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Zusammenfassung

In den vergangen Jahren wurde erkannt, dass eine Quantenfeldtheorie (QFT)

namens Quantenchromodynamik (QCD) die richtige Theorie der starken Wech-

selwirkungen ist. QCD beschreibt erfolgreich die starken Wechselwirkungen, die

Quarks zu Nukleonen und Nukleonen zu Atomkernen zusammenbinden. Jedoch

ist die theoretische Beschreibung vieler Phänomene der starken Wechselwirkung

aufgrund des starken Kopplungsverhaltens bei niedrigen Energien schwierig. Sto-

ßexperimente mit Schwerionen sind ein möglicher Weg, um die charakteristischen

Phänomene und Eigenschaften der QCD-Materie zu untersuchen. In Stoßexpe-

rimenten mit Schwerionen werden schwere (d.h. große) Atomkerne aufeinander

geschossen, beispielsweise Gold (am RHIC) oder Blei (am CERN, LHC), mit ei-

ner ultrarelativistischen Energie
√
s im Schwerpunktsystem. Auf diese Art ist es

möglich, eine große Menge von Materie mit hoher Energiedichte hervorzubrin-

gen. Das Ziel von Schwerionenkollisionen ist die Erzeugung und Charakterisierung

einer makroskopischen Phase von freien Quarks und Gluonen im lokalen thermi-

schen Gleichgewicht. Ein solcher Aggregatzustand kann neue Informationen über

das QCD-Phasendiagramm und den QCD-Phasenübergang liefern. Man nimmt

an, dass ein solcher Übergang stattfand, als sich die Materie des frühen Univer-

sums von einem Plasma aus Quarks und Gluonen (QGP) in ein Gas von Hadronen

umwandelte.

Die Phänomenologie der Schwerionenphysik erfordert Techniken zur Behandlung

starker Kopplung sowohl für thermodynamische Größen wie die QCD – Zustands-

gleichung als auch für dynamische Größen bei Temperaturen T 6= 0, wie beispiels-

weise Transportkoeffizienten. Momentan betrifft eine der Hauptschwierigkeiten der

verschiedenen Modelle zur Beschreibung von Schwerionenkollisionen den Abschnitt

direkt nach der Kollision und vor der Bildung des QGP. Diese Anfangsphase ist

außergewöhnlich komplex, weil sie die Entwicklung vieler Quarks und Gluonen in

reeller Zeit betrifft. Prinzipiell sollte sie durch eine vollständig nichtperturbative
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Zusammenfassung

Rechnung beschreiben werden. Aktuell können diese nichtperturbativen Rechnun-

gen nicht mittels QCD durchgeführt werden. In dieser Arbeit wird ein besonderer

Ansatz zu diesem Problem verwendet, der Holographie genannt wird.

Das Konzept der Holographie geht auf eine Idee ’t Hoofts aus dem Jahre 1974

zurück und besagt, dass eine vollständige Äquivalenz zwischen zwei verschiede-

nen Theorien möglich ist, die sich in ihren Dimensionen unterscheiden. Der Rand

(“boundary”) besitzt eine Dimension weniger als das Innere (“bulk”) und wird mit

dem Raum identifiziert, auf dem die duale Quantenfeldtheorie lebt. Darüber hin-

aus stellte ’t Hooft in einer anderen Arbeit allgemeingültig fest, dass sich stark

gekoppelte SU(Nc)-Eichtheorien mit Kopplungskonstante g vereinfachen können,

falls Nc groß ist. Gemäß des holographischen Prinzips kann die Entwicklung einer

nicht-abelschen Eichtheorie für große Nc auf eine Beschreibung mittels klassischer

Gravitation führen. Daher ermöglicht Holographie vollständige Rechnungen bei

starker Kopplung, auch wenn nicht in der QCD selbst (da Nc > 3). Trotzdem blie-

ben die Berechnungen vor der Formulierung der sogenannten AdS/CFT-Dualität

schwierig durchzuführen.

Die AdS/CFT-Korrespondenz, allgemeiner die Gauge/Gravity-Dualität, sind kon-

krete Realisierungen des holographischen Prinzips. Die Dualität besagt, dass be-

stimmte nicht-abelsche Eichtheorien als Theorien der Quantengravitation beschrie-

ben werden können, die in einer höherdimensionalen Raumzeit mit dem asympto-

tischen Verhalten eines Anti-de-Sitter-Raums (AdS) leben. Die Stärke der Dualität

liegt darin, dass sie die schwach koppelnden Bereiche im Inneren mit stark kop-

pelnden auf dem Rand verbindet und damit ein Werkzeug zu nichtperturbativen

Berechnungen dynamischer Grß̈en bereitstellt. Das Ziel der vorliegenden Arbeit ist

es, mithilfe kürzlich vorgeschlagener Modelle fÃijr Gravitation dynamische Größen

bei Temperaturen T 6= 0 wie beispielsweise das Verhältnis η/s zu bestimmen.

Einer der größten Erfolge der Dualität ist die Abschätzung des Quotienten der

Scherviskosität η und der Entropiedichte s für das QGP. Im Besonderen wurde eine

universelle Grenze dieser Größe vermutet, die sogenannte Kovtun-Son-Starinets

(KSS) Grenze η/s ≥ 1/4π.

Ein fundamentaler Baustein der Gauge/Gravity-Dualität ist das Schwarze Loch

(BH). Schwarze Löcher sind Lösungen der klassischen Allgemeinen Relativitäts-

theorie (GR), die entscheidende Aspekte der Physik des Endstadiums eines Gra-

vitationskollapses beinhalten.
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Zusammenfassung

Die erste Lösung der Einstein’schen Feldgleichungen im Vakuum (Tµν = 0) ist die

Schwarzschild-Lösung eines Schwarzen Lochs, das auch als BH bezeichnet wird. Ein

Durchbruch in der Untersuchung Schwarzer Löcher geschah mit der Entdeckung,

dass sie eine thermodynamische Natur besitzen. Die Entdeckung der thermody-

namischen Eigenschaften Schwarzer Löcher eröffnete faszinierende Möglichkeiten,

warf aber auch verschiedene Fragen auf. Diese Fragen betreffen beispielsweise das

Informationsparadoxon oder das Schicksal der Unitarität in der Theorie. Die Be-

antwortung dieser Fragen benötigt eine vollständige quantendynamische Beschrei-

bung in Bereichen fernab der semiklassischen Fälle. Insbesondere erfordert sie das

Verständnis der Dynamik im gesamten Bereich der Krümmungssingularität, auch

wenn diese hinter dem Ereignishorizont verborgen ist. Dies ist das Ziel der Theorie

der Quantengravitation.

In den letzten Jahren wurde eine alternative Quantisierung der Raumzeit vorge-

schlagen, die auf Heisenbergs Korollar basiert: “physical quantities are gover-

ned by non-commutative algebra”. Ein möglicher Ansatz für diese Raumzeit-

quantisierung basiert auf der Benutzung kohärenter Zustände des quantenmecha-

nischen Ortsoperators xµ, für den [xµ, xν ] 6= 0 gilt. Jedoch verhindert der nicht-

verschwindende Kommutator die Existenz einer gemeinsamen Basis in der Ko-

ordinatendarstellung und fordert eine Unschärferelation zwischen ihnen, wobei er

eine fundamentale Längenskala einführt. Das beste Vorgehen in einem solchen Fall

ist die Einführung eines Mittelwerts zwischen geeignet gewählten, d.h. kohären-

ten, Zuständen. Die kohärenten Zustände sind Zustände kleinster Unschärfe, deren

Mittelwerte den klassischen kommutierenden Koordinaten am nächsten kommen,

wobei ihre Breite von einer fundamentalen Länge abhängt. In der Beschreibung mit

kohärenten Zuständen gibt es keine UV-Divergenzen, aus denen Anomalien resul-

tieren. Die Möglichkeit, eine fundamentale Länge zu nutzen, wird in dieser Arbeit

aus der Sicht der Allgemeinen Relativitätstheorie untersucht: Reguläre Schwarze

Löcher (RBH) sind eine Familie von Schwarzen Löchern als Lösungen der Ein-

stein’schen Feldgleichungen, die den Effekt der Planck-Länge im Bereich kleiner

Längen/hoher Energien des Gravitationsfelds beinhalten. Die Herleitung des Weg-

elements dieser Lösungen basiert auf der Möglichkeit, eine effektive minimale Län-

ge in die Allgemeine Relativitätstheorie einzuführen. Mit diesen Lösungen können

verschiedene Bereiche in AdS/CFT-Berechnungen untersucht werden.

Im Zusammenhang mit Quantenkorrekturen der Feldgleichungen ist auch ein wei-

terer Ansatz möglich. Krümmungskorrekturen höherer Ordnung (Higher curva-

ture corrections) können in die Allgemeine Relativitätstheorie eingeführt werden,

weil man erwartet, dass die Quantengravitation eine bedeutende Rolle bei starken
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Zusammenfassung

Krümmungen spielt. Die nützlichste Klasse von Theorien ist die der sogenannten

Lovelock-Gravitationstheorien. Diese Theorien erweitern die Allgemeine Relativi-

tätstheorie in Raumzeiten mit mehr als vier Dimensionen und sind die einzigen

Theorien mit höheren Ableitungen, die Differentialgleichungen zweiter Ordnung

für die metrischen Funktionen zulassen. Die Lovelock-Korrektur zweiter Ordnung

wird Gauß-Bonnet genannt und liefert Korrekturen zu den Einstein’schen Feldglei-

chungen in Raumzeitdimensionen d ≥ 5. Im Kontext der Gauge/Gravity-Dualität

leben die Felder auf dem Rand in einer Dimension weniger als die Gravitation im

Inneren. Um eine realistische Feldtheorie in vier Dimensionen zu modellieren, muss

die relevante Raumzeit im Inneren fünf Dimensionen besitzen. Um alle mÃűgli-

chen Szenarien, die die Allgemeine Relativitätstheorie bietet, zu untersuchen, kön-

nen die Gauß-Bonnet-Terme nicht willkürlich vernchlässigt werden. Aufgrund der

Gauge/Gravity-Dualität können weiterhin einige Krümmungsterme höherer Ab-

leitung in der Entwicklung der dualen Feldtheorie als Korrekturen bei hohem Nc

angesehen werden.

In dieser Arbeit werden ausgehend von der Gauge/Gravity-Dualität und der Teil-

chenphysik mehrere Modelle untersucht, die interessante Gravitationsphänomene

beschreiben

• Im ersten Kapitel wird ein Überblick über die für diese Arbeit relevanten Kon-

zepte vorgestellt: Lösungen der Einstein’schen Feldgleichungen für Schwarze

Löcher werden diskutiert, um die Notation einzufüren. Die Paradoxa, die

aus der klassischen Allgemeinen Relativitätstheorie hervorgehen, werden be-

schrieben. Ein besonderes Augenmerk gilt der AdS/CFT-Dualität und dem

Wörterbuch, das die Größen des Rands mit denen des Inneren verbindet.

• Im zweiten Kapitel werden Phasenübergänge von regulären Schwarzen Lö-

chern und Gauß-Bonnet Schwarzen Branen analysiert. Es hat sich heraus-

gestellt, dass Gauß-Bonnet Schwarze Branen ein universelles thermodyna-

misches Verhalten aufweisen, d.h. ausgedrückt mittels effektiver Masse und

Temperatur können sie von geladenen Schwarzen Branen nicht unterschieden

werden.

• Im dritten Kapitel wird eine detaillierte Untersuchung der Thermodynamik

Schwarzer Löcher aus einer anderen Perspektive vorgeschlagen. Die Idee be-

steht darin, dass die kosmologische Konstante Λ als charakteristische Größe

der AdS-Raumzeit selbst als thermodynamische Variable betrachtet werden

muss, analog zum Druck im Ersten Hauptsatz der Thermodynamik. Diese In-

terpretation erweitert den Phasenraum der thermodynamischen Parameter.
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Zusammenfassung

In diesem Zusammenhang wurden Phasenübergänge von RBH und Lovelock-

BHs studiert. Es wurde herausgefunden, dass ungeladene Lovelock-Schwarze

Löcher dritter Ordnung ein spezielles thermodynamisches Verhalten aufwei-

sen: Die Zustandsgleichung hat eine ungewöhnliche Entwicklung in der Umge-

bung eines besonderen kritischen Punkts, die auf eine Verletzung bestimmter

Skalenbeziehungen und ungewöhnliche kritische Exponenten hindeutet. Dies

ist das erste Beispiel eines ungewöhnlichen kritischen Exponenten in einer

Gravitationstheorie. Kürzlich wurde die Rolle einer dynamischen Kosmolo-

gischen Konstante in der AdS/CFT-Korrespondenz untersucht, die mit der

Anzahl der Farben der Eichtheorie auf dem Rand in Verbindung gesetzt wur-

de.

• Im vierten Kapitel wird das Verhältnis von Scherviskosität und Entropie-

dichte in den dualen Feldtheorien auf dem Rand berechnet. Die untersuchten

Modelle sind eine reguläre und eine Gauß-Bonnet Schwarze Brane in einer

asymptotischen AdS Raumzeit. Es wurden interessante Konsequenzen hin-

sichtlich der Universalität der Wertes von η/s gefunden.

Zusammenfassend wurden in dieser Arbeit die geometrischen, thermodynamischen

und holographischen Eigenschaften von geladenen GB Schwarzen Branen in fünf

Dimensionen, geladenen Lovelock-Schwarzen Löchern und regulären Schwarzen Lö-

chern und Branen detailliert untersucht. Im Fall von Gauß-Bonnet wurde heraus-

gefunden, dass in Übereinstimmung mit der geometrischen und thermodynami-

schen Vorstellung die Universalität von η/s im UV verloren geht, aber im IR

wiederhergestellt wird. Das Verhältnis η/s hat ein nichtuniverselles temperatur-

abhängiges Verhalten für nichtextreme Gauß-Bonnet Schwarze Branen, erreicht

aber den universellen Wert 1/4π im Extremalfall. Dieses Ergebnis legt nahe, dass

η/s ausschließlich durch das IR-Verhalten bestimmt wird und unempfindlich gegen

den UV-Bereich der dualen QFT ist. Bei niedrigen Temperaturen nähert sich das

Verhältnis η/s dem universellen Wert 1/4π, aber dieser Wert stellt ein Minimum

für die Gauß-Bonnet Kopplungskonstante λ < 0 und ein Maximum für λ > 0

dar. Deshalb ist die zur GB-Maxwell duale QFT für λ < 0 ein schönes Beispiel

für ein temperaturabhängiges η/s mit einer unteren Schranke von 1/4π. Aber die

Temperaturabhängigkeit, die für 0 < λ < 1/4 erhalten wird und die KSS-Grenze

verletzt, ist ein interessantes Thema für weitere Untersuchungen.
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Chapter 1

Introduction

In the past years, a quantum field theory (QFT) called Quantum Chromodynam-

ics (QCD) has been recognized to be the correct theory of the strong interactions.

QCD successfully describes the strong interactions that bind quarks together to

form nucleons and nucleons to nuclei. However, many strong interaction phenom-

ena are difficult to describe theoretically because of the strongly coupling at low

energies. At low energy, quarks are confined within nucleons and the degrees of

freedom that are observable are not the solutions of the corresponding free theory.

At this regime, a perturbative approach (i.e., an expansion of the theory in the

coupling constant) is not possible. The coupling constant becomes of the order

one at an energy scale ΛQCD of several hundred MeV. Therefore, the perturbative

approach, which is possible at higher energies, is not sufficient to gain a complete

picture of QCD.1

A possible way to study phenomena and properties that characterize the strongly

interacting matter is to do heavy-ion collision experiments. Heavy-ion collision

experiments consist in the collisions of heavy (i.e., large) nuclei, such as gold (at

RHIC) or lead (at the CERN, LHC), at an ultra-relativistic center of mass energy
√
s. In this way, it is possible to create a large volume of matter at high energy

density. The aim of heavy-ion collisions is to create and characterize a macroscopic

state (in QCD scale where ΛQCD > 1GeV ) of deconfined quarks and gluons in local

thermal equilibrium. Such state of matter can give new information regarding the

QCD phase diagram (see Fig.1.1) and the QCD phase transition between confined

and deconfined matter. This transition is supposed to have occurred when the

matter in the early Universe turned from a plasma of quarks and gluons (QGP)

into a gas of hadrons.

1The ΛQCD corresponds to the scale where the perturbatively-defined coupling would diverge.
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Chapter 1 - Introduction

Figure 1.1: Nuclear matter phase diagram. The plot shows the temperature in
units of one million electron-volt against the density in units of normal nuclear density
ρ0. At very high temperatures and densities, it is expected that the quarks and the
gluons (usually locked up inside the nucleons) become freed from their confinement and

move as free particles in a so-called quark-gluon plasma

At the moment, one of the main difficulties in the different models describing

heavy-ion collisions regards the stage directly after the collision and before the

quark-gluon plasma creation. This initial phase is remarkably complex since it

concerns the real-time evolution of many quarks and gluons and, it should be ex-

pressed by a fully non-perturbative calculation. Currently, these non-perturbative

calculations cannot be achieved in QCD. In this thesis, a particular approach

called gauge/gravity duality it is used to explore the properties of this phase. In-

deed, it has been proved that the duality is a useful tool for probing thermal and

hydrodynamic properties of field theories at strong coupling.

The seed of the gauge/gravity duality can be found in the concept of holography

that goes back to a ’t Hooft’s idea [1]; the holographic principle postulates a full

equivalence between certain theories formulated in different number of dimensions.

However, at the core of the gauge/gravity duality, there is a relation between string

theory (in the bulk) and certain conformal QFTs in one lower dimension (on the

boundary) making, therefore, the correspondence holographic.

In [2], ’t Hooft noticed, with a very general argument, that strongly coupled

SU(Nc) gauge theories with coupling constant g may simplify when Nc is large.

In virtue of the gauge/gravity duality, the large-Nc expansion of a non-Abelian

gauge theory may have a classical gravitational description in one higher dimen-

sion. Thus, holography and more generally, the gauge/gravity duality, allows for

doing a full strongly coupled calculation, although not in QCD itself. Indeed, QCD

is not conformal (although the duality has been extended to some non-conformal

2
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field theories) and it has Nc = 3. Quantum corrections in the bulk are only sup-

pressed, in the duality, if Nc >> 1.

Since the goal of heavy-ion collisions is to study the properties of QCD at extreme

temperature and energy density, any successful phenomenology should be based

on QCD. However, heavy ion phenomenology requires strong coupling techniques

both for thermodynamic quantities like the QCD equation of state, and also for

dynamical quantities at T 6= 0 such as transport coefficients or quantities accessed

by probes propagating through a plasma. For now, lattice-regularized QCD cal-

culations provide well-controlled results for some of these bulk quantities. But,

holography provides a tool for performing non-perturbative calculations of dy-

namical quantities. This method can lead to a better understanding of the initial

stage of the heavy-ion collisions.

A particular example of gauge/gravity duality is the AdS/CFT (Anti-de-Sitter/

Conformal Field Theory) correspondence. In [3], J. Maldacena proposed the Ad-

S/CFT correspondence while he was studying D-branes in string theory2. The

AdS/CFT duality allows one to describe the strong coupling limit of a large class

of non-Abelian quantum field theories in terms of black holes (BH) in AdS space.

More precisely, this correspondence indicates that an evaporating BH in AdS back-

ground is dual to a unitary conformal field theory on the boundary of AdS [4].

Although the AdS/CFT correspondence was originally discovered by studying D-

branes and BHs in string theory, the duality seems to have deep roots in certain

more general aspects of gauge theories.

A short introduction to the AdS/CFT duality would start stating that there was

a close link between string theory and QCD since the beginning. In fact, string

theory was originally introduced to describe strong interactions already by the

60s (for a historical review see for example [5]). In that framework, gluons at

low energies can be thought, because of the confinement property, like flux tubes

(strings) that can close on themselves or connect a quark-antiquark pair. Strings

nicely explained several features of the hadron spectrum: Different vibration modes

of a string provided a way to describe many hadronic resonances of high spin

discovered in the 1960s. However, such a low-energy effective description does

not extend to high energies where the theory becomes weakly coupled. Then, in

the mid-70s, it was realized that string theory is also a theory of gravity and it
2 In the perturbative approach (see Eq. (1.4)), string theory is just a theory of extended one-

dimensional objects, namely strings. Non-perturbatively, the theory also contains a variety of higher-
dimensional solitonic objects. D-branes are a particularly relevant extended objects of this non-
perturbative regime. Introducing a D-brane adds an entirely new sector to the theory of closed strings,
consisting of open strings whose endpoints must satisfy the boundary condition that they lie on the
D-brane.

3
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was proposed as a fundamental theory. The already mentioned ’t Hooft’s large

Nc expansion is an indication that a fundamental (as opposite to effective) string

theory description may exist for any non-Abelian gauge theory. The basic idea

of ’t Hooft was to treat the number of colors Nc for a non-Abelian gauge theory

as a parameter, take it to be large, and expand physical quantities in 1/Nc. For

example, consider a generic Euclidean partition function for a U (Nc) gauge theory

with gauge coupling g [6]:

Z =

∫
DAµ exp

(
− 1

4g2

∫
d4xTrF 2

)
, (1.1)

introducing the ’t Hooft coupling

λtH ≡ g2Nc (1.2)

one finds that the sum over the connected vacuum-to-vacuum amplitude, logZ,

can be expanded in 1/Nc as

logZ =
∞∑
h=0

N2−2h
c fh (λtH) = N2

c f0 (λtH) + f1 (λtH) +
1

N2
c

f2 (λtH) + . . . , (1.3)

where fh (λtH), with h = 0, 1, . . ., are only functions of the ’t Hooft coupling λtH .

The large-Nc expansion (1.3), at a fixed λtH , turns out to be an expansion in terms

of the topology of compact two-dimensional surfaces. Given that the topology of

a two-dimensional compact orientable surface is classified by its number of holes,

in the large-Nc expansion, one can suppose that Feynman diagrams are organized

by their topologies. For example, the “planar diagrams”3 are all proportional to

N2
c and are included in f0 (λtH). Similarly, the generic functions fh (λtH) include

the contributions of all diagrams that can be drawn on a two dimensional surface

with h holes without crossing any lines. The diagrams with h = 0 in (1.3) are the

dominant ones in the large-Nc expansion. This is the reason to call the large-Nc

limit, the planar limit of the gauge theory.

The large-Nc expansion goes in parallel with the perturbative expansion of a closed

string theory. The worldsheet4 of a closed string is a two dimensional compact

surface and the string perturbative expansion is given by a sum over the topologies

of two dimensional surfaces. For example the vacuum-to-vacuum amplitude A in

3Diagrams that can be drawn on a plane without crossing any lines
4The worldsheet is the surface area swept by the string as it propagates through spacetime.
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a string theory can be written as

A =
∞∑
h=0

g2h−2
s Fh (α′) =

1

g2
s

F0 (α′) + F1 (α′) + g2
s F2 (α′) + . . . (1.4)

where gs is the string coupling, 2πα′ is the inverse of the string tension, and

Fh (α′) is the contribution of two-dimensional surfaces with h holes. Topological

considerations suggest the conjecture of identifying f0 (λtH) with F0 (α′) for some

closed string theory, if one recognize the string coupling constant to be

gs ∼
1

Nc

, (1.5)

but leaves open what the specific string theory is. The AdS/CFT duality is a

particular realization of this connection for planar theories in the strongly coupled

regime (i.e., in the limit Nc, λtH → ∞). One can also include quarks in this gen-

eral picture, or more generally matter in the fundamental representation. Feynman

diagrams with quark loops can also be classified by using topologies of two dimen-

sional surfaces with boundaries. Each boundary can be identified with a quark

loop. On the string side, two-dimensional surfaces with boundaries describe the

worldsheet of a string theory containing both closed and open strings, with bound-

aries corresponding to the worldlines of endpoints of the open string. Therefore,

it is possible to reformulate a non-Abelian gauge theory as a string theory.

Now the question is why does one need to consider AdS background? It is a sym-

metry reason. A generic CFT in d dimensions with Poincare and scaling symmetry

is also invariant under d special conformal transformation, which altogether form

the d−dimensional conformal group SO (2, d) that is also the isometry group5 of

a (d+ 1)−dimensional AdS spacetime. Thus one expects that a CFT should have

a string theory description in AdS spacetime.

1.1 Black Holes

As stated in the previous paragraph, a fundamental ingredient of the gauge/gravity

correspondence is the black hole. Black holes are solutions of the field equations

of classical General Relativity (GR) that encode aspects of the physics of the final

stage of the gravitational collapse of matter. GR is the theory that expands the

concept of Minkowski spacetime of special relativity to a more general spacetime

5It is the set of the spacetime coordinate transformations that leave the metric invariant.
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that under the effect of gravity can be curved. This new geometric object is called

Lorentzian manifold, and the gravitational field is its metric gµν . The curvature is

related to the space-time distribution of the energy-momentum tensor Tµν of the

matter content. The Einstein’s field equations give the connection between the

matter distribution and the curvature of the space-time

Gµν = Rµν −
1

2
gµνR =

8πGN

4
Tµν (1.6)

where Rµν is the Ricci curvature tensor, R the Ricci scalar, gµν is the metric tensor

and GN is the Newton constant. GR can be intended as a purely geometrical

theory: Space-time is curved by its energy content, and test particles move along

geodesics. This point of view makes GR a theory radically different from the

theories that describe all the other known interactions, i.e., special relativistic

field theories that after quantization, explain the interaction between two bodies

through the exchange of quanta of the field theory.

Figure 1.2: Representation of black hole geometry. The surface represents
the outer region of the black hole at fixed time and shows its spatial curvature. In
particular, this is the isometric embedding of the spatial Schwarzschild The foliation
covers the entire space in the exterior region, and terminates with the final slice on the

horizon.

1.1.1 Black Hole in Asymptotically Flat Spacetime

The Schwarzschild black hole (usually referred only as BH) was the first exact

solution of the vacuum (Tµν = 0) Einstein’s equations (1.6). In four space-time

dimensions6 the BH metric takes the form

ds2 = −f (r) dt2 + f (r)−1 dr2 + r2dΩ2 (1.7)

where

f (r) = 1− 2GN M

r
(1.8)

6The metric signature convention will be (−,+,+,+)
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and the line element dΩ2 is the unit sphere metric dΩ2 = dθ2 + sin2 θ dφ2. The

mass M of the BH plays the fundamental role of the total energy of the system (so

M = E) and it is defined as a surface integral over the asymptotic behavior of the

gravitational field7. The BH metric (1.7) describes the gravitational field created

by a spherically symmetric, massive object as seen from far away (in the vacuum

region) by a static observer. The Schwarzschild spacetime satisfies the vacuum

Einstein’s equations everywhere except at the singular point r = 0. At this point

of the Schwarzschild solution, there is a curvature singularity. At r = 2MGN

instead, the Schwarzschild metric (1.7) has only a coordinate singularity, i.e., it

can be removed performing a change of coordinates. The interpretation of vacuum

solutions of the Einstein’s equations is a difficult point since the possible source is

located by definition in a region in which the Einstein’s equations are not solved

(e.g., r = 0). Another important feature of the Schwarzschild solution is the

existence of an event horizon. The event horizon is a light-like hypersurface that

separates the “exterior” and the “interior” regions of a BH. The presence of an

event horizon has the consequence that a classical free falling observer can never

come back from inside the BH and cannot send any information outside. Several

observational data support the existence of BHs in our universe. However, real

astrophysical BHs are not supposed to be in complete isolation neither vacuum

solutions but surrounded by some matter. Theoreticians frequently call such BHs

surrounded by an environment as “dirty BHs” [7].

It is better to emphasize here that in the gauge/gravity duality the relevant space-

time is a higher-dimensional one compared to the non-gravitational system it de-

scribes (remember the holographic principle). That means that if the gauge theory

is four dimensional (as considered in this thesis), then the BH in the dual grav-

itational theory will be five-dimensional. For this reason in Chap.2 and Chap.3,

higher dimensional BHs are studied. However, before going to the description of

higher dimensional BHs, more details about four dimensional BHs will be pre-

sented in the next subsections.

1.1.2 Black Hole Thermodynamics

An initial hint of the thermodynamic nature of BHs was the fact that for null

energy conditions (satisfied by classical matter fields), Tµνk
µkν ≥ 0 for arbitrary

null vector kµ, the area of a BH horizon can only increase in any physical process.

This argument brought the irreversibility characteristic of thermodynamic systems

7See App. A.2.1 for further details.
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into the context of BH physics and motivated Bekenstein to associate to BHs a

notion of entropy proportional to their area [8]. The complete realization that

BHs could be considered as thermodynamic objects in the semi-classical regime

came with the discovery of the BH radiation (the so-called Hawking radiation).

The thermodynamic nature of BHs is a prediction of the combination of GR and

QFT as a first approximation to a full quantum gravity theory (semi-classical

approach). An asymptotic observer measures a radiation coming from the horizon

with a temperature

TH =
~κh
2π

=
1

8πM
(1.9)

where κh = f ′ (r+) /2 is the BH’s surface gravity and r+ is the event horizon radius

f (r+) = 0. BHs also have an associated entropy. However, the precise expression

of this entropy is a question that should be answered within the framework of a

complete quantum gravity theory. Up to now, the semi-classical entropy associated

to a stationary BH is

S =
A

4GN~
(1.10)

where A is the area of the event horizon. In the Schwarzschild solution, a small

positive fluctuation in temperature makes the BH radiate some mass away increas-

ing the temperature and lowering the mass further until the hot BH evaporates

completely. On the other side, a small negative fluctuation in temperature makes

the BH absorb more radiation than it radiates, increasing its mass. In this way,

the BH cools down, absorbs mass at a faster rate and can grow indefinitely. There-

fore, even if it appears somewhat counter-intuitive, small BHs radiate faster than

bigger BHs. The zeroth law of BH mechanics says that the surface gravity κh is

constant over the event horizon of a stationary BH. The first law states that

dM =
κh
8π
dA (1.11)

i.e., it relates the change in the area to the change in mass for an adiabatic tran-

sition between nearby stationary BH solutions.

1.1.3 Black Hole in a Box: The Schwarzschild-Anti-deSitter Solution

Accordingly to the semi-classical description presented in the previous section,

a Schwarzschild BH is thermodynamically unstable because its specific heat is

negative:

C−1 =
∂TH
∂M

= − 1

8πM2
. (1.12)

8
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To restore stability, it was considered the case of putting the BH in a box of finite

volume and finite heat capacity. In [9], the authors found that the BH is in a

stable thermodynamic equilibrium against radiation when the radiation energy

of the box satisfies Erad < M/4. Therefore, putting a BH in a box does give a

thermodynamically stable solution. To have a more physical situation one should

consider, however, not a box but a spacetime that is no longer asymptotically

flat. This is done using the Anti-de Sitter spacetime [9]. The AdS space is a

valid box because can be thought to have a potential wall as one approaches

the asymptotic infinity, namely, the gravitational potential relative to the origin

increases as one moves away from the origin. The AdS space is a solution of the

Einstein’s equations (1.6) with a negative cosmological constant Λ (or alternatively

AdS radius b) defined in the following way:

Gµν = Λgµν , Λ = − 3

b2
< 0 . (1.13)

The line element of AdS is

ds2 = −
(

1− Λ

3
r2

)
dt2 +

(
1− Λ

3
r2

)−1

dr2 + r2dΩ2. (1.14)

A BH in an asymptotically AdS space has positive specific heat at high temperature

and therefore is thermodynamically stable. The metric of a BH in AdS background

is

ds2 = −
(

1 +
r2

b2
− 2GN M

r

)
dt2 +

dr2(
1 + r2

b2
− 2GN M

r

) + r2dΩ2 (1.15)

and approaches (1.14) as r goes to infinity.

1.1.4 Charged Black Hole

Another exact mathematical BH solution, which illustrates some features that will

be substantial in the next chapters, is the charged Reissner-Nordstrom (RN) black

hole. In contrast to a Schwarzschild BH, a charged black hole is no longer in the

vacuum since the charge generates a nonzero electromagnetic field, which acts as

a source of the energy-momentum tensor

Tµν = FµρF
ρ
ν −

1

4
gµνFρσF

ρσ (1.16)

9
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where Fµν is the electromagnetic field strength tensor. Using the spherical sym-

metry, the Einstein’s and Maxwell’s equations lead to the RN solution, described

by

ds2 = −4 (r) dt2 +4−1 (r) dr2 + r2dΩ2 , (1.17)

4 (r) = 1− 2GNM

r
+
GNQ

2

r2
(1.18)

where M is again interpreted as the mass of the BH and Q is the total electric

charge. The RN solution, as the Schwarzschild one, has a curvature singular-

ity in r = 0 (this can be checked by computing the curvature invariant scalar

RµνρσR
µνρσ). The horizon structure, however, is more complicated than in the

Schwarzschild BH. In the RN case, there can be one, two or zero solutions to the

horizon equation 4 (r) = 0. When the two horizons coincide at a single radius

r+ = r− = GNM , the BH is known as the extremal RN BH. The extremal solution

is often analyzed in quantum gravity (e.g., string theory).

In general, the RN law of BH thermodynamics takes a form similar to that of a

Schwarzschild BH. Although, in this case, the first law (1.11) requires the addition

of another term that considers the possible changes in the BH mass due to changes

in the charge. For large values of the RN mass, the temperature diminishes when

the mass grows, just as in the Schwarzschild BH but, for values of the mass compa-

rable to the charge Q and close to the extreme limit, the temperature grows with

the mass as in an ordinary thermodynamic system. Between these two regions,

there is a maximum temperature (for constant charge). At the point at which

the temperature reaches its maximum value, one has ∂T/∂M = 0 and the specific

heat (1.12) diverges. The interesting feature of the RN solution is that there is

an endpoint of the Hawking evaporation (corresponding to T = 0). However, as-

suming that nothing special happens when the mass is such that ∂T/∂M = 0, one

would expect that the RN BH approaches the extremal limit in a very long-lasting

(maybe eternal) process in which the BH loses mass and temperature at lower and

lower rates. It has been conjectured that there could be a BH remnant storing all

the information contained in the original BH that is not radiated away. On the

other hand, it has also been argued that the thermodynamical description of RN

breaks down when we approach the extreme limit8. This is a very important issue

8 Close enough to the extreme limit, the emission of a single quantum with energy equal to the
Hawking temperature would take the mass of the RN beyond the extreme limit. Then, the change in
the spacetime metric caused by Hawking radiation would be very big and HawkingâĂŹs calculation in
which back-reaction of the metric to the radiation is ignored becomes inconsistent.

10
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because essentially these are the only BHs for which a statistical computation of

the entropy based on string theory has been performed [10].

1.2 The Problem of the Black Hole Singularity

The discovery of the thermodynamic properties of BHs opened new exciting possi-

bilities but also several questions. These questions are related, for example, to the

information paradox or the unitarity of the theory. It would be important to know

how does the information of the quantum state of infalling particles re-emerge

in the outgoing BH radiation. Moreover, the S-matrix between the ingoing and

outgoing particles scattered off the horizon should be unitary. These questions

necessitate a full control of the quantum dynamics in regimes away from the semi-

classical one. In particular, answer these questions requires the understanding of

the dynamics near and across the curvature singularity even though it is hidden

within the event horizon.

It is believed that singularities should be generically avoided in virtue of the quan-

tum gravity effects occurring at the Planck scale. This line of reasoning is inspired

by the case of the classical electrodynamics, where sources can generate field singu-

larities which are avoided in quantum electrodynamics. A possible way of identify-

ing the object that could be the source of the full Schwarzschild gravitational field

is to proceed by analogy with the Maxwell case [11]. However, in the BH case, the

situation is more complicated especially because the spacetime is not even defined

in r = 0. Proceeding in a way similar to the Maxwell case, one could introduce

a massive point-like particle as the source of the Schwarzschild field, namely an

energy-momentum tensor with the only non-vanishing component T00 ∼ δ3 (r).

This massive point-particle would give rise to a time-like singularity along its

world-line (since massive particles are described by time-like geodesics). Thus,

this result is not correct because the Schwarzschild singularity should be space-like.

Interestingly, in [12], a distributional energy-momentum tensor has been found to

satisfy the equation of motion for the Schwarzschild BH. This energy-momentum

tensor is different from zero at the origin and in components, reads

G (x) = 8πT (x) = −8πMδ3 (x)

(
dt⊗ ∂t + dr ⊗ ∂r −

1

2
dθ ⊗ ∂θ −

1

2
dφ⊗ ∂φ

)
(1.19)

providing the Ricci scalar R = 8πMδ3 (x). In this way, it is possible to describe the

singularity mathematically as a distributional energy-momentum tensor. However,

this mathematical formulation (1.19) does not solve the singularity problem that

11
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should be instead finally solved by a complete theory of quantum gravity. A

possibility to do a step forward is, for example, to consider a source that can also

describe the quantum nature of the matter effectively. This will be explained in

sections 1.3.1, 1.3.2.

1.3 Non-Local Theories

Up to now, one of the key ingredients in the field of quantum gravity research has

been non-locality. Assuming an uncertainty relation between position measure-

ments implies a non-local theory. String theory is another example of a non-local

theory. Indeed, the fundamental objects of string theory are essentially extended

along some characteristic distance ls =
√
α′, and they become local in a particular

regime called the point-like limit (i.e., ls → 0).

1.3.1 Non-Commutative Spacetime and Minimal Length Parameter

In the past years, a possible spacetime quantization has been proposed based on

the Heisenberg’s corollary: “physical quantities are governed by non-commutative

algebra” [13]. This spacetime quantization is given by the non-commutative ge-

ometry approach, and the quantum features are encoded into a non-vanishing

coordinate commutator. The technical difficulty of dealing with coordinates that

are not c-numbers9 but “operators” is usually avoided by using ordinary, commut-

ing coordinates while shifting non-commutativity in a new multiplication rule, the

so-called ∗-product between functions. The approach is the following: one should

take standard commutative QFT results and substitute ordinary function multi-

plication by ∗-product multiplication. However, this prescription leaves quadratic

terms in the action unaffected, as the explicit form of the ∗-product leads to surface

terms only. Thus, the free dynamics encoded in kinetic terms and Green functions

remains the same as in the commutative case. The presence of a non-commutative

product becomes relevant only when more than two field variables couple together.

The ∗-product is a non-local operation that gives rise to non-planar contributions

to Feynman graphs at any perturbative order. These non-planar graphs intro-

duce a problematic mixing of ultraviolet (UV) and infrared (IR) divergences. So

far there has been no solution to this problem, and it has been accepted as an

9The term c-number is an abbreviation for classical number. This is an old nomenclature used by
Paul Dirac, which refers to commuting real and complex numbers. Usually, this terminology is used in
quantum mechanics to distinguish from operators that are defined as q-numbers or quantum numbers.

12
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unavoidable consequence of non-commutativity. Anyway, this is only one of the

technical problems which include also the possible breaking of Lorentz invariance

and violation of unitarity.

An alternative approach to non-commutative geometry is based on the use of

coherent states of the quantum position operator xµ satisfying [xµ, xν ] 6= 0 (see

[14, 15, 16]). The idea is that the non-vanishing commutator prevents the existence

of a common basis in coordinate representation. The best that one can do then is

to define a mean value between appropriately chosen states, i.e. coherent states.

The coherent states are minimum uncertainty states, and the mean values are the

closest one can get to the classical commuting coordinates. In the coherent state

approach, there are no UV divergences from which to extract anomalies and there

is no ∗-product at all. The possibility of using a minimal length is explored in this

thesis from the general relativity point of view (see Chap. 2 and Chap. 4).

1.3.2 Regular Black Holes

Regular black holes (RBH) are a family of BH solutions of the Einstein’s equa-

tions which incorporate the effects of the Plank length in the short distance/high

energy regime of the gravitational field. The derivation of the line element of

these solutions is based on the possibility of implementing an effective minimal

length directly in the classical GR. In this way, instead of the formulation of the

full theory of quantum gravity, one can consider an effective theory that encodes

quantum fluctuations. It has been shown in [17] that the effects of the quantum

fluctuations of the manifold can be modeled by a non-standard form of the energy-

momentum tensor while keeping unchanged the Einstein tensor Gµν in gravity field

equations (1.6). In this approach, for all RBHs, the curvature singularity at the

origin is smeared out, and replaced by a regular de Sitter core (repulsive pressure).

However, the hidden cost of this procedure is that the de Sitter core can only be

attained in a non-classical gravity framework because of the energy condition vi-

olations at the origin.

An important feature of these RBHs concerns an “improved” thermodynamics. In-

deed, even for neutral RBH, the Hawking temperature has a maximum and, after

that, a cooling down phase, with positive heat capacity, toward a zero tempera-

ture remnant configuration (see Fig. 1.3). In the semi-classical description, there

are limits to the validity of the approximation during the terminal phase of the

evaporation (see footnote 8). In this scenario instead, the back-reaction should be

suppressed giving the description of the final state of an RBH: a remnant.
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Figure 1.3: Temperature and heat capacity for the 4d regular black hole.
On the left, we have the 4d-regular black temperature T and on the right, its heat
capacity C. In both plots, solid lines represents the behaviour for the regular black
hole with θ = 0.1 while dashed lines are the classical results. C < 0 is the unstable
thermodynamic phase while C > 0, the positive heat capacity phase corresponding to
the cool down phase. Blue dots represents the extremal BH; purple and brown dots are
two values of the mass that have the same temperature; the green dot is the temperature

maximum where the heat capacity diverges.

Before illustrating in the next chapter the line element of this RBH and other

sophisticated geometrical objects, one needs to understand all the physical objects

that are usually considered to be point-like and how to change them. We can note

that a way to approach this issue is to estimate the mean position of an object by

averaging coordinate operators on suitable coordinate coherent states. As a result,

one finds that the mean position of a point-like object in this kind of manifold

is no longer described by a Dirac delta function as in (1.19) but by a Gaussian

distribution

fθ (~x) =
1

(4πθ2)n/2
exp

(
−|~x|

2

4θ2

)
(1.20)

where n is the (space) manifold dimension and θ is the minimal length implemented

through the non-commutative relation between coordinate operators. Field equa-

tions in the presence of this background can be obtained by substituting the con-

ventional point-like source term with a Gaussian distribution while keeping for-

mally unchanged differential operators [18]. For a static, spherically symmetric,

diffused, gravitational source of mass M , one gets a Gaussian profile for the T 0
0

component of the energy momentum tensor

T 0
0 = −ρθ (r) = − M

(4πθ2)n/2
exp

(
− r2

4θ2

)
(1.21)

then, two components of the energy-momentum tensor are already determined

T 0
0 = T rr = −ρθ (r) from the Schwarzschild-like condition g00 = g−1

11 , while the

remaining (n− 1) components, which are identical because of the condition of
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spherical symmetry, can be fixed using the covariant conservation law:

∇µT
µν = 0. (1.22)

In this way, the energy-momentum tensor is completely specified by

T µν = Diag (−ρθ (r) , pr (r) , p⊥ (r) , . . . , p⊥ (r)) . (1.23)

One should notice here that there are non-vanishing pressure terms with pr 6= p⊥

and that the geometry is effectively represented as a fluid diffused around the

origin. From the conservation law Eq. (1.22), one then finds

T ii = −ρθ −
r

d− 1
∂rρθ (1.24)

for all i = 1, . . . , n − 1 (without summation). Using all the properties, one can

finally write the resulting Einstein’s equations in the presence of a source term

that encodes minimal length smearing effects

Rµ
ν = 8πGNT

µ
ν −

8πGN

n− 1
δµνT , (1.25)

where T is the trace of the energy-momentum tensor.

Summarizing, we have seen that there exists a solution of the Einstein’s equations

given by a particular ansatz that models a fluid with a Gaussian distribution from

an energy density. Eventually, one chooses pr = −ρθ and solves the conservation

law for all the other components. Then, because it looks similar to the cosmological

constant term in the Einstein’s equations around the center, one gets a match to a

de Sitter core. Thus, an important question would be: what is the global structure

of this spacetime? The global structure is very similar to RN black hole but without

the timelike singularity. This solution of the Einstein’s equations will be one of

the pillars of this thesis. Investigation about the phase structure of a RBH in AdS

background are presented in Chap. 2 and Chap. 3 while the possible applications

to AdS/CFT will be shown in Chap.4.

1.3.3 Lovelock Gravity

In the context of quantum gravity corrections to Einstein’s equations, another ap-

proach is possible: Higher curvature corrections can be included in the GR theory.

Higher-derivative theories have been a subject of long-standing interest. Indeed,

these kind of corrections arise, for example, in the context of string theory as next
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to leading order corrections in the low energy effective action. Or, they are moti-

vated by the study of higher dimensional spacetimes.

Among all the higher derivative theories, Lovelock gravity theories [19] are ex-

tremely used, in large part because they admit second order differential equations

for the metric functions and also because they represent a natural generalization

of the standard GR to dimensions higher than four. These are the reasons why

theories of gravity that include higher derivative curvature terms have received a

lot of attention in the framework of BH thermodynamics (see for example [20])

and AdS/CFT. In particular, in the field of BH thermodynamics, higher derivative

corrections are expected to give some insights into quantum gravity since the ther-

modynamic properties of BHs are essentially a quantum feature of gravity (see [21]

for a review on BH in higher curvature theories of gravity). On the other hand, it

is possible through the thermodynamics of BHs in AdS background to study the

phase structure of a certain field theory via the AdS/CFT correspondence. Due

to the AdS/CFT correspondence, some higher derivative curvature terms can be

regarded as large Nc-corrections in the expansion of the dual field theory. More

discussion about higher curvature gravity can be found in Chap. 3. The relevance

of the Lovelock theory in the context of AdS/CFT will be discussed in Chap. 4

1.4 QCD and AdS/CFT

In the past twenty years, the gauge/gravity duality not only has provided new in-

sights into the BH physics and quantum gravity but also has led to a new paradigm

for probing strongly coupled gauge theories to which it is sometimes difficult to

apply standard methods. An interesting question is if gauge/gravity duality may

be applied to strongly coupled gauge theories such as QCD.

1.4.1 The Standard Model of Particle Physics

The Standard Model (SM) of particle physics describes elementary particles and

their interactions via a quantum gauge field theory with symmetry group U (1)Y ×
SU (2)W × SU (3). In the SM, fermion fields describe the matter particles and a

complex scalar field spontaneously breaks the electroweak group U (1)Y ×SU (2)W
to its subgroup U (1)EM , which is responsible for electromagnetism. The remain-

ing unbroken SU (3) group is the gauge group of the QCD and describes the

strong interactions of colored quarks and gluons (the quanta of the non-Abelian
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gauge field). Differently from photon in QED with Abelian gauge group U(1), in

non-Abelian theories, the gluons carry charge and self-interact. Neither quarks

nor gluons are observed as free particles. This is because at low energies, non-

Abelian theories display the property of confinement while in the UV the theory

is asymptotically free.

Initially, the fermions are massless so they have well-defined chirality. Then intro-

ducing the Higgs vacuum expectation value, they acquire mass. This allows for the

SU (2) part of the electroweak of the gauge group to act only on the left-handed

components. All the left-handed fermions are SU (2) doublets and all the right

handed are singlets. All the quarks are in the SU (3) fundamental representation

(anti-fundamental for the anti-quarks) that confine them in the hadrons. Hadrons

are (color-neutral) color-singlet combinations of quarks, anti-quarks, and gluons.

The gauge bosons of the SU (3) are the eight gluons. In the SM, the electroweak

symmetry breaking (EWSB) mechanism allows to keep untouched the structure of

the gauge interactions at high energy and generate the observed masses of the W

and Z gauge bosons. The mass generation of the W and Z bosons happen using

charged and neutral Goldstone bosons that manifest themselves as the longitudinal

components of the gauge bosons. Because of the EWSB mechanism, three mass-

less Goldstone bosons are generated. The Goldstone bosons are absorbed to give

masses to the W and Z gauge bosons. Then, the remaining component of the com-

plex doublet becomes a new fundamental scalar particle: the Higgs boson. Also

all the fermions masses are a consequence of EWSB because the Higgs doublet is

postulated to couple to the fermions through Yukawa interactions. The resulting

theory is in good agreement with experimental tests, and its consistency has been

confirmed by the detection of the Higgs boson at the LHC [22, 23]. However, the

structure behind the discovered boson, e.g., the exact dynamics that triggers the

Higgs vacuum expectation value (VEV) and the corresponding UV completion,

is still unsolved [24]. To this aim, research on nuclear and quark matter at high

baryon (quark) density is expected to say a lot about our empirical understanding

of the origin of matter in the Universe.

1.4.2 Phase Transitions in Quantum Chromodynamics

One of the fundamental phase transitions of the matter is that between the hadron

gas and the quark-gluon plasma (QGP), i.e., a transition from a confined to a

deconfined phase. The detailed structure of the QCD phase diagram is still an

open question. However, experiments at RHIC and LHC, suggest that the QGP
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observed at high temperatures is a strongly coupled state of matter and it shows

a collective behaviour. This also suggests that the QGP can be well described

by an hydrodynamical description. The deconfinement phase transition can be

represented in the plane of temperature versus baryon chemical potential (T, µB)

in the conjectured phase diagram for QCD (see Fig.1.1). As said before, the

detailed character of this QCD phase diagram is still not known, and current

theoretical knowledge is restricted primarily to the µB = 0 axis. Indeed, a common

approximation in studying the physics of the quark-gluon plasma is to neglect the

chemical potential µB for baryons10. At present, it is believed that the cross-over

at µB = 0 between confined and deconfined phases in QCD sharpens into a phase

transition as µB becomes non-zero, with a critical point at finite µB and T [25].

However, the order of the phase transition is not clear.

The search for the dynamic properties (such as the shear viscosity) of the quark-

gluon plasma via the gauge/gravity duality is one of the driving motivation for this

thesis. This is also related to the search for a critical point in the phase diagram of

QCD matter where the cross-over from hadron resonance gas to the quark-gluon

plasma can turn into an actual phase transition.

1.4.3 Gauge/gravity Duality

Since the formulation of QCD, there has been the idea that the theory might

simplify in the limit of a large number of colors Nc [2]. This idea has directed

the research to relevant conceptual progress. Non-planar diagrams emerge from

perturbative calculations in the large-Nc when the ’t Hooft coupling λtH = g2Nc is

kept finite. However, calculations remained difficult to address even in the large-Nc

limit until the formulation of the AdS/CFT duality (or in general, the gauge/grav-

ity duality). The AdS/CFT correspondence provided a concrete realization of the

holographic principle, the idea that quantum gravitating theories contain more

information than needed, and can be described by a non-gravitational theory in

fewer dimensions. The holographic principle has been principally motivates by

the fact that the BH entropy scales as the surface area rather than the volume.

If one considers a QFT in a d-dimensional spacetime, then the number of d.o.f.

of a system is given by the entropy. In QFT the entropy of a spatial region Rd−1

10 At least at mid-rapidity, this can be quantitatively justified based on the relative abundance of
particle species.
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should be proportional to its volume in (d− 1) dimensions:

SQFT ∝ Vol (Rd−1) . (1.26)

On the gravity side, on the other hand, the theory lives in a (d+ 1) dimensional

spacetime. The fundamental point here is that in a gravitational theory, the

entropy in a volume is bounded by the entropy of a BH that fits inside the vol-

ume. The entropy of this BH is proportional to the BH surface A, that is the

Bekenstein-Hawking formula (1.10). Then according to (1.10), the gravitational

entropy associated to a spatial region Rd in (d+ 1) dimensional spacetime and

bounded by a (d− 1) dimensional manifold scales as

SGR (Rd) ∝ Area (Rd−1) ∝ Vol (Rd−1) (1.27)

which is in agreement with the entropy in QFT given by (1.26). The AdS/CFT

correspondence relies also significantly on the asymptotic properties of anti-de Sit-

ter space. In AdS space, massive particles must stay at finite spatial values (the

“bulk”), but massless trajectories can reach spatial infinity, called the “boundary”.

As a consequence, describing physics in an asymptotically AdS space requires more

than initial conditions: it requires boundary conditions that fix the behavior of

the various dynamical fields at infinity. The ideal case would be a formulation via

string theory of a gravity dual for QCD. There are several proposal about how to

model QCD using AdS/CFT. In this thesis, it is used the duality in a phenomeno-

logical bottom-up approach, i.e., the possibility to “engineer” gravity duals that

do not originate directly from string theory. Generally, the duality map in these

so-called “bottom-up” models11, is not precisely known, but some features, such

as symmetries and thermodynamics, can be built-in. The hope is of matching

certain aspects of QCD as closely as possible and find how useful gauge/grav-

ity calculations can be. Indeed, the macroscopic behaviour of strongly correlated

systems at large distances and long timescales generically exhibits features that

are independent of the details of the underlying, difficult to describe, microscopic

description. This thesis examines a particular feature in the gauge-gravity dual-

ity dictionary. The entry is based on the following property: the quasi-normal

spectra of asymptotically AdSn+1 (and more general backgrounds) correspond to

poles of the retarded thermal correlators of dual n-dimensional strongly interact-

ing quantum gauge theories. In particular, the lowest quasi-normal frequencies

11In contrast to “top-down” studies of AdS/CFT based on sting theory constructions.
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of black branes12 can be interpreted in the dual theory as dispersion relations of

hydrodynamic excitations.

1.5 Outline

Motivated by gauge/gravity duality and particle physics, in this thesis some models

describing relevant gravitational phenomena are investigated. These models have

a repercussion in the nuclear matter description via AdS/CFT.

In Chapter 2, RBH phase transitions and Gauss-Bonnet BH thermodynamics are

presented. The chapter is divided into two parts: the first part is a study of

the thermodynamics of RBH in different ensembles while the second part is an

extensive study of the charged Gauss-Bonnet black brane solution and it is based

on Ref. [26]. In Chapter 3, a detailed study of 3rd-order Lovelock BH and RBH

thermodynamics from an alternative point of view is proposed. This new approach

occurred within a proposal regarding the interpretation of BH thermodynamic

system: The idea is that the cosmological constant Λ that define the AdS spacetime

has to be considered itself as a thermodynamical variable analog to the pressure

in the first law of thermodynamics. This interpretation extends the phase space

of thermodynamic parameters. Recently, the role of a dynamical cosmological

constant has been analyzed in the AdS/CFT correspondence [27, 28, 29]. Since,

in string theory, the cosmological constant is related to the number of branes in

the bulk, then it can be connected to the number of colors Nc of the boundary

gauge theory. The contents of Chapter 3 are from the following papers [30, 31,

32]. In Chapter 4, the shear viscosity over entropy density ratio is calculated for

the field theory dual to Gauss-Bonnet and RBH theory. The models in exam are a

regular black brane in asymptotically AdS background and a 2-nd order Lovelock

black brane (i.e., Gauss-Bonnet theory). The content of this chapter is partially

from the following paper [26].

12A black brane is a solution of the Einstein’s equations that generalizes a BH solution in generic
spatial dimensions, and it is also translationally symmetric.
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Chapter 2

Black Hole and Black Brane

Thermodynamics and Phase

Transitions

In the previous chapter, the Schwarzschild solution of the vacuum Einstein’s equa-

tions has been introduced and related to the general concept of BH. Then, in the

context of effective theories for a spacetime with a minimal length, it has been

presented the regular black hole solution (RBH), i.e., a solution of the Einstein

equations where the static interior of the BH is full of exotic matter. This matter

mimics a repulsive pressure that encodes a quantum gravity effect that opposes

to the gravitational collapse. In the case of the RBH, the matter cannot collapse

into the singularity because of the presence the minimal length imposes a maximal

resolution.

In this chapter, a thermodynamic analysis of the RBH in AdS-background is pre-

sented. Also, the charged Gauss-Bonnet black brane solution is investigated as

a preliminary study to Chap. 4. The RBHs share common features with the

charged, spherically symmetric so-called RN black holes presented in sec. 1.1.4.

The RN solution has very interesting features. In particular, it has an extreme

limit with a regular horizon and Hawking temperature equal to zero. This limit

is approached with positive specific heat, as in the standard thermodynamic sys-

tems. Interestingly, the RBH solution shares with the RN solution the same kind

of features.

In the whole chapter, the discussion about RBH will be for arbitrary space di-

mensions n ≥ 3. Then, all the numerical calculations will use n = 3 or n = 4
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dimensional spaces. The former case describes the usual four-dimensional space-

time while the latter will represent an RBH in AdS5 background and hence it

will be dual, via the gauge/gravity duality, to a four-dimensional field theory on

the boundary. For the same reason, the analysis of the Gauss-Bonnet solution

will be mainly in five spacetime dimensions. The aim of this chapter is to deter-

mine the thermal phase structure of the RBH (see Sec. 2.4) and of the charged

Gauss-Bonnet black brane (see Sec. 2.6). We will show how to connect the ther-

modynamics to the properties of the dual field theory in the Chap. 4.

2.1 The Euclidean Path Integral Approach

A possible way to relate thermal properties to the geometry of the spacetime is

via the Feynman path-integral approach. Gibbons and Hawking proposed this ap-

proach in the ‘70s in order to evaluate the black hole partition function. However,

the main difficulty is that, in the context of standard thermodynamics, black holes

have negative heat capacity and are unstable. While, in statistical mechanics, the

partition function describes only stable systems with positive heat capacity. The

key point for the path integral approach to gravity is the use of the Euclidean

action for a static BH.

The idea behind the path integral formulation is to calculate the thermal partition

function of quantum gravity through the path integral of a Euclidean version of

the Einstein-Hilbert action IEH in this way

Z =

∫
Dg e−

IEH
~ , (2.1)

where one has to sum over all metrics g with period β = ~c/T ( β has dimension

of length and T has dimension of energy).

In general the total Einstein-Hilbert action in n = 3 is defined as

IEH =
c3

16πGN

∫
M

d4x
√
g R +

c3

8πGN

∫
∂M

d3x
√
h (K −K0) (2.2)

where the second term is a boundary term, or York-Gibbons-Hawking term (see

A.1). The term K0 is calculated by substituting the vacuum metric into the

expression for the trace of the extrinsic curvature of the boundary K. The same
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action in generic dimensions reads

IEH =
1

χ2

∫
M

dn+1x
√
g R + (−1)d

2

χ2

∫
∂M

dnΣK . (2.3)

As usual, the dominant contribution to the path integral is given by the semi-

classical saddle-point approximation Z ' e−IEH(on−shell) and the classical solution

used to calculate the on-shell Euclidean action is for example the Wick rotated

Schwarzschild’s solution. After analytically continue the BH metric to Euclidean

spacetime by rotating time as t→ iτ the manifold extend only from r =∞ down

to r = r+. For this reason one has to integrate the action only in this range: The

Euclidean BH manifold, contains only the region outside the outer horizon and

is a smooth manifold with a single boundary at r = ∞. Moreover, in a thermal

background, the Euclidean time τ is compact with period β ≡ 1/T where T is

the Hawking temperature. Using the Euclidean time transformation, one can find

that at the horizon r+, there is generically a conical singularity. One can calcu-

late the length of a circle τ → β + τ and the thermodynamic is associated with

a smooth Euclidean geometry where τ can be viewed as an angle in polar coor-

dinates. Therefore, in this way, the Hawking temperature is obtained in terms

of geometrical data. Like in other thermodynamic systems, one can define the

standard thermodynamic potentials related to the action. A significant potential

is the Gibbs free energy F = M − TS ≡ IE/β.

2.2 Black Hole Thermodynamics

The Hawking’s discovery was that, when the quantum effects produced by the

existence of an event horizon are taken into account, BHs radiate as if they where

black bodies. This black body radiation is called Hawking radiation and it was

calculated in the framework of quantum field theory in curved spacetime. The

electromagnetic radiation is produced as if emitted by a black body with a tem-

perature inversely proportional to the mass of the black hole. Because of the

Hawking radiation, the BH reduces its the mass and energy (givin rise to the so-

called “black hole evaporation”). Black holes that lose more mass than they gain

would emit more than they absorb and thereby lose mass and expected to shrink.

Using the Einstein-Hilbert action for the BH solution, it is possible to have a de-

scription of the system as a thermodynamic system with temperature and entropy,
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respectively given by the following formulae:

T =
~κh
2πc

, S =
Ac3

4~GN

(2.4)

where κh is the surface gravity, and A is the area of the event horizon. In particular,

the Schwarzschild’s BH has

T =
~c3

8πGNM
, S =

4πGNM
2

~c
. (2.5)

Using the thermodynamic analogy, the first law of BH and the Smarr’s formula [1]

(that is an integral version of the first law obtained by applying Euler’s theorem

on homogeneous functions) for the Schwarzschild’s BH read:

dM c2 = T dS Mc2 = 2T S. (2.6)

Considering all this, the thermodynamics of BHs has several characteristics:

• The temperature (2.5) of the Schwarzschild’s BH decreases as the mass (the

energy) increases, i.e., the BH has a negative specific heat

C−1 =
∂T

∂M
= − ~c3

8πGNM2
< 0 (2.7)

and, unlike ordinary thermodynamical systems, becomes colder when it ab-

sorbs matter instead of when it radiates. Thus, a BH cannot be in equilibrium

with an infinite heat reservoir because it would absorb the energy and grow

without bounds.

• The temperature (2.5) grows when the mass decreases (in the evaporation

for example) and diverges near zero mass. At the same time the specific heat

becomes bigger in absolute value and stays negative. So, in principle the

final stage of the Hawking evaporation of a BH could be an explosion with

consequent BH disappearance. However in the final state the horizon radius

becomes of the order of the BH’s Compton wavelength1 and quantum-gravity

effects should become important and should determine the BH’s fate.

• If a BH can radiate, its entropy can diminish. This looks against the second

law but the total entropy (BH plus radiation) never decreases.

1This happen when M ∼Mplank =
√

~c/G and implies that the horizon radius r+ ∼ LP =
√

~G/c3

28



Chapter 2 - Black Hole and Black Brane Thermodynamics and Phase Transitions

• The Hawking radiation seems to carry information about BH only related to

M, J and Q. Why is that so? This is indeed an important difference be-

tween the black hole radiation and the usual thermal radiation emitted from

a black body. While the former satisfies exactly the Planck’s law of black

body radiation, the latter is statistical in nature, and only its average sat-

isfies the Planck’s law. Thus thermal radiation contains information about

the body that emitted it, while Hawking radiation seems to contain no such

information, and depends only on the mass, angular momentum, and charge

of the black hole (this is also named as the “no-hair theorem”) and leads to

the black hole information paradox.

Maybe in a full quantum computation of the gravitational collapse of mat-

ter described by the theory of quantum gravity, the radiation contains more

information and the whole process could be unitary. Or, on the other hand,

maybe no information is carried by Hawking radiation and the BH evaporates

indefinitely2. Or there is still another way out: the information is not carried

out of the BH by Hawking radiation but the evaporation process stops at

some point, leaving a BH remnant storing that information.

Usually in models based on string theory BHs are standard quantum me-

chanical systems and information is always recovered (and never lost). The

regularized solution based on the gaussian distribution, as will be show in

Sec. 2.4, supports the idea of a remnant as a final state of the evaporation

process.

2.3 Hawking Page Transition

In 1983, Hawking and Page discovered, by using path integral methods, that an

AdS-BH has negative free energy (relatively to AdS spacetime) at high temper-

ature and exhibits a first-order phase transition [2]. This phase transition is the

so-called Hawking-Page (HP) transition: A phase transition between thermal AdS

and BH in four spacetime dimensions. How can this happen? As said in sub-

sec.1.1.3 an asymptotically AdS space acts as a confining box. As a result the

thermal radiation remains confined close to the BH and cannot escape to infinity3.

Therefore, one can always consider a canonical ensemble description for BHs at

any given temperature T .

2In this case, the information about the initial state is completely lost and the theory of quantum
gravity is non-unitary, in contrast to all the other physical theory.

3Although zero rest mass particles can escape to infinity but the incoming and outgoing fluxes at
infinity are equal.
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If the temperature of the thermal radiation is below a particular minimum (T <

Tmin), then the only possible equilibrium is the thermal radiation without BHs.

On the other hand, if the temperature is higher than this minimum T > Tmin then

there are two possible BHs that could be in equilibrium with the thermal radia-

tion. According to the findings of Hawking and Page, there exists a critical mass

value M0 for BHs in AdS space. If the mass of the BH is below this critical value

(M < M0) then it appears with a negative heat capacity which means that the

lower mass BH is unstable. Therefore, it may either decay ultimately to thermal

radiation or to a larger mass BH (M > M0) with a positive heat capacity which

corresponds to a locally stable phase. In the second case the heat capacity changes

from negative infinity to positive infinity at the minimum temperature Tmin. Also,

there is a change in the dominance from thermal AdS to BHs at some temperature

THP which corresponds to a change in sign in the free energy of the system (see

Fig. 2.2). Since the discovery of such a phenomenon in AdS-BHs, some investiga-

tions have been made regarding various thermodynamic aspects of AdS-BHs, for

example in higher dimensions. In the following the thermodynamical aspects of

AdS-RBHs are presented and compared to the HP behaviour (see Sec. 2.5.1).

2.3.1 Details about the Hawking-Page Transition

Let us consider the following solution:

ds2 = −f(r)dt2 +
1

f(r)
dr2 + r2dΩ2 (2.8)

in four dimensional spacetime, beside the AdS solution

f(r) = 1 +
r2

b2
, (2.9)

another vacuum solution is

f(r) = 1 +
r2

b2
− 2M

r
(2.10)

for each M > 0. This is the black hole solution known as the Schwarzschild anti-de

Sitter (SAdS) solution. The SAdS solution has mass

M =
r+

2

(
1 +

r2
+

b2

)
(2.11)

and Hawking temperature
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Figure 2.1: AdS-BH Temperature vs r+. Temperature as function of horizon
radius where b is fixed to one

TH =
1

4πr+

(
1 +

3r2
+

b2

)
(2.12)

that has a minimum when

∂TH
∂r+

=
3

4πb2
− 1

4πr2
min

= 0→ rmin =
b√
3

(2.13)

from which follow that

Tmin =

√
3

2πb
. (2.14)

So it follow that (see for Fig. 2.1):

• For T < Tmin, the only possible phase is the pure thermal AdS solution.

• For T = Tmin, the possible phases are pure thermal AdS and one black hole

Schwarzschild AdS solution.

• For T > Tmin, the possible phases are pure thermal AdS and two black holes

Schwarzschild AdS solutions.

To see where the phase transition occurs, we calculate the (Helmholtz) free energy

difference between the phases with the same asymptotic physical temperature. In

this way we see which phase is thermodynamically favorable. The free energy

difference in the zero-loop approximation is given by the difference between the
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Figure 2.2: Hawking-Page Free energy as function of the horizon radius where b
is fixed to one.

on-shell actions for SAdS and AdS

∆F = ISAdS − IAdS = M − THS =
r+

2

(
1−

r2
+

b2

)
(2.15)

and, we have that ∆F < 0 iff r+ > b. So when r+ = b the temperature becomes

THP =
1

4πb

(
1 +

3b2

b2

)
=

1

πb
(2.16)

at this temperature T = THP the Hawking-Page phase transition occurs. There-

fore, we can summarize:

• For T > THP , the SAdS solution is the solution with the lowest free energy,

so the Schwarzschild black hole is preferred over thermal radiation.

• For T = THP , the (first-order) Hawking-Page phase transition takes place.

• For Tmin < T < THP , thermal radiation is the energetically favorable solu-

tion, even though a stable black hole can exist. Thus for these temperatures

the black hole is a metastable state.

• For T < Tmin, thermal radiation is the only possible solution.

Including the gravitational effect of thermal radiation, one can show that at some

very high temperature Tmax the radiation would become unstable and collapse to a

black hole. Hence the pure AdS solution is only stable at temperatures T < Tmax.
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In order to see this, one can suppose to have a perfect fluid given by the cosmo-

logical constant. The energy of the thermal radiation then can be estimated to

be

< E >' π

30
gT 4b3 (2.17)

where g is a constant and T is the thermal AdS temperature. When < E > is

larger then the BH mass, one has

π

30
gT 4b3 ≥ r+

2

(
1 +

r2
+

b2

)
(2.18)

this inequality will be verified when the horizon radius is r+ ≥ b and in case of

equality we have
π

30
gT 4

maxb
3 =

b

2

(
1 +

b2

b2

)
(2.19)

and solving with respect to Tmax one finds

Tmax ≈
1

g1/4
√
b
> THP =

1

πb
. (2.20)

Now we can continue the phase diagram (see Fig. 2.3):

• For THP < T < Tmax the stable Schwarzschild black hole is the energetically

favorable solution and pure thermal radiation is a metastable state.

• For T > Tmax, pure thermal radiation always collapses to a black hole and

the Schwarzschild black hole is the only possible solution.

2.4 Regular Black Hole Thermodynamics

In this section the regular BH metric (RBH) in generic spacetime dimensions is

presented. The metric of a (n+ 1)−dimensional regularized Schwarzschild BH, in

Minkowski space (where n is the number of spatial dimensions) is a generalization

of the Schwarzschild-Tangherlini solution [3] that solves the (n+ 1)-dimensional

Einstein’s equations with Tµν and reads

ds2 = −V (r) dt2 +
dr2

V (r)
+ r2dΩ2 , (2.21)
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Figure 2.3: Hawking-Page Free energy as function of the temperature where b is
fixed to one

where dΩ2 is the metric of a (n− 1)−sphere and the function V (r) is defined as

V (r) = 1− ωnM µ (r)

rn−2
, µ (r) = γ

(
n

2
,
r2

4θ2

)
. (2.22)

with mass coefficient defined by the following combination of constants

ωn =
16πGN

(n− 1) Γ
(
n
2

)
Vol (Sn−1)

. (2.23)

The Newton’s constant GN depends on the dimension of spacetime (n+ 1) and

Vol (Sn−1) is the volume of a unit sphere in n− 1 dimensions defined by

Vol
(
Sn−1

)
=

2πn/2

Γ
(
n
2

) . (2.24)

The BH’s mass M (that correspond to the internal energy of the system) can be

defined by the horizon equation V (r+) = 0 and reads

M =
(n− 1) rn−2

+ Γ
(
n
2

)
Vol (Sn−1)

16π GN µ (r+)
(2.25)
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Figure 2.4: Hawking Temperature in n = 4 for RBH in AdS background.
The temperatures should be compared with the red line that is the classical Hawking

temperature.

using the definition (2.24), the mass simplify in

M =
(n− 1) π

n
2 rn−2

+

8π GN µ (r+)
. (2.26)

The Hawking temperature can be easily calculated from the line element (2.21)

using the following relation

T =
1

4π
∂rV (r)|r+ (2.27)

that for a RBH with (2.22) gives

T =
(n− 2)

4πr+

[
1− r+µ

′(r+)

(n− 2)µ(r+)

]
(2.28)

a temperature that reaches a value T = 0 for a horizon radius r+ 6= 0. The

temperature of the RBHs appears to be suppressed (or equal) relative to that of

a vacuum BHs of equal horizon area (see Fig. 2.4). This is a common feature

of static spherically symmetric BHs in interaction with various classical matter

fields4.

In the classical limit r+ � θ, i.e., when the solution should be the standard

Schwarzschild BH, the temperature reads

Tcl =
n− 2

4πr+

(2.29)

4Any BH in interaction with nonzero classical matter fields is usually referred to as “dirty” (such as
electromagnetic fields, dilaton fields, axion fields, Abelian Higgs fields, non-Abelian gauge fields, etc.)
[4].
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and is exactly equal to the standard Hawking temperature. Using the formula of

the energy-density (1.21) for a gaussian distribution

ρθ (r+) =
M

(4 π θ2)n/2
e−

r2+

4θ2

that define the RBH and substituting the RBH’s mass (2.25), one gets

ρθ (r+) =
(n− 1)θ−nrn−2

+

2n+3πGN µ(r+)
e−

r2+

4θ2 . (2.30)

This equality allows to rewrite the temperature as function of the classical tem-

perature (2.29) and the matter density distribution

T =
1

8π

[
r+

θ2
+

2ρ′θ(r+)

ρθ(r+)

]
(2.31)

=
Tcl

(n− 2)

(
r2

+

2θ2
+
r+ρ

′
θ(r+)

ρθ(r+)

)
. (2.32)

Now, considering the specific function µ (r) = γ
(
n
2
, r

2

4θ2

)
one obtain the following

result:

T =
1

4πr+

[
1−

16πGN r
2
+

(n− 2) (n− 1)
ρθ (r+)

]
(2.33)

=
Tcl
n− 2

[
1−

16πGN r
2
+

(n− 2) (n− 1)
ρθ (r+)

]
. (2.34)

The formula (2.34) reduces in the case n = 3 (the standard four dimensional

spacetime) to the nice relation

T = Tcl
[
1− 8πGN r

2
+ρθ (r+)

]
(2.35)

typical of a general spherically symmetric distribution of matter with a black hole

at the center [4].

If r+ is the largest real positive root of V (r), then in order for this RBH metric

to describe a BH with a non-singular horizon at r = r+ , the temperature must

satisfy the inequality T ≥ 0, that gives

16πGN r
2
+

(n− 2) (n− 1)
ρθ (r+) ≤ 1 (2.36)

If the inequality is saturated, the horizon is degenerate and one gets an extremal

RBH. The inequality (2.36) imposes a bound on the BH mass parameter of the
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form5 M > Me (θ). When the Hawking temperature reaches the value T = 0, then

one can use the expression to find the mass Me of the extremal BH evaluated at a

specific value of the horizon radius re. The extremal BH has interesting physical

properties, for example, non-vanishing mass but zero temperature. The definition

of the entropy for the extremal BH is still an open problem.

The study of BH thermodynamics implies the calculation of other important quan-

tities such as the entropy and the free energy of the system. In order to calculate

the free energy defined as

F = U − TS (2.37)

one needs to integrate the entropy given by the first law of BH thermodynamic:

dS =
dM

T
=

(n− 1)πn/2rn−2
+

2GNγ
(
n
2
,
r2+
4θ2

) dr+. (2.38)

One way to calculate the free energy (2.37) is using (2.25), (2.28) and perform the

integration numerically (assuming that the entropy is zero when the temperature

is zero.

2.5 Regular Black Hole in Anti-deSitter Spacetime

In the case of AdS-RBH, the metric function (2.22) with µ (r) = γ
(
n
2
, r

2

4θ2

)
be-

comes

V (r) = 1 +
r2

b2
− ωnM

rn−2
γ

(
n

2
,
r2

4θ2

)
(2.39)

where b is the AdS radius. The Hawking temperature can be again easily calculated

from (2.27)

T =
r+

4πb2

(n− 2) b2 + nr2
+

r2
+

−
21−nrn−2

+

(
b2 + r2

+

)
e−

r2+

4θ2 θ−n

γ
(
n
2
,
r2+
4θ2

)
 (2.40)

=
(n− 2) b2 + nr2

+

4πb2r+

− r+

4πb2

21−nrn−2
+

(
b2 + r2

+

)
e−

r2+

4θ2 θ−n

γ
(
n
2
,
r2+
4θ2

)
 (2.41)

5The same kind of bound can be built in the AdS case and lead to important consideration about
the background and the definition of the thermodynamical system (see sub-sec. 2.5.1.2).
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and the classical limit gives

Tcl =
b2(n− 2) + nr2

+

4b2πr+

. (2.42)

Also in this case the temperature reaches a value T = 0 for an horizon radius

r+ 6= 0 (see Fig. 2.4). The mass M can be defined by the horizon equation

V (r+) = 0 as

M =
(n− 1)rn−2

+

(
b2 + r2

+

)
Γ
(
n
2

)
Vol (Sn−1)

16π b2GNγ
(
n
2
,
r2+
4θ2

) (2.43)

and depends from the AdS radius. Substituting the mass (2.43) into the density

gives

ρθ (r+) =
n− 1

4GN

21−nrn−2
+

(
b2 + r2

+

)
e−

r2+

4θ2 θ−n

4πb2γ
(
n
2
,
r2+
4θ2

)
 , (2.44)

and also in the AdS background one can rewrite the temperature as a function of

the classical AdS temperature in this way

T = Tcl − ρθ (r+)
4GNr+

n− 1
(2.45)

where the classical temperature is given in (2.42). Again, if r+ is the largest real

positive root of V (r), then in order for this AdS-RBH metric to describe a black

hole with an horizon at r = r+ , the temperature must satisfy TH ≥ 0 that means

that
(n− 1) r+

4GN

Tcl ≥ ρθ. (2.46)

If the inequality in Eq. (2.46) is saturated, the horizon is degenerate and we get

an extremal BH. This inequality imposes a bound on the BH’s mass parameter of

the form M > Me (θ, b) and all the solutions violating the bound (2.46) are BHs

with a negative temperature.

2.5.1 Phase Structure in AdS Background

Now that all the thermodynamical quantities required to calculate the free energy

F = M − TS are defined, one only needs to fix the proper background. The

regular AdS-BH solution shows a very interesting phase structures at intermediate

temperatures as a result of studying two different thermodynamic ensembles:
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1. Ensemble 1. A thermodynamic ensemble with fixed θ parameter in a thermal

AdS bath.

2. Ensemble 2. A fixed θ ensemble, for which the background is provided by

the extremal black hole with mass given by that θ parameter.

In both the cases, at sufficiently high temperature the physics is dominated by

highly non-extremal BHs, and one recovers the “ deconfined” behavior characteris-

tic of the associated field theories. At intermediate temperatures, in the Ensemble

2, for example, the presence of the parameter θ allows a new branch of BH solutions

to modify the qualitative phase structure in the low temperature regime, resulting

in a very interesting phase structure (see Fig.2.6). The situation described by the

Ensable 2 is different from the case where the background is thermal AdS (En-

samble 1 ), and it represents the possibility that the regular black hole could decay

into something else than thermal AdS, a kind of (perhaps “non-commutative”)

AdS spacetime. This subtlety does not arise in the standard Gibbons-Hawking

calculus of the thermodynamics of BHs because the calculations are not sensitive

to the ability of the BHs to decay into a remnant. The phase structure which one

can obtain in each thermodynamic ensemble is summarized in Fig. 2.6. In the

case of Ensemble 2, it is possible to recognize a van der Waals (VdW) system.

The fact that this system appears in the AdS-BH thermodynamics is engaging,

and it would not have been possible without the presence of the extra branches of

solutions which appear when there is a negative cosmological constant. Besides,

the shape of the free energy surface (as a function of θ and T) is that of the classic

“swallowtail”catastrophe (see Fig. 3.2 for an example). This shape is familiar from

the study of bifurcations in catastrophe theory (see for example [5]). Catastrophe

theory is a classification of the possible different types of bifurcation shapes that

can occur in a wide variety of complex systems. Indeed, catastrophe theory can

help to understand what diverse models have in common. The fact that these

shapes appear in this context suggests that there could be a universality class

to be explored. Thus, perhaps, one could learn about a possible universal phase

structures which can occur in the dual field theory.

2.5.1.1 Thermal AdS Background (Ensemble 1)

In this case, the free energy ∆F = F − F0 = M − TS is given by Eq. (2.15)

where F0 = FAdS is the AdS background. In the AdS-RBH case, the entropy and,

therefore, the free energy can be calculated numerically using dS = dM/T for
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Figure 2.5: Free energy vs Temperature and Swallowtail. (Left) The blue
curve shows the swallowtail for a particular value θ = 0.53 < θcrit; the dashed green
line shows the free energy for the θcrit = 1.06 which presents a cusp. The red curve
corresponds to the classical case also showed in Fig. 2.3. (Right) Enlargement of the
swallowtail for θ = 0.44 < θcrit. The three braches of the solution are indicated in

different colors. The unstable BH correspond to the red segment of the curve.

AdS-RBH. As seen in Sec. 2.3.1, the total energy will be finite. The free energy

as function of the temperature is shown in Fig. 2.5 for some values of θ (included

θ = 0). For values of θ < θcrit, the free energy exibits a swallowtail behaviour.

At T = 0 the free energy of the extremal RBH is Fe = Me. Increasing the

temperature the free energy becomes a multivalued function. This means that at

fixed temperature there can be up to three possible RBH. When the three phases

coexist, the one with highest free energy has negative heat capacity (red curve in

Fig. 2.5), therefore it is unstable (see sec. 2.3.1). The favourite RBH solutions are

those with lowest free energy. At low temperatures, the AdS system is the favorite

system because F > F0 (as in Hawking and Page’s paper [2]).

The phase diagram for this configuration shows that there is only a first-order

phase transition between AdS radiation and a large BH. A first-order phase tran-

sitions exhibit a discontinuity in the first derivative of the free energy with respect

to temperature. In chemistry, the various solid/liquid/gas transitions are classified

as first-order transitions. In this ensamble, case there is no second-order critical

point. Second-order phase transitions are continuous in the first derivative but

exhibit discontinuity in a second derivative of the free energy. For every value of

θ there is always an Hawking-Page transition. See Fig. 2.6 on the left.
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Figure 2.6: Phase transition diagram for RBH. Right: RBH in case of thermal
AdS background: a first order phase transition is present for each value of θ. Left:
RBH in extremal RBH bath: The first order phase transition ends in a second order
critical point. At θ = 0 the usual first-order Hawking-Page (HP) transition appears.

2.5.1.2 Extremal Regular Black Hole Background (Ensemble 2)

If one thinks that the presence of a minimal length always induce the presence

of a “minimal” BH then one could also consider a background filled with small

extremal black holes. In this case the definition of the free energy is

F = M −Me − TS (2.47)

where F0 = Me is the mass of the extremal zero temperature configuration. This

hypothesis completely change the phase diagram because in this case the swallow-

tail is realized for negative values of the free energy. In this case there is not only

a first order phase transition but also a second order critical point appears (see

Fig. 2.6 on the right). The RBH has always negative free energy relative to AdS

spacetime, also at low temperature, meaning that is always the favorite system.

This phenomena happen also in the case of charged-Schwarzschild-AdS BHs [6].

The phase diagram illustrates in Fig. 2.6 right, shows a first-order transition line

between small/large BHs that terminates in a second order critical point.

2.6 Higher Derivative Gravity

Following the line of reasoning presented in Chap. 1, now we move to investigate

the thermodynamic properties of higher derivative gravity theories. In particular,

in five dimensions, there is a non-vanishing topological term that one should con-

sider: The so-called Gauss-Bonnet (GB) term. This is the 2-nd order term in the

more general higher derivative theory of gravity, called Lovelock gravity. Since in

AdS/CFT the gravity theory, considered to study a four-dimensional field theory,
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has d = 5, here we present a study of the thermal structure of a GB Black Brane

(BB) that is preliminary to the calculation of η/s of the dual field theory presented

in Chap. 4. The BB solution for the RBH will be presente and discussed in Chap.

4.

2.6.1 Lovelock Gravity

Lovelock gravity [7] is a higher derivative theory that has received a lot of attention

in recent years. Indeed, in any attempt to perturbatively quantize gravity as a

field theory, one should expect that the Einstein-Hilbert action is only an effective

gravitational action valid for small curvature or low energies and that it will be

modified by higher-curvature terms. Lovelock gravity has also another interest-

ing feature: Among higher derivative gravity theories, Lovelock gravities are the

unique theories that give rise to field equations that are covariant and contain at

most second order derivatives of the metric. In generic d spacetime dimensions,

the Lagrangian of a Lovelock gravity theory is given by [7]

L =
1

16πGN

kmax∑
k=0

α̂(k)L(k) . (2.48)

The α̂(k) are the Lovelock coupling constants and L(k) are the 2k-dimensional Euler

densities, given by the contraction of k powers of the Riemann tensor

L(k) =
1

2k
δa1b1...akbkc1d1...ckdk

R c1d1
a1b1

. . . R ckdk
akbk

, (2.49)

where the “generalized Kronecker delta function” is totally antisymmetric in both

sets of indices. The term L(0) gives the cosmological constant term, L(1) gives

the Einstein–Hilbert action, and L(2) corresponds to the quadratic Gauss–Bonnet

term. The integer kmax =
[
d−1

2

]
provides an upper bound on the sum, reflecting

the fact that L(k) contribute to the equations of motion for d > 2k, whereas they

are topological in d = 2k, and vanish identically in lower dimensions. GR is

recovered upon setting α̂(k) = 0 for k ≥ 2.6 The vacuum equations of motion for

6 Another interesting limit in odd dimensions arises for the following choice of Lovelock couplings

αp =
`2p−2n+1

2n− 2p− 1

(
n− 1

p

)
p = 1, 2, . . . , n− 1 =

d− 1

2
(2.50)

for which the local Lorentz invariance of the Lovelock action is enhanced to a local (A)dS symmetry and
the theory belongs to the class of Chern–Simons theories [8]. This case is not considered here.
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Lovelock gravity, following from the Lagrangian density (2.48), are

Gab =
kmax∑
k=0

α̂(k)G(k) a
b = 0 , (2.51)

where the Einstein-like tensors G(k) a
b are given by

G(k) a
b = − 1

2(k+1)
δa c1d1...ckdkb e1f1...ekfk

R e1f1
c1d1

. . . R ekfk
ckdk

, (2.52)

and each of them independently satisfies a conservation law ∇aG(k) a
b = 0 .

2.6.1.1 Lovelock Charged Black Holes

The static charged AdS Lovelock BH has metric function

ds2 = −f (r) dt2 + f (r)−1 dr2 + r2dΩ2
(κ)d−2 , F =

Q

rd−2
dt ∧ dr , (2.53)

where dΩ2
(κ)d−2 denotes the line element of a (d− 2)-dimensional compact space

with constant curvature (d − 2)(d − 3)κ. One should note here that BHs in AdS

spaces are rather different from BHs in flat or dS spaces. In fact, in asymptotically

flat or dS spaces, the horizon topology of a d = 4 spacetime dimensions BH is

constrained to be a round sphere S2. On the other hand, in AdS spaces it is

possible to have BHs with κ = 0,+1,−1 ( respectively: flat, spherical, hyperbolic)

horizon geometries [9, 10]. Due to the different horizon structure, the associated

BH thermodynamic properties can be rather different.

Denoting by Σ
(κ)
d−2 the finite volume of this compact space, a (d − 2)-dimensional

unit sphere Σ
(κ)
d−2 takes the following standard form:

Σ
(+1)
d−2 =

2π(d−1)/2

Γ
(
d−1

2

) . (2.54)

In terms of the rescaled Lovelock coupling constants

α0 =
α̂(0)

(d− 1) (d− 2)
, α1 = α̂(1) , αk = α̂(k)

2k∏
n=3

(d− n) for k ≥ 2 , (2.55)
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the field equations (2.60) reduce to the requirement that f (r) solves the following

polynomial equation of degree kmax [11, 12, 13, 14, 15, 16]

P (f) =
kmax∑
k=0

αk

(
κ− f
r2

)k
=

16πGNM

(d− 2)Σ
(κ)
d−2r

d−1
− 8πGNQ

2

(d− 2)(d− 3)

1

r2d−4
. (2.56)

Here M stands for the ADM mass of the black hole and Q is the electric charge

integrated on the (d− 2)-dimensional surface at spatial infinity

Q =
1

2Σ
(κ)
d−2

∫
∗F . (2.57)

2.7 Black Brane Solutions of Lovelock Gravity

Let us consider the static, electrically charged, radially symmetric AdS Lovelock

BB in d-dimensional spacetime, described by the following line element and elec-

tromagnetic (EM) field:

ds2 = −f (r)N2dt2 + f (r)−1 dr2 +
r2

L2
dΣ2

d−2 , F =
Q

rd−2
dt ∧ dr , (2.58)

where dΣ2
d−2 denotes the (d− 2)-dimensional space with zero curvature and planar

topology, whereas L is related to the cosmological constant α̂(0) by L−2 = α̂(0)/(d−
1)(d − 2). Notice that the metric in Eq.(2.58) differs from that in the usual

Schwarzschild gauge by a (constant) rescaling t→ Nt of the time coordinate t. It

will be showed later in this thesis (see Sec. 4.6.1) that this rescaling is necessary

in order to have a unit speed of light in the dual CFT. Using the rescaled Lovelock

coupling constants

L−2 = α0 =
α̂(0)

(d− 1) (d− 2)
, α1 = α̂(1) , αk = α̂(k)

2k∏
n=3

(d− n) for k ≥ 2 ,

(2.59)

the field equations read

kmax∑
k=0

α̂(k)G(k)
ab = 8πGN

(
FacFb

c − 1

4
gabFcdF

cd
)

(2.60)

where GN is the d-dimensional Newton’s constant. The higher-curvature terms

contribute to the equations of motion only for d > 2k. For d = 2k the higher-

curvature corrections are topological, and they vanish identically in lower dimen-

sions. Setting α̂(k) = 0 for k ≥ 2, one can recover the standard form of general
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relativity. In the notation (2.59), the field equations (2.60) reduce to the require-

ment that f (r) solves the following polynomial equation of degree kmax =
[
d−1

2

]
(see e.g., [11, 12, 13, 14, 15, 16, 17])

P (f) =
kmax∑
k=0

αk

(
κ− f
r2

)k
=
ωdMADM

Nrd−1
− 8πGNQ

2

(d− 2)(d− 3)

1

r2d−4
. (2.61)

Here MADM is the ADM mass of the black brane and ωd is

ωd =
16πGN

(d− 2)

Ld−2

V d−2
(2.62)

where V d−2 is the volume of the (d− 2)-dimensional space with curvature κ = 0.

The electric charge Q of the brane is

Q =
Ld−2

2Vd−2

∫
∗F . (2.63)

2.7.1 Universality of Black Brane Thermodynamics in Lovelock Grav-

ity

Interestingly, even without knowing f = f(r) in Eq.(2.61) explicitly, it is possible,

using the Hamiltonian formalism [14, 18], to find the thermodynamic quantities

characterizing the Lovelock black brane solution [14, 18, 19]. In the Hamiltonian

picture the spacetime metric gab is split according to

gab = −nanb + sab (2.64)

where na is the unit timelike normal to a spatial slice Σ with induced metric sab

and these satisfy the orthogonality relation sabnb = 0. As in Einstein gravity

the time-time and time-space components of the field equations act as constraints

on initial data. After splitting space and time, the dynamical variables on the

spatial surface Σ are the spatial metric sab, and its conjugate momentum πab. The

derivation of the first law comes from a judicious evaluation of the Hamiltonian

[19].

Let r+ denotes the radius of the event horizon, determined as the largest root of

f (r) = 0. Introducing the effective mass M and temperature T related to the

usual ADM mass MADM and Hawking temperature TH by the relations

M =
MADM

N
, T =

TH
N
, (2.65)
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the black brane massM , the temperature T , the entropy S, and the gauge potential

Φ are given by [14, 20]

M =
1

ωdL2
rd−1

+ +
Vd−2

2(d− 3)Ld−2

Q2

rd−3
+

, (2.66)

T =
1

2πN

1
√
grr

d
√
−gtt
dr

∣∣∣
r=r+

=
1

4πr+

[
(d− 1)

(r+

L

)2

− 8πGNQ
2

(d− 2)r
2(d−3)
+

]
, (2.67)

S =
V d−2

4GN

(r+

L

)d−2

, Φ =
Vd−2

(d− 3)Ld−2

Q

rd−3
+

. (2.68)

The rescaling of the physical parameters (2.65) of the Lovelock BB having the

dimensions of energy is essentially due to the presence of the constant N2 in the

metric. The two time coordinates t and Nt correspond to using two different units

to measure the energy. However, when one deals with Einstein-Hilbert branes the

rescaling of the time coordinate is not necessary and one can simply set M =

MADM and T = TH . Notice that the area-law for the entropy S always hold for

the generic Lovelock black brane.

A striking feature of these thermodynamic expressions is that they do not depend

on the Lovelock coupling constants αk for k ≥ 2 but only on α0 and α1, i.e.,

they depend only on the cosmological constant and on the Newton constant. This

means that the thermodynamic behaviour of the BB in Lovelock theory is uni-

versal, in the sense that it does not depend on the higher order curvature terms

but only on the Einstein-Hilbert term, the cosmological constant and the matter

fields content (in our case the EM field). This implies, in turn, that as thermody-

namic system the charged BBs of Lovelock gravity are indistinguishable from the

Reissner-Nordström BBs of Einstein-Hilbert gravity. Notice that this feature is

not shared by the black hole solutions of the theory, i.e., solutions with spherical

or hyperbolic horizons. In fact, in the Lovelock thermodynamic expressions (see

Refs. [14, 20]) the dependence on the Lovelock coupling constants αk≥2 is intro-

duced by the dependence on the curvature κ of the (d − 2)-dimensional spatial

sections. This dependence drops out when κ = 0.

The universal thermodynamic behaviour of charged Lovelock black branes is strictly

true only when we choose N = 1 in the metric (2.58). The universality of the

Lovelock BB thermodynamics is recovered simply by rescaling the units we use to

measure the energy, i.e., by using in Eqs. (2.66) and (2.67) the effective parameters

M and T instead of MADM and TH .

46



Chapter 2 - Black Hole and Black Brane Thermodynamics and Phase Transitions

2.8 5d Reissner-Nordström Black Brane Solution

Let us preliminary review some known facts about the RN BB solutions of Einstein-

Maxwell gravity. Setting αk = 0 for k ≥ 2 and d = 5 in Eq (2.52), one has

standard GR equations sourced by an electromagnetic field. For this choice of the

parameters, Eq. (2.61) is a linear equation in f that gives the following solution:

f = α0r
2 − ω5M

r2
+

4π

3

GNQ
2

r4
, (2.69)

where ω5 is given by Eq. (2.62) and GN is the five dimensional Newton’s constant.

Performing the asymptotic limit r →∞, the function (2.69) reduces to f = r2/L2,

i.e., AdS5 with AdS length L2 = α−1
0 . Setting r2 = Y in Eq. (2.69), the RN BB

horizons are determined by the cubic equation

Y 3 − ω5ML2Y +
4π

3
GNL

2Q2 = 0. (2.70)

This equation has two positive roots for

M3 ≥ 12π2G
2
NQ

4

ω3
5L

2
, (2.71)

which gives the extremal (BPS [21, 22]) bound for the RN black brane in 5d. In

general, the solution will have an inner and outer horizon, when the bound is

saturated the two horizons merge at r0 and the RN BB becomes extremal. In the

extremal case, Eq. (2.70) has a double root at Y0 =
√
ω5ML2/3 and f (r) can be

factorized in the following way

f(r) =
1

L2r4

(
r2 + r2

0

)
(r − r0)2 (r + r0)2 , r0 =

(
ω5ML2

3

)1/4

. (2.72)

The extremal near-horizon geometry can be determined expanding the metric near

r0 and keeping only the leading term in the metric

f(r) =
12

L2
(r − r0)2, (2.73)

a simple translation of the radial coordinate r → r + r0 gives the AdS2 × R3

extremal near-horizon geometry with AdS2 lenght l

ds2 = −
(r
l

)2

dt2 +

(
l

r

)2

dr2 +
(r0

L

)2

dΣ2
3, l

2 =
L2

12
. (2.74)
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The extremal solution given in Eq. (2.72) is a soliton interpolating between the

asymptotic AdS5 geometry in the UV and the AdS2 × R3 geometry (2.74) in the

IR.

2.9 Gauss-Bonnet Solution

For k = 2 and generic curvature κ, Eq. (2.61) reduces to a quadratic equation

α2
(κ− f)2

r4
+

(κ− f)

r2
+ α0 −

ωdM

rd−1
+

8πGNQ
2

(d− 2)(d− 3)r2d−4
= 0 , (2.75)

from which one obtains two possible solutions, f±. In the following, we will refer

to the solution f− as the ‘Einstein branch’ because it approaches the Einstein case

when the Gauss–Bonnet coupling α2 goes to zero and to f+ as the ‘Gauss–Bonnet

branch’ [23]. The quadratic Eq. (2.75) gives the following necessary condition

requirement for the existence of f± for large r:

1− 4α0α2 ≥ 0 . (2.76)

When this inequality is violated, the space becomes compact because of the strong

nonlinear curvature [23]. Therefore, there is no asymptotic ‘AdS region’ and con-

sequently no proper black hole with standard asymptotics.

2.9.1 5d Gauss-Bonnet Black Brane

In this subsection, the special case of 5d GB BB (κ = 0) will be discussed. The

parameter will be considered α1 = 1 in order to recover the usual Newtonian limit.

It is easy to check that that for d = 5 and κ = 0, then Eq. (2.75) reduces to the

following equation

α2
f 2

r4
− f

r2
+ α0 −

ω5M

r4
+

4πQ2

3r6
= 0 (2.77)

and the two branches are respectively

f± =
r2

2α2

[
1±
√

1− 4α0α2

√
1 +

4Mα2ω5

(1− 4α0α2)

1

r4
− 16πGN

3

Q2α2

1− 4α0α2

1

r6

]
.

(2.78)

In case of positive GB coupling α2 > 0 that satisfy the condition (2.76), the two

branches describe two asymptotically AdS5 spacetimes, however, from Eq. (2.78)
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one can see that f+ has no zeroes, hence the f+ branch does not describe a BB

but a solution with no event horizon. Thus, only the f− branch describes a BB

solution.

At leading order for r → ∞ the metric coefficient gtt = N2f (r) in Eq.(2.58)

becomes

gtt → N2 r
2

2α2

(
1±
√

1− 4α0α2

)
. (2.79)

In order to have the boundary of the asymptotic AdSd conformal to (d− 1)-

Minkowski space with speed of light equal to 1, ds2 ≈ α0r
2(−dt2 + dΣ2

3), the

constant N2 has to be chosen as

N2 =
1

2

(
1∓
√

1− 4α0α2

)
, (2.80)

where the + sign is for the f− branch, the BB solution, while the − sign has

to be used when we consider the f+ branch. For α2 < 0, only the f− branch

is asymptotically AdS. Conversely, the f+ branch describes a spacetime which

is asymptotically de Sitter (dS) and can be therefore relevant as a cosmological

solution.

2.9.2 Singularities

To determine the position of the singularities of the spacetime one can calculate

the scalar curvature for both the f± branches:

R(±) = ∓1

2

βr2(20r10 + 30σr6 − 31ρr4 + 6σ2r2 − 9ρσ)± 20r3(r6 + r2σ − ρ)3/2 + 2βρ2

α2r3(r6 + σr2 − ρ)3/2
,

(2.81)

where the ± sign refers respectively to the f± branches. To simplify expressions

we used (here and after) the following notation

β =
√

1− 4α0α2, σ =
4α2ω5M

β2
, ρ =

16πGNα2Q
2

3β2
, e =

1

β2
−1 =

4α0α2

β2
, Y = r2.

(2.82)

There are curvature singularities at r = 0 and at the zeroes of the argument of the

square root in Eq. (2.81) (branch-point singularities). The position of the physical

singularities of the spacetime is therefore determined by the pattern of zeroes of

the function g(Y ), with

g(Y ) = Y 3 + σY − ρ. (2.83)
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The singularity will be located at the biggest positive zero Y1 of g(Y ) or at r = 0

when g(Y ) has no zeroes for positive Y . The singularity at Y = Y1 is a branch

point singularity. The pattern of zeroes of g(Y ) is determined by the signs of the

coefficients ρ, σ and the discriminant ∆ =
(
ρ
2

)2
+
(
σ
3

)3
.

• For σ > 0, the function g(Y ) is a monotonic increasing function of Y with a

single zero which, depending on the sign of ρ, will be positive Y = Y1 (ρ > 0)

or negative (ρ < 0). The physical spacetime singularity will be therefore

located at r =
√
Y1 for ρ, σ > 0 and at r = 0 for ρ < 0, σ > 0.

• For σ < 0, the function g(Y ) is an oscillating function with a maximum at

negative Y and a minimum at positive Y , it may therefore have one, two

or three zeros. For σ < 0, ρ > 0, g(Y ) has at least a positive zero. For

σ < 0, ρ < 0 we have a positive zero for ∆ ≤ 0 and no positive zeros for

∆ > 0. For ∆ = 0 we have a double zero of g(Y ) so that Y1 is not anymore

a branch point singularity. In this latter case the singularity is at r = 0.

Summarising, the physical singularity is always located at r =
√
Y1 unless σ >

0, ρ < 0 or σ < 0, ρ < 0,∆ ≥ 0 in which case the singularity is at r = 0.

2.9.3 f− Branch

In this subsection, the horizons of the f− branch, solution of Eq. (2.78), describing

the GB black brane, is studied. In general the BB will have an inner (r = r−) and

outer (r = r+) event horizon. The BB becomes extremal when r+ = r−. Using

the notation (2.82), (2.83), one finds that the necessary condition for the existence

of the BB is the positivity of the argument in the square root in Eq. (2.78), i.e.,

g(Y ) ≥ 0. The position of the event horizon(s) is determined by the positive roots

of the cubic equation

h(Y ) = eY 3 − σY + ρ = 0. (2.84)

The case α2 > 0, which corresponds to σ, ρ, e > 0 (since also α0 > 0). The

condition for the existence of real roots of the function h(Y ) can be easily found:

The function h(Y ) has a maximum (minimum) for, respectively

Y = YM,m = ±
√

σ

3e
= ±

√
ω5ML2

3
(2.85)

also, h(Y = 0) = ρ > 0, hence the cubic equation (2.84) always has a negative

root. The existence of other roots is determined by the sign of h(Ym). We will have
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two (one) positive roots hence a BB with two (one) event horizons for h(Ym) ≤ 0,

i.e., for

ρ ≤ 2

3
σ

√
σ

3e
. (2.86)

Using Eq. (2.82), the previous inequality can be written in terms of the charge

Q and the effective mass M and gives the same Bogomol’nyi-Prasad-Sommerfield

(BPS) bound (2.71) found in the RN case. However, the BPS bound is modified

when we instead express it in terms of the ADM mass:

M3
ADM ≥ 12N3π2G

2
NQ

4

ω3
5L

2
. (2.87)

When the bound is saturated, the inner and outer horizon merge at r− = r+, the

BB becomes extremal, and the solution describes a soliton. The striking feature

of the BPS bound (2.86) is that the BPS bound of 5d Gauss-Bonnet BB does not

depend on the Lovelock coupling constant, and it is exactly the same one gets for

GR (α2 = 0), i.e., for the 5d Reissner-Nordström BB. When M does not satisfy

the inequality (2.86), the spacetime describes a naked singularity. For α2 > 0,

the condition M > 0 implies σ, ρ > 0 and the function g(Y ) is a monotonic

increasing function which cuts the Y -axis at the point Y1, and, in view of the

previous discussion, it also gives the position of the singularity. Since, the position

of the event horizon Yh is determined by the equation

β
√
g(Yh) = Y

√
Yh , (2.88)

from which follow that g(Yh) > 0 hence Yh > Y1, this checks that in the region

where the bound (2.86) holds the condition g(Y ) > 0 is always satisfied and that

the physical singularity is always shielded by two (one in the extremal case) event

horizons.

The behaviour of the metric function f− for α2,M > 0 and selected values of

the other parameters is shown in Fig. 2.7. The solid red, green and brown lines

describe respectively a naked singularity, extremal and two-horizon BB geometry.

The solid blue line represents a zero-charge, BB solution with single horizon. The

case α2 < 0,M > 0 gives exactly the same BPS bound. Now, we have σ, ρ, e < 0.

The function h(Y ) in Eq. (2.84) always has a negative root and a minimum

(maximum) for

Y = Ym,M = ±
√

σ

3e
= ±

√
ω5ML2

3
. (2.89)
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f± (σ = 1, ρ = 1)

f± BPS (ρ = 1)

f± (σ = 3.6, ρ = 1)

f± (σ = 3.6, ρ = 0)

Parameters: {α2=0.1,β=0.5}
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Figure 2.7: Behaviour of the metric functions f± for α2,M > 0 and selected
values of the other parameters. The dashed (solid) lines describe the f+ branch (f−
branch). The red, green, brown and blue solid lines describe respectively a naked singu-
larity, an extremal, two-horizon and vanishing charge BB geometry. The corresponding

dashed lines describe spacetimes with a naked singularity.

The conditions for the existence of two positive roots become |ρ| ≤ 2
3
|σ|
√

σ
3e

leading

to the same BPS bound (2.86). However, there is a crucial difference from the

α2 > 0 case. When α2 < 0, the condition M > 0 implies σ, ρ < 0. Taking into

account that |e| < 1 owing to (2.76), we see that the condition ∆ < 0 implies the

BPS bound (2.86). This means that the two horizons are separated by a region

in which the solution does not exist. The spacetime breaks into two disconnected

parts. The physical part, having an asymptotic AdS region, describes a BB with

singularity shielded by a single event horizon. The behaviour of the metric function

f− for α2 < 0 and selected values of the other parameters is shown in Fig. 2.8. The

solid red, green and brown lines describe respectively a naked singularity, extremal

and single-horizon BB geometry. The solid blue line represents a zero-charge, BB

solution with horizon.
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f± (σ = -1, ρ = -2)

f± BPS (ρ = -2)

f± (σ = -3.6, ρ = -2)

f± (σ = -3.6, ρ = 0)

Parameters: {α2=-0.1,β=1.5}
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Figure 2.8: Behaviour of the metric functions f± for α2 < 0,M > 0 and se-
lected values of the parameters. The dashed (solid) lines describe the f+ branch
(f− branch). The red, green, brown, blue solid lines describe respectively a naked singu-
larity, an extremal, single-horizon, vanishing charge BB geometry. The corresponding
dashed lines describe cosmological solutions with a singularity which approach asymp-

totically to the dS spacetime.

2.9.3.1 Near Horizon Extremal Solution

When the bound (2.86) is saturated, the BB becomes extremal and the metric

function (2.78) has a double zero at

Yh = Ym =

√
σ

3e
=

√
ω5ML2

3
, (2.90)

thus, the solution f− can be factorized as

f
(ex)
− (Y ) =

eβ2

2α2

(Y + 2Ym)(Y − Ym)2

Y 2 + β
√
Y 4 + σY 2 − ρY

. (2.91)

This solution represents the extremal GB soliton.

Let us now consider the near-horizon geometry. In this regime, the solution (2.91)

can be expanded around r = r0 =
(
σ
3e

)1/4
. At the leading order the Einstein

branch reads

f
(ex)
− (r) = 12α0(r − r0)2. (2.92)
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Translating the radial coordinate r → r + r0 and rescaling the time coordinate as

t→ t/N we get the extremal, near-horizon geometry:

ds2 = −
(r
l

)2

dt2 +

(
l

r

)2

dr2 +
(r0

L

)2

dΣ2
3, l2 =

1

12α0

. (2.93)

i.e., AdS2×R3 with the AdS2 length l being determined uniquely by α0. Thus, the

extremal near-horizon geometry does not depend on α2 and fully coincides with

the extremal near-horizon geometry (2.74) one gets in the RN case.

2.9.4 Near Horizon Metric as Exact Solution of the Equations of Mo-

tion

In this section, we will show that the near-horizon solution given in Eq. (2.93) is

an exact solution of the equations of motion (EOM). For the GB case, Eqs. (2.60)

read

Rab −
1

2
Rgab =

6

L2
gab + 8πGN

(
FacFb

c − 1

4
gabFcdF

cd

)
+
α2

2
gab
(
RcdefR

cdef − 4RcdR
cd +R2

)
+ α2

(
−2RRab + 4RacR

c
b + 4RcdR

c d
a b − 2RacdeR

cde
b

)
.

(2.94)

We note that, since the Eq. (2.93) describes a spacetime with AdS2×R3 geometry,

the contribution to the curvature tensors coming from the planar geometry R3

vanishes. Thus, the EOM includes only the contribution of the AdS2 part of the

metric which is a two dimensional maximally symmetric space.

For a generic n-dimensional maximally symmetric space with R = Λ the two terms

in Eqs. (2.94), that are quadratic in the curvature tensors, are given respectively

by

α2Λ2 (n− 2)(n− 3)

2n(n− 1)
, −2α2Λ2 (n− 2)(n− 3)

n2(n− 1)
. (2.95)

These relations are consequence of the fact that the GB term in the action is

topological for d = 4 and identically vanishes for d = 2 and d = 3. The previous

equations imply that in the case of the AdS2 × R3 geometry, the contributions

given by the GB terms to the EOM vanish; therefore, the near horizon metric

(2.93) is an exact solution of both Einstein and GB EOM. In particular, the latter

reduces to the usual Einstein-Maxwell equations in 5d.

Thus, the AdS2 ×R3 geometry is not only a near horizon approximation but it is
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an exact solution of the field equations of GB-Maxwell gravity. The presence of

two exact extremal solutions (the extremal soliton interpolating through a throat

region the AdS2×R3 geometry with the asymptotic AdS geometry and the AdS2×
R3 geometry itself) is a typical feature of extreme black branes describing BPS

states (see e.g. Refs. [24, 25]). The two solutions correspond to two different

extremal limits. As we will see in Sect. 2.10, the presence of two different extremal,

exact, solutions give rise to a non-trivial extremal thermodynamic behaviour.

2.9.5 f+ Branch

This branch does not describe a BB but a spacetime with a singularity for every

value of the parametersQ 6= 0,M 6= 0. Depending on the value of the parameter α2

we have either a spacetime with a naked singularity (for α2 > 0) or a cosmological,

asymptotically de Sitter (dS) solution with a singularity (for α2 < 0.) This follows

from the above discussion of the singularities of the scalar curvature (2.81). In the

f+ branch the spacetime always has a singularity, which can be located at r = 0

or r =
√
Y1 depending on the values of the parameters. This is consistent with

the results of Ref. [11], according to which the f+ branch is unstable and contains

ghosts.

For M,α2 > 0, the metric functions for the f+ branch are the dashed lines shown

in Figs. 2.7. An interesting, peculiar feature is that in this case, all the solutions

of the f− branch are continuously connected with the solution of the f+ branch

passing trough the singularity. This feature has a simple analytic explanation. In

the cases under consideration the singularities are the zeros of the function g(Y )

and when g(Y ) = 0 then f+ = f−. This fact can have interesting holographic

implications: we have two CFTs with different central charges connected through

the same singularity.

For M > 0 and α2 < 0, the f+ branch describes a cosmological solution with

a singularity. The corresponding metric functions are shown (dashed lines) in

Fig. 2.8. Also in this case the solutions of the f− branch with an horizon are

continuously connected with the solution of the f+ branch passing trough the

singularity. We have now an asymptotically AdS solution continuously connected

through a cosmological singularity to a late de Sitter geometry. On the other hand,

the solutions of the f− branch describing a naked singularity are disconnected from

the cosmological solutions.
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f± (σ = 1, ρ = -2)
f± (σ = 3.6, ρ = -2)
f± (σ = 1, ρ = 0)

Parameters: {α2=-0.1,β=1.5}
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Figure 2.9: Behaviour of the metric functions f± for α2,M < 0 and selected
values of the other parameters. The dashed (solid) lines describe the f+ branch
(f− branch). The solid lines describe spacetimes with naked singularities, whereas the

dashed lines describe cosmological, asymptotically dS solutions with a singularity.

For α2,M < 0, the f+ branch describes a cosmological solution with a singularity

with late de Sitter behaviour, whereas the f− branch describes an asymptotically

AdS spacetime with a naked singularity. However, here the two branches are

disconnected. The metric functions for this case are shown in Fig. 2.9.

It should be stressed that in the Q = 0 case, the f+ branch has ghosts in the

spectrum [11]. We naturally expect this to extend to the charged case and is

consistent with the intrinsic instability of these branch of solutions connected with

the presence of naked singularities.

2.10 Charged Gauss-Bonnet Black Brane Thermodynam-

ics

In this section, we will study the thermodynamics of the GB BB solutions,i.e.,

solutions in the f− branch and make a comparison with the Reissner-Nordström

black branes. The effective thermodynamic potentials M = MADM/N, S,Φ and

the temperature T = TH/N can be written as functions of the horizon radius r+

and the charge Q by specializing Eqs. (2.66),(2.67),(2.68) to d = 5. We obtain the
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following equations

M =
r4

+

ω5L2

(
1 +

4π

3

GNQ
2L2

r6
+

)
, T =

1

πL2

(
r+ −

2πGNQ
2L2

3r5
+

)
,

S =
V3

4GN

(r+

L

)3

, Φ =
V3

2L3

Q

r2
+

, (2.96)

that satisfy the first principle dM = TdS + ΦdQ. As pointed out in Sect. 2.7.1,

because of the universality of the thermodynamic behaviour, the thermodynamic

relations (2.96) hold for both for the charged GB and the RN BB. The only

difference is that for the GB brane, with metric function (2.78), M and T are the

effective parameters whereas in the RN case M = MADM and T = TH .

In order to have a clear and complete description of the GB BB thermodynamics,

one should eliminate r+ from the Eqs. (2.96) and write M(T,Q), S(T,Q). This

parametrization cannot be done in analytic form because we have to solve a 6th

grade equation in r+. Thus, we will derive the explicit scaling behaviour of M and

S as a function of the temperature in the large and small T limit. These relations

will shed light on the holographic interpretation of the solutions.

2.10.1 Scaling Behaviour

The functions M(T,Q) and S(T,Q) can be obtained in implicit form by using the

second equation in (2.96) as an implicit definition of the function r+(T,Q), and

they read

M(T,Q) =
r3

+

ω5L2

(
3r+ − 2πL2T

)
, S(T,Q) =

V3

4GN

(r+

L

)3

. (2.97)

Let us now consider separately the two limits of interest: T →∞ and T → 0.

2.10.2 Large Temperature

The limit T → ∞ corresponds to large radius BB, i.e., r+ → ∞. In this regime,

the temperature scales linearly with r+

T ' r+

πL2
(2.98)

and, at the leading order, we get for M and S
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M =
3V3L

3

16πGN

(πT )4 , S =
V3L

3

4GN

(πT )3 . (2.99)

This is exactly the scaling behaviour one expects for a UV fixed point described

by a CFT4.

Because of the universality of the thermodynamic behaviour, the relations (2.99)

hold for both the RN and the GB BB. In the former case, Eqs. (2.99) hold when

M = MADM , T = TH , in the latter when M,T are given by the effective values in

Eq. (2.65). Thus, for the GB BB, mass and entropy acquire a 1/N3 factor.

2.10.3 Small Temperature

The T → 0 thermodynamic behaviour corresponds to extremal BBs in which the

BPS bound (2.87) is saturated. This is achieved at non vanishing, constant value

of the BB radius

r+ =

(
2πGNL

2Q2

3

)1/6

≡ r0 (2.100)

that corresponds, as expected for BPS states, to the extremal brane T = 0 state

with non vanishing mass and entropy given by

Mext =
3r4

0

2ω5L2
, Sext =

V3

4GN

(r0

L

)3

. (2.101)

We can now expand in Taylor series the temperature near r0 to obtain

T ' 3

πL2

[
2(r+ − r0)− 5

r0

(r+ − r0)2

]
, (2.102)

and the behaviour of M and S near T = 0 is of the form

M −Mext =
2r2

0

3ω5

(πLT )2 +O(T 4), S − Sext =
πr2

0V3

8GNL
T +O(T 2) . (2.103)

Again, universality of the thermodynamic behaviour imply that the relations in Eq.

(2.103) hold both for the RN and for the GB BB. For the RN case, the relations

take the same form with M = MADM and T = TH . For the GB case, when we

express the relations (2.103) in terms of ADM mass and Hawking temperature we
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get

MADM = NMext +
2r2

0

3Nω5

(πLTH)2 +O(T 4)

S = Sext +
πr2

0V3

8NGNL
TH +O(T 2).

(2.104)

2.10.4 Excitations Near Extremality and the Near-Horizon Limit

An important feature of the RN BB, which in view of the previous results extends

to the charged GB BB, is that the semiclassical analysis of its thermodynamic

behavior breaks down near extremality [24, 25]. In fact, the energy of an Hawking

radiation mode is of order TH and the semiclassical description breaks down when

this energy is comparable with the energy above extremality M −Mext given by

Eq. (2.103). This results in an energy gap for excitations above extremality [24],

which in the case under consideration is Egap ∼ (Nω5)/L2r2
0. The fact that the

extremal limit is singular, can be also understood in geometrical terms. It has

been observed that at extremality the geometry splits into two spacetimes: an

extremal black hole and a disconnected AdS space [26].

The presence of this energy gap has important consequences for what concerns

the spectrum of BB excitations near extremality. In particular, whereas in the

extremal case the near-horizon geometry is given, as shown in Sect. 2.9.3.1, by

AdS2×R3, finite energy excitations of AdS2×R3 are suppressed. Analogously to

the RN case in 4d [24], one can consider near-horizon limits not restricted to zero

temperature and excitation energy. These limits are obtained by letting the 5d

Planck length LP go to zero, holding fixed some of the other physical parameters

of the BB (energy, charge and temperature).
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Chapter 3

Black Hole Chemistry

As seen in the previous chapter, the study of BH thermodynamics provides crucial

information to the underlying structure of quantum gravity. In this chapter, a

recently new development in this area will be discussed: The proposal that the

mass of an AdS BH should be interpreted as the enthalpy of spacetime H instead

of the internal energy U (as in Chap. 2). The enthalpy H is defined as a thermo-

dynamic potential, that consists of the internal energy of the system U plus the

product of pressure P and volume V of the system: H = U + PV . This kind of

total gravitational enthalpy takes into account the possibility of including in the

first law of black hole thermodynamics the variation of physical “constants”, such

as the cosmological constant Λ [1, 2, 3].

The cosmological constant Λ can be considered as a thermodynamic variable anal-

ogous to pressure in the first law. This proposal has been shown to provide a

rich panoply1 of thermodynamic behaviors for both AdS and dS black holes. Fur-

thermore, by introducing this pressure, it can be shown that there is a complete

analogy between four-dimensional RN-AdS black holes and the Van der Waals liq-

uid/gas system, with the critical exponents coinciding with those of the Van der

Waals system as predicted by the mean field theory. These results, significantly

modify previous considerations that emerged from the duality description [21, 22,

23, 24].

The extended thermodynamic phase space implied by this proposal is well moti-

vated for a variety of reasons:

1These include the existence of reentrant phase transitions in rotating [4] and Born-Infeld [5] black
holes and the existence of a tricritical point in rotating black holes analogous to the triple point in water
[6] (see also [3, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20]).
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• In the extended phase space both the Smarr relations (which can be derived

geometrically [2]) and the first law of thermodynamics hold, whereas in the

conventional phase space only the latter relation is satisfied for nonzero Λ.

• The use of an extended thermodynamic phase space is consistent with consid-

ering more fundamental theories of physics that admit variation of physical

constants.

• Finally, comparing the physics of black holes with real world thermodynamic

systems becomes a much more reasonable possibility [25], insofar as tricrit-

icality, reentrant phase transitions, and Van der Waals behaviour all have

counterparts in laboratory physics2.

This new perspective has been shown to provide some novel insights and new phe-

nomena in BH thermodynamics, including the realization that the phase-transition

between large AdS black holes and radiation can be understood as a liquid/solid

phase transition. Also, the discovery that charged BHs behave as Van der Waals

fluids and the findings of reentrant phase transitions, in which there are phase

transitions from large BHs to small ones and then back to large again as the

temperature monotonically increases or the presence of triple points for Kerr-AdS

black holes [6], where a coalescence of small, medium, and large sized BHs merge

into a single kind at a specific critical value of pressure and temperature, analo-

gous to the triple point of water. A natural question is whether this new way to

study black hole thermodynamics can be embedded in the AdS/CFT background

(see Sec. 3.5). In Ref. [27], the author suggests that one can trace the dynamical

pressure given by Λ to a dynamically changing Nc in the large Nc gauge theory

story.

The purpose of this chapter is to provide a detailed thermodynamical analysis

of some Einstein’s gravity theories considering the cosmological constant as a dy-

namical pressure. In particular, the investigation of the thermodynamics of regular

AdS black holes and (second and third order) Lovelock black holes in a canonical

ensemble3 will be presented. It will be showed that the thermodynamics of AdS

black holes in both cases are, under certain circumstances, comparable to the “ev-

ery day thermodynamics” of simple substances, such as reentrant phase transition

of multicomponent liquids, multiple first order solid/liquid/gas phase transition

and liquid/gas phase transitions of the Van der Waals type.

2An review of these issues in the context of rotating black holes was recently carried out in [26].
3This means that for generic black holes we study the thermodynamics for fixed charge Q in the case

of charged black holes (and/or fixed black hole angular momenta Ji in the case of rotating black hole).
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As explained in Sec. 2.3, an important example of transition in AdS-BH space-

time is the radiation/large black hole first order phase transition of Hawking and

Page conjectured for Schwarzschild-AdS black holes immersed in a bath of radia-

tion. Such a phenomenon has a dual interpretation for a boundary QFT via the

AdS/CFT correspondence and is related to a confinement/deconfinement phase

transition in the dual quark-gluon plasma. For charged or rotating black holes

and regular black holes, one likewise observes a small/large black hole phase tran-

sition reminiscent of the liquid/gas transition of the Van der Waals (VdW) fluid. It

is well known that in standard thermodynamics, the VdW equation approximates

the behaviour of real fluids using a two parameter a, b closed form modification to

the ideal gas law. The fluid parameters a and b are characteristics of a given fluid.

The VdW equation takes into account the non-zero size of the fluid molecules

(described by a constant parameter b > 0) and the attraction between them (de-

scribed by a constant parameter a > 0) and is often used to describe qualitative

features of the liquid-gas phase transition.

Moreover, new phenomena appear in higher dimensions: in Lovelock gravity, for

example, it is possible to find a peculiar behaviour reminiscent of reentrant phase

transition (RPT) observed for multicomponent fluid systems, gels, ferroelectrics,

liquid crystals and binary gases. A system undergoes an RPT if a monotonic vari-

ation of any thermodynamic quantity results in two (or more) phase transitions

such that the final state is macroscopically similar to the initial state.

3.1 Extended Phase Space Thermodynamics

By considering on AdS-BH, one can assume that the mass of black hole in AdS

background should be understood as the enthalpy of the spacetime. It emerged

from geometric derivations of the Smarr formula for AdS black holes that, the

cosmological constant is a thermodynamic variable analogous to pressure in the

first law of black hole thermodynamics, i.e.

P = − Λ

8π
=

(d− 1) (d− 2)

16πb2
(3.1)

where d = n + 1 stands for the number of spacetime dimensions, Λ is the cos-

mological constant and b denotes the AdS radius. The conjugate quantity to the

thermodynamic pressure is the thermodynamic volume V . The thermodynamic

volume has dimensions of (length)d−1 and describes a spatial volume character-

izing the black hole spacetime. Once the thermodynamic volume is known and
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the cosmological constant identified with the volume, one can, for a given BH,

write down the corresponding “fluid” equation of state relating pressure, temper-

ature, volume and other external parameters characterizing the black hole, i.e.

P = P (V, T, Ji, Q) where there are N independent angular momenta Ji and Q is

the charge. Then, the equation of state allows one to employ standard thermody-

namic machinery and calculate the critical exponents associated with the critical

point.

The equilibrium thermodynamics is usually governed by the Gibbs free energy,

G = G (T, P, Ji, Q) whose global minimum yields the state of a system for fixed

(T, P, Ji, Q). Since in this case the pressure is considered as a thermodynamical

variable, the BH mass M is interpreted as the enthalpy. Then one has the following

thermodynamic relation

G = M − TS = G (P, T, Ji, Q) (3.2)

where T and S stand for the horizon temperature and the BH entropy. Under-

standing the behaviour of G is essential in this context to find possible thermo-

dynamics phase transitions. While in the case of RBH it is possible to write the

Gibbs free energy explicitly, in the case of Lovelock gravity it is not. For this

reason, in the charged Lovelock case (see Sec. 3.3), one needs to fix the pressure,

the charge and the third order Lovelock parameter to particular values and plot

G numerically to obtain information about the possible phase transitions.

Once the behaviour of the Gibbs free energy is known, one can construct the as-

sociated phase diagrams. These are drown in the P − T plane and display the

coexistence lines of various BH phases, interrelated by the first order phase transi-

tions and the possible critical points where the coexistence lines terminate/merge

together. The local thermodynamic stability of a canonical ensemble is charac-

terized by positivity of the specific heat at constant pressure CP (and so we take

negativity of CP as a sign of local thermodynamic instability). Once the behaviour

of the Gibbs free energy is known, one can construct the associated phase diagrams.

These are drown in the P−T plane and display the coexistence lines of various BH

phases, interrelated by the first order phase transitions and the possible critical

points where the coexistence lines terminate/merge together. The local thermody-

namic stability of a canonical ensemble is characterized by positivity of the specific

heat at constant pressure CP (and so we take negativity of CP as a sign of local

thermodynamic instability). Before going into detailed analysis for the two cases

of interest, one can start seeing the thermodynamics of two simple examples when
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we do not have the thermodynamic pressure corresponding to Λ.

In the asymptotically flat background one has:

1. Schwarzschild black hole. The Schwarzschild black hole has only negative

specific heat which corresponds to local thermodynamic instability. In this

case, the Gibbs free energy has no interesting features indicating the absence

of phase transitions.

2. Charged black hole. When the charge Q is added to the Schwarzschild black

hole, the Reissner-Nordstrom (RN) black hole is obtained. The specific heat

capacity is positive for a small strongly charged black holes. This range cor-

responds to a thermodynamically stable branch of near extremal black holes

which globally minimize the Gibbs free energy. Consequently and counter-

intuitively (because the entropy is larger when CP < 0), in a fixed charge

canonical ensemble strongly charged small RN black holes are thermody-

namically preferred to weakly charged (almost Schwarzschild-like) large black

holes.

Now, the same two examples in case of asymptotically AdS background become:

1. Schwarzschild-AdS black hole. In the Schwarzschild-AdS spacetime , CP is

no longer always negative: it becomes positive for large BHs (when compared

to the AdS radius). As we know from Hawking-Page (sec. 2.3), there is a

minimum temperature Tmin below which no BH can exist and there is only

thermal AdS space.Above this temperature we have two branches of BHs.

The upper one corresponding to small black holes with CP < 0 that are

thermodynamically unstable. While the large BHs at lowest branch (so lowest

free energy) have CP > 0 and hence are locally thermodynamically stable.

However, just above Tmin the Gibbs free energy of such BHs is positive and

the thermal AdS space with approximately zero Gibbs free energy represents

a globally preferred thermodynamic state. This continues until temperature

THP ≈ 1/ (πb) for which the Gibbs free energy becomes negative, with the

corresponding BH radius given by rHP = b. Black holes with r+ > rHP have

negative Gibbs free energy and represent the globally preferred state. This

means that at a critical temperature T = THP there is a first order Hawking-

Page phase transition between thermal radiation and large black holes.

Now, considering an extended phase space and rewriting the equation for the

temperature

T =
1

4π r+ b2

(
b2 + 3 r2

+

)
(3.3)
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in terms of the pressure (3.1), we get a corresponding fluid equation of state.

At this point it is possible to plot the different isotherms in a P −V diagram.

For each isotherm there is a maximum at the volume 1/πT (i.e. when r+ =

rmin)

2. Charged AdS black hole. In a canonical (fixed charge) ensemble, RN-AdS

BHs allow for a first order small/large BH phase transition reminiscent of the

liquid/gas transition in a VdW fluid. This analogy becomes more complete in

the extended phase space. In fact in this case, the P − V diagram resembles

the behaviour of the VdW equation. Below a certain critical pressure Pc, the

Gibbs free energy displays a characteristic swallowtail behaviour, indicating

a first order small/large BH phase transition indeed.

3.2 Phases of Regular Black Holes

As first simpler example, one can consider the RBH thermodynamic system. In

the presence of an AdS cosmological term, also the regularized metric offers an ex-

tension of the Hawking-Page transition into a van der Waals-like phase diagram.

Specifically, the regular Schwarzschild-Anti-deSitter geometry undergoes a first or-

der small/large black hole transition similar to the liquid/gas transition of a real

fluid. In the present analysis, the cosmological constant is considered as a dynam-

ical quantity and its variation is included in the first law of BH thermodynamics.

This introduces an extended thermodynamic phase space in which both the Smarr

relations and the first law of thermodynamics should hold. In the beginning, the

n = 3 case is consider then a n−dimensional generalization will be presented.

3.2.1 Thermodynamics and Equation of state

The temperature associated to the event horizon r+ can be computed through the

formula T = 1
4π
V ′ (r)|r=r+ and reads

T =
1

4πr+

{
1 +

r2
+

b2

(
3− r+

γ′ (r+)

γ (r+)

)
− r+

γ′ (r+)

γ (r+)

}
(3.4)

where in this case one can use the following notation: γ (r+) ≡ γ
(

3
2
,
r2+
4θ2

)
and

γ′ (r+) =
r2+
4θ3
e−r

2
+/4θ

2
is its derivative with respect to r+. In contrast to the stan-

dard Schwarzschild-AdS case, extremal solution exists with vanishing Hawking
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temperature given by Eq. (3.4). Using Eq. (3.1) to substitute b in (3.4), the

equation of state P (V, T ) for the regular AdS-BH becomes

P =
3γ (r+)

3γ (r+)− r+γ′ (r+)

{
T

2r+

− 1

8πr2
+

+
γ′ (r+)

8πr+γ (r+)

}
. (3.5)

Using the equation of state (3.5) it is possible to plot the isotherm functions in a

P − V diagram for a regular black hole (see Fig. 3.1) that resembles the van der

Waals pressure-volume diagram.

P < P c

P = PC

P > PC

0 5 10 15 20 25 30
r +

20

40

60

80

1 � T

Figure 3.1: Regular black hole inverse temperature as function of r+ (with
θ = 1). WhenP < Pc, there are three branches. The middle branch is unstable, while
the branch with the smaller radii and the one with bigger radii are stable. This graph
reproduces the pressure-volume diagram of the van der Waals theory, provided one
identifies the black hole thermodynamic variables β ≡ 1/T , r+ and P respectively with

pressure pressure, volume and temperature of the van der Waals gas.

3.2.2 Gibbs Free Energy

To complete the analogy between the regular BH and a VdW gas, one proceeds by

calculating the Gibbs free energy [9, 16]. This can be done by using the action of

the Euclidean metric (see for example [28]). Such an action provides the Gibbs free

energy via G = I/β where β is the period of the imaginary time β ≡ 1/T . Then,

the Gibbs free energy can be expressed as a function of pressure and temperature.

The Hawking-Page transition takes place when the Gibbs energy changes its sign

from positive to negative. In the regular black hole case, considering the cosmolog-

ical constant as a pressure and using the Euclidean action given by I =
∫
d4x
√
gR

one finds

G =
r+

12GN

[
3− 8Pπr2

+ +
r+

(
3 + 8Pπr2

+

)
γ′ (r+)

γ (r+)

]
. (3.6)
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The Gibbs free energy (3.6) exhibits a characteristic swallowtail behavior (see Fig.

(3.2)). This usually corresponds to a small black hole/large black hole first-order

phase transition [16, 21] By performing the classical limit for r+ � θ one gets the

usual result for a classical uncharged Schwarzschild-AdS black hole that is

G (T, P ) =
1

4GN

(
r+ −

8π

3
P r3

+

)
(3.7)

as showed in Ref.[16]. Remarkably, in the regular Schwarzschild-AdS black hole

case, as in the RN-AdS spacetime, there is a phase transition that occurs at positive

Gibbs energy. This fact is visible from the presence of the swallowtail in Fig. (3.2).

To investigate this aspect one needs to study the sign of the heat capacity. As

underlined in [9], the specific heat related to the black hole is calculated at constant

pressure

Cp =

(
∂H

∂T

)
P

=

(
∂H

∂r+

)
P

(
∂r+

∂T

)
P

, (3.8)

where the enthalpy H is identified with the black hole mass M . Now, the phase

transitions can be studied from the change of the sign of the specific heat: the

stability requires that the specific heat at fixed pressure is Cp ≥ 0 and the specific

heat at fixed volume is Cv ≥ 0. In the case under investigation Cv is always

equal to zero because the entropy is only volume dependent. This means that the

heat capacity Cv does not diverge at the critical point and its critical exponent is

α = 0. By studying the sign of the function Cp, we can see that for P > Pc the

quantity Cp is always positive and the black hole is stable. In the limit P → Pc

there is a critical value for r+ for which Cp diverges. For P < Pc there are two

discontinuities of the specific heat and the situation is the same as in the RN-AdS

black holes [29]. Thus, in the regular Schwarzschild-AdS case for P < Pc it seems

that a different phase transition is allowed because the heat capacity changes again

from positive values to negative values. For large r+ we have the Hawking-Page

behavior in which the branch with negative specific heat has lower mass and thus

falls in an unstable phase, while the branch with larger mass is locally stable

and corresponds to a positive specific heat. Thus, the resulting phase diagram

presents a critical point at a critical cosmological constant value in Plank units

and a smooth crossover thereafter.

3.2.3 Critical Exponent

From the previous discussion, one can already establish the critical exponent α = 0.

Then, by defining the variable t ≡ (T − Tc) /Tc, one can compute the critical
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Figure 3.2: [

Gibbs free energy as function of the black hole pressure and temperature.
The Gibbs free energy G changes its sign at a specific T and P (intersection of the
function with the T −P -plane). As in the van der Waals case, the phases are controlled
by the universal ’cusp’, typical of the theory of discontinuous transitions. The Gibbs free
energy shows the “swallowtail” shape, a region where G(T, P ) is a multivalued function.
This region ends in a point (Tc, Pc). In the region with P < Pc and T < Tc we can
see a transition between small black hole/large black hole. Note that r+ is a function
of temperature and pressure via the equation of state Eq. (3.5). For large value of P
(or T ) there is only one branch allowed.] Gibbs free energy as function of the
pressure and temperature. The Gibbs free energy G changes its sign at a specific T
and P (intersection of the function with the T −P -plane). As in the van der Waals case,
the phases are controlled by the universal ’cusp’, typical of the theory of discontinuous
transitions [21]. The Gibbs free energy shows the “swallowtail” shape, a region where
G(T, P ) is a multivalued function. This region ends in a point (Tc, Pc). In the region
with P < Pc and T < Tc we can see a transition between small black hole/large black
hole. Note that r+ is a function of temperature and pressure via the equation of state
Eq. (3.5). For large value of P (or T ) there is only one branch allowed.

exponent of Cp by evaluating the ratio ln (Cp (t)) / ln (t) in the limit t → 0. This

limit in this case is well-defined and the critical exponent is γ = 1. This result

implies that the heat capacity diverges near the critical point like Cp ∝ |t|−1. Then

using the scaling relations

α + 2β′ + γ = 2 = β′ (1 + δ) (3.9)

is possible to calculate the other two exponents, i.e., δ that determines the be-

haviour of the isothermal compressibility of a VdW system and β′ that describes

the behaviour of the difference between of the volume of the gas phase and the
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liquid phase. For the regular black hole, the scaling relations give δ = 3 and

β′ = 1/2, result that coincides with the case of charged black holes [16]. These

critical exponents are consistent with the Ising mean field values

(α, β′, γ, δ) = (0, 1/2, 1, 3) (3.10)

allowing for an efficient mean field theory description. Since it is believed that the

determination of critical exponents define universality classes , i.e., they do not

depend on the details of the physical system (exept the number of dimensions), we

can say that the phase transitions in the regular Schwarzschild-AdS black holes and

in the RN-AdS black holes in four-dimensional spacetime have the same nature.

3.2.4 Extension to n-spacetime Dimensions

The results presented in the previous sections can be extended to a generic number

of dimensions. The fundamental ingredient is the Euclidean action in generic

number of dimensions. In the more specific case n = 4, the Gibbs free energy is

given from the same equation G = I/β and the equation of state can be easily

calculated using the n−dimensional definition of the temperature. Performing the

same calculation for the critical exponents one get the same result of mean-field

theory: The critical exponents do not depend on the space dimension.

3.3 Phases of Lovelock Black Holes

Using the Hamiltonian formalism it is possible to derive the expression for gravi-

tational entropy in Lovelock gravity and the corresponding first law of black hole

thermodynamics [30]. More recently, both the first law and the associated Smarr

formula in an extended phase space were obtained exploiting the Killing potential

formalism [31].

In the extended thermodynamic phase space, all Lovelock coupling constants (in-

cluding the cosmological constant α̂(0)) are considered as thermodynamic variables

and allowed to vary in the first law of black hole thermodynamics. The physical

meaning of these variables along with their conjugates, apart from the cosmologi-

cal constant which has an interpretation of pressure and its conjugate variable is

an associated volume, remains to be explored.4

4A similar situation was seen to occur in Born–Infeld electrodynamics, in which the thermodynamics
conjugate to the Born–Infeld coupling constant was interpreted as vacuum polarization [5].
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3.3.1 Thermodynamic Considerations

Considering now Lovelock BH, charged under a Maxwell field, F = dA, with the

action given by (cf. Eq.(2.48))

I =
1

16πGN

∫
ddx
√
−g
(kmax∑
k=0

α̂(k)L(k) − 4πGNFabF
ab
)
, (3.11)

the corresponding equations of motion read

kmax∑
k=0

α̂(k)G(k)
ab = 8πGN

(
FacFb

c − 1

4
gabFcdF

cd
)
. (3.12)

For a BH solution, characterized by massM , chargeQ, temperature T , and entropy

S, the extended first law and the associated Smarr relation read [30, 31]

δM = TδS − 1

16πGN

∑
k

Ψ̂(k)δα̂(k) + ΦδQ , (3.13)

(d− 3)M = (d− 2)TS +
∑
k

2 (k − 1)
Ψ̂(k)α̂(k)

16πGN

+ (d− 3) ΦQ . (3.14)

In Lovelock gravity, the BH entropy is no longer given by one quarter of the horizon

area, but rather reads

S =
1

4GN

∑
k

α̂kA(k) , A(k) = k

∫
H

√
σL(k−1) . (3.15)

Here, σ denotes the determinant of σab, the induced metric on the BH horizon H,

and the Lovelock terms L(k−1) are evaluated on that surface. Potentials Ψ̂(k) are

the thermodynamic conjugates to α̂(k)’s and are given by

Ψ̂(k) = 4πTA(k) + B(k) + Θ(k) , (3.16)

where

B(k) = −16πkGNM(d− 1)!

b(d− 2k − 1)!

(
− 1

`2

)k−1

, b =
∑
k

α̂kk(d− 1)!

(d− 2k − 1)!

(
− 1

`2

)k−1

,

Θ(k) =

∫
Σ

√
−gL(k)[s]−

∫
ΣAdS

√
−gAdSL(k)[sAdS] , (3.17)

and ` stands in this case for the AdS radius and b is given by a particular poly-

nomial of the AdS radius. The potentials are a non-trivial function of the “bare”
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cosmological constant Λ = −α̂0/2 and the higher-order Lovelock couplings. Σ

is a spatial hypersurface spanning from the BH horizon to spatial infinity, with

timelike unit normal na and induced metric sab = gab+nanb; quantities with “AdS

subscript” are pure AdS space counterparts of the corresponding BH spacetime

quantities, with no internal boundary and the same α̂0.

In what follows, the (negative) cosmological constant Λ = −α̂0/2 with the ther-

modynamic pressure and the conjugate quantity Ψ̂(0) with the thermodynamic

volume V , are defined according to an equation similar to (3.1),

P = − Λ

8πGN

=
α̂0

16πGN

, V = −Ψ̂(0) . (3.18)

3.3.2 Lovelock Thermodynamic Quantities

The black hole mass M , the temperature T , the entropy S, and the gauge potential

Φ are given by [32]

M =
Σ

(κ)
d−2 (d− 2)

16πGN

kmax∑
k=0

αkκ
krd−1−2k

+ +
Σ

(κ)
d−2

2(d− 3)

Q2

rd−3
+

, (3.19)

T =
|f ′(r+)|

4π
=

1

4πr+D(r+)

[∑
k

καk(d−2k−1)
( κ
r2

+

)k−1

− 8πGNQ
2

(d− 2)r
2(d−3)
+

]
,(3.20)

S =
Σ

(κ)
d−2 (d− 2)

4GN

kmax∑
k=0

kκk−1αkr
d−2k
+

d− 2k
, Φ =

Σ
(κ)
d−2Q

(d− 3)rd−3
+

, (3.21)

where

D(r+) =
kmax∑
k=1

kαk
(
κr−2

+

)k−1
. (3.22)

The leading term in the expression for S is one-quarter the horizon area; the other

terms come from higher-curvature contributions. Note that S does not explicitly

depend on the cosmological constant or the charge Q. Using the expression for

M , one finds the following formulae for the potentials Ψ(k) conjugate to αk, δM =

TδS + ΦδQ+
∑

k Ψ(k)δαk:

Ψ(k) =
Σ

(κ)
d−2(d− 2)

16πGN

κk−1rd−2k
+

[
κ

r
− 4πkT

d− 2k

]
, k ≥ 0 . (3.23)
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and the thermodynamic volume

V = −Ψ̂(0) =
16πGNΨ(0)

(d− 1)(d− 2)
=

Σ
(κ)
d−2r

d−1
+

d− 1
, (3.24)

while the other potentials read

Ψ̂(1) = Ψ(1) , Ψ̂(k) = −16πGN

2k∏
n=3

(d− n)Ψ(k) , k ≥ 2 . (3.25)

One can then verify that the Smarr relation (3.14) and the first law (3.13) are

satisfied. Note that α̂(1) effectively captures a possible change in the gravitational

constant GN .In the following sections, the couplings αk for k ≥ 1 are treated

as fixed external parameters and only the cosmological constant and hence α0 is

considered a thermodynamic variable.

Using (3.18) and (3.24), this allows to reinterpret equation (3.20) as the Lovelock

“fluid equation of state”

P = P (V, T,Q, α1, . . . , αkmax) (3.26)

=
d− 2

16πGN

kmax∑
k=1

αk
r2

+

( κ
r2

+

)k−1[
4πkr+T − κ(d− 2k − 1)

]
+

Q2

2α1r
2(d−2)
+

,(3.27)

and study the possible phase transitions based on the behavior of the Gibbs free

energy in the canonical ensemble, given by

G = M − TS = G(P, T,Q, α1, . . . , αkmax) . (3.28)

where the favourite thermodynamic state corresponds to the global minimum of

this quantity for fixed parameters P, T,Q and α’s.

3.3.3 Constraint Conditions For Hyperbolic Black Holes

Before going to the general thermodynamic discussion, one should noting two

phenomena present for hyperbolic black holes, κ = −1.

• First, for such BHs a “thermodynamic singularity” (also known as a “branch

singularity” [33]), characterized by

∂P

∂T

∣∣∣
V=Vs

= 0 , (3.29)
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will be present. Where V = Vs is a value in the P − V diagram, which is a

2d projection of the 3d P = P (V, T ) relation, where the isotherms will cross.

The above Eq. (3.29) lead to the condition

D(r+)|TD singularity =
kmax∑
k=1

k αk

(
κd−1

[
Σ

(κ)
d−2

(d− 1)Vs

]2
) k−1

d−1

= 0 , (3.30)

upon using (3.24) in (3.22). For κ = −1, this equation will have at least one real

solution for k ≥ 2, and will have up to (k − 1) distinct solutions in k-th order

Lovelock gravity. This generic situation stands in contrast to k = 0 Einstein-

Maxwell gravity, where this relation is absent [5]. Upon inspection of equations

(3.20) and (3.28), one can see that both the temperature and the Gibbs free energy

diverge at V = Vs (M and S are finite for all values of P and V ), apart from a

very special choice of the pressure P = Ps for which both T and G are finite and

T takes the special value T = Ts. By taking the derivative of the entropy (3.21)

with respect to r+ it straightforward to show that the entropy is maximized for Vs

and Ps as well [33].

Apart from P = Ps, the thermodynamic singularity reflects the presence of a

curvature singularity of the Riemann tensor, since the Kretschmann scalar at the

horizon is

K(r+) = RabcdR
abcd|r=r+ =

[(d2f

dr2

)2

+
2(d− 2)

r2

(df
dr

)2

+
2(d− 2)(d− 3)

r4

]
r=r+

.

(3.31)

However by analytically continuing around (Ps, Vs, Ts) one can not only make sense

of thermodynamics but also show that the Kretschmann scalar is finite. We shall

discuss this for the concrete example in Sec. 3.4.4.5.

• Second, when κ = −1, the entropy S is given in (3.21), and it is not always

positive. Demanding its positivity imposes the following condition:

kmax∑
k=1

kκk−1αkr
d−2k
+

d− 2k
=

kmax∑
k=1

kκk−1αk
d− 2k

[
(d− 1)V

Σ
(κ)
d−2

] d−2k
d−1

≥ 0 . (3.32)

In what follows BHs with negative entropy are considered unphysical and excluded

from thermodynamic considerations.
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3.3.4 Lovelock Parameters

In principle, one may consider αk to have arbitrary positive or negative values5.

However, for cubic (or higher order) Lovelock gravities, there are entire regions of

the parameter space where there are no black holes at all, even if there is a well

defined AdS vacuum. For 3rd-order Lovelock gravity, negative values of αk yield

solutions with naked singularities over a broad parameter range [37]. Moreover, in

the low energy effective action of heterotic string theory α2 is proportional to the

inverse string tension and hence is positive. For all these reasons, in this section

the Lovelock couplings α2 > 0 and α3 > 0 are considered positive. Moreover, from

now the parameter α1 is setted equal to one to recover general relativity in the

small curvature limit and also GN = 1.

3.3.4.1 2nd-order Lovelock Gravity

For k = 2 (i.e. Gauss-Bonnet solution) and generic curvature κ, Eq. (2.61) reduces

to a quadratic equation

α2
(κ− f)2

r4
+

(κ− f)

r2
+ α0 −

ωdM

rd−1
+

8πGNQ
2

(d− 2)(d− 3)r2d−4
= 0 , (3.33)

from which one obtains two possible solutions, f±. In the following, the solution f−

is referred as the ‘Einstein branch’ because it approaches the Einstein case when

the Gauss–Bonnet coupling α2 goes to zero and f+ as the ‘Gauss–Bonnet branch’

[38]. The quadratic Eq. (3.33) gives the following necessary condition requirement

for the existence of f± for large r:

1− 4α0α2 ≥ 0 . (3.34)

When this inequality is violated, the space becomes compact because of the strong

nonlinear curvature [38]. Therefore, there is no asymptotic ‘AdS region’ and con-

sequently no proper black hole with standard asymptotics.

5Up to now, most of the information needed to clarify the existence of black hole solutions for different
values of the Lovelock couplings has relied on the behaviour of cubic polynomials, see, e.g., Eq. (2.61)
in [34], or on the AdS/CFT calculations [35, 36].
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3.4 P − v Criticality in 3rd-order Lovelock Gravity

In this section thermodynamic phenomena of U(1) charged black holes in 3rd-order

Lovelock gravity are considered. After some general considerations we concentrate

on d = 7 and d = 8, the lowest two dimensions for which 3rd-order Lovelock theory

brings new qualitative features.

3.4.1 Maximal Pressure and Other Conditions

In Sec. 3.3.4.1, it has been seen that in the Gauss–Bonnet case, the requirement

for the existence of an asymptotic “AdS region” imposes an important bound on

how high the cosmological pressure can be in order the solution not to collapse

into a compact region. Here the analogous discussion is presented for the 3rd-order

Lovelock. In the Lovelock case the following cubic equation for the metric function

f has to be satisfied to have an asymptotic AdS region :

α3
(κ− f)3

r6
+ α2

(κ− f)2

r4
+

(κ− f)

r2
+ A0(r) = 0 ,

A0(r) = α0 −
16πM

(d− 2)Σ
(κ)
d−2r

d−1
+

8πQ2

(d− 2)(d− 3)r2d−4
, (3.35)

whose solution is

f = κ+
r2

√
α3

X , (3.36)

where X is a solution to the equation X3 − α2√
α3
X2 + X − √α3A0(r) = 0. The

resulting three solutions can be labelled in the following way: Einstein branch

(fe), the Gauss-Bonnet branch (fgb), and the Lovelock branch (fl). The solution

fe approaches the Einstein branch upon successively taking the limit α3 → 0 and

then α2 → 0; fgb approaches the Gauss-Bonnet branch (that does not exist in the

limit α2 → 0), and fl represents a new branch which does not have a smooth limit

when α3 → 0. When the following condition is satisfied,

4α3 − α2
2 + 27α2

0α
2
3 − 18α0α2α3 + 4α0α

3
2 ≤ 0 . (3.37)

all three branches admit an asymptotic “AdS region”. Equality represents a

quadratic equation for α0, whose solution is

p± =
(d− 1)(d− 2)

108π

[
9α− 2α3 ± 2(α2 − 3)3/2

]
, (3.38)
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in terms of the following dimensionless parameters:

α =
α2√
α3

, p = 4
√
α3P =

α0(d− 1)(d− 2)
√
α3

4π
. (3.39)

It is possible to define two parameter regions according to the asymptotics of

solutions of the various branches.6

• Region I, occurs for values of α and p outside the envelope of the region

bounded by the p± curves. In this region only the Lovelock branch has

proper AdS asymptotics whereas the Gauss-Bonnet and Einstein branches

either do not exist as real solutions or represent a compact space.

• Region II, is inside the region bounded by the p± curves. In this region all

three branches admit proper AdS asymptotics. The situation is displayed in

Fig. 3.3.

Regions I and II were defined according to the asymptotic structure. Further re-

striction ensue when horizons are taken into consideration. Consider for simplicity

the uncharged case. When κ = −1 it can be shown that Region I always admits

Lovelock BHs at least in a certain range of parameters, whereas region II admits

all three kinds of BHs. The situation is more restrictive when κ = +1. Region

II then admits only Einstein type BHs whereas region I splits into a Region Ia

and Region Ib. In Region Ia, defined by (α <
√

3) or (
√

3 < α < 2 and p < p−),

Lovelock black holes exist in a certain parameter range. In Region Ib, defined by

(α >
√

3 and p > p+), no BHs can exist. This is illustrated in Fig. 3.4.

3.4.2 Equation of State

In terms of (3.39) and the following dimensionless quantities (v, t,m, q):

r+ = v α
1
4
3 , T =

tα
− 1

4
3

d− 2
, m =

16πM

(d− 2)Σ
(κ)
d−2α

d−3
4

3

, Q =
q√
2
α
d−3
4

3 , (3.40)

6Note that whereas the asymptotic structure is independent of the values of the charge and mass,
the existence of horizons is affected by it.
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Region II: E, GB, L

Region I: Lovelock

sqrt(3)= α
p-

p+

α
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0.4

0.6

1 2 3 4

Figure 3.3: Branches with ‘AdS’ asymptotics. According to the asymptotics
of solutions of the various branches the α − p space splits into 2 parameter regions.
In region I only the Lovelock branch admits AdS asymptotics. In region II all three
branches admit the correct asymptotics. In this case d = 7, for other dimensions the
behavior is qualitatively similar (p± are appropriately scaled by d-dependent factor).

Region II: E, GB, L

Region I: Lovelock
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Region II: Einstein

=sqrt(3)α

Region Ia: Lovelock

Region Ib: No BH
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p+
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Figure 3.4: Possible uncharged black holes. Left: κ = −1 case. The Lovelock
black holes may exist in region I for a certain range of parameters; all 3 kinds may
exist in region II. Right: κ = +1 case. Region I now splits into 2 regions: the Lovelock
region Ia and the no black hole region Ib. In region II only Einstein branch possesses
horizons and can represent a black hole. We have displayed d = 7 case, for d = 8 the

situation is qualitatively similar.

the equation of state (3.26) for 3rd-order Lovelock U(1) charged black holes now

reduces to (κ = ±1)

p =
t

v
− (d− 2)(d− 3)κ

4πv2
+

2ακt

v3
− (d− 2)(d− 5)α

4πv4
+

3t

v5

−(d− 2)(d− 7)κ

4πv6
+

q2

v2(d−2)
. (3.41)

Now, one can also investigate a dimensionless counterpart of the Gibbs free energy,

g =
1

Σ
(κ)
d−2

α
3−d
4

3 G = g(t, p, q, α) , (3.42)
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which reads

g = − 1

16π(3 + 2ακv2 + v4)

[ 4πpvd+3

(d− 1)(d− 2)
− κvd+1 +

24πκpαvd+1

(d− 1)(d− 4)

−αv
d−1(d− 8)

d− 4
+

60πpvd−1

(d− 1)(d− 6)
− 2κα2vd−3(d− 2)

d− 4
+

4κvd−3(d+ 3)

d− 6

−3αvd−5(d− 2)(d− 8)

(d− 4)(d− 6)
− 3κvd−7(d− 2)

d− 6

]
(3.43)

+
q2

4(3 + 2ακv2 + v4)(d− 3)vd−3

[v4(2d− 5)

d− 2
+

2ακ(2d− 7)v2

d− 4
+

3(2d− 9)

d− 6

]
.

The thermodynamic state corresponds to the global minimum of this quantity for

its fixed parameters t, p, q and α. A critical point occurs when p = p(v) has an

inflection point, i.e., when
∂p

∂v
= 0 ,

∂2p

∂v2
= 0 . (3.44)

Together with the equation of state (3.41) this determines the critical values

{pc, vc, tc} as functions of q and κ. To find a critical point we have to solve (higher-

order polynomial) Eqs. (3.44) for tc, vc and insert the result into the equation of

state (3.41) to find pc, subject to the restriction that pc, vc, tc are all positive in

order the critical point be physical. Solving the first equation in (3.44) for tc yields

tc =
(d− 2)

2πvc(v4
c + 6ακv2

c + 15)

[
3κ(d−7)+2α(d−5)v2

c +(d−3)κv4
c−

4πq2

v
2(d−5)
c

]
, (3.45)

and the second equation in (3.44) then becomes

0 = (d− 3) v2d−2
c − 12ακ v2d−4

c + 6v2d−6
c

(
2α2

(
d− 5

)
+ 5− 5d

)
+12κα (2d− 19) v2 d−8

c + 45 (d− 7) v2 d−10
c

−4πκq2
[
(2 d− 5) v4

c + 6κα (2d− 7) v2
c + 30d− 135

]
. (3.46)

The thermodynamic singularity for the κ = −1 3rd-order Lovelock black holes

occurs when v4 − 2αv2 + 3 = 0, i.e., for

v = vs± =

√
α±
√
α2 − 3 . (3.47)

A particularly interesting case occurs when the parameter α =
√

3 (for which the

two thermodynamic singularities ‘coincide’) and q = 0. In this case we find

vs = 31/4 , ts =
d− 2

2π
3−1/4 , ps =

(d− 1)(d− 2)

36π

√
3 . (3.48)
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sqrt(3) dα

V2

V1

Vs-

Vs+

V

α

0

1

2

3

4

1 2 3 4 5

Figure 3.5: Conditions for κ = −1 black holes. The thermodynamic singularities
occur on a thick red curve. The black hole entropy is positive to the left of the region
outlined by thick black curve. We have chosen d = 7. As d increases, the red curve
remains unchanged, whereas the black curve moves closer to it; the two curves coincide

in the limit d→∞.

It is possible to check that the corresponding black hole has zero mass M = 0;

such “massless” black holes can occur for hyperbolic geometries with appropriate

identifications [39, 40, 41]. This very special case shall be discussed in Sec. 3.4.4.5.

The positivity of entropy requires

(d− 4)(d− 6)v4 − 2α(d− 2)(d− 6)v2 + 3(d− 2)(d− 4) > 0 . (3.49)

The corresponding admissible roots are

v1,2 =

√√√√d− 2

d− 4

(
α±

√
α2 − 3(d− 4)2

(d− 6)(d− 2)

)
, (3.50)

and coincide when

α = αd =

√
3(d− 4)2

(d− 6)(d− 2)
. (3.51)

For α < αd the entropy is always positive. The two conditions are displayed in

Fig. 3.5. As one can see, for α <
√

3 the BH entropy is always positive and

there are no thermodynamic singularities. However, for α >
√

3, we may have

both positive and negative entropy BHs and thermodynamic singularities may be

present. In the next two subsections the behavior of this equation in d = 7 and

d = 8 dimensions, for various black hole topologies and various regions of the

parameter space (q, α) is discussed.
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Figure 3.6: Critical pressure: d = 7 and κ = +1. In d = 7 and the spherical case
we observe one critical point and the associated VdW behavior. The corresponding
pressure pc is displayed for q = 0, 1, 3. We observe that for α > α0 ≈ 4.55 there exists
a minimum charge qmin such that for q < qmin the critical pressure pc exceeds the

corresponding maximal pressure p+ indicated as pmax in the plot.

3.4.3 Seven Dimensions

In seven dimensions the equation of state reduces to:

p =
t

v
− 5κ

πv2
+

2ακt

v3
− 5α

2πv4
+

3t

v5
+

q2

v10
. (3.52)

the critical temperature is

tc =
10

π(v4
c + 6ακv2

c + 15)

[
αvc + κv3

c −
πq2

v5
c

]
, (3.53)

and

v12
c − 3ακv10

c + 3(2α2 − 15)v8
c − 15ακv6

c − 3πκq2(3v4
c + 14καv2

c + 25) = 0 . (3.54)

The AdS asymptotics of various branches is displayed in Figs. 3.3 and 3.4, positive

entropy condition as well as thermodynamic singularities are displayed in Fig. 3.5,

α7 given by (3.51) now reads α7 = 3
√

3/5.

3.4.3.1 Spherical Case (κ = +1)

For BHs of spherical topology with charge or not, in the range α ∈ (0, 10), the

equation of state admits exactly one critical point, characterized by the standard

swallowtail mean field theory critical exponents (3.10), and the system demon-

strates a VdW behavior. However, as α increases, the corresponding critical pres-

sure, see Fig. 3.6, increases, and eventually exceeds the admissible pressure p+,
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Figure 3.7: Critical points in d = 7: κ = −1, q = 0 case. Depending on the
parameter α we may have up to two physical critical points. The special case is α =

√
3

for which these two critical points ‘coincide’ forming a special critical point discussed
in the next subsection.

that is occurs for a compact space solution. Alternatively, similar to the Gauss-

Bonnet case, for each α > α0 ≈ 4.55 there exists a minimum charge qmin such that

for q < qmin the critical pressure pc exceeds the corresponding maximal pressure

set by p+.

3.4.3.2 Hyperbolic Case (κ = −1): Multiple Reentrant Phase Transition

The hyperbolic case, κ = −1, is more interesting. When q = 0 and depending on

the parameter α one may have up to two critical points (Fig. 3.7) and get various

physical situations as summarized in Table 3.1. The corresponding p − v, g − t,
and p − t diagrams are displayed in Figs. 3.8–3.12. Namely, when α ∈ (0,

√
5/3)

one observes 1 physical critical point (with positive pc, vc and tc) and the associ-

ated VdW-like first order small/large black hole phase transition terminating at

a critical point characterized by the swallowtail critical exponents (3.10). Note

however that, contrary to the κ = +1 case, the coexistence line terminates at a

finite pressure p as t → 0. At α =
√

5/3 an additional physical critical point

emerges with ‘infinite’ tc that becomes finite and positive as α increases. In the

range α ∈ (
√

5/3,
√

3) two critical points and the associated VdW and “reverse

VdW” behavior are present as shown in Figs. 3.9. At α =
√

3, the two critical

points merge together and a qualitatively new behaviour emerges. Increasing

α even further, in the region α ∈ (
√

3, 3
√

3/5) thermodynamic singularities ap-

pear.7 However, these do not exist in the branches globally minimizing the Gibbs

7Associated with these singularities are the two reconnections of various branches—making the g− t
diagram quite complicated.
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case range of α # critical points behavior

I α ∈ (0,
√

5/3) 1 VdW

II α ∈ (
√

5/3,
√

3) 2 VdW & reverse VdW

III α =
√

3 1 special

IV α ∈ (
√

3, 3
√

3/5) 0 infinite coexistence line

V α > 3
√

3/5 0 multiple RPT, infinite coexistence line

Table 3.1: Types of physical behavior in d = 7, κ = −1, q = 0 case.
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Figure 3.8: Gibbs free energy: uncharged d = 7, κ = −1 case. The Gibbs
free energy is displayed successively for α = 1.65,

√
3, 1.85, 2.5. In the α = 1.65 case

we observe a presence of two swallowtails that never occur at the same pressure. The
α =

√
3 is a special case for which the previous swallowtails emerge from the same

isolated critical point, characterized by non-standard critical exponents. For α = 1.85 ∈
(
√

3, 3
√

3/5) the behavior of g is quite complicated, however, the global minimum of
g corresponds to one possible first-order phase transition. Finally, for α = 2.5 >
3
√

3/5 the presence of negative entropy black holes effectively makes the admissible
Gibbs ‘discontinuous’. Besides the standard first-order phase transition, we can also
observe, in a small range of pressures, the ‘smooth’ RPT and/or the zeroth-order phase

transition, as displayed in Fig. 3.11 .
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Figure 3.9: p− v diagram: uncharged d = 7, κ = −1 case. The p− v diagram is
displayed successively for α = 1.65,

√
3, 1.85, 2.5. In the α = 1.65 we observe two critical

isotherms displayed by thick black curves, the isotherm with (tc1 + tc2)/2 is displayed
by red curve and demonstrates the ‘ideal gas behavior’, whereas the isotherms with
t > tc2 and t < tc1 display oscillations that are replaced according to Maxwell’s equal
area law. α =

√
3 is a special case discussed in the next subsection. For α >

√
3 we

observe the presence of two thermodynamic singularities. The case α = 2.5 > 3
√

3/5
moreover displays the region of negative entropy black holes, in between v2 and v1. We
also display p± in these cases. Note that the temperatures ‘reverse’ in between the two

thermodynamic singularities—hotter isotherms occur for lower pressures.

free energy.Therefore, solutions in this range of α have sensible thermodynamic

behaviour, and a first-order phase transition as displayed in Fig. 3.10 d.

Similar behavior persists even for α > 3
√

3/5. However in such a region some of

the black holes may have negative entropy and hence are unphysical. Discarding

such BHs, the Gibbs free energy is no longer continuous. Moreover, the hypersur-

face of large black holes displays interesting curved shape, see Fig. 3.11, leading to

a multiple reentrant phase transition (RPT). To understand this phenomenon, one

can look more closely at the 2d g− t diagram displayed on RHS of Fig. 3.11. It is

possible to observe that for p ∈ (p1 ≈ 0.23209, p2 ≈ 0.23311) the branch of small

BHs (displayed by a thick black curve that remains almost identical for various

pressures) crosses twice the branches of large BHs -displayed by dashed colored

curves- that moreover terminate at a finite temperature.
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This indicates that there will be two first-order phase transitions, possibly accom-

panied, for p ∈ (p0 ≈ 0.21809, p2) and t ∈ (0, tz ≈ 0.16864), by a zeroth-order phase

transition like in [4]. Consider the constant pressure p′ = 1.002 × p1 ∈ (p1, p2)

curves displayed in the diagram by thick black and dashed black lines. As the

temperature decreases from say t = 0.4, the system follows the lower dashed black

curve being a large black hole, until at t3 ≈ 0.308 the two branches cross and the

system undergoes a first-order phase transition to a small BH. As t decreases even

further the global minimum of g corresponds to the small BH on a thick black

curve until at t2 ≈ 0.20 another first-order phase transition, this time to a large

BH, occurs. Then the system follows the dashed black curve as a large BH until

this terminates at t1 ≈ 0.162. If the temperature is decreased even further the

system jumps to the thick black curve, undergoing the zeroth-order phase transi-

tion and becoming a small BH again. The RPT in chemistry was first observed

in a nicotine/water mixture [42], and since seen in multicomponent fluid systems,

gels, ferroelectrics, liquid crystals, and binary gases [43].

In summary, a reentrant large/small/large/small black hole phase transition is

present. The corresponding p− t phase diagram is displayed in Fig. 3.12.

3.4.3.3 Charged case.

When q is sufficiently small the behaviour is similar to the q = 0 case: namely,

there are: one critical point in the range 0 < α <
√

5/3, two critical points for√
5/3 < α <

√
3, and no critical points for α >

√
3. More generally, the number

of physical critical points in the (q, α)-parameter space is displayed on LHS of

Fig. 3.13.

When α <
√

5/3 there is the standard VdW behavior in the blue region with one

critical point and no critical behavior in the grey region. For α ∈ (
√

5/3,
√

3),

as q increases one of the two critical temperatures decreases and soon becomes

negative. Consequently, the VdW-like swallowtail disappears and for large q and

one observes only the reverse VdW behavior; this is displayed in Fig. 3.14. The

situation for α ≥
√

3 is rather complicated because of the presence of thermody-

namic singularities. The detailed study of this case can be considered for future

study.
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Figure 3.10: p− t phase diagram for κ = −1. The distinct behaviour of the p− t
diagram is displayed for α = 1, 1.65,

√
3, 1.85. The α =

√
3 case is a special case for

which the two critical points ‘coincide’ forming an isolated critical point discussed in
Sec. 4.5; for α ∈ (

√
3, 3
√

3/5) we no longer observe a critical point, however, the

first-order phase transition still persists. The case α > 3
√

3/5 demonstrates reentrant
behavior and is discussed in the next figure.

3.4.4 Eight Dimensions

In eight dimensions there is the following equation of state:

p =
t

v
− 15κ

2πv2
+

2ακt

v3
− 9α

2πv4
+

3t

v5
− 3κ

2πv6
+

q2

v12
. (3.55)

Eqs. (3.45) and (3.46) reduce to

tc =
3

πvc(v4
c + 6ακv2

c + 15)

[
3κ+ 6αv2

c + 5κv4
c −

4πq2

v6
c

]
, (3.56)

and

5v14
c −12ακv12

c +6(6α2−35)v10
c −36ακv8

c +45v6
c−4πκq2(11v4

c +54καv2
c +105) = 0 .

(3.57)

The AdS asymptotics and various BH branches are qualitatively similar to those

displayed in Figs. 3.3 and 3.4, positive entropy condition as well as thermodynamic
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Figure 3.11: Multiple RPT: Gibbs free energy. The Gibbs free energy is dis-
played for d = 7, q = 0, κ = −1, α = 2.5 > 3

√
3/5 case. Left figure is a close up

of Fig. 3.8. Right figure represents p = const. slices of the left one. We observe two
branches: the branch of small black holes (displayed by a thick black curve—almost
identical for various pressures) and the branch of large black holes displayed by dashed
coloured curves. We do not display the surfaces of g for negative entropy black holes.
Consequently, the Gibbs free energy seems discontinuous—the large black hole branch
terminates at finite t. For p ∈ (p0 ≈ 0.218088, p2 ≈ 0.2331108665 we observe the
zeroth-order phase transition. More interestingly, for any p ∈ (p1, p2), the global mini-
mum of g alternates from branch to branch: small and large black hole branches double
cross indicating the presence of multiple RPT behavior. Namely, consider a constant
pressure p′ = 1.002 × p1 ∈ (p1, p2) displayed by thick black and dashed black curves.
As the temperature decreases from say t = 0.4, the system follows the lower dashed
black curve being a large black hole, until at t3 ≈ 0.308 the two branches cross and
the system undergoes a first-order phase transition to a small black hole. As t de-
creases even further the global minimum of g corresponds to the small black hole on
a thick black curve until at t2 ≈ 0.20 another first-order phase transition, this time to
a large black hole occurs. Then the system follows the dashed black curve as a large
black hole until this terminates at t1 ≈ 0.162. If the temperature is decreased even
further the system jumps to the thick black curve, undergoing the zeroth-order phase
transition and becoming a small black hole again. In summary, we observe reentrant

large/small/large/small black hole phase transition.

singularities behave as in Fig. 3.5, with α8 = 2. The number of possible critical

points with positive (pc, vc, tc) as we probe the (q, α)-parameter space is displayed

in Figs. 3.13 and 3.15.

3.4.4.1 Spherical Case

The thermodynamic behavior is qualitatively different for uncharged and charged

black holes. There are two important cases: i) reentrant phase transitions, present

for uncharged black holes and ii) multiple first order phase transitions accompanied

by a triple point, in the weakly charged case.
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Figure 3.12: Multiple RPT: p − t phase diagram. The p − t phase diagram is
displayed for d = 7, q = 0, κ = −1, α = 2.5 > 3

√
3/5. The thick black curve displays the

first-order phase transition between small and large black holes, the red curve stands
for the corresponding zeroth-order phase transition. Right figure represents a close up
of the left figure. For a fixed pressure p′ ∈ (p1, p2) as temperature increases we may
observe multiple phase transitions showing the reentrant behavior. Namely, we observe
a phase transition from small black holes to large black holes, back to small black holes
again, and finally to large black holes. The first transition is of the zeroth-order while
the other two are of the first-order; the temperatures t1, t2 and t3 coincide with those

in Fig. 3.11 . The zeroth-order phase transition terminates at (tz, p2).
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Figure 3.13: Critical points in (q, α)-parameter space: κ = −1 case. The
number of critical points with positive (pc, vc, tc) is displayed in the (q, α)-parameter
space for κ = −1. Grey dots correspond to no critical points, blue to one critical
point, and red to two; black solid and dashed lines highlight α =

√
5/3 and α =

√
3,

respectively. Contrary to d = 7 (left) case, in d = 8 (right) there are no critical points
for α <

√
5/3.
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Figure 3.14: Reverse VdW behavior. The characteristic reverse VdW behavior is
displayed for d = 7, κ = −1, q = 1, α = 1.5 case. Left: the p − v diagram. Right: the

p− t phase diagram.
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Figure 3.15: Critical points in (q, α)-parameter space: d = 8, κ = +1 case. The
number of critical points with positive (pc, vc, tc) is displayed in the (q, α)-parameter
space; grey dots correspond to no critical points, blue to one critical point, red to two,
and yellow to three. The corresponding diagram for d = 7 is trivial (contains only the
blue region with one critical point) and hence is not displayed. Although all critical
points have positive (pc, vc, tc), some pc may exceed the maximum pressure p+ and
hence occurs for a compact space. Note also the qualitatively different behavior for

q = 0.
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Figure 3.16: Critical points: d = 8, q = 0, κ = 1. Critical volume vc and pressure
pc are displayed as functions of α. We observe that for α ∈ (α1 ≈ 2.747, α2 ≈ 2.886)
we have two critical points with positive (pc, vc, tc). However, only one of them occurs

in a branch globally minimizing the Gibbs free energy.
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Figure 3.17: Reentrant phase transition: d = 8, q = 0, κ = 1. Left: g − t dia-
gram. The characteristic behavior of the Gibbs free energy when the RPT is present is
displayed for p = 0.08384. The temperature t1 indicates the standard large/small BH
first-order phase transition; t0 the peculiar small/large BH zeroth-order phase transi-
tion. Right: p− t diagram. The zeroth-order phase transition is displayed by thick red

curve. The dashed curve outlines the ‘no black hole region’. We have set α = 2.8.

3.4.4.2 Reentrant Phase Transition

When q = 0 there could be up to two critical points, the corresponding vc and pc

are displayed in Fig. 3.16. Namely, for α < α1 ≈ 2.747 we observe one critical

point, for α1 < α < α2 ≈ 2.886 two critical points, and above α2 there are no

critical points.

In even dimension and in the absence of charge, small BHs may have arbitrar-

ily high temperature [44]. Consequently, for α < α2 and certain range of pres-

sures, one observe a reentrant phase transition, similar to the one observed in [4].

The characteristic behaviour of the Gibbs free energy is displayed on the LHS of
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Figure 3.18: Critical points: d = 8, κ = 1, α = 1. Left: critical volume vc is
displayed for q ∈ (0, 0.03). Right: critical pressures. For certain range of q’s we observe

the existence of a triple point.

Fig. 3.17 for α = 2.8. Looking at this figure, one observes that for high tempera-

ture, large BHs (lower vertical curve) globally minimize the Gibbs free energy. As

temperature decreases, at t1 there is a first order phase transition to small BHs

displayed by horizontal curve. Following this curve further, at t = t0, this curve

terminates and the system cannot be a small BH anymore. Rather it undergoes a

zeroth order phase transition and “jumps” to the upper vertical curve denoting the

large BHs again. Hence as temperature monotonously changes from high to low

the system undergoes phase transitions from large to small and back to large BH,

a phenomenon known as a reentrant phase transition. The corresponding p − t

phase diagram is displayed on r.h.s of Fig. 3.17.

3.4.4.3 Triple Point

When a small charge q is added to the BH, there could be up to three critical

points, shown in Fig. 3.18 for α = 1. Consequently the small/intermediate and

intermediate/large BH phase transitions as well as a triple point may be present.

The Gibbs free energy exhibits two swallowtails that terminate at critical points on

one side and merge together to form a triple point on the other side, see Fig. 3.19.

triple point for example occurs at

q = 0.012 , p3c = 0.03209 , t3c = 0.54729 , (3.58)

where BHs of three different sizes, v1 = 0.3948, v2 = 0.4855, v3 = 9.7190 “coexist”.

The corresponding phase diagram is displayed on RHS of Fig. 3.19.
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Figure 3.19: Triple point: d = 8, κ = 1, α = 1. Left: g − t diagram. The charac-
teristic double swallowtail indicating the presence of two first-order phase transitions is
displayed by thick black curve. When two such swallowtails ‘coincide’ one can observe
a triple point. Right: p− t diagram. The phase diagram possesses two first-order phase
transitions that eventually terminate at critical points on one side and merge together
to form a triple point on the other side. To signify these features we have set different
charges in the two figures. Whereas left figure is displayed for q = 0.00161 (for which
the two swallowtails are apparent), for right figure we have set q = 0.012 for which the

two critical pressures are comparable.

3.4.4.4 Hyperbolic Case

The thermodynamic behavior of d = 8 hyperbolic Lovelock BHs is very similar to

the d = 7 case. The structure of possible critical points in the (q, α)-parameter

space is illustrated on the RHS of Fig. 3.13 - apart from the absence of small blue

region associated with the VdW behavior for α <
√

3 the figures seem very much

alike.

3.4.4.5 α =
√

3: Isolated Critical Point

A special case occurs when the parameter α takes the particular value α =
√

3; the

system can be solved analytically and the solution expressed in the simple form

[34, 45]

f = κ+
r2

√
3α3

[
1−

(
1− 3

√
3α3

(
α0−

16πM

(d− 2)Σ
(κ)
d−2r

d−1
+

8πQ2

(d− 2)(d− 3)r2d−4

)) 1
3

]
.

(3.59)

In what follows only the Q = 0 case is considered. The equation of state and the

Gibbs free energy are given by (3.41) and (3.43), taking the α =
√

3 limit. While

certain properties of this case in the context of p− v criticality have been studied

previously [46, 47, 48], we here point out an interesting novel feature. For κ = +1,
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we find one physical critical point, with positive (pc, vc, tc), characterized by

vc = 3
1
4 ×

√
d+ 3 + 2d̃

d− 3
, tc =

3
3
4 (d− 2)(d− 3)2(d− 2 + d̃)

6π
(
d̃+ 3d− 6

)√
(d+ 3 + 2d̃)(d− 3)

,

pc =

√
3(d− 2)(d− 3)2

[
3(d+ 1)(69− 5d)(d− 2)− d̃(d2 − 160d+ 255)

]
36π(d̃+ 3d− 6)(d+ 3 + 2d̃)3

,(3.60)

where d̃ =
√

(d− 2)(12− d). Obviously, there is no solution for d > 12 and so

the range of d admitting critical points is 7 ≤ d ≤ 12. In d = 10, 11 an additional

critical point emerges which, however, occurs in a branch that does not globally

minimize the Gibbs free energy.

3.4.4.6 Critical Exponents

Recapitulating, for κ = +1 critical behavior occurs in d = 7, 8, 9, 10, 11 dimensions:

in d = 7 the critical point is associated with the VdW behavior, whereas in d =

8, 9, 10, 11 we observe a reentrant phase transition similar to the one studied in

the previous subsection for d = 8. To study the nature of the critical point (3.60)

we study its critical exponents. One procedure is to Taylor expand the equation

of state around this critical point. By introducing the new variables

ω =
v

vc
− 1 , τ =

t

tc
− 1 , (3.61)

and the equation of state expands as

p

pc
= 1 + Aτ +Bτω + Cω3 + . . . , (3.62)

with A,B,C non-trivial d-dependent constants—implying the standard critical

exponents (3.10). The situation is considerably different for κ = −1. Here in any

dimension d ≥ 7 we find a single critical point [46, 47] at

vc = 31/4 , tc =
d− 2

2π
3−1/4 , pc =

(d− 1)(d− 2)

36π

√
3 = p+ = p− . (3.63)

Note that this critical point occurs exactly at the thermodynamic singular point

(3.48), and implies that the BH is massless (M = 0). This leads to a very peculiar

behaviour as described below. Namely, in the p − v diagram this critical point

corresponds to a place where various isotherms merge together as displayed in
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Fig. 3.9b.8 The Gibbs free energy displays two swallowtails, both emanating from

the same origin given by (3.63), shown in Fig. 3.8b. In the p−t diagram, Fig. 3.10c,

we consequently observe an isolated critical point. Such a critical point is special as

can be seen from the following expansion of the equation of state, using variables

(3.61):
p

pc
= 1 +

24

d− 1
τω2 − 8

(d− 4)

(d− 1)
ω3 + · · · (3.64)

Together with the fact that the specific heat at constant volume, Cv ∝ T ∂S
∂T

∣∣∣
v
∝

|t|−α̃, identically vanishes for our Lovelock BHs as S = S(V, α2, α3, . . . ), one can

conclude that the critical exponents associated with the isolated critical point are

α̃ = 0 , β̃ = 1 , γ̃ = 2 , δ̃ = 3 . (3.65)

Such exponents are different from the swallowtail exponents (3.10). This means

that not all scaling relations remain valid for this critical point. In fact we find

that the following scaling relation:

γ̃ = β̃(δ̃ − 1) (3.66)

remains valid, whereas the equality between 2 − α̃ = 2β̃ + γ̃ is violated; in other

words three instead of two of the critical exponents α̃, β̃, γ̃ and δ̃ are independent.

The presence of the thermodynamic singularity that occurs exactly at v = vc seems

puzzling. Is there any pathology hiding in the black hole spacetime? In particular

are the black holes at the critical point and its nearby vicinity non-singular at the

horizon? To answer this question, one can try to study the tidal forces that an

observer falling through the black hole horizon would experience. Such forces are

determined by the orthonormal components of the Riemann tensor and, in this

case, depend on f ′(r+) and f ′′(r+).9 One can show that both these quantities

when expressed as functions of p and v are smooth and finite at p = pc, however

they diverge at v = vc for pressures slightly off pc. Therefore, the thermodynamics

around the special isolated critical point (3.63) seems well defined and there is

nothing pathological about the corresponding BH spacetimes. One can also show

that the branches of BHs that globally minimize the Gibbs free energy (and possess

non-negative temperature) have always non-negative specific heat CP and hence

8 Contrary to the previous cases concerning thermodynamic singularities, the isotherms do not cross
here but rather merge and depart again. This is a direct consequence of the fact that in fact two
thermodynamic singularities coincide at v = vs.

9Alternatively, one may want to study various curvature invariants, for example the Kretschmann
scalar, given by (3.31). In either case the conclusions remain qualitatively the same.
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are locally thermodynamically stable, while at the critical point we find CP = 0.

Further discussion of this interesting isolated point can be found in [49].

3.5 AdS/CFT Interpretation and Conclusions

New ideas about dynamical pressure and holography in this context has been

recently proposed [27]. The question is: How does one interpret the pressure and

the volume in the extended thermodynamics in terms of the dual field theory?

The first idea could be that they are the pressure and the volume of the fluid but

this hypothesis does not seem to be valid (as can be seen by studying the stress-

energy tensor of a Schwarzschild BH in AdS ). The stress tensor’s properties are

consistent with that of with that of a conformally invariant fluid with density ρ ∝ p.

Both are set by the energy (so the mass M of the black hole, plus the Casimir

energy, if we are in global AdS). Thus, the fluid pressure is not the p of the AdS

thermodynamics that is set by the cosmological constant. They simply do not

match. In the standard holographic dictionary, the BH thermodynamic quantities

(M, T, S) map10 to (U, T, S) of the dual non–gravitational theory. However,

considering the extended phase space, one has a BH thermodynamics where P

and V are dynamical, and M is interpreted as the enthalpy H = U + pV of the

gravity theory. Thus, it is reasonable to think that there should be a map from the

BH quantities (H, T, S, P, V ) and the dual field theory [27, 50, 51]. The question

remains on the field theory side, what is the meaning of P , given that it is not a

thermodynamic variable?

In this chapter, a study of different gravitational systems in the framework of black

hole chemistry has been presented.

It has been showed that various thermodynamic phenomena, such as Van der

Waals behaviour, reentrant phase transitions (RPT), and tricritical points occur

in the context of RBH and 3rd-order Lovelock gravity. For example, it is possible

to confirm the existence of a tricritical point in d = 8, 9, 10 dimensions in the case

of charged Lovelock black holes and the existence of RPT in d = 8, 9, 10, 11 di-

mensions for the electrically neutral ones. Moreover, a ‘multiple RPT’ behaviour

is present, in which the Gibbs free-energy is continuous at the phase transition

point. This feature has not previously been noted.

In the case of hyperbolic κ = −1 Lovelock black holes one generically finds ther-

modynamic singularities, in which all isotherms cross at a particular value of v in

10after putting in the value of Newton’s constant G
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the p−v diagram. The corresponding Gibbs free energy suffers from ‘infinite jump’

and undergoes ‘reconnection’. In particular, one may observe a form of swallowtail

in which one end of the swallowtail ‘goes to infinity’. Since the global minimum

of the Gibbs free energy is always well-defined, it is still possible to make sense

of thermodynamics. Regions where black holes have negative entropy have been

excluded from thermodynamic considerations. However there has been a recent

proposal in which negative entropy is interpreted in terms of heat flow out of a

volume [50, 51, 52]. It would be interesting to see if a similar interpretation holds

for Lovelock black holes.

It has been showed that the thermodynamic behaviour when α =
√

3 and κ = −1

for 3rd-order uncharged Lovelock black holes is very peculiar [46, 47]. In this inter-

esting special case has been found [38] that the equation of state has non-standard

expansion about a special critical point. Rather than p/pc = 1 + Aτ + Bτω +

Cω3 + . . . (characteristic for mean field theory critical exponents and swallowtail

catastrophe behaviour), one obtains

p

pc
= 1 +

24

d− 1
τω2 − 8(d− 4)

d− 1
ω3 + . . . , (3.67)

suggesting a violation of certain scaling relations and non-standard critical expo-

nents. Beyond p = pmax the asymptotic structure of the spacetime changes, being

compact for p > pmax. Perhaps there is a phase transition to such solutions? One

might also consider a possibility of identifying an effective cosmological constant,

rather than the bare cosmological constant, with pressure [53] and describing the

thermodynamics from that perspective, analogous to the approach taken for boson

stars [54].
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Chapter 4

Holographic Application

During the past years, the AdS/CFT correspondence has yielded several insights

into the dynamics of strongly coupled gauge theories. A strongly coupled QFT at

finite temperature T can be obtained using, as gravitational dual, a black brane

(that is a black hole whose horizon is R3) in asymptotically Anti-de-Sitter space.

Indeed, BHs and black branes are thermal objects associated with a Hawking

temperature that, in the gauge/gravity dictionary, correspond to the temperature

T of the dual field theory. The entropy and the energy density of the boundary

theory are also equal to the corresponding black brane quantities (see Fig. 4.1).

The components of the retarded two-point correlator functions of the Tµν of a

CFT in four-dimensional Minkowski space at finite temperature can be expressed

in terms of the bulk metric fluctuations hµν around the black brane solution. These

metric fluctuations depend on the various symmetries of the gravitational system.

In this chapter, the Gauss-Bonnet and the regular black brane metrics, will be

used to calculate the shear viscosity of a strongly coupled gauge theory on the

AdS boundary, in the hydrodynamic limit. The hydrodynamic limit corresponds

to ω, k << T , where ω is the frequency, k is the wavelength number and T is the

temperature of the dual thermal QFT. In this limit, the theory describes a sort of

“CFT plasma” for which transport coefficients can be calculated using the rules of

the AdS/CFT correspondence.

In particular, during this chapter, it will be used the duality between the hydrody-

namic modes in field theory and the quasi-normal modes of the AdS black brane

metric. This identification was initially used to calculate the ratio of the shear

viscosity η to the entropy density s for a class of gauge theories with a classical

Einstein gravity dual.
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Gauge theory:

• d dimensions

• T temperature

r

Black Brane
Temperature T

Anti-de Sitter Space
d + 1 dimen-

sions (AdSd+1)

Figure 4.1: Cartoon representation of the AdS/CFT correspondence.

In the hydrodynamic description, the shear viscosity η parametrizes how efficiently

the momentum of a layer of fluid (assuming the momentum to be in the plane

defined by that layer) diffuses in the direction orthogonal to the momentum1.

Interestingly, it has been found that there is some universality on the value of the

ratio η/s calculated for all gauge theories described by classical gravity. Using

AdS/CFT it has been calculated that the ratio of the shear viscosity η to the

entropy density s is specifically
η

s
=

1

4π
. (4.1)

The ratio η/s = 1/4π is conjectured to be a universal lower bound, called KSS

bound [1], that by now all known materials in nature satisfy 2. One piece of

evidence for the KSS conjecture came from string theory, because the leading

finite corrections in the ’t Hooft coupling λ always give a positive contribute raising

η/s above the bound. However, in Refs. [8, 9, 10] a study on AdS Gauss-Bonnet

gravity (i.e., R2 higher derivative gravity corrections3) showed that the lower bound

is violated and a new lower bound 4/25π based on causality condition on the dual

field theory, is proposed. From the point of view of AdS/CFT, an interesting

feature of the KSS bound is that it seems to be saturated by Einstein gravity.

This gives that at the linearized order, small corrections to Einstein gravity often

violate the bound. One can expect that corrections to Einstein gravity occurring

in any quantum theory of gravity can violate the bound [9].

1Or in other words, η governs the relaxation of small deviations away from thermodynamic equilib-
rium.

2At the present, all known substances, among which for example water and liquid helium, satisfy the
bound. However, certain cold atomic gas systems in the unitarity limit (see e.g. [2]) and the quark-gluon
plasma created at Relativistic Heavy Ion Collider (RHIC) [3, 4, 5, 6, 7] seem to be the closest to the
bound.

3The higher derivative gravity corrections, as it was also stated in Chapter 3, can be considered as
generated from string theory corrections.
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The bound on the lowest value of the ratio has been considered from the point of

view of heavy-ion collision physics. The idea that holography provides a useful,

experimentally testable model for heavy ion collisions was further supported when

the results from the Relativistic Heavy Ion Collider (RHIC) indicated that the

quark-gluon plasma could be understood as a near-perfect fluid with shear viscosity

numerically close to the AdS/CFT result. Moreover, the ratio η/s for pure gluon

QCD slightly above the deconfinement temperature has also been calculated on the

lattice [11, 12] and it seems to be larger than (4.1). This difference between the two

approaches further motivates investigations of the universality of the KSS bound in

holographic models to clarify its physical origin by correlating bulk pathologies and

the violation of the bound. In this chapter, the shear viscosity will be calculated

for:

• A plasma dual to Gauss-Bonnet (GB) black branes, and

• A gauge theory dual to an AdS RBH background.

In the case of extremal and non-extremal GB black branes in five spacetime di-

mensions, the shear viscosity to entropy ratio η/s is calculated using the method

recently proposed in Refs. [13, 14, 15]. Different methods will be used to calculate

η in the case of regular black brane metric [16, 17, 18].

4.1 The Gauge/gravity Correspondence

The topic of the AdS/CFT duality has been briefly presented in Chapter 1 (see

Sect. 1.4.3). In general, the duality states that there is a map from string the-

ory in ten dimensions to a QFT in a lower number of dimensions. Indeed, in the

string theory framework, it is quite natural to construct SU (Nc) gauge field theo-

ries on hypersurfaces embedded in a higher dimensional space containing gravity.

Although the AdS/CFT correspondence should be valid at all regimes, the duality

between the two theories can be used to give insights into the non-perturbative

regime (i.e., strong coupling dynamics) of one theory, from the computable weak

coupling perturbative regime of the other. This is obtained in the so-called ’t

Hooft limit (Nc → ∞) and λtH → ∞. The original example of AdS/CFT cor-

respondence is between N = 4 supersymmetric Yang-Mills (SYM) theory and a

specific string theory (type IIB) on AdS5×S5 space. The N = 4 SYM theory is a

gauge theory with a gauge field, four Weyl fermions, and six real scalars, all in the
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adjoint representation of the color group. The Lagrangian of this theory can be

written down explicitly, but is not very important for the purposes of this thesis.

It has a vanishing beta function and is a conformal field theory (CFT) (thus the

CFT in AdS/CFT).

A picture of the duality in superstring theory is obtained using a stack of N parallel

D3-branes4 [19]. The CFT side of the duality is realized using the open string point

of view, i.e., the stings that begin and end on the D3-branes. There are N2 types

of open strings stretched between the D3-branes. As the distance between the

branes decreases, the masses of the stretched strings go to zero, and the strings do

behave as the components of a U (N) gauge field living on the world volume of the

branes [20]. On the other hand, closed strings contain gravitons in the spectrum

of their excitations. In the low energy limit, this can be modeled by a supergravity

theory, in which the metric on spacetime is affected by massive objects, like D-

branes. The interaction between the stack of D3-branes and closed strings curves

the space, generating an extremal black three-brane, a higher-dimensional analog

of an extremal charged BH. It can be seen that the space near the event horizon

is warped into anti-de Sitter space. Thus, the AdS part of the duality is realized

as the near-horizon limit of a stack of D3-branes.

4.1.1 Anti-de Sitter Geometry

On the string theory side, we have type IIB string theory, which contains a finite

number of massless fields, including the graviton, the dilaton φ, some other fields

(forms), their fermionic superpartners and an infinite number of massive string

excitations. It has two parameters: the string length ls and the string coupling gs.

In the long-wavelength limit, when all fields vary over length scales much larger

than ls, the massive modes decouple and one is left with type IIB supergravity

in a ten dimensional spacetime, which can be described by an action. The type

IIB string theory lives in a ten-dimensional space-time with metric that is a direct

product of a five-dimensional sphere (dΩ5) and another five-dimensional space-time

spanned by t, x, and r

ds2 =
r2

b2

(
−dt2 + d~x2

)
+
b2

r2
dr2 + b2dΩ2

5. (4.2)

4D-branes (or Dirichlet branes) are higher dimensional non-perturbative solitonic objects contained
in supersymmetric string theory.
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The AdS5 geometry is described by the metric [21]

ds2 =
r2

b2

(
−dt2 + d~x2

)
+
b2

r2
dr2 (4.3)

where slices of constant radial coordinate r are four-dimensional Minkowski space,

with the boundary at r → ∞, and b is the AdS radius of curvature. Even if the

duality regards a ten dimensional string theory, one does not generally consider the

S5 part of the metric, assuming that the theory is compactified on S5. When the

dual of the string theory is N = 4 super-Yang-Mills, the AdS radius of curvature

is related to the rank of the gauge group Nc by

b3/ (8πG5) = (Nc/2π)2 , (4.4)

where G5 is the five-dimensional gravitational coupling. The metric (4.2) has the

isometry group5 SO (4; 2), which is also the conformal group in four spacetime di-

mensions. Because of this property, the dual quantum field theory has no scale and

is a conformal field theory (CFT). The isometry realizing overall scale transforma-

tions in AdS, corresponds to a translation in the fifth (radial) direction along with

an overall rescaling of the coordinates shared with the field theory. Consequently

the fifth, holographic direction r can be identified with a change of scale, with

the region near the boundary corresponding to the high energy (UV) limit and

the region far from the boundary encoding the low energy (IR) physics (see Fig.

4.1); this is realized by the redshift factor r2/b2 weighting the Minkowski metric

in Eq. (4.2). Other gauge symmetries of the gravity side are mapped to globally

conserved currents in the field theory. The fields in AdS are sources of operators

on the field theory side. Therefore, analyzing the dynamics of the sources in the

curved spacetime one can learn about the dual operators.

4.1.2 Black Brane in Anti-de Sitter Spacetime

There is the possibility to generalize the original AdS/CFT duality introducing

features that break the conformal symmetry, producing in this way a duality with

a non-conformal field theory. In a non-conformal theory there is a fundamental

scale. One notable way to break conformality and introduce a scale is to consider

5The isometry group of a metric space is the set of all distance-preserving maps from the metric
space onto itself, with the function composition as group operation. The conformal group is the group
of transformations from a space to itself that preserve all angles within the space.
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in the bulk a black brane (BB) in AdS space

ds2 =
r2

b2

(
−h (r) dt2 + d~x2

)
+

b2

r2h (r)
dr2, h (r) ≡ 1− u2, u =

r2
+

r2
. (4.5)

These are theories at finite temperature. The BB is interpreted as being dual to

a thermal state of the dual field theory. The surface gravity and surface area of

the BB horizon coincide with the temperature and entropy density of the QFT

[22]. Therefore, even though the vacua of the QCD and N = 4 SYM theory

have very different properties, when one compares N = 4 SYM at temperature

different from zero with QCD at a temperature above the critical temperature Tc

of the crossover from the hadron gas to QGP, many of the qualitative differences

disappear or become unimportant.

4.2 Hydrodynamics

Hydrodynamics can be thought of as an effective theory describing the dynamics

of the system at large length scales with respect to the mean free path of its

microscopic components. Thus, in hydrodynamics the fluctuations about thermal

equilibrium are small and the system is locally in equilibrium.

Using (i) the conservation law of energy and momentum (∂µT
µν = 0), (ii) the

hypothesis of local thermal equilibrium6 and (iii) the expansion in powers of spatial

derivatives of the hydrodynamic variables; then the zeroth order expression of the

energy-momentum tensor T µν can be written in this form:

T µν = (ε+ P )uµuν + Pgµν (4.6)

where uµ is the relativistic velocity with uµu
ν = −1. The expression (4.6) is the

typical formula for ideal fluid where ε = 〈T tt〉 is the energy density and P = 〈T ii〉
is the pressure7. The notion of ideal is related to the fact that the fluid does

not dissipate energy (e.g., there is no friction). However, the ideal fluid does not

generate entropy (that is a conserved quantity in the ideal case). In order to have

entropy production, one needs to go to the next order in the derivative expansion.

This expansion is obtained by allowing the temperature T and the velocity uµ to

be slowly varying functions of the boundary coordinates. The coefficients in this

6If perturbations have long wavelengths, the state of the system, at a given time, is determined by
the temperature T (x) and the local fluid velocity uµ (x) as a function of coordinates. Note that because
uµuµ = −1, only three components of uµ are independent.

7Note that the quantities ε and P are not independent, they are related via the equation of state of
thermodynamics.
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expansion are the so-called transport coefficients [23].

The derivative expansion modifies the previous energy-momentum tensor (4.6) in

T µν = (ε+ P )uµν + Pgµν − σµν (4.7)

where σµν is proportional to derivatives of the temperature T (x) and the local

fluid velocity uµ (x) and it corresponds to the dissipative part of T µν . In a generic

frame, the dissipative part of the energy momentum tensor can be defined as [24]

σµν = P µαP νβ

[
η

(
∂αuβ + ∂βuα −

2

3
gαβ∂λu

λ

)
+ ζgαβ∂λu

λ

]
(4.8)

where P µν = gµν+uµuν is the projection operator onto the directions perpendicular

to uµ while η and ζ are respectively the shear and bulk viscosity. The shear

viscosity η is the coefficient of the symmetric traceless contribution while the bulk

viscosity ζ is the coefficient of the trace part8. The generalization of the equation

(4.8) to curved space-time is

σµν = P µαP νβ

[
η (∇αuβ +∇βuα) +

(
ζ − 2

3
η

)
gαβ∇ · u

]
(4.9)

where ∇ is the covariant derivative. Thus, using (4.7) and (4.8) one can write

the energy-momentum tensor as a function of the shear and bulk viscosity. In the

next section, it will be described how it would be possible to use these equations to

extract information about the low-momentum behavior of Green’s functions of the

boundary QFT. In particular, it will be shown how the transport coefficient η is

related to the retarded Green’s functions. The connection between the macroscopic

hydrodynamic transport coefficient and the microscopic Green’ s functions is given

by the Kubo formula.

4.2.1 The Kubo Formula

To understand the connection between hydrodynamic and the Green’s functions,

we need to introduce the linear response theory and Green’s functions that respect

the causal structure. The idea behind linear response theory is to consider small

space-perturbations and time-perturbations around the equilibrium state of the

physical system. As first step, let us recall how two-point correlation functions

are usually calculated. If one couples sources Ja (x) to a set of (bosonic) operators

8In CFT theories that are defined by a traceless energy-momentum tensor, the bulk viscosity is equal
to zero.
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Ôa (x), so that the new action is given by the sum of the free action S0 and the

coupled part

S = S0 +

∫
dt dx Ja (x) Ôa (x) (4.10)

then the source Ja (x) will introduce a perturbation of the system. In particular,

the average values of Ôa will differ from zero, which is usually assumed to be the

equilibrium value. The field theory path integral representation of the one-point

function with a source is〈
Ôa (x)

〉
=

∫
[Dψ] Ôa (x) eS0+

∫
y J

a(y)Ôa(y) (4.11)

where ψ denotes the field of the QFT. Now, one can expand the exponent in (4.11)

in a power series of the source and, if the sources Ja’s are small, maintain the terms

up to the linear order〈
Ôa (x)

〉
=
〈
Ôa (x)

〉
J=0

+

∫
dt dy

〈
Ôa (x) Ôb (y)

〉
J b (y) + . . . (4.12)

Considering normal-ordered observables, the two-point function is the retarded

Green’s function GR
ab

iGR
ab (x− y) = θ

(
x0 − y0

) 〈[
Ôa (x) , Ôb (y)

]〉
. (4.13)

Thus, if the sources Ja’s are small, the quantity δ
〈
Ôa (x)

〉
, defined by

〈
Ôa (x)

〉
−〈

Ôa (x)
〉
J=0

in (4.12), measures the fluctuations of the observable away from the

expectation value, i.e., the linear response of the system to the external perturba-

tion as

δ
〈
Ôa (x)

〉
= −

∫
dt dyGR

ab (x− y) J b (y) . (4.14)

The fact that the linear response is determined by the retarded Green’s function

is given by causality: The source can influence the system only after it has been

turned on.

Now, to determine the correlation functions of T µν , one needs to couple a weak

source to T µν and determine the average value of T µν after this source is turned on.

To find these correlators at low momenta, one can use the hydrodynamic theory.

So far, in the Sec.4.2 about hydrodynamics, there was no source coupled to T µν .

However, this lack can be easily corrected, as the source of the energy-momentum

tensor is the metric gµν . One must then use the hydrodynamic equations gener-

alized to curved spacetime and from them determine the response of the thermal
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medium to a weak perturbation of the metric. By comparison with the result

from the linear response theory, one can see that the contributions to the traceless

spatial components correspond to the zero spatial momentum, low-frequency limit

of the retarded Green’s function of T xy

GR
xy, xy (ω, 0) =

∫
dt dx eiωtθ (t) 〈[Txy (t, x) , Txy (0, 0)]〉 = −iηω +O

(
ω2
)
.

(4.15)

In this way one can derive the Kubo’s formula relating the shear viscosity and the

Green’s function

η = − lim
ω→0

1

ω
ImGR

xy, xy (ω, 0) . (4.16)

The Kubo’s formula encodes the dynamical properties of a thermal gauge theory

in its Green’s functions. In particular the kinetic coefficients are connected, via

the Kubo’s formula, to a certain limit of the real-time thermal Green’s functions.

In the framework of AdS/CFT, it is possible to compute the retarded Green’s

function by making a small perturbation of the bulk metric.

4.3 Holographic Correlation Functions

This section will show how to deal with the calculation of correlation functions of

the type 〈O (x1) · · · O (xn)〉 from gravity. We will recall how to transfer the Eu-

clidean approach to calculate the holographic two-point functions to the Lorentzian

case and how to impose boundary condition compatible with causality [23].

Usually, in QFT the correlation functions can be calculated from the generating

functional

ZQFT [ J ] =
〈
e
∫
LJ
〉

(4.17)

where LJ is obtained by perturbing the Lagrangian by a source term in this way:

L → L+ J (x)O (x) ≡ L+ LJ (4.18)

and O (x) is a gauge invariant operator of the d-dimensional field theory. The

connected correlators then are given by the functional derivatives of the partition

function: 〈∏
i

O (xi)

〉
=

(∏
i

δ

δJ (xi)

)
logZQFT [ J ]

∣∣∣∣∣
J=0

. (4.19)
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Now, in Euclidean spacetime, the gauge/gravity duality is encoded9 in the follow-

ing way:

ZQFT [φ0] =
〈
e
∫
∂M φ0Ô

〉
= Zgravity [φ→ φ0] (4.20)

where Ô is some boundary CFT operator and φ is the bulk field in the d + 1-

dimensional theory that couples to it. The field φ0 is the boundary value of φ

φ0 (x) = φ (r →∞, x) = φ (x)|∂AdS . (4.21)

The generating functional Zgravity [φ→ φ0] is the partition function (or the path

integral) in the gravity theory evaluated over all the functions which have the value

φ0 at the boundary of AdS10

Zgravity [φ→ φ0] = e−Scl[φ0]. (4.22)

In Euclidean space, Eq. (4.20) implies that finding
〈
Ô (x) Ô (0)

〉
means to com-

pute the second functional derivative of the gravitational action Scl on the bound-

ary value φ0 〈
Ô (x1) Ô (x1)

〉
=

δ2Scl [φ]

δϕ (x1) δϕ (x2)

∣∣∣∣
ϕ=0

(4.23)

where ϕ = (b/r)∆−d φ and ∆ is the mass scaling dimension. In order to calculate

the
〈
ÔÔ

〉
correlator, one can follow the following three steps11 [17]:

1. Write the classical gravitational action for the scalar perturbation φ and then

extract the function A (u) staying in front of (∂uφ)2 in the kinetic term

Scl =
1

2

∫
du d4xA (u) (∂uφ)2 + . . . (4.24)

where u is an alternative radial coordinate defined as r2
0/r

2 with r0 an arbi-

trary length. In terms of this new coordinate, the boundary is at u = 0.

2. After performing the Fourier transformation of the boundary coordinates and

imposing the boundary condition φ (u = 0, p) = φ0 (p), find the solution of

9Based on the Maldacene discovery, Witten and independently Gubser, Klebanov and Polyakov de-
duced the general rule (4.20) relating the bulk and the boundary in 1998, thus, this formula is usually
called GPKW.

10The action is the on-shell classical gravity action. The on-shell gravity action typically diverges and
it needs to be renormalized following the procedure of holographic renormalization. Thus, in general,
the classical action should be substituted by a renormalized version.

11One should take in mind that these three steps work because the classical action for classical solu-
tions, reduces to the boundary term ∼ Aφφ′ .
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the linearized field equation for φ in the following form

φ (u, q) = fq (u)φ0 (q) with p = (ω, ~q) . (4.25)

3. The Euclidean Green’s function is then defined as

GE (q) = − A (u) f−q (u) ∂ufq (u)|u→0 (4.26)

and in doing the limit u→ 0 one may need to throw away the contact terms.

Now, one can proceed with the formulation of the prescription for the Minkowskian

correlators:

1. Find the Euclidean Green’s function following the previous procedure.

2. In Minkowki space one has to specify the boundary condition at the horizon

u = 1 in addition to that at the boundary. A reasonable decision (based on

the black hole physics) turns out to be to impose the incoming-wave boundary

condition, i.e. waves are only absorbed by the black hole but not emitted

from there.

3. The retarded12 thermal Green’s function then can be defined as

GR (q) = A (u) f−q (u) ∂ufq (u)|u→0 . (4.27)

The sign of (4.27) corresponds to the standard convention of the retarded

(minus sign in the front) and advanced (plus sign) Green’s functions, in

particular:

GR (ω, ~q) = −i
∫
d4x e−iq·xθ (t)

〈[
Ô (x) , Ô (0)

]〉
. (4.28)

In ref. [25] has been verified that this procedure gives indeed the correct retarded

Green’s function in several cases where an independent verification is possible.

This prescription will be used in this section for the regular black brane solution.

12Choosing the outgoing-wave function, boundary condition would give the advanced Green’s function
instead.
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4.3.1 Classical Black Three-brane Example

As an illustrative example before proceed with the next calculations based on the

regular black three-brane described in Sec. 4.4.1, one can consider a black three-

brane metric gµν given in (4.5) and write the equation of motion of a scalar field

φ in this background13

�φ =
1√
−g

∂µ
(√
−ggµν∂νφ

)
= 0. (4.29)

The solution to this equation with the boundary condition φ = φ0 when u = 0 is

φ (p, u) = fp (u)φ0 (p) where the function fp (u) satisfy the following equation

∂2fp (u)

∂u2
−
(

1 + u2

uf

)
∂fp (u)

∂u
+

w2

uf 2
fp (u)− q2

uf
fp (u) = 0. (4.30)

For a standard black three-brane described by the line element (see also Eq. (4.5))

ds2 =
r2

+

ub2

(
−f (u) dt2 +

3∑
i=1

dx2
i

)
+

b2

4u2f (u)
du2 + b2dΩ2

5 (4.31)

the differential equation (4.30) near the boundary u = 0 has two solutions f1 ∼
1, f2 ∼ u2 and also near the horizon u = 1 has two solutions

fp (u) ∼ (1− u)iω/2 (4.32)

f ∗p (u) ∼ (1− u)−iω/2 . (4.33)

These two solutions oscillate rapidly as u→ 1, but the amplitude of the oscillation

is constant. In virtue of this, one can accept as solution any linear combination

of f1 and f2 near the boundary, which means that there is no unique solution to

the differential equation (4.30). The two solutions fp and f ∗p , have very different

behaviour at the horizon: one correspond to a wave that moves toward the hori-

zon (incoming wave) and the other to a wave that moves away from the horizon

(outgoing wave) [23].

Motivated by the fact that nothing should escape from the horizon, one can impose

the incoming-wave boundary condition at r = r+. At this point the action for the

bulk field plays an important role: if one writes down this action, after integrating

13The equation of motion can be obtained from the variation of the action of the scalar field φ in the
AdSd+1 space.
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by parts one get contribution from both the boundary and the horizon

S =

∫
d4p

(2π)4φ0 (−p)F (p, z)φ0 (p)

∣∣∣∣z=zh
z=0

. (4.34)

where z = b2/r. If one tried to differentiate the action with respect to the boundary

value φ0, one would find

G (p) = F (p, z)|zh0 + F (−p, z)|zh0 (4.35)

and this quantity is real (because the imaginary part of F (z, p) does not depend

on z). However, this is not the expected result, as the retarded Green’s functions

are in general complex. A partial solution to this problem was suggested in [25]

where is postulated that the retarded Green’s function is related to the function

F by the same formula that is usually used at zero temperature:

GR (p) = −2 lim
z→0
F (p, z) . (4.36)

In particular in this way, all the contributions from the horizon are threw away.

Using the “postulate” (4.36) one can extract physical results. For instance, using

the Kubo’s formula (4.16) one can get the shear viscosity by studying a mode with

~q = 0 in the low-frequency limit ω → 0. As showed in [8], the above prescription

for computing the retarded Green’s functions in AdS/CFT works well only if the

bulk scalar field has second-order derivatives as in Gauss-Bonnet. If the bulk

action contains more than two derivative, complication could arise even if one

treats the higher derivative part as a perturbation. For example one needs to add

Gibbons-Hawking terms to ensure a well-posed variational problem.

4.4 Regular Black Brane

The (n+1)−dimensional line element of a non-singular (i.e., regular) Schwarzschild

BH in AdS spacetime has been introduced in Chap.1 and Chap.2 (e.g., see Eq.

2.21). The metric function for a (n + 1)-dimensional RBH in AdS background

reads:

ds2 = −Vndt2 +
1

Vn
dr2 + r2dΩ2 (4.37)

where dΩ2 is the metric of the unit (n− 1)-sphere and the function Vn is of the

form

Vn = 1 +
r2

b2
− ωnM

rn−2
γ

(
n

2
,
r2

4θ2

)
(4.38)
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and b is the AdS radius which is related to the cosmological constant Λ by the

equation

Λ = −n (n− 1)

2b2
. (4.39)

The topology of the solution (4.37) is R2×Sn−1 but in order to describe the regular

black brane, one needs to go to a solution with boundary Rn−1×S1. This solution

can be obtained performing the large mass limit [26], because when M >> ∞,

the Sn−1 becomes flat and looks exactly like Rn−1. So, in the large M limit the

horizon equation Vn (r) = 0 reads

rn+ = ωnM γ

(
n

2
,
r2

+

4θ2

)
b2 →

rn+

γ
(
n
2
,
r2+
4θ2

) = ωnM b2. (4.40)

A scaling that reduces the metric (4.37) to a solution with boundary Rn−1 × S1

is given by setting

r =
(r+

b

)
ρ ≡ Kρ, t =

(r+

b

)−1

τ ≡ K−1τ (4.41)

then

Vn = K2

[
ρ2

b2
− ωnM

Knρn−2
γ

(
n

2
,
K2ρ2

4θ2

)]
(4.42)

and the line elements reads

ds2 = − Vn
K2

dτ 2 +
K2

Vn
dρ2 +K2ρ2dΩ2. (4.43)

If one introduce in the line element the explicit value for K and then consider its

power to n, then

Kn =
(r+

b

)n
=
ωnM

bn−2
γ

(
n

2
,
r2

+

4θ2

)
(4.44)

and one gets the complete non-singular (n+ 1)-dimensional metric

ds2 = −ρ
2

b2

1− bn

ρn
·
γ
(
n
2
, K

2ρ2

4θ2

)
γ
(
n
2
, K

2b2

4θ2

)
 dτ 2 +

b2

ρ2

dρ2[
1− bn

ρn
·
γ
(
n
2
, K

2ρ2

4θ2

)
γ
(
n
2
, K

2b2

4θ2

)
] +

+
ρ2

b2

[
ωnM γ

(
n

2
,
r2

+

4θ2

)
b2

] 2
n

dΩ2. (4.45)

The metric (4.45) has interesting properties, e.g., one should notice that:

1. This metric has horizon at ρ+ = b ;
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2. The last term describes an Sn−1 sphere with radius

ρ

b

[
ωnM γ

(
n

2
,
r2

+

4θ2

)
b2

] 1
n

(4.46)

that in the limit M →∞ diverges as M1/n (because the gamma function is

bounded). Hence, for M →∞, locally Sn−1 → Rn−1. If one introduces near

a point P ∈ Sn−1 coordinates yi such that, dΩ2 =
∑

i dy
2
i , and then set

yi =

[
ωnM γ

(
n

2
,
r2

+

4θ2

)
b2

] 2
n

xi (4.47)

then the metric becomes

ds2 =
ρ2

b2

(
−fdτ 2 +

n−1∑
i=1

dx2
i

)
+

b2

ρ2f
dρ2 (4.48)

where

f = 1− bn

ρn
·
γ
(
n
2
, K

2ρ2

4θ2

)
γ
(
n
2
, K

2b2

4θ2

) . (4.49)

3. The asymptotic formula for the gamma function γ
(
n
2
, z
)

in case z � 1 gives

γ
(n

2
, z
)
∼ Γ

(n
2

)
− z

n
2
−1e−z

[
1 +

n
2
− 1

z
+

(
n
2
− 1
) (

n
2
− 2
)

z2
+ . . .

]
. (4.50)

So the expansion for M � 1 gives14

f ' 1− bn

ρn
·

1−

(
K2ρ2

4θ2

)n
2
−1

e−
K2ρ2

4θ2

Γ
(
n
2

)
 . (4.51)

The black brane metric (4.48) can also be described using an alternative radial

coordinate u, defined as u = (b/ρ)v. In terms of the radial coordinate u, the

boundary is at u = 0, the horizon at u = 1 and the

du =
bv (−v)

ρv+1
dρ =

bv (−v)

ρvρ
dρ (4.52)

writing explicitly ρ one gets

dρ =
du

bv (−v)

bv

u
· b

u1/v
= du · b

(−v)u · u1/v
(4.53)

14(the same expansion would occur for θ → 0)
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while

f → f̃ = 1− un/v ·
γ

(
n
2
,
K2(b/u1/v)

2

4θ2

)
γ
(
n
2
, K

2b2

4θ2

) (4.54)

and the metric (4.48) in the new coordinate reads

ds2 =
b2

u2/v
· 1

b2

(
−f̃ dτ 2 +

n−1∑
i=1

dx2
i

)
+
b2u2/v

b2f
· b2

(−v)2 (u · u1/v)
2du

2 (4.55)

and finally one can write the black brane metric as

ds2 =
1

u2/v

(
−f̃ (u) dτ 2 +

n−1∑
i=1

dx2
i

)
+

b2

v2u2f̃ (u)
du2. (4.56)

Now, one last variables transformation is needed to bring the metric in the usual

black brane form: the time variable goes like τ → t/K (that is the inverse of

(4.41)) and the flat coordinates xi can be rescaled as dxi → dx̃i/K, giving the

well-know

ds2 =
r2

+

b2u2/v

(
−f̃ (u) dτ 2 +

n−1∑
i=1

dx2
i

)
+

b2

v2u2f̃ (u)
du2 (4.57)

that is the regular black brane metric in generic n space dimensions.

4.4.1 Black Brane Metric

In this section the black brane metric (4.56) in the case n = 4 and v = 2 is

considered. Using the K2 = r2
+/b

2

ds2 =
r2

+

b2 u

(
−f̃ (u) dτ 2 +

n−1∑
i=1

dx2
i

)
+

b2

4u2f̃ (u)
du2, f̃ = 1− u2 ·

γ
(

2,
r2+

4θ2u

)
γ
(

2,
r2+
4θ2

)
(4.58)

where the horizon is at u = 1 and the AdS boundary is at u = 0. Now, one can

perform the calculation directly in the case of five spacetime dimensions. Starting

from Eq. (4.38)

ds2 = −V4 (r) dt2 + V −1
4 (r) dr2 + r2dΩ2

3 (4.59)

where the function V4 (r) (that corresponds to n = 4 and spacetime d = 5) reads

explicitly

V4 (r) = 1− M G5

r2
γ

(
2,

r2

4θ2

)
+
r2

b2
. (4.60)
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In the large M limit, the horizon equation V4 (r) = 0 gives

M G5

r2
+

γ

(
2,

r2
+

4θ2

)
=
r2

+

b2
(4.61)

from which one can obtain

M G5 =
r4

+

b2γ
(

2,
r2+
4θ2

) (4.62)

and using the M in (4.60) then

V4 (r) = −
(
r4

+

b2r2

) γ
(

2, r2

4θ2

)
γ
(

2,
r2+
4θ2

) +
r2

b2
(4.63)

=
r2

b2

1−
(
r4

+

r4

) γ
(

2, r2

4θ2

)
γ
(

2,
r2+
4θ2

)
 (4.64)

One can go to the standard form of the black brane metric, performing the coor-

dinate transformation

u =
r2

+

r2
(4.65)

that gives,

V5 (u) =
r2

+

b2u

1− u2
γ
(

2,
r2+

4u θ2

)
γ
(

2,
r2+
4θ2

)
 (4.66)

and defines

f (u) = 1− u2
γ
(

2,
r2+

4u θ2

)
γ
(

2,
r2+
4θ2

) (4.67)

giving finally the metric (4.57) in d = 5 spacetime dimensions

ds2 =
r2

+

b2u

[
−f (u) dt2 + d~x2

]
+

b2

4u2f (u)
du2. (4.68)

4.4.2 Black Brane Temperature

Let us now look at the Hawking temperature for a general class of black brane

metrics of the form

ds2 = g (r)
[
−f (r) dt2 + d~x2

]
+

1

h (r)
dr2 (4.69)
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where f (r) and h (r) have a first order zero at the horizon, whereas g (r) is non-

vanishing there. Now one demands that the Euclidean continuation of the metric

(4.69),

ds2 = g (r)
[
f (r) dt2E + d~x2

]
+

1

h (r)
dr2 (4.70)

obtained by the change of variables t→ −itE, be regular at the horizon. Expand-

ing the euclidean metric (4.70) near the horizon r = r+ one gets

ds2 ≈ ρ2dϕ2 + dρ2 + g (r+) d~x2 (4.71)

with the new variable ρ, ϕ defined as

ρ = 2

√
r − r+

h′ (r+)
ϕ =

tE
2

√
g (r+) f ′ (r+)h′ (r+). (4.72)

The first two terms in (4.71) describe a plane in polar coordinates, so in order to

avoid a conical singularity at ρ = 0, one need require ϕ having period 2π. From

(4.72) one finally gets that the period β = 1/T of the Euclidean time must be

β =
1

T
=

4π√
g (r+) f ′ (r+)h′ (r+)

. (4.73)

Equation (4.73) can be applied to the metric (4.58) giving the temperature

T =
r+

πb2

1−
r4

+e
−
r2+

4θ2

32 θ4γ
(

2,
r2+
4θ2

)
 . (4.74)

The temperature (4.74) for the regular black three-brane is lower than the tem-

perature of the black three-brane (see Fig. 4.2).

4.4.3 Scalar Perturbations

Now that we have the black brane metric, it is possible to compute the stress

tensor correlators for a boundary CFT described by a particular action S. The

fluctuations of the boundary stress-energy tensor are described, in the gravity

language, by small metric fluctuations hµν around the black brane solution. Taking

into account the various symmetries and gauge degrees of freedom, only certain

components can mix.

For example, if one considers perturbations to the black brane background with

frequency ω and momentum p3 along the x3 axis, the system manifest an O (2)
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Figure 4.2: Black Brane temperture vs horizon radius. Temperature of a black
three brane (blue line) and a regular black three brane (red). The temperature for both

the metrics reaches the zero value only at r+ = 0.

symmetry in the plane (x1, x2). In this case the perturbation h12 does not mix

with any other components, whereas components h01 and h31 mix only with each

other. Therefore, the metric fluctuations can be combined into three independent

scalar fields φa with a = 1, 2, 3 (because only these three metric components are

different from zero). These three independent scalar fields given by the fluctuation

of the metric are dual to the Green’s function on the boundary. In particular for

the calculation of the shear viscosity the so-called scalar perturbation φ = h1
2 is

used. Adding the perturbation h1
2 to the black brane metric (4.58), the quadratic

part of the gravitational action (without the contribution of the matter part Lm)

in terms of the scalar field reads

Squad =
1

16πGN

∫
d4x dr

√
−g
(
−1

2
gµν∂µφ∂νφ

)
. (4.75)

4.4.4 Equation of Motion for the Scalar Channel

To compute the shear viscosity, one needs to study small metric fluctuation φ =

hxy around the black brane background and compute the two-point correlation

function of T xy. Varying the action for the scalar perturbation (4.75), one gets the

field equation for φ

∂µ
(√
−g gµν ∂νφ

)
= 0. (4.76)

The equation of motion for the black three-brane metric

ds2 =
r2

+

u b2

(
−fdt2 + dx2

)
+

b2

4u2

du2

f
(4.77)
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where f is defined as in Eq. (4.67), is obtained from (4.76) and gives(
w2

u f 2
− q2

uf

)
φ (u, q) +

(
f ′

f
− 1

u

)
φ′ (u, q) + φ′′ (u, q) = 0 (4.78)

where the primes denote the derivative with respect to the variable u. The variables

q, w are defined as

q = p3

(
b2

2r+

)
w = ω

(
b2

2r+

)
. (4.79)

In (4.78), the scalar field φ is written in the Fourier decomposition and it is defined

to be independent of x1 and x2

φ (t, u, x3) =

∫
dω dp3

(2π)2 φ (u, p3) e−iωt+ip3x3 ,

p = (ω, 0, 0, p3) , φ (u, p3) = φ∗ (u, −p3) . (4.80)

Usually, i.e., in the classical limit r+ � θ, Eq. (4.78) is the Heun differential

equation (second-order differential equation with four regular singular points).

Global solutions to the Heun equation are unknown. However, for computing

the shear viscosity one needs to consider only the regime of low frequency and

momentum, ω, p3 � T . In this regime, the solution representing the incoming

wave at the horizon is given by

φp3 (u) = (1− u)−iw/2 Fp3 (u) , (4.81)

where Fp3 (u) is regular at u = 1 and can be written as a series

Fp3 (u) = 1−
(
iw

2
+ q2

)
ln

1 + u

2
+O

(
w2, wq2, q4

)
. (4.82)

Let us now study the equation of motion for the regular black three-brane. Sub-

stituting the metric function f of the regular black brane (4.58)

f = 1− u2 ·
γ
(

2,
r2+

4θ2u

)
γ
(

2,
r2+
4θ2

) (4.83)

in the coefficients of the differential equation (4.78), in this way

q (u)φ (u, q) + p (u)φ′ (u, q) + φ′′ (u, q) = 0 (4.84)
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Figure 4.3: Scalar perturbation equation of motion. Details of the coefficients
around the poles. (Left) Plot of the function p (u) for values θ = 12, r+ = 10.1. (Right)

Plot of the function q (u) for values θ = 12, r+ = 10.1, w = 1, q = 1.

one obtains that the two functions are given by

p (u) =
r4

+e
−

r2+

4θ2u − 16θ4
[
γ
(

2,
r2+
4θ2

)
+ u2γ

(
2,

r2+
4uθ2

)]
16θ4u

[
γ
(

2,
r2+
4θ2

)
− u2γ

(
2,

r2+
4uθ2

)] (4.85)

and

q (u) =
1

u

q2u2γ
(

2,
r2+

4uθ2

)
γ
(

2,
r2+
4θ2

) − q2 + w2

u2γ
(

2,
r2+

4uθ2

)
γ
(

2,
r2+
4θ2

) − 1

−2

. (4.86)

From a numerical study (see Fig. 4.3) one finds that p (u) has two divergences,

one in u = 0 and the other in u = 1 while q (u) has only one divergence in u = 0.

One can also see that

lim
u→1−

p (u) (u− 1) = 1 (4.87)

lim
u→0+

p (u)u = −1 (4.88)

lim
u→0+

q (u)u = w2 − q2 (4.89)

lim
u→0+

q (u)u2 = 0. (4.90)

that means that the two functions have first order poles. Therefore, in the regular

black three-brane solution, there are only three regular singular points at u =

0, 1,+∞.
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4.5 Calculation of η/s for the Regular Black Brane

In general, if the field theory at temperature T 6= 0 is translational and rotational

invariant, the gravitational metric (4.48) can be written as

ds2
5 = −gttdt2 + grrd

2r + gxxδijdx
idxj = gNMdx

MdxN (4.91)

with metric components that depend only on r. As seen before, a non-zero tem-

perature field theory has a dual theory characterized by the presence of an event

horizon. Thus, one can assume that in the non-extremal case, gtt has a zero of

order one while grr has a first order pole at the horizon r = r+.

In order to compute the transport coefficient η associated to some operator Ô in

this theory, one can use the Kubo formula (4.16).

η = − lim
ω→0

lim
~k→0

1

ω
ImGR

(
ω,~k

)
(4.92)

where kµ =
(
ω,~k

)
. Assuming that the quadratic effective action for the bulk

mode φ dual to Ô has the form of the massless scalar field

S = −1

2

∫
dn+1x

√
−g 1

q (r)
gMN∂Mφ∂Nφ, (4.93)

where q (r) is a function of r and can be considered a spacetime dependent coupling

constant. Using the Kubo formula (4.16) with the general expression for the

retarded correlators, one finds that [18]

η = − lim
kµ→0

lim
r→0

Π (r, kµ)

iωφ
(4.94)

where Π is the canonical momentum of the field φ:

Π =
δS

δ∂rφ
= −
√
−g

q (r)
grr ∂rφ. (4.95)

The equation (4.94) follows from the fact that the real part of GR (k), when k →
0,vanishes faster then linearly in ω. Moreover, in (4.94), both Π and φ are solutions

of the classical equation of motion. The evaluation of η using (4.92), requires the

determination of both ωφ and Π in the small four momentum kµ → 0.

In the Hamiltonian formalism the equations of motions are given by (4.95) together

with

∂rΠ = −
√
−g

q (z)
gµνkµkνφ. (4.96)
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In the limit kµ → 0, the e.o.m. (4.95) and the Eq. (4.96) are trivial

∂rΠ = 0 +O (kµωφ) , ∂r (ωφ) = 0 +O (ωΠ) , (4.97)

and both quantities become independent of r, which allows their evaluation at any

r. Since the only restriction on the general metric (4.91) is that it possesses an

horizon, one can simply evaluate the e.o.m. at the horizon r+ where the infalling

boundary condition should be imposed.

In the near-horizon approximation r → r+, the metric functions can be written as

in (B.7)

gtt = −c0 (r+ − r) , grr =
cr

r+ − r
(4.98)

and from the equation of motions one find the following differential equation√
c0

cr
(r+ − r) ∂r

(√
c0

cr
(r+ − r) ∂rφ

)
+ ω2φ = 0. (4.99)

As seen before, the two general solutions for this equations are

φ ∝ e−iωt (r+ − r)±iω
√
cr/c0 . (4.100)

The infalling boundary condition imposes to take the negative sign in the exponent.

Therefore, from Eq. (4.100), one find that at the horizon

∂rφ =

√
grr
−gtt

(iωφ) , (4.101)

and using (4.95) and (4.100) one obtains that (4.94)

η =
1

q (r+)

√
−g
−grrgtt

∣∣∣∣
r+

. (4.102)

One can now apply this result to the regular black brane where

q (r+) = 16πGN

g = gttgrr (gxx)
3

and the shear viscosity (4.102)

η =
1

16πGN

(
b

r+

)3

(4.103)

depends from the parameter θ only via the horizon radius r+. The same result
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can be obtained using other methods (see Appendix B). The result (4.103) is the

standard result that one can obtain for a general black brane. To obtain the

entropy density s = S/ Vol (x1x2x3), necessary for the calculation of the ratio η/s,

one should integrate the first law of black brane thermodynamics

dS =
dM

T
(4.104)

=
3r2

+Vol(x1x2x3)

4 b3GN γ
(

2,
r2+
4θ2

)dr+. (4.105)

Since the temperature goes to zero faster then the derivative of the mass, the

function (4.105) diverges as r+ → 0. In the IR limit, r+ >> θ, the brane behaves

like a classical black brane and its entropy is S = Vol(x1x2x3)
4GN

(
r+
L

)3
.

4.6 Calculation of η/s for the Gauss-Bonnet Black Brane

The universality of the shear viscosity η to entropy density s ratio for Einstein-

Hilbert gravity represents a very important result of the gauge/gravity corre-

spondence. First found for the hydrodynamic regime of the QFT dual to black

branes and black holes of the Einstein-Hilbert theory [1, 16, 27]. The KSS bound

η/s ≥ 1/4π has been extended to a variety of cases including the Einstein-Hilbert

gravity with all possible matter terms in the action, hence, among others the QFT

dual to Reissner-Nordström 5d gravity [1, 27] and the important case of the quark-

gluon plasma (see e.g. [28]). As already discussed in the introduction, it has been

also conjectured that the KSS bound holds for any fluid in nature. For a detailed

discussion on the shear viscosity to entropy ratio see Refs. [1, 8, 16, 27, 28, 29,

30, 31].

In the previous sections, it has been showed that also the non-extremal regular

black brane satisfies the bound. However, the KSS bound seems to lose its uni-

versality when one introduces, in the Einstein-Hilbert action, higher powers of the

curvature tensors. This is, for instance, the case of Lovelock (and Gauss-Bonnet)

gravity that it will be discussed in the following sections. In particular, the KSS

bound acquires a dependence on the coupling constant for the higher curvature

terms [8].
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Following the notation of [8], we rewrite the Gauss-Bonnet (GB) black brane (BB)

solution (2.78) as follows

f− =
r2

2λL2

[
1−

√
1− 4λ

(
1− ω5ML2

r4
+

4π

3

GNQ2L2

r6

)]
, (4.106)

where L now is the AdS radius and α0α2 = α2/L
2 = λ. In 5d Gauss-Bonnet

gravity, the shear viscosity to entropy ratio is [8]

η

s
=

1

4π
(1− 4λ) . (4.107)

The KSS bound still holds if λ ≤ 0, and it is violated for 0 < λ ≤ 1/4 (the

upper bound follows from Eq. (2.76)). The dependence of the bound from the

coupling constant λ makes the bound not anymore universal as in the Einstein-

Hilbert theory. In terms of the dual gauge theory, the curvature corrections to the

Einstein-Hilbert action correspond to finite Nc (rank of the gauge group) and λtH

(’t Hooft coupling) effects. It has been argued that the universality of the KSS

bound strictly holds in the limit Nc →∞ whereas, in general, finite Nc effects will

give lower bounds for η/s [10].

A crucial issue is that the relation (4.107) seems to allow for arbitrary violations

of the KSS bound. However, consistency of the QFT dual to bulk GB gravity

as a relativistic field theory constrains the allowed values of λ. For instance, in

[9, 32, 33] it was found that causality and positivity of the energy for the dual

QFT describing the Gauss-Bonnet plasma require −7/36 < λ < 9/100 implying

4πη/s > 16/25 , a bound lower then the KSS bound. On the other hand, the

hydrodynamic description of the dual GB plasma is valid in the IR regime,i.e., for

ω, k << T , whereas causality is determined by the propagation of modes in the

ω, k > T , UV regime. Thus, the existence of lower bounds for η/s implies a higher

non-trivial relationship between the transport properties in the IR and causality

requirements in the UV regime of the QFT dual to GB gravity.

Recent investigations have shown that if translation symmetry is broken in the

IR then one may have strong violation of the KSS bound even in the context of

Einstein gravity, in the form of η/s ∼ T 2ν , ν ≤ 1 [13, 34, 35]. Although, for these

backgrounds, the breaking of translational invariance prevents an hydrodynami-

cal interpretation of the viscosity, this behaviour of η/s is clearly related to the

emergence of extremely interesting physics in the far IR. A way to shed light on

these questions is to investigate the behaviour of η/s in the case of a gravitational

bulk background for which there is a temperature flow of η/s. The charged GB
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BB represents a nice example of this behaviour, particularly in view of the univer-

sality of the IR AdS2 × R3 fixed point. This will be the subject of the next three

subsections.

4.6.1 η/s for the Charged Gauss-Bonnet Black Brane

A standard way to calculate the shear viscosity for a QFT is by using the Kubo

formula for the transverse momentum conductivity

η = lim
ω→0

1

ω
ImGR

xy, (4.108)

where GR
xy is the retarded Green function for the Txy component of the stress-

energy tensor. The application of the usual AdS/CFT procedure for the compu-

tation of correlators gives for the U(1)-charged Gauss-Bonnet black brane in five

dimensions [30, 31]

η =
s

4π

[
1− 4λ

(
1− a

2

)]
(4.109)

where a = 4π
3
GNQ

2L2

r6+
and s is the entropy density S/V following from (2.96).

4.6.1.1 Extremal Black Brane

A drawback of the usual computation of the shear viscosity is that it does not

work in the extremal TH = 0 case because the metric function has a double zero

at the horizon. For this reason, η in the case of extremal BB cannot be simply

computed by taking the TH = 0 limit in Eq. (4.109). Building on [36], a method

of dealing with this problem has been developed in [37]. Recently, a very simple

and elegant formula for computing correlators of the form (4.108) in QFTs dual

to a gravitational bulk theory has been proposed in [15] (see also [13, 14]). This

method also works in the extremal case; thus, in the following, we will use it to

compute η for the charged GB BB. The extremal case will be discussed in Sect.

4.6.3.

Considering perturbations gab = g
(0)
ab +hab of the background (4.106), at the linear

level the field equations (2.94) give for the hyx(t, r) = φ(r)e−iωt component of the

perturbation

∂r

[√
γ(r)f−(r)F (r)∂rφ

]
+ ω2

√
γ(r)F (r)

N2f−(r)
φ = 0, (4.110)
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where γ(r) = (r/L)3 is the determinant of the spatial metric, f−(r) is given by

Eq. (4.106) and F = N
(

1− λL2

r
∂rf−(r)

)
. Notice that in the background (4.106),

the component hyx decouples from the other perturbation modes.

Let us first consider the non-extremal charged GB black brane. Following Ref.

[15] we now denote with φ0(r) the time independent solution of (4.110) which is

regular on the horizon r = r+ and such that φ0 → 1 as r →∞. The other linearly

independent solution φ1(r) of Eq. (4.110) behaves as 1/r4 for r = ∞ and can be

computed using the Wronskian method,

φ1 = φ0

∫ ∞
r

dr

φ2
0

√
γFf−

. (4.111)

Expanding near the horizon r = r+ we get at leading order

φ(r) = − 1

φ0(r+)

ln(r − r+))

4πTH
√
γ(r+)

[
1− 4λ(1− a

2
)
] , (4.112)

where TH is the Hawking temperature of the BB and a is defined as in Eq. (4.109).

Solving now Eq. (4.110) near the horizon with infalling boundary conditions and

for small ω, one gets at leading order in ω

φ(r) = φ0(r+)

[
1− iω

4πTH
ln(r − r+)

]
. (4.113)

Comparing Eq. (4.112) with Eq. (4.113) and expanding near the r →∞ boundary

of AdS, one gets

φ(r) = 1 + iωφ2
0(r+)

√
γ(r+)

[
1− 4λ

(
1− a

2

)] 1

r4
. (4.114)

The usual AdS/CFT rules for computing boundary correlators tell us that the

retarded Green function is 1/(16πGN) the ratio between normalizable and non-

normalizable modes, so that we have

η =
s

4π
φ0(r+)2

[
1− 4λ

(
1− a

2

)]
. (4.115)

Because φ0(r) goes to 1 as r → ∞ and must be regular on the horizon, we have

φ0(r+) = 1 and Eq. (4.115) reproduces correctly the previous result (4.109).

Now, the second Eq. (2.96) can be used to define, implicitly, the horizon radius as

a function of the BB Hawking temperature and the electric charge, thus allowing

129



Chapter 4 - Holographic Application

us to write also the shear viscosity (4.109) as a function of TH and Q

η(TH , Q) =
1

16πGN

(
r+(TH , Q)

L

)3 [
1− 4λ

πL2TH
Nr+(TH , Q)

]
. (4.116)

In the same way, the entropy density in Eq. (2.96) can be written as a mere

function of TH and Q, so that we can write the shear viscosity to entropy ratio in

the form
η

s
=

1

4π

[
1− 4λ

πL2

Nr+(TH , Q)
TH

]
. (4.117)

It is also of interest to write explicitly the dependence of η/s from the normalization

constant N :
η

s
=

1

4π

[
1− 4NπL2(1−N2)

TH
r+

]
(4.118)

When the electric charge is set to zero, the ratio TH/r+ in Eq. (4.117) is N/(πL2)

and η/s reaches the value in Eq. (4.107), as one expects. On the other hand, the

dependence of η/s on TH and N in the generic case is rather puzzling.

In view of the universality of the thermodynamic behaviour of GB BB described

in Chap. 2, one would naively expect that also the shear viscosity to entropy

ratio should be universal, i.e., that Eq. (4.118) becomes the same as in the RN

case just by using the effective temperature T = TH/N instead of TH . This is

not the case. Only for N = 1, which corresponds to α2 = 0, i.e., exactly the

RN case, η/s assumes the universal value 1/4π, while for N generic we have a

quite complicated dependence on N and TH . This strongly indicates that the

transport features of the dual QFT in the hydrodynamic regime contain more

information about the underlying microscopic theory than that contained in the

thermodynamic description.

An investigation on the behaviour of η/s at large and small TH can shed light on

this issue. In fact, as we have seen in Chap. 2, in these limits the BB allows for a

simple thermodynamic description. We, therefore, expect this to be true also for

the shear viscosity to entropy ratio. This will be the subject of the next sections.

4.6.2 η/s in the Large and Small TH Regime

The behavior of the shear viscosity (4.116) for large and small temperatures can

be investigated in a way similar to that used for the GB BB thermodynamics.
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4.6.2.1 Large TH

For large TH , the Hawking temperature is given by Eq. (2.98), thus leading to the

following expression for the shear viscosity in Eq. (4.116),

η =
1

16πGN

(
πLTH
N

)3

(1− 4λ) . (4.119)

The shear viscosity at large TH scales as T 3
H . In this limit, the entropy density

also depends on the temperature as T 3
H (see Eq. (2.99)), the shear viscosity to

entropy density ratio approaches Eq. (4.107) and reduces to the universal value

1/4π when λ → 0. This is rather expected, because at large TH the contribution

of the electric charge can be neglected.

4.6.2.2 Small TH

To investigate the small TH behaviour we invert Eq. (2.102) and we write the

horizon radius as

r+ − r0 '
πL2

6N
TH , (4.120)

where r0 is defined by Eq. (2.100). At small temperature the sub-leading term in

the shear viscosity scales linearly in TH

η ' 1

16πGN

(r0

L

)3
[
1 +

(
1

2
− 4λ

)
πL2TH
Nr0

]
. (4.121)

The behavior of the entropy density in the small TH regime is given by the second

equation in (2.103). Hence, in this limit, also the subleading term of the shear

viscosity to entropy density ratio scales linearly

η

s
' 1

4π

[
1− 4λ

πL2TH
Nr0

]
. (4.122)

The result η/s = 1/4π for TH = 0 has been already found and discussed in

the literature in the case of the RN solution [36, 37]. It has been argued that

at small temperatures, the dual QFT behaves as a ”strange RN metal”. The

optical conductivity exhibits the generic perfect-metal behaviour, but although we

have a non-vanishing ground-state entropy, for the strange metal hydrodynamics

continues to apply and energy and momentum can diffuse.

In the limit TH = 0, the ratio becomes η/s = 1/4π attaining the universal value

one expects from the KSS bound. This result is what one naturally expects in view
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of the fact that at TH = 0 the near-horizon solution of the GB brane gives exactly

the same AdS2 × R3 geometry of the RN solution. However, extra care is needed

when one takes the TH → 0 limit in Eq. (4.117). Taking TH → 0 directly in Eq.

(4.117) is not save for several reasons. First, as discussed in Sect. (2.10.4) the

semiclassical description for the BB breaks down at small temperature when the

energy gap above extremality prevents excitations with finite energy. Second, as

noted by Cai [31], although the TH → 0 limit is well defined, the usual computation

of the shear viscosity to entropy ratio fails in the extremal case because the metric

function as a double zero at the horizon. Third, also the computations of Sect.

4.6.1 do not hold for TH = 0 because the expressions (4.112) and (4.113) are ill

defined for TH = 0. However, the general method based on [15] and used in Sect.

4.6.1 for calculating η, works also for extremal BB.

4.6.3 η/s in the Extremal Case

Let us now extend the calculations of η described in Sect. 4.6.1 to the case of the

extremal brane. In the extremal case the function f− given by Eq. (4.106) and

its first derivative vanish when evaluated on the horizon. We have therefore at

leading order near the horizon

f−(r+) = f ′−(r+) = 0, F (r+) = N, f−(r) ' k(r − r+)2, (4.123)

where k is some non zero constant. Using the previous expression in (4.111) one

gets

φ1(r) =
1

kNφ0(r+)
√
γ(r+)

1

(r − r+)
. (4.124)

On the other hand the near-horizon, small ω expansion gives now

φ(r) = φ0(r+)

[
1 +

iω

kN(r − r+)

]
. (4.125)

Comparing Eqs. (4.124) and (4.125), near the r → ∞ boundary of AdS5 we find

the expansion

φ(r) = 1 + iωφ2
0(r+)

√
γ(r+)

(
1

r4

)
, (4.126)

from which follows the shear viscosity

η =
s

4π
φ0(r+)2. (4.127)
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Using the same argument used in Sect. (4.6.1) to infer that φ0(r+) = 1, we get for

the shear viscosity to entropy ratio of the extremal GB black brane the universal

value
η

s
=

1

4π
. (4.128)

It is interesting to notice that the universality of η/s for the extremal GB BB is

a direct consequence of the universality of the AdS2 ×R3, extremal, near-horizon

geometry. In fact the extremal, near-horizon metric background (2.93) does not

depend on λ. The other source for a λ- or Q-dependence of η is the function F in

Eq. (4.110). However, this contribution, hence the dependence of η from λ and

Q, is removed by the condition f ′(r+) = 0, which implies that near the horizon

the two-dimensional sections of the metric behave as AdS2.

To conclude, let us now discuss the global behaviour of η/s as a function of the

temperature in order to gain some insight about the η/s bounds. Taking into

account that r+(TH) is a monotonically increasing function, one easily finds that

also the function P (TH) = πL2TH/(Nr+) = 1− 2πGNQ
2L2/(3r6

+) in Eq. (4.117)

is a monotonically increasing function of TH , with P (0) = 0 and P (∞) = 1. The

global behaviour of η/s in Eq. (4.117) therefore is ruled by the sign of λ. For

λ < 0, η/s is a monotonically increasing function of TH , which raises from its

minimum value 1/4π at TH = 0 to its maximum value (1 + 4|λ|)/4π for TH =∞,

in full agreement with the KSS bound. On the other hand, for 0 < λ < 1/4, η/s is

a monotonically decreasing function of TH , which drops from its maximum value

1/4π at TH = 0 to its minimum value (1− 4λ)/4π for TH =∞, violating the KSS

bound.

4.7 The Gauss-Bonnet Black Hole Case

The second part of this chapter has been focused on the charged black brane

solutions of GB gravity. However we would conclude with some comments on the

black hole solutions of the theory, i.e., solutions with κ = 1 in Eq. (2.56). In the

case of spherical black holes the discussion considerably changes. In fact, in 5d,

from Eq. (2.56) we find that the metric function can be written as

f(r) = 1 +
r2

2α2

[
1∓

√
1− 4α2

(
α0 −

ω5M

r4
+

4π

3

G5Q2

r6

)]
, (4.129)
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where ω5 = 16πG5

3Σ3
and Σ3 is the volume of the 3-sphere. We have two branches of

solutions, but similarly to the BB case, the only one admitting horizon solutions

is f− with α0, α2 constrained by (2.76). The black hole mass, can be expressed in

terms of the horizon radius r+ [38]

M =
r4

+

ω5

[
α0 +

α2

r4
+

+
1

r2
+

+
4πG5Q

2

3r6
+

]
. (4.130)

Due to the presence of the curvature (κ = 1), now the mass depends explicitly

both on the AdS radius, L2 = α−1
0 and on the GB coupling constant, α2.

The other important aspect which makes black holes different from black branes is

that also temperature and entropy depend explicitly from α2 through the coupling

with the curvature since all the higher curvature corrections (like the Gauss Bonnet

one) enter in the expression for the temperature trough a coupling with κ. As found

by Cai [38], for a charged 5d GB black hole one gets

T =
1

4πr+(r2
+ + 2α2)

[
4α0r

4
+ + 2r2

+ −
4πG5Q

2

3r4
+

]
, S =

Σ3r
3
+

4G5

(
1 +

6α2

r2
+

)
.

(4.131)

We see that since M,T, S depend explicitly on the GB coupling constant α2, dif-

ferently from the black branes case, it is not anymore true that the thermodynamic

behaviour of the Reissner-Nordström and Gauss-Bonnet black hole is the same.

From the previous equation one can also realize that for the entropy, the area law

no longer holds and that it receives a correction from α2.

Let us now consider the extremal of the GB black hole. In the BB case we have

found the remarkable property that the extremal, near-horizon solution of the

charged GB black brane is exactly the same as the RN black brane. One can

easily show that this is not the case for the extreme, near-horizon GB black hole.

In the RN case the extremal, near-horizon, solution, which actually is an exact

solution of the field equation is the AdS2×S3 geometry (S3 is the three sphere), i.e.,

the direct product of two maximally symmetric spaces, respectively with negative

curvature R(2) = −2/l2 and positive curvature R(3) = Λ, where l and Λ can be

written in terms of the 5d cosmological constant and the U(1) charge Q.

Using Eqs. (2.95) one can show that the individual contributions of the AdS2 and

S3 spaces, to the two terms in Eq. (2.94) that are quadratic in the curvature tensors

vanish. Nevertheless there are still some cross-product contributions arising from

the mixing of AdS2 and S3 terms. Splitting the 5d indices (a, b) into µ, ν = 0, 1
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(running on AdS2) and i, j = 1, 2, 3 (running on S3) we find a contribution to

the µ, ν components of the field equations given by 2α2Λ/l2gµν and a contribution

4α2Λ/3l2gij to the ij components of the field equations.

We see that the AdS2 × S3 solution of the RN field equations cannot be also

solution of the GB field equations. Obviously, this not prevents the existence of

a different AdS2 × S3 solution, i.e., a solution with different curvatures for AdS2

and S3. However, from the structure of the field equations and from Eqs. (2.95)

one can infer that these solutions, if existing, imply a dependence of l and/or Λ

not only from the 5d cosmological contant and from the black hole charge Q but

also from the GB coupling constant α2.
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Chapter 5

Conclusions

Gauge/gravity duality is a significant progress in theoretical physics that, based

on string theory, provides new links between quantum field theory and gravity.

It realises the holographic principle because the boundary quantum field theory,

with a gauge symmetry, encodes all the information about the gravity theory in

the bulk. In particular, in a special case of the coupling constant regimes, the

duality maps strongly coupled quantum field theories (e.g., low energy QCD) to

more tractable (weakly curved) classical gravity theories.

The most striking and, at the moment, best-understood example of gauge/gravity

duality is the AdS/CFT correspondence that is characterised by a high degree of

symmetry. However, recent generalisations of AdS/CFT to gauge/gravity duali-

ties have given useful contributions to the description of some aspects of strongly

coupled systems. In particular, it has been introduced a combination of gauge/-

gravity duality methods with linear response theory in order to describe transport

processes.

During the past years, interesting phenomena related to QCD at low energies have

been investigated using gauge/gravity duality. The most studied examples are the

applications to the physics of the quark-gluon plasma. The quark-gluon plasma is

a new strongly coupled state of matter at a temperature above the QCD deconfined

temperature. This new phase of matter has been observed experimentally at the

RHIC accelerator (in Brookhaven) and is currently under experimental study at

the LHC in CERN (Geneva). In the context of strong coupling phenomena, the

gauge/gravity duality has been used to estimate an important quantity: the ratio

of shear viscosity to entropy density η/s. The result of η/s agrees well with

the experimental measurements and gives rise to a phenomenon of universality

in the gauge/gravity duality. This universality property of the ratio means that
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gravity theories with different structures are all bounded by the KSS bound η/s ≤
1/4π and that the precise form of the microscopic d.o.f of the field theory on

the boundary is irrelevant for the dynamics. In particular, the duality can be

generalized to non-conformal and finite temperature examples, which are obtained,

for instance, by considering a black hole in AdS spacetime.

In this thesis, we have discussed in detail geometrical, thermodynamic and holo-

graphic properties of the charged 5d GB black branes, the charged Lovelock black

holes and the regular black holes and black branes. From this research emerges

that UV modifications of GR although important for a complete theory of gravity,

do not seem to be relevant for the phenomenology of the dual field theory in the

hydrodynamic regime.

After an introduction to the most important concepts used in this thesis (Chap.1),

then Chap.2 and Chap.3 were dedicated to the study of the thermodynamic of

charged Lovelock and regular BH solutions in different ensembles.

In Chap.3, it has been considered the possibility of identifying the cosmological

constant, that parametrize the AdS space, as a thermodynamic variable (i.e., a

thermodynamic pressure). The role of the variable pressure enrich the possible

phases of the spacetime with complicated phenomena that were previously found

only in the framework of some chemical systems. However, its interpretation in

the gauge/gravity dictionary is not yet fully understood, and it deserves future

studies.

Chap. 4 is completely dedicated to the calculation of η/s. It has been discussed the

gauge/gravity correspondence at finite temperature in Lorentzian signature and

how to obtain a causal structure which allows us to introduce retarded Green’s

functions. The concept of quasi-normal modes is crucial as well as their relation to

the pole structure of the Green’s functions. The first part of the chapter includes

calculation of η/s for a regular black brane while the second part deals with the

Gauss-Bonnet gravity. Although the discussion in the second part of Chap. 4

has been mainly confined to the GB case, because of the thermodynamic inde-

pendence from higher order Lovelock parameters αi, i ≥ 3 , we expect that most

of our results can be generalised to Lovelock gravity theories in any spacetime

dimensions.

The interest in studying strongly correlated 4d quantum field theories motivates

the study of higher dimensional gravity theories. In a five-dimensional spacetime,

GR is not the most general theory with second order equations of motion. Higher

curvature terms in the Lagrangian and a new coupling constant α2 need to be con-

sidered. This is the Gauss-Bonnet theory of gravity that is generalized in higher
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dimensions (d > 5) by Lovelock gravity. It should be noticed that the gravity

theory in the bulk does not necessary need of a direct physical interpretation as a

“physical” spacetime. Therefore, the parameters of the model are not constrained

by gravitational experiments but, rather by the physical phenomena of the dual

field theory on the boundary. Moreover, the rich phase structure of higher dimen-

sional (Lovelock) gravity theory can be even more interesting once a dynamical

model for the compactification or dimensional reduction of the extra-dimensions

will be understood.

5.1 Results

5.1.1 Thermodynamics

In Chap.2 and Chap.3, it has been shown that the thermodynamics of the regular

black holes and of black holes in Gauss-Bonnet and 3rd-order Lovelock gravity

contains interesting and qualitatively new thermodynamic behaviour.

Moreover, it has also been shown that the particular combination of GB higher

curvature terms added to the Einstein gravity action have three main effects for

the brane (κ = 0) solutions:

(1) They introduce a new branch of brane solutions, which are however not black

branes but describe naked singularities. The global structure of the RN geometry

of Einstein gravity is preserved only for α2 > 0. For α2 < 0 the spacetime splits

into two disconnected regions (an inner and outer region), with the external region

having a single event horizon also in the non-extremal case. An interesting feature

is that the solutions of the two branches may be, in some cases, continuously

connected one with the other through the singularity. When this is the case, they

describe transitions of the kind: AdS5 → singularity → AdS5, AdS5-black brane

→ singularity → AdS5 or AdS5-black brane → singularity → dS5. Although it is

known that one of the two branches of the solution (f+) is unstable, one expects

that the first two of these transitions have a holographic interpretation as the flow

between two CFTs of different central charge through a singularity.

(2) The thermodynamic behaviour of charged GB black brane is universal, i.e.,

when expressed in terms of effective mass and temperature is indistinguishable

from that of the RN black brane.
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(3) Higher curvature terms modify the asymptotics (the AdS length) of the 5d AdS-

RN gravity leaving unchanged the AdS2 ×R3, extremal near-horizon geometry of

the RN black brane. At thermodynamic level, when expressed in terms of MADM

and TH a dependence on the normalization factor N of the metric is introduced

but not for the extremal, near-horizon geometry AdS2 ×R3. In terms of the dual

CFTs, this property can be described as a deformation of the CFT which changes

the UV behaviour but leaves unchanged the IR.

In Chap. 3, we have seen that various thermodynamic phenomena, such as Van der

Waals behaviour, reentrant phase transitions (RPT), and tricritical points appear

when the cosmological constant is treated as a dynamical variable. All these

phenomena naturally and generically occur in the context of 3rd-order Lovelock

gravity. We confirmed the existence of a tricritical point in d = 8, 9, 10 dimensions

in the case of Lovelock charged black holes and the existence of RPT in d =

8, 9, 10, 11 dimensions for the neutral ones. Moreover, we have seen“multiple RPT”

behaviour, in which the Gibbs free-energy is continuous at the phase transition

point. This appears to be an entirely new feature for gravitational systems, and it

has not previously been noted. In the case of hyperbolic (κ = −1) charged Lovelock

black holes, we generically find thermodynamic singularities, in which all isotherms

cross at a particular value of v in the p−v diagram. The corresponding Gibbs free

energy suffers from ‘infinite jump’ and undergoes ‘reconnection’. In particular,

we may observe a form of swallowtail in which one end of the swallowtail ‘goes to

infinity’. Since the global minimum of the Gibbs free energy is always well-defined,

we can still study the thermodynamics of the system.

In Chap. 3, we also further elucidated the thermodynamic behaviour when α3 =
√

3 and κ = −1 for 3rd-order uncharged Lovelock black holes (see Sec.3.4.4.5). In

this interesting special case we find that the equation of state has non-standard

expansion about a special critical point. Rather than p/pc = 1 + Aτ + Bτω +

Cω3 + . . . (characteristic for mean field theory critical exponents and swallowtail

catastrophe behaviour) we obtain

p

pc
= 1 +

24

d− 1
τω2 − 8

(d− 4)

d− 1
ω3 + . . . (5.1)

suggesting a violation of certain scaling relations and non-standard critical expo-

nents.

An interesting question is whether one could observe a quatri-critial point, in

which four first-order phase transitions coalesce. Such a point would correspond

to three swallowtails merging together, or alternatively, to three Van der Waals
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oscillations of a single isotherm such that the equal areas occur for the same pres-

sure. A necessary (not sufficient) condition for the existence of a quatrocritical

point is the existence of 3 maxima and 3 minima for a single isotherm; in other

words ∂p/∂v = 0 would have to have 6 solutions. This can never happen for

U(1) charged Gauss–Bonnet black holes. However, it might in principle occur for

3rd-order Lovelock black holes, though our results and preliminary study in higher

dimensions shows this unlikely.

5.1.2 η/s

In QCD, the comparison between data and calculations done using relativistic

viscous hydrodynamic yields the current estimate that η/s seems to lie within the

range η/s = (1− 2) / (4π) (see also [1]). In Chap.4 the shear viscosity to entropy

density ratio has been computed, using the gauge/gravity duality, for the GB

charged black brane (both in the non-extremal and in the extremal case) and for

the regular black brane (only in the non-extremal case).

In the GB case, it has been found that consistently with the geometrical and

thermodynamic picture, the universality of η/s is lost in the UV, but it is restored

in the IR. The ratio η/s has a non-universal temperature-dependent behaviour

for non-extremal black branes but attains the universal 1/4π value at extremality.

This result implies that η/s is completely determined by the IR behaviour and is

completely insensitive to the UV regime of the dual QFT. On the one hand, this

is largely expected because transport features in the hydrodynamic regime should

be determined by IR physics. However, it is not entirely clear if this result has a

general meaning or it is a just a consequence of the peculiarities of the charged GB

black brane (higher curvature corrections vanish on the AdS2 × R3 background).

Also, the result for the regular black brane suggests that the universal 1/4π value

does not depend from the UV corrections to the gravity theory.

We have found that η/s for the charged GB black brane is a smooth monotonic

function of the temperature. By going to small temperatures, it always flows to

the universal value 1/4π but this value is a minimum for λ < 0 and a maximum

for λ > 0, where λ = α0α2 = α2/b
2. Thus, the QFT dual to GB-Maxwell gravity

with λ < 0 gives a nice example of temperature-flow of η/s always bounded from

below by 1/4π. On the other hand, the KSS-bound-violating flow we obtain in the

theory for 0 < λ < 1/4 remains open to further investigations.
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5.2 Outlook

The research presented in this thesis can be used as a step towards the following

three directions:

1. The investigation of time-dependent processes, non-equilibrium

Physics and thermalization using gauge/gravity duality.

An extensive study of the physical properties of the gauge theories would

require also investigating time-dependent processes. This is important, for

instance, to study transport effects and correlations in hot, dense and charged

QCD-matter out of the equilibrium. Further steps in this direction involve

the study of time-dependent metrics (e.g., for collapsing matter), and the

understanding of the relevant thermal and non-thermal quantities for these

out-of-equilibrium models (e.g., the radiation flux [2]). A first inspection

of the time-dependent models for charged and regular black holes has been

conducted in the past months. These preliminary studies already show in-

teresting behaviors of the charged and regular black hole radiation flux.

2. Understanding the role of the extended phase space in the gauge/

gravity duality framework.

The rich phase structure emerged in the study of Lovelock extended phase

space (i.e., considering the cosmological constant Λ as dynamical quantity)

could imply new features of a boundary gauge theory once a duality dictio-

nary is provided. Such a dictionary is nowadays an hot topic in the research

community of holography (see [3] and [4]).

3. Extra-dimensions, higher derivatives and non-local theories.

The tools developed to investigate the complicated dynamics of the Lovelock

gravity and regular black holes, in this thesis, can be naturally applied to the

study of f (R) theories, generalized uncertainty principle (GUP) and promis-

ing extra-dimensional theories (e.g., Randall-Sundrum model [5]) in extended

phase spaces. Moreover, in the past years, theories involving extensions of

Einstein gravity have been developed to explain cosmological data at the

price of introducing non-locality in the theory of gravity [6]. Such a frame-

work shares many technical features with the regular solutions of Einstein

gravity, and it needs further studies such as the determination of Lagrangians

from which one can derive the non-local equation of motion.
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Appendix A

Gravitational Action

A.1 Boundary Term for Spherically Symmetric Metrics

In Chap.2, we introduced the York-Gibbons-Hawking boundary term. The bound-

ary term is defined for a generic manifold M of dimension N = n+ 1 as

IGH :=
1

8πGN︸ ︷︷ ︸
1/κ

∫
∂M

dnx
√
hK , (A.1)

where [1, 2] K is the extrinsic curvature and hab the the intrinsic-metric [1] (or the

projector [2]). They read respectively

K = hab∇an
b, hab = gab − σnanb σ := nan

a (A.2)

where na is an (inward) normal vector to the n-dimensional boundary ∂M . A

useful review of the topic is in [3]. We are interested in a n-spherical hypersurface

defined as r = const (i.e., r = R). In particular, we will be interested in R → ∞
so let us consider a generic diagonal spherical symmetric metric like

ds2 = ∓V (r) dt2 +
1

V (r)
dr2 + r2dΩ2

n−1 (A.3)

where the inward-pointing normal vector orthogonal to ∂M can be written as

na = −c (0, 1, 0, . . . , 0). The normal vector can be normalized if

nana = 1 = nanbgab = c2g11 =
c2

V (r)
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and written as

na = −
√
V (r)δa1 ⇒ na = gabn

b = ga1n
1 = − 1√

V (r)
δa1. (A.4)

Now we need to calculate the extrinsic curvature K given in (A.2). Since hab =

δab−nanb, recalling that the covariant derivative is defined as ∇an
b = ∂an

b+Γbacn
c

and that na is not zero only in the radial component nr ≡ n1, we can finally write

K as

K = hab∇an
b = (δab − nanb)

(
∂an

b + Γbac n
c
)

= ∂an
a + Γaac n

c − (nrnr∂rn
r + nrnrΓ

r
rr n

r)

= ∂rn
r + Γaar n

r − (∂rn
r + Γrrr n

r)

where in the last line we have used nrnr =
√
V (r)/V (r). Now, let us look at the

Christoffel symbols defined by

Γabc =
1

2
gaρ (gρc,b + gbρ,c − gbc,ρ) . (A.5)

Specifically, we need to calculate the Γaar and Γrrr components. Using the definition

(A.5), we can write:

Γaar =
1

2
gaρ (gρr,a + gaρ,r − gacr,ρ) =

=
1

2

(
grrgrr,r +

∑
a

gaagaa,r − grrgrr,r

)

=
1

2

(
g00g00,r + grrgrr,r +

n∑
i=2

giigii,r

)

notice that gii = r2g (θ, . . .) so

gii,r = 2r g = 2r
gii
r2

=
2

r
gii

and that giigii = 1 so we get
∑n

i=2 g
iigii,r = 2

r
(n− 1) and finally we can write

Γaar =
1

2

(
g00g00,r + grrgrr,r +

2

r
(n− 1)

)
Γrrr =

1

2
grr (grr,r) .
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Coming back to K we have

K = (Γaar − Γrrr)n
r = −

√
V (r)

1

2

(
g00g00,r +

2

r
(n− 1)

)
(A.6)

= −
√
V (r)

(
∂rV (r)

2V (r)
+
n− 1

r

)
. (A.7)

The interesting point is that K (A.7) is independent from the metric signature (it

is the same for Euclidean and Lorentzian metrics). To write the final action we can

plug (A.7) into (A.1), the determinant of the intrinsic metric is the determinant

of the metric

ds2
∂M = ∓V (R) dt2 +R2dΩ2

n−1 (A.8)

namely h = g
grr

. In n-dimensions, the spherical element in (A.4) and (A.8) can be

written as [4]

dΩ2
n−1 = dθ2

2 + sin2 θ2 dθ
2
3 + ...+

n−1∏
i=2

sin2 θldθ
2
n. (A.9)

Just to be precise, we know that for this diagonal metrics the determinant is

g =
∏n

a=0 gaa and the element of volume
∏n

a=2

√
gaadxa once integrated gives the

Vol (Sn−1) so the action reads

IGH := −1

κ

∫
∂M

dnx

√
g

grr

√
V (r)

(
∂rV (r)

2V (r)
+
n− 1

r

)∣∣∣∣
r=R

. (A.10)

Integrating Eq. (A.10) over the components θi and t, we get:

IGH = −
β∫

0

dt
1

κ
Vol
(
Sn−1

)√
V (r)× (A.11)

×
√
±V (r) r2(n−1)

(
∂rV (r)

2V (r)
+
n− 1

r

)∣∣∣∣
r=R

(A.12)

=
βSh
κ

Vol
(
Sn−1

) [
− r(n−1)

(
1

2
∂rV (r) +

(n− 1)

r
V (r)

)∣∣∣∣
r=R

]
.(A.13)

In table A.1 are reported the results for different cases.

To evaluate the free energy, we have to regularize the boundary term subtracting

the background contribute K0

IB =

∫
∂M

dnx
√
h (K −K0) . (A.14)
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This is a necessary procedure since (A.13) often diverge (for example, Minkowski

background or AdS background). Precise requirement of all the literature is the

“synchronizing” of the geometries at a given point R that eventually goes to in-

finity. In other words, we want that the compactification of the time occurs at

a given time and it has to be the same in both the spaces (or that the BH has

to be in thermal equilibrium with the background at a a given R → ∞). In

the case of Schwarzschild black hole with asymptotically Minkowski spacetime

the equality
∫ βM

0
ds =

∫ βSh
0

ds have to be soddisfied and since dr = 0 and all

the others are also 0 then the equality becomes
∫ βM

0

√
gMtt dt =

∫ βSh
0

√
gShtt dt and

gives βM
√

1 = βSh

√
1− 2GNM

r

∣∣∣∣
r=R

where gMtt and gShtt are the time components,

respectively of the Minkowski and Schwarzschild metric.

In the case d = 4, we get the boundary term for a black hole in Minkowski

spacetime subtracting

IB =
1

κ
Vol
(
S2
)

[− (−3GNM + 2R)] βSh +
2

κ
Vol
(
S2
)(

βSh

√
1− 2GNM

R

)
R

=
1

κ
Vol
(
S2
)
βSh

{
3GM − 2R

(
1−

√
1− 2GNM

R

)}
. (A.15)

In the case of interest, as final step we have to provide the limit R → ∞. Using

the expansion
√

1− εA ∼= 1− ε1
2
A

lim
R→∞

IB = lim
R→∞

1

κ
Vol
(
S2
)
βSh

{
3GNM − 2R

(
GNM

R

)}
(A.16)

= lim
R→∞

1

κ
Vol
(
S2
)
βShGNM =

βShGN M Vol (S2)

κ
(A.17)

substituting κ = 8πGN and the Vol (S2), we finally get

IB =
4πM βSh

8π
=

1

2
βShM =

β2

16πGN

(A.18)

where we use the relation

βSh := 4π

(
∂V (r)

∂r

)−1
∣∣∣∣∣
r=r+

= 4π

(
2MGN

r2
+

)−1

= 4πr+ (A.19)

and the horizon radius is defined by the horizon equation V (r+) = 0 as r+ =

2MGN .
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Metric V (r) IGH

Schw 4D
(
1− 2GM

r

) 1
κVol

(
S2
) [
− r2

(
GM
r2

+
(

2
r −

4GM
r2

))∣∣
r=R

]
β

= 1
κV ol

(
S2
)

[− (−3GM + 2r)|r=R]βSh

Mink (n+ 1)D 1 1
κVol

(
Sn−1

) [
− r(n−1)

(
(n−1)
r

)∣∣∣
r=R

]
βM

Mink 4D 1 − 2
κV ol

(
S2
)
RβM

Table A.1: Gibbons-Hawking term for different metrics.

Then, as in [5], one computes the energy

E =
∂I

∂βsh
= M (A.20)

and the entropy

S = βShE − I =
1

4GN

r2
+Vol

(
S2
)
. (A.21)

A.1.1 Generalization to n Dimensions.

The entropy of a black hole in Minkowski spacetime is fully determined by the

action boundary term. One can generalize the previous procedure to a generic

number of spacetime dimensions d = n+ 1. The boundary term for the black hole

geometry reads:

IBHGB =
1

κ

[
8π GNM n

(n− 1)

]
βSh −

1

κ

[
(n− 1)Rn−2Vol

(
Sn−1

)]
βSh (A.22)

while for the Minkowski background, one has

IMGB = −1

κ

[√
1− 16π GNMR2−n

(n− 1)Vol (Sn−1)

]
(n− 1)Rn−2Vol

(
Sn−1

)
βSh. (A.23)

The subtraction is

IBHGB − IMGB =
1

κ

[
8π GNM n

(n− 1)

]
βSh + (A.24)

+
1

κ

[
−1 +

√
1− 16π GNMR2−n

(n− 1)Vol (Sn−1)

]
(n− 1)Rn−2Vol

(
Sn−1

)
βSh
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that in the limit for R→∞ (using the series expansion) becomes:

lim
R→∞

[
IBHGB − IMGB

]
=

1

κ

[
8π GNM n

(n− 1)

]
βSh −

1

κ
(8π GNM) βSh (A.25)

=
1

n− 1
M βSh. (A.26)

A.2 Boundary Term for Regular Schwarzschild Black Hole.

We investigate the boundary term in the case of a regular black hole. Using the

general definition for the boundary term Eq. A.13

IShGB =
1

κ
Vol
(
Sn−1

) [
− r(n−1)

(
1

2
∂rV (r) +

(n− 1)

r
V (r)

)∣∣∣∣
r=R

]
βSh (A.27)

=
1

2κ
Vol
(
Sn−1

)
βSh

[
−2 (n− 1) rn−2

]
+ (A.28)

+
1

2κ
Vol
(
Sn−1

)
βSh

[
21−ne−

r2

4θ2M
(r
θ

)n
ωn +Mnωn γ

(
n

2
,
r2

4θ2

)∣∣∣∣
r=R

]
so using the mass coefficient it becomes

IShGB =
1

κ

8πGN M

(
21−ne−

R2

4θ2
(
R
θ

)n
+ n γ

(
n
2
, R

2

4θ2

))
(n− 1) Γ

(
n
2

)
(n− 1)Rn−2Vol (Sn−1)

− 1

 (n−1)Rn−2Vol
(
Sn−1

)
βSh

(A.29)

while the Minkowski boundary term reads:

IMGB = −1

κ
Vol
(
Sn−1

)
Rn−1

(
n− 1

R

)
βM (A.30)

=
1

κ
Vol
(
Sn−1

)
Rn−2 (n− 1)

[
−

√
1− ωnM

Rn−2
γ

(
n

2
,
R2

4θ2

)]
βSh (A.31)

The final result for the boundary term is given taking the limit R → ∞ of the

subtraction (we note that this limit includes the classical limit i.e. corresponds
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also to consider θ → 0)

IShGB − IMGB =
1

κ

 8πGN M (21−n) e−
R2

4θ2
(
R
θ

)n
(n− 1)2 Γ

(
n
2

)
Rn−2Vol (Sn−1)︸ ︷︷ ︸
→0

−1+

+
8πGN M nγ

(
n
2
, R

2

4θ2

)
(n− 1)2 Γ

(
n
2

)
Rn−2Vol (Sn−1)︸ ︷︷ ︸

→const

+

+

√
1−

16GNMπR2−nγ
(
n
2
, R

2

4θ2

)
(n− 1) Γ

(
n
2

)
Vol (Sn−1)

]
(n− 1) Rn−2Vol

(
Sn−1

)
βSh.

in the limit for R → ∞ the first term goes to zero, the second term goes to a

constant and for the last two terms we can use the expansion
√

1− εA ∼= 1 −
ε1

2
Athen the limit L = limR→∞

[
IShGB − IMGB

]
is equal to

L =
1

κ
βSh

(
8πGN M n

n− 1

)
+

+
1

κ
βSh

{
− lim

R→∞

[
1−

√
1−

16GNMπR2−nγ
(
n
2
, R

2

4θ2

)
(n− 1) Γ

(
n
2

)
Vol (Sn−1)

]
(n− 1)Rn−2Vol

(
Sn−1

)}
(n− 1)Rn−2Vol

(
Sn−1

)}
that can be approximate to

lim
R→∞

[
IShGB − IMGB

]
≈ 1

κ

(
8πGN M n

n− 1

)
βSh +

−1

κ

[
8GNMπΓ

(
n
2

)
(n− 1) Γ

(
n
2

)
Vol (Sn−1)

]
(n− 1)Vol

(
Sn−1

)
βSh

=
1

n− 1
MβSh =

M

n− 1
· 1

T
= IB. (A.32)

As we expected, the boundary term for a regular black hole is the same of the

classical calculation (because the limit R → ∞ corresponds in some sense to the

semiclassical limit r � θ). In the case of a regal black hole we see that the

temperature defined as T = 1/β reaches zero for a non zero value of the horizon

radius that means that the action has a divergences for that value of the radius.
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A.2.1 ADM Mass and Komar Mass

The gravitational mass of an asymptotically flat spacetime is defined to be the

limit of the gravitational Hamiltonian (with the fields hab and Kab satisfy the

vacuum field equations) when the boundary surface St is a two-sphere at spatially

infinity evaluated with the following lapse and shift [3]: N = 1, Nα = 0 such that

MADM = − 1

8πGN

lim
St→∞

∮
St

(k − k0)
√
σ d2θ. (A.33)

The procedure so is precisely the same as for Eq. (A.14); however, in this case there

is no integration over the time. The ADM mass calculation in the case of regular

black hole follow the same steps as the previous calculations and it is possible to

find that also in the case of a regular black hole the ADM mass coincides with

M (r+).

The Komar integral can be defined as the integral at spatial infinity

EK =
1

4πG

∫
∂Σ

d2x
√
γ(2)nµσν∇µKν (A.34)

where nµ is the unit normal (normalized as nµn
ν = −1) vector associated with

the spacelike hypersurface Σ. σµ(normalized as σµσ
µ = 1) is the normal vector

associated with the boundary ∂Σ of the surface Σ. Kµ is the timelike Killing vector.

For a stationary spherically-symmetric metric

ds2 = −f (r) dt2 + f (r)−1 dr2 + r2 dθ2 + r2 sin (θ)2 dφ2 (A.35)

the normal vectors have the only non-null components

n0 = −f (r)1/2 σ1 = f (r)−1/2 . (A.36)

We therefore have

nµσν∇µKν = −∇0K1. (A.37)

The Killing vector for the static metric (A.35) is Kµ = (1, 0, 0, 0) and we can

calculate

∇0K1 = g00∇0K
1 = g00

(
∂K1 + Γ1

01K
λ
)

= g00Γ1
00K

0 =
1

2

∂f (r)

∂ r
. (A.38)
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The metric of the two-sphere at infinity is

γ
(2)
ij dx

i dxj = r2
(
dθ2 + sin2 θ dφ

)
(A.39)

so that √
γ(2) = r2 sin θ. (A.40)

Finally

EK =
1

4πG

π∫
0

dθ

2π∫
0

dφ r2 sin θ
1

2

∂f (r)

∂ r
. (A.41)

The case where the metric involves the semi-classical correction of the quantum

gravity has coefficients

f` (r) = 1− 2M (`)

r
M (`) =

2M√
π
γ

(
3

2
;
r2

4`2

)
(A.42)

and derivative

∂r f` (r) =
M√
π

4γ
(

3
2
r2

4`2

)
r2

−
e−

r2

4`2

√
r2

`2

`2

 . (A.43)

Therefore, the Komar energy reads

EK =
M

2
√
π

(
−e−

r2

4`2

(
r2

`2

)3/2

+ 4 γ

(
3

2
;
r2

4`2

))
(A.44)

that in the limit r →∞ , this becomes EK = M .
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Shear Viscosity Calculations

In this section, other methods to calculate the shear viscosity directly from the

Lagrangian density are presented.

B.1 Pole Method

This method has been presented in [6] for computing the zero frequency limit of

transport coefficients in strongly coupled field theories described holographically

by higher derivative gravity theories. In this method, called pole method, the hy-

drodynamic parameters such as shear viscosity and conductivity can be obtained

by computing residues of poles of the off-shell Lagrangian density. These coeffi-

cients can be thought of as effective couplings at the horizon. Using this method

one can obtain an analytic, Wald-like formulae for the shear viscosity and conduc-

tivity in a large class of general higher derivative Lagrangians. If one applies this

method to systems at zero temperature but finite chemical potential. The results

imply that such theories satisfy η/s = 1/4π universally in the Einstein-Maxwell

sector [6].

In Refs. [7, 8] it is clear that generically transport coefficients associated to mass-

less modes are given by effective couplings at the horizon. There is a quick, efficient

procedure for extracting these couplings from the Lagrangian density. By evaluat-

ing the Lagrangian on an off-shell perturbation, it will generically develop a pole

at the horizon. The residue of the pole is precisely the desired transport coefficient

up to a known factor. Boundary terms cannot contribute as in general they yield

higher order singularities. The single pole behaviour can be traced back to horizon
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regularity of the generalized canonical momentum in the hydrodynamical approx-

imation. This procedure for computing transport coefficients, which we name the

pole method, works for any higher derivative theory and reproduces all the previ-

ously known results in the literature in a simple fashion. With this method the

shear viscosity to entropy density ratio may be computed solely within the near

horizon geometry, and therefore in Einstein gravity it can be used to deduce the

universality of η/s = 1/4π at extremality.

In this section, the ratio of the shear viscosity to entropy density for five dimen-

sional regular black brane gravity is calculated using the pole method [6]. The

metric for the planar regular AdS black hole given in eq. (4.77), reported again

here for convenience

ds2 =
r2

+

uR2

(
−fdt2 + dx2

)
+
R2

4u2

du2

f
f = 1− u2 ·

γ
(

2,
r2+

4θ2u

)
γ
(

2,
r2+
4θ2

) (B.1)

An important feature of these coordinates is that f (z) has a simple zero at the

horizon. Following the pole method [6], one considers the perturbed metric of the

brane by shifting

dx→ dx+ εe−iωtdy (B.2)

where ε is treated as an infinitesimal parameter. Then one evaluates the La-

grangian density, with the matter part Lm = 0, on the shifted background up to

quadratic order in ε. The presence of the off-shell perturbation (B.2) produces a

pole at z = 0 in the (otherwise) on-shell action. The shear viscosity is then given

directly by the ‘time’ formula [6]

η = −8πT lim
ω,ε→0

Resz=0L
ω2ε2

(B.3)

where Resz=0L denotes the residue of the pole in the Lagrangian density. In the

explicit case of a regular black brane in five spacetime dimensions,

Resz=0L =

7θ2ω2ε2
[
4θ2

(
e
r2+

4θ2 − 1

)
− r2

+

]
e−2itω

R

[
r4

+ + 8θ2r2
+ − 32θ4

(
e
r2+

4θ2 − 1

)] (B.4)

Recall the Hawking temperature for the above regular black brane metric (B.1) is

given in Eq. (4.74).
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The final result of this calculation for regularized gravity is

η =
1

16πGN

( r+

R2

)3

. (B.5)

This result coincides with the result found in the previous section, eq. (4.103).

B.2 Numerical Method

A possible numerical solution is presented.

B.2.1 Near the Horizon Boundary Condition

As seen in Chap. 4, both the horizon and the boundary are regular singular points,

i.e. first order poles of the equation of motion (4.78). For this reason, it is possible

to apply the Froebenius method to solve the differential equation. The Frobenius

method provides a solution of the equation (4.78) in terms of a series expansion

around the horizon of the form

φ (u) = (1− u)A
∞∑
n=0

an (u− 1)n . (B.6)

Like in the standard black brane also for this regular black brane there are no

other singularities between the boundary and the horizon and one expects that

the series should be convergent. The first step is to study the solution (B.6) near

the horizon. In this regime the metric function (4.83) reads

fNO (u) = κ (u− 1) +
1

2
κ2 (u− 1)2 +O (u− 1)3 (B.7)

where κ = −4π T and κ2 = (κ+ 2)
r20
4θ2

+ κ and it is possible to truncate the series

(B.6)

φNO (u) = (1− u)A (a0 + a1 (1− u)) . (B.8)

Plugging (B.6) and (B.7) into the equation of motion (4.78) and keeping only the

dominant terms, the differential equation becomes(
A2 +

w2

κ2

)
a0 (u− 1)−2 +O(u− 1)−1 = 0 (B.9)
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which is divergent at the horizon. The divergence can be avoided setting the

parameter A (the exponent in (B.6))

A = ±iw
κ
. (B.10)

The infalling boundary conditions1 requires that the exponent is the one with

minus sign A = −iw
κ

= i w
4πT

. Plugging the approximate solution near the horizon

(B.8) into (4.78) gives a divergent result. The divergence of order (u− 1)−1 can be

avoided appropriately fixing the free parameter a1. In particular, the parameter

a1 in (B.8) can be fixed requiring that the coefficient of the expansion of order

(u− 1)−1 is zero. This involves the second order of the metric function (B.7), and

performing the calculation, the parameter a1 reads

a1 =
a0

2κ2

(
−2κ (w2 + q2κ+ iwκ)

(2iw + κ)
+ iwκ2

)
(B.11)

=
r2

0w(2w − iκ)(2 + κ) + 4θ2κ (4w2 + 2q2κ+ iwκ)

8θ2κ2(2iw + κ)
a0. (B.12)

Notice that parameter a0 is an overall constant (it multiply both the terms of

(B.9)) of the truncated solution and can be set a0 = 1, in this way it satisfies the

condition at the boundary. The solution (B.8) can be used as boundary condition

for the numerical calculation of the solution on the whole range.

B.2.2 Near the Boundary

Near u = 0 the equation has two solutions, f1 ∼ 1 and f2 ∼ u2. It is possible to see

this by expanding the coefficients of the differential equation near the boundary

and finding the indicial exponents ∆+ = 2 and ∆− = 0. Plot of the numeric

solution φ (u) at the boundary are given in Fig. B.1 as functions of w.

B.3 Retarded Green’s function

At this point, it is possible to extract the Green’s function as

Gu(w, q) =
f(u)

u

φ′ (u)

φ (u)
. (B.13)

1Imposing boundary condition on the horizon is an important step in the calculation of the
Minkowskian Green’s function (see Sec. B.3)
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Figure B.1: Numerical results. Upper row: On the left, the real part of the solution
at the boundary, <[φ(u = 0, w, q = 0) in the “classical” regime, namely θ = 0.1, r0 = 10.
On the right, in the “quantum” regime, θ = r0 = 1. Down row: On the left, the
imaginary part of the solution at the boundary, =[φ(u = 0, w, q = 0) in the “classical”
regime, namely θ = 0.1, r0 = 10. On the right, in the “quantum” regime, θ = r0 = 1.

This is based on the postulate that the retarded Green’s function is related to the

quadratic part of the action as described in (4.26). Using the numerical solution

for the perturbation φ, one can plot the imaginary part of the retarded Green’s

function.

In order to visualize the poles of the ImGu (w, q), and therefore observe the effect

of non-zero temperature, one needs to subtracts background. If one does not

subtract this contribute then the two-point function is dominated by a large zero

temperature that diverges as w4. One could expect that in this case there are two

solutions corresponding to T = 0: one is the standard solution corresponding to a

spacetime without a black hole while the other one should be a spacetime with a

remnant.

In the case of the black brane the temperature

T =
r+

πb2

1−
r4

+e
−
r2+

4θ2

32 θ4γ
(

2,
r2+
4θ2

)
 (B.14)

where the2

γ

(
2,

r2
+

4θ2

)
= 1− e−

r2+

4θ2

(
1 +

r2
+

4θ2

)
(B.15)

is always different from zero except for r+ = 0 (see Fig. 4.2).

2Using the relation γ (n+ 1, z) = n!
(
1− e−z

∑n
k=0 z

k/k!
)
.
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Therefore, the only difference can be done with the background without a black

hole. In that case the equation of motion is just Bessel’s equation. The oscillatory

solutions to the Bessel equation are the Hankel functions. Therefore the solution

in this case can be written in terms of the spherical Hankel function of the sec-

ond type. The same procedure then can be applied to calculate the two-point

correlation function that gives

ImGT=0 = π
(
w2 − q2

)2
. (B.16)

The difference between the full two-point function and the zero temperature two-

point function is the thermal excitation can be plotted. Unfortunately, numerical

errors in this kind of calculation starts to be extremely severe and one cannot

proceed further in this way to the calculation of η/s.
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