,0,v) due
to a ‘cross’ is strictly positive. But giveflo, Xo, Ro, Vo) = (V+ 1, X, 0,V), this probability is equal to
0.

The counterexample indicates that a reason for the prate¥sR V) being not Markovian is the
lack of knowledge of the types of those lines in the LD-ASG that are betVesetsV; + 1 andL,. At
each time € R, the statdL,, X, R;,V;) of the process does not contain the information on the types
of Ly —V; — 1 many lines.

In fact, in order to again gain a Markov process, one has to include thiemafion on the types of all
lines in the pruned LD-ASG. Although we will not discuss it here, let us tiwd¢ this would result

in a rather complicated object similar to teructured coalescendf Barton, Etheridge, and Sturm
[BESO4] (reviewed briefly in Section 2.2.4).
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7 The type of the common ancestor and the
proportion of beneficial individuals in a
population of finite size

In the previous chapter we have analysed the triple progedR V) in the diffusion limit. In this
chapter, we want to concentrate on Taylor's prode&®R) [Tay07] and come back to the case of a
population of finite sizé\ € N; the model was introduced in Section 2.1.2. We denote the number of
type-0 individuals at timeé by KN and the proportion of type-0 individuals B¢ = KN/N. Let RN

be the type of the immortal line in the finite population size model at time

The type of the common ances®) together with the proportioN of type-0 individuals(XN,RV) =
(XN, RN )icr, gives new insight into the underlying particle picture. In addition, by takitegdif-
fusion limit N — o, we get back the proces$X, R) and therefore also alternative proofs for (2.37),
(2.43) and (2.44).

Our approach recapitulates some results of Kluth, Hustedt, and Baak&l[B]Hand by taking the
diffusion limit, we also regain some of Taylor’s results [Tay07].

In the following section we revisit the model. Then we analyse the backwatdaaward in time
dynamics of the procegKN,RVY), the discrete analogue of Taylor's procé¥sR). In the last part
of this chapter, we give some future perspectives concerning a igdrge procesgkN, RV, vN),
whereVN is the number of Fearnhead’s virtual lines [Fea02] in the finite populatiomsizke!.
Since many proofs consist of straightforward but lengthy calculatiory, #éine shifted to the ap-
pendix.

7.1 Introduction

Let us consider a population of fixed sil¥e= N. Each individual is marked either with the beneficial
type O or the deleterious type 1. We defii® as the number of individuals of type 0 at (forward)
time'®t > 0 andXN := KN/N their fraction in the population. Each individual of type 1 reproduces
independently at rate/2 and its offspring replaces a randomly chosen individual of the popaolatio
In addition to these neutral reproduction events, individuals of type @lsanreproduce in terms of
selective events. The reproduction rate of each individual of type @ds+Eky. In addition, each
individual mutates independently at ratgvy to type 0 and at rateyv: to type 1,un, Vo, v1 > 0,
Vo+ V1 = 1.

The proces$K) is a birth and death process with birth raféand death ratgl, k€ {0,1,2,...,N},

19As in the previous chapter, we dendeeward timeby ‘t” and thebackward timeoy ‘r".
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7 The type of common ancestor in a population of finite size

already given in (2.3),

Aszzik(N—ka(N—k)ﬂ + (N=K)-unvo,
A N (7.1)
N_i _— .
i = 5 K(N—K) + k-unvi.

easy calculation (just check that (7.3) holds) showswhais given by

k )\N
k—1
i=1 H
i= k
with the normalising constam:(;\‘,. Due to time reversibility, the backward and forward in time rates
of KN agree,

W (k) = cy

WNRAY =wN(k+Dpd,, k=0,1,...,N—-1 (7.3)

As we are also interested of the limit processes, we assume
N.-sy—ao, N.-uy— 6, and X(',\‘ — Xo for somexg € [0,1] asN — oo, (7.4)

Then it is well-known (see e.qg. [Dur08, Chapter 7.2]) that the diffusion limit
(X)t>0 = lIMn_se(XN)t>0 Of the proportion process of type-0 individuals exists and is a Wright-
Fisher diffusion (with generatddyx) with drift coefficient(1 — x)Bvg + x8v1 + ox(1— x) and diffu-
sion coefficien(1—x). The proof is also given in Section 7.4.1 of the appendix (Theorem 7.6).

In the following section we set up a discrete analogue for Taylor's g(e€ R) [Tay07] by consid-
ering a tuple(XN,RN);>0, whereRY is the type of the common ancestor in our discrete setting. In
fact, we consider the tuplg<N, RN)¢~0. But there is no big difference becausk andXN only differ

by a factorN.

While the discrete approach by Kluth, Hustedt, and Baake [KHB13] cheriaes the distribution of
RN by taking all individuals of type O at timeand calculating their fixation probability, we are more
interested in the evolving picture that deals with the dynami¢&8f RV) here. Thus, we are able to
regain results of Kluth, Hustedt, and Baake with a different approach.

7.2 The process (KN, RN)

In this section we present the generators (forward and backward in t¢fribe discrete process
(KN,RN), and compare them with results by Kluth, Hustedt, and Baake [KHB13] (edrhem are
briefly reviewed in Section 2.2.1), and with Taylor's boundary value lgrolf Tay07, Equation (9)]
by passing to the limit.
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7.2 The proces&N, RN)

7.2.1 The backward in time generator of (KN, RN)
Forward in time rates of KN

To add the evolution of the tyg@Y of the immortal line to the evolution of the numbél of type-0
individuals, we have to decompose the transition ratésinduN with respect to their two ‘ingredi-
ents’reproductionandmutation This gives an enlargement of the state space in the footsteps of the
Markov mapping theorem (compare [Kel82]).

Let us denote the forward in time rate KN from statek to state?, k.¢=0,1,...,N, k# ¢, by
akn (K, £). Then we have

* 0k (k,k+1; due to mutation = unvo(N —K),

* qkn (K k+1; due to reproduction= k™K (11 gy),

* gyn(k,k—1; due to mutatioh = unvik,

* gkn (k. k—1; due to reproduction= (N —K)X;.

Backward in time rates of KN

Let Gk (K, £) be the backward in time rat&of the proces&N from statek to statef, k,/=0,1,...,N,
k4.

Again enlarge the state space and also decompose the backward in timetcatiesiiriwo sources:
reproduction and mutation. To do so, and as it will become more conventent\ee rewrite the
rates using (7.3) and we get

* Okn(k,k+1; due to mutation = unyvi(k+1) AT

* Gcn(k, k+1; due to reproduction = [p ; — unva(k+1)] WNW,(J?BD,

* Gn(k k—1; due to mutation = unVo(N —k+1) WNW’(\‘k(;)l) |

* Gin (k. k—1; due to reproduction = [AX; — unvo(N — K+ 1)] S

Backward in time rates of (KN, RV)

This decomposition of the rates of the prockSsenables us to get the backward in time generator
of the procesgKN,RY), whereKN € {0,1,...,N} is again the number of particles of type 0 and
RN € {0,1} the type of the immortal line. Ledkn gy @andgn gy be its forward and backward in
time transition rates, respectively.

Backward in time, each individual cannot just die. It has an ancestelttiat continues through
times. But it may mutate or coalesce with individuals of the same type. As eae€stealdine

20Remember that the indeX ' indicates the directioackward in time
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7 The type of common ancestor in a population of finite size

eventually coalesces into the line of the common ancestor, backward in timeyrihmigs of the
immortal line coincides with the dynamics of a randomly chosen line.

The change of the type on the immortal line from O to 1 is coupled with the decoé&s' by 1 due
to a mutation. Conditioned on the transitionkd¥ from k to k — 1 due to a mutation, the probability
that the real line was affected by this mutation (from 0 to 1) is fyea uniformly chosen individual
of type 0). Thus, for this transition, we get the rate
Qe my) ((k,0), (k—1,1))

= P(real line mutatesone of the k lines mutatgsgyn (k,k — 1; due to mutatiop
= %UNVo(N —k+ 1)%.
Then, the probability that the immortal line does not change its type from 0 ta fransition oiKN
from k to k — 1due to a mutation is just— 1/k. Therefore we get the rate

A ) ((k,0), (k—1,0))
= P(real line does not mutatene of the k lines mutatgstyn (k,k— 1; due to mutatioh
+ Ok~ (k,k—1; due to reproduction
— k;klquo(N —k+ 1)% + A1 —unvo(N—k+1)]
wN(k—1)

wWh(k)
The probability that the immortal line mutates from 0 to 1 given there is a transitan krto
k+1, is just zero. Thus, we haggn gy ((K,0), (k+1,1)) = 0and

A ry) (K, 0), (k+1,0))

= Ok~ (k,k+ 1; due to mutatiop+ gy~ (k,k+ 1; due to reproduction
wN(k+1)
= “k“W'

Similar arguments lead to the transition rates out of gtate) and we get the following lemma.

wN(k—1)
wN(K)

= AN, - %UNV()(N —k+1)
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Lemma 7.1 The (backward in time) generaté(KN,RN) of the processKN, RV) is given by

é(KN,RN)g(ka O) = I*lli\l—l—lW,\\:v([\lf(—ik_)l) [g(k+ 1, 0) - g(kv 0)]

wN(k—1)

WN(k) [g(k_ 17 1) - g(kv O)]

1
+ EUNVO(N —k+ 1)

+ [ = k)] D fg-1.0) - g0,

(7.5)
é(KN,RN)g(kv l) = N ]_- kuN Vl(k7L l)WI\\,IV([\l]((t)l) [g(kJr 1, O) - g(k’ 1)]
- g patiorn | Y gk 1) - g(k 1)
W (k—1)

+)\|L\j—l \NN(k) [g(k_171)_g<k7 l)]?
with the test function gNp x {0,1} — R, and ke {0,1,...,N}.

The stationary distribution of the process (KN, RV)

For un,Vo,V1,sv > 0, the procesgKN,RN) is irreducible and recurrent and therefore has a
stationary distributiom™™. Let us assume that the process is at stationarity at time 0. fith@qr) =
P(KY =k RY =r).

In this section we derive a characterisatiorv®f from Lemma 7.1. This way, we regain results by
Kluth, Hustedt, and Baake [KHB13] (but with a different approach).

Motivated by the structure of the stationary distributionf (X, R) ((2.38) in Section 2.2.4), we also
use a product ansatz for the stationary distribution in the discrete setting,
(k1) =W (K) [Li—ophk + Lgr—g (1= HR)] - (7.6)

From this equation itis clear thb&' can be interpreted as the conditioned probability that the immor-
tal line is of type 0O at time 0, given the number of type 0 individuals at timek0 is
Therefore, the natural boundary conditions are

hy =0, hY=1, (7.7)
and (analogue to the continuous case) the probabilifiesre quantified by a recursion.

Lemma 7.2 The stationary distributionr¥ of the process(KN,RY) is given by (7.6), where
(hE)k:o,le is determined by the recursion

e (A + k)

(7.8)
= hRa A+ + (1= hily) unwa

L hN qui_k
N_k+1 KN

with boundary conditionsth= 0, h{} = 1.
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Note that the statement of this lemma was already formulated and proven (viaremtifapproach)
by Kluth, Hustedt and Baake: (7.2) is exactly [KHB13, (21)].
Proof of Lemma 7.2Sincert is the equilibrium distribution for the generator maté{(KNRN) with
the rategiyn avy ((k,7), (k,1)), (k,F), (k) € {0,1,...,N} x {0,1}, the following equation (together
with the boundary conditions) determing® and hence alsbV,
S ™ (k,1)Gen gy (K, F), (k1)) =0 Yke{0,1,...,N}, r€{0,1}. (7.9)
(k)
Plugging in the rates and dividing byfz‘ we have

N —k
0= (AN = vty )

K-+
K HN (7.10)
By (7.3), (7.10) is equivalent to (7.8) and the proof is complete. O

7.2.2 The forward in time generator of (KN, RN)
Forward in time rates of (KN, RV)

By using the appropriate analogue of (7.3) fot instead ofs™, we can now calculate the forward in
time rates

q(KN,RN) (('7')7 (7)) of the proceS$Kl’NaRrN)r€Rv
Co - ™ (k, 7
q(KN,RN)((kar)v(kvr)) = q(KNRN)((k’r)’(k’r))nNgkr;’ (711)
k#£k, kke{0,1,...N}, r,fe{0,1}. We get the following lemma.

Lemma 7.3 The (forward in time) generator @ gv) of the processkN, RY) is given by

1 hi!
Guen ) d(K,0) = | AN — ———unvo(N —K) | =2 [g(k+1,0) —g(k,0)]

k+1 hk
1 1-hYy
+ N—k+1UNV1k h||:] [g(k—l,l)—g(k,O)}
h s
+ e o 19(k—=1,0)—g(k,0)],
k

(7.12)

1 hi
G(KNRN)g(k? 1) = mUN VO(N - k) 1_k+;||:j [g(k+ 1, O) - g(kv 1)] ’

Nl—hﬁ'ﬂ
+AC N [9(k+1,1)—g(k )]
k

1-hY
1—hf

+ IJII(\I_ [g(k—l,l)—g(k,l)],

1
N—k+1
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7.3 Perspective: The proceds", RN, VN)
with the test function g, and& {0,1,...,N}.

7.2.3 Diffusion limit

In this section, we let the population sike— c and calculate the diffusion limit of the backward
and forward in time generators ¢KN,RV) to compare them with Taylor’s results. The discrete
proces§KN /N, R) then converges to the continuous proc@sésR) under the Assumptions (7.4) and
with h = limy_,. hV (for the proper convergence of the probability in the discrete setting to the
probabilityh in the continuous setting see [KHB13]).

We gain the dynamics of the diffusion limit of the procesd! /N, RY) by letting N — o for the
(backward and forward in time) generat@gn vy, given by (7.5), and5n gyy, given by (7.12).
We get the following results.

Theorem 7.4 Under Assumptiong7.4), the backward in time generat(ﬁ’;\(xm of the process
(Xr, R )r>0 := liMnSe (KR, /N, RY, )r>0 is determined by

~ 1-x
G(X,R)g(x7 O) = Gxg(xv 0) + TQVO [g (X7 1) - g(X7 0)] )

~ X
G(X,R)g (X7 1) = GXg (X7 1) + mevl [g (X7 O) -9 (X7 1)] )

(7.13)

for all g € €2[0,1] x {0,1}.

Theorem 7.5 Under  Assumptions (7.4), the generator G of the process
(X, R)t=0 = limn_e (KR /N, RY, )t>0 forward in time is determined by

Gxra(x0) = Gxg(x0)+X1-X) P TG (x0) + T owi[gix 1)~ g(x ],
Gxmax D) = Gxax D)~ X(1-X) 7o (1) + L owlg(x0) - g(x D]

(7.14)
for all g € 2[0,1] x {0,1}.
Note that Theorem 7.4 is exactly a result by Taylor [Tay07, eq. (4)¢ofém 7.5 can again be found
in Taylor's work: It is equivalent to [Tay07, eq. (15)].

The proofs of Theorems 7.4 and 7.5 are given in Sections 7.4.2 and 7.4e8appkndix.

7.3 Perspective: The process (KN, RN, vN)

In the previous part of this chapter we investigated the prod€¥sRY) of the numbeKN of indi-
viduals of type 0 in a population with total si2¢ together with the typ&N of the immortal line.

By passing to the limilN — c we recapitulated the forward and backward in time generator of the
continuous processK, R). Our results in the discrete model are similar to those in [KHB13] and the
limiting continuous generators are identical to those derived by TayloO[lay
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7 The type of common ancestor in a population of finite size

In this last part of this chapter we want to give an outlook onto some ideast@fding the double
process(KN,RY) by adding Fearnhead’'s number of virtual ling8 [Fea02] (but in the discrete
setting). We do not give rigorous proofs but heuristic ideas.

To derive the (backward in time) transition rates of the pro¢&$s RN, VN), we have to take into
account that virtual lines are always of type 1. The transition dynamitiseofirtual lines together
with the immortal line are (due to Fearnhead [Fea02]) determined by mutatiotieeaeal line,
disappearance of virtual lines due to coalescence or mutation, and-appeaf virtual lines due to
selective reproduction. Therefore, we need to decompose the rat®sott only into ‘mutation’ and
‘selection’ (as done in Section 7.2.1), but into theeeclasses ‘mutation’, ‘neutral reproduction’, and
‘selective reproduction’.

Forward in time the decomposed rates are
* gkn (kK k+1; due to mutation = unVo(N —K),

akn (k. k+1; due to neutral reproductipn= k(';',\_,k) ,

gk~ (k, k+ 1; due to selective reproductipr= SNKW,

gk~ (K, k—1; due to mutation = unVvik,

* gkn(k,k—1; due to neutral reproductipn= % :
and backward in time we have

* Gyn(k, k—1; due to mutation = UNVO(N_k_i_l)WNW’(\lk(;)l)i

* kv (k,k—1; due to neutral reproductipn= (k*”(z'\,ifk“) WNW,(JE)”,
* Gkn(k k—1; due to selective reproductipr= sy (kfl)(mfkﬂ) ""NW,(J‘(*)”,

* Okn(k k+1; due to mutation = UNVl(k—i-l)MW,(qk&)l),

* Gk (K k+ 1; due to neutral reproductipn= D@D WNW,(J‘&)”

Note that the number of Fearnhead’s virtual lines may increase or deciedhe discrete model
while KN does not change at all. This can be understood in terms of the Moran model:

The process of mutations to type 1 is usually modelled by a Poisson poinsproterosses at rate
un V1 per line. At each cross, the affected line changes its type to type 1 if it ingp®O0. If it was
already of type 1, nothing happens and we have a silent mutation. Buivhetkn time a virtual
line (of type 1) is removed if there is a cross (even if this cross indicatesrd siletation). Thus,
backward in time, silent mutations from 1 to 1 cause a transition fréov — 1 virtual lines but no
transition of the numbekN of particles of type 0.

Similarly, there can be a coalescence or branching of virtual particleswaageKkN invariant. This
is represented in the Moran model e.g. by neutral arrows between twidingis of type 1.
Therefore, to find the corresponding rates of the pro¢k8sRY,VN) we have to take into account
the following (forward in time) transitions as well.
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7.3 Perspective: The proceds", RN, VN)

* gkn(k k; mutation from1to]l = uyvi(N—Kk),

* gk~ (k,k; neutral reproduction between 1 and % W

« qun (k. k; selective reproduction between 1 anjd= sy(N — k) M52

Since the proportion of type 0 individuals does not change, there ischar faceded to time reverse
the rates\yN (k) /wN (k) = 1). The corresponding rates backward in time therefore are

* Gkn(k k; mutationfrom1to]l = unvi(N—K)

* gk~ (K, k; reproduction between 1 and W

« Gun (k. k; selective reproduction between 1 and% sy(N — k) M52

7.3.1 Ideas on the backward and forward in time rates of (KN, RN, VN)

We denote backward and forward in time rates(&f,RY,VN) by Gyn goyn)((:,+),(+-)) and
dcnn gy (), (), respectively.

The ideas leading to the backward in time radgs: gy yn) are similar to those in Section 7.2.1: Si-
multaneously with the change of the numBeéY of individuals of type 0, the typBN of the immortal

line or the numbe¥N of virtual lines may change with a certain probability. In addition, the number
of virtual lines may change whilgN stays constant.

The rate of the transition of the irpmortal line from type O to type 1 together with @dse oKN by
one is already part of the genera@gn gv) and therefore given b gy (K, 0,V), (k—1,1,v)) =
(1/K)unVo(N — k+ D)wN(k— 1) /wN (k).
A transition of the number of virtual lines fromto v+ 1 may happen together with a decrease
of KN from k to k— 1 due to a selective reproduction event at which the immortal line (of type 0)
branches into an additional line of type 1 (and this additional line replacgiemline of type 0 in
the population). The rate for this event is
q\(KN,RN,VN)((ka 0>V)a (k_ 1,0,v+ 1))
= P(immortal line branchepselective reproduction with transitidn— k — 1)
-Gkn (k, k— 1; due to selective reproductipn
_ }SN (k—1)(N—k+1)wN(k—1)

k N wN (k)
But a transition of the number of virtual lines may also happen viiilestays constant. This happens
at a selective reproduction event between two lines of type 1 at which théhiirtey the tip of the
selective arrow’ is a virtual line and the line ‘at the tail’ is not virtual,
Ak gy vy (K, 0,v), (k,0,v+1))
= IP(virtual line is at the tip of the selective arrow and line at tail is not virtual
selective reproduction with transitidn— k)
- Ok (K, k; selective reproduction between 1 and 1
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7 The type of common ancestor in a population of finite size

~ V(N—k—v) (N=K(N—k—-1) Vv(N—k—-v)

“IN—K(N—k—D™N N TN
A transition of the number of virtual lines fromto v— 1 may happen together with an increase of
KN from k to k+ 1 due to neutral reproduction between two virtual lines or mutation of a viite|

q\(KN’RNNN)((k, o,v),(k+1,0,v—1))
= P(reproduction between two virtual linéseutral reproduction with transitido— k+ 1)
-Okn (K, k4 1;due to neutral reproductipn
+ P(virtual line mutates mutation with transitiork — k+ 1)

-0k~ (k, k4 1; due to mutatiohn

Vv=1)  (K+D(N—k—1)wNk+1) v W (k+ 1)
~ IN—K(N—k—1) 2N Wi TN RN D RGS
viv—1)(k+1) wv(k+1) wN(k+1)

IN(N—K) ' N—k "NV "Wk

A transition of the number of virtual lines fromto v— 1 can also happen whikN stays constant
due to a neutral reproduction between two virtual individuals of type 1,

q\(KN’RN,VN)((k, 0, V), (k, O,v— 1))
= IP(participating lines are both virtugheutral reproduction between individuals of type 1
-Gk~ (K, k; neutral reproduction between 1 and 1
B v(v—1) (N-K)(N—-k—-1) wv(v-1)
(N=K(N—k—-1) 2N 2N
Then the remaining rate for the transitionk¥ from k to k — 1 while RN andVN stay constant is
given by
q\(KN7RN’VN)((k, 0, V), (k— 1,0, V))
= q\KN (k, k— 1) — /q\(KN’RN’VN)((k, O,V), (k— 1, 1,V)) — q\(KN’RN’VN)((k, O,V), (k— 1, O,V—I— l))
(k—1)(N—k+ 1)] wN(k—1)
N wN(k)
The remaining rate for the transition KN from k to k+ 1 while RN andVN stay constant is
Ak gy vy (K 0,v), (k+1,0,v))
=0Okn (K k+1) — q\(KN7RN’\/N)((k, o,v),(k+1,0,v—1))
viv—1)(k+1) wv(k+1) } wN(k+1)
UnV1

:[“"“_ 2N(N-K)  N—k WN(K)

= |:/\k—1 — (1/K)unvo(N —k+1) — sy

Similar arguments give the transition rateg k', RN, VN) with initial state(k, 1,v).

Let N be the stationary distribution ¢KN,RN,VN). Then, comparing with the shape of the station-
ary distribution¢ of the continuous procesX,R,V), (6.12), and with the stationary distribution of
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7.4 Appendix

(KN,RN), (7.6), we suppose that" should be given by
¢N(k,l',V) :WN(k)'(nl(\l(rav)a (715)

where the coefficientgi\‘(r, v) should be somehow comparable to the summands in [KHB13, (40)].

Then one may determine the forward in time generator of the prog€¥sRN,VN): The rates
v wn gy Of the forward in time proces&KN, RV, VN) can be calculated via the appropriate ana-
logue of (7.11),

C I N (i, F, 7
duen ey (K, 1 v), (K, B, 9)) = G gy (T, 9), (K, r,v))m, (7.16)
0

|

)

k+#k kke{0,1,...N},r,f e {0,1},v,¥ e {0,1,...N—k}.

Now, assuming that the backward and forward in time generators of threigwocesgKN, RN, vN)
are given, one may proceed by taking the diffusion lifit> c. This way, one should arrive at the
backward and forward in time generatt@@(_R’V) andGx ry) of the procesgX,R,V).

Therefore, the discrete approach should yield an additional prod&imma 6.1 and Theorem 6.4.

7.4 Appendix

7.4.1 Convergence of the discrete type frequency process KN to a Wright-Fisher
diffusion

Theorem 7.6 The generator & of the processX;)i>o (backward and forward) in time, defined as
the limiting object of the generator of the proce3®),):>o with rates(7.1)is determined by

Gxg(¥) = 2x(1-x)g" () + [BVo(L~x) ~ Buix +X(1~x)0]g (¥). (7.17)
for all g € 2[0,1].

Proof. Due to reversibility it is true that the forward and backward in time generatoks¥ (and
therefore alsXN) agree (it isggn (K, k+ 1) = gen (K, k+ 1), Gen (K, k— 1) = gen (K, k—1)). Thus, we
have to take into account only one direction in time, e.g. the calculation of trerajen forward in
time. Letg € €2[0,1]. Then

. 12 k
G900 = Jm NS a0 |0 () =9 ()|
<¢ plugging in the rateggn (k,k+ 1) = A} andggn (k,k—1) = g

of the birth and death proceKé\')
= lim N AR x+10—(x 0)
T Nesoo NXy gl XN N’ g (XN,

+ U, [g <XN;,0) Q(XN,O)} }
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7 The type of common ancestor in a population of finite size

<¢ plugging in the definitions®.1) of AN andu’\'>

= lim N{ [NxNN(llng) (;JrsN) +qu0N(1—xN)] [g <XN+;,O> —g(xN,O)]

N—00
+ [;N(l—XN)NIi:N—FUNVlNXN] [g (XN—,%VO) —g(XNvO)] }

<¢ ordering term}
—im 4 (- %) N2 x+10—2x0+ -0
=4m EXN( N) - g XN N’ g(XN,0) +9( XN — N’
1
+ [Xn(1—xn)Nsy+ Nuyvo(l—xn)] N[ <XN—|—N, )—g(xN,O)}

g
+ Nuyvixn - N [g <XN > g(xn,0 } }

(¢ passing to the Iimb

= %x(l —X)g" (X) + [X(1 = X)0 + BvVo(1—Xx)] ¢ (X) — Bvaxd (X)

which is (7.17). O

7.4.2 Proof of Theorem 7.4

Theorem 7.4 Under Assumptiong7.4), the backward in time generatc@‘-(x,R) of the process
(X, R )r>0 = limyn_e (KN, /N, RN, )r>0 is determined by

~ 1-x
G(X,R)g(x7 0) = GXg(X7 O) + TQVO [g (Xa 1) - g(X7 O)] ’ (718)

~

X
G(X,R)g(X7 1) = GXg(X7 1) + mevl [g (X7 0) - g(X7 1)] ’ (719)
for all g € €2[0,1] x {0,1}.

Proof. The procesgKY,/N,RN,) takes values i{0,1/N,2/N,...,1} x {0,1}, which is a subset of
[0,1] x {0,1}. Since[0,1] x {0,1} is compact, the convergence of the backward in time generator
of the procesgKY,/N,RY,) to some limit objecﬁ(X’R) (together with the convergence of the initial
values that holds due to Assumptions (7.4)) implies the convergence ofckeda in time process
(KN /N, RN, )r>0 to some backward in time proce@%, R )r>o (cf. [Kerl3, Satz 2.8]).

To calculate the generatﬁA}(X’R) of the continuous procesX, R) backward in time we use the rates
of Section 7.2.1 and pass to the limit.

é(x,R) g(x,0)
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<¢ plugging in the rategx (-, -) (7.5))

— lim N{uh‘mHW’W [g (XN—F;,O) _g(XN,O):|

N—c0

1 WN(Nxy — 1) 1
+ WUNVO(N_NXN+1)W [g <XN - N’l> —g(XN,O)}
WN(Nxy — 1)

1

e 30) 0]
(1 applying 7-3))

. N M 1
= Ilim N HNXN-"-luNi |:g (XN+N70> g(XNaO):|

N—eo Nxy+1

1 Ty 1
—— N—Nxy+ 1) —-=,1) -
- NXNUNVO( XN + ))\’{I\IXW1 [9<XN N’ ) g(XN70)]

N
IJNXN

1

(o 30) ool

(¢ transforming expressiobs
, N 1
:|\|1|an N/\NXN g XN+N70 _g(XN7O)

-+ x Hly 1
N —=.1) —g(xn,0
+ XN UNn Vo A[{]\IXN . g XN N’ g(XNa )

1
+ N, {g< NO g(xx,0) }

1-xn+y Hii, 1
— X Nun Vo Aﬁ\lfol g XN_N’O —g(xn,0)

(¢ rearranging term)s
. \ 1
:|\|1|an NANx, |9 XN+N’0 —g(xn,0)

+ Ny, {g (XN —¢,0> —g(xN,O)] }

N
/\Nfol
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7 The type of common ancestor in a population of finite size

1—xy+ & N
+ ﬂNUNVO uNXN I:g <XN_:]71> _g(XN7O):|

XN Al[l\lmfl
- 71_XN+%NU v i xn——=.0) - (xn,0)
XN N OA,[}IXN_]_ g N N’ g (XN,

<¢ passing to the Iimy

= Gxg(x,0)+ * "6V 1[g(x 1)~ g(x 0] - - *Ovo-1-0
1-x

= Gxg(X, 0) + TGVO [g (Xv 1) - g(X, O)] s

thus (7.18) is proven.
G(X,R)g (x,1)

, . l k
= I\IlinooN (;S) q(X.,R) ((k’ 1)7 (6,3)) |:g <st> -9 <N7 1>:|
<¢ plugging in the rate§x gy (-,-) (7.5))

. 1 WN N 1)
= lim N {N_NXNUNV]_(NXN—F].)\NNXN—’_ |:g< 0) —Q(XN,]-)]

N—00

1 WN(Nxy + 1
+ [u“m+l—l\ll\l)q\lUNV1(N)(N+l):| V\/(’\l(l)ilNX,\l))

o) o)
+ Aﬁ‘mlww {g <XN - :11> —g(xN,l)} }

(1 applying 7-3))

_ 1 Al 1
= ’\|1|an N {N_NXNUNV1(N)<,\‘+1)H,\NI)W+1 [g <XN+N,O> —g(xN,l)]

N
ANXN
N

1
+ |:““XN+1 - mUN vi(Nxy + 1)}
1
{g (XN + N,1> —g(XN,l)}

N Mg 1
‘f'ANfol/\N g XN_N71 —g(xn, 1)
Nxy—1

<¢ rearranging term>5

i XN+ M 1
= ,\|1|an { l—XNNUNV1[.lN g XN-I-N,O —g(xN,l)

Nxy+1
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1
+ /\NNXN ‘N [g (XN+N’1> _g(XNal):|

1 N

XN+ 7 A 1

~ T NNuw NN)W '[9<XN+,1>—9(XN71)}
I-x Hng+1 N

+ Uiy, N [g (XN—,}]J) —Q(XN,l)] }

<¢ passing to the Iimb
X
= GXg(Xa 1) + mevl [g (X7 0) - g(X, 1)] )

so (7.19) is true as well and the proof is complete. O

7.4.3 Proof of Theorem 7.5

Similar to the case backward in time there is are analogue results for the @e&gr) forward in
time.

Theorem 7.5 Under  Assumptions (7.4), the generator Gpgr of the process
(X, R)t=0 = im0 (KR /N, RN >0 forward in time is determined by

X(1—h(x))
(1—x)h(x)

, (1—x)h(x)
1-hw? Y+ xd=h)

Gxg(x0) = Gxg(x0) +x(1-X)p Jg/(x0) + ovilg(x 1) ~g(x0)], (7:20)
)

G(X,R)g(xv 1) = GXg(Xv 1) —X(l—X) Bvo [g (X¢ O) - g(X, 1)} ) (721)
for all g € €2[0,1] x {0,1}.

Proof. The same compactness argument as in the beginning of the proof of Théateields con-
vergence of the forward in time proce@Q‘t/N, RNt)tzo to some forward in time proce$X;, R )t>o.

To calculate the generat@x g, of the continuous proces¥X, R) forward in time, we use the rates
of Section 7.2.2 and again pass to the diffusion limit.

We start with two small calculations which will determine some limits in the main calculatidres.
first identity is needed for the proof of (7.20),

Nz{g<xN+lt,o> hN(Nxy + 1) — g (xn, 0) hN(Nxy + 1) — g (xn, 0) hN(Nxy — 1)
+g<xN—|3],0> hN(NXN—l)}
<¢ rearranging term)s
=200+ 1) g (xu-+ .0) ~00.0)| - - 2) a0, ~ 0 (3u - .0) ||

<¢ representation in terms of integr}ds
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N0 [ g 0de - - [ g - 0|

XN

(¢ rearranging term>5

- NZ{ [hN (N + 1) — hN (Nxy — 1)] /WN g'(£,0)d¢

XN

XN+ XN+ R 1
RN (N — 1) [/ 0(.00¢ - [ "d(e —N>dz] }

(¢ representation in terms of integrals ag)ain

:NZ{/X:M“ z/ g/(&,0)dE +hN(Nxy — 1 /XW“/ ', O)dndE}

(¢ passing to the |Im>
225 20 (X)g (x,0) + h(x)g” (%, 0). (7.22)
The following calculation is a building block for the proof of (7.21),

Nz{g (xN +|t,1> (1-hN(Nxy +1)) —g(xn, 1) (1—hN(Nxy + 1))
—g(xn,1) (1-hN(Nxy—1)) +9 (xN — rtl> (1—hY(Nxy—1)) }
<¢ rearranging term)s
— NZ{ (1—hY(Nxy+1)) [g <xN+,t,1> —g(xN,l)]
— (1-h"(Nxy— 1)) [g(XN,l) -g <XN - :llﬂ }

(¢ rearranging terms furth}r

— Nz{ [g <XN+¢,1) —29(xn,1) 49 (xN — ;,1)]
—hN(Nxy+1) [g (XN‘i‘il,l) —g(xN,l)} +hN(Nxy — 1) [g(xN,l) -9 <XN - ,ilﬂ }

(¢ passing to the limit (compare previous calculatban)

29" (x 1) — [2H(x)d (x,1) +h(x)g"(x,1)] = (1-h(x)g"(x,1)-20(x)g(x,1). (7.23)

Now we prove the two assumptions of the theorem.
The generator operating @tx, 0) is

Gx,r9(X,0)
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o 0.9 () -o(39)]

<¢ plugging in the rates?(.lZ;)

. 1 hN(Nxy + 1)
= lim N$ (Al — ———unvo(N—N
N0 {[N"N Nxy + 1 Vol XN} ChN(Nx)

9+ 0) -9 xN,0>J

1 1—hN(Nxy —1) 1
+mUNV1NXN AN N>w) [g (XN_N71> _g(XN»O)]

+uh‘mW [g (xN—,t,0> —g(xN,O)] }

<¢ plugging in the definitions.1) of AN and/,l'\‘>

. N—N 1
:th N{ [NXN A <+SN> +unVo(N—Nxy) —
—00

N 5 quo(N—NxN)}

D) (g .0) - g0

Nxy + 1

hN(Nxy)
+N_lequleN1_E:EE2)_ Y [9 <XN—;71) —g(XN,O)]
+ E(N—Nm)l\kf\'Jrqule} W [g (xN—:I,O> —g(xN,O)] }

<¢ rearranging terms and summarising lower order term&b)s)

= lim {NZ- ;XN(l—xN)W(iIXN) [g (xwil,o) hN(Nxy +1)

N—o00

— g (xn,0) Y (Nxy + 1) — g (xn, 0) N (N — 1)
CROL
+g xN—N,0>h (NxN—l)}

hN(Nxy + 1)

+[N-XN(l*XN)NSN+N‘NLNV0(1*XN)] hN(NXN)

[g <XN+|1-I,O> g(xN,O)]
+ 1iNxNNuNV1XN1_::EEQ)_ Y [g (XN—;,l) —Q(XN70)]

—f—N'NUNVlXNW |:g <XN - i-lao) _g(XNvO):| +0(1)}
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7 The type of common ancestor in a population of finite size

<¢ passing to the limit by applying7(23>

— %x(l —X)g" (x,0) +x(1—x) ?]/((:)) /(x,0) + [X(1— X)0 + Ovp(1—x)]d (x,0)
+ )(((]_:I-__)(;]r(])(())(;GV1 [g (X, 1) — g(x7 0)] _ eleg(x’ 0)
<¢ rearranging term)s

= %x(l—x)g” (%,0) + [6BVo(1—X) — Bvix+x(1—x)a]d (x,0)

W(x) X(1—h(x))
g ¢ %0 L oneo
and the generator operating gfx, 1) is

Gixr9(%1)

+x(1-Xx)

vy [g (Xa l) - g(X, 0)] ’

Kk

: l
= I\IIILnooN (;S)q(XR) ((k7 1)) (E,S)) |:g <N’S> —dg <N71>:|
<¢ plugging in the rates?(.13>

: 1 hN (Nxy + 1 1
= hIIIanN{ Ny 1N vo(N — Nm)w [g (XN + N,O> —g(XN,l)}

N 1—hV(Nxy+1) 1
+ANXN 1—hN(NXN) g XN+N71 g(XNvl)

1 1— hN(Nxy — 1)
N N
+ [“NXN N—NXN+1UNV1NXN] T-hV(Nxy)

(o 32) o]

<¢ plugging in the definitions®.1) of AN andu’\'>

e 1 hN(Nxy + 1) 1

+ [NXNN_NNXN (;‘Fsl\l) +quO(N—NXN)]
1I ENh(’\I'\E)IiIN X:)l) [g (XN N ;1> _g(xN,l)}

1 Ny 1
Z(N—Nxy)— Ny — ———————
+[2( )= T UNVINx NN+ 1

o) s}

quleN]
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7.4 Appendix

<¢ rearranging terms and summarising lower order terrmﬂa)s)

N N
= lim {1 XNNUNVOh (N +1) [g <XN+1,0) —g(XN,l)]

N—o0 XN 1—hN(NXN) N
1
—|—§N2-XN(1—XN)
1.\ 1-hN(Nxy+1) 1—hN(Nxy +1)
|:g<XN+N71> 1—hN(NXN) _g(XNvl) 1—hN(NXN)
1-hN(Nxy —1) 1\ 1-hV(Nxy—1)
- (Nxy) +‘9’<X“‘N’1> - N (Nwy) ]
1—hN(Nxy —1)
1—hN(Nxy)

-g(xn,1)

+[N-xn(1—xn)Nsy+N-Nuyvo(1—xn)]

[g <XN+|1-I,1> —g(xN,l)]

208t o)

+ N - NunVvixXn

<¢ passing to the limit by applying?(Z@)
(1—x)h(x)

~ TR B%0l8(.0) ~ g6 1]+ XL (x. ) (L) 7T (x.)
+[X(1—=X)0 + Ovp(1—x)] g (X,0) — Bv1xd (X, 0)
(¢ rearranging term)s
= %x(l—x)g” (%, 1)+ [BVo(1—X) — Bvax+x(1—x)o]d (x,1)
“X(1-X) o (1) + e e la(x.0) - g(x ).
Thus, the proof is complete. O
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