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Abstract
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1 Introduction

Allowing for long-run consumption risk in the pricing kernel, as advocated by Bansal

and Yaron (2004), holds the promise of resolving prominent asset pricing puzzles and

thus restoring the nexus between the real economy and financial markets. Numer-

ical calibrations show that by taking long-run risk (LRR) into account, it becomes

possible to explain the considerable U.S. postwar equity premium by means of a

consumption-based asset pricing model that assumes plausible values for the rep-

resentative agent’s time preference, risk aversion, and propensity for intertemporal

substitution.1

The LRR approach is theoretically appealing, but its econometric analysis is

challenging. The model contains latent variables, such as a stochastic variance pro-

cess and the model’s keystone, a small predictable growth component. Using the

efficient method of moments developed by Gallant and Tauchen (1996), the first

econometric analysis of the LRR model was performed by Bansal, Gallant, and

Tauchen (2007). However, even using a theoretically optimal estimation strategy,

these authors had to calibrate several structural model parameters, which indicates

that the identification of the structural parameters is not a matter of course. Some

subsequent empirical studies report estimates of all LRR model parameters though,

sometimes with remarkable precision (Constantinides and Ghosh, 2011; Hasseltoft,

2012; Bansal, Kiku, and Yaron, 2012b). Calvet and Czellar (2015) estimate a sim-

plified version of the LRR model using an exactly identifying auxiliary model with

an indirect inference estimation approach. They also report estimates of all model

parameters, but their simplification, which greatly facilitates the model simulation,

is not without implications (see Section 2.2). In a Monte Carlo experiment, Gram-

1See also Drechsler and Yaron (2011), who focus on the ability of the LRR model to explain
size, value, and variance premia, and Bansal, Kiku, and Yaron (2012a), who compare the LRR
approach with the habit model proposed by Campbell and Cochrane (1999).
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mig and Küchlin (2015) find that some estimation strategies applied in previous

studies have trouble recovering the true model parameters even with a very large

sample.2 Their evidence suggests that estimation problems and the need to fix some

parameter values all originate from attempts to estimate the structural parameters

in a single step, in which the LRR model’s time series dynamics and equilibrium

asset pricing implications are entangled.

This paper instead proposes a two-step indirect inference strategy to avoid the

drawbacks of previous approaches. By recognizing the inherently recursive LRR

model structure, the two steps separate the estimation of the macroeconomic dynam-

ics from that of the investor preference parameters. Instead of using a single auxiliary

model, which would confront the difficult task of capturing all important model fea-

tures, the two estimation steps employ specific auxiliary parameters to account for

the time series properties and asset pricing implications of the model, respectively.

Our two-step estimation approach thus effectively implements Gourieroux, Monfort,

and Renault’s (1993) final suggestion to perform indirect inference estimation of dif-

ferent parts of a model by different criteria. Similar to the recommendations of

Dridi, Guay, and Renault (2007), we advocate the use of tractable auxiliary models

that reflect the LRR model’s key features by well-chosen moment restrictions. A

similar recursive structure is common to other prominent consumption-based asset

pricing models, and the two-step indirect inference strategy offers an alternative for

their often difficult econometric analysis.

The auxiliary parameters in the first estimation step are derived from the hetero-

geneous autoregressive (HAR) model proposed by Corsi (2009), which allows for the

use of past information over long horizons in a parsimonious way. The investor

preference parameters are estimated in the second step, for which we exploit the

2We focus on classical estimation approaches here. For Bayesian approaches towards estimating
the LRR model see Aldrich and Gallant (2011) and Schorfheide, Song, and Yaron (2014).
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LRR model’s basic asset pricing implications. When reliable first-step estimates

of the macro parameters are available, it is appropriate to use a few well-selected

moment conditions that define the second-step auxiliary parameters. We derive the

asymptotic properties of the two-step estimator; as an alternative, we also outline a

bootstrap method as a useful robustness test.

A Monte Carlo study explores the feasibility of the two-step indirect inference

approach, as well as the estimation precision that can be achieved with a sample

size equivalent to what is currently available for empirical analysis. We find that the

quality of the macro parameter estimates is crucial for ensuring precise preference

parameter estimates. The empirical application in turn yields results that support

the notion of a small persistent growth component, which is the crucial ingredient

of the LRR framework. The point estimates of the parameters that describe the

investor’s subjective time preference (close to, but smaller than 1) and relative risk

aversion (about 12) are economically reasonable. The estimate of the intertemporal

elasticity of substitution (IES) is less than 1, although the data are also consistent

with an IES>1. An IES greater than unity is the key condition for the ability of the

LRR model to explain the prominent asset pricing puzzles. The confidence intervals

indicate that estimation precision is inevitably limited by the relatively short low-

frequency macroeconomic data series. The empirical evidence in favor of the LRR

model is therefore less conclusive than suggested by some previous studies.

The remainder of the paper is organized as follows: Section 2 describes the LRR

model structure. Section 3 presents the two-step indirect inference strategy. After

we provide the results of the Monte Carlo study in Section 4, we describe the data

in Section 5. Section 6 contains the empirical results. Section 7 concludes.
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2 Theoretical framework

The outline of the LRR model structure that we present in this section focuses on

the macroeconomic dynamics and asset pricing implications; it highlights numerical

issues that become important when LRR model-implied data are simulated in the

course of an indirect inference estimation.3

2.1 Time series dynamics, preferences, and asset pricing implications

The macroeconomy in the LRR model consists of two observable growth processes,

log consumption growth gt and log dividend growth gd,t, which in turn are driven

by two latent processes. Fluctuating expected growth rates are induced by a small

predictable component xt, and the stochastic variance process σ2
t accounts for fluc-

tuating economic uncertainty:

gt+1 = µc + xt + σtηt+1, (1)

xt+1 = ρxt + ϕeσtet+1, (2)

gd,t+1 = µd + φxt + ϕdσtut+1, (3)

σ2
t+1 = σ2 + ν1(σ

2
t − σ2) + σwwt+1. (4)

The i.i.d. innovations η, e, u, and w are assumed to be standard normally distributed

and contemporaneously uncorrelated. For notational convenience, we collect the

parameters in Equations (1)-(4) in the vector ξM = (µc, µd, ρ, ϕe, σ, φ, ϕd, ν1, σw)′.

As a special case, Bansal and Yaron (2004) (henceforth, BY) consider a model

variant without fluctuating economic uncertainty, implying σw=0 and ν1=0, such

that σ2
t+1 = σ2.

3Detailed derivations of the key model equations, which appear somewhat dispersed in prior
literature, are provided in the Web Appendix.
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The representative LRR investor has recursive Epstein-Zin-Weil preferences, as

expressed by the utility function

Ut =

[
(1− δ)C

1−γ
θ

t + δ
(
Et
(
U

(1−γ)
t+1

)) 1
θ

] θ
1−γ

, (5)

where Ct is aggregate consumption, and θ = (1−γ)
(1− 1

ψ )
(cf. Epstein and Zin, 1989). The

subjective discount factor δ, the coefficient of relative risk aversion γ (RRA), and

the intertemporal elasticity of substitution ψ are collected in the vector of preference

parameters ξP = (δ, γ, ψ)′. Utility maximization is performed under the budget

constraint Wt+1 = (Wt − Ct)Ra,t+1, where W denotes aggregate wealth. The gross

return of the latent aggregate wealth portfolio, Ra, constitutes a claim to aggregate

consumption. Epstein and Zin (1989) show that the first-order conditions of the

maximization problem imply the following pricing equation for a gross return Ri,

Et
[
δθG

− θ
ψ

t+1R
−(1−θ)
a,t+1 Ri,t+1

]
= 1, (6)

where G denotes gross consumption growth.

Adapting the linear approximations suggested by Campbell and Shiller (1988),

BY express the log return of the aggregate wealth portfolio ra and the log return of

the market portfolio rm, which constitutes a claim to the dividend stream, as

ra,t+1 = κ0 + κ1zt+1 − zt + gt+1, (7)

rm,t+1 = κ0,m + κ1,mzm,t+1 − zm,t + gd,t+1, (8)
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where z denotes the log price-consumption ratio, and zm is the log price-dividend

ratio. Moreover,

κ1 =
exp(z̄)

1 + exp(z̄)
, κ1,m=

exp(z̄m)

1 + exp(z̄m)
, (9)

κ0 = ln(1 + exp(z̄))− κ1z̄, and κ0,m= ln(1 + exp(z̄m))− κ1,mz̄m, (10)

where z̄ and z̄m are the time series means of z and zm. The derivations of Equa-

tions (7)–(10) can be found in Section 1.2 of the Web Appendix.

2.2 Model simulation and solution

For the indirect inference estimation of the LRR model, we need to simulate model-

implied data, which requires a model solution given ξM and ξP. To provide such a

solution, we follow BY and write the latent log price-consumption ratio z and the

observable log price-dividend ratio zm as linear functions of the latent state variables:

zt = A0 + A1xt + A2σ
2
t , (11)

zm,t = A0,m + A1,mxt + A2,mσ
2
t . (12)

The A-parameters in Equations (11) and (12) can be obtained by pricing the

gross returns of the wealth and market portfolios using Equation (6). The resulting

expressions for the A-parameters depend on ξM and ξP and on the κ-parameters

in Equations (7) and (8), which in turn depend on z̄ and z̄m.4 Accordingly, the

parameters in Equations (7), (8), (11), and (12) are endogenously determined by

the solution of the model. In Appendix A.2 we explain how this solution can be

4The detailed expressions are provided in Equations (A-1)–(A-6) in Appendix A.1, which also
contains the LRR model-implied equation for the log risk-free rate, rf , and the equity premium,
Et [rm,t+1 − rf,t+1].
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obtained and how it is used for model simulation. Whether the model is solvable or

not, and thus whether LRR model-implied data can be simulated in the first place,

depends on the values of ξM and ξP. As pointed out by Grammig and Küchlin (2015),

the LRR model is solvable for the parameter values calibrated by BY, whereas

changes in the parameters within a plausible range can yield an insolvable model.

The intricate nature of the admissible parameter space poses a challenge for the

econometric analysis of the LRR model.5

3 A two-step indirect inference estimation strategy

3.1 Motivation and notation

This section details a two-step indirect inference strategy that separates the estima-

tion of the macro parameters ξM from that of the preference parameters ξP. We use

a notation that draws on the seminal work by Gourieroux et al. (1993) and Smith

(1993).

The LRR model, as outlined in the previous section, implies a vector stochastic

process for consumption and dividend growth (macro variables) that depends only

on ξM, as well as a vector stochastic process for the return of the market portfolio,

the risk-free rate, and the price-dividend ratio (financial variables) that depends on

both ξM and ξP. We denote the empirical time series of the macro variables by

5For their indirect inference estimation approach, Calvet and Czellar (2015) set the means of
zt and zm,t, which should be endogenously determined, to fixed values z̄∗ and z̄∗m. This choice
circumvents the need to solve for the endogenous model parameters during the estimation process.
However, the simplification comes at the cost of an inconsistency: When simulating the LRR
model using z̄∗ and z̄∗m, the means of the simulated zt and zm,t series will be different from the
fixed values. For example, using the LRR model parameter values calibrated by BY, and z̄∗ = 6.96
and z̄∗m = 5.95, as chosen by Calvet and Czellar (2015), to simulate LRR model-implied data series
with T=100k, we obtain a sample mean of the log price-consumption ratio equal to 5.87 and a
sample mean of the log price-dividend ratio equal to 5.19. These differences are large in economic
terms.
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[yM]1T = (yM
1 , . . . ,y

M
T ), where yM

t = (gt, gd,t)
′, and the empirical time series of the

financial data by [yP]1T = (yP
1 , . . . ,y

P
T ), where yP

t = (rm,t, rf,t, zm,t)
′.

The LRR model implicitly assumes that the macro and financial variables are

observed at the decision frequency of the investor, which is typically higher than

the empirical observation frequency of the data. In this case, it is necessary to

perform a time aggregation of the model-implied processes.6 We denote the LRR

model-implied macro and financial series that are time-aggregated to the observation

frequency by

[ỹM(ξM, z0)]
1
T = [ỹM

1 (ξM, z0), . . . , ỹ
M

T (ξM, z0)] (13)

and

[ỹP(ξM, ξP, z0)]
1
T = [ỹP

1(ξM, ξP, z0), . . . , ỹ
P

T (ξM, ξP, z0)], (14)

where z0 = (x0, σ
2
0)′ contains the initial values of the two state variables.

Assumption 1. (i) There exists a unique set of parameters ξM

0 ∈ ΞM, such that

[yM]1T and [ỹM(ξM

0 , z0)]
1
T are drawn from the same distribution, and also a unique

ξP

0 ∈ ΞP, such that [yP]1T and [ỹP(ξM

0 , ξ
P

0 , z0)]
1
T are drawn from the same distribution,

and (ii) the vector processes {yM
t } and {yP

t } are stationary and ergodic for any

ξM ∈ ΞM and ξP ∈ ΞP, respectively.

The recursive LRR model structure suggests estimating the macro parameters ξM

and the preference parameters ξP separately in two consecutive steps.7 Consider,

in particular, the macro dynamics in Equations (1)-(4), which only depend on ξM,

and in which the presence of two latent processes poses a challenge for choosing an

appropriate auxiliary model. The estimation of the auxiliary parameters must be

6The appropriate formulas are provided by Calvet and Czellar (2015) and given in Appendix A.3.
7A similar philosophy is pursued by Cecchetti, Lam, and Nelson (1993), who estimate by GMM

the parameters of the endowment process in a macro asset pricing model in a first step, while
computing confidence bounds for the investor’s preference parameters in a second stage.
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numerically tractable, but it must also capture the intricate time series properties

induced by these latent processes. The estimation of the preference parameters ξP

imposes different requirements; the LRR model-implied properties of the market

portfolio return and the risk-free rate need to be reflected by the auxiliary pa-

rameters. Entangling the information about these diverse aspects (i.e. time series

dynamics, asset pricing implications, and investor preferences) does not seem pru-

dent. As mentioned previously, Monte Carlo evidence and the discussion by Bansal

et al. (2007) suggest that the joint estimation of all LRR model parameters may

yield questionable results.

An indirect inference strategy that separates the estimation of ξM and ξP can

use specialized auxiliary models in each step, each of which is required only to

capture the properties of the macro or financial data series, not both. The separate

indirect inference estimation of the macro parameters also benefits from a simpler

data simulation, because the solution for the endogenous LRR parameters is not

required to generate model-implied macro data series.

3.2 First estimation step

3.2.1 First-step criterion and indirect estimation

The first step of the estimation strategy focuses solely on the macro parameters ξM.

It is essentially a classical indirect inference approach using a GMM-type criterion

function. We denote by θM ∈ ΘM ⊂ RkM the vector of first-step auxiliary parame-

ters, where kM must be at least as large as the number of structural macro parame-

ters hM. We define the first-step auxiliary parameters by a set of gM ≥ kM moment

conditions on a random function uM
t ([yM]t−lt ,θM), with [yM]t−lt = (yM

t−l, . . . ,y
M
t ),

E(uM

t ([yM]t−lt ,θM

0 )) = 0, (15)
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where the expectation is taken with respect to G0, the true distribution of the white

noise innovations in Equations (1)-(4), and we make the identifying assumption:

Assumption 2. E(uM
t ([yM]t−lt ,θM)) 6= 0 for all θM 6= θM

0 ∈ ΘM.

The moment conditions in Equation (15) intentionally involve only the macro

variables, not the financial variables of the LRR model. They should capture the key

properties of the model-implied consumption and dividend growth processes. Using

Equation (15) to define the auxiliary parameters offers flexibility in that a variety of

motivations for moment conditions can be exploited. Moreover, it naturally suggests

to obtain the estimate θ̂M
T of the first-step auxiliary parameters by maximizing a

GMM-type criterion function,

max
θM∈ΘM

QM

T

(
[yM]1T ,θ

M
)
, (16)

where

QM

T ([yM]1T ,θ
M) = −1

2
gM

T

(
[yM]1T ,θ

M
)′

Ω̂M

T gM

T

(
[yM]1T ,θ

M
)
, (17)

with Ω̂M
T a positive semidefinite matrix that converges almost surely to a determin-

istic positive semidefinite matrix ΩM, and

gM

T ([yM]1T ,θ
M) =

1

T

T∑
t=1

uM

t

(
[yM]t−lt ,θM

)
. (18)

Following Hansen (1982) we assume:

Assumption 3. (i) ΘM is a compact subset of RkM, (ii) uM
t (·,θM) is Borel mea-

surable for each θM in ΘM, (iii) E
(
uM
t ([yM]t−lt ,θM)

)
exists and is finite for all θM in

ΘM, and (iv) uM
t ([yM]t−lt ,θM) is first-moment continuous at all θM ∈ ΘM.
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Assumption 3, in conjunction with the stationarity and ergodicity Assumption 1,

states sufficient conditions such that the criterion in Equation (17) converges almost

surely uniformly to a non-stochastic limit criterion function that reads

QM

∞ (G0, ξ
M

0 ,θ
M) = −1

2
E [uM

t (θM)]
′

ΩM E [uM

t (θM)] , (19)

where uM
t (θM) is a short-hand notation for uM

t ([yM]t−lt ,θM). Moreover, Assumptions

1 and 2 imply that the limit criterion has a unique maximum at θM

0 ,

θM

0 = arg max
θM∈ ΘM

QM

∞ (G0, ξ
M

0 ,θ
M) , (20)

such that under Assumptions 1-3,

θ̂M

T = arg max
θM∈ ΘM

QM

T ([yM]1T ,θ
M) (21)

is a consistent estimator of θM

0 . We refer to Singleton (2006) for a concise proof.

When T tends to infinity, we obtain the first-step binding function,

bM(G, ξM) = arg max
θM∈ ΘM

QM

∞(G, ξM,θM), (22)

for which we demand, similar to Gourieroux et al. (1993):

Assumption 4. (i) bM(G0, .) is one to one and (ii)
∂bM

∂ξM′ (G0, ξ
M

0 ) is of full column

rank.

Using simulated samples of macro data of length TH, [ỹM(ξM, z0)]
1
TH , where H

is an integer value, we can obtain an indirect estimator of ξM

0 by

ξ̂M

T = arg min
ξM∈ ΞM

[
θ̂M

T − θ̃M

HT (ξM, z0)
]′

ŴM

T

[
θ̂M

T − θ̃M

HT (ξM, z0)
]
, (23)
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where ŴM
T is a positive definite matrix that converges almost surely to a determin-

istic positive definite matrix WM and

θ̃M

HT (ξM, z0) = arg max
θM∈ ΘM

QM

T

(
[ỹM(ξM, z0)]

1
TH ,θ

M
)

(24)

is a consistent functional estimator of bM(G0, .). We refer to Gourieroux et al. (1993)

to prove the following result:

Proposition 1. Under Assumptions 1-4, the estimator ξ̂M
T in Equation (23) is a

consistent estimator of ξM

0 .

See Appendix A.7 for a proof of Proposition 1.

3.2.2 Choosing the first-step auxiliary parameters

The challenge in choosing the first-step auxiliary parameters and the corresponding

moment conditions is to account for the predictable growth component xt, which

induces small but very persistent serial correlations in the growth series. These

deviations from i.i.d. growth allow the asset pricing implications of the LRR model to

unfold. A parsimonious way to capture the autocorrelation structure of a persistent

process is the HAR model proposed by Corsi (2009). It has been used in the realized

volatility literature to account for the long memory properties of squared returns by

including different sampling frequencies in an autoregressive model. To obtain the

first-step auxiliary parameters, we adopt the following HAR specification:8

 gt
gd,t

 =

c1
c2

+
τ∑
i=1

ΦiL
i

 gt
gd,t

+ Φτ+1

gf(h1)t−1

g
f(h1)
d,t−1

+ Φτ+2

gf(h2)t−1

g
f(h2)
d,t−1

+

ζ1,t
ζ2,t

 . (25)

8We are grateful to George Tauchen for suggesting the use of the HAR model to provide auxiliary
parameters.
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The parameter matrices Φi and the constants c1 and c2 are defined by the orthog-

onality of the residuals ζ1,t and ζ2,t and the variables on the right-hand side of

Equation (25). The data are on the base frequency, which could be quarterly (Has-

seltoft, 2012) or annual (Constantinides and Ghosh, 2011). The superscripts f(h1)

and f(h2) denote the lower frequencies that result from a time aggregation of the

base frequency data over hi periods. With a quarterly base frequency, we would use

h1 = 4 and h2 = 12 to obtain annual and triannual aggregates. Compared with a

standard vector-autoregressive process, the HAR specification can account for the

long-run impact of shocks to consumption and dividend growth in a parsimonious

way, because it replaces many required lagged growth rates by a few aggregates.

The auxiliary parameters implied by the HAR model are collected in the vector

θHAR = (c1, c2, vec(Φ1)
′, . . . , vec(Φτ+2)

′, σζ1 , σζ2 , σζ1ζ2)
′
,

where σζ1 , σζ2 , and σζ1ζ2 denote the standard deviations and the covariance of the

residuals in Equation (25). We also augment the auxiliary parameter vector to

include the means and standard deviations of the two growth processes as well as

their time aggregates,

gt =
(
gt, gd,t, g

f(h1)
t , g

f(h1)
d,t , g

f(h2)
t , g

f(h2)
d,t

)′
,

which we collect in the vectors µg =
(
µc, µd, µ

f(h1)
c , µ

f(h1)
d , µ

f(h2)
c , µ

f(h2)
d

)′
and σg =(

σc, σd, σ
f(h1)
c , σ

f(h1)
d , σ

f(h2)
c , σ

f(h2)
d

)′
. The vector of first-step auxiliary parameters is

then given by θM =
(
θHAR′,µ

′
g,σ

′
g

)′
. The complete set of moment conditions that

define θM is provided in Equation (A-17) in Appendix A.4.1.

We also consider extending θM with additional auxiliary parameters derived from

the moment restrictions implied by an AR-ARCH specification for consumption

13



growth (see Appendix A.4.1). In both the basic and the extended setup, a numerical

optimization is not required to obtain θ̂M
T . Moreover, in our specification of the

auxiliary parameters gM = kM, such that the values that maximize the criterion in

Equation (16) are independent of the choice of Ω̂M
T . The parameter values θ̂M

T that

maximize the first-step criterion can be obtained by OLS and by computing sample

moments.

While the rank condition in Assumption 4 can be examined using a large simu-

lated sample size, the injectivity assumption is difficult to verify. The connections

between auxiliary and structural parameters are obvious, though. The autoregres-

sive parameter matrices Φ should provide information about the persistence param-

eter ρ and the leverage ratio on expected consumption growth φ, while c1, c2, and

µg are linked to the unconditional expected values of log consumption and dividend

growth, µc and µd. Moreover, σζ1 , σζ2 , σζ1ζ2 , and σg should contribute to the iden-

tification of the unconditional variance σ and the variance-scaling parameters ϕe

and ϕd. The additional auxiliary parameters defined according to the AR-ARCH

moments should be useful to identify the stochastic volatility (SV) parameters ν1

and σw.

3.3 Second estimation step

3.3.1 Second step criterion and indirect estimation

The second estimation step focuses on the preference parameters ξP, taking the

first-step estimates ξ̂M
T as given. It uses auxiliary parameters to capture the key

asset pricing implications of the LRR model. The second-step auxiliary parameters

are collected in the vector θP ∈ ΘP ⊂ RkP , where kP is at least as large as the

number of preference parameters hP. Similar to the first step, we define the auxiliary
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parameters by a set of gP ≥ kP moment conditions on a random function of the macro

and the financial data,

E
(
uP

t ([y
M]t−nt , [yP]t−mt ,θP

0)
)

= 0, (26)

and make the identifying assumption:

Assumption 5. E
(
uP
t ([y

M]t−nt , [yP]t−mt ,θP)
)
6= 0 for all θP 6= θP

0 ∈ ΘP.

The moment conditions in Equation (26) can be motivated by various consider-

ations, such as a simplified, possibly linearized asset pricing relation. They suggest

that θ̂P
T can be obtained as a solution of

max
θP∈ΘP

QP

T

(
[yM]1T , [y

P]1T ,θ
P
)
, (27)

where

QP

T

(
[yM]1T , [y

P]1T ,θ
P
)

= −1

2
gP

T

(
[yM]1T , [y

P]1T ,θ
P
)′

Ω̂P

T gP

T

(
[yM]1T , [y

P]1T ,θ
P
)
, (28)

with Ω̂P
T a positive semidefinite matrix that converges almost surely to a determin-

istic positive semidefinite matrix ΩP and

gP

T

(
[yM]1T , [y

P]1T ,θ
P
)

=
1

T

T∑
t=1

uP

t

(
[yM]t−nt , [yP]t−mt ,θP

)
. (29)

To assess the properties of θ̂P
T , we proceed in a similar way as in the first step:

Assumption 6. (i) ΘP is a compact subset of RkP, (ii) uP
t (·, ·,θP) is Borel measur-

able for each θP in ΘP, (iii) E
(
uP
t ([y

M]t−nt , [yP]t−mt ,θP)
)

exists and is finite for all θP

in ΘP, and (iv) uP
t ([y

M]t−nt , [yP]t−mt ,θP) is first-moment continuous at all θP ∈ ΘP.
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Under Assumptions 1 and 6, the second-step criterion in Equation (27) converges

almost surely uniformly to the non-stochastic limit function

QP

∞ (G0, ξ
M

0 , ξ
P

0 ,θ
P) = −1

2
E (uP

t (θ
P))
′

ΩP E (uP

t (θ
P)) , (30)

where uP
t (θ

P) is a short-hand notation for uP
t

(
[yM]t−nt , [yP]t−mt ,θP

)
.

Under Assumption 5, the second-step limit function is uniquely maximized by θP

0 ,

such that under Assumptions 1, 5, and 6,

θ̂P

T = arg max
θP∈ ΘP

QP

T

(
[yM]1T , [y

P]1T ,θ
P
)

(31)

is a consistent estimator of θP

0 , referring to the same proof as in the first step. The

second-step binding function

bP(G, ξM, ξP) = arg max
θP∈ ΘP

QP

∞ (G, ξM, ξP,θP) (32)

is assumed to have the following properties:

Assumption 7. (i) bP(G0, ξ
M

0 , .) is one to one and (ii)
∂bP

∂ξP′ (G0, ξ
M

0 , ξ
P

0) is of full

column rank.

The second-step indirect inference estimator of ξP

0 is given by

ξ̂P

T = arg min
ξP∈ ΞP

[
θ̂P

T − θ̃P

HT (ξ̂M

T , ξ
P, z0)

]′
ŴP

T

[
θ̂P

T − θ̃P

HT (ξ̂M

T , ξ
P, z0)

]
, (33)

where ŴP
T is a positive definite matrix that converges almost surely to a determin-

istic positive definite matrix WP, and

θ̃P

HT (ξ̂M

T , ξ
P, z0) = arg max

θP∈ ΘP
QP

T

(
[ỹM(ξ̂M

T , z0)]
1
TH , [ỹ

P(ξ̂M

T , ξ
P, z0)]

1
TH ,θ

P

)
. (34)

16



During the optimization, and while computing θ̃P
HT (ξ̂M

T , ξ
P, z0), the first-step esti-

mate ξ̂M
T of the macro parameters remains unchanged. We can then prove:

Proposition 2. Under Assumptions 1-7, the estimator ξ̂P
T in Equation (33) is a

consistent estimator of ξP

0 .

See Appendix A.7 for a proof of Proposition 2.

3.3.2 Choosing the second-step auxiliary parameters

The need for tractable auxiliary parameter estimation is even more critical in the

second step, for two reasons. First, as mentioned previously, the LRR model and its

solution are already intricate. Second, the time aggregation from decision to obser-

vation frequency is a computer-intensive task, especially when the simulated sample

size is chosen to be reasonably large. If the estimation of the auxiliary parameters

on the simulated data were complicated and fragile, a comprehensive Monte Carlo

study, bootstrap inference, and the robustness check to start the optimization on a

grid of different starting values would become prohibitively time-consuming.

The second-step auxiliary parameters are therefore defined by a selected set of

moment conditions that capture the basic asset pricing implications of the LRR

model. Such a strategy is in line with the recommendations of Dridi et al. (2007),

who delineate the connection between indirect inference estimation and calibration

of DSGE models. They argue that if a model is misspecified, such that only some,

but not all of its structural parameters have unknown true values that we want

to estimate consistently and the rest are nuisance parameters, focusing on a well

thought-out set of moment conditions is preferable to a sophisticated auxiliary model

that tries to mimic the structural model as closely as possible. The promise of a

more efficient estimation would be undone by misspecification.
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The LRR model-implied equations for the risk-free rate and the market equity

premium (see Equations (A-7) and (A-10) in Appendix A.1) guide our selection

of the moment conditions that define the second-step auxiliary parameters. The

mean of the log risk-free rate E(rf ) = µrf should convey information about the

subjective time preference δ, the propensity for intertemporal substitution ψ, and

also about precautionary savings due to risk aversion γ. The equity premium µrem =

E(rm − rf ), though a function of all three preference parameters, primarily should

reflect the relative risk aversion. To disentangle risk aversion from intertemporal

substitution, we exploit the contemporaneous relationship between the log price-

dividend ratio and the log risk-free rate implied by the LRR model. Because it is

predominantly determined by the IES, but largely unaffected by the RRA coefficient

(see Appendix A.6), it facilitates the identification of ψ. We therefore include the

intercept α and the slope coefficient β of a linear regression of zm,t on rf,t among the

auxiliary parameters. Moreover, Equation (12) implies that E(zm) = µzm depends

on all preference parameters, but the standard deviation of zm (σzm) only depends

on γ and ψ, so including µzm and σzm as auxiliary parameters provides separate

information about risk aversion and time preference. We also include the standard

deviations of the market excess return (σrem) and the log risk-free rate (σrf ) in the

set of second-step auxiliary parameters.
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The moment conditions used to define θP = (α, β, µrem , µrf , µzm , σrem , σrf , σzm)′

are thus given by

E(uP

t ([y
M]t−nt , [yP]t−mt ,θP)) = E



ζ3,t
ζ3,t · rf,t
rem,t − µrem
rf,t − µrf
zm,t − µzm

[rem,t]
2 − [µrem ]2 − [σrem ]2

[rf,t]
2 − [µrf ]

2 − [σrf ]
2

[zm,t]
2 − [µzm ]2 − [σzm ]2


= 0, (35)

where ζ3,t = zm,t − α − βrf,t, and rem,t = rm,t − rf,t. Assumption 5 asserts that

Equation (35) must hold uniquely at θP = θP

0 . The number of moment conditions

(as in the first step) is equal to the number of auxiliary parameters, such that

the values that maximize the criterion in Equation (27) are independent of the

choice of Ω̂P
T . Numerical optimization is not required, and the parameter values θ̂P

T

that maximize the second-step criterion can be obtained by OLS and by computing

sample moments.

3.4 Asymptotic distribution of the two-step indirect inference estimator

The two-step indirect inference approach outlined in Sections 3.2.1 and 3.3.1 implies

that ξ̂M
T and ξ̂P

T represent the solution of the following system of equations,


∂θ̃M′

HT

∂ξM
(ξ̂M
T , z0) 0

0
∂θ̃P′

HT

∂ξP
(ξ̂M
T , ξ̂

P
T , z0)


ŴM

T 0

0 ŴP
T


 θ̂M

T − θ̃M
HT (ξ̂M

T , z0)

θ̂P
T − θ̃P

HT (ξ̂M
T , ξ̂

P
T , z0)

 = 0,

(36)
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which is a starting point to derive the asymptotic distribution of the two-step indirect

inference estimator. For that purpose, we make the following assumption:

Assumption 8. A multivariate central limit theorem applies, such that, under As-

sumptions 2 and 5,

√
T

 1
T

∑T
t=1 uM

t (θM

0 )

1
T

∑T
t=1 uP

t (θ
P

0)

→
d
N (0,S), (37)

with

S = Γ0 +
+∞∑
j=1

(Γj + Γ
′

j), (38)

Γj = E

uM
t (θM

0 )uM
t−j(θ

M

0 )′ uM
t (θM

0 )uP
t−j(θ

P

0)′

uP
t (θ

P

0)uM
t−j(θ

M

0 )′ uP
t (θ

P

0)uP
t−j(θ

P

0)′

 .
We can then prove the following proposition:

Proposition 3. Under Assumptions 1-8, the two-step indirect inference estimator

of ξM

0 and ξP

0 is asymptotically normal such that

√
T

ξ̂M
T − ξ

M

0

ξ̂P
T − ξ

P

0

→
d
N (0,Avar(H,WM,WP)), (39)

with
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Avar(H,WM,WP) =

(
1 +

1

H

) A(WM)AM
0 0

B(WP)C(WM)AP
0 B(WP)AP

0

S

AM
0
′A(WM)′ AP

0
′C(WM)′B(WP)′

0 AP
0
′B(WP)′

 ,
(40)

A(WM) =

(
∂bM′

∂ξM
(G0, ξ

M

0 )WM
∂bM

∂ξM′ (G0, ξ
M

0 )

)−1
∂bM′

∂ξM
(G0, ξ

M

0 )WM, (41)

B(WP) =

(
∂bP′

∂ξP
(G0, ξ

M

0 , ξ
P

0)WP
∂bP

∂ξP′ (G0, ξ
M

0 , ξ
P

0)

)−1
∂bP′

∂ξP
(G0, ξ

M

0 , ξ
P

0)WP, (42)

C(WM) =
∂bP

∂ξM′ (G0, ξ
M

0 , ξ
P

0)A(WM), (43)

AM

0 =

(
E
[
∂uM

t (θM

0 )
′

∂θM

]
ΩME

[
∂uM

t (θM

0 )

∂θM′

])−1
E
[
∂uM

t (θM

0 )
′

∂θM

]
ΩM, (44)

AP

0 =

(
E
[
∂uP

t (θ
P

0)
′

∂θP

]
ΩPE

[
∂uP

t (θ
P

0)

∂θP′

])−1
E
[
∂uP

t (θ
P

0)
′

∂θP

]
ΩP. (45)

If gM = kM, then AM
0 = E

[
∂uM

t (θM

0 )

∂θM′

]−1
and if gP = kP, then AP

0 = E
[
∂uP

t (θ
P

0)

∂θP′

]−1
.

A proof of Proposition 3 is given in Appendix A.7.

Asymptotically optimal weighting matrices can be provided for each step. Using

the partitioning

S =

 SM

(gM×gM)
SMP′

(gM×gP)

SMP

(gP×gM)
SP

(gP×gP)

 , (46)

we can prove:

Proposition 4. Under Assumptions 1-8, the asymptotically optimal weighting ma-

trix for the first indirect infernce estimation step is given by

WM∗ = (AM

0 SMAM

0
′)−1, (47)
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and the asymptotically optimal weighting for the second-step indirect inference esti-

mation, given the choice of the first-step weighting, is given by

WP∗ =(
AP

0S
PAP

0
′ + C(WM)(WM∗)−1C(WM)′ + C(WM)AM

0 SMP′AP

0
′ + AP

0S
MPAM

0
′C(WM)′

)−1
.

(48)

A proof of Proposition 4 is given in Appendix A.7.

As an alternative to using the asymptotic results, the LRR model structure

suggests a bootstrap simulation to obtain parameter standard errors and confidence

intervals. The procedure can be characterized as a parametric residual bootstrap

and is described in Appendix A.8.

3.5 One-step estimation revisited

Consider attempting a one-step indirect inference estimation of ξM and ξP based

on stacked, but otherwise unchanged, auxiliary parameters θM and θP, defined by

the same moment conditions as before. Here, we denote the auxiliary parameter

estimates obtained in a single step by θM
T and θP

T and the resulting structural pa-

rameter estimates obtained by minimizing a one-step indirect inference criterion

by ξM
T and ξP

T . Using a properly partitioned weighing matrix Ŵ, the first-order

conditions of this optimization read


∂θ̃M′

HT

∂ξM
(ξM
T , z0)

∂θ̃P′
HT

∂ξM
(ξM
T , ξ

P
T , z0)

0
∂θ̃P′

HT

∂ξP
(ξM
T , ξ

P
T , z0)




Ŵ11
(kM×kM)

Ŵ12
(kM×kP)

Ŵ21
(kP×kM)

Ŵ22
(kP×kP)


 θM

T − θ̃M
HT (ξM

T , z0)

θP
T − θ̃P

HT (ξM
T , ξ

P
T , z0)

 = 0.

(49)
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Comparing Equation (49) with Equation (36), we observe that in both cases,

linear combinations of the differences of the auxiliary parameter estimates are set to

zero. Yet, while the weights of the linear combinations in Equation (49) lead to an

inevitable interference of the auxiliary parameter matches θP
T − θ̃P

HT (ξM
T , ξ

P
T , z0) with

the estimation of the macro parameters ξM, even if we were to use a block-diagonal

weighting matrix, such that Ŵ21 = 0 and Ŵ12 = 0, the weights of the linear

combinations in Equation (36) prevent the second-step auxiliary model from inter-

fering with the estimation of the macro parameters. The two-step indirect inference

strategy thus accounts for the caveat that the entanglement of macro and financial

moment matches in a one-step generalized or simulated method of moments estima-

tion of the LRR model needs to be avoided, because it yields unreliable parameter

estimates. Our experiences with one-step indirect inference estimation strategies

lead to the same conclusion.

4 Monte Carlo study

4.1 Design

The Monte Carlo study explores the viability of the two-step indirect inference

strategy and the estimation precision that can be expected when using empirically

available sample sizes. For that purpose, we generate 400 independent LRR model-

implied data series of g, gd, rm, rf , and zm, using as true parameter values those

calibrated by BY (see Table 1), and we perform the estimation on the simulated

data. We assume that data and decision frequency are identical, such that time

aggregation is not required. BY’s calibration corresponds to a monthly decision

frequency. The lengths of the simulated data series are T=275, 1k, and 100k.

[Insert Table 1 here]

23



As mentioned previously, an analytical validation of the estimation strategy is not

possible. The T=100k study provides a substitute check on whether the estimation

strategy is viable, such that the true parameters can be recovered as T grows large.

Then T=1k represents a large but not implausible sample size for an empirical study

that could use monthly data, and T=275 corresponds to the number of observations

that are currently available at the quarterly frequency.

In the simulated economy, the investor has a positive time preference, such that

δ is close to but smaller than 1. The risk aversion parameter γ=10 lies at the upper

bound of economic plausibility (cf. Mehra and Prescott (1985)). The intertemporal

elasticity of substitution is larger than 1 (ψ=1.5), which is a necessary precondition

for the LRR model to be able to resolve the equity premium and risk-free rate puz-

zles. Growth expectations are very persistent (ρ=0.979), which is also pivotal for the

asset pricing implications of the LRR model. The predictable growth component xt

is indeed small, as a result of scaling consumption volatility by ϕe=0.044. Consump-

tion growth expectations are leveraged into dividend growth expectations, according

to φ=3. The expected values of consumption and dividend growth are identical, but

dividend volatility is considerably larger than consumption volatility (ϕd = 4.5).

Moreover, the stochastic variance process is highly persistent (ν1=0.987), but not

very volatile (σw=2.3 · 10−6). Panel (a) of Figure 1 illustrates that the fluctuation

of macroeconomic uncertainty is indeed moderate; Panel (b) shows that the model-

implied theoretical autocorrelations of squared consumption and dividend growth,

as induced by fluctuating economic uncertainty, are persistent but very small. The

±2
√
T confidence bounds for a sample size of T=1k illustrate why the persistent

but small autocorrelation of the stochastic variance may be impossible to detect in

small samples.

[Insert Figure 1 here]
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Indirect inference estimation uses H=10 for T=100k and T=1k, as suggested

by Smith (1993). For the T=275 study we use H=100, because initial estima-

tions revealed that the stability of the numerical optimization benefits from a larger

simulated sample size. To ensure robust, yet rapid optimization, we use the Nelder-

Mead (1965) algorithm. Conventional gradient-based optimization methods perform

poorly. To safeguard against false convergence close to favorably chosen starting val-

ues, we start the optimizations with values that are distant from the true parameter

values. This safety measure helps to avoid reporting overly optimistic results, but it

makes the optimization more difficult.9 The estimates of ρ, µc, and µd are restricted

to values between 0 and 1 by means of a logit transformation and the estimates for

σ, φ, ϕe, and ϕd are restricted to positive values by an exponential transformation

of the unrestricted parameters.

4.2 Monte Carlo results: first estimation step

In initial experiments, we attempted to estimate all macro parameters ξM, as de-

scribed in Section 3.2.1, using the simulated consumption and dividend growth data

series with T=100k. We found that the macro parameters can be reliably recov-

ered, except the SV parameters ν1 and σw, for which we obtain vastly different

estimates when using different initial parameter values. Alternative weighting ma-

trices (identity, optimal, and others) and augmenting the auxiliary parameter vector

as described in Section A.4.1 all yielded the same result.

9As a result, the numerical optimization cannot be accomplished for some replications, in par-
ticular for small T . In these cases, the Nelder-Mead algorithm either exceeds the maximum number
of iterations, or terminates at implausible values (i.e. more than ten times larger than the true
value in absolute terms). We consider these cases failed optimization attempts and exclude them
from the tables and plots that summarize the simulation study results. In the second estimation
step, we classify an optimization as failed if the LRR model is not solvable at the parameter values
at which the optimization terminates. In an empirical study, these problematic data could receive
special treatment, such as increasing the number of iterations or using alternative optimization
algorithms. Such an expensive approach is not tenable in a Monte Carlo study.
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It is not surprising that the simultaneous estimation of all parameters that char-

acterize fluctuating expected growth and economic uncertainty proves extremely

difficult, even when using a large sample. Figure 1 suggests that the two inter-

twined latent components should be hard to detect in the observable growth series.

Essentially, the estimation of ν1 and σw must rely on the information available from

the small autocorrelations of the squared growth series (see Panel (b) in Figure 1).10

In a more comprehensive simulation experiment, we fix the values of the SV

parameters ν1 and σw to their true values, and then estimate σ along with the other

macro parameters. The auxiliary parameter vector θM (base version) is constructed

as described in Section 3.2.1, with the following customization: In the HAR model

in Equation (25), we account for consumption and dividend growth on the annual

and the triannual levels by choosing h1 = 12 and h2 = 36. The first few monthly

lags should be particularly informative for estimating the persistence parameter ρ,

so we set τ = 6. Initial experiments indicate that exactly matching the means and

standard deviations of consumption and dividend growth enhances the precision of

the estimates of µc and µd and the variance-scalers ϕe and ϕd. The matches rely on

a diagonal weighting matrix WM with values of 1 on the main diagonal, except for

the entries that correspond to the first two elements of µg and σg, which receive a

greater weight (104). Using an estimate of the optimal first-step weighting matrix

does not provide an improvement in small samples.

As a benchmark, we also consider a GMM estimation of ξM that relies on moment

matches inspired by Constantinides and Ghosh (2011). For that purpose, we exploit

the possibility to express the population moments of log consumption and dividend

growth implied by the LRR model as functions of ξM. The just-identified GMM

10Extending the first-step auxiliary parameter vector in various directions does not alleviate the
problem, as documented in Section 2 in the Web Appendix. The issue also persists with increasing
values of σw.
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strategy is based on the seven moments given in Appendix A.4.1. Equations (A-22)-

(A-28) show that these moments do not depend on ν1 and σw (only higher moments

of consumption and dividend growth do). Therefore, they are useful only to estimate

the other macro parameters. In principle, we can thus estimate the remaining seven

macro parameters regardless of the true values of ν1 and σw. This insight suggests

a modified indirect inference estimation strategy,

If the volatility of economic uncertainty is small (as in BY’s calibration), the

simulated growth series resulting from either σ2
t or E(σ2

t ) = σ2 will be similar.

The model that is simulated for indirect inference estimation is then effectively

BY’s special case without fluctuating economic uncertainty (see Section 2.1), with

parameter vector ξM∗ = (µc, µd, ρ, ϕe, σ, φ, ϕd, 0, 0)′. In this modified estimation

strategy, ν1 and σw are not estimated, although the data-generating process does

exhibit stochastic volatility.

[Insert Table 2 here]

[Insert Figure 2 here]

Table 2 contains the medians and root mean squared errors (RMSEs) of the

resulting estimates. Panels A and B show the indirect inference results; Panel C

reports the GMM estimation results. Figure 2 illustrates the results using kernel

estimates.

The T=100k results indicate the viability of the two indirect inference estimation

strategies. The biases and RMSEs shrink, there are no estimation failures, and

the bell-shaped kernel estimates center closely around the true parameter values.

Comparing Panel A and Panel B of Table 2, we observe that replacing σ2
t by σ2

(assuming the true values for ν1 and σw are known) when simulating the model-

implied data does not impair the quality of the macro parameter estimates. This

conclusion holds for all simulated sample sizes.
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The estimation precision is different across parameters. Not surprisingly, the

estimates of the variance-scaler ϕe and the leverage parameter φ are less precise.

However, compared with the GMM results in Panel C, the indirect inference RMSEs

are notably smaller. A considerably smaller RMSE also results for the persistence

parameter ρ. Figure 3 shows that the distribution of the indirect inference estimate is

much more closely centered around the true value than that of its GMM counterpart.

[Insert Figure 3 here]

Precise estimation becomes more difficult with the currently available sample

size, as indicated by the increase in the RMSE and the wider distribution of the

estimates around the true parameters. Efficiency varies across parameters, similar

to the way it does in the large sample. As we might expect, the critical parameters

ϕe and φ prove most difficult to estimate precisely. However, the optimization of

the indirect inference objective function yields reliable results in that the algorithm

converges to the same minimum, irrespective of the starting values.11

4.3 Monte Carlo results: second estimation step

The second-step estimation based on the simulated data is performed as described

in Section 3.3.1, using the identity matrix for ŴP
T . Alternative weighting schemes,

including the asymptotically optimal second-step weighting matrix, do not offer

an improvement in smaller samples.12 To evaluate the performance of the second

11The GMM estimation strategy does not provide such robustness. Varying the starting values
yields different results for smaller samples. We accordingly refrain from reporting the GMM results
for smaller sample sizes.

12To find starting values for the optimization, we conduct an initial grid search that mimics the
recommended procedure in an empirical application. Generating LRR model-implied data during
the second estimation step entails solving for the endogenous parameters in Equations (7) – (12).
As we point out in Section 2.2, the solution may not exist, which would cause the estimation
to break down if the optimization algorithm were to probe inadmissible parameter combinations.
A constrained indirect inference estimation, as proposed by Calzorari, Fiorentini, and Sentana
(2004), cannot be employed, because the constraint would be imposed not on the auxiliary model

28



estimation step independently of the precision of the first-step input, we first perform

the estimation of ξP assuming that ξM is known.

[Insert Table 3 here]

Panel B in Table 3 reports the medians, RMSEs, and 95% confidence bounds

of the resulting preference parameter estimates. The T=100k study again serves as

a check on the viability of the estimation approach, which is corroborated by the

shrinking RMSEs, tight confidence bounds around the true parameters, and absence

of estimation failures. The preference parameters can be efficiently estimated for

the smaller sample sizes. Although the second-step auxiliary parameters are defined

by only a few basic asset pricing relations, and despite the more intricate data

simulation in the second step, the indirect inference strategy works well. Panel A

of Table 3 shows that replacing the conditional variance σ2
t by its unconditional

expectation σ2 when simulating model-implied data (i.e., estimating a model without

fluctuating macroeconomic uncertainty) does not impair the estimation of ξP. This

conclusion is based on BY’s calibrated model economy, but it should extend further

as well. We use unconditional moments of the equity premium and the risk-free rate

to estimate the investor’s subjective time preference, risk aversion, and IES. It is

plausible that knowledge of the dynamics of the conditional variance process does

not substantially improve the precision of the preference parameter estimation.

To assess the quality of the second-step estimation when ξM is unknown, we esti-

mate ξP using the first-step estimates of the macro parameters; σ2
t is replaced by σ̂2

when simulating data in the course of indirect inference estimation. The results are

contained in Panel C of Table 3. The T=100k results corroborate our conjecture

parameters but on the structural model parameters. Moreover, it is impossible to formulate explicit
constraints that would ensure that only eligible (structural) parameter combinations are used.
To obtain a stable optimization procedure, we add 103 to the objective function whenever the
optimization algorithm probes structural parameter values that imply an unsolvable model.
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that the two-step estimation strategy can recover the true parameters as RMSEs

decrease and confidence bounds narrow, and Figure 4 shows that the bell-shaped

kernel estimates center closely around the true values. Compared with the case in

which the macro parameters are known, estimation precision decreases considerably.

For smaller sample sizes, the subjective discount factor can still be estimated accu-

rately, whereas the RRA and IES estimates become less precise. Table 3 shows that

the RMSEs are influenced by a small number of large estimates that produce the

right-skewed kernel estimates for γ̂ and ψ̂ depicted in Figure 4. The masses of the

distributions remain centered around the true values.

[Insert Figure 4 here]

5 Data

The empirical application of the two-step indirect inference strategy is based on quar-

terly U.S. data from 1947Q2 to 2014Q4. The construction of the data base closely

follows Beeler and Campbell (2012). Consumption growth is computed from real

personal consumption per capita of nondurable goods and services, as obtained from

the Bureau of Economic Analysis. The market portfolio return, dividend growth,

and the price-dividend ratio are calculated for the CRSP value-weighted market

portfolio. Conversions into real terms are performed using the consumer price index

from the Bureau of Labor Statistics. To calculate a risk-free rate proxy, we use the

three-month nominal T-Bill yield from the CRSP database. Following Beeler and

Campbell (2012), we approximate the ex ante risk-free rate by using a forecast for

the ex post real rate, where the predictors are the quarterly T-Bill yield and the

average of quarterly log inflation over the past year. Figure 5 shows time series plots

of these data.
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[Insert Figure 5 here]

Dividend payments occur irregularly, such that the quarterly dividend growth

series depicted in Panel (b) of Figure 5 is erratic. The time series exhibits a strong

negative first-order autocorrelation that cannot be accounted for by the dividend

growth process in Equation (3). To address this problem, we follow Hasseltoft

(2012) and take the average of the current period’s log dividend growth and that of

the previous three quarters to obtain a smoothed dividend growth series, as depicted

in Panel (d) of Figure 5. We provide descriptive statistics in Table 4 and make the

data available in the Web Appendix.

[Insert Table 4 here]

6 Empirical Results

The application of the two-step indirect inference strategy assumes a monthly deci-

sion frequency; the time aggregation to the quarterly frequency follows the descrip-

tion in Section 3.1, and the auxiliary parameters are defined as in Sections 3.2.2

(using the basic version of the first-step auxiliary parameter vector) and 3.3.2. We

rely on the estimation strategy to replace σ2
t by σ2 = E(σ2

t ) when simulating LRR

model-implied data, such that we effectively estimate BY’s special case without

fluctuating macroeconomic uncertainty. The Monte Carlo results suggest that the

estimation of the remaining macro and preference parameters is not impaired, even

if the data-generating process exhibits some stochastic volatility. We include annual

and triannual aggregates in the HAR model in Equation (25) by setting h1=4 and

h2=12 and use HT=100k to improve simulation accuracy. Otherwise, the estimation

setup is the same as in the Monte Carlo study. Table 5 contains the point estimates,
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along with the bounds of the 95% bootstrap confidence intervals and the standard

errors based on the asymptotic and bootstrapped distributions.13

[Insert Table 5 here]

The first-step estimates of the macro parameters are consistent with the LRR

paradigm; they support the notion of a small persistent growth component. The

lower bound of the 95% confidence interval for ϕe is distinctly greater than 0 (ϕe=0

would imply i.i.d. growth processes), and the 95% confidence interval for the dif-

ference ρ-ϕe does not include 0 (ϕe=ρ would imply an AR(1) consumption growth

process). The estimate ρ̂=0.991 indicates strong persistence in the growth expecta-

tions. With an estimated base volatility of σ̂ϕ̂e
√

12=0.053%, the growth component

is small compared to the estimated base volatility of the consumption growth in-

novations, σ̂
√

12=0.83%, and to the estimated base volatility of dividend growth

innovations, σ̂ϕ̂d
√

12=2.54%. Moreover, the estimate φ̂=5.14 indicates that the ef-

fect of expected consumption growth on dividend growth is leveraged, as predicted.

The estimates µ̂c and µ̂d imply plausible mean growth rates of 2.0% p.a. and 2.3%

p.a. for consumption and dividends, respectively.

Estimation accuracy and its variation across macro parameters is in line with

the Monte Carlo results. As in Cochrane (2005), the bootstrap standard errors are

larger than their asymptotic counterparts, suggesting that the latter may encourage

an overly optimistic view. The 95% confidence bands contain plausible parameter

values, but the intervals are rather wide. In light of the Monte Carlo results, we

believe that the bootstrapped distribution provides a realistic view of the estimation

precision. Shephard and Harvey (1990) note that it is very difficult to distinguish

13Considering the aforementioned numerical difficulties, it is worth noting that we obtain the
same estimates and the same minima of the first- and second-step indirect inference objective func-
tions using very different starting values. The selection criteria for successful bootstrap replications
that are included in the calculation of the confidence bounds correspond to those applied in the
Monte Carlo study.
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between a purely i.i.d. process and one that incorporates a small persistent compo-

nent.

We also should not expect the estimation of macro parameters to improve by re-

lying on the LRR model’s asset pricing implications. These implications are required

to disentangle risk aversion from intertemporal substitution, and consumption and

dividend growth are independent of investor preferences. Most importantly, using

asset pricing relations to identify the macro parameters would forestall the two-step

estimation strategy, which is designed to disentangle the estimation of the macro

and preference parameters.

The second-step estimate for the subjective discount factor implies positive time

preferences (δ̂ = 0.99998, which is a plausible value at a monthly decision frequency),

and γ̂ = 11.8 indicates a reasonable relative risk aversion. These estimates are com-

parable to BY’s calibration. As might be expected from the Monte Carlo study, the

RRA and IES estimates have large standard errors (bootstrap and asymptotic), and

the 95% confidence intervals are wide. The subjective discount factor in turn can be

estimated more precisely. As Table 7 shows, δ̂ and γ̂ are comparable to the estimates

reported by Bansal et al. (2007), although they report a narrower confidence band

for the RRA coefficient. However, Bansal et al. (2007) also resort to fixing the value

of the IES. They report that the efficient method of moments objective function is

flat in ψ, and so, instead of estimating the IES, they calibrate ψ = 2, which is a

crucial choice. If the IES is greater than 1, the intertemporal substitution effect

dominates the wealth effect, which is the key condition for the LRR asset pricing

implications to unfold.14 Table 5 shows that our IES point estimate is smaller than 1

(ψ̂ = 0.29), but the 95% confidence interval also includes values larger than unity.

14See Equation (5) in Bansal and Yaron (2004). With relative risk aversion and IES both greater
than 1, we have γ > 1/ψ, i.e. a preference for early resolution of uncertainty.
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In contrast to theoretical considerations, estimates of the IES in previous liter-

ature tend to be below 1 and quite small (cf. Havránek, 2015; Thimme, 2017). As

noted by Beeler and Campbell (2012), the IES can be represented by the slope of a

regression of log consumption growth on the log risk-free rate and a constant. Using

the empirical data, the OLS estimate of the IES amounts to ψ̂OLS = 0.23, which is

similar to the indirect inference estimate but much smaller than the IESs calibrated

by Bansal and Yaron (2004) and Bansal et al. (2007). To show that OLS yields a

reasonable (albeit biased) IES estimate, we run the regression on simulated LRR

model data, using BY’s calibration as true parameter values. With a sample size of

T=100k, we obtain ψ̂OLS = 1.446 on a monthly level, and ψ̂OLS = 1.443 for quarterly

aggregates. Both estimates are close to the true ψ = 1.5.

[Insert Table 6 here]

The consequences of an IES estimate smaller than unity are also reflected in

Table 6, which reports the model-implied first and second moments of the macro

and financial variables, computed using the point estimates from Table 5. The

sample moments of consumption and dividend growth are well matched, but some

sample and model-implied moments of the financial variables differ notably. With an

IES < 1, the LRR model cannot account for the empirically observed small average

T-Bill return and the high equity risk premium. The bootstrap standard errors of

the model-implied moments are large, such that their confidence intervals overlap

the sample moments, but they also fit into the general picture in which the small

sample size limits estimation precision.

[Insert Table 7 here]

As Table 7 shows, some results reported in previous literature are more favorable

for the LRR paradigm, in that the reported IES values are greater than 1. However,
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some of these values are conveniently calibrated, and others result from one-step

estimation strategies that should be considered with caution, as we have argued. It

is doubtful that the identification problems addressed by Bansal et al. (2007) can

be easily resolved by a one-step estimation approach.

7 Conclusion

The long-run consumption risk asset pricing model constitutes a leading paradigm

for financial economics, but the estimation of its deep parameters is challenging.

For example, Bansal et al. (2007) had to fix the values of several model parameters

as a result of identification problems. Following a suggestion by Gourieroux et al.

(1993) to use different criteria to estimate different parts of a model, we propose

a two-step indirect inference strategy that exploits the recursive structure of the

LRR model, in which dividend and consumption growth processes determine the

model-implied asset pricing relations, but not vice versa. The first-step auxiliary

parameter vector should capture the time series properties of the macroeconomic

growth processes. The second-step auxiliary parameters are defined by a parsimo-

nious set of moment conditions that help to identify the three dimensions of investor

preferences: subjective time preference, propensity for intertemporal substitution,

and risk aversion. We derive the asymptotic properties of the two-step estimator

and outline a bootstrap procedure that exploits the parametric nature of the LRR

model.

The discussion by Bansal et al. (2007) emphasizes that identification issues should

be a major concern for any econometric analysis of LRR asset pricing models. Un-

fortunately, analytical checks are not possible, so we perform a Monte Carlo study to

assess the viability of our estimation approach. We find that the investor preference

parameters can be precisely estimated, provided that high-quality macro parameter
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estimates are available. The parameters of the stochastic variance process prove dif-

ficult to estimate, so instead of relying on estimates of weakly-identified parameters,

we propose replacing the stochastic variance by its expected value when simulating

data in the course of an indirect inference estimation. The Monte Carlo results sug-

gest that this estimation strategy does not impair the estimation of the other model

parameters.

In an empirical application, we find support for the LRR paradigm; there is

evidence for the existence of a small persistent growth component. We also obtain

a plausible and precisely estimated subjective time preference parameter and an

economically reasonable RRA estimate. An estimate of the IES below unity is

a less favorable result for the LRR paradigm. In calibration studies, the IES is

chosen always greater than 1, because the ability of the LRR model to explain the

prominent asset pricing puzzles requires that the intertemporal substitution effect

dominates the wealth effect, which is the case when ψ > 1. The available data

series are relatively short, which leads to wide confidence bounds. As a result, the

confidence interval for the IES includes values greater than 1, so the LRR model is

at least broadly consistent with the empirical data. The evidence in favor of the

long-run risk asset pricing paradigm, however, is not as conclusive as implied by

some previous studies.

The Monte Carlo results show that, provided good macro parameter estimates

are available, the preference parameters can be efficiently estimated by indirect

inference. For the first estimation step, and in particular for the estimation of the

parameters of the latent growth component, it would be desirable to enhance estima-

tion precision. Efforts to improve the accuracy of the preference parameter estimates

therefore should focus on increasing the estimation precision of the macroeconomic

parameters.
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Other seminal consumption-based asset pricing models, which account for a ref-

erence level of consumption (Campbell and Cochrane, 1999) or rare disaster risk

(Barro, 2006), resemble the LRR model structure in that they also feature macroe-

conomic processes with latent variables and asset pricing relations that demand the

use of simulation-based estimation methods. The two-step indirect inference strat-

egy may also prove useful for the econometric analysis of these models, which are

notoriously difficult to estimate. Moreover, the approach presented herein could be

combined with the calibration-estimation framework outlined by Dridi et al. (2007),

who focus on the implications of a misspecified structural model, while estimating

the true and pseudo-true parameters in one step, according to a single binding func-

tion. We suggest using two auxiliary models to identify different parts of a structural

model that proves difficult to estimate. Both approaches agree in their suggestion

to use simple, yet well thought-out auxiliary models that capture the economically

important features of the structural model, instead of striving for efficiency with a

sophisticated auxiliary model that mimics the structural model as precisely as pos-

sible. It would be interesting to connect the two approaches more closely. We leave

these topics for further research.
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A Appendix

A.1 LRR model details

As outlined in the main text, the following expressions result from pricing the gross

returns of the aggregate wealth portfolio and that of the market portfolio, using

Equation (6):

A1 =
1− 1

ψ

1− κ1ρ
, (A-1)

A2 =
1

2

(
θ − θ

ψ

)2
+ (θA1κ1ϕe)

2

θ(1− κ1ν1)
, (A-2)

A0 =
1

1− κ1

[
ln δ +

(
1− 1

ψ

)
µc + κ0 + κ1A2σ

2(1− ν1) +
θ

2
(κ1A2σw)2

]
, (A-3)

A1,m =
φ− 1

ψ

1− κ1,mρ
, (A-4)

A2,m =
(1− θ)(1− κ1ν1)A2

(1− κ1,mν1)
,

+

1
2
[(− θ

ψ
+ θ − 1)2 + ((κ1,mA1,mϕe)− ((1− θ)κ1A1ϕe))

2 + ϕ2
d]

(1− κ1,mν1)
, (A-5)

A0,m =
1

(1− κ1,m)

[
θ ln δ − θ

ψ
µc + (θ − 1)

[
κ0 + κ1A0 + κ1A2(1− ν1)σ2 − A0 + µc

]
,

+ κ0,m + κ1,mA2,mσ
2(1− ν1) + µd +

1

2
[(θ − 1)κ1A2 + κ1,mA2,m]2 σ2

w

]
.

(A-6)

A detailed derivation of Equations (A-1)–(A-6) can be found in Sections 1.3 and 1.4

of the Web Appendix. The expression for the log risk-free rate is given by:

rf,t = −θ ln(δ) +
θ

ψ
(µc + xt) + (1− θ)Et(ra,t+1)−

1

2
Vart(mt+1), (A-7)

where mt is the logarithm of the stochastic discount factor Mt, and
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Et(ra,t+1) = κ0 + κ1
[
A0 + A1ρxt + A2(σ

2 + ν1(σ
2
t − σ2))

]
(A-8)

− A0 − A1xt − A2σ
2
t + µc + xt,

Vart (mt+1) =

(
θ

ψ
+ 1− θ

)2

σ2
t + [(1− θ)κ1A1ϕe]

2 σ2
t (A-9)

+ [(1− θ)κ1A2]
2 σ2

w.

The detailed derivation is provided in Section 1.5 of the Web Appendix.

The expression for the equity premium is given by:

Et (rm,t+1 − rf,t+1) = λm,eκ1,mA1,mϕeσ
2
t + λm,wκ1,mA2,mσ

2
w

− 1

2

[
ϕ2
dσ

2
t + (κ1,mA1,mϕe)

2σ2
t + (κ1,mA2,m)2σ2

w

]
, (A-10)

where λm,η = − θ

ψ
+ θ − 1,

λm,e = (1− θ)κ1A1ϕe,

and λm,w = (1− θ)κ1A2.

The detailed derivation is provided in Section 1.6 of the Web Appendix.

A.2 Simulation of LRR model-implied data

A simulation of LRR model-implied data is required for the indirect inference estima-

tion, bootstrap inference, and the Monte Carlo study. The LRR model is inherently

recursive. Taking the values for the structural parameters in ξM and ξP as given,

we first simulate data for the macro variables xt, σ
2
t , gt, and gd,t, and then generate

time series of the financial variables zt, ra,t, zm,t, rm,t, and rf,t in a second step. For
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the estimation of the macro parameters only the first step is required, whereas for

the estimation of the preference parameters the full model must be simulated.

To simulate the macro variables, we independently draw 4×(T +L) standard nor-

mally distributed random variables to obtain realizations of the innovations {ηt}T +Lt=1 ,

{et}T +Lt=1 , {ut}T +Lt=1 , and {wt}T +Lt=1 in Equations (1)–(4). Here, T is the desired num-

ber of observations in the simulated data set. For the data simulation within the

optimizations in Equations (23) and (33), T is chosen to provide the required HT

observations. If the decision frequency is equal to the observation frequency, then

T = HT ; if the decision frequency is higher than the observation frequency, T is

chosen to ensure the required HT observations are obtained after a proper time ag-

gregation. In turn, L is the number of observations of a “swing-in” period, which we

discard to mitigate the impact of the choice of starting values. Our default value is

L = 100. When generating data for the latent processes xt and σ2
t , we use the uncon-

ditional expectations as starting values for the forward iterations of Equations (2)

and (4), such that x0 = 0 and σ2
0 = σ2. Incidental negative values of σ2

t are replaced

by 0. We can then generate series for gt and gd,t using Equations (1) and (3).

On the basis of the simulated macro series, we simulate data for the financial

variables by solving for the endogenous κ- and A-parameters in Equations (9), (10),

and (A-1)–(A-3). Solving the model amounts to finding the means z̄ and z̄m, such

that Equations (9)–(12) and (A-1)–(A-6) are fulfilled. This end can be achieved by

numerically solving for the means of z and zm, such that the functions

f1(z̄, ξ
M, ξP) = z̄ − A0(z̄, ξ

M, ξP)− A2(z̄, ξ
M, ξP)σ2 and (A-11)

f2(z̄, z̄m, ξ
M, ξP) = z̄m − A0,m(z̄, z̄m, ξ

M, ξP)− A2,m(z̄, z̄m, ξ
M, ξP)σ2 (A-12)
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are equal to zero, holding ξM and ξP fixed. The endogenous parameters are thus

implied by the roots of the functions f1 and f2.

Numerically solving the equation f1(z̄, ξ
M, ξP) = 0 for the mean of the log price-

consumption ratio (z̄) yields values for κ1 and κ0, as well as for A1, A2, and A0,

computed in that order. We can then determine zt and ra,t using Equations (11)

and (7). For the simulation of the time series of zm,t and rm,t, we obtain values

for the endogenous parameters κ1,m and κ0,m, as well as A1,m, A2,m, and A0,m, by

numerically solving the equation f2(z̄, z̄m, ξ
M, ξP) = 0 for the mean of the log price-

dividend ratio (z̄m). We compute the time series of zm,t and rm,t using Equations (12)

and (8). A series of LRR model-implied log risk-free rates rf,t, in turn, is obtained

from Equation (A-7). The simulated time series take the assumed decision frequency

of the LRR investor, and it may be necessary to aggregate the data to a lower

frequency using the formulas in Appendix A.3.

A.3 Time aggregation

The formulas for the time aggregation of the LRR model variables over h periods,

provided by Calvet and Czellar (2015), are as follows:

g
f(h)
t = ln

∑th
i=(t−1)h+1 exp

[∑i
j=(t−1)h+1 gj

]
1 +

∑(t−1)h
i=(t−2)h+2 exp

[
−
∑(t−1)h

j=i gj

] , (A-13)

g
f(h)
d,t = ln

∑th
i=(t−1)h+1 exp

[∑i
j=(t−1)h+1 gd,j

]
1 +

∑(t−1)h
i=(t−2)h+2 exp

[
−
∑(t−1)h

j=i gd,j

] , (A-14)

z
f(h)
m,t = zm,th +

th∑
i=(t−1)h+1

gd,i − ln

 th∑
i=(t−1)h+1

exp

 i∑
j=(t−1)h+1

gd,j

 , (A-15)

r
f(h)
m,t =

th∑
i=(t−1)h+1

rm,i and r
f(h)
f,t =

th∑
i=(t−1)h+1

rf,i. (A-16)
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A.4 Moment conditions defining the first-step auxiliary parameters

A.4.1 Basic set of moment conditions

The first-step auxiliary parameter vector θM = (θHAR′,µg
′,σg

′)′ is defined by the

moment conditions:

E(uM

t ([yM]t−lt ,θM)) = E



vec



ζ1,t
ζ2,t

⊗



1
gt−1

...
gt−τ
gd,t−1

...
gd,t−τ

g
f(h1)
t−1

g
f(h1)
d,t−1

g
f(h2)
t−1

g
f(h2)
d,t−1




ζ21,t − [σζ1 ]

2

ζ22,t − [σζ2 ]
2

ζ1,t · ζ2,t − σζ1ζ2
gt − µc
gd,t − µd

g
f(h1)
t − µf(h1)c

g
f(h1)
d,t − µf(h1)d

g
f(h2)
t − µf(h2)c

g
f(h2)
d,t − µf(h2)d

[gt]
2 − [µc]

2 − [σc]
2

[gd,t]
2 − [µd]

2 − [σd]
2

[g
f(h1)
t ]2 − [µ

f(h1)
c ]2 − [σ

f(h1)
c ]2

[g
f(h1)
d,t ]2 − [µ

f(h1)
d ]2 − [σ

f(h1)
d ]2

[g
f(h2)
t ]2 − [µ

f(h2)
c ]2 − [σ

f(h2)
c ]2

[g
f(h2)
d,t ]2 − [µ

f(h2)
d ]2 − [σ

f(h2)
d ]2



= 0, (A-17)
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whereζ1,t
ζ2,t

 =

 gt
gd,t

−
c1
c2

− τ∑
i=1

ΦiL
i

 gt
gd,t

−Φτ+1

gf(h1)t−1

g
f(h1)
d,t−1

−Φτ+2

gf(h2)t−1

g
f(h2)
d,t−1

 , (A-18)

which are assumed to hold uniquely at θM = θM

0 .

A.4.2 Extended first-step auxiliary parameter vector

We also consider extending θM by a set of auxiliary parameters, defined by additional

moment conditions implied by an AR-ARCH specification for consumption growth:

E(u+
t ([yM]t−τ̃t , a1, a2, ψ0, ψ1, . . . , ψτ̃ , σv)) = E



ωt

ωtgt−1

vt

vtω
2
t−1
...

vtω
2
t−τ̃

v2t − [σv]
2


= 0, (A-19)

where

ωt = gt − a1 − a2gt−1, (A-20)

vt = ω2
t −

(
ψ0 +

τ̃∑
i=1

ψiL
iω2
t

)
. (A-21)

The extended first-step auxiliary parameter vector θM then also includes ψ0, ψ1,

ψ2,. . . ,ψτ̃ , and σv. One of our referees suggested using a GARCH specification for

consumption growth (as in Bansal, Khatchatrian, and Yaron (2005)) as an auxil-

iary model. As Baillie and Chung (2001) show, matching the autocovariances of a
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squared process can serve to estimate the parameters of a GARCH(1,1) model, so

our approach is compatible with that suggestion.

A.5 Theoretical moments of log consumption and dividend growth in

the LRR model

The LRR model implies the following theoretical moments, which we use for the

GMM estimation as an alternative to the first-step indirect inference estimation:

E(gt) = µc, (A-22)

E(gd,t) = µd, (A-23)

E(g2t ) = µ2
c +

ϕ2
eσ

2

1− ρ2
+ σ2, (A-24)

E(g2d,t) = µ2
d + φ2 ϕ

2
eσ

2

1− ρ2
+ ϕ2

dσ
2, (A-25)

E(gd,tgt) = µcµd + φ
ϕ2
eσ

2

1− ρ2
, (A-26)

E(gt+1gt) = µ2
c + ρ

ϕ2
eσ

2

1− ρ2
, (A-27)

E(gt+2gt) = µ2
c + ρ2

ϕ2
eσ

2

1− ρ2
. (A-28)

A.6 Identification of the IES

The expression for the log risk-free rate in Equation (A-7) can be written as:

rf,t = A0,f + A1,fxt + A2,fσ
2
t , (A-29)

where A0,f collects all terms from the right-hand side of Equation (A-7) that do

not depend on either of the two state variables, and A2,f collects all terms of Equa-

tion (A-7) that depend on σ2
t . It can be shown that A0,f and A2,f depend on all
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three preference parameters, whereas A1,f , which collects all terms of the right-hand

side of Equation (A-7) related to xt, depends only on ψ:

A1,f =

[
1− θ +

θ

ψ
− (1− θ)A1(1− κ1ρ)

]
=

[
1− θ +

θ

ψ
− (1− θ)

(
1− 1

ψ

)]
=

1

ψ
.

(A-30)

Using the expression for zm,t in Equation (12), the contemporaneous covariance of

zm,t and rf,t is given by

Cov(zm,t, rf,t) = A1,mA1,fVar(xt) + A2,mA2,fVar(σ2
t ), (A-31)

where A1,m is given in Equation (A-4), and A2,m is given in Equation (A-5). Equa-

tion (A-4) shows that of the three preference parameters, only ψ affects A1,m.

For economically plausible parameter values, such as the BY calibration, the

expression for Var(xt) is several orders of magnitude greater than Var(σ2
t ). The

covariance of zm,t and rf,t is thus dominated by the term A1,mA1,fVar(xt), which de-

pends only on ψ, but not on δ or γ. The influence of the subjective discount factor

and the RRA coefficient on the covariance of zm,t and rf,t is negligible. The identi-

fication of the IES thus is facilitated by the slope parameter of a contemporaneous

regression of zm,t on rf,t, which is why we include it in the second-step auxiliary

parameter vector.
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A.7 Proofs of Propositions

Proof of Proposition 1. We draw on a result in Gourieroux et al. (1993) and note

that the limit of the optimization problem in Equation (23) is, under Assumptions

1-4, given by

min
ξM∈ ΞM

[bM(G0, ξ
M

0 )− bM(G0, ξ
M)]
′
WM [bM(G0, ξ

M

0 )− bM(G0, ξ
M)] , (A-32)

from which the consistency of ξ̂M
T stated in Proposition 1 follows.

Proof of Proposition 2. Because ξ̂M
T is a consistent estimator of ξM

0 , we observe

that the limit of the optimization problem in Equation (33), under Assumptions 1-7,

is given by

min
ξP∈ ΞP

[bP(G0, ξ
M

0 , ξ
P

0)− bP(G0, ξ
M

0 , ξ
P)]
′
WP [bP(G0, ξ

M

0 , ξ
P

0)− bP(G0, ξ
M

0 , ξ
P)] ,

(A-33)

from which the consistency of ξ̂P
T stated in Proposition 2 follows.

Proof of Proposition 3. To derive the asymptotic joint distribution of ξ̂M
T and

ξ̂P
T , and for a proof of Proposition 3, we consider alternative versions of the first-

and second-step estimators in Equations (23) and (33).15 Instead of estimating the

auxiliary parameters using one simulated sample with HT observations, these alter-

native estimators average the auxiliary parameter estimates using H independent

15Our line of reasoning and notation draw on Gourieroux et al. (1993).
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paths of simulated data, each of length T . In particular, the alternative first-step

estimator defines ξ̂M
T as a solution of

min
ξM∈ ΞM

[
θ̂M

T −
1

H

H∑
h=1

θ̃M,h
T (ξM, zh0)

]′
ŴM

T

[
θ̂M

T −
1

H

H∑
h=1

θ̃M,h
T (ξM, zh0)

]
, (A-34)

where

θ̃M,h
T (ξM, zh0) = arg max

θM∈ ΘM
QM

T

(
[ỹM,h(ξM, zh0)]1T ,θ

M
)
, (A-35)

while ξ̂P
T is alternatively defined as the solution of

min
ξP∈ ΞP

[
θ̂P

T −
1

H

H∑
h=1

θ̃P,h
T (ξ̂M

T , ξ
P, zh0)

]′
ŴP

T

[
θ̂P

T −
1

H

H∑
h=1

θ̃P,h
T (ξ̂M

T , ξ
P, zh0)

]
, (A-36)

where

θ̃P,h
T (ξ̂M

T , ξ
P, zh0) = arg max

θP∈ ΘP
QP

T

(
[ỹM,h(ξ̂M

T , z
h
0)]1T , [ỹ

P,h(ξ̂M

T , ξ
P, zh0)]1T ,θ

P

)
. (A-37)

The first-order conditions for the optimization problems in Equations (A-34) and

(A-36) imply that


1
H

∑H
h=1

∂θ̃M,h
T

′

∂ξM
(ξ̂M
T , z

h
0) 0

0 1
H

∑H
h=1

∂θ̃P,h
T

′

∂ξP
(ξ̂M
T , ξ̂

P
T , z

h
0)

×
ŴM

T 0

0 ŴP
T

×
 θ̂M

T − 1
H

∑H
h=1 θ̃

M,h
T (ξ̂M

T , z
h
0)

θ̂P
T − 1

H

∑H
h=1 θ̃

P,h
T (ξ̂M

T , ξ̂
P
T , z

h
0)

 = 0. (A-38)
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Using the expansion

 θ̂M
T − 1

H

∑H
h=1 θ̃

M,h
T (ξ̂M

T , z
h
0)

θ̂P
T − 1

H

∑H
h=1 θ̃

P,h
T (ξ̂M

T , ξ̂
P
T , z

h
0)

 '
 θ̂M

T − 1
H

∑H
h=1 θ̃

M,h
T (ξM

0 , z
h
0)

θ̂P
T − 1

H

∑H
h=1 θ̃

P,h
T (ξM

0 , ξ
P

0 , z
h
0)

+


1
H

∑H
h=1

∂θ̃M,h
T

∂ξM′ (ξM

0 , z
h
0) 0

1
H

∑H
h=1

∂θ̃P,h
T

∂ξM′ (ξM

0 , ξ
P

0 , z
h
0) 1

H

∑H
h=1

∂θ̃P,h
T

∂ξP′ (ξM

0 , ξ
P

0 , z
h
0)


ξ̂M

T − ξ
M

0

ξ̂P
T − ξ

P

0

 (A-39)

we obtain asymptotically

√
T

ξ̂M
T − ξ

M

0

ξ̂P
T − ξ

P

0

 '


∂bM′

∂ξM
(G0, ξ

M

0 )WM
∂bM

∂ξM′ (G0, ξ
M

0 ) 0

∂bP′

∂ξP
(G0, ξ

M

0 , ξ
P

0)WP
∂bP

∂ξM′ (G0, ξ
M

0 , ξ
P

0)
∂bP′

∂ξP
(G0, ξ

M

0 , ξ
P

0)WP
∂bP

∂ξP′ (G0, ξ
M

0 , ξ
P

0)


−1

×


∂bM′

∂ξM
(G0, ξ

M

0 )WM 0

0
∂bP′

∂ξP
(G0, ξ

M

0 , ξ
P

0)WP

√T
 θ̂M

T − 1
H

∑H
h=1 θ̃

M,h
T (ξM

0 , z
h
0)

θ̂P
T − 1

H

∑H
h=1 θ̃

P,h
T (ξM

0 , ξ
P

0 , z
h
0)

 .
(A-40)

Partitioned inversion then yields:

√
T

ξ̂M
T − ξ

M

0

ξ̂P
T − ξ

P

0

 '
 A(WM) 0

B(WP)C(WM) B(WP)

√T
 θ̂M

T − 1
H

∑H
h=1 θ̃

M,h
T (ξM

0 , z
h
0)

θ̂P
T − 1

H

∑H
h=1 θ̃

P,h
T (ξM

0 , ξ
P

0 , z
h
0)

 ,
(A-41)
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with A(WM), B(WP), and C(WM) as defined in Equations (41), (42), and (43).

The maximization of QM
T ([yM]1T ,θ

M) in Equation (16) and the maximization of

QP
T ([yP]1T ,θ

P) in Equation (27) imply the following first-order conditions:

− ∂gM
T
′

∂θM
([yM]1T , θ̂

M

T ) Ω̂M

T gM

T ([yM]1T , θ̂
M

T ) = 0 (A-42)

− ∂gP
T
′

∂θP
([yM]1T , [y

P]1T , θ̂
P

T ) Ω̂P

T gP

T ([yM]1T , [y
P]1T , θ̂

P

T ) = 0. (A-43)

Using the expansions

gM

T ([yM]1T , θ̂
M

T ) ' gM

T

(
[yM]1T ,θ

M

0

)
+
∂gM

T

∂θM′

(
[yM]1T ,θ

M

0

)
(θ̂M

T − θM

0 ) (A-44)

gP

T ([yM]1T , [y
P]1T , θ̂

P

T ) ' gP

T ([yM]1T , [y
P]1T ,θ

P

0) +
∂gP

T

∂θP′ ([y
M]1T , [y

P]1T ,θ
P

0)(θ̂P

T − θP

0),

(A-45)

we obtain asymptotically

√
T

θ̂M
T − θ

M

0

θ̂P
T − θ

P

0

 ' −
AM

0 0

0 AP
0

√T
 gM

T ([yM]1T ,θ
M

0 )

gP
T ([yM]1T , [y

P]1T ,θ
P

0)

 , (A-46)

where AM
0 and AP

0 are defined as in Equations (44) and (45). Under Assumption 8,

we obtain

√
T

θ̂M
T − θ

M

0

θ̂P
T − θ

P

0

→
d
N

0,

AM
0 0

0 AP
0

S

AM
0
′ 0

0 AP
0
′


 , (A-47)
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where S is defined in Equation (38). Similarly, the maximization ofQM
T

(
[ỹM,h(ξM

0 , z
h
0)]1T ,θ

M
)

implies the first-order conditions

−∂gM
T
′

∂θM

(
[ỹM,h(ξM

0 , z
h
0)]1T , θ̃

M,h
T (ξM

0 , z
h
0)
)
× Ω̂M

T

× gM

T

(
[ỹM,h(ξM

0 , z
h
0)]1T , θ̃

M,h
T (ξM

0 , z
h
0)
)

= 0, (A-48)

and the maximization of QP
T

(
[ỹM,h(ξM

0 , z
h
0)]1T , [ỹ

P,h(ξM

0 , ξ
P

0 , z
h
0)]1T ,θ

P
)

implies

−∂gP
T
′

∂θP

(
[ỹM,h(ξM

0 , z
h
0)]1T , [ỹ

P,h(ξM

0 , ξ
P

0 , z
h
0)]1T , θ̃

P,h
T (ξM

0 , ξ
P

0 , z
h
0)
)
× Ω̂P

T

× gP

T

(
[ỹM,h(ξM

0 , z
h
0)]1T , [ỹ

P,h(ξM

0 , ξ
P

0 , z
h
0)]1T , θ̃

P,h
T (ξM

0 , ξ
P

0 , z
h
0)
)

= 0. (A-49)

Expansions similar to those in Equations (A-44) and (A-45) then yield, under As-

sumption 1:

√
T

 θ̃M,h
T (ξM

0 , z
h
0)− θM

0

θ̃P,h
T (ξM

0 , ξ
P

0 , z
h
0)− θP

0

 ' −
AM

0 0

0 AP
0

×
√
T

 gM
T

(
[ỹM,h(ξM

0 , z
h
0)]1T ,θ

M

0

)
gP
T

(
[ỹP,h(ξM

0 , ξ
P

0 , z
h
0)]1T , [ỹ

P,h(ξM

0 , ξ
P

0 , z
h
0)]1T ,θ

P

0

)
 .

(A-50)

Because each of the simulated samples and the “simulation of the nature” that pro-

duces [yM]1T and [yP]1T are independent, we obtain:

√
T

 θ̂M
T − 1

H

∑H
h=1 θ̃

M,h
T (ξM

0 , z
h
0)

θ̂P
T − 1

H

∑H
h=1 θ̃

P,h
T (ξM

0 , ξ
P

0 , z
h
0)

→
d
N

0,

(
1 +

1

H

)AM
0 0

0 AP
0

S

AM
0
′ 0

0 AP
0
′


 ,

(A-51)
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and thus can conclude that

√
T

ξ̂M
T − ξ

M

0

ξ̂P
T − ξ

P

0


converges in distribution to a mean-zero vector that is normally distributed with the

variance-covariance matrix

(
1 +

1

H

) A(WM)AM
0 0

B(WP)C(WM)AP
0 B(WP)AP

0

S

AM
0
′A(WM)′ AP

0
′C(WM)′B(WP)′

0 AP
0
′B(WP)′

 ,
(A-52)

which is the result stated in Proposition 3.

Using the original two-step estimator and starting the expansions from Equa-

tion (36) yields the same asymptotic distribution, because

√
T (θ̃M

HT (ξM

0 , z0)− θM

0 ) ' −AM

0

H∑
h=1

√
T

H
gM

T

(
[ỹM,h(ξM

0 , z
h
0)]1T ,θ

M

0

)
(A-53)

and

√
T (θ̃P

HT (ξM

0 , ξ
P

0 , z0)− θP

0) ' −AP

0

H∑
h=1

√
T

H
gP

T

(
[ỹM,h(ξM

0 , z
h
0)]1T , [ỹ

P,h(ξM

0 , ξ
P

0 , z
h
0)]1T ,θ

P

0

)
,

(A-54)

where z1
0 = z0 = (x0, σ

2
0)′ and zh0 = (x̃T (h−1), σ̃

2
T (h−1))

′. The original and alternative

versions of the two-step indirect inference estimator thus have the same asymptotic

properties.
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Proof of Proposition 4. To prove the first part of Proposition 4 (asymptotically

optimal weighting in the first step), we note that Equations (A-41) and (A-51) imply

that

√
T (ξ̂M

T − ξM

0 )→
d

A(WM)X1 ∼ N (0,AvarM(WM)), (A-55)

where X1 ∼ N (0,
(
1 + 1

H

)
AM

0 SMAM
0
′), with SM defined as in Equation (46), such

that

AvarM(WM) =

(
1 +

1

H

)
A(WM)AM

0 SMAM

0
′A(WM)′. (A-56)

To prove the first part of Proposition 4, we seek to show that

AvarM(WM)− AvarM(WM∗), (A-57)

where

WM∗ = (AM

0 SMAM

0
′)
−1

(A-58)

is a positive semidefinite matrix. Recognizing the structure by which

A(WM) =

(
∂bM′

∂ξM
(G0, ξ

M

0 )WM
∂bM

∂ξM′ (G0, ξ
M

0 )

)−1
∂bM′

∂ξM
(G0, ξ

M

0 )WM, (A-59)

positive semidefiniteness can be shown by adapting the proof provided by Hall

(2005), p. 88-90. The result is essentially a special case of Gourieroux et al.’s (1993)

results with a GMM-type criterion function.
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To prove the second part of Proposition 4 (optimal weighting in the second step,

given the weighting in the first), we turn to Equations (A-41) and (A-51), which

imply

√
T (ξ̂P

T − ξP

0)→
d

B(WP)(C(WM)X1 + X2), (A-60)

where X2 ∼ N (0,
(
1 + 1

H

)
AP

0S
PAP

0
′), with SP defined in Equation (46). Equation

(A-51) implies that E(X1X
′
2) =

(
1 + 1

H

)
AM

0 SMP′AP
0
′, where SMP is defined in Equa-

tion (46), and

C(WM)X1 + X2 ∼ N
(

0,

(
1 +

1

H

)
Σ(WM)

)
, (A-61)

where

Σ(WM) = AP

0S
PAP

0
′ + C(WM)(AM

0 SMAM

0
′)C(WM)′

+ C(WM)AM

0 SMP′AP

0
′ + AP

0S
MPAM

0
′C(WM)′. (A-62)

We can therefore conclude that

√
T (ξ̂P

T − ξP

0)→
d
N (0,AvarP(WM,WP)), (A-63)

where

AvarP(WM,WP) =

(
1 +

1

H

)
B(WP)Σ(WM)B(WP)′. (A-64)

To prove the second part of Proposition 4, we must show that

AvarP(WM,WP∗)− AvarP(WM,WP), (A-65)
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where WP∗ = (Σ(WM))−1, is a positive semidefinite matrix. Observing the structure

of

B(WP) =

(
∂bP′

∂ξP
(G0, ξ

M

0 , ξ
P

0)WP
∂bP

∂ξP′ (G0, ξ
M

0 , ξ
P

0)

)−1
∂bP′

∂ξP
(G0, ξ

M

0 , ξ
P

0)WP, (A-66)

we can again establish the positive semidefiniteness by adapting the aforementioned

proof provided by Hall (2005).

A.8 Bootstrap inference

As an alternative to using the asymptotic results, the parametric structure of the

LRR model suggests the use of a bootstrap simulation. After performing the two-

step estimation on the empirical data, which yields the estimates ξ̂M
T and ξ̂P

T , we

independently draw 4 × (T ∗ + L) standard normally distributed random variables

to obtain realizations of the i.i.d. innovations {ηt}T
∗+L

t=1 , {et}T
∗+L

t=1 , {ut}T
∗+L

t=1 , and

{wt}T
∗+L

t=1 in Equations (1)–(4). The appropriate time series length T ∗ is determined

by the number of observations and the sampling frequency of the empirical data, as

well as the assumed decision frequency of the investor. For example, the data used

for our empirical application comprise T=271 quarterly observations. We assume

a monthly decision frequency, such that T ∗=813. The simulated innovations are

used to generate time series of length T ∗+L for the LRR model-implied macro

and financial variables, as described in Appendix A.2. For that purpose, ξ̂M
T and ξ̂P

T

serve as “true” parameters. If the empirical data frequency is lower than the decision

frequency, the simulated time series are time-aggregated to match the empirical data

frequency. The first L observations are discarded to mitigate the effect of the choice

of starting values; we use L = 100 as a default.
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The two indirect inference estimation steps are then performed on the bootstrap

sample. Data simulation and estimation are repeated R independent times, with

new i.i.d. draws of standard normally distributed innovations, simulation of the LRR

model variables, and the two-step estimation performed on the simulated samples.

The resulting sequences of estimates {ξ̂M
T (r)}Rr=1 and {ξ̂P

T (r)}Rr=1 serve to compute

the parameter standard errors and construct confidence intervals. The latter are

obtained by the percentile method, which amounts to using the appropriate quantiles

of the bootstrap distribution as upper and lower bounds (Efron and Tibshirani,

1993).

To assess its validity, we have to check the conditions in which the bootstrap

is consistent, such that the bootstrap estimator of the distribution function (cdf)

of the statistic of interest (here, one of the parameter estimates in ξ̂M
T or ξ̂P

T ) is

uniformly close to the statistic’s asymptotic cdf for large T . The formal definition

and conditions for consistency of the bootstrap are provided by Horowitz (2001).16

Briefly, consistency requires that the cdf of the probability distribution from which

the data are sampled and its bootstrap estimator are uniformly close to each other

when T is large, and that suitable continuity conditions regarding the asymptotic

cdf of the statistic of interest hold.

Although the conditions for consistency cannot be checked formally in the present

application, we argue that the proposed procedure is not subject to the issues that

are known to provoke failure of the bootstrap. As Horowitz (2001) notes, failures

of the bootstrap are associated with heavy-tailed or dependent data, or else true

parameters that lie on the boundary of the parameter space. The i.i.d. draws of in-

novations from the standard normal distribution, along with economically plausible

LRR model parameters, preclude heavy-tailed data. The parametric residual boot-

16See Horowitz’s (2001) Definition 2.1 and Theorem 2.1, as originally formulated by Beran and
Ducharme (1991).
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strap also avoids drawing directly from the macro and financial data series, which

may exhibit considerable serial dependence. Provided that the parameter estimates

are consistent, the bootstrap estimate thus should constitute a good approximation

of the true cdf of the data for large T . Furthermore, violations of the continuity

assumption regarding the asymptotic cdfs of the parameter estimates are not indi-

cated; the intricate parameter space should not affect the validity of the bootstrap.

However, we must assume that the LRR model is solvable in the neighborhood of

the true parameters; in other words, we must rule out that a true parameter lies on

the boundaries of the admissible parameter space. In the present application, the

bootstrap does not provide asymptotic refinement, because the statistics of interest

(i.e. the elements of ξ̂M
T and ξ̂P

T ) are not pivotal.

A.9 Web Appendix

http://tinyurl.com/GS2017-Web-Appendix contains a pdf with detailed deriva-

tions of the LRR model equations, additional results and discussions, and the Matlab

code to perform the two-step indirect inference estimation, as well as the data used

for the empirical analysis.
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Table 1: LRR model parameter values as calibrated by Bansal and Yaron (2004)

µc µd ρ ϕe ν1 σw σ φ ϕd δ γ ψ

0.0015 0.0015 0.979 0.044 0.987 2.3 ·10−6 0.0078 3 4.5 0.998 10 1.5
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Table 2: Monte Carlo results: first-step estimates

µc µd ρ ϕe σ φ ϕd R̃

true parameter 0.0015 0.0015 0.979 0.044 0.0078 3 4.5

Panel A: Indirect inference, σ2
t predicted by σ2

T=275 0.0016 0.0023 0.946 0.0745 0.0075 3.38 4.57 245
0.0013 0.0034 0.265 0.1198 0.0013 3.07 1.95

T=1k 0.0015 0.0018 0.965 0.0555 0.0080 2.97 4.36 348
0.0006 0.0017 0.218 0.0642 0.0005 1.85 0.24

T=100k 0.0015 0.0015 0.980 0.0430 0.0078 2.95 4.50 400
0.0001 0.0002 0.004 0.0046 0.0000 0.17 0.02

Panel B: Indirect inference, ν1 and σw known

T=275 0.0016 0.0023 0.938 0.0736 0.0076 3.45 4.54 252
0.0012 0.0034 0.328 0.1176 0.0015 3.69 1.06

T=1k 0.0015 0.0017 0.967 0.0496 0.0079 3.00 4.33 347
0.0006 0.0016 0.274 0.0696 0.0005 2.48 0.27

T=100k 0.0015 0.0015 0.981 0.0429 0.0078 2.94 4.50 400
0.0001 0.0002 0.004 0.0046 0.0000 0.17 0.02

Panel C: GMM

T=100k 0.0015 0.0015 0.958 0.0620 0.0078 2.83 4.51 397
0.0001 0.0002 0.110 0.0559 0.0000 1.62 0.04

Note: The table reports the medians (in italics) and the RMSEs (normal font) of the first-step
macro parameter estimates obtained by the Monte Carlo study. The last column contains the
number of successfully estimated replications R̃.
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Table 3: Monte Carlo results: second-step estimates

Panel A Panel B Panel C

ξM∗ known ξM known ξM∗ estimated

δ=0.998

T=275 0.9979 0.0004 0.9980 0.0004 0.9973 0.0033

[0.9970 0.9987] [0.9970 0.9988] [0.9930 1.0001]

T=1k 0.9980 0.0002 0.9980 0.0002 0.9975 0.0014

[0.9976 0.9985] [0.9976 0.9985] [0.9945 1.0000]

T=100k 0.9980 0.0000 0.9980 0.0000 0.9980 0.0002

[0.9979 0.9980] [0.9980 0.9980] [0.9977 0.9984]

γ=10

T=275 10.1 2.0 9.8 1.8 13.7 18.9

[5.8 14.2] [5.8 13.2] [4.0 71.6]

T=1k 10.6 1.2 10.2 1.0 12.9 14.6

[8.4 12.7] [8.3 12.0] [5.6 55.2]

T=100k 10.3 0.3 10.0 0.1 10.0 1.1

[10.1 10.6] [9.8 10.2] [8.3 12.5]

ψ=1.5

T=275 1.51 0.02 1.51 0.02 2.41 3.81

[1.46 1.55] [1.46 1.55] [0.66 11.43]

T=1k 1.51 0.02 1.51 0.02 2.12 2.66

[1.48 1.54] [1.48 1.54] [0.72 10.59]

T=100k 1.51 0.01 1.51 0.01 1.48 0.16

[1.51 1.51] [1.51 1.51] [1.20 1.85]

Successful replications

T=275 400 400 153

T=1k 400 400 289

T=100k 400 400 400

Note: The table reports the medians (in italics) and the RMSEs (normal font) along with the
95% confidence bounds (in brackets) of the second-step indirect inference parameter estimates.
ξM∗ = (µc, µd, ρ, ϕe, σ, φ, ϕd, 0, 0)

′
.
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Table 4: Data descriptives

mean std. dev. AC(1)

log consumption growth g 0.0048 0.0051 0.3116

log dividend growth gd 0.0066 0.0247 0.4443

log market return rm 0.0176 0.0825 0.0840

log risk-free rate rf 0.0017 0.0045 0.9138

log price-dividend ratio zm 3.4979 0.4217 0.9804

Note: The data are on a quarterly frequency and range from 1947Q2 to 2014Q4. AC(1) is the
first-order autocorrelation. A four-quarter moving average of the raw log dividend growth time
series is used to obtain gd.
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Table 5: Estimation results

µc µd ρ ϕe σ φ ϕd δ γ ψ

estimate 0.0017 0.0019 0.991 0.0643 0.0024 5.14 3.06 0.99998 11.8 0.29

s.e.b 0.0007 0.0028 0.095 0.0639 0.0008 2.18 3.45 0.00446 27.1 0.24

s.e.a 0.0002 0.0009 0.010 0.0292 0.0005 1.24 0.80 0.02603 15.8 0.18

low. 0.0011 0.0000 0.757 0.0220 0.0002 2.72 1.68 0.98399 2.2 0.22

upp. 0.0033 0.0088 1.000 0.2687 0.0029 8.96 16.29 1.00036 110.3 1.20

Note: The table reports two-step indirect inference estimates, along with bootstrap standard
errors (denoted by s.e.b) and standard errors based on the asymptotic results (denoted by s.e.a,
in italics). The computation of the asymptotic standard errors uses a consistent estimate of the
asymptotic variance-covariance matrix in Equation (40). The derivatives of the binding functions
in Equations (41), (42) and (43) are computed numerically by replacing bM(G0, ξ

M
0 ) by

θ̃M
HT (ξ̂MT , z0) and bP(G0, ξ

M
0 , ξ

P
0 ) by θ̃P

HT (ξ̂MT , ξ̂
P
T , z0) . In Equations (44) and (45), expected

values are replaced by sample means and θM
0 and θP

0 are replaced by their consistent estimates

θ̂M
T and θ̂P

T . The estimation of S in Equation (38) uses a Bartlett kernel-based estimate with
bandwidth equal to 10. Bootstrapped upper and lower 95% confidence bounds are obtained by
the percentile method.
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Table 6: Sample and model-implied means and standard deviations

data model-implied s.e.b

E(g) 0.0048 0.0050 0.0037

E(gd) 0.0066 0.0056 0.0140

E(zm) 3.4979 3.6305 0.5112

E(rm) 0.0176 0.0322 0.0149

E(rf ) 0.0017 0.0262 0.0146

σ(g) 0.0051 0.0049 0.0017

σ(gd) 0.0247 0.0208 0.0059

σ(zm) 0.4217 0.1153 0.2947

σ(rm) 0.0825 0.0315 0.0198

σ(rf ) 0.0045 0.0120 0.0078

Note: The second column reports the empirical sample means and standard deviations of the
observable LRR model variables. The counterparts implied by the point estimates in Table 5 are
reported in the third column. The fourth column reports the bootstrap standard errors of the
model-implied estimates. All quantities computed reflect a quarterly frequency. To obtain the
model-implied means and standard deviations, the parameter estimates are used to simulate LRR
model-implied data for 106 months. The monthly series are then time-aggregated to the quarterly
frequency, at which the respective means and standard deviations are computed. The bootstrap
standard errors are obtained by the standard deviations of the model-implied means and
standard deviations across the bootstrap replications.

66



Table 7: Comparison of preference parameter estimates

δ̂ γ̂ ψ̂ T/Freq.

Two-step ind. inference 0.99998 11.8 0.29 271/Q
[0.98399 1.00036] [2.2 110.3] [0.22 1.20]

Yogo (2006) 0.9000 191.4 0.024 204/Q
[0.7922 1.0078] [93.7 289.2] [0.006 0.042]

BGT (2007) 0.9996 7.1 2 73/Y
[0.9989 1.0002] [-0.3 14.6] (c)

CG (2011) 0.968 9.3 1.41 79/Y
[0.8563 1.0797] [-0.1 18.8] [-4.35 7.17]

Hasseltoft (2012) 0.9992 6.8 2.51 223/Q
(c) [3.6 9.9] [1.06 3.96]

BKY (2012) 0.9989 7.4 2.05 80/Y
[0.9969 1.0009] [4.4 10.5] [0.40 3.70]

CC (2015) 1.0081 27.1 0.20 247/Q
[1.0034 1.0129] n.a. [0.04 0.36]

BY (2004) 0.9980 10 1.5 70/Y
(c) (c) (c)

Note: The table reports the point estimates of the preference parameters and the bounds of the
95% confidence intervals (in brackets). We compare the two-step indirect inference results with
the results reported in studies by Yogo (2006), Bansal, Gallant, and Tauchen (2007) (BGT),
Constantinides and Ghosh (2011) (CG), Hasseltoft (2012), Bansal, Kiku, and Yaron (2012b)
(BKY), Calvet and Czellar (2015) (CC), as well as with the calibrated values by Bansal and
Yaron (2004) (BY). Calibrated parameters are indicated with (c). The confidence bounds for the
other studies are computed using the reported standard errors. Sample size and data frequency
appear in the last column.
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(a)

(b)

Figure 1: Fluctuating macroeconomic uncertainty and growth expectations in BY’s calibrated
economy. Panel (a) displays simulated data of length T=1k for log consumption growth gt, stochas-
tic volatility σt and the predictable growth component xt using the parameter values from Table 1.
Panel (a) also shows the unconditional volatility σ =

√
E(σ2

t ) from Table 1. Panel (b) presents the
calibration-implied theoretical autocorrelations of squared consumption (left) and dividend growth
(right), along with the ±2

√
T confidence bounds for T=1k.
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Figure 2: Monte Carlo results: distribution of first-step indirect inference estimates. This figure
shows kernel estimates across simulated sample sizes. The beta kernel proposed by Chen (1999) is
used together with the bandwidth selector by Silverman (1986), adjusted for variable kernels. The
vertical lines indicate the positions of the true parameter value.
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Figure 3: Monte Carlo results: asymptotic efficiency indirect inference vs. GMM. This figure
shows the kernel estimates of the LRR parameter estimate ρ̂ implied by the indirect inference
estimation strategy and GMM. The simulated sample size is T =100k. The beta kernel proposed
by Chen (1999) is used together with the bandwidth selector by Silverman (1986), adjusted for
variable kernels. The vertical line indicates the position of the true parameter value.
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Figure 4: Monte Carlo results: distribution of second-step indirect inference estimates. This
figure displays kernel estimates for δ̂, γ̂, and ψ̂ obtained in the second estimation step. σ2

t is
replaced by σ̂2 when simulating data in the course of indirect inference estimation. The vertical
lines indicate the positions of the true parameter values.
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(a) log consumption growth gt (b) log dividend growth (raw)

(c) log market return rm,t (d) log dividend growth moving avg. gd,t

(e) log risk-free rate rf,t (f) log price-dividend ratio zm,t

Figure 5: Empirical data series. This figure displays the time series used in the empirical
application. The sample period is 1947Q2 to 2014Q4.
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