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Abstract. We enhance the security of Schnorr blind signatures against
the novel one-more-forgery of Schnorr [Sc01] and Wagner [W02] which
is possible even if the discrete logarithm is hard to compute. We show
two limitations of this attack. Firstly, replacing the group G by the s-fold
direct product G×s increases the work of the attack, for a given number
of signer interactions, to the s-power while increasing the work of the
blind signature protocol merely by a factor s. Secondly, we bound the
number of additional signatures per signer interaction that can be forged
effectively. That fraction of the additional forged signatures can be made
arbitrarily small.

1 Introduction and Summary

Blind signatures are a basic primitive for anonymous electronic cash. We study
the security of Schnorr blind signatures and Okamoto-Schnorr blind signa-
tures against the one-more-forgery in which an attacker interacts some l times
with the legitimate signer and produces from these l interactions l + 1 signa-
tures. Let G be a group of prime order q for which the discrete logarithm (DL)
is hard to compute, e.g. an elliptic / hyperelliptic curve or a group of units. The
security of Schnorr blind signatures over G does not only require the hardness of
the DL-problem. Schnorr [Sc01] introduces the ROS-problem and shows that
one-more-forgeries are easy for Schnorr blind and Okamoto-Schnorr blind sig-
natures when an algorithm is given to solve the ROS-problem. Wagner [W02]
solves the ROS-problem for l + 1 = 2t in O(2t q1/(t+1))-average time and space
by a tree-like general birthday method. For t = 9, |G| ≈ 2160 this attack succeeds
in O(225) average time performing 29 − 1 interactions with the signer. We show
two limitations of this attack.

Firstly, replacing a group G by its non-cyclic s-fold direct product G×s en-
hances the security against general birthday attacks. For a given number of signer
interactions, the work of the attack increases to the s-power while the work of
the blind signature protocol merely increases by a factor s. E.g., the general



birthday attack that succeeds in O(225) average time and 29 − 1 interactions
for a group G, |G| ≈ 2160, requires O(225 s) average time for the product group
G×s, for the same number of interactions.

Secondly, we bound the number of additional signatures per interaction that
can be forged effectively by the new attack. The fraction of the additional forged
signatures can be made arbitrarily small. For a given number of signer interac-
tions, forging s additional signatures in an interleaved way requires work propor-
tional to the s-power of the work for forging a single signature. Blind signatures
differ from standard signatures in that forging two additional signatures may be
infeasible, for a given number of signer interactions, even if a single additional
signature can be forged with moderate work.

The critical resource for the general birthday attack is the number of interac-
tions with the signer. The birthday attack requires many signer interactions to
become efficient. This makes the attack pointless if the signer is willing to give
away a few signatures for free rewarding a high volume of paid signatures. The
birthday attack that forges a single signature in time 225 with 29 − 1 signer in-
teractions amounts to an enforced 0.2% free rate for a volume of 29 signatures.
Such a small rebate for a high business volume is reasonable, if the attacker
cannot easily increase the enforced rebate. We show that increasing the 0.2%
free rate by a factor s either increases the work 225 of the attack to 225 s or else
requires to perform several, separate attacks with fewer interactions.

There are provably secure blind DL-signature protocols where the general
birthday attack does not apply. However, the blind DL-signature protocols of
Abe [A01] and of Pointcheval [P98] require additional public parameters and
additional work. The [A01] scheme provides merely computational blindness,
the [P98] scheme requires a third party checker and its security covers only syn-
chronous attacks. This poses the question whether perfectly blind DL-signatures
exist. Simplicity of the scheme is also important as it furthers its acceptance. A
clear security result may help to combine the scheme with other cryptographic
primitives. Therefore, Schnorr blind signatures remain attractive compared to
more complicated blind signature schemes of [A01, P98].

2 Schnorr Blind Signatures for Direct Product Groups

We consider blind signatures as required for anonymous digital cash. Blind sig-
natures are generated by an interaction with the signer in such a way that the
signer cannot link the generated signature to the interaction.

Schnorr signatures refer to an arbitrary group G of prime order q, a generator
g of G, an arbitrary message space M , and the field Zq of integers modulo q.
We first describe Schnorr signatures for the group G, and thereafter for the
direct product group G×s, where signature verification consists of s independent
verifications over G. Signatures will be based on strong hash functions H :
G ×M → Zq, resp., H̄ : G×s ×M → Zs

q. Our security analysis assumes that
H, H̄ are modeled as random oracles.
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Private/public key pairs. The private key x of the signer is a random element of
Zq. The corresponding public key is h = gx ∈ G, a random group element. We
have that x = logg h.

Signatures. A Schnorr signature of a message m is a triple (m, c, z) ∈ M × Z2
q

such that H(gzh−c,m) = c.

Signing a message m ∈M : Pick a random r ∈R Zq, compute gr, c := H(gr, m)
and z := r+cx. Output the signature (m, c, z). The result is a valid signature
since we have gzh−c = gr+cxh−c = gr, and thus H(gzh−c, m) = c.

A signer interaction is a three round interactive protocol between the signer and
a user. The signer picks a random r ∈R Zq and sends the commitment gr to
the user. The user transmits a challenge c ∈ Zq, the signer replies by sending
z := r + cx ∈ Zq. We let (r, c, z) ∈ Z3

q denote the signer interaction consisting
of the signer’s random coin r, the user’s challenge c and the signer’s reply z. A
signer interaction (r, c, z) can be used to generate the standard signature (m, c, z),
where c := H(gr, m) or a transformation (m, c′, z′) of that signature.

Extension to the s-fold direct product G×s. Let G×s = G × · · · × G denote the
s-fold product of the group G with the componentwise group action.

Signatures for G×s. A Schnorr signature of message m is a triple (m, c̄, z̄) ∈M×
Zs×2

q such that H̄(gz̄h−c̄,m) = c̄. Here let gz̄h−c̄ denote (gz1h−c1 , ..., gzsh−cs) ∈
G×s for z̄ = (z1, ..., zs), c̄ = (c1, ..., cs) ∈ Zs

q.
To sign a message m the signer picks a random r̄ ∈R Zs

q, computes gr̄ =
(gr1 , ..., grs), c̄ := H̄(gr̄,m) and z̄ := r̄+ c̄x, and outputs the signature (m, c̄, z̄).

Note that Schnorr signatures for G×s merely use the secret/public parameters
of Schnorr plain signatures. All further concepts like blind signatures translate
in the obvious way from the group G to G×s.

Blind Signature Protocol for G×s. A protocol for generating a signature is called
(perfectly) blind if the generated signature (m, c̄′, z̄′) is statistically independent
of the interaction (r, c̄, z̄) that provides the view of the signer. Blind signatures
cannot be linked to the signer interaction. The blindness concept is from [CP92].

To generate a blind signature (m, c̄′, z̄′) the user picks random s-tuples ᾱ, β̄ ∈R

Zs
q, and replies to the commitment gr̄ ∈ G×s of the legitimate signer by send-

ing the challenge c̄ = H̄(gr̄+ᾱhβ̄ ,m) + β̄ ∈ Zs
q. The signer answers by sending

z̄ = r̄ + c̄x ∈ Zs
q. Upon receipt the user computes z̄′ := z̄ + ᾱ, c̄′ := c̄ − β̄, and

gets the signature (m, c̄′, z̄′).

signer x ∈ Zq

picks r̄ ∈R Zs
q

computes gr̄

z̄ := r̄ + c̄ x

gr̄

−→̄
c←−̄
z−→

user h = gx ∈ G

picks ᾱ, β̄ ∈R Zs
q

c̄ := H(gr̄+ᾱhβ̄ ,m) + β̄
z̄′ := z̄ + ᾱ, c̄′ := c̄− β̄
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Validity. For the output of the interaction (m, c̄′, z̄′) = (m, c̄− β̄, z̄ + ᾱ) we have
that gz̄′h−c̄′ = gr̄+c̄x+ᾱh−c̄+β̄ = gr̄+ᾱhβ̄ . Hence H̄(gz̄′h−c̄′ ,m) = c̄ − β̄ = c̄′,
and thus (m, c̄′, z̄′) is a valid signature.

Blindness Property. The generated signature (m, c̄− β̄, z̄+ ᾱ) is — for a constant
interaction (r̄, c̄, z̄) — uniformly distributed over all signatures of message m due
to the random ᾱ, β̄ ∈R Z×s

q . Each signature (m, c̄′, z̄′) is produced for a unique
pair (ᾱ, β̄) : ᾱ = z̄′ − z̄, β̄ = c̄− c̄′.

Informal Argument for the Enhanced Security by G×s. For a random function
H̄ the components H1(f̄ ,m), ..., Hs(f̄ , m) ∈ Zq of

H̄(f̄ , m) = (H1(f̄ ,m), ..., Hs(f̄ , m))

are statistically independent even for particular choices of f̄ where e.g., f1 =
... = fs. The verification H̄(gz̄h−c̄,m) = c̄ consists of statistically independent
equations Hi(gz̄h−c̄,m) = ci for i = 1, ..., s.

Informally, the birthday method of [W02] applies to random (s lg q)-bit
strings H̄(f̄ , m) whereas, in the case of signatures for G, it applies to the lg q-
bit string H(f, m). This increases the work of the attacks to the s-power, see
Section 4.1 for a formal proof. While G×s improves the security against the
birthday attack the complexity of the DL-problem remains unchanged. The s-
fold DL-problem for G×s amounts to solve s DL-problems for G.

3 The Generic Parallel Attack on Blind Signatures

We recall in Section 3.1 the generic attack from [Sc01] when given an algorithm
to solve the ROS-problem. We review in Section 3.2 Wagner’s solution of the
ROS-problem as a 2t-sum problem over Zq.

3.1 One-More-Forgeries by Solving the ROS-Problem.

First, we present the generic attack for Schnorr blind signatures, and thereafter
for Okamoto-Schnorr blind signatures. Okamoto-Schnorr signatures do not pro-
tect better against the generic attack than Schnorr blind signatures. The generic
attack for Schnorr blind signatures uses a solution of the

ROS-problem over Zq: Find an overdetermined, solvable system of linear equa-
tions modulo q with random inhomogenities. Specifically, given an oracle random
function F : Zl

q → Zq, find coefficients ak,` ∈ Zq and a solvable system of l + 1
distinct equations (1) in the unknowns c1, ..., cl ∈ Zq:

ak,1 c1 + · · ·+ ak,l cl = F (ak,1, ..., ak,l). (1)

For the generic attack we let F (ak,1, ..., ak,l) = H(fk,mk) for fk = g
ak,1
1 · · · gak,l

l

and an arbitrary message mk.

The attack against Schnorr blind signatures. The signer sends commitments g1 =
gr1 , ..., gl = grl . The attacker A selects ak,1, ..., ak,l ∈ Zq and messages mk, and
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computes fk = g
ak,1
1 · · · gak,l

l , H(fk,mk) for k = 1, ..., τ . Then A solves l +1 out
of the τ equations (2) in the unknowns c1, .., cl over Zq:

ak,1 c1 + · · ·+ ak,l cl = H(fk, mk). (2)
A sends the solutions c1, ..., cl as challenges to the signer. The signer sends back
z` := r` + c`x ∈ Zq for ` = 1, ..., l. For each solved equation (2) the attacker gets
a valid signature (mk, c′k, z′k) by setting

c′k :=
∑l

`=1 ak,` c` = H(fk,mk) and z′k :=
∑l

`=1 ak,`z`.
Correctness. The equations (2) imply that

gz′kh−c′k = g
ak,1
1 · · · gak,l

l = fk and H(gz′kh−c′k , mk) = c′k.

The attack is generic, it works for arbitrary groups with an efficient multi-
plication, it is intrinsic parallel. We call it the generic, parallel attack.

The aattack against Okamoto-Schnorr blind signatures. We follow the notation
of [PS00]. There are two public keys h and y = g−rh−s for random secret
keys r, s ∈R Zq while logg h is unknown. A signature of message m is a tuple
(m, ε, ρ, σ)
∈M × Z3

q satisfying H(gρhσyε,m) = ε.
The signer picks random t`, u` ∈R Zq and sends commitments g` = gt`hu` for

` = 1, .., l. The attacker A selects coefficients ak,` ∈ Zq and messages m1, ..., mt,
and computes fk = g

ak,1
1 · · · gak,l

l and H(fk,mk) for k = 1, ..., τ . A solves l + 1
of the τ linear equations (2) modulo q in the unknowns c1, ..., cl. A sends the
solutions c1, ..., cl as challenges to the signer. The signer sends back R` := t`+c`r,
S` := u` + c`s ∈ Zq for ` = 1, .., l. For each solved equation

∑l
`=1 ak,` c` = H(fk,mk). (2)

A gets a valid signature (mk, εk, ρk, σk) by setting

εk = H(fk,mk) =
∑l

`=1 ak,` c`, ρk =
∑l

`=1 ak,` R`, σk =
∑l

`=1 ak,` S`.

Correctness. From the equations (2) we get that

gρkhσkyεk =
∏l

`=1 g
ak,`

` = fk and H(gρkhσkyεk ,mk) = εk.

3.2 The ROS-Problem and the 2t-Sum Problem.

The classic birthday method finds a collision in a large list of n bit integers
that are drawn uniformly at random in O(2n/2) average time. Wagner’s 2t-sum
algorithm [W02] generalizes the birthday method to solve the following

2t-sum problem over Zn
2
∼= {0, 1}n: Given 2t lists L1, . . . , L2t of elements drawn

uniformly and independently at random from {0, 1}n find x1 ∈ L1,. . ., x2t ∈ L2t

such that x1 ⊕ · · · ⊕ x2t = 0.
Wagner’s algorithm solves the 2t-sum problem over Zn

2 in O(2t 2
n

1+t ) average
time and space. For t = 2 the algorithm runs in O(2n/3) time improving the
O(2n/2) bound of previous algorithms. Wagner’s algorithm extends to the case
that the group Z2 is replaced by the group Zq for an arbitrary integer q.
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For the 2t-sum problem over Zn
q we are given lists L1, ..., L2t of independent

random elements of Zn
q and search for x1 ∈ L1, ..., x2t ∈ L2t such that

x1+ · · ·+x2t = 0. The general birthday method solves this problem in O(2tq
n

t+1 )
average time. This upper bound is also a lower bound for Wagner’s algorithm
which requires 2tq

n
t+1 average time. The 2t-sum problem gets easier as t increases.

While this holds for powers of 2, the m-sum problem for 2t < m < 2t+1 can be
solved as the harder 2t-sum problem, and more efficient solutions are unknown.

It is open whether Wagner’s general birthday method is optimal for the 2t-
sum problem. The 2t-sum problem over Zs

q has an information theoretic lower
bound Ω(qs/2t

), and thus its complexity is likely to be Θ(qs/c(t)) for some func-
tion c(t).

Solution of the ROS-problem with l + 1 = 2t. Consider for simplicity the case
l = 3. Solving the ROS-problem means to find a matrix

A =




a1,1, a1,2, a1,3, H(f1,m1)
a2,1, a2,2, a2,3, H(f2,m2)
a3,1, a3,2, a3,3, H(f3,m3)
a4,1, a4,2, a4,3, H(f4,m4)


 ∈ Z4×4

q

so that the corresponding four linear equations (2) in c1, c2, c3 are solvable.
Solvability means that the last column vector of A is a linear combination of the
first three columns. If the first three columns of A are linearly independent the
four linear equations (2) are solvable if and only if det(A) = 0. Developing the
determinant along the 4-th column yields the equation

∑4
k=1(−1)k AkH(fk, mk) = 0, (3)

where Ak is the determinant of the 3×3-submatrix obtained from A by removing
the k-th row and the last column. Solving the linear equation (3) for given
constant non-zero coefficients Ak is an instance of the 4-sum problem over Zq:
fill list Lk with candidates for AkH(fk,mk) for k = 1, ..., 4 and search for a
solution to x1 + · · ·+ x4 = 0 with xk ∈ Lk. The 4-list algorithm solves Equation
(3) in O(q1/3) average time. Note that we let mk vary for distinct candidates of
Lk while keeping fk, a1,k, a2,k, a3,k determined by k. So we get many candidate
values H(fk,mk) for each k. Alternatively, we can let fk, a1,k, a2,k, a3,k vary for
distinct candidates of Lk while keeping mk determined by k.

Extending this method to arbitrary values l + 1 = 2t proves Theorem 1.

Theorem 1. [W02] The ROS-problem for l + 1 = 2t can be solved as a 2t-sum
problem over Zq.

Simplification of Equation (3). The ROS-solution of Theorem 1 allows to freely
choose the matrix entries ak,` ∈ Zq so that the coefficients Ak in (3), resp. in
(4) for general l, are all non-zero. Zero coefficients Ak must be avoided as sum
problems with fewer terms are harder to solve.
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The particular matrix choice al+1,i := −ai,i for i = 1, ..., l, ai,j := 0 for i 6= j,
i ≤ l yields the equation

∑l+1
k=1 H(fk, mk) = 0 for arbitrary l.

Reducing the 2t-sum problem to the ROS-problem. Solving the 2t-sum problem
as an ROS-problem is possible for a particular class of ROS-algorithms and for
a novel type of reduction. Consider the particular ROS-algorithms that generate
constant coefficients Ak in (3), (4) that do not depend on H.

Solving the 2t-sum problem by ROS-algorithms with constant coefficients Ak.
Consider an arbitrary ROS-algorithm producing an ROS-solution matrix A′ =
[ak,`]k,` ∈ Z(l+1)×l

q with right sides H(fk,mk). Assuming that A′ has maximal
rank l this yields a solution of the equation

∑l+1
k=1(−1)kAkH(fk, mk) = 0, (4)

where Ak is the determinant of the l×l-submatrix obtained from A′ by removing
the k-th row.

Suppose that the Ak do not depend on H. We can assume w.l.o.g. that all Ak

are non-zero, otherwise Equation (4) gets harder to solve. The ROS-algorithm
must try many candidates for each random element H(fk,mk). If the ROS-
algorithm tries qk candidates for H(fk,mk) we must have that q1 · · · ql+1 ≥ q
because Equation (4) holds with probability 1

q for each choice of candidates. Let
Lk denote the set of candidates for H(fk, mk). Then the ROS-algorithm solves
the 2t-sum problem for the lists A1L1, ..., A2tL2t . This proves the reduction as
the lists AkLk consist of random elements that are drawn independently from
Zq.

This is a novel type of reduction for computational problems with random
inputs. The coefficients A1, ..., Al+1 generated by the ROS-algorithm are used
to transform the probability space of the 2t-sum problem consisting of the lists
L1, ..., L2t . This transform multiplies the elements of Lk by Ak, it preserves
probabilities since the transform is invertible.

The case of non-constant coefficients Ak. In general the coefficients Ak in (4) may
depend on H as the coefficients ak,` may arbitrarily depend on previously drawn
random elements H(fk′ ,mk′). However, H(fk,mk) is statistically independent
of ak,1, ..., ak,l. A coefficient vector A = (A1, ..., Al+1) associated with the ROS-
solution occurs with some probability PrH [A] depending on the random H and
the choices of the ROS-algorithm. For an ROS-algorithm running in average
time q1/t+1 some coefficient vector A must have probability PrH [A] ≥ q−

1
l+1 .

Such A must be tested by the ROS-algorithm for at least q1− 1
l+1 hash tuples

H = (H(f1,m1), ..., H(fl+1,ml+1)) since Equation (4) holds with probability
1
q for each hash tuple. Therefore, ROS-algorithms running in time q1/t+1 must
select the matrix entries ak,` to focus the resulting A on a few vectors.

It seems that testing hash tuples H for several coefficient vectors A is more
difficult than testing for a single A as does the 2t-sum algorithm. This indicates
that variable vectors A dont help. We conjecture that the most efficient general
ROS-algorithms generate constant vectors A that do not depend on H.
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3.3 Complexity of the Generic Attack.

The Generic Group Model with Random Hashes. Generic group algorithms for
G do not use the binary encodings of the group elements, they access group ele-
ments only for group operations, equality tests, and random hashes. Nechaev
[Ne94] proves that the discrete logarithm problem is hard in such a model.
Shoup [Sh97] extends the Nechaev argument to further generic complexity lower
bounds. He introduces a random encoding σ : G → S of group elements into
random binary strings. Curiously, the security proofs of Shoup [Sh97] do not
depend on the random σ even though [Sh97] suggests otherwise. Schnorr and
Jakobsson [SJ00],[Sc01] have eliminated the random σ from the generic group
model. In addition they assume that hash functions, required for various appli-
cations, are independent random functions modeled as random oracles. We call
this the generic group model with random hashes (GM+ROM). Security proofs
in this strong proof model merely exclude generic attacks. Contrary to the claims
of some anonymous referees, we are not aware of any non generic attack to a
reasonable cryptosystem. However, non generic attacks are known for artificial
protocols [CGH98, F00].

Theorem 2 [Sc01, Thm 2] gives a sharp security lower bound for generic attacks
on Schnorr blind signatures. It shows that Schnorr signatures are secure against
generic attacks if both the DL-problem and the ROS-problem are computation-
ally hard.

Theorem 2. [Sc01, Thm 2] Let a generic adversary A be given the generator
g, the random public key h, an oracle for H. Let A perform τ generic steps
including l signer interactions. If A succeeds to produce l + 1 blind signatures
for G with a better probability of success than

(
τ
2

)
/q then A must find a solvable

system of l + 1 equations (2) for the unknowns c1, ..., cl ∈ Zq. The probability
space consists of h, H and the random coins of the signer.

4 Security of Blind Signatures for G×s.

The generic attack, with l interactions and τ generic steps, on Schnorr blind
signatures requires a solution of the

ROS-problem over Zs
q: Given an oracle random function F̄ : Zl×s

q → Zs
q, find

coefficients āk,` ∈ Zs
q and a solvable system of l + 1 out of τ distinct equations

(1̄) in the unknowns c̄1, ..., c̄l ∈ Zs
q:

āk,1 c̄1 + · · ·+ āk,l c̄l = F̄ (āk,1, ..., āk,l). (1̄)

For the generic attack let F̄ (āk,1, ..., āk,l) = H̄(f̄k, mk) for f̄k = ḡ
āk,1
1 · · · ḡāk,l

l and
for an arbitrary message mk.
The attack against Schnorr blind signatures for G×s. The signer sends commit-
ments ḡ1 = gr̄1 , ..., ḡl = gr̄l ∈ G×s. The attacker A selects āk,1, ..., āk,l ∈ Zs

q and
messages mk, and computes f̄k = ḡ

āk,1
1 · · · ḡāk,l

l and H̄(f̄k, mk) for k = 1, ..., τ .
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Then A solves l + 1 out of the τ equations (2̄) in the unknowns c̄1, .., c̄l over Zs
q:∑l

`=1 āk,` c̄` = H̄(f̄k,mk). (2̄)
A sends the solutions c̄1, ..., c̄l as challenges to the signer. The signer sends back
z̄` := r̄` + c̄`x ∈ Zs

q for ` = 1, ..., l. For each solved equation (2̄), the attacker
gets a valid signature (mk, c̄′k, z̄′k) by setting

c̄′k :=
∑l

`=1 āk,` c̄` = H̄(f̄k,mk) and z̄′k :=
∑l

`=1 āk,`z̄`.
Correctness. The equations (2̄) imply that

gz̄′kh−c̄′k = ḡ
āk,1
1 · · · ḡāk,l

l = f̄k and H̄(gz̄′kh−c̄′k , mk) = c̄′k.

Corollary 1. A generic adversary that performs τ generic steps and produces
from l signer interactions l + 1 Schnorr blind signatures for G×s with a better
probability of success than

(
τ
2

)
/q must find a solvable system of l + 1 out of τ

linear equations (2̄) in l unknowns, with unknowns and coefficients in Zs
q, and

statistically independent right sides.

Proof. The proof of Theorem 2 [Sc01] extends from G to G×s. Schnorr blind
signatures for G×s of message mk, constructed from l signer interactions with
challenges c̄1, ..., c̄l ∈ Zs

q, require distinct equations
∑l

`=1 āk.` c̄` = H̄(f̄k,mk).
A generic attack that generates l + 1 signatures from l signer iteractions must
find l + 1 solvable equations (2̄) for c̄1, ..., c̄l. The right side H̄(f̄k,mk) of these
equations consists of independent random numbers in Zs

q. Hence the claim. ut

Theorem 3. Finding a solvable system of l+1 linear equations (2) as in Corol-
lary 1 can be solved as an l+1-sum problem over Zs

q, and requires 2tq
s

t+1 average
time for the general birthday method with l + 1 = 2t.

Proof. The attacker must find a solvable system of l + 1 equations∑l
`=1 āk,` c̄` = H̄(f̄k,mk), (2̄)

with coefficients and unknowns in Zs
q. Consider the matrix

Ā =




ā1,1 · · · ā1,l H̄(f̄1, m1)
...

...
...

āl,1 · · · āl,l H̄(f̄l, ml)
āl+1,1 · · · āl+1,l H̄(f̄l+1, ml+1)


 .

The matrix Ā = (A1, ..., As) ∈ (Zs
q)

(l+1)×(l+1) consists of component matrices

Ai ∈ Z(l+1)×(l+1)
q whose entries are the i-th components of the entries of Ā. Each

linear equation for c̄1, ..., c̄l ∈ Zs
q corresponds to s separate linear equations for

the components c`,i ∈ Zq of c̄` for i = 1, ..., s. W.l.o.g. let the matrices Ai all
have rank l. Then the l + 1 equations (2̄) are solvable if and only if det(Ai) = 0
for i = 1, ..., s.
These determinant equations can be written as a system of s linear equations
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∑l+1
k=1(−1)kAk,iHi(f̄k, mk) = 0 for i = 1, ..., s, (5)

where the coefficient Ak,i ∈ Zq is the determinant of the l×l-submatrix that is ob-
tained from Ai by removing the k-th row and the last column. While the Ak,i may
depend on H we consider the case that the Ak,i are constant. Solving the equa-
tions (5) for given Ā ∈ Zs×(l+1)×(l+1)

q amounts to solve an l+1-sum problem over
Zs

q. For this we fill the list Lk with candidates ((−1)kAk,iHi(f̄k,mk))i=1,...,s ∈ Zs
q

for k = 1, ..., l + 1. These candidates are independent random elements in Zs
q.

Note that we let mk vary for distinct candidates while keeping āk,1, ..., āk,l, f̄k

determined by k. Hence, the claim. ut

5 Forging s Additional Signatures in an Interleaved Way.

We study the problem of forging s additional signatures for a given number l of
interactions by the general birthday method. Theorem 2 yields the following

Corollary 2. Any generic attack that performs τ generic steps and produces
from l signer interactions l + s Schnorr blind signatures for G with a better
probability of success than

(
τ
2

)
/q must find a solvable system of l + s out of τ

linear equations (2) over Zq.

Proof. A Schnorr signature (mk, c′, z′) that is constructed by the generic par-
allel attack using l signer interactions with challenges c1, ..., cl is of the form
c′ =

∑l
`=1 ak,`c`, z′ =

∑l
`=1 ak,`z` and the challenges c1, ..., cl must satisfy the

corrresponding equation∑l
`=1 ak,` c` = H(fk,mk) for fk = g

ak,1
1 · · · gak,l

l (2)

from a system of τ such equations for k = 1, ..., τ , see the proof of Theorem 1
[Sc01]. A generic attack that generates l + s signatures from l signer iteractions
must set up the corresponding l + s equations so that they are solvable. The
right sides H(fk,mk) are independent random numbers as H is a random func-
tion. ut

By Corollary 2 an efficient generic attacker must generate a solvable system
of l + s linear equations (2) over Zq. The fastest known attack is to forge in s
separate attacks one additional signature per attack. For this the attacker solves s
ROS-problems for l1, ..., ls signer interactions, where

∑s
i=1 li = l. Of course one-

more-forgeries with fewer interactions are less efficient and s separate attacks
require that s ≤ l. Next, we study fully interleaved attacks.

Theorem 4. The problem of producing a solvable system of l+s linear equations
as required in Corollary 2 can be solved as an (l + 1)-sum problem over Zs

q in
O( 2tq

s
t+1 ) average time by the general birthday method for l + 1 = 2t.
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Proof. We show how to construct a solvable system of l + s equations (2) with
an (l + s) × l–matrix A′ = [ak,`]k,` ∈ Z(l+s)×l

q of rank l. If rank(A′) = l the
corresponding l + s equations (2) are solvable if and only if the (l + s)× (l + 1)-
matrix A, extending A′ by the right sides H(fk,mk), has rank l too. That means
that the following determinants must vanish

det




a1,1 · · · a1,l H(f1,m1)
...

...
...

al,1 · · · al,l H(fl,ml)
al+j,1 · · · al+j,l H(fl+j ,ml+j)


 = 0 for j = 1, . . . , s.

We simplify these determinant equations by setting ai,j := 0 for i 6= j, i ≤ l,
and al+j,k = −ak,k · bk,j for k = 1, .., l and independent random multipliers
bk,j ∈R Zq. Then the determinant equations become

∑l
k=1 bk,jH(fk,mk) + H(fl+j ,ml+j) = 0 for j = 1, . . . , s. (6)

In order to solve these equations as an l + 1-sum problem over Zs
q for l + 1 = 2t

we apply the 2t-sum algorithm to the following lists L1, . . . , Ll+1 with elements

(bk,1H(fk,mk), ..., bk,sH(fk, mk)) ∈ Zs
q for L1, ..., Ll,

(H(fl+1,ml+1), . . . ,H(fl+s,ml+s)) ∈ Zs
q for Ll+1.

Here we let H(f1, m1), ...,H(fl, ml) ∈ Zq \ {0} be constant whereas the bk,j and
the H(fl+j ,ml+j) vary over independent random numbers in Zq. The list Ll+1

consists of independent random elements in Zs
q due to the random H. The lists

L1, ..., Ll consist of independent random elements due to the random multipliers
bk,j . As the lists L1, ..., Ll+1 consist of independent random elements os Zs

q the
general birthday method solves the equations (6) in O( 2tq

s
t+1 ) average time.

ut
Theorem 4 studies a typical fully interleaved attack to forge s additional

signatures. For an arbitrary attack the equations (6) take the form
∑l

k=1 Ak,jH(fk,mk) + A0,0H(fl+j ,ml+j) = 0 for j = 1, ..., s,

where Ak,j for k 6= 0 is the determinant of the l× l-submatrix obtained from A′

by removing row (numbered) k and rows l + 1, ..., l + s except for row l + j, and
A0,0 is the determinant of the l × l-matrix consisting of the first l rows of A′.
Particular easy instances of such equations occur for constant coefficients Ak,j

that partition the s equations into classes depending on disjoint sets of hash
values. No other easy instances exist for constant Ak,j , and we conjecture that
this is also true for non-constant Ak,j that depend on H.

5.1 The Enforcable Free Rate

We study the maximal free rate that an attacker can enforce in
√

q average
time. The free rate is the number of additionally forged Schnorr blind signatures
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divided by the number of signer interactions. Using τ =
√

q generic steps the
attacker can recover the secret key x = logg h from h with no better probability
than

(
τ
2

)
/q ≈ 1

2 (Theorem 2). Therefore, the attacker is bound to one-more-
forgeries via ROS-solutions (Theorem 2).

Solving the ROS-problem over Zq for l = 2t − 1 signer interactions via Wag-
ner’s general birthday method requires 2tq

1
t+1 average time. Forging one addi-

tional signature for G×s and 2t − 1 interactions requires 2tq
s

t+1 average time
(Theorem 3), surpassing the

√
q time bound for t ≤ 2s− 1. We see that 22s − 1

interactions with the signer are required to forge one additional signature for
G×s in

√
q time by the general birthday method. Forging more than one addi-

tional signature in a fully interleaved way is even more difficult (Theorem 4).
This proves

Theorem 5. The free rate of Schnorr blind signatures for G×s that is enforcable
by the general birthday method in

√
q average time is at most 1/(22s − 1).

E.g., at most one additional signature for G×3 can be forged using 26−1 = 65
signer interactions. This corresponds to an enforced free rate of 1

65 ≈ 1.5% for a
volume of 65 paid signatures. If the signer accepts an 1.5% free rate then Schnorr
blind signatures are more efficient than the computationally blind signatures of
Abe [A01]. Schnorr blind signature generation costs 3 exponentiations for each
of the signer and the user, i.e., 6 exponentiations in total. Signature generation
according to [A01] requires a total of 9 exponentiations and additional overhead
for the public parameters.

References

[A01] M. Abe : A Secure Three-move Blind Signature Scheme for Polynomially Many
Signatures. Proc. Eurocrypt’01, LNCS 2045, pp. 136–151, 2001.

[CP92] D. Chaum and T.P. Pedersen Wallet Databases with Observers. Proc.
Crypto’92, LNCS 740, pp. 89–105, 1992.

[BR93] M. Bellare and P. Rogaway : Random Oracles are Practical: a Paradigms
for Designing Efficient Protocols. Proc. 1st ACM Conference on Computer
Communication Security, pp. 62–73, 1993.

[CGH98] R. Canetti, O. Goldreich and S. Halevi : The Random Oracle Methodology,
Revisited. Proc. STOC’98, ACM Press, pp. 209–218, 1998.

[F00] M. Fischlin : A Note on Security Proofs in the Generic Model. Proc. Asi-
acrypt’00, LNCS 1976, Springer-Verlag, pp. 458–469, 2000.

[Ne94] V.I. Nechaev : Complexity of a Determinate Algorithm for the Discrete Loga-
rithm. Mathematical Notes 55, pp. 165-172, 1994.

[O92] T. Okamoto : Provably Secure Identification Schemes and Corresponding Sig-
nature Schemes. Proc. Crypto’92, LNCS 740, Springer-Verlag, pp. 31–53, 1992.

[P98] D. Pointcheval : Strengthened Security for Blind Signatures. Proc. Euro-
crypt’98 LNCS 1403, Springer Verlag, pp. 391–405, 1998.

[PS96a] D. Pointcheval and J. Stern : Security Proofs for Signature Schemes. Proc.
Eurocrypt’96, LNCS 1070, Springer-Verlag, pp. 387–398, 1996.

12



[PS00] D. Pointcheval and J. Stern : Security Arguments for Digital Signatures and
Blind Signatures. Journal of Cryptology, 13, 3, pp. 361–396, 2000.

[Sc91] C.P. Schnorr : Efficient Signature Generation for Smart Cards. Journal of
Cryptology 4, pp. 161–174, 1991.

[SJ00] C.P. Schnorr and M. Jakobsson : Security of Signed ElGamal Encryption.
Proc. Asiacrypt’00, LNCS 1976, Springer-Verlag, pp. 73-89, 2000.

[Sc01] C.P. Schnorr : Security of Blind Discrete Log Signatures Against Interactive
Attacks. ICICS 2001, LNCS 2229, Springer-Verlag, pp. 1-12, 2001.

[Sh97] V. Shoup : Lower Bounds for Discrete Logarithms and Related Problems.
Proc. Eurocrypt’97, LNCS 1233, Springer-Verlag, pp. 256-266, 1997.

[W02] D. Wagner, A Generalized Birthday Problem. Proceedings Crypto’02, LNCS
2442, Springer-Verlag, pp. 288-303, 2002.

13


