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ABSTRACT

The Cueva del Azufre in Tabasco, Mexico, is a nutrient-rich cave and its inhabitants
need to cope with high levels of dissolved hydrogen sulfide and extreme hypoxia. One
of the successful colonizers of this cave is the poeciliid fish Poecilia mexicana, which
has received considerable attention as a model organism to examine evolutionary
adaptations to extreme environmental conditions. Nonetheless, basic ecological data
on the endemic cave molly population are still missing; here we aim to provide data
on population densities, size class compositions and use of different microhabitats.
We found high overall densities in the cave and highest densities at the middle part
of the cave with more than 200 individuals per square meter. These sites have lower
H;S concentrations compared to the inner parts where most large sulfide sources
are located, but they are annually exposed to a religious harvesting ceremony of
local Zoque people called La Pesca. We found a marked shift in size/age composi-
tions towards an overabundance of smaller, juvenile fish at those sites. We discuss

Submitted 11 March 2014 these findings in relation to several environmental gradients within the cave (i.e.,

Accepted 28 June 2014 differences in toxicity and lighting conditions), but we also tentatively argue that
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live-bearing fish, the so-called cave molly (Poecilia mexicana; Gordon ¢ Rosen, 1962)
has adapted to the vastly divergent ecological conditions inside a South Mexican sulfide
cave, the Cueva del Azufre (also referred to as Cueva Villa Luz or Cueva de las Sardinas;
Parzefall, 1993; Parzefall, 2001) Cave environments are usually energy limited compared
to photosynthetically based epigean habitats (Hiippop, 2005) and fish densities reported
for several different cave systems are low, with often less than one individual per m?2
(Trajano, 2001). In contrast, the Cueva del Azufre is a sulfidic, nutrient-rich habitat due
to chemoautotrophic primary production through sulfide oxidizing bacteria that utilize
the abundant hydrogen sulfide in the cave (Hose ¢ Pisarowicz, 1999; Colago, Dehairs

& Desbruyeres, 2002; Summers Engel, 2005). Hydrogen sulfide is acutely toxic to most
metazoans and leads to extreme hypoxia in the water (Evans, 1967; Bagarinao, 1992).
Beside the Cueva del Azufre, few other sulfurous chemoautotrophic cave-ecosystem are
described, such as Movile in Romania (Sarbu, Kane ¢ Kinkle, 1996), Frasassi in Italy (Flot,
Worheide ¢ Dattagupta, 2010) and Ayyalon in Israel (Por, 2007). All of these caves are
inhabited by invertebrates—many of them endemic to the caves—that exploit this unusual
food web. The Cueva del Azufre is the only known chemoautotrophic cave ecosystem
which is inhabited by a vertebrate species (Plath ¢ Tobler, 2010). However, due to its
toxicity, hydrogen sulfide requires energetically costly behavioral (i.e., actively avoiding
microhabitats with high levels of toxicity) and physiological adaptations (various forms
of detoxification) by animals exposed to it (Tobler et al., 2009; Riesch, Plath ¢ Schlupp,
2010). As a result of the simultaneous action of two strong selective forces (permanent
darkness and hydrogen sulfide), locally adapted P. mexicana populations in the Cueva del
Azufre system have received considerable scientific interest. The cave molly differs from
its surface-dwelling ancestors in a distinct set of morphological, physiological, behavioral,
and life-history traits; e.g., cave mollies have reduced eye size and reduced pigmentation,
and females have a reduced fecundity combined with an increase in individual offspring
size (Parzefall, 2001; Tobler et al., 2008a; Riesch, Plath & Schlupp, 2010; Tobler et al.,
2011b). Although the cave molly has been established as a model to examine evolutionary
adaptations to extreme environmental conditions, population densities have not yet been
quantified in the Cueva del Azufre system, which makes interpretation of some of the
ecological and evolutionary data difficult with regards to how they influence long-term
stability of the systems and population dynamics.

The Cueva del Azufre drains into the El Azufre, a sulfidic surface creek, which
eventually joins the Rio Oxolotan. The Cueva del Azufre and El Azufre differ dramatically
in the composition of fish communities compared to adjacent non-sulfidic surface
habitats. Poecilia mexicana occurs as the single dominant species in both systems. Only
one further fish species, the predatory cichlid ‘Cichlasoma’ salvini occurs in the upper parts
of the El Azufre, but only in small numbers. In downstream areas of the El Azufre where
H;S in not measurable, Heterandria bimaculata and Xiphophorus hellerii (Poeciliidae),
Astyanax aeneus (Characidae) as well as ‘Cichlasoma’ salvini and Thorichtys helleri
(Cichlidae) occur (Plath ¢ Tobler, 2010). In surrounding non-sulfidic surface habitats,
diverse fish communities can be found, often dominated by cichlid and poeciliid species
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(Tobler et al., 2006; Plath ¢ Tobler, 2010). In the Clear Creek, a small stream that is directly
connected to El Azufre, H. bimaculata occurs at a high abundance together with small
numbers of X. hellerii and P. mexicana. A reduced species diversity and dominance of a
few specialists have been documented from other caves ( Trajano, 2001) and other sulfidic
habitats (Tobler et al., 2008c¢).

Little is known about anthropogenic disturbances on the population ecology of P. mex-
icana inhabiting the Cueva del Azufre. Today, the system is increasingly influenced by a
growing number of visitors which reach their peak during a traditional annual ceremony
of the local indigenous Zoque people named ‘La Pesca’. The Cueva del Azufre is sacred to
the Zoque people, and once a year, on the first Sunday of Easter week, the Zoque enter the
cave and introduce rotenone- and deguelin-containing barbasco roots (Lonchocarpus sp.,
Fabaceae) into the water. Rotenone is an inhibitor of the mitochondrial complex-I of the
respiratory chain, causing reduced cellular respiration (Singer ¢ Ramsay, 1994). Barbasco
is introduced into the water in the middle portion of the cave, therefore only downstream
cave chambers are affected (Fig. 1). Capture of poisoned cave fish is facilitated by the
anesthetic effect of barbasco, as narcotized fish are flushed out of the cave, where they are
harvested using wooden baskets, and afterwards cooked and eaten as part of a religious
ceremony honoring the Rain Gods (Tobler et al., 2011a). The yield of the annual harvest is
considered to be indicative of the quality of the subsequent crop harvest (Hose ¢ Pisarow-
icz, 1999; Tobler et al., 201 1a). Annual harvests amount to several thousand individuals,
and the ceremony is likely to have taken place for centuries (Hose & Pisarowicz, 1999), so it
is likely to act as a strong selective force on P. mexicana populations annually exposed to it.

In the present study, we provide first data of local densities within different chambers
of the Cueva del Azufre and adjacent El Azufre and discuss our findings with regard to
environmental conditions and annual harvesting of cave mollies. We used a non-invasive
technique to repeatedly assess fish densities and size-distribution patterns (as a proxy
for age) inside the Cueva del Azufre (up- and downstream of the barbasco-release site)
and in the sulfidic creek leaving the cave (El Azufre). Moreover, given the high structural
heterogeneity of the water course inside the Cueva del Azufre with respect to water depth
and flow velocity (Hose ¢ Pisarowicz, 1999), and because Croft, Botham ¢ Krause (2004)
reported on size-specific preferences regarding water depth in another poeciliid, the
Trinidadian guppy (P. reticulata), we combined our assessment of fish densities with an
investigation of microhabitat use by different size classes of cave mollies.

MATERIAL AND METHODS
Study system

Locally adapted subterranean populations of P. mexicana (Fig. 1A) can be found in at least
two different limestone caves in the vicinity of the southern Mexican city of Tapijulapa
(state of Tabasco, México): the Cueva del Azufre (Gordon ¢» Rosen, 1962) and the much
smaller, non-sulfidic Cueva Luna Azufre (Tobler et al., 2008b). The sulfidic Cueva del
Azufre is about 500-600 m deep and divided into 13 different cave chambers (I-XIII),
with the innermost chamber being XIII (Gordon ¢ Rosen, 1962). Several springs discharge
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Figure 1 Study system and population densities. (A) Drawing of a female cave molly. (B) Map of the
study area showing the different sampling sites (numbers) where white areas represent water within
the cave (Cueva del Azufre) and dark areas indicate dry land and bedrock. I EA-con, 2 CC, 3 EA-mf,
4 EA-ex, 5 CV-1, 6 CV-2, 7 CV-3, 8 CX. With the exception of sampling site CV-1 all sampling sites inside
the Cueva del Azufre are completely dark. Barbasco is released annually between chamber V (CV) and
chamber X (CX). Three sampling sites inside chamber V were defined (CV-1 to CV-3). Downstream
of the exit of the Cueva del Azufre (EA-ex), a rather homogeneous mudflat (EA-mf) was sampled.
Further sampling sites were a small non-sulfidic creek (Clear Creek; CC) and its confluence with El Azufre
(EA-con). (C) Mean (+£SE) densities of mollies at each sampling site. Letters above the error bars signify
statistically different groups (Fisher’s LSD tests). (D) Size class compositions of mollies at the different
sampling sites.
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water with high concentrations of hydrogen sulfide (H,S) into the creek draining the
cave (Tobler et al., 2006). The cave creek forms a highly heterogeneous mosaic of shallow
pools and backwaters that are partially divided by swift flowing riffle passages (Gordon ¢
Rosen, 1962; Hose ¢~ Pisarowicz, 1999). While the front cave chambers receive some dim
light through cracks in the ceiling, the inner parts of the cave are lightless. Consequently,
(sub-)populations experience divergent selection regimes regarding light exposure, with
populations from the innermost chambers living under perpetually dark conditions,
whereas those from front chambers are exposed to dim sunlight through a number of
cracks in the cave ceiling, so-called sky lights (Forntanier & Tobler, 2009).

Upon leaving the underground, the sulfidic creek draining the Cueva del Azufre is
called ‘El Azufre’. After meandering for approximately 1.5 km, it eventually drains into
the Rio Oxolotan, which is part of the Rio Grijalva drainage system. Despite the gradual
oxidation of H;S to sulfate and elemental sulfur with increasing distance from the sulfide
sources, which increases the water turbidity, and despite the influx of some smaller clear
water affluents, El Azufre still has a remarkably high H,S concentration of up to ~40 uMol
(Tobler et al., 2006; Schlupp et al., 2013).

Study sites and data collection

We compared the abundance and distribution of different size classes of P. mexicana
among different sampling sites along a transect starting at chamber X in the Cueva del
Azufre, and following the water flow outside the cave to the confluence of El Azufre with
the first freshwater influx from the Clear Creek. This transect, therefore, covered sample
sites located upstream of the release point of barbasco during La Pesca (sample point
in chamber X) and sites directly downstream of the release point of barbasco that are
strongly affected by the annual ceremony (three sites in chamber V; CV-1, CV-2, and
CV-3; Figs. 2A and 2B). Surface sites of El Azufre are also annually exposed to barbasco
due to downstream effects (EA-ex, EA-mf), even though concentrations are probably
considerably lower than inside the cave (Table 1). Clear creek (CC) and its confluence with
EA (EA-con; Fig. 2C), on the other hand, are not influenced by barbasco.

Field work was conducted in January 2010, i.e., about 9 month after the latest La Pesca
ceremony in 2009 (L Arias-Rodriguez, pers. obs., 2009). At each of the eight sample sites,
we defined sampling grids consisting of 50 x 50 cm quadrants with wooden sticks fixed
in the ground (or stones where a grid angle fell on the shore). The number of quadrants
was mostly 25 per sampling grid (i.e., 5 X 5 quadrants). In the narrow non-sulfidic surface
creek (CC), however, the arrangement of quadrants was more longitudinal (4 x 7 =28
quadrants), and in chamber V, where a particularly high degree of structural heterogeneity
precluded defining larger grids, one sampling site of 5 x 5 quadrants and two smaller ones
(15 and 8 quadrants, respectively) were defined (Table 1). The grids reflected the natural
variation in water depth, flow velocity, and substrate types, thus covering the range of
different microhabitats inhabited by mollies (an example is shown in Fig. 3).

Daily measurements took place between 11:00 a.m. and 4:30 p.m. Each site was visited at
least 5 times (mean £ SD = 6.25 & 1.16) on consecutive days. During the counts, we slowly
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Figure 2 Pictures of study sites. (A) Cueva del Azufre chamber V (6 CV-2) and (B) site 7 CV-3. (C) El
Azufre confluence with Clear Creek (1 EA-con).
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Table 1 Sampling sites, their abbreviation code as used throughout the article, numbers of quadrants examined, and details regarding barbasco

release.

Site code Site Number of Affected by deposition Approximate distance

quadrants of rotenone? to upstream rotenone
release site [m]

1 EA-con El Azufre, confluence with clear Creek 25 No (only partly) 150

2CC Clear Creek 28 No —

3 EA-mf El Azufre, mudflat 25 Yes 120

4 EA-ex El Azufre, exit of the Cueva del Azufre 25 Yes 110

5CV-1 Cueva del Azufre, Chamber V, site 1 25 Yes 0

6 CV-2 Cueva del Azufre, Chamber V, site 2 15 Yes 0

7 CV-3 Cueva del Azufre, Chamber V, site 3 8 Yes 0

8CX Cueva del Azufre, Chamber X 25 No —

heght

dark

Figure 3 Exemplary sketch of site 5 CV-1. Showing the high degree of heterogeneity in flow regimes,
water depth, substrate types, and (in this case) light regime.

approached a site while trying to avoid any movements that would cause the resident fish
to flee, and we counted juveniles (<10 mm standard length (SL)), sub-adults (10-30 mm)
and adults (>30 mm) in each quadrant. The observer was standing motionless at least
1.5 m downstream from the respective quadrant. Sizes were estimated qualitatively, aided
by a prior training session that used wooden sticks of known size as a reference. Our
definition of adults roughly followed Riesch, Plath ¢ Schlupp (2010), who determined the
mean (£SD) standard length of reproducing females to be 31.44 & 4.40 mm (El Azufre)
and 36.97 + 4.59 mm (Cueva del Azufre, chambers V and X).

Habitat parameters were assessed after the last fish count. For each quadrant, we
determined water depth using a wooden ruler stuck vertically into the water at five random
locations and calculating the mean from those five measurements. Flow velocity was
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measured on the water surface by scoring the time a small wooden stick of about 3 cm
length took to float through the whole length of a quadrant (measurement was repeated
five times per quadrant and averaged across the five observations per quadrant). Mean
surface flow velocity was then expressed as cm * s~ 1. Research followed the authorizations
from CONAPESCA-DGOPA.09004.041111.3088 and Tacotalpa, Tabasco municipality.

Statistical analysis

Our first question was whether population densities differed among sampling sites. We
used data for the different quadrants per site (averaged from the repeated measurements)
and expressed density as total numbers of individuals per square meter. Density estimates
per quadrant were used as the dependent variable in a univariate general linear model
(GLM) with ‘sampling site’ as a fixed factor. We initially entered ‘mean water depth’
(F1.162 = 0.12, P = 0.98) and ‘mean flow rate’ (F; 162 = 0.22, P = 0.64) as covariates,
but removed them from the final analysis since neither had a significant effect (also none
of the interaction terms were significant). We used Fisher’s LSD tests for pairwise post hoc
comparisons among sites.

A further question was whether size-class compositions differed among sample sites
and whether distribution patterns would be stable among repeated sampling days. We
used the Bray-Curtis index (Bray ¢ Curtis, 1957) to estimate pairwise similarities among
each sampling point (calculated with the R-package ‘ecodist 1.2.7’; Goslee and Urban, 2007;
R Development Core Team, 2008), and used these for non-metric multidimensional scaling
(‘NMDS PROXSCAL function in SPSS 21). To detect clusters, we used the ‘two step cluster
analysis’ function based on Euclidian distances and the Bayesian information criterion.
For visualization of size class compositions per site, we averaged repeated measurements
of different size classes and used a mean value for each quadrant per site. By using these
means we calculated the total average size class distribution per site.

Our first analysis detected pronounced variation in population densities and size
distributions (see results) and thus, we decided to analyze potential effects of water depth
and flow velocity (i.e., microhabitat choice) in a site-wise fashion. We focused on sites
inside the Cueva del Azufre (CV-1, CV-3 and CX) where (a) fish densities were sufficiently
high and (b) sufficient variability of those environmental variables was found to allow
for a meaningful analysis. All other sites were excluded from this analysis. For each site,
fish density per quadrant was entered as the dependent variable in repeated measures
(rm) GLMs with ‘size class’ (three levels) as the repeated measurement. We grouped water
depth (<5 cm, 5-10 cm, >10 cm) and flow velocity (<10 cm * s~ 10-50 cm % s~ 1,
>50 cm * s~ 1) into three classes each and used these habitat parameters as fixed factors.
However, neither the main factor ‘flow velocity’ nor any interaction term involving ‘flow
velocity” had a significant effect in any of the three site-specific models (CV-1: F4 33 = 1.27,
P=0.30;CV-3: F, 4 = 3.28, P = 0.14; CX: F, 590 = 0.44, P = 0.65), and so we subsequently
removed this term from all models.
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Figure 4 Differences in size-class compositions of Poecilia mexicana in the Cueva del Azufre
system. Non-metric Multi-Dimensional Scaling (NMDS) plots based on Bray-Curtis similarities for
each sampling site and day.

RESULTS

Local population densities

When comparing mean densities per quadrant across sites we detected a significant
difference among sampling sites (GLM; F7 164 = 32.49, P < 0.001; Fig. 1B). Post hoc
pairwise LSD tests found most pairwise comparisons to be statistically significant;
qualitatively, densities increased from surface sites (mean =+ SE across sites = 21.0

+ 5.0 individuals * m—2) towards the cave (119.5 £ 12.7 individuals * m~2). Also, sites
downstream of the barbasco release-site (chamber V; 162.3 £ 16.1 individuals « m~2)
had considerably higher densities than the site in chamber X that lies upstream of the
release-site (37.4 + 4.8 individuals % m™2).

Differences in size-class compositions

The NMDS based on Bray-Curtis similarities found data from repeated sampling days
to cluster together, suggesting that the observed size-class compositions were stable over
the period of this study (Fig. 4). There were three distinct clusters, and in only one case
was a single sampling day of a given sampling site assigned to the ‘wrong’ cluster. The first
cluster comprised the three sample sites in cave chamber V and EA-con. Samples had high
overall densities and were composed mostly of small individuals. Cluster two comprised
the rearmost cave site CX. Samples in this cluster were characterized by intermediate
densities but a particularly high proportion of large individuals. Cluster three comprised
all surface sites except EA-con and was characterized by overall low densities and mostly
intermediate-sized fish (Fig. 4).

Microhabitat use of different size classes
In the rmGLMs treating the different size-classes as the repeated measurement, the
interaction term ‘size-class x water-depth” had a significant effect for two of the three
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Figure 5 Population densities of cave mollies in the Cueva del Azufre. Mean (+SE) densities of mollies,
categorized in three size classes (<1 cm, white, 1-3 c¢m, gray, and >3 cm, black) in three water depths
(<5 cm, 5-10 cm, and >10 cm). Results of rmGLM:s are inserted. Note the different y-axis scales. Error
bars are given if more than one sampling grid of a given depth class was present within the sampling site.

sampling sites included in this analysis—notably, those sites with the most variation in
water depth (Fig. 5). This result is indicative of differences in microhabitat use among
different size classes of cave mollies: generally, larger fish were found in deeper areas,
whereas smaller fish resided in shallow parts. A significant main effect of the repeated
measurement (‘size class’) in all three analyses confirms the overabundance of small-sized
fish in cave chamber V, and of large-bodied fish in chamber X (Fig. 5).

DISCUSSION

We provide detailed information on population densities of cave-adapted P. mexicana in
the Cueva del Azufre. Repeated measurement in different cave chambers uncovered very
stable patterns of high densities, confirming qualitative estimates provided by Parzefall

(1993). Density estimates of P. mexicana in the cave were extraordinarily high and exceed

those of other cave fishes, which are usually low, with often less than one individual per m?
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(Trajano, 2001). Furthermore, densities were higher inside the cave compared to adjacent
surface populations.

Variation in population densities can be explained by different factors affecting cave
molly population dynamics; e.g., environmental heterogeneity may contribute to popula-
tion differences. The highest H,S concentrations (>300 uM) are found in parts of chamber
X, where most large sulfide sources are located, while concentrations in chamber V are
lower (2—-32 uM), as H,S is increasingly bound with oxygen with increasing distance
from the sulfide sources (Tobler et al., 2006). However, ecotoxicological experiments
repeatedly found small adults to have higher H,S-resistance than large-bodied adults,
possibly reflecting senescence effects or size-specific thresholds regarding the rate of sulfide
influx to the body to oxidation (Tobler et al., 2011b; Plath et al., 2013; Riesch et al., 2014a).
Hence, we would expect fish in chamber X to actually be smaller than fish from chamber V
if different H, S concentrations were the main driver of population differences.

Beside different H,S concentrations, the sites within the cave differ in the presence of
light. Whereas chamber V receives some dim light through cracks in the ceiling, the inner
parts of the cave are lightless. Photophobic behavior is a factor that has been proposed
to promote the colonization of perpetually dark caves and the choice of microhabitat
(Poulson, 1964; Barr Jr, 1968). While photophobic behavior has been reported in several
cavefishes (Wilkens, 1988; Camassa, 2001; Wilkens, 2001; Timmermann ¢ Plath, 2009),
photophilic behavior was found in both surface and cave forms of P. mexicana (Parzefall
et al., 2007). In theory, this photophilic behavior could lead to an accumulation of fish
in chamber V (sites 5-7) compared to chamber X (site 8) if fish moved between cave
chambers but were less likely to return to dark sites, but this line of argumentation is not
compatible with the observation of small-scale genetic structure among different cave
chambers (Plath et al., 2007).

The different light regimes may also affect trophic interactions since the deep and
lightless parts of the cave depend solely on chemoautotrophic primary production, while
organic matter can enter through cracks in chamber V, and then provide the basis for
detritivore animal communities that constitute an additional food source in other cave
systems (Hiippop, 2005). Nevertheless, more research is needed on the extent to which
these few sky lights might indeed provide significant influx of additional nutrients, because
stomach content analysis of cave mollies, for example, does not so far strongly support
such a notion (Tobler et al., 2009).

Furthermore, cave chambers may differ in predation regimes. Inside the Cueva del
Azufre, aquatic water bugs of the genus Belostoma prey upon cave mollies and Belostoma
prefer large over small cave mollies as prey (Tobler, Schlupp ¢ Plath, 2007; Tobler, Franssen
¢ Plath, 2008; Plath et al., 2011). Mark-recapture analysis found individual densities of wa-
ter bugs to be approximately one individual per m? in chamber V (Tobler, Schlupp ¢ Plath,
2007), and while empirical data are as yet lacking, observational evidence over several years
of field work suggests that densities are much lower in the innermost chambers.

Belostoma predation, however, might explain microhabitat use of different size classes
of cave mollies. Belostoma are typically found on rocks at the water’s edge (Tobler, Franssen
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¢ Plath, 2008), and so large cave mollies—being preferred by the water bugs (Plath et al.,
2011)—could use deeper parts of the water column to avoid predation risk. The preference
for large size-classes was confirmed for another belostomatid preying on mosquitofish
(Schumann, Cavallaro ¢~ Hoback, 2012). On the other hand, small fish could avoid filial
cannibalism, which is known from other poeciliids (Loekle, Madison ¢ Christian, 1982;
Nesbit & Meffe, 1993), by using shallow parts of the water column that exclude large
mature fish.

One factor that most likely influences population dynamics is the annual ‘La Pesca’
ceremony. The ceremony leads to a strong temporary reduction of local fish densities in
those cave chambers that are situated downstream of the barbasco release site (Tobler et al.,
2011a). Our study was conducted approximately nine months after the last ceremony, but
given rather long generation times in P. mexicana (roughly 3—-6 months for males and 7-10
months for females from birth until reaching maturation under common-garden rearing
conditions; Riesch et al., 2014b), we predicted to find lower (sub-)population densities and
especially fewer large-bodied individuals downstream of the site in the Cueva del Azufre
where barbasco is annually released. Instead, while fish densities were generally high in
the cave, they were highest downstream of the barbasco release site. However, sample sites
affected by the release of barbasco had population structures that were strongly shifted
towards an overabundance of the smallest size classes (i.e., juveniles). These patterns were
stable when repeated samplings from subsequent days were compared.

Migration within the Cueva del Azufre is unidirectional, out of the cave, and migration
among different cave chambers occurs only to a small extent, which results in population
genetic differentiation, as shown based on nuclear microsatellites (Plath et al., 2007), and
is also reflected in morphological differences among fish from different cave chambers
(Fontanier ¢ Tobler, 2009). Hence, re-colonization of the affected sites from other parts
of the cave (i.e., source—sink dynamics) is unlikely, and the observed recovery of the
respective populations likely represents an autochthonous effect. After the temporal
decline in population density following La Pesca, the surviving individuals benefit from
reduced intraspecific resource competition. Detritus and green algae are the dominant
food sources of surface-dwelling P. mexicana from non-sulfidic streams, while diets of
conspecifics in the sulfidic surface and cave streams are dominated by chemoautotrophic
(sulfur) bacteria and aquatic invertebrates (like larvae of the dipteran Goeldichironomus
fulvipilus and small snails; (Roach, Tobler ¢ Winemiller, 2011)). In particular, access to
invertebrate prey could be favored not only by the absence of competing fish species, but
especially by temporarily relaxed competition among the surviving adult P. mexicana.
Generally, relaxed competition translates into higher growth rates, faster maturation,
and increased adult fecundity (Stearns, 1976), which may lead to stage-specific biomass
overcompensation, thereby compensating for the removal of individuals from the
population (Werner ¢ Gilliam, 1984; de Roos et al., 2007; Schrider, Persson ¢ de Roos,
2009). This idea received support from empirical harvesting experiments that found the
negative relationship between adult mortality and abundance/density to be reversed if
mortality does not affect a certain portion of the population. Experimental studies on
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laboratory populations of the poeciliid fish Heterandria formosa showed that biomass of
the juvenile size class increased in response to intermediate adult mortality rates (Schrider,
Persson ¢ de Roos, 2009). Another study showed that a pathogen outbreak in a wild perch
population (Perca fluviatilis) was followed by a biomass overcompensation of the juvenile
stage as a result of increased adult mortality. Age-specific adult fecundity and body mass of
one- and two year old perch increased after the disease outbreak, suggesting that increased
adult mortality released perch from competition and cannibalism, thereby increasing
somatic and reproductive growth (Ohlberger et al., 2011). In the Cueva del Azufre, the
stage-specific biomass overcompensation may lead to increasing population densities,
based on temporarily increased adult fecundity that leads to high numbers of juvenile fish.
This would result in cave molly populations regaining the high densities seen before La
Pesca, again leading to increased competition. This is consistent with earlier observations
of cave mollies showing reduced body condition (measured, e.g., as fat content) compared
to fish from surface sites (Riesch, Plath & Schlupp, 20105 Riesch, Plath ¢ Schlupp, 2011).
Hence, human-induced selection and predation by Belostoma ought to have very similar
effects on the populations exposed to them. We are inclined to argue, however, that the
relative influence of Belostoma predation is considerably lower than the effects of the
massive annual fish harvest. Previous reports of increased rotenone-resistance in fish from
chamber V, but not chamber X (Tobler et al., 2011a), confirm that La Pesca undoubtedly
has a strong selective influence on populations annually exposed to it.

In summary, we found remarkable fish densities of more than 200 individuals per m?2 in
some parts of the cave. While other selective forces certainly also need to be considered,
we argue that the annual La Pesca has major effects on the population ecology and
evolutionary trajectory of cave mollies. We are aware of potential caveats of this line of
argument, as not all differences reported here may be due to the annual La Pesca ceremony.
Nevertheless, from a conservational point of view, knowledge about whether and how
human activities affect teleost populations is especially pertinent in the case of locally
adapted populations that are endemic to a small area. Therefore, we recommend a repeated
sampling before and after La Pesca in order to demonstrate the influence of the ritual.
While human influences on highly endemic, locally adapted populations (or, in terms
of conservation biology, evolutionary significant units; Moritz, 1994) generally are to be
evaluated as highly problematic, management plans for cave mollies ought to consider the
important role La Pesca plays in the religion of the local human population. Carried out in
the traditional way, fish populations in downstream cave chambers can obviously recover
after the ceremony. However, we wish to highlight the necessity to critically review that
those practices do not affect deeper parts of the cave and that no commercially available,
more efficient fish toxins will be employed in the future.
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