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Introduction
A proinflammatory role for IL-18 in rheumatoid arthritis
(RA) pathogenesis has been shown by the activation of T
cells and macrophages in primary cultures of RA synovial
cells [1]. An excess of biologic, active IL-18, exceeding
the anti-IL-18 inhibitory activity present in RA synovial
fluids, further supports its relevance [2], and higher con-
centrations of IL-18 in RA synovial fluids than in
osteoarthritis (OA) synovial fluids reflect upregulation of
this molecule in RA [2].

Induction of IFN-γ in T cells by IL-18 requires the presence
of costimulatory molecules, e.g. IL-12 or IL-15 [1,3,4]. In
contrast, degradation of inhibitor of kappaB (IκB-α), sub-
sequent activation of NF-κB, and enhanced expression of
intercellular adhesion molecules (ICAM-1), inducible nitric
oxide synthase (iNOS), inducible cyclooxygenase
(COX-2), IL-6, and stromelysin (matrix metalloproteinase
[MMP]-3) by IL-18 in nonlymphocytic human cells
appeared independent of costimulatory molecules or IFN-γ
[5–7]. Expression of all these molecules represents
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important features of bone or cartilage invading and
destroying activated fibroblast-like synoviocytes (FLS)
[8,9]. In this paper, we address their putative direct regula-
tion by IL-18 and expression of the IL-18 receptor (IL-18R)
in FLS. For additional indications of a suggested T-cell-
independent, direct proinflammatory role for IL-18 in arthri-
tis, see Supplementary material.

Expression of a functional IL-18R is known in various cell
types, mainly leukocytes (see Supplementary material) and
is represented by the IL-18R α-chain (IL-18Rα) — synonym
IL-1-receptor-related protein 1 (IL-1Rrp1) [10,11] — and the
IL-18R β-chain (IL-18Rβ) or accessory protein-like (AcPL
or IL-1RAcPL) [12–14]. Expression of IL-18R is detectable
in synovial membranes in RA [1], but present knowledge
about its expression in isolated FLS is preliminary.

Materials and methods
Reagents
See Supplementary materials.

Cell culture
We investigated a broad panel of synovial-membrane-
derived FLS (FLSSM) cultures from 11 patients with RA
who fulfilled the criteria of the American College of
Rheumatology [15] and were undergoing synovectomy and
from 3 patients with OA who underwent joint replacement,
and of synovial-fluid-derived FLS (FLSSF) cultures from 9
patients with RA and 4 patients with spondyloarthropathy
(SpA) [16]. Tissues were minced and digested with colla-
genase for 2–4 hours; FLSSF were obtained by culture of
the total synovial fluid. Supernatants and nonadherent cells
were removed after 24 hours, and adherent cells were
further cultured to confluence in a 37°C humidified, 5%
CO2 atmosphere in Ham’s F10 medium supplemented
with 10% fetal calf serum, 100 U/ml penicillin, 100 µg/ml
streptomycin and 2 mM glutamine. All FLS cultures were
shown to be negative for CD14 and CD86 and positive for
fibroblast marker Thy-1 before being used in experiments
between passages 2 and 6. Stimulation experiments were
performed in 1 × 105 FLS/ml for 48 hours unless otherwise
stated. All biopsies and synovial fluids were obtained after
the patients had given their informed consent. For compari-
son, additional experiments were performed in the U937
monocytic cell line.

Assay of IL-18R expression
Expression of IL-18R was demonstrated using reverse
transcriptase polymerase chain reaction (RT-PCR) for
IL-18Rα and by anchored IL-18Rβ RT-PCR. The intensity
of expression was estimated by the individual IL-18Rα/β/
β-actin optical density quotient (ODQ) and by IL-18Rα
western blotting experiments. In addition, FLS surface-
bound IL-18 was shown by chemical cross-linking of a
biotinylated IL-18 glutathione S-transferase (GST) fusion
protein. For details see Supplementary material.

Assay of IL-18Rαα regulation
FLS (5 × 105) from two patients with RA were each cultured
in duplicate, either in media without additional stimuli or
exposed to IL-1β, IL-2, IL-12, IL-15, IL-18, IFN-γ, tumor
necrosis factor (TNF)-α, or IL-12 + IL-18. Cells were
removed after 24 hours for analysis by IL-18Rα (35 cycles)
and β-actin RT-PCR. RT-PCR kinetics and IL-18Rα western
blotting experiments were performed if even one of the four
experiments gave a positive result (increase of ODQ ≥100%
by cytokine stimulation).

Assay of FLS proliferation
FLS (1 × 104 cells) were cultured in 200 µl medium for 3,
5, or 7 days. Cell proliferation was determined by col-
orimetry with the tetrazolium/formazan assay [17]. Light
absorption of the proliferation-dependent color product
was determined with a photometer (λ = 550 nm) in the
cell-culture supernatants.

Expression of adhesion molecules
IL-18 stimulated cells and unstimulated cells were gently
removed from the culture dishes by brief trypsin application,
washed, and diluted in PBS containing 1% fetal calf serum.
Cells were stained by monoclonal antibodies against ICAM-
1 (CD54) and vascular cell adhesion molecule (VCAM)-1
(CD106), respectively, and analyzed by flow cytometry
(FACScan, Becton Dickinson, Franklin Lane, NJ, USA).

MMPs, cytokines, prostaglandin E2, and nitric oxide
Collagenase (MMP-1) and stromelysin were measured in
the cell-culture supernatants of IL-18-stimulated FLS and
control cultures using commercial ELISA kits from Amer-
sham Pharmacia Biotech (Freiburg, Germany). Granulo-
cyte/macrophage-colony-stimulating factor (GM-CSF) — a
FLS-derived growth factor that is also present and that is
upregulated by IL-18 in cultured osteoblasts [18] — IL-6,
and the chemokine IL-8 were assayed by ELISA (from,
respectively, Amersham Pharmacia, Roche Diagnostics,
Mannheim, Germany, and R&D Systems, Wiesbaden,
Germany) after 72 hours (GM-CSF) or 24 hours (IL-6 and
IL-8). Nitric oxide production was measured from its stable
product, nitrite, using the Griess reaction in cell-culture
supernatants after 48 and 72 hours [19]. The release of
prostaglandin E2 was determined by ELISA (Biotrend,
Cologne, Germany) in 18-hour FLS cultures.

IL-18 signaling
IL-18 signaling with IκB-α phosphorylation and degrada-
tion, representing a key step of NF-κB activation [20], was
assessed in IL-18Rα+β+, IL-18Rα+β–, and IL-18Rα–β–

FLS from two patients with RA and one with OA and in
U937 cells. For details see Supplementary material.

Statistics
Statistics were calculated for the entire group of RA-
FLSSM and RA-FLSSF or for an indicated number of these



cell cultures, by the Mann–Whitney U test for 2-tailed or
untailed groups, respectively.

Results
Constitutive expression of IL-18R
Expression of IL-18R was detectable by semiquantitative
RT-PCR in RA-FLSSM (mean ± SEM of ODQs after 35
cycles: 10.2 ± 5.2%), RA-FLSSF (ODQ 10.4 ± 2.1%), and
SpA-FLSSF (ODQ 4.0 ± 1.7%), but not in OA-FLSSM

(ODQ 0.7 ± 0.4%, P < 0.05). IL-18Rβ mRNA was shown
by RT-PCR in RA-FLSSM (ODQ: 35 ± 12%), RA-FLSSF

(ODQ: 9.8 ± 3.7%), and SpA-FLSSF (ODQ: 9.0 ± 4.4%),
but, again, not in OA-FLSSM cultures (ODQ: 0.5 ± 0.5%,
P < 0.05) (Fig. 1). The simultaneous presence of RT-PCR
products of both IL18Rα and IL-18Rβ was clear in 5 of 20
RA-FLS cultures but in none of the cultures derived from
OA or SpA. When PCR was performed under the same
conditions with U937 cells, both IL-18R chains were
easily detectable.

Western blotting experiments in FLS reflected the results
obtained on IL-18Rα, showing detectable IL-18Rα protein
in three of four RA-FLS cultures but in neither of the OA-
FLS cultures examined. The molecular weights found cor-
responded to approximately 55 and 70 kDa in all positive
experiments (Fig. 2). Cross-linking experiments with a
biotinylated IL-18-GST protein (44 kDa) on FLS revealed
an intense 100-kDa protein complex and two additional,
less intense high-molecular-weight bands corresponding
to 150–200 kDa (see Fig. 2).

Regulation of IL-18Rαα mRNA expression
Expression of IL-18Rα in RA-FLS cultures was not
detectable upon stimulation with IL-1β, IL-2, IL-12, IL-15,
IL-18, IL-12 + IL-18, or TNF-α. In contrast, we found a
shift to fewer PCR cycles needed to detect a specific
IL-18Rα RT-PCR product, but no increase of IL-18R
protein, on IFN-γ stimulation in FLS (n = 6, P < 0.05;
Fig. 3).
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Figure 1

Heterogeneous and noncorrelated constitutive IL-18Rα and IL-18Rβ mRNA expression in fibroblast-like synoviocytes (FLS) derived from patients
with rheumatoid arthritis (RA-FLS) or spondylarthropy (SpA-FLS), but negativity for both IL-18R chains in FLS from patients with osteoarthritis
(OA-FLS). Cultures 1–3 were used for IκB-α signal transduction analyses. IL-18R(α, β) = IL-18 receptor(α, β). The monocytic cell line U937 was
used for comparison.
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Figure 2

IL-18R western blotting and cross-linking experiments. The molecular
weight of IL-18Rα in fibroblast-like synoviocytes (FLS) corresponds to
~55 and ~70 kDa (lane 1: positive result in FLS from patients with
rheumatoid arthritis [RA]; lane 2: negative result in FLS from patients
with osteoarthritis [OA]), and is consistent with a predominant ~100-
kDa complex in cross-linking experiments (bound IL-18-GST ~44 kDa)
(lane 3). Two smaller bands of linked FLS membrane proteins
corresponded to 150–200 kDa and suggest additional, higher-
molecular-weight protein complexes containing labeled IL-18, e.g. a
complex of the two IL-18R chains. Less intense staining of all cross-
linked complexes by competing with unlabeled IL-18 (lane 4)
demonstrates the ligand specificity of bound FLS membrane proteins.
IL-18R(α) = IL-18 receptor(α).
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IL-18-mediated FLS effects
FLS were exposed to IL-18 in a large number of experi-
ments. We observed some ICAM-1 induction by IL-18 (∆
mean fluorescence intensity (MFI) ≥20%) in 5 of 33 FLS
cultures (Fig. 4a), but unresponsiveness (∆ MFI < 20%) in
most of the FLS cultures; in contrast, IL-18 strongly
induced ICAM-1 expression in U937 cells (average ∆ MFI
+159%) (Fig. 4b). In addition, stimulation of FLS cultures
with IL-18 neither increased cell proliferation nor upregu-
lated any of the following in the supernatants: VCAM-1
expression, or the concentration of MMP-1, MMP-3, GM-
CSF, prostaglandin E2, or NO. Nitrite levels were close to
the detection limit in both groups, and even lower in IL-18-
stimulated FLS than in control cultures. For details, see
Table 1, and for results in U937 cells and effects in FLS
caused by other stimuli, see Supplementary material.

IκκB-αα assays
IκB-α was assayed in an IL-18Rα+β+, an IL-18Rα+β–, and
an IL-18Rα–β– FLS culture, on the basis of the RT-PCR
results. Rapid Ser32 IκB-α phosphorylation and degrada-
tion was observed in the cell-protein preparations from
IL-18Rα+β+ FLS (Fig. 5) and U937 cells, but not in FLS

cultures, in which the mRNA level of one or both IL-18R
chains was below the RT-PCR detection limit.

Discussion
IL-18R expression in FLS
As is known from lymphocytes and various transformed
human cell lines, including fibroblasts, the presence of
both IL-18R chains is an important factor in their cellular
response limiting the action of IL-18 [14]. In our experi-
ments, many of the RA-FLS cultures studied expressed at
least one IL-18R chain, but the PCR analyses considered
with the results of the IκB-α assays showed that only 5 of
20 RA-FLS long-term cultures, and none of the OA or
SpA FLS cultures, expressed both receptor chains in
amounts sufficient for functionality of the receptor
complex. For suggested ligand binding of IL-18Rα/β
chains, see Supplementary material.

Lack of IL-18 response in FLS
FLS are a heterogeneous cell population [8,21], whose
characteristics may even depend on the preparation tech-
nique used [22], and we found remarkable differences of
IL-18R expression among the FLS cultures as one corre-
late of their diversity. IκB-α activation was demonstrable
only in IL-18Rα+β+ RA-FLS and in the U937 monocyte
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Figure 3

IFN-γ induces IL-18Rα mRNA expression in RA-FLS. (a) Results
represent the mean ± SEM of relative IL-18Rα expression (based on the
expression of β-actin housekeeping gene) in six RA-FLS cultures after
25, 30, and 35 PCR cycles. (b) IL-18Rα RT-PCR products of two
representative cultures after 25, 30, and 35 cycles, and the
corresponding β-actin RT-PCR products (bottom lane). FLS = fibroblast-
like synoviocytes; IL-18Rα = IL-18 receptor α; RA = rheumatoid arthritis;
RT-PCR = reverse transcriptase polymerase chain reaction.
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Figure 4

Expression of intercellular adhesion molecule (ICAM)-1 in fibroblast-
like synoviocytes (FLS) (a) and U937 cells (b) upon stimulation with
IL-18 (x-axis: staining intensity; y-axis: number of events). Broken and
continuous lines show ICAM-1 expression in control conditions and IL-
18-stimulated cells, respectively. The strongest induction of ICAM-1 by
IL-18 (a) was 95.1, versus 73.9 in controls (∆MFI = +28.6%), and (b)
82.1, versus 31.7 in U937 cells (∆MFI = +159%). The result of each
one of three similar independent experiments is represented. CD54PE
= fluorescence intensity of cells, stained with phycoerythrin-labeled
CD54 monoclonal antibodies; MFI = mean fluorescence intensity.
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cell line. For induced expression of IL-18Rα in FLS, see
Supplementary material. Preliminary experiments had
shown the expression of an IL-18-binding protein in FLS
cultures. Presence of this IL-18 decoy receptor had to be
considered as possibly accounting for the missing IL-18
bioactivity in our experiments, but the mRNA levels found
for this decoy protein in the FLS cultures elicited no
demonstrable IL-18-binding protein immunoreactivity in
other FLS culture supernatants (data not shown). Consid-
ered in combination with the cross-linking data, this

finding shows that IL-18-binding protein is therefore not
likely to account for IL-18 resistance of FLS in long-term
culture. The lack of IL-18 response in most FLS cultures
appears to be based on a rather low or missing constitu-
tive expression of IL-18Rα or IL-18Rβ. Despite relevant
IL-18R expression and IL-18 signaling in some FLS cul-
tures, all the cultures we studied were, in contrast to
U937 cells, more or less refractory to IL-18 in respect of a
postulated upregulation of any disease relevant molecule
investigated here. Methodological influences have to be
considered in analyzing the results of fluorescence-acti-
vated cell sorting (FACS) in FLS [22], but the uniformity of
results showing IL-18 resistance for many target mole-
cules in almost all long-term FLS cultures suggests addi-
tional, as-yet-unknown IL-18-inhibiting post receptor
events in these cells similar to the situation in transformed
human fibroblasts [14].

Response of monocytic cells to IL-18
U937 cells, with a constitutive IL-18R expression similar to
that found in IL-18α+β+ FLS, effectively responded to
IL-18 with high levels of ICAM-1 expression. Primary SF
macrophages are, furthermore, known to be responsive to
IL-18 as shown by enhanced TNF-α production [1], and
these cells with a capacity for immediate IL-18 response,
together with IL-18R+ T cells, thus seem responsible for
the proinflammatory IL-18 effects in arthritis.

Conclusions
Constitutive expression of IL-18R is present in a minor but
quantitatively relevant group of RA-FLS in long-term
culture, and expression of both known IL-18R chains
seems to be a prerequisite for IL-18 signaling in these
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Table 1

Challenging cultured fibroblast-like synoviocytes (FLS) with IL-18 did not directly stimulate proliferation or expression of
molecules propagating rheumatoid arthritis

Parameter Unit No. of experiments (No. of patients) Control FLS (mean ± SD) FLS + IL-18 (mean ± SD

Proliferation Extinction 18 (6) 0.084 (0.029–0.172) 0.085 (0.029–0.171)

MMP-1 ng/ml 36 (20) 3.3 (1.5–83.7) 2.9 (1.5–84.4)

MMP-3 ng/ml 22 (11) 20.0 (1.8–78.1) 18.8 (3.3–81.1)

ICAM-1 MFI 33 (9) 60.2 (12.2–186.7) 66.5 (9.0–183.9)

VCAM-1 MFI 33 (9) 39.5 (1.3–90.7) 39.4 (1.3–94.2)

Prostaglandin E2 pg/ml 12 (6) 311 (104–537) 264 (73–451)

Nitric oxide µM 18 (9) 1.76 (1.15–3.11) 1.15 (0.67–2.13)**

IL-6 pg/ml 22 (11) 104.0 (27.7–445.3) 145.8 (9.4–577.2)

IL-8 pg/ml 27 (9) 691 (167–2016) 503 (139–2351)

GM-CSF pg/ml 20 (10) 0.59 (0.22–8.31) 0.92 (0.21–8.24)

Values are means ± SD (range in parentheses). Significance was calculated using the Mann–Whitney test for two-tailed groups. Differences were
statistically insignificant except as indicated. **P < 0.01. GM-CSF = granulocyte/macrophage-colony-stimulating factor; ICAM = intercellular
adhesion molecule; MMP = matrix metalloproteinase; SD = standard deviation; VCAM = vascular cell adhesion molecule.

Figure 5

Immunoblotting of Ser32-phosphorylated IκB-α (top, after
immunoprecipitation), and total IκB-α (bottom) shows rapid IL-18-
induced IκB-α phosphorylation and degradation in IL-18Rα+β+

fibroblast-like synoviocytes (culture 3 in Fig. 1). One of two similar
independent experiments is presented. IκB-α = inhibitor of kappaB α;
IL-18R(α, β) = IL-18 receptor (α, β).
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cells. However, cultured FLS were refractory to IL-18 stim-
ulation. This observation is in sharp contrast to the results
in monocytes and macrophages and strengthens the argu-
ment that these cells, acting in synergy with T cells,
account for the proinflammatory effect of IL-18 in rheuma-
toid arthritis.
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Supplementary material
Supplementary introduction
Indications for a direct proinflammatory role of IL-18 in
arthritis
IL-18 was first described as a T-cell activating, interferon-
gamma- (IFN-γ)-inducing factor [S1], but it also exhibits a
broader spectrum of proinflammatory effects. For example,
IL-18 shows IFN-independent effects in the murine model
of arthritis induced by streptococcal cell walls [S2] and
directly induces TNF-α production in macrophages
derived from synovial fluid [1]. In contrast, stimulation of
IL-1β and IL-8 by IL-18 in peripheral blood mononuclear
cells is T-cell-dependent [S3]. IL-18 promotes collagen-
induced arthritis in mice through mechanisms that may be
distinct from those that operate with IL-12, another impor-
tant IFN-γ-inducing molecule [S4].

Cell types expressing IL-18R
IL-18R expression is known to occur in several lymphatic
and myeloid cell lines [S5], primary T and B lymphocytes,
and natural killer cells [S6,S7]. IL-18 activity in unstimu-
lated T cells is limited by low basal IL-18R expression
levels; one explanation for their synergism with IL-18 is
upregulated expression of IL-18R by co-stimulatory mole-
cules IL-12 or IL-15 [1–4]. IL-18R regulation plays a
pivotal role in T-cell function and decides whether T lym-
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phocytes become polarized to either Th1 or Th2 cells
[S8,S9].

Supplementary materials and methods
Reagents
RNAzol™ B was purchased from CINNA, Cincinnati, OH,
USA. SuperScript™ RT-II, Taq polymerase, PBS, penicillin,
streptomycin, glutamine, and RPMI 1640 medium were
supplied from GIBCO BRL, Eggenstein, Germany. Ham’s
F10 medium was purchased from Bio Whittaker, Verviers,
Belgium; collagenase, protease inhibitors benzamidin,
aprotinin, and phenylmethylsulfonyl fluoride (PMSF) were
from Sigma, Deisenhofen, Germany. Trypsin–EDTA was
from PAN Biotech, Aidenbach, Germany, FCS from
Boehringer-Ingelheim, Ingelheim, Germany, and the cross-
linker bis(sulfosuccimidyl) suberate was purchased from
Pierce, Rockford, IL, USA. A human IL-18 GST fusion
protein (molecular weight [MW] ~44 kDa) was cloned
after full-length RT-PCR, inserted in a pGEX4T2 vector
(Pharmacia, Freiburg, Germany) and expressed in
Escherichia coli. IL-18-GST was purified in
glutathione–agarose (Sigma) columns and biotinylated in
accordance with standard protocols [S10]. Previous
experiments have shown that this fusion protein is bioac-
tive [S11]. Recombinant human IL-1β (1 ng/ml), IL-2
(100 ng/ml), IL-12 (1 ng/ml), IL-15 (100 ng/ml), IL-18
(10 nM), IFN-γ (5 ng/ml), and TNF-α (10 ng/ml) were pur-
chased from Pepro Tech EC Ltd, London, UK (concentra-
tions used are given in parentheses). IL-18 receptor
antibodies and IL-18 ELISA kits were provided from R&D
systems. FITC-conjugated rabbit antigoat secondary anti-
bodies were purchased from Jackson ImmunoResearch,
West Grove, PA, USA. FITC-conjugated CD90/Thy-1 and
CD106/VCAM-1 antibodies were purchased from
Dianova, Hamburg, Germany. FITC-conjugated CD14,
phycoerythrin-conjugated CD54 (ICAM-1), phycoerythrin-
conjugated CD86 antibodies, and culture flasks were from
Becton Dickinson, Franklin Lane, NJ, USA.

IL-18Rαα/ββ RT-PCR
Cells were lysed with RNAzol™ followed by RNA extrac-
tion and reverse transcription into cDNA with Super-
Script™ RT-II, in accordance with the manufacturers’
instructions. RT-PCR was performed for IL-18Rα using
endpoint or multistep PCR kinetics (25–35 cycles), and
IL-18Rβ by anchored RT-PCR under the following condi-
tions: IL-18Rα sense GTC AAC AGC ACA TCA TTG
TAT, antisense TAG AAT TCT TAT GTT TTT CCA TCT,
annealing temperature 60°C, length of the RT-PCR
product 670 bp. IL-18Rβ sense TAC CAG AGC AAG
GAT CAG ACG C, antisense CAA TCC CAT TCC ATT
GTC CAT C, optimal annealing temperature 56°C, 30
cycles, length of the PCR product 772 bp. IL-18Rβ
anchored RT-PCR antisense primer: CCA GGG CTC ATT
TCA CCA TTC, 20 additional cycles, length of this RT-
PCR product 630 bp. Expression of the β-actin house-

keeping gene was determined to ensure equivalent
amounts of the extracted RNA: β-actin sense primer TCG
AGC ACG GCA TCG TCA CCA ACT, antisense primer
ACC GCT CAT TGC CAA TGG TGA TGA, annealing
temperature 60°C, 30 cycles, length of the PCR product
552 bases. Ethidium bromide-stained DNA was visualized
in ultraviolet light and quantified with Molecular Analyst
software (BIORAD, Munich, Germany).

IL-18R western blotting
For IL-18R western blotting, 5 × 106 FLS was lysed on ice
in buffer solution containing 20 mM TRIS (pH 8.0),
137 mM NaCl, glycerol 10%, Nonidet P-40, 10 mM
EDTA, 100 mM NaF, 1 mM PMSF, aprotinin, 20 µM
sodium orthovanadate, and 4 µM leupeptin. Proteins were
separated by electrophoresis in 15% SDS–PAGE and
blotted onto a nitrocellulose membrane. Membranes were
stained with an IL-18R-specific antibody and a secondary
anti-goat IgG antibody (R&D Systems, Wiesbaden,
Germany). Bound antibodies were visualized by chemi-
luminescence.

Covalent IL-18 cross-linking
RA-FLS with presence of both IL-18R chains in RT-PCR
analyses were removed from the flasks using ice-cold
PBS and a cell scraper. Cells were thoroughly washed in
PBS containing benzamidine (10 mM), aprotinin
(100 U/ml), and PMSF (1 mM). Each sample of 1 × 106

cells was either incubated with biotinylated IL-18 GST-
fusion protein (final concentration 25 µg/ml) or a mixture
(1:100) of biotinylated and unlabeled IL-18 GST-fusion
protein for 1 hour on ice. Cross-linker BS3 (0.5 mM) was
added to the cells for 10 min. Free cross-linker molecules
were eliminated with 25 mM glycine and the cells were
washed with PBS. Cell pellets were solubilized with Triton
(1%) and protease inhibitors in PBS on ice for 20 min.
Solubilisates were vortexed every 5 min before centrifuga-
tion of the cellular debris. Dissolved proteins were sepa-
rated on a 15% SDS–polyacrylamide gel and visualized as
biotin–conjugated protein complexes by streptavidin-per-
oxidase reaction.

IκκB-αα activation
We used the Phospho Plus IκB-α (Ser32) Antibody Kit
from New England Biolabs (Beverly, MA, USA), in accor-
dance with the manufacturer’s instructions. Total IκB-α
was determined by direct western blotting, and phospho-
rylated IκB-α was estimated by immunoprecipitation. Each
sample of 5 × 106 cells was stimulated with IL-18 for 5,
10, or 30 min. Stimulation was stopped on ice, cells were
thoroughly washed, and lysates were prepared in
Tris–HCl buffer (pH 6.8) containing 2% SDS, 10% glyc-
erol, 50 mM dithiothreitol, and 0.1% bromphenol blue.
Each sample of 20 µg protein lysate was separated by
12.5% SDS–PAGE and blotted onto a nitrocellulose
membrane. Immunoprecipitation for phospho-IκB-α was

Available online http://arthritis-research.com/content/4/2/139



performed overnight using anti-IκB-α rabbit polyclonal IgG
antiserum (New England Biolabs). Antibody-IκB-α com-
plexes were bound to protein A sepharose CL-4B
(Sigma), centrifuged, and washed in TRIS–HCl buffer
containing 0.2% NP-40 and 0.25 mM protease inhibitor
PMSF. Sepharose beads were separated by boiling for
5 min in 10 µl SDS buffer and centrifuged. Supernatants
were separated by SDS–PAGE. Membranes were
blocked in triethanolamine-buffered saline solution
overnight and stained with IκB-α or phospho-IκB-α
(Ser32) rabbit polyclonal antiserum. Bound antibodies
were detected with a secondary antirabbit antibody conju-
gated to horseradish peroxidase, and LumiGLO chemi-
luminiscent reagent (New England Biolabs).

Supplementary results
Additional experiments on IL-18R regulation
IL-18Rα protein levels in RA-FLS remained unaffected by
IFN-γ stimulation in western blotting experiments (n = 3,
data not shown), and IL-18Rα mRNA levels in U937 cells
were not inducible (differences of ODQ of IL-18Rα/β-
actin PCR products upon stimulation < 50%) by any of the
indicated stimuli.

ICAM-1 induction by IL-18 in U937 cells
Induction of ICAM-1 by IL-18 in U937 cells was identical
to that observed by TNF-α stimulation, and induction by
IL-18 was not further enhanced by simultaneous IL-12
challenge. In agreement with this observation, we found
no upregulation of IL-18R transcripts by any of the
cytokines studied (increase of ODQ < 50% in all experi-
ments).

FLS response to IL-1β
In contrast to the lack of a proinflammatory effect by IL-18
stimulation in FLS, strong prostaglandin E2 induction
(> 2000 pg/ml, n = 12) was observed within 18 hours in
those FLS cultures exposed to IL-1β, thus excluding
anergy of the studied long-term-cultured FLS to other
cytokine stimuli.

Supplementary discussion
Ligand binding of the IL-18Rαα/ββ chain
IL-18R expression in FLS and IL-18 ligand binding on FLS
surfaces were confirmed by western blotting and cross-
linking experiments, respectively. The finding of IL-18R
bands at ~55 and ~70 kDa in western blotting experi-
ments is essentially in agreement with the wide band of
published IL-18Rα molecular weights [10,S5], and IL-18
cross-linking on FLS membranes exhibited a predominant
100-kDa complex, suggesting a complex of biotinylated IL-
18-GST with IL-18Rα. In contrast to the rather low
binding affinity of the IL-18Rα-chain [11], the isolated
receptor β-chain was initially reported to be ineffective for
IL-18 ligand binding [12] but was recently shown to
enhance IL-18 ligand-binding affinity together with the IL-

18Rα-chain [13]. We found two high-molecular-weight
complexes, of about 150–200 kDa. In agreement with pre-
vious observations [10,11,13], quantitatively predominant
ligand binding to IL-18Rα alone and, to a minor extent,
binding to both IL-18R chains may be also supposed from
the cross-linking experiment in FLS, assuming that the
~87-kDa MW of IL-18Rβ protein estimated by the amino
acetic acid sequence is correct [S12].

IL-18Rαα by IFN-γγ
IL-18Rα mRNA expression in FLS was inducible by IFN-γ,
whereas amounts of IL-18R protein remained unaffected
by this stimulus within the first 72 hours. This discrepancy
may be attributable to a missing or very slow translation of
IL-18Rα transcripts. However, some enhanced FLS sensi-
tivity to IL-18 due to longstanding influences of an inflam-
matory environment should be considered.
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