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Abstract. We show that non-interactive statistically-secret bit commit-
ment cannot be constructed from arbitrary black-box one-to-one trap-
door functions and thus from general public-key cryptosystems. Reducing
the problems of non-interactive crypto-computing, rerandomizable en-
cryption, and non-interactive statistically-sender-private oblivious trans-
fer and low-communication private information retrieval to such commit-
ment schemes, it follows that these primitives are neither constructible
from one-to-one trapdoor functions and public-key encryption in gen-
eral. Furthermore, our separation sheds some light on statistical zero-
knowledge proofs. There is an oracle relative to which one-to-one trap-
door functions and one-way permutations exist, while the class of promise
problems with statistical zero-knowledge proofs collapses in P. This in-
dicates that nontrivial problems with statistical zero-knowledge proofs
require more than (trapdoor) one-wayness.

1 Introduction

One of the fundamental questions in cryptography deals with the relationship
of cryptographic primitives: does the existence of primitive A imply the exis-
tence of primitive B? As for positive results, such proofs usually give rise to
an explicit construction of primitive B given an arbitrary instance of primitive
A. For instance, given any one-way function we can effectively specify a secure
signature scheme [43, 51]. We also know that one-way functions, pseudorandom
generators, pseudorandom functions, private-key encryption, signature schemes
and computationally-secret bit commitment are all equivalent in this sense [29,
33, 43, 51, 40, 32]. Similarly, trapdoor permutations are sufficient for oblivious
transfer and public-key encryption, and for key agreement [19, 30, 22].

Concerning separations of primitives, Impagliazzo and Rudich [34] have shown
that basing key agreement (and thus trapdoor permutations and oblivious trans-
fer) on any “black-box” one-way permutation is at least as hard as proving
P 6= NP. The terminology “black-box” refers to the fact that nothing beyond
the structure of a primitive is assumed except for fundamental properties guaran-
teed by the definition. For instance, in [34] the abstract of a one-way permutation
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is a one-way permutation oracle, and the efficient evaluation algorithm of the
one-way permutation corresponds to single oracle step that returns the function
value. Since reductions where the starting primitive is treated as a black box are
common throughout complexity-based cryptography, the result of Impagliazzo
and Rudich suggests that showing the equivalence of key agreement and one-way
functions is infeasible. Therefore, in a sense, secure key agreement needs more
than one-wayness.

Although most known reductions obey the black-box approach, there is at
least one example of a reduction which is not black-box, i.e., requires that the
description of the evaluation algorithm is explicit. See [34] for a discussion. Thus,
oracle-based separations do not completely rule out the possibility that reduc-
tions exist. There might still be effective constructions which are not black-box.
Yet, as mentioned before, the black-box design is widely used in complexity-
based cryptography.

For more impossibility results we refer the reader to [52, 58, 37, 36, 24, 25].
In particular, the work by Simon [58] separates collision-intractability and one-
wayness by defining an oracle relative to which one-way permutations exist,
but collision-intractable hash functions do not. Here, relying on the techniques
developed in [58], we extend Simon’s result. In the first step we present an
oracle relative to which non-interactive statistically-secret bit commitment is
impossible, yet one-way permutations exists (throughout the paper we refer to
non-interactive protocols as schemes where both parties consecutively send a
single message only). Relative to our oracle a very weak form of non-interactive
statistically-secret bit commitment does not exist. That is, secrecy is only guar-
anteed with respect to honestly behaving receivers, and a commitment merely
binds with very small, yet noticeable probability.

We stress that it is not known whether any kind of bit commitment yields
collision-intractable hash functions in general or not. Thus, our extension from
collision-intractable hash functions to commitments is not known to be implied
by Simon’s result directly. We remark that, conversely, collision-intractable hash
functions are sufficient for non-interactive statistically-secret commitment [43,
15, 31]. Furthermore, one can construct perfectly-secret bit commitment from
any one-way permutation with linear many rounds in the security parameter
[41]. To best of our knowledge, nothing has been reported about improvements
concerning either the assumption or the round complexity.1 Our result provides
some evidence that accomplishing non-interactive statistically-secret commit-
ment based on one-wayness alone is impossible. In contrast, non-interactive
computationally-secret commitment can be based on one-way functions [32, 40].

In addition to showing that non-interactive statistically-secret commitments
are impossible in the presence of general one-way functions, in the second exten-
sion step we prove that this impossibility result transfers to the case that one
adds the “power” of trapdoors to the one-way function. Such (one-to-one) trap-

1 We always refer to the classical Turing machine model in this work. In the Quantum
computing model there are indeed results that one-wayness is sufficient for constant-
round statistically-secret commitments [20, 14].
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door functions are a relaxed version of trapdoor permutations. We only demand
that the former are one-to-one in order to support unique inversion.

Bellare et al. [6] prove that many-to-one trapdoor functions with super-
polynomial preimage size can be derived from any one-way function. Trapdoor
functions with polynomially bounded preimage size, among which are one-to-one
trapdoor functions, yield public-key cryptosystems, though. In light of [34] they
cannot be derived from one-way functions in general, and therefore, in a sense,
our result is a strict extension of Simon’s separation.

In summery, we broaden Simon’s separation in both directions. On one
side, we show that relative to an oracle non-interactive weakly-binding honest-
receiver statistically-secret commitments schemes do not exist. Such commit-
ment schemes include collision-intractable hash functions, but are not known to
imply the existence of such hash functions. On the other side, the negative result
holds in the presence of one-way permutation and of one-to-one trapdoor func-
tions. The latter functions are presumably not derivable from general one-way
permutations.

The relationship of statistical secrecy and one-wayness enables us to obtain
a new result about the class SZK of promise problems with statistical zero-
knowledge proofs. We prove that relative to a one-way permutation oracle and to
a one-to-one trapdoor function oracle, respectively, the class SZK breaks down
to P. In contrast to our impossibility result, one-way functions suffice to lift
the class CZK of promise problems with computational zero-knowledge proofs
to IP = PSPACE [56, 35, 8]. This gives us another, oracle-based separation of
CZK and SZK in addition to the one implied by the presumably strictness of
the polynomial hierarchy: SZK belongs to AM∩co-AM [23, 1], and likewise lies
much lower in the polynomial hierarchy than CZK (which equals PSPACE under
the assumption that one-way functions exist). From a cryptographer’s point of
view, our result says that while one-wayness is sufficient and necessary [47] for
nontrivial problems in CZK, hard problems in SZK seem to require more than
general one-way permutations and one-to-one trapdoor functions.

Finally, we consider implications to other cryptographic protocols. By con-
structing non-interactive weakly-binding honest-receiver statistically-secret com-
mitment schemes from other non-interactive statistically-secret cryptographic
protocols, we conclude that such protocols cannot be derived from general black-
box one-to-one trapdoor functions. Specifically, we prove that this holds for non-
interactive crypto-computing, rerandomizable encryption, and non-interactive
statistically-sender-private protocols for oblivious transfer and, using a result
of Beimel et al. [5], for private information retrieval with low communication
complexity.

The paper is organized as follows. We start with basic definitions in Section 2.
Then, in Section 3 we introduce the class SZK of statistical zero-knowledge
proofs for motivating our oracle separation constructions in Section 4. In Sec-
tion 5 we then apply the separation to SZK, and we discuss implications to
other cryptographic protocols in the final part.
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2 Definitions

We occasionally view probabilistic algorithms as deterministic ones by providing
the random coins explicitly. That is, let A be a deterministic algorithm taking
two inputs x and r. Then we denote by A(x, r) the output of A for input x, r and
by A(x) the random variable that describes the output for fixed x and uniformly
chosen r. It will be clear from the context which part of the input is considered
as the random coins. Additionally, we denote by [A(x)] the support of A(x), i.e.,
a ∈ [A(x)] if and only if there exists r with a = A(x, r). When passing a function
as argument to, say, an oracle, it is understood that we pass a circuit description
of the function.

A function δ(n) is negligible if it is eventually less than any polynomial frac-
tion, i.e., δ(n) < 1/p(n) for any positive polynomial p(n) and all sufficiently
large n’s. A function δ(n) is noticeable if it is not negligible; it is overwhelming if
1−δ(n) is negligible. Two sequences X = (Xn)n∈IN and Y = (Yn)n∈IN of random
variables are computationally indistinguishable, X

c
≈ Y , if for any probabilistic

polynomial-time algorithm D the advantage

|Prob [D(1n, Xn) = 1]− Prob [D(1n, Yn) = 1]|

is negligible.2 The sequences arecalled statistically close, X s= Y , if the statistical
difference

StatDiff(Xn, Yn) = 1
2 ·

∑
s∈[Xn]∪[Yn]

|Prob [Xn = s]− Prob [Yn = s]|

is negligible.

2.1 Commitment Schemes

A commitment scheme consists of two phases. In the commitment phase the
sender puts a secret bit b into a box and sends the locked box to the receiver.
In the decommitment phase the sender assists in opening the box, say, by trans-
mitting the key. Then, on one hand, even a malicious sender S∗ cannot change
his mind once the box has been given to the receiver (binding property). The
receiver, on the other hand, does not learn anything about the bit b till the
decommitment step is carried out (secrecy).

We exclusively present the definition of non-interactive honest-receiver statis-
tically-secret bit commitment schemes. Our definition captures only a very weak
binding property, namely, that there is no collision-finder that nearly always
succeeds in finding ambiguous decommitments. Usually, the binding property
demands that any collision-finder fails with very high probability.

Definition 1. The tuple (Gen,Com,Decom,Vf) of probabilistic polynomial-time
algorithms is a non-interactive weakly-binding honest-receiver statistically-secret
bit commitment scheme if
2 In this paper we adopt the uniform model for distinguishers. Unless stated otherwise,

all consequences remain valid for nonuniform algorithms.

4



– generation: on input 1n algorithm Gen outputs a description kn (wlog. kn
contains 1n).

– meaningfulness: for every kn ∈ [Gen(1n)] and every c = Comkn(b, r) and
d = Decomkn(b, r) we have Vfkn(b, c, d) = 1.

– honest-receiver statistical secrecy: for every sequence (kn)n∈IN with kn ∈
[Gen(1n)] we have Comkn(0) s= Comkn(1).

– weakly binding: for any probabilistic polynomial-time algorithm S∗ the prob-
ability that S∗ on input kn outputs c and d, d′ such that Vfkn(0, c, d) =
Vfkn(1, c, d′) = 1 is not overwhelming (where the probability is taken over
the choice of kn and the coin tosses of S∗).

Instead of using the notation above, we sometimes adopt the viewpoint of a
protocol between a sender S and a receiver R, in which the honest R transmits
kn obtained by running Gen(1n) and S (with input b) answers with a sample
Comkn(b, r) by choosing r at random. Later, in the decommitment phase, the
receiver then applies the verification algorithm Vfkn to check the validity of the
decommitment d = Decomkn(b, r). Note that, in order to generate the decom-
mitment d, algorithm Decom gets the same random string r as Com.

Wlog. assume that the input length of the commitment function Comkn is at
least as large as the security parameter n. Also, let the output size of Comkn(b)
be at most the size of the randomness portion of the input. This can always be
achieved by padding the input with redundant random bits. Then the domain
of Comkn is at least twice as large as its range.

The binding property can be restated as follows. Any adverserial sender S∗
has success probability less than 1 − 1/p(n) of coming up with an ambiguous
decommitment for some polynomial p(n) and infinitely many n ∈ IN. Basically,
this means that in order to refute the weak binding property, S∗ must be able
to reveal distinct openings for almost any instance.

2.2 Black-Box (Trapdoor) One-Way Functions

We rigidly formalize the concept of black-box (trapdoor) one-way functions as
discussed in the introduction.

Definition 2. A black-box one-way function is an oracle F : {0, 1}∗ → {0, 1}∗
such that for any uniform polynomial-size circuit family C = (Cn)n∈IN the in-
version probability

Prob
[
CFn (F(x)) ∈ F−1(F(x))

]
is negligible, where the probability is taken over the random choice of x ∈R {0, 1}n
and the internal coin tosses of Cn. If additionally F({0, 1}n) = {0, 1}n for all
n ∈ IN then we say that F is a black-box one-way permutation.

We remark that Cn is granted oracle access to F . This enables Cn to evaluate
F at values of its choice. Also, we demand that the family C of circuits is
uniform. This is necessary to derandomize the probabilistic oracle construction
as described in [57, 58].
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Our definition imitates the one of a one-way function with infinite domain.
Instead, one sometimes uses collections of one-way function, where each function
of this collection is indexed. Yet, we omit further discussions since the notion of a
collection of black-box one-way functions is implicit in the definition of trapdoor
one-way functions below, and can be easily inferred. From an existential point
of view both notions of one-way functions are equivalent, even in the black-box
case.

Definition 3. A black-box one-to-one trapdoor function is an oracle T with
three query states generate, evaluate, invert:

– generation: T (generate, ω) for ω ∈ {0, 1}n outputs a pair (t, i). Wlog. let
1n be recoverable from index i and trapdoor t. Furthermore, assume that i
uniquely determines t and vice versa.

– evaluation: given x ∈ {0, 1}n and an index i with (t, i) = T (generate, ω) for
some ω ∈ {0, 1}n, the oracle T (evaluate, i, x) returns y ∈ {0, 1}poly(n). Also,
let T (evaluate, i, ·) be one-to-one for any index i.

– inversion: given y ∈ {0, 1}poly(n) and t, the answer T (invert, t, y) is some x
such that T (evaluate, i, x) = y if such an x exists (where i is the uniquely
determined index to t), and an undefined symbol otherwise.

Additionally, T satisfies the following one-wayness property: for any uniform
polynomial-size circuit family C = (Cn)n∈IN the inversion probability

Prob
[
CTn (i, T (evaluate, i, x)) = x

]
is negligible, where the probability is taken over the choice of i according to
T (generate, ω) for a random ω ∈R {0, 1}n, over x ∈R {0, 1}n, and over the
randomness of Cn.

The generation step of our definition says that one must externally supply the
deterministic oracle T with randomness ω to get a random function description
(t, i). For simplicity and since our construction achieves this, we presume that
T only takes n random bits to produce a random description of complexity n.
Additionally, we demand a bijective relationship of trapdoors and indices. More
generally, we could allow several matching indices i, i′ to a single trapdoor t.
Again, as our construction supports this uniqueness property, we do not include
this in our definition.

A difference between the notion of a black-box trapdoor function T and
the one of a black-box one-way function of Definition 2 is that T combines
three oracles for generate, evaluate, invert. For a black-box one-way function F
with infinite domain only evaluation is necessary, i.e., any oracle query to F
is an evaluation request. A comparison of our definition of one-to-one trapdoor
functions and trapdoor permutations follows the actual construction of a black-
box trapdoor function in Section 4.2.
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3 Statistical Zero-Knowledge

When talking about complexity classes, we always refer to classes of promise
problems. A promise problem Π = (Πyes,Πno) is a pair of disjoint sets of yes-
instances Πyes ⊆ {0, 1}∗ and no-instances Πno ⊆ {0, 1}∗. The notion of promise
problems generalizes the language-based approach: an algorithm putatively de-
ciding membership for some input x ∈ {0, 1}∗ gets a promise that x ∈ Πyes∪Πno.

We briefly introduce the zero-knowledge-based classes we deal with. As we
do not use any definitional properties beyond some basic facts about their re-
lationships, we omit formal definitions of these classes and refer the reader to
[59] for details. The class NISZK consists of the promise problems having a
non-interactive statistical zero-knowledge proof. The class SZK is the class of
problems having general, possibly interactive statistical zero-knowledge proofs;
this is clearly a subset of the class of problems where statistical zero-knowledge
holds with respect to honest verifiers, denoted by HVSZK. By [18, 28, 27] we
have P ⊆ BPP ⊆ NISZK ⊆ SZK = HVSZK.

Sahai and Vadhan [53] introduced the SZK-complete problem statistical dif-
ference. Using the completeness of this problem we show the collapse of SZK. To
a circuit X : {0, 1}m → {0, 1}n (more precisely, to its description) we associate
a random variable over {0, 1}n by choosing the input uniformly from {0, 1}m.

Definition 4. The promise problem statistical difference, SD = (SDyes, SDno), is
defined by

SDyes = {(X0, X1) | StatDiff(X0, X1) ≥ 2/3}
SDno = {(X0, X1) | StatDiff(X0, X1) ≤ 1/3}

To prove that SD is complete for SZK, Sahai and Vadhan [53, 54] established
the polarization lemma. Basically, this lemma says that one can turn an instance
(X0, X1) of SD into a pair (Y0, Y1) of circuits such that the distributions of Y0, Y1

are almost disjoint if (X0, X1) ∈ SDyes and nearly equal if (X0, X1) ∈ SDno.
Additionally, the transformation involves an error parameter ` that determines
how far and close, respectively, the derived distributions are. This parameter `
may be independent of X0, X1.

Fact 1 (Polarization Lemma [53, 54]) There is a polynomial-time algorithm
Polarize that on input (X0, X1, 1`) outputs (Y0, Y1) such that

(X0, X1) ∈ SDyes ⇒ StatDiff(Y0, Y1) ≥ 1− 2−`

(X0, X1) ∈ SDno ⇒ StatDiff(Y0, Y1) ≤ 2−`

Set Polarize(X0, X1) = Polarize
(
X0, X1, 1|(X0,X1)|).

Intuitively, one can think of a polarized pair (Y0, Y1) as a description of a
non-interactive commitment function. The sender splits the bit b into n random
pieces b1, . . . , bn such that b = b1⊕· · ·⊕bn. Given n random instances (Yi,0, Yi,1)
—among which there will be a no-instance with high probability— the sender
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commits to each piece bi individually by sampling according to Yi,bi and handing
this sample to the receiver. If (Yi,0, Yi,1) is a (polarized) no-instance then the
distribution hides bi and therefore b statistically; if it corresponds to a yes-
instance then the sample determines bi with very high probability (as long as
the sender does not bias the sample too much).

For an ambiguous decommitment to b′ = b ⊕ 1 the sender has to flip at
least one piece bi. Put differently, the sender has to find a random string r′

such that Yi,bi⊕1 maps this string to the previously given sample Y1,bi(r). But
if (Yi,0, Yi,1) is a yes-instance then the distributions are almost disjoint and
this is quasi impossible. On the other hand, for a no-instance this is indeed
possible. Hence, an ambiguous decommitment tells us the status of (at least)
one of the instances. This is basically the reason why deciding membership for
SD becomes tractable relative to our oracle: ambiguous decommitments can be
found easily given access to the oracle. However, we remark that for a correct
membership decision on each instance of SD, the oracle must never err. This
motivates the investigation of weakly-binding commitment schemes, where the
oracle must (nearly) always return ambiguous decommiments to disprove their
existence. Still, a very small error for the binding property is acceptable to ensure
a perfect oracle.

4 Extensions of Simon’s Result

In this section we apply Simon’s result [58] to obtain an oracle separation of
black-box one-way permutations and trapdoor one-way functions from non-
interactive weakly-binding honest-receiver statistically-secret bit commitment.

4.1 Extension to Commitment Schemes

We briefly describe the oracle construction in [58]. One starts with a random
oracle Π which contains a random permutation f and a special query state
collision. Basically, the random permutation f constitutes a one-way function,
and the query state collision enables to find collisions in hash functions. Once
proven that this random oracle is one-way, one can then derandomize the con-
struction.

Construction 1 Let f : {0, 1}∗ → {0, 1}∗ be a random permutation, i.e., a ran-
dom function with the constraint f({0, 1}n) = {0, 1}n for all n ∈ IN. Define ora-
cle Π to contain a random permutation f , and a special query state collision that
takes a circuit description of a many-to-one hash function h and outputs a ran-
dom element x together with a uniformly chosen value x′ from {y | h(x) = h(y)}
(and, besides, repeats the description of the hash function and any oracle queries
and answers obtained within the computation of the hash values for x and x′).

In the rest of the paper, we call this way of generating collisions x, x′ the
basic sampling procedure.

8



In [58] it was shown that the collision-finding portion of Π does not help to
invert f significantly. Note that the description of the hash function might also
include f - and recursive collision-queries and that we let Π append these queries
and answers to the output for collision-questions, too. Using an appropriate en-
coding for collision-queries, e.g., substituting values in f by mapping inputs of
the form (1 · · · 1, h, . . . , h) to (1 · · · 1, h, x, x′, queries & answers) and vice versa
for a sufficient number of 1’s and h-repetitions, the special query state collision
can be eliminated and it can be achieved that Π is also a permutation over
{0, 1}∗. See [58] for details. In the sequel, we sometimes switch between both
approaches for sake of convenience.

We would like to extend the negative result to non-interactive weakly-binding
honest-receiver statistically-secret bit commitment schemes. To this end, we
change oracle Π to an oracle Σ which allows to open such commitment schemes
ambiguously and to contradict the weak binding property. That is, Σ should re-
turn valid decommitments for different bits for statistically-secret commitment
schemes for any sufficiently large security parameter. For instance, this can be
accomplished by letting the oracle always output a non-trivial collision (i.e.,
with b 6= b′) if the statistical difference is, say, less than some bound B, and by
reducing one-wayness of this oracle to the one-wayness of Π by querying Π a
sufficient number of times in order to simulate the new oracle. However, for this
we have to ensure that the oracle’s answers to queries with statistical difference
more than B are answered consistently compared to the simulation. We will
overcome this problem by letting our new oracle Σ generate random ambiguous
decommitments in a way that already mimics the simulator’s behavior asking
several questions to Π:

Construction 2 Let Π be defined as in Construction 1. Modify Π by replacing
the collision-query state as follows: if the probability that the basic sampling pro-
cedure outputs a random collision (b, r), (b′, r′) with b 6= b′ for the many-to-one
function Comkm is at least 1/6, then uniformly select some (b, r) from the set
of pairs (c, s) for which Cc,s = {(c⊕ 1, s′) | Comkm(c, s) = Comkm(c⊕ 1, s′)}
is not empty, together with a uniformly chosen value (b′, r′) from Cb,r. Else, for
input length ` of Comkm , generate ` random collisions (b, r), (b′, r′) with the ba-
sic sampling procedure; if there is some collision with b 6= b′ then output the first
one that appears among these samples, otherwise return the first of the ` samples
(which is then of the form (b, r), (b, r′), of course). Furthermore, the oracle ap-
pends the description of Comkm and all oracle queries to compute Comkm(b, r)
and Comkm(b′, r′). Denote this oracle by Σ.

We claim that setting the bound to 1/6 guarantees that oracle Σ always
returns ambiguous decommitments for statistically-secret bit commitments (for
sufficiently large security parameter). To see this, let Comkm be a statistically-
secret bit commitment function. Call an input (b, r) good if the number of ran-
dom strings s that map to the same commitment Comkm(b, r) = Comkm(b, s) is
at most twice the number of random strings s′ which map to the same commit-
ment Comkm(b, r) = Comkm(b⊕ 1, s′) for the inverse bit b⊕ 1. With probability
at least 1/2 a random value (b, r) is good (otherwise the statistical difference
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of Comkm(0) and Comkm(1) would be at least 1/4 which would contradict the
negligible deviation for large security parameters).3 In this case, for a uniformly
chosen colliding input (b′, r′) to some good (b, r) it holds that b′ 6= b with prob-
ability at least 1/3. Hence, for statistically-secret commitment, with probability
at least 1/6 a random collision represents valid decommitments for distinct bits.
See [54] for a tighter bound depending on the actual statistical difference.

Note that oracle Σ can still be applied to find collisions for hash functions;
but Σ even tries to come up with special collisions with distinct leftmost bit in
order to find collisions for statistically-secret bit commitment schemes. Also, if
we eliminate the collision-state from Π by encoding such queries in {0, 1}∗, then
Σ inherits this property.

Lemma 1. Oracle Σ in Construction 2 is a black-box one-way permutation.

Formally, Σ is a random oracle. Hence, we would better say “Picking Σ as in
Construction 2 one obtains a black-box one-way permutation.” We neglect this
as we will later derandomize the construction anyway.

Proof. Clearly, the permutation property is not affected by the modification,
even if we encode collision-queries by bit strings. It thus suffices to prove one-
wayness. Assume that there exists a (uniform) polynomial-size circuit family
D = (Dn)n∈IN that takes advantage of the modification in Construction 2. That
is, D is able to invert Σ with noticeable probability. Let the polynomial q(n)
bound the size of D, and let Dn invert a random image under Σ with probability
at least 1/p(n) for a polynomial p(n) and infinitely many n ∈ IN. Note that the
total number of oracle queries, including the recursive ones in collision-queries, is
bounded above by the size q(n) of Dn. From D we construct a polynomial-size
circuit family C = (Cn)n∈IN interacting with a random oracle Π according to
Construction 1.

Basically, Cn gets an image y as input and simulates Dn on y. Each f -query
of Dn is answered by asking the f -oracle of Σ. Every time Dn submits a collision-
query for some Comkm with input length `, then circuit Cn essentially (details
below) asks Π altogether ` collision-queries by padding the description of Comkm

with redundant bits in each query (after all, Π is a random function and always
returns the same answer to the same question again; padding the commitment
function description thus yields independent random collisions). Then Cn selects
an adequate collision and hands it to Dn.

We explain in detail how Cn finds an appropriate collision. Assume for the
moment that Cn picks a collision by querying Π as described above ` times. If
the commitment function Comkm is above the limit 1/6, then circuit Cn would
find a proper collision with probability at least 1 − (5/6)`; if ` is large this is
very close to 1 and almost identical to the answer of Σ. For Comkm -functions
below the bound 1/6, circuit Cn would give identically distributed answers to
collision-queries in comparison to Σ. A problem occurs if ` is too small. Then
3 By assumption the input length of commitment functions is at least as large as the

security parameter. This allows us to use the same bound 1/6 when considering the
input length as replacement for the security parameter, as done in Construction 2.
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Cn’s output would differ noticeably from Σ’s answer for commitment function
above the bound 1/6. To overcome this, we let Cn search for the right answers
for commitment functions Comkm with small input length. Then the simulation
error will still leave enough mass for Cn’s success probability. We use the limit
L(n) = 4 log2(2p(n)q(n)) ≥ log6/5(2p(n)q(n)) to identify a small input length.
That is,

– if the input length of Comkm is bounded above by L(n) = 4 log2(2p(n)q(n))
then Cn verifies the bound of 1/6 by computing and counting all possible
commitments for Comkm . These are at most 32p(n)q(n) many values, and
each can be computed in polynomial-time. Thus, the overall complexity re-
mains polynomially bounded. If the commitment function exceeds the bound
of 1/6 then Cn samples n random collisions by querying Π. With probability
at least 1 − (5/6)n we will then find an ambiguous decommitment among
these samples. If the probability that a random collision for Comkm yields
distinct leftmost bits b 6= b′ is below 1/6 then proceed as Σ by picking `
samples and returning a corresponding collision (b, r), (b′, r′).

– if the input length is larger than L(n) then Cn generates ` random collisions,
and outputs the first one with b 6= b′, or if no such exists, simply returns the
first collision.

Recall that the description of many-to-one functions in collision-queries may
also include recursive collision-request. We assert that the same solution as be-
fore applies. Either the input length is “very short”, or using enough samples
yields a sufficiently good approximation. More formally, we can first modify the
commitment function description by adding an “if-then-else”-check for recur-
sive collision-queries. This check simply imitates Cn’s strategy, i.e., compares the
input length to L(n) and proceeds accordingly.

What is the error of this simulation? Consider a single collision-query, either
one on top level or a recursive one. The only cases where Cn’s answer differs
from Σ’s reply are if the input length is at most L(n) and Cn does not find an
appropriate collision among the n samples, or if the input length is larger than
L(n) and the commitment function exceeds the limit of 1/6 but Cn returns a
collision with b = b′. The error probability of the first case is at most (5/6)n

which eventually becomes less than 1/(2p(n)q(n)). The likelihood of the latter
case is at most (5/6)` ≤ 1/(2p(n)q(n)) for all n’s. Since Dn puts at most q(n)
oracle queries, by the union bound the simulation therefore fails with probability
at most 1/(2p(n)) for any sufficiently large n. Thus, at most half of the cases
of Dn’s success are covered by the simulation error, and Cn successfully inverts
Π with probability at least 1/(2p(n)) infinitely often. But this contradicts the
result in [58]. ut

Derandomizing the oracle construction by taking an appropriate oracle which
works for all of the countable many uniform circuits [57, 58], we obtain a one-way
permutation oracle relative to which there cannot exist non-interactive weakly-
binding honest-receiver statistically-secret bit commitment schemes, even such
ones that use oracle queries.
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Theorem 1. Relative to an oracle there exist black-box one-way functions and
permutations, but no non-interactive weakly-binding honest-receiver statistically-
secret bit commitment schemes.

4.2 Extension to Black-Box Trapdoor Functions

The essence of our construction of a black-box trapdoor function utilizes the
idea of the construction of signature schemes from one-way functions [43, 51]:
the public and the private key of the signature scheme are the value of a one-
way function and its preimage. Here, the index i of the trapdoor function is
the value of Σ at the trapdoor t. Incorporating i into the evaluation process by
setting the function to Σ(i, ·) gives the desired trapdoor one-way function. To
invert some y in the range of Σ(i, ·) one has to provide the matching trapdoor
t to i to the inversion oracle.

Construction 3 Let Σ (over {0, 1}∗) be as in Construction 2. Define T as
follows:

– generation: on input ω ∈ {0, 1}n oracle T outputs t = ω and i = Σ(ω).
– evaluation: on input i, x ∈ {0, 1}n the evaluation algorithm of T returns
Σ(i, x) ∈ {0, 1}2n

– inversion: given y ∈ {0, 1}2n and t ∈ {0, 1}n the oracle T first checks that
Σ(t) equals the left half of (i, x) = Σ−1(y). If so, it outputs x, else some
undefined symbol.

Some remarks are in place. Apparently, our function is one-to-one but not a
permutation. Hence, iteration techniques for trapdoor permutations, like feeding
the output into the function again, are impossible. Nevertheless, we can apply a
tree construction of logarithmic depth by iterating the function on each output
half. This may replace the permutation in some settings. Similarly, it may suffice
to iterate the function on, say, the left half of the result and output the right
half “in clear”.

Also, observe how our construction circumvents the problem of claws. A pair
of claw-free functions is pair of functions with identical range, but such that
finding inputs for each function that both map to the same output is infeasible.
Any impossibility result about the construction of non-interactive statistically-
secret commitment schemes based on any trapdoor function implies that the
trapdoor functions do not yield claw-free functions. In our case, any distinct
trapdoor functions (t, i) 6= (t′, i′) have disjoint ranges (becauseΣ(i, x) 6= Σ(i′, x′)
for all x, x′ for the permutation Σ).

The proof that T is a trapdoor one-way function follows by reduction to
the one-wayness of Σ. While generation and evaluation queries for T can be
easily emulated given access to Σ, we have to ensure that inversion queries do
not lend significant power to an adversary. Indeed, for a given index i ∈ {0, 1}n
the range of Σ(i, ·) forms a sparse subset of {0, 1}2n of size 2n. Therefore, any
algorithm that tries to invert an image y by guessing a trapdoor t′ and asking
T to invert a large y with respect to t′ almost certainly gets the undefined
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symbol as reply. In other words, inversion queries for large images essentially
lead to reasonable answers only if the corresponding image has been computed
previously by querying the evaluation oracle of T . But then the preimage is
already known and gives no additional information. For short images, a preimage
can be computed efficiently by searching the domain, and thus inversion queries
do not give any advantage in this case either.

Lemma 2. Oracle T in Construction 3 is a black-box one-to-one trapdoor one-
way function.

Proof. It is easy to see that the oracle satisfies the structural properties of Defi-
nition 3. It remains to show that it achieves the one-way property. The proof is
by reduction to the one-wayness of the oracle Σ of Construction 2, using similar
ideas as in the proof of Lemma 1. Given a uniform circuit D = (Dn)n∈IN that
inverts T with noticeable probability, we construct C = (Cn)n∈IN that inverts
Σ with noticeable probability.

Let us first fix some notations. Circuit Dn is given a random input (i, y) and
is supposed to return the “preimage” x with T (evaluate, i, x) = y. Let t be the
trapdoor to i. We say that Dn finds the trapdoor if Dn puts an inversion query
(invert, t, ∗) in which t appears. The intuition is that if Dn finds the trapdoor
this means a total break, because any value in the range of Σ(i, ·) can then
be inverted. We say that Dn predicts correctly if Dn puts an inversion request
(invert, t′, y′) without having obtained y′ as reply to an evaluation query, and
such that Σ(t′) = i′ for x′ with T (evaluate, i′, x′) = y′. Informally, if Dn is able
to predict correctly with significant success, then it might also be able to find
the preimage of y. Let 1/p(n) denote a lower bound on Dn’s success probability
(achieved for infinitely many n’s) and q(n) an upper bound on the size of D,
where p(n), q(n) are polynomials.

Next we explain how circuit Cn emulates Dn. Obviously, Cn is able to
simulate generation and evaluation request by querying oracle Σ. Addition-
ally, collision-questions can be answered by Cn’s oracle, too. We address the
trapdoor inversion queries of Dn. Our first observation is that collision-queries
(appropriately encoded as described before) can be easily inverted, because
Σ(collision, x) contains x as part of the output again, and the preimage of
(collision, x) = Σ(Σ(collision, x)) can be computed by applying Σ to (collision, x).
So we only deal with other inversion queries. The idea is that trying to invert
values which have not been the response to an evaluation request are useless;
either they are too short and a preimage can be computed in polynomial time by
exhaustive search, or they are too large and then they will not be in the range
of Σ(i′, ·) with significant probability and thus yield the undefined symbol as
answer with sufficiently large probability (where i′ corresponds to the trapdoor
t′ in the inversion request). Therefore, Dn merely predicts correctly for short
values or with sufficiently small probability.

To formalize the concept above, we let Cn exhaustively search for preimages
within a bound of L(n) = 4 log2(4p(n)q(n)) bits. More specifically, before circuit
Cn starts to simulate Dn it first records all image/preimage pairs of Σ up to
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bit size L(n). This can be done in polynomial time in n.4 Now Cn answers Dn’s
inversion queries as follows. Let (invert, t′, y′) denote Dn’s request.

– If at some point in the simulation so far, y′ has been the answer to a query
(evaluate, i′, x′), either if Dn has put this question or if it is in the previously
recorded list, then output x′ if Σ(t′) = i′, and the undefined symbol if
Σ(t′) 6= i′;

– else, if y′ has not appeared before and the length of y′ exceeds L(n), then
return the undefined symbol.

Let us discuss that this way of answering any of Dn inversion request is correct
except with error probability 1/(4p(n)q(n)). If y′ has been returned before for
a query (evaluate, i′, x′), but Σ(t′) 6= i′, then Dn’s query is invalid (because y′

uniquely determines i′, x′ and thus t′); if Σ(t′) = i′ then we return the correct
answer. We consider the case that y′ has never appeared before. Any query of
length less than or equal to L(n) is answered correctly by circuit Cn. Returning
the undefined symbol for a query with length more than L(n) is right except
with the following probability: since Dn has put at most q(n) queries about other
images/preimages of equal length at this point, the chance of predicting correctly
an unknown value whose preimage contains i′ is at most 2L(n)/2/(2L(n) − q(n)).
This, in turn, is less than 2−L(n)/4 = 1/(4p(n)q(n)). Summerizing, the error of
the simulation of an invert-query is bounded above by 1/(4q(n)p(n)).

Again, the description of many-to-one functions in collision-queries may also
include generate, evaluate and invert request. The former ones can be simulated
with help of the oracle Σ. As for inversion queries, either the preimage has
already appeared in an evaluation request, or is “very short”, or the query will
result in an undefined answer with sufficiently high probability. That is, we
modify the hash function by wiring a list of queries made so far (inclusive the
ones up to length L(n)) into the description; assimilating an “if-then-else”-check
in the description for invert-queries by setting the answer to the undefined symbol
and skipping the query if the value does not appear in the query list yields a
suitable replacement of Dn’s commitment function. Hence, even such queries do
not contribute extremly to Dn’s success.

By the union bound, the probability that all of the at most q(n) invert-
queries are simulated correctly, is at least 1−1/(4p(n)). Therefore, from now on
we presume that Dn can be simulated with error at most 1/(4p(n)). The next
observation is that Dn cannot find the trapdoor t with probability more than
1/(2p(n)) for infinitely many n’s. Otherwise Cn could be used to invert the black-
box one-way permutation Σ with noticeable success probability. Namely, Cn
runs Dn on (i, y) for a given value i and by generating y = Σ(i, x) for a random
x ∈R {0, 1}n. This simulation succeeds with probability at least 1 − 1/(4p(n)).
Hence, if Dn finds the trapdoor with the asserted probability, then it also finds
the trapdoor with probability 1/(4p(n)) in a successful simulation. But then Cn

4 As opposed to Lemma 1 this time we prefer to compute all small values at the
beginning and not on demand. Both solutions are equivalent.
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would be able to invert Σ on i with noticeable probability, contradicting the
one-wayness of Σ.

Given that Dn does not find the trapdoor and that the simulation works,
Dn must be able to invert the one-to-one one-way function Σ(i, ·) : {0, 1}n →
{0, 1}2n with noticeable probability, or more precisely, with probability 1/(4p(n))
infinitely often. But it is not hard to see that the impossibility result in [58]
also applies to this more general case of a random one-to-one function, i.e., the
probability of inverting (a sequence of) random one-to-one functions efficiently
is negligible.5 This gives the desired contradiction. ut

Derandomizing Construction 3 we conclude:

Theorem 2. Relative to an oracle there are black-box one-to-one trapdoor func-
tions and black-box one-way functions and permutations, but no non-interactive
weakly-binding honest-receiver statistically-secret bit commitment schemes.

In Appendix A we briefly discuss that we can turn T into a single oracle that
operates on bit strings. This is achieved by using suitable encodings for the query
states.

5 Nontrivial Statistical Zero-Knowledge Requires More
Than Black-Box One-Wayness

In this section we prove the collapse of SZK relative to an appropriate one-way
permutation oracle and to a one-to-one black-box trapdoor function. It is known
that hard-to-predict problems in SZK imply one-way functions [45]. The premise
of this implication was later relaxed to CZK 6= average-case-BPP [47]. Our result
presents some evidence that nontrivial problems in SZK actually need more
than one-wayness. Furthermore, we supplement the result that SZK 6= BPP
5 We explain on a very informal level by describing the proof in [58]. The inverter is

supposed to find a preimage of 0n under random permutation f (since f is random, 0n

is as good as any other image). Consider a permutation oracle π derived from oracle
f by transposing 0n with a randomly chosen image y. Denote this transposition by δ.
If a polynomial-size circuit finds the preimage x = f−1(0n) then we can also deduce
δ from π(x) = y. Put differently, the chance of finding δ bounds the probability
of finding x from above. If the inverter puts an f -query then it is very unlikely
that it will receive the answer 0n (this would be called a δ-hit), or that the oracle
returns π−1(0n) (called π-hit; then f(π−1(0n)) = y). Hence, when submitting the
first collision-query there are still exponentially many possibilities for δ, i.e., the
circuit is oblivious about δ and therefore cannot choose a “clever” hash function.
Since the oracle returns uniformly distributed values (not independent, though) the
answers will not be hits either, except with very small probability. This implies
that the circuit essentially remains oblivious about δ. Inductively, it follows that
the inverter cannot find δ and thus x with significant success. From this informal
discussion, one sees that the same argument holds for one-to-one functions: the
proof relies on the fact that hits (defined via the domain of the function) almost
never occur.
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relative to an oracle [2] by showing that SZK = BPP = P relative to a one-way
permutation oracle. Note that the existence of (black-box) one-way functions
implies that NP 6⊆ BPP. This easily follows from an extension of the result
that the existence of one-way functions (in a structural sense) is equivalent to
P 6= NP (see [4]).

The construction of our oracle Γ , relative to which SD is easy, is a slight
modification of Σ in Construction 3. In order to preserve the interpretation that
one-wayness does not suffice for nontrivial problems in SZK, we allow instances
of SD to include query gates for the oracle Γ . We remark that this extended
version of SD is complete for this relativized class of SZK; this shows for example
in the completeness proof given in [59]. Hence, if we show the tractability of SD
relative to Γ it follows that the whole relativized class of SZK collapses.

In the construction of Γ we presume wlog. that the input size of circuits Y0

and Y1 of a polarized instance (for any complexity parameter) is at least the
output length, and that both circuit have the same input size. Otherwise al-
gorithm Polarize pads the input length with a minimal number of bits. Then
we can view an input (X0, X1) as a description of a commitment function
Com(X0,X1)(b, r) = Yb(r), where Y0, Y1 are derived by applying the polarization
lemma (together with the length convention).

Construction 4 Let Σ be as in Construction 3. Alter Σ to Γ by modifying the
collision-state as follows: Γ only accepts pairs (X0, X1) of circuits as arguments
to collision-queries. Then Γ polarizes (X0, X1) with parameter ` = |(X0, X1)| to
obtain (Y0, Y1). If (X0, X1) is a yes-instance for SD then return a pair (b, r), (b, r′)
such that Yb(r) = Yb(r′) (generated by the basic sampling procedure with the
restriction that the second value is chosen uniformly among the collisions with
the same leftmost bit b); if (X0, X1) ∈ SDno then sample a random collision
(b, r), (b ⊕ 1, r′) accordingly. Otherwise, if (X0, X1) /∈ SDyes ∪ SDno, compute `
random collisions with the basic procedure, output the first one with b 6= b′, if
such a collision exists, otherwise return the first sample. Each time, also append
(X0, X1) and all oracle queries made to compute the circuits’ outputs.

Clearly, for any polarized no-instance (Y0, Y1) with probability at least 1/6
the basic sampling procedure returns a collision (b, r), (b′, r′) with b 6= b′. See the
discussion in Section 4.1. Next we show that for yes-instances (with statistical
difference close to 1) this rarely happens:

Lemma 3. Let (X0, X1) ∈ SDyes. Then the probability that the basic sampling
procedure for (Y0, Y1) = Polarize(X0, X1) yields a collision (b, r), (b, r′) is at most
2−`/2+1 for ` = |(X0, X1)|.

Proof. Let StatDiff(Y0, Y1) ≥ 1− 2−`. We use the following alternative charac-
terization of the statistical difference [59]:

StatDiff(Y0, Y1) = Prob [Y0 ∈ S0]− Prob [Y1 ∈ S0]

where S0 = {s ∈ [Y0] | Prob [Y0 = s] > Prob [Y1 = s] }. Denote by Sbad
0 ⊆ S0

the images for which there is more than a 2−`/2-fraction of preimages under
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Y1 in comparison to Y0. Our aim is to show Prob
[
Y0 ∈ Sbad

0

]
≤ 2−`/2, because

for each s ∈ S0 − Sbad
0 the probability that a random colliding input yields a

different bit b 6= b′ is at most 2−`/2. We obviously have Prob
[
Y1 ∈ Sbad

0

]
≥

2−`/2 · Prob
[
Y0 ∈ Sbad

0

]
. Therefore,

1− 2−` ≤ StatDiff(Y0, Y1)

≤ Prob [Y0 ∈ S0]− Prob
[
Y1 ∈ Sbad

0

]
≤ 1− 2−`/2 · Prob

[
Y0 ∈ Sbad

0

]
This implies that Prob

[
Y0 ∈ Sbad

0

]
≤ 2−`/2. By a symmetrical argument, the

same bound holds for Y1. Hence, given that the sample (b, r) does not fall into a
bad part of the support, which happens with probability at least 1− 2−`/2, we
find a collision with distinct bits b 6= b′ with probability at least 1− 2`/2. ut

We omit a formal proof that we can reduce a circuit D inverting Γ to a
circuit C finding preimages for Π. The argument is almost identical to the
one of Lemma 1, taking into account that the basic sampling procedure al-
most never yields collisions for the same bit b for yes-instances according to
the previous lemma. Namely, circuit Cn computes correct answers up to length
L(n) = 4 log2(2p(n)q(n)) where p(n) bounds D’s success probability and q(n)
bounds the size of D. For larger inputs Cn only deviates from the answer of Γ
if it outputs a collision (b, r), (b, r′) for a no-instance, or returns (b, r), (b⊕ 1, r′)
for a yes-instance. The former mismatch only occurs with probability at most
2−L(n)/4 for any query, and the latter one happens with probability at most
` · 2−`/2+1 ≤ 2−`/4 ≤ 2−L(n)/4 for sufficiently large n by the previous lemma.
Thus, the simulation fails with probability 1/(2p(n)) at most. Additionally, re-
placing Σ by Γ in Construction 3 of T , we obtain a one-to-one trapdoor function
granting access to Γ .
Theorem 3. There exists an oracle relative to which P = BPP = NISZK =
SZK = HVSZK but relative to which one-to-one trapdoor functions and one-
way permutations exist.

Proof. Obviously, relative to our (derandomized) oracles Γ and T we have
SZK ⊆ P ⊆ BPP, because if we simply query the oracle about the input
instance (X0, X1) and output 1 (respectively, 0) if and only if we are given a
collision (b, r), (b, r′) (respectively, (b, r), (b ⊕ 1, r′)), then we correctly decide
membership for SD in polynomial time. Furthermore, the proofs [28, 27] that
NISZK ⊆ HVSZK ⊆ SZK relativize, and together with BPP ⊆ NISZK the
assertion follows. ut

6 Implications to Other Cryptographic Protocols

We show that various problems imply non-interactive weakly-binding honest-
receiver statistically-secret commitment schemes. It follows that our oracle sepa-
ration holds in these cases as well. Specifically, we discuss non-interactive crypto-
computing, rerandomizable encryption schemes, and non-interactive versions of
private information retrieval and oblivious transfer.

17



6.1 Non-Interactive Crypto-Computing

In [55] the problem of non-interactive crypto-computing has been partially solved.
There are two parties, A possessing an `-bit string x, and B having a circuit C
with ` input bits and a single output bit. The security parameter n as well as
the input size ` = poly(n) are known by both parties. The task is now to present
a protocol such that

– the protocol is non-interactive, i.e., A sends a single message to B who
answers with a single message in a way that A can extract the circuit’s
output,

– server-privacy: A learns nothing more about C than the output for x,
– client-privacy: B learns nothing about x.

Sander et al. [55] present a protocol for circuits with logarithmic depth based on
any rerandomizable encryption scheme (see Section 6.2), although B’s reply also
gives away the depth of the circuit. Revealing this information does not affect
our result since our circuits consist of a single or-gate, and this fact is publicly
known anyway. Recently, Cachin et al. [10] presented a solution which works for
any polynomial-size circuit and is non-interactive with respect to honest clients;
their scheme relies on a specific algebraic assumption, namely, the decisional
Diffie-Hellman assumption [9], and achieves computational server-privacy.

We think of the messages sent by both parties as generated via “encryption
functions” EncA and EncB , i.e., A encrypts x and B computes another ciphertext
from this encryption. Furthermore, the recovering algorithm of A is denoted by
DecA. This notation is in accordance with the protocol in [55] which is based on
computing with encrypted data.

Definition 5. A non-interactive honest-client statistically-server-private crypto-
computer for a class C of circuits is a tuple (EncA,EncB ,DecA) of probabilistic
polynomial-time algorithms such that

– meaningfulness: for any circuit C : {0, 1}` → {0, 1} in C, any x ∈ {0, 1}` we
have DecA

(
r,EncB(1n, C,EncA(1n, x, r))

)
= C(x). That is, DecA correctly

decodes the circuit’s output with the help of randomness r and B’s answer
EncB(1n, C,EncA(x, r)) to A’s random encryption EncA(1n, x, r) of x.

– client-privacy: for any sequences x = (xn)n∈IN, x′ = (x′n)n∈IN of polyno-
mial length with |xn| = |x′n| for all n ∈ IN, the variables EncA(1n, xn) and
EncA(1n, x′n) are computationally indistinguishable.

– honest-client statistical sender-privacy: there is a probabilistic polynomial-
time simulator S such that S(1n, Cn(xn)) and EncB(1n, Cn,EncA(1n, xn))
are statistically close for any sequence of polynomial-size circuits (Cn)n∈IN

with Cn : {0, 1}`n → {0, 1} in C and any sequence (xn)n∈IN with xn ∈
{0, 1}`n ; the probability of the variable EncB(1n, Cn,EncA(1n, xn)) is taken
over the randomness of EncA and EncB.

Let us explain how we reduce the problem of non-interactive crypto-computing
to non-interactive statistically-secret bit commitment. Basically, we use the idea
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presented by Crépeau [13] of transforming a so-called oblivious transfer proto-
col (Section 6.3) into a bit commitment scheme. Assume that we have a non-
interactive crypto-computing protocol between A and B for or-gates. The sender
S will play the role of B in the commitment protocol, and the honest receiver R
acts on behalf of the honest party A. For security parameter n the sender breaks
the bit b into n random pieces b1, . . . , bn, i.e., each bit is selected uniformly
with the constraint that the exclusive-or equals b, and constructs n or-gates
ORbi : {0, 1} → {0, 1}. Such an or-gate computes the function ai 7→ ai ∨ bi. Now
R randomly selects a1, . . . , an ∈ {0, 1}, samples ei according to EncA(1n, ai) and
hands the encodings to S. For each i the sender returns EncB(1n,ORbi , ei).

Informally, if R sends an ecryption of a bit ai = 0 then he obtains the value
bi from S’s answer, and if ai = 1 the or-operation of bi and ai equals 1, i.e.,
nothing about bi is revealed.6 For random ai’s, approximately half of the bits
bi are therefore opened wheras the other half remains uncompromised. By the
indistinguishability of the encryptions, the sender S∗ does not know on which
instances he is checked. But this knowledge is necessary to cheat by opening an
uncompromised instance ambiguously.

Lemma 4. If ai = 1 then the distributions of EncB(1n,ORbi , ei) for bi = 0 and
bi = 1 are statistically close for all ei ∈ [EncA(1n, ai)].

Proof. By the server-privacy of the non-interactive crypto-computing proto-
col there exists a simulator whose output is almost identically distributed to
EncB(1n,ORbi , ei). Moreover, this simulator only gets the constant ORbi(ai) = 1
(and n in unary) as input. Hence, the distributions of EncB(1n,ORbi , ei) for both
possibilities of bi are statistically close. ut

It is easy to see that with exponentially small error probability 2−n there
exists at least one instance with ai = 1; recall that we deal with honest receivers
who choose the ai’s really at random. Therefore, this scheme hides b statistically
against honest receivers.

Lemma 5. Under the assumption that the non-interactive crypto-computer pro-
vides client-privacy, the commitment scheme binds weakly.

Proof. Assume that the claim does not hold and that there is a probabilistic
polynomial-time algorithm S∗ that decommits with different b’s with probability
1− δ(n) for a negligible function δ(n). In particular, a distinct opening requires
that for some j algorithm S∗ outputs different values for bj . Then S∗ yields a
successful distinguisher concerning the client-privacy as follows.

We are given a random instance e ∈ [EncA(a)] for an unknown a ∈R {0, 1}.
We choose j ∈R {1, . . . , n} and set ej = e. Then we generate additional n−1 sam-
ples ei ∈ [EncA(1n, ai)] for i 6= j by selecting the ai’s at random, and send these
n instances to S∗. The sender S∗ returns his commitment EncB(1n,ORbi , ei)
6 Instead of using or-gates with wired constants bi ∈ {0, 1}, one may use circuits ai∨ai

(for bi = 0) and ai ∨ ¬ai (for bi = 1).
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for i = 1, . . . , n. If S∗ opens the value for bj differently for an ambiguous de-
commitment, then we output the guess “a = 1”. Else we output “a = 1” with
probability 1

2 −
1

4n and “a = 0” otherwise.
Roughly speaking, if S∗ opens bj differently, then it is very likely that a = 1,

because S∗ almost never errs. Assume that indeed a = 1. Given that S∗ decom-
mits successfully for distinct values, S∗ picks instance j for revealing different
values for bj with probability ε(n) ≥ 1/n. Hence, our output is right with prob-
ability at least(

1− δ(n)
)
ε(n) +

(
1− δ(n)

)(
1− ε(n)

)(
1
2 −

1
4n

)
≥ ε(n)− δ(n) +

(
1− δ(n)− ε(n)

)(
1
2 −

1
4n

)
≥ 1

2 + ε(n)
2 −

1
4n −

3δ(n)
2

≥ 1
2 + 1

8n

for all large n’s. Now let a = 0. Then we predict correctly with probability at
least (

1− δ(n)
)(

1
2 + 1

4n

)
≥ 1

2 + 1
4n −

3δ(n)
4 ≥ 1

2 + 1
8n

for sufficiently large n’s. Altogether, a successful adversary S∗ would contradict
the client-privacy of the crypto-computing protocol. ut

Note that the lemma also shows that even a very weak form of client-privacy
cannot hold, namely, that the server cannot distinguish inputs infinitely often.

Corollary 1. There is an oracle relative to which black-box one-to-one trapdoor
functions and black-box one-way permutations exist, but relative to which non-
interactive honest-client statistically-server-private crypto-computing for C =
{OR0,OR1} is impossible.

6.2 Rerandomizable Encryption

Our result together with the non-interactive statistical server-private protocol in
[55] shows that rerandomizable encryption schemes cannot be constructed from
black-box trapdoor one-way functions in general. Here we present a more direct
method to establish this. But before, let us recall the definition of rerandomizable
encryption systems. We also discuss the issue of homomorphic encryption at the
end of the section.

We give a succinct definition of a polynomially-secure public-key encryption
scheme. We refer the reader to [30] for a more formal definition. A public-key
bit encryption scheme is a tuple (KGen,Enc,Dec) of probabilistic polynomial-
time algorithms such that KGen on input 1n outputs a random pair (sk,pk)
of secret and public key, Enc(pk, b) generates a random encryption cb of bit b
under pk, and Dec(sk, cb) decrypts b. We require that the encryption scheme is
polynomially secure: no efficient algorithm should be able to distinguish between
an encryption of 0 and one of 1.

Roughly speaking, a rerandomizable encryption scheme is a system that al-
lows to renew the distribution of an encrypted bit from the public data alone.
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That is, there is an efficient probabilistic algorithm Φ that takes as input an
encryption of a bit b and the public key and outputs an encryption which is
identically distributed to a “fresh” encryption of b under that public key.

Definition 6. Let E = (KGen,Enc,Dec) be a polynomially-secure bit encryp-
tion scheme. We say that E is rerandomizable if there is a probabilistic polyno-
mial-time algorithm Φ such that Φ(pk, cb) is identically distributed to Enc(pk, b)
for all pk ∈ [KGen(1n)], all b ∈ {0, 1} and any cb ∈ [Enc(pk, b)].

Examples of such polynomially-secure, rerandomizable encryption protocols
are the probabilistic encryption scheme of Goldwasser and Micali [30] on the
quadratic residuosity problem, the ElGamal encryption scheme [21] based on
the decisional Diffie-Hellman assumption [9], the Okamoto-Uchiyama scheme
[44] and Pailler’s variant [48]. An obvious extension would be to consider reran-
domizing algorithms Φ whose output is statistically close to the output of the
encryption process. We omit this for ease of notations, but remark that our
results below carry over to this case.

Next we construct a non-interactive honest-client statistically-server-private
crypto-computing protocol for or-gates ORbi as described in the previous section:
upon receiving a public key pk and an encryption cai of a bit ai from the honest
client, the server computes Enc(pk, 1) if bi = 1 and Φ(pk, cai) otherwise. Put
differently, if bi = 1 then the server returns a “fresh” encryption of 1, and
for bi = 0 it rerandomizes the encryption of ai. If and only if ai = 1 then
this latter encryption is identically distributed to an encryption for the case
bi = 1. It follows that this protocol computes or-gates ORbi non-interactively
and achieves statistical server-privacy with respect to honest clients. Since the
indistinguishability of encryptions guarantees the weak binding property, this
constitutes a commitment scheme as in Definition 1.

Corollary 2. There is an oracle relative to which black-box one-to-one trap-
door functions and black-box one-way permutations exist, but relative to which
polynomially-secure rerandomizable public-key encryption is impossible.

What about homomorphic encryption schemes? All the aforementioned reran-
domizable encryption systems are also homomorphic: given encryptions of a mes-
sages m and m′ one can derive an encryption of m �m′ without knowing the
secret key. Here, m,m′ belong to some group with operation �. For example,
the Goldwasser-Micali scheme [30] is homomorphic over ({0, 1},⊕), and Pailler’s
system [48] is homomorphic over (ZZN ,+).

It is easy to devise a polynomial-secure homomorphic encryption scheme
from any secure system. Simply concatenate encryptions of m,m′, and extend
the decryption process to take pairs of encryptions by decipher each component
and letting the decryption algorithm output m�m′. Though this somehow ar-
tifical procedure caricatures the idea of homomorphic schemes, it yet shows that
our result does not apply to homomorphic encryption in general. The exam-
ples above, nonetheless, suggest that reasonable homomorphic schemes are also
rerandomizable.
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6.3 Oblivious Transfer and Private Information Retrieval

In a one-out-of-two oblivious transfer ( 1
2OT) protocol [22] between a sender S

and a receiver R, a randomly chosen one of two bits b0, b1 of S is transferred
to R such that the sender does not learn which bit has been transferred, and
such that the receiver does not learn anything about the other bit (but knows
which of the bits he has received). The protocol is non-interactive if both the
receiver and the sender send a single message. It is honest-receiver statistically-
sender-private if the view of the honest receiver is statistically close for both
possibilities of the unrevealed bit. Moreover, for any efficient malicious sender
S∗ it is computationally infeasibe to decide with noticeable advantage which bit
has been transferred.

There are two fundamantal security notions for sender-privacy. One says
that, conditioning on the received bit, the protocol distribution for any choices
of the unrevealed bit should be statistically close. A stronger requirement is in
the spirit of secure multi-party computations. This definition roughly demands
that an adversarial receiver does not learn more from a protocol execution with
the sender than in an ideal scenario where a trusted third party confidentially
gets the bits from the sender and the choice from the receiver and hands the
corresponding bit to the receiver. We refer to [11, 26] for general definitions of
secure two-party computations and oblivious transfer. In this paper here, we
only refer to the weak definition, strengthening our impossibility results.

Based on the idea in [13] it is straightforward to derive a non-interactive
weakly-binding honest-receiver statistically-secret bit commitment scheme from
an 1

2OT protocol. Specifically, the sender chooses b0, b1 at random such that
b = b0 ⊕ b1 and invokes in an execution of the 1

2OT protocol to transfer at
random b0 or b1. Since S∗ cannot decide with significant advantage which bit
has been transferred, and because the receiver does not learn anything about
the other bit in a statistical sense, this is a commitment scheme according to
Definition 1. Therefore:

Corollary 3. There is an oracle relative to which black-box one-to-one trap-
door functions and black-box one-way permutations exist, but relative to which
non-interactive statistically-sender-private one-out-of-two oblivious transfer is
impossible.

We remark that non-interactive OT, as considered here, should not be con-
fused with non-interactive OT as defined in, say, [46]. The latter paper refers
to strictly non-interactive schemes, i.e., where the protocol consists of one party
sending a single message only. In this model OT cannot be accomplished at all
[46].

Clearly, the conclusion of Corollary 3 also holds for other variants of OT. In
(the statistically-sender-private version of) Rabin’s OT protocol [49] the sender
possesses a single bit b and the receiver learns b with probability 1/2 and noth-
ing in a statistical sense about b with probability 1/2. On the other hand, S
cannot distinguish both cases significantly. Splitting b into n pieces and invoking
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in independent executions of the non-interactive OT protocol for each piece ob-
viously yields an appropriate commitment scheme. In a chosen one-out-of-two
OT protocol, denoted by

(
2
1

)
OT, instead of determining the bit at random, the

receiver decides which bit he would like to obtain; flipping a fair coin to decide
reduces

(
2
1

)
OT to 1

2OT for honest receivers.
For examples of non-interactive

(
2
1

)
OT protocols (under various assump-

tions and relying on public-key infrastructure) see [7, 16]. Recently, Naor and
Pinkas [42] and Aiello et al. [3] devised statistically-sender-private

(
2
1

)
OT proto-

cols which requires both parties to send a single message only and without any
setup assumptions. Their protocols are based on the decisional Diffie-Hellman
assumption. Hence, such oblivious transfers may be impossible using general
public-key cryptosystems but they are constructible from specific intractability
assumptions.

Closely related to OT schemes are private information retrieval (PIR) pro-
tocols [12]. In a (single database) PIR protocol a user reads the i-th bit from a
database with n bits, such that the database server does not learn i. Addition-
ally, the communication complexity must not exceed n bits, in order to improve
the trivial solution of sending the whole database to the user. Nothing is guaran-
teed about the privacy of the data base, i.e., a malicious or even the honest user
might be able to deduce more than a single bit from the server’s answer. This
is in contrast to OT protocols. We assume that the user fails to reconstruct the
desired bit with negligible probability only (over the choice of his coin tosses).

Kushilevitz and Ostrovsky show that single database PIR is possible non-
interactively based on the quadratic residuosity assumption [38], and using any
trapdoor permutation with linear many rounds [39]. Beimel et al. [5] discuss
which primitives single database PIR protocols imply. That is, they show that
one-way functions are necessary, and if the protocol requires only half of the bits
of the trivial solution of n bits, then there are statistically-secret bit commitment
schemes. In particular, the latter construction preserves the round-complexity.
Hence, calling PIR protocols low-communication protocols if they merely need
n/2 bits communication complexity for databases of size n, we derive:

Corollary 4. There is an oracle relative to which black-box one-to-one trapdoor
functions and black-box one-way permutations exist, but relative to which non-
interactive low-communication single-database private information retrieval is
impossible.

Improving [5], Di Crescenzo et al. [17] show that single database PIR proto-
cols (with communication strictly less than n) yield oblivious transfer schemes.
The derived OT protocols, however, do not provide statistical sender-privacy
and take at least four rounds. Therefore, this result does not fit in here.
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A One-to-One Trapdoor Function Oracle Over Bit Strings

Similar to oracles Π and Σ we can turn T into a single oracle over {0, 1}∗ by
encoding the query states generate, evaluate, invert in {0, 1}∗ appropriately. To
do so, we interpret (generate, ω) and (invert, t, y) as strings (1010 · · · 10, ω, . . . , ω)
and (0101 · · · 01, t, y, . . . , t, y), respectively, for a sufficiently large number of 10-
and 01-repetitions (say, half of the input length), and prepend the encodings to
the output again. We also let those images map to the corresponding preimages
to preserve the permutation property. Evaluation queries (evaluate, z) are simply
encoded as z. Moreover, we change the evaluation portion of T to Σ(·, i), that
is, we swap index and argument. The reason is that if we now get a request
for inverting (generate, v), then the preimage under Σ(·, w) equals generate =
10 · · · 10 (where the right half w can be computed from v via Σ; if w does not
match v then the preimage is of course the undefined symbol). Analogously for
(invert, v)-queries. Hence, such inversion queries can be easily computed. On the
other hand, most computations for random x still result in f -evaluations, and
therefore T constitutes a trapdoor one-way function.
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