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Abstract

Let b1, . . . , bm ∈ IRn be an arbitrary basis of lattice L that is a
block Korkin–Zolotarev basis with block size β and let λi(L) denote
the successive minima of lattice L. We prove that for i = 1, . . . , m

4
i + 3

γ
−2 i−1

β−1
β ≤ ‖bi‖2/λi(L)2 ≤ γ

2 m−i
β−1

β

i + 3
4

where γβ is the Hermite constant. For β = 3 we establish the optimal
upper bound

‖b1‖2/λ1(L)2 ≤
(

3
2

)m−1
2 −1

and we present block Korkin–Zolotarev lattice bases for which this
bound is tight.

We improve the Nearest Plane Algorithm of Babai (1986) using
block Korkin–Zolotarev bases. Given a block Korkin–Zolotarev basis
b1, . . . , bm with block size β and x ∈ L(b1, . . . , bm) a lattice point v can

be found in time βO(β) satisfying ‖x−v‖2 ≤ mγ
2m

β−1
β minu∈L ‖x− u‖2.

1 Introduction

The problem of selecting from all bases for a lattice a canonical basis consist-
ing of short vectors is called reduction theory. Classical reduction theory was
developed in the language of quadratic forms by Lagrange (1773), Her-
mite (1850) and Korkin and Zolotarev (1873) in order to determine

1



the minima of positive definite integral quadratic forms. Recently there has
been renewed interest in reduction theory stimulated by a new method in
integer programming (H.W. Lenstra, Jr. 1983) and by Lovász’ lattice
basis reduction algorithm, see A.K. Lenstra, H.W. Lenstra Jr. and L.
Lovász (1982), which has had various applications.

From the computational point of view the reduction theory introduced
by Hermite and by Korkin and Zolotarev is the most natural one.
On the other hand Korkin–Zolotarev reduced lattice bases are not easy to
find for lattices of higher dimensions, see Kannan (1987) and Schnorr
(1987) for algorithms. This led Schnorr (1987) to introduce a hierarchy
of block Korkin–Zolotarev bases comprising for block size 2 the L3–reduced
bases introduced by Lenstra, Lenstra, Lovász (1982). Block Korkin–
Zolotarev bases with maximal block size are just Korkin–Zolotarev bases.

In this paper we prove new upper and lower bounds for the ratio ‖bi‖2/λ2
i

where b1, . . . , bm is any block Korkin–Zolotarev basis and λi is the i–th
successive minimum of the lattice. These bounds extend the known bounds
for L3–reduced bases and for Korkin–Zolotarev bases.

We state in Section 2, Theorems 3 and 4 the new lower and upper bounds
for the ration ‖bi‖2/λ2

i . We prove these bounds in Section 3. In Section 4 we
apply block Korkin–Zolotarev bases to the problem of finding approximate
nearest lattice points. In Section 5 we prove that the upper bound ‖b1‖2 ≤(

3
2

)m−1
2
−1

λ2
1 is optimal for block Korkin–Zolotarev bases of block size 3.

We present block Korkin–Zolotarev bases for which this bound is tight.

2 Reduced Bases and Successive Minima

Let IRn be the n–dimensional real vector space with the Euclidean inner
product < , > and the Euclidean norm, called the length, ‖y‖ = 〈y, y〉1/2.
A lattice L ⊂ IRn is a discrete, additive subgroup of the IRm. Its rank is the
dimension of the minimal subspace span(L) that contains L. Each lattice
L of rank m has a basis, i.e. a sequence b1, . . . , bm of linearly independent
vectors that generate L as an abelian group,

L = {t1b1 + . . . + tmbm | t1, . . . , tm ∈ ZZ}.
Let L(b1, . . . , bm) denote the lattice with basis b1, . . . , bm. Its determinant
d(L) is defined as

d(L) = det[〈bi, bj〉]1/2
1≤i,j≤m.
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This does not depend on the choice of the basis. The i–th successive mini-
mum λi(L) of a lattice L (with respect to the Euclidean norm) is the small-
est real number r such that there are i linearly independent vectors in L of
length at most r.

With an ordered lattice basis b1, . . . , bm ∈ IRn we associate the Gram–
Schmidt orthogonalization b̂1, . . . , b̂m ∈ IRn which can be computed together
with the Gram–Schmidt coefficients µi,j = 〈bi, b̂j〉 / 〈b̂j , b̂j〉 by the recursion

b̂1 = b1, b̂i = bi −
i−1∑

j=1

µi,j b̂j for i = 2, . . . ,m.

We have µi,i = 1 and µi,j = 0 for i < j. From the above equations we have
the Gram–Schmidt decomposition

[b1, . . . , bm] = [b̂1, . . . , b̂m] [µi,j ]>1≤i,j≤m,

where [b1, . . . , bm] denotes the matrix with column vectors b1, . . . , bm.
With an ordered lattice basis b1, . . . , bm of the lattice L we associate the

orthogonal projections

πi : span(b1, . . . , bm) 7→ span(b1, . . . , bi−1)⊥ i = 1, . . . , m ,

where span(b1, . . . , bm) denotes the linear space generated by the vectors
b1, . . . , bm. We let Li denote the lattice

Li = πi(L) .

The lattice Li has rank m− i + 1 and basis πi(bi), πi(bi+1), . . . , πi(bm). We
have πi(bi) = b̂i and πi(bj) =

∑m
k=i µj,kb̂k.

An ordered basis b1, . . . , bm of the lattice L ⊂ IRn is a Korkin–Zolotarev
basis if it satisfies the conditions

|µi,j | ≤ 1/2 for 1 ≤ j < i ≤ m, (1)

‖b̂i‖ = λ1(Li) for i = 1, . . . ,m. (2)

This definition is equivalent to the one given, in the language of quadratic
forms, by Hermite in his second letter to Jacobi (1845) and by Korkin and
Zolotarev (1873).

Let b1, . . . , bm be an ordered basis of the lattice L ⊂ IRn. We call the
basis b1, . . . , bm an β–BKZ basis, i.e. a block Korkin–Zolotarev basis with
block size β, if it satisfies (1) and

πi(bi), πi(bi+1), . . . , πi(bi+β−1) are Korkin–Zolotarev bases for
i = 1, . . . , m− β + 1. (3)
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The condition (3) means that for i = 1, . . . , m − 1 the vector b̂i = πi(bi)
is a shortest non–zero vector in the lattice πi(L(b1, . . . , bmin(i+β−1,m))) =
L(πi(bi), . . . , πi(bmin(i+β−1,m))). If (1) holds and if β = 2 the condition (3)
is equivalent to

‖b̂i‖2 ≤ ‖πi(bi+1)‖2 = ‖b̂i+1‖2 + µ2
i+1,i‖b̂i‖2 for i = 1, . . . , m− 1. (4)

We see that a basis b1, . . . , bm is 2 - BKZ iff it satisfies (1) and (4). These
bases have been introduced by A.K. Lenstra, H.W. Lenstra, Jr. and
Lovász (1982). We call a basis b1, . . . , bm L3-reduced with δ ∈ (1

4 , 1] if it
satisfies (1) and

δ‖b̂i‖2 ≤ ‖b̂i+1‖2 + µ2
i+1,i‖b̂i‖2 for i = 1, . . . ,m− 1. (5)

Lenstra et alii (1983) have in particular considered δ = 3/4. From their
work we have the following

Theorem 1 Every basis b1, . . . , bm of lattice L that is L3–reduced with δ ∈
(1
4 , 1] satisfies with α = 1/(δ − 1

4):

α1−i ≤ ‖b̂i‖2λi(L)−2 ≤ ‖bi‖2λi(L)−2 ≤ αm−1 for i = 1, . . . ,m.

In the limit case δ = 1 we have α = 4/3, and thus every 2 - BKZ basis
b1, . . . , bm of lattice L satisfies for i = 1, . . . , m

(
3
4

)i−1

≤ ‖b̂i‖2λi(L)−2 ≤ ‖bi‖2λi(L)−2 ≤
(

4
3

)m−1

. (6)

A β–BKZ basis b1, . . . , bm with maximal block size β = m is a Korkin–
Zolotarev basis. For these bases we have the following bounds on ‖bi‖2λ−2

i ,
where the upper bound is essentially due to Mahler (1938) and the lower
bound is from Lagarias, H.W. Lenstra, Jr., Schnorr (1990).

Theorem 2 Every Korkin–Zolotarev basis b1, . . . , bm of lattice L satisfies
4

i+3 ≤ ‖bi‖2λi(L)−2 ≤ i+3
4 for i = 1, . . . ,m.

We are going to extend Theorems 1 and 2 to arbitrary β–BKZ bases.
For this we use the Hermite constants γm which is defined as

γm = sup{λ1(L)2d(L)−2/m : for lattices L of rankm}.
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Its value is known for m ≤ 8, see Cassels (1971), Appendix. We have
γ2

2 = 4
3 , γ3

3 = 2, γ4
4 = 4, γ5

5 = 8, γ6
6 = 26/3, γ7

7 = 26, γ8
8 = 28. It is known

that γm ≤ 2
3m for m ≥ 2 and

m

2πe
+ O(m) ≤ γm ≤ 0.872m

πe
(1 + o(1)) as m →∞,

where the upper bound is due to Kabatyanskii and Levenshtein (1978)
and the lower bound follows from the Minkowski–Hlawka theorem, see Cas-
sels (1971), VI. 2.2. Theorems 3 and 4 below will be proved in Section 2.

Theorem 3 Every β-BKZ basis b1, . . . , bm of lattice L satisfies

‖b̂i‖2λi(L)−2 ≤ γ
2m−i

β−1

β for i = 1, . . . ,m

‖bi‖2λi(L)−2 ≤ γ
2m−1

β−1

β

i + 3
4

for i = 1, . . . , m.

Theorem 3 improves and extends the inequality ‖b1‖2 ≤ (6β2)
m
β λ1(L)2

of Schnorr (1987). In particular we have for β = 2, γ2
2 = 4

3 that

‖b̂i‖2λi(L)−2 ≤
(

4
3

)m−i

for i = 1, . . . ,m

‖bi‖2λi(L)−2 ≤
(

4
3

)m−1 i + 3
4

for i = 1, . . . ,m

which is almost the upper bound of (6). It is remarkable that if the block
size β is a fixed fraction of the rank, i.e. if m/β is fixed, then the upper
bounds of Theorem 3 are polynomial in β.

We next consider lower bounds for ‖bi‖2λi(L)−2, i.e. upper bounds for
λi(L)2‖bi‖−2.

Theorem 4 Every β-BKZ basis b1, . . . , bm of lattice L satisfies

λi(L)2‖bi‖−2 ≤ γ
2 i−1

β−1

β

i + 3
4

for i = 1, . . . , m.

For i ≤ β the bounds of Theorems 3 and 4 can be replaced by the
stronger bounds of Theorem 2.

If the block size β is a fixed fraction of the rank m the upper bounds in
Theorem 4 are polynomial in β. For block size β = 2, γ2

β = 4
3 Theorem 4

yields
(

4
3

)i−1 i + 3
4

≤ ‖b̂i‖2λi(L)2 for i = 1, . . . , m

which is almost the lower bound from (6).
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The values γ
2

β−1

β , appearing in Theorems 3 and 4, are known for β =
2, . . . , 8 :

β 2 3 4 5 6 7 8

γ
2

β−1

β
4
3 21/3 21/3 2

3
10 2

2
5 3−

1
15 22/7 21/4

≈ 1.333 1.260 1.260 1.231 1.226 1.219 1.189

It is interesting to find the minimal constants cβ,m for which

‖b1‖2 λ1(L)−2 ≤ cβ,m

holds for all β–BKZ bases b1, . . . , bm of rank m. Bachem and Kannan

(1984) show that c2,m =
(

4
3

)m−1
. We prove in Section 5 that c3,m =

√
3
2

m−3

holds for odd m. Thus the upper bounds from Theorem 3 are not optimal

for β ≥ 3. For β = 3 we can replace γ
2

β−1

β = 21/3 by
√

3/2 ≈ 1.225 which is

even smaller than the value γ
2
5
6 for 6–BKZ bases.

3 Proofs for Theorems 3 and 4.

Proposition 5 For every β–BKZ basis b1, . . . , bm with m ≥ β we have for

M = max(‖b̂m−β+2‖, . . . , ‖b̂m‖) that ‖b1‖ ≤ γ
m−1
β−1

β M .

Proof. We extend the basis b1, . . . , bm by β − 2 additional vectors to

b−β+3, . . . , b−1, b0, b1, . . . , bm (7)

such that
1. ‖bi‖ = ‖b1‖ for i ≤ 0
2. 〈bi, bj〉 = 0 for i ≤ 0 , i 6= j and for j = −β + 3, . . . , m.
The basis 7 is a β–BKZ basis of rank at least 2(β − 1). By definition of the
Hermite constant γβ we have

‖b̂i‖β ≤ γ
β/2
β ‖b̂i‖‖b̂i+1‖ · · · ‖b̂i+β−1‖ for i = −β + 3, . . . , m− β + 1.

Multiplication of these m− 1 inequalities yields

‖b̂−β+3‖β‖b̂−β+4‖β · · · ‖b̂m−β+1‖β ≤
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γ
β(m−1)/2
β ‖b̂−β+3‖1‖b̂−β+4‖2 · · · ‖b̂1‖β−1‖b̂2‖β · · · ‖b̂m−β+1‖β

‖b̂m−β+2‖β−1 · · · ‖b̂m−1‖2‖b̂m‖1.

This implies

‖b̂−β+3‖β−1‖b̂−β+4‖β−2 · · · ‖b̂0‖2 ‖b̂1‖1 ≤

γ
β(m−1)/2
β ‖b̂m−β+2‖β−1 · · · ‖b̂m−1‖2‖b̂m‖1.

Hence

‖b1‖(
β
2 ) ≤ γ

β(m−1)/2
β M(β

2 ) and thus ‖b1‖ ≤ γ
m−1
β−1

β M. 2

Corollary 6 Every β-BKZ basis b1, . . . , bm of the lattice L satisfies

‖b1‖2 ≤ γ
2m−1

β−1

β

i + 3
4

λ1(L)2 .

Proof. If m ≤ β we have ‖b1‖ = λ1(L) and the claim holds. Now let
m > β and let v be a shortest non–zero lattice vector. W.l.o.g. we can
assume that v 6∈ L(b1, . . . , bm−1) for otherwise we can reduce m and the
claim holds by induction on m. If v 6∈ L(b1, . . . , bm−1) we have

λ1(L) = ‖v‖ ≥ λ1(Li) = ‖b̂i‖ for i = m− β + 1, . . . , m.

This shows that λ1(L) ≥ max(‖b̂m−β+2‖, . . . , ‖b̂m‖) and thus the claim fol-
lows from Proposition 5. 2

Proof of Theorem 3. Application of Corollary 6 to the lattice Li = πi(L)
yields the inequalities

‖b̂i‖2 ≤ γ
2m−i

β−1

β λ1(Li)2 for i = 1, . . . ,m. (8)

Moreover we have λ1(Li) ≤ λi(L). This is because there are i linearly
independent vectors of length at most λi(L) in L and at least one of these
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vectors v satisfies πi(v) 6= 0. Hence λ1(Li) ≤ ‖πi(v)‖ ≤ λi(L). Using the
Inequalities 8 and µ2

i,j ≤ 1/4 we obtain for i = 1, . . . , m

‖bi‖2 = ‖b̂i‖2 +
i−1∑

j=1

µ2
i,j ‖b̂j‖2

≤ γ
2 m−i

β−1

β λi(L)2 +
1
4

i−1∑

j=1

γ
2 m−j

β−1

β λj(L)2

≤ γ
2m
β−1

β


γ

2 −i
β−1

β +
1
4

i−1∑

j=1

γ
2 −j

β−1

β


 λi(L)2

≤ γ
2m−1

β−1

β

i + 3
4

λi(L)2 .

This proves the second inequalities of Theorem 3. The first inequalities in
Theorem 3 follows from 8 and λ1(Li) ≤ λi(L). 2

Proof of Theorem 4. By definition of λi = λi(L) we have

λ2
i ≤ max{‖bj‖2 for j = 1, . . . , i} .

It follows from ‖bj‖2 ≤ ‖b̂j‖2 +
∑j−1

k=1 µ2
j,k‖b̂k‖2 that

λ2
i ≤

i + 3
4

max{‖b̂j‖2 for j = 1, . . . , i} . (9)

Proposition 5 applied to the β–BKZ basis πj(bj), . . . , πj(bi) yields the in-
equalities

‖b̂j‖ ≤ γ
i−j
β−1

β max{‖b̂i−β+2‖, . . . , ‖b̂i‖} for 1 ≤ j ≤ i− β + 1 (10)

For i− β + 2 ≤ j ≤ i we have that

‖b̂j‖ ≤ ‖πj(bi)‖ ≤ ‖bi‖ .

From this and 10 we see that

‖b̂j‖ ≤ γ
i−j
β−1

β ‖bi‖ for 1 ≤ j ≤ i .

These inequalities and 9 prove Theorem 4:

λ2
i ≤

i + 3
4

γ
2 i−1

β−1

β ‖bi‖2 for i = 1, . . . , m . 2
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4 Approximate nearest lattice points

Babai (1986) shows how Lovász lattice reduction can be used to find a point
of a given lattice L, nearest within a factor 2m/2 to a given point in span(L).
Babai poses the question whether the factor 2m/2 can be improved using
block Korkin–Zolotarev bases. We answer this question in the affirmative.

We let αβ denote the maximum of ‖b1‖2/‖b̂β‖2 over all Korkin–Zolotarev
bases b1, . . . , bβ. The inequality αβ ≤ β1+ln β has been shown in Schnorr
(1987).

Theorem 7 Let b1, . . . , bm ∈ ZZn be a β–BKZ basis of lattice L and x =∑m
i=1 xibi an arbitrary point in span(b1, . . . , bm). Then the lattice point

v =
∑m

j=1 vjbj, where vj = dxj −
∑m

i=j+1 viµi,jc, satisfies

‖x− v‖2 ≤ Cm,β min
u∈L

‖x− u‖2 , where Cm,β = m γ
2m−1

β−1

β αβ−1 .

Proof The definition of v implies that

‖x− v‖2 ≤ (‖b̂1‖2 + · · ·+ ‖b̂m‖2)/4 .

From Proposition 5 we have the inequality

‖b̂i‖2 ≤ γ
2 m−i

β−1

β max(‖b̂m−β+2‖2, . . . , ‖b̂m‖2) for 1 ≤ i ≤ m− β + 1 .

This yields

‖x− v‖2 ≤ 1
4

m∑

j=1

γ
2 j−1

β−1

β max(‖b̂m−β+2‖2, . . . , ‖b̂m‖2)

≤ 1
4

m∑

j=1

γ
2 j−1

β−1

β αβ−1 ‖b̂m‖2

≤ m

4
γ

2m−1
β−1

β αβ−1 ‖b̂m‖2 . (11)

Let u ∈ L be the lattice point that is nearest to x. Following Babai we
consider two cases.

CASE a: u− v ∈ L(b1, . . . , bm−1). Then u− v is a nearest lattice point to
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x′− v in L(b1, . . . , bm−1) where x′ ∈ span(b1, . . . , bm−1) is the orthogonal
projection of x. Consequently we have by induction on m

‖x− v‖2 = ‖x− x′‖2 + ‖x′ − v‖2

≤ (1 + Cm−1,β) ‖x− u‖2

≤ Cm,β ‖x− u‖2

CASE b: u− v 6∈ L(b1, . . . , bm−1). In this case we have

‖x− u‖2 ≥ ‖b̂m‖2/4.

Hence we have from 11 that

‖x− v‖2 ≤ m

4
γ

2m−1
β−1

β αβ−1 4 ‖x− u‖2

≤ Cm,β ‖x− u‖2 . 2

We finally reduce with a different construction for v the constant Cm,β

of Theorem 7 to mγ
2m−1

β−1

β . The improved constant mγ
2m−1

β−1

β is polynomial
in β if β is a fixed fraction of m.

Theorem 8 Let b1, . . . , bm ∈ ZZn be a β–BKZ basis and x =
∑m

i=1 xibi .
Suppose that ‖b̂k‖ = max(‖b̂m−β+1‖, . . . , ‖b̂m‖), m − k + 1 ≤ k ≤ m . Let
v =

∑m
i=1 vibi be a lattice point such that∑m

j=k |xj−
∑m

i=j viµi,j |2 ‖b̂i‖2 is minimal for all vk, . . . , vm ∈ ZZ and |xj−∑m
i=j viµi,j | ≤ 1

2 for j = k − 1, . . . , 1 . Then we have ‖x − v‖2 ≤
mγ

2m−1
β−1

β minu∈L ‖x− u‖2 .

Proof Let u ∈ L be the lattice point that is nearest to x.
CASE a: u− v ∈ L(b1, . . . , bm−1). Then u− v is a nearest lattice point to
x′− v in L(b1, . . . , bm−1) where x′ ∈ span(b1, . . . , bm−1) is the orthogonal
projection of x, x′ = x− πm−1(x). Induction on m yields

‖x− v‖2 = ‖x− x′‖2 + ‖x′ − v‖2

≤ (1 + (m− 1)γ
2 m−2

β−1

β ) ‖x− u‖2

≤ m γ
2m−1

β−1

β ‖x− u‖2 .

CASE b: u − v 6∈ L(b1, . . . , bm−1). It follows from the choice of v and k
that

‖x− u‖2 ≥ 1
4

λ1(Lk)2 ≥ 1
4

max( ‖b̂m−β+2‖2, . . . , ‖b̂m‖2) .
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As in the proof of Theorem 7 we have

‖x− v‖2 ≤ ( ‖b̂1‖2 + · · ·+ ‖b̂m‖2 ) / 4

≤ 1
4

m∑

j=1

γ
2 j−1

β−1

β max(‖b̂m−β+2‖2, . . . , ‖b̂m‖2) .

Consequently

‖x− v‖2 ≤
m∑

j=1

γ
2 j−1

β−1

β ‖x− u‖2

≤ m γ
2m−1

β−1

β ‖x− u‖2 . 2

Computational bounds. Computing a lattice vector v =
∑m

i=1 vibi

as in Theorem 7 can be done using the Nearest Vector Algorithm of
Kannan (1987). Given a β–BKZ basis b1, . . . , bm this algorithm enumer-
ates βO(β) many lattice vectors close to x and finds integers vm−β+1, . . . , vm

that minimize
∑m

j=m−β+1 |xj −
∑m

i=j viµi,j |2 ‖b̂i‖2. A β–BKZ basis can be
computed from an arbitrary basis b1, . . . , bm ∈ ZZn by the algorithm of
Schnorr (1987). This algorithm finds an “approximate” β–BKZ basis us-
ing O(nm(βO(β) + m2) log B) arithmetic operations on O(m log B) bit
integers where B is the maximal length of the given basis vectors. This
algorithm is theoretical.

For practical algorithms performing block Korkin–Zolotarev reduction see
Schnorr, Euchner (1991). The Schnorr, Euchner algorithm transforms
an arbitrary lattice basis into a δ–approximate β–BKZ basis, δ < 1, which
by definition satisfies for i = 1, . . . , m

δ ‖b̂i‖2 ≤ λ1(πiL(b1, . . . , bmin(i+β−1,m)))
2 .

The Schnorr, Euchner algorithm is not proven to be polynomial time, but
in practice its time bound appears to be O(nm(βO(β) + m2) log B). No
polynomial time algorithm is known for δ = 1, not even for β = 2.

5 Critical β–BKZ bases for block size 2 and 3

We call a β–BKZ basis b1, . . . , bm of the lattice L critical for β,m if the value
‖b1‖ / λ1(L) is maximal for all β–BKZ bases of rank m. Bachem and Kan-
nan (1984) present critical 2–BKZ bases b1, . . . , bm. We establish critical
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3–BKZ bases b1, . . . , bm. We evaluate the constant α3 = max ‖b1‖2 / ‖b̂3‖2,
where the maximum is taken over all Korkin–Zolotarev bases b1, b2, b3. We
prove α3 = 3

2 .
We describe a slight variant of the critical 2–BKZ bases of Bachem,

Kannan (1984). Let ρ =
√

3
4 . We define the basis matrix Am = [b1, . . . , bm] ∈

Mm,m(IR) by

Am =




1 1
2

ρ ρ/2 O

ρ2 ρ2/2
. . . . . .

. . . . . .

O ρm−2 ρm−2/2

ρm−1




(12)

The matrices Am satisfy the recursion

Am =




1 1
2 O
. . . . . . . . . . ....

O
... ρ ·Am−1...




.

Theorem 9 (Bachem, Kannan 1984) The column vectors of the matrix
Am form a critical 2–BKZ basis.

Proof. It can easily be seen that the vector bm is a shortest vector in
L(b1, . . . , bm)− L(b1, . . . , bm−1). We have

‖bm‖2 = ρ2m−4(ρ2 +
1
4
) = (

3
4
)m−2 .

It follows that bm is the shortest vector in the lattice L(b1, . . . , bm). Therefore
λ1 = λ1(L(b1, . . . , bm)) satisfies

‖b1‖2λ−2
1 =

(
4
3

)m−2

.

12



Now let b1, . . . , bm be an arbitrary 2–BKZ basis. Let v =
∑m

i=1 tibi be
a shortest non–zero lattice vector and µ = max{i | ti 6= 0}. Then λ1 =
λ1(L(b1, . . . , bm)) satisfies

λ2
1

1.≥ ‖πµ−1(v)‖2
2.≥ ‖b̂µ−1‖2

3.≥
(

3
4

)µ−2

‖b1‖2 .

1. holds since πµ−1(v) 6= 0, 2. holds since πµ−1(bµ−1) is minimal in the lat-
tice πµ−1L(bµ−1, bµ) which contains πµ−1(υ), 3. follows from the inequality
6. We now see that

‖b1‖2λ−2
1 ≤

(
4
3

)µ−2

≤
(

4
3

)m−2

.

This shows that the columns of the matrix 12 form a critical basis. 2

A sequence of 3–BKZ bases b1, . . . , bm. We define the basis matrices
Bm = [b1, . . . , bm] as follows.

B4 =




1
√

3
2 O

O
√

2
3

1√
2







1 −1
2

1
2

1
2

1 1
3

1
3

O 1 −1
2

1




=




1 −1
2

1
2

1
2√

3
2

1
2
√

3
1

2
√

3

O
√

2
3 −1

2

√
2
3

1√
2




(13)

The lattice L(4) = L(b1, . . . , b4) yields a lattice packing of maximal density,
i.e. λ1(L(4))2 det L(4)− 2

4 = γ4 =
√

2. Let B2, B3 denote the 2 × 2, 3 × 3–
matrix in the upper left corner of B4. For arbitrary m = 1, 2, . . . we define
the m×m matrix

Bm = diag(d1, . . . , dm) [µi,j ]>1≤i,j≤m

where diag(d1, . . . , dm) is the m×m diagonal matrix with positive diagonal
entries d1, . . . , dm and Mm = [µi,j ]>1≤i,j≤m is an upper diagonal matrix
with ones on the diagonal. It follows that the µi,j are the Gram–Schmidt

13



coefficients of the basis b1, . . . , bm consisting of the column vectors of Bm.
We define for i = 1, 2, . . .

d2i−1 =
√

2
3

i−1

, d2i =
√

3
2

, d2i−1

−µ2i,2i−1 = µ2i+1,2i−1 = µ2i+2,2i−1 =
1
2

, µ2i+k,2i−1 = 0 for k ≥ 3

µ2i+1,2i = µ2i+2,2i =
1
3

, µ2i+k,2i = 0 for k ≥ 3 .

The matrices Mm, Bm are upper triangular matrices with four non–zero
diagonals. They satisfy for m > 4 the following recursion

Mm =




1 −1
2

1
2

1
2 0 . . .

1 1
3

1
3 0 . . .

. . . . . . . . . . . ....
O

... Mm−2...




Bm =




1 −1
2

1
2

1
2 0 . . .

√
3

2
1

2
√

3
1

2
√

3
0 . . .

. . . . . . . . . . . . . . . . . . . ..........
O

...
√

2
3 Bm−2......




Let b1, . . . , bm be the column vectors of Bm, Bm = [b1, . . . , bm] and let
L(m) = L(b1, . . . , bm) be the lattice generated by b1, . . . , bm.

Theorem 10 The column vectors b1, . . . , bm of Bm form a 3–BKZ basis.

14



Proof. The vectors b1, . . . , b4 form a Korkin–Zolotarev basis since the
vector b̂i is minimal in πi(L(4) for i = 1, . . . , 4. The lattice L(4) yields the
lattice sphere packing E4, the lattice packing of maximal density for dimen-
sion 4, see Conway, Sloane (1988). We see from the recursive structure
of Bm = [bi,j ]1≤i,j≤m that

[bi,j ]2k+1≤i,j≤2k+5 =
(

2
3

)k/2

B4 for k = 0, . . . , b(m− 5)/2c .

This implies that the basis πi(bi), πi(bi+1), πi(bi+2) is Korkin–Zolotarev
for i = 1, . . . , m− 2. 2

We let L(k) denote the lattice that is generated by the column vectors
b1, . . . , bk of the matrix Bk.

Lemma 11 The basis b1, . . . , b2k+1 consisting of the column vectors of B2k+1

satisfies ‖b1‖ / λ1(L2k+1) =
√

3
2

k−1
for k = 1, 2, . . .

Proof. We have for k = 1, 2, 3, . . . that

‖b2k+1‖ =
√

2
3

k−1

= ‖b̂2k−1‖ .

Moreover b2k+1 is the shortest vector in L(b1, . . . , b2k+1)− L(b1, . . . , b2k−1).
This is because ‖b2k+1‖ = ‖b̂2k−1‖ and b1, . . . , b2k+1 is a 3–BKZ basis.

Applying the above property of b2k+1 inductively we see that the short-

est non–zero vector in L(2k+1) has length
√

2
3

k−1
which proves the claim.

2

In order to show that the basis b1, . . . , b2k+1 of lattice L(2k+1) is a
critical 3–BKZ basis we need an upper bound on ‖b1‖ / λ1(L) which holds
for all 3–BKZ bases of any lattice L. Let αβ be the lattice constant

αβ = max ‖b1‖2 / ‖b̂β‖2

where the maximum is taken over all Korkin–Zolotarev bases b1, . . . , bβ.
The following theorem improves the upper bound ‖b1‖2 λ1(L)−2 ≤ αk

β from
Schnorr (1987).

Theorem 12 Every β–BKZ basis b1, . . . , bm of lattice L for which k =
(m− 1)/(β − 1) is integer satisfies ‖b1‖2 λ1(L)−2 ≤ αk−1

β .
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Proof. Let v =
∑m

i=1 tibi be a shortest non–zero vector in L. We can
assume that v 6∈ L(b1, . . . , bm−β+1) since otherwise we can reduce k and
the induction hypothesis for k − 1 yields ‖b1‖2 λ1(L)−2 ≤ αk−2

β . From
v 6∈ L(b1, . . . , bm−β+1) we see that πm−β+1(v) 6= 0. Since
πm−β+1(bm−β+1), . . . , πm−β+1(bm) is a Korkin–Zolotarev basis we have

‖b̂m−β+1‖ ≤ ‖πm−β+1(v)‖ ≤ λ1(L) .

Moreover ‖b̂1+(β−1)(j−1)‖2 ≤ αβ ‖b̂1+(β−1)j‖2 holds for j = 1, . . . , k − 1
since the basis b1, . . . , bm is β–BKZ. Therefore

‖b1‖2 ≤ αk−1
β ‖b̂m−β+1‖2 ≤ αk−1

β λ1(L)2 . 2

Theorem 13 α3 = 3
2 , i.e. α

−1/2
3 is the height of the tetrahedron with

side length 1.

Proof. Let b1, b2, b3 be a Korkin–Zolotarev basis with ‖b1‖ = 1 and
minimal ‖b̂3‖, i.e. α3 = ‖b1‖2 ‖b̂3‖−2 = ‖b̂3‖−2. Consider the projection
µ3,1b1 + µ3,2b̂2 of b3 in span (b1, b2). We claim that µ3,1b1 + µ3,2b̂2 must
be a “deep hole” for the lattice L(b1, b2), i.e. a point that has maximal
distance from the lattice points. If µ3,1b1 +µ3,2b̂2 is not a deep hole for the
lattice L(b1, b2) we can change µ3,1, µ3,2 such that the minimal distance
of µ3,1b1 + µ3,2b̂2 from L(b1, b2) increases. This permits to decrease ‖b̂3‖
without violating the properties of Korkin–Zolotarev bases.

There are at most two deep holes in the ground mesh of the basis b1, b2,
namely the points that have equal distance to 0, b1, b2 (b1, b2, b1 + b2, re-
spectively).

¢
¢
¢
¢
¢
¢
¢
¢
¢
¢
¢¢

C
C
C
C
C
C
C
C
C
C
CC

¢
¢
¢
¢
¢
¢
¢
¢
¢
¢
¢¢

◦

◦

0 b1

b2 b1 + b2
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deep holes ◦ in the ground mesh

W.l.o.g. we can assume that µ3,1b1 + µ3,2b̂2 has equal distance from 0, b1

and b2. It follows from ‖b2‖2 = µ2
2,1 + ‖b̂2‖2 ≥ ‖b1‖2 = 1, |µ2,1| ≤ 1

2 that

‖b̂2‖ ≥
√

3
2

. (14)

Let ‖b̂2‖ =
√

3
2 + ε with ε ≥ 0. We have

‖µ3,2b̂2‖ =
√

3
6

if ε = 0

‖µ3,2b̂2‖ ≤
√

3
6

+ ε for ε ≥ 0 .

(15)

This is because ε = 0 implies that ‖b1‖ = ‖b2‖ = ‖b1 − b2‖ = 1 and
thus µ3,1b1 + µ3,2b̂2 = b1+b2

3 . Moreover the b̂2–coordinate of the deep
hole µ3,1b1 + µ3,2b̂2 does not increase faster in ε than ‖b̂2‖. We see from
‖π2(b3)‖ ≥ ‖b̂2‖ that ‖b̂3‖2 + µ2

3,2‖b̂2‖2 ≥ ‖b̂2‖2, and thus

‖b̂3‖2 ≥ ‖b̂2‖2 − µ3,2‖b̂2‖2

15,16
≥

(√
3

2
+ ε

)2

−
(√

3
6

+ ε

)2

≥ 3
4
− 1

12
=

2
3

holds for the basis matrix B3 = [b1, b2, b3]. This proves that α3 = 3
2 . 2

Theorem 14 The lattice basis b1, . . . , b2k+1 defined by the basis matrix
B2k+1 is a critical 3–BKZ basis.

Proof. Lemma 11 shows that ‖b1‖ / λ1(L(2k+1)) =
√

3
2

k−1
. On the other

hand every 3–BKZ basis b′1, . . . , b′2k+1 of lattice L satisfies ‖b′1‖ / λ1(L) ≤√
α3

k−1 by Theorem 12, where α3 = 3
2 by Theorem 13. This shows that

‖b1‖ / λ1(L(2k+1)) is maximal for 3–BKZ bases of rank 2k + 1. 2
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1845. J. Reine Angew. Math. 40 (1850), 279–290.

[8] R. Kannan: Minkowski’s convex body theorem and integer program-
ming. Math. Oper. Res. 12 (1987), 415–440.

[9] A. Korkine, and G. Zolotareff: Sur les formes quadratiques.
Math. Ann. 6 (1873), 366–389.

[10] J.C. Lagarias, H.W. Lenstra, Jr., and C.P. Schnorr: Korkin–
Zolotarev bases and successive minima of a lattice and its reciprocal
lattice. Combinatorica, 10 (1990), 333–348.

[11] J.L. Lagrange: Recherches d’arithmétique, Nouv. Mém. Acad.
Berlin (1773), 265–312. Œvres, vol. VIII, 693–753.

[12] A.K. Lenstra, H.W. Lenstra, Jr., and L. Lovász: Factoring
polynomials with rational coefficients. Math. Ann. 261 (1982), 515–
534.

[13] H.W. Lenstra, Jr.: Integer programming with a fixed number of
variables. Math. Oper. Res. 8 (1983), 538–548.

18



[14] L. Lovász: An algorithmic theory of numbers, graphs and convexity.
CBMS–NSF Regional Conference Series in Applied Mathematics 50,
SIAM, Philadelphia, Pennsylvania, 1986.

[15] K. Mahler: A theorem on inhomogeneous diophantine inequalities.
Nederl. Akad. Wetensch., Proc. 41 (1938), 634–637.

[16] C.P. Schnorr: A hierarchy of polynomial time lattice basis reduction
algorithms. Theoret. Comput. Sci. 53 (1987), 201–224.

[17] C.P. Schnorr and M. Euchner: Lattice basis reduction: improved
algorithms and solving subset sum problems. Proceedings of Funda-
mentals of Computation Theory, FCT’91, Ed. L. Budach, Springer
LNCS 529, (1991), pp. 68–85.

19


