
Segment and Strong Segment
LLL-Reduction of Lattice Bases.

Henrik Koy1 and Claus Peter Schnorr2

1 Deutsche Bank AG, Frankfurt am Main, henrik.koy@db.com
2 Fachbereiche Mathematik und Informatik, Universität Frankfurt, PSF 111932,

D-60054 Frankfurt am Main, Germany. schnorr@cs.uni-frankfurt.de

April 22, 2002

Abstract. We present an efficient variant of LLL-reduction of lattice
bases in the sense of Lenstra, Lenstra, Lovász [LLL82]. We organize
LLL-reduction in segments of size k. Local LLL-reduction of segments is
done using local coordinates of dimension 2k.

Strong segment LLL-reduction yields bases of the same quality as
LLL-reduction but the reduction is n-times faster for lattices of dimen-
sion n. We extend segment LLL-reduction to iterated subsegments. The
resulting reduction algorithm runs in O(n3 log n) arithmetic steps for in-
teger lattices of dimension n with basis vectors of length 2O(n), compared
to O(n5) steps for LLL-reduction.

Keywords. LLL-reduction, shortest lattice vector, segments, iterated sub-
segments, local coordinates, local LLL-reduction.
Abbreviated Title. Segment and Strong Segment LLL.

1 Introduction.

The famous LLL-algorithm of Lenstra, Lenstra, Lovász [LLL82] for lattice
basis reduction is a basic technique for solving important problems in algorithmic
number theory, integer optimization, diophantine approximation and cryptogra-
phy. Of the many possible applications we refer to a few recent ones [BN00,
Bo00, Co98,NS00]. The LLL-algorithm requires O(n5) arithmetic steps on inte-
gers of bit length O(n2) when given n integer basis vectors of length 2O(n) and
dimension n. In this paper we improve the O(n5) bound to O(n3 log n) using a
novel LLL-type reduction.

We partition a basis b1, . . . , bn of dimension n = k m into m segments
bk(l−1)+1,..., bkl of k consecutive basis vectors. LLL-exchanges are done locally in
two consecutive segments using cordinates of dimension 2k. Local LLL-exchanges
cost merely O(k2) arithmetic steps, local size reduction included — compared
to O(n2) steps for a global LLL-exchange.

First we introduce segment LLL-reduced bases, a variant of LLL-reduced
bases that is designed to minimize the global overhead that complements local
LLL-reductions. Segment LLL-reduction saves a factor n in the reduction time
compared to LLL-reduction of lattices of dimension n. We present the basic

concept of segment LLL-reduction in Section 3 and the strong version of it in
Section 4. Strong segment LLL-reduction yields a basis where the first vector is as
short as for LLL-bases. In Section 5 we present an even faster reduction algorithm
using iterated subsegments. It has a proven time bound of O(n3 log n) arithmetic
steps for integer lattices of dimension n, given basis vectors of length 2O(n).
Section 6 contains the strong variant of segment LLL-reduction via iterated
subsegments. Here, the first basis vector is as short as for LLL-bases.

The companion paper [KS01b] gives a practical implementation of segment
LLL-reduction using floating point orthogonalization. Our present code reduces
lattice bases of dimension 1000 consisting of integers of bit length 400 in 10 hours
on a 800 MHz PC. Even for dimension n < 100 the new code is in practice much
faster than previous codes. The use of iterated subsegments should further speed
up the reduction in high dimensions.

Previously, Schönhage [Sc84] has used local coordinates to speed-up LLL-
reduction. His concept of semi-reduction approximates the length of the shortest
lattice vector up to a factor 2n whereas we get close to a factor (4/3)n/2. We use
the [Sc84] analysis of the size of integers occuring in the reduction.

2 LLL-Reduction of Lattice Bases.

Notation. An ordered set of linearly independent vectors b1, ..., bn ∈ Zd is a
basis of the integer lattice L =

∑n
i=1 biZ ⊂ Zd, consisting of all linear integer

combinations of b1, ..., bn. We form the basis matrix B = [b1, ..., bn] ∈ Zd×n with
column vectors b1, ..., bn, we write L = L(B). Let b̂i denote the component of
bi that is orthogonal to b1, ..., bi−1 with respect to the Euclidean inner product
〈x, y〉 = x>y. The orthogonal vectors b̂1, ..., b̂n ∈ Rd and the Gram-Schmidt
coefficients µj,i, 1 ≤ i, j ≤ n, associated with the basis b1, ..., bn satisfy for
j = 1, ..., n

bj =
∑j

i=1 µj,ib̂i, µj,j = 1, µj,i = 0 for i > j.

µj,i = 〈bj , b̂i〉/〈̂bi, b̂i〉, 〈̂bj , b̂i〉 = 0 for j 6= i.

Let ‖b‖ = 〈b, b〉 1
2 denote the Euclidean length of a vector b ∈ Rd. A vector

b =
∑n

j=1 µj b̂j satifies ‖b‖2 =
∑n

j=1 µ2
j‖b̂j‖2. Let λ1 denote the length of the

shortest non-zero lattice vector of a given lattice. The determinant of lattice
L = L(B) is

detL = det(B>B)
1
2 =

∏n
i=1 ‖b̂i‖.

Let πi : Rn → span(b1, ..., bi−1)⊥ denote the orthogonal projection, πi(bk) =∑n
j=i µk,j b̂j .

Definition 1. A basis b1, . . . , bn ∈ Zd is an LLL-basis (or LLL-reduced) for
given δ ∈] 14 , 1] if

1. |µj,i| ≤ 1
2 for 1 ≤ i < j ≤ n,

2. δ ‖b̂i‖2 ≤ µ2
i+1,i ‖b̂i‖2 + ‖b̂i+1‖2 for i = 1, . . . , n− 1.

2

LLL-bases have been introduced by A.K. Lenstra, H.W. Lenstra, Jr. and
L. Lovász [LLL82] who focused on δ = 3/4. A basis with property 1. is called
size-reduced. Extending [LLL82] to arbitrary δ ∈] 14 , 1] and α := 1/(δ− 1

4) yields
Theorem 1. For the rest of the paper LLL-reduction refers to given δ, α.

Theorem 1. An LLL-basis b1, . . . , bn of lattice L satisfies
1. ‖b1‖2 ≤ αn−1 λ2

1 and ‖b1‖2 ≤ αi−1 ‖b̂i‖2 for i = 1, . . . , n,

2. ‖b1‖2 ≤ α
n−1

2 (det L)
2
n and ‖b̂n‖2 ≥ α−

n−1
2 (det L)

2
n .

Consider the QR-factorization B = QR of the basis matrix B = [b1, . . . , bn] ∈
Zd×n, where Q = [b̂1/‖b̂1‖,, b̂n/‖b̂n‖] ∈ Rd×n is an orthogonal matrix in the
sense that Q>Q = In, and R = [ri,j]1≤i,j≤n = [r1, ..., rn] ∈ Rn×n is an upper-
triangular matrix, ri,j = 0 for i > j. We call R the orthogonalization of B.
The transform x 7→ Qx preserves the inner product 〈x, y〉 = 〈Qx,Qy〉, and thus
R and B are isometrical basis matrices. We have that µj,i = ri,j/ri,i, |ri,i| =
‖b̂i‖ and 〈ri, rj〉 = 〈bi, bj〉. We present the core of the LLL-algorithm using the
coefficients ri,j . Clause 2 of Definition 1 means that δ r2

i,i ≤ r2
i,i+1 + r2

i+1,i+1 for
i = 1, ..., n− 1.

LLL-Algorithm (LLL)
INPUT b1, . . . , bn ∈ Zd, δ

OUTPUT b1, . . . , bn LLL-reduced basis
1. l := 1 (l is the stage)
2. WHILE l ≤ n DO

compute (r1,l, ..., rl,l, 0, ..., 0) = ‖b̂l‖ (µl,1, ..., µl,l, 0, ..., 0)
size-reduce bl against bl−1, ..., b1

IF l 6= 1 AND δ r2
l−1,l−1 > r2

l−1,l + r2
l,l

THEN swap bl−1, bl, l := l − 1 ELSE l := l + 1.

More details. Size-reduction of bl against bl−1, ..., b1 performs bl := bl − dµl,icbi

for i = l − 1, . . . , 1 where drc = dr − 1
2e denotes the nearest integer to r ∈ R.

Each swap of bl−1, bl and each reduction step bl := bl − dµl,icbi requires to
update R. That update transforms two rows and two columns of R resulting
in an upper-triangular R of the transformed basis, and can be done in O(n2)
arithmetic steps. Therefore an LLL-exchange (swap of bl−1, bl) requires O(nd)
arithmetic steps, size-reduction of bl and update of R included.
Local reduction. The LLL-algorithm reduces the 2 × 2-diagonal submatrices[

rl−1,l−1 rl−1,l

0 rl,l

]
of R, see Fig. 1. This amounts to a local LLL-reduction, where

LLL-exchanges (swaps of bl−1, bl) are done in local coordinates of dimension 2.
In Section 3 we study local LLL-reductions of diagonal 2k × 2k submatrices of
R using coordinates of dimension 2k.

3

Fig. 1. The 2× 2-diagonal submatrices of R

Integer arithmetic. As the coefficients ri,j of R are algebraic, integer arith-
metic must instead use the rational numbers µj,i, ‖b̂i‖2. It is obvious how to
replace in our algorithms the algebraic ri,j by rational numbers, and this does
not affect the asymptotic bounds on the number of arithmetic steps.

Size of a basis. We measure the size of the basis b1, ..., bn by
M =def maxi=1,...,n(‖bi‖2, Di),

where Di = ‖b̂1‖2 · ... · ‖b̂i‖2 is the Gramian determinant of the sublattice with
basis b1, ..., bi. Basis vectors of length ‖bi‖ = 2O(n) satisfy M = 2O(n2), but
M = 2O(n) holds in many applications.

LLL-time bound. Given a basis b1, ..., bn ∈ Zd of length maxi ‖bi‖ = 2O(n) and
d = O(n) the LLL-algorithm performs O(n5) arithmetic steps using O(n2)-bit
integers. These steps operate on the rational integers µj,i, ‖b̂i‖2 and the integer
coordinates of the bi. More precisely, numerators and denominators of these
rationals have at most O(n + log2 M) bits, see [LLL82,Sc84].

3 Segment LLL-Reduction.

Segments and local coordinates. Let the basis b1, . . . , bn ∈ Zd have dimension
n = k m and the QR-factorization [b1, . . . , bn] = B = QR. We partition B into
m segments Bl = [bkl−k+1, . . . , bkl] for l = 1, ...,m. Local LLL-reduction of two
consecutive segments Bl, Bl+1 is done in local coordinates of the submatrix

Rl := [rkl+i,kl+j]−k<i,j≤k ∈ R2k×2k

of R. Rl yields the local orthogonalization and the local coefficients µkl+i,kl+j ,
−k < i, j ≤ k of [Bl, Bl+1]. Global transforms complement local LLL-reductions.
The novel concept of segment LLL-reduction (SLLL-reduction for short) mini-
mizes the global overhead.

We let D(l) = ‖b̂k(l−1)+1‖2 · ... · ‖b̂kl‖2 denote the local Gramian determinant
of segment Bl. We have that Dkl = D(1) · ... ·D(l).

4

Definition 2. We call a basis b1, . . . , bn ∈ Zd, n = km, SLLL-basis (or SLLL-
reduced) for given k, δ, α if it is size-reduced and satisfies

1. δ ‖b̂i‖2 ≤ µ2
i+1,i‖b̂i‖2 +‖b̂i+1‖2 for i = 1, ..., n−1 except that i = 0 mod k,

2. D(l) ≤ (α/δ)k2
D(l + 1) for l = 1, . . . , m− 1.

The segments Bl of an SLLL-basis are LLL-reduced in the sense that the subma-
trix [rkl+i,kl+j]−k<i,j≤0 ∈ Rk×k of R is LLL-reduced. Clause 1 does not bridge
distinct segments due since the i with i = 0 mod k are excepted. Property 2
is weaker than the property D(l) ≤ αk2

D(l + 1) of LLL-bases which follows
from Definition 1. This weakening is used to reduce the number of local LLL-
reductions of Rl.

Property 2 of SLLL-bases is preserved under duality, if it holds for a basis
b1, ..., bn it also holds for the dual basis b∗1, ..., b

∗
n. The dual of lattice L is the

lattice
L∗ =def {x ∈ span(L) | 〈x, y〉 ∈ Z for all y ∈ L}.

We have that det L∗ = (det L)−1. The dual B∗ of a basis matrix B ∈ Zn×n,
satisfying L(B∗) = L(B)∗, is constructed by inverting the order of the columns of
the matrix (B−1)>, the transpose of the inverse of B. The dual basis [b∗1, ..., b

∗
n] =

[b1, ..., bn]∗ satisfies 〈b∗i , bj〉 = δi,j and ‖b̂i‖ = ‖b̂∗n−i+1‖−1 for i = 1, ..., n.

Theorem 2. Every SLLL-basis b1, ..., bn satisfies

1. ‖b1‖2 ≤ (α/δ)
n−1

2 (detL)
2
n , 2. ‖b̂n‖2 ≥ (δ/α)

n−1
2 (det L)

2
n .

Proof. 1. By definition of SLLL-reducedness we have that

D(1) ≤ (α/δ)k2 (i−1) D(i) for i = 1, ..., n.

As D(1) · ... ·D(m) = (det L)2 and 1 + 2 + ... + m− 1 = mm−1
2 this yields

D(1) ≤ (α/δ)k2 m−1
2 (det L)

2
m .

Moreover ‖b1‖2 ≤ α
k−1
2 D(1)

1
k holds by Theorem 1 as the basis b1, ..., bk is

LLL-reduced. The two latter inequalities imply the claim

‖b1‖2 ≤ α
k−1
2 (α/δ)k m−1

2 (detL)
2

mk ≤ (α/δ)
n−1

2 detL
2
n .

2. Clause 2 of Definition 2 and Theorem 1 also hold for the dual basis b∗1, ..., b
∗
n of

the dual lattice. We have that ‖b∗1‖ = ‖b̂n‖−1 and det(L∗) = (det L)−1. Applying
the proof of Inequality 1 to the dual basis b∗1, ..., b

∗
n yields Inequality 2. ut

Algorithm for SLLL-reduction. The algorithm SLLL transforms a given basis
into an SLLL-basis. It iterates local LLL-reduction of two segments [Bl, Bl+1] =
[bkl−k+1, ..., bkl+k] via loc-LLL(l). SLLL emulates the LLL-algorithm replacing
the vector rl−1 by the segment Bl.

5

Segment LLL (SLLL)
INPUT b1, . . . , bn ∈ Zd, k, m, n = km, δ

OUTPUT b1, . . . , bn SLLL-basis
1. l := 1, compute the orthogonalization R ∈ Rn×n

2. WHILE l ≤ m− 1 DO
loc-LLL(l) (LLL-reduces Rl)
IF l > 1 AND D(l − 1) > (α/δ)k2

D(l)
THEN l := l − 1 ELSE l := l + 1.

Fig. 2. Areas of subsequent local LLL-reductions.

loc-LLL(l)
Given are the orthogonalization R ∈ Rn×n and the submatrix Rl ∈ R2k×2k.

1. local LLL-reduction. First size-reduce then LLL-reduce Rl. After each reduc-
tion step update Rl into upper-triangular form, record the basis transform
of Rl in the matrix Hl ∈ Z2k×2k. (The basis transform operates on Rl from
the right, the update into upper-triangular form operates from the left.)

2. [Bl, Bl+1] := [Bl, Bl+1] Hl, reset Hl, update R into upper-triangular form.

3. Size-reduce [Bl, Bl+1] globally and update R accordingly.

LLL-exchanges in the local LLL-reduction of Step 1 are done in local coordinates
of dimension 2k. A local LLL-exchange merely requires O(k2) arithmetic steps,
update of Rl and local size-reduction included. Compare this to the O(nd) arith-
metic steps for an LLL-exchange in global coordinates. Steps 2, 3 of loc-LLL(l)
perform O(ndk) arithmetic steps.

SLLL generates bases that are slightly better than expressed by the inequalities
of Theorem 2. Upon termination of loc-LLL(l) we have that D(l) ≤ αk2

D(l+1)
while Theorem 2 merely assumes D(l) ≤ (α/δ)k2

D(l + 1).

6

The number of loc-LLL executions. The Lovász volume argument shows that
the number of executions of loc-LLL decreases cubically in k. We let dec denote
the number of times that l decreases due to D(l − 1) > (α/δ)k2

D(l).

Theorem 3. The number of loc-LLL executions in SLLL is m− 1 + 2 · dec,
where dec ≤ 2nk−3 log1/δ M .

Proof. Each loc-LLL execution resulting in l := l−1 is compensated by another
one resulting in l := l+1. There are m−1 additional executions to proceed from
l = 1 to l = m− 1. Hence, it remains to bound dec.

We show that a loc-LLL(l − 1) execution due to D(l − 1) > (α/δ)k2
D(l)

decreases D(l − 1) by the factor δk2/2. loc-LLL(l − 1) performs a local LLL-
reduction of Rl, it changes D(l−1), D(l) into D′(l−1), D′(l) but preserves D(l∗)
for l∗ 6= l, l + 1. It also preserves the product D(l − 1)D(l). As the local LLL-
reduction yields D′(l − 1) ≤ αk2

D′(l) we have that

D′(l − 1) ≤ αk2
D′(l) = αk2

D′(l − 1)D′(l)/D′(l − 1)

= αk2
D(l − 1)D(l)/D′(l − 1) < δk2

D(l − 1)2/D′(l − 1),

and thus D′(l−1) ≤ δk2/2D(l−1). Hence loc-LLL(l) decreases D =def

∏m−1
j=1 Djk

by the factor δk2/2. As D is a positive integer, D ≤ M
m−1

, this implies

dec ≤ log1/δk2/2 M
m−1 ≤ 2m−1

k2 log1/δ M . ut

The number of LLL-exchanges. LLL corresponds to SLLL with k = 1. However,
an LLL-exchange decreases D by a factor δ and not just by

√
δ as in the above

proof. Hence, the number of swaps in the LLL is at most (n− 1) log1/δ M , the
factor 2 in Theorem 3 disappears.

Theorem 4. Let k = Θ(m) = Θ(
√

n). Then SLLL performs O(nd log1/δ M)
arithmetic steps using integers of bit length O(n + log2 M) = O(n2).

SLLL improves the LLL-time bound from O(n2d log1/δ M) to O(nd log1/δ M)
arithmetic steps, saving a factor n.

Proof. Time bound. We separately count the local (resp. global) arithmetic steps
in Step 1 (resp. Steps 2, 3) of loc-LLL(l). There are at most n log1/δ M LLL-
exchanges, done in local coordinates of dimension 2k, each requiring O(k2) steps
for local size-reduction, for updating Rl into upper-triangular form and for up-
dating Hl. In total there are O(nk2 log1/δ M) local arithmetic steps.

Each execution of loc-LLL requires O(ndk) global arithmetic steps for up-
dating R into upper-triangular form, global size-reduction, and segment trans-
form in Steps 2, 3 of loc-LLL(l). The initial computation of R requires O(n2d)
arithmetic steps. By Theorem 3 there are O(n2d + n2d + m2d log1/δ M) global
arithmetic steps.

7

The choice k, m = Θ(
√

n) equalizes for d = O(n) these bounds for the local
and global arithmetic steps. In total there are at most O(nd log1/δ M) local and
global arithmetic steps. 1

Size of the integers. Recall that the determinants Di do not increase during
LLL-reduction. In particular, we always have that 1 ≤ Di ≤ M , and ‖b̂i‖2 =
Di/Di+1 is a rational integer with numerator and denominator bounded by M ,
M
−1 ≤ ‖b̂i‖2 ≤ M .
We next show that maxi ‖bi‖2 can temporarily increase not more than by a

factor 2O(n)M . We separately study how size-reduction and local LLL-reduction
affect maxi ‖bi‖2.

The length ‖bi‖ can temporarily increase during size-reduction of bi according
to bi := bi − dµi,jcbj for j = i − 1, ..., 1. A step bi := bi − dµi,jcbj induces
µi,h := µi,h − dµi,jcµj,h for h = 1, ..., j. As b1, ..., bi−1 are size-reduced we have
that |µj,h| ≤ 1

2 for 1 ≤ h < j. Hence, a size-reduction step increases Mi :=
maxh<i |µi,h| by at most a factor 3

2 , and ‖bi‖ can temporarily increase during
size-reduction of bi not more than by a factor (3

2)i−1.
Consider the coefficients of the matrix H ∈ Z2k×2k of the local LLL-reduction

that transforms segments Bl, Bl+1 according to [Bl, Bl+1] := [Bl, Bl+1]H. We
let b′j , b̂

′
j , µ

′
j,i denote the values of the transformed segments [b′kl−k+1, ..., b

′
kl+k] =

[Bl, Bl+1]H. We let ‖H‖1 denote the maximal ‖ ‖1-norm of the columns of H.

Lemma 1. [Sc84, Inequality (3.3)] We have that

1. H = ([µj,i]>)−1 [〈̂bi, b̂
′
j〉‖b̂i‖−2]kl−k<i,j≤kl+k [µ′j,i]

>,

2. ‖H‖1 ≤ (2k)2(3
2)2k−1M ≤ 2O(k)M .

Proof. Equality 1. follows from the equations
[b′kl−k+1, ..., b

′
kl+k] = [̂b′kl−k+1, ..., b̂

′
kl+k][µ′j,i]

>

= [̂bkl−k+1, ..., b̂kl+k][µj,i]>H.
The segments Bl, Bl+1 are already size-reduced when starting the local LLL-
reduction of Rl, i.e., |µj,i| ≤ 1

2 for kl− k < i < j ≤ kl + k. Then the coefficients
νj,i of the inverse matrix [νj,i] = [µj,i]−1 satisfy |νj,i| ≤ (3

2)|j−i|. Inequality 2.
follows from 1. as |〈̂bi, b̂

′
j〉‖b̂i‖−2| ≤ ‖b̂′j‖/‖b̂i‖ ≤ M and |µ′j,i| ≤ 1

2 for i < j. ut
Conclusion. All integers arising in SLLL-execution are bounded in absolute
value by 2O(n)M

3/2
having bit length O(n + log2 M). In particular the vectors

bi of [Bl, Bl+1]H in loc-LLL(l) satisfy by Lemma 1 that ‖bi‖ ≤ M
1/2 ‖H‖1 =

2O(k)M
3/2

. The final size-reduction of bi in loc-LLL(l) can temporarily increase
‖bi‖ by a factor (3

2)i−1. The size-reduced bi satisfies ‖bi‖2 ≤
∑i

j=1 µ2
i,j ‖b̂i‖2 ≤

i+1
4 M. That bound holds after each execution of loc-LLL(l). ut

1 In practice, the global steps get dominant for k À m, not yet for k ≈ m. This is
because the local steps operate on smaller integers. In the [KS01b] implementation,
these steps are in fast floating point arithmetic. Even segment sizes as large as
k = 100 yield good running times.

8

Dependence of time bounds on δ. The time bounds contain a factor log1/δ 2,

log1/δ 2 = log2(e)/ ln(1/δ) ≤ log2(e)
δ

1−δ ,

since ln(1/δ) ≥ 1/δ − 1. We see that replacing δ by
√

δ essentially halves 1 − δ
and doubles the SLLL-time bound. In practice, the reduction time may increase
slower than by the factor δ

1−δ as δ approaches 1, see [KS01b, Fig.3] comparing
reduction times for δ = 0.99 and δ = 0.999.

4 Strong Segment LLL-Reduction.

We strengthen SLLL-bases as to satisfy ‖b1‖2 ≤ λ2
1 (α/δ)n−1. This comes close

to the property ‖b1‖2 ≤ λ2
1 αn−1 of LLL-bases in Theorem 1. Recall that k, δ, α

refer to SLLL-reduction.
Notation. We call segment Bl = [bkl−k+1, ..., bkl] of lattice basis b1, . . . , bn

strong if
‖b1‖2/‖b̂i‖2 ≤ (α/δ)i−1 for i = kl − k + 1, . . . , kl,

otherwise Bl is called weak. Bl is called completely weak if

‖b1‖2/‖b̂i‖2 > (α/δ)i−1 for i = kl − k + 1, ..., k l.

We call the basis b1, . . . , bn strong if all segments are strong. We call the index
i weak if ‖b1‖2/‖b̂i‖2 > (α/δ)i−1.

Lemma 2. A strong basis b1, ..., bn satisfies ‖b1‖2 ≤ λ2
1 (α/δ)n−1.

Proof. Every basis b1, ..., bn satisfies λ1 ≥ maxi ‖b̂i‖. This implies that ‖b1‖2 ≤
λ2

1 maxi ‖b1‖2/‖b̂i‖2. This proves the claim for a strong basis. ¤

Strong SLLL-bases versus LLL-bases. As LLL-bases satisfy ‖b1‖2 ≤ λ2
1 αn−1 we

compare α/δ with α. LLL-bases are better than strong SLLL-bases for the same
δ. However, strong SLLL-bases for δ′ =

√
δ are better than LLL-bases for δ,

because α′/δ′ = 1
(δ′)2−δ′/4 < 1

δ−1/4 = α.

Strong SLLL-bases with δ′ = 0.95 are better than LLL-bases with δ = 0.9.
Replacing δ by

√
δ increases the SLLL-time bound at most by a factor 2.

Strong SLLL (SSLLL)
INPUT SLLL-basis b1, . . . , bn ∈ Zd, n = km

OUTPUT b1, . . . , bn strong SLLL-basis
1. IF all segments are strong THEN size-reduce b1, ..., bn and terminate
2. loc-LLL(l) for the maximal l such that Bl+1 is weak

3. WHILE D(l) > (α/δ)k2
D(l + 1) for some l DO loc-LLL(l)

4. GO TO 1.

9

Time analysis. SSLLL iterates two types of loc-LLL(l) executions:

• executions in Step 2 due to a weak Bl+1.

• executions in Step 3 due to D(l) > (α/δ)k2
D(l + 1).

Executions in Step 2 are done only when D(l) ≤ (α/δ)k2
D(l + 1) holds for all l.

We show in Lemma 3 below that these loc-LLL(l) executions either decrease
maw =def max{l |Bl is weak},

or else there directly follows an execution of loc-LLL in Step 3. Clearly, maw
cannot increase during SSLLL execution since maxi=1,...,n{i | i weak} cannot
increase during LLL-reduction. Hence maw decreases at most m− 1 times.

Recall that an execution in Step 3 decreases D :=
∏m−1

k=1 Dlk by a factor
δk2/2 while an execution in Step 2 does not increase D. Thus, the number of
executions in Step 3 is at most dec ≤ 2 nk−3 log1/δ M . As maw decreases at
most m− 1 times we see that

#executions in Step 2 ≤ m + # executions in Step 3 ≤ m + 2 nk−3 log1/δ M.

This shows that the total number of loc-LLL executions in SSLLL is at most
m + 4 nk−3 log1/δ M . This proves the following Theorem.

Theorem 5. The SLLL-time bound in Theorem 4 also holds for SSLLL.

It remains to prove

Lemma 3. If loc-LLL(l) is executed in Step 2 of SSLLL then either the re-
sulting Bl+1 is strong or else the resulting Bl is completely weak, in which case
we have that D(l − 1) > (α/δ)k2

D(l).

We see that under the assumption of Lemma 3 either maw decreases or else
loc-LLL(l) is directly followed by a loc-LLL execution in Step 3. This is the
main argument in the proof of Theorem 5.

Proof. Suppose that after executing loc-LLL(l) there is a weak j = kl + i of
Bl+1, 1 ≤ i ≤ k. Then all kl + i′ are weak for −k < i′ ≤ i. This holds because
[Bl+1, Bl] is locally LLL-reduced and thus ‖b̂kl+i‖2 ≤ α ‖b̂kl+i+1‖2 holds for
−k < i < k.

We conclude that the Bl resulting from loc-LLL(l) is completely weak if the
resulting Bl+1 is weak. We finally show that D(l − 1) > (α/δ)k2

D(l) holds in
this case.

As b1, ..., bkl−k is SLLL-reduced we have that

‖b1‖2k ≤ α(k
2)D(1) (since b1, ..., bk is LLL reduced)

D(1) ≤ (α/δ)k2(l−2) D(l − 1), and thus

‖b1‖2k ≤ (α/δ)k2(l−2) α(k
2)D(l − 1).

10

On the other hand, as Bl is completely weak, we have that

‖b1‖2k > (α/δ)k2(l−1)+(k
2) D(l).

The latter two inequalities imply that D(l−1) > (α/δ)k2
(1/δ)(

k
2) D(l), proving

the claim. ¤

5 Reduction via Iterated Subsegments.

We extend the concept of segment LLL-reduction to an iterative structure of
segments of levels σ = 0, 1, ..., s. Segments of level σ partition into segments of
level σ − 1. We extend the concept of SLLL-bases to ISLLL-bases in that we
relax the inequality D(l) ≤ (α/δ)k2

D(l + 1) to D(l) ≤ (α/δσ)k2
D(l + 1) for

segments of level σ and size k. This relaxation will furher reduce the number of
local reductions of the large segments of high level.

Let n = k1 · ... · ks be a product of integers k1, . . . , ks ≥ 2, s ≤ log2 n. For
given k = (k1, ..., ks) we denote kσ := k1 · ... · kσ for σ = 1, . . . , s, k0 := 1. We
use segments of level σ = 0, ..., s− 1, the segments of level σ are

B
(σ)
l = [bkσ(l−1)+1, ..., bkσl] for l = 1, ..., n/kσ.

Segment B
(σ)
l has size kσ and partitions into kσ segments of level σ−1, B

(σ)
l =

[B(σ−1)
kσ(l−1)+1, ..., B

(σ−1)
kσl]. Local reduction of [B(σ)

l , B
(σ)
l+1] is done in the coordinates

of
R

(σ)
l =def [rkσl+i,kσl+j]−kσ<i,j≤kσ ∈ R2kσ×2kσ .

The submatrix R
(σ)
l of R yields the local orthogonalization and local Gram-

Schmidt coefficients of [B(σ)
l , B

(σ)
l+1].

Informal argument for the O(n3 log n) time bound. We improve the SLLL-
time bound by using the step bounds O(k2n log1/δ M) and O(m2d log1/δ M) for
the local and global steps only for k = k1 and m = k2, ..., ks. Global transforms
extend local transforms from level σ − 1 to level σ. They corresponds to global
steps in SLLL, and the SLLL-bound for the number of global SLLL-steps ap-
plies with m = kσ. As the global steps are done for all levels we get an additional
time factor s ≤ log2 n. If maxσ kσ = O(1), d = O(n) and M = 2O(n2) there are
in total O(n3 s) arithmetic steps.

We let D(σ)(l) = ‖b̂kσ(l−1)+1‖2 · · · ‖b̂kσl‖2 denote the local determinant of
the segment B

(σ)
l , D(0)(l) = ‖b̂l‖2.

Definition 3. A basis b1, . . . , bn ∈ Zd, n = k1 · · · ks = ks is an ISLLL-basis for
given k, δ, α if it is size-reduced and satisfies

D(σ)(l) ≤ (α/δσ)(kσ)2D(σ)(l + 1) (1)

for σ = 0, ..., s− 1 and l = 1, . . . , n/kσ − 1, except that l = 0 mod kσ+1.

11

Since l = 0 mod kσ+1 is excepted in (1) these conditions hold for constant
σ locally in segments B

(σ+1)
l of level σ + 1, they do not bridge distinct such

segments. The conditions (1) can be written for σ = 0 as

‖b̂l‖2 ≤ α ‖b̂l+1‖2 for l 6= 0 mod k1.

If δ is close to 1 so is δσ because σ ≤ log2 n. For n = k1 · k2 = k ·m, s = 2,
Definition 3 repeats Definition 2 slightly weakening Clause 1.

ISLLL-reducedness is preserved under duality. If the basis b1, ..., bn is ISLLL-
reduced so is the dual basis b∗1, ..., b

∗
n.

We next extend Theorem 2 to iterated segments.

Theorem 6. Every ISLLL-basis b1, . . . , bn, n = k1 · · · ks = ks satisfies

‖b1‖2 ≤ (α/δs−1)
n−1

2 (detL)
2
n and ‖b̂n‖2 ≥ (δs−1/α)

n−1
2 (det L)

2
n .

Proof. We prove by induction on σ that
‖b1‖2kσ ≤ (α/δσ−1)kσ (kσ−1)/2 D(σ)(1).

For σ = s, this proves the first claim of the theorem because D(s)(1) = (det L)2, ks =
n. The second claim follows by duality.

The induction hypothesis is trivial for σ = 0 as we have that (k0− 1)/2 = 0,
k0 = 1 and D(0)(1) = ‖b1‖2.
Induction from σ to σ + 1. By ISLLL-reducedness we have that

D(σ)(1) ≤ (α/δσ)(kσ)2(l−1) D(σ)(l) for l = 1, . . . , kσ+1.

Using the equation D(σ+1)(1) =
∏kσ+1

l=1 D(σ)(l) and
∑kσ+1

l=1 (l− 1) =
(
kσ+1

2

)
this

yields

D(σ)(1)kσ+1 ≤ (α/δσ)(kσ)2(kσ+1
2) D(σ+1)(1).

Using the induction claim for σ and kσ+1 = kσkσ+1this yields

‖b1‖2kσ+1 ≤ (α/δσ−1)(
kσ
2)kσ+1 (α/δσ)(kσ)2(kσ+1

2) D(σ+1)(1)

Hence the claim for σ + 1 since
(
kσ

2

)
kσ+1 + (kσ)2

(
kσ+1

2

)
= kσ+1

kσ+1−1
2 . ut

ISLLL
INPUT b1, . . . , bn ∈ Zd, n = k1 · . . . · ks = ks

OUTPUT b1, . . . , bn ISLLL-basis
1. l := 1, compute R ∈ Rn×n

2. WHILE l ≤ ks−1 − 1 DO

loc-ISL(s−1)(l) (ISLLL-reduces R
(s−1)
l)

IF l > 1 AND D(s−1)(l − 1) > (α/δs−1)(ks−1)
2
D(s−1)(l)

THEN l := l − 1 ELSE l := l + 1.

12

Algorithm for ISLLL-reduction. The algorithm ISLLL transforms a given basis
of dimension n = ks into an ISLLL-basis. It iteratively performs local ISLLL-
reductions of local R-matrices R

(s−1)
l by the procedure loc-ISL(s−1)(l). ISLLL-

reduction of R
(s−1)
l transforms the basis matrix R

(s−1)
l from the right and up-

dates it into upper-triangular form. Upon termination of loc-ISL(s−1)(l)

D(σ)(l) ≤ (α/δσ)(kσ)2D(σ)(l + 1)

holds for all subdeterminants D(σ)(l), D(σ)(l + 1) of R
(s−1)
l , i.e., for ks−1(l− 1)

≤ kσ(l − 1) and kσ(l + 1) ≤ ks−1(l + 1). The procedure loc-ISL(s−1)(l) iter-
atively ISLLL-reduces submatrices R

(σ)
l′ of level σ < s − 1 via the procedure

loc-ISL(σ)(l′).

Fig. 3. Iterative segmentsw of levels σ − 1 and σ for kσ = 2.

The interaction between levels σ−1 and σ. Consider two segments [B(σ−1)
l , B

(σ−1)
l+1]

⊂ [B(σ)
l′ , B

(σ)
l′+1] for l′ := dl/kσc. By the centered choice of l′ the matrices R

(σ−1)
l−1 ,

13

R
(σ−1)
l , R

(σ−1)
l+1 are all covered by R

(σ)
l′ , see Fig. 3. As the areas of R

(σ−1)
l , R

(σ−1)
l±1

overlap, a basis transform H
(σ−1)
l of R

(σ−1)
l must first be ”transported” to level

σ before R
(σ−1)
l±1 can be locally reduced. A subsequent reduction of R

(σ−1)
l±1 by

loc-ISL(σ−1)(l ± 1) starts by copying R
(σ−1)
l±1 from the updated R

(σ)
l′ .

Let H
(σ−1)
l ∈ Z2kσ−1×2kσ−1 denote the basis transform that has been done

on R
(σ−1)
l and has not yet been ”transported” to level σ.

Transporting the basis transform H
(σ−1)
l to level σ means to transform R

(σ)
l′

and H
(σ)
l′ as follows: multiply the submatrices of 2kσ−1 columns of R

(σ)
l′ and

H
(σ)
l′ corresponding to [B(σ−1)

l , B
(σ−1)
l+1] from the right.

loc-ISL(σ)(l′) ISLLL-reduces R
(σ)
l′ . Initially, H

(σ)
l′ is the identity transform.

R
(σ)
l′ and H

(σ)
l′ get updated for all reductions on level σ − 1 done by loc-

ISL(σ−1)(l). Upon termination the local transform H
(σ)
l′ done by loc-ISL(σ)(l′)

is transported to level σ + 1.
We describe loc-ISL(σ)(l′) more formally, first for 1 < σ < s − 1 thereafter

for σ = s− 1 and σ = 1.

loc-ISL(σ)(l′) for 1 < σ < s− 1.
Given are R

(σ+1)
l′′ for l′′ := dl′/kσ+1c and the transform H

(σ+1)
l′′ that has been

done locally on level σ + 1 but not yet on level σ + 2.
1. l := kσ(l′ − 1) + 1, (we always have that l = dl′/kσc)

form the submatrices R
(σ)
l′ of R

(σ+1)
l′′ and R

(σ−1)
l of R

(σ)
l′ .

2. WHILE l < kσ(l′ + 1) DO

loc-ISL(σ−1)(l) (ISLLL-reduces R
(σ−1)
l)

IF l > kσ(l′− 1)+1 AND D(σ−1)(l− 1) > (α/δ)(kσ−1)
2
D(σ−1)(l)

THEN l := l − 1 ELSE l := l + 1
3. Transport H

(σ)
l′ to level σ + 1, reset H

(σ)
l′ ,

Update R
(σ+1)
l′′ into upper-triangular form.

4. Size-reduce R
(σ+1)
l′′ and update H

(σ+1)
l′′ accordingly.

Case σ = s− 1. The global transforms of Steps 3, 4 are done on R and B. Steps
3 and 4 in loc-ISL(s−1)(l) are as follows:

3. Transform R and B = [b1, . . . , bn] globally by H
(s−1)
l′ , reset H

(s−1)
l′ .

Update R into upper-triangular form.

4. Size-reduce [B(s)
l′′ , B

(s)
l′′+1] globally and update R accordingly.

14

Case σ = 1. Steps 1-2 in loc-ISL(1)(l′) are as follows:

1-2. First size-reduce then LLL-reduce R
(1)
l′ .

After each reduction step update R
(1)
l′ into upper-triangular form.

Record the basis transform of R
(1)
l′ in the matrix H

(1)
l′ .

Theorem 7. Given a basis b1, . . . , bn ∈ Zd, n = k1 · ... · ks = ks, algorithm
ISLLL performs at most O(dn2 + d log1/δ M

∑s
σ=1 k2

σ) arithmetic steps and
produces an ISLLL-reduced basis. If maxσ kσ = O(1) and log2 M = O(n2), the
number of arithmetic steps is O(n2d s log1/δ 2).

Proof. Correctness. ISLLL is correct since loc-ISL(σ)(l′) locally ISLLL-reduces
[B(σ)

l′ , B
(σ)
l′+1] in coordinates of R

(σ)
l′ , and transports the transform to level σ + 1.

A subsequent reduction of R
(σ)
l′±1 by loc-ISL(σ)(l′ ± 1) starts by copying R

(σ)
l′±1

from the updated R
(σ+1)
l′′ . R

(σ)
l′±1 are correct as both R

(σ)
l′−1 and R

(σ)
l′+1 are covered

by R
(σ+1)
l′′ .

On termination all inequalities (1) of Definition 3 are satisfied and the re-
sulting basis is an ISLLL-basis. Induction shows that whenever ISLLL calls
loc-ISL(σ)(l′) all inequalities (1) of Definition 3 are satisfied for the subbasis
b1, ..., bkσ(l′−1) that precedes segment B

(σ)
l′ .

Time bound. Let dec(σ) denote the number of times that loc-ISL(σ)(l′ − 1) is
executed in ISLLL due to D(σ)(l′ − 1) > (α/δ)(kσ)2D(σ)(l′). The number of
loc-ISL(σ) executions in ISLLL is n/kσ − 1 + 2 · dec(σ).

We apply Theorem 3 to segments and to the local Gramian determinants of
level σ. Let

D(σ) =def

∏n/kσ

l=1 Dkσl =
∏n/kσ

l=1

(
D(σ)(1) · ... ·D(σ)(l)

)
.

Each execution of loc-ISL(σ)(l′) — due to a violated inequality (1) — decreases
D(σ) by the factor δ(kσ)2/2. Initially the integer D(σ) satisfies D(σ) ≤ M

n/kσ ,
and upon termination D(σ) ≥ 1, hence

dec(σ) ≤ 2n(kσ)−3 log1/δ M .

In total there are n/kσ−1+2n(kσ)−3 log1/δ M executions of loc-ISL(σ)(l′) each
requiring an overhead of O(kσk2

σ+1) arithmetic steps. This overhead covers: step-
wise update of R

(σ)
l′ , H

(σ)
l′ after each loc-ISL(σ−1)(l) execution, moreover final

update of R
(σ+1)
l′′ into upper-triangular form and size-reduction of R

(σ+1)
l′′ . The

total overhead of all loc-ISL(σ)(l′) executions is
O(nk2

σ+1 + nk2
σ+1 log1/δ M).

In the particular case σ = s − 1 the global transforms are done on the basis
matrix B ∈ Zd×n and the overhead is

O(dk2
s + d k2

s log1/δ M).

Moreover, O(n log1/δ M) local LLL-exchanges are done on level 1 in local coor-
dinates of dimension 2k1 each requiring O(k2

1) local arithmetic steps.

15

We see that ISLLL performs O(n2d + d log1/δ M
∑s

σ=1 k2
σ) arithmetic

steps. This proves the claimed time bound.

Size of integers. We extend the bounds on the size of integers in SLLL, shown in
the proof Theorem 4, to ISLLL. The value maxi ‖bi‖ can temporarily increase
during final, global size-reduction at most by a factor (3

2)n−1.
Local size reduction is done in Step 4 of loc-ISL(σ)(l′) and in Steps 1-2

of loc-ISL(1)(l). During size-reduction of bi the preceding vectors b1, . . . , bi−1

must already be size-reduced. Then the argument of Theorem 4 applies and size-
reduction of bi can temporarily increase ‖bi‖ at most by a factor (3

2)i−1. Hence,
‖R(σ)

l′ ‖1 = 2O(n)M holds during local size reduction of R
(σ)
l′ .

Next consider the size of the transform H
(σ)
l′ during loc-ISL(σ)(l′). H

(σ)
l′

transforms [B(σ)
l′ , B

(σ)
l′+1] into segments that are locally ISLLL-reduced in the

coordinates of R
(σ)
l′ . The argument of Lemma 1 shows that ‖H(σ)

l′ ‖1 = 2O(kσ)M .
Consider Step 3 of loc-ISL(σ)(l′) where H

(σ)
l′ is transported to level σ + 1.

That transport means that submatrices of R
(σ+1)
l′′ ,H

(σ+1)
l′′ are multiplied by H

(σ)
l′ .

This matrix multiplication increases ‖R(σ+1)
l′′ ‖1, ‖H(σ+1)

l′′ ‖1 at most by a factor
2O(kσ)M .

On termination of loc-ISL(σ)(l′) the final size-reduction of R
(σ+1)
l′′ in Step 4

yields
‖R(σ+1)

l′′ ‖21 ≤ kσ+1+1
4 M .

We see that all integers during excecution of ISLLL are bounded by 2O(n)M .
These integers are the numerators and denominators of the rational numbers
µj,i, ‖b̂i‖2 and the integer coefficients of the basis vectors. If the input basis
satisfies maxi ‖bi‖ = 2O(n) we have that 2O(n)M = 2O(n2) and ISLLL uses
integers of bit length O(n2).

6 Strong ISLLL-Reduction

We strengthen ISLLL-bases of dimension n = ks to strong ISLLL-bases (SISLLL-
bases, for short) satisfying ‖b1‖2 ≤ λ2

1 (α/δs−1)n−1. This comes close to the prop-
erty ‖b1‖2 ≤ λ2

1 αn−1 of LLL-bases. While LLL-bases are better than SISLLL-
bases for the same δ, SISLLL-bases for δ′ := δ1/s are better than LLL-bases for δ
since α′/δ′s−1 < α. Moreover, the SISLLL-time bound for δ′ is at most s-times
the time bound for δ.

Notation. We call segment Bl = [bkl−k+1, ..., bkl] of lattice basis b1, . . . , bn,
k = 0 mod n, σ-strong if

‖b1‖2/‖b̂i‖2 ≤ (α/δσ)i−1 for i = kl − k + 1, . . . , kl

otherwise Bl is called σ-weak. Bl is called completely σ-weak if

‖b1‖2/‖b̂i‖2 > (α/δσ)i−1 for i = kl − k + 1, ..., k l.

16

We call the basis b1, . . . , bn σ-strong if all segments are σ-strong. A basis is
1-strong if it is strong in the sense of Section 4. Every σ-strong basis satisfies

‖b1‖2 / λ2
1 ≤ (α/δσ)n−1,

since the argument of Lemma 2 applies to σ-strong bases.

Strong ISLLL (SISLLL)
INPUT ISLLL-basis b1, . . . , bn ∈ Zd, n = k1 · . . . · ks = ks

OUTPUT b1, . . . , bn (s− 1)-strong ISLLL-basis

1. IF all segments B
(σ)
l are (s− 1)-strong

THEN size-reduce b1, ..., bn and terminate

2. loc-ISL(σ)(l) for the minimal σ and maximal l such that B
(σ)
l+1 is (s−1)-weak

3. WHILE D(σ)(l) > (α/δσ)(kσ)2D(σ)(l + 1) for some l, σ DO
loc-ISL(σ)(l) for the smallest such σ

4. GO TO 1.

Algorithm SISLLL transforms an ISLLL-basis into an (s−1)-strong ISLLL-
basis. Lemma 3 extends from SSLLL to SISLLL as follows.

Lemma 4. If loc-ISL(σ)(l) is executed in SISLLL due to an (s−1)-weak B
(σ)
l+1

then the resulting B
(σ)
l+1 is (s− 1)-strong or else the resulting B

(σ)
l is completely

(s− 1)-weak, in which case we have that D(σ)(l − 1) > (α/δs−1)(kσ)2D(σ)(l).

Theorem 8. The ISLLL-time bound of Theorem 7 also holds for SISLLL.

Proof. By Lemma 4 a loc-ISL(σ)(l) execution in Step 2 of SISLLL either de-
creases

maw(σ) =def max{l | B
(σ)
l is (s− 1)− weak},

or else there directly follows a loc-ISL(σ)(l − 1) execution due to
D(σ)(l − 1) > (α/δs−1)(kσ)2D(σ)(l). The proof of Theorem 5 extends to the
proof of Theorem 8. In particular, by Lemma 4 and Theorem 3 the number of
loc-ISL(σ)(l) executions in SISLLL is at most n/kσ + 4n(kσ)−3 log1/δ Msc . ¤

References

[BN00] D. Bleichenbacher and P.Q. Nguyen, Noisy Polynomial Interpolation and
Noisy Chinese Remaindering, Eurocrypt 2000, Lecture Notes in Comput. Sci.,
1807, Springer, New York, 2000, pp. 53-69.

[Bo00] D. Boneh, Finding Smooth Integers in Small Intervals Using CRT Decoding,
ACM Symposium on the Theory of Computing 2000, ACM Press, 2000, pp.
265-272.

[Ca00] J. Cai, The Complexity of some Lattice Problems, Algorithmic Number Theory,
Lecture Notes in Comput. Sci., 1838, Springer, New York, 2000, pp. 1-32.

17

[Co97] D. Coppersmith, Small Solutions to Polynomial Equations, and Low Exponent
RSA Vulnerabilities, J. Cryptology , 10, 1997, pp. 233-260.

[K84] R. Kannan, Minkowski’s Convex Body Theorem and Integer Programming,
Math. Oper. Res., 12, 1984, pp. 415–440.

[K01] H. Koy, Notes of a Lecture. Frankfurt 2001.
[KS01a] H. Koy and C.P. Schnorr, Segment LLL-Reduction, Cryptography and

Lattices, Lecture Notes in Comput. Sci., 2146, Springer, New York, 2001, pp.67–
80 (first version of the present paper).

[KS01b] H. Koy and C.P. Schnorr, Segment LLL-Reduction with Floating Point
Orthogonalization, Cryptography and Lattices, Lecture Notes in Comput. Sci.,
2146, Springer, New York, 2001, pp. 81–96.

[LLL82] A. K. Lenstra, H. W. Lenstra and L. Lovász, Factoring polynomials
with rational coefficients, Math. Ann., 261, 1982, pp. 515-534.

[NS00] P.Q. Nguyen and J. Stern, Lattice Reduction in Cryptology, An Update,
Algorithmic Number Theory, Lecture Notes in Comput. Sci., 1838, Springer,
New York, 2000, pp. 85-112.

[S87] C.P. Schnorr, A hierarchy of polynomial time lattice basis reduction algo-
rithms, Theoret. Comput. Sci., 53, 1987, pp. 201-224.

[S91] C.P. Schnorr and M. Euchner,Lattice Basis Reduction and Solving Subset
Sum Problems, Fundamentals of Comput. Theory, Lecture Notes in Comput.
Sci., 591, Springer, New York, 1991, pp. 68–85. The complete paper appeared
in Math. Programming Studies, 66A, 2, 1994, pp. 181–199.

[S94] C.P. Schnorr, Block Reduced Lattice Bases and Successive Minima, Combin.
Probab. and Comput. , 3, 1994, pp. 507-522.

[SH95] C.P. Schnorr and H. Hörner, Attacking the Chor-Rivest Cryptosystem by
Improved Lattice Reduction, Eurocrypt 1995, Lecture Notes in Comput. Sci.,
921, Springer, New York, 1995, pp. 1–12.

[Sc84] A. Schönhage, Factorization of univariate integer polynomials by diophantine
approximation and improved lattice basis reduction algorithm, Proc. 11-th Coll.
Automata, Languages and Programming, Antwerpen 1984, Lecture Notes in
Comput. Sci., 172, Springer, New York, 1984, pp. 436-447.

18

