Segment and Strong Segment LLL-Reduction of Lattice Bases.

Henrik Koy ${ }^{1}$ and Claus Peter Schnorr ${ }^{2}$
${ }^{1}$ Deutsche Bank AG, Frankfurt am Main, henrik.koy@db.com
${ }^{2}$ Fachbereiche Mathematik und Informatik, Universität Frankfurt, PSF 111932,
D-60054 Frankfurt am Main, Germany. schnorr@cs.uni-frankfurt.de

April 22, 2002

Abstract

We present an efficient variant of LLL-reduction of lattice bases in the sense of Lenstra, Lenstra, Lovász [LLL82]. We organize LLL-reduction in segments of size k. Local LLL-reduction of segments is done using local coordinates of dimension $2 k$.

Strong segment LLL-reduction yields bases of the same quality as LLL-reduction but the reduction is n-times faster for lattices of dimension n. We extend segment LLL-reduction to iterated subsegments. The resulting reduction algorithm runs in $O\left(n^{3} \log n\right)$ arithmetic steps for integer lattices of dimension n with basis vectors of length $2^{O(n)}$, compared to $O\left(n^{5}\right)$ steps for LLL-reduction.

Keywords. LLL-reduction, shortest lattice vector, segments, iterated subsegments, local coordinates, local LLL-reduction.
Abbreviated Title. Segment and Strong Segment LLL.

1 Introduction.

The famous LLL-algorithm of Lenstra, Lenstra, Lovász [LLL82] for lattice basis reduction is a basic technique for solving important problems in algorithmic number theory, integer optimization, diophantine approximation and cryptography. Of the many possible applications we refer to a few recent ones [BN00, Bo00, Co98,NS00]. The LLL-algorithm requires $O\left(n^{5}\right)$ arithmetic steps on integers of bit length $O\left(n^{2}\right)$ when given n integer basis vectors of length $2^{O(n)}$ and dimension n. In this paper we improve the $O\left(n^{5}\right)$ bound to $O\left(n^{3} \log n\right)$ using a novel LLL-type reduction.

We partition a basis b_{1}, \ldots, b_{n} of dimension $n=k m$ into m segments $b_{k(l-1)+1}, \ldots, b_{k l}$ of k consecutive basis vectors. LLL-exchanges are done locally in two consecutive segments using cordinates of dimension $2 k$. Local LLL-exchanges cost merely $O\left(k^{2}\right)$ arithmetic steps, local size reduction included - compared to $O\left(n^{2}\right)$ steps for a global LLL-exchange.

First we introduce segment LLL-reduced bases, a variant of LLL-reduced bases that is designed to minimize the global overhead that complements local LLL-reductions. Segment LLL-reduction saves a factor n in the reduction time compared to LLL-reduction of lattices of dimension n. We present the basic
concept of segment LLL-reduction in Section 3 and the strong version of it in Section 4. Strong segment LLL-reduction yields a basis where the first vector is as short as for LLL-bases. In Section 5 we present an even faster reduction algorithm using iterated subsegments. It has a proven time bound of $O\left(n^{3} \log n\right)$ arithmetic steps for integer lattices of dimension n, given basis vectors of length $2^{O(n)}$. Section 6 contains the strong variant of segment LLL-reduction via iterated subsegments. Here, the first basis vector is as short as for LLL-bases.

The companion paper [KS01b] gives a practical implementation of segment LLL-reduction using floating point orthogonalization. Our present code reduces lattice bases of dimension 1000 consisting of integers of bit length 400 in 10 hours on a 800 MHz PC. Even for dimension $n<100$ the new code is in practice much faster than previous codes. The use of iterated subsegments should further speed up the reduction in high dimensions.

Previously, Schönhage [Sc84] has used local coordinates to speed-up LLLreduction. His concept of semi-reduction approximates the length of the shortest lattice vector up to a factor 2^{n} whereas we get close to a factor $(4 / 3)^{n / 2}$. We use the [Sc84] analysis of the size of integers occuring in the reduction.

2 LLL-Reduction of Lattice Bases.

Notation. An ordered set of linearly independent vectors $b_{1}, \ldots, b_{n} \in \mathbf{Z}^{d}$ is a basis of the integer lattice $L=\sum_{i=1}^{n} b_{i} \mathbf{Z} \subset \mathbf{Z}^{d}$, consisting of all linear integer combinations of b_{1}, \ldots, b_{n}. We form the basis matrix $B=\left[b_{1}, \ldots, b_{n}\right] \in \mathbf{Z}^{d \times n}$ with column vectors b_{1}, \ldots, b_{n}, we write $L=L(B)$. Let \widehat{b}_{i} denote the component of b_{i} that is orthogonal to b_{1}, \ldots, b_{i-1} with respect to the Euclidean inner product $\langle x, y\rangle=x^{\top} y$. The orthogonal vectors $\widehat{b}_{1}, \ldots, \widehat{b}_{n} \in \mathbf{R}^{d}$ and the Gram-Schmidt coefficients $\mu_{j, i}, 1 \leq i, j \leq n$, associated with the basis b_{1}, \ldots, b_{n} satisfy for $j=1, \ldots, n$

$$
\begin{gathered}
b_{j}=\sum_{i=1}^{j} \mu_{j, i} \widehat{b}_{i}, \quad \mu_{j, j}=1, \quad \mu_{j, i}=0 \text { for } i>j . \\
\mu_{j, i}=\left\langle b_{j}, \widehat{b}_{i}\right\rangle /\left\langle\widehat{b}_{i}, \widehat{b}_{i}\right\rangle, \quad\left\langle\widehat{b}_{j}, \widehat{b}_{i}\right\rangle=0 \text { for } j \neq i .
\end{gathered}
$$

Let $\|b\|=\langle b, b\rangle^{\frac{1}{2}}$ denote the Euclidean length of a vector $b \in \mathbf{R}^{d}$. A vector $b=\sum_{j=1}^{n} \mu_{j} \widehat{b}_{j}$ satifies $\|b\|^{2}=\sum_{j=1}^{n} \mu_{j}^{2}\left\|\widehat{b}_{j}\right\|^{2}$. Let λ_{1} denote the length of the shortest non-zero lattice vector of a given lattice. The determinant of lattice $L=L(B)$ is

$$
\operatorname{det} L=\operatorname{det}\left(B^{\top} B\right)^{\frac{1}{2}}=\prod_{i=1}^{n}\left\|\widehat{b}_{i}\right\| .
$$

Let $\pi_{i}: \mathbf{R}^{n} \rightarrow \operatorname{span}\left(b_{1}, \ldots, b_{i-1}\right)^{\perp}$ denote the orthogonal projection, $\pi_{i}\left(b_{k}\right)=$ $\sum_{j=i}^{n} \mu_{k, j} \widehat{b}_{j}$.

Definition 1. A basis $b_{1}, \ldots, b_{n} \in \mathbf{Z}^{d}$ is an LLL-basis (or LLL-reduced) for given $\left.\delta \in] \frac{1}{4}, 1\right]$ if

1. $\left|\mu_{j, i}\right| \leq \frac{1}{2} \quad$ for $1 \leq i<j \leq n$,
2. $\delta\left\|\widehat{b}_{i}\right\|^{2} \leq \mu_{i+1, i}^{2}\left\|\widehat{b}_{i}\right\|^{2}+\left\|\widehat{b}_{i+1}\right\|^{2} \quad$ for $i=1, \ldots, n-1$.

LLL-bases have been introduced by A.K. Lenstra, H.W. Lenstra, Jr. and L. Lovász [LLL82] who focused on $\delta=3 / 4$. A basis with property 1 . is called size-reduced. Extending [LLL82] to arbitrary $\left.\delta \in] \frac{1}{4}, 1\right]$ and $\alpha:=1 /\left(\delta-\frac{1}{4}\right)$ yields Theorem 1. For the rest of the paper LLL-reduction refers to given δ, α.

Theorem 1. An LLL-basis b_{1}, \ldots, b_{n} of lattice L satisfies

1. $\left\|b_{1}\right\|^{2} \leq \alpha^{n-1} \lambda_{1}^{2}$ and $\left\|b_{1}\right\|^{2} \leq \alpha^{i-1}\left\|\widehat{b}_{i}\right\|^{2} \quad$ for $i=1, \ldots, n$,
2. $\left\|b_{1}\right\|^{2} \leq \alpha^{\frac{n-1}{2}}(\operatorname{det} L)^{\frac{2}{n}}$ and $\left\|\widehat{b}_{n}\right\|^{2} \geq \alpha^{-\frac{n-1}{2}}(\operatorname{det} L)^{\frac{2}{n}}$.

Consider the $Q R$-factorization $B=Q R$ of the basis matrix $B=\left[b_{1}, \ldots, b_{n}\right] \in$ $\mathbf{Z}^{d \times n}$, where $Q=\left[\widehat{b}_{1} /\left\|\widehat{b}_{1}\right\|, \ldots ., \widehat{b}_{n} /\left\|\widehat{b}_{n}\right\|\right] \in \mathbf{R}^{d \times n}$ is an orthogonal matrix in the sense that $Q^{\top} Q=I_{n}$, and $R=\left[r_{i, j}\right]_{1 \leq i, j \leq n}=\left[\mathbf{r}_{1}, \ldots, \mathbf{r}_{n}\right] \in \mathbf{R}^{n \times n}$ is an uppertriangular matrix, $r_{i, j}=0$ for $i>j$. We call R the orthogonalization of B. The transform $x \mapsto Q x$ preserves the inner product $\langle x, y\rangle=\langle Q x, Q y\rangle$, and thus R and B are isometrical basis matrices. We have that $\mu_{j, i}=r_{i, j} / r_{i, i},\left|r_{i, i}\right|=$ $\left\|\hat{b}_{i}\right\|$ and $\left\langle\mathbf{r}_{i}, \mathbf{r}_{j}\right\rangle=\left\langle b_{i}, b_{j}\right\rangle$. We present the core of the LLL-algorithm using the coefficients $r_{i, j}$. Clause 2 of Definition 1 means that $\delta r_{i, i}^{2} \leq r_{i, i+1}^{2}+r_{i+1, i+1}^{2}$ for $i=1, \ldots, n-1$.

LLL-Algorithm (LLL)

INPUT $\quad b_{1}, \ldots, b_{n} \in \mathbf{Z}^{d}, \delta$
OUTPUT b_{1}, \ldots, b_{n} LLL-reduced basis

1. $l:=1 \quad$ (l is the stage)
2. WHILE $l \leq n$ DO
compute $\left(r_{1, l}, \ldots, r_{l, l}, 0, \ldots, 0\right)=\left\|\widehat{b}_{l}\right\|\left(\mu_{l, 1}, \ldots, \mu_{l, l}, 0, \ldots, 0\right)$
size-reduce b_{l} against b_{l-1}, \ldots, b_{1}
IF $\quad l \neq 1 \quad$ AND $\quad \delta r_{l-1, l-1}^{2}>r_{l-1, l}^{2}+r_{l, l}^{2}$
THEN $\operatorname{swap} b_{l-1}, b_{l}, l:=l-1$ ELSE $l:=l+1$.
More details. Size-reduction of b_{l} against b_{l-1}, \ldots, b_{1} performs $b_{l}:=b_{l}-\left\lceil\mu_{l, i}\right\rfloor b_{i}$ for $i=l-1, \ldots, 1$ where $\lceil r\rfloor=\left\lceil r-\frac{1}{2}\right\rceil$ denotes the nearest integer to $r \in \mathbf{R}$.

Each swap of b_{l-1}, b_{l} and each reduction step $b_{l}:=b_{l}-\left\lceil\mu_{l, i}\right\rfloor b_{i}$ requires to update R. That update transforms two rows and two columns of R resulting in an upper-triangular R of the transformed basis, and can be done in $O\left(n^{2}\right)$ arithmetic steps. Therefore an LLL-exchange (swap of b_{l-1}, b_{l}) requires $O(n d)$ arithmetic steps, size-reduction of b_{l} and update of R included.
Local reduction. The LLL-algorithm reduces the 2×2-diagonal submatrices $\left[\begin{array}{cc}r_{l-1, l-1} & r_{l-1, l} \\ 0 & r_{l, l}\end{array}\right]$ of R, see Fig. 1. This amounts to a local LLL-reduction, where LLL-exchanges (swaps of b_{l-1}, b_{l}) are done in local coordinates of dimension 2. In Section 3 we study local LLL-reductions of diagonal $2 k \times 2 k$ submatrices of R using coordinates of dimension $2 k$.

Fig. 1. The 2×2-diagonal submatrices of R
Integer arithmetic. As the coefficients $r_{i, j}$ of R are algebraic, integer arithmetic must instead use the rational numbers $\mu_{j, i},\left\|\widehat{b}_{i}\right\|^{2}$. It is obvious how to replace in our algorithms the algebraic $r_{i, j}$ by rational numbers, and this does not affect the asymptotic bounds on the number of arithmetic steps.

Size of a basis. We measure the size of the basis b_{1}, \ldots, b_{n} by

$$
\bar{M}=\operatorname{def}^{\max }{ }_{i=1, \ldots, n}\left(\left\|b_{i}\right\|^{2}, D_{i}\right),
$$

where $D_{i}=\left\|\widehat{b}_{1}\right\|^{2} \cdot \ldots \cdot\left\|\widehat{b}_{i}\right\|^{2}$ is the Gramian determinant of the sublattice with basis b_{1}, \ldots, b_{i}. Basis vectors of length $\left\|b_{i}\right\|=2^{O(n)}$ satisfy $\bar{M}=2^{O\left(n^{2}\right)}$, but $\bar{M}=2^{O(n)}$ holds in many applications.

LLL-time bound. Given a basis $b_{1}, \ldots, b_{n} \in \mathbf{Z}^{d}$ of length $\max _{i}\left\|b_{i}\right\|=2^{O(n)}$ and $d=O(n)$ the LLL-algorithm performs $O\left(n^{5}\right)$ arithmetic steps using $O\left(n^{2}\right)$-bit integers. These steps operate on the rational integers $\mu_{j, i},\left\|\widehat{b}_{i}\right\|^{2}$ and the integer coordinates of the b_{i}. More precisely, numerators and denominators of these rationals have at most $O\left(n+\log _{2} \bar{M}\right)$ bits, see [LLL82,Sc84].

3 Segment LLL-Reduction.

Segments and local coordinates. Let the basis $b_{1}, \ldots, b_{n} \in \mathbf{Z}^{d}$ have dimension $n=k m$ and the $Q R$-factorization $\left[b_{1}, \ldots, b_{n}\right]=B=Q R$. We partition B into m segments $B_{l}=\left[b_{k l-k+1}, \ldots, b_{k l}\right]$ for $l=1, \ldots, m$. Local LLL-reduction of two consecutive segments B_{l}, B_{l+1} is done in local coordinates of the submatrix

$$
R_{l}:=\left[r_{k l+i, k l+j}\right]_{-k<i, j \leq k} \in \mathbf{R}^{2 k \times 2 k}
$$

of R. R_{l} yields the local orthogonalization and the local coefficients $\mu_{k l+i, k l+j}$, $-k<i, j \leq k$ of $\left[B_{l}, B_{l+1}\right]$. Global transforms complement local LLL-reductions. The novel concept of segment LLL-reduction (SLLL-reduction for short) minimizes the global overhead.

We let $D(l)=\left\|\widehat{b}_{k(l-1)+1}\right\|^{2} \cdot \ldots \cdot\left\|\widehat{b}_{k l}\right\|^{2}$ denote the local Gramian determinant of segment B_{l}. We have that $D_{k l}=D(1) \cdot \ldots \cdot D(l)$.

Definition 2. We call a basis $b_{1}, \ldots, b_{n} \in \mathbf{Z}^{d}, n=k m$, SLLL-basis (or SLLLreduced) for given k, δ, α if it is size-reduced and satisfies

1. $\delta\left\|\widehat{b}_{i}\right\|^{2} \leq \mu_{i+1, i}^{2}\left\|\widehat{b}_{i}\right\|^{2}+\left\|\widehat{b}_{i+1}\right\|^{2}$ for $i=1, \ldots, n-1$ except that $i=0 \bmod k$,
2. $D(l) \leq(\alpha / \delta)^{k^{2}} D(l+1)$ for $l=1, \ldots, m-1$.

The segments B_{l} of an SLLL-basis are LLL-reduced in the sense that the submatrix $\left[r_{k l+i, k l+j}\right]_{-k<i, j \leq 0} \in \mathbf{R}^{k \times k}$ of R is LLL-reduced. Clause 1 does not bridge distinct segments due since the i with $i=0 \bmod k$ are excepted. Property 2 is weaker than the property $D(l) \leq \alpha^{k^{2}} D(l+1)$ of LLL-bases which follows from Definition 1. This weakening is used to reduce the number of local LLLreductions of R_{l}.

Property 2 of SLLL-bases is preserved under duality, if it holds for a basis b_{1}, \ldots, b_{n} it also holds for the dual basis $b_{1}^{*}, \ldots, b_{n}^{*}$. The dual of lattice L is the lattice

$$
L^{*}={ }_{\operatorname{def}}\{x \in \operatorname{span}(L) \mid\langle x, y\rangle \in \mathbf{Z} \text { for all } y \in L\} .
$$

We have that $\operatorname{det} L^{*}=(\operatorname{det} L)^{-1}$. The dual B^{*} of a basis matrix $B \in \mathbf{Z}^{n \times n}$, satisfying $L\left(B^{*}\right)=L(B)^{*}$, is constructed by inverting the order of the columns of the matrix $\left(B^{-1}\right)^{\top}$, the transpose of the inverse of B. The dual basis $\left[b_{1}^{*}, \ldots, b_{n}^{*}\right]=$ $\left[b_{1}, \ldots, b_{n}\right]^{*}$ satisfies $\left\langle b_{i}^{*}, b_{j}\right\rangle=\delta_{i, j}$ and $\left\|\widehat{b}_{i}\right\|=\left\|\widehat{b}_{n-i+1}^{*}\right\|^{-1}$ for $i=1, \ldots, n$.

Theorem 2. Every $S L L L$-basis b_{1}, \ldots, b_{n} satisfies

1. $\left\|b_{1}\right\|^{2} \leq(\alpha / \delta)^{\frac{n-1}{2}}(\operatorname{det} L)^{\frac{2}{n}}$,
2. $\left\|\widehat{b}_{n}\right\|^{2} \geq(\delta / \alpha)^{\frac{n-1}{2}}(\operatorname{det} L)^{\frac{2}{n}}$.

Proof. 1. By definition of SLLL-reducedness we have that

$$
D(1) \leq(\alpha / \delta)^{k^{2}(i-1)} D(i) \quad \text { for } i=1, \ldots, n
$$

As $D(1) \cdot \ldots \cdot D(m)=(\operatorname{det} L)^{2}$ and $1+2+\ldots+m-1=m \frac{m-1}{2}$ this yields

$$
D(1) \leq(\alpha / \delta)^{k^{2} \frac{m-1}{2}}(\operatorname{det} L)^{\frac{2}{m}} .
$$

Moreover $\left\|b_{1}\right\|^{2} \leq \alpha^{\frac{k-1}{2}} D(1)^{\frac{1}{k}}$ holds by Theorem 1 as the basis b_{1}, \ldots, b_{k} is LLL-reduced. The two latter inequalities imply the claim

$$
\left\|b_{1}\right\|^{2} \leq \alpha^{\frac{k-1}{2}}(\alpha / \delta)^{k \frac{m-1}{2}}(\operatorname{det} L)^{\frac{2}{m k}} \leq(\alpha / \delta)^{\frac{n-1}{2}} \operatorname{det} L^{\frac{2}{n}}
$$

2. Clause 2 of Definition 2 and Theorem 1 also hold for the dual basis $b_{1}^{*}, \ldots, b_{n}^{*}$ of the dual lattice. We have that $\left\|b_{1}^{*}\right\|=\left\|\widehat{b}_{n}\right\|^{-1}$ and $\operatorname{det}\left(L^{*}\right)=(\operatorname{det} L)^{-1}$. Applying the proof of Inequality 1 to the dual basis $b_{1}^{*}, \ldots, b_{n}^{*}$ yields Inequality 2 .

Algorithm for SLLL-reduction. The algorithm SLLL transforms a given basis into an SLLL-basis. It iterates local LLL-reduction of two segments $\left[B_{l}, B_{l+1}\right]=$ $\left[b_{k l-k+1}, \ldots, b_{k l+k}\right]$ via loc-LLL (l). SLLL emulates the LLL-algorithm replacing the vector r_{l-1} by the segment B_{l}.

Segment LLL (SLLL)

INPUT $\quad b_{1}, \ldots, b_{n} \in \mathbf{Z}^{d}, k, m, n=k m, \delta$
OUTPUT b_{1}, \ldots, b_{n} SLLL-basis

1. $l:=1$, compute the orthogonalization $R \in \mathbf{R}^{n \times n}$
2. WHILE $l \leq m-1$ DO
loc-LLL $(l) \quad$ (LLL-reduces R_{l}) IF $l>1 \quad$ AND $\quad D(l-1)>(\alpha / \delta)^{k^{2}} D(l)$ THEN $l:=l-1$ ELSE $l:=l+1$.

Fig. 2. Areas of subsequent local LLL-reductions.

loc-LLL(l)

Given are the orthogonalization $R \in \mathbf{R}^{n \times n}$ and the submatrix $R_{l} \in R^{2 k \times 2 k}$.

1. local LLL-reduction. First size-reduce then LLL-reduce R_{l}. After each reduction step update R_{l} into upper-triangular form, record the basis transform of R_{l} in the matrix $H_{l} \in \mathbf{Z}^{2 k \times 2 k}$. (The basis transform operates on R_{l} from the right, the update into upper-triangular form operates from the left.)
2. $\left[B_{l}, B_{l+1}\right]:=\left[B_{l}, B_{l+1}\right] H_{l}$, reset H_{l}, update R into upper-triangular form.
3. Size-reduce $\left[B_{l}, B_{l+1}\right.$] globally and update R accordingly.

LLL-exchanges in the local LLL-reduction of Step 1 are done in local coordinates of dimension $2 k$. A local LLL-exchange merely requires $O\left(k^{2}\right)$ arithmetic steps, update of R_{l} and local size-reduction included. Compare this to the $O(n d)$ arithmetic steps for an LLL-exchange in global coordinates. Steps 2,3 of loc-LLL (l) perform $O(n d k)$ arithmetic steps.

SLLL generates bases that are slightly better than expressed by the inequalities of Theorem 2. Upon termination of loc-LLL (l) we have that $D(l) \leq \alpha^{k^{2}} D(l+1)$ while Theorem 2 merely assumes $D(l) \leq(\alpha / \delta)^{k^{2}} D(l+1)$.

The number of loc-LLL executions. The Lovász volume argument shows that the number of executions of loc-LLL decreases cubically in k. We let dec denote the number of times that l decreases due to $D(l-1)>(\alpha / \delta)^{k^{2}} D(l)$.

Theorem 3. The number of loc-LLL executions in SLLL is $m-1+2 \cdot \mathrm{dec}$, where $\operatorname{dec} \leq 2 n k^{-3} \log _{1 / \delta} \bar{M}$.

Proof. Each loc-LLL execution resulting in $l:=l-1$ is compensated by another one resulting in $l:=l+1$. There are $m-1$ additional executions to proceed from $l=1$ to $l=m-1$. Hence, it remains to bound dec.

We show that a loc-LLL $(l-1)$ execution due to $D(l-1)>(\alpha / \delta)^{k^{2}} D(l)$ decreases $D(l-1)$ by the factor $\delta^{k^{2} / 2}$. $\mathbf{l o c}-\mathbf{L L L}(l-1)$ performs a local LLLreduction of R_{l}, it changes $D(l-1), D(l)$ into $D^{\prime}(l-1), D^{\prime}(l)$ but preserves $D\left(l^{*}\right)$ for $l^{*} \neq l, l+1$. It also preserves the product $D(l-1) D(l)$. As the local LLLreduction yields $D^{\prime}(l-1) \leq \alpha^{k^{2}} D^{\prime}(l)$ we have that

$$
\begin{aligned}
& D^{\prime}(l-1) \leq \alpha^{k^{2}} D^{\prime}(l)=\alpha^{k^{2}} D^{\prime}(l-1) D^{\prime}(l) / D^{\prime}(l-1) \\
& =\alpha^{k^{2}} D(l-1) D(l) / D^{\prime}(l-1)<\delta^{k^{2}} D(l-1)^{2} / D^{\prime}(l-1),
\end{aligned}
$$

and thus $D^{\prime}(l-1) \leq \delta^{k^{2} / 2} D(l-1)$. Hence loc-LLL (l) decreases $\mathbf{D}={ }_{\text {def }} \prod_{j=1}^{m-1} D_{j k}$ by the factor $\delta^{k^{2} / 2}$. As \mathbf{D} is a positive integer, $\mathbf{D} \leq \bar{M}^{m-1}$, this implies

$$
\operatorname{dec} \leq \log _{1 / \delta^{k^{2} / 2}} \bar{M}^{m-1} \leq 2 \frac{m-1}{k^{2}} \log _{1 / \delta} \bar{M}
$$

The number of LLL-exchanges. LLL corresponds to SLLL with $k=1$. However, an LLL-exchange decreases \mathbf{D} by a factor δ and not just by $\sqrt{\delta}$ as in the above proof. Hence, the number of swaps in the $\mathbf{L L L}$ is at most $(n-1) \log _{1 / \delta} \bar{M}$, the factor 2 in Theorem 3 disappears.

Theorem 4. Let $k=\Theta(m)=\Theta(\sqrt{n})$. Then SLLL performs $O\left(n d \log _{1 / \delta} \bar{M}\right)$ arithmetic steps using integers of bit length $O\left(n+\log _{2} \bar{M}\right)=O\left(n^{2}\right)$.

SLLL improves the LLL-time bound from $O\left(n^{2} d \log _{1 / \delta} \bar{M}\right)$ to $O\left(n d \log _{1 / \delta} \bar{M}\right)$ arithmetic steps, saving a factor n.

Proof. Time bound. We separately count the local (resp. global) arithmetic steps in Step 1 (resp. Steps 2, 3) of loc-LLL(l). There are at most $n \log _{1 / \delta} \bar{M}$ LLLexchanges, done in local coordinates of dimension $2 k$, each requiring $O\left(k^{2}\right)$ steps for local size-reduction, for updating R_{l} into upper-triangular form and for updating H_{l}. In total there are $O\left(n k^{2} \log _{1 / \delta} \bar{M}\right)$ local arithmetic steps.

Each execution of loc-LLL requires $O(n d k)$ global arithmetic steps for updating R into upper-triangular form, global size-reduction, and segment transform in Steps 2, 3 of $\mathbf{l o c - L L L}(l)$. The initial computation of R requires $O\left(n^{2} d\right)$ arithmetic steps. By Theorem 3 there are $O\left(n^{2} d+n^{2} d+m^{2} d \log _{1 / \delta} \bar{M}\right)$ global arithmetic steps.

The choice $k, m=\Theta(\sqrt{n})$ equalizes for $d=O(n)$ these bounds for the local and global arithmetic steps. In total there are at most $O\left(n d \log _{1 / \delta} \bar{M}\right)$ local and global arithmetic steps. ${ }^{1}$
Size of the integers. Recall that the determinants D_{i} do not increase during LLL-reduction. In particular, we always have that $1 \leq D_{i} \leq \bar{M}$, and $\left\|\widehat{b}_{i}\right\|^{2}=$ D_{i} / D_{i+1} is a rational integer with numerator and denominator bounded by \bar{M}, $\bar{M}^{-1} \leq\left\|\widehat{b}_{i}\right\|^{2} \leq \bar{M}$.

We next show that $\max _{i}\left\|b_{i}\right\|^{2}$ can temporarily increase not more than by a factor $2^{O(n)} \bar{M}$. We separately study how size-reduction and local LLL-reduction affect $\max _{i}\left\|b_{i}\right\|^{2}$.

The length $\left\|b_{i}\right\|$ can temporarily increase during size-reduction of b_{i} according to $b_{i}:=b_{i}-\left\lceil\mu_{i, j}\right\rfloor b_{j}$ for $j=i-1, \ldots, 1$. A step $b_{i}:=b_{i}-\left\lceil\mu_{i, j}\right\rfloor b_{j}$ induces $\mu_{i, h}:=\mu_{i, h}-\left\lceil\mu_{i, j}\right\rfloor \mu_{j, h}$ for $h=1, \ldots, j$. As b_{1}, \ldots, b_{i-1} are size-reduced we have that $\left|\mu_{j, h}\right| \leq \frac{1}{2}$ for $1 \leq h<j$. Hence, a size-reduction step increases $M_{i}:=$ $\max _{h<i}\left|\mu_{i, h}\right|$ by at most a factor $\frac{3}{2}$, and $\left\|b_{i}\right\|$ can temporarily increase during size-reduction of b_{i} not more than by a factor $\left(\frac{3}{2}\right)^{i-1}$.

Consider the coefficients of the matrix $H \in \mathbf{Z}^{2 k \times 2 k}$ of the local LLL-reduction that transforms segments B_{l}, B_{l+1} according to $\left[B_{l}, B_{l+1}\right]:=\left[B_{l}, B_{l+1}\right] H$. We let $b_{j}^{\prime}, \widehat{b}_{j}^{\prime}, \mu_{j, i}^{\prime}$ denote the values of the transformed segments $\left[b_{k l-k+1}^{\prime}, \ldots, b_{k l+k}^{\prime}\right]=$ $\left[B_{l}, B_{l+1}\right] H$. We let $\|H\|_{1}$ denote the maximal $\left\|\|_{1}\right.$-norm of the columns of H.
Lemma 1. [Sc84, Inequality (3.3)] We have that

1. $H=\left(\left[\mu_{j, i}\right]^{\top}\right)^{-1}\left[\left\langle\widehat{b}_{i}, \widehat{b}_{j}^{\prime}\right\rangle\left\|\widehat{b}_{i}\right\|^{-2}\right]_{k l-k<i, j \leq k l+k}\left[\mu_{j, i}^{\prime}\right]^{\top}$,
2. $\|H\|_{1} \leq(2 k)^{2}\left(\frac{3}{2}\right)^{2 k-1} \bar{M} \leq 2^{O(k)} \bar{M}$.

Proof. Equality 1. follows from the equations

$$
\begin{aligned}
& {\left[b_{k l-k+1}^{\prime}, \ldots, b_{k l+k}^{\prime}\right]=\left[\widehat{b}_{k l-k+1}^{\prime}, \ldots, \widehat{b}_{k l+k}^{\prime}\right]\left[\mu_{j, i}^{\prime}\right]^{\top}} \\
& =\left[\widehat{b}_{k l-k+1}, \ldots, \widehat{b}_{k l+k}\right]\left[\mu_{j, i}\right]^{\top} H .
\end{aligned}
$$

The segments B_{l}, B_{l+1} are already size-reduced when starting the local LLLreduction of R_{l}, i.e., $\left|\mu_{j, i}\right| \leq \frac{1}{2}$ for $k l-k<i<j \leq k l+k$. Then the coefficients $\nu_{j, i}$ of the inverse matrix $\left[\nu_{j, i}\right]=\left[\mu_{j, i}\right]^{-1}$ satisfy $\left|\nu_{j, i}\right| \leq\left(\frac{3}{2}\right)^{|j-i|}$. Inequality 2. follows from 1. as $\left|\left\langle\widehat{b}_{i}, \widehat{b}_{j}^{\prime}\right\rangle\left\|\widehat{b}_{i}\right\|^{-2}\right| \leq\left\|\widehat{b}_{j}^{\prime}\right\| /\left\|\widehat{b}_{i}\right\| \leq \bar{M}$ and $\left|\mu_{j, i}^{\prime}\right| \leq \frac{1}{2}$ for $i<j$.
Conclusion. All integers arising in SLLL-execution are bounded in absolute value by $2^{O(n)} \bar{M}^{3 / 2}$ having bit length $O\left(n+\log _{2} \bar{M}\right)$. In particular the vectors b_{i} of $\left[B_{l}, B_{l+1}\right] H$ in loc-LLL (l) satisfy by Lemma 1 that $\left\|b_{i}\right\| \leq \bar{M}^{1 / 2}\|H\|_{1}=$ $2^{O(k)} \bar{M}^{3 / 2}$. The final size-reduction of b_{i} in loc-LLL (l) can temporarily increase $\left\|b_{i}\right\|$ by a factor $\left(\frac{3}{2}\right)^{i-1}$. The size-reduced b_{i} satisfies $\left\|b_{i}\right\|^{2} \leq \sum_{j=1}^{i} \mu_{i, j}^{2}\left\|\widehat{b}_{i}\right\|^{2} \leq$ $\frac{i+1}{4} \bar{M}$. That bound holds after each execution of loc-LLL (l).

[^0]Dependence of time bounds on δ. The time bounds contain a factor $\log _{1 / \delta} 2$,

$$
\log _{1 / \delta} 2=\log _{2}(e) / \ln (1 / \delta) \leq \log _{2}(e) \frac{\delta}{1-\delta},
$$

since $\ln (1 / \delta) \geq 1 / \delta-1$. We see that replacing δ by $\sqrt{\delta}$ essentially halves $1-\delta$ and doubles the SLLL-time bound. In practice, the reduction time may increase slower than by the factor $\frac{\delta}{1-\delta}$ as δ approaches 1 , see [KS01b, Fig.3] comparing reduction times for $\delta=0.99$ and $\delta=0.999$.

4 Strong Segment LLL-Reduction.

We strengthen SLLL-bases as to satisfy $\left\|b_{1}\right\|^{2} \leq \lambda_{1}^{2}(\alpha / \delta)^{n-1}$. This comes close to the property $\left\|b_{1}\right\|^{2} \leq \lambda_{1}^{2} \alpha^{n-1}$ of LLL-bases in Theorem 1. Recall that k, δ, α refer to SLLL-reduction.

Notation. We call segment $B_{l}=\left[b_{k l-k+1}, \ldots, b_{k l}\right]$ of lattice basis b_{1}, \ldots, b_{n} strong if

$$
\left\|b_{1}\right\|^{2} /\left\|\widehat{b}_{i}\right\|^{2} \leq(\alpha / \delta)^{i-1} \quad \text { for } i=k l-k+1, \ldots, k l
$$

otherwise B_{l} is called weak. B_{l} is called completely weak if

$$
\left\|b_{1}\right\|^{2} /\left\|\widehat{b}_{i}\right\|^{2}>(\alpha / \delta)^{i-1} \quad \text { for } i=k l-k+1, \ldots, k l .
$$

We call the basis b_{1}, \ldots, b_{n} strong if all segments are strong. We call the index i weak if $\left\|b_{1}\right\|^{2} /\left\|\widehat{b}_{i}\right\|^{2}>(\alpha / \delta)^{i-1}$.

Lemma 2. A strong basis b_{1}, \ldots, b_{n} satisfies $\left\|b_{1}\right\|^{2} \leq \lambda_{1}^{2}(\alpha / \delta)^{n-1}$.
Proof. Every basis b_{1}, \ldots, b_{n} satisfies $\lambda_{1} \geq \max _{i}\left\|\widehat{b}_{i}\right\|$. This implies that $\left\|b_{1}\right\|^{2} \leq$ $\lambda_{1}^{2} \max _{i}\left\|b_{1}\right\|^{2} /\left\|\widehat{b}_{i}\right\|^{2}$. This proves the claim for a strong basis.

Strong SLLL-bases versus LLL-bases. As LLL-bases satisfy $\left\|b_{1}\right\|^{2} \leq \lambda_{1}^{2} \alpha^{n-1}$ we compare α / δ with α. LLL-bases are better than strong SLLL-bases for the same δ. However, strong SLLL-bases for $\delta^{\prime}=\sqrt{\delta}$ are better than LLL-bases for δ, because $\quad \alpha^{\prime} / \delta^{\prime}=\frac{1}{\left(\delta^{\prime}\right)^{2}-\delta^{\prime} / 4}<\frac{1}{\delta-1 / 4}=\alpha$.

Strong SLLL-bases with $\delta^{\prime}=0.95$ are better than LLL-bases with $\delta=0.9$. Replacing δ by $\sqrt{\delta}$ increases the SLLL-time bound at most by a factor 2 .

Strong SLLL (SSLLL)

INPUT SLLL-basis $b_{1}, \ldots, b_{n} \in \mathbf{Z}^{d}, n=k m$
OUTPUT b_{1}, \ldots, b_{n} strong SLLL-basis

1. IF all segments are strong THEN size-reduce b_{1}, \ldots, b_{n} and terminate
2. loc-LLL (l) for the maximal l such that B_{l+1} is weak
3. WHILE $D(l)>(\alpha / \delta)^{k^{2}} D(l+1)$ for some l DO loc-LLL (l)
4. GO TO 1 .

Time analysis. SSLLL iterates two types of loc-LLL (l) executions:

- executions in Step 2 due to a weak B_{l+1}.
- executions in Step 3 due to $D(l)>(\alpha / \delta)^{k^{2}} D(l+1)$.

Executions in Step 2 are done only when $D(l) \leq(\alpha / \delta)^{k^{2}} D(l+1)$ holds for all l. We show in Lemma 3 below that these loc-LLL (l) executions either decrease

$$
\operatorname{maw}={ }_{\text {def }} \max \left\{l \mid B_{l} \text { is weak }\right\},
$$

or else there directly follows an execution of loc-LLL in Step 3. Clearly, maw cannot increase during SSLLL execution since $\max _{i=1, \ldots, n}\{i \mid i$ weak $\}$ cannot increase during LLL-reduction. Hence maw decreases at most $m-1$ times.

Recall that an execution in Step 3 decreases $\mathbf{D}:=\prod_{k=1}^{m-1} D_{l k}$ by a factor $\delta^{k^{2} / 2}$ while an execution in Step 2 does not increase D. Thus, the number of executions in Step 3 is at most dec $\leq 2 n k^{-3} \log _{1 / \delta} \bar{M}$. As maw decreases at most $m-1$ times we see that
\#executions in Step $2 \leq m+\#$ executions in Step $3 \leq m+2 n k^{-3} \log _{1 / \delta} \bar{M}$. This shows that the total number of loc-LLL executions in SSLLL is at most $m+4 n k^{-3} \log _{1 / \delta} \bar{M}$. This proves the following Theorem.

Theorem 5. The SLLL-time bound in Theorem 4 also holds for SSLLL.
It remains to prove
Lemma 3. If loc-LLL (l) is executed in Step 2 of SSLLL then either the resulting B_{l+1} is strong or else the resulting B_{l} is completely weak, in which case we have that $D(l-1)>(\alpha / \delta)^{k^{2}} D(l)$.

We see that under the assumption of Lemma 3 either maw decreases or else loc-LLL (l) is directly followed by a loc-LLL execution in Step 3 . This is the main argument in the proof of Theorem 5.

Proof. Suppose that after executing loc-LLL (l) there is a weak $j=k l+i$ of $B_{l+1}, 1 \leq i \leq k$. Then all $k l+i^{\prime}$ are weak for $-k<i^{\prime} \leq i$. This holds because $\left[B_{l+1}, B_{l}\right]$ is locally LLL-reduced and thus $\left\|\widehat{b}_{k l+i}\right\|^{2} \leq \alpha\left\|\widehat{b}_{k l+i+1}\right\|^{2}$ holds for $-k<i<k$.

We conclude that the B_{l} resulting from loc-LLL (l) is completely weak if the resulting B_{l+1} is weak. We finally show that $D(l-1)>(\alpha / \delta)^{k^{2}} D(l)$ holds in this case.

As $b_{1}, \ldots, b_{k l-k}$ is SLLL-reduced we have that

$$
\begin{gathered}
\left\|b_{1}\right\|^{2 k} \leq \alpha^{\binom{k}{2}} D(1) \quad\left(\text { since } b_{1}, \ldots, b_{k} \text { is LLL reduced }\right) \\
D(1) \leq(\alpha / \delta)^{k^{2}(l-2)} D(l-1), \quad \text { and thus } \\
\left\|b_{1}\right\|^{2 k} \leq(\alpha / \delta)^{k^{2}(l-2)} \alpha^{\binom{k}{2}} D(l-1)
\end{gathered}
$$

On the other hand, as B_{l} is completely weak, we have that

$$
\left\|b_{1}\right\|^{2 k}>(\alpha / \delta)^{k^{2}(l-1)+\binom{k}{2}} D(l) .
$$

The latter two inequalities imply that $D(l-1)>(\alpha / \delta)^{k^{2}}(1 / \delta){ }^{\binom{k}{2}} D(l)$, proving the claim.

5 Reduction via Iterated Subsegments.

We extend the concept of segment LLL-reduction to an iterative structure of segments of levels $\sigma=0,1, \ldots, s$. Segments of level σ partition into segments of level $\sigma-1$. We extend the concept of SLLL-bases to ISLLL-bases in that we relax the inequality $D(l) \leq(\alpha / \delta)^{k^{2}} D(l+1)$ to $D(l) \leq\left(\alpha / \delta^{\sigma}\right)^{k^{2}} D(l+1)$ for segments of level σ and size k. This relaxation will furher reduce the number of local reductions of the large segments of high level.

Let $n=k_{1} \cdot \ldots \cdot k_{s}$ be a product of integers $k_{1}, \ldots, k_{s} \geq 2, s \leq \log _{2} n$. For given $\mathbf{k}=\left(k_{1}, \ldots, k_{s}\right)$ we denote $\mathbf{k}_{\sigma}:=k_{1} \cdot \ldots \cdot k_{\sigma}$ for $\sigma=1, \ldots, s, \mathbf{k}_{0}:=1$. We use segments of level $\sigma=0, \ldots, s-1$, the segments of level σ are

$$
B_{l}^{(\sigma)}=\left[b_{\mathbf{k}_{\sigma}(l-1)+1}, \ldots, b_{\mathbf{k}_{\sigma} l}\right] \quad \text { for } l=1, \ldots, n / \mathbf{k}_{\sigma}
$$

Segment $B_{l}^{(\sigma)}$ has size \mathbf{k}_{σ} and partitions into k_{σ} segments of level $\sigma-1, B_{l}^{(\sigma)}=$ $\left[B_{k_{\sigma}(l-1)+1}^{(\sigma-1)}, \ldots, B_{k_{\sigma} l}^{(\sigma-1)}\right]$. Local reduction of $\left[B_{l}^{(\sigma)}, B_{l+1}^{(\sigma)}\right]$ is done in the coordinates of

$$
R_{l}^{(\sigma)}={ }_{\operatorname{def}}\left[r_{\mathbf{k}_{\sigma} l+i, \mathbf{k}_{\sigma} l+j}\right]_{-\mathbf{k}_{\sigma}<i, j \leq \mathbf{k}_{\sigma}} \in \mathbf{R}^{2 \mathbf{k}_{\sigma} \times 2 \mathbf{k}_{\sigma}} .
$$

The submatrix $R_{l}^{(\sigma)}$ of R yields the local orthogonalization and local GramSchmidt coefficients of $\left[B_{l}^{(\sigma)}, B_{l+1}^{(\sigma)}\right]$.

Informal argument for the $O\left(n^{3} \log n\right)$ time bound. We improve the SLLLtime bound by using the step bounds $O\left(k^{2} n \log _{1 / \delta} \bar{M}\right)$ and $O\left(m^{2} d \log _{1 / \delta} \bar{M}\right)$ for the local and global steps only for $k=k_{1}$ and $m=k_{2}, \ldots, k_{s}$. Global transforms extend local transforms from level $\sigma-1$ to level σ. They corresponds to global steps in SLLL, and the SLLL-bound for the number of global SLLL-steps applies with $m=k_{\sigma}$. As the global steps are done for all levels we get an additional time factor $s \leq \log _{2} n$. If $\max _{\sigma} k_{\sigma}=O(1), d=O(n)$ and $\bar{M}=2^{O\left(n^{2}\right)}$ there are in total $O\left(n^{3} s\right)$ arithmetic steps.

We let $D^{(\sigma)}(l)=\left\|\widehat{b}_{\mathbf{k}_{\sigma}(l-1)+1}\right\|^{2} \cdots\left\|{\widehat{b_{\mathbf{k}}^{\sigma}}}\right\|^{2} \quad$ denote the local determinant of the segment $B_{l}^{(\sigma)}, D^{(0)}(l)=\left\|\widehat{b}_{l}\right\|^{2}$.

Definition 3. A basis $b_{1}, \ldots, b_{n} \in \mathbf{Z}^{d}, n=k_{1} \cdots k_{s}=\mathbf{k}_{s}$ is an ISLLL-basis for given $\mathbf{k}, \delta, \alpha$ if it is size-reduced and satisfies

$$
\begin{equation*}
D^{(\sigma)}(l) \leq\left(\alpha / \delta^{\sigma}\right)^{\left(\mathbf{k}_{\sigma}\right)^{2}} D^{(\sigma)}(l+1) \tag{1}
\end{equation*}
$$

for $\sigma=0, \ldots, s-1$ and $l=1, \ldots, n / \mathbf{k}_{\sigma}-1$, except that $l=0 \bmod k_{\sigma+1}$.

Since $l=0 \bmod k_{\sigma+1}$ is excepted in (1) these conditions hold for constant σ locally in segments $B_{l}^{(\sigma+1)}$ of level $\sigma+1$, they do not bridge distinct such segments. The conditions (1) can be written for $\sigma=0$ as

$$
\left\|\widehat{b}_{l}\right\|^{2} \leq \alpha\left\|\widehat{b}_{l+1}\right\|^{2} \quad \text { for } l \neq 0 \quad \bmod k_{1}
$$

If δ is close to 1 so is δ^{σ} because $\sigma \leq \log _{2} n$. For $n=k_{1} \cdot k_{2}=k \cdot m, s=2$, Definition 3 repeats Definition 2 slightly weakening Clause 1.

ISLLL-reducedness is preserved under duality. If the basis b_{1}, \ldots, b_{n} is ISLLLreduced so is the dual basis $b_{1}^{*}, \ldots, b_{n}^{*}$.

We next extend Theorem 2 to iterated segments.
Theorem 6. Every ISLLL-basis $b_{1}, \ldots, b_{n}, n=k_{1} \cdots k_{s}=\mathbf{k}_{s}$ satisfies $\left\|b_{1}\right\|^{2} \leq\left(\alpha / \delta^{s-1}\right)^{\frac{n-1}{2}}(\operatorname{det} L)^{\frac{2}{n}}$ and $\left\|\widehat{b}_{n}\right\|^{2} \geq\left(\delta^{s-1} / \alpha\right)^{\frac{n-1}{2}}(\operatorname{det} L)^{\frac{2}{n}}$.

Proof. We prove by induction on σ that

$$
\left\|b_{1}\right\|^{2 \mathbf{k}_{\sigma}} \leq\left(\alpha / \delta^{\sigma-1}\right)^{\mathbf{k}_{\sigma}\left(\mathbf{k}_{\sigma}-1\right) / 2} D^{(\sigma)}(1) .
$$

For $\sigma=s$, this proves the first claim of the theorem because $D^{(s)}(1)=(\operatorname{det} L)^{2}, \mathbf{k}_{s}=$ n. The second claim follows by duality.

The induction hypothesis is trivial for $\sigma=0$ as we have that $\left(\mathbf{k}_{0}-1\right) / 2=0$, $\mathbf{k}_{0}=1$ and $D^{(0)}(1)=\left\|b_{1}\right\|^{2}$.
Induction from σ to $\sigma+1$. By ISLLL-reducedness we have that

$$
D^{(\sigma)}(1) \leq\left(\alpha / \delta^{\sigma}\right)^{\left(\mathbf{k}_{\sigma}\right)^{2}(l-1)} D^{(\sigma)}(l) \text { for } l=1, \ldots, k_{\sigma+1}
$$

Using the equation $D^{(\sigma+1)}(1)=\prod_{l=1}^{k_{\sigma+1}} D^{(\sigma)}(l)$ and $\sum_{l=1}^{k_{\sigma+1}}(l-1)=\binom{k_{\sigma+1}}{2}$ this yields

$$
D^{(\sigma)}(1)^{k_{\sigma+1}} \leq\left(\alpha / \delta^{\sigma}\right)^{\left(\mathbf{k}_{\sigma}\right)^{2}\left(k_{2}^{k_{2}+1}\right)} D^{(\sigma+1)}(1)
$$

Using the induction claim for σ and $\mathbf{k}_{\sigma+1}=\mathbf{k}_{\sigma} k_{\sigma+1}$ this yields

$$
\left\|b_{1}\right\|^{2 \mathbf{k}_{\sigma+1}} \leq\left(\alpha / \delta^{\sigma-1}\right)^{\binom{\mathbf{k}_{\sigma}}{2} k_{\sigma+1}}\left(\alpha / \delta^{\sigma}\right)^{\left(\mathbf{k}_{\sigma}\right)^{2}\binom{k_{\sigma+1}}{2}} D^{(\sigma+1)}(1)
$$

Hence the claim for $\sigma+1$ since $\binom{\mathbf{k}_{\sigma}}{2} k_{\sigma+1}+\left(\mathbf{k}_{\sigma}\right)^{2}\binom{k_{\sigma+1}}{2}=\mathbf{k}_{\sigma+1} \frac{\mathbf{k}_{\sigma+1}-1}{2}$.

ISLLL

INPUT $\quad b_{1}, \ldots, b_{n} \in \mathbf{Z}^{d}, n=k_{1} \cdot \ldots \cdot k_{s}=\mathbf{k}_{s}$
OUTPUT $\quad b_{1}, \ldots, b_{n}$ ISLLL-basis

1. $l:=1$, compute $R \in \mathbf{R}^{n \times n}$
2. WHILE $l \leq k_{s-1}-1 \quad$ DO
loc-ISL ${ }^{(s-1)}(l) \quad\left(\right.$ ISLLL-reduces $\left.R_{l}^{(s-1)}\right)$
IF $l>1$ AND $D^{(s-1)}(l-1)>\left(\alpha / \delta^{s-1}\right)^{\left(\mathbf{k}_{s-1}\right)^{2}} D^{(s-1)}(l)$
THEN $l:=l-1$ ELSE $l:=l+1$.

Algorithm for ISLLL-reduction. The algorithm ISLLL transforms a given basis of dimension $n=\mathbf{k}_{s}$ into an ISLLL-basis. It iteratively performs local ISLLLreductions of local R-matrices $R_{l}^{(s-1)}$ by the procedure loc-ISL ${ }^{(s-1)}(l)$. ISLLLreduction of $R_{l}^{(s-1)}$ transforms the basis matrix $R_{l}^{(s-1)}$ from the right and updates it into upper-triangular form. Upon termination of loc-ISL ${ }^{(s-1)}(l)$

$$
D^{(\sigma)}(l) \leq\left(\alpha / \delta^{\sigma}\right)^{\left(\mathbf{k}_{\sigma}\right)^{2}} D^{(\sigma)}(l+1)
$$

holds for all subdeterminants $D^{(\sigma)}(l), D^{(\sigma)}(l+1)$ of $R_{l}^{(s-1)}$, i.e., for $\mathbf{k}_{s-1}(l-1)$ $\leq \mathbf{k}_{\sigma}(l-1)$ and $\mathbf{k}_{\sigma}(l+1) \leq \mathbf{k}_{s-1}(l+1)$. The procedure $\operatorname{loc}-\mathbf{I S L}{ }^{(s-1)}(l)$ iteratively ISLLL-reduces submatrices $R_{l^{\prime}}^{(\sigma)}$ of level $\sigma<s-1$ via the procedure loc-ISL ${ }^{(\sigma)}\left(l^{\prime}\right)$.

Fig. 3. Iterative segmentsw of levels $\sigma-1$ and σ for $k_{\sigma}=2$.

The interaction between levels $\sigma-1$ and σ. Consider two segments $\left[B_{l}^{(\sigma-1)}, B_{l+1}^{(\sigma-1)}\right]$ $\subset\left[B_{l^{\prime}}^{(\sigma)}, B_{l^{\prime}+1}^{(\sigma)}\right]$ for $l^{\prime}:=\left\lceil l / k_{\sigma}\right\rfloor$. By the centered choice of l^{\prime} the matrices $R_{l-1}^{(\sigma-1)}$,
$R_{l}^{(\sigma-1)}, R_{l+1}^{(\sigma-1)}$ are all covered by $R_{l^{\prime}}^{(\sigma)}$, see Fig. 3 . As the areas of $R_{l}^{(\sigma-1)}, R_{l \pm 1}^{(\sigma-1)}$ overlap, a basis transform $H_{l}^{(\sigma-1)}$ of $R_{l}^{(\sigma-1)}$ must first be "transported" to level σ before $R_{l \pm 1}^{(\sigma-1)}$ can be locally reduced. A subsequent reduction of $R_{l \pm 1}^{(\sigma-1)}$ by loc-ISL ${ }^{(\sigma-1)}(l \pm 1)$ starts by copying $R_{l \pm 1}^{(\sigma-1)}$ from the updated $R_{l^{\prime}}^{(\sigma)}$.

Let $H_{l}^{(\sigma-1)} \in \mathbf{Z}^{2 \mathbf{k}_{\sigma-1} \times 2 \mathbf{k}_{\sigma-1}}$ denote the basis transform that has been done on $R_{l}^{(\sigma-1)}$ and has not yet been "transported" to level σ.

Transporting the basis transform $H_{l}^{(\sigma-1)}$ to level σ means to transform $R_{l^{\prime}}^{(\sigma)}$ and $H_{l^{\prime}}^{(\sigma)}$ as follows: multiply the submatrices of $2 \mathbf{k}_{\sigma-1}$ columns of $R_{l^{\prime}}^{(\sigma)}$ and $H_{l^{\prime}}^{(\sigma)}$ corresponding to $\left[B_{l}^{(\sigma-1)}, B_{l+1}^{(\sigma-1)}\right]$ from the right.
loc-ISL ${ }^{(\sigma)}\left(l^{\prime}\right)$ ISLLL-reduces $R_{l^{\prime}}^{(\sigma)}$. Initially, $H_{l^{\prime}}^{(\sigma)}$ is the identity transform. $R_{l^{\prime}}^{(\sigma)}$ and $H_{l^{\prime}}^{(\sigma)}$ get updated for all reductions on level $\sigma-1$ done by loc$\mathbf{I S L}^{(\sigma-1)}(l)$. Upon termination the local transform $H_{l^{\prime}}^{(\sigma)}$ done by loc-ISL ${ }^{(\sigma)}\left(l^{\prime}\right)$ is transported to level $\sigma+1$.

We describe loc-ISL ${ }^{(\sigma)}\left(l^{\prime}\right)$ more formally, first for $1<\sigma<s-1$ thereafter for $\sigma=s-1$ and $\sigma=1$.
$\operatorname{loc}^{\mathbf{I S S L}}{ }^{(\sigma)}\left(l^{\prime}\right)$ for $1<\sigma<s-1$.
Given are $R_{l^{\prime \prime}}^{(\sigma+1)}$ for $l^{\prime \prime}:=\left\lceil l^{\prime} / k_{\sigma+1}\right\rfloor$ and the transform $H_{l^{\prime \prime}}^{(\sigma+1)}$ that has been done locally on level $\sigma+1$ but not yet on level $\sigma+2$.

1. $l:=k_{\sigma}\left(l^{\prime}-1\right)+1, \quad$ (we always have that $l=\left\lceil l^{\prime} / k_{\sigma}\right\rfloor$)
form the submatrices $R_{l^{\prime}}^{(\sigma)}$ of $R_{l^{\prime \prime}}^{(\sigma+1)}$ and $R_{l}^{(\sigma-1)}$ of $R_{l^{\prime}}^{(\sigma)}$.
2. WHILE $l<k_{\sigma}\left(l^{\prime}+1\right) \quad$ DO
loc-ISL ${ }^{(\sigma-1)}(l) \quad$ (ISLLL-reduces $R_{l}^{(\sigma-1)}$)
IF $l>k_{\sigma}\left(l^{\prime}-1\right)+1$ AND $D^{(\sigma-1)}(l-1)>(\alpha / \delta)^{\left(\mathbf{k}_{\sigma-1}\right)^{2}} D^{(\sigma-1)}(l)$
THEN $l:=l-1$ ELSE $l:=l+1$
3. Transport $H_{l^{\prime}}^{(\sigma)}$ to level $\sigma+1$, reset $H_{l^{\prime}}^{(\sigma)}$,

Update $R_{l^{\prime \prime}}^{(\sigma+1)}$ into upper-triangular form.
4. Size-reduce $R_{l^{\prime \prime}}^{(\sigma+1)}$ and update $H_{l^{\prime \prime}}^{(\sigma+1)}$ accordingly.

Case $\sigma=s-1$. The global transforms of Steps 3,4 are done on R and B. Steps 3 and 4 in loc-ISL ${ }^{(s-1)}(l)$ are as follows:
3. Transform R and $B=\left[b_{1}, \ldots, b_{n}\right]$ globally by $H_{l^{\prime}}^{(s-1)}$, reset $H_{l^{\prime}}^{(s-1)}$. Update R into upper-triangular form.
4. Size-reduce $\left[B_{l^{\prime \prime}}^{(s)}, B_{l^{\prime \prime}+1}^{(s)}\right]$ globally and update R accordingly.

Case $\sigma=1$. Steps 1-2 in loc-ISL ${ }^{(1)}\left(l^{\prime}\right)$ are as follows:
1-2. First size-reduce then LLL-reduce $R_{l^{\prime}}^{(1)}$.
After each reduction step update $R_{l^{\prime}}^{(1)}$ into upper-triangular form.
Record the basis transform of $R_{l^{\prime}}^{(1)}$ in the matrix $H_{l^{\prime}}^{(1)}$.
Theorem 7. Given a basis $b_{1}, \ldots, b_{n} \in \mathbf{Z}^{d}, n=k_{1} \cdot \ldots \cdot k_{s}=\mathbf{k}_{s}$, algorithm ISLLL performs at most $O\left(d n^{2}+d \log _{1 / \delta} \bar{M} \sum_{\sigma=1}^{s} k_{\sigma}^{2}\right)$ arithmetic steps and produces an ISLLL-reduced basis. If $\max _{\sigma} k_{\sigma}=O(1)$ and $\log _{2} \bar{M}=O\left(n^{2}\right)$, the number of arithmetic steps is $O\left(n^{2} d s \log _{1 / \delta} 2\right)$.

Proof. Correctness. ISLLL is correct since loc-ISL ${ }^{(\sigma)}\left(l^{\prime}\right)$ locally ISLLL-reduces $\left[B_{l^{\prime}}^{(\sigma)}, B_{l^{\prime}+1}^{(\sigma)}\right]$ in coordinates of $R_{l^{\prime}}^{(\sigma)}$, and transports the transform to level $\sigma+1$. A subsequent reduction of $R_{l^{\prime} \pm 1}^{(\sigma)}$ by loc-ISL ${ }^{(\sigma)}\left(l^{\prime} \pm 1\right)$ starts by copying $R_{l^{\prime} \pm 1}^{(\sigma)}$ from the updated $R_{l^{\prime \prime}}^{(\sigma+1)} . R_{l^{\prime} \pm 1}^{(\sigma)}$ are correct as both $R_{l^{\prime}-1}^{(\sigma)}$ and $R_{l^{\prime}+1}^{(\sigma)}$ are covered by $R_{l^{\prime \prime}}^{(\sigma+1)}$.

On termination all inequalities (1) of Definition 3 are satisfied and the resulting basis is an ISLLL-basis. Induction shows that whenever ISLLL calls loc-ISL ${ }^{(\sigma)}\left(l^{\prime}\right)$ all inequalities (1) of Definition 3 are satisfied for the subbasis $b_{1}, \ldots, b_{\mathbf{k}_{\sigma}\left(l^{\prime}-1\right)}$ that precedes segment $B_{l^{\prime}}^{(\sigma)}$.
Time bound. Let $\operatorname{dec}^{(\sigma)}$ denote the number of times that loc-ISL ${ }^{(\sigma)}\left(l^{\prime}-1\right)$ is executed in ISLLL due to $D^{(\sigma)}\left(l^{\prime}-1\right)>(\alpha / \delta)^{\left(\mathbf{k}_{\sigma}\right)^{2}} D^{(\sigma)}\left(l^{\prime}\right)$. The number of loc-ISL ${ }^{(\sigma)}$ executions in ISLLL is $n / \mathbf{k}_{\sigma}-1+2 \cdot \operatorname{dec}^{(\sigma)}$.

We apply Theorem 3 to segments and to the local Gramian determinants of level σ. Let

$$
\mathbf{D}^{(\sigma)}={ }_{\operatorname{def}} \prod_{l=1}^{n / \mathbf{k}_{\sigma}} D_{\mathbf{k}_{\sigma} l}=\prod_{l=1}^{n / \mathbf{k}_{\sigma}}\left(D^{(\sigma)}(1) \cdot \ldots \cdot D^{(\sigma)}(l)\right)
$$

Each execution of loc-ISL ${ }^{(\sigma)}\left(l^{\prime}\right)$ - due to a violated inequality (1) - decreases $\mathbf{D}^{(\sigma)}$ by the factor $\delta^{\left(\mathbf{k}_{\sigma}\right)^{2} / 2}$. Initially the integer $\mathbf{D}^{(\sigma)}$ satisfies $\mathbf{D}^{(\sigma)} \leq \bar{M}^{n / \mathbf{k}_{\sigma}}$, and upon termination $\mathbf{D}^{(\sigma)} \geq 1$, hence

$$
\operatorname{dec}^{(\sigma)} \leq 2 n\left(\mathbf{k}_{\sigma}\right)^{-3} \log _{1 / \delta} \bar{M}
$$

In total there are $n / \mathbf{k}_{\sigma}-1+2 n\left(\mathbf{k}_{\sigma}\right)^{-3} \log _{1 / \delta} \bar{M}$ executions of $\mathbf{l o c}-\mathbf{I S L}^{(\sigma)}\left(l^{\prime}\right)$ each requiring an overhead of $O\left(\mathbf{k}_{\sigma} \mathbf{k}_{\sigma+1}^{2}\right)$ arithmetic steps. This overhead covers: stepwise update of $R_{l^{\prime}}^{(\sigma)}, H_{l^{\prime}}^{(\sigma)}$ after each loc-ISL ${ }^{(\sigma-1)}(l)$ execution, moreover final update of $R_{l^{\prime \prime}}^{(\sigma+1)}$ into upper-triangular form and size-reduction of $R_{l^{\prime \prime}}^{(\sigma+1)}$. The total overhead of all loc-ISL ${ }^{(\sigma)}\left(l^{\prime}\right)$ executions is

$$
O\left(n \mathbf{k}_{\sigma+1}^{2}+n k_{\sigma+1}^{2} \log _{1 / \delta} \bar{M}\right)
$$

In the particular case $\sigma=s-1$ the global transforms are done on the basis matrix $B \in \mathbf{Z}^{d \times n}$ and the overhead is

$$
O\left(d \mathbf{k}_{s}^{2}+d k_{s}^{2} \log _{1 / \delta} \bar{M}\right)
$$

Moreover, $O\left(n \log _{1 / \delta} \bar{M}\right)$ local LLL-exchanges are done on level 1 in local coordinates of dimension $2 k_{1}$ each requiring $O\left(k_{1}^{2}\right)$ local arithmetic steps.

We see that ISLLL performs $O\left(n^{2} d+d \log _{1 / \delta} \bar{M} \sum_{\sigma=1}^{s} k_{\sigma}^{2}\right)$ arithmetic steps. This proves the claimed time bound.

Size of integers. We extend the bounds on the size of integers in SLLL, shown in the proof Theorem 4, to ISLLL. The value $\max _{i}\left\|b_{i}\right\|$ can temporarily increase during final, global size-reduction at most by a factor $\left(\frac{3}{2}\right)^{n-1}$.

Local size reduction is done in Step 4 of loc-ISL ${ }^{(\sigma)}\left(l^{\prime}\right)$ and in Steps 1-2 of loc-ISL ${ }^{(1)}(l)$. During size-reduction of b_{i} the preceding vectors b_{1}, \ldots, b_{i-1} must already be size-reduced. Then the argument of Theorem 4 applies and sizereduction of b_{i} can temporarily increase $\left\|b_{i}\right\|$ at most by a factor $\left(\frac{3}{2}\right)^{i-1}$. Hence, $\left\|R_{l^{\prime}}^{(\sigma)}\right\|_{1}=2^{O(n)} \bar{M}$ holds during local size reduction of $R_{l^{\prime}}^{(\sigma)}$.

Next consider the size of the transform $H_{l^{\prime}}^{(\sigma)}$ during loc-ISL ${ }^{(\sigma)}\left(l^{\prime}\right) . H_{l^{\prime}}^{(\sigma)}$ transforms $\left[B_{l^{\prime}}^{(\sigma)}, B_{l^{\prime}+1}^{(\sigma)}\right]$ into segments that are locally ISLLL-reduced in the coordinates of $R_{l^{\prime}}^{(\sigma)}$. The argument of Lemma 1 shows that $\left\|H_{l^{\prime}}^{(\sigma)}\right\|_{1}=2^{O\left(\mathbf{k}_{\sigma}\right)} \bar{M}$.

Consider Step 3 of $\mathbf{l o c -} \mathbf{- I S L}{ }^{(\sigma)}\left(l^{\prime}\right)$ where $H_{l^{\prime}}^{(\sigma)}$ is transported to level $\sigma+1$. That transport means that submatrices of $R_{l^{\prime \prime}}^{(\sigma+1)}, H_{l^{\prime \prime}}^{(\sigma+1)}$ are multiplied by $H_{l^{\prime}}^{(\sigma)}$. This matrix multiplication increases $\left\|R_{l^{\prime \prime}}^{(\sigma+1)}\right\|_{1},\left\|H_{l^{\prime \prime}}^{(\sigma+1)}\right\|_{1}$ at most by a factor $2^{O\left(\mathbf{k}_{\sigma}\right)} \bar{M}$.

On termination of loc-ISL ${ }^{(\sigma)}\left(l^{\prime}\right)$ the final size-reduction of $R_{l^{\prime \prime}}^{(\sigma+1)}$ in Step 4 yields

$$
\left\|R_{l^{\prime \prime}}^{(\sigma+1)}\right\|_{1}^{2} \leq \frac{\mathbf{k}_{\sigma+1}+1}{4} \bar{M}
$$

We see that all integers during excecution of ISLLL are bounded by $2^{O(n)} \bar{M}$. These integers are the numerators and denominators of the rational numbers $\mu_{j, i},\left\|\widehat{b}_{i}\right\|^{2}$ and the integer coefficients of the basis vectors. If the input basis satisfies $\max _{i}\left\|b_{i}\right\|=2^{O(n)}$ we have that $2^{O(n)} \bar{M}=2^{O\left(n^{2}\right)}$ and ISLLL uses integers of bit length $O\left(n^{2}\right)$.

6 Strong ISLLL-Reduction

We strengthen ISLLL-bases of dimension $n=\mathbf{k}_{s}$ to strong ISLLL-bases (SISLLLbases, for short) satisfying $\left\|b_{1}\right\|^{2} \leq \lambda_{1}^{2}\left(\alpha / \delta^{s-1}\right)^{n-1}$. This comes close to the property $\left\|b_{1}\right\|^{2} \leq \lambda_{1}^{2} \alpha^{n-1}$ of LLL-bases. While LLL-bases are better than SISLLLbases for the same δ, SISLLL-bases for $\delta^{\prime}:=\delta^{1 / s}$ are better than LLL-bases for δ since $\alpha^{\prime} / \delta^{\prime s-1}<\alpha$. Moreover, the SISLLL-time bound for δ^{\prime} is at most s-times the time bound for δ.

Notation. We call segment $B_{l}=\left[b_{k l-k+1}, \ldots, b_{k l}\right]$ of lattice basis b_{1}, \ldots, b_{n}, $k=0 \bmod n, \sigma$-strong if

$$
\left\|b_{1}\right\|^{2} /\left\|\widehat{b}_{i}\right\|^{2} \leq\left(\alpha / \delta^{\sigma}\right)^{i-1} \quad \text { for } i=k l-k+1, \ldots, k l
$$

otherwise B_{l} is called σ-weak. B_{l} is called completely σ-weak if

$$
\left\|b_{1}\right\|^{2} /\left\|\widehat{b}_{i}\right\|^{2}>\left(\alpha / \delta^{\sigma}\right)^{i-1} \quad \text { for } i=k l-k+1, \ldots, k l .
$$

We call the basis $b_{1}, \ldots, b_{n} \sigma$-strong if all segments are σ-strong. A basis is 1 -strong if it is strong in the sense of Section 4. Every σ-strong basis satisfies

$$
\left\|b_{1}\right\|^{2} / \lambda_{1}^{2} \leq\left(\alpha / \delta^{\sigma}\right)^{n-1}
$$

since the argument of Lemma 2 applies to σ-strong bases.

Strong ISLLL (SISLLL)

INPUT ISLLL-basis $b_{1}, \ldots, b_{n} \in \mathbf{Z}^{d}, n=k_{1} \cdot \ldots \cdot k_{s}=\mathbf{k}_{s}$
OUTPUT $b_{1}, \ldots, b_{n}(s-1)$-strong ISLLL-basis

1. IF all segments $B_{l}^{(\sigma)}$ are $(s-1)$-strong

THEN size-reduce b_{1}, \ldots, b_{n} and terminate
2. loc-ISL ${ }^{(\sigma)}(l)$ for the minimal σ and maximal l such that $B_{l+1}^{(\sigma)}$ is $(s-1)$-weak
3. WHILE $D^{(\sigma)}(l)>\left(\alpha / \delta^{\sigma}\right)^{\left(\mathbf{k}_{\sigma}\right)^{2}} D^{(\sigma)}(l+1)$ for some l, σ DO
loc-ISL ${ }^{(\sigma)}(l)$ for the smallest such σ
4. GO TO 1 .

Algorithm SISLLL transforms an ISLLL-basis into an $(s-1)$-strong ISLLLbasis. Lemma 3 extends from SSLLL to SISLLL as follows.

Lemma 4. If loc-ISL ${ }^{(\sigma)}(l)$ is executed in $\mathbf{S I S L L L}$ due to an $(s-1)$-weak $B_{l+1}^{(\sigma)}$ then the resulting $B_{l+1}^{(\sigma)}$ is $(s-1)$-strong or else the resulting $B_{l}^{(\sigma)}$ is completely $(s-1)$-weak, in which case we have that $D^{(\sigma)}(l-1)>\left(\alpha / \delta^{s-1}\right)^{\left(\mathbf{k}_{\sigma}\right)^{2}} D^{(\sigma)}(l)$.

Theorem 8. The ISLLL-time bound of Theorem 7 also holds for SISLLL.
Proof. By Lemma 4 a loc-ISL ${ }^{(\sigma)}(l)$ execution in Step 2 of SISLLL either decreases

$$
\operatorname{maw}^{(\sigma)}=_{\text {def }} \max \left\{l \mid B_{l}^{(\sigma)} \text { is }(s-1)-\text { weak }\right\},
$$

or else there directly follows a loc-ISL ${ }^{(\sigma)}(l-1)$ execution due to $D^{(\sigma)}(l-1)>\left(\alpha / \delta^{s-1}\right)^{\left(\mathbf{k}_{\sigma}\right)^{2}} D^{(\sigma)}(l)$. The proof of Theorem 5 extends to the proof of Theorem 8 . In particular, by Lemma 4 and Theorem 3 the number of $\operatorname{loc}_{\mathbf{I S L}}{ }^{(\sigma)}(l)$ executions in SISLLL is at most $n / \mathbf{k}_{\sigma}+4 n\left(\mathbf{k}_{\sigma}\right)^{-3} \log _{1 / \delta} M_{s_{c}}$.

References

[BN00] D. Bleichenbacher and P.Q. Nguyen, Noisy Polynomial Interpolation and Noisy Chinese Remaindering, Eurocrypt 2000, Lecture Notes in Comput. Sci., 1807, Springer, New York, 2000, pp. 53-69.
[Bo00] D. Boneh, Finding Smooth Integers in Small Intervals Using CRT Decoding, ACM Symposium on the Theory of Computing 2000, ACM Press, 2000, pp. 265-272.
[Ca00] J. Cai, The Complexity of some Lattice Problems, Algorithmic Number Theory, Lecture Notes in Comput. Sci., 1838, Springer, New York, 2000, pp. 1-32.
[Co97] D. Coppersmith, Small Solutions to Polynomial Equations, and Low Exponent RSA Vulnerabilities, J. Cryptology, 10, 1997, pp. 233-260.
[K84] R. Kannan, Minkowski's Convex Body Theorem and Integer Programming, Math. Oper. Res., 12, 1984, pp. 415-440.
[K01] H. Koy, Notes of a Lecture. Frankfurt 2001.
[KS01a] H. Koy and C.P. Schnorr, Segment LLL-Reduction, Cryptography and Lattices, Lecture Notes in Comput. Sci., 2146, Springer, New York, 2001, pp.6780 (first version of the present paper).
[KS01b] H. Koy and C.P. Schnorr, Segment LLL-Reduction with Floating Point Orthogonalization, Cryptography and Lattices, Lecture Notes in Comput. Sci., 2146, Springer, New York, 2001, pp. 81-96.
[LLL82] A. K. Lenstra, H. W. Lenstra and L. Lovász, Factoring polynomials with rational coefficients, Math. Ann., 261, 1982, pp. 515-534.
[NS00] P.Q. Nguyen and J. Stern, Lattice Reduction in Cryptology, An Update, Algorithmic Number Theory, Lecture Notes in Comput. Sci., 1838, Springer, New York, 2000, pp. 85-112.
[S87] C.P. Schnorr, A hierarchy of polynomial time lattice basis reduction algorithms, Theoret. Comput. Sci., 53, 1987, pp. 201-224.
[S91] C.P. Schnorr and M. Euchner,Lattice Basis Reduction and Solving Subset Sum Problems, Fundamentals of Comput. Theory, Lecture Notes in Comput. Sci., 591, Springer, New York, 1991, pp. 68-85. The complete paper appeared in Math. Programming Studies, 66A, 2, 1994, pp. 181-199.
[S94] C.P. Schnorr, Block Reduced Lattice Bases and Successive Minima, Combin. Probab. and Comput. , 3, 1994, pp. 507-522.
[SH95] C.P. Schnorr and H. Hörner, Attacking the Chor-Rivest Cryptosystem by Improved Lattice Reduction, Eurocrypt 1995, Lecture Notes in Comput. Sci., 921, Springer, New York, 1995, pp. 1-12.
[Sc84] A. SChÖNHAGE, Factorization of univariate integer polynomials by diophantine approximation and improved lattice basis reduction algorithm, Proc. 11-th Coll. Automata, Languages and Programming, Antwerpen 1984, Lecture Notes in Comput. Sci., 172, Springer, New York, 1984, pp. 436-447.

[^0]: ${ }^{1}$ In practice, the global steps get dominant for $k \gg m$, not yet for $k \approx m$. This is because the local steps operate on smaller integers. In the [KS01b] implementation, these steps are in fast floating point arithmetic. Even segment sizes as large as $k=100$ yield good running times.

