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Abstract. We present a novel practical algorithm that given a lattice
basis b1, ..., bn finds in O(n2( k

6
)k/4) average time a shorter vector than b1

provided that b1 is ( k
6
)n/(2k) times longer than the length of the short-

est, nonzero lattice vector. We assume that the given basis b1, ..., bn has
an orthogonal basis that is typical for worst case lattice bases. The new
reduction method samples short lattice vectors in high dimensional sub-
lattices, it advances in sporadic big jumps. It decreases the approxima-
tion factor achievable in a given time by known methods to less than its
fourth-th root. We further speed up the new method by the simple and
the general birthday method.

1 Introduction and Summary

History. The set of all linear combinations with integer coefficients of a set of lin-
early independent vectors b1, ..., bn ∈ Rd is a lattice of dimension n. The problem
of finding a shortest, nonzero lattice vector is a landmark problem in complexity
theory. This problem is polynomial time for fixed dimension n due to [LLL82]
and is NP-hard for varying n [E81, A98, M98]. No efficient algorithm is known
to find very short vectors in high dimensional lattices. Improving the known
methods has a direct impact on the cryptographic security of many schemes, see
[NS00] for a surview.

Approximating the shortest lattice vector to within an approximation factor
( apfa for short ) c means to find a nonzero lattice vector with at most c-times the
minimal possible length. We consider integer lattices of dimension n in Zn with
a given lattice basis consisting of integer vectors of Euclidean length 2O(n). The
LLL-algorithm of Lenstra, Lenstra, Lovász [LLL82] achieves for arbitrary
ε > 0 an apfa ( 4

3 + ε)n/2 in O(n5) steps using integers of bit length O(n2).
This algorithm repeatedly constructs short bases in two-dimensional lattices,
the two-dimensional problem was already solved by Gauss. The recent segment
LLL-reduction of Koy-Schnorr [KS01a,KS02] achieves the same apfa (4

3 + ε)n/2

within O(n3 log n) steps.
Finding very short lattice vectors requires additional search beyond LLL-

type reduction. The algorithm of Kannan [K83] finds the shortest lattice vector
in time nO(n) by a diligent exhaustive search, see [H85] for an n

n
2 +o(n) time
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algorithm. The recent probabilistic sieve algorithm of [AKS01] runs in 2O(n)

average time and space, but is impractical as the exponent O(n) is about 30 n.
Schnorr [S87] has generalized the LLL-algorithm in various ways that repeatedly
construct short bases of k-dimensional lattices of dimension k ≥ 2. While 2k-
reduction [S87] runs in O(n3kk+o(k)+n4) time, the stronger BKZ-reduction [S87,
SE91] is quite efficient for k ≤ 20 but lacks a proven time bound. LLL-reduction
is the case k = 1 of 2k-reduction.

Our novel method randomly samples short lattice vectors in high dimensional
sublattices, and inserts by a global transform short vectors into the lattice basis.
It remarkably differs from previous LLL-type reductions that locally transform
the lattice basis by reducing small blocks of consecutive basis vectors. The new
method applies to lattice bases for which the associated orthogonal basis satisfies
two conditions, RA and GSA, defined in Section 2. These conditions are natural
for worst case lattice bases and also play in Ajtai’s recent worst case analysis
[A02] of Schnorr’s 2k-reduction. Our new method is practical and space efficient
and outperforms all previous algorithms.

Sampling reduction inserts a short vector found by random sampling into the
basis, BKZ–reduces the new basis and iterates the procedure with the resulting
basis. We observed sporadic big jumps of progress during BKZ–reduction, jumps
that are difficult to analyze. We study the progress of the new method in attacks
on the GGH-cryptosysytem [GGH97] where we build on our previous experience.
We report in detail, we believe that our findings extend beyond GGH to general
applications. We expect that the new algorithms lower the security of lattice
based cryptosystems.

time space/n apfa

1. sampl. reduction n3( k
6
)k/4 1 ( k

6
)n/2k

2. simple birthday n3( 4
3
)k/3( k

6
)k/8 ( 4

3
)k/3( k

6
)k/8 ( k

6
)n/2k

3. primal–dual (Koy) n3kk/2+o(k) 1 ( k
6
)n/k

4. 2k-reduction [S87] n3kk+o(k) 1 ( k
3
)n/k

Table 1. Theoretic performance of new and previous methods

The shown time bounds must be completed by a constant factor and an additive
term O(n4) covering LLL-type reduction. The integer k, 2 ≤ k ≤ n/2, can be
freely chosen. The entry c under space/n means that c+O(n) lattice vectors, con-
sisting of c ·n+O(n2) integers, must be stored. The original LLL-algorithm uses
integers of bit length O(n2) required to compute the orthogonal basis in exact
integer arithmetic. However, by computing the orthogonal basis in approximate
rational arithmetic (floating point arithmetic in practice) LLL-type reduction
can be done in O(n5) arithmetic steps using integers of bit length O(n). The
proven analysis of Schnorr [S88] induces diligent steps for error correction, but
simple methods of scaling are sufficient in practice [KS01b].

Sampling Reduction repeats the algorithm SHORT of Section 2 O(n)-times,
see Section 3. SHORT runs in O(n2(k

6 )k/4) time and decreases with probability
1
2 an apfa greater than (k

6 )n/2k by a factor
√

0.99. The apfa (k
6 )n/2k is about the
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4-th root of the proven apfa achievable in the same time by Koy’s primal–dual
method, the best known fully proven algorithm.

Section 4 combines random sampling with general birthday methods of [W02].
Birthday sampling stores many statistically independent short lattice vectors b̄i

and searches in the spirit of Wagner’s 2t-list algorithm a vector b =
∑2t

i=1 b̄i

that is shorter than b1. Simple birthday sampling for t = 1 further decreases the
apfa achievable in a given time to its square root, but its practicability hinges
on the required space.

Method 4 produces 2k-reduced bases [S87, Theorem 3.1], and proceeds via
shortest lattice vectors in dimension 2k while Koy’s primal–dual method 3 re-
peatedly constructs shortest lattice vectors in dimension k [K00]. The apfa’s of
Methods 3 and 4 assume the realistic bound γk ≤ k/6 for k ≥ 24 for the Her-
mite constant γk; γk is the maximum of λ1(L)2(det(L)−2/k for lattices L of
dimension k and the length λ1(L) of the shortest, nonzero vector in L.
Notation. An ordered set of linearly independent vectors b1, ..., bn ∈ Zd is a basis
of the integer lattice L =

∑n
i=1 biZ ⊂ Zd, consisting of all linear integer com-

binations of b1, ..., bn. We write L = L(b1, ..., bn). Let b̂i denote the component
of bi that is orthogonal to b1, ..., bi−1 with respect to the Euclidean inner prod-
uct 〈x, y〉 = x>y. The orthogonal vectors b̂1, ..., b̂n ∈ Rd and the Gram-Schmidt
coefficients µj,i, 1 ≤ i, j ≤ n, associated with the basis b1, ..., bn satisfy for
j = 1, ..., n bj =

∑j
i=1 µj,ib̂i, µj,j = 1, µj,i = 0 for i > j,

µj,i = 〈bj , b̂i〉/〈̂bi, b̂i〉, 〈̂bj , b̂i〉 = 0 for j 6= i.

We let πi : Rn → span(b1, ..., bi−1)⊥ denote the orthogonal projection, πi(bk) =∑n
j=i µk,j b̂j , πi(bi) = b̂i. Let ‖b‖ = 〈b, b〉 1

2 denote the Euclidean length of a vector
b ∈ Rd. Let λ1 denote the length of the shortest nonzero lattice vector of a given
lattice. The determinant of lattice L = L(b1, ..., bn) is det L =

∏n
i=1 ‖b̂i‖. For

simplicity, let all given lattice bases be bounded so that maxi‖bi‖ = 2O(n). Our
time bounds count arithmetic steps using integers of bit length O(n).

2 Random Sampling of Short Vectors

Let L be a lattice with given basis b1, . . . , bn. As a lattice vector b =
∑n

j=1 µj b̂j

has length ‖b‖2 =
∑n

j=1 µ2
j‖b̂j‖2 the search for short lattice vectors naturally

comprises two steps:
1. Decreasing µi to |µi| ≤ 1

2 for i = 1, ..., n: given b ∈ L with arbitrary µi the
vector b′ = b− µ bi has µ′i = µi − µ and thus |µ′i| ≤ 1

2 holds if |µ− µi| ≤ 1
2 .

2. Shortening b̂j , i.e., replacing bj by a nonzero vector b ∈ L(bj , ..., bn) that
minimizes ‖πj(b)‖2 =

∑n
i=j µ2

i ‖b̂i‖2 over a suitable subset Sj ⊂ L(bj , ..., bn).
The various reduction algorithms differ by the choice of Sj . The LLL-algorithm

uses Sj = L(bj , bj+1), BKZ-reduction [S87, SE91] uses Sj = L(bj , ..., bj+k−1), 2k-
reduction [S87] uses a subset Sj ⊂ L(bj , ..., bj+2k−1) and HKZ-reduction mini-
mizes over the entire lattice L(bj , ..., bn). LLL-type reduction [LLL82, S87, SE91]
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repeatedly replaces a block bj , ..., bj+k−1 for various j by an equivalent block
starting with a vector b ∈ L(bj , ..., bj+k−1) of shorter length ‖πj(b)‖ 6= 0. The
vector b is produced by exhaustive enumeration.

The novel sampling reduction repeatedly produces via random sampling a
nonzero vector b ∈ L(bj , . . . , bn) with ‖πj(b)‖ < ‖b̂j‖, and continues with a
new basis b1, ..., bj−1, b, bj , ..., bn−1. Such b cannot be efficiently produced by ex-
haustive search, the dimension of L(bj , . . . , bn) is to high. Surprisingly, random
sampling in high dimension n−j+1 outperforms exhaustive search in low dimen-
sion k. Here we introduce random sampling for j = 1, the algorithm ESHORT of
Section 3 uses a straightforward extension to j ≥ 1. Random sampling for j = 1
searches short vectors b =

∑n
i=1 µib̂i ∈ L with small coefficients µ1, . . . , µk. This

makes ‖b‖2 =
∑n

i=1 µ2
i ‖b̂i‖2 small. Importantly, the initial vectors b̂1, ..., b̂k are

in practice longer than the b̂i for i > k, so small coefficients µ1, ..., µk have a
bigger impact than small µi for i > k. We analyse this idea assuming that the
lengths ‖b̂1‖2, ..., ‖b̂n‖2 are close to a geometric series.

The Sampling Method. Let 1 ≤ u < n be constant. Given a lattice basis
b1, ..., bn we sample lattice vectors b =

∑n
i=1 tibi =

∑n
i=1 µib̂i satisfying

|µi| ≤
{

1
2 for i < n− u
1 for n− u ≤ i < n

, µn = 1. (1)

There are at least 2u distinct lattice vectors b of this form. The sampling al-
gorithm (SA) below generates a single vector b in time O(n2). The subsequent
algorithm SHORT samples distinct vectors via SA until a vector b is found that
is shorter than b1. The choice of µn = 1 implies that b1, ..., bj−1, b, bj , ..., bn−1 is
a lattice basis.

Sampling Algorithm (SA)
INPUT lattice basis b1, ..., bn ∈ Zn with coefficients µi,j .
1. b := bn, µj := µn,j for j = 1, ..., n− 1
2. FOR i = n− 1, ..., 1 DO

Select µ ∈ Z such that |µi − µ| ≤
{

1
2 for i < n− u
1 for i ≥ n− u

b := b− µ bi, µj := µj − µµi,j for j = 1, ..., i

OUTPUT b, µ1, ..., µn satisfying b =
∑n

i=1 µib̂i and (1).

The coefficient µi is updated (n − i)–times. This leads to a nearly uniform
distribution of the µi, in particular for small i, which is crucial for our method.
Note that SA is deterministic, the random sampling is ”pseudo-random” in a
weak heuristic sense.

Randomness Assumption RA. Let the coefficients µi of the vectors b =
∑n

i=1 µib̂i

sampled by SA be uniformly distributed in [− 1
2 , 1

2 ] for i < n − u and in [−1, 1]
for n − u ≤ i < n, let the µi be statistically independent for distinct i, and
let the coefficients µi, µ′i of distinct vectors b, b′ sampled by SA be statistically
independent.
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The Geometric Series Asumption (GSA). Let ‖b̂i‖2/‖b1‖2 = qi−1 for i = 1, ..., n
be a geometric series with quotient q, 3

4 ≤ q < 1.

The GSA in Practice. In practice the quotients ‖b̂i‖2/‖b1‖2 approximate the qi−1

without achieving equality. Importantly, our conclusions under GSA also hold
for approximations where

∑n
i=1 µ2

i ( ‖b̂i‖2/‖b1‖2− qi−1 ) is sufficiently small for
random µi ∈R [− 1

2 , 1
2 ], e.g. smaller than 0.01 for Theorems 1 and 2.

We have tested the GSA for the public GGH-bases according to the cryp-
tosystem of [GGH97]. After either Koy’s primal–dual reduction or after BKZ–
reduction with block size 20 these bases closely approximate GSA and RA. The
GSA–behavior is significantly better after BKZ–reduction than after primal-dual
reduction. Lattice bases that are not reduced by an LLL–type reduction usually
have bad GSA–behavior.

Under the GSA the values log2(‖bi‖2/‖b̂i‖2) for i = 1, ..., n are on a straight
line. For lattice bases that are BKZ–reduced these values closely approximate a
line. Figure 1 shows a GGH–basis generated according to the GGH–cryptosystem
[GGH97] after various reductions and a final BKZ–reduction with block size 20.

Fig. 1. The values log2(‖b1‖2/‖bbi‖2) for i = 1, ..., 200 of a BKZ–basis

Worst case bases satisfy the GSA. We show that lattice reduction is harder the
better the given basis approximates a geometric series. Lattice bases satisfying
the GSA are worst case bases for lattice reduction. Here, let the goal of lattice
reduction be to decrease the proven apfa, i.e., to decrease maxi ‖b1‖/‖b̂i‖ via a
new lattice basis. Note that apfa ≤ maxi ‖b1‖/‖b̂i‖ holds for all bases while GSA
implies apfa ≤ q(−n+1)/2.

We associate with a basis b1, ..., bn the quotients qi := (‖b̂i‖2/‖b1‖2)
1

i−1 for
i = 2, ..., n, q := qn. As apfa ≤ q(−n+1)/2 the goal of the reduction is to increase
q. Of course our reduction problem gets easier for smaller n and smaller q.
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If GSA does not hold we have that qi 6= q for some i. Select i as to maximize
|qi− q|. We transform the given reduction problem into smaller, easier problems
with bases that better approximate the GSA.

If qi < q we reduce the subbasis b1, ..., bi by decreasing maxi ‖b1‖/‖b̂i‖ via
a new lattice basis. If qi > q we reduce the basis πi(bi), ..., πi(bn). The q-value
qi := (‖b̂n‖2/‖b̂i‖2)

1
n−i of that basis satisfies qn−1 = qi−1

i qn−i
i , thus either qi < q

or qi < q.
In either case we solve an easier lattice problem with a smaller q–value and a

smaller dimension. Our procedure decreases |q−qi| providing a basis that better
approximates a geometric series. Therefore, lattice bases of the same q–value get
harder the better they approximate a geometric series.

Random Sampling Short Vectors. Let k, u ≥ 1 be constants, k +u < n. Consider
the event that vectors b =

∑n
i=1 µib̂i sampled by SA satisfy

|µi|2 ≤ 1
4 qk−i for i = 1, ..., k. (2)

Under RA that event has probability
∏k

i=1 q(k−i)/2 = q(
k
2)/2. We study the

probability that ‖b‖2 < ‖b1‖2 holds under RA and the conditions (1), (2).

Lemma 1. Random µi ∈R [− 1
2 , 1

2 ] have the mean value E[µ2
i ] = 1

12 .

Lemma 2. Under GSA and RA the vectors b sampled by SA satisfy
Pr

[ ‖b‖2 ‖b1‖−2 ≤ 1
12 [k qk−1 + (qk + 3 qn−u−1)/(1− q)]

] ≥ 1
2q(

k
2) 1

2 .

Proof. By Lemma 1 we have under (1), (2) the mean value

E[ µ2
i | (2) ] =





1
12 qk−i for i = 1, . . . , k
1/12 for i = k + 1, ..., n− u− 1
1/3 for i = n− u, . . . , n− 1

Under GSA this yields E[ ‖b‖2‖b1‖−2 | (2) ]

= 1
12

[ ∑k
i=1 qk−i‖b̂i‖2 +

∑n−u−1
i=k+1 ‖b̂i‖2 + 4

∑n−1
i=n−u ‖b̂i‖2

]
+ ‖b̂n‖2

= 1
12

[ ∑k
i=1 qk−i+i−1 +

∑n−u−1
i=k+1 qi−1 + 4 qn−u−1

∑u
i=1 qi−1

]
+ qn−1

= 1
12

[
k qk−1 + [(qk − qn−u−1) + 4qn−u−1(1− qu)]/(1− q)

]
+ qn−1

= 1
12 [k qk−1 + (qk + 3 qn−u−1 − 4 qn−1)/(1− q)] + qn−1.

This proves the claim as 4/(q − 1) ≥ 1, and (2) holds with probability q(
k
2)/2. ¤

SHORT Algorithm
INPUT lattice basis b1, ..., bn ∈ Zn with quotient q < 1

Let u := 1+ d−(
k
2

)
1
2 log2 q)e be the minimal integer so that 2u ≥ 2 q−(k

2) 1
2 .

Sample via SA up to 2u distinct lattice vectors b =
∑n

i=1 µib̂i satisfying
the inequalities (1) until a vector is found such that ‖b‖2 < 0.99 ‖b1‖2.

OUTPUT lattice vector b satisfying ‖b‖2 < 0.99 ‖b1‖2.
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Theorem 1. Given a lattice basis b1, ..., bn with quotient q ≤ ( 6
k )1/k, SHORT

runs in O(n2q−k2/4) time and finds under GSA and RA with probability 1
2 for

sufficiently large k and n a nonzero lattice vector b so that ‖b‖2 < 0.99 ‖b1‖2.

Proof. W.l.o.g. let qk = 6
k as the claim holds a fortiori for smaller q. The in-

equality

1
12 [k qk−1 + (qk + 3 qn−u−1)/(1− q)] ≤ 1

2q + 1
12

qk+3 q3k

1−q < 0.99.

holds for k = 24 and n ≥ 3k +u+1. As 1
2q + 1

12
qk+3 q3k

1−q decreases for q = ( 6
k )1/k

with k the inequality holds for all k ≥ 24. Hence, the vectors b sampled by SA
satisfy Pr[ ‖b‖2‖b1‖−2 < 0.99 ] ≥ 1

2 q(
k
2)/2 by Lemma 2. As SHORT samples

2 q−(k
2)/2 independent vectors b it finds under RA with probability 1− e−1 > 1

2
some b with ‖b‖2‖b1‖−2 < 0.99. ¤

Remark. 1. SHORT improves under GSA and RA an apfa (k
6 )n/2k in O(n2(k

6 )k/4)
average time by a factor

√
0.99 for k ≥ 24 and n ≥ 3k + k ln k. 2. We

can replace in Theorems 1 and 2 the constant 6 by an arbitrary δ < 12 since
qk

1−q = δ
ln(k/δ) + O(δ3k−2 ln k) holds for qk = δ

k and k → ∞, due to [K72, p.107
(14)].

k qk apfa u time

48 8/k 1.017n 32 n2 232

40 8/k 1.020n 24 n2 224

30 7/k 1.024n 17 n2 217

24 6/k 1.029n 13 n2 213

Table 2. SHORT performance according to Theorem 1

A comparison with previous methods illustrates the dramatic progress through
random sampling: For k = 24 2k-reduction [S87] achieves apfa 1.09n, Koy’s
primal-dual reduction achieves apfa 1.06n in À n2213 time.

Practical Experiments. Consider a basis of dimension 160 consisting of integers
of bit length 100, generated according to the GGH-cryptosystem [GGH97]. We
reduce this basis in polynomial time by segment–LLL reduction [KS01] and
primal–dual segment LLL with segment size 36 [K00]. This takes about 50 min-
utes and yields a basis with apfa about 8.25 and quotient q ≈ 0.946.

Then a single final enumeration of 212 lattice vectors via SA reduced the
length of the shortest found lattice vector by 9%. This took just about one
minute. The mean value of the µ2

i over the 212 enumerated vectors for i =
1, ..., 144 (resp., for i = 145, ..., 159) was 0.083344 (resp. 0.3637) while the theo-
retic mean values under RA is 1/12 = 0.0833 (resp. 1/3 = 0.33). The discrepancy
of the observed mean values of µ2

i from the distribution under RA is smaller for
small i because the coefficient µi gets updated (n − i)-times within SA. The
initial quotients qi of primal–dual reduced basis are sligthly larger than q. This
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increases the observed mean value of ‖b||2/‖b1‖2 for the b produced by SA a bit
against the theoretic mean value under RA, GSA.

The observed 9% length reduction via 212 sampled vectors is close to the
value predicted under RA and GSA by our refined analysis. All experiments
have been done on a 1700 MHz, 512 MB RAM PC using the software packages
of NTL 5.1 and GMP 4.0.1.

Refined Analysis of SHORT. The inequalities (2) are sufficient but not nec-
essary to ensure that E[

∑k
i=1 µ2

i ‖b̂i‖2] ≤ 1
12kqk−1 holds under RA and GSA. SA

achieves the 1
12kqk−1–upper bound with a better probability than q(

k
2)/2. In the

refined analysis we liberalize the Inequalities (2) by allowing a few larger coeffi-
cients |µi| > 1

2q(k−i)/2 for 1 ≤ i < k that are balanced by smaller |µi| < 1
2q(k−i)/2

so that again
∑k

i=1 µ2
i ‖b̂i‖2 ≤ 1

12k qk−1.

3 Sampling Reduction

ESHORT is an extension of SHORT that samples 2u vectors b =
∑n

i=1 µib̂i by
SA and determines the pair (b, j) for which

∑n
i=j µ2

i ‖b̂i‖2 < 0.99 ‖b̂j‖2 holds for
the smallest possible j ≤ 10. ( The heuristic bound j ≤ 10 covers the case that
the basis vectors b1, ..., b10 have bad GSA-behaviour, which happens quite often,
so that SA cannot succeed for the very first j.)

Sampling Reduction
This algorithm reduces a given basis b1, ..., bn under GSA and RA.
1. Search via ESHORT a pair (b, j) so that ‖πj(b)‖2 < 0.99 ‖b̂j‖2, j ≤ 10, and

terminate if the search fails. Form the new basis b1, . . . , bj−1, b, bj , . . . , bn−1.
2. BKZ–reduce the new basis b1, . . . , bj−1, b, bj , . . . , bn−1 with block size 20 and

go to 1.

Practical Experiments. With the above method C. Tobias has reconstructed the
secret GGH-basis of the GGH-cryptosystem [GGH97] in dimension n = 160 and
n = 180. This has been done by plain lattice reduction without improving the
GGH-lattice by algebraic transforms as has been done by Nguyen [N99]. The
secret GGH–basis was reconstructed in 40 – 80 minutes for dimension n = 160
within 4 iterations, and in about 9 hours for n = 180 using 20 iterations. This
was not possible by previous lattice reduction algorithms. 212 to 217 vectors have
been sampled per iteration. BKZ–reduction was done by the BKZ–algorithm of
NTL for block size 20. Usually ESHORT succeeds with j ≤ 10.

Interestingly, BKZ–reduction of the new basis b1, . . . , bj−1, b, bj , . . . , bn−1 trig-
gers sporadic big jumps of progress. Typically the length of the shortest vector
is decreased by a factor 1.2 – 1.5 but occasionally by a factor up to 9. Sometimes
the shortest lattice vector was found at an early stage. All experiments have
been done on a 1700 MHz, 512 MB RAM PC using the software packages of
NTL 5.1 and GMP 4.0.1.

What triggers the big jumps during BKZ–reduction ? When ESHORT finds
a pair (b, j), so that

∑n
i=j µ2

i ‖b̂i‖2 < 0.99 ‖b̂j‖2, usually µj , . . . , µj+k−1 are par-
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ticularly small, the subsequent basis b1, . . . , bj−1, b, bj+1, . . . , bn−1 has large or-
thogonal vectors b̂j+1, . . . , b̂j+k−1 and badly deviates from the GSA–property
in the segment b̂j+1, ..., b̂j+k−1 following b. The lengths ‖b̂j+i‖ oscillate heavily
up and down with some large values. Bad GSA–behavior of that type obstructs
the SHORT algorithm but triggers big jumps of progress within BKZ–reduction
because BKZ–reduction closely approximates the GSA. While BKZ–reduction
with block size 20 does not improve a GSA–basis, it greatly improves a basis
with bad GSA–behavior.

The big jumps of progress markedly differ from the usual BKZ–reduction of
LLL–reduced bases. The latter advances in a slow steady progress. It generates
intermediate bases where the lengths ‖b̂i‖ gradually decrease in i with only little
fluctuation.

4 General Birthday Sampling

The birthday heuristic is a well known method that given a list of m bit integers,
drawn uniformly at random, finds a collision of the given integers in O(2m/2)
average time. The method can easily be extended to find two random k-bit
integers having a small difference, less than 2k−m, O(2m/2) time. We extend the
birthday method from integers to lattice vectors, we extend random sampling
to birthday sampling. Let Q denote the set of rational numbers, let m, t ≥ 1 be
integers.

Wagner’s (2t,m)-list algorithm [W02] extends the birthday method to solve
the following (2t,m)-sum problem. Given 2t lists L1, . . . , L2t of elements drawn
uniformly and independently at random from {0, 1}m find x1 ∈ L1,. . ., x2t ∈ L2t

such that x1 ⊕ x2 ⊕ · · · ⊕ x2t = 0. Wagner’s algorithm solves the (2t,m)-sum
problem in O(2t 2m/(1+t)) average time and space by a tree-like birthday method.
The (4,m)-list algorithm runs in O(2m/3) time and space, and coincides with a
previous algorithm of Camion, Patarin [CP91]. The simple case t = 1 is the
well known birthday method. Consider the following small sum problem (SSP):

(2t,m)-SSP. Given 2t lists L1, . . . , L2t of rational numbers drawn uniformly
and independently at random from [− 1

2 , 1
2 ]∩Q find x1 ∈ L1, . . . , x2t ∈ L2t such

that |∑2t

i=1 xi| ≤ 1
2 2−m.

We extend Wagner’s (2t,m)-list algorithm to solve the (2t,m)-SSP. We out-
line the case t = 2 solving the (4,m)-SSP in O(2m/3) average time. We count for
steps additions and comparisons using rational numbers. Let the lists L1, . . . , L4

each consist of 4
3 2m/3 random elements drawn uniformly from [− 1

2 , 1
2 ]∩Q. Con-

sider the lists
L′1 := {x1 + x2

∣∣ |x1 + x2| ≤ 1
2 2−m/3}, L′2 := {x3 + x4

∣∣ |x3 + x4| ≤ 1
2 2−m/3}

L := {x′1 + x′2
∣∣ |x′1 + x′2| ≤ 1

2 2−m},
where xi ranges over Li and x′i over L′i. ( We also record the source pair (x1, x2)
of x′i = x1 + x2 ∈ L′1. ) Applying the subsequent Lemma 3 with α = 2−m/3

we have that Pr[ |x1 + x2| ≤ 1
2 2−m ] ≥ 2−m/3 3

4 . The average size of L′1 (and
likewise for L′2) is : |L′1| ≥ |L1| · |L2| · 2−m/3 3

4 = 4
3 2m/3.
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Similarly, we have for x′i ∈ L′i and α = 2−2m/3 that Pr[ |x′1 +x′2| ≤ 1
2 2−m ] ≥

2−2m/3 3
4 , and thus the average size of L is |L| ≥ |L′1| · |L′2| · 2−2m/3 3

4 = 4
3 .

To construct L′1 (and likewise L′2, L) we sort the x1 ∈ L1 and the −x2 ∈ −L2

according to the numerical values of x1,−x2 ∈ [− 1
2 , 1

2 ] and we search for close
elements x1,−x2. The sorting and searching is done by bucket sort in O(2m/3)
average time and space: we partition [− 1

2 , 1
2 ] into intervals of length 1

2 2−m/3,
we distribute x1,−x2 to these intervals and we search for pairs x1,−x2 that fall
into the same interval. This solves the (4,m)-SSP in O( 4

3 2m/3) average time and
space. More generally the (2t,m)-SSP is solved in O(2t 4

3 2
m

t+1 ) average time and
space.

Lemma 3. Let xi ∈R [− 1
2 , 1

2 ] for i = 1, 2 be uniformly distributed and statisti-
cally independent. Then Pr[ |x1 + x2| ≤ α/2 ] = α (1− α

4 ) holds for 0 ≤ α ≤ 2.

Proof. For given |x1| ≤ 1−α
2 the interval of all x2 ∈ [− 1

2 , 1
2 ] satisfying |x1 +x2| ≤

α/2 has length α. For |x1| ≥ 1−α
2 the corresponding interval length is α − y,

where the value y := |x1| − 1−α
2 ranges over [0, α/2]. Therefore

Pr[ |x1 + x2| ≤ α/2 ] = α− 2
α/2∫
0

y dy = α− 1
4 α2. ¤

We extend our method from rational numbers in [− 1
2 , 1

2 ] to vectors in Qk ∩
[− 1

2 , 1
2 ]k. We solve the following small vector sum problem (2t,m, k)-VSSP in

O(k 2t ( 4
3 )k 2

m
t+1 ) average time and space ( in O(k ( 4

3 )k/2 2m/2) time for t = 1 ):

(2t,m,k)-VSSP. Let an arbitrary partition m = m1 + · · ·+ mk be given with
real numbers m1, . . . , mk ≥ 0. Given 2t lists L1, . . . , L2t of rational vectors drawn
uniformly and independently from [− 1

2 , 1
2 ]k ∩ Qk find x1 ∈ L1, ..., x2t ∈ L2t ,

xi = (xi,1, . . . , xi,k) ∈ Qk, such that |∑2t

i=1 xi,j | ≤ 1
2 2−mj for j = 1, . . . , k.

We extend the (4,m)-SSP solution to (4,m, k)-VSSP. Let each list Li consist
of ( 4

3 )k 2m/3 random vectors of [− 1
2 , 1

2 ]k for i = 1, ..., 4. Consider the lists

L′1 := {x1 + x2

∣∣ |x1,j + x2,j | ≤ 1
2 2−mj/3 for j = 1, ..., k}

L′2 := {x3 + x4

∣∣ |x3,j + x4,j | ≤ 1
2 2−mj/3 for j = 1, ..., k}

L := {x′1 + x′2
∣∣ |x′1,j + x′2,j | ≤ 1

2 2−mj for j = 1, ..., k},

where xi ranges over Li and x′i ranges over L′i. Then |L′2| = |L′1| ≥ |L1| · |L2| ·
2−m/3 ( 3

4 )k = ( 4
3 )k 2m/3, and |L| ≥ |L′1| · |L′2| · 2−2m/3 ( 3

4 )k = ( 4
3 )k holds for the

average list sizes. ( For t = 1 we only need input lists Li consisting of ( 4
3 )k/2 2m/2

vectors to succeed with |L| ≥ 1. )

General Birthday Sampling (GBS). Given a lattice basis b1, ..., bn and 2t

lists L̄1, ..., L̄2t of lattice vectors sampled by SA, GBS produces a short vector
b =

∑2t

i=1 b̄i with b̄i ∈ L̄i by solving the (2t,m, k)-VSSP for the coefficient vectors
(µ̄1,i, ..., µ̄k,i) ∈ Qk ∩ [− 1

2 , 1
2 ]k of b̄i =

∑n
`=1 µ̄`,i b̂` ∈ L̄i for a suitable m.

10



Theorem 2. Given t ≥ 1 and a lattice basis b1, ..., bn with quotient q ≤ ( 6
k )1/k

GBS finds under GSA and RA, for sufficiently large k and n, a lattice vector
b 6= 0, ‖b‖2 < 0.99 ‖b1‖2 in O(n2 2t ( 4

3 )2k/3 q−k2/4(t+1)) average time and space.

Proof. We replace SA in the proof of Theorem 1 by GBS. Initially GBS forms
2t lists L̄i, each of of 2m/(t+1) lattice vectors b̄i ∈ L̄i sampled by SA for 1 ≤
i ≤ 2t. GBS produces a short lattice vector b =

∑
i b̄i via a solution of the

(2t,m, k)-VSSP for the coefficient vectors (µ̄1,i, . . . , µ̄k,i) ∈ Qk ∩ [− 1
2 , 1

2 ]k of b̄i =∑n
j=1 µ̄j,i b̂j ∈ L̄i. Here let m := m1+ · · ·+mk for mj := log2 q(−k+j)/2, and thus

m = −(
k
2

)
1
2 log2 q. Under GSA and RA the (2t,m, k)-VSSP solution provides a

lattice vector b =
∑n

j=1 µj b̂j such that |µj | ≤ 1
2 q(k−j)/2 for j = 1, . . . , k and

E[µ2
j ] = 2t

12 (resp., 2t

3 ) holds for j = k + 1, ..., n− u− 1 (resp., for j ≥ n− u).
Let k be so large that qk ≤ 6

k . For qk = 6
k , n ≥ 3k + u + 1 we see that

E[
∑k

j=1 µ2
j ‖b̂j‖2/‖b1‖2] ≤ 1

12

∑k
j=1 qk−j qj−1 = k

12 qk−1,

E[
∑n

j=k+1 µ2
j ‖b̂j‖2/‖b1‖2] ≤ 2t

12
qk+3q3k

1−q ,

E[ ‖b‖2/‖b1‖2 ] ≤ 1
2q + 2t

12
qk+3q3k

1−q < 0.99
holds for sufficiently large k, k ≥ e2t(1+o(1)).

In this application our (2t,m, k)-VSSP algorithm runs in k 2t ( 4
3 )2k/3 2

m
t+1

time, and even in 2k ( 4
3 )k/3 2m/2 time for t = 1. (We use Lemma 3 with the

α-values qi/2 for i = 0, ..., k− 1 and the inequality
∏k−1

i=0 (1− qi/2/4) ≥ ( 3
4 )2k/3.)

Hence, GBS runs in O(n2 2t ( 4
3 )2k/3 2

m
t+1 ) average time where m = −(

k
2

)
1
2 log2 q.

This yields the claimed time bound. ¤
Simple GBS for t = 1 runs in O(n2 ( 4

3 )k/3 q−k2/8) average time. Compared
to Theorem 1 it reduces the apfa achievable in a given time to its square root,
but requires massive space. Iteration of simple GBS via BKZ–reduction achieves
in O(n3 ( 4

3 )k/3 q−k2/8) average time apfa q−n/2 for q ≤ ( 6
k )1/k, k ≥ 60.

Conclusion. Theorem 1 shows that the new method greatly improves the known
algorithms for finding very short lattice vectors. This lowers the security of all
lattice based cryptographic schemes. Simple birthday sampling may further de-
crease that security but its practicability hinges on the required space.
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