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0 Deutsche Zusammenfassung:
Anzestrale Linien unter dem Einfluss von
Mutation und Selektion

Die Populationsgenetik beschäftigt sich mit dem Einfluss von zufälliger Reproduktion, Mutation,
Selektion, Rekombination und Migration auf die genetische Struktur einer Population (vergleiche z.B.
[Dur08, Ewe04]). In dieser Arbeit wird das Zusammenspiel von zufälliger Reproduktion, Selektion
und Zweiwegmutation untersucht.

Dazu betrachten wir eine haploide Population1 der GrößeN ∈N im Moran-Modell, in der jedes Indi-
viduum einen von zwei Typen ausS:= {0,1} trägt. Die Mutationsrate pro Individuum pro Generation
nach Typ 0 seiuNν0 und nach Typ 1uNν1 mit uN,ν1,ν0 ≥ 0,ν0+ν1 = 1. Sei 0 der selektiv bevorzugte
(‘gute’) Typ mit SelektionsvorteilsN und 1 der benachteiligte (‘schlechte’) Typ. Dann ist die Dyna-
mik des Modells die folgende (siehe Abbildung 0.1): Jedes Individuum bekommt unabhängig von

1
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Abbildung 0.1: Das Moran-Modell mit Zweiwegmutation und Selektion. Mutationen nach Typ0 werden durch
Kringel dargestellt, Mutationen nach Typ1 durch Kreuzchen. Neutrale Reproduktionsereig-
nisse sind durch Pfeile mit keilförmigem Kopf dargestellt.Selektive Reproduktionspfeile mit
sternförmigem Kopf dürfen nur von Individuen des Typs0 benutzt werden. Im Bild ist N= 5,
K5 = 3 auf der linken Seite und K5 = 4 auf der rechten Seite.

allen anderen Individuen mit Rate 1/2 ein Kind desselben Typs. Dieses ersetzt ein rein zufällig aus
der Population gewähltes Individuum (dargestellt durchPfeilemit keilförmigem Kopf). Zusätzlich zu
dieser neutralen Komponente der Reproduktion gibt es eine selektive Komponente der Reproduktion
mit RatesN pro Individuum (dargestellt durchSternchenpfeile, die nur dann genutzt werden dürfen,
wenn das Individuum am Pfeilschaft Typ 0 trägt2). Außerdem mutiert jedes Individuum unabhängig
mit RateuNν0 nach Typ 0 (dargestellt durchKringel) und mit RateuNν1 nach Typ 1 (dargestellt

1Haploid heißt, dass jedes Individuum nur eine Kopie jedes Chromosoms besitzt (z.B. könnte man sagen eine Mutter) hat.
2Diese Arbeit beschäftigt sich mitfertility Selektion.
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0 Deutsche Zusammenfassung

durchKreuzchen). Sei KN
t die Anzahl der Individuen vom Typ 0 zur Zeitt ≥ 0, KN

0 = k0, für ein
k0 ∈ {0,1, . . . ,N}, undXN

t := KN
t /N der Typ-0-Anteil in der Population. Dann ist(KN) ein Geburts-

und Todesprozess mit Geburtenrateλ N
k und TodesrateµN

k , gegeben durch

λ N
k =

1
2N

k(N−k)+k(N−k) ·
sN

N
+ (N−k) ·uNν0,

µN
k =

1
2N

k(N−k) + k ·uNν1.

(0.1)

Wir nehmen an, dassk0/N → x0 ∈ [0,1], NuN → θ ≥ 0 undNsN → σ ≥ 0 für N → ∞. Dann kon-
vergiert der Prozess(XN

Nt)t≥0 in Verteilung gegen eine Wright-Fisher-Diffusion mit Mutation und
Selektion(Xt)t≥0 mit StartwertX0 = x0 und GeneratorGX, gegeben durch

GXg(x) =
1
2

x(1−x)g′′(x)+ [(1−x)θν0−xθν1+σx(1−x)]g′(x), für g∈ C
2[0,1]. (0.2)

Die zugehörige Gleichgewichtsverteilung wird als Wright-Verteilung bezeichnet. Sie hat die Dichte

w(x) = cw · (1−x)2θν1−1x2θν0−1 ·exp{2σx}, (0.3)

mit der Normierungskonstantencw =
[∫ 1

0 (1−x)2θν1−1x2θν0−1 ·exp{2σx}dx
]−1

(siehe auch [Dur08,

Kapitel 7.2] oder [KHB13, Sektion 2]).

In einer Population, die sich gemäß der eben beschriebenen Dynamik entwickelt, gibt es zu jedem
Zeitpunktτ genau ein Individuum, dessen Nachkommen ab einem bestimmten zukünftigen Zeitpunkt
s> τ die gesamte Population ausmachen werden. Wir nennen dieses Individuumdengemeinsamen
Vorfahren (common ancestor)zum Zeitpunktτ, da alle Individuen zu allen Zeitpunktent > s von
ihm abstammen (vgl. Abbildung 0.2). SeiRτ dessen Typ zum Zeitpunktτ. In Abbildung 0.1 ist der
gemeinsame Vorfahre auf der linken Seite des Bildes das zweite Individuumvon oben, also vom Typ
0. Die Linie, die durch alle gemeinsamen Vorfahren durch die Zeit geht, aufder sich also zu jedem

τ t

0

1

s

CA

Abbildung 0.2: Der gemeinsame Vorfahre zur Zeit t= τ (CA) ist das Individuum, dessen Nachkommen ab
dem Zeitpunkt t= s die gesamte Population ausmachen. Die Linie durch alle gemeinsamen
Vorfahren durch die Zeit ist die unsterbliche Linie (fette Linie im Bild).

Zeitpunkt genau das Individuum befindet, dessen Nachkommen zu einemzukünftigen Zeitpunkt in
der Population fixiert sein werden, nennen wirunsterbliche Linie (immortal line)bzw. (der Notation

ii



von Fearnhead [Fea02] folgend)reelle Linie (real line). Da die anzestrale Linie jedes Individuums
nach fast sicher endlicher Zeit in die unsterbliche Linie hinein verschmilzt, kann man den gemein-
samen Vorfahren zum Zeitpunktτ auch bestimmen, indem man ein beliebiges Individuum zur Zeit
t = +∞ aus der Population auswählt und dessen anzestrale Linie aus der Zukunft bis zur Zeitt = τ
zurück verfolgt.
O.B.d.A. seiτ = 0 und der ProzessX zum Zeitpunkt 0 im Gleichgewicht. Dann definieren wir die
Wahrscheinlichkeit, dass die unsterbliche Linie zum Zeitpunkt 0 Typ 0 hat, gegebenX0 = x, durch
h(x) := P(R0 = 0 | X0 = x). Eine Darstellung vonh(x) wurde bereits von Fearnhead [Fea02] und
Taylor [Tay07] gefunden und dort vorwiegend mit Mitteln der Analysis bewiesen. In dieser Arbeit
entwickeln wir ein neues Teilchenbild, denpruned LD-ASG, der für sich selbst genommen interessant
ist und eine neue probabilistische Interpretation der Darstellung vonh(x) liefert.

Die Struktur dieser Arbeit lässt sich als Diagramm mit kurzen Stichworten folgendermaßen darstel-
len. Dabei baut jedes Kapitel auf allen Kapiteln auf, die sich jeweils in direkter Linie weiter oben im
Baumdiagramm befinden.

Kapitel 2: Modelle und Literaturresultate

Kapitel 3: pruned LD-ASG

Kapitel 4: pruned LD-Λ-ASG Kapitel 5: killed ASG Kapitel 6:(X,R,V)

Kapitel 7:(KN,RN)

Kapitel 1 ist eine Einleitung mit Eingliederung dieser Arbeit in den historischenKontext und Kapitel
2 enthält eine Einführung in die Hauptmodelle, die in dieser Arbeit verwendet werden. Außerdem
werden einige Resultate aus der Literatur kurz vorgestellt. In Kapitel 3 dieser Arbeit entwickeln
wir ein neues Teilchenbild zur Bestimmung vonh(x), das wir in Kapitel 4 von klassischen Wright-
Fisher-Diffusionen aufΛ-Wright-Fisher-Diffusionen erweitern. Die sogenannte Siegmund Dualität
ist in diesem Fall ein wichtiges Hilfsmittel.
In Kapitel 5 entwickeln wir einen Algorithmus zur perfekten Simulation der Typen einer Stichprobe
vonm∈N Individuen, die aus einer Wright-Fisher-Population mit Mutation und Selektion im Gleich-
gewicht gezogen werden.
Eine Verbindung zwischen Ideen von Taylor [Tay07], der den gemeinsamen Prozess(X,R) untersucht
hat, und einem von Fearnhead [Fea02] betrachteten Prozess(R,V), der die Entwicklung des TypsR
der unsterblichen Linie in einer Umgebung vonV sogenannten virtuellen Linien beschreibt, stellen
wir in Kapitel 6 her. Dort bestimmen wir die gemeinsame Dynamik des Tripels(X,R,V). In Kapitel
7 kommen wir zurück zum diskreten Bild mit endlicher PopulationsgrößeN und schlagen dort eine
Brücke zu Resultaten von Kluth, Hustedt und Baake [KHB13].

Die Resultate von Kapitel 3 basieren auf gemeinsamer Arbeit mit Sandra Kluth,Ellen Baake und
Anton Wakolbinger und sind publiziert in [LKBW15]. Kapitel 4 basiert aufgemeinsamer Arbeit
mit Ellen Baake und Anton Wakolbinger und ist zur Veröffentlichung eingereicht [BLW16]. Die

iii



0 Deutsche Zusammenfassung

Inhalte der Kapitel 5, 6 und 7 sind nach gemeinsamen Diskussionen mit Ellen Baake und/oder Anton
Wakolbinger entstanden.

0.1 Ein probabilistischer Zugang zur Bestimmung des Typs des
gemeinsamen Vorfahren

Um die Verteilung des Typs des gemeinsamen Vorfahren einer Wright-Fisher-Population mit Muta-
tion und Selektion zum Zeitpunktτ, ohne Beschränkung der Allgemeinheitτ = 0, im Gleichgewicht
zu bestimmen, kann man sich alle Individuen der Population zu einem in der Zukunft liegenden Zeit-
punkt s> 0 anschauen und deren Ahnenlinien zurück bis zum Zeitpunkt 0 verfolgen. Wenns (in
Abhängigkeit von der Realisierung) groß genug gewählt ist, dann haben alle Individuen einen ein-
deutigen gemeinsamen Vorfahren zum Zeitpunkt 0.
Der gemeinsame Prozess der (potentiellen) Ahnenlinien einer Stichprobe unter Selektion im Teil-
chenbild wurde erstmals von Krone und Neuhauser erforscht [KN97,NK97]. Der sogenannteAnze-
strale Selektionsgraph (ancestral selection graph), kurz ASG, ist ein Graph mit Verzweigungen und
Verschmelzungen von Linien. Ein Reproduktionsereignis zwischen zweiLinien im Moran-Modell
vorwärts in der Zeit (Pfeil mit keilförmiger Spitze) führt zu einem Verschmelzungsereignis im ASG
rückwärts in der Zeit3. Ein selektiver Sternchenpfeil wird genau dann benutzt, wenn das am Pfeil-
schaft sitzende Individuum vom Typ 0 ist. Kennt man dessen Typ jedochnicht, so kommen zwei
potentielle Vorfahren des Individuums an der Pfeilspitze als Mutter in Frageund es kommt zu einer
Verzweigung im ASG. Die Linie des potentiellen Vorfahren an der Pfeilspitzewird continuing line
genannt, die Linie, von der der Pfeil stammt, heißtincoming line.
Wenns groß genug gewählt ist, dann muss man sich zur Bestimmung des Typs des gemeinsamen
Vorfahren zur Zeit 0 nicht die Ahnenlinien aller Individuen zur Zeits in der Population anschauen.
Da bis zur Zeit 0 zurück alle Ahnenlinien in die unsterbliche Linie verschmolzen sein werden, reicht
es, sich eine beliebige Linie zur Zeitszu ziehen und dessen ASG zu betrachten. (In Abbildung 0.3 ist
der ASG der zweitobersten Linie am rechten Rand von Abbildung 0.1 gezeigt.) Wir betrachten daher
immer den mit nur einer Linie zu einer sehr großen Zeits gestarteten ASG.
Mutationen werden im ASG folgendermaßen modelliert: Für jede Linie gibt es einen unabhängigen

r

Abbildung 0.3: ASG mit Mutationen auf den Linien. Es sind alle potentiellenVorfahren des zweitobersten
Individuums aus Abbildung 0.1 gezeigt.

3In dieser Arbeit indizieren wir Rückwärtszeit stets mitr und Vorwärtszeit mitt. In den Abbildungen läuft die Rückwärts-
zeit immer von rechts nach links und Vorwärtszeit von links nach rechts.
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0.1 Ein probabilistischer Zugang zur Bestimmung des Typs des gemeinsamen Vorfahren

Poissonschen Punktprozess von Typ-0-Mutationen (Kringeln) mit Rateθν0 und Typ-1-Mutationen
(Kreuzchen) mit Rateθν1.

Eine Realisierung der Typen der Linien im ASG zur Zeit 0, gegebenX0 = x, kann man durch ein
Bernoulliexperiment mit Erfolgsparameterx bekommen. Kennt man dann die Typen aller Linien im
ASG zur Zeit 0, so kann man den Typ des gemeinsamen Vorfahren zur Zeit0 (und den Typ des In-
dividuums zur Zeits) bestimmen. Dies ist im Fall ohne Mutationen einfach (vgl. [Man09, Theorem
2.1]): Der Typ des gemeinsamen Vorfahren zur Zeit 0 ist genau dann 0,wenn mindestens eine der
Linien im ASG zum Zeitpunkt 0 Typ 0 trägt. Denn Typ 0 setzt sich immer durch: Sobald entweder
die continuing line oder die incoming line vom Typ 0 ist, ist auch der Nachkomme eines selektiven
Ereignisses vom Typ 0.
Im Fall mit Mutationen ist die Bestimmung des gemeinsamen Vorfahren zur Zeit 0 aber recht kom-
plex. Man muss zuerst die Typen aller potentiellen Vorfahren zur Zeit 0 kennen (bzw. mit einem
Bernoulli(x)-Experiment simulieren indem man die potentiellen Vorfahren gemäß den Erfolgen und
Misserfolgen des Experiments mit den Typen 0 oder 1einfärbt). Diese Typen werden dann vorwärts
in der Zeit entlang der Linien des ASG unter Respektierung der Mutationen bis zu dem Individuum
zur Zeits transportiert. Dann wird der wahre Vorfahre zu jedem selektiven Ereignis rückwärts in der
Zeit bis zur Zeit 0 bestimmt und somit die unsterbliche Linie zurück bis zur Zeit 0verfolgt.

Diese recht komplizierte Prozedur wird in Kapitel 3 dieser Arbeit durch unser neues Teilchenbild, den
pruned LD-ASG, erheblich vereinfacht. Dazu starten wir mit dem ASG und führen eine Ordnung der
Linien (inspiriert von Donnelly und Kurtz [DK99a]) ein: Bei einem selektiven Verzweigungsereignis
zeichnen wir die incoming line immer direkt unter die continuing line (vgl. Abbildung0.4). Bei
einem Verschmelzungsereignis führen wir immer die untere der beiden beteiligten Linien weiter,
d.h. es verschmilzt stets die obere der beiden beteiligten Linien in die untere hinein. Um zu jedem

r

Abbildung 0.4: Geordnete Version des in Abbildung 0.3 dargestellten ASG.

Zeitpunkt eine Nummerierung der Linien zu bekommen, platzieren wir die Linien auf Level 1,2, . . .;
und zwar so, dass zu jedem Zeitpunkt die unterste Linie auf Level 1 ist, diezweitunterste auf Level
2, u.s.w. Somit gibt also zu jedem Zeitpunkt die Nummer des höchsten besetztenLevels die Anzahl
der vorhandenen Linien im ASG an. Dies führt dazu, dass bei einem selektiven Verzweigungsereignis
auf Levelk∈ N die incoming line auf Levelk platziert wird, die continuing line auf Levelk+1 und
alle Linien auf den Levelsℓ > k um ein Level nach oben aufℓ+ 1 geschoben werden. Bei einem
Verschmelzungsereignis der Linien auf Levelk1 und Levelk2 > k1 verschmilzt die Linie auf Levelk2

in die Linie auf Levelk1. Um den freien Platz aufzufüllen werden alle Linien auf den Levelsℓ > k2

um ein Level nach unten aufℓ− 1 geschoben (vgl. Abbildung 0.5). Den auf diese Art und Weise
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0 Deutsche Zusammenfassung

entstandenen Graphen nennen wirlookdown ASGoder kurzLD-ASG, in Anlehnung an daslookdown
Modellvon Donnelly und Kurtz [DK99a].

r
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Abbildung 0.5: LD-ASG zu Abbildung 0.4. Die Levels sind von unten nach oben durchnummeriert.

Im Fall ohne Mutationen führt die spezielle Ordnung der Linien bereits dazu, dass wir die unsterbli-
che Linie im lookdown ASG zur Zeit 0 direkt angeben können, wenn wir dieTypen der Linien zur
Zeit 0 kennen. Dazu sei dieimmune Linie(immune line) zu jeder gegeben Zeit die Linie, die die
unsterbliche Linie zu dieser Zeit ist, falls alle Linien zu dieser Zeit vom Typ 1 sind. Bei jedem auf
ihrem aktuellen Level stattfindenden selektiven Ereignis rutscht sie zusammen mit der continuing line
dieses Ereignisses um ein Level nach oben. Ansonsten verhält sie sichso wie jede andere Linie auch.

Proposition 0.1 Für fast alle Realisierungen des LD-ASG im Gleichgewicht im Fall ohne Mutationen
ist das Level der unsterblichen Linie zur Zeit0 entweder das niedrigste Typ-0-Level zur Zeit0 oder,
falls alle Linien zur Zeit0 mit Typ1 gefärbt sind, das Level der immmunen Linie zur Zeit0.

Der Beweis von Proposition 0.1 wird induktiv von Ereignis zu Ereignis (Verzweigung oder Ver-
schmelzung) geführt. Dabei nutzt man aus, dass die incoming line (die immer direkt unterhalb der
continuing line liegt) bei jedem selektiven Verzweigungsereignis genau dann anzestral ist, wenn sie
vom Typ 0 ist.

Im Fall mit Mutationen muss der LD-ASG weiter modifiziert werden. Jede Mutation liefert nämlich
neue Informationen über die Typen der Linien. Daher fallen manche Linienals potentielle Vorfahren
weg und können aus dem Graphen gelöscht werden. Die Pruning-Prozedur, die vom LD-ASG zum
pruned LD-ASGführt, ist die folgende (vgl. Abbildung 0.6): Wird eine Linie, die nicht die immune
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5

Abbildung 0.6: Pruned LD-ASG abgeleitet aus Abbildung 0.5. Die immune Linie ist fett markiert.
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0.1 Ein probabilistischer Zugang zur Bestimmung des Typs des gemeinsamen Vorfahren

Linie ist, von einer Typ-1-Mutation (Kreuzchen) getroffen, so wird diese Linie abgeschnitten. Alle
anderen Linien auf höheren Levels rutschen um ein Level nach unten um die frei gewordene Lücke
wieder aufzufüllen. Wenn eine Typ-1-Mutation auf der immunen Linie passiert, dann wird diese nicht
abgeschnitten (daher auch der Name der Linie). Damit allerdings die Ordnung der Linien respektiert
wird, rutschen alle Linien, die auf höheren Levels als die immune Linie sitzen, um ein Level nach un-
ten. Die immune Linie selber wird dann auf das vor der Umordnung höchste besetzte Level platziert.
Wird eine Linie von einer Typ-0-Mutation (Kringel) getroffen, so werdenalle Linien auf höheren
Levels abgeschnitten. Die Linie auf dem Level des Kringels setzt die immune Linie fort.
Durch das Abschneiden von Linien nach Mutationen überträgt sich die Aussage von Proposition 0.1
dann auch auf den Fall mit Mutationen.

Theorem 0.2 Für fast alle Realisierungen des pruned LD-ASG im Gleichgewicht ist das Level der
unsterblichen Linie zur Zeit0 entweder das niedrigste Typ-0-Level zur Zeit0 oder, falls alle Linien
zur Zeit 0 mit Typ 1 gefärbt sind, das Level der immmunen Linie zur Zeit0. Insbesondere ist die
unsterbliche Linie zur Zeit0 genau dann und nur dann vom Typ1, wenn alle Linien zur Zeit0 vom
Typ1 sind.

Für den Beweis von Theorem 0.2 nutzt man einerseits aus, dass eine incoming line, die durch eine
Typ-1-Mutation schlecht gefärbt wurde, nicht anzestral sein kann.Andererseits bewirkt jede inco-
ming line, die durch eine Typ-0-Mutation gut gefärbt wurde, dass die zugehörige continuing line kein
potentieller Vorfahre mehr sein kann.

SeiL der Linienzählprozess des pruned LD-ASG. Dann sind Übergangsraten vonL gegeben durch

qL(n,n−1) =
1
2

n(n−1)+(n−1)θν1+θν0,

qL(n,n+1) = nσ ,

qL(n,n− ℓ) = θν0, 2≤ ℓ < n, n∈ N.

(0.4)

Mithilfe von Theorem 0.2 ist es nun möglich eine Interpretation der Wahrscheinlichkeit h(x) und
gleichzeitig das Haupttheorem von Kapitel 3 anzugeben.

Theorem 0.3 Für die Wahrscheinlichkeit, dass der gemeinsame Vorfahre zur Zeit0 vom Typ0 ist,
gegeben die Frequenz der Typ-0-Individuen zur Zeit0 ist X0 = x, erhält man

h(x) = ∑
n≥1

x(1−x)n−1
P(L0 ≥ n), (0.5)

wobei L0 die Anzahl der Linien eines stationären pruned LD-ASG zur Zeit0 ist.
Die Tailwahrscheinlichkeiten an := P(L0 > n) sind eindeutig bestimmt durch die Rekursion

(n+1+2θν1)an+1− (n+1+2σ +2θ)an+2σan−1 = 0, n≥ 1, (0.6)

mit den Randbedingungen
a0 = 1, lim

n→∞
an = 0. (0.7)
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0 Deutsche Zusammenfassung

Eine Reihendarstellung vonh, h(x) = ∑n≥1x(1− x)n−1an, wobei die Koeffizienten(an) - die wir
‘Fearnhead Koeffizienten’ nennen - durch die Rekursion (0.6) gegeben sind, kann man bereits in
[Fea02] und [Tay07] finden. Die probabilistische Interpretation deran als Tailwahrscheinlichkei-
ten und der pruned-LD-ASG selbst sind neue Resultate dieser Arbeit (bzw. der Veröffentlichung
[LKBW15]).

0.2 Der Typ des gemeinsamen Vorfahren einer
Λ-Wright-Fisher-Diffusion

In Kapitel 4 dieser Arbeit erweitern wir die Resultate des Kapitels 3 (und somitauch die Resulta-
te von Fearnhead [Fea02] und Taylor [Tay07]) aufΛ-Wright-Fisher-Diffusionen mit Mutation und
Selektion.

Wir betrachten Populationen dessen Typ-0-Frequenz sich gemäß des folgenden Generators entwickelt
(vgl. [EGT10, Gri14]),

GXg(x) =
∫

(0,1]

[
x(g(x+z(1−x))−g(x))+(1−x)(g(x−zx)−g(x))

]Λ(dz)
z2

+Λ({0}) ·
1
2

x(1−x)g′′(x) +
[
σx(1−x)−θν1x+θν0(1−x)

]
g′(x),

(0.8)

g ∈ C 2, wobei dasReproduktionsmaßΛ ein Wahrscheinlichkeitsmaß auf[0,1] ist. Der Spezialfall
Λ = δ0 ist der in Kapitel 3 (vgl. Sektion 0.1) behandelte Fall.

Sei weiterhinh(x) = P(R0 = 0 | X0 = x) die Wahrscheinlichkeit, dass die unsterbliche Linie in ei-
ner stationären Situation zur Zeit 0 Typ 0 hat, gegebenX0 = x. Man beachte nur, dassX jetzt ei-
ne Λ-Wright-Fisher-Diffusion (mit Generator (0.8)) ist. Dann gilt unter der Bedingung 0≤ σ <

−
∫ 1

0 log(1−x)Λ(dx)
x2 die folgende Aussage.

Theorem 0.4 Die Wahrscheinlichkeit h(x) hat die Reihendarstellung

h(x) = ∑
n≥0

x(1−x)nan, (0.9)

wobei die Koeffizienten an in (0.9) monoton fallend sind und die eindeutige Lösung des folgenden
Systems von Gleichungen,

[

∑
n+1<c≤∞

1
n

(
c−1
c−n

)
λc,c−n

]
(an−ac−1)+(σ +θ)an = σan−1+θν1an+1, n≥ 1,

a0 = 1, a∞ := lim
n→∞

an = 0, (0.10)

mit der Konvention

(
∞−1

∞−d+1

)
:=

{
0 falls d= 1

1 falls d≥ 2
und λ∞,∞ := Λ({1}). (0.11)
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0.2 Der Typ des gemeinsamen Vorfahren einerΛ-Wright-Fisher-Diffusion

Der Beweis von Theorem 0.4 führt über eine Erweiterung des pruned LD-ASG auf denΛ-Fall, den
pruned lookdownΛ-ASG. Dieser verhält sich bei Mutationen und selektiven Ereignissen genau so
wie der pruned LD-ASG. Zusätzlich zu den Koaleszenzereignissen vonzwei Linien gibt es Ver-
schmelzungsereignisse beliebiger Größe. Diese werden wie im von Pitman [Pit99], Sagitov [Sag99]
und Donnelly und Kurtz [DK99b] eingeführtenΛ-Koaleszentenmodelliert. Die Rate mit der jedes
beliebige aber feste Tupel vonj ausb Linien in eine verschmilzt ist gegeben durch

λb, j :=
∫ 1

0
zj(1−z)b− jz−2Λ(dz), j ≤ b. (0.12)
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Abbildung 0.7: Ausschnitt einer Realisierung eines pruned LD-Λ-ASG. Die immune Linie ist fett mar-
kiert.

Ein Ausschnitt einer Realisierung eines pruned LD-Λ-ASG ist in Abbildung 0.7 gezeigt. Bei einem
Verschmelzungsereignis werden alle teilnehmenden Linien mit einem fetten Punkt markiert. Alle
punktierten Linien verschmelzen dann in die Linie mit Punkt, die das niedrigste Level besetzt.

Sei (Lr)r≥0 der Linienzählprozess des pruned LD-Λ-ASG, der sich zur Zeit 0 im Gleichgewicht be-
finde, undan := P(L0 ≥ n), n≥ 0. Der GeneratorGL vonL ist dann gegeben durch

GLg(ℓ) =
ℓ−1

∑
c=1

(
ℓ

ℓ−c+1

)
λℓ,ℓ−c+1 [g(c)−g(ℓ)]+ ℓσ [g(ℓ+1)−g(ℓ)]

+(ℓ−1)θν1 [g(ℓ−1)−g(ℓ)]+
ℓ−1

∑
k=1

θν0 [g(ℓ−k)−g(ℓ)] .

(0.13)

Außerdem überträgt sich Theorem 0.2 und somit auch Theorem 0.3 auf denΛ-Fall.

Corollary 0.5 Für die Wahrscheinlichkeit, dass die unsterbliche Linie im stationären pruned LD-Λ-
ASG zur Zeit0 vom Typ0 ist, gegeben die Frequenz der Typ-0-Individuen zur Zeit0 ist X0 = x, erhält
man

h(x) = ∑
n≥0

x(1−x)nan. (0.14)

Um ein Gleichungssystem für die Tailwahrscheinlichkeiten(an) zu bekommen, konstruieren wir
einen ProzessD, der inSiegmund-Dualitätzum ProzessL steht, d.h.Pℓ(Lu ≥ d) = Pd(Du ≤ ℓ) für
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0 Deutsche Zusammenfassung

alle u≥ 0, ℓ,d ∈ N (vgl. [Sie76] oder Sektion 4.1 in der Übersichtsarbeit von Jansen und Kurt über
Dualität [JK14]).
Denn dann können wir die Tailwahrscheinlichkeiten vonL über Treffwahrscheinlichkeiten des dualen
ProzessesD ausrechnen. Genauer gilt (siehe auch [CR84, Thm. 1])an = Pn+1(∃t ≥ 0 : Dt = 1) für
allen≥ 0.

Einer Idee von Clifford und Sudbury folgend [CS85] beschreiben wirerst den ProzessL über soge-
nannteFlightsund konstruieren dann den dualen ProzessD über die zugehörigendualen Flights. Ein
Flight f ist eine ordnungserhaltende Abbildung (alsof (k) ≤ f (ℓ) für alle k ≤ ℓ), die eine Menge in
sich selber abbildet (hierf : N∪{∞} → N∪{∞}). Wir setzen zusätzlichf (∞) = ∞ und nehmen an,
dass∞ für den ProzessL unerreichbar ist.
Ein Flight, der zur Zeitr auftaucht, induziert einen Übergang nachLr = f (ℓ), gegebenLr− = ℓ (und
zwar für alleℓ ∈ N). Grafisch stellen wir einen Flight als eine Menge simultaner Pfeile dar (siehe
Abbildung 0.8).
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Abbildung 0.8: Grafische Darstellung der vier Arten von Flights, die zur Beschreibung von L not-
wendig sind (hellbraune Pfeile), und deren duale Flights (dunkelgrüne Pfeile) zu-
sammen mit den zugehörigen Pfadstücken von L (hellbraun) und D (dunkelgrün).
Die Pfade von L folgen den Pfeilen in Richtung der Rückwärtszeit r (von rechts
nach links) und von D in Richtung der Vorwärtszeit t (von links nach rechts).

Die Dynamik des ProzessesL können wir nun durch Poissonsche Punktprozesse von vier Typen von
Flights beschreiben, die Verschmelzungen, selektive Verzweigungen,Typ-1-Mutationen und Typ-0-
Mutationen repräsentieren. Die Realisierung eines Pfades des ProzessesL können wir auf zweistu-
fige Weise bekommen. Zuerst generieren wir eine Realisierung der Poissonschen Punktprozesse der
Flights. Gegeben diese Realisierung lesen wir dann denL-Pfad direkt von den Flights ab: Wir fan-
gen mit einem vorgegebenen Startlevel an und gehen dann in Rückwärtszeitrichtung induktiv von
Flight zu Flight. Bei jedem Flight folgen wir jeweils dem Pfeil, der vom aktuellenLevel desL-Pfades
ausgeht.

Zu jedem Flight f definieren wir für d ∈ N den dualen Flight f̂ durch
f̂ (d) = min( f−1({d,d+1, . . .})), mit der Konvention min(∅) = ∞ (vgl. auch Abbildung 0.8).

Zu einem aus einer RealisierungΦ der Poissonschen Punktprozesse der Flights abgelesenenL-Pfad
definieren wir einenD-Pfad, der auf folgende Weise ebenfalls vonΦ abgelesen werden kann: Zu
der RealisierungΦ definieren wir eine duale RealisierunĝΦ. Diese geht ausΦ durch die Abbildung
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0.3 Das Simulieren von Stichproben mit dem killed ASG

(r, f ) 7→ (−r, f̂ ) =: (t, f̂ ) hervor. DerD-Pfad wird nun von̂Φ abgelesen, indem man zur Zeitt = 0
bei einem vorgegebenen Level startet und dann induktiv in Vorwärtszeitrichtung von dualem Flight
zu dualem Flight geht und bei jedem dualen Flight jeweils dem Pfeil folgt, der vom aktuellen Level
desD-Pfades ausgeht.

In Kapitel 4 zeigen wir dann, dass der auf diese Art und Weise definierteD-Prozess in (pfadweiser)
Siegmund-Dualität zumL-Prozess steht. Den GeneratorGD vonD bekommt man dann über die Form
der dualen Flights und die Übergangsraten vonL,

GDg(d) = ∑
d<c≤∞

(
c−1

c−d+1

)
λc,c−d+1 [g(c)−g(d)]+(d−1)σ [g(d−1)−g(d)]

+(d−1)θν1 [g(d+1)−g(d)]+(d−1)θν0 [g(∞)−g(d)] ,

d ∈ N,g : N∪{∞}→ R.

(0.15)

Eine ‘Zerlegung nach dem ersten Schritt’ des Ereignisses{∃t ≥ 0 : Dt = 1}, gegebenD0 = n+1, mit
den Raten (0.15) vonD führt dann schließlich zum Gleichungssystem (0.10).

0.3 Das Simulieren von Stichproben mit dem killed ASG

Kapitel 5 dieser Arbeit steht in keinem direkten Zusammenhang zu Kapitel 4.Es kann daher auch
direkt nach Kapitel 3 gelesen werden4.
In Kapitel 5 betrachten wir eine klassische Wright-Fisher-Diffusion(Xt)t≥0 mit Mutation und Selek-
tion, dessen GeneratorGX gegeben ist durch

GXg(x) =
1
2

x(1−x)g′′(x)+ [(1−x)θν0−xθν1+σx(1−x)]g′(x), g∈ C
2[0,1]. (0.16)

Dabei verstehen wirX0 wieder als die Frequenz der Typ-0-Individuen in einer Population zur Zeit 0
und nehmen an, dass die Verteilung vonX0 im Gleichgewicht ist. In diesem Kapitel sind wir inter-
essiert anE

[(m
ℓ

)
Xℓ

0(1−X0)
m−ℓ
]
, in Worten also an der Wahrscheinlichkeit, dass genauℓ Individuen

einer Stichprobe der Größemaus der Population zur Zeit 0 vom Typ 0 sind.

Eine Rekursion dieser Wahrscheinlichkeit wurde bereits von Neuhauser und Krone über den ASG
hergeleitet [KN97, Theorem 5.2]. Wir entwickeln eine neue Rekursion über eine modifizierte Version
des ASG, denkilled ASG, die auch gleichzeitig ein einfach implementierbarer Simulationsalgorith-
mus ist. Im Spezialfallm= 1 entspricht unser Algorithmus einem bereits bekannten Resultat von
Shiga [Shi88, Theorem 4.1], [SU86, Lemma 2.1].

Theorem 0.6 Sei m∈N die Größe einer Stichprobe von Individuen, die aus einer stationär verteilten
Wright-Fisher-Population mit Selektion und Mutation gezogen wird. Die Wahrscheinlichkeit, dass es
in der Stichprobe genauℓ Individuen vom Typ0 gibt, 0≤ ℓ≤ m,

dm,ℓ

((
({1},{2}, . . . ,{m}),0

))
:= E

[(
m
ℓ

)
Xℓ

0(1−X0)
m−ℓ

]
,

4Auch die Inhalte des Kapitels 3 sind nicht zwingend zum Verständnis von Kapitel 5 notwendig. Wir betrachten zwar den
ASG in seiner geordneten Variante, wie sie in Kapitel 3 beschrieben wird, man kann hier jedoch jederzeit auch an den
‘ungeordneten’ ASG von Neuhauser und Krone [KN97, NK97] denken.
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erfüllt das folgende System von Gleichungen,

dm,ℓ

(
(b1, . . . ,bk), j

)

=
2σ

k(k−1)+2kθ +2kσ

k

∑
i=1

dm,ℓ

(
(b1, . . . ,bi−1,bi ,bi ,bi+1, . . . ,bk), j

)

+
2

k(k−1)+2kθ +2kσ

k

∑
i,p=1,i<p

dm,ℓ

(
(b1, . . . ,bi−1,bi ∪bp,bi+1, . . . ,bp−1,bp+1, . . . ,bk), j

)

+
2θν1

k(k−1)+2kθ +2kσ

k

∑
i=1

dm,ℓ

(
(b1, . . . ,bi−1,bi+1, . . . ,bk), j

)

+
2θν0

k(k−1)+2kθ +2kσ

k

∑
i=1

dm,ℓ

(
(b1\bi , . . . ,bi−1\bi ,bi+1\bi , . . . ,bk \bi), j +#bi

)
,

j ∈ {0,1, . . . ,m}, bv ⊆ {1, . . . ,m} ∀ v= 1, . . . ,k, k≥ 0,

dm,ℓ

(
∅, ℓ

)
= 1, dm,ℓ

(
∅, j

)
= 0 für alle j 6= ℓ. (0.17)

Den Beweis von Theorem 0.6 führt über die Konstruktion unseres ‘killed ASG’. Da der ‘normale’
ASG von Krone und Neuhauser [KN97, NK97] (im Gleichgewicht) alle potentiellen Vorfahren von
allen m Individuen in der Stichprobe enthält, lohnt es sich mit ihm bzw. seiner geordneten Varian-
te (vgl. Kapitel 3) anzufangen. Verfolgt man die potentiellen Ahnenlinien rückwärts in die Zeit, so
trifft man nach f.s. endlicher Zeit bei jeder Linie auf eine erste Mutation. Diese Färbungen der Li-
nien jeweils mit Typ 0 oder 1 wird dann wiederum vorwärts in der Zeit unter Respektierung der
Verzweigungs- und Verschmelzungsereignisse entlang des Graphen bis zur Zeit 0 und somit bis zu
den Individuen in der Stichprobe propagiert. Da die Färbung der Ahnenlinien jenseits der ersten Mu-
tation keinen Einfluss mehr auf die Typen derm Individuen zur Zeit 0 hat, kann man sie bei dieser
ersten Mutation abschneiden. Da auf diese Art und Weise Linien ‘gekillt’ werden, heißt der entstande-
ne Graphkilled ASG: Eine Ahnenlinie im ASG wird nach einer Typ-1-Mutation abgeschnitten, da sie
nicht mehr dazu beiträgt, dass irgendein Individuum der Stichprobe zurZeit 0 mit Typ 0 gefärbt wird.
Eine Typ-0-Mutation hingegen sorgt sogar dafür, dass alle Individuen der Stichprobe, die die nach 0
mutierte Linie als potentiellen Vorfahren haben, zur Zeit 0 Typ 0 bekommen. Man kann also nicht
nur die mutierte Linie selber abschneiden, sondern auch alle Linien, die potentielle Vorfahren der
betroffenen Individuen der Stichprobe zur Zeit 0 sind (vgl. Abbildung0.9). Um zu jedem Zeitpunkt
r ≥ 0 Buch darüber führen zu können, welche Linie zur Zeitr potentieller Vorfahre von welchen
Individuen der Stichprobe zur Zeit 0 ist, versehen wir jede Linie mit einem zusätzlichen Label. Das
Label einer Linie zur Zeitr enthält die Nummern aller Nachkommen in der Stichprobe zur Zeit 0.
Außerdem definieren wir noch den Zählprozess(Jm

r )r≥0. Die ZahlJm
r gibt die Anzahl der Individuen

aus derm-Stichprobe an, bei denen zur Zeitr bereits klar ist, dass sie vom Typ 0 sind. Seiτ der
Zeitpunkt, zu dem die letzte noch vorhandene Linie durch eine Mutation gekilltwird. Dann istJm

τ die
Anzahl der Individuen derm-Stichprobe zur Zeit 0, die Typ 0 tragen.
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0.4 Der Typ des gemeinsamen Vorfahren, virtuelle Linien, Wright-Fisher-Umgebung
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Abbildung 0.9: Realisierung eines killed ASG, der zur Zeit0 mit einer Stichprobe der Größe m= 6 startet.
Die Startlabel auf der rechten Seite des Bildes sind{1},{2}, . . . ,{6} und es ist J60 = 0. Bei
einem durch einen Stern symbolisierten selektiven Ereignis verzweigt die Linie in sich selbst
und einen Klon mit identischem Label. Bei einem Koaleszenzereignis trägt die resultierende
Linie als Label die Vereinigung der Labels beider beteiligten Linien. Wird eine Linie von einer
Typ-1-Mutation (Kreuzchen) getroffen, so wird sie gelöscht. Jede Typ-0-Mutation bewirkt die
Erhöhung von J6 um die Mächtigkeit ihres Labels. Gleichzeitig werden die indiesem Label
enthaltenen Zahlen aus allen Labels gelöscht und Linien mitleeren Labels werden komplett
weggeschnitten. In diesem Bild weden die Individuen1,3,5,2 der Stichprobe mit Typ0 gefärbt.
Daher ist J6 auf der rechten Seite des Bildes gerade4.

Startet man einen killed ASG zur Zeit 0 mitm Linien, so führt eine ‘Zerlegung nach dem 1. Schritt’
des Ereignisses{Jm

τ = ℓ} mit den Raten des ASG auf das System (0.17) von Gleichungen.

In Kapitel 5 dieser Arbeit zeigen wir dann noch Simulationsergebnisse (Abbildungen 5.3, 5.4 und 5.5)
und zeigen eine Verbindung zum sogenanntendecision treeim neu erschienenen Buch von Dawson
und Greven [DG14] auf.

0.4 Der Typ des gemeinsamen Vorfahren und die virtuellen Linien
in einer Wright-Fisher-Umgebung

In Kapitel 6 schlagen wir eine Brücke zwischen den Herangehensweisen von Fearnhead [Fea02] und
Taylor [Tay07] mithilfe des in Kapitel 3 diskutierten pruned LD-ASG. Die Resultate der Kapitel 4
und 5 werden hierfür nicht benötigt.

Um die Verteilung des Typs des gemeinsamen Vorfahren in einer (standard-) Wright-Fisher-Population
mit Mutation und Selektion im Gleichgewicht zur Zeit 0, gegebenX0 = x, zu bekommen, untersucht
Fearnhead [Fea02] einen Markovschen Prozess(Rr ,Vr)r∈R, wobeiRr der Typ der unsterblichen Li-
nie (der reellen Linie) zur Zeitr ist undVr die Anzahl sogenannter virtueller Linien zur Zeitr. Eine
virtuelle Linie ist bei Fearnhead stets vom Typ 1 und verhält sich (rückwärts in der Zeit) ansonsten
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genau so wie eine Linie im gefärbten ASG: Sie kann mit anderen virtuellen Linien oder der reellen
Linie, wenn diese gerade Typ 1 hat, verschmelzen, in sich selbst und eineneue Linie vom Typ 1
verzweigen, und von Typ 1 weg-mutieren. Passiert allerdings solch eineMutation, so wird die Linie
einfach abgeschnitten - denn virtuelle Linien dürfen ja nur vom Typ 1 sein.Fearnhead bekommt dann
die Wahrscheinlichkeith(x), indem er die Gleichgewichtsverteilung des Prozesses(R,V) berechnet
und über die Verteilung vonV integriert:h(x) = ∑v≥0P(R0 = 0,V0 = v).

Taylor hingegen betrachtet den Prozess(Xr ,Rr)r∈R des TypsR der reellen Linie in seiner Wright-
Fisher Umgebung;Xr ist die Frequenz der Typ-0-Individuen zur Zeitr, mit Dynamik gegeben durch
den GeneratorGX in (0.2). Er bestimmt den Generator des gemeinsamen Prozesses(X,R), stellth(x)
als bestimmte Treffwahrscheinlichkeit dar, löst ein Randwertproblem und bekommt so eine Lösung
für h(x).

In Kapitel 6 kombinieren wir beide Ansätze, indem wir die Dynamik des Tripelprozesses(X,R,V)
rückwärts und auch vorwärts in der Zeit untersuchen. Durch dieses feinere Bild bekommt man einen
weiteren Einblick in die Dynamik des Typs der unsterblichen Linie.
Wir bestimmen zuerst die Dynamik von(X,R,V) rückwärts in der Zeitund bekommen folgendes
Resultat, welches wir dann auch intuitiv begründen.

Lemma 0.7 Der GeneratorĜ(X,R,V) des Prozesses(Xr ,Vr ,Rr)r∈R rückwärts in der Zeit ist gegeben
durch

Ĝ(X,R,V)g(x,0,v) = GXg(x,0,v)+
1−x

x
θν0 [g(x,1,v)−g(x,0,v)]

+(v+1)σ(1−x) [g(x,0,v+1)−g(x,0,v)]

+

[
vθν1+

1
2

v(v−1)

]
1

1−x
[g(x,0,v−1)−g(x,0,v)]

(0.18)

Ĝ(X,R,V)g(x,1,v) = GXg(x,1,v)+
x

1−x
θν1 [g(x,0,v)−g(x,1,v)]

+(v+1)σ(1−x) [g(x,1,v+1)−g(x,1,v)]

+

[
vθν1+

1
2

v(v+1)

]
1

1−x
[g(x,1,v−1)−g(x,1,v)]

(0.19)

für alle g∈ C 2(0,1)×{0,1}×N0.

Dieser Generator hat eine stationäre Verteilung, die man durch Disintegration nach der stationären
Verteilung (siehe (0.3)) des ProzessesX folgendermaßen schreiben kann.

Theorem 0.8 Die Dichteϕ der stationären Verteilung des Prozesses(X,R,V) ist gegeben durch

ϕ(x,0,v) = w(x) ·avx(1−x)v,

ϕ(x,1,v) = w(x) · (av−av+1)(1−x)v+1,
(0.20)
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für x∈ [0,1], v∈ N0, wobei die Koeffizienten(av)v∈N0 bestimmt sind durch

[
1
2
(v+1)+σ +θ

]
av =

[
1
2
(v+1)+θν1

]
av+1+σav−1, v≥ 1,

mit a0 = 1 und lim
v→∞

av = 0.
(0.21)

(Die Koeffizienten(aν) erweisen sich somit als die ‘Fearnhead Koeffizienten’ aus Theorem 0.3.)

Die Dynamik von(X,R,V) vorwärts in der Zeitbekommt man, indem man den GeneratorĜ(X,R,V)

in der Zeit bezüglich der stationären Verteilungψ des Prozesses(X,R,V) umkehrt. Der Vorwärtsge-
neratorG(X,R,V) muss also die Gleichung

∫
g1(G(X,R,V)g2)dψ =

∫
(Ĝ(X,R,V)g1)g2dψ (0.22)

für alle Testfunktioneng1,g2 ∈C 2 [0,1]×N0×{0,1} erfüllen. Auf analytischem Weg erhält man das
folgende Resultat.

Theorem 0.9 Der Generator G(X,R,V) des Prozesses(Xt ,Vt ,Rt)t∈R vorwärts in der Zeit ist gegeben
durch

G(X,R,V)g(x,0,v) = GXg(x,0,v)+(1−x−vx)g′ (x,0,v)

+θν1
av−av+1

av
[g(x,1,v)−g(x,0,v)]

+vσ
av−1

av
[g(x,0,v−1)−g(x,0,v)]

+

[
(v+1)θν1+

1
2

v(v+1)

]
av+1

av
[g(x,0,v+1)−g(x,0,v)]

(0.23)

G(X,R,V)g(x,1,v) = GXg(x,1,v)−x(v+1)g′ (x,1,v)

+θν0
av

av−av+1
[g(x,0,v)−g(x,1,v)]

+vσ
av−1−av

av−av+1
[g(x,1,v−1)−g(x,1,v)]

+

[
(v+1)θν1+

1
2
(v+1)(v+2)

]
av+1−av+2

av−av+1
[g(x,1,v+1)−g(x,1,v)]

(0.24)

für alle g∈ C 2 [0,1]×{0,1}×N0.

Die Gleichungen (0.23) und (0.24) lassen sich auch anschaulich mit Hilfe des pruned LD-ASG erklä-
ren. Dazu betrachtet man für jede einzelne Übergangsrate, die eine Änderung vonR oderV bewirkt,
den Startzustand und den Endzustand des Prozesses. Diese Zuständebettet man dann jeweils in einen
pruned LD-ASG ein. Das Ereignis{(R,V) = (1,v)} impliziert {L = v+1} und aus{(R,V) = (0,v)}
folgt {L > v}, wobeiL der Linienzählprozess des pruned LD-ASG ist. Diese Überlegungen zusam-
men mit den Übergangsraten vonL führen dann auf eine anschauliche Interpretation der Übergangs-
raten von(X,R,V).
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Am Ende von Kapitel 6 beschäftigen wir uns dann noch mit der Dynamik einesViererprozesses
(L,X,R,V). Dessen stationäre Verteilung bekommt man wieder, indem man(R,V) in den pruned
LD-ASG einbettet.

Lemma 0.10 Die Dichteϖ der stationären Verteilung des Viererprozesses(L,X,V,R) ist gegeben
durch

ϖ (ℓ,x, r,v) = w(x)
[
I {r=0,v<ℓ}ρℓ ·x(1−x)v+ I {r=1,v+1=ℓ}ρℓ · (1−x)v+1] , (0.25)

wobeiρ die diskrete Dichte der stationären Verteilung von L ist,ρℓ = P(L0 = ℓ) = aℓ−1−aℓ, ℓ ∈ N.

Es zeigt sich allerdings, dass der Viererprozess(L,X,R,V) kein Markovprozess ist.

0.5 Der Typ des gemeinsamen Vorfahren in einer Population
endlicher Größe

Kapitel 7 dieser Arbeit beschäftigt sich mit einer Population endlicher Größe N ∈ N, die einem
Moran-Modell mit Zweiweg-Mutation und Selektion folgt, wie zu Beginn diesesKapitels beschrie-
ben. Die AnzahlKN der Individuen vom Typ 0 ist dann ein Geburts- und Todesprozess mit den Raten
(0.1).
Kapitel 7 baut auf den Kapiteln 2 und 3 auf und ist unabhängig von den Kapiteln 4 und 5. Es ist
empfehlenswert vorher Kapitel 6 zu lesen, da es besonders in Abschnitt 7.3 Verweise auf Kapitel 6
gibt.

Um eine Brücke zwischen den Arbeiten von Taylor [Tay07] und Kluth, Hustedt und Baake [KHB13]
(und auch zu Kapitel 6) zu schlagen, bestimmen wir die Übergangsraten (vorwärts und auch rück-
wärts in der Zeit) eines Doppelprozesses(KN

r ,R
N
r )r∈R, wobeiRN der Typ der unsterblichen Linien

im diskreten Modell ist. Die Raten bekommt man direkt über die Raten der Pfeile (neutrale Re-
produktion), Sternchenpfeile (selektive Reproduktion), Kreuzchen(Typ-1-Mutationen) und Kringel
(Typ-0-Mutationen) im Moran-Modell. Es ergeben sich folgende Generatoren.

Lemma 0.11 Der GeneratorĜ(KN,RN) des Prozesses(KN,RN) rückwärts in der Zeit ist gegeben durch

Ĝ(KN,RN)g(k,0) = µN
k+1

wN(k+1)
wN(k)

[g(k+1,0)−g(k,0)]

+
1
k

uNν0(N−k+1)
wN(k−1)

wN(k)
[g(k−1,1)−g(k,0)]

+

[
λ N

k−1−
1
k

uNν0(N−k+1)

]
wN(k−1)

wN(k)
[g(k−1,0)−g(k,0)] ,

Ĝ(KN,RN)g(k,1) =
1

N−k
uNν1(k+1)

wN(k+1)
wN(k)

[g(k+1,0)−g(k,1)]

+

[
µN

k+1−
1

N−k
uNν1(k+1)

]
wN(k+1)

wN(k)
[g(k+1,1)−g(k,1)]
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+λ N
k−1

wN(k−1)
wN(k)

[g(k−1,1)−g(k,1)] ,

mit der Testfunktion g: N0×{0,1}→ R und k∈ {0,1, . . . ,N}.

Den VorwärtsgeneratorG(KN,RN) bekommt man wieder durch Zeitumkehr des Rückwärtsgenerators

Ĝ(KN,RN) über die stationäre Verteilung mit der Dichte

πN(k, r) = wN(k)
[
1{r=0}h

N
k +1{r=1}(1−hN

k )
]
. (0.26)

Lemma 0.12 Der Generator G(KN,RN) des Prozesses(KN,RN) vorwärts in der Zeit ist gegeben durch

G(KN,RN)g(k,0) =

[
λ N

k −
1

k+1
uNν0(N−k)

]
hN

k+1

hN
k

[g(k+1,0)−g(k,0)]

+
1

N−k+1
uNν1k

1−hN
k−1

hN
k

[g(k−1,1)−g(k,0)]

+µN
k

hN
k−1

hN
k

[g(k−1,0)−g(k,0)] ,

G(KN,RN)g(k,1) =
1

k+1
uNν0(N−k)

hN
k+1

1−hN
k

[g(k+1,0)−g(k,1)] ,

+λ N
k

1−hN
k+1

1−hN
k

[g(k+1,1)−g(k,1)]

+

[
µN

k −
1

N−k+1
uNν1k

]
1−hN

k−1

1−hN
k

[g(k−1,1)−g(k,1)] ,

mit der Testfunktion g und k∈ {0,1, . . . ,N}.

Dabei isthN
k , k ∈ {0,1, . . . ,N}, das diskrete Analogon zuh(x), also die Wahrscheinlichkeit, dass der

gemeinsame Vorfahre in einer Gleichgewichtssituation zu einer beliebigen aber festen Zeit vom Typ 0
ist, gegeben die Anzahl der Typ-0-Individuen zu dieser Zeit istk. Wir zeigen dann, dass(hN

k )k=0,1,...N

die Lösung des Gleichungssystems

hN
k

(
λ N

k +µN
k

)

= hN
k+1λ N

k +hN
k−1µN

k +
(
1−hN

k−1

)
uNν1

k
N−k+1

−hN
k+1uNν0

N−k
k+1

,
(0.27)

mit den RandwertenhN
0 = 0, hN

N = 1 ist. Dies wurde auch von Kluth, Hustedt und Baake bewiesen
[KHB13, (21)], allerdings mit anderen Methoden.

Die Verbindung zu Taylor [Tay07] bauen wir auf, indem wir den Diffusionslimes der Generatoren
Ĝ(KN,RN) undG(KN,RN) berechnen. Wir erhalten durch Übergang zum Grenzwert gerade dieGenerato-

renĜ(X,R) undG(X,R) [Tay07, (4) und (15)].
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0 Deutsche Zusammenfassung

Im letzten Abschnitt von Kapitel 7 skizzieren wir die Bestimmung der Dynamik eines diskreten
Tripelprozesses(KN,RN,VN). Dabei beschreibtVN das diskrete Analogon zuV in Kapitel 6, nämlich
die Anzahl virtueller Linien im Modell mit GesamtpopulationsgrößeN. Auf diese Weise lassen sich
durch Übergang zum Diffusionslimes alternative Beweise für Lemma 0.7 undTheorem 0.9 erhalten.
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1 Introduction

Population genetics plays an important role in biological and mathematical research. It provides a
basis for understanding evolutionary processes and features both experimental and theoretical com-
ponents. This thesis deals with the theoretical side. As the processes of evolution are very complex, it
is almost impossible to model them mathematically in all details. Nevertheless, mathematical models
are often helpful to understand (at least qualitatively) the interplay between different evolutionary
factors. In addition, the models are building elements of fundamental research.

Today, mathematical population genetics research deals, amongst other topics, with the influence of
random neutral reproduction, selective reproduction, recombination,migration, and mutation onto
the genetic structure of a population; see e.g. [Dur08] or [Ewe04]. In this thesis, we concentrate on
the interplay of random neutral reproduction, selective reproduction,and mutation. We consider a
population with two types; the deleterious type 1 and the beneficial (selectively advantaged) type 0.

A basic model for analysing the influence of random reproduction in a population is the classical
Wright-Fisher model, introduced in the 1920’s and named after Sewall Wright and Ronald Fisher. It
deals with a haploid population of finite and fixed sizeN where time is measured in terms of discrete
generations. Reproduction is modelled in the following way: In each generation, each child chooses
its single parent independently and uniformly at random among allN individuals in the previous gen-
eration. This model was generalised by Chris Cannings in the 1960’s. In the Cannings model, the
offspring vector per generation is not necessarily multinomially (as in the Wright-Fisher model) but
still exchangeably distributed.
In 1958, Pat Moran provided a new model that goes with a continuous time scale [Mor58]. In the
Moran model, each individual reproduces independently at a constant rate. Its offspring then replaces
a randomly chosen individual from the population. Selection and mutation canbe added in a natural
way to all these models (see e.g. [Dur08, Ewe04]). In the Moran model, for example, Selection
is visualised either by additional reproduction events only of individuals ofbeneficial type (fertility
selection) or by additional death events only of individuals of deleterious type (viability selection).
When considering large populations, it may be convenient to pass to the (diffusion) limit N → ∞.
Then, with a convenient rescaling of time, the proportion of type 0 individuals converges in distribu-
tion to aWright-Fisher diffusion[Dur08, Chapter 7.2]. There even exists a model with which one may
(in the absence of selection) gain this convergence in the ‘strong’ sense(realisation by realisation).
The lookdown model, introduced by Stephen Donnelly and Tom Kurtz, arises from the Moran model
basically by a rearrangement of the lines [DK99b, DK99a].

So far, all of the above models describe the evolution of populations from the present into the future
(or from the past to the present). Thus, they can be classified asforward in timemodels. When
interested in genealogies, i.e. in the evolution of ancestral lines, one has to look backward in time.
In the absence of selection, the genealogy of a (yet untyped) random sample of individuals is modelled
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1 Introduction

by aKingman coalescent, introduced by John Kingman in 1982 [Kin82]: Each pair of ancestral lines
coalesces independently at a constant rate (say at rate 1). The types of the individuals in the sample
are then determined by adding a type to the most recent common ancestor. Optionally, mutations may
also be added to the lines (modelled by independent Poisson point processes). When selection comes
into play, the Kingman coalescent has to be extended by additional branching events of ancestral
lines. This branching and coalescing graph, theancestral selection graph (ASG), was introduced in
1997 by Stephen Krone and Claudia Neuhauser [KN97, NK97]. The ASG of a (yet untyped) sample
contains all potential ancestors of this sample, it consists of so-calledvirtual andreal branches. The
true ancestors, the real branches, can only be resolved when addingtypes to the graph (see also
[BB08]).

At each time, there exists a unique individual whose progeny will eventuallytake over in the popula-
tion. Since eventually, at some later time, all individuals in the population are offspring of children
of this single individual, it is called thecommon ancestor. In this thesis, we are especially interested
in the stationary probabilityh(x) that the common ancestor is of the beneficial type 0 at a given time,
given the frequency of type-0 individuals at that time isx. In the case with selection, this probability
is larger than in the case without selection. The intuition behind this fact is that individuals of the
beneficial type have higher reproduction rates and therefore are moresuccessful in the long run.
The common ancestor type distribution was first investigated in 2002 by Paul Fearnhead [Fea02]. His
approach uses a pruned version of the ASG, thecommon ancestor process(R,V). R∈ {0,1} is the
type of the single real line (thus the common ancestor) andV ∈ N0 a number of virtual lines that is
needed in order for the process to be Markovian. In 2007, Jesse Taylor was able to gain the com-
mon ancestor type distribution using a different approach [Tay07]. By starting from thestructured
coalescent[BES04], he derived and solved a boundary value problem for(X,R), whereR is again
the type of the common ancestor andX the type-0 frequency in the entire population. Then, in 2013,
the common ancestor type distribution was investigated by Sandra Kluth, Thiemo Hustedt, and Ellen
Baake via a discrete approach [KHB13]. They worked all the way through in the discrete Moran
model with population sizeN and passed to the diffusion limitN → ∞ only in the very end.

In Chapters 3, 6, and 7, we build a bridge between these three approaches.
Chapter 3 gives a probabilistic approach to the common ancestor type distribution. We develop the
pruned lookdown ancestral selection graph (pruned LD-ASG), a particle picture that lies behind a
recursion that is part of the formula determiningh(x). This way, we are able to give a probabilistic
meaning to Taylor’s and Fearnhead’s results on the probabilityh(x). Inspired by Donnelly’s and
Kurtz’s idea to order the lines [DK99a], the pruned LD-ASG arises fromthe ASG by a rearrangement
of the lines and additional pruning of lines upon mutation. Although our ordering is a different one,
we borrow the name ‘lookdown’ from [DK99a]. In the classical ASG in thecase with mutations,
it is rather involved to find the line of the common ancestor. Namely one has to assign types to all
ancestors, let the types propagate forward in time along the lines of the ASG with respecting the
mutations, and resolve afterwards each branching event backward in time. In the pruned LD-ASG,
the line of the common ancestor can be found quite easily. It is just, if such a lineexists, the type-0
line that occupies the lowest level. If all lines are of type 1, it is the so-calledimmune line. Therefore,
we believe that our pruned LD-ASG is interesting in its own right.
Chapter 6 links Fearnhead’s common ancestor process(R,V) and Taylor’s process(X,R). Namely,
we define the triple process(X,R,V) and describe the evolution of the type-0 frequencyX together
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with the typeRof the immortal line and the numberV of Fearnhead’s virtual lines. We determine the
backward and forward in time generators of(X,R,V) and its stationary distribution.
Then, in Chapter 7, we start with a discrete approach that links [Tay07] and [KHB13]. We investigate
the process(KN,RN), a discrete version of(X,R) for a population of finite sizeN. We recapitulate
results by Kluth, Hustedt, and Baake [KHB13] on the probabilityhN

k that the common ancestor is of
beneficial type, given the number of type-0 individuals at that time isk. By taking the limitN → ∞
for the backward and forward in time generators of the process(KN,RN) we regain Taylor’s [Tay07]
generators of the process(X,R).

While the pruned LD-ASG is introduced in Chapter 3 for classical Wright-Fisher populations only,
we extend it to the case with heavy tailed offspring in Chapter 4.
In a classical Wright-Fisher population, at a reproduction event, only aninfinitesimal size of the
population is replaced by offspring of the single individual that reproduces. But it is also conve-
nient to consider reproduction events where the offspring in a single reproduction event replaces a
macroscopic fraction of the population. We are then in the more general setting of Λ-Wright-Fisher
processes. They belong to the larger class ofΛ-Fleming-Viot processes. WhileFleming-Viot pro-
cesses(named after Wendell H. Fleming and Michel Viot [FV79], see also [EK93]) allow for each
individual to inherit a type that is chosen out of a a continuum of types (e.g. the type space can be the
unit interval[0,1]), we again stick to the Wright-Fisher case in Chapter 4 and only allow for two types
0 and 1. The symbol ‘Λ’ in ‘ Λ-Wright-Fisher process’ indicates that we are dealing with a general
reproduction measureΛ that also models the case when a single individual produces offspring that
replaces a macroscopic fraction of the population at a single birth event.
Backward in time, in the case without selection and mutation, the ancestral processes are so-called
Λ-coalescents. They were introduced independently by Jim Pitman [Pit99], Serik Sagitov [Sag99],
and Peter Donnelly and Tom Kurtz [DK99b] (see also [Ber09] for an introductory review). In com-
parison to Kingman’s coalescent, they also include multiple mergers. In the case with selection, the
situation becomes rather involved: For example, one has to include branching events to the coalescent
and again deal with an ancestral graph of potential parents. Although not much is known on theΛ-
coalescent with selection, some progress has been made recently (see e.g. [DK99a, EGT10, DGP12,
Fou13, Gri14, BP15]).
We enlarge the collection of results. With the help of the thepruned LD-Λ-ASG, our extension of
the pruned LD-ASG to theΛ-case, we determine the type distribution (h(x), x ∈ [0,1]) of the com-
mon ancestor of aΛ-Wright-Fisher processes. In order to determine the stationary distributionof
the line counting process of the pruned LD-Λ-ASG, we use Siegmund duality techniques (see e.g.
[Sie76, CR84], or [JK14] for a survey the notion(s) of duality for Markov processes).
To this end, in the footsteps of Peter Clifford and Aidan Sudbury [CS85],we exploit the Siegmund
dual process of the pruned LD-ASG. As it turns out, the latter process can be seen as a generalisation
of the fixation line. The latter was introduced by Peter Pfaffelhuber and Anton Wakolbinger [PW06]
for Kingman coalescents, and generalised toΛ-coalescents by Olivier Hénard [Hén15].

We restrict again to the classical Wright-Fisher case in Chapter 5. But we do not consider the immortal
line any more; we investigate sampling probabilities for samples of sizem∈ N. Namely, we think
of samplingm individuals uniformly at random out of a stationary Wright-Fisher population with
selection and mutation and ask for the probability of obtainingℓ individuals of type 0 andm− ℓ
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of type 1. While this probability was computed already by Neuhauser and Krone [KN97, Theorem
5.2] in the form of a recursion that is rather difficult to handle, we developa simulation algorithm
via the so-calledkilled ASG. We also show simulation results. In addition, we show a link to Don
Dawson’s and Andreas Greven’sdescision tree, that is part of their recently published book [DG14]
on Fleming-Viot processes.

The structure of this thesis is shortly visualised in following diagram. Each chapter is based on all
chapters that are in direct line above this chapter in the tree diagram. For example, it is recommended
to read Chapters 2, 3, and 6 before reading Chapter 7.

Chapter 2: main models and some results in literature

Chapter 3: pruned LD-ASG

Chapter 4: pruned LD-Λ-ASG Chapter 5: killed ASG Chapter 6:(X,R,V)

Chapter 7:(KN,RN)

The thesis is organised as follows. In Chapter 2, we introduce the main modelsand the quantities
that we are interested in. We review the Wright-Fisher model, the Moran model,the ancestral se-
lection graph, the lookdown model, (Λ-) Wright-Fisher diffusions and theΛ-coalescent. We also
present results on the common ancestor type distribution by Fearnhead [Fea02], Taylor [Tay07], and
Kluth, Hustedt, and Baake [KHB13]. In Chapter 3, we introduce the pruned lookdown ancestral
selection graph and develop a probabilistic meaning for the common ancestor type distribution in a
Wright-Fisher population with two-way mutation and selection. This chapter is already published in
[LKBW15]. We further extend these results to the case with heavy-tailed offspring distributions in
Chapter 4. To gain the common ancestor type distribution for aΛ-Wright-Fisher process with mu-
tation and selection, we exploit Siegmund duality. Chapter 4 is submitted for publication [BLW16].
Chapter 5 then deals with the probability of taking a sample of sizem∈ N with ℓ ≤ m individuals
of type 0. A simulation algorithm for this sampling probabilities is gained via a killed version of the
ancestral selection graph. We build a bridge between the approaches onthe common ancestor type
distribution by Fearnhead [Fea02] and Taylor [Tay07] in Chapter 6. Byusing a discrete approach in
Chapter 7, we extend this bridge towards Kluth, Hustedt, and Baake [KHB13].
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2 Main models and some mathematical
background

In population genetics, inter alia, the evolution of the frequency of alleles within a population is
analysed. In this thesis, we will consider a haploid population5 where each individual inherits one
of two possible types. We will then analyse the evolution of the frequencies of the two alleles under
genetic drift, mutation and selection.
Our main processes will be theWright-Fisher diffusion, describing the frequency evolutionforward
in time, and a modification of theancestral selection graph, describing the genealogy of a sample
backwardin time.

In this chapter we will introduce our main models and quantities, and review someresults available
in the recent literature. Some models will be reviewed again when they are needed in the different
chapters.

2.1 Main models

2.1.1 Discrete Wright-Fisher model and Wright-Fisher diffusion

Let us consider a haploid population of fixed sizeN ∈ N with discrete generations. In generation 0,
each individual gets one of two types, either 0 or 1. Then the Wright-Fisher model evolves (forward
in time) from generation to generation as follows (compare also [Eth11, Chapter 2.1], or [Dur08,
Chapter 1.2]). Independently in each generation and independently of the other individuals, each
individual picks a uniformly chosen mother (with replacement) and copies her type. Then, for all
g∈ N, the number of children in generationg+1 of an arbitrary but fixed individual in generationg
is binomially distributed with parametersN and 1/N.
The number of type-0 individuals in generationg is a Markov chain as well as a (bounded) martingale.
As such, it converges to one of the two boundary points 0 andN for g→ ∞ a.s. Eventually one of the
two types dies out and the other type fixates (i.e. takes over the entire population) a.s.
When considering large populations, it is convenient to renormalise the number of type-0 individuals
and speed up time. This way, we think ofN generations per time interval of unit length and letX̌(N)

t ,
t ∈ {0,1/N,2/N, . . .} be the proportion of type-0 individuals in generationg= Nt. It is then easily
calculated that

E

[
X̌(N)

t+∆t

∣∣∣∣ X̌(N)
t

]
= X̌(N)

t and E

[(
X̌(N)

t+∆t − X̌(N)
t

)2
∣∣∣∣ X̌(N)

t

]
= X̌(N)

t

(
1− X̌(N)

t

)
·∆t a.s., (2.1)

5Haploid individuals have only one parent. Diploid individuals have two copies of chromosomes from two different
parents.
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2 Main models and some mathematical background

with ∆t = 1
N .

By taking the limitN → ∞ in the discrete Wright-Fisher model, one arrives at a diffusion process
with diffusion coefficientx(1− x). Namely, when the initial proportioňX(N)

0 of type-0 individuals

converges to somex0 ∈ [0,1], then(X̌(N)
t )t∈{0,1/N,...} converges to(X̌t)t≥0 asN→∞ where the Markov

process(X̌t) has initial stateX̌0 = x0 and generator

GX̌g(x) =
1
2

x(1−x)g′′(x) (2.2)

with test functiong in C 2[0,1], the set of all continuous and twice differentiable functions on[0,1]
(see e.g. [Dur08, Chapter 7.2]). TheWright-Fisher diffusion(X̌t) describes the evolution of the type-
0 individuals in the population (in the absence of mutation and selection).

In fact, there is not only one model but a class of discrete models that converge to the Wright-Fisher
diffusion. However, for the purpose of this thesis one may think of the Wright-Fisher diffusion as ap-
proximating either as a large population evolving according to the discrete Wright-Fisher mechanism
with N generations per time unit or of a large population in a Moran model, which is described in the
next paragraph.

2.1.2 Moran model

The Moran model again deals with a haploid population of fixed sizeN ∈ N but now in continuous
time [Mor58] (compare also [Dur08, Chapter 1.5]). Therefore, generations may overlap but we think
of an average of one generation per time interval of length one. Thus, each individual reproduces
independently at rate 1/2 and its single offspring replaces one uniformly chosen individual in the
population (possibly its own parent).

5

4

3

2

1

0

Figure 2.1: Moran model with population size N= 5. The individuals are placed on levels and reproduction
events are indicated by arrows. (Forward) time t runs from left (t = 0) to right (t = s).

Graphically, this process can be realised by placing theN individuals on levels labelled with the
numbers 1, . . . ,N. For example, given the proportion of type-0 individuals at timet = 0 isXN

0 = k0/N,
k0 uniformly chosen levels at timet = 0 are coloured with type 0. The population then evolves forward

6



2.1 Main models

1

0

0

1

0

0

0

0

0

0

t

Figure 2.2: Transportation of types in the Moran model. Types0 and1 are marked orange and blue, respec-
tively.

in time. A reproduction event is indicated by an arrow pointing from the locationof the parent to the
location of the child (compare also Figs. 2.1 and 2.2). The individual at the tipof the arrow dies
and is replaced by a copy of the individual at the tail of the arrow. Each such arrow pointing from
individual i to j 6= i, i, j ∈ N, appears independently at rate 1/(2N). This way, the lines in the Moran
model are exchangeable at all timest ≥ 0, and type 0 eventually again either dies out or fixates in the
population. In Fig. 2.2 type 1 dies out and type 0 fixates.
Then the birth rate at which the proportion of type-0 individuals is increased from k

N to k+1
N is given

by 1
2N ·k · (N−k) and the death rate at which it is decreased tok−1

N is also given by 1
2N · (N−k) ·k.

The ‘plain’ Moran model describes the evolution of type frequencies in a population with reproduc-
tion events only. But it can be extended by including mutation and selection. Todo so, we continue
with the Moran model with finite population sizeN and take the diffusion limitN → ∞ afterwards.

Here, we consider parent independent two-waymutation. Each individuals mutates independently
to type 0 at rateuNν0 and to type 1 at rateuNν1, with uN ∈ [0,∞), andν0,ν1 ∈ [0,1]. This way,
the overall mutation rate per individual isuN and the probabilities for a mutation to be to type 0
is ν0 and to type 1 isν1, ν0+ ν1 = 1. Silent mutations from type 0 to 0 and from type 1 to 1 are
included. Graphically, mutations are visualised by independent Poisson point processes of ‘circles’
and ‘crosses’ at ratesuNν0 anduNν1 per line (see Fig. 2.3). In the case of a strictly positive mutation
rate to typei, i ∈ {0,1}, typei a.s. cannot die out in the population any more.

1

0

0

1

0

0

1

1

0

0

t

Figure 2.3: Moran model with mutation. Mutations to type0 are indicated by circles, mutations to type1 by
crosses.

When speaking of selection in this thesis we always deal withgenic selection(which is also named

7



2 Main models and some mathematical background

directional selection). In addition, we focus onfertility selection only6. This is modelled in the
following way. Let 0 be the beneficial and 1 the deleterious type such that type 0 reproduces faster
than type 1. As the reproduction rate of a type-1 individual is only the neutral rate 1/2, an individual
of type 0 reproduces at rate 1/2+sN. This is visualised by including selective arrows into the model.
A selective arrow from individuali to j, i 6= j, i, j ∈ N comes at ratesN/N. In comparison to neutral
ones, they have star-shaped heads (compare Fig. 2.4) and they can only be used by propagating type
0 from its tail to its tip. If the individuals at the tail of the selective arrow inheritstype 1, no birth
event happens and the arrow is just ignored.

1

0

0

1

0

0

0

1

0

0

t

Figure 2.4: Moran model with mutation and selection. Selective reproduction events are marked by arrows
with star shaped heads. They can only be used by individuals of type0.

Mutation and selection preserves the exchangeability property of theN lines at all times. The number
of type-0 individuals in the Moran model with mutation and selection is a birth and death process
with birth rateλ N

k and death rateµN
k , k∈ {1,2, . . . ,N},

λ N
k =

1
2N

k(N−k)+k(N−k) ·
sN

N
+ (N−k) ·uNν0,

µN
k =

1
2N

k(N−k) + k ·uNν1.

(2.3)

Let XN
t be the proportion of type-0 individuals at timet ∈ [0,∞] in the Moran model with mutation

and selection with population sizeN.

To analyse large populations, we want to take the diffusion limitX of XN := (XN
t )t≥0. Therefore, time

is speeded up by a factorN such that we again have an average ofN generations per time interval of
unit length. The corresponding time scale is denoted by ‘evolutionary time’. Neutral and selective
reproduction arrows can then be seen at rates 1/2 andsN per ordered pair of lines, respectively.
To take the limitN → ∞, we assume that the proportion of type-0 individuals at time 0,XN

0 , converges
to x0 ∈ [0,1]. In addition, let

NuN → ν and NsN → σ , as N → ∞.

6Speaking offertility selectionmeans that individuals of beneficial type have a higher reproduction rate than those of
deleterious type. In return,viability selectionmeans that individuals of deleterious type die at a higher rate than those
of beneficial type.
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2.1 Main models

Then(XN
t )t≥0 converges to a Wright-Fisher diffusion with mutation and selection,X := (Xt)t≥0, with

generatorGX given by

GXg(x) =
1
2

x(1−x)g′′(x)+ [(1−x)θν0−xθν1+σx(1−x)]g′(x), g∈ C
2[0,1], (2.4)

compare also [Dur08, Chapter 7.2], or [KHB13, Section 2]7. There exists a stationary probability
measure for the generatorGX, Wright’s density, which is given by [Dur08, (7.28)]

w(x) = cw · (1−x)2θν1−1x2θν0−1 ·exp{2σx}, (2.5)

with the normalising constantcw =
[∫ 1

0 (1−x)2θν1−1x2θν0−1 ·exp{2σx}dx
]−1

. In other words, the

frequency of type-0 individuals in a stationary population evolving according to the Wright-Fisher
generator with mutation and selection (2.4) has densityw(x) (examples are shown in Fig. 2.5).

Figure 2.5: Stationary density w of a Wright-Fisher process with mutation and selection given by(2.5) for
different combinations of the parametersσ , θ , andν .

2.1.3 Neutral Genealogies: Kingman’s Coalescent

So far, the evolution of type frequencies was modelledforward in time. But we also want to analyse
genealogies in the Moran model (and in particular in its diffusion limit with infinite population size).
Genealogical processes evolvebackwardin time. To differentiate between the two, we use through-
out this thesis the variablet for forward andr for backward time. When illustrating two time scales
in one single picture, we insinuater =−t.

7Note that there is a difference of a factor 1/2 in the scaling of the diffusion term in (2.4) and [Tay07, BLW16] in
comparison to [KN97, Fea02, KHB13, KB13, LKBW15]. This is because the four last mentioned papers use the
diffusion part of the Wright-Fisher generator without the factor 1/2. Thiscorresponds to a pair coalescence rate of 2,
while in this thesis we assume pair coalescence rate 1 in the diffusion limit.
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2 Main models and some mathematical background

Figure 2.6: Kingman’s coalescent. The corresponding Moran model is shown in Fig. 2.1). (Backward) time
r runs from right to left. The genealogy of the individuals onlevels1, 3, and4 between times
r =−s and r= 0 is shown (green lines).

Let us start with the neutral Moran model (i.e. the Moran model without selection) and without
mutation. We want to consider the genealogy of a sample ofn individuals (see Fig. 2.6) on the evo-
lutionary time scale. This genealogical process was first investigated by Kingman in 1982 [Kin82].
It evolves backward in time and is driven by the reproduction arrows. Asthe rates of Poisson point
processes are the same forward and backward in time, also backward in timeeach arrow pointing
from individual i to j (and also fromj to i), i, j ∈ N, i 6= j, appears at rate 1/2. Thus, backward in
time, each unordered pair of individuals(i, j) independently coalesces at rate 1 into a common parent.
In fact, the genealogical process of a sample ofn individuals, denoted byKingman coalescent, is a
pure coalescing process. The Kingman-n-coalescent starts withn lines (or individuals or blocks) and
eventually gets absorbed in only one remaining line. Its line counting processK0 has the generator
GK0,

GK0g(n) =

(
n
2

)[
g(n−1)−g(n)

]
, g : N→ R, (2.6)

and the expected time till alln lines have merged into one common ancestor is 2[1− 1
n], thus finite.

In the case without mutations, the type of each ancestor is directly handed over to all its offspring.
Therefore, to determine the distribution of the types of a sample ofn randomly chosen individuals
taken at timet = s from a population evolving according to a Wright-Fisher diffusion one may also
start a Kingman-n-coalescent at timer = −s with K0

r=−s = n individuals, let it evolve backward in
time, and then colour its random remainingK0

r=0 lines at timer = t = 0 with types 0 and 1 according
to a Bernoulli experiment with success probabilityX̌0 = x0, the frequency of type-0 individuals at
time 0.
Indeed, these heuristics are formalised in the well-known moment duality between the Wright-Fisher
diffusion and the Kingman coalescent

E
[
X̌n

s | X̌0 = x0
]
= E

[
x

K0
0

0 | K0
−s = n

]
, (2.7)

or equivalently

E
[
(1− X̌s)

n | X̌0 = x0
]
= E

[
(1−x0)

K0
0 | K0

−s = n
]
. (2.8)
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2.1 Main models

All n individuals are of type 0 (or 1) if and only if all ancestors are of type 0 (1).

It is then straight forward to add mutations to the Kingman coalescent. In the Moran model, mutations
come at ratesθν0 and θν1 independently per line. Thus, backward in time, these Poisson point
processes run independently on the lines of the Kingman coalescent.
Since there are mutations on the ancestral lines, the type of one individual ina sample and the type
of its ancestor may differ. Therefore the moment duality (2.8) becomes more difficult. To determine
the type of an individual in a Wright-Fisher population at timet = s, given the type of its ancestor
at timet = 0, one has to take a closer look at the whole ancestral line between timess and 0. If the
line is not affected by any mutation, the type of the individual in the sample is exactly the type of the
ancestor. If there is at least one mutation, then the type of the individual in the sample is determined
by the most recent mutation before times.
More formally, letK0,cut be a modified version of the Kingman coalescent. To be more precise, in
addition to the coalescing dynamics, a pruning procedure is added: after each deleterious mutation,
the affected line is deleted from the graph. ThenK0,cut has generator

GK0,cutg(n) =

[(
n
2

)
+nθν1

][
g(n−1)−g(n)

]
, g : N→ R, (2.9)

and the duality Equation (2.8) can be adapted to the case with mutations (compare[Shi88, Theorem
4.1] in the case without mutation, without migration, and with only one colony),

E [(1−Xs)
n | X0 = x0] = E

[
(1−x0)

K0,cut
0 ·exp

{
−θν0

∫ 0

−s
K0,cut

u du

}∣∣∣∣K
0,cut
−s = n

]
, (2.10)

where the dynamics ofX are determined by the generator (2.4) withσ = 0 andθ ,ν0,ν1 ≥ 0.
Indeed, the left-hand side of (2.10) is the probability thatn randomly chosen individuals at time
t = s in a Wright-Fisher population are of type 1, given the frequency of type-0 individuals at time

0 is x0. On the right-hand side of (2.10), the termE
[
(1−x0)

K0,cut
0 |K0,cut

−s = n
]

is the probability that

all remaining (and therefore not deleted)K0,cut
0 ancestors at backward timer = 0 of a Kingman-n-

coalescent started at timer =−s are of type 0. The remaining ancestral lines are those lines that are
not already assigned type 1 by a deleterious mutation between timesr = −s andr = 0. In addition,
the remaining ancestors can only push their deleterious types through to then sampled individuals if
no mutation to type 0 can be found anywhere on the pruned Kingman graph. Given the sum of the
lengths of all lines in the pruned graph isℓ, this has probability exp{−θν0ℓ}, which completes the
explanation of the right-hand side of (2.10).

When selection is included, the backward in time picture which contains all ancestors of a sample
becomes rather involved. It is briefly reviewed in the following section.

2.1.4 Genealogies with selection: The ancestral selection graph

In the Moran model, forward in time, selection is represented by selective arrows which can only be
used for reproduction events of type-0 individuals. Thus, in the untyped case, at each selective event,
the child at the tip of the arrow (also nameddescendant) has two potential parents. The line at the
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2 Main models and some mathematical background

tail of the arrow is denotedincoming branchand the line hit by the tip of the arrow is thecontinuing
branch. When types are assigned to the lines, the ‘pecking’ order is the following:If the incoming
branch is of type 0, it is the parental one. If it is of type 1, the continuing branch is the true parent of
the selective event (see also Fig. 2.7). Branches that are true parentsare denotedreal branches, and
potential ancestral branches that are not parental are calledvirtual branches [KN97].

1

0 0

00

11

1

Figure 2.7: Selective reproduction events. At each of the four picturesthe incoming branch is drawn below
the continuing branch. Real branches (true parents and descendants) are marked bold, slim lines
are virtual lines.

5

4

3

2

1

0 -s

Figure 2.8: Ancestral selection graph. The corresponding Moran model is shown in Fig. 2.4. All potential
ancestors of the single individual on level1 between times r= −s and r= 0 are shown (green
lines).

When keeping track of all (potential) ancestors of a sample of sizen in a Wright-Fisher population
with selection, the Kingman coalescent has to be extended by the selective events (compare Fig. 2.8).
Thus, backward in time, in addition to the coalescing structure of the neutral case, branching events
come into play. Note that, in the discrete model with population sizeN, on the genealogical time scale,
each line is hit by a star-shaped arrow that indicates a potential selective event at rate(N−1) ·sN/N.
In the diffusion limit, this rate converges toσ on the evolutionary time scale. But, in a sample of size
n, on the genealogical time scale in the finite-size model, selective arrows are interchanged between
any two individuals in the sample at raten(n−1) ·sN/N. On the evolutionary time scale, the diffusion
limit of this rate is just 0. Thus, a.s. selective arrows are not interchangedbetween individuals among
the sample but only hit sampled individuals from the outside. Quantitatively, each line in the ancestral
graph branches independently at rateσ . This way, a branching and coalescing graph arises. This
graph is denotedancestral selection graphor ASGand was introduced by Neuhauser and Krone in
1997 [KN97, NK97]. Its line counting processK has the generator

GK g(n) =

(
n
2

)[
g(n−1)−g(n)

]
+nσ

[
g(n+1)−g(n)

]
, g : N→ R. (2.11)
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2.1 Main models

As the coalescence rate ofK is quadratic and the branching rate is only linear, the process a.s. does
not explode and we haveKr ∈ N for all r ≥ 0. In addition, forσ > 0, the ASG is recurrent. It has a
stationary distribution, the Poisson distribution onN, i.e. ḡ(n) := P(Kr = n) = σn/[n!(exp(σ)−1)],
n≥ 1 (compare [PP13]).

Without mutations, the duality result (2.8) for the Kingman coalescent holds true also for the ASG:
E [(1−Xs)

n | X0 = x0] = E
[
(1−x0)

K0 | K−s = n
]

(see e.g. [Man09, Theorem 2.1]). At a branching
event, the descendant is of type 1 if and only if incoming and continuing branch are both of type 1.
Note that (2.7) is not valid in the ASG, since the descendant also has type 0 ifonly one of the two
branches is of type 0 and one of type 1.

Mutations are added to the ASG in the same way as to the Kingman coalescent: They come at rates
θν0 andθν1 independently on the lines. A modified duality for the ASG with mutations may again be
gained in the same way as for the Kingman coalescent: delete each line after a deleterious mutation
to get a pruned versionKcut of the ASG,

GKcutg(n) =

[(
n
2

)
+nθν1

][
g(n−1)−g(n)

]
+nσ

[
g(n+1)−g(n)

]
, g : N→ R. (2.12)

Then again alln individuals in the sample are of type 1 if all remaining ancestors after the pruning
are of type 1 and no mutation to type 0 appears on the pruned graph (compare [Man09, Eq. (2.23)]
or [Shi88, Theorem 4.1] specialised to the case with only one colony).

E [(1−Xs)
n | X0 = x0] = E

[
(1−x0)

Kcut
0 ·exp

{
−θν0

∫ 0

−s
Kcut

u du

}∣∣∣∣K
cut
−s = n

]
. (2.13)

The connection between the Wright-Fisher diffusion (with mutation and selection) and the modified
processKcut of the ASG is a useful tool to analyse types of individuals of a sample. However,
Equation (2.13) only allows for the probability that all individuals are of type1.
Given the frequencyX0 = x0 of type 0 in a Wright-Fisher population with mutation and selection at
time t = 0, the types ofn randomly chosen individuals at timet = s can be gained in distribution
using the ASG with mutations in the following way. First, start withK−s = n lines and generate
their potential ancestry from timer = −s up to r = 0 backward in time using the ASG-dynamics
(2.11). Then, given a realisation of the ASG, add mutations to the lines using independent Poisson
point processes. Add types to allK0 potential ancestors according to a Bernoulli experiment with
success probabilityx0. Then propagate the types forward in time from timet = 0 (r = 0) to timet = s
(r =−s).

In an equilibrium situation, letp(ℓ,m− ℓ) be the probability that a sample ofm individuals in a
Wright-Fisher population carriesℓ individuals of type 0 andm− ℓ individuals of type 1,m≥ 1,
ℓ≤ m,

p(ℓ,m− ℓ) =
m!

ℓ!(m− ℓ)!
E

[
Xℓ(1−X)m−ℓ

]
(2.14)

Krone and Neuhauser have shown [KN97, Thm. 5.2] that the sampling probabilitiesp(m,m−ℓ) then
satisfy the recursion

p(ℓ,m− ℓ) =
2θ

m+2θ +2σ −1

[
ℓ+1

m
p(ℓ+1,m− ℓ−1)+

m− ℓ+1
m

p(ℓ−1,m− ℓ+1)

]
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2 Main models and some mathematical background

+
m−1

m+2θ +2σ −1

[
ℓ−1
m−1

p(ℓ−1,m− ℓ)+
m− ℓ−1

m−1
p(ℓ,m− ℓ−1)

]

+
2σ

m+2θ +2σ −1

[
ℓ(ℓ+1)

m(m+1)
p(ℓ+1,m− ℓ)+

(m− ℓ+1)(m− ℓ)

m(m+1)
p(ℓ,m− ℓ+1)

+2
ℓ(m− ℓ+1)

m(m+1)
p(ℓ,m− ℓ+1)

]
, (2.15)

with p(k, j) := 0 for k< 0 or j < 0. The probabilistic proof8 of (2.15) uses the structure of the ASG
[KN97, page 230] by using a ‘first step decomposition’ with respect to themost recent event back in
time. Let us briefly review the intuition behind the first term in (2.15). Given there arem lines in the
ASG at timet = 0, the (forward in time) rates for mutation, branching, and coalescence aremθ , mσ ,
andm(m−1)/2. Thus, the probability that the first event back in time before timet = 0 is a mutation
is given by 2θ/(m+2θ +2σ −1). If the first event back in time was a mutation to type 1 at time
t =−τ, there must have beenℓ+1 individuals of type 0 andm−ℓ−1 of type 1 at time(−τ)−, which
by stationarity has the probabilityp(ℓ+1,m− ℓ−1). In addition, one of the type-0 individuals has
to be chosen for the mutation at probability(ℓ+1)/m. Taking factors together yields the first term in
(2.15). The other terms can be derived by drawing analogous thoughts.

In Chapter 5, we give an alternative representation of sampling probabilities together with some
simulation results.

When determining the types of a sample with the help of the ASG, one is in need of the shape of the
whole graph in the time interval of lengths together with the types. This may get really involved for
larges. In Chapter 3, a refined construction of the ASG (the pruned LD-ASG) ispresented. It allows
for determining the type distribution of the ancestor of one individual or of asample of arbitrary
size for large timess without knowing the shape of the whole graph. Since our construction of the
LD-ASG is inspired by an ordering of the lines as it is done in the so-called lookdown model, some
aspects of the latter model are explained in the following section.

2.1.5 Lookdown model

The lookdown modelwas introduced by Donnelly and Kurtz [DK99b, DK99a]. Similar to the Moran
model, it also is a particle picture which can be used for describing the evolution of type frequen-
cies in a Wright-Fisher population9. Let us start with a population of fixed finite sizeN ∈ N in the
absence of selection. Again, the individuals are identified with levels 1, . . . ,N. But now we start in
the evolutionary time scale right from the beginning (not in the genealogical timescale as in Section
2.1.2). A reproduction event is modelled as follows: Two levels are selecteduniformly at random
without replacement; each (unordered) pair of levels independently at rate 1. Then the individual
at the lower of these two levelsℓlow gives birth to a child which is placed at the larger levelℓhigh.

8Since the scalings of the pair coalescence rate in [KN97] and this thesis differ by a factor 2, this factor has to be taken
into account again when looking-up the proof of recursion (2.15) in [KN97, Thm. 5.2].

9Note that the model by Donnelly and Kurtz is much more general, but not all aspects are needed for the purpose of this
thesis.
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2.1 Main models

In comparison to the Moran model (without selection), reproduction arrows can only point in one
direction in the lookdown model (without selection): upwards with tail atℓlow and tip atℓhigh. The
higher level ’looks down’ at the lower level and adopts its type. In orderto keep the population size
constant, one individual has to die in the lookdown model as well. This is not the individual at level
ℓhigh but the individual at levelN. At the same time, all individuals at levelsk≥ ℓhigh are shifted one
level upwards tok+1 (compare Fig. 2.9). The Poisson point processes of reproduction arrows from
i to j come at rate 1, independently for each ordered pairi, j ∈N, i < j. Therefore, a line on levelℓ is
pushed to levelℓ+1 at rateℓ(ℓ−1)/2.
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Figure 2.9: Lookdown model with population size N= 5. Reproduction arrows are always pointing from
lower to higher levels.

Mutations are modelled the same way as in the Moran model: Mutations to types 0 and1 come as
independent Poisson point processes at ratesθν0 andθν1 independently per level.

0

0

1

1

0

t

0

1

1

0

0

Figure 2.10:Transportation of types in the lookdown model. Since the lines in this picture can be gained by
a rearrangement of the lines in the corresponding Moran model (Fig. 2.3), also the genealogies
agree.

Donnelly and Kurtz [DK99b, Thm. 1.1] proved that if the types are assigned to theN lines at time 0 in
an exchangeable way, then the lines stay exchangeable for all timest ≥ 0. In addition, the proportion
of type-0 individuals in the population in the lookdown model has the same distribution as the type-0
proportion in the Moran model, given the initial frequencies agree. Indeed, intuitively, the realisation
of the lookdown model can be gained from a realisation of the Moran model by reordering the lines
(compare Figs. 2.3 and 2.10). The individual which dies first is placed onlevel N, the individuals
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2 Main models and some mathematical background

with the second shortest lifetime on levelN−1, . . ., the individual whose descendants have the longest
lifetime (and therefore live forever) on level 1.

Since the line on level 1 in the lookdown model without selection is never hit by any arrow, it lives
forever. As it is the only line that never dies and whose offspring fixatesin the population at some
future time, it is namedimmortal lineor line of the common ancestor.
Indeed, all lines at higher levels are affected at least by arrows originating from level 1. In fact, the
higher the occupied level of a line, the faster this line is pushed to even higherlevels until it dies when
pushed above levelN. The distribution of the time until a line on levelℓ dies at levelN is given by
E (ℓ)+E (ℓ+1)+ . . .+E (N), whereE ( j) is an exponential random variable with parameterj. This
time is finite a.s. for allℓ∈ {2,3, . . . ,N} (and for all 2≤N≤ ∞) with expectation 2(1/(ℓ−1)−1/N).

The immortal line also exists in the Moran model. But it is not located on one distinguished level
and its location changes throughout times, always depending on the future. The advantage in the
lookdown model (with mutations) that the immortal line is always located on level 1 allows for an
easy study of the type of the common ancestor of a future population:
Let, for some fixed times, h(x) be the probability that the immortal line is of type 0, given the
proportion of type-0 individuals at times is x. Thenh(x) = x, independent of the times and the
population sizeN. Indeed, since the lines in the lookdown model are exchangeable at all times, each
line (including the immortal line) has the same probability of being of type 0.
In an equilibrium situation, the probability that the immortal line is of type 0 is justθν0

θν0+θν1
= ν0, the

probability that the most recent mutation on the ancestral line was to type 0.

Another advantage of the lookdown model in comparison to the Moran model (in the case without
selection) is its consistency when adding individuals. The ordering of the lines insures that the ge-
nealogy of the firstn individuals is not affected by individualn+1. All arrows with tips at most at
level n have tails below leveln. Therefore, when increasing the population size fromN to N+1, the
genealogy of the firstN individuals does agree in the pictures withN and withN+1 lines not only in
distribution but realisation by realisation.
To arrive again at a diffusion limit, one may take the limitN → ∞ in the lookdown model with muta-
tion (this is done e.g. in [DK99b]). One then arrives again at a Wright-Fisher diffusion with mutation
with diffusion coefficientx(1−x) and drift coefficient(1−x)θν0−xθν1. But now this is a ‘strong’
limit (realisation by realisation) whereas it was only a weak limit (limit in distribution) inthe Moran
model.

Adding selectionto the lookdown model was done first by Donnelly and Kurtz [DK99a] in 1999.
Whereas they focus on viability selection, we again concentrate on fertility selection (as done in
Section 2.1.2). In the viability selection case, type-1 individuals die at a higher rate than type-0
individuals. Thus, in addition to the neutral reproduction arrows, selective death indicators at rateσ
per level are added. These indicators can only be used by individuals of type-1 and are ignored by
individuals of type 0. At each death event, the free space is filled by a clone of a randomly chosen
individual before the event (maybe a copy of the dying individual itself). Fertility selection means
that type-0 individuals reproduce at a higher rate than type-1 individuals. In comparison to neutral
reproduction arrows, the added selective arrows in the lookdown modelmay point in both possible
directions: upwards or downwards. Therefore, (fertility) selection can be modelled exactly as in
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2.1 Main models

the Moran model. In addition to the reproduction arrows, independently perlevel, a Poisson point
process of selective arrows originates from each level at rateσ . The tip of a selective arrow points to
a uniformly chosen level. An example is shown in Fig. 2.11.
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Figure 2.11:Lookdown model with selection and mutation. Reproduction arrows always point upwards but
selective arrows may point in both vertical directions. This picture emerges from Fig. 2.4 by a
rearrangement of the lines.

Donnelly and Kurtz [DK99a] show (for viability as well as fertility selection) that exchangeability is
preserved and the type frequency process in the infinite-population limit is aWright-Fisher diffusion
with mutation and selection; its generator is given by (2.4). In addition, the genealogy of each sample
of sizen performs an ancestral selection graph started withn lines.

A slightly different lookdown model with selection was introduced by Bah, Sow, and Pardoux
[BPS12] in 2012. In their model, which deals with viability selection, each individual of type 1
dies at rateσ . But it is not that level at which a clone of a randomly chosen individual isborn. In-
stead, when an individual at levelℓ dies due to a selective event, all individuals at levelsk > ℓ are
shifted one level downwards to levelsk−1. The empty space at levelN is filled by a child that is a
copy of a randomly chosen individual.

t

1

Figure 2.12:Lookdown model with (viability) selection with populationsize N= 2 in the version by Bah,
Sow, and Pardoux [BPS12]. The type-1 line at level1 dies. The line at level2 is shifted down to
1 and a copy of a randomly chosen individual (here of the type-1 individual that was available
at level1 just before the death event) is placed on level N. This selective event is followed by a
birth event at which it is the newly born line at level N that has to die a.s.

Bah, Sow, and Pardoux show that their version of a lookdown model with infinite population size
preserves the exchangeability of the lines at all times. In addition, the proportion of type-0 individuals
in the finite population model with population sizeN converges in probability to a type frequency
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2 Main models and some mathematical background

process which is again a Wright-Fisher diffusion with selection. However,in comparison to the finite
population version of the lookdown model by Donnelly and Kurtz [DK99a],the version by Bah et
al. [BPS12] (or [BP15] in the special caseΛ((0,1]) = 0) in the case of finite population size is not a
representation of the Moran model. It is not Markovian any more but has some predictable elements
that yield a bias at levelN. Indeed, at neutral reproduction events, the line that dies is always located
at levelN. At selective death events, the free space that is filled with a new child is alsolocated at
level N. Therefore, if there was a selective death event forward in time leading tothe birth of the
line on levelN, this newly born line (and not a randomly chosen one) is for sure the line to die if this
selective event is followed by a neutral reproduction event. A minimal example is shown in Fig. 2.12:
The line that dies is the line that was born in the last step a.s. In a Moran model, both possible lines
(the newly born one or the older line) would die with probability 1/2.
Although the model by Bah, Sow and Pardoux is not a representation of theMoran model, we will
use some similar ideas when defining ourlookdown ASGin Chapter 3.

A different approach of ordering the lines in the Moran model with (fertility)selection (and with-
out mutation) was introduced by Kluth and Baake [KB13]. In theirlabelled Moran modelevery
individual is assigned a label (in addition to its level). Reproduction events are distinguished as ei-
ther ‘neutral’ or ‘selective’ ones. In contrast to the rules in the lookdown model of Donnelly and
Kurtz, neutral reproduction arrows can point in all directions but selective reproduction arrows are
only allowed from lower to higher labels. Although this approach lacks important properties of the
lookdown model (e.g. exchangeability of the lines), it gives some insight intothe number and nature
of selective events that yield fixation of one of two possible types.

2.1.6 Λ-Wright-Fisher diffusion and Λ-coalescent

So far, forward in time, we only considered binary reproduction events inthe Moran and lookdown
model. At each reproduction event, the mother has only one single offspring. This assumption will
be made through Chapters 3, 5, and 6. But as we will also analyse birth events with more than one
child in Chapter 4, let us briefly give some insight into the Moran model with reproduction events of
arbitrary size and the genealogical process backward in time here.

In the Moran model, a birth event withj −1 children, j ≥ 2, is modelled by a ‘multi-arrow’ with one
tail (emanating from the level of the parent) butj −1 tips pointing to the locations of the newly born
children. In order to make space for the children, the individuals located at the levels of the tips of
the arrows die (compare Fig. 2.13).

Let us model the rates of the reproduction events according to a probabilitymeasure on[0,1], denoted
by Λ. Let λb, j ,

λb, j :=
∫

0,1
zj(1−z)b− jz−2Λ(dz), j ≤ b, (2.16)

be the rate at which a ‘multi-arrow’ is interchanged betweenj fixed lines among a collection ofb
lines in total. Consequently, in a population of sizeN, the Poisson point process of arrows with tail at
levelℓ and tips at levelsℓ1, ℓ2, . . . , ℓ j−1 comes independently at rateλN, j/ j for each arbitrary but fixed
and pairwise disjoint tuple(ℓ,ℓ1, . . . , ℓ j−1) ∈ {1, . . . ,N} j . The lines at levelsℓ,ℓ1, . . . , ℓ j−1 merge into

18



2.1 Main models

1

0

0

1

0

0

0

1

0

1

t

Figure 2.13:Moran Model with mutation and selection with birth events ofup to three children.

one line at rateλN, j and the probability that the parent is located at levelℓ is 1/ j.
Selection and mutation is modelled the same way as already described in Section 2.1.2.

Ordering again the lines in the Moran model by persistence results in the lookdown model, we get the
following: At a reproduction event withj involved lines, the parent is always the individual that is
located at the lowest participating level. It places itsj−1 children at all other affected levels (compare
also [DK99a, DK99b]). That way, the location of the parent of each reproduction event is determined
by the locations of all participating levels. For clarity, when drawing a realisation of a lookdown
model with birth events of arbitrary size, we omit the reproduction arrows and only draw bullets10 at
all affected levels (as shown in Fig. 2.14). In order to make space for thenewly born children, lines
again do not die but are shifted upwards. Mutation and selection is modelled as already described in
Section 2.1.5.
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Figure 2.14:Lookdown model with mutation and selection. Neutral reproduction events are modelled by
bullets. The parent of each birth event is always the individual at the lowest level with a bullet.
This picture emerges from Fig. 2.13 by a rearrangement of thelines.

The frequencyX of type 0 individuals in a population of infinite size with birth events according to
the reproduction measureΛ, is then a so-calledΛ-Wright-Fisher diffusionwith mutation and selection

10The drawing of bullets instead of arrows at reproduction events is also motivated by the Poissonian construction of the
Λ-coalescent (reviewed e.g. in [Ber09]).
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2 Main models and some mathematical background

with generator given by

GXg(x) =
∫

(0,1]

[
x(g(x+z(1−x))−g(x))+(1−x)(g(x−zx)−g(x))

]Λ(dz)
z2

+Λ({0}) ·
1
2

x(1−x)g′′(x) +
[
σx(1−x)−θν1x+θν0(1−x)

]
g′(x),

(2.17)

g∈ C 2[0,1] (see for example [Gri14]). As this generator is further investigated in Chapter 4, we omit
the details here and continue with theΛ-Wright-Fisher processwithout mutation and selection (i.e.
θ = σ = 0).

By the analogy with the Kingman coalescent being the moment dual to the Wright-Fisher process
with binary reproduction events only (compare (2.7) and (2.8) in Section 2.1.3), theΛ-Wright-Fisher
process has a moment dual as well: TheΛ-coalescentwas introduced in 1999 in three independent
papers by Pitman [Pit99], Sagitov [Sag99], and Donnelly and Kurtz [DK99b]. N. Berestycki worked
out a general review [Ber09].
The Λ-n-coalescent evolves backward in time and gives the genealogy of a sampleof n individuals
in a Λ-Wright-Fisher population (see Fig. 2.15, top, for a realisation in the lookdown model). By
definition, the Markovian family ofΛ-n-coalescents takes values in the set of partitions of{1, . . . ,n}.
It starts with the set of all singletons{{1}, . . . ,{n}} and finally gets absorbed in the trivial partition
{1, . . .n}, when all blocks (or ancestral lines of individuals) have coalesced. The blocks (or lines) are
required to be exchangeable at all times. The consistency property holds, that is theΛ-n-coalescent
restricted to the firstm lines is aΛ-m-coalescent for allm∈ {1, . . . ,n}. In addition, the rates at which
any arbitrary but fixed tuple ofj out ofb blocks (or lines) merges into one is given byλb, j as defined
in (2.16).

When the measureΛ takes certain values, some special classes of coalescents appear. Forexample, in
the caseΛ = δ0, the Dirac mass at 0, the Kingman coalescent (described in Section 2.1.3) arises. We
will refer to this case asKingman case. WhenΛ = δ1, we have the so-calledstar-shaped-coalescent.
This coalescent is remindfull of a star because at rate 1 all lines coalesceat once into one single
line. ForΛ =unif[0,1], the uniform measure, theΛ-coalescent is aBolthausen-Sznitman coalescent
[BS98]. In the case whenΛ is a Beta(2−α ,α) distribution, the class ofBeta-coalescentsarises. A
review on all just described types of coalescents can be found in [Ber09].

The intuition behind (2.16), concentrated on(0,1], becomes transparent when considering the Pois-
sonian construction of theΛ-coalescent (e.g. in the lookdown representation shown in Fig. 2.15): In
the first stage, generate a random configuration of points onR× (0,1] according to a Poisson point
process with intensity measuredr ·Λ(dz)/z2. Given the point configuration, in the second stage, per-
form for each point(r,z) a Bernoulli experiment at timer with success probabilityz on the levels
1,2, . . .. Then, given the successful levels areℓ1, ℓ2, ℓ3, . . ., the lines at levelsℓ2, ℓ3, . . . merge into the
line at levelℓ1.
Given the parameter of the Bernoulli experiment isz, the probability that exactlyj fixed levels out of
b are successful iszj(1−z)b− j . Integrating over all possible success probabilitiesz gives (2.16).
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Figure 2.15:Poissonian construction of theΛ-coalescent. Bottom: The Poisson point process of coalescing
times and coalescing probabilities per level. Top: The bullets are the successes of the Bernoulli
experiment, the green lines are the lines of the corresponding Λ-5-coalescent.

The generator of the line counting processK of theΛ-coalescent is given by

GKg(b) =
b−1

∑
c=1

(
b

b−c+1

)
λb,b−c+1 [g(c)−g(b)] , g : N→ R, (2.18)

because there are
( b

b−c+1

)
different tuples ofb− c+1 out ofb lines, each of them coalesces at rate

λb,b−c+1 into one single line, and the remaining number of lines after such a coalescence isc.

Again, like in the case with only binary birth events, when selection and mutation isadded to the
Λ-Wright-Fisher diffusion, it becomes rather involved to find the true genealogy of a sample. The
Λ-coalescent with mutation and selection is investigated in Chapter 4.

All results in this thesis require the assumption that a.s. there are no simultaneous multiple birth
events, i.e. at each point in time, there is at most one birth event with a single mother.
When thinking of a scenario with simultaneous multiple birth events forward in time, the genealogy
of a sample backward in time has to perform simultaneous multiple mergers. Although this is not a
subject here, let us briefly note that one then arrives at the class of so-calledΞ-coalescents, a general-
isation ofΛ-coalescents. These coalescents with simultaneous multiple mergers were introduced by
Schweinsberg in 2000 [Sch00].

2.2 The common ancestor type distribution

In this section we come back to the classical Wright-Fisher diffusion. We present the main quantity
of this thesis, namely the type distribution of the common ancestor (or immortal line).As already
outlined for the Wright-Fisher diffusion without selection on page 16, at a given times, the probabil-
ity that the common ancestor is of type 0 is denoted byh(x), given the type-0 frequency at times is x.
We also review results by Kluth, Hustedt and Baake [KHB13], Fearnhead [Fea02], and Taylor [Tay07].
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2 Main models and some mathematical background

2.2.1 The common ancestor’s type in a population of finite size N

In a population with particle representation given by the Moran model or lookdown model with
selection and mutation with population sizeN ∈ N, at any timet ≥ 0 there a.s. exists a unique
individual whose progeny will take over the whole population at some times> t. All individuals
at times will then have this single individual as their ancestor at timet. Therefore, this individual
is denoted bycommon ancestorat timet. For example, the common ancestor in the Moran model
in Fig. 2.4 (at the time that corresponds to the left-hand side of the picture) is the type-0 individual
located at level 4, and in the lookdown model in Figs. 2.11 and 2.14 (on the left-hand side of both
pictures) it is located at level 1. Since such a common ancestor exists a.s. for all timest > 0, the line
of the common ancestor throughout times is also denoted byimmortal line.

In a population of sizeN, let hN
k be the probability that the common ancestor has type 0 at timet,

given the proportion of type-0 individuals at timet is k/N. As already explained on page 16, in the
case without selection (sN = 0), we havehN

k = k/N, due to exchangeability of the lines.
When selection is present, the type of the immortal line has a tendency towards the beneficial type
such thathN

k > k/N. This scenario was analysed by Kluth, Hustedt and Baake [KHB13] in 2013.
Using ‘first-step analysis’ methods, they derived a system of equations for hN

k [KHB13, Equation
(21)],

(λ N
k +µN

k )h
N
k = λ N

k hN
k+1+µN

k hN
k−1+kuNν1

1−hN
k−1

N− (k−1)
− (N−k)uNν0

hN
k+1

k+1
, 0< k< N,

hN
0 = 0, hN

N = 1.

(2.19)

SubstitutingψN
k = hN

k −k/N, 0≤ k≤N, one can speak ofψN as the additional absorption probability
of type 0 individuals due to selection. Using then the ansatz

ψN
N−k = (N−k)

k

∑
i=1

aN
i

k(k−1) . . .(k− i+1)
N(N−1) . . .(N− i)

(2.20)

gives a recursion for the coefficientsaN
n , 1≤ n≤ N−1, compare [KHB13, Theorem 2],

aN
0 = 1, aN

1 = NψN−1,

(N−n)

[( n
N
+uNν1

)
aN

n −

(
n
N
+

N− (n−1)
N

sN +uN

)
aN

n−1+
N− (n−1)

N
sNaN

n−2

]
= 0, n≥ 2.

(2.21)

Kluth, Hustedt and Baake also show that forN → ∞ andk/N → x, x ∈ [0,1], the equations in their
discrete setting converge to the equations given in the continuous setting andanalysed by Fearnhead
and Taylor. NamelyhN

k = ψN
k + k/N (determined by (2.20)) converges toh(x) (given by Equation

(2.48)) and the system of Equations (2.19) converges the the recursionof Fearnhead’s coefficients
(2.33). The continuous setting with infinite popolation size is presented in the next sections.

2.2.2 The ASG as a backbone for a population of infinite size

In an (infinite size) Wright-Fisher population with selection and mutation, the ASG(started withn
lines) contains all information about the genealogy of a sample ofn individuals. Forσ < ∞, as the
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2.2 The common ancestor type distribution

coalescence rate of the ASG is quadratic but the branching rate only linear, n = ∞ is an entrance
boundary. We can start the ASG at timer =−swith all individuals in the population (infinitely many
lines). Then, for allε > 0, there are only finitely many lines left at time−s+ ε. The ASG is said
to come down from infinity. In addition, the time lengthTUA until all lines have coalesced into one

?

0r TUA

0

0r TMRCA

1

0r TMRCA

Figure 2.16:The time to the ultimate ancestor and the most recent common ancestor of a sample of4 individ-
uals taken at time r= 0 (for simplicity in the case without mutations). Left: ASG (containing all
potential ancestors). The time TUA is the first time at which all lines have merged into one single
line. The types of all individuals are unknown. Middle: Truegenealogy in the case that the type
of the ultimate ancestor is0. The time TMRCA to the most recent common ancestor in this example
coincides with TUA. Right: True genealogy in the case when the type of the ultimate ancestor is
1. In this example we have TMRCA< TUA.

single line (theultimate ancestor) for the first time, satisfiesTUA < ∞ a.s. (compare [KN97, Thm.
3.2]). Note that a common ancestor of the whole population is the single line at time−s+TUA (see
also Fig. 2.16 in the cases= 0). The time−s+TMRCA till the most recentcommon ancestor of the
population (sampled at timer = −s) is bounded by−s+TUA from above. In addition, for all times
r > −s+TMRCA the (unique) line of the common ancestor (the immortal line) is embedded in the
ASG started with the single line at time−s+TUA. Therefore, lettings→ ∞, the immortal line exists
at all times and is included in the ASG started with one single line at timer =−∞. At all timesr ∈R,
the number of lines in this ASG at timer is distributed according to the stationary distribution. Thus,
we term the ASG that is started with one single line at timer =−∞ equilibrium ASG. In some sense,
we can think of the equilibrium ASG as the backbone of the population; eventually, the ancestral line
of any individual sampled at any timer < ∞ coalesces into one line of this ASG a.s. (compare Fig.
2.17).
Since the immortal line is included in the equilibrium ASG at all times, the distribution of the type
of the common ancestor of a stationary Wright-Fisher process can be determined by analysing the
equilibrium ASG instead of regarding the whole population. Such an approach was carried out by
Fearnhead in 2002 [Fea02].

2.2.3 Fearnhead’s approach to the common ancestor type distribution

Fearnhead’s analysis of the type of the immortal line in a stationary Wright-Fisher population starts
with the ASG of Krone and Neuhauser [KN97]. In detail, it starts with the equilibrium ASG. As
Fearnhead wants to determine the distribution of the type of the common ancestor, he does not need
to construct the ancestral graph of a sample of arbitrary size but it suffices to choose sample size
1 (as explained in the last preceding paragraph). The ASG of Neuhauser and Krone is an untyped
branching and coalescing graph: in the first step, each branching event remains unresolved. Without

23



2 Main models and some mathematical background

r

Figure 2.17:The ASG started with one single line at time r= −∞ is a backbone of the population (green
lines). The ancestral lines of all individuals eventually coalesce into this ASG (some ancestral
lines are drawn in black).

types, it is not clear whether the incoming or continuing line is the true parent tothe branching event.
To determine the real branch (i.e. the true ancestral line), types are only assigned to a given realisation
of the ASG. In his graph, instead of using an a priori untyped situation, Fearnhead keeps track of the
types of all lines at all times. This also amounts to keeping track of which branches are virtual (i.e.
those potential ancestors, that turn out to not be ancestral at all) and which branch is the single real
branch (the immortal line). The state space is then{(r;n0,n1) | r ∈ {0,1},n0,n1 ∈N0}, wherer is the
type of the real line, andn0 andn1 are the numbers of virtual lines of types 0 and 1, respectively.
Remember from Equation (2.14) thatp(n0,n1) was the stationary probability of drawing a sample
with n j individuals of type j, j ∈ {0,1}, in a Wright-Fisher population and letp( j | (n0,n1)) :=
p(n0+δ j0,n1+δ j1)/p(n0,n1) be the conditional probability of drawing an individual of typej, given
already a sample of configuration(n0,n1). When the current state is(i;n0,n1), the transition rates of
the typed version of the ASG are then given by11

(a) coalescence of two branches of typej;

transititon to state(i;n0−δ j0,n1−δ j1):

(n j +δi j )(n j +δi j −1)
2

·
p(n0+δi0−δ j0,n1+δi1−δ j1)

p(n0+δi0,n1+δi1)
(2.22)

(b) mutation of the real branch to typek 6= i;

transititon to state(k;n0,n1):

θνi ·
p(n0+δk0,n1+δk1)

p(n0+δi0,n1+δi1)
(2.23)

(c) mutation of a virtual branch from typej to k 6= j;

transition to state(i;n0+δk0−δ j0,n1+δk1−δ j1):

n jθν j ·
p(n0+δi0−δ j0+δk0,n1+δi1−δ j1+δk1)

p(n0+δi0,n1+δi1)
(2.24)

11Note that there are some small typos in the rates of [Fea02, p. 42/43].
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(d) selective event, the incoming branch being of type 1 and the continuing branch of typek;

transition to state(i;n0,n1+1):

(nk+δik)σ ·
p(n0+δi0,n1+1+δi1)

p(n0+δi0,n1+δi1)
(2.25)

(e) selective event, the incoming branch being of type 0 and the continuing of typek;

transition to state(i;n0+δk0,n1+δk1):

(n0+δi0)σ ·
p(n0+δi0+δk0,n1+δi1+δk1)

p(n0+δi0,n1+δi1)
· p
(
k | (n0+δi0,n1+δi1)

)
(2.26)

For a formal derivation of these rates, Fearnhead refers to [SD00, Thm. 1]. Intuitively, the rates are
again evident from a ‘first step decomposition’ according to the first event back in time (compare the
paragraph following Equation (2.15) on page 14).
Theoretically, to find the common ancestor type distribution, one may now calculate the stationary
distribution with respect to these rates and then integrate over the types of thevirtual lines. But as the
rates are rather involved, it is not clear how that should work in practice.

Fearnhead’s idea is then to simplify the typed ASG and arrive at a Markovian process which he calls
common ancestor process(CAP). The CAP arises from the ASG by deleting some virtual lines that
do not influence the evolution of the immortal line. In detail, all virtual lines of type 0 are deleted
from the graph such that only virtual lines of type 1 remain in the ASG. For example, a virtual line
that mutates to type 1 is deleted directly after the mutation and branching events are only allowed to
result in an additional line of type 1. This results in the state space{(r,v) | r ∈ {0,1},v∈ N0}, where
r is the type of the real line andv the number of virtual lines, all of type 1.
If the current state is(r,v), the transition rates of the CAP are given by

(i) mutation of the real branch to typek 6= r;

transititon to state(k,v):

θνr ·
p(δk0,v+δk1)

p(δr0,v+δr1)
(2.27)

(ii) coalescence of two branches of type 0 or mutation of a virtual branch totype 0;

transititon to state(r,v−1):
[
(v+δr1)(v+δr1−1)

2
+vθν1

]
·

p(δr0,v+δr1−1)
p(δr0,v+δr1)

(2.28)

(iii) selective event, the additional branch being of type 1;

transition to state(r;v+1):

(v+1)σ ·
p(δr0,v+1+δr1)

p(δr0,v+δr1)
(2.29)

Rate (i) coincides with rate (b) and rate (iii) with rate (d) of the ASG, rate (ii) arises from rates (a)
and (c). Since branching events with an additional line of type 0 are forbidden in the CAP, rate (e) is
not present among the rates of the CAP.
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2 Main models and some mathematical background

Fearnhead shows that indeed the CAP(R,V), whereR is the type of the real line andV the number
of virtual lines, is a Markov process. In addition, he shows that branches of type 0 (except for the
real line) in the typed ASG contain no further information on the history of the line of the common
ancestor. The ancestry of the immortal line (real line) in the CAP coincides withthe ancestry of the
immortal line in the ASG [Fea02, Thm. 1].

The CAP describes the distribution of the type processRon the immortal line, it is a Markov process
that includes less lines than the ASG, and is therefore an object much simpler toanalyse than the typed
ASG. With the CAP, Fearnhead succeeds to specify the distributionφ(r,v) := P

(
(R,V) = (r,v)

)
of

the type of the common ancestor together with the number of virtual lines in a stationary situation
[Fea02, Theorem 3].
In detail12, for θ > 0 and 0< ν1 < 1, the probability weightsφ of the unique stationary common
ancestor type distribution together with the number of virtual lines is given by

φ(r,v) =
(

av1{r=0}+(av−av+1)1{r=1}

)
·
(v+1)!
(v+δr1)!

p(δr0,v+δr1) (2.30)

with the coefficients(an) given by

a0 = 1, an =
n

∏
j=1

λi , n= 1, . . . , (2.31)

andλi = limk→∞ λ (k)
i specified byλ (k)

k+1 = 0 and the recursion

λ (k)
i−1 =

2σ
i+2θ +2σ − (i+2θν1)λ

(k)
i

, i ≥ 2. (2.32)

For the proof, Fearnhead states that the common ancestor process is irreducible and recurrent and
that

(
φ(r,v)

)
defines a probability distribution. Then, in the main part of the proof, he checks that the

stationarity condition is true,

∑
(r,v)

φ(r,v)q
(
(r,v),(r ′,v′)

)
= 0, for all (r ′,v′) ∈ {0,1}×N0,

whereq
(
(r,v),(r ′,v′)

)
is the ’Q-matrix’ with the rates(i)− (iii ) given by Equations (2.27), (2.28),

and (2.29).
Although this calculation works quite straight forward, a probabilistic interpretation of the coefficients
(λi) or (an) does not become clear from the proof.

Remark 2.1 (Fearnhead’s recursion)Note that the definition of the coefficients(an) in Equations
(2.31)and (2.32)is equivalent to defining them via

(
n+1

2
+θν1

)
an+1−

(
n+1

2
+σ +θ

)
an+σan−1 = 0, n≥ 1, (2.33)

with the constraints a0 = 1, limn→∞
an+1
an

= 0.

12Typographically, the mutation probability ‘ν1’ to type 1 and the variable ‘v’ that stands for the number of virtual lines
may not be easy to distinguish on the first sight. But note that only the mutationprobability,ν1 or ν0, always goes with
an index.
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2.2 The common ancestor type distribution

The coefficients(an) are calledFearnhead’s coefficients. Relation (2.33) is denoted byFearnhead’s
recursion.

Writing out (2.30) for the two casesr = 0 andr = 1 (and using the definition ofp in Equation (2.14))
yields the following representation ofφ ,

φ(0,v) = av ·E [X(1−X)v] ,

φ(1,v) = (av−av+1) ·E
[
(1−X)v+1] .

(2.34)

The stationary distribution of the type of the common ancestor, which we denoteby I , can then be
gained by summing over the number of virtual lines.

P(I = 0) = ∑
v≥0

φ(0,v) = ∑
v≥0

av ·
∫ 1

0
x(1−x)v · (1−x)2θν1−1x2θν0−1exp{2σx} dx,

P(I = 1) = ∑
v≥0

φ(1,v) = ∑
v≥0

(av−av+1) ·
∫ 1

0
(1−x)v+1 · (1−x)2θν1−1x2θν0−1exp{2σx} dx

(2.35)

In [Fea02, Remark 3], Fearnhead gives a simulation algorithm for a stationary realisation of(R,V)
according to 2.34. The ‘Fearnhead simulator’ (as we call it here) works as follows:

1. Start withn= 0 virtual lines.

2. Take one individual at random from the stationary population.

3. If it is of type 0, call it the common ancestor. We have(r,v) = (0,n) and are done.
If it is of type 1,

• call it the common ancestor with probability 1− an+1
an

, we have(r,v) = (1,n) and are done.

• call it a virtual line with probabilityan+1
an

, taken= n+1 and continue with step 2.

2.2.4 Taylor’s approach to the common ancestor type distribution

In 2007, J. Taylor published a new approach to the distribution of the commonancestor’s type in
a stationary Wright-Fisher population [Tay07]. While Fearnhead’s ansatz uses a pruned version of
the ASG with the immortal line evolving in the environment of some virtual lines, Taylor’s concept
starts with a structured coalescent of the immortal line in the random environment of the frequency
of type-0 individuals.

Remember that the frequency processX of type-0 individuals in a Wright-Fisher population with
selection and mutation has drift coefficient(1− x)θν0− xθν1+σx(1− x) and diffusion coefficient
x(1− x). The (forward in time) generatorGX is given by (2.4) and its stationary probability density
w(x) by (2.5). But genealogies evolve backward in time. One important propertyof the Wright-Fisher
diffusion is its invariance under time reversal (compare [BES04, Section 3]). Thus, the backward in
time generator13 ĜX coincides with the forward in time generatorGX.

13Throughout, generators or rates indexed with ˆ are always defined backward in time. The symbol ˆ is used to
distinguish them from the forward in time quantities.
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2 Main models and some mathematical background

In the random environment of the backward in time Wright-Fisher diffusion with mutation and selec-
tion one may consider the dynamics of typed ancestral lines. In a sample(n0,n1) of sizen0+n1, let
n0 andn1 be the number of lines of types 0 and 1, respectively. backward in time, the line counting
process of the sample performs astructured coalescentin the random environmentX with generator
given by (compare [Tay07, eq. (3)])

Ĝ(X,N0,N1) g(x,n0,n1) = GX g(x,n0,n1)

+

(
n0

2

)
1
x

[
g(x,n0−1,n1)−g(x,n0,n1)

]

+

(
n1

2

)
1

1−x

[
g(x,n0,n1−1)−g(x,n0,n1)

]

+n0θν0
1−x

x

[
g(x,n0−1,n1+1)−g(x,n0,n1)

]

+n1θν1
x

1−x

[
g(x,n0+1,n1−1)−g(x,n0,n1)

]
,

(2.36)

with the test functiong ∈ C 2(0,1)×N0 ×N0 and the convention
(1

2

)
=
(0

2

)
= 0. The first part of

(2.36) is the usual Wright-Fisher generator with mutation and selection that acts on the type frequency
process. The parts with binomial factors describe the coalescence of twolines of type 0 or two lines
of type 1, at type-0 frequencyx. Lines of different types are not allowed to coalesce. The last two
terms in (2.36) represent mutations of a line from type 0 to 1 or from 1 to 0. Since we are working
in the typed case, the parent of an individual at a selective event can be determined directly (it is the
incoming branch if and only if the incoming branch is of type 0). Thus, branching events do not
appear here.
We will take a closer look at the shape of the rates ofĜ(X,N0,N1) in Chapter 6 when analysing the triple
process(X,R,V).

For considering the line of the common ancestor, a sample of size 1 (either(n0,n1) = (0,1) or
(n0,n1) = (1,0)) suffices. Note that the evolution of the immortal line coincides with the evolu-
tion of the ancestral line of a randomly sampled individual. This is due to the fact (compare also
Taylor’s explanation [Tay07, p. 817]) that eventually the line of any randomly sampled individual
coalesces into the immortal line.
Taylor expands the process(Xr)r∈R, the frequency of type 0 individuals (evolving backward in time),
by adding the typeRr of the immortal line (real line) at backward timer. This yields the backward in
time generator ([Tay07, eq. (4)])

Ĝ(X,R) g(x,0) = GX g(x,0)+θν0
1−x

x

[
g(x,1)−g(x,0)

]

Ĝ(X,R) g(x,1) = GX g(x,1)+θν1
x

1−x

[
g(x,0)−g(x,1)

]
, g∈ C

2 [0,1]×{0,1} .
(2.37)

Therefore, the process(X,R) backward in time is a jump diffusion process: the type frequency pro-
cessX performs a Wright-Fisher diffusion and the type processR on the real line is a jump process
on{0,1} with rates depending on the current state ofX.
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2.2 The common ancestor type distribution

Let (π(x, r))x∈[0,1],r∈{0,1} be the stationary distribution of(Xr ,Rr). Due to the shape of the generator
Ĝ(X,R), it is possible to write the density in terms of its factors,

π(x, r) = w(x) ·
[
h(x)1{r=0}+(1−h(x))1{r=1}

]
, (2.38)

with w(x) being the equilibrium distribution (2.5) ofX andh(x) again defined as

h(x) := P(immortal line is of type 0 at times | Xs = x) . (2.39)

In order to gain a representation ofh(x), Taylor investigates the stationarity condition. Sinceπ is the
equilibrium distribution forĜ(X,R) it is true that

0= ∑
r∈{0,1}

∫

x∈[0,1]
Ĝ(X,R) g(x, r)π(dx, r) ∀g∈ C

2 [0,1]×{0,1} . (2.40)

Using some algebra and reordering the terms, Taylor proves that Equation(2.40) is equivalent to the
boundary value problem [Tay07, eq. (9)]

GX h(x)−h(x)

[
θν0

1−x
x

+θν1
x

1−x

]
=−θν1

x
1−x

, h(0) = h(1) = 0 . (2.41)

Taylor shows that the solution to (2.41) is unique. Before reviewing this solution, let us mention that
Taylor also calculates the generatorG(X,R) of the process(X,R) forward in time [Tay07, Section 2.2].
This can be done by reversing time with respect to the stationary distributionπ,

∫
g1 · (G(X,R) g2) dπ =

∫
(Ĝ(X,R) g1) ·g2 dπ for all test functionsg1,g2. (2.42)

This results in the following representation of the generatorG(X,R) of the process(X,R) forward in
time,

G(X,R) g(x,0) = GX g(x,0)+x(1−x)
h′(x)
h(x)

g′(x,0) +
x(1−h(x))
(1−x)h(x)

θν1 [g(x,1)−g(x,0)] (2.43)

G(X,R) g(x,1) = GX g(x,1)−x(1−x)
h′(x)

1−h(x)
g′ (x,1) +

(1−x)h(x)
x(1−h(x))

θν0 [g(x,0)−g(x,1)] (2.44)

for all g∈C 2 [0,1]×{0,1}. We will take a closer look at the rates of this generator when investigating
the triple process(X,R,V) in Section 6.4.

To solve the boundary value problem (2.41), Taylor tries the ansatz of using a power series inσ for
h(x). Indeed, the calculations then yield the solution

h(x) = x+2σ
∫ x

0
(x̃−q)exp

(
2σ(q−x)

)(q
x

)2θν0
(

1−q
1−x

)2θν1

dq, (2.45)
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2 Main models and some mathematical background

wherex̃ is the conditional expectation of drawing the third individual in a sample of type0 from a
stationary population given the first two individuals in the sample are of different types,

x̃=

∫ 1
0 q2(1−q)w(q)dq
∫ 1

0 q(1−q)w(q)dq
=

E
[
X2(1−X)

]

E [X(1−X)]
, (2.46)

with the Wright densityw given by (2.5).

The stationary distribution of the typeI of the common ancestor, can then be gained by integrating
over the frequency of type-0 individuals,

P(I = 0) =
∫ 1

0
h(x)w(x)dx,

P(I = 1) =
∫ 1

0

(
1−h(x)

)
w(x)dx.

(2.47)

Comparing his results forh(x) with Fearnhead’s aproach, Taylor shows [Tay07, Lemma 4.1] that the
boundary value problem (2.41) is also solved by the function

h(x) = x+ ∑
n≥1

x(1−x)n ·an, (2.48)

where the coefficientsan are Fearnhead’s coefficients determined by Fearnhead’s recursion(2.33).
Since the solution to the boundary value problem is unique, the right-hand side of (2.45) equals the
right-hand side of (2.48) and we have

x ∑
n≥1

(1−x)n ·an = 2σ
∫ x

0
(x̃−q)exp

(
2σ(q−x)

)(q
x

)2θν0
(

1−q
1−x

)2θν1

dq. (2.49)

With the help of rewritingan,

an =
(−1)n

n!
d
dx

∣∣∣∣
x=1

(

∑
n≥1

an(1−x)n

)
,

and applying some algebra, Taylor develops from (2.49) a representation for a1,

a1 =
2σ

1+2θν1
(1− x̃) . (2.50)

Taking the results of Fearnhead and Taylor together, for each triple of parameters(σ ,θ ,ν0), Fearn-
head’s coefficientsan can be derived recursively via Fearnhead’s recursion (2.33) using the starting
valuesa0 = 1 anda1 as in (2.50). Once the coefficients are calculated, the stationary type distribution
of the common ancestor can be determined either with Fearnhead’s approach via virtual lines (Equa-
tion (2.35)) or with Taylor’s approach via the frequency of type-0 individuals (Equations (2.45) and
(2.47)).
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2.2 The common ancestor type distribution

So far, the results by Fearnhead and Taylor are only valid for Wright-Fisher diffusions with mutation
and selectionwith binary birth events. It is a priori not clear how to extend them toΛ-Wright-Fisher
diffusions with reproduction measureΛ 6= δ0. To some extend, this is due to the fact that so far there
is no explicit probabilistic interpretation of Fearnhead’s coefficientsan in terms of a particle picture.
Since the representation ofh(x) in Equation (2.48) has a somehow geometric structure and we have
an ∈ [0,1] for all n≥ 0, the curiosity of finding a probabilistic meaning for(an)n≥0 strongly motivated
us for discovering the results given in Chapter 4 of this thesis.

A slightly different step towards the interpretation of Fearnhead’s coefficients is done by Kluth,
Hustedt, and Baake in terms of taking limits in the finite population size case. In [KHB13, Theo-
rem 3] they show that recursion (2.21) for the coefficients(aN

n ) in the discrete setting with population
sizeN converges to Fearnhead’s recursion in the limitN → ∞. As reviewed in Section 2.2.1, the
coefficients(aN

n ), 1≤ n≤ N, in the finite population size case appear as factors in Equation (2.20).
They somehow quantify the additional probability for the common ancestor to beof the beneficial
type due to selection(σ > 0) in comparison with the neutral case(σ = 0). They also show that their
representationhN

k = ψN
k with ψ given by (2.20) of the probability that the immortal line is of type

0, given the proportion of type-0 individuals in the size-N population isk/N converges toh(x), as
N → ∞ andk/N → x.
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3 Looking down in the ancestral selection
graph: A probabilistic approach to the
common ancestor type distribution

The results presented in this chapter are based on joint work with Sandra Kluth, Ellen Baake, and
Anton Wakolbinger. They are published in [LKBW15]14.

In this chapter, we deal with a (two-type) Wright-Fisher diffusion with directional selection and two-
way mutation. In detail, we investigateh(x), the probability that among all individuals of today’s
population, the individual whose progeny will eventually take over in the population is of the benefi-
cial type, given today’s frequency of the beneficial type isx. We develop a construction that allows
a transparent derivation of Fearnhead’s coefficients(an), the series coefficients ofh(x), and gives
them a probabilistic meaning. This construction, thepruned lookdown ancestral selection graph(p-
LD-ASG) contains elements of both the ancestral selection graph and the lookdown construction and
includes pruning of certain lines upon mutation.

3.1 Introduction

The understanding of ancestral processes under selection and mutationis among the fundamental
challenges in population genetics. Two central concepts are the ancestral selection graph (ASG) and
the lookdown (LD) construction. The ancestral selection graph ([KN97]; [NK97]; see also [SU86]
for an analogous construction in a diffusion model with spatial structure) describes the set of lines
that are potential ancestors of a sample of individuals taken from a present population. In contrast,
the lookdown construction [DK99b, DK99a] is an integrated representation that makes all individual
lines in a population explicit, together with the genealogies of arbitrary samples.See [Eth11, Chapter
5] for an excellent overview of the area.
Both the ASG and the LD are important theoretical concepts as well as valuable tools in applications.
Interest is usually directed towards the genealogy of a sample, backwardin time until the most recent
common ancestor (MRCA). However, the ancestral line that continues beyond the MRCA into the
distant past is of considerable interest on its own, not least because it links the genealogy (of a sample
from a population) to the longer time scale of phylogenetic trees. The extended time horizon then
shifts attention to the asymptotic properties of the ancestral process. The stationary type distribution
on the ancestral line may differ substantially from the stationary type distribution in the population.
This mirrors the fact that the ancestral line consists of those individuals that are successful in the long
run; thus, its type distribution is expected to be biased towards the favourable types.

14Remember that the scaling of this thesis (including this chapter) is chosen such that the pair coalescence rate is 1 whereas
it is 2 in [LKBW15].
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3 A probabilistic approach to the common ancestor type distribution

When looking at the evolution of the system in (forward) time[0,∞), one may ask for properties of the
so-calledimmortal line, which is the line of descent of those individuals whose offspring eventually
takes over the entire population. In other words, the immortal line restricted to any time interval
[0, t] is the common ancestral line of the population back from the far future. It then makes sense
to consider the type of the immortal line at time 0. To be specific, let us consider aWright-Fisher
diffusion with two types of which one is more and one is less fit. Thecommon ancestor type (CAT)
distributionat time 0, conditional on the type frequencies(x,1−x), then has weights(h(x),1−h(x)),
whereh(x) is the probability that the population ultimately consists of offspring of an individual of
the beneficial type, when starting with a frequencyx of beneficial individuals at time 0.

The quantityh(x) can also be understood as the limiting probability (ass→ ∞) that the ancestor at
time 0 of an individual sampled from the population at the future times is of the beneficial type, given
that the frequency of the beneficial type at time 0 isx. Equivalently,h(x) is the limiting probability
(ass→ ∞) that the ancestor at the past time−s of an individual sampled from the population at time
0 is of the beneficial type, given that the frequency of the beneficial type at time−swasx.

Fearnhead [Fea02] computed the common ancestor type distribution for time-stationary type frequen-
cies, representing it in the form

∫ 1
0 (h(x),1−h(x))w(dx) (wherew is Wright’s equilibrium distribu-

tion) and calculating a recursion for the coefficients of a series representation ofh(x). Later,h(x) has
been represented in terms of a boundary value problem [Tay07, KHB13], see also Section 3.7.

In the case without mutations (in whichh(x) coincides with the classical fixation probability of the
beneficial type starting from frequencyx), Mano [Man09] and Pokalyuk and Pfaffelhuber [PP13]
have representedh(x) in terms of theequilibrium ASG, making use of a time reversal argument (see
Section 3.2.2). However, the generalisation to the case with mutation is anything but obvious. One
purpose of this article is to solve this problem. A key ingredient will be a combination of the ASG
with elements of the lookdown construction, which also seems of interest in its own right.

The chapter is organised as follows. In Section 2, we start by briefly recapitulating the ASG (starting
from the Moran model for definiteness). We then recall the Fearnhead-Taylor representation ofh(x)
and give its explanation in terms of the equilibrium ASG in the case without mutations, inspired by
[PP13]. In Section 3, we prepare the scene by ordering the lines of the ASG in a specific way; in
Section 4, we then represent the ordered ASG in terms of a fixed arrangement of levels, akin to a
lookdown construction. In Section 5, a pruning procedure is describedthat reduces the number of
lines upon mutation. The stationary number of lines in the resulting pruned LD-ASG will provide
the desired connection to the (conditional) common ancestor type distribution. Namely, the tail prob-
abilities of the number of lines appear as the coefficients in the series representation. In Section 6,
the graphical approach will directly reveal various monotonicity properties of the tail probabilities
as functions of the model parameters, which translate into monotonicity properties of the common
ancestor type distribution. Section 7 is an add-on, which makes the connection to Taylor’s boundary
value problem forh(x) explicit; Section 8 contains some concluding remarks.
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3.2 Concepts and models

3.2 Concepts and models

3.2.1 The Moran model and its diffusion limit

Let us consider a haploid population of fixed sizeN ∈ N in which each individual is characterised by
a typei ∈ S:= {0,1}. An individual of typei may, at any instant in continuous time, do either of two
things: it may reproduce, which happens at rate 1/2 if i = 1 and at rate 1/2+sN, sN ≥ 0, if i = 0; or
it may mutate to typej at rateuNν j , uN ≥ 0, 0≤ ν j ≤ 1, ν0+ν1 = 1. If an individual reproduces, its
single offspring inherits the parent’s type and replaces a randomly chosen individual, maybe its own
parent. Concerning mutations,uN is the total mutation rate andν j the probability of a mutation to
type j. Note that the possibility of silent mutations from typej to type j is included.

1

0

0

1

0

0

0

1

0

0

t

Figure 3.1: The Moran model with two-way mutation and selection. The types are indicated for the initial
population (left) and the final one (right). Crosses represent mutations to type1, circles mutations
to type0. Selective events are depicted as arrows with star-shaped heads.

The Moran model has a well-known graphical illustration as an interacting particle system (cf.
Fig. 3.1). The individuals are represented by horizontal line pieces, withforward time running from
left to right in the figure. Arrows indicate reproduction events with the parent at its tail and the
offspring at its head. For later use, we decompose reproduction eventsinto neutral and selective
ones. Neutral arrows appear at rate 1/(2N), selective arrows (those with a star-shaped arrowhead in
Fig. 3.1) at ratesN/N per ordered pair of lines, irrespective of their types. The rates specified above
are obtained by the convention that neutral arrows may be used by all individuals, whereas selective
arrows may only be used by type-0 individuals and are ignored otherwise. Mutations to type 0 are
marked by circles, mutations to type 1 by crosses.

The usual diffusion rescaling in population genetics is applied, i.e. rates are rescaled such that
limN→∞ NsN = σ and limN→∞ NuN = θ , 0≤ σ ,θ < ∞, and time is sped up by a factor ofN. Let
Xt be the frequency of type-0 individuals at timet in this diffusion limit. Then, the process(Xt)t∈R
is a Wright-Fisher diffusion which is characterised by the drift coefficient a(x) = (1− x)θν0 −
xθν1 + x(1− x)σ and the diffusion coefficientb(x) = x(1− x). The stationary densityw is given
by w(x) =C(1−x)2θν1−1x2θν0−1exp(2σx), whereC is a normalising constant (cf. [Dur08, Chapters
7, 8] or [Ewe04, Chapters 4, 5]).
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3 A probabilistic approach to the common ancestor type distribution

3.2.2 The ancestral selection graph

Theancestral selection graphwas introduced by Krone and Neuhauser [KN97, NK97] to construct
samples from a present population, together with their ancestries, in the diffusion limit of the Moran
model with mutation and selection. The basic idea is to understand selective arrows as unresolved
reproduction events backward in time: the descendant has twopotential ancestors, the incoming
branch(at the tail) and thecontinuing branch(at the tip), see also Fig. 3.2. The incoming branch is
the ancestor if it is of type 0, otherwise the continuing one is ancestral. For ahands-on exposition,
see [Wak09, Chapter 7.1].
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Figure 3.2: Incoming branch (I), continuing branch (C), and descendant(D). The ancestor is marked bold.

The ASG is constructed by starting from the (as yet untyped) sample and tracing back the lines of
all potential ancestors. In the finite graphical representation, a neutralarrow that joins two potential
ancestral lines appears at rate 1/N per currently extant pair of potential ancestral lines, then giving
rise to acoalescence event, i.e. the two lines merge into a single one. In the same finite setting, a
selective arrow that emanates from outside the current set ofn potential ancestral lines and hits this
set appears at raten(N−n)sN/N. This gives rise to abranching event, i.e., viewed backward in time,
the line that is hit by the selective arrow splits into an incoming and continuing branch as described
above. Thus, in the diffusion limit, sinceN−n∼ N asN → ∞, the process(Kr)r∈R, whereKr is the
number of lines in the ASG at timer =−t, evolves backward in time with rates

qK(n,n−1) =
1
2

n(n−1), qK(n,n+1) = nσ , n∈ N. (3.1)

At a coalescence event a randomly chosen pair of lines coalesces, whileat a branching event a ran-
domly chosen line splits into two.
The (reversible) equilibrium distribution of the dynamics (3.1) turns out to bethe Poisson(2σ )-
distribution conditioned to{1,2, . . .}, i.e.

P(Kr = n) =
(2σ)n

n!(exp(2σ)−1)
, n∈ N. (3.2)

We may construct theequilibrium ASGas in [PP13] in two stages: first take a random path
(Kr)−∞<r<∞, and then fill in the branching and coalescence events, with a random choice of one
of the Kr lines at each upward jump, and of one of the

(Kr
2

)
pairs at each downward jump of(Kr).

36



3.2 Concepts and models

Mutation events (at ratesθν0 andθν1) are superposed on the lines of the (equilibrium) ASG by Pois-
son processes with ratesθν0 andθν1. Given the frequencyx of the beneficial type at time 0, one then
assigns types to the lines of the ASG in the (forward) time interval[0,∞) by first drawing the types
of the lines at time 0 independently and identically distributed (i.i.d.) from the weights(x,1−x), and
propagates the types forward in time, respecting the mutation events. In this way, the (backward in
time) branching events may now be resolved into the true parent and a fictitiousparent.
Note that there are various ways to illustrate the same realisation of the ASG graphically. See, for
instance, Fig. 3.3, with backward timer running from right to left. The left and right panels of Fig. 3.3
represent the same realisation of the ASG, but differ in the ordering of thelines.

r r

Figure 3.3: Different representations of the same ASG realisation withsuperimposed mutation. All potential
ancestors of the line next to the top in Fig. 3.1 are shown (before resolution into true and fictitious
parents).

3.2.3 The common ancestor

In the population, at any timet, there almost surely exists a unique individual that is, at some time
s> t, ancestral to the whole population; cf. Fig. 3.4. The descendants of this individual become fixed,
and we call it thecommon ancestor at time t. The lineage of these distinguished individuals over time
defines the so-calledancestral(or immortal) line.

t = 0 t

0

1

s

CA

Figure 3.4: The common ancestor at time t= 0 (CA) is the individual whose progeny will eventually fix in the
population (at time s).

Looking at the population at timet, say t = 0, we are interested inh(x), the probability that the
common ancestor is of type 0, givenX0 = x. Equivalently, one may understandh(x) as the probability
that the offspring of all type-0 individuals (regardless of the offspring’s types) will ultimately be
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3 A probabilistic approach to the common ancestor type distribution

ancestral to the entire population, ifX0 = x. The probabilityh(x) does depend on the type-0 frequency
x at that time but not on the time itself. According to previous results by Fearnhead [Fea02] and Taylor
[Tay07], it reads

h(x) = ∑
n≥0

anx(1−x)n, (3.3)

where the coefficientsan, n≥ 0, are characterised by the recursion

(n+1+2θν1)an+1− (n+1+2σ +2θ)an+2σan−1 = 0, n≥ 1 (3.4)

under the constraints
a0 = 1, lim

n→∞

an+1

an
= 0. (3.5)

Also, it is shown in [Fea02] that (3.4) and (3.5) imply

1= a0 ≥ a1 ≥ ·· · , lim
n→∞

an = 0. (3.6)

These results were reviewed by Baake and Bialowons in 2008 [BB08], and re-obtained with the help
of adescendant process(forward in time) by Kluth, Hustedt, and Baake in 2013 [KHB13].
Eq. (3.3) quantifies the bias towards type 0 on the immortal line. Then= 0 term on the right-hand
side of (3.3) isa0x = x, which coincides with the fixation probability in the neutral case (σ = 0).
Indeed, forσ = 0, we havea0 = 1, ai = 0 for i ≥ 1 (this is easily seen to satisfy (3.3) and (3.4)). For
σ > 0, however, allai are positive (again by inspection of (3.3) and (3.4)), and the terms forn≥ 1 in
(3) quantify the long-term advantage of the favourable type.
In order to get a handle on the representation (3.3) and the recursion (3.4) in terms of the equilibrium
ASG, one observes that the type of the common ancestor at timet = 0 may be recovered in the fol-
lowing way. In the equilibrium ASG marked with the mutation events (as describedin Section 3.2.3),
assign i.i.d types to the lines at time 0 and propagate them forward in time, respecting the mutation
events. The immortal line is then encoded in the realisation of the marked ASG.
The event of fixation of the beneficial type is easily described in the case without mutations. First, re-
call that, as stated in Section 3.2.3, the numberK0 of lines in the equilibrium ASG at time 0 is Poisson
distributed with parameter 2σ , conditioned to be positive. Next, observe that, with probability 1, the
equilibrium ASG has bottlenecks, i.e. times at which it consists of a single line. Let t0 be the smallest
among all the non-negative times at which there is a bottleneck (see Fig. 3.5).This way, the unique
individual is identified that is the true ancestor of the single individual at forward timet0 and, at the
same time, of the entire equilibrium ASG at any later time (and ultimately of the entire population).
As observed by Mano [Man09] and Pokalyuk and Pfaffelhuber [PP13], type 0 becomes fixed if and
only if the single line at timet0 carries type 0, and this, in turn, happens if and only if at least one
ancestral line at timet = 0 is of type 0. The latter probability is 1−(1−x)K0, given that the frequency
of type-0 individuals isx at this time. Therefore, with the help of (3.2), the fixation probability can
be obtained as

h(x) = E
(
1− (1−x)K0

)
=

1
exp(2σ)−1 ∑

n≥1

(
1− (1−x)n)(2σ)n

n!
=

1−exp(−2σx)
1−exp(−2σ)

, (3.7)
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3.3 The ordered ASG

0 t0

Figure 3.5: A realisation of the equilibrium ASG, with its first bottleneck (after time0) at time t0.

which coincides with the classical result of Kimura [Kim62]. Puttingγn := P(K0 > n), n ≥ 0, the
left-hand side of (3.7) may also be expressed as

h(x) = ∑
n≥1

(
1− (1−x)n)[

P(K0 ≥ n)−P(K0 ≥ n+1)
]
= ∑

n≥0

γnx(1−x)n,

which is the representation (3.3). (Indeed, one checks readily that the tail probabilitiesγn satisfy the
recursion (3.4) in the caseθ = 0.) The elegance of this approach lies is the fact that one does not need
to know the full representation of the ASG, in particular one does not needto distinguish between
incoming and continuing branches. As soon as mutations are included, however, keeping track of the
hierarchy of the branches becomes a challenge. We thus aim at an alternative representation of the
ASG that allows for an orderly bookkeeping leading to a generalisation of the idea above, and yields
a graphical interpretation of (3.3)-(3.5). This will be achieved in the nextthree sections.

3.3 The ordered ASG

In the previous section, we have reminded ourselves that one may represent the same realisation of
one ASG in different ways. In the following, we propose a construction,which we call theordered
ASG, and which is obtained backward in time from a given realisation of the ASG asfollows (compare
Fig. 3.6).

• Coalescence:Each coalescence event is represented by a (neutral) arrow pointing from the
lower participating line to the upper one. The (single) parental line continuesback in time from
the lower branch.

• Branching: A selective arrow with star-shaped head is pointed towards the splitting line ata
branching event. The incoming branch is always placed directly beneath the continuing branch
at the tail of the arrow; in particular, there are no lines between incoming andcontinuing branch
at the time of the branching event.

• Mutation: Mutations, symbolised here by circles and crosses, occur along the lines as in the
original ASG.
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3 A probabilistic approach to the common ancestor type distribution

r

Figure 3.6: The ordered ASG corresponding to Fig. 3.3 or directly deduced from Fig. 3.1.

The ordered ASG corresponding to both representations in Fig. 3.3 is shown in Fig. 3.6.

3.4 The lookdown ASG

To each point in the ordered ASG, let us introduce two coordinates: itstimeand itslevel, the latter
being an element of{1,2, . . .} which coincides with the number of lines in the ASG. Since this is in
close analogy to ideas known from the lookdown processes by Donnelly and Kurtz [DK99b, DK99a],
we call this construction thelookdown ASG (LD-ASG). It can be obtained backward in time from a
given realisation of the ordered ASG, or it may as well be constructed in distribution via Poissonian
elements representing coalescence, branching, and mutation. The two possibilities are described in
Sections 3.4.1 and 3.4.2, respectively.

3.4.1 Construction from a given realisation of the ordered ASG

Backward in time, the realisation of the LD-ASG corresponding to a given realisation of the ordered
ASG is obtained in the following way. Start with alln individuals (respectively lines) that are present
in the (ordered) ASG and place them at levels 1 ton by adopting their vertical order from the ordered
ASG. Then let the following events happen (backward in time):

• Coalescence:Coalescence events between levelsi and j > i are treated the same way as in the
ordered ASG: The remaining branch continues at leveli. In addition, all lines at levelsk > j
are shifted one level downwards tok−1 (cf. Fig. 3.7, left).

• Branching: A selective arrow with star-shaped head in the ordered ASG is translated into a
star at the leveli of the branching line. The incoming branch emanates out of the star at the
same level and all lines at levelsk≥ i are pushed one level upwards tok+1. In particular, the
continuing branch is shifted to leveli+1 (cf. Fig. 3.7, right).

• Mutation: Mutations (symbolised again as circles and crosses) are taken from the ordered ASG.

Fig. 3.8 gives a realisation that corresponds to the realisation of the ordered ASG in Fig. 3.6. Note
that we obviously have a bijection between realisations of the ordered ASG and the LD-ASG and that
the LD-ASG is just a neat arrangement of the ordered ASG.
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3.4 The lookdown ASG

Figure 3.7: Coalescence (left) and branching event (right) in the LD-ASG.
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Figure 3.8: LD-ASG corresponding to Fig. 3.6. Levels are numbered from bottom to top.

3.4.2 Construction from elements of Poisson point processes

The LD-ASG may, in distribution, as well be constructed backward in time via theelements ‘arrows’,
‘stars’, ‘circles’, and ‘crosses’ arising as representations of independent Poisson point processes:

• Coalescence:For each ordered pair of levels(i, j), wherei < j and level j is occupied by a
line, arrowsfrom level i to j emerge independently according to a Poisson point processΓ↑

i j at
rate 1. An arrow fromi to j is understood as a coalescence of the lines at levelsi and j to a
single line on leveli. In addition, all lines at levelsk > j are shifted one level downwards to
k−1 (cf. Fig. 3.7, left).

• Branching: On each occupied leveli stars appear according to independent Poisson point
processesΓ∗

i at rateσ . A star at leveli indicates a branching event, where a new line, namely
the incoming branch, is inserted at leveli and all lines at levelsk ≥ i are pushed one level
upwards tok+ 1. In particular, the continuing branch is shifted to leveli + 1 (cf. Fig. 3.7,
right).

• Mutation: Mutations to type 0 and type 1, i.e. circles and crosses, occur via independent
Poisson point processesΓ◦

i at rateθν0 andΓ×
i at rateθν1, respectively, on each occupied level

i.

The independent superposition of these Poisson point processes andtheir effects on the lines charac-
terises the LD-ASG. Recall that(Kr)r∈R is the line counting process of the (ordered) ASG and thus
Kr is also the highest occupied level of the LD-ASG at timer. It evolves backward in time with
transition rates given by (3.1).
Note that, although we will ultimately rely on the ASG in equilibrium only, neither the ordering of
the ASG nor the LD-ASG construction are restricted to the equilibrium situation.The equilibrium
comes back in when we search for the immortal line, which will be done next.
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3 A probabilistic approach to the common ancestor type distribution

3.4.3 The immortal line in the LD-ASG in the case without mutations

We consider a realisationG of the equilibrium LD-ASG, writeKr for its highest occupied level at
(backward) timer, and again write

t0 = t0(G ) :=−sup{r ≤ 0 : Kr = 1} (3.8)

for the smallest (forward) time at whichG has a ‘bottleneck’, see Fig. 3.9.
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Figure 3.9: LD-ASG (without mutations) corresponding to Fig. 3.6. The immune line is marked bold.

The level of the immortal line at time 0 does not only depend onG , but also on the typesI1, . . . , IK0 ∈
{0,1} that are assigned to the levels 1,2, . . . ,K0 at time 0. We now define a distinguished line which
we call theimmune line. The reason for this naming will become clear in the next section: the immune
line will be exempt from the pruning.

Definition 3.1 At any given time, theimmune lineis the line that will be immortal if all lines at that
time are of type 1.

The following is immediate from the construction of the LD-ASG: back from each bottleneck ofG ,
the immune line goes up one level at each branching event that happens ata level smaller or equal to
its current level, and follows the coalescence events in a lookdown manner, see the bold line in the
right panel of Fig. 3.10. In particular, the immune line follows the continuing branch whenever it is
hit by a branching event at its current level.
The next proposition is illustrated by Fig. 3.10.

Proposition 3.2 In the absence of mutations, for almost every realisationG of the equilibrium LD-
ASG with types assigned at time0, the level of the immortal line at time0 is either the lowest type-0
level at time0 or, if all lines at time0 are of type1, it is the level of the immune line at time0.

Proof. We proceed by induction along the Poissonian elements “branching” and “coalescence” de-
scribed in Sec. 3.4.2, backward fromt0, the first time after time 0 at which the number of lines inG is
one. Lettk < 0< tk−1 < · · ·< t0 be the times at which these elements occur (note that for almost every
realisationG the numberk is finite, and all thet j are distinct) and choose times 0=: sk < · · · < s0

with t j < sj < t j−1, 1≤ j ≤ k. We claim that for allj = 1, . . . ,k, when assigning types at timesj , the
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3.5 The pruned equilibrium LD-ASG and the CAT distribution

level of the immortal line at timesj is either the lowest type-0 level at timesj or, if all lines at timesj

are of type 1, it is the level of the immune line at timesj .
The assertion is obvious forj = 1, since by assumption no event has happened betweens1 andt0.
Now consider the induction step fromj to j +1. If all lines at timesj+1 are assigned type 1, then
the level of the immortal line at timesj+1 is by definition that of the immune line at timesj+1. Now
assume that at least one line at timesj+1 is assigned type 0. If the event at timet j was a coalescence
(such as the leftmost event in Fig. 3.10), then by the induction assumption the level of the immortal
line at timesj+1 is the lowest type-0 level at timesj+1 (this is because the types are propagated along
the lines, in particular along the line at the tail of the arrow). If, on the other hand, the event at time

0

1
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0/1 1
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1

r

Figure 3.10:LD-ASG with types. The level of the immortal line (solid) starting out from time0 depends on the
type assignment at time0. The immune line is marked bold (and is the immortal line in the right
picture).

t j was a branching, then again by the induction assumption and by the “peckingorder” illustrated
in Fig. 3.11, the level of the immortal line at timesj+1 is the lowest type-0 level at timesj+1. This
completes the proof of the proposition. �
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Figure 3.11:Branching event in the LD-ASG. The four possible combinations of types are shown (in analogy
with Fig. 3.2). The parental branch (bold line) is the incoming one (upper two diagrams) if it is
of type0, and the continuing one (lower two diagrams) if the incomingbranch is of type1.

Proposition 3.2 specifies the immortal line in the case of selection only. The aim in the next section
is to establish an analogous statement in the case of selectionandmutation.

3.5 The pruned equilibrium LD-ASG and the CAT distribution

We now consider the equilibrium LD-ASG marked with the mutation events. Working backward
from the bottleneck timet0 (see Eq. (3.8) and Figs. 3.8 and 3.9), we see that the mutation events that
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3 A probabilistic approach to the common ancestor type distribution

occur along the lines may eliminate some of them as candidates for being the immortalline. Cutting
away certain branches that carry no information has been used, explicitlyor implicitly, in various
investigations of the ASG (e.g. by Slade [Sla00], Fearnhead [Fea02], Athreya and Swart [AS05], and
Etheridge and Griffiths [EG09]), but our construction requires a specific pruning procedurewhich we
now describe.

3.5.1 Pruning the LD-ASG

In addition to the eventsbranchingandcoalescencewe now have thedeleterious mutationsand the
beneficial mutations. As in the proof of Proposition 3.2, lettk < 0 < tk−1 < · · · < t0 be the times
at which all these events occur, and choose times 0=: sk < · · · < s0 with t j < sj < t j−1, 1≤ j ≤ k.
Assume branching and coalescence events (but no mutation events) happen at the timest1, . . . , ti−1,
and a mutation event happens at timeti . Recall from Definition 1 that at any given time the immune
line is the line that will be immortal if all lines at that time are of type 1; but now the rulefor the
immune line must be adapted due to the impact of mutations. First consider the casein which our
first mutation is deleterious (symbolised by a cross). Since there is no mutation between timesti and
t0, Proposition 3.2 applies (with time 0 replaced by timesi+1), showing that the line that is hit by the
deleterious mutation at timeti cannot be the immortal one unless it is the immune line. In our search
for the true ancestor of the line that goes back from timet0 we can thereforeerasethe line segment to
the left ofti , unless the line in question is the immune one; all lines above the one that is erased slide
down one level to fill the space, see Fig. 3.12 (left). If the immune line is hit by adeleterious mutation
at ti , it is the immortal line at timesi+1 if and only if all the other lines at timesi+1 are of type 1. In
order to tie in with our picture that the level of the immortal line at any time is the lowestlevel that
is assigned type 0 (given there is at least one lineage at this time that is assigned type 0), werelocate
our mutated immune line to the currently highest level of the LD-ASG at timeti , whereby the levels
of all the other lines that were above the immune line at timesi are shifted down by 1 (compare Fig.
3.13).
Next consider the case in which the mutation occurring at timeti is beneficial (symbolised by a circle)
and happens at levelℓ, say. Then, again appealing to Proposition 3.2, we see that none of the lines that
occupy levels> ℓ at timeti can be parental to the single line that exists at timet0. We can therefore
erase all these lines from the list of candidates for the ancestors. We indicate this by inserting a barrier
of infinite height above the circle, see Fig. 3.12 (right). If all lines at timesi+1 are assigned type 1,
then the line on levelℓ becomes the only one that carries type 0 at timesi and therefore is immortal.
Thus, the immune line is relocated to levelℓ at timeti .

Figure 3.12:Pruning procedure in the LD-ASG due to deleterious (left) and beneficial (right) mutations that
appear on lines that are not immune.
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Figure 3.13:Relocation procedure in the LD-ASG due to deleterious mutations on the immune line (bold).

Proceeding to the next mutation event on the remaining lines back from timeti (which happens at
time tm at levelℓ′, say), we can iterate this procedure: if the mutation is deleterious, the line is killed
unless it is the immune one. If the immune line is hit by a deleterious mutation, then it is relocated to
the currently highest level of the LD-ASG. If the mutation is beneficial, all thelines at higher levels
are killed, with the line starting back fromtm at levelℓ′ being declared the new immune line.
Having worked back tot = 0, we arrive at thepruned LD-ASGbetween times 0 andt0. Note that
except for the immune line, due to the pruning procedure there are no mutations on any line of the
pruned LD-ASG. In other words, each line present at time 0 is either the immune line, or has no mu-
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Figure 3.14:Pruned LD-ASG derived from Fig. 3.8. The immune line is marked bold.

tations on it between times 0 andζ , whereζ is the time when that line was incoming to a branching
event with the immune line. Note also that beneficial mutations can only be present on the current
top level of the pruned LD-ASG.

As in Section 3.4.2 we can construct the pruned LD-ASG (together with the level of the immune line)
backward in time in a Markovian way, using the Poisson processesΓ↑

i j andΓ∗
i (for all occupied levels

i and j, cf. Fig. 3.7), andΓ×
i andΓ◦

i , where the pruning procedure is applied as described above (cf.
Fig. 3.12). Fig. 3.14 gives a realisation that corresponds to the realisationof the LD-ASG in Fig. 3.8.

3.5.2 The line-counting process of the pruned LD-ASG

The construction of the previous subsection shows that the process(Lr)r∈R, whereLr is the level of
the top line(which coincides with the number of lines) at the backward timer = −t, evolves with
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3 A probabilistic approach to the common ancestor type distribution

transition rates

qL(n,n−1) =
1
2

n(n−1)+(n−1)θν1+θν0,

qL(n,n+1) = nσ ,

qL(n,n− ℓ) = θν0, 2≤ ℓ < n, n∈ N.

(3.9)

In words, when the top level is currentlyn, it decreases by one when either a coalescence event
happens between any pair of lines (raten(n−1)/2), or one of then−1 lines that are not immune
experiences a deleterious mutation (rate(n−1)θν1), or linen−1 experiences a beneficial mutation
(rateθν0). The top level increases by one when one of the lines branches (ratenσ ). It decreases by
ℓ, 2≤ ℓ < n, when leveln− ℓ experiences a beneficial mutation (rateθν0) .

Remark 3.3 The process L is stochastically dominated by the process K (the highest level of the
unpruned LD-ASG). In fact, using the above-described pruning procedure in a time-stationary picture
between all the bottlenecks of the equilibrium ASG line counting process K= (Kr)r∈R, we obtain that
Lr ≤ Kr for all r ∈ R.

The stochastic dynamics induced by (3.9) thus has a unique equilibrium distribution, which we denote
by ρ. In the following, letL = (Lr)r∈R be the time-stationary process with jump rates (3.9). We then
have

ρn = P(L0 = n), n∈ N, (3.10)

andρ = (ρn) is the probability vector obeying

ρQ= 0, (3.11)

with Q being the generator matrix determined by the jump rates (3.9).

3.5.3 The type of the immortal line in the pruned LD-ASG

We will now show that the type of the immortal line at time 0 is determined by the type configuration
assigned at time 0 in a way quite similar to the case without mutations.

Theorem 3.4 For almost every realisationG of the pruned equilibrium LD-ASG with types assigned
at time0, the level of the immortal line at time0 is either the lowest type-0 level at time0 or, if all
lines at time0 are of type1, it is the level of the immune line at time0. In particular, the immortal
line is of type1 at time0 if and only if all lines inG at time0 are assigned the type1.

Proof. We proceed by induction along the Poissonian elements described in Sec. 3.5.1 backward
from t0, the first time after time 0 at which the number of lines inG is one. As in Sec. 3.5.1, let
tk < 0< tk−1 < · · ·< t0 be the times at which these elements occur, and choose times 0=: sk < · · ·< s0

with t j < sj < t j−1, 1≤ j ≤ k. We will prove that for allj = 1, . . . ,k the level of the immortal line at
time sj is either the lowest type-0 level at time 0 or, if all lines at timesj are of type 1, it is the level
of the immune line at timesj .
If the event that occurs att j is a branching or a coalescence, then the induction step fromj to j +1 is
precisely as in the proof of Proposition 3.2. If the event at timet j is a deleterious mutation, then we
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distinguish two cases. In the first case, assume that this deleterious mutation happens on the immune
line. Then, according to the rule prescribed in Sec. 3.5.1, the immune line is relocated to the top level
of G at timet j (compare Fig. 3.13). If there is a line that is assigned type 0 at timesj+1, then the
immortal line at timesj+1 is found at the lowest type-0 level. (In particular, if the uppermost line at
time sj+1 is assigned type 0, then it is the immortal line if and only if all other lines at timesj+1 are
assigned type 1. This is due to the deleterious mutation at timet j and the relocation to the top level.)
In the second case assume that the deleterious mutation happens on a line different from the immune
one. Then the number of lines at timesj+1 is one less than the number of lines at timesj ; more
specifically, all the lines from timesj+1 can be found in the same order also at timesj , and in addition
at timesj there is one line carrying type 1 which cannot be ancestral since it is not the immune line.
Thus the induction assumption from timesj carries over to give the required assertion for timesj+1.
Finally, assume that the event at timet j is a beneficial mutation. In this case, if at timesj+1 type 0 is
assigned to a levelℓ that is occupied by one of the lines that remain after the pruning at timet j , and
if all the levels belowℓ are assigned type 1, then we can infer from the induction assumption that the
line at levelℓ at timesj+1 is the immortal one. On the other hand, if all the lines that remain at time
sj+1 are assigned type 1, then, because of the beneficial mutation at timet j , the top line at timesj+1

is the immortal one, and due to our relocation rule this is also the immune line at timesj+1. Thus, the
induction step is completed, and the theorem is proved. �

3.5.4 The CAT distribution via the pruned equilibrium LD-ASG

With the help of Theorem 3.4, it is now possible to provide an interpretation of the probabilityh(x)
that the common ancestor is of type 0, given that the frequency of the beneficial type at time 0 isx.

Theorem 3.5 Given the frequency of the beneficial type at time0 is x, the probability that the common
ancestor at time0 is of beneficial type is

h(x) = ∑
n≥1

x(1−x)n−1
P(L0 ≥ n), (3.12)

where L0 is the number of lines at time0 in the time-stationary pruned LD-ASG, see formula(3.10).

Proof. Let Ik ∈{0,1} be the type that is assigned to the individual at levelk∈{1, . . . ,L0} in the pruned
equilibrium LD-ASG at time 0. According to Theorem 3.4, the event that the common ancestor at
time 0 is of type 0 equals the event that at least one of theIk, k ∈ {1, . . . ,L0}, is 0. Conditional on
the initial frequency of the beneficial type beingx, these types are assigned in an i.i.d. manner with
P(Ik = 0) = x. The quantityh(x) thus is the probability that at least one of a random number of
i.i.d. trials is a success, where the success probability isx in a random number of trialsL0 (which is
independent of the Bernoulli sequence with parameterx). A decomposition ofh(x) according to the
first level which is occupied by type 0 yields

h(x) = ∑
n≥1

P(In = 0, Ik = 1 ∀k< n, L0 ≥ n)

= ∑
n≥1

P(In = 0, Ik = 1 ∀k< n) P(L0 ≥ n).
(3.13)
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The right hand side of (3.13) equals that of (3.12), which completes the proof of the theorem. �

To compare (3.12) with (3.3), we rewrite its right-hand side as∑n≥0x(1− x)n
P(L0 ≥ n+ 1). It is

then clear from the comparison with (3.3) that the tail probabilitiesαn := P(L0 > n),n ≥ 0, agree
with Fearnhead’s coefficientsan. They must therefore obey the recursion (3.4). The proof of the
following proposition gives a direct argument for this.

Proposition 3.6 The tail probabilitiesαn = P(L0 > n), n≥ 0, obey the recursion(3.4).

Proof. Let ρ = (ρn) be the probability vector determined by (3.11). We then have

αn = ∑
i>n

ρi , n∈ N0 . (3.14)

Forn≥ 2, thenth entry of the vectorρQ is

(ρQ)n = ρn−1qL(n−1,n)+ρn+1qL(n+1,n)+ ∑
j≥n+2

ρ jqL( j,n)

−ρn

[
qL(n,n−1)+qL(n,n+1)+

n−2

∑
ℓ=0

qL(n, ℓ)

]
.

Thus, plugging in the jump rates (3.9), Eq. (3.11) is equivalent to

0= ρn−1(n−1)σ +ρn+1

[
1
2

n(n+1)+nθν1

]
+θν0 ∑

j≥n+1

ρ j

−ρn

[
1
2

n(n−1)+(n−1)θ +nσ
]
, n≥ 2.

Writing this in terms of the tail probabilities (3.14), rearranging terms, and shifting the index, we
obtain

0= n{−αn [n+1+2θ +2σ ]+αn+1 [n+1+2θν1]+αn−12σ}

+(n+1){αn+1 [n+2+2θ +2σ ]−αn+2 [n+2+2θν1]−αn2σ} , n≥ 1,

which we abbreviate by
n(αF)n = (n+1)(αF)n+1

with the (tridiagonal) matrixF that appears in the recursion (3.4). In view of these equalities, the
proposition is proved if we can show that limn→∞ n(αF)n = 0, or, even better, that

lim
n→∞

n2αn = 0. (3.15)

To see (3.15), recall that as stated in Remark 3.3,L0 is stochastically dominated by the numberK0 of
lines in the equilibrium ASG, which has distribution (3.2). In particular,L0 has a finite third moment.
From this, (3.15) is immediate since for any non-negative integer-valued random variableξ one has
E[ξ (ξ −1)(ξ −2)] = 3∑∞

n=0n(n−1)P(ξ > n). Thus, Proposition 3.6 is proved. �

The proof of Proposition 3.6 allows us to conclude the following
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Corollary 3.7 The solution(an) of (3.4) and (3.5) is also characterised by(3.4) together with the
constraint(3.6).

Proof. The constraint (3.6) ensures thatrn := an−1−an, n≥ 1, rn are probability weights onN. Start-
ing from (3.4) and working back in the proof of Proposition 3.6 we arriveat Eq. (3.11), which (by
irreducibility and recurrence ofQ) has a unique solution among all the probability vectors onN. This
shows that the solution of the recursion (3.4) is unique also under the constraint (3.6). �

It is worth noting that property (3.5) must hold for the tail probabilities
αn = P(L0 > n), n ≥ 0, as well since they agree with thean. This translates into an assertion on
the asymptotics of the hazard function ofL0:

lim
n→∞

P(L0 = n+1|L0 > n) = 1− lim
n→∞

P(L0 > n+1|L0 > n) = 1− lim
n→∞

αn+1

αn
= 1.

3.6 Monotonicities in the model parameters

The (conditional) probabilityh(x) that the immortal line at time 0 carries the beneficial type does
not only depend on the frequencyx of this type but also on three parameters: selection coefficientσ ,
mutation rateθ , and mutation probabilityν1 to the deleterious type. As shown in Fig. 3.15, some
monotonicity properties apply. Sinceh(x) = ∑n≥0 αnx(1−x)n depends on the tail probabilities(αn)
monotonically, an increase ofαn for all n∈ N yields an increase ofh(x) as well. Let us now explain
how the dependence of the tail probabilities on the three parameters can be understood in terms of the
pruned equilibrium LD-ASG.
To this end, we consider the tail probabilities as functions of the parameters,i.e.,αn = αn(σ ,θ ,ν1).

• If σ1 > σ2, thenαn(σ1,θ ,ν1) > αn(σ2,θ ,ν1). This is due to the fact that higher selection
coefficients result in higher intensities of the Poisson point processΓ∗ of stars (compare Sec-
tion 3.4.2). Since each star indicates the birth of a line in the pruned LD-ASG, indistribution
more lines are born, which increases the tail probabilities of the top levelL0.

• For θ1 > θ2, one observesαn(σ ,θ1,ν1)< αn(σ ,θ2,ν1). This is because each mutation results
in deleting lines from the pruned LD-ASG (unless it is a deleterious mutation on the immune
line or a beneficial mutation on the top line), and a higher mutation rate results in more lines
being cut away (in distribution). This decreases the tail probabilities forL0.

• For ν1,1 > ν1,2, one hasαn(σ ,θ ,ν1,1) > αn(σ ,θ ,ν1,2). The reason is that increasingν1 (at
constantθ ) means replacing each circle in a realisation of the Poisson point processes Γ◦ by a
cross (with a given probability), which thus adds toΓ×. Since the pruning procedure can cut
away more than one line at each circle but at most one line at each cross, we get, in distribution,
more lines at higherν1, which explains the increased tail probabilities.

To summarise: For fixedx, the quantityh(x), as a function of one of the parametersσ , θ , andν1

(with the other two parameters being fixed), is strictly increasing inσ , strictly decreasing inθ and
strictly increasing inν1. We will comment on the third of these monotonicity relations in Sec. 3.7.2.
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3 A probabilistic approach to the common ancestor type distribution

Figure 3.15:Probability h(x) that the immortal line at time0 carries the beneficial type, given the frequency
of this type is x (top), tail probabilitiesαn = P(L0 > n), n≥ 0, of the stationary distribution of the
highest occupied level in the pruned LD-ASG (middle), and probability weightsρn = P(L0 = n)
(bottom), n≥ 1. Results are shown for different combinations of selectioncoefficientσ , mutation
rate θ , and mutation probabilityν1 to type1.
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3.7 Taylor’s representation of the CAT distribution via a boundary value problem

An illustration of the probability weights(ρn) of L0 (i.e.,ρn = an−1−an,n≥ 1) for various parameter
combinations is also included in Fig. 3.15 (bottom).

3.7 Taylor’s representation of the CAT distribution via a boundary
value problem

Taylor [Tay07] shows by analytic methods (see also [KHB13]) that the (conditional) common ances-
tor type probabilitiesh(x) arise as the solution of the boundary value problem

Ãh(x) = 0, 0< x< 1 (3.16)

lim
x→0

h(x) = 0, lim
x→1

h(x) = 1, (3.17)

where, forφ ∈C2([0,1],R),

Ãφ(x) = Aφ(x)+θν0
1−x

x

(
φ(0)−φ(x)

)
+θν1

x
1−x

(
φ(1)−φ(x)

)
, (3.18)

andA is the generator of the Wright-Fisher diffusion

Aφ(x) :=

(
1
2

x(1−x)
d2

dx2 +(θν0(1−x)−θν1x+σx(1−x))
d
dx

)
φ , (3.19)

see [Tay07, Proposition 2.4]. Together with his Proposition 2.5, Taylor then suggests the following
interpretation of (3.16): Given the frequency of the beneficial type at time0 isx, sample two lineages
at time 0, one of the beneficial type and one of the unfavourable type, andtrace them back into the
past. He writes: “By comparing this generator with that of the structured coalescent for a sample
of size 2 ... [with two different alleles], it is evident that the type of the common ancestor has the
same distribution as the type of the sampled lineage which is of the more ancient mutant origin.”
While Taylor here proposes to take the type frequency path observed from time 0 back into the
past as a background process for the structured coalescent, his idealeads to a direct derivation and
interpretation of (3.16) after a time reversal and a time shift (see Fig. 3.16).We take the chance to
briefly explain this derivation here, as an add-on to [Tay07] and to the approach developed in the
previous sections. For this we start from the illustration in the right part of Fig. 3.16.

3.7.1 A representation of h(x) as a hitting probability

Let us fix x ∈ (0,1) and consider the following two-stage experiment: In the first stage, generate a
random Wright-Fisher pathX = (Xt)t≥0 started inX0 = x with generator (3.19). In the second stage,
givenX, we consider the ancestral lineage of an individual sampled at random from the population at
a late times> 0. For 0≤ u≤ s, let Js

s−u be the type of that lineage at times−u, i.e. u units of time
back from the time of sampling. In particular,Js

s ∈ {0,1} is the type at time 0. We abbreviateb(x) :=
(1−x)/x. Then, conditioned on the pathX = (Xt)t≥0 of the frequency of the beneficial type, the
dynamics ofJs := (Js

u)0≤u≤s arises when restricting the structured coalescent investigated by Barton,
Etheridge and Strum [BES04] and Taylor [Tay07] to a single ancestral lineage: It is a{0,1}-valued
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X−s = x

t t = 0

(Xt)

Tt =−s

(Xt)

tt = 0

X0 = x

T t = s

Figure 3.16:Taylor’s interpretation of(3.16) after a time-reversal (between t= −s and t= 0) (left) and a
time shift by s (right), see Sec. 3.7.1. The type frequency path X of the beneficial type figures
as a background process. In this realisation, the type of thecommon ancestor is0 because the
(backward in time) jump at time T is to type0.

jump chain with time-inhomogeneous backward-in-time jump ratesλ 0,X
t := θν0b(Xt) from 0 to 1 and

λ 1,X
t := θν1/b(Xt) from 1 to 0 at timet = s−u∈ [0,s], compare Fig. 3.16, right part. Conditioned on

X, the processesJs, s> 0, can be coupled, i.e. constructed on the same probability space, by using
two independent Poisson point processesΠ0,X andΠ1,X onR+ with time-inhomogeneous intensities
λ 0,X andλ 1,X. This coupling works as follows: backward in time, each of the processesJs jumps to
1 at any pointτ0 < s of Π0,X (or remains in 1 if it was already there), and jumps to 0 at any point
τ1 < sof Π1,X (or remains in 1 if it was already there). Let us note that such a coupling would not be
possible if one considers the time intervals[−s,0] as in Fig. 3.16, right part, since then the distribution
of (an initial piece of)X would vary withs. Thus, while the interpretation that goes along with the left
part of Fig. 3.16 is more appealing from a biological point of view, the (mathematically equivalent)
picture after the translation to the time interval[0,∞) (Fig. 3.16, right part) makes the analysis more
convenient.
In the above-described coupling, the common ancestor at time 0 is of type 0 if and only if lims→∞ Js

s =
0, which happens if and only if the point in the union ofΠ0,X andΠ1,X that is closest to 0 belongs to
Π1,X. As a matter of fact, such a closest point to 0 exists: sinceX0 = x ∈ (0,1) and since the rates
λ 0,X andλ 1,X are bounded as long asX is bounded away from the points{0,1}, there is a minimal
point T0 in Π0,X and a minimal pointT1 in Π1,X. Let T := min{T0,T1}. We have thus derived the
representation

h(x) = Ex [P(T = T1 | X)] . (3.20)

Now consider a jump-diffusion process̃X with generator̃A that starts inx, and letT̃ be the time of its
first jump to the boundary. We then claim that

(
(Xt)0≤t<T ,I{T=T1}

)
d
=
(
(X̃t)0≤t<T̃ , X̃T̃

)
, (3.21)

whereI is the indicator function.
To see this equality in law, recall that, givenX, points ofΠ0,X arrive at rateλ 0,X, while a jump ofX̃
to the boundary point 0 occurs at rateλ 0,X̃, and that, givenX, points ofΠ0,X arrive at rateλ 0,X, while
a jump ofX̃ to the boundary point 1 occurs at rateλ 1,X̃.
In view of (3.21), the representation (3.20) translates into
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3.8 Conclusion

h(x) = Px(X̃T̃ = 1). (3.22)

This shows thath is a hitting probability ofX̃, and thus satisfies the Dirichlet problem (3.16). The
boundary conditions (3.17) are explained by the fact that the jump ratesθν0b(x) and θν1b(x)−1

converge to∞ asx converges to 0 and 1, respectively.
Thus the “forward picture” of Fig. 3.16 leads to the same characterisation of h (in terms of a hitting
probability of a jump-diffusion process) as Taylor’s above-mentioned “backward picture”. The rea-
son for this is the time-reversibility of the one-dimensional Wright-Fisher diffusion. This symmetry
breaks down when the allele frequency dynamics are not invariant under time reversal (e.g., with
multiple alleles and parent-dependent mutation). Still, a two-stage construction along the lines of
Fig.3.16 might, in connection with a suitable “coupling from the future”, lead to a related (but then
more complicated) characterisation of the multitype analogue ofh(x).

3.7.2 Discussion of monotonicities in the parameter ν1

We have proved in Sec. 3.6 thath(x) is monotonically increasing inν1 (for every fixedx). At first
sight, this may seem paradoxical: how can it be that an increase in the mutation rate towards the
disadvantageous type increases the probability that the common ancestor is of the beneficial type?
The representation (3.20) resolves at least part of this paradox:
For fixed X, an increase ofν1 yields an increase ofλ 1,X and a decrease ofλ 0,X. This results in
an enhancement ofP(T = T1 | X). In other words, givenX, the intensity of mutations “back to the
beneficial type” increases asν1 increases.
Since, underPx, Xt (for t > 0) has a tendency to become smaller asν1 increases, the monotonicity
of (3.20) for fixedX is not quite sufficient to prove the monotonicity ofh(x). Still, the explanation
invoking the intensity of mutations “back to the beneficial type” gives some intuition whyh(x) should
be increasing inν1 - a result which we have derived in Sec. 3.6 via the line counting process of the
pruned equilibrium ASG.
Let us now turn to the common ancestor type distribution. To this end, we make thedependence of
the stationary density onX (mentioned at the end of Sec. 3.2.1) explicit and denote it bywν1(x),
0 < x < 1. Considergν1 :=

∫
[0,1]hν1(x)wν1(x)dx, that is the probability that, in the equilibrium of

X, the common ancestor’s type is beneficial. We now have two opposing monotonicities: On the
one hand,hν1(x) increases with bothν1 andx; on the other hand, largerx get lower weight under
wν1(x)dxasν1 increases. The monotonicity ofgν1 is therefore not obvious. As noticed by Jay Taylor,
it is plausible to conjecture thatgν1 should be decreasing withν1, which then would be an instance of
Simpson’s paradox.

3.8 Conclusion

The aim of this contribution was to find a transparent graphical method to identify the common
ancestor in a model with selection and mutation, and in this way to obtain the type distribution on
the immortal line at some initial time, given the type frequencies in the population at that time.
This ancestral distribution is biased towards the favourable type. This bias, which is quantified in
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3 A probabilistic approach to the common ancestor type distribution

the series representation (3.3), reflects its increased long-term offspring expectation (relative to the
neutral case). A closely related phenomenon is well known from multi-type branching processes and
deterministic mutation-selection models (see [BG07] and references therein).
Our construction relies on the following key ingredients. We start from theequilibriumASG (without
types), and from the insight that the immortal line is the one that is ancestral to the first bottleneck
of this ASG. Identifying this ancestral line had previously appeared to be difficult, since it requires
keeping track of the hierarchy of (incoming and continuing) branches, which quickly may become
confusing. We overcome this problem byordering the lines, in this way introducing a lookdown
version of the ASG and a neat arrangement of the lines according to their hierarchy. Next, wemark
the lines of the equilibrium ASG by themutation eventsand, working backward in time, apply a
pruningprocedure, which cuts away those branches that cannot be ancestral. Finally, weassign types
at time 0 to the lines of the resulting pruned LD-ASG by drawing the types of its lines from the initial
frequency and thus determine the type of the immortal line at time 0.
This equilibrium lookdown ASG is the principal (and new) tool in our analysis: backward in time,
the top level in the pruned ASG performs a Markov chain whose equilibrium distribution can be
computed, and the tail probabilities of this equilibrium distribution are shown to obey the Fearnhead-
Taylor recursion. This provides the link to the simulation algorithm described by Fearnhead [Fea02]
for the common ancestor type distribution in the stationary case. More precisely, our Theorems 3.4
and 3.5 together connect the LD-ASG to the simulation algorithm and thus provide aprobabilistic
derivation for it. At the same time, they imply a generalisation to an arbitrary rather than a stationary
initial type distribution. Furthermore, Theorem 3.5 sheds new light on the series representation for the
conditional CAT distribution, whose coefficients now emerge as the tail probabilities of the number
of lines in the pruned LD-ASG. As a nice by-product, the graphical approach directly reveals various
monotonicity properties of the tail probabilities depending on the model parameters, which translate
into monotonicity properties of the common ancestor type distribution.
We believe that the pruned equilibrium (lookdown) ASG has potential for thegraphical analysis of
type distributions and genealogies also beyond the applications consideredin the present chapter.
Let us also emphasise that, unlike Fearnhead’s original approach whichbuilds on the stationary type
process (and unlike other pruning procedures that work in astationary typedsituation), we start out
from theuntypedlookdown ASG which then is marked and pruned, with the assignment of types
at the fixed (initial) time being delayed until the very last step of the construction. This is essential
to be able to assign the types i.i.d. with a given frequency, and in this way to arrive at the desired
probabilistic derivation of the conditional common ancestor type distribution.
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4 The common ancestor type distribution of a
Λ-Wright-Fisher process with selection and
mutation

The results presented in this chapter are based on joint work with Ellen Baake and Anton Wakol-
binger. They are submitted for publication and can be found on arXiv [BLW16].

In this chapter, we extend the results from the previous chapter [LKBW15] to the case of heavy-tailed
offspring, directed by a reproduction measureΛ. We obtain a representation of the type distribution
of the ancestor in a two-typeΛ-Wright-Fisher population with mutation and selection, conditional on
the overall type frequency in the old population. This representation is in terms of the equilibrium
tail probabilities of the line-counting processL of the graph. We identify a strong pathwise Siegmund
dual ofL, and characterise the equilibrium tail probabilities ofL in terms of hitting probabilities of
the dual process.

4.1 Introduction

We consider a Wright-Fisher process with two-way mutation and selection. This is a classical model
of mathematical population genetics, which describes the evolution, forwardin time, of the type com-
position of a population with two types. Individuals reproduce and changetype, and the reproduction
rate depends on the type (the beneficial type reproduces faster than theless favourable one).
In a previous paper [LKBW15], we have presented a graphical construction, termed thepruned look-
down ancestral selection graph (p-LD-ASG), which allows us to identify the common ancestor of a
population in the distant past, and to represent its type distribution. This construction keeps track
of the collection of allpotentialancestral lines of an individual. As the name suggests, the p-LD-
ASG combines elements of theancestral selection graph (ASG)of Krone and Neuhauser [KN97]
and thelookdown constructionof Donnelly and Kurtz [DK99a], which here leads to a hierarchy that
encodes who is thetrueancestor once the types have been assigned to the lines. In addition, a pruning
procedure is applied to reduce the graph.
A key quantity is the processL, which counts the number of potential ancestors at any given time. The
ancestraltype distribution is expressed in terms of the stationary distribution ofL together with the
overall type distribution in the past population. The two distributions may be substantially different.
This mirrors the fact that the true ancestor is an individual that is successful in the long run; thus,
its type distribution is biased towards the favourable type. Explicitly, the ancestral type distribution
is represented as a series in terms of the frequency of the beneficial typein the past, where the
coefficients are the tail probabilities of the stationary distribution ofL and are known in terms of a
recursion.
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The results obtained so far referred to Wright-Fisher processes. These arise as scaling limits of
processes in which an individual that reproduces has a single offspring that replaces a randomly
chosen individual (thus keeping population size constant); in the ancestral process, this corresponds
to a coalescence event of a pair of individuals. Here we will consider a natural generalisation, the
so-calledΛ-Wright-Fisher processes. These include reproduction events wherea fractionz> 0 of the
population is replaced by the offspring of a single individual; this leads tomultiple merger eventsin
the ancestral process.
The Λ-Wright-Fisher processes belong to the larger class ofΛ-Fleming-Viot processes (which also
include multi-(and infinite-)type generalisations). These, together with their ancestral processes, the
so-calledΛ-coalescents, have become objects of intensive research in the past twodecades. Although
less is known for the case with selection, progress has been made in this direction as well (see for
example [BP15, DGP12, DK99a, EGT10, Gri14]).
Besides deriving our main result on thecommon ancestor type distributionof a Λ-Wright-Fisher
process (stated in Sec. 4.2), the purpose of our paper is twofold: First,we will extend the p-LD-
ASG to include multiple-merger events; this will lead to thep-LD-Λ-ASG. Second, in the footsteps
of Clifford and Sudbury [CS85], we will construct aSiegmund dualof the line-counting processL
of the p-LD-Λ-ASG. In line with a classical relation between entrance laws of a monotone process
and exit laws of its Siegmund dual (discovered by Cox and Rösler [CR84]), the tail probabilities of
L at equilibrium correspond to hitting probabilities of the Siegmund dual. This Siegmund dual is a
new element of the analysis: In [LKBW15], the recursions for the tail probabilities were obtained
from the generator ofL, in a somewhat technical manner. The duality provides a more conceptual
approach, which is interesting in its own right, and yields the recursion in an elegant way, even in the
more involved case including multiple mergers. It will also turn out that the Siegmund dual ofL is
a natural generalisation (to the case with selection) of the so-calledfixation line(or fixation curve),
introduced by Pfaffelhuber and Wakolbinger [PW06] for Kingman coalescents and investigated by
Hénard [Hén15] forΛ-coalescents.
The paper is organised as follows. In Section 4.2, we recapitulate theΛ-Wright-Fisher model with
mutation and selection, and the corresponding ancestral process, theΛ-ASG; we also provide a pre-
view of our main results. In Section 4.3, we extend the p-LD-ASG to the case with multiple mergers.
Section 4.4 is devoted to the Siegmund dual. The dynamics of this dual processis identified via a
pathwise construction and thus yields a strong duality. Once the dual is identified, it leads to the tail
probabilities ofL with little effort.

4.2 Model and main result

We will consider a population consisting of individuals each of which is eitherof deleterious type
(denoted by 1) or of beneficial type (denoted by 0). The population evolves according to random
reproduction, two-way mutation, and fertility selection (that is, the beneficialtype reproduces at a
higher rate), with constant population size over the generations. The parameters of the model are

• thereproduction measureΛ, which is a probability measure on[0,1], and whose meaning will
be explained along with that of the generatorGX below Eq. (4.1),
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• the selective advantageσ (a non-negative constant that quantifies the reproductive advantage
of the beneficial type and is scaled with population size),

• themutation ratesθν0 andθν1, whereθ ,ν0, andν1 are non-negative constants withν0+ν1 =
1. Thus,νi , i ∈ {0,1}, is the probability that the type isi after a mutation event; note that this
includessilent events, where the type remains unchanged.

We will work in a scaling limit in which the population size is infinite and time is scaled such that
the rate at which a fixed pair of individuals takes part in a reproduction event is 1. The processX :=
(Xt)t∈R describing the type-0 frequency in the population then has the generator (cf. [EGT10, Gri14])

GXg(x) =
∫

(0,1]

[
x(g(x+z(1−x))−g(x))+(1−x)(g(x−zx)−g(x))

]Λ(dz)
z2

+Λ({0}) ·
1
2

x(1−x)g′′(x) +
[
σx(1−x)−θν1x+θν0(1−x)

]
g′(x).

(4.1)

The first and second terms of this generator describe the neutral part of the reproduction. In the case
Λ = δ0 (to which we refer as theKingman case), the first term vanishes andX is a Wright-Fisher
diffusion with selection and mutation. Concerning the part ofΛ concentrated on(0,1], the measure
dtΛ(dz)/z2 figures as intensity measure of a Poisson process, where a point(t,z), t ∈ R,z∈ (0,1],
means that at timet a fractionz of the total population is replaced by the offspring of a randomly
chosen individual. Consequently, if the fraction of type-0 individuals isx at timet−, then at timet
the frequency of type-0 individuals in the population isx+ z(1− x) with probabilityx andx(1− z)
with probability 1− x. The third term of generator (4.1) describes the systematic (logistic) increase
of the frequencyx due to selection, and the type flow due to mutation.
In the absence of both selection and mutation (i.e. whenσ = θ = 0), the moment dual of theΛ-
Wright-Fisher process is the line-(or block-)counting process of theΛ-coalescent. The latter was
introduced independently by Pitman [Pit99], Sagitov [Sag99], and Donnellyand Kurtz [DK99b], see
[Ber09] for an introductory review.
The rate at which any given tuple ofj out ofb blocks merges into one is

λb, j :=
∫ 1

0
zj(1−z)b− jz−2Λ(dz), j ≤ b. (4.2)

Thus the transition rate of the line-counting process from stateb to statec < b is given by( b
b−c+1

)
λb,b−c+1. Note thatΛ = δ0 corresponds to Kingman’s coalescent; here,λb, j = δ2, j for all

b≥ 2. The measureΛ is said to have the property CDI if theΛ-coalescentcomes down from infinity,
i.e. ∞ is an entrance boundary for its line-counting process.
Whenselectionis present (i.e.σ > 0), an additional component of the dynamics of the genealogy
must be taken into account. In this case, in addition to the (multiple) coalescences just described, the
lines (or blocks) may also undergo a binary branching at rateσ per line. The resulting branching-
coalescing system of lines is a straightforward generalisation of the ancestral selection graph (ASG)
of Krone and Neuhauser [KN97] to the multiple-merger case; we will call it the Λ-ASG. TheΛ-ASG
belonging to a sample ofn individuals taken from the population at timet = 0 describes all potential
ancestors of this sample at timest < 0. Throughout we use the variablest and r for forward and
backwardtime, respectively.

57



4 The common ancestor type distribution of aΛ-Wright-Fisher process with selection and mutation

We denote the line-counting process of theΛ-ASG by K = (Kr)r≥0. It takes values inN and its
generator is

GKg(b) =
b−1

∑
c=1

(
b

b−c+1

)
λb,b−c+1 [g(c)−g(b)]+bσ [g(b+1)−g(b)] . (4.3)

The processK is the moment dual of theΛ-Wright-Fisher process with selection coefficientσ and
mutation rateθ = 0, in the sense that

E[(1−Xt)
n |X0 = x] = E[(1−x)Kt |K0 = n], (4.4)

see e.g. [EGT10, Thm. 4.1].
Throughout we will work under the

Assumption 4.1 0≤ σ < σ∗ :=−
∫ 1

0 log(1−x)Λ(dx)
x2 .

Combining results of [Fou13] and [Gri14], one infers that Assumption 4.1 isequivalent to the pos-
itive recurrence of the processK on N. Indeed, it is proved in [Gri14, Theorem 3] (for the case
σ∗ < ∞) and [Fou13, Theorem 1.1] (for the caseσ∗ = ∞) that Assumption 4.1 isequivalentto
P[X∞ = 1 | X0 = x] < 1 for all x < 1, whereX∞ denotes the a.s. limit ofXt as t → ∞. Combined
with the moment duality (4.4), this readily implies that Assumption 4.1 is equivalent to the positive
recurrence ofK onN if σ > 0.
A direct proof that Assumption 4.1implies the positive recurrence ofK on N in the caseσ > 0 is
provided by [Fou13, Lemma 2.4]. (Note in this context thatK is clearly non-explosive because it
is dominated by a pure birth process with birth ratebσ , b ∈ N; this makes the first assumption in
[Fou13, Lemma 2.4] superfluous).
For σ = 0, the processK, when started inb ∈ N, is eventually absorbed in 1. This complements
the previous argument in showing that under Assumption 4.1 the processK has a unique equilibrium
distribution and a corresponding time-stationary version indexed byr ∈ R. Similarly, there exists a
time-stationary version of theΛ-ASG, which we call theequilibrium Λ-ASG, and which will be a
principal object in our analysis.

Remark 4.2 It is proved in [HM12] thatσ∗ = limk→∞
logk
Ek[T1]

, where T1 is the first time at which the
line-counting process of theΛ-coalescent hits1. In particular, if the measureΛ has the property CDI,
thenσ∗ = ∞ and hence Assumption 4.1 is satisfied for allσ ≥ 0.

Mutationscan be superimposed as independent point processes on the lines of theΛ-ASG: On each
line, independent Poisson point processes of mutations to type 0 (‘beneficial mutation events’) come
at rateθν0 and to type 1 (‘deleterious mutation events’) at rateθν1.
For t < t and for a given frequencyx of type-0 individuals in the population at timet, theΛ-ASG
may be used to determine the types in a sampleS taken at timet, together with its ancestry between
timest andt, by the following generalisation of the procedure in [KN97]. Each line of the Λ-ASG at
time t is assigned type 0 with probabilityx and type 1 with probability 1− x, in an iid fashion. Let
the types then evolve forward in time along the lines: after each beneficial ordeleterious mutation,
the line takes type 0 or 1, respectively. At each neutral reproduction event (which is a coalescence
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4.2 Model and main result

event backward in time), the descendant lines inherit the type of the parent. This is also true for the
(potential) selective reproduction events (the branching events backward in time), but here one first
has to decide which of the two lines is parental. The rule is that theincoming branch(the line that
issues the potential reproduction event) is parental if it is of type 0; otherwise, thecontinuing branch
(the target line on which the potential offspring is placed) is parental. Whenall selective events
have been resolved this way, the lines that are not parental are removed, and one is left with thetrue
genealogyof the sampleS .
Because of the positive recurrence (and the assumed time-stationarity) ofthe line-
counting process(Kr)−∞<r<∞, there exists a.s. a sequence of positive (random) timest1 < t2 < .. .
such thattn → ∞ andKtn = 1 for all n. Thus, for a given assignment of types to the lines of the
stationaryΛ-ASG A at time 0, and for alln ∈ N, removing the non-parental lines leaves exactly
one true ancestral line, between the timest = 0 andt = tn, of the single individual inA at timetn.
The resulting line between timest = 0 andt = ∞ is called theimmortal lineor line of the common
ancestorin the stationaryΛ-ASG.
Our main result is a characterisation of its type distribution at time 0, conditional on the type fre-
quency in the population at that time. For the following definition, letIt be the type of the immortal
line in the stationaryΛ-ASG at timet.

Definition 4.3 (Common ancestor type distribution) In the regime of Assumption 4.1, and for
x ∈ [0,1], let h(x) := P(I0 = 0 | X0 = x) be the probability that the immortal line in a stationary
Λ-ASG with two-way mutations carries type0 at time0, given the type-0 frequency in the population
at time0 is x.

By shifting the time interval[0, t] back to[−t,0], it becomes clear thath(x) is also the limiting prob-
ability (ast → ∞) that the ancestor at the past time−t of the population at time 0 is of the beneficial
type, given that the frequency of the beneficial type at time−t wasx.

Theorem 4.4 The probability h(x) has the series representation

h(x) = ∑
n≥0

x(1−x)nan, (4.5)

where the coefficients an in (4.5) are monotone decreasing, and the unique solution to the system of
equations

∑
n+1<c≤∞

[
1
n

(
c−1
c−n

)
λc,c−n

]
(an−ac−1)+(σ +θ)an = σan−1+θν1an+1, n≥ 1,

a0 = 1, a∞ := lim
n→∞

an = 0, (4.6)

with the convention
(

∞−1
∞−d+1

)
:=

{
0 if d = 1

1 if d ≥ 2
, andλ∞,∞ := Λ({1}). (4.7)

Let us discuss some special cases. In theneutral case, we clearly havea0 = 1 andan = 0 for n> 0,
soh(x) = x, which is the neutral fixation probability. Forσ > 0, we havean > 0 for all n, soh(x)> x
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4 The common ancestor type distribution of aΛ-Wright-Fisher process with selection and mutation

due to the higher-order terms in the series (4.5). In theKingman case, the system of equations (4.6)
simplifies to

[
1
n

(
n+1

2

)
+σ +θ

]
an =

1
n

(
n+1

2

)
an+1+σan−1+θν1an+1, n≥ 1, (4.8)

and we immediately obtain

Corollary 4.5 (Fearnhead’s recursion) In the Kingman case, the coefficients in(4.5)satisfy the re-
cursion [

1
2
(n+1)+σ +θ

]
an =

[
1
2
(n+1)+θν1

]
an+1+σan−1, n≥ 1, (4.9)

with a0 = 1 and limn→∞ an = 0.

The caseΛ(dz) = dz, 0≤ z≤ 1, leads to the so calledBolthausen-Sznitman coalescent. Although
the latter does not have the property CDI, we still haveσ∗ = ∞. In this case one has the identity
1
n

(c−1
c−n

)
λc,c−n =

1
(c−n−1)(c−n) (cf. [Ber09] Sec. 6.1), and the system (4.6) simplifies to

[1+σ +θ ]an = σan−1+θν1an+1+
∞

∑
j=1

1
j( j +1)

an+ j , n≥ 1, (4.10)

with a0 = 1 and limn→∞ an = 0.
Recursion (4.9) appears in [Fea02] in connection with a time-stationary Wright-Fisher diffusion (with
selection and mutation).15 In [Tay07], the representation (4.5) together with (4.9) was derived by
analytic methods. In [LKBW15], again for the Kingman case, we gave a new, more probabilistic
proof, interpreting the coefficientsan asequilibrium tail probabilitiesof the line-counting process
of the pruned lookdown ASG(see Sec. 4.3). In the present paper we give a twofold extension: (i)
we include the case of multiple mergers, and (ii) we use a strong Siegmund duality(and thus a fully
probabilistic method) in order to derive the recursion (4.6).
An analogue of the quantityh(x) can also be defined for a Moran model with finite population size
N: for k ∈ {0,1, . . . ,N}, let hN

k be the probability that the individual whose offspring will take over
the whole population at some later time is of type 0 at time 0, given the number of type-0 individuals
in the population at time 0 isk. In [KHB13] it is shown (for the Kingman case) thathN

k converges to
h(x) asN → ∞ andk/N → x. Here, we work in the infinite-population limit right away, in order to
carve out some important features of the underlying mathematical structure.

4.3 The pruned lookdown- Λ-ancestral selection graph

In the previous section, we have outlined the construction of the equilibriumΛ-ASG and layed out
how the immortal line within it may be identified: Types are assigned at time 0, and theevolution is

15Note that there is a difference of a factor 1/2 in the scaling of (4.9) in comparison to [Fea02, LKBW15, Tay07]. This
is because these papers use the diffusion part of the Wright-Fisher generator (see (4.1)) without the factor 1/2. This
corresponds to a pair coalescence rate of 2 in the Kingman case, while in the present paper we assume pair coalescence
rate 1 throughout.
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4.3 The pruned lookdown-Λ-ancestral selection graph

then followed forward in time. In practice, however, this procedure is entangled due to the nested case
distinctions required to identify the parental branch (incoming or continuing,depending on the type).
In the Kingman case, we have solved this problem byordering the lines, and bypruning certain
lines upon mutation [LKBW15]. Theordering is achieved by arranging the coalescence events in
a lookdown manner, and by inserting the incoming branch below the continuingbranch at every
selection event. Thepruningtakes care of the fact that the mutations convey information on the types
of lines; this entails that some lines in the ASG can never be ancestral, no matter which types are
assigned at time 0, and can thus be deleted from the set of potential ancestors. By construction, this
removal does not affect the immortal line.
More precisely, consider a realisationA of the ordered equilibrium ASG, decorated with the mutation
events. The corresponding lookdown version is obtained by placing the lines on consecutive levels,
starting at level 1. We now proceed fromr = 0 in the direction of increasingr. When a beneficial
mutation event is encountered, we delete all lines above it. When a deleteriousmutation event occurs,
we erase the line that carries it; the lines above the affected line slide down to fill the space. One of
the lines, called theimmune line, is distinguished in that it isnot killed by mutations; rather, it is
relocated to the top. Let us anticipate that this is the line that is immortal if all lines at time0 are
assigned type 1. For illustrations and more details about the pruning procedure, see [LKBW15].
The resultingpruned lookdown ASGcan also be generated in one step, backward in time, in a Marko-
vian manner. In what follows, we review this construction and extend it to thepruned lookdown
Λ-ASG.
At each timer, the pruned lookdownΛ-ASGG consists of a finite numberLr of lines, i.e. the process
(Lr)r∈R takes values in the positive integers andLr is the number of lines inG at timer. The lines
are numbered by the integers 1, . . . ,Lr , to which we refer aslevels. The evolution of the lines asr
increases is determined by a point configuration onR×

(
P(N)∪ (N×{∗,×,◦})

)
, whereP(N) is

the set of subsets ofN andP(N) is equipped with theσ -algebra generated byη 7→ 1η(i), i ∈ N,
η ∈ P(N). Each of the points(r,τ) stands for atransition elementτ occurring at timer, that is, a
merger, aselective branching, adeleterious mutation, or abeneficial mutationat timer. The level of
the immune line at timer is denoted byMr ; its precise meaning will emerge from Proposition 4.6.
Let us now detail the transition elements and their effects onG (see Figs. 4.1 and 4.2):

• A mergerat timer is a pair(r,η), whereη is a subset ofN. If |{1, . . . ,Lr−}∩ η | ≤ 1, then
G is not affected. If, however,{1, . . . ,Lr−}∩ η = { j1, . . . , jκ} with j1 < · · · < jκ andκ ≥ 2,
then the lines at levelsj2, . . . , jκ merge into the line at levelj1. The remaining lines inG are
relocated to ‘fill the gaps’ while retaining their original order; this rendersLr = Lr−−κ +1.
The immune line simply follows the line on levelMr−.

• A selective branchingat timer is a triple(r, i,∗), with i ∈ N. If Lr− < i, thenG is not affected.
If Lr− ≥ i, then a new line, namely the incoming branch, is inserted at leveli and all lines
at levelsk ≥ i (including the immune line ifMr− ≥ i) are pushed one level upward tok+1,
resulting inLr = Lr−+1. In particular, the continuing branch is shifted from leveli to i+1.

• A deleterious mutationat timer is a triple(r, i,×), with i ∈N. If Lr− < i, thenG is not affected.
If Lr− ≥ i andi 6= Mr−, then the line at leveli is killed, and the remaining lines inG (including
the immune line) are relocated to ‘fill the gaps’ (again in an order-preserving way), rendering
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4 The common ancestor type distribution of aΛ-Wright-Fisher process with selection and mutation

Lr = Lr− − 1. If, however,i = Mr−, then the line affected by the mutation is not killed but
relocated to the currently highest level, i.e.Mr = Lr−. All lines abovei are shifted one level
down, so that the gaps are filled, and in this caseLr = Lr−.

• A beneficial mutationat timer is a triple(r, i,◦), with i ∈ N. If Lr− < i, thenG is not affected.
If Lr− ≥ i, then all the lines at levels> i are killed, renderingLr = i, and the immune line is
relocated toMr = i.

Proposition 4.6 Assume that for some r0 < 0 we have Lr0 = 1, and assume there are finitely many
transition elements that affectG between times r0 and0. Consider an arbitrary assignment of types
to the L0 lines at time r= 0. Then the level of the immortal line at time0 is either the lowest type-0
level at time0 or, if all lines at time0 are of type1, it is the level M0 of the immune line at time0. In
particular, the immortal line is of type1 at time0 if and only if all lines inG at time0 are assigned
type1.

Proof. In the absence of multiple mergers (i.e. if all mergers have exactly two elements), this is
Theorem 4 in [LKBW15]. In its proof, the induction step for binary mergers directly carries over to
multiple mergers. �
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Figure 4.1: Transitions of the pruned lookdownΛ-ASG. Since the graph evolves ‘into the past’, time r runs
from right to left in the figure. The value of L is 6 before the jump; the immune line is marked in
bold. From left to right: A ‘merger’ of the lines on levels1, 3, and5 (indicated by bullets); a ‘star’
at level3; a ‘cross’ at level3, outside the immune line; a ‘cross’ on the immune line at level 3; a
‘circle’ at level 3.

Taking together the above description ofG and the rates defining theΛ-ASG (Sec. 2), we can now
summarise and formalise the law ofG as follows. The transition elements arrive via independent Pois-
son processes: For eachi ∈N, the ‘stars’, ‘crosses’, and ‘circles’ at leveli come as Poisson processes
with intensitiesσ , θν1 andθν0, respectively. For each 2-element subsetη of N, the ‘η-mergers’
come as a Poisson process with intensityΛ({0}). In addition, we have a Poisson process with inten-
sity measure1{z>0}

1
z2 Λ(dz)dr, where eachzgenerates a random subsetH(z) := {i :Vi = 1}⊂N, with

(Vi)i∈N being a Bernoulli(z)-sequence, and the point(r,z) gives rise to the merger(r,H(z)). All these
Poisson processes are independent. The points(r,τ) constitute a Poisson configurationΨ, whose
intensity measure we denote byµ ⊗ρ, whereµ is Lebesgue measure onR. With the transition rules
described above, this induces Markovian jump rates uponLr and(Lr ,Mr). With the help of (4.2), it
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Figure 4.2: A cut-out of a realisation of the pruned lookdownΛ-ASG. The immune line is marked in bold.

is easily checked that the generatorGL of L is given by

GLg(ℓ) =
ℓ−1

∑
c=1

(
ℓ

ℓ−c+1

)
λℓ,ℓ−c+1 [g(c)−g(ℓ)]+ ℓσ [g(ℓ+1)−g(ℓ)]

+(ℓ−1)θν1 [g(ℓ−1)−g(ℓ)]+
ℓ−1

∑
k=1

θν0 [g(ℓ−k)−g(ℓ)] .

(4.11)

Due to Assumption 4.1 and Remark 4.2b), and becauseL is stochastically dominated byK, the
processL obeys

Eℓ[T1]< ∞, ℓ ∈ N. (4.12)

ThusL has a time-stationary versioñL (which is L̃ ≡ 1 if σ = 0), and likewise the pruned lookdown
Λ-ASG has an equilibrium version as well. We now setLeq := L̃0 and denote the tail probabilities of
Leq by

αn := P(Leq> n), n∈ N0. (4.13)

Because of (4.12), for almost all realisations ofL̃, there exists anr0 < 0 such that̃Lr0 = 1. Hence,
arguing as in [LKBW15, proof of Theorem 5], we conclude from Proposition 4.6 the following

Corollary 4.7 Given the frequency of the beneficial type at time0 is x, the probability that the im-
mortal line in the equilibrium p-LD-Λ-ASG at time0 is of beneficial type is

h(x) = ∑
n≥0

x(1−x)nαn. (4.14)

In order to further evaluate the representation (4.14), we need information about the equilibrium tail
probabilitiesαn. This is achieved in the following sections via a processD which is a Siegmund dual
for L.

4.4 An application of Siegmund duality

A central point in our proof of Theorem 4.4 will be that the equilibrium tail probabilities ofL can
be expressed as certain hitting probabilities of a processD which is a so-called Siegmund dual of
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4 The common ancestor type distribution of aΛ-Wright-Fisher process with selection and mutation

L. The relationship between the transition semigroups ofL andD is given by formula (4.15) below.
Intuitively, the processD may be seen as going into the opposite time direction asL. In a suitable
representation via stochastic flows, which turns out to be available for monotone processes, (4.15)
means that the paths ofD remain ‘just above’ those ofL, see Sec. 4.4.2 below.

4.4.1 Tail probabilities and hitting probabilities

It is clear thatL is stochastically monotone, that is,Pn(Lr ≥ i) ≥ Pm(Lr ≥ i) for n ≥ m and for all
i ∈ S(where the subscript refers to the initial value of the process). It is wellknown [Sie76] that such
a process has a Siegmund dual, that is, there exists a processD such that

Pℓ(Lu ≥ d) = Pd(Du ≤ ℓ) (4.15)

for all u≥ 0, ℓ,d ∈ N.

Lemma 4.8 The tail probabilities of the stationary distribution of L are hitting probabilities of the
dual process D. To be specific,

αn = Pn+1(∃t ≥ 0 : Dt = 1) ∀n≥ 0. (4.16)

Proof. This is a special case of [CR84, Thm. 1] for entrance and exit laws. In our case the entrance
law is the equilibrium distribution ofL, the exit law is a harmonic function (in terms of hitting proba-
bilities), and the proof reduces to the following elementary argument. Namely, evaluating the duality
condition (4.15) forℓ= 1 andd = n+1, n≥ 0, gives

P1(Lu ≥ n+1) = Pn+1(Du = 1) for all u≥ 0, n≥ 0. (4.17)

Taking the limitu→ ∞, the left-hand side converges toP(Leq> n) = αn by positive recurrence and
irreducibility. Settingℓ = d = 1 in (4.15), we see that 1 is an absorbing state forD. Hence we have
for the right-hand side of (4.17)

lim
u→∞

Pn+1(Du = 1) = Pn+1(∃t ≥ 0 : Dt = 1) ∀n≥ 0,

and the lemma is proven. �

Next we want to show that the (shifted) hitting probabilities

αn = Pn+1(∃t ≥ 0 : Dt = 1), n≥ 0, (4.18)

64



4.4 An application of Siegmund duality

satisfy the system of equations (4.6). More precisely, (4.6) will emerge asa first-step decomposition
of the hitting probabilities. For this purpose, we first have to identify the jump rates ofD. This can be
done via a generator approach that translates the jump rates of the processL (which appear in (4.11))
into their dual jump rates, see, for instance, formula (12) in [CS85] or in [Sie76]. For the jump rates
coming from the mergers this is somewhat technical, see the calculations in the appendix in [Hén15].
Inspired by [CS85] we will therefore take a ‘strong pathwise approach’ that consists in decomposing
the dynamics ofL into so-calledflights, which can be ‘dualised’ one by one. While Clifford and
Sudbury, starting from the generator of a monotone process, in [CS85,Thm 1] construct a special
Poisson process of flights for which they form the duals ([CS85, Thm 2]), in our situation the Poisson
process of flights is naturally given (being induced by the transition elementsfor G defined in Sec. 4.3,
see Sec. 4.4.3 below). Consequently, we will show in Proposition 4.10 that the approach of [CS85,
Thm 2] works also when starting from a more general Poisson process of flights.

4.4.2 Flights and their duals

In [CS85], Clifford and Sudbury introduced a graphical representation that allows us to construct a
monotone homogeneous Markov processL together with its Siegmund dualD on one and the same
probability space. The method requires that the state spaceSof the processesL andD is (totally)
ordered. We restrict ourselves to the caseS:= N∪{∞}, which is the relevant one in our context (and
which is prominent in [CS85] as well).
The basic building blocks of Clifford and Sudbury’s construction are so-calledflights. A flight f is
a mapping fromS into itself that is order-preserving, sof (k) ≤ f (ℓ) for all k < ℓ with k, ℓ ∈ S; let
us add that each flight leaves state∞ invariant, sof (∞) = ∞. By the construction described below,
a flight f that appears at timer will induce the transition toLr = f (ℓ), givenLr− = ℓ. This way,
transitions from different initial states will be coupled on the same probability space. A flight f is
graphically represented as a set of simultaneous arrows pointing fromℓ to f (ℓ), for all ℓ ∈ S, so that
the process simply follows the arrows. Examples are shown in Fig. 4.3.
We denote the set of all flights byF , and consider a Poisson processΦ onR×F whose intensity
measure is of the formµ ⊗ γ, whereµ is again Lebesgue measure onR, and the measureγ has the
property

γ({ f ∈ F : f (ℓ) 6= ℓ})< ∞, ℓ ∈ N. (4.19)

Property (4.19) implies that with probability 1, for allℓ ∈ N andr ∈ R, among all the points(s, f )
in Φ with s> r and f (ℓ) 6= ℓ, there is one whoses is minimal. We denote this time byv(r, ℓ).
For r ∈ R andℓ ∈ N, we define inductively a sequence(s0, ℓ0),(s1, ℓ1), . . . with r =: s0 < s1 < · · · ,
ℓ=: ℓ0, ℓ1, ℓ2, . . .∈S, by settingsi := v(si−1, ℓi−1), ℓi := f (ℓi−1), with (si , f )∈Φ. (Note this procedure
will terminate if ℓi = ∞ for somei ∈ N.)
With the notation just introduced,Φ induces a semi-group (aflow) of mappings, indexed byr < s∈R,
and defined by

Fr,s(ℓ) :=

{
ℓi if si ≤ s< si+1,

∞ if lim i→∞ si ≤ s
(4.20)

for ℓ ∈ N, with Fr,s(∞) := ∞.
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Assuming property (4.19), we say thatΦ representsthe processL if for all s> 0 the distribution of
F0,s(ℓ) is a version of the conditional distribution ofLs given{L0 = ℓ}, ℓ ∈ N. Equivalently, for all
r ∈ R andu> 0,

Pℓ(Lu ∈ (.)) = P(Fr,r+u(ℓ) ∈ (.)). (4.21)

We now describe, in the footsteps of Clifford and Sudbury [CS85], the construction of a strong path-
wise Siegmund dualD , based on the same realisation of the flights as for the original processL .
Def. 4.9a) formalises the statement at the beginning of Sec. 4.4 that the paths ofD remain ‘just
above’ those ofL, see also Fig. 4.3 for an illustration.

Definition 4.9 (Dual flights) a) For a flight f : S→ S, itsdual flight f̂ is defined by

f̂ (d) = min( f−1({d,d+1, . . .})), d ∈ S, (4.22)

with the conventionmin(∅) = ∞.
b) For a Poisson processΦ on R × F , we defineΦ̂ as the result ofΦ under the mapping
(r, f ) 7→ (−r, f̂ ) =: (t, f̂ ). Moreover, under the assumption

γ({ f ∈ F : f̂ (d) 6= d})< ∞, d ∈ N, (4.23)

we definêF in terms ofΦ̂ in the same way as F was defined in terms ofΦ by (4.20).

It is clear that f̂ is order preserving. Sincef is monotone increasing by assumption, we have
max( f−1({1, . . . ,d−1}))≤min( f−1({d,d+1, . . .})). As f−1({1, . . . ,d−1})∩ f−1({d,d+1, . . .})=
∅ and f−1({1, . . . ,d−1})∪ f−1({d,d+1, . . .}) = S, we see that (4.22) is equivalent to

f̂ (d) = max( f−1({1, . . . ,d−1}))+1, d ∈ S, (4.24)

with the convention max(∅) = 0. Note further that (4.23) is implied by (4.19) together with

γ({ f ∈ F : ∃k> ℓ s.t. f (k)≤ ℓ})< ∞, ℓ ∈ N. (4.25)

The following proposition is an adaptation of [CS85, Theorem 2] to our setting. Compare also
[JK14, Section 4.1].

Proposition 4.10 Assume(4.19)and (4.25), and assume that∞ is unattainable for the processL
represented by the Poisson processΦ with intensity measureµ ⊗ γ. Then the following strong path-
wise duality relation is valid: For all s> 0; ℓ,d ∈ N,

1{F−s,0(ℓ)≥d} = 1{F̂0,s(d)≤ℓ}, almost surely. (4.26)

Proof. Let Y := (Yr)r∈[−s,0] := (F−s,r(ℓ))r∈[−s,0], andŶ := (Ŷt)t∈[0,s] := (F̂0,t(d))t∈[0,s], for givenℓ, d,
ands. Due to (4.19) and the assumption that∞ is unattainable,Y has a.s only finitely many jumps;
let us denote the jump times by−r1, . . . ,−rn. We write Ĵ for the union of{r1, . . . , rn} and the set of
jump times ofŶ. Because of (4.23),̂J has a smallest element, a second-smallest element, and so on.
We denote these elements byu1 < u2 < .. ., and show that

Y0 ≥ Ŷ0 if and only if Y(−ui)− ≥ Ŷui , i = 1,2, . . . (4.27)
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4.4 An application of Siegmund duality

Proceeding by induction, for (4.27) it is sufficient to show

1{ f ( j)≥k} = 1{ f̂ (k)≤ j} (4.28)

for all flights f , and j,k∈ N. Let f ∈ F . On the one hand,f ( j)≥ k yields

f̂ (k)≤ f̂
(

f ( j)
)
= min

(
f−1({ f ( j), f ( j)+1, . . .})

)
= min

(
f−1( f ( j))

)
≤ j,

where we have used order preservation off̂ and f as well as (4.22). On the other hand,f ( j) < k is
equivalent tof ( j)+1≤ k. By order preservation and (4.24), this entails

f̂ (k)≥ f̂
(

f ( j +1)
)
= max

(
f−1({1, . . . , f ( j)})

)
+1= max

(
f−1( f ( j))

)
+1≥ j +1> j.

We have thus shown (4.28), and hence also (4.27).
If (ui) has no accumulation point, then it has a maximal element, sayum. Choosingi = m in the r.h.s.
of (4.27) yields (4.26) (sinceum 6= swith probability 1). If(ui) has an accumulation point, sayτ, then,
because of (4.23), we have limt↑τ Ŷt = lim i→∞ Ŷui = ∞. BecauseY remains bounded by assumption,
this together with (4.27) enforces thatY0 < Ŷ0. This means that the l.h.s. of (4.26) takes the value 0.
However, this is the case also for the r.h.s of (4.26), since∞ = Ŷτ = Ŷs > ℓ. �

In view of (4.21) we immediately obtain the following

Corollary 4.11 In the situation of Proposition 4.10, letD be a process represented byΦ̂. ThenL

andD satisfy the duality relation(4.15), with L and D replaced byL andD .

4.4.3 A Siegmund dual for the process L

Let us now turn to our case whereL = L. With each of the transition elementsη , (i,∗), (i,×), (i,◦)
introduced in Sec. 4.3 we associate a flight defined as follows (ℓ ∈ S, i ∈ N):

fη(ℓ) = ℓ−|{1, ...., ℓ}∩ η̃|, whereη̃ := η \{min(η)},

fi,∗(ℓ) =

{
ℓ, ℓ < i,

ℓ+1, ℓ≥ i,
fi,×(ℓ) =

{
ℓ, ℓ≤ i,

ℓ−1, ℓ > i,
fi,◦(ℓ) =

{
ℓ, ℓ≤ i,

i, ℓ > i,

(4.29)

compare also Fig. 4.3. The flights are indeed order preserving. The structure of fη , fi,∗, and fi,◦ is
clearly inherited from that of the corresponding transition elements. The flights fi,×(ℓ) forget about
the position (but not about the existence) of the immune line within the p-LD-Λ-ASG. Indeed, recall
that the downward jump rate ofL due to deleterious mutations is(ℓ−1)θν1; this reflects the fact that
crosses arrive at rateθν1 per line, but are ignored on the immune line, no matter where it is located.
This is taken into account in the definition of the flightfi,× by settingfℓ,×(ℓ) = ℓ.
Let us now start from the Poisson configurationΨ (of points(r,τ) with intensity measureµ ⊗ρ), as
described in Sec. 4.3. Letγ be the image of the measureρ under the mappingτ 7→ fτ , wherefτ is the
flight belonging to the transition elementτ as defined in (4.29). The measureγ has property (4.19).
To see this we writeγ = γm+ γ∗+ γ×+ γ◦, where the 4 summands describe the intensity measures
of the flights stemming from the mergers, the selective branchings, the deleterious mutations and the
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4 The common ancestor type distribution of aΛ-Wright-Fisher process with selection and mutation

beneficial mutations. It is straightforward thatγ∗,γ× andγ◦ obey (4.19). To see that alsoγm obeys
(4.19), note that forℓ ∈ N

γm({ f ∈ F : f (ℓ) 6= ℓ}) = ρ({η : |η ∩{1, . . . , ℓ}| ≥ 2})≤

(
ℓ

2

)
, (4.30)

since{η : |η ∩{1, . . . , ℓ}| ≥ 2} ⊂
⋃

1≤i< j≤ℓ{η : {i, j} ⊂ η} and because for alli < j ∈ N

ρ({η : {i, j} ⊂ η}) =
∫

(0,1]
z2 1

z2 Λ(dz)+Λ({0}) = 1. (4.31)

Writing Φ for the Poisson point process with intensity measureµ ⊗γ, it is now clear thatΦ represents
the processL in the sense of (4.20) and (4.21), because the jump rates match those appearing in the
generator (4.11).

3

2

5

1

4

6

r

t

Figure 4.3: Graphical representation of the four types of flights definedin (4.29)(light brown arrows) and their
dual flights as defined in(4.34)(dark green arrows), together with the resulting paths of L (light
brown) and D (dark green). The flights displayed are fη (with η∩{1, . . . ,6}= {1,3,5}), f3,∗, f3,×,
f3,◦; and f̂η , f̂3,∗, f̂3,×, f̂3,◦. The flight f̂3,◦ maps all states d> 3 to the absorbing state∞. The
paths of L and D follow the arrows in the direction of backwardand forward time, respectively.

Let us now check thatγ also satisfies assumption (4.25). It is straightforward thatγ∗,γ× andγ◦ obey
(4.25). To see that alsoγm obeys (4.25), we note that fork≥ 2ℓ+2 andη ⊂N the inequalityfη(k)≤ ℓ
implies that|η ∩{1, . . . , ℓ+1}| ≥ 1 and|η ∩{ℓ+2, . . . ,2ℓ+2}| ≥ 1. Let Hℓ denote the set of all
η ∈ P(N) having the latter property. Then we have for allℓ ∈ N the estimate

γm({ f ∈ F : ∃k> ℓ s.t. f (k)≤ ℓ})

≤
2ℓ+1

∑
k=ℓ+1

γm({ f ∈ F : f (k) 6= k})+ γm({ f ∈ F : ∃k≥ 2ℓ+2 s.t. f (k)≤ ℓ})

≤
2ℓ+1

∑
k=ℓ+1

(
k
2

)
+ρ(Hℓ)< ∞,

because of (4.30) and (4.31), sinceHℓ ⊂
⋃

1≤i≤ℓ+1< j≤2ℓ+2{η : {i, j} ⊂ η}.

Following Definition 4.9, we can now consider a processD represented bŷΦ. According to Corol-
lary 4.11,L andD then obey the duality relation (4.15). It remains to read off the jump rates ofD
from the intensities of the (dual) flights.
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4.4 An application of Siegmund duality

Lemma 4.12 The generator GD of the process D is given by

GDg(d) = ∑
d<c≤∞

(
c−1

c−d+1

)
λc,c−d+1 [g(c)−g(d)]+(d−1)σ [g(d−1)−g(d)]

+(d−1)θν1 [g(d+1)−g(d)]+(d−1)θν0 [g(∞)−g(d)] , d ∈ N,g : S→ R,

(4.32)

where we again use the convention(4.7).

Proof. We claim that the flights that are dual to those in (4.29) are of the form

f̂η(d) = min{ℓ : |{1, . . . , ℓ}∩ (N\ η̃)|= d}, again withη̃ = η \{min(η)}, (4.33)

f̂i,∗(d) =

{
d, d ≤ i,

d−1, d > i
f̂i,×(d) =

{
d, d ≤ i,

d+1, d > i
f̂i,◦(d) =

{
d, d ≤ i,

∞, d > i,
(4.34)

d ∈ S, i ∈ N (see Fig. 4.3).
The expressions in (4.34) are obvious consequences of (4.22) and (4.29). To verify (4.33), we first
note that, due to Definition 4.9, we havêfη(d) = min

(
f−1
η (d)), since fη is surjective and monotone

increasing. Consequently, in the case|{1, . . . ,d}∩η | ≤ 1 we havef̂η(d) = d, whereas otherwise we
have f̂η(d) = min{ℓ : |{1, ...., ℓ}∩ η̃|= ℓ−d}> d, both in accordance with (4.33).
Let us now consider the contribution of the various types of flights toGD. For c 6= d ∈ N we have
to computeγ({ f : f̂ (d) = c}). It is clear that the contributions fromγ∗, γ× and γ◦ yield the last
3 summands in (4.32). For the contribution coming fromγm, we have ford < c< ∞

γm({ f : f̂ (d) = c}) = ρ({η : c /∈ η , |{1, . . . ,c−1}∩η |= c−d+1}). (4.35)

The contribution from the Kingman mergers to the right-hand side of (4.35) isΛ({0})
(c−1

2

)

if c = d+ 1, and 0 otherwise. Forz> 0, the probability that az-merger does not affect levelc
but does affectc− d+ 1 out of the levels 1, . . . ,c− 1 is

( c−1
c−d+1

)
zc−d+1(1− z)d−1. Integrating this

with respect to1
z2 Λ(dz) and adding the Kingman component shows that the right-hand side of (4.35)

equals
( c−1

c−d+1

)
λc,c−d+1. These are the jump rates fromd to c< ∞ that appear in the first sum on the

r.h.s. of (4.32). It remains to take into account the jump rate ofD from d to ∞. For this we note that
fN(ℓ) = 1, ℓ = 1,2, . . ., and consequentlŷf (d) = 1 if d = 1 and f̂ (d) = ∞ if d ≥ 2. These flights
appear at rateΛ({1}), and thus ford ≥ 2 add the term(g(∞)−g(d))Λ({1}) to the generator. �

Remark 4.13 In the case without selection and mutation (that is,σ = θ = 0), our process D shifted
by one, that is, D− 1, is equal to the so-calledfixation line in [Hén15]. In this case one has no
pruning, and the line-counting process K has generator(4.3) (with σ = 0). The (Siegmund) duality
between K and D is stated in [Hén15, Lemma 2.4]. For a corresponding statement on the still more
general class of exchangeable coalescents see [GM, Thm 2.3].

We now come to the
Proof of Theorem 4.4.Consider the tail probabilitiesαn = P(Leq> n), n∈ N0, as defined in (4.15).
Lemma 4.15 allows us to write them as hitting probabilities ofD. Specifically, with

ω(n) := Pn(∃t ≥ 0 : Dt = 1),
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4 The common ancestor type distribution of aΛ-Wright-Fisher process with selection and mutation

we haveω(n) = αn−1. The hitting probabilitiesω(n), 2≤ n< ∞, constitute aGD-harmonic function,
that is,

GDω(n) = 0, n≥ 2. (4.36)

It is this relation that is equivalent to the system (4.6). Indeed, (4.36) translates into the system
[

∑
n+1<c≤∞

(
c−1
c−n

)
λc,c−n+nσ +nθν1+nθν0

]
αn

= ∑
n+1<c≤∞

(
c−1
c−n

)
λc,c−nαc−1+nσαn−1+nθν1αn+1, n≥ 1,

(4.37)

again using the convention (4.7). Being tail probabilities, theαn, n≥ 0, are monotone, withα0 = 1,
andα∞ := lim j→∞ α j = 0. Together with these boundary conditions, Eq. (4.37) divided byn gives the
system (4.6) withan replaced byαn.
To prove uniqueness, let(αn) be as above,(an) be a solution of (4.6), and putbn := an−1−αn−1. Then
we have the boundary conditionsb1 = 0 andbn → 0 for n→ ∞. In addition, since both(αn−1)2≤n<∞
and(an−1)2≤n<∞ areGD-harmonic,(bn)2≤n<∞ is GD-harmonic as well. LetT(k) := min{t ≥ 0 : Dt ∈
{1,k,k+ 1, . . .}}. Note thatT(k) is finite a.s. for everyk > 1. Since, givenD0 = ℓ, (bDt )t≥0 is a
bounded martingale, due to the optional stopping theorem we havebℓ = E[bDT(k)

| D0 = ℓ] for all
k > 1. BecausebDT(k)

→ 0 ask → ∞, by dominated convergence this impliesbℓ = 0 for all ℓ, and
hence the desired uniqueness. �
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5 The killed ASG and a representation of
sampling probabilities

In this chapter we again deal with a classical two-type Wright-Fisher population with mutation and
selection in the notation of Chapter 3. The generatorGX of the frequencyX of beneficial individuals
(of type 0) is then given by (2.4) and its stationary distributionw is determined by (2.5).

While we have determined the type distribution of the common ancestor in the previous two chapters,
in this chapter we investigate the type configurations of samples of sizem∈ N taken uniformly at
random out of a Wright-Fisher population.
We derive a representation of sampling probabilities. In detail, we are interested in the probability of
choosing exactlyℓ ∈ {0, . . . ,m} individuals of the beneficial type 0 in a sample of sizem∈ N drawn
from a stationary population.
As already described in Chapter 2 on page 13, a recursion for this quantity is given by [KN97,
Theorem 5.2] ((2.15) in this thesis) in terms of the ancestral selection graph(ASG).
Since working with this equation may become rather involved, we here derivenew a recursion that
yields an easily implementable simulation algorithm, and also show some simulation results. This
is done by using a rather detailed model (with labelled lines on levels) which we denotekilled ASG.
It arises by starting with the (lookdown) ASG, adding a label process on the lines that keeps track
of the ancestors to each individual in the sample, and cutting away lines via a pruning procedure.
This pruning procedure is interlaced with the label process and results for every realisation of the
(lookdown) ASG in deleting at least as many lines as it is done by the pruning procedure of the
pruned LD-ASG. Thus, the killed ASG can be embedded in the pruned LD-ASG.

5.1 The killed ASG

Let us consider a Wright-Fisher process with two-way mutation and selection. We denote the fre-
quency of type-0 individuals again byX := (Xr)r∈R. Let the process be in a stationary situation at
time r = 0. At time 0, we choosem∈ N different individuals uniformly at random. LetI j ∈ {0,1}
be the type of individualj, j = 1, . . . ,m. We are interested in the distribution of the random variable
∑m

j=1 I j . In detail, we want to gain a representation of the probability weightsE
[(m

ℓ

)
Xℓ

0(1−X0)
m−ℓ
]
=

P
(
m−∑m

j=1 I j = ℓ
)
.

In the footsteps of Shiga [Shi88], to catch the idea and since it is interesting inits own right, we start
this section with the killed ASG with sample sizem= 1.
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5 The killed ASG and a representation of sampling probabilities

5.1.1 Sample size one

Let us sample one single individual at random out of a Wright-Fisher population in equilibrium and
denote its type byI1. In this section we want to compute the distribution of the type of this single
individual. Namely, we are interested in

P(I1 = 0) = E(X0). (5.1)

Let w be the Wright density with mutation and selection, given by (2.5). Then the expectation (5.1)
may naturally be computed via solving the integral

E(X0) =
∫ 1

0
x w(dx). (5.2)

But this cannot be done in an easy way analytically. Thus, here, we wantto give a way to getE(X0)
via solving a recursion. As a by-product, the momentsE

[
(1−X0)

k
]

drop out of the calculation as
well. Let us first state the result, then introduce the killed ASG with sample size one (that is the
particle picture behind [Shi88, Theorem 4.1], compare also (2.13) in Section 2.1.4), and give the
proof afterwards.

Theorem 5.1 The moments of the distribution of(1−X0), d(k) :=E
[
(1−X0)

k
]
, satisfy the recursion

d(k) =
2σ

k−1+2θ +2σ
d(k+1)+

k−1+2θν1

k−1+2θ +2σ
d(k−1), k≥ 1, (5.3)

with boundary conditions
d(0) = 1, lim

k→∞
d(k) = 0.

Note that the recursion (5.3) has a shape similar to the recursion of Fearnhead’s coefficients (2.33).

The killed ASG of one single individual

The sample to start with is one randomly chosen individual from the stationarypopulation at time
r = 0. We want to determine its type by following each of its potential ancestors back to the most
recent mutation.
The collection of all potential ancestors of this individual in an untyped situation is given by the ASG
started at time 0 with one single line and constructed backward in time. The genealogy is then typed
by beneficial or deleterious mutations which come as independent Poisson point processes at rates
θν0 andθν1 along the lines of the ASG.

The type of the single individual at timer = 0 is 0 if and only if there is at least one line among all
potential ancestors on which the most recent (considered forward in time)mutation is to type 0. The
distribution of the sampled individual may be determined in the following way.

First, generate a realisation of a lookdown ASG (as explained in Section 3.4), started with one single
(yet untyped) individual at timer = 0, and with mutations on the lines. Then, given this realisation,
let r1 be the time of the first mutation after time 0, and inductivelyr i+1 be the time of the first mutation
after timer i , i ≥ 1. Thekilled ASG of one single individualcan then be constructed from this given
realisation of the lookdown ASG in the following way (compare also Figure 5.1).
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5.1 The killed ASG

1. Start withi = 1 and go to step 2.

2. If the mutation at timer i is a beneficial mutation (a ‘circle’), we are done. Since then there is
one ancestor carrying the beneficial type, the individual at time 0 has type0 as well. We can
delete all remaining potential ancestors, stop the procedure, and conclude I1 = 0.
If the mutation at timer i is a deleterious mutation (a ‘cross’), then the first mutation backward
in time (which is the most recent mutation forward in time) on the affected branch isto type 1.
Since this branch does not contribute to the event that the sampled individual at time r = 0 is
of type 0 any more, it may not be considered further and can be erased from the graph. Go to
step 3.

3. If no more branches are left after the pruning, we are done. Then all potential ancestors of the
sample of size one inherit type 1. Therefore, the single sampled individualhas to be of type 1
as well,I1 = 1.
If there is at least one branch left, seti = i+1 and continue with step 2.

1

2

3

r 0r2 r1

Figure 5.1: Killed ASG of one single individual. The first mutation aftertime 0 is a deleterious mutation at
time r1. The mutation at time r2 is beneficial. It assigns type0 to the single individual at time0
and kills all remaining lines.

The killed ASG of one single individual can reach its absorbing state (i.e. number of lines is equal to
zero) via two different possibilities. Either a beneficial mutation hits the graph. Then the sampled in-
dividual holds type 0. Or all lines are erased due to deleterious mutations before a beneficial mutation
appears. In this second case the sampled individual inherits type 1.

Let (Kr) be the line counting process of the killed ASG with sample size 1 andJr ∈ {0,1}; Jr := 0 if
Kr > 0 and if there is no beneficial mutation between timesr and 0. Otherwise, ifKr = 0, Jr := 0 if
I1 = 1, andJr := 1 if I1 = 016. Then, due to the construction of the killed ASG with sample size one,
the generatorG(K,J) of the joint process(K,J) is given by

G(K,J) f (k, j) = kσ [ f (k−1,0)− f (k,0)]+

[
1
2

k(k−1)+1{k>1}kθν1

]
[ f (k−1,0)− f (k,0)]

+1{k=1}θν1 [ f (0,0)− f (1,0)]+kθν0 [ f (0,1)− f (k,0)] .
(5.4)

With the help of the killed ASG of one single individual, we can now state the proof of Theorem 5.1.

Proof of Theorem 5.1.Let d(k) :=E
[
(1−X0)

k
]

be the probability thatk randomly chosen individuals
from a stationary population at timer = 0 are all of type 1. The types of thesek individuals can

16J counts the number of type-0 individuals in the sample (also in the general case treated in Section 5.1.2).
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5 The killed ASG and a representation of sampling probabilities

be determined by constructing an ASG withk lines backward in time, marked with beneficial and
deleterious mutations. Then, to read off whether all individuals are of type1, check if the most recent
mutation back from time 0 on each line is deleterious. Thus, we are exactly in the setting of the killed
ASG of one single individual but now started withk lines at timer = 0 and with dynamics given by
(5.4).
All lines are of type 1 if and only if the killed ASG gets absorbed in state(K,J) = (0,0) and not in
state(K,J) = (0,1). Therefore, we may define the event

E := {The killed ASG gets absorbed in state(0,0) and not in(0,1)} (5.5)

and get

d(k) = P
(
E | (K,J) = (k,0)

)
.

We haved(0) = 1 and limk→∞ d(k) = 0 sinceX0 6= 0 a.s. A ‘first step decomposition’ of the eventE
by using the rates given by (5.4) yields

(
1
2

k(k−1)+kσ +kθ
)

d(k) = kσd(k+1)+

(
1
2

k(k−1)+kθν1

)
d(k−1), k≥ 1, (5.6)

which is equivalent to (5.3) and the proof is complete. �

5.1.2 Sample size m≥ 1

If we have a sample of size larger than one, there may be some individuals oftype 1 and some of type
0 in the sample. To identify the types of all individuals in the sample, we again start with the (yet
untyped) ASG. But in contrast to the killed ASG with sample size one, it is not convenient here to
kill the complete graph at a single beneficial mutation. Potential ancestors of the individuals that are
not affected by the mutation should not be deleted.
We introduce an additional label to each ancestor to keep track of the relationship between its de-
scendants and the individuals in the sample. These labels then determine all branches that should be
deleted at a beneficial mutation. In detail, the label at any arbitrary but fixed ancestral line consists
of a subset of{1,2, . . . ,m}. This subset contains the numbers of all individuals in the sample that are
offspring of this potential ancestor. At a beneficial mutation, the numbers that included in the label of
the line that is affected by the mutation are erased from all labels. Lines with empty labels are deleted
from the graph. Deleterious mutations are treated in the same way as for the killed ASG with sample
size 1: the affected branch (together with its label) is pruned. We denote theresulting labelled and
pruned version of the (lookdown) ASG thekilled ASG(for an example see Fig. 5.2). Its transition
rates are given and explained in detail in the proceeding section.

The killed ASG

The state spaceS m× [0,∞] of the killed ASG started with sample sizemat time 0 consists of a time
coordinater ∈ [0,∞] and a collection of tuples whose entries are subsets of{1,2, . . . ,m} (the labels)
together with a natural number (the number of individuals in the sample that arealready identified to
inherit type 0),

S
m := ∅ ∪ {(b1,b2, . . . ,bk) | bi ⊆ {0,1, . . . ,m} ∀i = 1, . . . ,k , k= 1,2, . . .}⊗{0,1, . . . ,m}.
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5.1 The killed ASG

Let (Bm
r )r≥0 be the configuration of labelled lines of the killed ASG with sample sizem and let

(Jm
r )r≥0 be the random variable which counts the number of type-0 individuals in the sample, these

are the first and second component ofS m, (Bm
r ,J

m
r ) ∈ S m for all r ≥ 0.

The starting configuration of the killed ASG is(Bm
0 ,J

m
0 ) =

(
({1},{2}, . . . ,{m}),0

)
, and the set∅×

{0,1, . . . ,m} ⊂ S m is absorbing. The killed ASG can be constructed from a given realisation of the
ASG with mutations in the following way.
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0000344
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Figure 5.2: Realisation of the killed ASG started with m= 6 lines. The starting configuration on the right
hand side of the picture is

(
({1},{2}, . . . ,{6}),0

)
. At a branching event (symbolised by star), the

affected line branches into itself and a clone with identical label. Arrows indicate coalescence
events of lines. The new label is the union of the labels of both lines. Each line hit by a deleterious
mutation (symbolised by a cross) is deleted. Each beneficialmutation (symbolised by a circle),
yields the removal from all labels of all numbers included inthe label of the line affected by the
mutation. Lines with empty lables are deleted. In addition,the variable Jm is increased by the
cardinality of the label of the mutating line. Here, since type0 is assigned to the labels1,3,5,2
due to beneficial mutations, the absorbing state (on the lefthand side of the picture) is(∅,4).
Labels4 and6 are coloured with type1 due to deleterious mutations.

In the first step, generate a realisation of a lookdown ASG (compare Section3.4) with mutations
started withm individuals at timer0 := 0 (an example is shown in Fig. 3.14). The elements of this
realisation are coalescence events, selective branching events, deleterious mutations, and beneficial
mutations. Let us arrange them according to their appearance in time and let the times be 0< r1 <
r2 < .. . .
We read off the corresponding realisation of the killed ASG from the givenrealisation of the lookdown
ASG by starting at timer0 = 0 with Bm

0 = ({1},{2}, . . . ,{m}), thus assigning labels{1},{2}, . . .{m}
to the lines on levels 1,2, . . . ,m. In addition, we setJm

0 = 0.
We then proceed inductively from timer i−1 to time r i , i ≤ τ, until the absorbing state(Bm

τ ,J
m
τ ) =

(∅,v), v ∈ N0, is reached at timerτ for someτ > 0. In the example shown in Fig. 5.2 the process
gets absorbed in state(∅,4). Labels always stick to their lines such that if a line changes its level, the
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5 The killed ASG and a representation of sampling probabilities

corresponding label moves to the same new level together with its line. The variableJm only changes
its value at beneficial mutations. If the element at timer i does affect a line of the lookdown ASG that
is not included in the killed ASG any more at timer i , nothing happens. Otherwise:

• If the element at timer i is aselective branchingevent of the line at levelj, j ≥ 1, the labels of
the lines on levelsj and j +1 at timer i are both a copy of the label of the line at levelj at time
r i−. The lines at levelsk > j together with their labels are shifted one level upwards to make
space for the newly born line.

• If the element at timer i is acoalescenceof the lines at levelsj andk, 1≤ j < k, the label on
the remaining line at levelj at timer i is the union of the labels of the lines at levelsj andk at
time r i−. All lines at levelsℓ > k together with their labels are shifted down to levelℓ−1 to
fill the free space.

• If the element at timer i is adeleterious mutationon the line at levelj, proceed exactly as in
the pruned LD-ASG and delete the label at levelj together with the line at levelj (but note
that the line is also deleted if it is the immune line). All lines at levelsk> j together with their
labels are shifted down to levelk−1 to fill the free space.

• If the element at timer i is a beneficial mutation on the line at levelj, j ≥ 1, the new value
of Jm, Jm

r i
, is gained by addingJm

r i− and the cardinality of the label at levelj. In addition, all
numbers that are contained in the label on levelj are deleted from the labels of all remaining
lines. This yields at least one line with an empty label (the line on levelj). All lines with empty
labels are deleted from the graph and all remaining lines together with their labels are shifted
down in an order preserving way such that the free spaces are filled again.

The transition rates of the killed ASG are directly passed on from the rates ofthe (lookdown) ASG
with mutations. Fori, p∈ {1, . . . ,k} we have

a) coalescence of the lines with labelsbi andbp, i < p :

q
( (

(b1, . . . ,bk), j
)
,
(
(b1, . . . ,bi−1,bi ∪bp,bi+1, . . . ,bp−1,bp+1, . . . ,bk), j

) )
= 1,

b) branching of a line with labelbi :

q
( (

(b1, . . . ,bk), j
)
,
(
(b1, . . . ,bi−1,bi ,bi ,bi+1, . . . ,bk), j

) )
= σ ,

c) killing of line with labelbi due to a deleterious mutation :

q
( (

(b1, . . . ,bk), j
)
,
(
(b1, . . . ,bi−1,bi+1, . . . ,bk), j

) )
= θν1,

d) colouring with type 0 of all sampled individuals with ancestor on the line with label bi

due to a beneficial mutation :

q
( (

(b1, . . . ,bk), j
)
,
(
(b1\bi , . . . ,bi−1\bi ,bi+1\bi , . . . ,bk \bi), j +#bi

) )
= θν0. (5.7)

Now, the killed ASG is an helpful tool to gain the distribution of the number of type-0 individuals in
a sample of sizem (drawn from a stationary Wright-Fisher population with mutation and selection).
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5.1 The killed ASG

Lemma 5.2 Letτ :=min{r ≥ 0 :Bm
r =∅} be the absorption time of a killed ASG(Bm

r ,J
m
r )r≥0, started

with m lines labelled with{1}, . . .{m} at time r= 0. Then

P(Jm
τ = ℓ) = E

[(
m
ℓ

)
Xℓ

0(1−X0)
m−ℓ

]
, 0≤ ℓ≤ m, (5.8)

where X0 is the frequency of the beneficial type in a sationary Wright-Fisher diffusionwith selection
and mutation at time r= 0.

Proof. It is well known (compare [KN97], for example) that a system of equations for the sampling
probabilities
E
[(m

ℓ

)
Xℓ

0(1−X0)
m−ℓ
]
, 0≤ ℓ ≤ m, can be gained in terms of an ASG with mutations, started with

m lines.
In a first step, one starts with an untyped sample of sizemat timer = 0. The genealogy of this sample
forms an ASG, evolving in backward timer ≥ 0. Given this ASG, one assigns mutations to the lines
independently according to Poisson point processes with ratesθν0 andθν1. Then, for almost every
realisation of the ASG with mutations, there exists a times∈ R

+ (chosen large enough) such that
each potential ancestral line inherits at least one mutation between timesr = 0 andr = s. On each
potential ancestral line, the mutation that is closest to time 0 determines the type thatis transported
forward in time on this line from the time of the mutation towards time 0. To determine the types of
them individuals at time 0, one may therefore cut away all branches after their first mutation. On the
remaining (now typed) graph, each selective event can be resolved: The true parent to each selective
event (and therefore also the child) is of type 0 if and only if at least one of its two potential parents
inherits type 0. Inductively, by resolving the true parent to all selective events in the remaining graph,
one gets that each individual in the sample of sizem is of type 0 if and only if the closest mutation to
time 0 is to type 0 on at least one of its potential ancestral lines.
In the killed ASG, the label on an arbitrary but fixed line marks all individualsin the sample of sizem
at timer = 0 that are offspring of this corresponding ancestral line. Due to construction, the variable
Jm

r gives the number of individuals in the sample that have at least one ancestral line assigned type 0
due to having the closest mutation to time 0 to the beneficial type. As all potential ancestors to the
sample at time 0 are marked by mutations at timeτ, Jm

τ gives the number of type-0 individuals in the
sample. Thus,P(Jm

τ = ℓ) is the probability thatℓ individuals are of type 0 among a sample of sizem
taken from a stationary Wright-Fisher population. �

Lemma 5.2 yields the following representation of a random type configuration ina sample of sizem.

Theorem 5.3 (Representation of sampling probabilities)Let m∈ N be the size of a random sam-
ple of individuals out of a stationary Wright-Fisher population with selection and mutation. The
probability that there are exactlyℓ individuals of type0 in this sample,0≤ ℓ≤ m,

dm,ℓ

((
({1},{2}, . . . ,{m}),0

))
:= E

[(
m
ℓ

)
Xℓ

0(1−X0)
m−ℓ

]
,

can be determined by solving the following system of equations,

dm,ℓ

(
(b1, . . . ,bk), j

)

=
2σ

k(k−1)+2kθ +2kσ

k

∑
i=1

dm,ℓ

(
(b1, . . . ,bi−1,bi ,bi ,bi+1, . . . ,bk), j

)
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5 The killed ASG and a representation of sampling probabilities

+
2

k(k−1)+2kθ +2kσ

k

∑
i,p=1,i<p

dm,ℓ

(
(b1, . . . ,bi−1,bi ∪bp,bi+1, . . . ,bp−1,bp+1, . . . ,bk), j

)

+
2θν1

k(k−1)+2kθ +2kσ

k

∑
i=1

dm,ℓ

(
(b1, . . . ,bi−1,bi+1, . . . ,bk), j

)

+
2θν0

k(k−1)+2kθ +2kσ

k

∑
i=1

dm,ℓ

(
(b1\bi , . . . ,bi−1\bi ,bi+1\bi , . . . ,bk \bi), j +#bi

)
,

j ∈ {0,1, . . . ,m}, bv ⊆ {1, . . . ,m} ∀ v= 1, . . . ,k, k≥ 0,

dm,ℓ

(
∅, ℓ

)
= 1, dm,ℓ

(
∅, j

)
= 0 for all j 6= ℓ. (5.9)

Proof. Let dm,ℓ

(
(b1, . . . ,bk), j

)
be the probability that the killed ASG started in state

(
(b1, . . . ,bk), j

)

gets absorbed in state(∅, ℓ),

dm,ℓ

(
(b1, . . . ,bk), j

)
:= P

(
∃r ≥ 0 : (Bm

r ,J
m
r ) = (∅, ℓ) | (Bm

0 ,J
m
0 ) = ((b1, . . . ,bk), j)

)
, (5.10)

m∈ N, j, ℓ ∈ {0,1, . . . ,m}, bv ⊆ {1, . . . ,m} for all v= 1, . . . ,k, k≥ 0.

Then we haveE
[(m

ℓ

)
Xℓ

0(1−X0)
m−ℓ
]
= dm,ℓ

((
({1},{2}, . . . ,{m}),0

))
. Since the state

(
∅, i
)

is ab-

sorbing for everyi ∈N0, dm,ℓ

(
∅, ℓ

)
= 1, anddm,ℓ

(
∅, j

)
= 0 for all j 6= ℓ. A ‘first step decomposition’

of dm,ℓ according to the rates (5.7) yields (5.9). �

Lemma 5.2 may also be used in terms of simulating sampling probabilities for a sample of size
m with the help of the killed ASG. The results of such a simulation algorithm are shown in Sec-
tion 5.2. The algorithm gets along with rates of the killed ASG only and is not in need of a re-
alisation of the frequencyX0 of type 0 individuals in the whole population. To get a realisation
of the number of type-0 individuals in a sample of size m, start a killed ASG with configuration
(Bm

0 ,J
m
0 ) =

(
({1},{2}, . . . ,{m}),0

)
and let the algorithm evolve according to the ratesa)−d) of the

killed ASG, given on page 76. When arrived at its final (absorbing) state (Bm
τ = ∅ for someτ ≥ 0),

the algorithm outputs a perfect sample ofJm
τ from the stationary distribution.

Remark 5.4 The killed ASG inherits properties from the ASG, e.g. the two following ones.

(i) The killed ASG may be started with m lines (m∈ N), but one may also use a sample of infinitely
many lines at time0. The quadratic death but only linear birth rates ensure that the killed ASG
comes down from infinity. Therefore, there are only finitely many lines left attime ε for all
ε > 0.

(ii) One may run the killed ASG for a given time horizon r≥ 0. If not all lines are killed until time r,
the types of all (potential) ancestors (that are not typed until time r) can beidentified by adding
types to the remaining lines at time r: type0 with probability Xr and1 with probability1−Xr

independently per line.
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5.2 Simulation results

In this section we present some simulation results for sample sizesm= 3,5,20 and for various com-
binations of the parametersθ , ν1, andσ . The algorithm encoded in Theorem 5.3 was implemented
in the programming language R. In Figs. 5.3, 5.4, and 5.5, simulations of the number of type-0 in-
dividuals in a sample drawn from a stationary Wright-Fisher population with mutation and selection
are displayed.

The green diagrams on the top of Figures 5.3, 5.4, and 5.5 show that high mutation rates (together
with ν1 = 0.5) shift the simulated densities towards shapes that look similar to Binomial distributions.
This observation may be explained intuitively in the following way. For large mutation rates, the role
of the selective advantage becomes very small as each line changes its typefrequently. Thus, the
type of each line is mostly determined by its most recent mutation. Since this mutation is totype 0
with probability 0.5 (almost) independently for each sampled individual, the simulated distribution is
similar to a Binomial distribution with parameters 3, 5, or 20 and 0.5.
The brown diagrams in the middle of the Figures indicate that a high mutation probability to type 1
shifts the simulated density to to the left: More individuals in the population are thenof type 1 such
that it becomes less probable to sample individuals of type 0.
The blue diagrams at the bottom of the three Figures show that a large selection coefficient results
in a shift of the simulated density towards more individuals of type 0. This is evident because a big
selective advantage increases the number of type-0 individuals in the population.

In the next section, we close this chapter with a glimpse on the so-calleddecision treeby Dawson
and Greven [DG14, Chapter 5]. It is also a tool that can be used to determine the types of individuals
of a sample. The decision tree is a collection of all potential histories of this sample (with an a priori
unknown type configuration). One can think of it as being some kind of stencil: Some potential type
configurations of the sample do not fit into the decision tree and can therefore be removed from the
collection of all possible type configurations of the sample.
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Figure 5.3: Simulations for sample size3.
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Figure 5.4: Simulations for sample size5.
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Figure 5.5: Simulations for sample size20.
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5.3 Dawson’s and Greven’s decision tree

Recently, Dawson and Greven published a monograph on spatial Fleming-Viot models with selection
and mutation [DG14]. In Chapter 5, they introduce duality as a basic tool foranalysing Fleming-Viot
processes (and therefore also the special case of Wright-Fisher diffusions) with selection, mutation,
and migration. This way, they also consider samples of individuals drawn from a (stationary) pop-
ulation and analyse their ancestry. The sampling probabilities can then be gained by summing over
all potential histories weighted with their probabilities. In Section 5.5.4, Dawsonand Greven explain
how to get these potential histories in terms of a marked graph, denoted asdecision tree(cf. [DG14,
picture on page 141]).

The decision tree may (like the killed ASG) be used for investigating the distribution of the types
of individuals in a sample. Therefore, we review the construction of a decision tree in our special
case of a Wright-Fisher diffusion (with two types) with mutation and selection. As this gets very
voluminous for large samples, we consider only sample size 1 here. This fits well into the setting of
[DG14, picture on page 141] and is also comparable with Section 5.1.1 of this chapter.

To this end, we construct the decision tree for the following example (illustrated in Fig. 5.6): A
single individual is sampled at timer = 0. In order to determine its type, take a look at all its potential
ancestors. In the example, the (lookdown) ASG of this individual consistsof a selective branching
event at times1 on level 1, a selective branching event at times2 on level 2, a deleterious mutation
on level 3 at times3, a coalescence between levels 1 and 2 at times4, a selective branching event on
level 1 at times5, and a beneficial mutation at level 1 at times6.

1

2

3

r 0s6 s3 s1s2s4s5

Figure 5.6: (Lookdown) ASG of a single individual sampled at time0 (the corresponding killed ASG is shown
in Fig. 5.1).

For a test functiong : {0,1} → {0,1}, let (g)ℓ := g(iℓ), with iℓ being the type of the line at level
ℓ. Especially, let(χ)ℓ := 1{iℓ=0}. The decision tree for the just described example looks as follows.
Time r goes down from top to bottom. Let us identify the first row withr = 0, the second row with
r = s1, . . ., and the seventh row withr = s6. We adopt notation from [DG14]: The variableχ always
stands for a line of type 0, and 1−χ for a line of type 1.
We first show the diagram and then explain its entries and the notation.
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5 The killed ASG and a representation of sampling probabilities

(g)1

(1− χ)1⊗ (g)2

(1− χ)1⊗ (1− χ)2⊗ (g)3

(1− χ)1⊗ (1− χ)2⊗ ((1− χ)g)3

(1− χ)1⊗ ((1− χ)g)2

(1− χ)1⊗ (1− χ)2⊗ ((1− χ)g)3

0

0

(1− χ)1⊗ (χg)2⊗ (1)3

(1− χ)1⊗ (χg)2⊗ (1− χ)3

0

(χg)1⊗ (1)2

(χg)1⊗ (1− χ)2⊗ (1)3

(χg)1⊗ (1− χ)2⊗ (1− χ)3

0

(χg)1⊗ (χ)2⊗ (1)3

(χg)1⊗ (χ)2⊗ (1− χ)3

(χg)1⊗ (1− χ)2

(1− χ)1⊗ (χg)2⊗ (1− χ)3

0

(χg)1⊗ (1)2⊗ (1−χ)3

(χg)1⊗ (1)2⊗ (1−χ)3

At time r = 0, we start with the single sampled line on level 1. This is shown at the top of the diagram,
(g)1. The index always indicates the level, which in this case is 1.
Then this line branches into two lines (at timer = s1): The incoming branch on level 1 and the
continuing branch on level 2. There are two potential parents now: If theincoming branch is of
type 1 (which is indicated in the diagram by(1− χ)1), the parental branch is the continuing one.
Therefore, the functiong is now assigned to the continuing branch on level 2,(g)2. Thus, this case
coincides with(1− χ)1 ⊗ (g)2 (first entry in the second row, compare also Fig. 5.7, left). In the
second case, if the incoming branch is of type 0 (indicated byχ), it is the parental one. So, we have
the component(χg)1. The type of the continuing branch is not specified; it may be either 0 or 1,
thus we have the component(χ +(1− χ))2 = (1)2. Together, this case gives the second entry in the
second row:(χg)1⊗ (1)2 (compare also Fig. 5.7, right).

1 1

2
(g)1

(g)2

(1− χ)1
0 1

2
(g)1

(1)2

(χg)1

Figure 5.7: Selective branching event of the line on level1. Left: The incoming branch is of type1, the true
parent is the continuing line on level2. Right: The incoming branch is of type0 and thus the true
parent. The labels on the branches are the entries of Dawson’s and Greven’s decision tree.

The branching event at times1 is followed by another branching event a times2 at level 2 which gives
the third row in the decision tree.
Then a deleterious mutation at times3 on level 3 assigns type 1 to the line on level 3. This is indicated
by the additional factor(1−χ) in the components(·)3 in the fourth row of the decision tree.
Then, at times4, the lines on levels 1 and 2 coalesce. But this can only happen if both lines are of
the same type (compare Fig. 5.8). If both lines are of type 1 (as in the first entry in fourth row), they
coalesce into one line of type 1 and the line on level 3 moves to level one. This gives the first entry
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5.3 Dawson’s and Greven’s decision tree

in the fifth row17. If both lines are of type 0 (as in the last entry in fourth row), they coalesce into one
line of type 0 yielding the last entry in the fifth row. Otherwise, if the two lines carry different types,
they cannot coalesce. The second and third entry in the fifth row are therefore just 0.

1 1

2

(1− χ)1

(1− χ)2

(1− χ)1
0 1

2

(χ)1

(χ)2

(χ)1

Figure 5.8: Coalescence of the lines at levels1 and2 is only possible if both lines inherit the same type. Two
lines of type1 (indicated by(1− χ)) or of type0 (indicated by(χ)) coalesce.

At time s5 there is again a branching event at level 1 which gives the sixth row. Thesecond entry is 0
because a line of type 1 is not allowed to branch into an incoming branch of type 0.
Then a mutation at times6 assigns type 0 to the line on level 1. As this is only compatible with the
right branch in the tree, this branch gives the true ancestry. As we have(χg)1, the true parent at time
s6 of the individual sampled at time 0 is located at level 1 and inherits type 0.

This way, the decision tree gives a possibility to determine types of sampled individuals. In compar-
ison to the killed ASG, mutations are treated differently. For example, a line (thatis not the immune
one) is pruned from the killed ASG at a deleterious mutation. But in the decisiontree it is not deleted
in all cases.

17Note that we are working in the framework of the lookdown ASG. Therefore, we indicate the lines by their levels. At
a coalescence event, free levels are filled again by lines at higher levels.Dawson and Greven do not place the lines on
levels but number the lines. Therefore, their first entry in the fifth row would keep the index 3,(1−χ)1⊗ ((1−χ)g)3.
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6 The evolution of the common ancestor
process together with its Wright-Fisher
background

In the setting of Chapter 3, we come back to a classical (two-type) Wright-Fisher diffusion with
two-way mutation and directional selection. Fearnhead [Fea02] described the evolution of the type
process(Rr)r∈R on the line of the common ancestor together with a process(Vr)r∈R of so-called ‘vir-
tual lines’.
In this chapter, we analyse the joint evolution of(Rr)r∈R, (Vr)r∈R, and the joint Wright-Fisher back-
ground(Xr)r∈R. Using time-reversal in equilibrium, we derive the backward and forwardin time
generators of the triple process(X,R,V) (taking values in[0,1]×{0,1}×N0) and explain all rates
heuristically with the help of the pruned lookdown ASG (introduced in Chapter 3). This approach
also allows for new insights into the probabilityh(x) = P(R0 = 0 |X0 = x). In addition, it ties together
results by Fearnhead [Fea02] (who analysed the process(R,V)) and Taylor [Tay07] (who investigated
the process(X,R)).

6.1 Introduction

Let us deal with the same setting as in the previous chapter: We consider a classical two-type Wright-
Fisher population with two-way mutation and selection (in the notation of Chapter 3).

Remember thatθν1 andθν0 are the mutation rates per line to types 0 and 1, and that type 0 is the
beneficial type with selective advantageσ . Xt is the frequency of type 0 individuals in the population
at timet ∈ R andX = (Xt) evolves according to the generatorGX, given by (2.4),

GXg(x) =
1
2

x(1−x)g′′(x)+ [(1−x)θν0−xθν1+σx(1−x)]g′(x), g∈ C
2[0,1], (6.1)

The stationary probability measurew for this generator is given by (2.5),

w(x) = cw · (1−x)2θν1−1x2θν0−1 ·exp{2σx}, x∈ [0,1]. (6.2)

with cw =
[∫ 1

0 (1−x)2θν1−1x2θν0−1 ·exp{2σx}dx
]−1

.

In this chapter, we are not only interested in the stationary distribution
(
h(x),1−h(x)

)
of the type of

the common ancestor but also in the evolution backward and forward in time. Indetail, we want to
take a closer look at the evolution of the common ancestor process(R,V) (introduced by Fearnhead
[Fea02], compare also Chapter 2, especially Section 2.2.3) together with its random Wright-Fisher
environmentX.
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6 The common ancestor process in its Wright-Fisher background

This gives the triple process(X,R,V) which may also arise by incorporating the numberV of virtual
lines into the process(X,R) that was introduced by Taylor [Tay07].

With the help of thepruned LD-ASG(compare Chapter 3), we build a bridge between the two ap-
proaches by Fearnhead [Fea02] (reviewed already in Section 2.2.3) and Taylor [Tay07] (reviewed in
Section 2.2.4).

Recall that Fearnhead defines thecommon ancestor process(CAP), a modification of the ancestral
selection graph ([KN97]), which includes the typeRof the common ancestor (orreal line) and a num-
berV of so-called virtual lines. The process(Rr ,Vr)r∈R is Markovian and its stationary distribution
can be calculated from the generator matrix (given by the rates (2.27), (2.28), and (2.29)).
Taylor considers the typeRof the immortal line together with the frequency processX. He calculates
the stationary distribution of the Markovian process(Xr ,Rr)r∈R by solving a boundary value problem.
In this chapter, we tie together all three variables. We will analyse the evolution of the triple process
(Xr ,Rr ,Vr)r∈R backward and forward in time and identify its stationary distribution. Via an analytic
proof, we will also see that this stationary distribution can also be gained with the help of the pruned
LD-ASG directly and intuitively without many calculations.

6.2 The backward in time generator of (X,R,V)

(Rr ,Vr) is just a typed sample of individuals (or lines) for all timesr ≥ 0. Thus, backward in time, the
triple process(X,R,V) is a structured coalescent process in a random Wright-Fisher environment.
Such a structured coalescent was introduced and analysed by Barton,Etheridge and Sturm [BES04],
compare also [Tay07, Section 2].
Here, in the case(R0,V0) = (0,v), the structured coalescent starts withv lines of type 1 and one
line of type 0. In the case(R0,V0) = (1,v) the initial state consists ofv+1 lines of type 1. When
there is a mutation to type 0 on any line (except for the real line), this virtual lineis deleted. Due
to selection, each branching event may result in an additional virtual line that is required to be of
type 1 (compare also Section 2.2.3). The generator of the triple process(X,R,V) is therefore given
by adding the mutation and selection dynamics of the virtual lines to the generatorof the structured
coalescent (given by (2.36) in this thesis, Lemma 3.1 in [BES04], or (3) in [Tay07]).

Lemma 6.1 The generator̂G(X,R,V) of the process(Xr ,Vr ,Rr)r∈R backward in time is given by

Ĝ(X,R,V)g(x,0,v) = GXg(x,0,v)+
1−x

x
θν0 [g(x,1,v)−g(x,0,v)]

+(v+1)σ(1−x) [g(x,0,v+1)−g(x,0,v)]

+

[
vθν1+

1
2

v(v−1)

]
1

1−x
[g(x,0,v−1)−g(x,0,v)]

(6.3)

Ĝ(X,R,V)g(x,1,v) = GXg(x,1,v)+
x

1−x
θν1 [g(x,0,v)−g(x,1,v)]

+(v+1)σ(1−x) [g(x,1,v+1)−g(x,1,v)]

+

[
vθν1+

1
2

v(v+1)

]
1

1−x
[g(x,1,v−1)−g(x,1,v)]

(6.4)
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6.2 The backward in time generator of(X,R,V)

for all g ∈ C 2(0,1)×{0,1}×N0.

The (analytic) proof of Lemma 6.1 can be carried out analogously to the proof of Lemma (3.1) in
[BES04] as a diffusion limit of the discrete model.

Instead of reviewing the analytic calculations here, we verify the rates by giving heuristic and intuitive
arguments.

Interpretation of the generator Ĝ(X,R,V)

The rates of the generator̂G(X,R,V) can be interpreted18 in terms of the possible transitions of(R,V),

givenX. Let us decomposêG(X,R,V) into its different summands and look at them separately:

Ĝ(X,R,V)g(x, r,v) = GX g(x, r,v)︸ ︷︷ ︸
1.©

+ M̂ x
R [g(x, r̄,v)−g(x, r,v)]︸ ︷︷ ︸

2.©

+ B̂ x
V [g(x, r,v+1)−g(x, r,v)]︸ ︷︷ ︸

3.©

+ Ĉ x,r
V [g(x, r,v−1)−g(x, r,v)]︸ ︷︷ ︸

4.©

(6.5)

with r̄ =

{
0, if r = 1

1, if r = 0 .

1. The first part of the generator describes the dynamics of theWright-Fisher diffusion processX.
Due to time reversibility, we havêGX = GX.

2. The second part is the generator of themutation process on the real line, givenX = x,

M̂ x
R =

1−x
x

θν01{r=0}+
x

1−x
θν11{r=1} . (6.6)

The factors(1− x)/x andx/(1− x) in front of the forward in time mutation ratesθν0 andθν1 are
time change factors of a structured coalescent (they also appear e.g. in [KDH88, (6) and (7)]) and can
be understood intuitively in the following manner.
The forward in time mutation rate per line to type 0 isθν0 (silent mutations from type 0 to type 0
included). Mutation events from type 1 to type 0 (forward in time) happen when the line hit by the
mutation carries type 1. As, for each line, the probability to inherit type 1 is 1−x (when the frequency
of type 0 in the population at the time of the mutation isx), the overall rate at which a mutation from
type 1 to type 0 happens is(1−x)θν0 per line. Thus, backward in time the overall mutation rate from
type 0 to type 1 per line should be(1−x)θν0 as well. But as such a mutation can only affect a line of
type 0 (at probabilityx), the backward in time mutation rate to type 1 of each type-0 line has to equal
θν0 (1−x)/x.
In detail, the quantity limt→0P(R0 = 1,Rt = 0 | X0 = x)/t can be calculated by starting with one
line of type 1 and letting it mutateforward in timeto type 0. This yields limt→0P(R0 = 1,Rt = 0 |
X0 = x)/t = (1− x)θν0. Or it can be evaluated by starting with one line of type 0 and letting it
mutatebackward in timeto type 1, which gives limr→0P(R0 = 0,Rr = 1 | X0 = x)/r = x · m̂ x

R(0,1).

18Remember that the index ‘̂ ’ indicates the directionbackward in time.
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6 The common ancestor process in its Wright-Fisher background

Thus, the backward in time mutation ratêm x
R(0,1) on the real line from type 0 to type 1 is given by

θν0 (1−x)/x. Equivalently, we havêm x
R(1,0) = θν1 x/(1−x).

3. The third part of the generator describes an increase of the number of virtual lines due toselection,
givenX = x,

B̂ x
V = (v+1)σ(1−x) . (6.7)

A branching event backward in time is the analogue to a selective reproduction event forward in
time (compare e.g. [KN97], [Fea02]). The forward in time rate of a selective reproduction event
concerning one particular particle is given byσ . Since we havev virtual lines and the real line, the
total rate at which selective events arrive forward in time is(v+1)σ . Backward in time a branching
means an appearance of one additional line. Here, the branching can only happen if this line is
a virtual one and has type 1, which has probability 1− x. Therefore the overall branching rate is
(v+1)σ(1−x).

4. The fourth part describes a decrease of the number of virtual lines dueto coalescence or mutation,
givenX = x,

Ĉ x,r
V =

[
vθν1+

1
2

v(v−1)1{r=0}+
1
2

v(v+1)1{r=1}

]
1

1−x
. (6.8)

Forwards in time, a mutation to type 1 (from type 0 or a silent mutation from type 1) per line arrives
at rateθν1. Thus, the overall mutation rate to type 1 ofv lines forward in time isvθν1. Therefore, the
backward in time mutation rate from type 1 (to type 0 or 1) must be equal tovθν1/(1−x), because
the probability for one particle to be of type 1 is 1−x and(1−x) ·vθν1/(1−x) = vθν1.
The rate for a branching event forward in time is just the number of (unordered) pairs (between which
the "reproductive arrow" can be interchanged). Backward in time we have v(v−1)/2 of these pairs
of type-1 particles if the real line is of type 0 andv(v+ 1)/2 if the real line is of type 1. Since
the vanishing line is of type 1, this rate has to be multiplied again by 1/(1−x). We have the total
backward in time coalescence rate

[
(1/2)v(v−1)1{r=0}+(1/2)(v+1)v1{r=1}

]
/(1−x).

Remark 6.2 Backward in time, the process(X,R,V) can be decomposed in the following way:

1. In the first step, generate a random environment X= (Xr)r∈R with respect to the Wright-Fisher
generator GX.

2. Then, in the second step, given X, generate the common ancestor process(Rr ,Vr)r∈R in this
random environment with respect to the conditioned generatorM̂ x

R + B̂ x
V +Ĉ x,r

V .

6.3 Stationary distribution of the triple process (X,R,V)

Let ϕ(x, r,v) be the density of the equilibrium distribution (with respect to the Lebesgue measure
on [0,1] times counting measure on{0,1}×N0) of the triple process(X,R,V). Following Taylor’s
ideas of using a product ansatz for the stationary distribution ((2.38) in thisthesis), we consider a
disintegration forϕ ,

ϕ(x,n, r) = w(x) ·φ x(n, r), (6.9)
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6.3 Stationary distribution of the triple process(X,R,V)

with the stationary densitiy w of the process X, given by (6.2) and
φ x(r,v) = P

(
(Rs,Vs) = (r,v) | Xs = x

)
. Taking a closer look at (2.34) or [Fea02, Remark 3], one

can make the educated guess

φ x(0,v) = avx(1−x)v,

φ x(1,v) = (av−av+1)(1−x)v+1,
(6.10)

with Fearnhead’s coefficients(av)v∈N0 determined by Remark 2.1,
[

1
2
(v+1)+σ +θ

]
av =

[
1
2
(v+1)+θν1

]
av+1+σav−1, v≥ 1,

with a0 = 1 and lim
v→∞

av = 0.
(6.11)

Indeed, we have the following theorem.

Theorem 6.3 The densityϕ of the stationary distribution of the process(X,R,V) is given by

ϕ(x,0,v) = w(x) ·avx(1−x)v,

ϕ(x,1,v) = w(x) · (av−av+1)(1−x)v+1,
(6.12)

for x∈ [0,1], v∈ N0, and with Fearnhead’s coefficients(av) defined by(6.11).

Let us first explain (6.12) intuitively before giving an analytical proof.

The intuition behind this theorem becomes clear when considering the followingfacts. The common
ancestor process(Rr ,Vr)r∈R can be embedded in the pruned LD-ASG with the line counting process
(Lr)r∈R (introduced in Chapter 3). Let us assume that we are in an equilibrium situation at time 0.
Then a realisation of(X0,R0,V0) can be gained by first generating a realisation ofX0 and a realisation
of L0 independently. Then, in the footsteps of theFearnhead simulator(see Page 27), givenX0 = x
andL0 = ℓ, we can get the realisation ofR0 andV0 via a Bernoulli experiment. In detail, we tossℓ
times a coin with success probabilityx. If there is at least one success among theℓ tosses, we setV0

equal to the number of unsuccessful tosses before the first success, andR0 = 0. If all ℓ tosses were
unsuccessful, we setV0 = ℓ−1 andR0 = 1.
Let C0 be the time of the first success in a coin tossing experiment with success probability X0 and
remember from Section 3 that Fearnhead’s coefficients are tail probabilities of L, av = P(L0 > v).
Then we haveP((R0,V0) = (0,v) | X0 = x) = P(C0 = v+1,L0 > v | X0 = x) andP((R0,V0) = (1,v) |
X0 = x) = P(C0 > v+1,L0 = v+1 | X0 = x). Therefore, we get

P((X0,R0,V0) = (x,0,v)) = w(x) ·avP(C0 = v+1 | X0 = x),

P((X0,R0,V0) = (x,1,v)) = w(x) · (av−av+1)P(C0 > v+1 | X0 = x),
(6.13)

which is exactly (6.12).

Proof of Theorem 6.3.ϕ is the density of the stationary distribution of the triple process(X,R,V)
if and only if

∫
[0,1]dx∑r∈{0,1} ∑v≥0

[
Ĝ(X,R,V)g(x, r,v)

]
ϕ(x, r,v) = 0 for all g in the domain ofĜ(X,R,V)

(compare [EK86, Theorem 9.17, Chapter 4]). For this, via integration byparts, it suffices to show

Ĝ∗
(X,R,V)ϕ(x, r,v) = 0 (6.14)

for all x ∈ (0,1), r ∈ {0,1}, v ∈ N0, whereĜ∗
(X,R,V) is the formal adjoint operator of̂G(X,R,V). To
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6 The common ancestor process in its Wright-Fisher background

simplify this condition we decomposêG(X,R,V) into two parts:

Ĝ(X,R,V) = Gx+ F̂ (6.15)

with the Wright-Fisher generatorGX given by (6.1) and the jump generatorF̂ ,

F̂g(x, r,v) =

[
1−x

x
θν01{r=0}+

x
1−x

θν11{r=1}

]
[g(x, r̄,v)−g(x, r,v)]

+(v+1)σ(1−x) [g(x, r,v+1)−g(x, r,v)]

+

[
vθν1+

1
2

v(v−1)1{r=0}+
1
2

v(v+1)1{r=1}

]
1

1−x
[g(x, r,v−1)−g(x, r,v)]

(6.16)

for all g∈ C 2(0,1)×{0,1}×N0; r̄ = 1 if r = 0 and ¯r = 0 if r = 1. Note thatF̂ depends onx but we
omit the index here for simplicity.
The formal adjoint operator̂G∗

(X,R,V) of Ĝ(X,R,V) can therefore be written as

Ĝ∗
(X,R,V) = GX

∗+ F̂∗. (6.17)

Thus, (6.14) is satisfied if
(GX

∗+ F̂∗)ϕ = 0 . (6.18)

As w is stationary density, it follows by the same argument as in (6.14) thatGX
∗ [w(x)g(x)] = w(x) ·

GXg(x) ∀g∈ C 2 [0,1], which again simplifies (6.18) into

(GX + F̂∗)φ x = 0 . (6.19)

Note thatF̂ is a generator matrix (also known as a ‘Q-matrix’). Thus, the formal adjointoperatorF̂∗

of F̂ is just given by the transposition of̂F .

Now, here we only show(GX + F̂∗)φ x(0,v) = 0. The proof of(GX + F̂∗)φ x(1,v) = 0 works com-
pletely analogously.

To calculateGXφ x(0,v), we first need the derivatives ofφ x(0,v), expressed in terms ofφ x(0,v),

d
dx

φ x(0,v) =

(
1
x
−

v
1−x

)
φ x(0,v),

d2

dx2 φ x(0,v) =
v(x−2+vx)

x(1−x)2 φ x(0,v) .

We have

GXφ x(0,v) =
1
2

x(1−x)
d2

dx2φ x(0,v)+ [θν0(1−x)−θν1x+σx(1−x)]
d
dx

φ x(0,v),

which is equal to

GXφ x(0,v)= φ x(0,v)

[
(v+1)σ(1−x)+

[
1
2

v(v−1)+vθν1

]
1

1−x
+θν0

1
x
−

1
2
(v+1)v−θ(v+1)−vσ

]
.

(6.20)
To expresŝF∗φ x(0,v) in terms ofφ x(0,v), the following equalities are helpful,

φ x(0,v+1) =
av+1

av
(1−x)φ x(0,v),
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φ x(0,v−1) =
av−1

av

1
1−x

φ x(0,v),

φ x(1,v) =
1−x

x

(
1−

av+1

av

)
φ x(0,v) .

Thus,

F̂∗φ x(0,v) = θν1
x

1−x
φ x(1,v)+

[
(v+1)θν1+

1
2

v(v+1)

]
1

1−x
φ x(0,v+1)+vσ(1−x)φ x(0,v−1)

−

[
θν0

1−x
x

+

[
vθν1+

1
2

v(v−1)

]
1

1−x
+(v+1)σ(1−x)

]
φ x(0,v),

which reads in terms of factors ofφ x(0,v)

F̂∗φ x(0,v) = φ x(0,v)

{
θ +vθν1

av+1

av
+

1
2

v(v+1)
av+1

av
+vσ

av−1

av

−

[
θν0

1
x
+

[
vθν1+

1
2

v(v−1)

]
1

1−x
+(v+1)σ(1−x)

]}
.

(6.21)

Taking (6.20) and (6.21) together, we see that all terms depending onx in the sum of both generator
parts cancel each other,

(GX + F̂∗)φ x(0,v) = φ x(0,v)

[
vθν1

av+1

av
+

1
2

v(v+1)
av+1

av
+vσ

av−1

av
−

1
2
(v+1)v−vθ −vσ

]
.

Therefore,Ĝ∗
(X,R,V)ϕ(x,0,v) = 0 if and only if

0= vθν1
av+1

av
+v(v+1)

av+1

av
+vσ

av−1

av
− (v+1)v−vθ −vσ (6.22)

which is equivalent to Fearnhead’s recursion (6.11). �

6.4 The forward in time generator of (X,R,V)

In this section we reverse time and discuss the evolution of the triple process(X,R,V) forward in
time. We first state the theorem that gives the generator. Then we discuss the heuristics and intuition
and we end this section with proving the theorem.

Theorem 6.4 The generator G(X,R,V) of the process(Xt ,Vt ,Rt)t∈R forward in time is given by

G(X,R,V)g(x,0,v) = GXg(x,0,v)+(1−x−vx)g′ (x,0,v)

+θν1
av−av+1

av
[g(x,1,v)−g(x,0,v)]

+vσ
av−1

av
[g(x,0,v−1)−g(x,0,v)]

+

[
(v+1)θν1+

1
2

v(v+1)

]
av+1

av
[g(x,0,v+1)−g(x,0,v)]

(6.23)
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6 The common ancestor process in its Wright-Fisher background

G(X,R,V)g(x,1,v) = GXg(x,1,v)−x(v+1)g′ (x,1,v)

+θν0
av

av−av+1
[g(x,0,v)−g(x,1,v)]

+vσ
av−1−av

av−av+1
[g(x,1,v−1)−g(x,1,v)]

+

[
(v+1)θν1+

1
2
(v+1)(v+2)

]
av+1−av+2

av−av+1
[g(x,1,v+1)−g(x,1,v)]

(6.24)

for all g ∈ C 2 [0,1]×{0,1}×N0.

Lemma 6.5 G(X,R,V) can be decomposed in the following way

G(X,R,V)g = GXg+x(1−x)
φ x′

φ x g′+Fg, (6.25)

with the generator matrix F, defined by

Fg(x, r,v) =

[
θν1

av−av+1

av
1{r=0}+θν0

av

av−av+1
1{r=1}

][
g(x, r̄,v)−g(x, r,v)

]

+

[
vσ

av−1

av
1{r=0}+vσ

av−1−av

av−av+1
1{r=1}

][
g(x, r,v−1)−g(x, r,v)

]

+

[(
(v+1)θν1+

1
2

v(v+1)

)
av+1

av
1{r=0}

+

(
(v+1)θν1+

1
2
(v+1)(v+2)

)
av+1−av+2

av−av+1
1{r=1}

]
[
g(x, r,v+1)−g(x, r,v)

]

(6.26)

for all g ∈ C 2 [0,1]×N0×{0,1} with r̄ =

{
0, if r = 1,

1, if r = 0 .

Note that Lemma 6.5 is equivalent to Theorem 6.4 because we have

x(1−x)
φ x(v,0)′

φ x(v,0)
= 1−x−vx , x(1−x)

φ x(v,1)′

φ x(v,1)
=−x(v+1). (6.27)

Let us first explain the rates of the generatorG(X,R,V) before proving Theorem 6.4.
Note that the rates ofG(X,R,V) that indicate a change of(R,V) do not depend onX. Therefore, we
have the following remark.

Remark 6.6 Forward in time, the process(X,R,V) can be decomposed in the following way:

1. In the first step, generate the common ancestor process(Rr ,Vr)r∈R with respect to the generator
F.

2. Then, in the second step, given(R,V), generate the conditioned Wright-Fisher diffusion with
selection and mutation(Xr)r∈R in the(R,V)-environment with respect to the conditioned gen-

erator Gx+x(1−x)φx′

φx
d
dx.
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Interpretation of the generator G(X,R,V)

For understanding the generatorG(X,R,V) intuitively, it is essential to point out the following two facts
connecting the common ancestor process and the pruned LD-ASG (that were already discussed on
Page 91): The event{(R,V) = (1,v)} yields{L = v+1} and{(R,V) = (0,v)} results in{L > v}.

The forward in time generatorG(X,R,V) of the process(X,V,R) can be interpreted in terms of its
different transition rates. To this end, let us decomposeG(X,R,V) into its different summands:

G(X,R,V)g(x, r,v) = GXg(x, r,v)︸ ︷︷ ︸
1.©

+ Ar,v
X g(x, r,v)︸ ︷︷ ︸

2.©

+ Mv
R[g(x, r̄,v)−g(x, r,v)]︸ ︷︷ ︸

3.©
+ Br

V [g(x, r,v−1)−g(x, r,v)]︸ ︷︷ ︸
4.©

+ Cr
V [g(x, r,v+1)−g(x, r,v)]︸ ︷︷ ︸

5.©

(6.28)

1. The first part of the generator describes just the unconditioned dynamics of theWright-Fisher
diffusion X with selection and mutation.

2. The second part gives anadditional drift term for X, given(R,V) = (r,v),

Ar,v
X = x(1−x)

φ x′

φ x

d
dx

. (6.29)

This term already appears in the forward in time generator of the process(X,R) (compare [Tay07,
Equation (15)]) and Taylor explains that it “reflects the fact that because the common ancestor con-
tributes more offspring to the population than an individual chosen at random, the population has a
tendency to evolve towards the type of the common ancestor” [Tay07, p. 824].
The random environment(R,V) applies a drift on the frequencyX of type-0 individuals. As shown in
[HP86, Theorem2.1] (compare also [FW86] for the case of a Brownian motion), this additional drift
coefficient is given by a product of the diffusion coefficient of the Wright-Fisher diffusion times the
gradient of the logarithm of the stationary distribution of(R,V). This is equal tox(1−x)∇ log(φ x) =

x(1−x)φx′

φx .

3. The third part is the generator of themutation process along the real line, given(R,V) = (r,v),

Mv
R = θν1

av−av+1

av
1{r=0}+θν0

av

av−av+1
1{r=1} . (6.30)

Let us consider the caser = 0. The additional factor(av−av+1)/av to the mutation rateθν0 per line
is comparable to the structured coalescent factor(1−x)/x of the backward in time generator̂G(X,R,V).
The explanation of this factor is therefore analogous to the explanation of item 2 on Page 89:
We have two possibilities to calculate limt→0P

(
(R0,V0) = (0,v),(Rt ,Vt) = (1,v) | X0 = x

)
/t. On the

one hand, backward in time, we can start the pruned LD-ASG withv+1 lines, colour them all with
type 1, and let the real line mutate to type 0. This results in

lim
r→0

1
r
P
(
(R0,V0) = (1,v),(Rr ,Vr) = (0,v) | X0 = x

)
= (av−av+1) · (1−x)v+1 ·θν1

x
1−x

.

On the other hand, forward in time, we can start with the pruned LD-ASG having more thanv lines,
colour the firstv lines with type 1 and linev+1 with type 0, and then let the real line mutate to type
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6 The common ancestor process in its Wright-Fisher background

1 at ratem v
R(0,1). Then

lim
t→0

1
t
P
(
(R0,V0) = (0,v),(Rt ,Vt) = (1,v) | X0 = x

)
= av ·x(1−x)v ·m v

R(0,1)

which results inm v
R(0,1) = θν1(av−av+1)/av. The explanation of the rate in the caser = 1 follows

the same line of argument.

4. The fourth part is the generator describing a decrease of the number ofvirtual lines due toselective
eventsgivenX = x,

Br
V = vσ

av−1

av
1{r=0}+vσ

av−1−av

av−av+1
1{r=1} . (6.31)

Let us again consider the caser = 0. (The caser = 1 then works analogously). Backward in time, we
can start the pruned LD-ASG with at leastv lines, colour the firstv−1 with the deleterious type and
line v with the beneficial one. Then, as a branching event happens at ratevσ(1−x),

lim
r→0

1
r
P
(
(R0,V0) = (0,v−1),(Rr ,Vr) = (0,v) | X0 = x

)
= av−1 ·x(1−x)v−1 ·vσ(1−x).

Forward in time, the pruned LD-ASG can be started with more thanv lines,v of them at type 1 and
line v+1 at type 0. Then

lim
t→0

1
t
P
(
(R0,V0) = (0,v),(Rt ,Vt) = (0,v−1) | X0 = x

)
= av ·x(1−x)v ·b0

V(v,v−1),

and thereforeb0
V(v,v−1) = vσav−1/av.

5. The fifth part describes an increase of the number of virtual particles due toneutral reproduction
or mutation , givenX = x,

Cr
V =

[
(v+1)θν1+

1
2

v(v+1)

]
av+1

av
1{r=0}+

[
(v+1)θν1+

1
2
(v+1)(v+2)

]
av+1−av+2

av−av+1
1{r=1} .

(6.32)
We consider againr = 0. Backward in time, when starting the pruned LD-ASG with at leastv+2
lines (at leastv+1 of type 1 and one of type 0) and considering coalescence between two virtual lines
or the removal of one line due to a deleterious mutation,

lim
r→0

1
r
P
(
(R0,V0) = (0,v+1),(Rr ,Vr) = (0,v), | X0 = x

)

= av+1 ·x(1−x)v+1 ·

(
1
2

v(v+1)+(v+1)θν1

)
1

1−x
.

Forwards in time, when starting with the pruned LD-ASG with more thanv lines (at leastv of type 1
and one of type 0), we have

lim
t→0

1
t
P
(
(R0,V0) = (0,v),(Rt ,Vt) = (0,v+1) | X0 = x

)
= av ·x(1−x)v ·c0

V(v,v+1).

This yieldsc0
V(v,v+1) =

(
1
2v(v+1)+(v+1)θν1

)
av+1/av.

Proof of Theorem 6.4.To prove Theorem 6.4, we have to reverse in time the backward in time
generatorĜ(X,R,V) with respect to its equilibrium distribution; we are searching for the time reversal

of the generator̂G(X,R,V) given by Theorem 6.1. Since Theorem 6.4 is equivalent to Lemma 6.5, we
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here prove the decomposition ofG(X,R,V) given by (6.25),

G(X,R,V) = GX +x(1−x)
φ x′

φ x

d
dx

+F . (6.33)

The first termGX of the backward in time generator̂G(X,R,V) describes the evolution ofX according
to the Wright-Fisher dynamics. As the Wright-Fisher diffusion is time reversiblewith respect tow,
one part of the forward in time generatorG(X,R,V) is required to be againGX. But since the evolution
of R andV influences the dynamics ofX, two additional summands arise. We will see that they are
given byx(1− x)φx′

φx
d
dx (which is the second part of the generator in the decomposition above) and

GXφx

φx . The rates in the last part of the generator, the Q-matrixF , are the time reversal of the backward

in time rates given by the Q-matrix̂F . But because a Q-matrix has to beconservative(i.e. has row
sum zero), the diagonal elements inF are not just the diagonal elements in̂F . It turns out that the
compensating summands are just−Gφx

φx which cancel out with the additional summands of the time
reversal of the conditioned generatorGX, givenR,V.
We now prove these statements properly.

Let H be a forward in time generator with stationary distributionψ . Then the backward in time
generator̂H has to fulfil (compare [Nag64, (3.7)] or [Nel58])

∫
g1(Hg2)dψ =

∫
(Ĥg1)g2dψ for all test functionsg1,g2 in the domain ofH. (6.34)

In our case,ψ is the stationary distribution of the process(X,R,V), we haveH = Ĝ(X,R,V), and the

generator we want to calculate iŝH =
̂̂G(X,R,V) = G(X,R,V). Our test functions (whose linear span is

dense inC 2 [0,1]×{0,1}×N0) are

gi : (x, r,v) 7→ hi(x) · I {r,v}, x∈ [0,1] , r ∈ {0,1} , v∈ N0, i = 1,2. (6.35)

Let q̂x
(R,V)

(
( j, l),(k,m)

)
be the backward in time andqx

(R,V)

(
(k,m),( j, l)

)
the forward in time transi-

tion rate of(R,V) from state( j, l) to state(k,m) and from state(k,m) to state( j, l), givenX, thus
the element(( j, l),(k,m)) of the Q-matrixF̂ , (6.16), and the element((k,m),( j, l)) of the Q-matrix
F (that we want to prove to be equal to (6.26)), respectively.

For the test functions g1(x, r,v) = h1(x) · I {( j,l)}(r,v), g2(x, r,v) = h2(x) · I {(k,m)}(r,v),
h1(x),h2(x) ∈ C 2 [0,1], we can distinguish between the two cases( j, l) 6= (k,m) and( j, l) = (k,m).

Let us start with the case( j, l) 6= (k,m). By using the decomposition (6.15) of̂G(X,R,V), we get
∫

g1(Ĝ(X,R,V) g2)dψ =
∫ 1

0
∑
(r,v)

h1(x) · I {( j,l)}(r,v)
(

Ĝ(X,R,V)h2(x) · I {(k,m)}

)
(r,v)w(x)φ x(r,v)dx

=
∫ 1

0
h1(x)h2(x) ·

(
F̂ · I {(k,m)}

)
( j, l)w(x)φ x( j, l)dx

+
∫ 1

0
∑
(r,v)

h1(x) · I {( j,l)}(r,v) · I {(k,m)}(r,v)
(

GXh2(x)
)

w(x)φ x(r,v)dx,

and since we are dealing with the case( j, l) 6= (k,m), the second term on the right-hand side is equal
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to zero. RewritingF̂ in terms of its rateŝqx
(R,V) yields

∫
g1(Ĝ(X,R,V) g2)dψ =

∫ 1

0
h1(x)h2(x) ·

(
q̂x
(R,V)

(
( j, l),(k,m)

) φ x( j, l)
φ x(k,m)

)
w(x)φ x(k,m)dx+0.

On the other hand, by using the decomposition ansatz ofG(X,R,V) into a generator matrixF of (R,V)
and some generator that works onX , and keeping in mind that all summands containing operators
that leaveR andV invariant vanish due to( j, l) 6= (k,m), we have

∫
(G(X,R,V)g1)g2dψ =

∫ 1

0
∑
(r,v)

(
G(X,R,V)h1(x) · I {( j,l)}

)
(r,v)h2(x) · I {(k,m)}(r,v)w(x)φ x(r,v)dx

=
∫ 1

0
h1(x)h2(x) ·

(
qx
(R,V)

(
(k,m),( j, l)

))
w(x)φ x(k,m)dx+0.

Thus, we require

qx
(R,V)

(
(k,m),( j, l)

)
= q̂x

(R,V)

(
( j, l),(k,m)

) φ x( j, l)
φ x(k,m)

, ( j, l) 6= (k,m). (6.36)

The part of the forward in time generatorG(X,R,V) only concerning changes in(V,R), givenX, can
therefore be calculated easily by just plugging the backward in time ratesq̂x

(R,V) (see Lemma 6.1) and
the weightsφ x (see (6.10)) into (6.36). We arrive exactly at the generator (6.26).

Let us now continue with the case( j, l) = (k,m): To get the drift and diffusion part concerning
X, given (R,V), of the forward in time generator, we now chooseg1(x, r,v) = h1(x) · I {( j,l)}(r,v),
g2(x, r,v) = h2(x) · I {( j,l)}(r,v) for j ∈ {0,1}, l ∈ N0 andh1(x),h2(x) ∈ C 2 [0,1]. With the decompo-

sition (6.15) ofĜ(X,R,V) we have
∫

g1(Ĝ(X,R,V) g2)dψ =
∫

g1(GXg2)dψ +
∫

g1(F̂g2)dψ . (6.37)

For the first term on the right-hand side of (6.37), letb(x) := [(1−x)θν0+xθν1+σx(1−x)]. Then,
using the generatorGX (6.1), we have

∫
g1(GXg2)dψ =

∫ 1

0
w(x)φ x(r,v)h1(x)

(1
2

x(1−x)
d2

dx2h2(x)+b(x)
d
dx

h2(x)
)

dx,

and integration by parts gives
∫

g1(GXg2)dψ =
∫ 1

0

[
d2

dx2

(1
2

x(1−x)w(x)h1(x)φ x(r,v)
)
−

d
dx

(
b(x)w(x)h1(x)φ x(r,v)

)]
h2(x)dx.

An application of the product rule and rearrangement of the summands yields
∫

g1(GXg2)dψ =
∫ 1

0

[(
φ x(r,v)w(x)GXh1(x)

)
+2

d
dx

(
φ x(r,v)

)1
2

x(1−x)w(x)
d
dx

(
h1(x)

)

+2
d
dx

(
φ x(r,v)

)
b(x)w(x)h1(x)+

1
2

x(1−x)w(x)h1(x)
d2

dx2

(
φ x(r,v)

)

−b(x)w(x)h1(x)
d
dx

(
φ x(r,v)

)]
h2(x)dx
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=
∫ 1

0

[(
φ x(r,v)w(x)GXh1(x)

)
+φ x(r,v)w(x) ·x(1−x)

d
dx

(
φ x(r,v)

)

φ x(r,v)
d
dx

(
h1(x)

)

+
(

φ x(r,v)w(x)
GXφ x(r,v)

φ x(r,v)
h1(x)

)]
h2(x)dx

=
∫ 1

0

[
GXh1(x)+x(1−x)

d
dx

(
φ x(r,v)

)

φ x(r,v)
d
dx

(
h1(x)

)

+
(GXφ x(r,v)

φ x(r,v)
h1(x)

)]
h2(x)φ x(r,v)w(x)dx.

Thus, we have
∫

g1(GXg2)dψ =
∫ ([

GX +x(1−x)
φ x′

φ x

d
dx

+
GXφ x

φ x

]
g1

)
·g2dψ . (6.38)

The second term on the right-hand side of (6.37) is equal to
∫

g1(F̂g2)dψ =
∫ 1

0
∑
(r,v)

h1(x) · I {( j,l)}(r,v)
(

F̂h2(x) · I {( j,l)}

)
(r,v)w(x)φ x(r,v)dx

=
∫ 1

0

(
F̂ I {( j,l)}( j, l) ·h1(x)

)
h2(x) ·w(x)φ x(r,v)dx. (6.39)

Further, using (6.16) and (6.20), we have
(

F̂ I {0,v}

)
(0,v)+

GXφ x(0,v)
φ x(0,v)

=−
1−x

x
θν0− (v+1)σ(1−x)−

[
vθν1+

1
2

v(v−1)

]
1

1−x

+(v+1)σ(1−x)+

[
1
2

v(v−1)+vθν1

]
1

1−x
+θν0

1
x

−
1
2
(v+1)v−θ(v+1)−vσ .

Summing up terms and using Fearnhead’s recursion (6.11) then gives
(

F̂ I {0,v}

)
(0,v)+

GXφ x(0,v)
φ x(0,v)

=−
1
2
(v+1)v−vθ −θν1−vσ

=−

{[
1
2

v(v+1)+(v+1)θν1

]
av+1

av
+vσ

av−1

av
+θν1

av−av+1

av

}

=
(
F I {0,v}

)
(0,v). (6.40)

Analogue, we also have
(

F̂ I {1,v}

)
(1,v)+

GXφ x(1,v)
φ x(1,v)

=
(
F I {1,v}

)
(1,v). (6.41)

Therefore, (6.37), (6.38), (6.39), and (6.40)/(6.41) together yield
∫

g1(Ĝ(X,R,V)g2)dψ =
∫ ([

GX +x(1−x)
φ x′

φ x

d
dx

+F

]
g1

)
g2dψ ,

which completes the proof. �
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6.5 The quadruple process (L,X,R,V)

So far, we have analysed the Markovian process(X,R,V) and interpreted its dynamics with the help
of the stationary distribution of the line counting processL of the pruned LD-ASG. Now, we want to
take a closer look at the evolution of all four components jointly together.
Recall from (3.9) in Chapter 3 the generatorGL of the line counting process (or the top level)L of the
pruned LD-ASG,

GLg(ℓ) =[ℓ(ℓ−1)+(ℓ−1)θν1] · [g(ℓ−1)−g(ℓ)]

+ ℓσ · [g(ℓ+1)−g(ℓ)] +
ℓ−1

∑
k=1

θν0 · [g(ℓ−k)−g(ℓ)] .
(6.42)

Recall from Section 3.5 the stationary tail probabilities of the line counting process of the pruned
LD-ASG, (aℓ)ℓ∈N, aℓ−1 = P(L ≥ ℓ), and the stationary probability weights(ρℓ), ρℓ = P(L = ℓ) =
aℓ−1−aℓ.

Before discussing the (not any more Markovian) dynamics of the quadruple process(L,X,R,V) we
identify its stationary distributionϖ in the following section.

6.5.1 The stationary distribution of (L,X,R,V)

Throughout this section we assume all four processesL,X,R,V to be together in equilibrium at time
0. To simulate a sample from the stationary distribution of(L,X,R,V), first generate a realisation
X0 of the frequency of type-0 individuals in the population at time 0 according toWright’s density
(6.2) and an independent realisation ofL according to the probability weightsρ. Then, in the second
step, givenX0 = x andL0 = ℓ, the number of virtual linesV0 and the type of the immortal lineR0

can be simulated according to Remark 3 in [Fea02] (Fearnhead’s simulator,explained on Page 27 and
already used on Page 91 in this chapter) as follows:
Tossℓ times a coin with success probabilityx. If there is no success at all among theℓ tosses, set
R0 = 1, V0 = ℓ−1. Otherwise,R0 = 0 andV0 is the number of unsuccessful tries prior to the first
success.

We havev virtual lines and the immortal line has type 0 if and only if the top level of the pruned
LD-ASG is at leastv+1, the firstv lines in the pruned LD-ASG are assigned type 1, and the line on
levelv+1 is of type 0. This yields

P((R0,V0) = (0,v) | L0 = ℓ,X0 = x) = I {v<ℓ}x(1−x)v . (6.43)

The type of the immortal line is 1 and the number of virtual lines equal tov if and only if there are
exactlyv+1 lines in the pruned LD-ASG and all lines are assigned type 1,

P((R0,V0) = (1,v) | L0 = ℓ,X0 = x) = I {v+1=ℓ}(1−x)v+1 . (6.44)

This yields the following lemma.
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Lemma 6.7 The densityϖ of the stationary distribution of the quadruple process(L,X,V,R) is given
by

ϖ (ℓ,x, r,v) = w(x)
[
I {r=0,v<ℓ}ρℓ ·x(1−x)v+ I {r=1,v+1=ℓ}ρℓ · (1−x)v+1] . (6.45)

Proof. Lemma 6.7 is implied by

ϖ (ℓ,x,v, r) = P((R0,V0) = (r,v) | L0 = ℓ,X0 = x) ·P(L0 = ℓ) ·P(X0 = x).

�

6.5.2 The dynamics of the process (L,X,V,R)

In Sections 6.2 and 6.4 we have analysed the backward and forward in time generators of the Marko-
vian triple process(X,R,V).
But incorporating the line counting processL of the pruned LD-ASG into this triple leads us away
from the class of Markov processes. Namely, the process(L,X,V,R) is not Markovianany more.

Indeed, the following (backward in time) counterexample shows that the quadruple process
(Lr ,Xr ,Vr ,Rr)r∈R is not Markovian. Let us choose the initial state(L0,X0,R0,V0) = (v+1,X0,0,v).
Let τ1 := min{r ≥ 0 : (Lr ,Rr ,Vr) 6= (L0,R0,V0)} and(Lτ1,Xτ1,Rτ1,Vτ1) = (v+2,Xτ1,0,v). Thus, at
time τ1 there is a branching event to an additional line that is included in the pruned LD-ASG but
not included as a virtual line in the common ancestor process. Thus, since the line that branches
is a virtual line of the common ancestor process but the newly born line is not included, this newly
born line is required to be of type 0. This yields additional information(that is not coded in the state
(v+2,Xτ1,0,v) ) which changes the transition rates. For example, each line of unknown typemay be
hit by a ‘cross’ backward in time with positive probability. But when a line is known to be of type 0,
such a backward mutation has probability 0.
Let τ2 := min{r ≥ τ1 : (Lr ,Rr ,Vr) 6= (Lτ1,Rτ1,Vτ1)}. Then, the probability for the transition at timeτ2

from state(Lτ1,Xτ1,Rτ1,Vτ1) = (v+2,Xτ1,0,v) to be to state(Lτ2,Xτ2,Rτ2,Vτ2) = (v+1,Xτ2,0,v) due
to a ‘cross’ is strictly positive. But given(L0,X0,R0,V0) = (v+1,X0,0,v), this probability is equal to
0.

The counterexample indicates that a reason for the process(L,X,R,V) being not Markovian is the
lack of knowledge of the types of those lines in the LD-ASG that are betweenlevelsVr +1 andLr . At
each timer ∈ R, the state(Lr ,Xr ,Rr ,Vr) of the process does not contain the information on the types
of Lr −Vr −1 many lines.
In fact, in order to again gain a Markov process, one has to include the information on the types of all
lines in the pruned LD-ASG. Although we will not discuss it here, let us notethat this would result
in a rather complicated object similar to thestructured coalescentof Barton, Etheridge, and Sturm
[BES04] (reviewed briefly in Section 2.2.4).
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7 The type of the common ancestor and the
proportion of beneficial individuals in a
population of finite size

In the previous chapter we have analysed the triple process(X,R,V) in the diffusion limit. In this
chapter, we want to concentrate on Taylor’s process(X,R) [Tay07] and come back to the case of a
population of finite sizeN ∈ N; the model was introduced in Section 2.1.2. We denote the number of
type-0 individuals at timet by KN

t and the proportion of type-0 individuals byXN
t = KN

t /N. Let RN
t

be the type of the immortal line in the finite population size model at timet.
The type of the common ancestorRN together with the proportionXN of type-0 individuals,(XN,RN)=
(XN

t ,RN
t ,)t∈R, gives new insight into the underlying particle picture. In addition, by takingthe dif-

fusion limit N → ∞, we get back the process(X,R) and therefore also alternative proofs for (2.37),
(2.43) and (2.44).
Our approach recapitulates some results of Kluth, Hustedt, and Baake [KHB13], and by taking the
diffusion limit, we also regain some of Taylor’s results [Tay07].

In the following section we revisit the model. Then we analyse the backward and forward in time
dynamics of the process(KN,RN), the discrete analogue of Taylor’s process(X,R). In the last part
of this chapter, we give some future perspectives concerning a discrete triple process(KN,RN,VN),
whereVN is the number of Fearnhead’s virtual lines [Fea02] in the finite population sizemodel.
Since many proofs consist of straightforward but lengthy calculations, they are shifted to the ap-
pendix.

7.1 Introduction

Let us consider a population of fixed sizeN ∈N. Each individual is marked either with the beneficial
type 0 or the deleterious type 1. We defineKN

t as the number of individuals of type 0 at (forward)
time19 t ≥ 0 andXN

t := KN
t /N their fraction in the population. Each individual of type 1 reproduces

independently at rate 1/2 and its offspring replaces a randomly chosen individual of the population.
In addition to these neutral reproduction events, individuals of type 0 canalso reproduce in terms of
selective events. The reproduction rate of each individual of type 0 is 1/2+ sN. In addition, each
individual mutates independently at rateuNν0 to type 0 and at rateuNν1 to type 1,uN,ν0,ν1 ≥ 0,
ν0+ν1 = 1.
The process(KN

t ) is a birth and death process with birth rateλ N
k and death rateµN

k , k∈{0,1,2, . . . ,N},

19As in the previous chapter, we denoteforward timeby ‘t ’ and thebackward timeby ‘r ’.
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7 The type of common ancestor in a population of finite size

already given in (2.3),

λ N
k =

1
2N

k(N−k)+k(N−k) ·
sN

N
+ (N−k) ·uNν0,

µN
k =

1
2N

k(N−k) + k ·uNν1.

(7.1)

Let (wN(k))k=0,1,...,N be the stationary probability vector of the rates (7.1) of the processKN. Then an
easy calculation (just check that (7.3) holds) shows thatwN is given by

wN (k) = cN
W ·

k

∏
i=1

λ N
k−1

µN
k

, 0≤ k≤ N. (7.2)

with the normalising constantcN
W. Due to time reversibility, the backward and forward in time rates

of KN agree,

wN(k)λ N
k = wN(k+1)µN

k+1, k= 0,1, . . . ,N−1. (7.3)

As we are also interested of the limit processes, we assume

N ·sN → σ , N ·uN → θ , and XN
0 → x0 for somex0 ∈ [0,1] asN → ∞. (7.4)

Then it is well-known (see e.g. [Dur08, Chapter 7.2]) that the diffusion limit
(Xt)t≥0 := limN→∞(XN

Nt)t≥0 of the proportion process of type-0 individuals exists and is a Wright-
Fisher diffusion (with generatorGX) with drift coefficient(1−x)θν0+xθν1+σx(1−x) and diffu-
sion coefficientx(1−x). The proof is also given in Section 7.4.1 of the appendix (Theorem 7.6).

In the following section we set up a discrete analogue for Taylor’s process(X,R) [Tay07] by consid-
ering a tuple(XN

t ,RN
t )t≥0, whereRN

t is the type of the common ancestor in our discrete setting. In
fact, we consider the tuple(KN

t ,R
N
t )t≥0. But there is no big difference becauseKN andXN only differ

by a factorN.
While the discrete approach by Kluth, Hustedt, and Baake [KHB13] characterises the distribution of
RN

t by taking all individuals of type 0 at timet and calculating their fixation probability, we are more
interested in the evolving picture that deals with the dynamics of(KN,RN) here. Thus, we are able to
regain results of Kluth, Hustedt, and Baake with a different approach.

7.2 The process (KN,RN)

In this section we present the generators (forward and backward in time)of the discrete process
(KN,RN), and compare them with results by Kluth, Hustedt, and Baake [KHB13] (someof them are
briefly reviewed in Section 2.2.1), and with Taylor’s boundary value problem [Tay07, Equation (9)]
by passing to the limit.
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7.2 The process(KN,RN)

7.2.1 The backward in time generator of (KN,RN)

Forward in time rates of KN

To add the evolution of the typeRN of the immortal line to the evolution of the numberKN of type-0
individuals, we have to decompose the transition ratesλ N andµN with respect to their two ‘ingredi-
ents’ reproductionandmutation. This gives an enlargement of the state space in the footsteps of the
Markov mapping theorem (compare [Kel82]).
Let us denote the forward in time rate ofKN from statek to stateℓ, k, ℓ = 0,1, . . . ,N, k 6= ℓ, by
qKN(k, ℓ). Then we have

• qKN(k,k+1; due to mutation) = uNν0(N−k),

• qKN(k,k+1; due to reproduction) = k(N−k)
N

(
1
2 +sN

)
,

• qKN(k,k−1; due to mutation) = uNν1k,

• qKN(k,k−1; due to reproduction) = (N−k) k
2N .

Backward in time rates of KN

Let q̂KN(k, ℓ) be the backward in time rate20 of the processKN from statek to stateℓ, k, ℓ= 0,1, . . . ,N,
k 6= ℓ.
Again enlarge the state space and also decompose the backward in time rates into their two sources:
reproduction and mutation. To do so, and as it will become more convenient later, we rewrite the
rates using (7.3) and we get

• q̂KN(k,k+1; due to mutation) = uNν1(k+1)wN(k+1)
wN(k) ,

• q̂KN(k,k+1; due to reproduction) =
[
µN

k+1−uNν1(k+1)
] wN(k+1)

wN(k) ,

• q̂KN(k,k−1; due to mutation) = uNν0(N−k+1)wN(k−1)
wN(k) ,

• q̂KN(k,k−1; due to reproduction) =
[
λ N

k−1−uNν0(N−k+1)
] wN(k−1)

wN(k) .

Backward in time rates of (KN,RN)

This decomposition of the rates of the processKN enables us to get the backward in time generator
of the process(KN,RN), whereKN ∈ {0,1, ...,N} is again the number of particles of type 0 and
RN ∈ {0,1} the type of the immortal line. Letq(KN,RN) andq̂(KN,RN) be its forward and backward in
time transition rates, respectively.

Backward in time, each individual cannot just die. It has an ancestral line that continues through
times. But it may mutate or coalesce with individuals of the same type. As each ancestral line

20Remember that the index ‘̂ ’ indicates the directionbackward in time.
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7 The type of common ancestor in a population of finite size

eventually coalesces into the line of the common ancestor, backward in time, the dynamics of the
immortal line coincides with the dynamics of a randomly chosen line.

The change of the type on the immortal line from 0 to 1 is coupled with the decrease of KN by 1 due
to a mutation. Conditioned on the transition ofKN from k to k−1 due to a mutation, the probability
that the real line was affected by this mutation (from 0 to 1) is just1

k (a uniformly chosen individual
of type 0). Thus, for this transition, we get the rate

q̂(KN,RN)((k,0),(k−1,1))

= P(real line mutates| one of the k lines mutates) · q̂KN(k,k−1;due to mutation)

=
1
k

uNν0(N−k+1)
wN(k−1)

wN(k)
.

Then, the probability that the immortal line does not change its type from 0 to 1 ata transition ofKN

from k to k−1due to a mutation is justk−1/k. Therefore we get the rate

q̂(KN,RN)((k,0),(k−1,0))

= P(real line does not mutate| one of the k lines mutates) · q̂KN(k,k−1;due to mutation)

+ q̂KN(k,k−1;due to reproduction)

=
k−1

k
uNν0(N−k+1)

wN(k−1)
wN(k)

+
[
λ N

k−1−uNν0(N−k+1)
] wN(k−1)

wN(k)

=

[
λ N

k−1−
1
k

uNν0(N−k+1)

]
wN(k−1)

wN(k)
.

The probability that the immortal line mutates from 0 to 1 given there is a transition from k to
k+1, is just zero. Thus, we havêq(KN,RN)((k,0),(k+1,1)) = 0 and

q̂(KN,RN)((k,0),(k+1,0))

= q̂KN(k,k+1;due to mutation)+ q̂KN(k,k+1;due to reproduction)

= µk+1
wN(k+1)

wN(k)
.

Similar arguments lead to the transition rates out of state(k,1) and we get the following lemma.
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7.2 The process(KN,RN)

Lemma 7.1 The (backward in time) generator̂G(KN,RN) of the process(KN,RN) is given by

Ĝ(KN,RN)g(k,0) = µN
k+1

wN(k+1)
wN(k)

[g(k+1,0)−g(k,0)]

+
1
k

uNν0(N−k+1)
wN(k−1)

wN(k)
[g(k−1,1)−g(k,0)]

+

[
λ N

k−1−
1
k

uNν0(N−k+1)

]
wN(k−1)

wN(k)
[g(k−1,0)−g(k,0)] ,

Ĝ(KN,RN)g(k,1) =
1

N−k
uNν1(k+1)

wN(k+1)
wN(k)

[g(k+1,0)−g(k,1)]

+

[
µN

k+1−
1

N−k
uNν1(k+1)

]
wN(k+1)

wN(k)
[g(k+1,1)−g(k,1)]

+λ N
k−1

wN(k−1)
wN(k)

[g(k−1,1)−g(k,1)] ,

(7.5)

with the test function g: N0×{0,1}→ R, and k∈ {0,1, . . . ,N}.

The stationary distribution of the process (KN,RN)

For uN,ν0,ν1,sN > 0, the process(KN,RN) is irreducible and recurrent and therefore has a
stationary distributionπN. Let us assume that the process is at stationarity at time 0. ThenπN(k, r) =
P(KN

0 = k,RN
0 = r).

In this section we derive a characterisation ofπN from Lemma 7.1. This way, we regain results by
Kluth, Hustedt, and Baake [KHB13] (but with a different approach).

Motivated by the structure of the stationary distributionπ of (X,R) ((2.38) in Section 2.2.4), we also
use a product ansatz for the stationary distribution in the discrete setting,

πN(k, r) = wN(k)
[
1{r=0}h

N
k +1{r=1}(1−hN

k )
]
. (7.6)

From this equation it is clear thathN
k can be interpreted as the conditioned probability that the immor-

tal line is of type 0 at time 0, given the number of type 0 individuals at time 0 isk.
Therefore, the natural boundary conditions are

hN
0 = 0, hN

N = 1, (7.7)

and (analogue to the continuous case) the probabilitieshN
k are quantified by a recursion.

Lemma 7.2 The stationary distributionπN of the process(KN,RN) is given by (7.6), where
(hN

k )k=0,1,...N is determined by the recursion

hN
k

(
λ N

k +µN
k

)

= hN
k+1λ N

k +hN
k−1µN

k +
(
1−hN

k−1

)
uNν1

k
N−k+1

−hN
k+1uNν0

N−k
k+1

,
(7.8)

with boundary conditions hN0 = 0, hN
N = 1.
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7 The type of common ancestor in a population of finite size

Note that the statement of this lemma was already formulated and proven (via a different approach)
by Kluth, Hustedt and Baake: (7.2) is exactly [KHB13, (21)].

Proof of Lemma 7.2.SinceπN is the equilibrium distribution for the generator matrix̂G(KN,RN) with
the rateŝq(KN,RN)

(
(k̃, r̃),(k, r)

)
, (k̃, r̃),(k, r) ∈ {0,1, . . . ,N}×{0,1}, the following equation (together

with the boundary conditions) determinesπN and hence alsohN,

∑
(k̃,r̃)

πN(k̃, r̃)q̂(KN,RN)

(
(k̃, r̃),(k, r)

)
= 0 ∀ k∈ {0,1, . . . ,N}, r ∈ {0,1}. (7.9)

Plugging in the rates and dividing bywN
k , we have

0= hN
k+1

(
λ N

k −uNν0
N−k
k+1

)
+ hN

k−1µN
k

+
(
1−hN

k−1

)
uNν1

k
N−k+1

−
hN

k

wN(k)

(
λ N

k−1wN(k−1)+µN
k+1wN(k+1)

)
.

(7.10)

By (7.3), (7.10) is equivalent to (7.8) and the proof is complete. �

7.2.2 The forward in time generator of (KN,RN)

Forward in time rates of (KN,RN)

By using the appropriate analogue of (7.3) forπN instead ofwN, we can now calculate the forward in
time rates
q(KN,RN)

(
(·, ·),(·, ·)

)
of the process(KN

r ,R
N
r )r∈R,

q(KN,RN)

(
(k, r),(k̃, r̃)

)
= q̂(KN,RN)

(
(k̃, r̃),(k, r)

)πN(k̃, r̃)
πN(k, r)

, (7.11)

k 6= k̃, k, k̃∈ {0,1, . . .N}, r, r̃ ∈ {0,1}. We get the following lemma.

Lemma 7.3 The (forward in time) generator G(KN,RN) of the process(KN,RN) is given by

G(KN,RN)g(k,0) =

[
λ N

k −
1

k+1
uNν0(N−k)

]
hN

k+1

hN
k

[g(k+1,0)−g(k,0)]

+
1

N−k+1
uNν1k

1−hN
k−1

hN
k

[g(k−1,1)−g(k,0)]

+µN
k

hN
k−1

hN
k

[g(k−1,0)−g(k,0)] ,

G(KN,RN)g(k,1) =
1

k+1
uNν0(N−k)

hN
k+1

1−hN
k

[g(k+1,0)−g(k,1)] ,

+λ N
k

1−hN
k+1

1−hN
k

[g(k+1,1)−g(k,1)]

+

[
µN

k −
1

N−k+1
uNν1k

]
1−hN

k−1

1−hN
k

[g(k−1,1)−g(k,1)] ,

(7.12)
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with the test function g, and k∈ {0,1, . . . ,N}.

7.2.3 Diffusion limit

In this section, we let the population sizeN → ∞ and calculate the diffusion limit of the backward
and forward in time generators of(KN,RN) to compare them with Taylor’s results. The discrete
process(KN/N,R) then converges to the continuous process(X,R) under the Assumptions (7.4) and
with h = limN→∞ hN (for the proper convergence of the probabilityhN in the discrete setting to the
probabilityh in the continuous setting see [KHB13]).

We gain the dynamics of the diffusion limit of the process(KN/N,RN) by letting N → ∞ for the
(backward and forward in time) generatorsĜ(KN,RN), given by (7.5), andG(KN,RN), given by (7.12).
We get the following results.

Theorem 7.4 Under Assumptions(7.4), the backward in time generator̂G(X,R) of the process
(Xr ,Rr)r≥0 := limN→∞(KN

Nr/N,RN
Nr)r≥0 is determined by

Ĝ(X,R)g(x,0) = GXg(x,0)+
1−x

x
θν0 [g(x,1)−g(x,0)] ,

Ĝ(X,R)g(x,1) = GXg(x,1)+
x

1−x
θν1 [g(x,0)−g(x,1)] ,

(7.13)

for all g ∈ C 2 [0,1]×{0,1}.

Theorem 7.5 Under Assumptions (7.4), the generator G(X,R) of the process
(Xt ,Rt)t≥0 := limN→∞(KN

Nt/N,RN
Nt)t≥0 forward in time is determined by

G(X,R)g(x,0) = GXg(x,0)+x(1−x)
h′(x)
h(x)

g′(x,0) +
x(1−h(x))
(1−x)h(x)

θν1 [g(x,1)−g(x,0)] ,

G(X,R)g(x,1) = GXg(x,1)−x(1−x)
h′(x)

1−h(x)
g′ (x,1) +

(1−x)h(x)
x(1−h(x))

θν0 [g(x,0)−g(x,1)] ,

(7.14)

for all g ∈ C 2 [0,1]×{0,1}.

Note that Theorem 7.4 is exactly a result by Taylor [Tay07, eq. (4)]. Theorem 7.5 can again be found
in Taylor’s work: It is equivalent to [Tay07, eq. (15)].

The proofs of Theorems 7.4 and 7.5 are given in Sections 7.4.2 and 7.4.3 in the appendix.

7.3 Perspective: The process (KN,RN,VN)

In the previous part of this chapter we investigated the process(KN,RN) of the numberKN of indi-
viduals of type 0 in a population with total sizeN together with the typeRN of the immortal line.
By passing to the limitN → ∞ we recapitulated the forward and backward in time generator of the
continuous process(X,R). Our results in the discrete model are similar to those in [KHB13] and the
limiting continuous generators are identical to those derived by Taylor [Tay07].
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7 The type of common ancestor in a population of finite size

In this last part of this chapter we want to give an outlook onto some ideas ofextending the double
process(KN,RN) by adding Fearnhead’s number of virtual linesVN [Fea02] (but in the discrete
setting). We do not give rigorous proofs but heuristic ideas.

To derive the (backward in time) transition rates of the process(KN,RN,VN), we have to take into
account that virtual lines are always of type 1. The transition dynamics ofthe virtual lines together
with the immortal line are (due to Fearnhead [Fea02]) determined by mutations onthe real line,
disappearance of virtual lines due to coalescence or mutation, and appearance of virtual lines due to
selective reproduction. Therefore, we need to decompose the rates ofKN not only into ‘mutation’ and
‘selection’ (as done in Section 7.2.1), but into thethreeclasses ‘mutation’, ‘neutral reproduction’, and
‘selective reproduction’.

Forward in time the decomposed rates are

• qKN(k,k+1; due to mutation) = uNν0(N−k),

• qKN(k,k+1; due to neutral reproduction) = k(N−k)
2N ,

• qKN(k,k+1; due to selective reproduction) = sNk(N−k)
N ,

• qKN(k,k−1; due to mutation) = uNν1k,

• qKN(k,k−1; due to neutral reproduction) = k(N−k)
2N ,

and backward in time we have

• q̂KN(k,k−1; due to mutation) = uNν0(N−k+1)wN(k−1)
wN(k) ,

• q̂KN(k,k−1; due to neutral reproduction) = (k−1)(N−k+1)
2N

wN(k−1)
wN(k) ,

• q̂KN(k,k−1; due to selective reproduction) = sN
(k−1)(N−k+1)

N
wN(k−1)

wN(k) ,

• q̂KN(k,k+1; due to mutation) = uNν1(k+1)wN(k+1)
wN(k) ,

• q̂KN(k,k+1; due to neutral reproduction) = (k+1)(N−k−1)
2N

wN(k+1)
wN(k) .

Note that the number of Fearnhead’s virtual lines may increase or decrease in the discrete model
while KN does not change at all. This can be understood in terms of the Moran model:
The process of mutations to type 1 is usually modelled by a Poisson point process of crosses at rate
uNν1 per line. At each cross, the affected line changes its type to type 1 if it was of type 0. If it was
already of type 1, nothing happens and we have a silent mutation. But backward in time a virtual
line (of type 1) is removed if there is a cross (even if this cross indicates a silent mutation). Thus,
backward in time, silent mutations from 1 to 1 cause a transition fromv to v−1 virtual lines but no
transition of the numberKN of particles of type 0.
Similarly, there can be a coalescence or branching of virtual particles which leavesKN invariant. This
is represented in the Moran model e.g. by neutral arrows between two individuals of type 1.
Therefore, to find the corresponding rates of the process(KN,RN,VN) we have to take into account
the following (forward in time) transitions as well.
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• qKN(k,k; mutation from 1 to 1) = uNν1(N−k),

• qKN(k,k; neutral reproduction between 1 and 1) = (N−k)(N−k−1)
2N ,

• qKN(k,k; selective reproduction between 1 and 1) = sN(N−k) (N−k−1)
N .

Since the proportion of type 0 individuals does not change, there is no factor needed to time reverse
the rates (wN(k)/wN(k) = 1). The corresponding rates backward in time therefore are

• q̂KN(k,k; mutation from 1 to 1) = uNν1(N−k)

• q̂KN(k,k; reproduction between 1 and 1) = (N−k)(N−k−1)
2N

• q̂KN(k,k; selective reproduction between 1 and 1) = sN(N−k) (N−k−1)
N .

7.3.1 Ideas on the backward and forward in time rates of (KN,RN,VN)

We denote backward and forward in time rates of(KN,RN,VN) by q̂(KN,RN,VN)

(
(·, ·),(·, ·)

)
and

q(KN,VN,RN)

(
(·, ·),(·, ·)

)
, respectively.

The ideas leading to the backward in time ratesq̂(KN,RN,VN) are similar to those in Section 7.2.1: Si-
multaneously with the change of the numberKN of individuals of type 0, the typeRN of the immortal
line or the numberVN of virtual lines may change with a certain probability. In addition, the number
of virtual lines may change whileKN stays constant.

The rate of the transition of the immortal line from type 0 to type 1 together with a decrease ofKN by
one is already part of the generatorĜ(KN,RN) and therefore given bŷq(KN,RN,VN)((k,0,v),(k−1,1,v))=
(1/k)uNν0(N−k+1)wN(k−1)/wN(k).
A transition of the number of virtual lines fromv to v+ 1 may happen together with a decrease
of KN from k to k− 1 due to a selective reproduction event at which the immortal line (of type 0)
branches into an additional line of type 1 (and this additional line replaces another line of type 0 in
the population). The rate for this event is

q̂(KN,RN,VN)((k,0,v),(k−1,0,v+1))

= P(immortal line branches| selective reproduction with transitionk→ k−1)

· q̂KN(k,k−1;due to selective reproduction)

=
1
k

sN
(k−1)(N−k+1)

N
wN(k−1)

wN(k)
.

But a transition of the number of virtual lines may also happen whileKN stays constant. This happens
at a selective reproduction event between two lines of type 1 at which the line‘hit by the tip of the
selective arrow’ is a virtual line and the line ‘at the tail’ is not virtual,

q̂(KN,RN,VN)((k,0,v),(k,0,v+1))

= P(virtual line is at the tip of the selective arrow and line at tail is not virtual|

selective reproduction with transitionk→ k)

· q̂KN(k,k;selective reproduction between 1 and 1)
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=
v(N−k−v)

(N−k)(N−k−1)
sN

(N−k)(N−k−1)
N

=
v(N−k−v)

N
sN.

A transition of the number of virtual lines fromv to v−1 may happen together with an increase of
KN from k to k+1 due to neutral reproduction between two virtual lines or mutation of a virtualline,

q̂(KN,RN,VN)((k,0,v),(k+1,0,v−1))

= P(reproduction between two virtual lines| neutral reproduction with transitionk→ k+1)

· q̂KN(k,k+1;due to neutral reproduction)

+P(virtual line mutates| mutation with transitionk→ k+1)

· q̂KN(k,k+1;due to mutation)

=
v(v−1)

(N−k)(N−k−1)
(k+1)(N−k−1)

2N
wN(k+1)

wN(k)
+

v
N−k

uNν1(k+1)
wN(k+1)

wN(k)

=

[
v(v−1)(k+1)

2N(N−k)
+

v(k+1)
N−k

uNν1

]
wN(k+1)

wN(k)
.

A transition of the number of virtual lines fromv to v−1 can also happen whileKN stays constant
due to a neutral reproduction between two virtual individuals of type 1,

q̂(KN,RN,VN)((k,0,v),(k,0,v−1))

= P(participating lines are both virtual| neutral reproduction between individuals of type 1)

· q̂KN(k,k;neutral reproduction between 1 and 1)

=
v(v−1)

(N−k)(N−k−1)
(N−k)(N−k−1)

2N
=

v(v−1)
2N

.

Then the remaining rate for the transition ofKN from k to k−1 while RN andVN stay constant is
given by

q̂(KN,RN,VN)((k,0,v),(k−1,0,v))

= q̂KN(k,k−1)− q̂(KN,RN,VN)((k,0,v),(k−1,1,v))− q̂(KN,RN,VN)((k,0,v),(k−1,0,v+1))

=

[
λk−1− (1/k)uNν0(N−k+1)−sN

(k−1)(N−k+1)
N

]
wN(k−1)

wN(k)
.

The remaining rate for the transition ofKN from k to k+1 whileRN andVN stay constant is

q̂(KN,RN,VN)((k,0,v),(k+1,0,v))

= q̂KN(k,k+1)− q̂(KN,RN,VN)((k,0,v),(k+1,0,v−1))

=

[
µk+1−

v(v−1)(k+1)
2N(N−k)

−
v(k+1)
N−k

uNν1

]
wN(k+1)

wN(k)
.

Similar arguments give the transition rates of(KN,RN,VN) with initial state(k,1,v).

Let ϕN be the stationary distribution of(KN,RN,VN). Then, comparing with the shape of the station-
ary distributionϕ of the continuous process(X,R,V), (6.12), and with the stationary distribution of
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(KN,RN), (7.6), we suppose thatϕN should be given by

ϕN(k, r,v) = wN(k) ·φN
k (r,v), (7.15)

where the coefficientsφN
k (r,v) should be somehow comparable to the summands in [KHB13, (40)].

Then one may determine the forward in time generator of the process(KN,RN,VN): The rates
q(KN,VN,RN) of the forward in time process(KN,RN,VN) can be calculated via the appropriate ana-
logue of (7.11),

q(KN,RN,VN)

(
(k, r,v),(k̃, r̃, ṽ)

)
= q̂(KN,RN,VN)

(
(k̃, r̃, ṽ),(k, r,v)

)ϕN(k̃, r̃, ṽ)
ϕN(k, r,v)

, (7.16)

k 6= k̃, k, k̃∈ {0,1, . . .N}, r, r̃ ∈ {0,1}, v, ṽ∈ {0,1, . . .N−k}.

Now, assuming that the backward and forward in time generators of the discrete process(KN,RN,VN)
are given, one may proceed by taking the diffusion limitN → ∞. This way, one should arrive at the
backward and forward in time generatorsĜ(X,R,V) andG(X,R,V) of the process(X,R,V).
Therefore, the discrete approach should yield an additional proof forLemma 6.1 and Theorem 6.4.

7.4 Appendix

7.4.1 Convergence of the discrete type frequency process KN to a Wright-Fisher
diffusion

Theorem 7.6 The generator GX of the process(Xt)t≥0 (backward and forward) in time, defined as
the limiting object of the generator of the process(XN

Nt)t≥0 with rates(7.1) is determined by

GXg(x) =
1
2

x(1−x)g′′ (x)+ [θν0(1−x)−θν1x+x(1−x)σ ]g′ (x) , (7.17)

for all g ∈ C 2 [0,1].

Proof. Due to reversibility it is true that the forward and backward in time generatorsof KN (and
therefore alsoXN) agree (it is ˆqKN(k,k+1) = qKN(k,k+1), q̂KN(k,k−1) = qKN(k,k−1)). Thus, we
have to take into account only one direction in time, e.g. the calculation of the generator forward in
time. Letg∈ C 2 [0,1]. Then

GXg(x) = lim
N→∞

N∑
ℓ

qKN(k, ℓ)

[
g

(
ℓ

N

)
−g

(
k
N

)]

(
↓ plugging in the ratesqKN(k,k+1) = λ N

k andqKN(k,k−1) = µN
k

of the birth and death processKN
)

= lim
N→∞

N

{
λ N

NxN

[
g

(
xN +

1
N
,0

)
−g(xN,0)

]

+ µN
NxN

[
g

(
xN −

1
N
,0

)
−g(xN,0)

]}
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(
↓ plugging in the definitions (7.1) of λ N andµN

)

= lim
N→∞

N

{[
NxN

N(1−xN)

N

(
1
2
+sN

)
+uNν0N(1−xN)

][
g

(
xN +

1
N
,0

)
−g(xN,0)

]

+

[
1
2

N(1−xN)
NxN

N
+uNν1NxN

][
g

(
xN −

1
N
,0

)
−g(xN,0)

]}

(
↓ ordering terms

)

= lim
N→∞

{
1
2

xN(1−xN) ·N
2
[
g

(
xN +

1
N
,0

)
−2g(xN,0)+g

(
xN −

1
N
,0

)]

+ [xN(1−xN)NsN +NuNν0(1−xN)] ·N

[
g

(
xN +

1
N
,0

)
−g(xN,0)

]

+NuNν1xN ·N

[
g

(
xN −

1
N
,0

)
−g(xN,0)

]}

(
↓ passing to the limit

)

=
1
2

x(1−x)g′′ (x)+ [x(1−x)σ +θν0(1−x)]g′ (x)−θν1xg′ (x) ,

which is (7.17). �

7.4.2 Proof of Theorem 7.4

Theorem 7.4 Under Assumptions(7.4), the backward in time generator̂G(X,R) of the process
(Xr ,Rr)r≥0 := limN→∞(KN

Nr/N,RN
Nr)r≥0 is determined by

Ĝ(X,R)g(x,0) = GXg(x,0)+
1−x

x
θν0 [g(x,1)−g(x,0)] , (7.18)

Ĝ(X,R)g(x,1) = GXg(x,1)+
x

1−x
θν1 [g(x,0)−g(x,1)] , (7.19)

for all g ∈ C 2 [0,1]×{0,1}.

Proof. The process(KN
Nr/N,RN

Nr) takes values in{0,1/N,2/N, . . . ,1}×{0,1}, which is a subset of
[0,1]×{0,1}. Since[0,1]×{0,1} is compact, the convergence of the backward in time generator
of the process(KN

Nr/N,RN
Nr) to some limit object̂G(X,R) (together with the convergence of the initial

values that holds due to Assumptions (7.4)) implies the convergence of the backward in time process
(KN

Nr/N,RN
Nr)r≥0 to some backward in time process(Xr ,Rr)r≥0 (cf. [Ker13, Satz 2.8]).

To calculate the generator̂G(X,R) of the continuous process(X,R) backward in time we use the rates
of Section 7.2.1 and pass to the limit.

Ĝ(X,R)g(x,0)

= lim
N→∞

N ∑
(ℓ,s)

q̂(X,R)

(
(k,0),(ℓ,s)

)[
g

(
ℓ

N
,s

)
−g

(
k
N
,0

)]
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(
↓ plugging in the rateŝq(X,R)(·, ·) (7.5)

)

= lim
N→∞

N

{
µN

NxN+1
wN(NxN +1)

wN(NxN)

[
g

(
xN +

1
N
,0

)
−g(xN,0)

]

+
1

NxN
uNν0(N−NxN +1)

wN(NxN −1)
wN(NxN)

[
g

(
xN −

1
N
,1

)
−g(xN,0)

]

+

[
λ N

NxN−1−
1

NxN
uNν0(N−NxN +1)

]
wN(NxN −1)

wN(NxN)
[
g

(
xN −

1
N
,0

)
−g(xN,0)

]}

(
↓ applying (7.3)

)

= lim
N→∞

N

{
µN

NxN+1

λ N
NxN

µN
NxN+1

[
g

(
xN +

1
N
,0

)
−g(xN,0)

]

+
1

NxN
uNν0(N−NxN +1)

µN
NxN

λ N
NxN−1

[
g

(
xN −

1
N
,1

)
−g(xN,0)

]

+

[
λ N

NxN−1−
1

NxN
uNν0(N−NxN +1)

] µN
NxN

λ N
NxN−1

[
g

(
xN −

1
N
,0

)
−g(xN,0)

]}

(
↓ transforming expressions

)

= lim
N→∞

{
Nλ N

NxN

[
g

(
xN +

1
N
,0

)
−g(xN,0)

]

+
1−xN + 1

N

xN
NuNν0

µN
NxN

λ N
NxN−1

[
g

(
xN −

1
N
,1

)
−g(xN,0)

]

+ NµN
NxN

[
g

(
xN −

1
N
,0

)
−g(xN,0)

]}

−
1−xN + 1

N

xN
NuNν0

µN
NxN

λ N
NxN−1

[
g

(
xN −

1
N
,0

)
−g(xN,0)

]}

(
↓ rearranging terms

)

= lim
N→∞

{
Nλ N

NxN

[
g

(
xN +

1
N
,0

)
−g(xN,0)

]

+ NµN
NxN

[
g

(
xN −

1
N
,0

)
−g(xN,0)

]}
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+
1−xN + 1

N

xN
NuNν0

µN
NxN

λ N
NxN−1

[
g

(
xN −

1
N
,1

)
−g(xN,0)

]

−
1−xN + 1

N

xN
NuNν0

µN
NxN

λ N
NxN−1

[
g

(
xN −

1
N
,0

)
−g(xN,0)

]}

(
↓ passing to the limit

)

= GXg(x,0)+
1−x

x
θν0 ·1· [g(x,1)−g(x,0)]−

1−x
x

θν0 ·1·0

= GXg(x,0)+
1−x

x
θν0 [g(x,1)−g(x,0)] ,

thus (7.18) is proven.

Ĝ(X,R)g(x,1)

= lim
N→∞

N ∑
(ℓ,s)

q̂(X,R)

(
(k,1),(ℓ,s)

)[
g

(
ℓ

N
,s

)
−g

(
k
N
,1

)]

(
↓ plugging in the rateŝq(X,R)(·, ·) (7.5)

)

= lim
N→∞

N

{
1

N−NxN
uNν1(NxN +1)

wN(NxN +1)
wN(NxN)

[
g

(
xN +

1
N
,0

)
−g(xN,1)

]

+

[
µN

NxN+1−
1

N−NxN
uNν1(NxN +1)

]
wN(NxN +1)

wN(NxN)[
g

(
xN +

1
N
,1

)
−g(xN,1)

]

+ λ N
NxN−1

wN(NxN −1)
wN(NxN)

[
g

(
xN −

1
N
,1

)
−g(xN,1)

]}

(
↓ applying (7.3)

)

= lim
N→∞

N

{
1

N−NxN
uNν1(NxN +1)

λ N
NxN

µN
NxN+1

[
g

(
xN +

1
N
,0

)
−g(xN,1)

]

+

[
µN

NxN+1−
1

N−NxN
uNν1(NxN +1)

] λ N
NxN

µN
NxN+1[

g

(
xN +

1
N
,1

)
−g(xN,1)

]

+ λ N
NxN−1

µN
NxN

λ N
NxN−1

[
g

(
xN −

1
N
,1

)
−g(xN,1)

]}

(
↓ rearranging terms

)

= lim
N→∞

{
xN + 1

N

1−xN
NuNν1

λ N
NxN

µN
NxN+1

[
g

(
xN +

1
N
,0

)
−g(xN,1)

]
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+ λ N
NxN

·N

[
g

(
xN +

1
N
,1

)
−g(xN,1)

]

−
xN + 1

N

1−xN
NuNν1

λ N
NxN

µN
NxN+1

·

[
g

(
xN +

1
N
,1

)
−g(xN,1)

]

+ µN
NxN

·N

[
g

(
xN −

1
N
,1

)
−g(xN,1)

]}

(
↓ passing to the limit

)

= GXg(x,1)+
x

1−x
θν1 [g(x,0)−g(x,1)] ,

so (7.19) is true as well and the proof is complete. �

7.4.3 Proof of Theorem 7.5

Similar to the case backward in time there is are analogue results for the generator G(X,R) forward in
time.

Theorem 7.5 Under Assumptions (7.4), the generator G(X,R) of the process
(Xt ,Rt)t≥0 := limN→∞(KN

Nt/N,RN
Nt)t≥0 forward in time is determined by

G(X,R)g(x,0) = GXg(x,0)+x(1−x)
h′(x)
h(x)

g′(x,0) +
x(1−h(x))
(1−x)h(x)

θν1 [g(x,1)−g(x,0)] , (7.20)

G(X,R)g(x,1) = GXg(x,1)−x(1−x)
h′(x)

1−h(x)
g′ (x,1) +

(1−x)h(x)
x(1−h(x))

θν0 [g(x,0)−g(x,1)] , (7.21)

for all g ∈ C 2 [0,1]×{0,1}.

Proof. The same compactness argument as in the beginning of the proof of Theorem 7.4 yields con-
vergence of the forward in time process(KN

Nt/N,RN
Nt)t≥0 to some forward in time process(Xt ,Rt)t≥0.

To calculate the generatorG(X,R) of the continuous process(X,R) forward in time, we use the rates
of Section 7.2.2 and again pass to the diffusion limit.
We start with two small calculations which will determine some limits in the main calculations.The
first identity is needed for the proof of (7.20),

N2
{

g

(
xN +

1
N
,0

)
hN(NxN +1)−g(xN,0)hN(NxN +1)−g(xN,0)hN(NxN −1)

+g

(
xN −

1
N
,0

)
hN(NxN −1)

}

(
↓ rearranging terms

)

= N2
{

hN(NxN +1)

[
g

(
xN +

1
N
,0

)
−g(xN,0)

]
−hN(NxN −1)

[
g(xN,0)−g

(
xN −

1
N
,0

)]}

(
↓ representation in terms of integrals

)
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= N2
{

hN(NxN +1)
∫ xN+

1
N

xN

g′(ξ ,0)dξ −hN(NxN −1)
∫ xN+

1
N

xN

g′(ξ −
1
N
,0)dξ

}

(
↓ rearranging terms

)

= N2
{[

hN(NxN +1)−hN(NxN −1)
]∫ xN+

1
N

xN

g′(ξ ,0)dξ

+hN(NxN −1)

[∫ xN+
1
N

xN

g′(ξ ,0)dξ −
∫ xN+

1
N

xN

g′(ξ −
1
N
)dξ

]}

(
↓ representation in terms of integrals again

)

= N2
{∫ xN+

1
N

xN−
1
N

h′(ζ )dζ
∫ xN+

1
N

xN

g′(ξ ,0)dξ +hN(NxN −1)
∫ xN+

1
N

xN

∫ ξ

ξ− 1
N

g′′(η ,0)dηdξ
}

(
↓ passing to the limit

)

N→∞
−−→ 2h′(x)g′(x,0)+h(x)g′′(x,0). (7.22)

The following calculation is a building block for the proof of (7.21),

N2
{

g

(
xN +

1
N
,1

)(
1−hN(NxN +1)

)
−g(xN,1)

(
1−hN(NxN +1)

)

−g(xN,1)
(
1−hN(NxN −1)

)
+g

(
xN −

1
N
,1

)(
1−hN(NxN −1)

)}

(
↓ rearranging terms

)

= N2
{(

1−hN(NxN +1)
)[

g

(
xN +

1
N
,1

)
−g(xN,1)

]

−
(
1−hN(NxN −1)

)[
g(xN,1)−g

(
xN −

1
N
,1

)]}

(
↓ rearranging terms further

)

= N2
{[

g

(
xN +

1
N
,1

)
−2g(xN,1)+g

(
xN −

1
N
,1

)]

−hN(NxN +1)

[
g

(
xN +

1
N
,1

)
−g(xN,1)

]
+hN(NxN −1)

[
g(xN,1)−g

(
xN −

1
N
,1

)]}

(
↓ passing to the limit (compare previous calculation)

)

N→∞
−−→ g′′(x,1)−

[
2h′(x)g′(x,1)+h(x)g′′(x,1)

]
= (1−h(x))g′′(x,1)−2h′(x)g′(x,1) . (7.23)

Now we prove the two assumptions of the theorem.
The generator operating ong(x,0) is

G(X,R)g(x,0)
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= lim
N→∞

N ∑
(ℓ,s)

q(X,R)

(
(k,0),(ℓ,s)

)[
g

(
ℓ

N
,s

)
−g

(
k
N
,0

)]

(
↓ plugging in the rates (7.12)

)

= lim
N→∞

N

{[
λ N

NxN
−

1
NxN +1

uNν0(N−NxN)

]
hN(NxN +1)

hN(NxN)
[
g

(
xN +

1
N
,0

)
−g(xN,0)

]

+
1

N−NxN +1
uNν1NxN

1−hN(NxN −1)
hN(NxN)

[
g

(
xN −

1
N
,1

)
−g(xN,0)

]

+µN
NxN

hN(NxN −1)
hN(NxN)

[
g

(
xN −

1
N
,0

)
−g(xN,0)

]}

(
↓ plugging in the definitions (7.1) of λ N andµN

)

= lim
N→∞

N

{[
NxN

N−NxN

N

(
1
2
+sN

)
+uNν0(N−NxN)−

1
NxN +1

uNν0(N−NxN)

]

hN(NxN +1)
hN(NxN)

[
g

(
xN +

1
N
,0

)
−g(xN,0)

]

+
1

N−NxN +1
uNν1NxN

1−hN(NxN −1)
hN(NxN)

[
g

(
xN −

1
N
,1

)
−g(xN,0)

]

+

[
1
2
(N−NxN)

NxN

N
+uNν1NxN

]
hN(NxN −1)

hN(NxN)

[
g

(
xN −

1
N
,0

)
−g(xN,0)

]}

(
↓ rearranging terms and summarising lower order terms aso(1)

)

= lim
N→∞

{
N2 ·

1
2

xN(1−xN)
1

hN(NxN)

[
g

(
xN +

1
N
,0

)
hN(NxN +1)

−g(xN,0)hN(NxN +1)−g(xN,0)hN(NxN −1)

+g

(
xN −

1
N
,0

)
hN(NxN −1)

]

+[N ·xN(1−xN)NsN +N ·NuNν0(1−xN)]
hN(NxN +1)

hN(NxN)[
g

(
xN +

1
N
,0

)
−g(xN,0)

]

+
xN

1−xN
NuNν1xN

1−hN(NxN −1)
hN(NxN)

[
g

(
xN −

1
N
,1

)
−g(xN,0)

]

+N ·NuNν1xN
hN(NxN −1)

hN(NxN)

[
g

(
xN −

1
N
,0

)
−g(xN,0)

]
+o(1)

}
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(
↓ passing to the limit by applying (7.22)

)

=
1
2

x(1−x)g′′ (x,0)+x(1−x)
h′(x)
h(x)

g′(x,0)+ [x(1−x)σ +θν0(1−x)]g′ (x,0)

+
x(1−h(x))
(1−x)h(x)

θν1 [g(x,1)−g(x,0)]−θν1xg′(x,0)
(
↓ rearranging terms

)

=
1
2

x(1−x)g′′ (x,0)+ [θν0(1−x)−θν1x+x(1−x)σ ]g′ (x,0)

+x(1−x)
h′(x)
h(x)

g′(x,0)+
x(1−h(x))
(1−x)h(x)

θν1 [g(x,1)−g(x,0)] ,

and the generator operating ong(x,1) is

G(X,R)g(x,1)

= lim
N→∞

N ∑
(ℓ,s)

q(X,R)

(
(k,1),(ℓ,s)

)[
g

(
ℓ

N
,s

)
−g

(
k
N
,1

)]

(
↓ plugging in the rates (7.12)

)

= lim
N→∞

N

{
1

NxN +1
uNν0(N−NxN)

hN(NxN +1)
1−hN(NxN)

[
g

(
xN +

1
N
,0

)
−g(xN,1)

]

+λ N
NxN

1−hN(NxN +1)
1−hN(NxN)

[
g

(
xN +

1
N
,1

)
−g(xN,1)

]

+

[
µN

NxN
−

1
N−NxN +1

uNν1NxN

]
1−hN(NxN −1)

1−hN(NxN)
[
g

(
xN −

1
N
,1

)
−g(xN,1)

]}

(
↓ plugging in the definitions (7.1) of λ N andµN

)

= lim
N→∞

N

{
1

NxN +1
uNν0(N−NxN)

hN(NxN +1)
1−hN(NxN)

[
g

(
xN +

1
N
,0

)
−g(xN,1)

]

+

[
NxN

N−NxN

N

(
1
2
+sN

)
+uNν0(N−NxN)

]

1−hN(NxN +1)
1−hN(NxN)

[
g

(
xN +

1
N
,1

)
−g(xN,1)

]

+

[
1
2
(N−NxN)

NxN

N
+uNν1NxN −

1
N−NxN +1

uNν1NxN

]

1−hN(NxN −1)
1−hN(NxN)

[
g

(
xN −

1
N
,1

)
−g(xN,1)

]}
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7.4 Appendix

(
↓ rearranging terms and summarising lower order terms aso(1)

)

= lim
N→∞

{
1−xN

xN
NuNν0

hN(NxN +1)
1−hN(NxN)

[
g

(
xN +

1
N
,0

)
−g(xN,1)

]

+
1
2

N2 ·xN(1−xN)
[
g

(
xN +

1
N
,1

)
1−hN(NxN +1)

1−hN(NxN)
−g(xN,1)

1−hN(NxN +1)
1−hN(NxN)

−g(xN,1)
1−hN(NxN −1)

1−hN(NxN)
+g

(
xN −

1
N
,1

)
1−hN(NxN −1)

1−hN(NxN)

]

+[N ·xN(1−xN)NsN +N ·NuNν0(1−xN)]
1−hN(NxN −1)

1−hN(NxN)[
g

(
xN +

1
N
,1

)
−g(xN,1)

]

+N ·NuNν1xN
1−hN(NxN −1)

1−hN(NxN)

[
g

(
xN −

1
N
,1

)
−g(xN,1)

]
+o(1)

}

(
↓ passing to the limit by applying (7.23)

)

=
(1−x)h(x)
x(1−h(x))

θν0 [g(x,0)−g(x,1)]+
1
2

x(1−x)g′′ (x,1)−x(1−x)
h′(x)

1−h(x)
g′ (x,1)

+ [x(1−x)σ +θν0(1−x)]g′ (x,0)−θν1xg′(x,0)
(
↓ rearranging terms

)

=
1
2

x(1−x)g′′ (x,1)+ [θν0(1−x)−θν1x+x(1−x)σ ]g′ (x,1)

−x(1−x)
h′(x)

1−h(x)
g′ (x,1)+

(1−x)h(x)
x(1−h(x))

θν0 [g(x,0)−g(x,1)] .

Thus, the proof is complete. �
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