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Abstract

At EUROCRYPT ’94 G. Orton proposed a public key cryptosystem based on dense
compact knapsacks. We present an efficient depth first search enumeration of [,,—norm
short lattice vectors based on Hoelder’s inequality and apply this algorithm to break
Orton’s cryptosystem.
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1 Introduction and Summary

A number of cryptosystems have been based on knapsack problems and it was hoped that
the NP-hardness of the knapsack problem makes it hard to break the corresponding cryp-
tosystem. A knapsack consists of positive integers ai,...,a,,y. A solution are integers
Z1,...,Tp in some interval [0,2%) that satisfy ) i—;a;z; = y. If s > 1 the knapsack is
called compact, knapsack problems with s = 1 are subset sum problems. The density of a
knapsack is the quotient (n x s)/(bitlength of the maximal a;). Merkle-Hellman [MH78|
use knapsacks with density < 1 for a public key cryptosystem. Lagarias, Odlyzko et al.
[LO85, CJLOSS92| represent subset sum problems by lattices. They show that, for density
< 0.9408..., a shortest nonzero lattice vector in ly—norm almost always transforms into a
solution of the subset sum problem. It is an open problem wether it is possible to find Io—
norm shortest lattice vectors in polynomial time. In practice the L3-algorithm of Lenstra,
Lenstra, Lovdsz [LLL82] and block reduction [SE94, S87, S94] are used to find short lattice
vectors.

To prevent low density attacks Orton [094] proposes a cryptosystem based on compact
knapsacks with density > 1. In this paper we introduce new techniques for solving dense
compact knapsacks and in particular the Orton—scheme. The algorithm of this paper for
the first time enumerates short lattice vectors in the [oo—mnorm. It is surprisingly efficient
even though the problem of finding an /,—norm shortest lattice vector is NP-hard and
thus believed to be more difficult than finding shortest lattice vectors in the l—norm. We
greatly improve the enumeration of short lattice vectors in the [—norm by pruning the
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enumeration via Hoelder’s inequality. This pruning reduces the costs of the enumeration
by an exponential factor 0.82" without missing the shortest lattice vector.

Throughout the paper let |z|, [z] denote the greatest (resp. smallest) integer smaller
(resp. greater) or equal z and [z] := |z 4+ 0.5].

2 The Cryptosystem

Orton [094] proposes for a public key cryptosystem a multiple-iterated trapdoor for dense
compact knapsacks. We demonstrate how to break the scheme with pruned enumeration.
Here is a brief description of the Orton—scheme, for further details see [O094].

Public parameters: positive integers r,n,s. (Messages consist of n blocks with s bits
each; r is the number of rounds for key generation.)

Secret key: a series of integers ago), 1=1,...,n with ago) =1, az(-o) > (25 -1) 22;11 ag-o)
and positive integers g3, p®) wk) for k=1,...,r, where ¢ := p(r)/qz € Z.

The secret key {aéo)} representing an “easy“ knapsack is transformed into a “hard“ knapsack
which represents the public key by the operations

agk) = az(k_l)w(k) mod p*) fori=1,...,n+k—1, agclk = —pk),
fz'(k) .— 9-prec(k) Lagk)Qprec(k)/p(k:)J fori=1,....n+k—1, k=1,....m
a;j = agT)modqjforizl,...,n—i—r—l,j:1,2
using the secret “trapdoor go, p®), w®) for k = 1,...,r. prec(k) is the number of precision

bits for the fractions fl-(k) in the k—th round. Orton proposes prec(k) = s+ logyn + k + 2.
This choice guarantees unique encryption and prevents known attacks like Brickell’s [B84]
and Shamir’s [S79].

Public key: positive integers ¢q;, prec(k) for k=1,...,r —1,
nonnegative integers a; j for i =1,...,n+7r -1, j=1,2,
rational numbers fi(k) € 2 preck)(g, 2Preck) for k =1,...,r =1, i=1,...,n+k — 1.
ENCRYPTION
INPUT: public key, message z1,...,z, € [0,2%)
1. Zpyg = Lzyilkfl zifi(k)J fork=1,...,7r—1
2. y1 ==Y wiai mod g1, e == Y007 T wiais
OUTPUT: ciphertext y1,y2
DECRYPTION
INPUT: public and secret key, ciphertext y1,yo
1. recombine y(") = y; mod ¢; (j = 1,2) with Chinese remainder theorem.
™ == gs((y1 — y2)g5 ' mod q1) + ¥
2. g1 = (B (w(E))~1 mod p*) for k=r,...,1
3. solve > xiaz(-o) = (O with z; € [0,2%) (this is easy since o\ > (2% —1) Z;;ll a;

( (0))
i 5 )t
OUTPUT: cleartext message x1,...,Zn



3 The [.,—norm shortest lattice vector attack

We associate to the decryption problem linearly independent integer vectors by,...,bn49 €
71712 50 that any integer linear combination of these vectors with [,—norm 1 yields the
original message. The l—norm ||v||o of a vector v is the maximal absolute value of its
coefficients v;. The integer linear combinations of the basis vectors by,...,bnto form a
lattice. The L3-algorithm of Lenstra, Lenstra, Lovasz [LLL82, SE94] transforms the given
lattice basis into a lattice basis consisting of [o—morm short vectors. This reduced basis
allows us to find a lattice vector v with /,o—norm 1 via pruned enumeration.

The decryption problem is stated as follows: Given the public key, y; mod ¢; and y9 find

integers z1,...,2, € [0,2%), Zuqp € [0,25TFH0B2n—1) gatisfying
n+r—1
> miain = y1modq (1)
=1
n+r—1
Z Tia;2 = Y2 (2)
i=1
n+k—1 P
Tntk = LZ zifi( )J fork=1,...,r—1 (3)
i=1

We transform equations (1)—(3) into a set of r + 1 integer linear equations with m 0-1-
unknowns, where m := ns + (r — 1)(r/2 + s + [logy n] — 1) + 25—} prec(k) (see (6) below).

Since fi<k)2prec(k) € [0,2Pr¢(k)) is integral we can write (3) as

n+k—1
Tk 200 = N7 g pFgpree®) g for k= 1,...,7 — 1, (4)
=1

where the additional variables z,,,x_1 are integers in [0, 2Pre¢(F)),
With a; ;19 := fi(k)Qprec(k) fori =1,...,n+k-1, apyk k2 := —2prec(k), Aptrtk—1k+2 = —1
and a; p42 := 0 else equations (4) simplifiy to

n+2r—2
Z Titipyy = 0 fork=1,...,r—1 (5)
i=1

with Tptrik-1 € [O,2prec(k)) fork=1,...,r—1.

The unique solution of (1),(2),(5) directly transforms into the unique solution of (1)—(3).

To get 0—1—variables we regard the binary representation of the integer variables:
s for1<i<n
Wesetdizz{s+i+[log2n]—n—1 forn+1<i<n+4+r-1 and D; := ;-;11dj.
prec(i — (n+r — 1)) forn+r<i<n+2r-—2

Let tp,+1,---,tD,+4;, € {0,1} be the binary representation of z;, i.e. z; = Zf;gl tp. 41412,
and set Ap,4;11j:=a;;2 fori=1,...,n+2r—2, j=1,...,7+1,1=0,...,d; — 1, where



a;1 :=a;2:=0fori >n+r—1
With y3 := ... := y,41 := 0 equations (1),(2),(5) simplify to

m
ZtiAi,l = y1+z2q

m
th’Ai,j = y; forjg=2,...,7+1,

where t;€{0,1}, z€Z (6)
We regard the row vectors bi,...,by1o € Z™7+2 of the following matrix (7) as basis of the
lattice L.
02 0 -+ 0 NA1 NAp -+ NA 4
0 0 2 o0 NA271 NA272 s NA277~_|_1
Do o : : : (7)
0 0 0 2 NAn1 NAgns -+ NAgp,4
0 0 0 0 Ng 0 0
11 1 1 Nwup Nys -+ Nyrp1
For every integer N > 2 the following statement holds:
Every vector v = (vg, ..., Umtrt1) = ZZ N 2 ;b; € L with lo—norm 1 is a loo—norm shortest
nonzero lattice vector and has the form {+1}™*! x 0"*! where c,,12 € {£1}, cui1 € Z
and ci1,...,cm € {0, —cmy2}. The zero in the last 7 + 1 coefficients imply
m
Y cidin+ Cmi2yn = 0mod g (8)
m
ZCiAi,j+cm+2yj = 0 forj=2,...,7+ 1 (9)

i=1

With ¢; := |¢;| = (Jvi — wo|)/2 for i = 1,...,m we obtain the unique solution of (6) which
directly transforms into the original message.

4 Enumeration of shortest lattice vectors

Let R™ be the n—dimensional real vector space with ordinary inner product <.,.>, ls—norm
|zllz = <z, z>Y2, lo—norm ||z||e = max;(|z;|) and l;—norm ||z||; = 3™, |z;].

Hoelder’s inequality: |<z,y>| < ||z|colly]1 for all z,y € R".

With an ordered lattice basis by, ..., b, € R* we associate the Gram—Schmidt orthogonali-
sation 51, . b € R” which can be computed together with the Gram—Schmidt coefficients
[Lij=<bz, >/<b],b > by the recursion b; = by, b; = b;— i 1,Lawb fori =2,...,m. We
define the orthogonal projections 7; : R* — span(by,...,b;_1)" fori =1,...,m. Clearly,
mi(bs) = Y i ibe.



For t =m,...,1 we define the following functions wy, ¢ with integer arguments iy, . .., Uy,:

m m
W = wt(ﬁt, e ,ﬂm) = Wt(z ﬁzbz) = W41 + (Z ﬂi,u,',t) bt
1=t

1=t

B
3
Il

m 2
Gp = Cyliigy ... i) = ||lwel|3 = g1 + (Z ﬁi#i,t) 182113

i=t
The algorithm ENUM of [SE94] enumerates in depth first search order all nonzero integer
vectors (@, ... ,Um) for t = m,..., 1 satisfying ¢ (i, ..., 4m) < ¢1, where ¢; is the current
minimum for the function & (@1, ..., %m).
We modify this algorithm to enumerate all short lattice vectors with respect to the [,c—norm.
We recursively enumerate all nonzero integer vectors (iy, ..., Uy) for t =m,...,1 satisfying
Ct(TUgy .y lU) < nB?, where B is the current minimal loo—norm of all enumerated lattice
vectors wy. The resulting enumeration area is illustrated in figure 1. We enumerate all
vectors wy (i, . . . , iy ) inside the sphere B with radius \/n B centered at the origin. To avoid
redundancies all enumerated vectors satisfy 45 > 0, where s is the largest ¢ with 4; # 0. For
fixed @yy1, ..., U, the sequence of values for iy is chosen so that the function é; (i, . .., @m)
is non—decreasing. We can prune the enumeration using the following observations.
Since, for fixed 4y, ..., dn, we can only reach lattice vectors in the hyperplane H orthogonal
to wy(ty, . . ., Um ), we can prune the enumeration as soon as this hyperplane doesn’t intersect
with the set M of all points with [,,—norm less or equal B. Using Hoelder’s inequality we
get & (g, ..., m) > B ||wy(dy, ..., 4m)||1 whenever the intersection is empty. In this case we
don’t need to enumerate any integers @;—1,...,%; for the fixed @y, ..., 4. The inequality
can be tested in linear time and restricts the enumeration to the shaded area U of figure 1,
where U is the union of all balls with radius +/n B centered in {+B/2}".

H M

Figure 1

The volume of U is an exponential fraction (~ 0.82" ') of the volume of B. Lemma 1
formalizes and generalizes this pruning rule.

Lemma 1 Let (fiy,...,0y,) € Z™ 1 be fized.

Assume we are given a vector (g, ..., Am) € R satisfying
m m
i=t i=t

Then || Yixy Uibil|co > ¢ for all Gy, ..., 041 € Z.



We can even do better. For all iy, ..., 4y, the vectors wq (i1, ...,%n),. .., Wn(liy) all lie on
the surface of the ball W with radius 1 ||w ||, centered at 1w;. Hence W has to be a subset
of U if ||w1]|oc < B. Therefore, the whole line between w11 and w; must be part of U. Thus
we can stop the enumeration of all coefficients @} = (1 + X)a; — A%, dipiy for fixed
Upsly-- -5 Um and A > 0 whenever é (i, ..., Uy) > B||lwi(i,...,0y)|l1- This coefficients
would yield vectors wj on the dotted line of figure 2 and thus the line between w1 and wj
would not be part of U.

e (U ey Ty)
wiiig + Ady, Gigs1 7 i) il w4 B
(A > 0) e
0
Figure 2

The additional pruning rule is formalized and generalized in lemma 2.

Lemma 2 Let (4, - -, ,) € Z™ L be fized and dy := 1y — iy Wifli g

Assume that (10) holds for a given (A, ..., Am) with A\¢ > 0 and Y jo; A\i€i(Ug, - - -, Um) > 0.
Then || X% ;b + Adibt||oo > ¢ holds for all X > 0 and all i1,. .. 041 € Z.

Proof of Lemma 1: Since w; = (37, 4;b;) € span(by,...,bi_1)" for i = ¢,...,m we
have w; L E;n:l &jbj—wi and thus <w;,w;> = <E;-n:1 ﬁjbj,wi > forall 4q,...,u;_1 € Z.
With Hoelder’s inequality we get

m m m m m
CHZ)‘iwiHl < |Z)\zéz|=|2)\z <w,~,wz~>\:|Z)\Z~<Zlﬁjbj,wi>|
i:t 1=

i=t i=t i=t
m m m m
= | <X by, > hiwi> | <Y bjlleo | Awillh- O
j=1 i=t j=1 i=t
Proof of Lemma 2: Let A > 0 be fixed. For abbreviation we set 4} := iy + Ad; and
@y := 1 for i =t 4+ 1,...,m. With A\j := XN/, Apyy i= Mqr + X — A /A and A} := ) for

(2
1=1t+2,...,m we have

/\;wt(ﬂé, - ,ﬂ;n) + )\é+1wt+1(ﬂé+1, - ,u'm) = At’u}t(ﬂt, - ,ﬂm) + )\t+1wt+1(ﬁt+1, - ,um).

We get
m m
SoONE(g, i) = > NiEi(T, . . T

m m
WO e S Nwi (@i, - -y )l = e IS Nawi(@, ... il

i=t i=t
Lemma 1, applied with (& + Ady, ti¢y1,- - -, ) and (A}, ..., Al), completes the proof. O

Using Hoelder’s inequality and the techniques of the ellipsoid method [K79] we can test (10)
in polynomial time. In practice we only use the simpler linear—time test (i.e. we test (10)



for (A, ..., Am) = (1,0,...,0)) which seems to yield better performance.

The following algorithm ENUMy, generates a lattice vector with minimal [,,—norm by
pruned enumeration in depth first search order. For fixed #¢41,.-., %, the enumeration
order of the u;—values is controlled by the variables A, 6; and 7;. The variables Ay, §; are
the same as in [SE94], 7; is the number of directions at stage ¢ for which the enumeration
is already cut according to lemma 2.

Algorithm ENUM,
INPUT: b;, ¢; = ||bil|3, iy for 1<t<i<m
1. FORi=1,...,m+1
Gii=u =0 = v =y = Ay =0, ;=6 :=1, w; :=(0,...,0)
up =14y =1, s:=t:=1, b:= by, ¢:=n|b||%, B:=|b1]lco
2. WHILE t <m
o= Ep1 + (g + iig) 2y

IFé <c
THEN Wt = W41 + (yt + ﬂt)bt
IFt>1

THEN IF & > B ||lw|1
THEN IF 7, =1 THEN INCREASE _t()
ELSE n :=1, A := Ay
IF A6 > 0 THEN A; := Ay + 6
th = v+ At
ELSE t:=1t—1, nt:=A¢:=0, yr:= 37411 Giptiy
U i= v = [—1y)
IF @4 > —y; THEN 6; := —1
ELSE 6, :=1
ELSE IF ||w1| e < B

THEN (Ul, “ee ,um) = (ﬂl, “ee ,ﬂm)
b:=wi, ¢c:=n|b%, B:=|blw
ELSE INCREASE_t()

END while
OUTPUT: b
Subroutine INCREASE_t()
t:=t+1
s := max(t, s)
IF e = 0

THEN At = _At

IF Ayby > 0 THEN A; := As + 6;
ELSE At = At + 6,5
’l~l,t = U + At



5 Practical algorithm for breaking Orton’s Cryptosystem

We use a slightly modified version of ENUMy, to find the vector v which transforms into
the original message. Since we know that ||[v]|2 = m + 1 and |[v]lc = 1, we initialize
¢ := m + 1.0001, B := 1.0001 and stop the algorithm as soon as we have found v. In
addition to the pruning of lemma 1 and 2 with (A,...,Ap) = (1,0,...,0) we cut the
enumeration for i; as soon as there is an index j € [0,m] with b;; =0 fori=1,...,t -1
and by # 0, |wy ;| # 1. We don’t miss the solution since wy ; = wy; # £1 for all choices of
UlyeooyUt—1-

Algorithm ATTACK

INPUT: the public key and the encrypted message y1, yo
1. build the basis b1,...,bno with N := n? according to (7)
2. L3-reduce by,...,byyo with § = 0.99

3. call ENUMy; we get a vector v with ||v]lecc =1

4. x; = 27:_01 [Vs(i=1) 141 — 2t fori=1,...,n
OUTPUT: the original message z1,...,Zn,

An ordered lattice basis by, ..., by, is called L3 —reduced with 6 iff
1o |pijl <1/2for1 <j<i<m+2
2. 6 ||bk,1||% § ||bk + Nk,kflbkflng for k = 2, e, M + 2.

The L3-algorithm of Lenstra, Lenstra, Lovész [LLL82] needs polynomial time to transform
a given integer lattice basis into a L3-reduced basis. We use the floating point version of
the L3-algorithm [SE94]. The resulting basis consists of short and nearly orthogonal lattice
vectors. The special structure of the reduced basis makes ENUM, efficient.

The original basis vectors b1,...,bn+1 only depend on the public key. Hence we can pre-
compute the L3-reduced basis b},...,b],,; of bi,...,bynq1 once for every public key we
want to attack. For all messages which are encrypted with the same public key we use the

precomputed vectors b, ..., b, . together with by, s instead of the original basis.

Practical Results Table 1 shows the parameters (r,n,s) proposed in [094] together
with the size of the corresponding lattice basis B. The column T indicates the number of
operations for the strongest known attacks [B84, S79] as calculated in [O94].

S T size of B

200 | 1 | 2'90 | 246 x 249

150 | 291 | 1379 x 1383
170 | 2194 | 1729 x 1733
150 | 291 | 1534 x 1539
170 | 2197 | 1734 x 1739
5| 3 | 170 | 2104 | 1912 x 1917

Table 1: residue knapsack parameters

=

CU OU s = W+
NN WO




We randomly generate 10 public keys according to the parameters (r,n, s) = (3,200,1). For
each of these keys we independently encrypt 10 random messages (1, . .., Z200) € {0,1}2%.
We then reconstruct the messages out of the public key and the ciphertext. Table 2 shows
the average as well as the minimal and maximal running time of the algorithms ATTACK,
L3-reduction of by,..., by 1 and ATTACK after precomputation. All times are in minutes
on a HP 735/99 workstation under HP-UX 9.05 (< 232 operations per minute).

Algorithm average time | min. time | max. time
ATTACK 10.15 8.69 13.79
L3-reduction of by,..., byt 9.00 8.52 9.44
ATTACK after precomputation 1.48 0.29 5.23

Table 2: experimental results

First experiments show that we are able to reconstruct the original messages for the other
parameters listed in table 1 in less than 30 minutes after a precomputation step which needs
less than 12 hours.

We successfully attack three challenges of Orton [096] with (r,n, s) = (4,2,130), (5,2,150)
and (5,2,170).

For all experiments done so far with s > 130 the L3-algorithm is sufficient to find the
original message. For s = 1 the L3-algorithm doesn’t find the original message.

6 Conclusion and Acknowledgement

We break a knapsack Cryptosystem using pruned enumeration of short lattice vectors with
respect to the [ooc—norm. These techniques also apply to numerous other problems which
can be transformed into a shortest or nearest lattice vector problem in some /,-norm since
Lemma 1 and 2 as well as the enumeration algorithm can easyly be extended to arbitrary
l,—norms. Examples for such problems are hash functions based on knapsack problems,
construction of t—designs (shortest lattice vector in l,—norm), factoring integers via dio-
phantine approximation (near lattice vectors in /;-norm), etc.

Schnorr and Horner successfully attack the Chor-Rivest cryptosystem [CR88] which is also
based on knapsacks with density > 1. By our techniques we are able to improve the Schnorr—
Horner attack.

The author wishes to thank Claus P. Schnorr for stimulating this work and for a lot of
helpful discussions.



References

[B84]

[CTLOSS92]

[CRSS]

(K79

[LLL82]

[LOS5]

[MHT78]

[094]

[096]
[S79]

[987]

[S94]

[SE94]

[SHO5]

E.F. Brickell: Breaking iterated knapsacks; CRYPTO ’84, Springer LNCS, pp.
342-358.

M.J. Coster, A. Joux, B.A. LaMacchia, A.M. Odlyzko, C.P. Schnorr and J.
Stern: Improved Low—Density Subset Sum Algorithms; comput. complexity 2,
Birkhduser—Verlag Basel (1992), 111-128.

B. Chor and R.L. Rivest: A knapsack—type public key cryptosystem based
on arithmetic in finite fields; IEEE Trans. Inform. Theory, vol IT-34 (1988),
901-909.

L.G. Khachian: A Polynomial Algorithm for Linear Programming; Soviet
Math. Doklady 20 (1979), 191-194.

A K. Lenstra, H'W. Lenstra Jr. and L. Lovész: Factoring polynomials with
rational coefficients; Math. Annalen 261, (1982), 515-534.

J.C. Lagarias and A.M. Odlyzko: Solving low—density subset sum problems;
J. Assoc. Comp. Mach. 32(1) (1985), 229-246.

R.C. Merkle and M.E. Hellman: Hiding information and signatures in trapdoor
knapsacks; IEEE Trans. Inf. Theory IT-24 (1978), 525-530.

G. Orton: A Multiple-Iterated Trapdoor for Dense Compact Knapsacks; Ad-
vances in Cryptology — EUROCRYPT ’94, Springer LNCS (1994), 112-130.

G. Orton: private communication.

A. Shamir: On the cryptocomplexity of knapsack systems; Proceedings STOC
79, 118-129.

C.P. Schnorr: A hierarchy of polynomial time lattice basis reduction algo-
rithms; Theoretical Computer Science 53 (1987), 201-224.

C.P. Schnorr: Block reduced lattice bases and successive minima; Combina-
torics, Probability and Computing 3 (1994), 507-522.

C.P. Schnorr and M. Euchner: Lattice Basis Reduction: Improved Practical
Algorithms and Solving Subset Sum Problems; Mathematical Programming
66 (1994), 181-199.

C.P. Schnorr and H.H. Horner: Attacking the Chor—Rivest Cryptosystem by
Improved Lattice Reduction; Advances in Cryptology — EUROCRYPT ’95,
Springer LNCS (1995), 1-12.

10



