
Bachelor’s Thesis

Automatic Layout
Generation for Flow-Based

Visual Programming
Environments

by

Tobias Mertz

Supervisor:
Prof. Dr. Gabriel Wittum

Michael Hoffer

Goethe Center for Scientific Computing (G-CSC)
Goethe University Frankfurt am Main

August 14, 2016

Declaration of Authorship

I hereby formally declare that the contents of this thesis were written by myself
without the use of any sources other than those references within the attached
bibliography. This thesis has not been submitted or published anywhere else in
this or any other form.

Tobias Mertz; August 14, 2016; Frankfurt a. M.

i

Abstract

To accommodate the growth of the software industry, programming languages
are getting increasingly easy to use. The latest trend in the simplification of
the software development process is the usage of visual programming environ-
ments. To make visual programming effective, the graph-like representation of
the source code must be clearly arranged. This thesis details some of the diffi-
culties in automatic layout generation and proposes an interface as well as two
different implementations of automatic layout generators to integrate into the
VWorkflows visual programming framework.

Keywords: Java, Visual, Programming, Graph, Layout, JUNG

iii

List of Figures
3.1 Result of the JUNG DAG Layout on the Simple Example Graph. 8
3.2 Result of the JUNG KK Layout on the Simple Example Graph. . 9
3.3 Result of the JUNG FR Layout on the Simple Example Graph. . 11
3.4 Result of the JUNG ISOM Layout on the Simple Example Graph. 12
4.1 Result of the Final Naive Algorithm on the Simple Example Graph. 19
4.2 Projection of a Distance Vector onto the General Flow Direction. 24
4.3 Semantics behind the Results for the Displacement Factor φ. . . 25
4.4 Results of the Smart Algorithm after each Step. 29
4.5 Result of the Final Smart Algorithm on the Simple Example Graph. 33
5.1 Symmetric and Planar drawings of a graph. Source:[12] 35
5.2 Percental Test Results of Phase I 36
5.3 Percental Test Results of Phase II 37
5.4 Example Result for Phase II test ’MainWithForAndMore’. 38
5.5 Comparison of Naive (Orange) and Smart (Light Gray) Results

for Testcase ’Sizes3’. 39
5.6 Comparison of Naive (Orange) and Smart (Light Gray) Results

for Testcase ’MainWithForAndMore’. 39
5.7 Example Result of the Naive Algorithm with a Very Unnecessary

Edge Crossing. 40
6.1 Comparison of Smart Results with (Orange) and without (Light

Gray) JUNG Layout. 42

List of Tables
5.1 Test Results and Variances in Phase II 37
B.1 Phase I Test Results of the Smart Algorithm 51
B.2 Phase I Test Results of the Naive Algorithm 51
B.3 Phase II Test Results of the Smart Algorithm 52
B.4 Phase II Test Results of the Naive Algorithm 52

iv

List of Listings
4.1 Step 1 of the Naive Algorithm. 15
4.2 Step 2 of the Naive Algorithm . 15
4.3 Step 3 of the Naive Algorithm . 16
4.4 The Cycle Removal Algorithm 17
4.5 Step 1 of the Smart Algorithm 21
4.6 Width of the Longest Path . 22
4.7 Step 3 of the Smart Algorithm 26
4.8 Step 4 of the Smart Algorithm 27
4.9 Calculation of the Desired Node Distance 28

v

Contents

Declaration of Authorship i

Abstract iii

1 Introduction 1

2 The Problem 2
2.1 Criteria in Layout Quality Assessment 2
2.2 Definitions . 3

3 Technological Background 5
3.1 VWorkflows . 5
3.2 The Java Universal Network/Graph Framework 6

4 Implementation 13
4.1 The LayoutGenerator Interface 13
4.2 The Naive Layout Generator . 14
4.3 The Smart Layout Generator . 19

5 Evaluation 34
5.1 Methodology . 34
5.2 Test Phase I - General Graphs 35
5.3 Test Phase II - VRL Graphs . 36
5.4 Discussion . 38

6 Horizon 41
6.1 LayoutGeneratorNaive . 41
6.2 LayoutGeneratorSmart . 41

7 Conclusion 43

A Fields and Methods 46
A.1 LayoutGeneratorNaive . 46
A.2 LayoutGeneratorSmart . 47

B Testresults 51

C Glossary 53

D List of CD Contents 54

vii

1 Introduction

With the steady evolution of computer technology, computers become increas-
ingly small and powerful. This enables programmers to implement ever more
complex programs on a constantly growing field of applications. As programs
get more complex and the underlying source code gets larger, projects can be-
come more and more confusing for the programmers working on them, especially
for those joining a development in progress. To familiarize themselves with the
code, before continuing development, programmers require time. In a market
with an ever increasing demand for software, this time is difficult to allocate.
This is why large software development companies often work on their own de-
velopment tools, to further abstract code and fit the code itself to their special
requirements. This lowers the amount of time required to understand the code
and, therefore, increases productivity. Examples of this procedure are Mozilla’s
Rust [1] and Google’s Go [2].
The first example of the further abstraction of source code to simplify software
development was in the transition from assembly based programming to the
widespread usage of higher level programming languages such as Java. The
next step in this evolution could be the utilization of visual programming lan-
guages.

One such visual programming language is the Visual Reflection Library
(VRL) introduced by Hoffer et al. in [3]. The VRL can be used to auto-
matically create a graph-like view of the structure of a Groovy program. In
this view dataflow and controlflow can be displayed as edges in the graph, while
functions and variables are displayed as vertices. This enables programmers to
more easily understand the process flow of a program, even if it was designed
by someone else. Also, significant changes to the program can easily be im-
plemented through changes in control- or dataflow edges. These advantages
of visual programming languages can, however, only be effective if the graph
is neatly arranged, so that individual structures within the graph are clearly
visible and, therefore, easy to understand.

The environment designed at the Goethe Center for Scientific Computing
to be used for the development in VRL is the VRL-Studio [4], which, in turn,
uses the VWorkflows framework [5], which was also developed by Hoffer, for its
graph model interaction and visualization features.

The task of this thesis is the development of an interface as well as two dif-
ferent implementations for automatic layout generation algorithms to integrate
into the VWorkflows framework, so they can be used by the VRL-Studio and
other VWorkflows based applications.

1

2 The Problem

2.1 Criteria in Layout Quality Assessment

The underlying problem of this task is the calculation of an aesthetically pleasing
layout for any directed graph. This problem is hard to formally define, since
the aesthetically pleasing nature of a graph layout is highly subjective.
When reading various papers of the field, such as [6], [7] or [8], one recognizes
a few key attributes that are frequently used to compare graph layouts. While
many aspects of layouts are still left to the personal preference of the observer,
these attributes highlight certain common features among layouts that are often
classified as aesthetically pleasing. These features are:

• The layout must contain a minimal number of edge crossings.

• The layout must uniformly distribute vertices in the available space.

• The layout must represent symmetric structures within the graph sym-
metrically.

These features are often considered to be of substantial importance when trying
to optimize a graph layout for clarity. In the special scenario of graph layouts
on visualized programming code, there are, however, some additional challenges
and features to consider. While vertices in traditional graphs are just points,
which can be displayed as any shape of any arbitrary scale, vertices in program
flow graphs have contents. These contents can be values in the case of vertices
representing variables or they can be whole other program flow graphs if the
vertex in question is representing a function.

This implies that vertices in program flow graphs have to be scaled appro-
priately in regards to their contents. That, however, causes different vertices
to have different sizes, which can not be arbitrarily scaled to fit the available
coordinate space. As a consequence, the arrangement of vertices of varying sizes
using traditional layout algorithms without modification can easily lead to over-
laps between those vertices. These overlaps must be avoided, since they prevent
the contents of those vertices from being read clearly and the edges between
them from being visible.

Another important aspect to keep in mind when creating a layout for a pro-
gram flow graph is that the graph represents a flow, for example a controlflow.
The word flow typically describes a physical movement, which implies a repre-
sentation as a vector with a certain length and a certain direction. This vector

2

can be partitioned into several partial vectors, which are represented as the
edges in the graph. This means, however, that all edges of a program flow
graph together amount to the overall flow vector of the program.

To make it easier for the observer to orient themselves within the program
flow and to determine the overall flow vector of the program, all edges in the
graph should have a direction similar to the direction of the overall flow vector.
Progressing further through this thesis, the direction of the overall flow vector
will be referred to as the general flow direction.

It is because of these reasons that the application of graph layouts on pro-
gram flow graphs has more criteria to consider than on general graphs. The
three additional important features to be extracted out of these problems are:

• The layout must scale vertices according to their contents.

• The layout must contain a minimal amount of overlap between vertices.

• The layout must abide by a constant general flow direction.

These six features will be the criteria used to determine the quality of layouts
throughout this thesis.

2.2 Definitions

For future clarity, some terms used throughout this thesis need to be defined
formally:

graph In this thesis, the term graph refers to directed graphs if not explicitly
stated otherwise. Therefore, a graph G is a tuple (V,E) consisting of two
sets V and E. V is a set of n vertices vi while E is a set of m two-
tuples (vi, vj) with vi, vj ∈ V representing directed edges pointing from
the vertex vi to vj .

The terms vertex and node as well as the terms edge and connection will be
used synonymously.

origin Origin nodes are all nodes within the graph, which have an in-degree of
zero, meaning they do not have any predecessors.

Furthermore the terms in front and behind are used throughout this thesis
referring to the positioning of vertices relative to each other:

in front The term in front in this context means if vertex vi is in front of
vertex vj , then vi has a smaller coordinate on the axis of the general flow
direction, so that an edge from vi to vj runs in the general flow direction.

behind Analogous to that, the term behind describes the opposite arrangement
of the nodes vi and vj whereby an edge from vi to vj runs against the
general flow direction if vi is behind vj .

3

Since functions in visual programming environments like VRL-Studio are
displayed as program flows, function calls within programs are displayed as
nodes, which contain another program flow. Consequently the term subflow
needs to be defined.

subflow A subflow is a program flow, that is contained within a node of another
program flow.

subflow node The nodes containing a subflow will be called subflow nodes for
the remainder of this thesis. For future clarity it is important to make the
distinction between subflow nodes, which are nodes that contain a subflow,
and the nodes of a subflow, which are regular nodes contained within a
subflow.

4

3 Technological Background

3.1 VWorkflows

The VWorkflows framework is an interface based library that provides the nec-
essary graph modeling functionality to implement a flow based visual program-
ming environment. The library itself is implemented in Java and uses JavaFX
for its visual components. Since the project in its entirety is too large and
complex to be explained in full in this section, only the parts necessary to the
understanding of this thesis will be explained.
Flow based programming is based on the visualization of the flow of a program
in the form of a graph. Graphs consist of nodes and edges. These different
graph objects are provided by the VWorkflows library through the following
interfaces:

3.1.1 VFlowModel

The VFlowModel interface is an extension of the FlowModel interface and is used
to model a general workflow graph. A basic implementation of the VFlowModel

interface is given by the VFlowModelImpl class.
Each VFlowModel object provides the functionality to create nodes and edges
within the graph as well as gather lists of the already existing nodes and edges.
The FlowModel interface also provides the method connect(), which takes two
Connectors and connects them using a newly created Connection.
The VFlowModel interface is, however, also an extension of the VNode interface,
which means that every graph can also be displayed as a node containing this
graph.
Each VFlowModel, therefore, has the attribute depth. The depth of a VFlowModel
describes the hierarchical position of the graph within the entirety of the project.
The highest level flow graph (also called root flow) has a depth of zero, while
each subflow of a certain graph always has a depth of one larger than its parent
flow.

3.1.2 VNode

The VNode interface describes a general node of the graph. An implementation
is provided in the VNodeImpl class. Each VNode has certain attributes that
can be accessed through individual getter and setter methods. These attributes
include: a unique id, x- and y-coordinates, width, height and a list of output-
as well as a list of input-Connectors.

5

3.1.3 Connector

These Connectors are given by the Connector interface and the ConnectorImpl
class. They represent the slots on each VNode that Connections can be attached
to.
Each Connector can be connected to other Connectors of the same type through
the connect() method of the FlowModel interface and each Connector can re-
turn the VNode it is attached to.

3.1.4 Connection

The template for the implementation of graph edges is provided by the interface
Connection with its basic implementation in the ConnectionBase class. Each
Connection has a sender and receiver of type Connector as attribute, as well
as a unique id and a type, which are both String arguments.
Through the remainder of this thesis the terms sender and receiver will, how-
ever, for the sake of simplicity not refer to the individual Connector objects,
but the VNodes they are attached to.

3.2 The Java Universal Network/Graph Frame-
work

The Java Universal Network/Graph Framework [9] (or JUNG for short) imple-
ments a wide array of functionality to draw and display different types of data
visualizations in Java. This includes graph visualization as well as graph layout
generation, which is why some of JUNG’s algorithms were used in the creation
of this thesis.
The library provides a lot of content, of which only a small subset is used.
Therefore, this section will be limited to the explanation of the important used
classes and functions.

3.2.1 DirectedGraph

The library contains a DirectedGraph interface, which is an extension of the
Graph interface. An implementation of the DirectedGraph can be found in
the class DirectedSparseGraph. This class can be used to model a directed
graph using node and edge objects. The interface uses Java generics to set the
types of these node and edge objects on declaration. Furthermore, the interface
declares methods to add nodes and return the already existing nodes in a list.
The predecessors and successors of certain nodes as well as their amount can
also be returned. Edges can be added, removed, returned and counted. Also,
the graph object can return lists of all incident edges to a certain node or of all
edges that connect two nodes directly.

3.2.2 Pair

In some methods, data must be arranged as tuples. Luckily the JUNG library
provides a simple implementation of a tuple with two components of the same

6

type in the class Pair. The class uses Java generics to set the type of the
components on declaration. The components can be written in the constructor
of the class and can later be accessed through the methods getFirst() and
getSecond().

3.2.3 Layout

The JUNG library also provides a Layout interface with many different imple-
mentations. Each layout can be instantiated and then applied to a graph. The
interface uses Java generics to declare the type of vertices and edges within the
graph, analogous to the Graph interface. To apply the Layout to a Graph, the
generic type declaration of the Graph object must, therefore, coincide with the
types declared for the Layout object. The coordinates of a certain vertex of the
graph can then be extracted through the use of the transform() method of the
Layout object, which takes a vertex of the generic type as argument.

The layouts that were applicable to DirectedGraph objects and also seem to
provide helpful functionality are:

1. Directed Acyclic Graph Layout (DAG layout)

2. Kamada and Kawai Layout (KK layout)

3. Fruchterman Reingold Layout (FR layout)

4. Inverse Self Organizing Map Layout (ISOM layout)

which will be described in the following.

Directed Acyclic Graph Layout

The DAG layout takes a layered hierarchical approach to graph layout as it was
first described by Sugiyama et al. in [10]. Nodes are arranged on different lay-
ers1 that are stacked on top of each other. Nodes with an out-degree of zero will
be on the highest layer. Each predecessor to a node on this layer will be on the
next lower layer. If a node is the sender of edges to multiple nodes on different
layers, it is placed on the layer beneath the lowest of its successor nodes.
After all nodes are assigned their layers, dummy vertices are introduced for each
edge, that spans multiple layers. To elaborate:

If an edge e = (v1, v2) spans multiple layers, for example l(v2) = l(v1) + 2,
whereby l(vx) returns the index of the layer that was assigned to the vertex
vx, the edge is removed and in its stead a dummy vertex vd and two edges ed1
and ed2 are introduced so that ed1 = (v1, vd), ed2 = (vd, v2) and l(vd) = l(v1)+1.

As the next step, the horizontal ordering of nodes on each layer is calculated
to reduce the amount of edge crossings. There are many different approaches to
this problem. Sugiyama et al. suggest a theoretical and a heuristic algorithm for
this purpose, since this optimization problem is of a combinatorial nature and
becomes quadratically more expensive in computanional time, as the amount of

1parallel horizontal lines

7

Figure 3.1: Result of the JUNG DAG Layout on the Simple Example Graph.

nodes increases. Which approach the layout calculation algorithm implemented
in the JUNG framework takes, is, however, not stated in its documentation [11].
In the next step of the algorithm, horizontal node positions on each layer will be
calculated to provide even spacing and a balance between all inputs and outputs
of each node, making sure that each predecessor node is centered below all of
its successor nodes.

The last step calculates vertical positions for each layer, since all nodes on
the same layer also have the same vertical position. Figure 3.1 shows the result
of the application of the DAG layout to a simple graph. This graph will be used
as an example multiple times throughout this thesis. It will be referred to as
the Simple Example Graph from here on.

Kamada and Kawai Layout

The KK layout is a force directed layout algorithm presented by Kamada and
Kawai in [12]. It calculates positions of nodes by simulating a system of physical
forces between these nodes.

To start off the algorithm, all nodes are placed on initial positions. These
can be randomly assigned or the result of another layout algorithm, for exam-
ple a circular arrangement. The JUNG framework, however, does not specify in
its documentation [11], which kind of initial layout is used in its implementation.

In the model of the algorithm, each node is interpreted as an iron ring. Each
of these rings is connected to all other rings via springs.
The algorithm then calculates the relaxed distance of each of these springs. To
that end it determines an ideal edge length by dividing the size of the available
drawing space through the maximum length of a path within the graph as
follows:

L = L0/max
i≤j

dij

Whereby L0 is the the length of one of the sides of the coordinate space, dij
is the graph theoretical distance between the vertices vi and vj and L is the
desired length of a single edge.

8

This ideal edge length is then multiplied by the graph theoretical distance
between each pair of nodes and the result is set as the relaxed length of the
spring of the model that connects these two nodes.

Figure 3.2: Result of the JUNG KK Layout on the Simple Example Graph.

The algorithm then iteratively moves nodes to minimize the amount of en-
ergy the simulated physical system of springs contains, whereby the energy is
calculated by:

E =

n−1∑
i=1

n∑
j=i+1

1

2
kij
(
|pi − pj | − lij

)2
px is hereby the position of vertex vx, lij the relaxed length of the spring con-
necting the two vertices vi and vj and kij = K/d2ij with a constant K, which
KK determined experimentally. Figure 3.2 shows the result of the JUNG im-
plementation of the KK layout on the Simple Example Graph.

Fruchterman Reingold Layout

The FR algorithm uses a force directed approach as well, but as opposed to the
KK layout, the algorithm proposed by Fruchterman and Reingold in [13] does
not rely on graph theoretical distances, which require a lot of computational
time to be determined.

The FR algorithm initializes all nodes on a set of coordinates that can be
given by any positioning algorithm, as in the KK layout’s algorithm as well. As
is the case with the other algorithms, the JUNG documentation [11] does not
reveal, which initial placement is used in their implementation of this algorithm.

9

After the initial placement, however, the FR algorithm differs from the KK
method. Instead of relying on graph theoretical node distances, the FR layout
computes repellent forces between all nodes, similar to the gravitational forces
between atoms or molecules, and attracting forces between nodes which are
directly connected via an edge. The displacement vector for a node v for the
repulsive forces from node u is hereby calculated as:

v.disp = v.disp+
duv
|duv|

· k2

|duv|

whereby duv is the distance vector between the nodes u and v, and k is the
optimal distance between the two nodes, which, in turn, is:

k = C ·

√
W · L
|V |

In this case W is the width of the drawing space, L is the length of the drawing
space and |V | is the amount of nodes. C is a constant that has been determined
experimentally by FR. v.disp is initialized with the value zero.

The attractive force between the nodes v and u that are connected through
the edge e = (v, u) is calculated as:

v.disp = v.disp− duv
|duv|

· |duv|
2

k

u.disp = u.disp+
duv
|duv|

· |duv|
2

k

FR also propose to use what they call simulated annealing, which describes
a process in which a heat value gives the maximum distance a node can be
moved in a single iteration of the algorithm. Each iteration, this heat value is
decreased via a cooling function. This procedure is inspired by the slow cooling
process of heated metals in the field of metallurgy, called annealing, which is
also the origin of the name simulated annealing.

For the cooling process FR propose to split the algorithm into two phases.
The first phase is called quenching and it rapidly decreases heat using a linear
falloff. This provides a good initial placement of nodes after only a few itera-
tions. After that, the algorithm is executed again with a constant very low heat
value to make small adjustments. FR state in their paper that this approach
shows better results in some subjective tests than a constant linear decline in
temperature, while requiring less iterations.

To save computational time, FR decide that the repellent forces of nodes
with a great distance between each other are negligibly small, which is why
they propose to imagine a grid over the drawing space with a static size. Each
node is only affected by nodes within the same or one of the neighboring cells
of the grid. As a consequence, the amount of forces that need to be calculated
is much smaller. Figure 3.3 shows the result of the JUNG implementation of
the FR layout algorithm on the Simple Example Graph.

10

Figure 3.3: Result of the JUNG FR Layout on the Simple Example Graph.

Inverse Self Organizing Map Layout

The ISOM layout as first proposed by Meyer in [14] uses a neural network as
model for the graph topology. The neural network is first set up with the same
structure as the graph to be laid out, so that each vertex of the graph has a
corresponding computational unit within the neural network. Then, a randomly
generated, uniformly distributed set of coordinates of the coordinate space is
given into the network. The amount of coordinate tuples in this set equals the
amount of nodes. This same input is provided to the network multiple times. To
train the neural network without the need for supervision, competetive learning
is used.

Since neural networks usually have feature detection as their prime field
of usage, they are designed so each unit of the network will accept all inputs
with a certain strength. Competetive learning techniques select the unit with
the strongest response to a given input as the ”winner” of a competition. As
a consequence, the eagerness of the ”winner” unit to accept that same input
again will be increased, while the eagerness of all other units in the network
will be decreased. The further away a unit is from the ”winner” in the network
topology, the further reduced is its eagerness to accept that same coordinate.
Through the repeated input of the same coordinates, at some point all units
will have selected a single coordinate out of the set to respond to, while the ea-
gerness of all other units to respond to that coordinate tuple will have fallen to
zero. Because the eagerness of neighboring units in the network is reduced less
than that of non-neighboring units, neighbors are likely to accept neighboring
coordinate tuples.

This mapping of neural network units is then applied to the original graph.
Since the topology of the neural network is the same as that of the graph and
each unit of the neural network corresponds to a node of the graph, the co-
ordinate tuple that is accepted by a certain unit can just be applied to the
corresponding node. Meanwhile the output of the neural network each iteration

11

is irrelevant and can be ignored.

Figure 3.4: Result of the JUNG ISOM Layout on the Simple Example Graph.

This algorithm returns very similar results to the force directed approaches,
but according to Meyer’s tests, it requires less time, since no expensive force
directed or graph theoretical calculations are needed. Figure 3.4 shows the result
of the JUNG implementation of Meyer’s ISOM layout on the Simple Example
Graph.

12

4 Implementation

4.1 The LayoutGenerator Interface

For the creation of different layout generators to fit each application’s own con-
text, an interface is suggested, that describes the minimum of necessary func-
tionality that such a layout generator should provide.

To generate a layout on a graph within the VWorkflows library, a layout
generator must accept a VFlowModel object and calculate a layout for it. To
provide this functionality within the LayoutGenerator interface, a getter- and a
setter-method were declared to handle the transfer of the VFlowModel. Further-
more, a method to harbor the layout calculation algorithm was declared. The
minimalist LayoutGenerator interface, therefore, consists of the three methods:

public void setWorkflow(VFlowModel pworkflow)

public VFlowModel getWorkflow()

public void generateLayout()

Additionally to these methods, there are three other features each layout gen-
erator should provide.

Recursive Execution

Since each VNode within the VFlowModel object can also contain a subflow,
the layout generator must be able to apply its layout algorithm to each of
these subflows recursively. But this recursive execution is not always desirable,
because it can become computationally very expensive for flow graphs with a
large depth. Therefore, a boolean parameter by the name of recursive was
introduced that can be manipulated via its own getter- and setter-methods. If
this parameter equals true, the algorithm shall be applied to each subflow of
the VFlowModel.

Automatic Scaling of Nodes

As mentioned earlier, each VNode can house a subflow. To make these subflows
clearly readable, the VNode object must be of an appropriate size. For this
reason, each layout generator should include the functionality to automatically
scale nodes according to their contents. This feature may, however, not always
be desired, either — for example, if the drawing space in the particular appli-
cation is rather limited. That is why this component should also be able to be
switched on or off via a boolean parameter.

13

Debugging Output

To make the VWorkflows framework as friendly to other developers as possible,
each layout generator should always supply some sort of debugging function-
ality. To toggle the display of additional debugging output, another boolean
parameter was introduced.

Including all three of these additional features, the LayoutGenerator inter-
face now consists of the methods:

public void setWorkflow(VFlowMode pworkflow)

public VFlowModel getWorkflow()

public void setRecursive(boolean precursive)

public boolean getRecursive()

public void setAutoscaleNodes(boolean pautoscaleNodes)

public boolean getAutoscaleNodes()

public void setDebug(boolean pdebug)

public boolean getDebug()

public void generateLayout()

The generateLayout() method runs all additional methods depending on their
parameters. The layout is directly applied to the given VFlowModel object, so a
return type is not necessary. Within the method, the check for the parameters’
status must be implemented and reacted upon accordingly.

4.2 The Naive Layout Generator

4.2.1 The Idea

The idea behind the creation of the LayoutGeneratorNaive class was to imple-
ment a simple algorithm without prior knowledge. The resulting algorithm is a
simplified implementation of the DAG layout described in (3.2.3).

4.2.2 The Algorithm

The basic algorithm of the naive layout generator consists of three steps.

1. Separation of the Graph into Layers

2. Calculation of Vertical Coordinates of Nodes within those Layers

3. Calculation of Horizontal Coordinates of the Layers

These three steps will now be explained in further detail.

Separation of the Graph into Layers

In this step, each node is assigned a layer index. The layer indices for each node
are initialized as zero. The algorithm then iterates over all edges. For each edge
e = (vi, vj) the layer index l(vj) of node vj is set to l(vi)+1. After the iteration
terminates, all nodes, which still have the layer index l(vx) = 0, are locked via a
boolean parameter. The layer indices of locked nodes will not be changed going
forward.

14

This process will be repeated and with each cycle the layer index to be locked
will be increased by one, until all nodes are locked.

Listing 4.1: Step 1 of the Naive Algorithm.

1 lockable = 0
2 while not allLocked() {
3 for i in connections {
4 if not locked(i.getSecond())
5 and l(i .getSecond()) < (l(i . getFirst ()) + 1) {
6 l (i .getSecond()) = l(i . getFirst ()) + 1
7 }
8 }
9 for i in nodes {

10 if l (i) == lockable {
11 lock(i)
12 }
13 }
14 lockable += 1
15 }

Listing 4.1 shows a pseudo code example of the implementation for this step of
the algorithm. The function in the class LayoutGeneratorNaive that imple-
ments this code in Java is called createLayering().

Calculation of Vertical Coordinates

In the second step of the algorithm, the vertical coordinate for each node is
calculated. To that end, the algorithm first constructs a list of nodes for each
layer out of the layer index mapping created in the first step. Next, the algorithm
iterates over the nodes of each layer and sets their position. The position is
determined by the position of the node previously placed, the height of that
node and an additional parameter to determine the distance between nodes.

This additional parameter is called scaling. It is a double precision floating
point value. If the value is negative, its absolute value is used as a relative
factor multiplied with the heigth of the previously placed node. If the scaling

parameter holds a positive value, it is added to the position.

Listing 4.2: Step 2 of the Naive Algorithm

1 for l in layers {
2 pos = 0
3 for n in l {
4 n.setY(pos)
5 if scaling < 0 {
6 pos += n.getHeight() · scaling · (−1)
7 } else {
8 pos += n.getHeight() + scaling
9 }

10 }
11 }

Listing 4.2 describes the positioning algorithm of the second step in pseudo code.
This code is implemented in the function calculateVerticalPositions() within
the LayoutGeneratorNaive class.

15

Calculation of Horizontal Coordinates

The last step of the basic naive algorithm calculates horizontal coordinates for
each layer. For this purpose, the algorithm iterates over all nodes of each layer
and sets their position. At the same time, the maximum width of all nodes
on that layer is determined. The position for the nodes on the next layer is
increased by the maximum width of all nodes on the current layer modified by
the scaling parameter, analogous to the second step.

Listing 4.3: Step 3 of the Naive Algorithm

1 pos = 0
2 for l in layers {
3 maxwidth = −∞
4 for n in l {
5 n.setX(pos)
6 if n.getWidth() > maxwidth {
7 maxwidth = n.getWidth()
8 }
9 }

10 if scaling < 0 {
11 pos += maxwidth · scaling · (−1)
12 } else {
13 pos += maxwidth + scaling
14 }
15 }

Listing 4.3 shows a pseudo code implementation of the positioning algorithm in
this step. A Java implementation of this algorithm can be found in the function
calculateHorizontalPositions() in the LayoutGeneratorNaive class.

4.2.3 Additional Features

The basic algorithm alone is not enough to satisfy the expectations of a general
layout generator. This requires some additional features to be implemented,
which will be detailed in the following.

Removal of Cycles

In step one of the algorithm, nodes are mapped to layers, so that each edge
e = (vi, vj) points from a layer with a lower index to a layer with a higher
index, or mathematically speaking: so that l(vi) < l(vj). If the graph contains
cycles, such a mapping is not possible. This means, an additional step must be
introduced to remove edges from the model graph, so all cycles will be eliminated.

The cycle removal algorithm performs a depth first search on the model
graph. Each node that is reached is marked. If a node is already marked, it
is skipped. Also the path from the root of the search tree to the current node
is saved. If the current node is already contained within the path, the most
recently traversed edge is removed.

16

Listing 4.4: The Cycle Removal Algorithm

1 removeCycle(currNode, path) {
2 if not checked(currNode) {
3 path.add(currNode)
4 checked(currNode) = true
5 succs = currNode.getSuccessors()
6 for s in succs {
7 if path.contains(s) {
8 removeAllConnections(currNode, s)
9 } else {

10 removeCycle(s, path)
11 }
12 }
13 path.remove(currNode)
14 }
15 }

Listing 4.4 shows a simplified pseudo code variant of the cycle removal algorithm.
The algorithm is implemented by the method remCycR(). It is executed with
each node as root for the search tree in the removeCycles() method.

Recursive Execution

According to the LayoutGenerator interface defined in (4.1), all layout gener-
ators must be able to apply their algorithm to each subflow of the graph. This
is implemented in the runSubflows() method, which simply iterates over all
VNode objects of the given VFlowModel and checks, which nodes are an instance
of the VFlowModel interface as well. An instance of the LayoutGeneratorNaive
class is then created and all parameters of the parent generator are carried over
to the child generator. Afterwards, the child generator is supplied with the
subflows and generates a layout for them.

Automatic Scaling of Nodes

In the definition of the LayoutGenerator interface it was required that each
layout generator shall supply the user with the ability to automatically scale
VNode objects according to their contents.

This functionality is implemented in the autoscaleNodes() method. The
algorithm iterates over all nodes of the VFlowModel and determines, which
nodes hold subflows, by checking each VNode object if it is an instance of the
VFlowModel interface.

17

For each found subflow the algorithm then iterates over the subflow’s nodes
and determines the maximum and minimum coordinates on both axes. The di-
mensions of the corresponding subflow node are then calculated by the following
formulas:

Height =
ymax − ymin

n
· subflowscale

Width =
xmax − xmin

n
· subflowscale

Whereby n is the amount of nodes within the subflow and subflowscale is a
double precision floating point parameter.

4.2.4 Customizability

To make this layout applicable to as many situations as possible, it must be
provided in a highly customizable state. That is why each step of the algorithm
and each of the additional features can be toggled on or off via a boolean pa-
rameter and numerical parameters can be changed as well. A full list of all fields
and methods of the class can be found in (A.1).

During the initialization of the generator object, all parameters are set to
their default values. These values are:

recursive: true

autoscaleNodes: true

graphmode: 0

launchRemoveCycles: true

launchCreateLayering: true

launchCalculateVerticalPositions: true

launchCalculateHorizontalPositions: true

scaling: -1.5

subflowscale: 2

4.2.5 The Model

The model of the LayoutGeneratorNaive class consists of the following fields:

nodes An array of VNode objects, representing all nodes.

workflow A VFlowModel object containing the overall flow.

nodecount An int value representing the number of nodes and the length of the
nodes array.

connectionList An array of Pairs of integers representing the Connections

within the workflow, whereby the first integer contains the index of the
sender node and the second integer the index of the receiver node within
the nodes array.

conncount An int value representing the number of Connections within the
workflow.

cycle A boolean value that indicates whether the graph contains cycles.

18

layering An array of int values of the same length as the nodes array, assigning
a layer index to each node.

layercount An int value representing the amount of layers in the model.

Figure 4.1: Result of the Final Naive Algorithm on the Simple Example Graph.

The workflow and nodes fields can be used as input. Which of the two is used
as input on execution is determined by the graphmode parameter. The field not
used as input as well as the nodecount, connectionList and conncount are
initialized in the setUp() method. The cycle field is set by the checkCycles()
function, which is called from the setUp() method. The layering and layercount

fields are populated during the first step of the algorithm in the createLayering()
method.
Figure 4.1 shows the result of the final naive algorithm on the Simple Example
Graph.

4.3 The Smart Layout Generator

4.3.1 The Idea

The idea behind the LayoutGeneratorSmart class is to include already existing
layout algorithms from the popular JUNG framework into VWorkflows. When
examining the list of layouts provided by the JUNG library, four of them seem
to be applicable to the problem at hand and seem to deliver useful results. The
four layouts in question are:

• DAG Layout

• KK Layout

• FR Layout

• ISOM Layout

For descriptions of the algorithms employed by these layouts, see (3.2.3).

A quick comparison of a few results on simple graphs gives some insight into
the quality of these layouts. The first thing to note is that all four JUNG im-
plementations are nondeterministic, which causes the quality of their results to
vary greatly. Furthermore, the KK, FR and ISOM algorithms produce similar

19

layouts, while the DAG layout’s results are very different. This comes to no
surprise when considering the different approach the DAG layout takes in com-
parison to the others. Unfortunately, the results of the JUNG implementation
of the DAG layout are not only very different from the results of the other three
algorithms, but also worse.

The vertices on different layers are not well aligned with each other and the
positioning of the nodes within each layer leads to a lot of unnecessary edge
crossings. Figure 3.1 shows one such result.

These problems seem not to stem from the algorithm itself but from the
JUNG implementation of the algorithm. The documentation of the JUNG
framework [11] is, however, very sparse and the algorithm is not customizable
enough to integrate another implementation of the second step of the algorithm
to fix these problems. That is why the other three algorithms were mainly used
in the creation of the LayoutGeneratorSmart class.

Since all three of these algorithms provide similar results and according to
Meyer [14] the ISOM layout is less computationally expensive, the decision was
made to focus mainly on the utilization of this algorithm.

4.3.2 The Algorithm

The basic algorithm implemented within the LayoutGeneratorSmart class con-
sists of four steps.

1. Application of the JUNG Implemented Layout

2. Rotation of the Graph around its Center Point

3. Movement of all Successor Nodes behind their Predecessors

4. Mutual Repulsion of all Nodes

These steps will be further explained in the following.

Application of the JUNG Implemented Layout

In step one of the algorithm, the JUNG implemented layout indicated by the
layoutSelector parameter is applied to the given VFlowModel. This parameter
is of type int and is mapped to the four different JUNG layouts available as
follows:

0 - ISOM layout

1 - FR layout

2 - KK layout

3 - DAG layout

Regardless of which layout is used, the Layout object must be provided
with the size of the drawing space. To determine the size of the initial drawing
space, the longest path within the graph is searched and the width of all nodes on

20

this path summed up. This cumulative width is then divided by the scaling

parameter, which is a double precision floating point value, and a constant
factor, that was experimentally determined to be 2.

The height of the drawing space is calculated by dividing the width by the
aspectratio parameter, which is a double precision floating point value as well.

After the drawing space size has been supplied to the Layout object, the
layout can be applied to the graph. This is achieved by iterating through all
nodes of the VFlowModel and calling the transform() method of the Layout

object with each VNode as argument. The return value of the transform()

method is a Point2D object that holds the new coordinates for the respective
VNode.

This step of the algorithm is implemented in the method stepLayoutApply()

and can be seen as pseudo code in Listing 4.5.

Listing 4.5: Step 1 of the Smart Algorithm

1 maxpath = findMaxPathWidth() / (scaling · 2)
2 height = maxpath / aspectratio
3 layout. setSize (new Dimension(maxpath, height))
4 for n in nodes {
5 coords = layout.transform(n)
6 n.setX(coords.getX())
7 n.setY(coords.getY())
8 }

21

The method findMaxPathWidth() of the LayoutGeneratorSmart class im-
plements the algorithm to find the width of the longest path within the graph
and is shown in Listing 4.6.

Listing 4.6: Width of the Longest Path

1 fifo = new LinkedList()
2 for n in nodes {
3 if n.getSuccessorCount() == 0 {
4 maxPathFollowing[n] = 0
5 fifo .add(n)
6 }
7 }
8 # find the length of the longest path following each node
9 while not fifo.isEmpty() {

10 currNode = fifo.removeFirst()
11 succs = currNode.getSuccessors()
12 for s in succs {
13 tempFollowing = maxPathFollowing[s] + 1
14 if tempFollowing > maxPathFollowing[currNode] {
15 maxPathFollowing[currNode] = tempFollowing
16 }
17 }
18 pre = currNode.getPredecessors()
19 for p in pre {
20 fifo .add(p)
21 }
22 }
23 # find origin node of the longest path
24 maxPath = −∞
25 maxPathIndex = 0
26 for n in nodes {
27 if maxPathFollowing[n] > maxPath {
28 maxPath = maxPathFollowing[n]
29 maxPathIndex = n
30 }
31 }
32 # find longest path and its width
33 maxPathWidth = nodes[maxPathIndex].getWidth()
34 succs = nodes[maxPathIndex].getSuccessors()
35 maxPath−−
36 for s in succs {
37 if maxPathFollowing[s] == maxPath {
38 maxPathWidth += s.getWidth()
39 maxPath−−
40 succs = s.getSuccessors()
41 }
42 }

22

Rotation of the Graph around its Center Point

Since the algorithm should provide a constant general flow direction and the
KK, FR and ISOM layouts are designed to be applied to undirected graphs,
this direction must be established thereafter.

To guarantee this direction, the graph is rotated around its center point, so
that the average direction of all edges equals the desired general flow direction.
The algorithm for this step first determines the center point of the graph using
the method getGraphCenter(). Then, the cumulative edge vector is deter-
mined by summing up all edge vectors. After that, the angle between the x-axis
and the cumulative edge vector is calculated and the graph rotated around its
center point by the negative of this angle.
The new average edge direction is now 0, which means the cumulative edge
vector points in the direction of the x-axis.

Now, the graph is again rotated so that the new cumulative edge vector
points in the desired general flow direction, which is given by the direction

parameter. For the rotation a simple rotational matrix of the form(
cos(φ) − sin(φ)
sin(φ) cos(φ)

)
is used, so that the final rotated coordinates can be calculated as:

x′ = x · cos(φ) + y · sin(φ)

y′ = y · cos(φ)− x · sin(φ)

whereby φ is the angle by which the coordinates shall be rotated.

The rotation of the graph is implemented in the method stepRotate() of
the LayoutGeneratorSmart class.

Movement of all Successor Nodes behind their Predecessors

The third step of the algorithm is also used to guarantee the constant general
flow direction. The idea behind this step is that if all nodes are moved behind
their predecessors, by the definition in (2.2), all edges of the graph will point in
the general flow direction.

To achieve this, the algorithm adds all origin nodes to a queue and iterates
through this queue.
Of the current node all successors are added to the queue as well. As a con-
sequence, the iteration through all nodes follows the structure of the graph.
Furthermore, for each predecessor of the current node, a potential displacement
of the current node is calculated.

23

Figure 4.2: Projection of a Distance Vector onto the General Flow Direction.

To calculate this displacement, the algorithm first calculates the desired
distance between both nodes. This desired distance is calculated as the length
of one half of the diagonal of the predecessor node, multiplied by the scaling

parameter. When the predecessor node is declared as va, the current node is vb
and wx and hx represent the width and height of node vx, the desired distance
ddes between both nodes equates to:

ddes =

√
w2

a + h2a
2

· scaling

The scaling parameter is a double precision floating point parameter analo-
gous to (4.2.2).

After the desired distance is found, the current distance is determined. Since
this step of the algorithm, however, tries to adhere to the general flow direction,
the length of the projection of the distance vector onto the general flow direction
vector is used instead.

Figure 4.2 shows the projection −→p of the distance vector between the prede-

cessor node va and the current node vb onto the direction vector
−→
d . According

to [15], the vector of the projection is calculated as:

−→p =
(−→vb −−→va) ·

−→
d

|
−→
d |2

·
−→
d =

(−→vb −−→va) ·
−→
d

−→
d ·
−→
d

·
−→
d

Separated into the x and y coordinates this results in:

xp =
xd · (xb − xa) + yd · (yb − ya)

x2d + y2d
· xd

yp =
xd · (xb − xa) + yd · (yb − ya)

x2d + y2d
· xd

The length of the projection is then compared with the desired distance.
Furthermore, a direction test is performed by adding the direction vector to the

24

Figure 4.3: Semantics behind the Results for the Displacement Factor φ.

projection. If the length of the projection increases through this addition, the
projection points in the general flow direction, if the length decreases it points
against the general flow direction.

If the projection is shorter than the desired distance or points against the
general flow direction, a displacement for the current node is calculated. To
move the current node, the direction vector is added to the location of the
current node until the length of the projection is as large as the desired distance.
To that end, the formula

ddes = |−→p + φ ·
−→
d | (4.1)

must be solved for φ.
After calculating the length of the vector as |−→v | =

√
x2v + y2v , the equation (4.1)

is equivalent to

0 = φ2 + φ · 2xdxp + 2ydyp
x2d + y2d

+
x2p + y2p − d2des

x2d + y2d

which can be solved using the p-q-formula.

φ1/2 = −xdxp + ydyp
x2d + y2d

±

√(
xdxp + ydyp
x2d + y2d

)2

−
x2p + y2p − d2des

x2d + y2d

Figure 4.3 shows the semantics behind the two results for φ. The two points
marked with x in the figure represent the two locations resulting from the equa-

tion −→p + φ ·
−→
d with φ1 and φ2 respectively substituted for φ. One of these

locations is always in front while the other is always behind va. The larger of
φ1 and φ2 will always result in the coordinate behind va, which is the desired
location. Since the result of a square root is always positive, φ1 will always be
larger than φ2. Therefore, φ2 is never needed, which is why only φ1 is calculated
and used in the algorithm.

25

Listing 4.7: Step 3 of the Smart Algorithm

1 fifo = new LinkedList()
2 fifo .add(origin)
3 while not fifo.isEmpty() {
4 currNode = fifo.removeFirst()
5 succs = currNode.getSuccessors()
6 fifo .add(succs)
7 pre = currNode.getPredecessors()
8 for p in pre {
9 desDist = sqrt(pow(p.getWidth(), 2) + pow(p.getHeight(), 2))

10 · scaling / 2
11 # predecessor location
12 xa = p.getX()
13 ya = p.getY()
14 # current node location
15 xb = currNode.getX()
16 yb = currNode.getY()
17 # direction vector
18 xd = cos(direction)
19 yd = sin(direction)
20 # projection vector
21 xp = calcProjX()
22 yb = calcProjY()
23 # projection length
24 plen = sqrt(pow(xp, 2) + pow(yp, 2))
25 ptest = sqrt(pow(xp+xd, 2) + pow(yp+yd, 2))
26 if plen < desDist or ptest < plen {
27 phi = calcPhi1()
28 xb += phi · xd
29 yd += phi · yd
30 currNode.setX(xb)
31 currNode.setY(yb)
32 }
33 }
34 }

Listing 4.7 shows pseudo code of the algorithm of this step. The com-
plete implementation of this pseudo code in Java can be found in the method
stepPushBack() of the LayoutGeneratorSmart class.

Mutual Repulsion of all Nodes

The last step of the algorithm applies repellent forces between each pair of nodes
to remove overlaps between them. This step is heavily inspired by the FR algo-
rithm, since it applies repellent forces to each node. There are, however, some
differences.

The algorithm iterates over each pair of nodes. Each iteration a desired dis-
tance between the two nodes is calculated by the method getDesiredNodeDist().
This desired node distance depends on the sizes of both nodes and the direction
of the distance vector between them. The desired distance is the minimum dis-
tance necessary between the two nodes, to avoid overlaps. The algorithm also
calculates the real distance between the two nodes by calculating the length of

26

the distance vector between them using the getRealNodeDist() function.

If the real distance is smaller than the desired distance, a displacement of
one of the nodes is calculated to reduce the difference between the two distances
to zero. This is done over multiple iterations, until either the maximum amount
of iterations, given by the maxiterations parameter, has been reached or no
nodes have been moved in the last iteration.

Listing 4.8: Step 4 of the Smart Algorithm

1 change = true
2 for i in range(0, maxiterations) {
3 if not change {
4 return
5 }
6 change = false
7 for a in nodes {
8 for b in nodes {
9 realDist = getRealNodeDist(a, b)

10 desDist = getDesiredNodeDist(a, b)
11 if realDist < desDist {
12 change = true
13 # node a location
14 xa = a.getX()
15 ya = a.getY()
16 # node b location
17 xb = b.getX()
18 yb = b.getY()
19 # distance vector
20 xd = xb − xa
21 yd = yb − ya
22 # displacement factor
23 phi = (desDist − realDist) / sqrt(pow(xd, 2) + pow(yd, 2))
24 # new positions
25 xb += xd · phi
26 yb += yd · phi
27 b.setX(xb)
28 b.setY(yb)
29 }
30 }
31 }
32 }

Listing 4.8 shows a pseudo code implementation of step four of the algorithm,
which is implemented in the forcePush() method.

27

The function getDesiredNodeDist(), which holds the calculation of the
desired node distance, is shown in pseudo code in Listing 4.9.

Listing 4.9: Calculation of the Desired Node Distance

1 # node a
2 xa = a.getX()
3 ya = a.getY()
4 wa = a.getWidth()
5 ha = a.getHeight()
6 # node b
7 xb = b.getX()
8 yb = b.getY()
9 wb = b.getWidth()

10 hb = b.getHeight()
11 # distance vector
12 xd = xb − xa
13 yd = yb − ya
14 # is the direction of d closer to vertical or horizontal
15 xcomp = abs(2 · xd / wa)
16 ycomp = abs(2 · yd / ha)
17 if xcomp >= ycomp {
18 # calculate distance between center and edge of node
19 # horizontal case:
20 fa = wa / (cos(atan(yd / xd)) · 2)
21 } else {
22 # vertical case:
23 fa = ha / (cos(atan(xd / yd)) · 2)
24 }
25 # repeat for the second node
26 xcomp = abs(2 · xd / wb)
27 ycomp = abs(2 · yd / hb)
28 if xcomp >= ycomp {
29 fb = wb / (cos(atan(yd / xd)) · 2)
30 } else {
31 fb = hb / (cos(atan(xd / yd)) · 2)
32 }
33 return (fa + fb) · scaling

The evolution of the layout through the execution of this algorithm can be
seen in Figure 4.4.

4.3.3 Additional Features

Analogous to the naive layout generator, there are some features which have to
be provided additionally to the generation of a simple layout.

Removal of Cycles

Some steps of the algorithm do not terminate on cyclic graphs. This includes
the JUNG implemented DAG layout, the findMaxPathWidth() method and
the entirety of step three of the algorithm. As a consequence, an additional step
to remove cycles from the graph must be implemented to run before the rest of

28

Figure 4.4: Results of the Smart Algorithm after each Step.

the algorithm. This step functions analogous to the cycle removal algorithm in
the naive layout generator described in (4.2.3).

Recursive Execution

Likewise analogous to the naive implementation is the requirement to be able
to execute the algorithm on all subflows of the graph. The implementation
in the LayoutGeneratorSmart class also works the same way as in the naive
implementation described in (4.2.3).

Automatic Scaling of Nodes

The smart layout generator also has to have the functionality to automatically
scale subflow nodes according to the size of the subflow they contain. This
implementation uses the same algorithm as described in (4.2.3) as well.

Alignment of Nodes

A graph layout is especially aesthetically pleasing if neighboring nodes only dif-
fer in one of their two coordinates and are aligned on the other. While the naive
generator achieves a horizontal alignment of nodes on the same layer automat-
ically, this can not be said about the smart approach. To achieve this with the
smart layout generator, an additional step must be included into the algorithm.
This step is implemented in the alignNodes() method of the layout generator.

There are two ways to align nodes with each other:

1. Align nodes pairwise with each other by setting them on the same coor-
dinate if their difference is below a certain threshold.

2. Lay out all nodes on a global grid of a certain size.

Both of these approaches are implemented within the same method. The user
can switch between them by changing the double precision alignmentThreshold

29

parameter. If this parameter contains a positive value, that value is used as size
for the global grid to align all nodes on. Is the value of the parameter negative,
the absolute value of the parameter will be used as threshold under which the
nodes will be aligned pairwise.

This step can, however, create overlaps between nodes, which should have
already been eliminated by the forcePush() method. To combat this behavior,
the alignment process is executed after the first half of the forcePush() itera-
tions have already completed. The other half of the iterations is run after the
alignment step to remove the possibly newly created overlaps.

Displacement of Nodes in Identical Positions

Step four of the algorithm can not be performed on pairs of nodes in identical
positions. If two nodes have the same coordinates, the length of the distance
vector between them is zero. Since

√
x2d + y2d is the length of the distance vector,

the calculation
phi = (desDist - realDist) / sqrt(pow(xd, 2) + pow(yd, 2))

in the algorithm of step four, shown in Listing 4.8 line 23, would have to divide
by zero when trying to process two nodes in the same location. Therefore, a step
must be introduced to slightly displace nodes, which have the same coordinates.
This step is implemented in the displaceIdents() method.

Separation of Disjunct Subgraphs

If the graph contains multiple disjunct subgraphs, these subgraphs can overlap
and influence each other in step four of the basic algorithm. This can result in a
very unsatisfactory layout, which can be seen in Figure 4.4. The nodes ROOT:4
and ROOT:2 are not connected to the rest of the graph, but are placed between
ROOT:5 1 and its successor nodes, and thereby causing ROOT:5’s edges to cut
through them.

This can be avoided by calculating layouts for disjunct subgraphs separately
and laying them out over each other afterward. This is implemented in the
method separateDisjunctGraphs().

The method first assigns a number to each node that is initialized as −1.
The algorithm then iterates through the graph, starting at an origin node, and
assigns the number 0 to every node it can reach through edge traversal. Next, it
checks which nodes are still assigned the number −1 and chooses one of those to
start again, but increments the number it assigns by one. This continues until
all nodes are assigned a number that is not −1.

If the algorithm reaches a node already marked with a number that is not
−1, all nodes that have been marked with the current number will be changed
to the number of that node.

The result of this algorithm is a mapping of each node to a number that
represents the id of the subgraph it belongs to. The algorithm then creates a
LayoutGeneratorSmart object with the same parameters as the parent gener-
ator and lets this child generator calculate a layout for each subgraph. After

1ROOT:5 is the origin node of the graph.

30

that, the bounding box of each resulting layout is calculated and the subgraphs
are arranged over each other ascending in ids from top to bottom.

Placement of Origin Nodes

Though the rotation of the graph does guarantee the general flow direction, it
does not guarantee that all origin nodes are placed in front of all other nodes
in the graph, which would be preferable in a good layout.

Since the most commonly desired general flow direction is from left to right,
the method stepOrigin() was included. It automatically places all origin nodes
at the leftmost edge of the drawing space.

However, the combination of the methods separateDisjunctGraphs() and
stepPushBack() achieves the same goal for all desired general flow directions,
which is why the stepOrigin() method is deactivated by default.

Separation of Edge Types

One special feature of program flow graphs is that there are multiple different
types of edges. In the VWorkflows framework, these include dataflow edges,
controlflow edges and event edges. Furthermore, additional or completely new
sets of edge types can be implemented. Through the addition of edge types to
a visual programming language, the total number of necessary edges within a
graph increases. With more edges in the graph it is, however, more difficult to
find a pleasing layout that minimizes edge crossings and guarantees the general
flow direction for all edges.

For this reason, the edge types should be treated differently and assigned
priorities. This way, the general flow direction can be satisfied for edge types
of the highest priority. For the edge types of further decreasing priorities, some
edges might violate the requirement of the general flow direction to improve the
overall arrangement of the graph.

A prototype implementation for this feature already exists within the method
separateEdgeTypes(). This method does, however, not achieve the desired re-
sults in its current version. To make the integration of a working implementation
of this feature in the future easier, the prototype has not been removed, but is
toggled off by default.

4.3.4 Customizability

Analogous to the LayoutGeneratorNaive class, all steps of this algorithm and
all of the additional features can be turned on or off via boolean parameters
and most numerical parameters can be changed as well. This ensures that the
user can tweak the generator to their liking. Additionally, the applied JUNG
layout can be chosen parametrically out of the four different layouts described
in (3.2.3). A full list of all fields and methods of the class can be found in (A.2).

31

During the initialization of the generator object, all parameters are set to
the following default values:

recursive: true

autoscaleNodes: true

layoutSelector: true

aspectratio: 1.7782

graphmode: 0

launchRemoveCycles: true

launchSeparateDisjunctGraphs: true

launchSeparateEdgeTypes: false

launchJungLayout: true

launchRotate: true

launchOrigin: false

launchPushBach: true

launchDisplaceIdents: true

launchForcePush: true

launchAlignNodes: true

maxiterations: 500

scaling: 1.2

subflowscale: 2

direction: 0

alginmentTreshold: (scaling - 1) · (-1)

4.3.5 The Model

The model of the LayoutGeneratorSmart class consists of the following fields:

nodes An array of VNode objects, representing all nodes.

workflow A VFlowModel object containing the overall flow.

nodecount An int value representing the number of nodes and the length of the
nodes array.

jgraph A DirectedGraph object containing the model graph, that corresponds
to the graph within the worfklow.

conncount An int value representing the number of Connections within the
workflow.

origin An array of Pairs containing two integers. The first integer represents
the index of the origin node in the nodes array and the second integer
represents the number of that node’s successors.

graphcenter A Point2D object representing the coordinates of the center point
of the graph.

cycle A boolean value that indicates whether the graph contains cycles.

2Representing an aspect ratio of 16:9, which is a common display resolution.

32

Figure 4.5: Result of the Final Smart Algorithm on the Simple Example Graph.

The fields workflow, jgraph and nodes can all be used as input for the
generator. Which of these fields is actually used as input is indicated by the
graphmode parameter. The other two of these fields as well as the nodecount

and conncount fields are initialized during the allNodesSetUp() method. The
origin array is populated in the getOrigin() method, which is called within
the allNodesSetUp() method. The cycle field is set by the checkCycles()

method, which is called by the allNodesSetUp() method as well. The graphcenter
field, on the other hand, is initialized during the getGraphCenter() method,
which is run during the execution of the generateLayout() function.
Figure 4.5 shows the result of the final algorithm with default parameters on
the Simple Example Graph.

33

5 Evaluation

Considering the difficulties in formulating the problem and the high amount of
subjectivity when evaluating graph layouts explored in (2), this evaluation gives
no guarantees for correctness. It tries to give a good estimation of the quality
of the results of both described implementations, but personal experience may
vary.

5.1 Methodology

The results of both implementations are evaluated on the basis of the six im-
portant criteria of an aesthetically pleasing layout discussed in (2).

1. The layout must contain a minimal amount of overlap between vertices.

2. The layout must abide by a constant general flow direction.

3. The layout must contain a minimal number of edge crossings.

4. The layout must scale vertices according to their contents.

5. The layout must represent symmetric structures within the graph sym-
metrically.

6. The layout must uniformly distribute vertices in the available space.

These attributes can, however, stand in conflict to each other.
Figure 5.1 is a display of two different layouts of the same graph. Layout

b is a planar drawing, meaning a drawing with zero edge crossings. KK argue
that layout a, on the other hand, shows the symmetric structure within the
graph more clearly. Both of these layouts are equally valid and whichever one
the observer prefers is entirely up to their own personal preference, depending
on which of these two features they value more.
To eliminate conflicts of this kind, the features are given in a set order. The
order shown above is of descending priorities as perceived by the author of this
thesis.

Both implementations are tested by the application on the same graph. A
snapshot of the resulting layout is then saved and the amount of nodes that
need to be moved or resized for the layout to be optimal in respect of the above
mentioned features is determined. The percentage of to-be-altered nodes out of

34

Figure 5.1: Symmetric and Planar drawings of a graph. Source:[12]

all nodes of the graph is then calculated and given as score for this particular
result.

Since the algorithm implemented in the LayoutGeneratorSmart class is non-
deterministic, each test for this layout will be executed ten times and an average
value will be calculated to serve as score. Furthermore, the overall testing will
be split into two phases.

5.2 Test Phase I - General Graphs

In Phase I, the performance of both layout algorithms on general graphs shall
be determined. The field of general graphs will, therefore, be split into three
categories

• trees

• acyclic graphs, which are not trees

• cyclic graphs

and an additional category for general graphs containing nodes of different sizes.
For each of these categories three examples have been designed.

35

Tre
es

1

Tre
es

2

Tre
es

3

A
cy

cl
ic
1

A
cy

cl
ic
2

A
cy

cl
ic
3

C
yc

lic
1

C
yc

lic
2

C
yc

lic
3

Si
ze

s1

Si
ze

s2

Si
ze

s3

0

20

40

60

80

100

P
er

ce
n
ta

ge
of

n
o
d

es
to

b
e

m
ov

ed

Smart
Naive

Figure 5.2: Percental Test Results of Phase I

As shown in Figure 5.2, the naive implementation provides better results
with 14.17% of nodes to be moved on average, while the smart implementation
results in an average of 24.08%. When calculating the variances of the results,
which yield 3.57% for the naive algorithm and 0.68% for the smart algorithm
with standard deviations of 18.91% and 8.25% respectively, it becomes apparent
that the quality of the resulting layouts of the smart implementation is compar-
atively constant, while the naive implementation has some very large outliers.
The full results of this phase can be found in the appendices at (B).

5.3 Test Phase II - VRL Graphs

The VRL-Studio GitHub-Project [16] comes with a set of example code files. In
Phase II of this evaluation, the algorithms are tested on these files. This phase
shows the performance of both algorithms on the specific use cases they were
designed for. Out of the 26 example files ten files of varying complexity were
selected as test set. Since the examples contain graphs of largely varying depth
and in most cases graphs at a certain depth are scaled too small to be visible,
this test is limited to a depth of three.

As shown in Figure 5.3, the smart algorithm produced the better results in
every tested code file in this phase of the test. The averages and variances of this
phase, as shown in Table 5.1, make it evident that the smart implementation
not only delivers better results for this use case, but these results are also more
stable than those of the naive algorithm.

36

1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

Test Code File

P
er

ce
n
ta

g
e

of
n

o
d

es
to

b
e

m
ov

ed

Smart
Naive

Figure 5.3: Percental Test Results of Phase II

Algorithm Average Result Variance Standard Deviation
Smart 26.18% 0.76% 8.70%
Naive 38.55% 1.72% 13.11%

Table 5.1: Test Results and Variances in Phase II

The full results of this phase can be found in the appendices at (B).

37

Figure 5.4: Example Result for Phase II test ’MainWithForAndMore’.

5.4 Discussion

Figure 5.4 shows an example of one result within the VRL-Studio. It is clearly
visible that a result like this is close to a good layout, but there is still need
for some manual improvement. This is also clearly shown by the numerical test
results. Cumulatively over all tests and both generators 72.44% of nodes were
placed correctly and 27.56% needed to be either repositioned or resized. To
find the root of these remaining mistakes, both algorithms must be examined
individually.

5.4.1 LayoutGeneratorNaive

The naive algorithm had two very distinguishable peaks within its test results.
When looking for clues as to where in this implementation improvements can
be made, it seems obvious to take a closer look at these two test cases.

Figure 5.5 shows the result of the naive implementation in orange overlaid
with a good result of the smart algorithm in light gray for the test Sizes3, which
is the third example for the category ’Graphs with Nodes of Different Sizes’ in
Phase I of this evaluation.

38

Figure 5.5: Comparison of Naive (Orange) and Smart (Light Gray) Results for
Testcase ’Sizes3’.

Figure 5.6: Comparison of Naive (Orange) and Smart (Light Gray) Results for
Testcase ’MainWithForAndMore’.

Figure 5.6 shows the result of the naive implementation for a single subflow
of the test code file MainWithForAndMore.groovy, which showed the largest
discrepancy in the results between the two algorithms, in orange overlaid with
a good result of the smart algorithm for the same subflow.

In both examples it is clearly visible that the nodes in the smart layout are
more spread out over the two dimensional area, while the naive implementation
places most nodes at the top of the drawing space in a horizontal line. In Figure
5.5 the node with the id ROOT:2 is the only vertex on the second layer of the
naive result. It has a connection to the node ROOT:8, which was placed on the
seventh layer. This placement causes this connection to run through all nodes
on the layers three, four, five and six. This happens in most cases with the naive
algorithm and can also be observed in Figure 5.6.

39

Figure 5.7: Example Result of the Naive Algorithm with a Very Unnecessary
Edge Crossing.

Another problem that can be observed in Figure 5.7 is that the two edges
connecting the first two layers are crossing, even though this crossing could very
easily be avoided. This shows another limitation within the naive algorithm.
Nodes within a single layer are sorted by their id, that is why the node ROOT:0
is above the node ROOT:2 on the first layer and the node ROOT:1 is above
ROOT:3 on the second layer. If one of these two node pairs was swapped, the
layout would be much better.

5.4.2 LayoutGeneratorSmart

The smart layout generator provides mostly good results that can be manually
optimized with only a few changes. To find the weaknesses of this algorithm
one must think about the underlying concept. Most errors produced by the
algorithm are introduced during step four. The algorithm of this step does
not consider the overall structure of the graph and only tries to push nodes
away from each other to remove overlaps between them. The desired effect is
achieved almost every time3, but without the consideration of the overarching
graph structure, the algorithm might move the wrong of the two overlapping
nodes or move a node in an undesirable direction and therefore introduce edge
crossings.

3Cumulatively over all tests with 3861 nodes only two instances of an overlap occurred.

40

6 Horizon

There are some clear improvements that can be made to both algorithms to
create better layouts in the future.

6.1 LayoutGeneratorNaive

To best tackle the naive algorithm’s weaknesses discussed in (5.4.1), this thesis
suggests two changes.

6.1.1 Repositioning Nodes on Layers

A lot of edge crossings or edges running through nodes on other layers can
be prevented by repositioning nodes within their respective layers. Currently,
nodes are ordered by their id and are placed in an appropriate distance from each
other, so they do not overlap. Nodes can, however, also be reordered to reduce
the amount of edge crossings. This can be done either via an optimization
algorithm or through heuristic approaches. Both variants have already been
studied in the paper of Sugiyama et al. [10] and can easily be integrated within
the LayoutGeneratorNaive class.

Also, nodes can be centered around their own predecessors and successors
to reduce the length of edges and further optimize the continuity of the general
flow direction.

6.1.2 Introduction of Dummy Nodes

Since edges often do not necessarily lead to the layer next to their sender’s,
they often cut through nodes on the layers in between their sender’s and their
receiver’s layer. To eliminate these conflicts, so-called dummy nodes can be
introduced on these layers. These would work analogous to the dummy nodes
described in (3.2.3).

6.2 LayoutGeneratorSmart

Since the weaknesses of the smart algorithm are not as easily identifiable, some
more general improvements to the LayoutGeneratorSmart class are suggested
in this section.

41

Figure 6.1: Comparison of Smart Results with (Orange) and without (Light
Gray) JUNG Layout.

6.2.1 Combination of Step 3 and Step 4

As suggested in (5.4.2) the most problems of the smart algorithm originate in
its fourth step. Step three and step four, however, both are concerned with
the repulsion of nodes. They could be combined into one step that considers
the relation of both nodes before calculating a fitting direction to move these
nodes in. This way, the overall structure of the graph would determine the way
nodes repel each other, which, in turn, could reduce the amount of accidentally
created edge crossings in these steps.

6.2.2 Exclusion of the JUNG Algorithm

The usage of the JUNG algorithm and its nondeterministic nature make the
whole smart algorithm nondeterministic as well. This causes a large level of
inconsistency in the quality of the resulting layout, which was easy to observe
by the high variance in the test results of both phases in the evaluation, even
though the smart algorithm did not produce any large outliers.

Also, some additional tests revealed that the algorithm produced results of
similar quality without the application of the JUNG layout. Figure 6.1 shows
a comparison between the application of the smart algorithm with the JUNG
layout included in orange and the application of the same algorithm without
the usage of the JUNG layout in light gray.

That is why this thesis suggests to replace the application of the JUNG
layout with another method for the initial node placement, that is deterministic
and might provide better performance.

6.2.3 Separation of Edge Types

The class LayoutGeneratorSmart contains a prototype implementation of an
algorithm that handles the different types of edges in the graph separately and
can apply different priorities to them to guarantee a constant general flow di-
rection to at least one of these edge types. Since the existing implementation is
not able to achieve this goal, it is not run by default.

If a functioning implementation for this feature can be integrated into the
algorithm, it might greatly improve its overall results.

42

7 Conclusion

Both algorithms provide the user with layout suggestions that can be quite close
to an optimal layout — though in most cases, they do require some manual ad-
justment. Both algorithms have their own strengths and weaknesses and since
no single layout can always be the optimal layout for every use case, as was
shown with Figure 5.1, both algorithms have their uses and should continue to
coexist going forward.

Since the possible improvements on the naive algorithm, however, are more
directly targeted at its weaknesses, this author is of the opinion that an improved
version of the LayoutGeneratorNaive class could very quickly be developed
and surpass the quality of the currently existing algorithms, which is why it is
suggested that the further development in the near future should be focused on
that algorithm.

43

Bibliography

[1] Mozilla. The Rust Programming Language. published online. last access
2016-08-14. url: https://doc.rust-lang.org/book/README.html.

[2] Google Inc. The Go Programming Language Specification. published on-
line. last access 2016-08-14. url: https://golang.org/ref/spec.

[3] Michael Hoffer, Christian Poliwoda, and Gabriel Wittum. “Visual re-
flection library: a framework for declarative GUI programming on the
Java platform”. In: Computing and Visualization in Science 16.4 (2013),
pp. 181–192. issn: 1433-0369. doi: 10.1007/s00791-014-0230-y. url:
http://dx.doi.org/10.1007/s00791-014-0230-y.

[4] Michael Hoffer. VRL-Studio. published online. last access 2016-08-03. url:
http://vrl-studio.mihosoft.eu/.

[5] Michael Hoffer. VWorkflows. published online. last access 2016-08-03. url:
http://vworkflows.mihosoft.eu/.

[6] Franz J Brandenburg, Michael Himsolt, and Christoph Rohrer. “An ex-
perimental comparison of force-directed and randomized graph drawing
algorithms”. In: International Symposium on Graph Drawing. Springer.
1995, pp. 76–87.

[7] Mohamed A. El-Sayed, Sayed Abdel-Khalek, and Hanan H. Amin. “Study
of Neural Network Algorithm for Straight-Line Drawings of Planar Graphs”.
In: CoRR abs/1401.5330 (2014). url: http://arxiv.org/abs/1401.
5330.

[8] Stephen G. Kobourov. Force-Directed Drawing Algorithms. 2004.

[9] Joshua O’Madadhain, Daniel Fisher, and Scott White. Java Universal
Network/Graph Framework. published online. last access 2016-08-03. url:
http://jung.sourceforge.net/index.html.

[10] Kozo Sugiyama, Shojiro Tagawa, and Mitsuhiko Toda. “Methods for visual
understanding of hierarchical system structures”. In: IEEE Transactions
on Systems, Man, and Cybernetics 11.2 (1981), pp. 109–125.

[11] Joshua O’Madadhain, Daniel Fisher, and Scott White. Jung2 API Javadoc.
published online. last access 2016-08-03. url: http://jung.sourceforge.
net/doc/api/index.html.

[12] Tomihisa Kamada and Satoru Kawai. “An algorithm for drawing general
undirected graphs”. In: Information processing letters 31.1 (1989), pp. 7–
15.

44

https://doc.rust-lang.org/book/README.html
https://golang.org/ref/spec
http://dx.doi.org/10.1007/s00791-014-0230-y
http://dx.doi.org/10.1007/s00791-014-0230-y
http://vrl-studio.mihosoft.eu/
http://vworkflows.mihosoft.eu/
http://arxiv.org/abs/1401.5330
http://arxiv.org/abs/1401.5330
http://jung.sourceforge.net/index.html
http://jung.sourceforge.net/doc/api/index.html
http://jung.sourceforge.net/doc/api/index.html

[13] Thomas M. J. Fruchterman and Edward M. Reingold. “Graph Draw-
ing by Force-directed Placement”. In: Software: Practice and experience
21.11 (Nov. 1991), pp. 1129–1164. issn: 0038-0644. doi: 10.1002/spe.
4380211102. url: http://dx.doi.org/10.1002/spe.4380211102.

[14] Bernd Meyer. “Competitive learning of network diagram layout”. In: Vi-
sual Languages, 1998. Proceedings. 1998 IEEE Symposium on. IEEE.
1998, pp. 56–63.

[15] Department of Mathematics Oregon State University. Dot Products and
Projections. published online. las access 2016-08-03. url: http://www.
math.oregonstate.edu/home/programs/undergrad/CalculusQuestStudyGuides/

vcalc/dotprod/dotprod.html.

[16] Michael Hoffer. VRL-Studio. published on GitHub. last access 2016-08-14.
url: https://github.com/VRL-Studio/VRL.

45

http://dx.doi.org/10.1002/spe.4380211102
http://dx.doi.org/10.1002/spe.4380211102
http://dx.doi.org/10.1002/spe.4380211102
http://www.math.oregonstate.edu/home/programs/undergrad/CalculusQuestStudyGuides/vcalc/dotprod/dotprod.html
http://www.math.oregonstate.edu/home/programs/undergrad/CalculusQuestStudyGuides/vcalc/dotprod/dotprod.html
http://www.math.oregonstate.edu/home/programs/undergrad/CalculusQuestStudyGuides/vcalc/dotprod/dotprod.html
https://github.com/VRL-Studio/VRL

A Fields and Methods

A.1 LayoutGeneratorNaive

Parameters:
private boolean recursive

private boolean autoscaleNodes

private int graphmode

private boolean launchRemoveCycles

private boolean launchCreateLayering

private boolean launchCalculateHorizontalPositions

private boolean launchCalculateVerticalPositions

private double scaling

private double subflowscale

Internal Fields:
private VFlowModel workflow

private LinkedList<Pair<Integer>> connectionList

private VNode[] nodes

private int nodecount

private int conncount

private boolean cycle

private int[] layering

private int layercount

Getter Methods:
public VFlowModel getWorkflow()

public Collection<VNode> getNodelist()

public boolean getRecursive()

public boolean getAutoscaleNodes()

public int getGraphmode()

public boolean getLaunchRemoveCycles()

public boolean getLaunchCreateLayering()

public boolean getLaunchCalculateHorizontalPositions()

public boolean getLaunchCalculateVerticalPositions()

public double getScaling()

public double getSubflowscale()

public boolean getDebug()

public LinkedList<Pair<Integer>> getModelGraph()

public int[] getLayering()

46

Setter Methods:
public void setWorkflow(VFlowModel pworkflow)

public void setNodelist(Collection<VNode> pnodelist)

public void setRecursive(boolean precursive)

public void setAutoscaleNodes(boolean pautoscaleNodes)

public void setGraphmode(int pgraphmode)

public void setLaunchRemoveCycles(boolean plaunchRemoveCycles)

public void setLaunchCreateLayering(

boolean plaunchCreateLayering)

public void setLaunchCalculateHorizontalPositions(

boolean plaunchCalculateHorizontalPositions)

public void setLaunchCalculateVerticalPositions(

boolean plaunchCalculateVerticalPositions)

public void setScaling(double pscaling)

public void setSubflowscale(double psubflowscale)

public void setDebug(boolean pdebug)

public void setModelGraph(

LinkedList<Pair<Integer>> pconnectionList)

public void setLayering(int[] playering)

Constructors:
public LayoutGeneratorNaive()

public LayoutGeneratorNaive(boolean pdebug)

Other Methods:
private void initialize()

public boolean setUp()

pivate boolean checkCycles()

private void removeCycles()

private void remCycR(Integer curr, LinkedList<Integer> path,

boolean[] checked)

public void generateLayout()

private void runSubflows()

private void autoscaleNodes()

private void createLayering()

private boolean allLocked(boolean[] locked)

private void calculateVerticalPositions()

private void calculateHorizontalPositions()

private Integer getNodeID(VNode pnode)

A.2 LayoutGeneratorSmart

Parameters:
private boolean recursive

private boolean autoscaleNodes

private int layoutSelector

private double aspectratio

private int graphmode

private boolean launchRemoveCycles

47

private boolean launchSeparateDisjunctGraphs

private boolean launchSeparateEdgeTypes

private boolean launchJungLayout

private boolean launchRotate

private boolean launchOrigin

private boolean launchPushBack

private boolean launchDisplaceIdents

private boolean launchForcePush

private boolean launchAlignNodes

private int maxiterations

private double scaling

private double subflowscale

private double direction

private double alignmentThreshold

private boolean debug

Internal Fields:
private VFlowModel workflow

private DirectedGraph<VNode, Connection> jgraph

private VNode[] nodes

private Layout<VNode, Connection> layout

private int nodecount

private int conncount

private Point2D graphcenter

private Pair<Integer>[] origin

private boolean cycle

Getter Methods:
public VFlowModel getWorkflow()

public DirectedGraph<VNode, Connection> getModelGraph()

public Collection<VNode> getNodelist()

public boolean getRecursive()

public boolean getAutoscaleNodes()

public int getLayoutSelector()

public double getAspectratio()

public int getGraphmode()

public boolean getLaunchRemoveCycles()

public boolean getLaunchSeparateDisjunctGraphs()

public boolean getLaunchSeparateEdgeTypes()

public boolean getLaunchJungLayout()

public boolean getLaunchRotate()

public boolean getLaunchOrigin()

public boolean getLaunchPushBack()

public boolean getLaunchDisplaceIdents()

public boolean getLaunchForcePush()

public boolean getLaunchAlignNodes()

public int getMaxiterations()

public double getScaling()

public double getSubflowscale()

public double getDirection()

48

public double getAlignmentThreshold()

public boolean getDebug()

Setter Methods:
public void setWorkflow(VFlowModel pworkflow)

public void setModelGraph(

DirectedGraph<VNode, Connection> pjgraph)

public void setNodelist(Collection<VNode> pnodelist)

public void setRecursive(boolean precursive)

public void setAutoscaleNodes(boolean pautoscaleNodes)

public void setLayoutSelector(int playoutSelector)

public void setAspectratio(double paspectratio)

public void setGraphmode(int pgraphmode)

public void setLaunchRemoveCycles(boolean plaunchRemoveCycles)

public void setLaunchSeparateDisjunctGraphs(

boolean plaunchSeparateDisjunctGraphs)

public void setLaunchSeparateEdgeTypes(

boolean plaunchSeparateEdgeTypes)

public void setLaunchJungLayout(boolean plaunchJungLayout)

public void setLaunchRotate(boolean plaunchRotate)

public void setLaunchOrigin(boolean plaunchOrigin)

public void setLaunchPushBack(boolean plaunchPushBack)

public void setLaunchDisplaceIdents(

boolean plaunchDisplaceIdents)

public void setLaunchForcePush(boolean plaunchForcePush)

public void setLaunchAlignNodes(boolean plaunchAlignNodes)

public void setMaxiteration(int pmaxiterations)

public void setScaling(double pscaling)

public void setSubflowscale(double psubflowscale)

public void setDirection(double pdirection)

public void setAlignmentThreshold(double palignmentThreshold)

public void setDebug(boolean pdebug)

Constructors:
public LayoutGeneratorSmart()

public LayoutGeneratorSmart(boolean pdebug)

Other Methods:
private void initialization()

private boolean allNodesSetUp()

private void createGraph(

ObservableMap<String, Connections> allConnections)

private Pair<Integer>[] getOrigin()

private Point2D getGraphCenter()

private boolean checkCycle()

private void removeCycles()

private void remCycR(VNode curr, LinkedList<VNode> path,

boolean[] checked)

private void separateDisjunctGraphs()

private void separateEdgeTypes()

49

public void generateLayout()

private void runSubflows()

private void autoscaleNodes()

private void stepLayoutApply()

private double findMaxPathWidth()

private void stepRotate()

private double getAvgDir()

private void stepOrigin()

private void stepPushBack()

private void displaceIdents()

private void forcePush()

private double getRealNodeDist(VNode node1, VNode node2)

private double getDesiredNodeDist(VNode node1, VNode node2)

private void alignNodes()

private Integer getNodeID(VNode pnode)

50

B Testresults

nodes to be moved (of 10) avg
Tree1 3 3 2 5 3 2 4 3 2 3 3
Tree2 3 2 3 3 4 3 5 3 3 2 3.1
Tree3 3 2 1 2 4 3 4 3 1 3 2.6
Acyclic1 3 3 5 2 6 5 3 4 1 2 3.4
Acyclic2 3 4 2 3 3 4 4 4 4 4 3.5
Acyclic3 3 1 0 2 3 3 2 1 2 3 2
Cyclic1 1 1 1 0 1 0 1 1 1 1 0.8
Cyclic2 1 1 3 1 2 1 2 1 3 0 1.5
Cyclic3 1 1 2 1 2 1 2 2 1 1 1.4
Sizes1 2 3 2 2 2 2 3 2 2 2 2.2
Sizes2 4 3 3 3 3 2 3 3 3 4 3.1
Sizes3 3 2 2 1 3 3 3 2 2 2 2.3

Table B.1: Phase I Test Results of the Smart Algorithm

Test # nodes to be moved (of 10)
Tree1 0
Tree2 0
Tree3 0
Acyclic1 1
Acyclic2 3
Acyclic3 1
Cyclic1 0
Cyclic2 2
Cyclic3 1
Sizes1 1
Sizes2 1
Sizes3 7

Table B.2: Phase I Test Results of the Naive Algorithm

51

Test # nodes to be moved avg # nodes
1 2 2 4 2 4 3 4 3 3 3 3 14
2 8 9 9 7 8 7 6 5 7 9 7.5 19
3 4 4 2 2 2 3 3 3 3 2 2.8 15
4 8 13 11 14 8 10 10 12 10 10 10.6 33
5 3 2 3 2 2 4 2 3 3 2 2.6 25
6 4 3 4 3 6 2 3 5 3 1 3.4 12
7 4 3 3 4 4 2 2 3 1 5 3.1 13
8 16 16 22 21 12 15 24 26 15 16 18.3 49
9 18 13 17 19 15 11 13 8 16 5 13.5 43
10 0 2 2 1 1 3 2 1 1 2 1.5 8

Table B.3: Phase II Test Results of the Smart Algorithm

Test # nodes to be moved # nodes
1 3 14
2 10 19
3 4 15
4 16 33
5 4 25
6 6 12
7 5 13
8 28 49
9 16 43
10 3 8

Table B.4: Phase II Test Results of the Naive Algorithm

52

C Glossary

VRL The Visual Reflection Library can be used to create visual representations
of source code files.

VRL-Studio The VRL-Studio is a visual programming environment developed
at the Goethe Center for Scientific Computing and is based on VRL and
VWorkflows.

VWorkflows VWorkflows is a Java library implementing a graph model with
visualization and interactivity features. See (3.1).

graph A graph G is a tuple (V,E) consisting of two sets V and E. V is a set
of n vertices vi while E is a set of m two-tuples (vi, vj) with vi, vj ∈ V
representing directed edges pointing from the vertex vi to vj .

origin Origin nodes are all nodes within a graph, which have an in-degree of
zero, meaning they do not have any predecessors.

in front The term in front in this context means if vertex vi is in front of
vertex vj , then vi has a smaller coordinate on the axis of the general flow
direction, so that an edge from vi to vj runs in the general flow direction.

behind The term behind describes the arrangement of the nodes vi and vj
whereby an edge from vi to vj runs against the general flow direction if vi
is behind vj .

subflow A subflow is a program flow, that is contained within a node of another
program flow.

subflow node The term subflow node refers to a node that contains a subflow.
For future clarity it is important to make the distinction between subflow
nodes, which are nodes that contain a subflow, and the nodes of a subflow,
which are regular nodes contained within a subflow.

depth The depth of a VFlowModel describes the hierarchical position of the
graph within the entirety of the project. The highest level flow graph
(also called root flow) has a depth of zero, while each subflow of a certain
graph always has a depth of one larger than its parent flow.

sender The sender of an edge is the node in which the edge originates.

receiver The receiver of an edge is the node, which the edge points towards.

53

D List of CD Contents

. readme.txt
Contains this list of contents and some tutorial text.

. thesis.pdf
Contains a digital version of this thesis.

. Test Code Files/
Contains the ten code files used as test examples in Phase II of the eval-
uation.
Also contains the file ”vrl-tests.txt” which assigns the individual test code
files the indices, which are used in the result tables.

. testimages/
Contains the snapshots of all test results in the following directory tree:

. smart/
Contains the results for the smart algorithm.

. Each folder is named after the corresponding test.

. The individual test images are named in the pattern:
number of the test.png: the root flow of the test
number of the test *subflow id*.png: each subflow that is
not visible in the root flow view

. naive/
Contains the results for the naive algorithm.

. Each folder is named after the corresponding test.

. The individual test images are named in the pattern:
0.png: the root flow
0 *subflow id*.png: each subflow that is not visible in the
root flow

. VRL/
Contains the Gradle project of VRL-Studio in the version that was used
in the evaluation.
Execute ”gradlew :vrl-ui:run” to run VRL-Studio.

. VWorkflows-master/
Contains the Gradle project of VWorkflows in the version that was used
in the evaluation.

. vworkflows-demo/
Contains a compiled version of the VWorkflows project.
Execute ”vworkflows-demo/vworkflows-demo-0.2.4.2.jar” to start VWork-
flows.

54

	Declaration of Authorship
	Abstract
	Introduction
	The Problem
	Criteria in Layout Quality Assessment
	Definitions

	Technological Background
	VWorkflows
	The Java Universal Network/Graph Framework

	Implementation
	The LayoutGenerator Interface
	The Naive Layout Generator
	The Smart Layout Generator

	Evaluation
	Methodology
	Test Phase I - General Graphs
	Test Phase II - VRL Graphs
	Discussion

	Horizon
	LayoutGeneratorNaive
	LayoutGeneratorSmart

	Conclusion
	Fields and Methods
	LayoutGeneratorNaive
	LayoutGeneratorSmart

	Testresults
	Glossary
	List of CD Contents

