Breaking Knapsack Cryptosystems by l_{∞} -norm Enumeration

H. Ritter*
Johann Wolfgang Goethe-Universität Frankfurt
Fachbereich Mathematik
Postfach 111932, D-60054 Frankfurt a. M., Germany

Abstract

At EUROCRYPT '94 G. Orton proposed a public key cryptosystem based on dense compact knapsacks. We present an efficient depth first search enumeration of l_{∞} -norm short lattice vectors based on Hoelder's inequality and apply this algorithm to break Orton's cryptosystem.

Keywords: NP-hardness, Knapsack problem, Subset sum problem, Breaking knapsack cryptosystems, Shortest lattice vector problem, Lattice basis reduction, Hoelder's inequality.

1 Introduction and Summary

A number of cryptosystems have been based on knapsack problems and it was hoped that the NP-hardness of the knapsack problem makes it hard to break the corresponding cryptosystem. A knapsack consists of positive integers a_1, \ldots, a_n, y . A solution are integers x_1, \ldots, x_n in some interval $[0, 2^s)$ that satisfy $\sum_{i=1}^n a_i x_i = y$. If s > 1 the knapsack is called compact, knapsack problems with s = 1 are subset sum problems. The density of a knapsack is the quotient $(n * s)/(\text{bitlength of the maximal } a_i)$. Merkle-Hellman [MH78] use knapsacks with density < 1 for a public key cryptosystem. Lagarias, Odlyzko et al. [LO85, CJLOSS92] represent subset sum problems by lattices. They show that, for density < 0.9408..., a shortest nonzero lattice vector in l_2 -norm almost always transforms into a solution of the subset sum problem. It is an open problem wether it is possible to find l_2 -norm shortest lattice vectors in polynomial time. In practice the L³-algorithm of Lenstra, Lenstra, Lovász [LLL82] and block reduction [SE94, S87, S94] are used to find short lattice vectors.

To prevent low density attacks Orton [O94] proposes a cryptosystem based on compact knapsacks with density > 1. In this paper we introduce new techniques for solving dense compact knapsacks and in particular the Orton-scheme. The algorithm of this paper for the first time enumerates short lattice vectors in the l_{∞} -norm. It is surprisingly efficient even though the problem of finding an l_{∞} -norm shortest lattice vector is NP-hard and thus believed to be more difficult than finding shortest lattice vectors in the l_{2} -norm. We greatly improve the enumeration of short lattice vectors in the l_{∞} -norm by pruning the

^{*}e-mail: ritter@mi.informatik.uni-frankfurt.de

enumeration via Hoelder's inequality. This pruning reduces the costs of the enumeration by an exponential factor 0.82^n without missing the shortest lattice vector.

Throughout the paper let |x|, |x| denote the greatest (resp. smallest) integer smaller (resp. greater) or equal x and $\lceil x \rceil := \lceil x + 0.5 \rceil$.

$\mathbf{2}$ The Cryptosystem

Orton [O94] proposes for a public key cryptosystem a multiple-iterated trapdoor for dense compact knapsacks. We demonstrate how to break the scheme with pruned enumeration. Here is a brief description of the Orton-scheme, for further details see [O94].

Public parameters: positive integers r, n, s. (Messages consist of n blocks with s bits each; r is the number of rounds for key generation.)

Secret key: a series of integers $a_i^{(0)}$, i = 1, ..., n with $a_1^{(0)} = 1$, $a_i^{(0)} > (2^s - 1) \sum_{j=1}^{i-1} a_j^{(0)}$ and positive integers q_2 , $p^{(k)}$, $w^{(k)}$ for k = 1, ..., r, where $q_1 := p^{(r)}/q_2 \in \mathbb{Z}$.

The secret key $\{a_i^{(0)}\}$ representing an "easy" knapsack is transformed into a "hard" knapsack which represents the public key by the operations

$$\begin{array}{lll} a_i^{(k)} & := & a_i^{(k-1)} w^{(k)} \bmod p^{(k)} \text{ for } i=1,\ldots,n+k-1, & a_{n+k}^{(k)} := -p^{(k)}, \\ f_i^{(k)} & := & 2^{-\operatorname{prec}(k)} \lfloor a_i^{(k)} 2^{\operatorname{prec}(k)} / p^{(k)} \rfloor \text{ for } i=1,\ldots,n+k-1, & k=1,\ldots,r, \\ a_{i,j} & := & a_i^{(r)} \bmod q_j \text{ for } i=1,\ldots,n+r-1, & j=1,2 \end{array}$$

using the secret "trapdoor" $q_2, p^{(k)}, w^{(k)}$ for k = 1, ..., r. prec(k) is the number of precision bits for the fractions $f_i^{(k)}$ in the k-th round. Orton proposes $\operatorname{prec}(k) = s + \log_2 n + k + 2$. This choice guarantees unique encryption and prevents known attacks like Brickell's [B84] and Shamir's [S79].

Public key: positive integers q_1 , prec(k) for $k = 1, \ldots, r - 1$, nonnegative integers $a_{i,j}$ for $i=1,\ldots,n+r-1,\ j=1,2,$ rational numbers $f_i^{(k)}\in 2^{-\operatorname{prec}(k)}[0,2^{\operatorname{prec}(k)})$ for $k=1,\ldots,r-1,\ i=1,\ldots,n+k-1.$

ENCRYPTION

INPUT: public key, message $x_1, \ldots, x_n \in [0, 2^s)$

- 1. $x_{n+k} := \lfloor \sum_{i=1}^{n+k-1} x_i f_i^{(k)} \rfloor$ for $k = 1, \dots, r-1$ 2. $y_1 := \sum_{i=1}^{n+r-1} x_i a_{i,1} \mod q_1, \quad y_2 := \sum_{i=1}^{n+r-1} x_i a_{i,2}$

OUTPUT: ciphertext y_1, y_2

DECRYPTION

INPUT: public and secret key, ciphertext y_1, y_2

- 1. recombine $y^{(r)} \equiv y_j \mod q_j$ (j = 1, 2) with Chinese remainder theorem.
- $y^{(r)} := q_2((y_1 y_2)q_2^{-1} \mod q_1) + y_2$ 2. $y^{(k-1)} := y^{(k)}(w^{(k)})^{-1} \mod p^{(k)}$ for $k = r, \dots, 1$
- 3. solve $\sum_{i=1}^{n} x_i a_i^{(0)} = y^{(0)}$ with $x_i \in [0, 2^s)$ (this is easy since $a_i^{(0)} > (2^s 1) \sum_{i=1}^{i-1} a_i^{(0)}$).

OUTPUT: cleartext message x_1, \ldots, x_n

3 The l_{∞} -norm shortest lattice vector attack

We associate to the decryption problem linearly independent integer vectors $b_1, \ldots, b_{m+2} \in \mathbb{Z}^{m+r+2}$ so that any integer linear combination of these vectors with l_{∞} -norm 1 yields the original message. The l_{∞} -norm $||v||_{\infty}$ of a vector v is the maximal absolute value of its coefficients v_i . The integer linear combinations of the basis vectors b_1, \ldots, b_{m+2} form a lattice. The L³-algorithm of Lenstra, Lenstra, Lovász [LLL82, SE94] transforms the given lattice basis into a lattice basis consisting of l_2 -norm short vectors. This reduced basis allows us to find a lattice vector v with l_{∞} -norm 1 via pruned enumeration.

The decryption problem is stated as follows: Given the public key, $y_1 \mod q_1$ and y_2 find integers $x_1, \ldots, x_n \in [0, 2^s)$, $x_{n+k} \in [0, 2^{s+k+\log_2 n-1})$ satisfying

$$\sum_{i=1}^{n+r-1} x_i a_{i,1} = y_1 \bmod q_1 \tag{1}$$

$$\sum_{i=1}^{n+r-1} x_i a_{i,2} = y_2 \tag{2}$$

$$x_{n+k} = \lfloor \sum_{i=1}^{n+k-1} x_i f_i^{(k)} \rfloor \text{ for } k = 1, \dots, r-1$$
 (3)

We transform equations (1)–(3) into a set of r+1 integer linear equations with m 0–1–unknowns, where $m:=ns+(r-1)(r/2+s+\lceil\log_2 n\rceil-1)+\sum_{k=1}^{r-1}\operatorname{prec}(k)$ (see (6) below).

Since $f_i^{(k)} 2^{\operatorname{prec}(k)} \in [0, 2^{\operatorname{prec}(k)})$ is integral we can write (3) as

$$x_{n+k}2^{\operatorname{prec}(k)} = \sum_{i=1}^{n+k-1} x_i f_i^{(k)} 2^{\operatorname{prec}(k)} - x_{n+r+k-1} \text{ for } k = 1, \dots, r-1,$$
 (4)

where the additional variables $x_{n+r+k-1}$ are integers in $[0, 2^{\operatorname{prec}(k)})$.

With $a_{i,k+2} := f_i^{(k)} 2^{\operatorname{prec}(k)}$ for $i = 1, \ldots, n+k-1$, $a_{n+k,k+2} := -2^{\operatorname{prec}(k)}$, $a_{n+r+k-1,k+2} := -1$ and $a_{i,k+2} := 0$ else equations (4) simplify to

$$\sum_{i=1}^{n+2r-2} x_i a_{i,k+2} = 0 \text{ for } k = 1, \dots, r-1$$
with
$$x_{n+r+k-1} \in [0, 2^{\operatorname{prec}(k)}) \text{ for } k = 1, \dots, r-1.$$
(5)

The unique solution of (1),(2),(5) directly transforms into the unique solution of (1)-(3).

To get 0-1-variables we regard the binary representation of the integer variables:

$$\text{We set } d_i := \begin{cases} s & \text{for } 1 \leq i \leq n \\ s+i+\lceil \log_2 n \rceil - n - 1 & \text{for } n+1 \leq i \leq n+r-1 \\ \operatorname{prec}(i-(n+r-1)) & \text{for } n+r \leq i \leq n+2r-2 \end{cases} \quad \text{and } D_i := \sum_{j=1}^{i-1} d_j.$$

Let $t_{D_i+1}, \ldots, t_{D_i+d_i} \in \{0,1\}$ be the binary representation of x_i , i.e. $x_i = \sum_{l=0}^{d_i-1} t_{D_i+l+1} 2^l$, and set $A_{D_i+l+1,j} := a_{i,j} 2^l$ for $i = 1, \ldots, n+2r-2, \ j = 1, \ldots, r+1, \ l = 0, \ldots, d_i-1$, where

 $a_{i,1} := a_{i,2} := 0 \text{ for } i > n + r - 1.$

With $y_3 := \ldots := y_{r+1} := 0$ equations (1),(2),(5) simplify to

$$\sum_{i=1}^{m} t_{i} A_{i,1} = y_{1} + z q_{1}$$

$$\sum_{i=1}^{m} t_{i} A_{i,j} = y_{j} \text{ for } j = 2, \dots, r+1,$$
where $t_{i} \in \{0, 1\}, z \in \mathbb{Z}$ (6)

We regard the row vectors $b_1, \ldots, b_{m+2} \in \mathbb{Z}^{m+r+2}$ of the following matrix (7) as basis of the lattice L.

$$\begin{pmatrix} 0 & 2 & 0 & \cdots & 0 & NA_{1,1} & NA_{1,2} & \cdots & NA_{1,r+1} \\ 0 & 0 & 2 & \ddots & 0 & NA_{2,1} & NA_{2,2} & \cdots & NA_{2,r+1} \\ \vdots & \vdots & \ddots & \ddots & \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & 0 & 2 & NA_{m,1} & NA_{m,2} & \cdots & NA_{m,r+1} \\ 0 & 0 & \cdots & 0 & 0 & Nq_1 & 0 & \cdots & 0 \\ 1 & 1 & \cdots & 1 & 1 & Ny_1 & Ny_2 & \cdots & Ny_{r+1} \end{pmatrix}$$

$$(7)$$

For every integer $N \geq 2$ the following statement holds:

Every vector $v = (v_0, \ldots, v_{m+r+1}) = \sum_{i=1}^{m+2} c_i b_i \in L$ with l_{∞} -norm 1 is a l_{∞} -norm shortest nonzero lattice vector and has the form $\{\pm 1\}^{m+1} \times 0^{r+1}$, where $c_{m+2} \in \{\pm 1\}$, $c_{m+1} \in \mathbb{Z}$ and $c_1, \ldots, c_m \in \{0, -c_{m+2}\}$. The zero in the last r+1 coefficients imply

$$\sum_{i=1}^{m} c_i A_{i,1} + c_{m+2} y_1 = 0 \mod q_1$$

$$\sum_{i=1}^{m} c_i A_{i,j} + c_{m+2} y_j = 0 \text{ for } j = 2, \dots, r+1.$$
(9)

$$\sum_{i=1}^{m} c_i A_{i,j} + c_{m+2} y_j = 0 \text{ for } j = 2, \dots, r+1.$$
 (9)

With $t_i := |c_i| = (|v_i - v_0|)/2$ for $i = 1, \ldots, m$ we obtain the unique solution of (6) which directly transforms into the original message.

4 Enumeration of shortest lattice vectors

Let \mathbb{R}^n be the *n*-dimensional real vector space with ordinary inner product $\langle ., . \rangle$, l_2 -norm $||x||_2 = \langle x, x \rangle^{1/2}$, l_{∞} -norm $||x||_{\infty} = \max_i(|x_i|)$ and l_1 -norm $||x||_1 = \sum_{i=1}^n |x_i|$.

Hoelder's inequality: $|\langle x, y \rangle| \le ||x||_{\infty} ||y||_{1}$ for all $x, y \in \mathbb{R}^{n}$.

With an ordered lattice basis $b_1, \ldots, b_m \in \mathbb{R}^n$ we associate the Gram-Schmidt orthogonalisation $\hat{b}_1, \ldots, \hat{b}_m \in \mathbb{R}^n$ which can be computed together with the Gram-Schmidt coefficients $\mu_{i,j} = \langle b_i, \hat{b}_j \rangle / \langle \hat{b}_j, \hat{b}_j \rangle$ by the recursion $\hat{b}_1 = b_1$, $\hat{b}_i = b_i - \sum_{j=1}^{i-1} \mu_{i,j} \hat{b}_j$ for i = 2, ..., m. We define the orthogonal projections $\pi_i : \mathbb{R}^n \to \operatorname{span}(b_1, ..., b_{i-1})^{\perp}$ for i = 1, ..., m. Clearly, $\pi_i(b_j) = \sum_{t=i}^{j} \mu_{i,t} b_t.$

For $t = m, \ldots, 1$ we define the following functions w_t , \tilde{c}_t with integer arguments $\tilde{u}_t, \ldots, \tilde{u}_m$:

$$w_{t} := w_{t}(\tilde{u}_{t}, \dots, \tilde{u}_{m}) := \pi_{t}(\sum_{i=t}^{m} \tilde{u}_{i}b_{i}) = w_{t+1} + \left(\sum_{i=t}^{m} \tilde{u}_{i}\mu_{i,t}\right)\hat{b}_{t}$$
$$\tilde{c}_{t} := \tilde{c}_{t}(\tilde{u}_{t}, \dots, \tilde{u}_{m}) := \|w_{t}\|_{2}^{2} = \tilde{c}_{t+1} + \left(\sum_{i=t}^{m} \tilde{u}_{i}\mu_{i,t}\right)^{2} \|\hat{b}_{t}\|_{2}^{2}$$

The algorithm ENUM of [SE94] enumerates in depth first search order all nonzero integer vectors $(\tilde{u}_t, \ldots, \tilde{u}_m)$ for $t = m, \ldots, 1$ satisfying $\tilde{c}_t(\tilde{u}_t, \ldots, \tilde{u}_m) < \bar{c}_1$, where \bar{c}_1 is the current minimum for the function $\tilde{c}_1(\tilde{u}_1, \ldots, \tilde{u}_m)$.

We modify this algorithm to enumerate all short lattice vectors with respect to the l_{∞} -norm. We recursively enumerate all nonzero integer vectors $(\tilde{u}_t,\ldots,\tilde{u}_m)$ for $t=m,\ldots,1$ satisfying $\tilde{c}_t(\tilde{u}_t,\ldots,\tilde{u}_m)< n\bar{B}^2$, where \bar{B} is the current minimal l_{∞} -norm of all enumerated lattice vectors w_1 . The resulting enumeration area is illustrated in figure 1. We enumerate all vectors $w_t(\tilde{u}_t,\ldots,\tilde{u}_m)$ inside the sphere B with radius $\sqrt{n}\,\bar{B}$ centered at the origin. To avoid redundancies all enumerated vectors satisfy $\tilde{u}_s>0$, where s is the largest i with $\tilde{u}_i\neq 0$. For fixed $\tilde{u}_{t+1},\ldots,\tilde{u}_m$ the sequence of values for \tilde{u}_t is chosen so that the function $\tilde{c}_t(\tilde{u}_t,\ldots,\tilde{u}_m)$ is non-decreasing. We can prune the enumeration using the following observations.

Since, for fixed $\tilde{u}_t, \ldots, \tilde{u}_m$, we can only reach lattice vectors in the hyperplane H orthogonal to $w_t(\tilde{u}_t, \ldots, \tilde{u}_m)$, we can prune the enumeration as soon as this hyperplane doesn't intersect with the set M of all points with l_{∞} -norm less or equal \bar{B} . Using Hoelder's inequality we get $\tilde{c}_t(\tilde{u}_t, \ldots, \tilde{u}_m) > \bar{B} \|w_t(\tilde{u}_t, \ldots, \tilde{u}_m)\|_1$ whenever the intersection is empty. In this case we don't need to enumerate any integers $\tilde{u}_{t-1}, \ldots, \tilde{u}_1$ for the fixed $\tilde{u}_t, \ldots, \tilde{u}_m$. The inequality can be tested in linear time and restricts the enumeration to the shaded area U of figure 1, where U is the union of all balls with radius $\frac{1}{2}\sqrt{n}\bar{B}$ centered in $\{\pm\bar{B}/2\}^n$.

The volume of U is an exponential fraction ($\approx 0.82^{n-1}$) of the volume of B. Lemma 1 formalizes and generalizes this pruning rule.

Lemma 1 Let $(\tilde{u}_t, \dots, \tilde{u}_m) \in \mathbb{Z}^{m-t+1}$ be fixed. Assume we are given a vector $(\lambda_t, \dots, \lambda_m) \in \mathbb{R}^{m-t+1}$ satisfying

$$|\sum_{i=t}^{m} \lambda_{i} \tilde{c}_{i}(\tilde{u}_{i}, \dots, \tilde{u}_{m})| > c \| \sum_{i=t}^{m} \lambda_{i} w_{i}(\tilde{u}_{i}, \dots, \tilde{u}_{m}) \|_{1}.$$
(10)

Then $\|\sum_{i=1}^m \tilde{u}_i b_i\|_{\infty} > c \text{ for all } \tilde{u}_1, \dots, \tilde{u}_{t-1} \in \mathbb{Z}.$

We can even do better. For all $\tilde{u}_1,\ldots,\tilde{u}_m$ the vectors $w_1(\tilde{u}_1,\ldots,\tilde{u}_m),\ldots,w_m(\tilde{u}_m)$ all lie on the surface of the ball W with radius $\frac{1}{2}\|w_1\|_2$ centered at $\frac{1}{2}w_1$. Hence W has to be a subset of U if $\|w_1\|_{\infty} \leq \bar{B}$. Therefore, the whole line between w_{t+1} and w_t must be part of U. Thus we can stop the enumeration of all coefficients $\tilde{u}_t' = (1+\lambda)\tilde{u}_t - \lambda\sum_{i=t+1}^m \tilde{u}_i\mu_{i,t}$ for fixed $\tilde{u}_{t+1},\ldots,\tilde{u}_m$ and $\lambda>0$ whenever $\tilde{c}_t(\tilde{u}_t,\ldots,\tilde{u}_m)>\bar{B}\|w_t(\tilde{u}_t,\ldots,\tilde{u}_m)\|_1$. This coefficients would yield vectors w_t' on the dotted line of figure 2 and thus the line between w_{t+1} and w_t' would not be part of U.

Figure 2

The additional pruning rule is formalized and generalized in lemma 2.

Lemma 2 Let $(\tilde{u}_t, \dots, \tilde{u}_m) \in \mathbb{Z}^{m-t+1}$ be fixed and $d_t := \tilde{u}_t - \sum_{i=t+1}^m \tilde{u}_i \mu_{i,t}$. Assume that (10) holds for a given $(\lambda_t, \dots, \lambda_m)$ with $\lambda_t > 0$ and $\sum_{i=t}^m \lambda_i \tilde{c}_i(\tilde{u}_t, \dots, \tilde{u}_m) \ge 0$. Then $\|\sum_{i=1}^m \tilde{u}_i b_i + \lambda d_t b_t\|_{\infty} > c$ holds for all $\lambda > 0$ and all $\tilde{u}_1, \dots, \tilde{u}_{t-1} \in \mathbb{Z}$.

Proof of Lemma 1: Since $w_i = \pi_i(\sum_{j=i}^m \tilde{u}_j b_j) \in \operatorname{span}(b_1, \dots, b_{i-1})^{\perp}$ for $i = t, \dots, m$ we have $w_i \perp \sum_{j=1}^m \tilde{u}_j b_j - w_i$ and thus $\langle w_i, w_i \rangle = \langle \sum_{j=1}^m \tilde{u}_j b_j, w_i \rangle$ for all $\tilde{u}_1, \dots, \tilde{u}_{t-1} \in \mathbb{Z}$. With Hoelder's inequality we get

$$c \| \sum_{i=t}^{m} \lambda_{i} w_{i} \|_{1} < \| \sum_{i=t}^{m} \lambda_{i} \tilde{c}_{i} \| = \| \sum_{i=t}^{m} \lambda_{i} < w_{i}, w_{i} > \| = \| \sum_{i=t}^{m} \lambda_{i} < \sum_{j=1}^{m} \tilde{u}_{j} b_{j}, w_{i} > \|$$

$$= \| < \sum_{j=1}^{m} \tilde{u}_{j} b_{j}, \sum_{i=t}^{m} \lambda_{i} w_{i} > \| \le \| \sum_{j=1}^{m} \tilde{u}_{j} b_{j} \|_{\infty} \| \sum_{i=t}^{m} \lambda_{i} w_{i} \|_{1}.$$

Proof of Lemma 2: Let $\lambda > 0$ be fixed. For abbreviation we set $\tilde{u}'_t := \tilde{u}_t + \lambda d_t$ and $\tilde{u}'_i := \tilde{u}_i$ for $i = t + 1, \ldots, m$. With $\lambda'_t := \lambda_t / \lambda$, $\lambda'_{t+1} := \lambda_{t+1} + \lambda_t - \lambda_t / \lambda$ and $\lambda'_i := \lambda_i$ for $i = t + 2, \ldots, m$ we have

$$\lambda'_{t}w_{t}(\tilde{u}'_{t},\ldots,\tilde{u}'_{m}) + \lambda'_{t+1}w_{t+1}(\tilde{u}'_{t+1},\ldots,\tilde{u}'_{m}) = \lambda_{t}w_{t}(\tilde{u}_{t},\ldots,\tilde{u}_{m}) + \lambda_{t+1}w_{t+1}(\tilde{u}_{t+1},\ldots,\tilde{u}_{m}).$$

We get

$$\sum_{i=t}^{m} \lambda_i' \tilde{c}_i(\tilde{u}_i', \dots, \tilde{u}_m') \geq \sum_{i=t}^{m} \lambda_i \tilde{c}_i(\tilde{u}_i, \dots, \tilde{u}_m)$$

$$\stackrel{(10)}{>} c \| \sum_{i=t}^{m} \lambda_i w_i(\tilde{u}_i, \dots, \tilde{u}_m) \|_1 = c \| \sum_{i=t}^{m} \lambda_i' w_i(\tilde{u}_i', \dots, \tilde{u}_m') \|_1.$$

Lemma 1, applied with $(\tilde{u}_t + \lambda d_t, \tilde{u}_{t+1}, \dots, \tilde{u}_m)$ and $(\lambda'_t, \dots, \lambda'_m)$, completes the proof. Using Hoelder's inequality and the techniques of the ellipsoid method [K79] we can test (10) in polynomial time. In practice we only use the simpler linear-time test (i.e. we test (10))

for $(\lambda_t, \ldots, \lambda_m) = (1, 0, \ldots, 0)$ which seems to yield better performance.

The following algorithm ENUM_{∞} generates a lattice vector with minimal l_{∞} -norm by pruned enumeration in depth first search order. For fixed $\tilde{u}_{t+1}, \ldots, \tilde{u}_m$ the enumeration order of the \tilde{u}_t -values is controlled by the variables Δ_t, δ_t and η_t . The variables Δ_t, δ_t are the same as in [SE94], η_t is the number of directions at stage t for which the enumeration is already cut according to lemma 2.

Algorithm ENUM_{∞}

```
INPUT: \hat{b}_i, c_i := \|\hat{b}_i\|_2^2, \mu_{i,t} for 1 \le t \le i \le m
1. FOR i = 1, ..., m + 1
              \tilde{c}_i := u_i := \tilde{u}_i := v_i := v_i := \Delta_i := 0, \ \eta_i := \delta_i := 1, \ w_i := (0, \dots, 0)
    u_1 := \tilde{u}_1 := 1, \ s := t := 1, \ \bar{b} := b_1, \ \bar{c} := n \|b_1\|_{\infty}^2, \ \bar{B} := \|b_1\|_{\infty}
2. WHILE t \leq m
                   \tilde{c}_t := \tilde{c}_{t+1} + (y_t + \tilde{u}_t)^2 c_t
                   IF \tilde{c}_t < \bar{c}
                   THEN w_t := w_{t+1} + (y_t + \tilde{u}_t)\hat{b}_t
                                IF t > 1
                                THEN IF \tilde{c}_t \geq \bar{B} \|w_t\|_1
                                             THEN IF \eta_t = 1 THEN INCREASE_t()
                                                          ELSE \eta_t := 1, \ \Delta_t := -\Delta_t
                                                                     IF \Delta_t \delta_t \geq 0 THEN \Delta_t := \Delta_t + \delta_t
                                                                     \tilde{u}_t := v_t + \Delta_t
                                             ELSE t := t - 1, \eta_t := \Delta_t := 0, y_t := \sum_{i=t+1}^s \tilde{u}_i \mu_{i,t}
                                                        \tilde{u}_t := v_t := \lceil -y_t \rceil
                                                        IF \tilde{u}_t > -y_t THEN \delta_t := -1
                                                                              ELSE \delta_t := 1
                                ELSE IF ||w_1||_{\infty} < \bar{B}
                                           THEN (u_1, ..., u_m) := (\tilde{u}_1, ..., \tilde{u}_m)
\bar{b} := w_1, \ \bar{c} := n \|\bar{b}\|_{\infty}^2, \ \bar{B} := \|\bar{b}\|_{\infty}
                   ELSE INCREASE_t()
    END while
OUTPUT: b
```

Subroutine INCREASE_t()

```
\begin{split} t &:= t+1 \\ s &:= \max(t,s) \\ \text{IF } \eta_t &= 0 \\ \text{THEN } \Delta_t &:= -\Delta_t \\ &\quad \text{IF } \Delta_t \delta_t \geq 0 \text{ THEN } \Delta_t := \Delta_t + \delta_t \\ \text{ELSE } \Delta_t &:= \Delta_t + \delta_t \\ \tilde{u}_t &:= v_t + \Delta_t \end{split}
```

5 Practical algorithm for breaking Orton's Cryptosystem

We use a slightly modified version of ENUM $_{\infty}$ to find the vector v which transforms into the original message. Since we know that $\|v\|_2^2 = m+1$ and $\|v\|_{\infty} = 1$, we initialize $\bar{c} := m+1.0001$, $\bar{B} := 1.0001$ and stop the algorithm as soon as we have found v. In addition to the pruning of lemma 1 and 2 with $(\lambda_t, \ldots, \lambda_m) = (1, 0, \ldots, 0)$ we cut the enumeration for \tilde{u}_t as soon as there is an index $j \in [0, m]$ with $b_{i,j} = 0$ for $i = 1, \ldots, t-1$ and $b_{t,j} \neq 0$, $|w_{t,j}| \neq 1$. We don't miss the solution since $w_{1,j} = w_{t,j} \neq \pm 1$ for all choices of $u_1, \ldots, \tilde{u}_{t-1}$.

Algorithm ATTACK

INPUT: the public key and the encrypted message y_1, y_2

- 1. build the basis b_1, \ldots, b_{m+2} with $N := n^2$ according to (7)
- 2. L³-reduce $b_1, ..., b_{m+2}$ with $\delta = 0.99$
- 3. call ENUM_{∞}; we get a vector v with $||v||_{\infty} = 1$
- 4. $x_i := \sum_{l=0}^{s-1} |v_{s(i-1)+l+1} v_0| 2^{l-1}$ for $i = 1, \dots, n$

OUTPUT: the original message x_1, \ldots, x_n

An ordered lattice basis b_1, \ldots, b_{m+2} is called L^3 -reduced with δ iff

- 1. $|\mu_{i,j}| \le 1/2$ for $1 \le j < i \le m+2$
- 2. $\delta \|\hat{b}_{k-1}\|_2^2 \le \|\hat{b}_k + \mu_{k,k-1}\hat{b}_{k-1}\|_2^2 \text{ for } k = 2, \dots, m+2.$

The L^3 -algorithm of Lenstra, Lenstra, Lovász [LLL82] needs polynomial time to transform a given integer lattice basis into a L^3 -reduced basis. We use the floating point version of the L^3 -algorithm [SE94]. The resulting basis consists of short and nearly orthogonal lattice vectors. The special structure of the reduced basis makes $ENUM_{\infty}$ efficient.

The original basis vectors b_1, \ldots, b_{m+1} only depend on the public key. Hence we can precompute the L³-reduced basis b'_1, \ldots, b'_{m+1} of b_1, \ldots, b_{m+1} once for every public key we want to attack. For all messages which are encrypted with the same public key we use the precomputed vectors b'_1, \ldots, b'_{m+1} together with b_{m+2} instead of the original basis.

Practical Results Table 1 shows the parameters (r, n, s) proposed in [O94] together with the size of the corresponding lattice basis B. The column T indicates the number of operations for the strongest known attacks [B84, S79] as calculated in [O94].

r	n	\mathbf{s}	Γ	size of B	
3	200	1	2^{100}	246×249	
4	3	150	2^{91}	1379×1383	
4	4	170	2^{104}	1729×1733	
5	2	150	2^{91}	1534×1539	
5	2	170	2^{101}	1734×1739	
5	3	170	2^{104}	1912×1917	

Table 1: residue knapsack parameters

We randomly generate 10 public keys according to the parameters (r, n, s) = (3, 200, 1). For each of these keys we independently encrypt 10 random messages $(x_1, \ldots, x_{200}) \in \{0, 1\}^{200}$. We then reconstruct the messages out of the public key and the ciphertext. Table 2 shows the average as well as the minimal and maximal running time of the algorithms ATTACK, L³-reduction of b_1, \ldots, b_{m+1} and ATTACK after precomputation. All times are in minutes on a HP 735/99 workstation under HP-UX 9.05 ($< 2^{32}$ operations per minute).

Algorithm	average time	min. time	max. time
ATTACK	10.15	8.69	13.79
L^3 -reduction of b_1, \ldots, b_{m+1}	9.00	8.52	9.44
ATTACK after precomputation	1.48	0.29	5.23

Table 2: experimental results

First experiments show that we are able to reconstruct the original messages for the other parameters listed in table 1 in less than 30 minutes after a precomputation step which needs less than 12 hours.

We successfully attack three challenges of Orton [O96] with (r, n, s) = (4, 2, 130), (5, 2, 150) and (5, 2, 170).

For all experiments done so far with $s \ge 130$ the L³-algorithm is sufficient to find the original message. For s = 1 the L³-algorithm doesn't find the original message.

6 Conclusion and Acknowledgement

We break a knapsack Cryptosystem using pruned enumeration of short lattice vectors with respect to the l_{∞} -norm. These techniques also apply to numerous other problems which can be transformed into a shortest or nearest lattice vector problem in some l_p -norm since Lemma 1 and 2 as well as the enumeration algorithm can easyly be extended to arbitrary l_p -norms. Examples for such problems are hash functions based on knapsack problems, construction of t-designs (shortest lattice vector in l_{∞} -norm), factoring integers via diophantine approximation (near lattice vectors in l_1 -norm), etc.

Schnorr and Hörner successfully attack the Chor–Rivest cryptosystem [CR88] which is also based on knapsacks with density > 1. By our techniques we are able to improve the Schnorr–Hörner attack.

The author wishes to thank Claus P. Schnorr for stimulating this work and for a lot of helpful discussions.

References

- [B84] E.F. Brickell: Breaking iterated knapsacks; CRYPTO '84, Springer LNCS, pp. 342–358.
- [CJLOSS92] M.J. Coster, A. Joux, B.A. LaMacchia, A.M. Odlyzko, C.P. Schnorr and J. Stern: Improved Low-Density Subset Sum Algorithms; comput. complexity 2, Birkhäuser-Verlag Basel (1992), 111-128.
- [CR88] B. Chor and R.L. Rivest: A knapsack-type public key cryptosystem based on arithmetic in finite fields; IEEE Trans. Inform. Theory, vol IT-34 (1988), 901-909.
- [K79] L.G. Khachian: A Polynomial Algorithm for Linear Programming; Soviet Math. Doklady 20 (1979), 191–194.
- [LLL82] A.K. Lenstra, H.W. Lenstra Jr. and L. Lovász: Factoring polynomials with rational coefficients; Math. Annalen 261, (1982), 515–534.
- [LO85] J.C. Lagarias and A.M. Odlyzko: Solving low-density subset sum problems; J. Assoc. Comp. Mach. 32(1) (1985), 229-246.
- [MH78] R.C. Merkle and M.E. Hellman: Hiding information and signatures in trapdoor knapsacks; IEEE Trans. Inf. Theory IT-24 (1978), 525-530.
- [O94] G. Orton: A Multiple-Iterated Trapdoor for Dense Compact Knapsacks; Advances in Cryptology EUROCRYPT '94, Springer LNCS (1994), 112–130.
- [O96] G. Orton: private communication.
- [S79] A. Shamir: On the cryptocomplexity of knapsack systems; Proceedings STOC '79, 118–129.
- [S87] C.P. Schnorr: A hierarchy of polynomial time lattice basis reduction algorithms; Theoretical Computer Science 53 (1987), 201–224.
- [S94] C.P. Schnorr: Block reduced lattice bases and successive minima; Combinatorics, Probability and Computing 3 (1994), 507–522.
- [SE94] C.P. Schnorr and M. Euchner: Lattice Basis Reduction: Improved Practical Algorithms and Solving Subset Sum Problems; Mathematical Programming 66 (1994), 181–199.
- [SH95] C.P. Schnorr and H.H. Hörner: Attacking the Chor–Rivest Cryptosystem by Improved Lattice Reduction; Advances in Cryptology EUROCRYPT '95, Springer LNCS (1995), 1–12.