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Abstract

The estimation of water balance components as well as water-related indicators on the
land surface by means of global hydrological models have evolved in recent decades.
Results of such models are frequently used in global- and continental-scale assessments of
the current and future state of the terrestrial water cycle and provide a valuable data basis,
e.g., for the Intergovernmental Panel on Climate Change. The Water — Global Assessment
and Prognosis (WaterGAP) model is one of the state-of-the-art models in that field and has
been in development and application for around 20 years. The evaluation, modification and
application of WaterGAP is the subject of this thesis. In particular, the sensitivity of climate
input data on radiation calculation and simulated water fluxes and storages is evaluated in
the first part. Effects of model modification such as updated spatial input datasets,
improved process representation or an alternative calibration scheme are the focus of the
second part. Finally, three applications of WaterGAP give insight into the capabilities of that
model, namely an estimate of global and continental water balance components, an
assessment of groundwater depletion and the impact of climate change on river flow
regimes. Model experiments, which are described in six journal papers as well as the
appendices, were used as the basis for answering the total of 13 research questions. One
of the major foci was to quantify the sensitivity of simulated water fluxes and storages to
alternative climate input data. It was found that the handling of precipitation undercatch
leads to the greatest difference in water balance components, especially in those areas
where WaterGAP is not calibrated due to a lack of river discharge observations. The
modifications of WaterGAP in the last few decades has led in general to an improved
simulation of monthly river discharge, but process representation in semi-arid and arid
regions still requires improvements. With the most current model version, WaterGAP 2.2b,
and for the time period 1971-2000, river discharge to the oceans and inland sinks is
estimated to be 40 000 km3 yr!, whereas actual evapotranspiration is simulated as
70 500 km3 yr. Future research needs for WaterGAP in particular but also for the global
hydrological model community in general are defined, promoting a community-driven
effort for a robust assessment of the continental water cycle.



Abstract

Globale hydrologische Modelle gewannen in den letzten Jahrzehnten flr die Berechnung
von Wasserhaushaltskomponenten und wasserbezogenen Indikatoren auf der
Landoberflache an Bedeutung. Ergebnisse dieser Modelle werden haufig fir globale und
auf Kontinente bezogene Bewertungen des derzeitigen und projektierten Zustandes des
terrestrischen Wasserkreislaufes verwendet und bilden eine wertvolle Datenbasis z.B. im
Rahmen des Intergovernmental Panel on Climate Change. Das Water — Global Assessment
and Prognosis (WaterGAP) Modell ist eines der weitverbreitetsten und aktuellsten Modelle
in diesem Zusammenhang, und in Entwicklung und Anwendung seit etwa 20 Jahren. Die
Evaluation, Entwicklung und Anwendung von WaterGAP ist Gegenstand dieser
Dissertationsschrift. Im ersten Teil der Arbeit wird die Auswirkung der Unsicherheit von
klimatischen Antriebsdaten und der Strahlungsberechnung auf berechnete Wasserflisse
und -speicher untersucht. Aktualisierte raumlich verteilte Eingangsdaten, verbesserte
Prozessbeschreibungen sowie ein alternativer Kalibrieransatz sind Schwerpunkt des
zweiten Teils, der Modellentwicklung. Im dritten Teil der Arbeit werden drei Anwendungen
von WaterGAP vorgestellt, die einen Einblick in die Moglichkeiten des Modells geben.
Konkret werden Abschatzungen der globalen und kontinentalen Wasserbilanz-
komponenten, der Grundwasserzehrung sowie des Einflusses des Klimawandels auf
Durchflussregime thematisiert. Die Basis der Arbeit bilden Modellexperimente, die in sechs
international publizierten Artikeln sowie dem Anhang beschrieben sind, und die insgesamt
13 Forschungsfragen beantworten. Ein wesentlicher Schwerpunkt der Arbeit bildet die
Beurteilung der Sensitivitdit von berechneten Wasserflissen und -speichern auf
verschiedene klimatische Antriebsdaten. Es wurde festgestellt, dass die hauptsachliche
Unsicherheit auf der unterschiedlichen Beriicksichtigung der Niederschlagskorrektur
beruht und diese Unsicherheit insbesondere in den Gebieten grof ist, in dem keine
Kalibrierung auf gemessenem Durchfluss moglich ist. Die Entwicklung von WaterGAP in den
letzten Jahrzehnten filihrte zu einer verbesserten Simulation von monatlichen
Durchflissen. Allerdings wurden grofRe Defizite in semi-ariden und ariden Gebieten
festgestellt. Unter Verwendung der derzeit aktuellsten Modellversion WaterGAP 2.2b und
des Zeitraums 1971 bis 2000 wurde der Durchfluss in die Ozeane und in Inlandsenken mit
40000 km? a? quantifiziert, die aktuelle Evapotranspiration mit 70500 km3 a. Einige
Forschungsideen und Anwendungsmoglichkeiten fir WaterGAP, aber auch fir globale
hydrologische Modelle im Allgemeinen, werden definiert, die in gemeinschaftlicher Arbeit
zu einer robusten Quantifizierung des terrestrischen Wasserkreislaufs flihren kénnen.



1 Introduction

The evaluation, modification and application of the Water — Global Assessment and
Prognosis (WaterGAP) is the subject of this thesis. In the following, the background of the
thesis is introduced with some general insights into the global water cycle (Chapter 1.1)
and human impacts on it (Chapter 1.2), as well as an overview of approaches to quantifying
(parts of) the global water cycle (Chapter 1.3). More specific, global hydrological models
and their uncertainties (Chapter 1.3.4) and the WaterGAP model used for this thesis
(Chapter 1.4) are described. The objectives and research questions are formulated in
Chapter 1.5. Chapters 2 to 7 consist of six journal papers that, in conjunction with the
appendices, form the basis on which to answer the research questions in Chapter 8. The
thesis is summarized in Chapter 9, which also presents an outlook on future research

possibilities.

1.1  The global water cycle

Water moves in a global cycle as precipitation, evapotranspiration and runoff (discharge)
between storages (e.g., glaciers, soil, surface water, groundwater, atmosphere, oceans)
and plays a vital role in many regards. Water is the origin of life, forms landscapes and is a
medium for diluted and solid materials. Aquatic ecosystems are fully dependent on the
presence or absence of water (Dudgeon et al., 2006), and nearly all other ecosystems have
a strong interaction with the resource of water (e.g., Austin et al., 2004; Bernacchi and
VanlLoocke, 2015). Not only do humans need water, e.g., for drinking, washing and
cleaning; humans also consume it indirectly as virtual water (Hoekstra et al., 2011) that is
included in foods, e.g., corn and meat, and other commodities, e.g., cotton and leather. On
the other hand, water is needed to cool thermal power plants and to produce goods in
industry. Water is a resource for joy, recreation and tourism but — especially if only small
amounts are available — can also influence conflicts between countries or authorities as
described in the case of the current situation in Syria by Kelley et al. (2015). But there are
a number of other stressors, e.g., to freshwater as well as river biodiversity (Vorésmarty et
al., 2010).

1.2 Human impacts on the (continental) water cycle

Humans have altered the water cycle in many ways, which are often interrelated. Changes
in land use, especially intensification of agriculture, results in modified surface runoff and
river discharge, e.g., when forest is replaced by agriculture (Foley et al., 2005; Piao et al.,
2007). Closely related to this is the increasing area that is irrigated (Siebert et al., 2015) and
the amount of water withdrawn to satisfy plant needs (de Marsily and Abarca-del-Rio,
2016). In some regions, where groundwater aquifers are overused, groundwater depletion



can occur with negative impacts for surrounding (groundwater-dependent) ecosystems
and higher costs for pumping water. Such an additional pumping of water (especially for
non-renewable fossil groundwater resources) can lead to sea level rise, even though the
proportion related to other causes of sea level rise is disputed (Wada et al., 2016a). Some
components of the interrelation of land use change and intensification include salinization;
erosion (Smith et al., 2016); and, due to intensified fertilization and washout of soils, the
water quality of rivers (Heathwaite, 2010). Alterations of the water cycle have also taken
place due to the creation of dams leading to artificial reservoirs and regulated lakes. Lehner
et al. (2011) created the Global Reservoir and Dam database (GRanD), which contains 6862
dams having a total storage capacity of 6200 km?3, resulting in 7.6% of worldwide rivers
(with more than 1 m3s? discharge) being affected by more than 2% of their annual flow.
For the future, a large number of new dams are planned, which according to Zarfl et al.
(2014) will reduce the number of remaining free-flowing rivers by 20%. Dam operation
especially influences discharge seasonality as well as — due to the additional evaporation
of the artificial water body — mean annual river flow (e.g., Doll et al., 2009), and reservoir
water impoundment influences global sea level rise (Chao et al., 2008). Climate change
effects on hydrology are the subject of a range of studies. As it is hard to assess climate
change effects based on observations only, mainly due to a lack of long-term observations,
e.g., of glaciers (Ferndndez and Mark, 2016), modeling approaches are often used,
especially when focusing on climate extremes (Easterling et al., 2000). The effect of human
impact on changed precipitation patterns is shown in the recent study of Schaller et al.
(2016) for the 2014 flood event in southern England. Other studies use a multi-model and
multi-forcing approach to assess projected future changes in water resources (e.g., Schewe
et al., 2014).

1.3 Quantification of the (continental) water cycle components

1.3.1 Early assessments

The quantification of water balance components plays a vital role in assessments of
historical and future water scarcity (Gosling and Arnell, 2013; Hertel, 2015; Hoekstra et al.,
2012; Vorésmarty et al.,, 2010) and is also important in the water—food—energy nexus
(Ringler et al., 2013). Due to its importance both for storages (e.g., to satisfy the demand
from reservoir users) and river discharge (e.g., for management purposes), there is a long
history of attempts to quantify water balance components. In the early work of
Baumgartner and Reichel (1968, their Table 2), the authors compare assessments from the
19t and 20t century, which show a large range of uncertainty, e.g., for discharge from land
areas (17 000-56 000 km? yr) and precipitation over land areas (78 000—122 000 km? yr1).
The authors themselves assess precipitation over land at 100 000 km? yr?, evaporation
from land at 65 000 km? yr* and discharge from land at 35 000 km?3 yr. In principle they



followed two approaches: i) they used measured data for precipitation to create a
precipitation chart, used discharge data from Lvovitch (1964) as well as Marcinek (1964)
and calculated evaporation using the Thornthwaite method, and ii) they flipped the water
balance equation (which is also called the Birkner—Oppokov equation according to Lvovitch
(1964)) to obtain the evaporation term as residual. Using both methods, Baumgartner and
Reichel (1968) could estimate the uncertainty of the evaporation term. Even though the
data basis is not comparable to recent available sources, those numbers have frequently
been used as a reference in recent studies (e.g., Clark et al., 2015; Miller Schmied et al.,
2014; Pan et al., 2012; Vinukollu et al., 2011).

1.3.2 Measurement-based approaches

Measuring components of the water cycle has historically been done for precipitation and
other meteorological variables as well as for river discharge. The common station-based
measurements of, e.g., precipitation have passed the times of the highest number of
stations being globally available (Schneider et al., 2014), mainly for financial reasons.
Traditional precipitation measurements are subject to a range of uncertainty, e.g., wind
drift and undercatch errors (McMillan et al., 2012). Therefore, some general correction
schemes exist (Adam and Lettenmaier, 2003; Hirabayashi et al., 2008; Willmott and
Johnson, 2005); however, they cannot reduce the error completely (Dol et al., 2016). Due
to its value for, e.g., management purposes, river discharge has been measured for
centuries using different techniques. Here, measurement uncertainties are also high
(McMillan et al.,, 2012); even for high-quality data (as in the example of the United
Kingdom), errors can range up to 80% (Coxon et al., 2015). A number of discharge station
data, but by no means all of them, are reported to databases, e.g., hosted by the Global
Runoff Data Centre (GRDC). In addition to the decreasing number of stations in operation,
sharing of data is limited, e.g., in water-scarce transboundary basins for political reasons,
which hampers data-driven global analysis of water balance components (Fekete et al.,
2015; Hannah et al., 2011). Even though a number of satellite missions can observe (parts
of) the water cycle components (Famiglietti et al., 2015), in situ data are often needed for
calibration (Fekete et al., 2015). Precipitation and river discharge are the two components
which can be measured with reasonable accuracy.

The “loss” term of the water cycle, the evapotranspiration, is more complicated to
measure. Whereas the potential evapotranspiration (PET, i.e., the amount that evaporates
when water availability is unlimited) is assessed frequently and with relatively high spatial
coverage using evaporation pans (Abtew et al., 2011; Jovanovic et al., 2008; Matsoukas et
al., 2011; McVicar et al., 2007, 2012; Sanchez-Lorenzo et al., 2014; Yang and Yang, 2012),
measurements of actual evapotranspiration (which takes water limitation into account and
is thus of special interest for global assessments) are rather limited. One reasonable way



to determine actual evapotranspiration is by using weighted lysimeters (soil columns which
are weighted and thus allow measuring water balance components), but those
experiments are expensive and focused on special conditions (e.g., soil properties and type
of vegetation) and management purposes (Allen et al., 2011; Liu et al.,, 2002; Rana and
Katerji, 2000; Verstraeten et al., 2008). To enhance the communication of results and as a
first step of data sharing, the Lysimeter Research Group (http://www.lysimeter.at) was

established. In addition to some other methods like Bowen ratio and scintillometers, the
so-called eddy flux towers are another resource of point-scale measurements of the actual
evapotranspiration (Verstraeten et al., 2008). Due to its close relationship with carbon
fluxes, a large number of such towers (844, thereof 567 currently active in June 2016) were
installed in the past, and data are accessible via the FluxNet network
(http://fluxnet.ornl.gov/). Jung et al. (2010) used data from those towers for a machine
learning algorithm and combined it with remote sensing data to produce an observation-
based data product of actual evapotranspiration which is frequently used as benchmark
product (e.g., Mueller et al., 2013).

A relatively new branch of quantifying water balance components is the usage of the
isotope signature of water to derive their source. For example, Schlesinger and Jasechko
(2014) reviewed studies that distinguish the proportion of transpiration and evaporation
due to the circumstance of the isotope 680 being enriched by evaporation but not by
transpiration. Many other recent studies show the potential of this method to quantify,
e.g., the groundwater volume, its age or circumstances of recharge (Evaristo et al., 2015;
Gleeson et al., 2015; Jasechko, 2016; Jasechko and Taylor, 2015); to partition transpiration
and evaporation (Kool et al., 2014); and to determine the age of river discharge (Jasechko
et al., 2016) or water balances of catchments (Schulte et al., 2011).

1.3.3 Satellite-based approaches

In the era of satellite missions, several attempts were undertaken to quantify water balance
components with the help of remote sensing (Rast et al., 2014; Rodell et al., 2015; Tang et
al., 2009; Zhang et al., 2016). Whereas, e.g., surface water level estimation from space is in
operation and provide reasonable accuracy (Durand et al.,, 2016; Ricko et al., 2012),
research is still needed to accurately observe soil moisture by satellites (Al-Yaari et al.,
2014; Dorigo et al., 2012). Several products of actual evapotranspiration are available, e.g.,
based on the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite (Mu et al.,
2011a, 2011b; Ruhoff et al., 2013) or other spacecrafts (Miralles et al., 2011), but these are
not solely observations as, e.g., a PET model is included. For precipitation, radar
observations from space were developed in the past (Neeck et al., 2005) and are
incorporated, e.g., into the Tropical Rainfall Measuring Mission (TRMM) product (Tang et
al., 2009). The Gravity Recovery And Climate Experiment (GRACE) mission provides monthly



information on total mass change with a spatial resolution of a few hundred kilometers
(Tapley et al., 2004). With GRACE post-processing applied to achieve anomalies within the
water compartment (Wahr et al., 1998), these variations are useful for hydrologic studies,
e.g., toimprove hydrological models (Eicker et al., 2014; Forman et al., 2012; Lo et al., 2010;
Werth et al., 2009). In general there is strong potential in satellite-based observations of
the hydrologic water cycle, and even more missions are under way (see details in Simmons
et al., 2016).

1.3.4 (Global) hydrological models and their uncertainties

Models that simulate water balance components at the global scale as a basis for such
applications can be classified into global hydrological models (GHMs); land surface models
(LSMs); Earth system models (ESMs); and, to some degree, dynamic global vegetation
models (DGVMs). DGVMs are specialized at representing the vegetation dynamics as well
as structural and physiological response of plants to, e.g., changing CO; conditions and are
also a subject to hydrological applications, e.g., the model Lund—Potsdam-Jena managed
Land (LPJmL; Gerten, 2013) or effects of climate change on agriculture (Rosenzweig et al.,
2014). Recent developments, the state of the art and research needs are discussed in detail
in Bierkens (2015), Doll et al. (2016), Pokhrel et al. (2016) and Sood and Smakhtin (2015)
and are thus touched upon only briefly here. In general, GHMs are designed to assess water
balance components (e.g., renewable water resources) from a hydrologic perspective,
incorporating storage equations and subsequent flows between those storages. They
usually calculate the vertical water balance (e.g., canopy, snow and soil storages) and
contain a river routing scheme directly within the model. This allows for comparison and
calibration, e.g., in the case of the GHM WaterGAP (Ddll et al., 2003) y to observed river
discharge. Traditionally, actual evapotranspiration is calculated using the PET approach,
and energy balance is often not closed (not as the water balance). Much effort has been
expended in the past for GHMs to include human impacts on the hydrological cycle, e.g.,
reservoir operation (Doll et al., 2009; Hanasaki et al., 2006), water use schemes including
the source of water withdrawal (D6ll et al., 2012; Florke et al., 2012; Wada et al., 2014) and
many others (see the review of Pokhrel et al., 2016, for details).

LSMs were developed as the land component of global circulation models (GCMs)
preserving both the water and the energy balance. In most cases, LSMs calculate runoff,
not the accumulated river discharge. The latter is subsequently calculated using a river
routing model like Total Runoff Integrating Pathways (TRIP; Decharme et al., 2012; Oki and
Sud, 1998). Even though integration of human impact on the hydrological cycle is in
development (Pokhrel et al., 2012), there is room for improvements (Pokhrel et al., 2016).

Models that combine the physical, chemical and biological components of the Earth system
(i.e., land, atmosphere and ocean) in a fully coupled mode are called ESMs. They integrate



LSMs as land components; GCMs as the boundary for atmospheric circulation; and ocean
models for the exchange of water and energy (as well as other fluxes) between land,
atmosphere and ocean. Due to their integrative character, ESMs are designed to simulate
the historical and future status of the Earth system with frequent use of observations in
data assimilation schemes (Simmons et al., 2016). For example, Wada et al. (2016b) used
an ESM to quantify the pathways of pumped groundwater and to better understand sea
level rise due to groundwater depletion, and they concluded that the existing studies (that
are not done with ESMs) tend to overestimate that contribution. As for LSMs, the human
impact on the water cycle is an area in which improvements can be made in ESMs (Pokhrel
et al., 2016).

As discharge observations are not available at every river, model approaches can utilize
those measurements to close the gap to ungauged regions (e.g., Fekete et al., 2002;
Gudmundsson and Seneviratne, 2016). A big benefit of using such global-scale models is
that they provide spatially distributed model outputs and are thus of value for assessing
the water cycle both temporally and spatially. According to the brief overview here (and
especially the review of Pokhrel et al., 2016), human impacts on the hydrological cycle are
currently best represented in GHMs. In consequence (and following Oki and Kanae, 2006,
as they state that neglecting such impacts weaken water resources assessment), they can
be seen currently as the first choice to quantify the world’s water resources, especially the
amount of renewable freshwater resources. Nevertheless, modeling approaches are
subject to a number of uncertainties, which thus results in a large range of water resources
estimates (e.g., as presented in Haddeland et al., 2011).

As summarized comprehensively by Doll et al. (2016), quantification of human water use
and uncertain climate input data are two of the major challenges in historical water
resources assessment. Both relate to scarcity of observed data (or, in the case of human
water use, of statistical data with reasonable spatial resolution) and differ geographically.
The uncertainty of climate input data has consequently been the object of study in the past
(Biemans et al., 2009; Voisin et al., 2008; Wisser et al., 2010); nevertheless, as more and
more plausible climate input data evolves and the correction of measured precipitation is
still handled differently (or completely neglected) by the data producers, the uncertain
precipitation data can be seen as a major driver of differences in water resources
assessments, including the modeling of, e.g., irrigation water demand. But other climate
variables like downward solar radiation are also subject to uncertainties, as is shown, e.g.,
for the different WATCH Forcing Data products (Weedon et al., 2011, 2014). Additional
variables like wind speed and water vapor content have their own significance (and
uncertainty) in model results, albeit not in the dimension of precipitation (Haddeland et al.,
2012). Therefore, a consistent evaluation of the sensitivity of water balance components
to climate input data is beneficial.



When the source code of a model is modified — e.g., due to the inclusion of new/enhanced
process descriptions, spatial input data or parameters — it is often required to alter the
model structure. There are a number of studies that show effects of different model
structures on simulated outputs as well as frameworks to assess those effects (Butts et al.,
2004; Montanari and Di Baldassarre, 2013; Refsgaard et al., 2006). However, a simple
comparison of model results (and/or parameters) due to modified code and/or inclusion of
new data sets also enables insights on the effect of changes and is often incorporated as
model experiments (Lo et al., 2010; Nijssen et al., 2001; Oudin et al., 2005).

Due to the simplified representation of physical or empirical relationships between model
components (e.g., the outflow of a water storage) in hydrological models, parameters are
needed which mimic the natural process to be represented. In most cases, those
parameters cannot be measured, and optimal values can be set in a calibration procedure,
e.g., by optimizing objective functions with the assistance of efficiency metrics (Beven,
2001). However, in a classical way and in contrast to most catchment models this kind of
calibration is seldom done in GHMs, with WaterGAP being one exception (Doll et al., 2003).
This GHM is currently used as the basis for GRACE data assimilation and multi-parameter
calibration approaches (Eicker et al., 2014; Schumacher et al.,, 2016a). However, and
especially if more than one parameter is to be calibrated, equifinality problems (more than
one parameter set leads to successful objective function) can occur (Beven, 2006). As
parameter uncertainty (and sensitivity) is discussed in earlier work with WaterGAP (Kaspar,
2003; Schumacher et al., 2016b; Werth and Glintner, 2010), this topic is touched upon only
briefly in this thesis.

1.4  Water — Global Assessment and Prognosis

This section gives a brief overview of the Water — Global Assessment and Prognosis
(WaterGAP) model. A thorough description of the model and its calibration approach is
given in the appendix of Miiller Schmied et al. (2014).

In the late 1990s, the global freshwater and water use model WaterGAP was developed at
the Center for Environmental Systems Research (CESR, University of Kassel, Germany)
under supervision of Joseph Alcamo and Petra D6ll. The major objective of developing this
new tool was to assess water resources including human water use for historical and
scenario conditions. To allow for a robust estimation of renewable freshwater resources in
particular, a basin-wide calibration routine was developed that aims to fit simulated
discharge to long-term annual observed river discharge, which even now is unique in

global-scale hydrological modeling.

WaterGAP calculates water storages and fluxes for global land area (except Antarctica) at
a 0.5° x 0.5° spatial resolution. Temporal resolution of the calculations is one day, whereas



model outputs are analyzed predominantly at monthly time steps. WaterGAP (Fig. 1a)
consists of the water use models, which are split into five water use sectors (irrigation,
domestic, cooling of thermal power plants, manufacturing and livestock). In version 2.1h
(see Table 1), the GroundWater Surface Water USE (GWSWUSE) sub model was introduced,
which calculates the net abstractions from surface water and those from groundwater.
Within the WaterGAP Global Hydrology Model (WGHM, Fig. 1b), the vertical and horizontal
water balance is calculated for each of the roughly 70000 grid cells, and river discharge is
transported through the drainage network DDM30 (Do6ll and Lehner, 2002). All calculations
of vertical water balance are in units of water column (calculating canopy, snow and soil
storage), whereas flow rates are used for calculating the flows in the horizontal water
balance (e.g., from the groundwater, surface water bodies and river storage).
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Figure 1: Scheme of the global freshwater model Water — Global Assessment and Prognosis (WaterGAP) with
the water use models, the GroundWater Surface Water USE (GWSWUSE) submodel and WaterGAP Global
Hydrological Model (WGHM) (a) and scheme of WGHM where boxes represent water storages and arrows
represent related flows (b). Both figures are taken from Miiller Schmied et al. (2014), their Fig. 1 and A1l.

The irrigation model as well as WGHM is driven by meteorological input data with a daily
or monthly time step and using precipitation, temperature, shortwave and longwave
downward radiation (or cloud cover) as minimum required variables. Optionally, wind
speed, specific humidity and air pressure can be read in, e.g., for more complex PET
approaches. Other spatially distributed input data (e.g., soil texture, land cover) are used
to parameterize the model equations and build the basis for calculation of storages (e.g.,
extent of lake and wetlands and corresponding storage capacities). Since 2003, WaterGAP
has also been developed at the Goethe University Frankfurt. Parts of model development,
and especially the integration of GRACE total water storage for calibration (and data
assimilation), were/are done at GeoForschungsZentrum (GFZ) Potsdam as well as the
University of Bonn.
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Since the initial development of WaterGAP, many efforts have been made in order to
implement new hydrological processes as well as spatially distributed input data to improve
the model and its assessment of water resources. Starting from the first version after
WaterGAP version 2.1d (Alcamo et al., 2003; Doll et al., 2003), Table 1 lists the
modifications of the model versions compared to 2.1d. This table aims to provide an
overview of the history of model developments as well as to indicate the role of the PhD
candidate in model development, represented in percentage numbers of contribution.
Note that this overview is not exhaustive as intermediate model versions were developed
at CESR and GFZ which are not indicated with a separate version number. In a joint effort
by CESR and the Goethe University Frankfurt, WaterGAP 2.2 was developed, which includes
the main features of both developing lines, providing the basis for future joint model
improvements.

Table 1: List of modifications for the specific WaterGAP versions (V) for water use models as well as the
WaterGAP Global Hydrology Model (WGHM) and indication of the role of the PhD candidate, represented as

percentage of contribution for the specific modification in brackets.

Modifications, references and proportion of PhD candidate’s contribution

Reference R/

v (before version 2.2: 0%) application A
Water use R: internal
- Distinguishing water for cooling thermal power plants and manufacturing documentation
o water use A: Schulze and Dall,
:! - Updates for irrigated areas for Oceania and Africa 2004; Schuol et al.,
- New map of livestock types with improved spatial resolution 2008
WGHM
- Update of land cover information from IMAGE 2.1 to IMAGE 2.2
Water use R: Doll and Fiedler,
- Update of water use modules and accompanying input data 2008; Hunger and
WGHM Doll, 2008; Schulze
- Dynamic allocation of a neighboring cell with the highest water storage in and Déll, 2004
rivers/lakes for water abstractions A: Chen et al., 2016;
i - 64 additional reservoirs Doll, 2009; Fiedler
- Snow routine now based on 100 subgrids to improve snow accumulation  and Déll, 2007;
and snow melt dynamics Giintner et al., 2007;
- Integration of a reduction factor for evaporation for lakes and wetlands Polcher et al., 2011;
that improves model simulation when water storage is at a low level Ramillien et al., 2015;
- Enhanced number of calibration stations to 1235 stations Richts et al., 2011
WGHM R: Dol et al., 2009
- New precipitation correction approach A: Doll et al., 2009;
% - Improved groundwater recharge algorithm for semi-arid and arid regions  Déll and Zhang, 2010
~ - New reservoir management algorithm after Hanasaki et al. (2006)

- Reservoirs and lakes were updated to a (preliminary) version of the
GRanD database (Lehner et al., 2011) and quality-controlled
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Modifications, references and proportion of PhD candidate’s contribution

Reference R/

characteristics (Schulze et al., 2005; Verzano et al., 2012) (0%)
Calculation of permafrost by using the frost number (Aus Der Beek and
Teichert, 2008) (0%)

Second land-ocean mask possible (transferring of input data 20%)
Introduction of several new PET methods (Weil} and Menzel, 2008) (0%)
Optional use of Kc values for FAO-56 calculation of PET (0%)

Several new model outputs, e.g., daily water storages (100%)

Possibility to read in MODIS LAl and MODIS albedo (100%)

Calibration now with 1319 discharge stations (90%)

Efforts to close water balance, e.g., through assigning the Caspian Sea as
ocean (was modeled as lake before) and neglecting those grid cells from
calculation (100%)

Predecessor of final 2.2 is adapted to run in a calibration/data
assimilation framework, e.g., by reading in a parameter matrix (30%)

v (before version 2.2: 0%) application A
Water use R: Doll et al., 2012
- Source of water withdrawals (groundwater or surface water) is A: Doll et al., 2012;
distinguished, and in WGHM not all water withdrawals are taken from Huang et al., 2012
- surface waters any longer
: - Newly introduced sub model GroundWater Surface Water USE
(GWSWUSE) computes net abstractions from surface water as well as
from groundwater, including time-constant sectoral fractions of
groundwater use and fraction of return flows to groundwater and surface
water
Water use R: Miiller Schmied et
- Updates for sectoral water use (Flérke et al., 2012) (0%) al., 2014
- GWSWUSE with adaptations (fraction of return flows recharges A: Berger et al., 2013;
groundwater now between values of 0.2 and 0.95; irrigation efficiency Boulay et al., 2015;
for groundwater-fed irrigation assumed to be globally 0.7) (0%) Buma et al., 2016;
WGHM Doll et al., 2014b;
- Possibility to read in daily meteorological input (0%) Eicker et al., 2014;
- New land cover input map based on MODIS satellite (30%) Knieper and Pahl-
- New attributes for land cover classes (albedo (0%), emissivity (100%)) Wostl, 2016; Miller
- Refined leaf area index (LAI) calculation (no longer based not on PET) Schmied et al., 2014;
(0%) Riedel and Dall,
- Growing period starts when temperature exceeds 8°C and precipitation 2016; Schumacher et
sum exceeds 40 mm (0%) al., 2016b; Siebert et
~N - Variable flow velocity resulting in better representation of day-to-day al., 2015
o
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Modifications, references and proportion of PhD candidate’s contribution

Reference R/

- Including reservoir operation years (100%) *
- Parallel calibration routine on 23 nodes (100%)

v (before version 2.2: 0%) application A
WGHM R: Dol et al., 2014b
- Groundwater recharge below surface water bodies is enabled in semi- A: Doll et al., 20143;
arid and arid regions (80%) Khandu et al., 2016;
- Dynamic land area fractions as consequence of dynamic surface water Miller Schmied et
extents (80%) al., 2016a
- Precipitation input on surface water bodies is now also multiplied with
the evaporation reduction factor (as evaporation) to keep water balance
consistent (60%)
- Modified routing approach where water is routed through the storages
dependent upon the fraction of surface water bodies; otherwise water is
ﬁ routed directly into the river (70%)
- Initial development of river reach evaporation (not used in standard
version) (90%)
- Integration of depression storage evaporation (not used in standard
version) (10%)
- Possibility to read in radiation components from reanalysis (not included
in standard version) (100%)
- Possibility to include output of HYOGA2 glacier model to represent
glacier dynamics (not included in standard version) (90%)
- New output options, e.g., possibility to save grid-cell-specific text files
with daily states and fluxes (100%)
Water use R: Miiller Schmied et
__ - Forirrigation, 70% of consumptive water use is applied (deficit irrigation)  al., 2016c
§ (0%) A: Miiller Schmied et
S WGHM al., 2016b, 2016c
£ - Update of reservoir information, including year when reservoir began
2 operation (30%)
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Modifications, references and proportion of PhD candidate’s contribution Reference R/
(before version 2.2: 0%) application A

Water use R: this dissertation

- Deficit irrigation with 70% of optimal irrigation was applied in grid cells,
which were selected based on Déll et al. (2014a) and have 1)
groundwater depletion of >5 mm yr over 1989-2009 and 2) a >5%
fraction of mean annual irrigation water withdrawals in total water
withdrawals over 1989-2009 (10%)

WGHM

- New total water capacity input based on Batjes (2012) (100%) **

- For global lakes and reservoirs (where the water balance is calculated in
the outflow cell), water demand of all riparian cells is included in the
water balance of the outflow cell and thus can be satisfied by global lake
or reservoir storage (0%)

- All water storage equations in horizontal water balance are solved
analytically (except for local lakes). Those equations now include net
abstractions from surface water or groundwater. As a consequence,
sequence of net abstractions has been changed to 1) global lakes or
reservoirs, 2) rivers, 3) local lakes (0%)

- Net cell runoff is strictly the difference between the outflow of a cell and
inflow from upstream cells at the end of a time step (0%)

- Area correction factor (CFA) is included in water balance of lakes and
wetlands (as it was before 2.2) (80%)

- In 2.2, local and global lake storage could vary between the maximum
storage Smax and zero. In 2.2b (as in versions before 2.2), local and global
lake storage can drop to —Smax as described in Hunger and Déll (2008).
The area reduction factor (corresponding to the evaporation reduction
factor in Hunger and D6ll (2008), their eq. 1) has been changed
accordingly (denominator: 2 x Smax). If lake storage S equals Smax, the
rediction factor is 1; if S equals —Smax, the reduction factor is 0 (0%)

- Modified calibration routine: an uncertainty of 10% of long-term average
river discharge is allowed (following Coxon et al., 2015), meaning that
calibration runs in four steps: 1) test if y alone is enough to calibrate to
+1% of observed value; 2) test if y alone is enough to calibrate when 10%
uncertainty of observed values are allowed; 3) adapt observed value by
10%, and test if y plus CFA are sufficient for calibration; 4) add station
correction factor (CFS) if all other steps were not successful, and set CFS
values to 1 if between 0.98 and 1.02 (90%) ***

- All model parameters which are potentially used for the calibration/data
assimilation integration (including also multiplicators) are now read from
a text file in Javascript Object Notation (JSON) format (10%)

- Regional changes based on Doll et al. (2014a): 1) for Mississippi
Embayment Regional Aquifer, groundwater recharge was overestimated,
and thus the fraction of runoff from land recharging groundwater was
reduced from 80—-90% to 10% in these cells; 2) groundwater depletion in
the North China Plain was overestimated by a factor of 4, and thus runoff
coefficient y was reduced from 3—5 to 1 in this area; 3) all wetlands in
Bangladesh were removed since diffuse groundwater recharge was
unrealistically low (30%)

- Reducing water balance error to a global sum of <1*10* km? yr! (40%)

2.2b

* Effect is described in Appendix Al,** effect is described in Appendix A2,*** effect is described in
Appendix A3



1.5 Objectives and thesis outline

As outlined in Chapters 1.1 to 1.4, there are still challenges left when quantifying water
balance components at the global scale. The focus of this thesis is to evaluate, improve and
apply the modeling of water resources using the Water Global Assessment and Prognosis
(WaterGAP) model. The dissertation is structured in three research topics that reflect the
thesis title and cover 13 research questions (RQs). Within the first part, divided into two
subfields, WaterGAP components are evaluated against independent observation data,
and model outputs driven with alternative climate input data are analyzed (Chapter 1.5.1).
The second part (which includes the Appendices A1-3) addresses the effects of model
modifications on freshwater fluxes and storages as well as on model parameters (Chapter
1.5.2). Three WaterGAP applications are the focus of the third part of this thesis (Chapter
1.5.3).

1.5.1 Model evaluation

The evaluation of WaterGAP is split into two parts. The first part compares the simulated
and observed radiation, while the second part focuses on the sensitivity of freshwater
fluxes and storages to alternative climate input data.

1.5.1.1 Evaluation of net radiation and its components with station-based

observations

Net radiation is the most important variable for many potential evapotranspiration (PET)
equations and therefore requires a plausible calculation. As PET provides the upper limit of
simulated actual evapotranspiration, an evaluation regarding the uncertainties related to
obtaining radiation information from climate input data as well as modelling upward
components with WaterGAP is needed. Within paper 1, the following research questions

will be answered:

RQ1 How is the performance of simulated upward radiation components of

WaterGAP compared to observations?

State-of-the-art climate input data provide downward radiation components, so
that upward radiation has to be simulated by WaterGAP. This is done by including
land cover-dependent attributes like albedo and emissivity that determines in
conjunction with climate input variables the upward radiation components. It is
of interest to evaluate the performance of upward radiation components with
observations as well as with the ERA-Interim reanalysis, where substantial effort
were has been put into closing the energy balance and constraining the radiation
components as much as possible with observations.
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RQ 2

RQ3

Is it beneficial to substitute standard climate input data and calculation of
upward radiation components by ERA-Interim reanalysis?

Reanalysis approaches comprise modeling approaches (e.g., of a meteorological
forecast model) with data assimilation techniques that allow for the integration
of various observations (satellites, radiosondes, station measurements). Hence,
reanalysis are currently the main resource for creating climate input data that
are used in GHMs like WaterGAP. Traditionally, such climate input data provide
downward radiation components for consistent land-cover-type calculations
within the GHM. However, a characteristic of most GHMs is that no energy
balance is computed (in contrast to the water balance that is closed). Reanalysis
has a closed energy balance, and upward radiation fluxes that are augmented by
observations make the usage of upward fluxes from reanalyses interesting. Here,
it is to be analyzed whether it is beneficial to include all radiation fluxes from
ERA-Interim reanalysis in WaterGAP. The question is answered by comparing
radiation fluxes to station observations and to WaterGAP estimates as well as
discussing the consequences for PET.

What is the likely uncertainty of net radiation and its components?

In order to enhance knowledge about the uncertainty of simulated radiation
components, the mean absolute error efficiency metric from paper 1 is used to
guantify the likely uncertainty of the simulations from the observations.

1.5.1.2 Evaluation of the sensitivity of simulated water balance components to

climate input data

The main spatiotemporal driver of WaterGAP is the climate input data, and uncertainties

of these forcing data can be large (see Chapter 1). It is thus of great interest to evaluate

how the uncertainty of climate input data translates to model outputs. The sensitivity of

simulated water balance components to climate input data is studied in papers 2, 3 and 4.

Furthermore, it is evaluated how the calibration approach of WaterGAP affects this kind of

uncertainty.

RQ4

What is the sensitivity of simulated water balance components, including
human water use, to state-of-the-art climate input?

When WaterGAP is forced with alternative climate input data, substantial
differences occur in water flows and storages. Three papers (2-4) cover the
sensitivity of simulated water balance components to climate input data.
Whereas paper 2 covers two alternative forcings in relation to other kinds of
uncertainty, papers 3 and 4 evaluate the effect of four state-of-the-art climate
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RQ5

input data plus one homogenized data set. The effect of climate input data on
guantifying human water use is the focus of paper 4.

How does the WaterGAP calibration approach affect the uncertainty of climate
input data?

The effect of calibration on simulated water flows and storages is demonstrated
in paper 2. In paper 3, and for human water use in paper 4, the effect of
WaterGAP calibration against long-term average annual river discharge to the
climate-input-data-induced uncertainty is investigated.

1.5.2 Model modification

Models always contain simplified representations of (natural) processes, but, e.g., the

availability of new input data sets allows for the improvement of processes or integration

of new ones. However, in most cases the model complexity increases and new parameters

might be introduced, which both can lead to a higher degree of uncertainty. Therefore, a

structured assessment of those modifications is crucial. During the PhD, several

modifications have been made to the WaterGAP model in order to improve the spatio-

temporal database and the representation of processes (see Table 1). With a focus on

papers 2 and 5 as well as on Appendices A1-3, some effects of those modifications on

model behavior, parameters and water flows and storages are highlighted.

RQ 6

RQ7

What is the effect of WaterGAP development on water flows and storages
between version 2.1d and version 2.2?

One of the main steps in WaterGAP development was the creation of model
version 2.2, which contains numerous new features and data sets and is based
on two previous model versions from the two WaterGAP groups. In a model
experiment described in paper 2, the effect of one model structure that is
comparable to the initial WaterGAP structure (version 2.1d) as well as version
2.2 is investigated in terms of effect of hydrological model structure on simulated
freshwater fluxes and storages.

What is the impact of an alternative land cover map on simulated water flows
and storages?

In WaterGAP, land cover input data are important for deriving, e.g., total soil
water capacity and attributes for radiation calculation. Whereas the historical
source of land cover information is map information, a newly derived satellite-
based land cover map was introduced in WaterGAP 2.2. Within this question and
as part of paper 2, it is of interest to assess the resulting differences in simulated
water fluxes and storages due to this modification.
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RQ 8

RQ9

RQ 10

How does the integration of reservoir commissioning years affect the model
results?

The representation of human water use and reservoir management is a feature
of many GHMs. Since generic reservoir management algorithms were developed,
WaterGAP includes reservoirs (and regulated lakes) in the model scheme,
although commissioning years were not considered. In model version WaterGAP
2.2 (ISIMIP2a), reservoir commissioning years were included to improve the
simulated discharge time series. The effect of considering the year in which dam
operation started is assessed in Appendix A1l by comparing model outputs with
and without commissioning years.

What is the effect of an updated spatial input map of total available soil water
capacity?

An essential part of the WaterGAP model scheme (and of many other GHMs) is
the characterization of the soil layer(s), as this determines the amount of
maximum stored water in the soil as well as the amount of water that flows out
of this storage compartment either as runoff or groundwater recharge or is
evapotranspired. WaterGAP includes an observation-based map of total
available soil water capacity for the first meter and scales that with land-cover-
dependent rooting depth to obtain the maximum soil water storage. However,
the soil databases greatly improved both with respect to the number of soil
profiles included as well as to the soil physical characteristics. Within Appendix
A2, an updated version of the total available soil water capacity applied in
WaterGAP 2.2b is described, and its effects on simulated model output are
assessed.

How does river discharge measurement uncertainty influence calibration
parameters and simulated freshwater fluxes?

To date, WaterGAP is the only GHM which includes a basin-specific calibration
scheme to adjust simulated long-term annual river discharge to observed ones.
However, that scheme does not consider any uncertainties in discharge
observations, which are shown to be significant even for high quality
measurements. Within WaterGAP 2.2b, the calibration scheme was modified by
assuming a potential 10% uncertainty in river discharge observations. This model
modification is described in Appendix A3, together with a thorough discussion of
the effect on calibration parameters as well as model outputs.
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1.5.3 Model application

WaterGAP was developed as a tool to assess the freshwater fluxes and storages for both

historical and future scenario conditions. The model outputs are included in a wide range

of applications (Table 1) in the past. Three examples of WaterGAP application are

presented in the third part of the thesis to elucidate the potential of that modeling

framework.

RQ 11

RQ 12

RQ 13

What is the current best estimate of global and continental freshwater fluxes
and storages with WaterGAP?

Within papers 2-4, as well as using results of the most recent model version 2.2b
(Appendix A3), water balance estimates (by component) are presented. Within
this research question, the attempt is to present the current best estimate of
freshwater fluxes and storages at the global and continental scale by using
WaterGAP 2.2b along with a discussion of other values reported in the literature.

How can groundwater depletion at the global scale be assessed using multiple
sources of observations jointly with hydrological modeling?

Many regions worldwide where water demand for agriculture is satisfied by
groundwater resources and withdrawal exceeds groundwater recharge, suffer
from groundwater depletion. Hydrological modeling can assist in monitoring
groundwater depletion especially in regions where observations, e.g., from
wells, are sparse. Within paper 5, groundwater depletion is investigated at the
global scale by using the WaterGAP model, GRACE satellite data of total water
storage changes and information from observations. Both the methodology and
the assessment are presented in this paper.

What is the impact of climate change on river flow regimes?

One of the aims of developing the WaterGAP model was to quantify effects of
global (climate) change on freshwater resources. Based on a model experiment
with bias-corrected climate input data from two general circulation models
(GCMs) and two socio-economic development scenarios as well as newly
developed indicators, an assessment of river flow regime changes with climate
change is given in paper 6.
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The following chapters include the contributing papers, which are referred to as paper 1 to
6 in Table 2.

Table 2: List of papers (chapters) and appendices that are included in this dissertation together with research
questions (RQs) to which they mainly refer.

Paper #/ Citation RQ
chapter
1/2 Miller Schmied, H., Miller, R., Sanchez-Lorenzo, A., Ahrens, B. and 1, 2,3

Wild, M.: Evaluation of radiation components in a global freshwater
model with station-based observations, Water, 8(10), 450,
doi:10.3390/w8100450, 2016.

2/3 Miiller Schmied, H., Eisner, S., Franz, D., Wattenbach, M., Portmann, F. 4, 5, 6,
T., Florke, M. and Doll, P.: Sensitivity of simulated global-scale 7,11
freshwater fluxes and storages to input data, hydrological model
structure, human water use and calibration, Hydrol. Earth Syst. Sci., 18,
3511-3538, doi:10.5194/hess-18-3511-2014, 2014.

3/4 Miller Schmied, H., Adam, L., Eisner, S., Fink, G., Florke, M., Kim, H., 4,5, 11
Oki, T., Portmann, F. T., Reinecke, R., Riedel, C., Song, Q., Zhang, J. and
Doll, P.: Variations of global and continental water balance
components as impacted by climate forcing uncertainty and human
water use, Hydrol. Earth Syst. Sci., 20, 2877-2898, d0i:10.5194/hess-
20-2877-2016, 2016.

4/5 Miller Schmied, H., Adam, L., Eisner, S., Fink, G., Florke, M., Kim, H., 4,5,11
Oki, T., Portmann, F. T., Reinecke, R., Riedel, C., Song, Q., Zhang, J. and
Doll, P.: Impact of climate forcing uncertainty and human water use on
global and continental water balance components, Proc. Int. Assoc.

Hydrol. Sci., 374(7), 53-62, doi:10.5194/piahs-374-53-2016, 2016.

5/6 Doll, P., Miller Schmied, H., Schuh, C., Portmann, F. T. and Eicker, A.: 12
Global-scale assessment of groundwater depletion and related
groundwater abstractions: Combining hydrological modeling with
information from well observations and GRACE satellites, Water
Resour. Res., 50(7), 5698-5720, d0i:10.1002/2014WR015595, 2014.

6/7 Doll, P. and Miller Schmied, H.: How is the impact of climate change 13
on river flow regimes related to the impact on mean annual runoff? A
global-scale analysis, Environ. Res. Lett, 7(1), 014037,
doi:10.1088/1748-9326/7/1/014037, 2012.

Al Integrating reservoir commissioning years
A2 Adapting input map for total soil water capacity
A3 A modified calibration approach to account for uncertainty in river 10

discharge measurements

20



2 Evaluation of radiation components in a global freshwater model with
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Abstract: In many hydrological models, the amount of evapotranspired water is calculated using
the potential evapotranspiration (PET) approach. The main driver of several PET approaches is
net radiation, whose downward components are usually obtained from meteorological input data,
whereas the upward components are calculated by the model itself. Thus, uncertainties can be
large due to both the input data and model assumptions. In this study, we compare the radiation
components of the WaterGAP Global Hydrology Model, driven by two meteorological input datasets
and two radiation setups from ERA-Interim reanalysis. We assess the performance with respect to
monthly observations provided by the Baseline Surface Radiation Network (BSRN) and the Global
Energy Balance Archive (GEBA). The assessment is done for the global land area and specifically
for energy/water limited regions. The results indicate that there is no optimal radiation input
throughout the model variants, but standard meteorological input datasets perform better than those
directly obtained by ERA-Interim reanalysis for the key variable net radiation. The low number
of observations for some radiation components, as well as the scale mismatch between station
observations and 0.5° x 0.5° grid cell size, limits the assessment.

Keywords: global hydrological modeling; radiation; validation with station observations; BSRN;
GEBA; uncertainty

1. Introduction

The estimation of the Earth’s surface radiation components are of high interest in climate
science (e.g., for global radiation budget [1-3]) and as a driver for evaporation of water (e.g., [4]).
Consequently, global hydrological models (GHMSs), which are designed to simulate water fluxes and
storages on terrestrial land surface, incorporate radiation information in their calculation of potential
evapotranspiration (PET, maximum amount of evapotranspiration if no water limitation occurs)
and subsequently actual evapotranspiration (AET, taking into account possible water availability
limitations) [5,6].

Until the early 2000s, meteorological input data (hereafter referred to as meteorological forcings)
for GHMs solely contained indirect information about radiation (e.g., sunshine duration or cloud
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cover). Nowadays, meteorological input data for GHMs are based on reanalysis data, which are
either driven by observations including satellite data (as in the case of radiation [7]) or sometimes
supplemented (corrected) with ground or satellite based observations. A number of such forcings are
now available that include downward radiation information, e.g., WATCH Forcing Data methodology
applied to ERA-Interim (WFDEI, [8]) and Princeton meteorological forcing (PGFv2, [9]). However,
these forcings differ from each other due to different underlying reanalysis and correction approaches,
which is reflected in uncertain estimates of the water balance components (e.g., [10,11]).

Although precipitation is one of the major drivers of uncertainty (e.g., [12]), uncertainties in
(net) radiation also affect model outputs significantly. Déll et al. [13] varied simulated net radiation
within the global freshwater model WaterGAP by 20% resulting in a 4% to 7% difference for global
scale AET and a 6% to 10% difference for global scale river discharge, which consequently alters
the spatial pattern of renewable water resources (see their Table 2 and Figure 1). In the study of
Nasonova et al. [11], variations in global averaged shortwave (longwave) fluxes among their datasets
are estimated to be about 14 (13) Wm~2 with subsequent influences to water fluxes. The CMIP5 models
vary globally by 19 Wm™2 for both downward fluxes with a much higher variation on the global
land area (41 Wm ™2 for shortwave and 33 Wm 2 for longwave downward fluxes) [3]. Consequently,
net radiation over land varies among the 43 CMIP5 models by 29 Wm~2 which is translated into a
latent heat flux (evaporation) variation of 14 Wm~2 [3].

However, modifying simulated radiation with a fixed percentage or comparing different products
are not appropriate to assess the quality (in terms of the agreement with in-situ observations) of
simulated radiation components. There are a number of studies evaluating spatially distributed
radiation datasets with station-based observations. For the first time, Wild et al. [14] used surface
observations to assess shortwave downward radiation from reanalyses, and later also the longwave
downward radiation from reanalyses and climate models [15]. Troy and Wood [16] compared seven
globally available radiation products with 32 stations from the World Radiation Data Centre (WRDC)
archive over northern Eurasia and found differences of 20 Wm ™2 for net radiation. Furthermore,
NASA /GEWEX Surface Radiation Budget (SRB) data was assessed to be the closest dataset compared
to the observations. In other recent studies, data products were evaluated using station observations
(e.g., [17-21]) but were mostly focused on regional scales. Overall, to assess the global-scale coverage
of a GHM, mainly two radiation-relevant station datasets are available to the scientific community: the
Baseline Surface Radiation Network (BSRN, [22]) and the Global Energy Balance Archive (GEBA, [23]).

Heinemann and Kerschgens [24] investigated the representativeness of station measurements in a
heterogeneous landscape in northern Germany to simulated surface energy fluxes with a 250 m
and 1 km resolution. They concluded that large uncertainties exist which are also dependent
on the aggregation method. Furthermore, a strong dependence on land cover types was found.
In addition, Horlacher et al. [25] noted reasonable differences between two meteorological stations
(8.5 km apart) especially in the upward radiation fluxes that are mainly land-cover-dependent. In a
study of Hakuba et al. [26], an error assessment for the representativeness of mean monthly point
measurements compared to grid cell satellite-based datasets for solar radiation showed a relatively
small mean error of about 3 to 4 Wm~2. These issues indicate the problem of representativeness when
comparing point measurements with grid cell boxes. Nevertheless, and due to the given heterogeneous
(and not omnipresent) data coverage of radiation observations, such a comparison can still be of value
for assessments of coarse scale gridded products [26].

To the authors” knowledge, there is a lack of studies investigating the reliability of radiation
components used in GHMs, and especially their calculation of upward radiation fluxes. In most
GHMs, upward (and net) radiation fluxes are calculated according to land surface parameters as
land-cover-dependent albedo or emissivity (e.g., [27]). This approach is common and consistent
as some other land-cover-dependent characteristics are used, e.g., for modeling snow dynamics
and rooting depth [27]. However, using radiation-relevant characteristics for calculating upward
components is subject to uncertainties. Therefore, it is of interest to evaluate the general performance
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of state-of-the-art meteorological forcings in terms of radiation fluxes and if such an internal model
calculation can be substituted by radiation components, e.g., from reanalysis.

Following the approach of Budyko [28], the Earth’s land surface (represented here by 0.5° x 0.5°
grid cells) can be hydrologically characterized, dividing PET by precipitation (P). If this quotient is
less than one, the region can be characterized as energy-limited, otherwise it is water-limited. From
the hydrological perspective, changes in net radiation (which is the major driver of PET in most
approaches) are interesting, especially in energy-limited areas as, for example, increasing amounts of
net radiation are translated into higher amounts of PET and AET and subsequent less available water
resources. Therefore, the optimal calculation of radiation components plays a vital role in GHMs.

The overall objective of this study is to evaluate radiation components of two state-of-the-art
meteorological forcings and from ERA-Interim reanalysis by comparing the downward components
as well as the net components with station-based observations of the BSRN and GEBA datasets.
Furthermore, the upward and net radiation components as calculated by WaterGAP (except for the
ERA-Interim variant where net radiation is used) are evaluated. The general aim is to find the most
plausible approach to obtain net radiation for PET simulation. Within this, we pursue four objectives:

1.  To assess the spatial differences of global-scale net radiation as well its components from selected
meteorological forcings.

Using two meteorological forcings (WFDEI, and PGFv2) and two ERA-Interim reanalysis variants,
we evaluate spatial patterns of the simulated (or provided ones in the case of the ERA-Interim variant
where net radiation is taken as input data) radiation components.

2. To identify optimal downward radiation input from meteorological forcings.

The downward radiation components of the two meteorological forcings, as well as ERA-Interim
reanalysis, are assessed with respect to their performance to station observations of BSRN and GEBA
data on a monthly time step.

3. To evaluate the calculation of upward radiation fluxes within WaterGAP and net radiation components.

For the two meteorological forcings as well as the reanalysis variant where only downward
radiation is taken into account, the simulated upward radiation that is estimated by WaterGAP is
evaluated by comparing it to observations and the reanalysis variant that provides upward radiation
components. In addition, net radiation fluxes are assessed.

4. To test if improvements are achieved when using net radiation from the ERA-Interim
reanalysis directly.

Net radiation is the most important variable for PET simulation. Therefore, the performance
of net radiation and consequences for PET is evaluated in order to investigate if ERA-Interim net
radiation could be used for future assessments within global hydrological models.

In Section 2, the data sources, model and efficiency criteria are described. The results are presented
and discussed in Section 3 both for the global scale, but also if there are spatial differences between
geographic regions and energy- and water-limited areas. Concluding remarks are given in Section 4.

2. Data and Methods

In this section, we firstly describe the model experiment and the meteorological forcings used in
this study, followed by the WaterGAP Global Hydrology Model (WGHM). The two in-situ radiation
databases, as well as the efficiency metrics, are presented thereafter.

2.1. Experimental Setup

Four different radiation data sets were used within WaterGAP, version 2.2a in order to answer
the research questions. Even though the model version is not modified, the term model variant is
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used to distinguish the meteorological forcings with a five-letter abbreviation (WFDEI, PGFv2, ERAID,
and ERAIN, see Table 1). The WFDEI variant (see Section 2.1.2), based on ERA-Interim reanalysis,
represents the current standard meteorological forcing and thus standard radiation input for WaterGAP
(see STANDARD model variant in [27]). The PGFv2 forcing (see Section 2.1.3) is used to include an
alternative forcing which is very frequently applied in global scale modeling and is thus evaluated
here as well. Directly interpolated shortwave downward (S)) and longwave downward radiation
(L)) data from ERA-Interim reanalysis were taken for variant ERAID, which differs from WFDEI
due to the interpolation, elevation and bias correction method. Finally, substituting the calculation of
upward radiation components by the corresponding fluxes from the ERA-Interim reanalysis is done
in model variant ERAIN. For both ERAID and ERAIN, WFDEI was used for P and temperature (T).
For ERAIN, the choice of P and T is irrelevant as radiation components are not calculated within
WaterGAP. P and T are important for all other variants, especially for the snow dynamics, which have
an influence on albedo and thus shortwave upward radiation (S51), whereas T (at 2 m height) is used
to calculate longwave upward radiation (L1). We decided to use WFDEI T and P for ERAID as: (1) a
simple interpolation of T to the 0.5° grid without considering the environmental lapse rate would lead
to uncertainties, especially in mountainous areas [29]; (2) a bias correction of P with observations is
required as there is still a (slight) wet bias in ERA-Interim when compared to P observations [7]; and
(3) in case P and T for ERAID is the same as for WFDEI, the emissivity value can be evaluated for
longwave upward radiation. In the following sections, the meteorological forcings and their sources
used for the intercomparison are described in more detail.

Table 1. Model variant names for the experiment and source for climate variables. Abbreviations:
S|: shortwave downward radiation, S1: shortwave upward radiation, L|: longwave downward
radiation; L1: longwave upward radiation; P: precipitation; T: temperature; WaterGAP: Water—Global
Assessment and Prognosis; WFDEL: WATCH Forcing Data methodology applied to ERA-Interim
reanalysis; PGFv2: Princeton Global Meteorological Forcing Dataset version 2. Name for downward
ERA-Interim radiation components is ERAID, for the variant where also upward ERA-Interim radiation
is used, ERAIN.

Name S| ST L| L1 PT
WEFDEI WEFDEI WaterGAP WEFDEI WaterGAP WEFDEI
ERAID ERA-Interim WaterGAP ERA-Interim  WaterGAP WFDEI
ERAIN ERA-Interim  ERA-Interim ERA-Interim ERA-Interim WEDEI
PGFv2 PGFv2 WaterGAP PGFv2 WaterGAP PGFv2

2.1.1. ERA-Interim

The European Centre for Medium-Range Weather Forecast (ECMWF) Re-Analysis Interim
(ERA-Interim) is the third generation of global atmospheric reanalysis from ECMWF and spans
from 1979 until recent time. A reanalysis includes a meteorological forecasting model which uses
all available observation data (e.g., station measurements, radiosonde—profiles or satellite data)
to initialize the next forecast step. This is done cyclically a few times per day. The model behind
ERA-Interim is called Cy31r1, an atmospheric model and data assimilation system that contains the
three components: atmosphere, land surface and ocean waves. The land surface model of ERA-Interim
is TESSEL (Tiled ECMWFEF Scheme for Surface Exchanges over Land). Within the data assimilation
scheme and using surface (and cloud) albedo and emissivity values, the radiation fluxes are generated
in an integrative way using a radiation transfer scheme, with the main aim to preserve the energy
balance (details in [30]). Compared to ERA-40 the energy balance on land surface is improved [7].
Spatial resolution is horizontal ~80 km (spectral T255 grid) and vertical with 60 layers [7]. Reanalyses
are widely applied in climate monitoring and analysis [31,32].
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For this study, S| and L| from ERA-Interim (model variant ERAID), as well as ST and L1 (model
variant ERAIN) were used. ERA-Interim data were interpolated bi-linearly to 0.5° resolution (without
bias and altitude correction) and aggregated to daily values.

2.1.2. WATCH Forcing Data Methodology Applied to ERA-Interim Reanalysis

The basis of this meteorological forcing is the ERA-Interim reanalysis [7]. Weedon et al. [8]
prepared the output of this reanalysis within the Integrated Project Water and Global Change (WATCH)
for global hydrological models by applying an interpolation and bias-correction scheme which is
explained briefly here. ERA-Interim T was obtained from the lowest atmospheric model level (10 m)
and interpolated to the 0.5° resolution using an elevation based environmental lapse rate. Furthermore,
T is corrected to Climatic Research Unit Time-Series [33] (CRU TS) version 3.1 (1979-2009) respectively
version 3.21 (2010-2012) average T as well as average diurnal T range [8,29]. The handling of P is
described by Weedon et al. [29]. This variable is adjusted to CRU TS3.1 number of wet days and
monthly totals using either CRU TS3.1/TS3.21 or data from the Global Precipitation Climatology
Centre (GPCC) v5/v6. For 1979-2009, the adjustment is based on GPCC v5, and from 2010 to 2012
based on CRU TS3.21.

L] from ERA-Interim reanalysis data was elevation corrected after interpolation to 0.5° resolution
using a fixed relative humidity as well as changes in T, surface pressure and specific humidity.
Weedon et al. [8] found no necessity for monthly bias correction. S| is not elevation corrected after
interpolation. In contrast to the previous version of WATCH Forcing Data (WFD) [29], S| was adjusted
for interannual (but not seasonal) variations in aerosol loading (using CRU TS3.1/3.21 average cloud
cover) which results in higher mean monthly values compared to the WFD forcing [8]. Furthermore,
the aerosol distribution was changed in the ERA-Interim reanalysis so that WFDEI has higher values
of S| in northern Africa (~40 Wm~2 for the year 2000) and lower values of ~30 Wm~?2 in northern
South America (same year) [7]. WFDEI climate input is already available for the spatial and temporal
resolution of WaterGAP. T and P from the WFDEI [8] were used in all variants except for PGFv2 to
keep consistency within that meteorological forcing (Table 1).

2.1.3. Princeton Global Meteorological Forcing Dataset

The Princeton Global Meteorological Forcing Dataset, version 2 (PGFv2, http://hydrology.
princeton.edu/data.pgf.php) is an updated version of the 60 year-forcing (1948-2008) described
by Sheffield et al. [9] and is available between 1901 and 2012. This dataset blends reanalysis data
(NCEP-NCAR) with station and satellite observations. Radiation (SJ, L) is adjusted for systematic
biases at a monthly scale to a product from the University of Maryland (by Rachel Pinker) developed
within the NASA MEaSUREs project. S| trends are corrected using CRU TS 3.21 cloud cover and for
L], the year-to-year variation of NCEP-NCAR reanalysis is retained. T is bias corrected by shifting to
monthly CRU TS 3.21. P is bias corrected using CRU TS 3.21 and not undercatch corrected (in contrast
to the previous version described by Sheffield et al. [9]). All information on this PGFv2 version was
provided by personal communication with J. Sheffield, 2015. PGFv2 climate input is already available
for the spatial and temporal resolution of WaterGAP.

2.2. WaterGAP Global Hydrology Model (WGHM)

The WaterGAP Global Hydrological Model (WGHM, [34]) belongs to the Water—Global
Assessment and Prognosis (WaterGAP) model [35] and calculates freshwater fluxes and storages on
the global land surface (except Antarctica). WaterGAP was developed to assess water availability and
water scarcity and was applied in a range of studies with historic meteorological forcings [10,27,36-39]
and climate change [40—-43] scenarios.

The spatial resolution of the model is 0.5° x 0.5° (55 x 55 km at the equator) and calculations
are performed on a daily time step, whereas output is analyzed on a monthly scale. A thorough
description of the model and its components for version WaterGAP 2.2 can be found in the appendix
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of Miiller Schmied et al. [27]. The version used here is named WaterGAP 2.2a and is described in
Doll et al. [38]. The only relevant modification of this model version (compared to the description in
Miiller Schmied et al. [27]) used in this study is the possibility to read in net radiation components,
e.g., from ERA-Interim reanalysis. In this case, WaterGAP does not influence radiation calculation and
acts simply as a tool to calculate PET as well as to provide the output file format that is then used for
the comparison with station observations.

In general, S| and L are provided by the meteorological forcings and have the unit in Wm 2.
Net shortwave radiation Sper (Wm™2) for all model variants except ERAIN (Table 1) is calculated as:

Snet =S| (1 - O‘LC) ’ (1)

where o c is the albedo (-) based on land cover type LC ([27], their Table A2). Albedo values for
WaterGAP are taken from assumptions of the IMAGE model [44]. In the case of a reasonable snow
cover, the albedo value is varying dynamically in WaterGAP to represent the influence of snow cover
dynamics on radiation balance [27]. Syet from ERAIN is directly used for the assessment.

Upward shortwave radiation St (Wm™2) is calculated as:

S1=S5, —Shnet - )
Upward longwave radiation LT (Wm™2) is calculated as:
L 1= ercoT?, 3)

where ¢1 ¢ is the emissivity (-) based on land cover type ([27], their Table A2), o is the Stefan—-Boltzmann
constant (5.67 x 1078 (Wm~=2.K%)) and T is temperature (K). Emissivity values are taken from
Wilber et al. [45] who assessed the emissivity from different materials (e.g., minerals) in laboratory
experiments and then upscaled it to a land cover classification scheme using the predominant material
composition of the land cover class.

Net longwave radiation Lpet (Wm™2) for all model variants except ERAIN is calculated as:

Lpet =L -L7T. 4)

Lpet from ERN is directly used for the assessment.
Finally, net radiation Rpet (Wm~2) is calculated as:

Rnet: Snet‘I’Lnet‘ (5)
2.3. Radiation Validation Data

2.3.1. Baseline Surface Radiation Network (BSRIN)

The Baseline Surface Radiation Network (BSRN) was an initiative from the World Climate
Research Programme (WCRP) Radiative Fluxes Working Group and is now incorporated into the
WCRP Global Energy and Water Cycle Experiment (GEWEX). The aim of BSRN is to collect and provide
data from a high qualitative radiometric network. The number of stations is relatively low (Table 2)
but shortwave and longwave surface radiation fluxes of “best possible quality currently available” are
provided [22] (p. 6). BSRN data were downloaded via the data portal http:/ /pangaea.de/ in 01/2015
as monthly means (calculated by the data warehouse tool) of all available radiation flux variables
(if available). In cases where more than one sensor reported data values, we obtained the mean value.
Some errors in the database (e.g., interchanged variables) were found, reported and are already being
updated. Forty-three BSRN stations (Figure 1a) are located within the land-ocean mask of WaterGAP,
providing data for at least 6 months within the analysis time (1992-2012) and could thus be used for
this study (see Table 2 for a summary of number of stations/months).
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Table 2. Number of stations and months of the radiation data used within this study. Stations were
only considered if at least 6 months of data were available.

Variable # Stations # Stations (Calculated) # Months # Months (Calculated)

BSRN

S| 43 5099

St 16 2317

Snet 16 2289
L} 43 4872

Lt 16 2210

Lnet 16 2205
Ruet 16 2171

GEBA

S| 1061 171,169

st 43 3067

Snet 40 2791
Ll 42 2933

Lt 14 839

Lnet 13 692
Rnet 142 11,525

o sy only
@ S|,L|
BSRN S1. Rt
@® downward only

’ v o @ S|, L ) 2 o
k ® SISt Snet, R ig L4
@ down- and upward - @ all other combinations "

Figure 1. Location of the reference stations used for evaluating the radiation components: Baseline
Surface Radiation Network (BSRN), (a) and Global Energy Balance Archive (GEBA); (b) A specific color
for GEBA stations was assigned when the radiation variable(s) were available for at least ten stations,
otherwise joined to “all other combinations”.

2.3.2. Global Energy Balance Archive (GEBA)

In order to extend the geographical coverage of the evaluation sites, the Global Energy Balance
Archive (GEBA) is used in addition to BSRN. GEBA contains long-time averaged surface radiation
fluxes of more than 1500 stations worldwide. The data are quality controlled and coded with quality
flags [23]. Station data were used if at least 6 monthly data values were available and quality flags
indicated no problematic data (quality control procedure 1-4 have values > 4). Twenty GEBA stations
were excluded as they provide monthly aggregates of BSRN stations. Figure 1b shows the location of
the stations. The data were downloaded via http:/ /www.geba.ethz.ch/ in August 2014. The coordinate
was rounded to the next decimal point in case a GEBA station was located at the 0.5° grid cell border.

2.3.3. Calculation of Net Radiation and Its Components

Based on the monthly averages of the measurements, Spet (Lnet) radiation was calculated as S|
minus ST (L] minus L1) and Rpet as the sum of Spet and Lipet.

2.4. Efficiency Metrics

Efficiency metrics are used to quantify the goodness-of-fit between observations and simulations.
There are numerous metrics available (each with benefits and limitations) and have been subject to
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reviews in the past e.g., [46,47]. Moller [48] analyzed WaterGAP model outputs with BSRN station data
(from the four model variants, Table 1) by using ten efficiency metrics. She found that the Nash-Sutcliffe
Efficiency and the Mean Absolute Error Ej;4r are the best metrics to reflect the characteristics of the
modeled radiation vs. the simulated ones. The advantages of the Kling-Gupta Efficiency Exc, which
builds on the Nash-Sutcliffe Efficiency, are the possibility to split this metric into the three components
and to determine the dominant component [49]. In this study, Exg and its components, as well as
EnmaEg, are used to assess the simulations with station observations.

2.4.1. Kling—Gupta Efficiency

Gupta et al. [49] and, later on, Kling et al. [50] decomposed the very popular Nash-Sutcliffe
Efficiency metric into three components to allow diagnostic insights into the model performance and
created the Kling-Gupta Efficiency metric by computing the Euclidian distance of the components
from the ideal point (Ex¢, Equation (6) in its version 2012 which is used here).

Exg =1- \/(EKGr —1)* + (Excpeta — 1) + (ExGgamma — 1)° (6)

where Exg, is the correlation coefficient between simulated and observed values [-] and can act as
indicator for the timing, Exgpet, is the bias ratio (Equation (7)) [-] and can act as indicator if biases of
the mean values occur and ExGgamma 18 the variability ratio (Equation (8)) [-] which can act as indicator
for the variability of simulated (S) and observed (O) values.

u
EKGbeta = 75’ (7)
Ho

E _ CVs  0s/ug
KGgamma — CVo - O—O/HO,

®)

where p is the mean value (e.g., in WmfZ), o is the standard deviation of the value (e.g., in Wmfz),
CV is the coefficient of variation [-]. The optima of Ex; and its components are one. The lowest
component determines the Exg value. Furthermore, Gupta et al. [49] provided a methodology to
assess the relative contribution g; of the three components as:

G.
8i = 2]3:11 G]-' )
with
G = (Exgr —1)%, (10)
Gz = (ExGgamma — 1)%, (11)
Gs = (Excpeta — 1) (12)

2.4.2. Mean Absolute Error

An absolute measure of model efficiency is the Mean Absolute Error Epf4f. It is calculated as the
absolute difference between observed and simulated (monthly) data, which are then averaged over the
number of observations (Equation (13)). A great advantage of this absolute efficiency criterion is the
resulting number in the unit of measurement, which can then be used, for example, to assess absolute
errors among the radiation components.

1 n
Emag = EE |0; — S| (13)
i=1
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where O; is the observed (monthly) value for time step i and S; is the modeled (monthly) value of
the variable.

2.4.3. Sum of Ranks

According to Moller [48], the model variants were ranked for the efficiency metrics, giving the
value “1” for the model variant with the highest performance (maximum Egg or minimum Epjaf,
respectively) and incrementing values from the highest to lowest performing model variant. This is
done for each station and then aggregated over the dataset. Finally, the model variant with the
lowest rank can be seen as the best model variant amongst the data set and radiation component
considered here.

3. Results and Discussion

In this section, we firstly compare the radiation components with observations from BSRN
and GEBA datasets (Section 3.1). Then, we assess global averages and spatial differences of net
radiation and its components (Section 3.2). Finally, we discuss the optimal radiation input and possible
improvements in Section 3.3.

3.1. Comparison to Station Measurements

Monthly grid cell values generated from the different data sources (see Table 1) are compared
with BSRN and GEBA ground measurements. The comparison results are evaluated and discussed
using the efficiency metrics defined in Section 2.4.

Results are displayed as boxplots for the Eg criterion (Figure 2) as well as single components
of Ex¢ (Figures 3-5) and for Eyar (Figure 6). The BSRN dataset is separated into one where all
43 stations are included (green color in the figures) and one with only the 16 stations where both
components (upward, downward) are measured (blue color in the figures). Remarkable differences
exist between the GEBA and BSRN comparison results for all radiation components (Figures 2 and 6).
For the downward components and both efficiency criteria, the simulations fit best to the subset of
16 BSRN stations, followed by all BSRN stations. Generally, lower performance is achieved for the
GEBA stations, which is expected due to the larger data uncertainty [51]. However, due to the larger
spatial coverage of this data set (at least for some components), integration of GEBA data allows a
more robust assessment.

Analyzing Figures 2 and 6, downward radiation components are represented with high
performance by all model variants, indicated by the overall high value for Egg as well as (compared
to net radiation) low Epgar of around 10 Wm ™2 (slightly higher for S|, lower for L]). Except for
PGFv2, S| has a mean bias (Eggpets) greater than one which relates to an overestimation compared
to measurements and L| has a (slight) mean bias below one (Figure 3). This is in line with previous
assessments [2,3]. Lt, as modeled by WaterGAP (all except ERAIN), has a lower performance
(except Epar and GEBA) than with ERAIN. Two possible reasons are that: (a) surface temperature as
the main factor for L1 calculation is strongly constrained by observations; or (b) emissivity values are
more realistic in ERAIN.
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Figure 2. Validation of monthly radiation components with measurements of 16 BSRN stations
(where all components are measured, blue color), 43 BSRN stations where only downward components
were measured (green color) for the time period 1992-2012, as well as GEBA stations (red color) for
the time period 1979-2012 using Kling-Gupta Efficiency Exg (-). Numbers after the slash indicate
the number of stations that are outside of the 1.5 X inter quartile range and thus not included in
the boxplot. Significant differences of metric distribution (two sample Kolmogorov-Smirnov test,
p < 0.05) are present for GEBA stations and shortwave downward radiation for all combinations except

ERAID-ERAIN. For single components of Ex¢ , see Figures 3-5.
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Figure 3. Validation of monthly radiation components with measurements of 16 BSRN stations
(where all components are measured, blue color), 43 BSRN stations where only downward components
were measured (green color) for the time period 1992-2012, as well as GEBA stations (red color) for
the time period 1979-2012 using Kling—Gupta Efficiency component Eggp,, (-) as indicator for mean
bias. Numbers after the slash indicate the number of stations that are outside of the 1.5 x inter quartile
range and thus not included in the boxplot. Significant differences of metric distribution (two sample
Kolmogorov-Smirnov test, p < 0.05) are present for BSRN stations and the downward components
for all combinations with PGFv2 and for the net shortwave as well as net longwave radiation
for ERAIN-PGFv2. Within GEBA stations, significant differences occur for shortwave downward
radiation between ERAIN/ERAID and PGFv2/WFDEI and also PGFv2-WFDEI; for net shortwave
radiation between ERAIN-WFDEI and for net radiation between ERAID-ERAIN, ERAIN-PGFv2

and ERAIN-WFDEIL
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Figure 4. Validation of monthly radiation components with measurements of 16 BSRN stations
(where all components are measured, blue color), 43 BSRN stations where only downward components
were measured (green color) for the time period 1992-2012, as well as GEBA stations (red color)
for the time period 1979-2012 using Kling-Gupta Efficiency component Egg, (-) as indicator for
correlation, thus timing. Numbers after the slash indicate the number of stations that are outside of
the 1.5 x inter quartile range and thus not included in the boxplot. Significant differences of metric
distribution (two sample Kolmogorov-Smirnov test, p < 0.05) are present for GEBA stations and
shortwave downward radiation for ERAID-WFDEI and ERAIN-WFDEL
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Figure 5. Validation of monthly radiation components with measurements of 16 BSRN stations
(where all components are measured, blue color), 43 BSRN stations where only downward components
were measured (green color) for the time period 1992-2012, as well as GEBA stations (red color)
for the time period 1979-2012 using Kling-Gupta Efficiency component EgGgamma (-) as indicator
for variability. Numbers after the slash indicate the number of stations that are outside of the
1.5 x inter quartile range and thus not included in the boxplot. Significant differences of metric
distribution (two sample Kolmogorov—-Smirnov test, p < 0.05) are present for BSRN stations and
longwave downward radiation for all combinations with PGFv2, for longwave upward radiation
for ERAID-ERAIN, ERAIN-PGFv2 and ERAIN-WFDEI as well as for net radiation between PGFv2
and WFDEI. For the GEBA stations, significant differences occur for shortwave downward radiation
among all combinations (except ERAID-ERAIN), and for longwave upward as well as for net radiation
between ERAID-ERAIN, ERAIN-PGFV2 and ERAIN-WFDEIL
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(where all components are measured, blue color), 43 BSRN stations where only downward components
were measured (and green color) for the time period 1992-2012, as well as GEBA stations (red color)

for the time period 1979-2012 using Mean Absolute Error Ep4g (Wm™2). Numbers after the slash
indicate the number of stations that are outside of the 1.5 X inter quartile range and thus not included

Figure 6. Validation of monthly radiation components with measurements of 16 BSRN stations

in the boxplot.
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Simulated S1 is modeled with low agreement in comparison to observed values. The timing of
ST (indicated by Egg,, Figure 4) is similar among the several forcings. The indicator of variability
(EKGgamma) is underestimated more strongly by ERAIN compared to the simulated ones (Figure 5) but
most differences among the forcings occur in mean bias (Exgpets, Figure 3). For GEBA stations and
simulated St, the mean bias Egcpet, is greater than one. Besides the non-representative albedo and
emissivity values of the surface beneath the measurement surface, obviously, different albedo values are
responsible for different mean biases between simulations and reanalysis-based S1 (compare ERAID
and ERAIN for GEBA dataset of Figure 3).

There is no general best meteorological forcing for Sper. Due to the small footprint of upward
radiation measurement, we did not expect better agreements. For example, if the area below the
measurement consists of grassland but the majority of the 0.5° grid cell contains forest, the agreement
is expected to be low due to the strongly differing albedo. For the BSRN stations, PGFv2 has the
highest performance whilst for the GEBA stations WFDEI (and ERAID for Ej;4r) ranks first (Table 3).
The variability of net shortwave radiation is underestimated by all forcings, but to a lower degree
by ERAIN (Figure 5). Differences in modeling L1 are small (values close to optimum for Exg, and
ExGpeta) to moderate (ExGgamma)- Interestingly, for L{, variability is likely to be overestimated by all
model variants (except PGFv2 and BSRN) and the variability of L1 is at the same time underestimated
by the WaterGAP simulations. All model variants have a low performance for Lyet which is a result of
differences in timing and variability (Figures 4 and 5). ERAIN ranks first (for Ej4r and GEBA together
with WFDEI). However, the most important variable for calculating PET is Rpe¢. For the BSRN stations,
the model variant WFDEI has the highest performance to observations; for GEBA stations, the PGFv2
variant ranks first in both cases followed by ERAIN. In terms of mean bias, Rpet is overestimated by
the model variants, independently of the meteorological forcing (Figure 3). This is in agreement with
Wild et al. [3], as they estimated a much lower value for the global land area (see Section 3.2, although
Antarctica was included in their assessment). We assume that the overestimation of mean S|, (Figure 3)
is one reason for the high value of global land Ryt obtained in this study. The measure of variability
(Figure 5) (and to a lesser extent timing, Figure 4) for Ryt varies by reference dataset. Nevertheless,
the mean absolute biases for Ryt are with 15 to 20 Wm 2 being the highest deviation from all the
components throughout the forcings.

Table 3. Rank sums divided by number of stations for the radiation components of BSRN and GEBA
stations and the efficiency metrics Egg and Ep;4g . The lowest rank is shown in bold font, indicating
the best match to observations. Model variants are abbreviated with ERD (stands for ERAID), ERN
(ERAIN), PGF (PGFv2), WFD (WFDEI) and net radiation components with a subscript “n”.

BSRN GEBA

Exc Emae Exc Emae
ERD ERN PGF WFD ERD ERN PGF WFD ERD ERN PGF WFD ERD ERN PGF WFD

Analyzing the relative contribution of the Ex; components to the overall value (Figure 7), it can
be stated that the correlation (thus the timing) contributes to the least extent (except S1) for all radiation
components. For the shortwave radiation components (and Rpet), the mean bias is dominating, whereas
variability is dominating for the longwave components.
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Figure 7. The average fraction of Ex; component (-) showing the different contribution of correlation,
variability and mean bias to the overall efficiency criteria.
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3.2. Intercomparison of Global-Scale Net Radiation and Its Components

Figure 8 shows simulated net radiation (bottom row) and its components from WFDEI and
differences to the other model variants described in Table 1. It is worth noting that in northern
Africa and Somalia, the Saudi-Arabian peninsula, central and Western Australia, as well as the
Amazon and Mexico, Rnet of ERAIN is significantly lower than the current standard meteorological
forcing of WFDEI (brown to red colors in Figure 8, bottom line). Despite large areas of lower Ryt
values, there are numerous grid cells with drastically higher values for ERAIN compared to WFDEI
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(maximum difference in the Himalayan Mountains is 196 Wm—2). For long term (1979-2012) global land
(except Antarctica) averages of net radiation, ERAIN has the highest values (83.0 Wm™~?2), compared
to (slightly) lower values of the other forcings (PGFv2: 82.9 Wm~2, ERAID 82.0 Wm~2, WFDEI
81.0 Wm~2). Other estimates (that include Antarctica) are lower (e.g., 70 Wm~2, [3]).

ERAID - WFDEI ERAIN - WFDEI PGFv2 - WFDEI
3 - T Ty = —— . ey .
Yo S <

downward longwave L| et shortwaye S upward shortwave S downward shortwave S|

upward longwave L1

net longwave Lot

net radiation Ryet

— -
S S Ao S g crewimies

Figure 8. Average radiation components for 1980-2009 for WFDEI (1st column) and differences for

ERAID-WFDEI (2nd), ERAIN-WFDEI (3rd) and PGFv2-WFDEI (last column). All units in Wm 2.

Cross-hatched areas are energy limited areas after the Budyko approach, taken from the STANDARD
model run of [27].

Comparing WFDEI and ERAID (which differ in terms of the adjustments of Weedon et al. [8]),
40.2% of the global land area are within 5 Wm—2 difference for Rnet, which shows a higher agreement
when compared to the other forcings (PGFv2 35.1%, ERAIN 19.1%). Whereas higher (lower) Rpet
values for ERAID are calculated in 36.2% (23.7%) of land area, a similar pattern, i.e., the tendency
to calculate higher Rpet can be found for PGFv2 (37.2%, 27.8%) and ERAIN (48.9%, 32.0%). When
separating the energy-limited and water-limited regions (Section 1), the forcing leads to pronounced
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differences. For ERAID and energy-limited (water-limited) regions, 34.3% (45.3%) of land area is within
+5 Wm2 difference, with similar values for PGFv2 (38.3%, 32.3%) but are in much lower agreement
with ERAIN (18.8%, 19.3%).

Ruet is larger than 5 Wm ™~ in the percentage of land area for energy-limited /water-limited regions
and ERAID (40.3%/32.6%) as well as PGFv2 (43.3%/31.9%). For ERAIN, 62.0% of energy-limited
regions have Rpet values that are higher than 5 Wm 2 compared to WFDEI, whereas water-limited
regions have, in the predominantly land area (43.2%), Rpet values that are lower than 5 Wm 2 (see also
the spatial differences in Figure 8). Hence, by using ERAID or PGFv2 instead of WFDEI, around 1/3
(and for ERAIN around 1/2) of energy-limited regions could profit from an increasing amount of energy
for evapotranspiration. Taken into account the different fraction of energy-limited/water-limited
regions, on 18.7% to 28.8% of the global land area, the forcings ERAID, PGFv2 and ERAIN are
calculated to have higher Ryet (compared to WFDEI) which would likely increase evapotranspiration.
In contrast, on 8.6% to 11.8% on the global scale, Ryet decreases with the alternative forcing.

Absolute differences for the radiation components from WFDEI are also shown in Figure 8.
Differences in S| for WFDEI compared to ERAID and ERAIN are low, but compared to PGFv2, WFDEI
has 5 to 25 Wm 2 less S| in the US, northern Africa, Australia and the mountain regions in central Asia.
In tropical regions, and to a lesser extent in northern Eurasia, S| is higher in WFD (Figure 8, first row).
St differences of WFDEI and ERAID are (except for small regions) within 45 Wm~2, which is expected
due to the smaller absolute values. As the land cover class dependent albedo values are comparable,
WFDEI and PGFv2 differ with more than +5 Wm~2 in areas where S, is differing, but to a much lesser
extent. Most differences (between +50 Wm~2) occur between WFDEI and ERAIN, which is interesting
as S| is comparable. This could be related to a higher surface albedo of ERAIN that induces higher
StT. Other factors, e.g., clouds, might also contribute to the higher upward radiation, but no hints for
an overestimation of cloudiness have been found by comparisons with BSRN stations in Europe and
Africa [18]. Spet is very similar between WFDEI and ERAID, but differs from ERAIN (in general with
lower values except the tropics) and PGFv2 (in general with higher values except for the tropics).

The pattern of differences between WFDEI to the other model variants for L/ is similar in most
regions; in the tropics, WFDEI has less L], whilst in most other regions, differences are within +5 Wm—2
or, in the case of PGFv2, higher (up to 25 Wm’z) in most other regions. Differences > 5 Wm~2 can be
found for L1 only between WFDEI and ERAIN. Most of the dry regions have higher values in WFDEI
(up to 50 Wm~2 for large areas), whereas the tropics (and Greenland) have lower values up to 25 Wm 2.
The difference pattern for Lyt is diverse. ERAIN has, in general, smaller values for Lpet, especially
in dry regions; ERAID has lower values in the tropics and PGFv2 has lower values in the tropics but
higher values for most other areas. When comparing the differences of WFDEI to ERAIN and ERAID,
the effect of modeling outgoing radiation within WaterGAP is visible. Based on an additional model
run, where T from ERA-Interim (instead from WFDEI) was used for ERAID, we can summarize that
T affects model results in only a minor manner and thus, differences in emissivity values (or other,
ERA-Interim related characteristics) determine the difference between ERAIN and the WaterGAP
calculations. The same results occur when T and P from WFDEI are used in a PGFv2 model run.
Whereas the differences in the Amazon are comparable, ERAIN shows large differences in Africa, the
Saudi-Arabian peninsula as well as Australia. For some regions, the calculation of outgoing radiation
components in WaterGAP (ERAID, PGFv2) leads to changing signs of the differences compared to
those obtained from ERAIN.

Summarizing the main findings of the inter-comparison of the four model variants, it can be stated
that ERAIN has the highest net radiation at the global land scale and the standard forcing WFDEI
the lowest. In energy-limited regions, the alternative forcings (especially ERAIN) have higher net
radiation which has an influence on the evapotranspiration calculation. Especially for the downward
components and PGFv2 as well as for the upward components and ERAIN, differences among the
model variants are visible.
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3.3. Discussion of Optimal Radiation Input

The downward components of all model variants show a high performance compared to the
observed radiation apparent in Figure 2 (top row) but may still have systematic biases in terms of over
and underestimation (Figure 3). According to the rank sums in Table 3 and S|, highest performances
are simulated when WaterGAP is forced by WFDEI, followed by PGFv2 and ERAID/ERAIN variants.
The preparation and adjustments of WFDEI [8,29] to radiation fluxes from ERA-Interim reanalysis
(see Section 2.1.2) lead to improved results for S|, independently of the station dataset and efficiency
criterion (Table 3). Interestingly, the Exc components, except ExGgamma (Which is the dominant
component (Figure 7) and thus influencing overall Eg value at most), perform worse than the directly
obtained S| from ERA-Interim (Tables 4 and 5). For L| (only elevation corrected), performance is
worse for BSRN stations (except ExGgamma Which is again the dominant component, Figure 7) but of
the same quality for GEBA stations (Table 3). As the results of WFDEI are similar or better than ERAID
(except for L| and BSRN), the thorough interpolation scheme of Weedon et al. [8] improved the quality
of the meteorological forcing. The PGFv2 model variant ranks second for S| and BSRN and first for
GEBA stations, whereas for L the PGFv2 model variant is at the first position for both observation
datasets (except for Ex; and GEBA data) and can, therefore, be seen as a valuable alternative for
downward radiation.

Table 4. Rank sums divided by number of stations for the radiation components, BSRN stations and
the efficiency metrics Exc,, Exgpets and E KGgamma- The lowest rank is shown in bold font, indicating
the best match to observations. Model variants are abbreviated with ERD (stands for ERAID), ERN
(ERAIN), PGF (PGFv2), WFD (WFDEI) and net radiation components with a subscript “n”.

Excr ExGbeta EKGgummu
ERD ERN PGF WFD ERD ERN PGF WFD ERD ERN PGF WFD

S} 21 2.1 2.6 32 2.2 2.2 2.6 29 2.6 2.6 25 2.3
St 24 2.6 24 27 2.5 2.8 2.2 2.5 2.6 2.6 2.7 21
Sn 22 2.1 22 3.5 23 1.8 29 29 2.3 3.1 2.6 1.9
Ll 18 1.8 3.1 32 24 24 3.1 2.0 27 2.7 25 2.2
Lt 25 2.2 29 2.5 2.5 32 1.8 25 2.3 29 24 2.3
L, 28 14 2.6 32 2.7 2.8 2.0 2.6 2.6 2.8 2.1 2.6
R, 24 1.6 3.1 29 1.9 2.5 24 3.2 2.3 3.2 2.0 24

Table 5. Rank sums divided by number of stations for the radiation components GEBA stations and
the efficiency metrics Exgr, ExGreta and EkGgamma- The lowest rank is shown in bold font, indicating
the best match to observations. Model variants are abbreviated with ERD (stands for ERAID), ERN
(ERAIN), PGF (PGFv2), WFD (WFDEI) and net radiation components with a subscript “n”.

Exar ExGbeta ExGgamma
ERD ERN PGF WFD ERD ERN PGF WFD ERD ERN PGF WFD

Sl 23 2.3 2.2 3.2 21 2.1 3.0 29 2.6 2.6 24 24
St 27 23 1.8 32 2.0 3.0 29 2.1 2.8 2.1 2.5 2.6
Sn 24 21 2.0 3.4 2.6 2.3 24 2.8 27 2.7 2.4 2.2
L} 21 2.1 2.8 3.0 24 24 2.9 22 2.6 2.6 24 2.5
LT 24 2.2 3.0 24 2.7 2.6 2.0 2.7 24 3.1 21 24
Ln 26 1.2 34 2.8 2.2 24 2.6 2.8 1.8 3.1 22 2.8
Rn 27 1.8 2.7 29 2.5 24 27 2.4 2.3 3.0 2.5 2.3

WaterGAP simulations of ST have a higher performance than those from ERAIN for the BSRN
stations and a lower performance for WFDEI and ERAID for the GEBA stations consistently among the
two efficiency criteria (Tables 3 and 4). The calculation of ST in WaterGAP and underlying assumptions
(e.g., albedo) are of the same quality as those from ERAIN for the grid cells where measurement data
are available, even though the Ex; values of ST are drastically lower compared to S|. Due to the
small footprint of upward radiation measurements (and thus the questionable representativeness for
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the 0.5° grid cell) as well as the low number of stations, this result may also be driven by chance.
The Egg of L1 is close to the optimum with highest performance with ERAIN for BSRN stations
and for Egg also for GEBA stations (Table 3), whereas Exgpet, and Exg, for all variants are close to
optimum and the indicator of variability Exggamma (Which is dominant in Ex¢ value) differs between
the model variants (Figures 3-5 and 7). For BSRN and GEBA stations, the WaterGAP calculation of
L1 variability ExGgamma has a higher performance compared to observations than those from ERAIN
(Tables 4 and 5). Even though, overall, the Ex; value has a slightly weaker performance than those
from ERAIN, the approach of WaterGAP using a land cover class based emissivity value to determine
L1 can be seen as plausible. However, here also, the small number of stations and months available
for upward radiation components data (Table 2), as well as the small footprint for upward radiation
measurement, limits the assessment. However, currently, the emissivity value is kept constant within
WaterGAP which is a problem especially when land surface is covered by snow which influences
emissivity values [52-54]. It should, therefore, be tested if a snow-cover-dependent emissivity value
leads to improvements for WaterGAP calculation of L1.

The evaluated Lyt performance depends largely on the efficiency metric applied. Whereas Exg
values perform low for all model variants (Figure 2), values for Ej;4r are, compared to the other
radiation fluxes, relatively low. The subtraction of two large values (L], L1) leads to low absolute
values (e.g., compared to Spet, Figure 8) and thus, absolute errors can be lower. On the other hand,
small uncertainties in L| and L1 are translated into large uncertainties for Lne; which is visible, e.g., for
EKGpeta (Figure 3).

For calculating PET, Rpet is the most important variable. The relative efficiency criterion Exg
(Figure 2) is relatively low, independently of the model variant and the medians of absolute error Epar
are high with around 20 Wm~2. The rank sums for Ryet do not perform highest when substituting
the upward radiation calculation of WaterGAP with those values obtained directly by ERA-Interim
(Table 3). ERAIN has a higher performance than ERAID but for each efficiency criteria and station
database, either WFDEI or PGFv2 perform better than ERAIN (Table 3). Snow dynamics are modeled
within WaterGAP and albedo changes when snow cover is present [27]. Therefore, the use of ERAIN
may induce inconsistent representation of land cover dependent parameters as albedo is also modeled
by ERAIN. This, and the small benefit of using ERAIN, has to be considered when deciding about the
optimal input.

WaterGAP uses a very simple scheme to calculate the energy balance at the surface. It uses only
land-cover dependent albedo and emissivity values. The radiation transfer scheme that is integrated
in ERA-Interim is highly complex, taken into account different bandwidths of radiation transfer, cloud
(and atmosphere) properties and is designed to close the energy balance both at the surface and top
level of the atmosphere [7]. Even so, in principle, ERA-Interim also considers surface albedo and
emissivity and is therewith comparable in a very general sense, even though the processes are far more
physically constrained.

All model variants have a positive mean bias for Rpet (Figure 3), which indicates that this variable
is overestimated by about 20% compared to measurements. Consequently, Eggpet, is the dominant
component of the Ex¢ value (Figure 7). Obviously, the higher Exper, of S| propagates to Spet and Rpet
(Figure 7) as this is described in the literature [2,3]. For the 16 BSRN stations, the current standard
forcing of WaterGAP (WFDEI) provides the highest performance for both efficiency criteria (Table 3).
For the 142 GEBA stations with net radiation data, the best match to simulations can be reached when
using PGFv2 forcing (Table 3).

One of the foci of this study was to assess whether differences in results occur in energy- and
water-limited areas. However, the discrepancy of the distribution of stations in energy limited vs.
water limited regions (on average, only 28% of GEBA stations and 38% of BSRN stations are in
water-limited grid cells) hinders a robust assessment of the performance in those distinct regions.
Rank sums aggregated for BSRN and energy/water limited regions (not shown) indicate only slight
deviations from those in Table 3.
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The scale mismatch between (small scale) station observations and 0.5 ° grid cells results in
uncertain comparison results. The median Epj4r for S| from this study is about three times higher
(10 to 15 Wm ™2, Figure 6) than those of Hakuba et al. [26]. Obviously, due to the heterogeneity of
land surface characteristics, the representativeness of downward and upward radiation fluxes differs
fundamentally. However, monthly averaging can smear short-term (and small scale) atmospheric
effects, which barley applies for land surface heterogeneities.

PET was calculated for the four model variants using the Priestley-Taylor approach [55] (Figure 9).
In general, the difference patterns are similar to those of Rpet (Figure 8). Less PET, in comparison
with WFDEI, occurs for all other model variants mainly in the tropics and for ERAIN in the very dry
regions of Northern Africa and Australia. On a global scale, WFDEI has highest value for PET and the
overall range among the model variants is about 24 mm-year~—! (lowest value for ERAIN). The highest
absolute range (100 mm-year~!) among the models occurs in water limited grid cells, where WFDEI
and ERAID have the same values and ERAIN the lowest. For the energy limited regions, WFDEI
has the second lowest value (ERAIN has the highest) while the models vary by about 70 mm-year~!
(Table 6). As AET could be only increased in energy limited regions, this implies that WaterGAP would
simulate higher AET when using ERAIN as radiation input.

absolute differences to WFDEI

| I 3555

,‘:QQ l\@ qfa f]f’ \QQ (DQQ energy limited

Figure 9. Long term (1980-2009) average of potential evapotranspiration as calculated by the
Priestley-Taylor approach for WFDEI (a); and differences for ERAID-WFDEI (b); ERAIN-WFDEI
(c); and PGFv2-WFDEI (d) (all units in mm-year‘l).

Table 6. Simulated long term (1980-2009) average PET (mm-year—!) for the model variants and global
scale as well as for energy- and water-limited regions. Model variants are abbreviated with ERD
(stands for ERAID), ERN (ERAIN), PGF (PGFv2), WFD (WFDEI).

Region ERD ERN PGF WED

Global 1113 1092 1103 1116
Energy-limited 864 933 894 872
Water-limited 1336 1235 1292 1336

4. Conclusions

In this study, we assessed the performance of radiation components in experiments with the
global freshwater model WaterGAP on a 0.5° x 0.5° grid scale against station observations from the
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BSRN and GEBA databases. The model was driven with two state-of-the-art meteorological forcings
(WFDEI and PGFv2) as well as with the interpolated downward radiation data from ERA-Interim
reanalysis (ERAID) and finally a radiation dataset, including both downward and upward components
from ERA-Interim (ERAIN). We used two efficiency metrics (one absolute, and one relative) for the
comparison analysis. In addition, we assessed spatial differences among the radiation components as
well as their effect on PET. The results can be summarized as follows:

e  For global land averages, Rnet differs only slightly among the model variants (~2 Wm™?2).
However, regionally large differences of Rypet, ST and Lyet were found, especially in comparison
with ERA-Interim reanalysis (Figure 8).

e  Rpet values of WaterGAP as forced by WFDEI is within =5 Wm~2 agreement to the ERA-Interim
reanalysis for 19.1% of the global land area, with similar numbers for energy-limited and
water-limited regions.

e In 62.0% of energy-limited regions (relates to 28.8% of the global land area), Ryt of the full
radiation dataset from ERA-Interim is higher by more than 5 Wm~2 and has, therefore, the highest
potential to increase the simulated evapotranspiration as compared to the other forcings.

e The downward radiation components of ERA-Interim show less or similar agreement to station
observations compared to those from meteorological forcings (Table 3). The interpolation and
correction approach of Weedon et al. [8] improves both downward radiation components (Table 3).
However, for all model variants, a systematical overestimation of S| and Rnet was found when
comparing to observation data.

e  The performance of ST radiation of ERA-Interim lies between the meteorological forcings WFDEI
and PGFv2. For BSRN stations, the model variant where ERA-Interim downward components
are used has a higher performance than the variant where also ERA-Interim upward components
are used, whereas the opposite is true for GEBA stations. ERA-Interim values for L1 are superior
compared to those of WaterGAP except for the absolute error measure derived at the GEBA
stations (Table 3).

e  Best results for Rpet are found for current standard forcing (WFDEI, BSRN) or alternative forcing
(PGFv2, GEBA) (Table 3), but median absolute errors are around 20 Wm 2 (comparable to the
study of Troy and Wood [16]) and are mainly due to a higher mean value independent on the
model variant (Figures 3 and 4).

e  Global values for PET vary only by 25 mm-year ! and the highest values are achieved with
WEDEI forcing. However, in energy limited regions, where a change in PET directly influences
AET, WFDEI has the second lowest value while ERAIN is 60 mm-year~! higher.

Some limitations were found:

o The relatively small number of some radiation measurements (e.g., 16 stations with
upward flux measurements for BSRN) limits the overall assessment and hinders a robust
assessment of the performance of the model variants, especially when separating into
energy-limited /water-limited areas.

e In contrast to the downward components, which show a reasonable representativeness of station
measurements at the grid cell level [26], upward measurements have a small footprint and thus a
high uncertainty in terms of representativeness for the grid cell.

The results imply a certain impact of radiation forcing and modeling on the simulation of PET,
especially for energy-limited regions, which then affects the modeling of available water resources.
However, calculation of PET can be done with many approaches which all have their own uncertainties.
To quantify this, in particular, a study on the impact of PET (including different calculation approaches)
is needed, followed by a quantification of the consequences for AET and freshwater resources.
The results of this study can help to improve the understanding of net radiation estimates as
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an important driver of simulated evapotranspiration in GHMs. Even though this assessment is
model-specific, GHMs with a comparable approach (i.e., land cover dependent albedo and emissivity)
can benefit from this analysis as two of the most frequently used meteorological forcings and one
reanalysis for two radiation setups were evaluated.
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Abstract. Global-scale assessments of freshwater fluxes andischarge computed by a calibrated model version using
storages by hydrological models under historic climate con-monthly CRU TS (Climate Research Unit time-series) 3.2
ditions are subject to a variety of uncertainties. Using theand GPCC (Global Precipitation Climatology Center) v6 cli-
global hydrological model WaterGAP (Water — Global As- mate input reduced the fit to observed discharge for most
sessment and Prognosis) 2.2, we investigated the sensitistations. Taking into account uncertainties of climate and
ity of simulated freshwater fluxes and water storage varialand cover data, global 1971-2000 discharge into oceans and
tions to five major sources of uncertainty: climate forcing, inland sinks ranges between 40000 and 42 00®ymt.

land cover input, model structure/refinements, consideratiorGlobal actual evapotranspiration, with 70 000%yn 1, is

of human water use and calibration (or no calibration) againsrather unaffected by climate and land cover uncertainties.
observed mean river discharge. In a modeling experimentHuman water use reduced river discharge by 1009y,

five variants of the standard version of WaterGAP 2.2 weresuch that global renewable water resources are estimated to
generated that differed from the standard version only regardrange between 41 000 and 43 000%ym L. The climate data

ing the investigated source of uncertainty. The basin-specifisets WFD (available until 2001) and WFDEI (starting in
calibration approach for WaterGAP was found to have thel979) were found to be inconsistent with respect to short-
largest effect on grid cell fluxes as well as on global AET wave radiation data, resulting in strongly different actual
(actual evapotranspiration) and discharge into oceans for thevapotranspiration. Global assessments of freshwater fluxes
period 1971-2000. Regarding grid cell fluxes, climate forc-and storages would therefore benefit from the development
ing ranks second before land cover input. Global water stor-of a global data set of consistent daily climate forcing from
age trends are most sensitive to model refinements (mainlt900 to present.

modeling of groundwater depletion) and consideration of

human water use. The best fit to observed time series of

monthly river discharge or discharge seasonality is obtained

with the standard WaterGAP 2.2 model version which is cal-

ibrated and driven by daily reanalysis-based WFD/WFDEI

(combination of Watch Forcing Data based on ERA40 and

Watch Forcing Data based on ERA-Interim) climate data.

Published by Copernicus Publications on behalf of the European Geosciences Union.
48



3512 H. Muller Schmied et al.: Sensitivity of simulated global-scale freshwater fluxes and storages

1 Introduction et al., 2003) and PCR-GLOBWB (PCRaster GLOBal Water
Balance; Sperna Weiland et al., 2010).
Freshwater fluxes and storages simulated by GHMs and

The quantification of global-scale freshwater fluxes, in par-LSMs are subject to several sources of uncertainty: spatially
ticular river discharge, is essential to assess availability andlistributed input data (e.g., climate forcing, water use, and
scarcity of water resources for humans and the environmeniand cover), model structure (or modeling approach) and
for both present (Hoekstra et al., 2012; Oki and Kanae,model parameters. In addition, epistemic uncertainty due to
2006; Prudhomme et al., 2014) and scenario conditions (Ddla lack of knowledge and understanding of processes is of
and Miller Schmied, 2012; Masaki et al., 2014; Schewe etparticular importance at the global scale (see discussion in
al., 2014). Further examples are the estimation of amount8even and Cloke, 2012 and Wood et al., 2011, 2012).
and spatial distribution of precipitation (Harris et al., 2014; Uncertainties due to the choice of climate forcing were the
Schneider et al., 2014) and evapotranspiration (Jasechko ébcus of few studies. For example, Guo et al. (2006) showed
al., 2013; Jung et al., 2010; Sterling et al., 2012). As ground-the large sensitivity of soil moisture simulated by 11 LSMs
water plays an important role for humans, e.qg., for irrigationto different climate forcing data sets (especially to precipita-
purposes, related fluxes such as groundwater recharge (Ddflon and radiation). They concluded that this uncertainty as-
and Fiedler, 2008; Koirala et al., 2014; Portmann et al., 2013)ociated with land surface hydrology is as large as the varia-
or, as consequence of an overexploitation of groundwater retion among the LSMs. Biemans et al. (2009) evaluated seven
sources, groundwater depletion (Déll et al., 2014b; Wada eglobal precipitation products for 294 river basins worldwide
al., 2010) are the focus of modeling activities. and quantified an average uncertainty of 30 % per basin. They

These examples show attempts to quantify global-scalestudied the dynamic global vegetation and hydrology model
freshwater fluxes as well as water storages; however, th& PIJmL (Lund-Potsdam-Jena managed Land; Bondeau et
methodologies used differ largely. Interpolation of in situ al., 2007) with these precipitation forcings. As consequence
measurements works well with a dense monitoring network.of the large spread of precipitation input, discharge uncer-
Hence, precipitation products (e.g., GPCC — Global Preciptainty was quantified with about 90 %. Even though climate
itation Climatology Center; Schneider et al., 2014; CRU —forcing is of such importance, only few studies are available
Climate Research Unit; Harris et al., 2014) are often basedvhich study the uncertainty in a global hydrological model
solely on interpolation of station data. In combination with setup.
other data sources like remote sensing, even less dense pointUncertainties in terms of model structure are related to the
measurements are used, e.g., to quantify global evapotrardesign of the model, i.e., the processes considered and their
spiration (Jung et al., 2010). In particular, remote sensing igepresentation by conceptual approaches. To consider this
used to derive spatiotemporal input data for evapotranspirakind of uncertainty, Butts et al. (2004), Clark et al. (2008),
tion schemes (Miralles et al., 2011; Vinukollu et al., 2011; Refsgaard et al. (2006) and Song et al. (2011) developed
Wang and Liang, 2008) or to assess total continental waapproaches to diagnose different structures of hydrological
ter storage variations (Schmidt et al., 2006). Spatiotemporaimodels and related uncertainties. The model intercomparison
patterns of consistent multiple fluxes and storages can be olefforts WATCH WaterMIP (Water and Global Change Wa-
tained using land surface models (LSMs) and global hydro-ter Model Intercomparison Project; Haddeland et al., 2011)
logical models (GHMs). LSMs, which have evolved as “land and ISI-MIP (Inter-Sectoral Impact-MIP; Warszawski et al.,
components” of global circulation models (GCMs), usually 2014) have shown the effects of different model structures
have a high temporal resolution and solve the energy bal{Gudmundsson et al., 2012a, b; Hagemann et al., 2013;
ance (Haddeland et al., 2011). However, they do have liman Loon et al., 2012; Prudhomme et al., 2014; Schewe
itations, especially in runoff routing and with regard to hu- et al., 2014) even though this was not explored systemati-
man alterations of the water cycle (even though there are exeally. For example, values for global annual evapotranspira-
ceptions, e.g., Pokhrel et al., 2012). GHMs are explicitly de-tion between 60000 and 85000 kgr—1 were reported in
signed to assess the state of freshwater resources and to atte WATCH WaterMIP study (Haddeland et al., 2011). In
dress water-related problems like floods and droughts (Corzeuch multimodel studies, many completely different models
Perez et al., 2011; Prudhomme et al., 2011) and human imare participating, which makes it very difficult to identify the
pacts on freshwater resources. In the last 20 years, a numbegasons for different model behavior. A sensitivity study us-
of GHMs have been developed using different conceptual aping basically the same model but with a refined model struc-
proaches; e.g., VIC (Variable Infiltration Capacity; Nijssen et ture can therefore be of benefit (e.g., Thompson et al., 2013).
al., 2001), WBM (Water Balance Model; Vorésmarty et al., Model parameters are used to represent system dynam-
1998), Mac-PDM (Macro Probability Distribution Model; ics in solvable equations, in particular when the hydrologi-
Gosling and Arnell, 2011), WASMOD-M (Water And Snow cal process cannot be described physically. These parameters
balance Modeling system — Macro scale; Widén-Nilsson etare generally not measurable and, hence, are a source of un-
al., 2007), HO8 (Hanasaki et al., 2008), WaterGAP (Water —certainty that can influence model results to varying degrees.
Global Assessment and Prognosis; Alcamo et al., 2003; D6IWithin the GCM community, the perturbed physics ensemble
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approach has been used to assess this kind of uncertainty in a WaterGAP

structured way (Collins et al., 2006; Rowlands et al., 2012).

Global-scale hydrology applications also assess parameter _
uncertainty. For example, Gosling and Arnell (2011) used ir'ﬁ'g_\;En ey %
seven sets of parameter perturbations for two model param- " =
eters of the GHM Mac-PDM.09 (Macro-scale — Probability- Ko LIV we o] B NA, §;
Distributed Mositure model.09). For the GHM WaterGAP, g | ivestock 7 g °
Kaspar (2003) investigated the impact of uncertainty of 0 ) 3=
38 model parameters on simulated river discharge by con- > | DOM |lww,wg,, % %5
ducting various model runs with a sampling of parameter val- 2 [ domestie NA, | 82
ues within specific ranges. He found that major uncertainties ; M W o
are related to evapotranspiration parameters and land cover | S | .. tacturing| | o 2
specific attributes. Schumacher et al. (2014) confirmed the 0] @ﬂ* _ _ %
sensitivity of model output (here: monthly total water stor- TP I Wamercomsamoton | &
age) to radiation calculation and related parameters in Water- thermal power S ot abstraction =
GAP which, together with a river roughness coefficient and g: groundwater

precipitfation, dqminate uncertainty in many of the 33 investi- Figure 1. Schematic of WaterGAP 2.2. The output of five water use
gated river basins. Groundwater-related parameters and SQ{gqels is translated into net abstractions from groundwatey NA

parameters were found to be important for the timing andand surface water Neby the submodel GWSWUSE, which allows
variation of total water storages in WaterGAP (Werth and computing the impact of human water use on water flows and stor-

Guntner, 2010). ages by WGHM. For details see Déll et al. (2012).
Model parameters can be adjusted by calibration, such
that model output matches an observed set of data. Whereas
basin-scale hydrological models are routinely calibrated 4. Which type of uncertainty is dominant for specific
against observed river discharge (e.g., Beven, 2001), this  fluxes and variations of total water storage?

is only seldom the case for GHMs. Widén-Nilsson et - - :
al. (2007) used different model parameter sets within theAfter an initial description of WaterGAP 2.2 (for details see

GHM WASMOD-M to define optimal parameter values on the Appendix), the experimental .Set“'_o IS explamed (Sect. 2).
. . : : . In Sect. 3, the results are described; focusing on the effect
river-basin scale. WaterGAP is calibrated against observed . .
. : : : o . of the different model variants on global freshwater fluxes
river discharge in a basin-specific manner by varying one ;

) : 4 and water storages as well as spatial patterns. In Sect. 4, we
soil parameter (and up to two correction factors) (D6l et al.

2003; Hunger and Déll, 2008). discuss the results with regard to the research questions. The

In this paper, we analyze and quantify the uncertainty inPaPer ends with a summary and conclusions (Sect. 5).
simulated global-scale freshwater water fluxes and storages
due to (1) spatially distributed input data, and (2) model2 Methods and experiment setup
structure and modeling approach, using the most recent ver-
sion of the GHM WaterGAP 2.2. Previous studies (Kaspar,2.1 Description of WaterGAP 2.2
2003; Schumacher et al., 2014; Werth and Guntner, 2010)
have already investigated both parameter sensitivity and unThe global hydrology and water use model WaterGAP
certainty for WaterGAP. To assess recently available climatelFig. 1) consists of two major parts: the water use models
forcing and land cover input data as well as significant modi-for five different sectors (Appendix C) and the WaterGAP
fications of WaterGAP model structure during the last decadeGlobal Hydrology Model (WGHM, Fig. Al). The submodel

were major motivations of this experiment. GroundWater Surface Water USE (GWSWUSE) (Appendix
In particular, we will answer the following research D)is used to distinguish water use from groundwater and sur-
guestions: face water sources and computes net abstractions from both

N sources which are an input to WGHM (Fig. 1). Using a num-
1. How sensitive are freshwater fluxes and water storageger of water storage equations (change of storage over time
to spatially distributed input data (climate forcing, land equals to inflow minus outflows; Appendix A), WGHM cal-
cover)? culates daily water flows and storages at a spatial resolution
0f 0.5° by 0.5 (55 km by 55 km at the Equator) for the whole
land area of Earth except Antarctica (66 896 cells). Water-
GAP 2.2 is calibrated against mean annual river discharge
3. How does the modeling approach (calibration proce-at 1319 gauging stations, and the adjusted calibration fac-
dure, consideration of human water use) affect fresh-tor is regionalized to grid cells outside the calibration basins
water fluxes and water storages? (Appendix B).

2. What are the benefits of WaterGAP model structure re
finements implemented during the last decade?
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Since the initial publication of WaterGAP 2.1d (Déll et sources (temperature bias correction, shortwave radiation ad-
al., 2003), major changes were made to keep the model upustment using cloud cover and adjustment of number of wet
to date. For example, algorithms of reservoir operation weredays to CRU TS 2.1 for WFD and to CRU TS 3.1 for WFDEI
included (Dol et al., 2009), groundwater recharge was op-as well as adjustment of monthly precipitation sum to GPCC
timized by distinguishing semiarid/arid regions from humid v4 for WFD and GPCC v5 for WFDEI and snowfall under-
regions (Doll and Fiedler, 2008), a variable flow velocity al- catch corrected after Adam and Lettenmaier, 2003). To calcu-
gorithm was included (Verzano et al., 2012) and the sourcdate net shortwave radiation, the incoming shortwave radia-

of abstracted water was considered (Déll et al., 2012). tion is reflected by literature-based land cover specific albedo
values (see Table A2). Literature-based-emissivity values for
2.2 Experiment setup all land cover classes (Wilber et al., 1999) and the Stefan—

Boltzmann equation are used to calculate outgoing longwave

Six WaterGAP model variants (Table 1) were designed agadiation. The difference to incoming longwave radiation
follows. The standard version of WaterGAP 2.2 (STAN- represents net longwave radiation. Net radiation is the sum
DARD) was modified regarding only one aspect, including of both components.
either alternative climate forcing (CLIMATE), land cover  Invariant CLIMATE, the monthly data set CRU TS (time-
input (LANDCOVER) or model structure (STRUCTURE). series) 3.2 (Harris et al., 2014) was used but monthly pre-
Each model variant was independently calibrated. Variantcipitation totals were replaced by the latest GPCC v6 pre-
NoCal is an uncalibrated simulation with the standard ver-cipitation monitoring product (Schneider et al., 2014) be-
sion of WaterGAP 2.2 to study the impact of the calibration cause it includes more observation stations. Monthly means
approach. Variant NoUse reflects naturalized water flows andire disaggregated to daily values within WaterGAP (Doll et
storages without the impact of human water use, and thusil., 2003). Neither CRU nor GPCC precipitation is corrected
also renewable water resources. for observational errors, e.g., wind-induced-precipitation un-

In addition, for assessing the effect of uncertainties ondercatch. Thus, Déll and Fiedler (2008) included the catch
renewable water resources, variants CLIMATE, LAND- ratios of Adam and Lettenmaier (2003) and used the empir-
COVER, STRUCTURE and NoCal are also run without con- ical function of Legates (1987) to correct especially snow
sidering any water abstractions. The simulation period isundercatch by dividing snow and liquid precipitation using
1901-2009 but model results are evaluated only for 1971-a temperature-based approach. The correction of precipita-

2000. tion measurement bias leads to an average increase of 8.7 %
compared to the original product. On 37.5 % of the land area
2.2.1 Climate input (except Greenland and Antarctica), the increase of precipi-

tation is larger than 10 %. Differences of mean values from
Climate forcing data for global-scale hydrological models both data sets (CRU/GPCC and WFD/WFDEI) occur due to
are a major source of uncertainty for two main reasons:the slightly different precipitation correction approach and
(1) they are subject to measurement errors which were nothe GPCC version used for scaling monthly sums. Monthly
corrected in the original input data and (2) they are sub-precipitation is equally distributed to the number of wet days
ject to interpolation errors due to low spatial and temporal provided by the CRU 3.2 data set; the distribution of wet days
monitoring network density and/or because (temporal) datavithin a month is modeled as a two-state, first-order Markov
gaps have to be filled. To analyze the sensitivity of cali- chain (D&l et al., 2003). Cloudiness fraction was used to
bration and simulated freshwater fluxes to different climatecalculate incoming shortwave radiation as well as outgoing
forcing data sets, two climate forcings were used to forcelongwave radiation after Shuttleworth (1993), see also Dol
both WGHM and the Global Irrigation Model GIM (Délland et al. (2003).
Siebert, 2002) (Appendix C).

In variant STANDARD, the daily WATCH Forcing Data 2.2.2 Land cover input data

methodology applied to ERA-40 (40-year European Cen- o i
tre for Medium-Range Weather Forecasts (ECMWF) Re_The distribution of Ianq cover classes .and assouated.at—
Analysis) data (WFD) (Weedon et al., 2011) for the yearst.rlbutes are affecting simulated fluges_, in terms of rad|§1-
1901-1978 (the years 1901-1957 are based on reordered rion energy balance (albedo and emissivity), snow dynamics
analysis data) and the WATCH Forcing Data methodology(d€gree-day factoDr), available soil water capacity (root-

applied to ERA-Interim reanalysis data (WFDEI) (Weedon "9 depth) and interception capacity (L) (for details see Ap-
et al., 2014) for the years 1979-2009 was chosen. switchPendix A). To estimate the effect of different, homogeneous-

ing the climate input data set in 1979 leads to inconsis-SCUrce land cover data, two input maps were used (Fig. 2).
tencies in terms of AET (actual evapotranspiration; higher/Atiributes and model parameters associated to land cover
in WFDEI) and therefore affects the storages until a newclasses were derived from literature or previous model ver-
equilibrium is reached (see Sect. 3.1). WFD and WFDE|SIons (Table A2) and left equal in both variants.

monthly sums/means are bias-corrected with other data
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Table 1.0Overview of the model variants.

Name Characteristic Description

STANDARD Standard WaterGAP 2.2 model version  MODIS land cover for the year 2004. WATCH Forcing Data as daily
climate input. For 1901-1978 WFD is used, for 1979-2009 WFDEI.
Calibration against mean annual river discharge, including regionalization
of the calibration parameter to grid cells outside calibration basins.
Consideration of human water use.

CLIMATE Alternative climate forcing Similar to STANDARD but CRU TS 3.2 and GPCC v6 for precipitation as
monthly climate input.

LANDCOVER Alternative land cover data Similar to STANDARD but a combination of GLCC and CORINE (for
Europe) was used as land cover input.

STRUCTURE  Alternative model structure Similar to STANDARD but with a less-refined process representation
(comparable to Déll et al., 2003).

NoUse No water use Similar to STANDARD but without considering water use.

NoCal No calibration Similar to STANDARD but without calibration to mean annual river

discharge. Calibration parameter and correction factors are globally
set to 1.0 (for details see Appendix B).

a+b

Il Evergreen needleleaf forest [ Permanent wetland

[ Evergreen broadleaf forest Cropland
Deciduous needleleaf forest Open shrubland
Deciduous broadleaf forest [l Closed shrubland

N Mixed forest Woody savannas
Snow and ice (permanent) Savanna
-~ Barren or sparsely vegetated Grassland
-+, _ [ Cropland / natural vegetation mosaic

Sk c
> / I 1and cover class has changed
no change in land cover class

Figure 2.Land cover maps with a spatial resolution of Oused as WaterGAP input based on MODIS observations for the year 2004 (variant
STANDARD) (a), land cover derived from USGS GLCC, but CORINE for Europe, reflecting land cover distribution around the year 2000
(variant LANDCOVER)(b), and identification of grid cells where land cover class has changed due to different inp{e)data

In variant STANDARD we used the gridded MODIS and percentage of urban area (from previous model versions)
(Moderate Resolution Imaging Spectroradiometer) landare obtained by additional input files, the second land cover
cover product (MOD12Q1) for the year 2004. The product class was appointed in case of “water” or “urban and built-
MOD12Q1 (1 km resolution, global coverage up td® 80 up” as primary land cover. For coastal grid cells, which are
was used with land cover type 1 according to the Interna-not fully covered by MODIS and north of 80, a combi-
tional Geosphere-Biosphere Programme (IGBP) classificanation of Global Land Cover Characteristics database GLCC
tion. After resampling to 0.5°spatial resolution, the data set(USGS, 2008} CORINE (Coordination of Information on
was reclassified to fit to the WaterGAP land cover classifi-the Environment) land cover information was used.
cation system (Table A2). As water bodies (from the global
lakes and wetlands database, GLWD; Lehner and Ddll, 2004)
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In variant LANDCOVER, a combination of the GLCC variants except NoUse and STRUCTURE are taking into
based on the years 1992 and 1993 and, for Europe, CORINEccount water use from surface water and groundwater re-
land cover based on the year 2000 (European Environmerdgources. In variant NoUse it is assumed that there are no wa-
Agency, 2004) was used as land cover information, as also ier abstractions at all, while in STRUCTURE, water is only
a previous WaterGAP version (Haddeland et al., 2011). Theabstracted from surface water (as formerly no information on
idea was to use an IGBP-based classification scheme andtae source of water abstractions was available).
remote-sensing-based land cover distribution instead of IM-

AGE (Integrated Model to Assess the Global Environment;2.2.5 Calibration
Alcamo et al., 1998) model outputs (as in previous model , ) . ) )
versions). Both input data sets have a resolution of 1 by 1 kmVGHM is calibrated against mean annual discharge in a

and were aggregated to the ©riiodel resolution by assign- basin-specific manner by adjusting a runoff coefficient that
ing the majority land cover type. affects the outflow from the soil compartment in each grid

cell of the 1319 calibration basins. If necessary to simulate
2.2.3 Structural model changes mean annual discharge within 1% of the observed value,

two additional correction factors are adjusted (for details see
During the last 10 years, the WaterGAP model was subjectAppendix B). All other parameters are globally uniform (or
to several revisions and improvements in terms of hydrologicland cover class dependent), based on literature or experi-
process representation, resulting in an overall more complexnces from past studies; i.e., there is no basin or region spe-
model structure. To assess the sensitivity of simulated fresheific modification. All model variants except NoCal are inde-
water fluxes to model complexity, one model variant with a pendently calibrated to the same observational data. In vari-
simplified structure comparable to D6ll et al. (2003) (vari- ant NoCal, the runoff coefficient and both correction factors
ant STRUCTURE) was set up which was run with the sameare set to 1.0 in all grid cells. The comparison of NoCal to,
input data as all other model variants. Differences of vari-for example, STANDARD allows for a direct quantification
ant STRUCTURE as compared to the other variants are asf the effect of calibration on simulated water fluxes and
follows. storages.

— Flow velocity is globally set to 1 mg and the mean-
dering ratio is set to 1.0, instead of the variable flow 3 Results
velocity algorithm of Verzano et al. (2012) in the other
variants. 3.1 Global water balance

— Reservoirs are treated as global lakes, i.e., the reservoirable 2 lists global values for various components of the
operation algorithm of Dall et al. (2009) is not used, global water balance and changes in total water storages
which should result in a more dynamic discharge down-(TWS) (calculated excluding Antarctica, Greenland and in-
stream of reservoirs. land sinks) as estimated by the different model variants.

. Global values vary mainly due to calibration and selected cli-
— Water for human water use is abstracted only from sur- : g . : g
mate forcing. For interpreting Table 2 and Fig. 3 it is impor-

face water bodies; i.e., there are no groundwater abstrac- g : o
tions as introduced by D&l et al. (2012). tant to mention that AET does not include additional evapo-

transpiration caused by irrigation and other human water use.
— Evaporation from lakes/wetlands is not adjusted by re-This part of evapotranspiration is called actual water con-
duction factors (Hunger and Doll, 2008) resulting in sumption (WG). For computing global values of AET and

evaporation at potential rate even at low storage. renewable water resources (RWR), the values were adjusted
. ] in calibration basins using the station correction factor (CFS)

— Snow accumulation and melt are modeled orf @ib-  g;ch that a closed global water balance is achieved (for cali-
stead of the 3 arcmin subgrid (Schulze and DAll, 2004)) pration details see Appendix B). Grid cell values of AET and
which should lead to less snow dynamics. RWR (Figs. 3, 4), however, do not reflect CFS to avoid phys-

ically implausible values that likely result from inconsisten-
cies between precipitation data and observed river discharge.
Global precipitationP is about 1900 kryr—1 (or 1.7 %)
higher when using the CLIMATE model variant which re-
sults in an equal increase of discharge compared to STAN-
DARD. Except for NoCal, global AET (calculated as sum
2.2.4 Human water use of E¢, Esn, Es and Ey,, see Appendix A) does not vary con-
siderably among the variants. In general, discharge to oceans
In many areas of the globe, human water use significantly afand inland sinks is lower by the amount of change in AET.
fects water flows and storage. In this experiment, all modelWC, (row 4 in Table 2) varies due to the demand of surface

— Finally, there is no distinction in groundwater recharge
for semiarid/arid and humid regions (in contrast to Doll
and Fiedler, 2008, all regions are treated like humid re-
gions) resulting in higher groundwater recharge in semi-
arid/arid regions.
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Table 2.Long-term-average (1971-2000) freshwater fluxes from global land area (except Antarctica and Greenland) of WaterGAP 2.2 (in
km3 yr_l). Cells representing inland sinks were excluded but discharge into inland sinks was included.

No. Component STANDARD NoUsd CLIMATE LANDCOVER STRUCTURE NoCal

1 PrecipitationP? 111070 111070 112969 111070 111070 111070
2 Actual evapotranspiration AET 69803 69934 69842 70012 70217 63344

3 Discharge into oceans and inland sink$ 40458 41216 42364 40250 40002 46822

4 Water consumption (actual) (rowsts7) WCy 1031 0 927 1029 983 1054

5 Net abstraction from surface water (actflal) 1102 0 960 1102 983 1126

6 Net abstraction from surface water (demandENA 1154 0 1000 1154 1082 1154

7 Net abstraction from groundwater ISA —72 0 -33 -72 0 -72

8 Change of total water storage/ds? —215 -73 —156 —214 —44 —143

9 Long-term-averaged yearly volume balance error -7 -7 -8 -7 —88 -7

(P — AET — Q — WCq— dS/dr)
deviation toP —~0.006% —0.006% —0.007 % —0.006 % —~0.08% —0.006%

aMeanannualP (1979-2001) is 110309 kiyr— in WFD and 110812 krhyr—1 in WFDEI; P AET does not include evapotranspiration caused by human water use, i.e., actual
water consumption Wg € including anthropogenic water use (except NOU§é1)not enough water is available, demand is not completely satifigdmand that needs to be

satisfied (water use model outpttyegative values indicate that return flows from irrigation with surface water exceed groundwater absta@W8sof 31 December 2000

minus TWS of 31 December 1970 divided by 30 yeHrS;TANDARD but no subtraction of water use; i.e., discharge into oceans and inland sinks equals renewable water resources.

a) AET of STANDARD b) CLIMATE minus STANDARD

Figure 3. Actual evapotranspiration AET for STANDARD (mean value 1971-2000, in mmy(a) and differences between the model
variants and STANDARD (in mm yrt) (b—).

www.hydrol-earth-syst-sci.net/18/3511/2014/ Hydrol. Earth Syst. Sci., 18, 3511-3538014
54



3518 H. Muller Schmied et al.: Sensitivity of simulated global-scale freshwater fluxes and storages

renewable water resources (mm yr'1) (a)

o
O RS SL LS

. differences (mm yr') (b-e)

S O
NP SIS

¢) LANDCOVER (no use) minus NoUse

Figure 4.Renewable water resources (mean annual runoff from each cell if water use is neglected) calculated by the WaterGAP 2.2 NoUse
variant(a) and differences to other variants (variants here run without considering watébueg)

water abstractions and groundwater abstractions (which diffowering discharge. In many river basins, the calibration pa-

fers in CLIMATE due to the forcing of GIM (Appendix C) rametery is higher than the value 1.0 globally used in No-

and in STRUCTURE where water demand is entirely ex-Cal which reduces the share of effective precipitation actu-

tracted from surface water resources) and due to the differerally contributing to runoff. Consequently, AET is lower by

water availability for abstractions. In all cases, a large sharenearly the same amount.

of the total water demand could be satisfied (between 90% When comparing CLIMATE to STANDARD, bothP

in STRUCTURE and 96 % in CLIMATE). and Q increased by approximately 1900 kgr—! whereas
When human water use is not taken into account (NoUse)global AET sums are nearly equal. Most addition@l

AET increases by 131 khyr—1 because evaporation from (1546 of overall 1906 kfhyr—1) is generated in noncali-

open water bodies increases as they are not depleted Hyrated grid cells mostly because of an increaBahich ex-

water uses and additional evapotranspiration of irrigatedplains 1200 of the additional 1546 Brywr—1) and a reduced

crops is not included in AET (but quantified within WC ~ AET (which explains 282 of the additional 1546 Ryr—1)

row 4 in Table 2). As expected, river discharge is higherin these grid cells.

(by 758 kn?yr~1) in NoUse. Changes in total water storages RWR equal the long-term-averaged discharge to oceans

(142 knPyr—1 less storage decrease) are also visible, espeand inland sinks (Qn Table 2) but without considering hu-

cially due to no groundwater withdrawals in this variant (Ta- man water withdrawals. For the STANDARD model variant,

ble 3). The sum of these differences between STANDARDRWR are 1.9 % higher than with WGrow 3 in Table 2, col-

and NoUse is 1031 kdyr—1 which equals to Wg (row 4  umn NoUse and STANDARD)Q of the other model vari-

for STANDARD in Table 2). ants and hence RWR increase by about a similar value (No-
The calibration has a strong effect on freshwater fluxes.Cal 2.0%, LANDCOVER and STRUCTURE 1.9 %, CLI-

Global discharge to oceans and inland sinks (Q) in No-MATE 1.6 %; values not shown in Table 2).

Cal is about 6400kfyr—1 (or 15.7%) higher than in The decreasing trends of total water storage are mainly

STANDARD, meaning that the main effect of calibration is caused by groundwater depletion, except in variants NoUse
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Table 3.Mean change in water storage in different compartments between 31 December 1970 and 31 December 289 (in gimbal
sum except Antarctica and Greenland). Cells representing inland sinks were excluded.

Compartment STANDARD NoUsé CLIMATE LANDCOVER STRUCTURE NoCal
Total water storage —214.8 —73.7 —156.4 —214.8 —445 -143.0
Canopy —0.05 —0.05 0.002 —0.05 —-0.05 -0.05
Snow -3.0 -3.0 -6.3 -3.3 -1.3 -3.0
Soil -21.6 —-21.6 -0.9 —20.6 -20.9 -20.0
Groundwater —124.9 8.6 —126.9 —-125.4 9.7 —82.7
Local lake -1.9 -1.5 -0.3 -1.9 -2.1 -1.1
Local wetland -4.9 —-4.3 1.9 -5.1 —-8.4 -2.2
Global lake -35 -3.4 -1.1 -3.4 -8.2 -3.8
Reservoirs —-43.1 -37.5 —-23.2 —-43.1 ok -21.4
Global wetlands -4.9 —-4.3 1.9 -5.1 —-8.4 -2.2
River —6.7 —-6.0 2.7 —6.7 —4.6 —-4.3

* In WaterGAP, increase of soil water storage by irrigation is not taken into account such that storage values for STANDARD and NoUse
variants are the sam&: Not applicable as reservoirs are treated as global lakes.

and STRUCTURE where no groundwater abstraction is3.2 Actual evapotranspiration
modeled. Interestingly, NoCal shows a smaller decrease in

ground_watgr storage than S.TRL.JCTURE' This is aI;o due Yean AET shows the highest values around the Equator,
the calibration parameterwhich is on average lower in case consistent with available energy, except for the Pacific Rim

of NoCal. The Iowelj(, the more water leaves the soil and can of South America (Fig. 3a). Among the variants, the largest
subsequently pontrlbute to groundwater recharg_e. Note tha(‘iif'ferences; to STANDARD occur in the case of the uncali-
water abstractions from groundwater are taken directly frombrated version NoCal (Fig. 3f). As the calibration approach
the groundwater storage and aIsp return ﬂO.WS are a‘?'ded d<L;'1Iso affects grid cells outside of the 1319 calibration basins
rectly to groundwater storage (without passing the soil COM-y e 1o the regionalization (Appendix B3), all grid cells are

partment). Hence, there is no difference in soil water storage,gacted. In most regions, calibration leads to higher AET

beltzween SfTANDARdD and No(LjJse (Tabcl;?_ﬁ\%-A TE sh | but in the upstream Amazon, Congo, Arctic river basins and
xcept for groundwater and snow, SNOWS €SS 55 me other basins, the opposite is true. The global sum of

storage depletion than all other variants that are forced by, ot NoCal is 9.2 % lower than estimated with STAN-

WFDj\NFDEI .(Table 3f) The strgnt? decrﬁgge n CaSE OfDARD (Table 2). Notable differences in AET also occur
WFD/WFDEI is an artifact caused by combining WFD be- 0, using an alternative climate input (Fig. 3b). AET in-

fore 1979 with WFDEI after 1979. With WFDEI based on the creases in CLIMATE on 42.6 % of the land surface by more

ERA-Interim, AET is alpproximately 70000 I&m—l COM- "~ than 10 mmyr?! and decreases by more than 10 mmlyon
pare_d to 85 000. kityr—" in the case of WFD. Th|§ IS caused 34 54 of the land surface. It increases (decreases) by more
by d|ffe.rences in the ;hor_twave downward ragua_twn (mUChthan 100 mmyr! on 5.4 % (5.6 %) of the land surface. When
higher in WFDEI) which impacts the net radiation as the summed globally, only minor changes in AET occur in the
main input for calculating potential evapotranspiration afterCLlMATE variant, (increase of 0.06% or 39 yr—L: Ta-

Priestley and Taylor (1972). As all model runs are startedble 2). In contrast, AET differences of the STRUCTURE

?gigoiEEPe _storagesdqrehm(:relzl or Ies;zin equigbriumlgr;/tilvariant are higher for the global sum (increase of 0.6 % or
: Is increased in the following 22 years by ca. 10%, 41 4y n3 yr—1) put occur on an overall smaller area (increase

which leads to a higher water loss and therefore to a reductiorE)y more than 10 mm y™ on 11.9 % of the land surface, de-

of all storage compartments. For all storages except SNOW,-oase on 14.2%). The effect of STRUCTURE is visible in

reservoirs anq groundwater, a new equilibrium is aChie\/'adareas with surface water bodies and in snow-dominated ar-
a few (approximately 5) years after 1979 on a lower IeVeIeas. On the one hand, an increase in net radiation in snowy

(STANDARD variant). Whereas snow storage is not influ- regions leads to a slight increase of AET but in small abso-

enced at .aII, groundwate_r storage is affected by _groundyvarute numbers as total AET is comparatively low. On the other
ter depletion and reservoirs by water use and obvious IImIta’hand effects due to the evaporation reduction factor for sur-
tions of the reservoir algorithm. Thus, an equilibrium is not face \;vater bodies are visible. In all variants, except STRUC-
reached_ in the global average of the latter two storages bu'Y'URE, evaporation is limited when the sur,face water body
decreasing after 1901. storage is reduced to mimic the shrinking of surface area.

Hence, in regions with a high percentage/volume of surface

water bodies, AET is increased. In addition, more complex
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effects occur. The Great Lakes, for example, evaporate with As RWR are approximately the difference between precip-
potential evapotranspiratiofip (Appendix Al) in STRUC- itation and AET, the difference maps (Fig. 4b—e) represent
TURE, even when the lake storage is relatively low. This re-more or less the inverted difference maps in Fig. 3. Com-
sults in a relatively low modeled discharge which fits well pared to STANDARD, the largest differences occur in model
to the observed ones. Hence, no correction factor (neithevariant NoCal. In contrast to AET, calibration leads in many
CFA nor CFS) is required in the Great Lakes Basin. How- cases to lower RWR. The global sum of RWR of NoCal is
ever, in STANDARD, the reduction factor reduces evapora-15.8 % higher than with STANDARD. The global sum of
tion by up to three-fourths afp. The resulting higher mod- RWR from CLIMATE is 4.7 % higher but with a large spa-
eled discharge has to be reduced by an increased AET itial spread. RWR decrease in CLIMATE on 21.4 % of land
STANDARD (and in the other model variants) on the land surface by more than 10 mmyrand increase by more than
around the lakes as compared to STRUCTURE (red area30 mmyr? on 29.9% of the land surface. RWR decrease
around the Great Lakes in Fig. 3). (increase) by more than 100 mnTyron 4.7 % (9.0 %) of

Differences between NoCal and STANDARD are causedthe land surface. The differences in LANDCOVER mainly
by the calibration parameter which differs from 1.0 (No-  follow differences in net radiation (not shown). In snow-
Cal) in most river basins of STANDARD (and of the other dominated regions, RWR are lower in STRUCTURE because
model variants). For example, there are blue patterns irsnow-cover dynamics are less intense than in STANDARD.
China and South America. In both regiong, is lower In grid cells with (large) surface water bodies, RWR are
than 1.0 in STANDARD which results in higher runoff and lower in STRUCTURE (as AET is unlimited here even if
less modeled AET. In many other regions (red areps) storages are nearly empty).
greater than 1.0 in STANDARD.

AET differences between LANDCOVER and STAN- 3.4 River discharge
DARD (Fig. 3c) are caused by changes in net radiation in
energy-limited areas (not shown) as well as changes in root3.4.1 River discharge seasonality
ing depth. In general, minor differences occur (except in
some basins; see explanation below). In some regions, an irRiver discharge is the integral result of runoff generation, wa-
creasing net radiation results in an increasing AET, e.g., inter losses by evaporation from surface water bodies, positive
parts of Angola. In water-limited areas (e.g., northeasternor negative net abstractions from surface water bodies and
Brazil), insignificant changes of AET occur even if net radia- groundwater, and routing processes. It is one of the most
tion strongly increases. In northern Australia, AET increasesmportant diagnostic variables in water resources. In many
even when net radiation is reduced. Here, large parts are deegions, river discharges have been observed for decades,
fined in STANDARD as open shrubland (rooting depth of providing an important data source for model evaluation. A
0.5m) and in LANDCOVER as savanna (rooting depth of good representation of modeled seasonality in comparison
1.5m). As soil storage capacity is a function of rooting depth,to the observed one is therefore a criterion for model eval-
even with more energy available for evapotranspiration, onlyuation. We compared observed and modeled discharge sea-
half of the soil water can be evapotranspirated due to the limsonality at the outflow of 12 large river basins, covering dif-
ited rooting depth. Neglecting human water abstraction inferent climatic zones and levels of anthropogenic influence
variant NoUse would lead to an overestimation of AET in (Fig. 5). Climate input and model structure influence mod-
regions where water abstraction for irrigation leads to reduc-led discharge seasonality more than land cover changes for
tion of wetland areas (Fig. 3e), and a global AET overesti-the selected river basins. Where seasonality of climate is
mation by less than 0.2 % (Table 2). high, like in the monsoon-dominated Mekong Basin, only

In WaterGAP 2.2, AET can become negative in somemarginal differences occur due to land cover and model
(mostly snow dominated) regions, where precipitation inputstructure. Structural model refinements have also important
is too low to reproduce observed discharge (grey colors ineffects on discharge seasonality. For example, the constant
Fig. 3a). The total water balance of each large water body iflow velocity of STRUCTURE (in contrast to variable flow
calculated in its outflow cell; hence, AET can become veryvelocity in the other variants) leads to a higher peak in the
large as the value in millimeters is calculated by dividing Lena. Here, the variable flow velocity algorithm underesti-

AET over the whole lake by grid cell area. mates flow velocity in the lower reaches where bed slopes
are very small. This leads to a strong underestimation of peak
3.3 Renewable water resources flow (which explains the improved seasonality of STRUC-

) . , TURE compared to observed discharge in the Lena). The
RWR (mean annual runoff of the grid cell to the river without (oqaryoir algorithm which is not enabled in STRUCTURE

considerat.ion qfhuman water use) are dominantlyjnﬂuenceci..as impacts at the Yangtze, Rio Parana, Mississippi and the
by the calibration (NoCal) and subsequently by input datay|g4 rivers in terms of smoothing the discharge. For the

and model structure (Fig. 4). Rio Parana, this is the main influence in the STRUCTURE
variant. The representation of snow in STANDARD leads
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Figure 5.Discharge seasonality for selected basins and the calibrated model variants. Values for NoCal are only visible if they are in the
range of calibrated model variants.

to a more heterogeneous snow coverage as compared tgenerally lower. In particular between May and October (the
the STRUCTURE variant. The strongest impact occurs forAlps are modeled as snow-free between June and Septem-
the Rhine, where the snow algorithm is the dominant rea-ber), this leads to a decrease of discharge as snowmelt can-
son for the differences to STRUCTURE. In STRUCTURE, not contribute any longer as it does, for example, in STAN-
the snow water storage of the Rhine headwater (Alps) iSDARD. The importance of the climate forcing can be seen
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in the Mississippi and the Rhine where CLIMATE results in 1o — : —
overestimated peak seasonal discharge. In the Danube, th o ‘
WFD/WFDEI climate input (in STANDARD) is particularly 3 : ’ 3
beneficial, as the fit to observed seasonality is much better .| 2
than with CRU TS 3.2/GPCC v6 climate (in CLIMATE).

For the Mackenzie, all model variants are close to each
other but far away from observations. Here, freezing and & |
thawing of the river are not reproduced as none of the model % | 1 %
variants represents these processes. Interestingly, the Len
basin is also frozen during wintertime but here low flows
are simulated quite well. In the Amazon, the model vari- ~ | — | e
ants underestimate the delay of peak discharge which might
be explained by the lack of modeling dynamic floodplain A — e
inundation. o h

The impact of alternative land cover is only slightly influ- Figure 6. Nash-Sutcliffe efficiency (&s) (excluding outliers) of
encing discharge seasonality. Most effects occur at the Rhingnonthly observed and simulated discharge at 1319 stations used for
where CORINE-based land cover (variant LANDCOVER) calibration.
consists dominantly of cropland. Many grid cells in the other
model variants consist of mixed forest or cropland/natural
vegetation mosaics which have a lower albedo, resulting ifSTANDARD and STRUCTURE, model development clearly
more evaporation and less discharge especially in the sunimproved simulation results in A, C and D climates. The
mer months. Additional effects occur due to deeper roots inCLIMATE variant performs better in cold areas but overall
the mixed forest class. Only for the Mackenzie, Lena andperforms worse than STANDARD, particularly in temperate
Yangtze, are mean monthly river discharges of NoCal withinclimate. No significant differences occur when using an al-
the range of all other variants in some months. The NoCalternative land cover input (LANDCOVER). Performance of
values for the Orange are higher than any observed valu@ll variants is very poor in arid (B) climate.

(and the values of the other variants) throughout the year
(Fig. 5). This highlights the need for a calibrated model for 3.5 Variations of total water storages
discharge analyses.

Simulated temporal variations of TWS, i.e., the total amount
3.4.2 Monthly time series of water in all continental water storage compartments

(Fig. Al), are used widely in the context of analyzing in-
Nash—Sutcliffe efficienciens (Eq. 1; Nash and Sutcliffe,  formation derived from the Gravity Recovery and Climate
1970) were Calculated for t|me Series of monthly riVer diS' Experiment (GRACE) The dominant seasonal Changes of

charges at the gauging stations used for calibration. TWS can be characterized by the difference between the
; minimum and the maximum value of mean monthly TWS
3 (0; — 8)? (1971-2000). The spatial distribution of seasonal TWS vari-
. i=1 ations (Fig. 7a) is similar to that derived with an earlier ver-
Ens=10- 20— (1)

a2 sion of WaterGAP (see Fig. 4 in Glntner et al., 2007). Sea-
sonal TWS variations are affected most strongly by the cli-
mate forcing (Fig. 7b). For example, in Europe and eastern
where O; is observed discharge$; is simulated dis- US, they are more than 25 mm higher in case of CRU/GPCC
charge andO is mean observed discharge (all units in climate forcing. This finding is consistent with the impact
km?3 month1). of climate forcing on river discharge, e.g., of the Danube
By adjusting the mean annual river discharge as done ir(Fig. 5). The calibration approach leads to a decrease of TWS
our calibration approach, thBys of monthly discharge in-  variation in areas where runoff is overestimated (Fig. 7f).
creases in all calibrated model variants as compared to th&/here land cover attributes vary significantly due to differ-
NoCal variant becaus&ys is sensitive to both the mean entland cover classes in LANDCOVER, the effects on TWS
and variances (Fig. 6). Among all calibrated variants, STAN-variations are strong (e.g., in the southern Congo or southern
DARD and NoUse achieve the highest meBRs values, = Amazon). Neglecting groundwater abstractions (as done in
while variant STRUCTURE shows a distinctly lower model NoUse, which neglects any human water use, and in STRUC-
performance (Fig. 6). This is further confirmed by thgs TURE, where water is only abstracted from surface waters)
distribution per Koppen—Geiger region (Table 4, column leads to lower seasonal TWS variations in areas of ground-
“sum”), where for the STANDARD and NoUse variants water abstractions (if in case of STRUCTURE surface water
Ens is larger than 0.5 in 53.5% of the basins. Comparingis not able to satisfy water uses) and groundwater depletion

—~
|

Il
N
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Table 4.Number of calibration basins péilys category and Koppen—Geiger climate zbne

Variant Class Ens A B C D E Sum
1 >0.7 75 19 117 129 29 369
STANDARD 2 0.5-0.7 100 17 68 134 18 337
3 <05 110 91 83 282 47 613
1 >0.7 67 8 77 145 30 327
CLIMATE 2 05-0.7 116 31 68 107 26 348
3 <0.5 104 79 127 293 41 644
1 > 0.7 77 20 117 128 32 374
LANDCOVER 2 05-0.7 94 16 68 132 15 325
3 <05 114 91 83 285 47 620
1 >0.7 63 20 85 99 27 294
STRUCTURE 2 05-0.7 101 16 84 132 22 355
3 <05 121 91 99 314 45 670
1 >0.7 77 15 109 138 30 369
NoUse 2 05-07 97 26 68 130 17 338
3 <05 111 86 91 277 47 612
1 >0.7 17 5 39 61 12 134
NoCal 2 0.5-0.7 28 4 32 8 11 155
3 <05 240 118 197 404 71 1030

* Calculatedoy WaterGAP after Kottek et al. (2006); A: equatorial climate, B: arid climate, C: warm
temperate climate, D: snow climate and E: polar climates. Note that the number of basins per climate
zone differs for CLIMATE as here the bases for Kdppen—Geiger climate calculation are CRU TS 3.2
and GPCC v6 instead of WFD/WFDEI climate input for all other variants.

(e.g., High Plains Aquifer in central US, Iran and northwest- differ due to the applied estimation method and precipitation
ern India) (Fig. 7d, ). In these two variants, seasonal grounddata set. Mueller et al. (2013) do not consider a precipita-
water storage variations are solely driven by seasonal varition undercatch correction and assume a global precipitation
ations of groundwater recharge. Without simulating waterof ~ 99 000 knf yr—1 which is low compared to recent esti-
use, some areas with extensive surface water irrigation haveates of Schneider et al. (2014) (117 00Ckmm 1) or the
higher seasonal variations than with water use because largalues used in this study (Table 2). Compared to previous
return flows during the dry (irrigation) season smooth naturalWaterGAP results, model refinements have led to an increase
groundwater storage variations. of discharge. The value of STANDARD is approximately
In addition, seasonal TWS variations in STRUCTURE 450 kn?yr—1 higher than for STRUCTURE (Table 2), and
differ from STANDARD particularly along large rivers previous estimates (Doll et al., 2003) are even lower as pre-
(Fig. 7d), mostly with a smaller range in STRUCTURE. cipitation undercatch was not taken into account.
There, the flow velocity (variable in STANDARD) is lower
than the constant 1nT$ in STRUCTURE, resulting in 4.2 Advantages and limitations of the calibration
increased river storage. In many cold areas, the simpler approach
snow algorithm in STRUCTURE leads to increased TWS
seasonality. The applied calibration approach is clearly beneficial as it
leads to a better fit of simulated to observed monthly river
discharge time series (Fig. 6; Table 4). Consequently, the
4 Discussion basin-specific adjustment of 1-3 parameters CFA and
CFS; see Appendix B1) based on observed mean annual dis-
4.1 Comparison of simulated freshwater fluxes to other  charge has been a part of the WaterGAP modeling approach
estimates since the beginning. Calibration allows to a certain degree
compensating errors in input data and effective model pa-
The modeled AET and discharge to the oceans and inlandameters. Also, structural problems of the model, e.g., due
sinks for all model variants are within the range of publishedto the simplified representation of hydrological processes
values except for the NoCal variant, which has very low AET at a half-degree grid cell, may be balanced out. The ef-
and high discharge values (Tables 2, 5). Discharge estimatefect of calibration on modeled renewable water resources
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Table 5.Comparison of diverse estimates of global actual evapotranspiration and dischargé yin#jn

Actual evapotranspiration

62800 Mu et al. (2011)

64512 Mueller et al. (2013)

65000 Jung et al. (2010)

65500 Oki and Kanae (2006)

66 000 Sterling et al. (2012)

71000 Baumgartner and Reichel (1975)
72000 Korzun (1978)

75 98P Mueller et al. (2011)

60000-85000 Haddeland et al. (2011)

70576 STANDARD

Discharge
34406 Mueller et al. (2013)
36200 Wada et al. (2010)
36687 Doll et al. (2003)
37288 Dai and Trenberth (2002)
38587 Baumgartner and Reichel (1975)
38605 Widén-Nilsson et al. (2007)
39307 Fekete et al. (2002)
39414 Doll and Fiedler (2008)
44560 Korzun (1978)
45500 Oki and Kanae (2006)
42000-66000 Haddeland et al. (2011)
40458 STANDARD

a1.35mmad ! based on a land area of 130 9220° km2. P 1.59 mm d-1 based on a land area of 130 9220 km? (value taken from
Mueller et al., 2013 as no area is given in Mueller et al., 203 Sum of AET and WG.

a) seasonal variation of TWS of STANDARD [mm]

® ® 0P (\‘0(190

d) STRUCTURE minus STANDARD

i 5

P oo P

Figure 7.Seasonal variation of total water storages (TWS) for STANDARI2Nd as difference maps (mm) to all other model variémt$).

(Fig. 4e) dominates all other modifications within this ex-
periment setup.

However, the correction of total cell runoff using CFA and

has undesirable effects on estimated AET and RWR. In the
Yenisey Basin, upstream of Igarka (western Siberian Plain),
AET is largely reduced in one-half of the basin (and vice

CFS that is required to force simulated mean annual river disversa) when using alternative climate forcing. Transferring
charge values to be equal to observed values is not ideal antthe correction factor CFS (which is, if necessary, calculated

Hydrol. Earth Syst. Sci., 18, 3511-3538014
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Figure 8.Range of calibration parametgrthrough all four calibrated model variants (calculatedyasx— ymin) Showing the general
sensitivity to input data and model structure. White colors indicate uncalibrated regions.

at the outflow grid cell of the basin) to the upstream grid cellssee Appendix A), a more realistic representation of dynam-

can lead to unrealistic high positive and negative values forics (integration of time series as input data instead of static

AET if precipitation is too low in these parts of the basin input maps) can reduce the input data and model parameter

to simulate observed discharge or if the AET of surface wa-uncertainty.

ter bodies has to be reduced by CFA. This is the reason for

some artificial patterns in Fig. 3 and consequently in Fig. 4.43 How sensitive are freshwater fluxes and water

These kinds of consistency errors can be found in some more storages to spatially distributed input data (climate

basins where cumulative AET is low and parts of the basins forcing, land cover)?

are covered with surface water bodies. Nevertheless, the ap-

proach ensures a closed water balance for the whole basin.
Obviously, one parameter is not sufficient to calibrate the

model. In many basins thg parameter is not sensitive to

input data and model structure in the current calibration ap

In general, more differences occur due to the alternative cli-
mate input than due to the alternative land cover data. The
major freshwater fluxes (AET, Fig. 3, and RWR, Fig. 4) as

proach as the range gfthrough all four variants (NoCal is Well as river discharge (Fig. 5) show in many cases that

not considered, NoUse has the same value as STANDARDBand cover input hgs much less impact (except for some ar-
is rather small. Of the basins in Fig. 8, 59% are colored®2S Where the attributes of a changed land cover type dif-

dark blue which means that the calibration paramgtéas fer significantly). The effect of different land cover input
the same value in all model variants. Heyeis at its arti- would probably increase if the associated attributes were also

ficial minimum (0.1) or maximum (5.0) value, and the in- modified. Forced with CRU 3.2 and GPCC v6 instead of

fluence of input data and model structure, which were mod-y\”:D/WFDEI ir.1put, AET incrgased by at Ieast'lo mn’T}/r
ified in this experiment, is insignificant. However, in 219 " 1arge parts in the world (light blue colors in Fig. 3b).

of the basinsy is differing by > 1 (green, yellow and red In those regions with similar precipitation amounts but dif-

colors). In these basins, the calibration parameter is sensfErent radiation, RWR decreased by the same amount that

tive to input data and model structure. Therefore, within fu- AET increased (e.g., Southeast Asia, Australia, Saudi Ara-

ture model development, one task is to restructure the caliP'@)- In other regions, no clear effect on RWR is detectable

bration approach with the aim to avoid correction factors or(e'g" North America). In some parts of Europe, RWR in-

rather to introduce and test alternative calibration objectivesC'€ased by at least 10mn yreven if AET increased. Here,

This could be achieved by either including more parame—b,GSifjes radiatipn (affecting AET?' the amount of precipita-
ters (multiparameter calibration) and/or by integrating addi-t10n i of great importance (affecting RWR). L
tional reference data, e.g., GRACE-based data as was shown In regions where the F:I|mate _forcmg _data sets d|ffer S|gn|f?
by Werth and Giintner (2010) (multiobjective calibration). In icantly (g.g., Danube River basin), the lmpgct on dlscharge IS
addition, remote-sensing-based input data with global cov/2r9€ (Fig. 5, bottom center panel). Here, differences in tem-

erage have been available for a decade. Especially for lanf€rature and precipitation amounts lead to a poor fit com-
cover characteristics (e.g., land cover tye,and albedo; pared to observed discharge when using the CLIMATE vari-
ant which is also reflected in thEys criterion (Fig. 9b).
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a) STANDARD

S

Eys class %Z Eys class change
[ X D |
1.2 3 21012

ninus STRUCTURE _

Figure 9.Spatial distribution of Nash—Sutcliffe Efficiency (&) classes (from Table 4, Eng > 0.7, 2: 0.5< ENg < 0.7, 3:Ens < 0.5) for
STANDARD (a), and differences of model variants (calculated as STANDAR[3 class minus that of the model varia(ih)-f). Red colors
indicate a decrease, green an increaging when using the model variant compared to STANDARD.

Also, the two land cover input data sets used here result inWaterGAP. However, discharge before calibration tends to

the sameFE s classes, with only a few exceptions (Fig. 9c). be higher with the implemented structural changes, e.g., due
to the storage-dependent reduction of surface water evapora-

4.4 What are the benefits of WaterGAP model structure  tion. This together with the use of more calibration stations

refinements implemented during the last decade? (Hunger and Ddll, 2008) and the introduction of a bias cor-

rection for observed precipitation (D6l and Fiedler, 2008)

In general, WaterGAP 2.2 STANDARD leads to improved has had the problematic consequence that correction factors

results compared to the reduced model version STRUC+o lower simulated river discharge have increasingly been re-

TURE that is comparable to the D6ll et al. (2003) model ver- quired to ensure that simulated mean annual river discharges

sion. In many basins in the Alpine region in central Europe, are equal to observed values.

the Ens of STRUCTURE ranks behind that of STANDARD

(Fig. 9d, red colors) reflecting a refined simulation of snow-4.5 How does the modeling approach (calibration

cover dynamics on the 3arcmin subgrid. In some basins, procedure, consideration of human water use) affect

the reservoir algorithm improvdsys (and discharge season- freshwater fluxes and water storages?

ality). For example, the Volga at station Volgograd Power

Plant (see also Fig. 5) and basins in Brazil show a muchThe calibration procedure reduces simulated river discharge

better Ens (Fig. 9d) in STANDARD compared to STRUC- and water resources on most of the land area and increases

TURE. However, theEns of some basins withEys < 0.5 the AET (Figs. 3, 4; Table 2). Without calibration, global

in STANDARD is improved in STRUCTURE. In summary, AET and discharge would rank at the lower and higher

integrating more complex and refined process descriptiongnd of the published values, respectively (Table 5). In ad-

(see Sect. 2.2.3) in the past decade has led to the improvetition, the fit to observed monthly river discharge time series

simulation of monthly time series of river discharge with as quantified using th&ys criterion would worsen almost
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Table 6.The three model variants with the largest differences to the STANDARD variant (dSTA) regarding global freshwater flards (Q
AET) and total water storage trends (dTW3/@rom Table 2; values in kﬁ1yr‘1) as well as mediaikyg for monthly time series of river
discharge at the 1319 calibration basins.

Variable STANDARD Rank1 dSTA Rank 2 dSTA Rank3 dSTA
0 40458 NoCal 6364 CLIMATE 1906 NoUse 758
AET 69803 NocCal —6459 STRUCTURE 414 LANDCOVER 209
dTWS/dr —214 STRUCTURE 169 NoUse 140 NoCal 71
MedianEyns 0.54 NoCal —0.66 STRUCTURE -0.05 CLIMATE —0.03

everywhere (Fig. 9f). The impact of calibration on freshwater Table 7. Rank of model variants where global land area (except
fluxes and water storages is higher than those of alternativéreenland and Antarctica) is affected most based on a thresh-
climate forcings and land cover data, and of a more Sophi50|d which represents the 10th percentile of averaged (1971-2000)
ticated model structure. This confirms the strong benefit ofglobal grid cell values for AET and discharge.

calibration. However, ags is affected by mean discharge

as well as discharge variations, the calibration approach im- Rank  Variant Percentage of area affected

proves this criterion. by changes alpove
Compared to the other variants, the consideration of hu- 10th percentile

man water use does not have large effects on freshwater AET Discharge

fluxes and storages at the global scale. In regions with in-

; ) . 1 NoCal 60.5 13.5
tense water use, in particular from surface water bodies 2 CLIMATE 45.5 392
(e.g., in Pakistan), AET without considering additional evap- 3 LANDCOVER 24.2 1.2
oration from WG (Table 2) is reduced due to human wa- 4 STRUCTURE  13.6 1.1
ter use (Fig. 3e). This effect occurs because human water 5 NoUse 0.9 0.03

uses decrease surface water storages and thus the reduc-
tion factor decreases evaporation from surface water bodies
(Appendix Sect. Ab). If the impact of human water use on
river discharge were not considered, van Beek et al. (2011)
showed there would be a lower performance in generalModel algorithms rank second regarding global AET sums
Within our experiment, higher correction factors would be and Ens, and alternative climate forcings rank second re-
necessary in basins with large abstractions from surface wadarding river discharge and third regarding mediag. The

ter bodies or Significant decreases of baseflow due to groun(ﬁ.lternative land cover input data sets have the overall lowest
water abstractions. Still, thEys of basins with high amounts  impact on computed freshwater fluxes and storages.

of human water use is generally lower than those without hu- Regarding grid-cell-specific differences that are more rel-
man water use (not shown). In some basins, mainly in north£vant than global values for most applications, the ranking
eastern Europ@‘NS improves when negiecting human water of dominant uncertainties is quite different. Patterns of sea-

use (Fig. 9e). This obviously reflects uncertainties in watersonal TWS variations are affected most strongly by the cli-
use models. mate forcing (Fig. 7b), while climate forcings show the sec-

ond largest impact on the spatial distribution of AET and

4.6 Which type of uncertainty is dominant for specific RWR, after calibration (Figs. 3, 4). The fraction of the global
fluxes and variations of total water storage? land area that is affected by significant differences of AET

and river discharge between a certain model variant and the
The answer to this question depends on the type of fluxeSTANDARD variant is largest in the case of NoCal, followed
and the spatial aggregation. Regarding selected global sumsy CLIMATE, LANDCOVER, STRUCTURE and NoUse.
of freshwater fluxes (@nd AET) and mean annual total wa- Thus, both global and grid cell values are most sensitive to
ter storage trends dTWS, dominant uncertainties can be dezalibration. The larger sensitivities to climate forcings and
termined by computing differences between the values comiand cover input at the grid cell level (Table 7) cancel when
puted with a certain model variant and STANDARD. As al- globally averaged. The larger sensitivities of globally aggre-
ready shown above, global values of AET afidas well as  gated values (Table 6) to structural changes and the consid-
the fit of simulated to observed river discharge time serieseration of water use is due to unidirectional changes for all
(Ens) are most sensitive to whether the model is calibrated oraffected grid cells, but different to alternative climate and
not (Table 6). STRUCTURE and NoUse have the strongestand cover data, structural changes and water use only affect
impact on the global TWS trend (Table 6) as these modela limited number of grid cells. This discussion on the domi-
variants cannot reflect groundwater depletion. More refinechant type of uncertainty does not take into account parameter
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uncertainty which is a major additional source of uncertainty The STANDARD variant of WaterGAP 2.2 leads to the
(Kaspar, 2003). best fit to observed river discharge (monthly time series,
Fig. 6 and Table 4, and seasonality, Fig. 5). We conclude that
the daily WFD/WFDEI data set as climate forcing is prefer-
able to using a combination of the monthly CRU 3.2 and
§PCC v6 data sets as done for model variant CLIMATE.
; . owever, we found that it is problematic to combine the
as computed by the GHM WaterGAP 2.2 to spatially dis- WFD climate data set (covering 1901-2001) with the only

tributed input data (climate forcing gnd land cover input) aSseemmgly consistent WFDEI data set (covering 1979-2009)
well as model structure (model refinements during the last - . .

. . .. due to a radiation bias (shortwave downward radiation com-
decade), consideration of human water use and calibration

(or no calibration). We designed five model variants in addi_ponent) between the two data sets. This results in a steep in-

tion to the standard variant. In each model variant, one com<ease of actual evapotranspiration in 1979, and a water stor-

ponent or feature was modified with respect to the standard9¢ decrease between 1971 and 2000 that is an artifact of the

variant. Sensitivity of different freshwater fluxes and water Combination of the two climate data sets (comp. Sect. 3.1).

- : : It would be very beneficial for an improved estimation of
storage variations to the five types of uncertainty were ana-

S : lobal freshwater fluxes and storages to have a consistent
lyzed and ranked considering both global sums and grid cellf, .~ " . .
N . daily climate forcing that covers the whole 20th and the early
values, taking into account also the capability of the model

variants to simulate time series of observed river discharge.218t centu'ry. . .
The calibration approach of WaterGAP is necessary to

Basin-specific calibration to mean annual river discharge Wa%ompensate uncertainties of spatially distributed input data,

found to have the strongest impact on fluxes and storage Vel arameters and model structure. However, a calibration of

ation and is the dominant reason for an improved simulationp . . .
. . . : only one parameter related to soil water balance is not suffi-
of observed monthly river discharge time series (as charac-

terized by the Nash—Sutcliffe criterion). Uncertainty due to cient and correction factors have to be applied in a number

alternative climate forcing, and to a lesser extent, land covePf basins. Therefore, a redesign of the calibration approach,

input, leads to significant variations of grid cell fluxes (ac- with additional observations (e.g., including TWS variations

2 - as derived from GRACE gravity fields), other calibration ob-
tual evapotranspiration, renewable water resources and river . . .

. ectives and adjustment of more model parameters (without
discharge) and storages (seasonal range of total water stot- . .

. ) oo . correction factors) is planned.
age) even if the model variants are individually calibrated. . : .
- The improved representation of hydrological processes of

However, these uncertainties largely cancel each other out

the global scale while the more refined model structure, an aterGAP within the last decade led to a more complex

. a]nodel structure. In most cases, those modifications resulted
to a lesser extent water use, are more important for glob

) . o In a better fit to observed river discharge. However, in some
sums of river discharge and actual evapotranspiration but alsQ

for an improved fit to observed monthly time series of river parts of the wolrld, mode_l performa_nce is still f?°t satisfac-
discharge. tory due to an inappropriate modeling of certain processes

such that further changes of the model structure are required.
For example, the modeled discharge seasonality in the Ama-
zon basin is shifted compared to that observed, which is sus-
pected to be caused by inappropriate modeling of the tempo-
ral variations of inundations and the neglect of backwater ef-

fects. The reservoir operation algorithm does not yet take into
account the construction year of the dam. Moreover, model

results in semiarid and arid regions are poor, and improved
modeling of evaporation from ephemeral ponds is planned.

5 Conclusions

We studied the sensitivity of freshwater fluxes and storage
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Overview of Appendix where fy ¢ is the fraction of deciduous plants (—) anglic

is the reduction factor for evergreen plants (—) (Table Al).
Appendix A describes the WGHM in its current version 2.2. pevelopment ofL is simulated as a function of daily tem-
In the order of processing, the single-storage compartmentgerature and precipitation. The growing season starts when
and the belonging in- and outflows are explained. Ap-the daily temperature is above® for a land cover specific
pendix B provides information on the calibration and re- number of days (Table A1) and cumulative precipitation is at
gionalization approach WaterGAP is based on. Appendix Cleast 40 mm. During the growing seasdrincreases linearly
gives a brief introduction of the water use submodels, and thentil it reachesl max after 30 days. In semiarid and arid re-
GWSWUSE module is described in Appendix D. gions, it is necessary that at least 0.5 mm daily precipitation
occurs to keep the growing season going. If the condition for
the growing season is not fulfilled anymore, the senescence
phase is initiated; i.e L is degraded td.min linear within
30 days.

Appendix A: Description of the WaterGAP Global
Hydrology Model (WGHM)

Al Canopy A2 Snow

The change of canopy storage (mm) over timer (d) is

calculated as

ds,

—S—P-P—E, (A1)  dSn
dr ar

where Pgp, is precipitation, falling as snow at temperatures
below 0°C (mmd1), M is snowmelt (mmd?) and Eq, is
sublimation (mmd?).

Snow accumulation and melt are modeled on a 3arcmin
P { P Sc> Scmax subgrid (100 subgrid cells per 0)5using a degree-day algo-

The change of snow water stora§ig (mm) over timer (d)
is calculated as

= Psn— M - Esn, (A6)

where precipitatior? (mm d-1) is the inflow and the amount
of throughfall P, (mmd1) and canopy evaporatiot,
(mmd-1) are the outflows.

Throughfall P; is calculated as

(A2)  rithm (Schulze and Déll, 2004). Mean subgrid elevation was
derived from GTOPO30 (US Geological Survey, 2003). The
Following Deardorff (1978), canopy evaporatifiais calcu-  daily temperature for each subgrid cell is calculated from the

0 Sc< Sc,max '

lated as temperature of the Oxell, applying an adiabatic lapse rate
2 of 0.6°C per 100 m. To avoid excessive snow accumulation,
Ee= Ep( Sc >3 7 (A3) temperature does not decrease if a snow water equivalent of
Sc,max 1000 mm is reached in one subgrid.

_ _ o At temperatures below{C, all precipitation is assumed to
whereE} is potential evapotranspiration (mm#). fall and accumulate as snow. At subgrid temperat@r¢C)
Ep is calculated according to the Priestley—Taylor model ghgve melting temperatu®, (0°C) and if snow storage is

(Priestley and Taylor, 1972), differentiating atmospheric wa-present, snow melts with land cover specific degree-day fac-
ter demand between humid {«1.26) and semiarid/arid tor pr (mmd-1°C-1) (Table A2) as

(¢ =1.74) areas. Grid cells were defined as semiarid/arid if
the long-term-average (1971-2000) precipitation is less tharM | DF(T =Tw) T > Ty, Ssn >0
0.5x Ep (UNEP, 1992). 10 other )

Sc is limited between 0 and maximum canopy storage ) N . .
Se.max Which is calculated as Instead of using one specific albedo for snow as in previ-

ous versions (e= 0.4), land cover specific snow albedo val-
Se,max=mcL, (A4) ues are used to account for differences in reflective properties

between the land use classes under snow-covered conditions
wheremc is 0.3 (mm) andL is the leaf area index (=)L (Table A2). The albedo value switches to snow albedo if the
is calculated based on a modified growth model describednow water equivalent of the grid cell exceeds 3mm, i.e.,
in Kaspar (2003) and is limited to minimum and maximum a closed snow cover is assumed. Sub“ma]‘Eén is mod-
values. MaximumL values per land cover class (Table A1) eled like potential evaporation rate but applying a latent heat

are based on literature (Schulze et al., 1994; Scurlock et alof 2.835 (MJ kg'1) for temperatures below< and 2.501—
2001). MinimumL values per land cover class are calculated.002361x 7 (MJ kg™1) above O'C.

as

(A7)

Lmin = 0-1ﬁi,lc+ (1 - fd,lc) Ce,Ichax, (A5)
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A3 Soil [ precipi- k

| tation P canopy evaporation E_ | vertical

| balance
throughfall P, {5 plimation Esn}
‘
Do)
|
|
|
|
|

P te, Pite, | eite

|
Like snow and canopy, the change of soil water storsige |
(mm) over timer (d) is calculated as one layer as }
|
dSs }
— =Pef— R — E A
dr eff | Ss ( 8) i
with effective precipitationPe (mmd-1) as inflow and i
runoff from landR, (mm d~1) and actual evapotranspiration

inflow from
upstream cells

ES (mm d>l) as OUtﬂOWS_ ‘ groundwater }6—{ local lakes H local wetlands H global lakes/reservoirs ‘
° 3 2 ] l

Py tE,

Pefi = Pt— Psn+ M, (A9)
. . l .

Wlth I)_t IS throughfa” (mm d )’ (See SeCt' Al)Psn 1S pre- net abstraction from net abstraction from :
cipitation falling as snow (mmdl) and M is snowmelt groundwater NA_ surface waters NA, outflow
(mm d>1) from cell

Actual evapotranspiration from the sals (mmd-?) is Figure A1. Schematic structure of the water fluxes and storages
a function of potential evapotranspiration from the Bl 55" computed by WGHM within each 0.5rid cell. Boxes rep-
(mmd!) minus the already evaporated water from the resent water storage compartments, arrows water fluxes (inflows,
canopyEc (mmd-1), actual soil water content in the effec- outflows). Numbers at net abstraction from surface waterss(NA
tive root zoneSs (mm) and total available soil water capacity are the order in which storage water is abstracted until demand is
Ss,max(mm) as satisfied.

Es=min ((Ep — Ec), (Epmax— Ec) < % ) : (A10)

s max Groundwater rechargg (mm d-1) is calculated as a frac-

. 1 . _ _ tion of runoff from land:
where Ep max is 20mmd = in semiarid and arid regions

whereas 10 mmd' in grid cells classified as humidi max Ry =min(Rgmax fgR1).
is the product of total available water capacity in the upper
meter of the soil (Batjes, 1996) and the land cover specifiowhere Rgmax is soil texture specific maximum ground-

rooting depth (Table A2). _ water recharge (mmd) (with values of 7/4.5/2.5 for
Runoff from land R, (mmd=!) is calculated after sandy/loamy/clayey soils) andfy is the groundwater
Bergstrom (1995) as recharge factor (ranging between 0 and 1) related to re-
S v lief, soil texture, aquifer type and the existence of per-
R = Peff( S ) (A11) mafrost or glaciers. For a detailed description see D6l and
s,max Fiedler (2008). If a grid cell is defined as arid and has coarse

Dependent on the soil water stora§ig a part of effective  (sandy) soil, groundwater recharge will only occur if pre-
precipitationPe becomes runoff. If the soil water storage is cipitation exceeds a critical value of 12.5 mmid Both val-
empty, R = 0. If the soil is completely saturated (8§ may, ues, Ry max and the precipitation threshold, are adapted to
runoff equals effective precipitation. Between these points,the climate forcing used (WFD) aiming to reach comparable
the runoff coefficienty determines the amount of precipita- groundwater recharge patterns to D6ll and Fiedler (2008) as
tion that converts to runoff. This parameter is used for cali-that groundwater recharge estimation is confirmed by experts
bration (see Sect. B1). In urban areas (defined as a separatdthin the WHYMAP (World-wide Hydrogeological Map-
input map from IMAGE 2.2), 50 % oPc is directly passed ping and Assessment Programme; http://www.whymap.org)

to the river. efforts. Within CLIMATE, the original values 5/3/1.5 for
Rgmaxand 10 mm d? as precipitation threshold were used.

A4 Groundwater The outflow is modeled withg =0.01d ™! as

Inflow to groundwater storagelg (mm) is groundwa- (.= kgSg- (A13)

ter rechargeRg (mm d-1), whereas outflows are baseflow

Qg (mm d-1) and net abstractions from groundwater NA  The runoff from landR, which is not groundwater recharge
(mmd~1) (Appendix C), which can also act as inflow (e.g., as Rq, represents the fast surface run&f and is routed, to-
additional groundwater recharge due to irrigation with sur-gether withQg, through a series of different storages repre-

face water). senting wetlands, lakes and reservoirs until reaching the river
ds. segment (Fig. Al).

d—tg = Rg— Qg — NAq (A12)
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A5 Surface water bodies i.e., they receive inflow not only from the grid cell itself
but also from upstream (“global” wetlands are defined in

Surface water bodies (inland freshwater such as wetlandshe same way; see Fig. Al). All other surface water bod-

lakes and reservoirs) play an important role in the hydro-jes were classified as “local”. If “global” lakes or reservoirs

logic cycle, e.g., for evaporation and the lateral transport. Incover more than one grid cell, the water balance of the whole

general, surface water body storage$¢m®) increase with  surface water body is calculated at the outflow cell.

inflow I (m3d—1) from other storages or from upstream

(see Fig. A1), and are reduced by the outflow(m3d—1). A6 Lateral routing

Additionally, the water balance of the water body itsBlf

(m3 d—l) is calculated a® = P — E,y, whereP is precipita- The global drainage direction map DDM30 (DO” and

tion (m3 d—l) and Ey, is potential evaporation of open water Lehner, 2002) is used to route the discharge through the

surfaces (d~1) applying an albedo of 0.08. Finally, net Stream network until it reaches the ocean or an inland sink.

abstractions of surface water Am3d—1) are considered, Fast runoffRs= R| — Ry is routed to the surface storages

resulting in the storage equation: without any delay, whereas basefla@y is a function of

groundwater storage (Fig. Al, Appendix A4). Due to lim-
ds [—0+B—NA (A14) ited information on groundwater flow between grid cells,
ki S — NA.

dr

Outflow is in principle modeled like groundwater outflow
(Appendix A4) for “local” lakes and wetlands, whereas

the groundwater recharge can only contribute to groundwater
runoff of the same grid cell.
Verzano et al. (2012) improved the routing by introduc-
“global” lakes and wetlands are linear storages whose equ i_ng_a variable f!OW velocity approach ba;gd on the Manning—
9 9 3 trickler equation. The roughness coefficient is calculated af-

tions are solved analytically. ; . ) ;
. . ter Cowan (1956) by using different physiographic parame-
WaterGAP 2.2 does not consider variable land/water frac-terS and information about rural and urban areas. The hy-

tions as WQUId be expected wht_an a lake is shrinking dued aulic radius is calculated using actual discharge of the
to evaporation and land surface increases; thus Hunger ané{

Dol (2008) introduced a reduction parameter which reducesbe" and empirical relationships of river width and depth at

the evaporation when lake/wetland storage is low. In Water ankfull flow conditions. Bankfull conditions are assumed
. o t rr nd to the 1.5-year maximum seri nnual flow
GAP 2.2, for all surface water bodies the reduction faetor 0 correspond to the 1.5-year maximum series annual flo

. (Schneider et al., 2011) and were accordingly calculated
(=) Is calculated as from daily discharge time series for the global land sur-

1S — Smax \” face. Riverbed slopes were calculated based on the Hy-

r= 1-( ) ; (A15)  droSHEDS (Hydrological data and maps based on SHuttle
Elevation Derivatives at multiple Scales) drainage direction

map (Lehner et al., 2008) and a meandering ratio (method is

Smax

wheres is actual water body storage 0 Smax is maximum : '
water body storage () and p is the reduction exponent describedin Verzano etal,, 2012). o
(=). As no truly global data set on lake volumes is available, The reservoir algorithm of Hanasaki et al. (2006), distin-

the maximum storage capacity is determined by multiplyingQUiShing irrigatior_1 and no_nirrigation reservqirs and consideir-
the surface area with an “active” depth (set to 5 and 2m for"d 1109 reservoirs was implemented and improved by Dol

lakes and wetlands, respectively). Values foare 3.32 for et _al. (2009) and slightly adapted in WaterGAP 2.2: if reser-
lakes and wetlands which means a reduction of evaporatioCIr Storage falls below 10 % of storage capacity, the release
by 10 % if storage is halved and 2.81 for reservoirs, whichcoefficientis set to 0.1 instead of 0.0 as in Ddll et al. (2009),

means a reduction of 15 % if storage is half of the maximumassuring that at least some water is released, e.g., for down-

storage capacity (and a reduction of 50% if storage is re-Siréam ecosystem demands.

duced to 20 % of storage capacity).

The distribution of wetlands is derived from GLWD
(Lehner and Doll, 2004) as percentage of cell coverage.
Locations and attributes of lakes and reservoirs are based
on a combination of GLWD and a preliminary version of
the GRanD (Global Reservoir and Dam) database (Doll
et al., 2009; Lehner et al., 2011). In total, 6553 reser-
voirs, 52 regulated lakes (lakes whose outflow is regulated
by a dam) (from GRanD) and 242798 unregulated lakes
(from GLWD) were considered. Out of these, 1386 large
lakes (area 100kn?), 1110 large reservoirs (storage ca-
pacity>0.5kn?) and 52 regulated lakes (ared00 kn?
or storage capacity 0.5kn?) were classified as “global”;
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Table Al.Parameters of the leaf area index model.

No. Land cover type Lmax Fraction of L reduction factor Initial days to
(=) deciduous  for evergreen start/end with
plantsfq|c  plantsce |c growing season
(d)
1 Evergreen needleleaf forest 4902 0 1 1
2 Evergreen broadleaf forest 4978 0 0.8 1
3 Deciduous needleleaf forest 4.63 1 0.8 10
4 Deciduous broadleaf forest 499 1 0.8 10
5 Mixed forest 434 025 0.8 10
6 Closed shrubland 2.08 0.5 0.8 10
7 Open shrubland 1.88 0.5 0.8 10
8 Woody savanna 2.08 0.5 0.3 10
9 Savanha 1.71 0.5 0.5 10
10 Grassland 1.71 0 0.5 10
11 Permanent wetland 6.34 0 0 10
12 Cropland 3.62 0 0.1 10
13 Cropland/natural vegetation mosaic  3.62 0.5 0.5 10
14 Snow and ice 0 0 0 0
15 Bare ground 1.31 0 1 10

2 .maxis assumed to be the mean value of land cover classes of Scurlock et al. (2001), TeENL and B@Elyhgalue for TrEBL and not
TeEBL (Scurlock et al., 2001) as in WaterGAP this class is mainly in the tropivgan value from TeDBL and TrDBL (Scurlock et al.,

2001);d mean value of all forest classes. Fraction of deciduous plant& aeduction factor for evergreen plants based on IMAGE (Alcamo
et al., 1998), initial days to start/end with growing season are estimated.

Table A2. Attributes for IGBP land cover classes used in WaterGAP 2.2 for all model variants, compiled from various literature sources.
Water has an albedo of 0.08, snow 0.6.

No. Land cover type Rooting Albedd Snow Emissivit? Degree-day
deptt  (-) albedo (-) factoer ¢
(m) ) (mmd-tec™h

1 Evergreen needleleaf forest 2 0.11 0.278  0.9956 15

2 Evergreen broadleaf forest 4 0.07 0.3 0.9956 3

3 Deciduous needleleaf forest 2 0.13 0.406 0.99 15

4 Deciduous broadleaf forest 2 0.13 0.558 0.99 3

5 Mixed forest 2 0.12 0.406  0.9928 2

6 Closed shrubland 1 0.13 0.7 0.9837 3

7 Open shrubland 0.5 0.2 0.7 0.9541 4

8 Woody savanna 15 0.2 0.558  0.9932 4

9 Savanna 1.5 0.3 0.7 0.9932 4

10 Grassland 1 0.25 0.7 0.9932 5

11 Permanent wetland 1 0.15 0.2 0.992 4

12 Cropland 1 0.23 0.376  0.9813 4

13 Cropland/natural vegetation mosaic 1 0.18 0.3 0.983 4

14 Snow and ice 1 0.6 0.7 0.9999 6

15 Bare ground 0.1 0.35 0.7 0.9412 6

2 Adaptedfrom the IMAGE model (Alcamo et al., 1993§;Wilber etal. (1999)° Maniak (1997), WMO (1994).
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Appendix B: Calibration and regionalization
B1 Calibration approach

WGHM is calibrated against mean annual discharge by ad-:
justing the runoff coefficieny (Eq. A11) for all grid cells

of each calibration basin and — if necessary — two additional
correction factors. The calibration procedure of WGHM is
described in Doll et al. (2003) and Hunger and Déll (2008).
As WaterGAP was developed to quantify water resources
and water stress, calibration forces simulated discharge t@iq,re B1. Calibration basins of WaterGAP 2.2 with number of
be, during the calibration period, between 99 and 101 % Ofyears with observations of discharge used for calibration.
observed river discharge. It is implicitly assumed that the

model should be robust enough to reproduce intra- and in-

terannual variability. The main reasons for calibration areB2 Discharge stations used

the uncertainty of input data, parameters and model struc-

ture as well as the scale of the model and grid cell het-Observed discharge time series were provided by the
erogeneity. To overcome overparameterization and to keefslobal Runoff Data Center (GRDC). Following Hunger and
the calibration as simple as possible, calibration is per-Doll (2008), gauging stations listed in the GRDC catalogue
formed by adjusting the one free parameter(Eq. All) (http://grdc.bafg.de/; download date: 28 September 2012)
within the limits of 0.1 and 5.0. With lowy, runoff is were included in the calibration setup if they fulfilled three
high even if the soil is at low saturation, and with a high main criteria: (1) an upstream area of at least 9008 km
value, runoff is small even with nearly saturated soils. How-(2) a time series of at least 4 (complete) years, and (3) an
ever, in many basins, adjustment of the soil water balancénterstation catchment area of at least 30 008 kAl in all,
alone does not lead to a fit of simulated discharge to ob-& number of 1319 stations, covering 53.6 % of the global land
served discharge for various reasons. These include unce@rea except Antarctica and Greenland, was used for calibra-
tainty of climate forcing, underestimation of evaporation tion (Fig. B1). If available, the 30-year period 1971-2000
losses in dry areas caused by neglecting the formation ovas chosen as calibration years.

ephemeral ponds and neglecting of streambed losses. In these ] o

cases, the area correction factor (CFA) is computed, whictP3 Regionalization

' n Il runoff of h cell in th ins. With .
adjusts net cell runoff of each ce the subbasins. Wit In order to transfer the calibrated values to ungauged

limits between 0.5 and 1.5, cells with positive (precipita- ! . ) : . . ;
. o . basins, the parameter is regionalized using a multiple linear
tion > evapotranspiration) and negative (water body evapo-

transpiration> precipitation, e.g., global lakes which are fed irl:?rga[ti Sds'O\?aﬁjpeir?sfﬁer?éﬁgnw?;hig;t:?elslgﬂa:g??rﬁfet;e;ﬂ_
by upstream inflow) are multiplied by a value symmetric nual ter); erature, mean availagble soil water Ea aéit fraction
around 1.0 (Hunger and Ddll, 2008). In some basins, how- P ' pacity,

ever, the adaptation of both and CFA is not sufficient of open water bodies, mean basin land surface slope, fraction

S L . of permanent snow and ice, and the aquifer-related ground-
for a successful calibration; i.e., the deviation between Slm-water recharae factor. Like in calibration basins. the reqion-
ulated and observed long-term-average discharge remair@.F g ' ' 9

larger than 1 %. Possible reasons are discussed in Hunger a zed parameter values are constrained to the range 0.1-5.0.

Doll (2008). To avoid error propagation to the next down- i A a;g C'.:S are not regionalized but are set to 1.0 in uncal-
stream basin, the modeled discharge is corrected to the meé\—rate asins.
sured discharge in the grid cell where the discharge station is
located by multiplying it by the station correction factor CFS

(Hunger and Dall, 2008).
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Appendix C: Description of water use models Appendix D: Description of GWSWUSE

In preprocessing steps to the WGHM, the global water usdn the water use models, the source of the abstracted wa-
submodels (left side of Fig. 1) provide water withdrawal ter is not distinguished. This is done in the WaterGAP sub-
and water consumption (the part of withdrawn water that ismodel GWSWUSE (Déll et al., 2012). Based on the results
not returned to the system but evaporated or incorporated iof the water use models, GWSWUSE computes net abstrac-
products) for five sectors: irrigation, livestock farming, do- tions (abstractions minus return flows) from groundwater and
mestic use (households and small businesses), manufacturimgt abstraction from surface water bodies that serve as in-
industries and thermal power plant cooling. put to WGHM (Fig. 1). As a first step within GWSWUSE,
Irrigation water consumption is calculated on daily time the time series of consumptive water use in irrigation, which
steps for each grid cell by the GIM on the basis of griddedis computed by GIM for temporally constant irrigation ar-
area equipped for irrigation (Siebert et al., 2005, 2007) andeas but changing climate variables, is scaled by using an an-
climate as full irrigation (the difference between potential nual time series of irrigated area by country uses information
evapotranspiration and effective precipitation) of paddy rice(Ddll et al., 2012). Then, groundwater use fractions for ir-
and nonrice crops, based on modeled cropping patterns (Ddligation (Siebert et al., 2010), domestic and manufacturing
and Siebert, 2002). Consumptive livestock water use is calwater use are applied, and irrigation water abstractions are
culated as a function of the number of animals per grid celldetermined by dividing consumptive use by irrigation wa-
and water requirements per capita for 10 different livestockter use efficiencies. In contrast to Déll et al. (2012), irriga-
types, while national values of domestic and manufacturingtion water use efficiencies differ between surface water and
water use are downscaled to the grid cells using populatiorgroundwater use in WaterGAP 2.2. While for surface water
density (Florke et al., 2013). Cooling water use per grid cellirrigation country-specific values are still used, irrigation wa-
accounts for the location of more than 60 000 power plantster use efficiency was set to 0.7 worldwide in case of ground-
their cooling and combustion type, and their electricity pro- water irrigation (D6ll et al., 2014a). Return flows from irri-
duction (Florke et al., 2013; Vassolo and Déll, 2005). Tem- gation to either groundwater or surface water are computed
poral development of domestic, manufacturing, and coolingas a function of the cell-specific artificial drainage fraction
water use is calculated as water use intensity per capita ofDoll et al., 2012). In WaterGAP 2.2, the fraction of irri-
unit of industrial output (considering structural and techno-gation return flows that recharge groundwater was increased
logical change over time), multiplied by the driving force as compared to Déll et al. (2012) and is computed as 0.95-
of water use, either population (for domestic use), national0.75 times the cell-specific artificial drainage fraction. Due
manufacturing output (as gross value added, which is a shart® return flows, net abstractions can be positive (water is ab-
of gross domestic product), or national thermal electricity stracted from storage) or negative (water is added to storage)
production (Florke et al., 2013). While WGHM uses aggre- (see Fig. 1 of Ddll et al., 2014a).
gated monthly time series of irrigation consumptive use, the
other sectoral water uses are distributed equally throughout
the year.
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Abstract. When assessing global water resources with hy-
drological models, it is essential to know about methodologi-
cal uncertainties. The values of simulated water balance com-
ponents may vary due to different spatial and temporal ag-
gregations, reference periods, and applied climate forcings,
as well as due to the consideration of human water use, or
the lack thereof. We analyzed these variations over the pe-
riod 1901-2010 by forcing the global hydrological model
WaterGAP 2.2 (ISIMIP2a) with five state-of-the-art climate
data sets, including a homogenized version of the concate-
nated WFD/WFDETI data set. Absolute values and temporal
variations of global water balance components are strongly
affected by the uncertainty in the climate forcing, and no
temporal trends of the global water balance components are
detected for the four homogeneous climate forcings consid-
ered (except for human water abstractions). The calibration
of WaterGAP against observed long-term average river dis-
charge Q significantly reduces the impact of climate forcing
uncertainty on estimated Q and renewable water resources.
For the homogeneous forcings, Q of the calibrated and non-
calibrated regions of the globe varies by 1.6 and 18.5 %, re-
spectively, for 1971-2000. On the continental scale, most dif-
ferences for long-term average precipitation P and Q esti-
mates occur in Africa and, due to snow undercatch of rain
gauges, also in the data-rich continents Europe and North
America. Variations of Q at the grid-cell scale are large, ex-
cept in a few grid cells upstream and downstream of cali-
bration stations, with an average variation of 37 and 74 %
among the four homogeneous forcings in calibrated and non-

calibrated regions, respectively. Considering only the forc-
ings GSWP3 and WFDEI_hom, i.e., excluding the forcing
without undercatch correction (PGFv2.1) and the one with a
much lower shortwave downward radiation SWD than the
others (WFD), Q variations are reduced to 16 and 31 %
in calibrated and non-calibrated regions, respectively. These
simulation results support the need for extended Q measure-
ments and data sharing for better constraining global water
balance assessments. Over the 20th century, the human foot-
print on natural water resources has become larger. For 11—
18% of the global land area, the change of Q between 1941—
1970 and 1971-2000 was driven more strongly by change of
human water use including dam construction than by change
in precipitation, while this was true for only 9-13 % of the
land area from 1911-1940 to 1941-1970.

1 Introduction

Assessment of global-scale water resources and water bal-
ance components is of importance for water resources man-
agement at global, continental, and river basin scales (Voros-
marty et al., 2015). Many data-based, model-based, and hy-
brid approaches exist in order to quantify macro-scale wa-
ter balance components (Baumgartner and Reichel, 1975;
Fekete et al., 2002; Haddeland et al., 2011; Miiller Schmied
et al., 2014; Oki and Kanae, 2006). For water resources man-
agement, especially the estimation of renewable freshwater
resources (long-term average runoff or river discharge) is of
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importance, as it is the source for both human and ecosystem
needs. As adequate discharge observations are available only
at selected locations (see the catalogue of the Global Runoff
Data Centre (GRDC), http://grdc.bafg.de/), model-based or
hybrid (i.e., incorporating historical discharge observations)
approaches to estimating discharge and other water balance
components are of increasing importance. Since the 1980s,
global hydrological models (GHMs) have been developed
to calculate the water balance on global and/or continen-
tal scales. Recent reviews of such models are presented by
Bierkens (2015), Sood and Smakhtin (2015), and Trambauer
et al. (2013).

All GHMs are driven by climate forcing input data sets
(hereafter called climate forcings), based on station observa-
tions (e.g., for precipitation and air temperature), reanalysis
(global circulation models for numerical weather prediction,
which assimilate all available up-to-date data for current time
step), and/or remote sensing data (e.g., for radiation). Within
the last 2 decades, numerous climate forcings were devel-
oped with a current standard of at least daily temporal reso-
lution and 0.5° by 0.5° spatial resolution (the common GHM
spatial resolution), providing data from as early as 1901 until
recent years. These climate forcings differ among each other
and thus may lead to different water resources estimates by
GHMs.

Humans have altered the global water cycle with an in-
creasing intensity, e.g., due to irrigation or industrial water
use (Doll and Siebert, 2002; Dol et al., 2012; Florke et al.,
2013; Siebert et al., 2015; Wada et al., 2010). A number of
GHMs (but not all) are able to incorporate human water use
in their calculations (see Table 2 in Bierkens, 2015). Neglect-
ing anthropogenic water consumption prevents meaningful
water resources assessments, at least in regions with high wa-
ter consumption relative to renewable resources (e.g., High
Plains aquifer, Indus, Ganges—Brahmaputra). For example,
groundwater depletion as observed by falling groundwater
heads in wells and by GRACE satellite observations of grav-
ity variations can only be modeled when human water use is
considered (Doll et al., 2014).

Simulated water balance components vary considerably
due to various uncertainties of GHMs (Haddeland et al.,
2011; Schewe et al., 2014) including human water use, model
improvements over time (e.g., see the different results of the
Water Global Assessment and Prognosis (WaterGAP) model
in Miiller Schmied et al. (2014), their Table 5), and climate
forcing (Biemans et al., 2009; Voisin et al., 2008) as well as
uncertainties in discharge observations (Coxon et al., 2015;
McMillan et al., 2012). In addition to these uncertainties, wa-
ter resources estimates differ due to different reference peri-
ods (Wisser et al., 2010).

This study contributes to the assessment of water balance
components on a global and continental scale by answering
the following research questions.
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1. What is the impact of climate forcing uncertainty on wa-
ter balance components at global, continental, and grid-
cell scale?

2. What is the variation of estimated global water balance
components for different temporal aggregations: year,
decade, 30 years, and century?

3. What determines variations of long-term average river
discharge between consecutive 30-year periods more
strongly: either change of precipitation or change of hu-
man water use and dam construction creating reservoirs
and regulated lakes (anthropogenic impact)?

To answer these questions, we conducted a modeling experi-
ment. The model, data, and methods are described in Sect. 2.
Results are presented and discussed in Sect. 3. Finally, con-
clusions are drawn and an outlook is given.

2 Data and methods

In this study, the global water availability and water use
model WaterGAP (Alcamo et al., 2003; Doll et al., 2003)
was applied in a modified version of WaterGAP 2.2 (Miiller
Schmied et al., 2014) in two water use and management vari-
ants (including and excluding anthropogenic effects). The
model was driven by four state-of-the-art climate forcings
provided by the Inter-Sectoral Impact Model Intercompar-
ison Project (ISIMIP) in its phase 2a (https://www.isimip.
org/about/#simulation-rounds-isimip2a) and a fifth homog-
enized forcing.

2.1 GHM WaterGAP 2.2 (ISIMIP2a)

The spatial resolution of WaterGAP is 0.5° by 0.5° (~ 55 km
by 55km at the equator), and the model uses daily time
steps for calculation. The WaterGAP water use models com-
pute water use estimates for five sectors (irrigation, domes-
tic, manufacturing, cooling water for electricity generation,
and livestock) that are processed by the GroundWater Sur-
face Water USE (GWSWUSE) submodule to quantify both
net water abstractions from surface water and from ground-
water (Fig. 1 in Miiller Schmied et al., 2014). Taking into
account the net abstractions, the WaterGAP Global Hydrol-
ogy Model (WGHM) calculates changes in water storage
compartments as well as water flows between these compart-
ments based on water balance equations, including ground-
water recharge, evapotranspiration, and river discharge. A
description of model version WaterGAP 2.2 can be found
in Miiller Schmied et al. (2014). The version used for this
study is named WaterGAP 2.2 (ISIMIP2a), and differences
to WaterGAP 2.2 mainly consider requirements of the ISI-
MIP project phase 2a as described in Appendix A.

www.hydrol-earth-syst-sci.net/20/2877/2016/
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Figure 1. Global land area affected by WaterGAP 2.2 (ISIMIP2a) calibration (grey shading) against observed long-term average river
discharge. Streamflow directions and flow accumulation are based on the drainage direction map DDM30 with 0.5° resolution (D6ll and

Lehner, 2002).

2.2 Calibration of WaterGAP 2.2 (ISIMIP2a) against
observed streamflow

The purpose of WaterGAP has been to provide a best es-
timate of renewable water resources worldwide. To obtain
meaningful estimates of water resources despite different
sources of uncertainty related to GHMs, a calibration rou-
tine was applied (see Doll et al., 2003; Hunger and D&l
2008; Miiller Schmied et al., 2014). The calibration routine
in WaterGAP 2.2 (ISIMIP2a) forces the long-term annual
simulated river discharge (Q) to be equal (within £1 %) to
observed long-term annual discharge at grid cells represent-
ing calibration stations, for the period of observations (with a
maximum of 30 years of observations considered). With al-
ternative climate forcings, basin-scale differences in Q and
(subsequent) actual evapotranspiration (AET) therefore oc-
cur especially in catchments without calibration stations or
during years without observed discharge. Figure 1 shows the
land grid cells that are affected by calibration in this study,
incorporating around 54 % of the global land surface (ex-
cluding Antarctica and Greenland). We calibrated the model
for each of the four climate forcings GSWP3, PGFv2, WFD
and WFDEI_hom (descriptions of acronyms in Sect. 2.3)
against mean annual discharge at 1319 discharge observa-
tion stations from the Global Runoff Data Centre (GRDC)
catalogue, except for WFD, where due to the earlier end of
the forcing time series, only 1312 stations could be used.
The calibration parameters of WFDEI_hom were then used
for the WFD_WEFDEI forcing. Observation stations were
selected such that the upstream area was a minimum of
9000 km?. To avoid including stations that are located very
close to each other along a river, the minimum interstation
catchment area was set to 30 000 km?2. Furthermore, a station
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was selected only if a minimum of 4 complete years of data
were available.

2.3 Climate forcing data sets

Within the ISIMIP project phase 2a, four state-of-the-art cli-
mate forcings were made available through the coordinat-
ing Potsdam Institute for Climate Impact Research (PIK):
GSWP3, PGFv2, WFD, and WFD_WFDEI. For each forc-
ing, daily values of the variables surface-level (raingage-
level) precipitation (P), 2m air temperature (7'), shortwave
downward radiation at the surface level (SWD), and long-
wave downward radiation at the surface level (LWD) were
used to run WaterGAP. Due to inhomogeneity problems dur-
ing overlapping periods of WATCH Forcing Data based on
ERA-40 (WFD data set, 1901-2001) and WFD methodol-
ogy applied to ERA-Interim (WFDEI data set, 1979-2010),
a data homogenization method was applied. This resulted in a
fifth homogenized climate forcing (WFDEI_hom). The name
of the climate forcing is used to name the model variant. In all
data sets, daily precipitation estimates were obtained by bias
correcting output of weather models by monthly precipita-
tion data sets that had been derived from monthly precipita-
tion observed at raingages. These monthly data sets were op-
timized for spatial coverage, i.e., using, for each month, the
available number of gauging stations. The temporally vari-
able number of precipitation observations makes the applied
precipitation data sets less suitable for the analysis of tempo-
ral variations. While a temporally homogeneous data set of
observation-based monthly precipitation exists at least for the
time period 1950-2000, it is based on less than 10 000 gaug-
ing stations and therefore provides a spatially less accu-
rate representation of global-scale precipitation (Beck et al.,
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2005) than the data sets used in this study, which include up
to 50000 gauging stations (Schneider et al., 2015).

2.3.1 Global Soil Wetness Project 3 (GSWP3)

For the third phase of Global Soil Wetness Project (GSWP),
a century-long (1901-2010) high-resolution global climate
data was developed (http://hydro.iis.u-tokyo.ac.jp/GSWP3).
The 20th Century Reanalysis (20CR) project done with the
NCEP atmosphere land model (Compo et al., 2011) which
has a relatively low spatial resolution (~ 2.0°) and long-term
availability (140 years) was dynamically downscaled into the
global T248 (~ 0.5°) resolution using Experimental Climate
Prediction Center (ECPC) Global Spectral Model (GSM)
by spectral nudging data assimilation technique (Yoshimura
and Kanamitsu, 2008). Also, Global Precipitation Climatol-
ogy Centre (GPCC) version 6 (for P), Climate Research
Unit (CRU) TS3.21 (for T'), and Surface Radiation Budget
project (SRB, for SWD/LWD) were used for bias correction
to reduce model-dependent uncertainty. Wind-induced P
undercatch correction is applied depending on gauge type
and their global distribution according to Hirabayashi et
al. (2008).

2.3.2 Princeton Global Meteorological Forcing
Dataset (PGFv2.1)

The Princeton Global Meteorological Forcing Dataset, ver-
sion 2 (PGFv2) is an update of the forcing described by
Sheffield et al. (2006). It blends reanalysis data (NCEP-
NCAR) with station and satellite observations and covers
the period 1901-2012 in its current form (http://hydrology.
princeton.edu/data.pgf.php). P is bias corrected to monthly
CRU TS3.21 but is not undercatch corrected (different
to its previous version 1). Daily T is adjusted to match
CRU TS3.21 monthly values by shifting. SWD is adjusted
for systematic biases at monthly scale (using a product from
the University of Maryland (by Rachel Pinker) developed
within the NASA MEaSUREs project) and then for trends
using CRU TS3.21 cloud cover. LWD is scaled to match the
mean and variability of the University of Maryland data (see
SWD) but retains the year-to-year variation of the NCEP
data. All information on PGFv2 is based on personal com-
munication with J. Sheffield in 2015. During the first review
process of this paper, we were informed about an error in
the 7" data for the period 1901-1947 for certain regions. We
therefore present results below of a WaterGAP run driven by
the corrected version PGFv2.1 but with calibration parame-
ters determined by using PGFv2, as no significant effect of
the erroneous 7' data on calibration is expected, because cal-
ibration periods start after 1947 (except for 21 basins that are
all located in regions where the error effect is small).
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2.3.3 WATCH Forcing Data (WFD)

The WATCH Forcing Data (WFD) was developed by Wee-
don et al. (2010, 2011) in the scope of the European FP6-
funded Water and Global Change (WATCH) project (http:
/Iwww.eu-watch.org). The data set is based on the European
Centre for Medium-Range Weather Forecasts (ECMWF) 40-
year reanalysis product (ERA-40) for the period 1958-2001
and on the reordered ERA-40 data for the period 1901-
1957. The variables from ERA-40 are interpolated (taking
into account elevation) and some are corrected to monthly
observation data, e.g., P is corrected using GPCC ver-
sion 4 observations (details in Weedon et al., 2010, 2011).
Monthly P is corrected for wind-induced undercatch accord-
ing to Adam and Lettenmaier (2003). Monthly 7 is cor-
rected to CRU TS2.1 and SWD is corrected to cloud cover
of CRU TS2.1, whereas LWD is not bias corrected (Weedon
et al., 2010).

2.3.4 Combined WFD and WFDEI (WFD_WFDEI)

The WFDEI data set was created by applying the WFD
methodology to the newer ERA-Interim reanalysis data of
ECMWE, which is improved compared to ERA-40, espe-
cially for SWD (Weedon et al., 2014). WFDEI is available
for the period 1979-2010, with P bias corrected to GPCC
version 5 (and version 6 for 2010) and using ratios from
Adam and Lettenmaier (2003) for correction of P under-
catch. SWD in WFDEI is larger than SWD of WFD almost
everywhere on the globe, with differences between 15 and
100 W m~2 in most of Africa and Europe, due to changes in
aerosol distribution in ERA-Interim as compared to ERA-
40 (Dee et al., 2011; Weedon et al., 2014). Monthly val-
ues for T are bias corrected to CRU TS3.1/3.21 and SWD
to cloud cover of CRU TS3.1/3.21. WFD_WFDEI, as pro-
vided by ISIMIP2a, is a simple time-consecutive combina-
tion of WFD (1901-1978) and WFDEI (1979-2010), which
can be problematic when not checking for offsets (Weedon
et al., 2014). Miiller Schmied et al. (2014) used the same
concatenating approach and found considerable offsets in
WaterGAP simulated water balance components. Due to the
strong global increase in SWD in WFDEI relative to WFD
for overlapping periods (1979-2001), global AET increased
by ~5000km? yr~!, which affects resulting water storages
and global sums of Q (Miiller Schmied et al., 2014).

2.3.5 Homogenized combined WFD and
WFDEI (WFDEI_hom)

To overcome the offset in selected climatic variables between
WEFD and WFDEI, a homogenization approach analog to the
bias correction approach in Haddeland et al. (2012) was ap-
plied to the daily data for three climatic variables (SWD,
LWD, and T'). For SWD and LWD, a multiplicative approach
was applied (Eq. 1), whereas T was homogenized with an
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additive approach due to possible zero values (Eq. 2), and
P was not homogenized as only marginal differences in con-
tinental and global sums occur (Table 4).

VwrDEI(m)

Vhom = VWFD * ——— (D
Vwrp (m)

Vhom = Vwrp + Vwrper (1) — Vwrp (), )

with Vhom being the homogenized daily variable (1901-
2001), Vwep the original daily variable from WFD (1901-
2001), and Vwgpgi(m) and m(m) the long-term mean
monthly variable from WFDEI and WFD for the overlapping
time period 1979-2001, applied to the current month ().
The final homogenized daily WFDEI_hom time series con-
sists of homogenized WFD data until 1979 and of WFDEI
data afterwards. As the averages of SWD and T during the
overlapping period are larger for WFDEI than for WFD,
WEFDEI_hom values until 1978 are larger than respective
original WFD values, also included in WFD_WFDEI time
series. The opposite is true for LWD, which is furthermore
only slightly adjusted compared to SWD.

2.4 Calculation of spatial averages and indicators
2.4.1 Calculation of spatial averages

The calculation of global averages for climate forcing vari-
ables as well as water balance components are based on all
land grid cells excluding Antarctica (not represented), Green-
land, and those grid cells that represent inland sinks. For T,
SWD, and LWD, area-weighted averages were calculated.
QO was calculated for global totals by summing up Q of all
grid cells that are outflow cells into the ocean according to
the drainage direction map DDM30 (Doll and Lehner, 2002)
and Q into all grid cells that represent inland sinks. The same
procedure was used for the continental assessment (with all
of the Russian Federation considered to belong to Europe in
this study). For the calibrated and non-calibrated regions, the
sum of net cell runoff (Q flowing out of the grid cell minus Q
flowing into the grid cell) was used.

2.4.2 Indicator for relative dominance of precipitation
or anthropogenic impact on discharge variability

To answer research question 3, i.e., to determine whether the
change of long-term average discharge between two consec-
utive 30-year periods is caused mainly by the change of P in
the upstream river basin or by the change of anthropogenic
impact on Q by human water use and dam construction,
two indicators were developed and combined. In the equa-
tions below, Q represents simulated discharge under anthro-
pogenic conditions, whereas Qnat is the discharge that would
occur with neither human water use nor reservoirs or regu-
lated lake regulation by dams.

First, we assume that P change cannot be a more dominant
driver than change of anthropogenic impacts if P increases
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while Q decreases (and vice versa), expressed by the ratio
of differences in Eq. (3). Furthermore, the runoff coefficient
scales the ratio. Thus, indicator A,, is computed as

Pbas(n),t2 - Pbas(n),tl

Qn,t2 - Qn,tl

where A, (-) is the indicator for dominance of P of grid
cell n with Ppasn) (km3 yr_l) as sum of P for the upstream
area (contributing basin area) and Q, (km?3 yr’l) the simu-
lated river discharge of the grid cell between the time periods
tl(e.g.,1941-1970) and ¢2 (e.g., 1971-2000). The runoff co-
efficient Cpp , (-) is calculated as the averaged mean runoff
coefficient of the two time periods under consideration

Qnatn,ll Qnatn,ﬂ )

Poasiny.r1 Poasn) .12

An = CQP,n (3)

“)

CQP,n =avg (

where Qnat, (km?3 yr_l) is the simulated river discharge of
the grid cell of the model runs without human water abstrac-
tions and reservoir operation. The runoff coefficient is inde-
pendently calculated for the two time periods.

If changes of P and Q have the same sign, A, is pos-
itive, and the change in P may be a significant driver of
the Q change. If A, is negative, it can be excluded that the
change of P is a dominant driver of the change in Q.

Indicator B, quantifies the anthropogenic impact on river
discharge, expressed as the change in the difference be-
tween Q and Qnat compared to the change in Q. An in-
creasing difference between Q and Qnat between the periods
should lead to a decrease of Q.

(Qn,tz - Qnatn,zz) - (Qn,tl - Qnatn,zl)
Qn,t2 - Qn,tl

where B, (—) is the indicator for dominance of anthropogenic
impact on river discharge ranging from negative values, zero
(for Q = Qnat), to positive values. If, e.g., O increases be-
tween the two time periods but the difference between Q
and Qnat decreases, e.g., due to decreased human water use
among the time periods, B, becomes negative, indicating
that anthropogenic effects cannot be the dominant driver of
change in Q.

The larger A, (B,), the more likely P (anthropogenic ef-
fects) is the dominant driver of Q change, since the change
in P (anthropogenic effects) is large. Consequently, P is a
more dominant driver than change in anthropogenic impact
if A, > B, and A,, > 0. The change in anthropogenic impact
is the more dominant driver than change in P if B, > A,
and B, > 0. If both A;, <=0 and B, <=0, changes in Q are
neither consistent with changes in P nor with changes in an-
thropogenic impact, and Q change is caused by other drivers,
e.g., T. No assessment is possible if there is no change in Q.
To illustrate the indicator of relative dominance approach,
Table 1 lists indicator values and underlying data for the ex-
ample of four grid cells representing discharge of large rivers
near the outlet to the ocean.

B, = , &)
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Table 1. Examples of indicator calculation (Sect. 2.4.2) for four
large river basins at grid cells located near the outflow to the ocean
for the forcing GSWP3 and changes from 1941-1970 (¢1) to 1971-
2000 (¢2). Values for latitude and longitude in decimal degrees,
values for A, and B, are dimensionless, other numbers are in
km?3 yr~!. Explanations of variables other than lat and long, see
Sect. 2.4.2.

Rhine  Congo Colorado  Yellow
River River River River
Lat 4.25 12.25 —114.75  133.25
Long 52.25 —6.25 31.75 48.25
Poasn), 11 169.36  5735.52 191.24 771.92
Poas(n), 12 176.43  5469.11 206.56 771.91
Onaty, 11 69.27 1370.46 1.53 215.28
Onaty, 12 75.19 1251.09 1.92 209.94
Ont1 67.83 1370.46 0.62 213.41
On2 72.63 1250.67 0.10 203.68
Ap 0.61 0.52 —0.26 0.00
B, —-0.23  0.00 1.76 0.45
Ay, > By, and B, > A, and

Dominant driver

Ap > 0: precipitation By > 0: human impact

3 Results and discussion

3.1 Water balance components as impacted by climate
forcing uncertainty

In this section, uncertainties of climate forcing are described
first, followed by uncertainties of model output variables
stemming from climate forcing uncertainty (Fig. 2). Spatial
scales range from global (Table 2) to continental (Table 3)
and to grid cells (Fig. 3). In addition, we differentiate be-
tween calibrated and non-calibrated regions (Table 5). Fi-
nally, values of water balance components are compared to
values from other studies (Table 6).

3.1.1 Uncertainty of global climate forcings

The 1971-2000 global P differs among the model forcing
variants, with the largest difference found between the CRU-
based product (PGFv2.1) and the GPCC-based products (all
other forcings) amounting up to 7500km3 yr~! (Table 2).
Even the GPCC-based forcings vary by up to 1400 km?> yr~!
(exceeding the amount of actual water consumption WCa).
Oceania (with the lowest absolute value) has the lowest devi-
ation among the forcings (Table 3). The largest deviations are
found in North America, Europe, and Africa. In North Amer-
ica and Europe, where the station density is comparably high
and GPCC versions agree very well (Table 4) but in win-
ter precipitation falls often as snow (with strong undercatch
in gauging devices), the different approaches to undercatch
correction of P lead to large P deviations among the climate
forcings. In case of WFD and WFDEI, monthly precipitation
data are undercatch corrected according to Adam and Letten-
maier (2003); in the case of GSWP3, a correction described
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in Hirabayashi et al. (2008) is applied, while there is no un-
dercatch correction in PGFv2.1. While the calibrated grid
cells cover 53.9 % (53.7 % for WFD) of global land area (ex-
cluding Antarctica and Greenland), they receive 61.0-61.5 %
of P (for all forcings, Table 5). The variation among the forc-
ing variants, calculated as (maximum P minus minimum P)
divided by mean P, is with a value of 7.5 % slightly higher
in calibrated basins than in non-calibrated basins (6.1 %) (Ta-
ble 5).

Global averages of T for 1971-2000 are very similar
for all forcings, which is not surprising as all of them are
bias corrected to (different) versions of the CRU time se-
ries. Global annual averages over the 30 years differ between
the warmest (PGFv2.1) and coldest (WFD) forcing by only
0.08 °C.

SWD is the forcing variable which has large differences
throughout the forcings (Fig. 2). Remarkably lower values
are found for WFD (compared to GSWP3 and PGFv2.1)
which is a result of the underlying reanalysis and dominantly
affects Africa and Europe (Sect. 2.3.4, Table 3, Weedon et al.,
2014). The concatenation approach (which is also used in the
ISI-MIP project phase 2a) of WFD_WFDETI leads to a very
strong increase (on average ~ 15W m™2) starting in 1979.
Homogenizing WFD eliminates this effect (WFDEI_hom,
Fig. 2). Variations of global LWD are rather low (Table 3).

3.1.2 Uncertainty of simulated water balance
components due to climate forcing uncertainty

Climate forcing uncertainty propagates to all water bal-
ance components simulated by WaterGAP. For the period
1971-2000, global Q varies among the five forcings by
about 3400 km? yr’1 (Table 2). On the continental scale, the
strongest climate-forcing-induced variation of Q occurs in
Africa (Table 3). Here, some areas with high amounts of P
(and Q) are in non-calibrated regions (e.g., Madagascar, see
Fig. 3). Besides, the runoff coefficient (Q/ P) of Africa, with
avalue of 0.21, is the lowest compared to all other continents,
which vary between 0.34 (Oceania) and 0.47 (Europe). A low
runoff coefficient leads to the translation of a small precipi-
tation deviation (in percent of mean) to a relatively large dis-
charge deviation, as can also be seen for Oceania (Table 3).
While calibrated basins cover 54 % of the global land
area excluding Greenland and Antarctica (Fig. 1), 53-58 %
of global Q flows out of calibrated basins (Table 5). Most
of the Q from non-calibrated basins is simulated to oc-
cur in tropical regions, particularly in Indonesia and other
parts of southeast Asia. As expected, the sum of Q from all
non-calibrated basins varies more strongly among the forc-
ing variants (18.4 %) than the sum of Q from all calibrated
basins (2.8 %, Table 5). Variation of Q from non-calibrated
regions is reduced to 10.5 % if the PGFv2.1 variant (the only
forcing without precipitation undercatch correction) is ex-
cluded, while Q variation in the calibrated regions remains
the same. If only the four homogeneous forcings (without
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Figure 2. Global sums (means) of climatic variables and water balance components for five climate forcings (GSWP3: 1901-2010, PGFv2.1:
1901-2012, WFD: 1901-2001, WFDEI_hom: 1901-2010, WFD_WEFDEI: 1901-2010) for different temporal aggregation periods of 1, 10,
30, and 100 years. Displayed are temperature (7'), shortwave downward radiation (SWD), longwave downward radiation (LWD), precipita-
tion (P), discharge into the ocean or inland sinks (Q), actual evapotranspiration (AET), and (actual) water consumption from surface water
resources (which could be smaller than the demand, depending on water availability) and groundwater resources (WCa).
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Table 2. Global sums of water balance components for land area (except Antarctica and Greenland) (km3 yr_l) from WaterGAP (same
sorting as Table 2 in Miiller Schmied et al., 2014) for the five model variants and the years 1971-2000. Cells representing inland sinks were

excluded but discharge into inland sinks was included.

No. Component GSWP3  PGFv2.1 WFD WFDEI_hom WFD_WFDEI
1 Precipitation P 109 631 103525 110690 111050 111050
2 Actual evapotranspiration AET? 68026 63416 67588 69907 68 887
3 Discharge into oceans and inland sinks Qb 40678 39173 42200 40213 41298
4 Water consumption (actual) (rows 5 and 6) WCa 933 960 915 949 932
5 Net abstraction from surface water (actual)® 1050 1071 1023 1070 1044
6 Net abstraction from groundwaterd —117 —111 —108 —121 —112
7 Change of total water storage dS/dz® —14 -30 -20 -25 —74
3 Long-term-averaged yearly volume balance error 6 6 7 6 6

(P — AET — Q — WCa — dS/dt)

2 AET does not include evapotranspiration caused by human water use, i.e., actual water consumption WCa. b Taking into account anthropogenic water use.
¢ Satisfied demand from surface waters. 4 Negative values indicate that return flows from irrigation with surface water exceed groundwater abstractions. © Total water
storage (TWS) of 31 December 2000 minus TWS of 31 December 1970, divided by 30 years.
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Figure 3. Spatial distribution of the maximum difference of long-term average (1971-2000) Q among the four homogeneous climate forcings
(GSWP3, PGFv2.1, WFD, WFDEI_hom), expressed as absolute deviation (km3 yr_l) (a, b) and relative deviation (¢, d) separately for
calibrated (a, ¢) and non-calibrated (b, d) regions. Grey areas contain either no discharge or are outside the region of interest, i.e., non-

calibrated regions are grey in (a) and (c) and vice versa.

WFD_WEFDEI) are considered, Q varies by 18.5 % for the
non-calibrated region and by 1.6 % for the calibrated one
(Table 5, row 3). Q variation in calibrated basins is due to
various reasons. Calibration forces the simulated mean an-
nual discharges in the cells with discharge stations to be
equal (within 1 %) to the observed ones for the calibrated
period. Outside the calibrated period, the different forcings
cause the computed Q to vary. In case of the homogeneous
forcings that are undercatch corrected and bias corrected

Hydrol. Earth Syst. Sci., 20, 2877-2898, 2016

against GPCC data (GSWP3, WFD, WFDEI_hom), Q dif-
fers by only 0.1 % in calibrated regions and 10.5 % in non-
calibrated regions. The low value for the calibrated regions
indicates neglectable influence of the different calibration pe-
riods and the smaller number of calibration stations in the
case of WFD. The Q variation for the discharge produced in
non-calibrated regions appears to be large in particular be-
cause all forcings are bias corrected against monthly obser-
vations of temperature from CRU, and of P from GPCC (Ta-
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84



H. Miiller Schmied et al.: Variations of global and continental water balance components 2885

Table 3. Continental climate forcing variables (7, SWD, LWD, P) and water balance components (AET, Q, WCa). Ensemble mean and
min/max deviation from mean (in percent, also for 7") over all four homogenous forcing variants (GSWP3, PGFv2.1, WFD, WFDEI_hom),
for six continental regions, and the global total for the time period 1971-2000.

Africa Asia  Europe® N America Oceania S America  Global

Mean 24.1 14.6 -1.6 42 21.7 22.1 13.6

T (°C) Amin —-0.2 0.0 —53 -3.0 —-0.2 —0.1 —04
Amax 0.1 0.1 14.0 1.3 0.4 0.2 0.2

Mean 229 196 117 156 229 197 185

SWD (Wm~2) Amin  —11.1 —5.6 -9.9 -1.9 —24 —6.8 —6.7
Amax 3.9 2.9 4.5 2.3 1.2 44 2.5

Mean 365 322 266 285 351 381 326

LWD (Wm™2) Amin —0.2 -0.7 -1.0 -1.2 -0.9 1.4 -0.3
Amax 0.4 1.0 0.9 1.2 0.6 1.5 0.3

Mean 20457 24501 13026 16177 5939 28623 108724

P [km3 yr~1 Amin —5.6 -3.0 -7.0 —-6.9 2.4 —4.0 —4.8
Amax 39 2.6 3.7 3.7 1.9 2.1 2.1

Mean 16194 13506 6942 9573 3887 17132 67234

AET [km? yr—!1  Amin —5.5 —4.0 —8.7 —8.0 -3.0 —5.2 —5.7
Amax 4.7 3.7 3.7 5.4 32 34 4.0

Mean 4183 10276 6138 6507 2033 11428 40566

0 [km3 yr 1] Amin -59 =36 -5.0 —54 —3.4 -22 —3.4
Amax 10.9 4.4 4.0 3.8 5.0 2.5 4.0

Mean 71 612 87 121 16 32 939

WCa [km? yr=!]  Amin -5.9 -1.0 —8.5 -53 —2.8 —2.8 —2.6
Amax 2.5 1.7 3.6 5.7 25 2.8 22

* includes all of Russian Federation.

Table 4. Average density of precipitation gauging stations and P sums (km3 yr~1) for 1971-2000 of the original P data that were used
for bias correction (WFD: GPCCv4, WEDEIL: GPCCv5, GSWP3: GPCCv6, PGFv2.1: CRU TS3.21) and P outputs of WaterGAP using the
undercatch adjusted forcings (except PGFv2.1 which is not adjusted).

Variable Data source Africa  Asia  Europe N America Oceania S America  Global
Stations per ~ CRU TS3.21 0.12 0.09 0.06 0.12 0.17 0.06 0.09
0.5° grid GPCCv4 0.30 0.23 0.61 0.32 1.05 0.61 0.44
cell GPCCv5 0.31 0.30 0.66 0.54 1.82 0.63 0.57
GPCCv6 0.31 0.32 0.68 0.60 1.85 0.71 0.60
P totals CRUTS3.21 19595 24040 12128 15160 5958 27611 104492
(without GPCCv4 19745 24062 11858 15073 5732 28135 104 605
undercatch GPCCv5 19729 24044 11852 15095 5688 28201 104610
correction) GPCCv6 19724 24066 11861 15116 5694 28085 104 546
P totals PGFv2.1 19318 23756 12112 15065 5799 27475 103525
(WaterGAP) WFD 21102 24519 13232 16732 5960 29146 110690
WFDEI_hom 21250 24597 13256 16779 5945 29223 111050
GSWP3 20160 25133 13505 16131 6053 28649 109631

ble 4). This indicates a dissimilar spatiotemporal distribution set problem in the WFD_WFDETI forcing, the WFDEI_hom
of SWD and LWD radiation components. The larger devia- calibration parameters were also used for the model variant
tion of WFD_WFDEI in calibrated regions (Table 5, row 3) that was driven by WFD_WFDEI (see Appendix A). Due
can be explained by the fact that in order to deal with the off- to the much lower values of SWD in WFD as compared to
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Table 5. Global sums of water balance components for land area (km3 yr_l) (except Antarctica, Greenland, and inland sinks) (component
numbers as in Table 2) for the model variants and the years 1971-2000, divided in calibrated and non-calibrated grid cells.

Calibrated regions

Non-calibrated regions

No. GSWP3 PGFv2.1 WFD  WFDEI_hom WFD_WFDEI GSWP3  PGFv2.1 WFD  WFDEI_hom WFD_WFDEI
1 66825 63290 68039 68 288 68 288 42806 40235 42651 42762 42762
2 43996 40112 45232 45482 44903 24031 23303 22356 24425 23984
3 22291 22619 22286 22269 22893 18388 16554 19915 17944 18405
4 523 546 515 531 523 411 414 400 418 410
5 582 598 572 594 581 468 473 451 476 463
6 -59 —52 —58 —62 -59 —57 -59 —50 —58 —53
7 18 15 9 9 —28 -32 —44 -29 -33 —46
8 -3 -3 -2 -3 -2 9 8 9 8 8

WEDEI, GSWP3, or PGFv2.1, Q, as computed with WFD,
has the highest value of all variants in non-calibrated regions,
and is 11 % larger than Q computed with WFDEI_hom for
1971-2000 (Table 5). One may conclude that GHMs with-
out a calibration routine overestimate Q if driven by WFD;
this may be one reason for the comparably high multi-model
Q estimate of 42 000-66 000 km? yr~! reported in Hadde-
land et al. (2011) which is much higher than previous esti-
mates (e.g., Baumgartner and Reichel, 1975; Fekete et al.,
2002) or this study.

Figure 3 shows the uncertainty range of Q at grid-cell level
for calibrated and non-calibrated regions caused by the four
homogeneous forcings. In both calibrated and non-calibrated
regions, the highest absolute differences occur in cells with
large discharge, either in the downstream part of large rivers
(e.g., Nile in Fig. 3a) or in areas with high precipitation
(e.g., coast of Alaska or in Papua New Guinea in Fig. 3b).
The lowest relative differences in the calibrated regions oc-
cur upstream and downstream of the 1319 discharge gauging
stations that were used for model calibration (Fig. 3c). The
effect of calibration is also visible in non-calibrated regions
downstream of a gauging station, e.g., in the Amazon down-
stream of Obidos (Fig. 3d). Even in most areas of the globe
which are calibrated, i.e., in grid cells upstream of calibra-
tion stations, relative Q variations due to variations in cli-
mate forcings exceed 10 % (Fig. 3c). In many cells, not only
in dry regions, variations exceed 50 %. In non-calibrated re-
gions, grid cells with relative Q variations below 10 % are
very rare unless they are located downstream of a calibra-
tion station (Fig. 3d). In general, relative variations of Q are
often higher in non-calibrated (Fig. 3d) than in calibrated re-
gions (Fig. 3c) mainly because dry areas are less likely to
have calibration stations. However, humid Iceland, for exam-
ple, also exhibits simulated Q variations of more than 50 %.
When averaged over all grid cells globally (with Q > 0), vari-
ation of Q due to variation of the four homogeneous forcings
is55% (1.3 km?3 yr’l). For calibrated regions, the variation
reduces to 37 % (1.6 km? yr‘l), while it increases to 74 %
(1.0km? yr~!) in non-calibrated regions. When considering
net cell runoff R in all cells with positive values, i.e., the

Hydrol. Earth Syst. Sci., 20, 2877-2898, 2016

runoff added to upstream discharge within a cell, variations
due to the climate forcings grow to an average of 64 % in
calibrated regions and an average of 92 % in non-calibrated
regions. When considering only GSWP3 and WFDEI_hom,
i.e., additionally excluding the forcings without undercatch
correction (PGFv2.1) and with a much lower SWD than the
others (WFD), the Q (runoff) variations are reduced to 16 %
(27 %) and 31 % (38 %) in calibrated and non-calibrated re-
gions, respectively. Reduction due to excluding PGFv2.1 is
larger than reduction due to excluding WFD.

Global AET is the variable with the highest relative un-
certainty due to climate forcing (Table 2). As O within the
calibrated region is forced to be nearly equal for all climate
data sets, different values of P (as well as T and radiation)
lead to large differences in aggregated AET (with higher ab-
solute differences than P differences, or 12.2 %). In contrast,
AET differs by only 8.8 % (and lower absolute differences
than the P differences) in non-calibrated regions (both num-
bers for all forcings, Table 5). A total of 63—67 % of AET
occurs in calibrated regions (Table 5, row 2). In WFD forc-
ing, the low global values for SWD lead to relatively low
AET and higher Q (2000 km? yr—!) compared to the homog-
enized forcing WFDEI_hom. PGFv2.1 has the lowest global
AET but the highest WCa of all five forcings (Table 2), even
though WCa includes mainly evaporation of irrigation water
that is driven by the same climatic variables as AET. This
reflects the variations in the spatial pattern of the climatic
variables among the five forcing data sets.

For the period 1971-2000, global WCa varies among the
five forcings by 45 km3 yr~! (Table 2), i.e., the range is less
than 5 %. A total of 56.0-56.9 % of global WCa occurs in
calibrated regions (Table 5, row 4). Among all forcing vari-
ants, deviation of WCa is higher in calibrated regions (5.9 %)
than in non-calibrated regions (4.4 %) (Table 5). WCa un-
certainty due to climate forcings differs strongly among the
continents (Table 3). For Asia, the continent with the highest
water use, variation among the model variants is very low,
indicating good agreement of climate forcing for the irriga-
tion sub-model and/or averaging out differences in climate
forcings over the large number of grid cells in Asia with ir-
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Table 6. Global and continental estimates of WaterGAP water balance components compared to literature values (km3 yr_l), WaterGAP
results are analyzed for the same time span and spatial coverage as the reference and are comparable in terms of precipitation undercatch

(see footnotes).

Source Coverage Time span P AET ]
WaterGAP  Reference WaterGAP  Reference WaterGAP  Reference
1901-1925 1021102 105 298 6331940 68274 379742 36888
1926-1950 1026532 105675 630812 67826 388372 37092
Wisser et al. (2010) Global, w/ G 1951-1975 1054442 108081 64693+P 68550 399142 38864
1976-2002 1044362 106 764 643378b 69917 394212 36813
1901-2002 103 676% 106461 638674 68480 390442 37401
Hanasaki et al. (2010) Global, w/ G, w/ A 1984-1999 1060123 113900 64281304 72080 40876 41820
Global, w/o A 113341f 114300 71554 70500 41309F 43800
. f b,f f
Rodell et . (2015) N America, w/ G 20002010 17 983f 17717 10 339b : 9911 6604 : 7894
S America 29153 29587 17573 17286 11579 12301
Africa 21323f 20629 17307°f 16809 4029f 3820
Miiller Schmied et al. (2014)  Global, w/o G, w/o A 1971-2000 1110508 1110700 69819  70576b:h 412988 404580

2 PGFv2.1.b Including WCa. © Including Antarctica (as 2.1 % of global value). d Including Antarctica (as 4.9 % of global value). € Including Antarctica (as 0.2 % of global value, all percentages based on
Rodell et al., 2015). f WEDEI_hom. € WFD_WFDEIL h STANDARD model variant; G in column coverage: Greenland, A in column coverage: Antarctica.

rigation water use. Again, Europe and North America have
high uncertainties in continental assessments due to climate
forcing uncertainty/variability.

3.1.3 Comparison with other studies

Global sums of AET and Q for the five climate forcings used
in this study are within the range of estimates reported in the
literature (see values from various sources in Miiller Schmied
et al. (2014), their Table 5). Values for AET of this study
(64 400-70 800 km? yr—! including WCa) are well within
this range. Global values for Q (39 200-42200 km? yr~!) are
at the upper end of values from literature (except Haddeland
etal., 2011).

Table 6 shows a comparison to global and continental es-
timates of AET and Q of this study to four recent reference
studies. Time span and spatial coverage of WaterGAP results
is the same as in the respective references, and the climate
forcing variant of WaterGAP was selected such that studies
using P without undercatch were compared to results of Wa-
terGAP using PGFv2.1. Wisser et al. (2010) used the WBM-
plus model with CRU forcing plus three different precipita-
tion data sets for an uncertainty analysis. Even though their P
was not undercatch corrected and also scaled to CRU obser-
vations (like PGFv2.1), global P of PGFv2.1 is 2.7 % lower
for the time period 1901-2002 (and lower between 2.2 and
3.1 % in the different time periods analyzed). For this period,
WaterGAP simulates around 7.2 % less AET and 4.2 % more
QO compared to Wisser et al. (2010), but differences vary for
the other time periods analyzed (AET: 6.0-8.7 %, Q: 2.6—
6.6 %).

Hanasaki et al. (2010) used a climate forcing that is scaled
to CRU TS 2.1 and not undercatch corrected for the time
span 1985-1999. Therefore, results of WaterGAP driven by
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PGFv2.1 were used for the comparison in Table 6. Their val-
ues probably also included Antarctica, as they mention a land
area of 144000 km?, so a direct comparison is not straight-
forward. Based on the assessment of Rodell et al. (2015) (see
next paragraph), Antarctica’s share in global P, AET, and Q
is about 2.1, 0.2, and 4.9 %, respectively, and these per-
centages were added to the WaterGAP results. Surprisingly,
global P of PGFv2.1 is 7.4 % lower than P of Hanasaki et
al. (2010). As a consequence, AET (by 12.1 %) and Q (by
2.3 %) are also lower for WaterGAP forced with PGFv2.1
compared to Hanasaki et al. (2010) (Table 6).

Rodell et al. (2015) provide an optimized consistent set
of global and continental water fluxes during 2000-2010 by
combining satellite products and outputs from a number of
models in an optimization routine that enforced multiple wa-
ter and energy budget constraints simultaneously. Compared
to WFDEI_hom (this study), global P is nearly equal (0.8 %
lower). WaterGAP simulated AET slightly higher (1.5 %) but
0O was 6.0 % lower compared to Rodell et al. (2015) (Ta-
ble 6). As the definition of continents differs partly between
Rodell et al. (2015) and this study, only North and South
America as well Africa can be compared. PGFv2.1 conti-
nental estimates for P are 1.5 and 3.3 % higher for North
America and Africa, and 1.5 % lower for South America,
with WaterGAP AET being higher (1.6-4.1 %). Large dif-
ferences occur for Q, where WaterGAP estimated 19.5 and
6.2 % lower values for North and South America, and 5.2 %
higher values for Africa. North America and Africa are the
continents which show high variations in Q also in this study
among the forcings (Table 3).

Considering the water balance component values of
Wisser et al. (2010), Hanasaki et al. (2010), and Rodell et
al. (2015), there is no water balance component for which
WaterGAP values are consistently too high or too low. Even
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when the climate forcings used in these studies are similar
to one of the climate forcings used here (e.g., regarding un-
dercatch and bias correction), global P values differ, which
in itself leads to different model output. Therefore, the ap-
proach of the many model intercomparison studies to use the
same climate forcing for all models helps to assess the dif-
ferences of the models themselves (Haddeland et al., 2012).
The WaterGAP 2.2 (ISIMIP2a) water balance components
using WFD_WFDEI climate input (Table 2) differ from
those of the STANDARD WaterGAP 2.2 model runs that
was also driven by WFD_WFDEI as presented in Miiller
Schmied et al. (2014) (their Table 2) due to the seven model
modifications listed in Appendix A. Global P is insignif-
icantly affected by the different ocean—land mask. Global
AET and Q are comparable and differ only by 1-2 % be-
tween both studies (Table 6). Due to the assumed deficit ir-
rigation in groundwater depletion areas (Sect. 2.1), global
WCa during 1971-2000 is estimated as 936km? yr~! as
compared to 1031 km? yr=! in STANDARD. Deficit irriga-
tion also explains the smaller decrease of groundwater stor-
age in this study, with an average of 75km’yr~! during
the period 1971-2000 compared to 125km3 yr~! in STAN-
DARD (Miiller Schmied et al. (2014), their Table 3). In the
applied WaterGAP 2.2 (ISIMIP2a) version, reservoirs are
filled up with water in their construction year. This leads to a
net increase of reservoir storage (53 km? yr—!) compared to
a decrease of 43 km3 yr_1 in STANDARD, where reservoirs
are assumed to have been in operation over the entire simu-
lation period. Thus, total water storage decreased less than in
STANDARD, with 74 km? yr~! instead of 215 km?3 yr—!.

3.2 Variation of estimated global water balance
components across temporal aggregation and
reference periods

Figure 2 shows the importance of temporal aggregation and
reference periods for the assessment of global-scale climatic
variables and water balance components during the time pe-
riod 1901-2010 (2001 for WFD, 2012 for PGFv2.1). Even
for globally aggregated components, there are strong year-to-
year fluctuations. To assess (next to the visual interpretation)
the importance of the choice of temporal aggregation for the
different climatic variables or water balance components on
their variability during the simulation period, the ranges of
their global values at temporal aggregations of 1, 10, and
30 years were first computed as the difference between the
maximum and the minimum value during the whole time pe-
riod. Then the effect of temporal aggregation was quantified
by calculating the ratio of the ranges at the different tempo-
ral aggregations. For all climate variables and water balance
components, except those with a significant trend, the ranges
(Fig. 2) and ratios vary strongly among the forcing variants.
To achieve an approximate but robust representation of the
effect of temporal aggregation on variability, we present only
the median of the ratios among the four homogeneous forc-

Hydrol. Earth Syst. Sci., 20, 2877-2898, 2016

H. Miiller Schmied et al.: Variations of global and continental water balance components

ings. Regarding the radiation variables SWD and LWD, their
range is approximately halved when going from 30 years to
10 years or from 10 years to 1 year, and consequently re-
duced by a factor of 34 when going from 30 years to 1 year.
Global P and AET range is reduced by a factor of about 2
when going from 30 years to 10 years or by a factor of 3 when
going from 10 years to 1 year. Regarding global discharge,
the corresponding ratios are approximately 2 and 4. Here, the
variation among the four forcings is 1.6-2.7 for the reduction
of variability when going from 30 years to 10 years and 3.0-
5.4 when going from 10 years to 1 year. Quantifying tempo-
ral variability of global WCa, which has a significant trend
(Fig. 2), the range of 1-year and 10-year aggregates is very
similar, while the range is reduced by a factor of 1.6 when
going from 30 years to 10 years. Considering the variabil-
ity of T, the ranges during the simulation period are around
1.5°C (1 year), 1.1 °C (10 years), and 0.4 °C (30 years).
Regarding the choice of reference period, its importance
is obvious in case of the variables with a strong temporal
trend like 7 and WCa. The increase of global averages of T
during the last 3 decades is comparable among the five cli-
mate forcings as they are all bias corrected to almost the same
observation-based product (CRU TS, but different versions).
Large differences occur for 100-year average SWD, for
which WFD forcing shows an offset of around —15 W m™2.
This also affects the combined WFD_WFDEI, resulting in an
implausible discontinuity from 1978 to 1979. The monthly
homogenized series (WFDEI_hom) reduces this offset, but
the (smaller) offset within WFD since 1973 (integration of
first NOAA VTPR satellite data, Uppala et al., 2005) cannot
be reduced by this method. LWD shows different variations
among the climate forcings at annual, decadal, and 30-year
aggregations (e.g., between GSWP3 and PGFv2.1), while the
100-year averages are relatively close to each other. Again, in
WFD (and consequently WFD_WFDEI and WFDEI_hom)
the usage of satellite data in the ERA-40 reanalyses from
1973 onwards leads to an offset in LWD, which is clearly
visible in the 30-year averages (1971-2000) in all three forc-
ings. Except PGFv2.1, all climate forcings indicate an in-
crease of LWD in the last decades which fits to increasing 7T'.
Using land surface parameters and 7', WaterGAP calculates
the outgoing components of radiation and subsequently net
radiation which is then used to calculate potential evapo-
transpiration. In WFD, net radiation is much lower than in
the other data sets (century mean 72W m~2 compared to
83 Wm™2 for WFDEI_hom and 86 W m~2 for GSWP3 and
PGFv2.1) (Fig. 2). Considering the four homogeneous forc-
ings only, temporal variations of net radiation are low but
rather different among the forcings, and there is no signif-
icant trend, except for PGFv2.1 with a decreasing trend in
the last 30 years. Global PET has an even smaller variation,
and no trend during the century either. Global P seems to be
slightly smaller before 1940 than afterwards but this may be
due to the lower number of rain gauges available during this
time period. After 1940, 30-year averages of global P are al-
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Il Dominated by change of anthropogenic impact: Bn > Aq AND A, > 0

Dominated by change in other drivers:

Calculation not possible

Figure 4. Relative dominance of drivers of change of long-term average Q between 1941-1970 and 1971-2000 (Sect. 2.4.2). Blue indicates
that change in P is more dominant than change in anthropogenic impact due to water abstraction and dam construction, red indicates the
opposite. In green areas, other drivers are dominant. In grey areas, a calculation is not possible as the denominator of indicators A; and
B, is zero (no change in long-term average Q). Results are shown for WaterGAP as driven by the meteorological forcings GSWP3 (a),

PGFv2.1 (b), WFDEI_hom (c), and WFD (d).

most constant in time. This is supported by Beck et al. (2005)
who found no significant trend in global P for 1950-2000
when utilizing observations from the same set of rain gauges
over the whole analysis period.

Neither can trends of global AET or Q be de-
tected. The decadal or 30-year variations vary strongly
among the forcings. For Q (AET), the inhomogeneity in
WFD_WEFDETI leads to an implausible decrease (increase) of
around 5000 km? yr~!. Among the homogeneous forcings,
WEFDEI_hom shows low Q (high AET) during the last 3
decades as compared to the previous decades and as com-
pared to the other forcings, even though PET of all those
forcings does not show a trend. This might be related to dif-
ferences in spatial patterns among the forcings. The results
of this study confirm the finding of the IPCC Fifth Assess-
ment Report that “the most recent and most comprehensive
analyses of river runoff do not support the IPCC Fourth As-
sessment Report (AR4) conclusion that global runoff has in-
creased during the 20" century” (Stocker et al, 2013, p. 44).
Century means of global Q from GSWP3 and WFDEI are
very similar (like their P and PET values), while Q is smaller
in case of PGFv2.1 due to lower P (compare Sect. 3.1) and
higher in WFD due to lower SWD (and thus PET).

WCa is the only water balance component with a strong
temporal trend (strong increase since the 1950s) and only
a small variation of annual values around the trend that is
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mainly caused by expansion of irrigated land. Interannual
variability is due to climate variability affecting irrigation
water use. Temporal aggregation over a decade appears to
be appropriate to clearly show the trend. The separation of
total water use into the different sectors as well as into wa-
ter withdrawals and consumptive use is presented by Miiller
Schmied et al. (2016, their Fig. 3).

When comparing the output of different GHMs, the cli-
mate forcing used as model input is a very strong determi-
nant of model output (see Sect. 3.1). When GHMs driven
by (more or less) the same climate forcing are compared
(see comparison of WaterGAP to Wisser et al. (2010), in Ta-
ble 6), the choice of reference period matters. Differences for
global P, AET, and Q among the four roughly 25-year time
periods are 3.2, 2.5, and 4.9 %, respectively, for WaterGAP
in this study, and 2.6, 3.0, and 5.5 % for Wisser et al. (2010).

3.3 Dominant drivers of temporal variations of 30-year
mean annual river discharge: precipitation or
human water use and dam construction

Figure 4 shows where the change of long-term average Q be-
tween the time period 1941-1970 and the time period 1971-
2000 is either caused mainly by the change of P in the up-
stream river basin (blue colors) or by the change of the an-
thropogenic impact on Q by human water use and dam con-
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Il Dominated by change of anthropogenic impact: By > Ay AND A, > 0

Dominated by change in other driversi

Calculation not possible

Figure 5. Relative dominance of drivers of change of long-term average Q between 1911-1940 and 1941-1970 (Sect. 2.4.2). Blue indicates
that change in P is more dominant than change in anthropogenic impact due to water abstraction and dam construction, red indicates the
opposite. In green areas, other drivers are dominant. In grey areas, a calculation is not possible as the denominator of indicators A; and
B, is zero (no change in long-term average Q). Results are shown for WaterGAP as driven by the meteorological forcings GSWP3 (a),

PGFv2.1 (b), WFDEI_hom (c), and WED (d).

struction (red colors, see Sect. 2.4.2). Results for WaterGAP
as driven by each of the four homogeneous climate forcings
GSWP3, PGFv2.1, WFDEI_hom, and WFD are shown. In
most regions, change in P is the more important driver of
change in Q than change in the anthropogenic impact. It is
areas with high water consumption or/and the construction of
dams where change in anthropogenic impact is more impor-
tant than change in P for explaining temporal Q changes.
Note that the developed indicators only compare the rele-
vance of two drivers of change. Even in the blue and red
grid cells, other variables such as 7' or radiation may be even
stronger drivers of the simulated change in Q. In grid cells
where indicators A, and B, are both negative or zero (green
colors), however, other drivers (and not P or anthropogenic
effects) are certainly the main reason for changes in Q.
Changes in long-term average Q between the time peri-
ods 1911-1940 (¢1) and 1941-1970 (¢2) are, in most world
regions, less dominated by changes in the anthropogenic im-
pact on river discharge (Fig. 5). Anthropogenic impact in-
creases in the time periods 1941-1970 and 1971-2000 (¢3),
which is consistent with the acceleration of human water
use (Fig. 2) and dam construction throughout the 20th cen-
tury. In the earlier analysis period, anthropogenic activity
dominates Q change only in small parts of North Amer-
ica and Asia (around the North China Plain and inflows
to the Caspian Sea). It is only in the later analysis period
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that anthropogenic impact dominates over P impact in In-
dia, southeast China, Spain, and Turkey (compare Figs. 4
and 5). Taking India and GSWP3 forcing as an exam-
ple, P increases for both time steps (£1-12: +49km?> yr~!
and 12-13: +30km?> yr_l). However, Q (+9km? yr_l) and
WCa (+26km? yr‘l) increases between 71 and ¢2, while
between 12 and 13 Q (—39 km? yr’l) decreases and WCa
(+81 km?3 yr~!) increases more strongly than between 71 and
t2. In India, the intensified water use and changed signs be-
tween P and Q lead to the indication that anthropogenic ef-
fects dominate the change in Q (compare Figs. 4 and 5).

Human water use and dam construction are the dominant
drivers for changes in long-term Q averages on 9-13 % of
the land area for the time periods 1911-1940 and 1941-1970,
and increases to 11-18 % of the land area for the time peri-
ods 1941-1970 and 1971-2000. The fraction with P domina-
tion decreases, from 82—84 to 77-82 %. At the same time, the
area for which the indicators A, and B,, cannot be calculated
(due to similar long-term Q averages and thus zero in the de-
nominators of Egs. 3 and 4) is rather constant (1.1 to 0.9 %).
The land fractions where neither driver dominates decreases
slightly from 6 to 5 %. Figures B1 and B2 in Appendix B
shows A, and Figs. B3 and B4 shows B,,.

The four climate forcings affect the spatial pattern of dom-
inance. They lead to different changes of P and different
changes of human water use as the globally dominant irri-
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gation water use is computed as a function of climate. For
example, with the forcings based on ECMWF reanalyses
(WFDEI_hom, WFD, Fig. 4c and d), large parts in south-
east Australia are driven by anthropogenic effects, whereas
for the forcings based on NCEP reanalyses this is not the
case (PGFv2.1, Fig. 4b) or is applicable to a lesser ex-
tent (GSWP3, Fig. 4a). For WFDEI_hom, the anthropogenic
dominance is considerably higher in Mexico (Fig. 4). If us-
ing PGFv2.1 forcing, the area around the North China Plain
is dominated by P changes, whereas in the other forcings it
is dominated by anthropogenic effects (Fig. 5). Even if mean
global values, e.g., for P and Q, compare well (Fig. 2, Ta-
ble 2), regional differences in the climate forcings (and un-
derlying reanalysis) result in these different spatial patterns
of GHM output.

The effects of human water use and dam construction on
Q variations cannot be separated by the applied indicator ap-
proach. While dam construction leading to new reservoirs
decreases long-term average Q (e.g., due to additional evap-
oration), human water consumption is expected to be more
important in most grid cells (see also Dol et al., 2009).

4 Conclusions

This study presents a model-based assessment of water bal-
ance components considering different temporal (year to
century) and spatial (0.5° grid cell to global) aggregations.
The GHM WaterGAP 2.2 (ISIMIP2a) was forced with an en-
semble of four (plus one homogenized) state-of-the-art cli-
mate forcings with daily data. These forcings differ by the
underlying reanalyses, the observational data sets used for
bias correction, and whether precipitation observations were
corrected for undercatch. At global scale and for 1971-2000,
P differs among the forcing by 7500 km? yr—! and Q about
3000km? yr~!. Estimated Q differs most among climate
forcings where WaterGAP cannot be calibrated due to a lack
of river discharge observations in the GRDC database, in par-
ticular in southeast Asia (Indonesia and Papua New Guinea).
Variations among the four homogeneous forcings (GSWP3,
PGFv2.1, WED, WFDEI_hom) result, for 1971-2000, in a
variation of long-term average Q aggregated over all non-
calibrated areas of 18.5 % but only in a variation of 1.6 % for
the calibrated areas. This supports the many calls for extend-
ing (or maintaining) in situ Q observations (e.g., Fekete et al.,
2015) and for sharing the already available Q data (e.g., Han-
nah et al., 2011). Certainly, satellite observations have the
potential to support river discharge estimation (Tang et al.,
2009). The Surface Water and Ocean Topography (SWOT)
mission, for example, proposes discharge observations for
river widths > 50 m but all remote sensing methods for de-
riving Q strongly rely on in situ measurements (Pavelsky et
al., 2014).

On continental scale, most differences for P and Q
among the homogeneous forcings (GSWP3, PGFv2.1, WFD,
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WEFDEI_hom) occur in Africa and, due to snow undercatch
of rain gauges, also in the data-rich continents Europe and
North America. Variations of Q at the grid-cell scale due to
uncertainty in meteorological data are large, except in a few
grid cells upstream and downstream of calibration stations,
with on average 37 and 74 % variation among the four homo-
geneous forcings. These large forcing-induced uncertainties
are disturbing because the actual forcing data set uncertainty
may not fully be represented by the ensemble and uncertainty
due to the choice of hydrological model and its parameters is
neglected.

The study underlined that the level of temporal aggrega-
tion of water balance components is of importance, such that
for comparison purposes, the same temporal aggregation and
identical reference periods should be used. However, for all
variables except T and WCa, due to the uncertainty of cli-
mate data, the choice of the climate forcing affects climate
variables and water balance components computed by GHMs
more strongly than the choice of reference period. For global
variables that (until now) showed no significant trend (like P
and Q), the widely used 30-year aggregation period is suit-
able for comparison purposes, while for variables showing a
strong trend, i.e., T and WCa, decadal aggregation is recom-
mended. Ranges of climate forcing variables and water bal-
ance components are reduced roughly by a factor of 2 when
going from 30 years to 10 years (and 10 years to 1 year) and
consequently by a factor of 3—4 when going from a 30-year to
a 1-year assessment.

Homogenization of climate forcing is required when con-
catenating time series of meteorological variables from dif-
ferent sources, as in the case of WFD and WFDEI (which are
based on two different reanalyses), are combined to cover the
time period since 1901 until recent times. Even within the
homogenized WFDEI_hom climate forcing there remains
an offset in SWD and LWD data in 1973 that stems from
the ERA-40 reanalysis; therefore, it is recommended to start
analysis if possible only after 1978 when ERA-Interim data
are available. Regardless, none of the four homogeneous cli-
mate forcings appears to be suitable for trend analyses as they
are all bias corrected against gridded monthly data derived
from observations of precipitation and temperature where the
number of observation stations varies over time.

Humans affect the global water cycle increasingly. When
comparing global sums of human water consumption to river
discharge into oceans and internal sinks (or to renewable wa-
ter resources), human impact seems to be small (Table 2).
However, on 9-18 % of global land area, human water con-
sumption and dam construction were more important drivers
of change in river discharge in the 20th century than precipi-
tation (Figs. 4 and 5). In this study, however, only the impact
on long-term averaged discharge was analyzed, while possi-
ble seasonal impacts, e.g., due to reservoir operation, were
not considered (Adam et al., 2007; Doll et al., 2009).

For future water resources modeling studies (see also Dol
et al., 2016), the impact of the uncertainty of meteoro-
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logical variables should be considered by applying various
(equally) plausible climate forcings. Using more than one
GHM may add additional robustness. Such model intercom-
parison projects are currently on the way (e.g., ISIMIP2a,
eartH2Observe (http://www.earth2observe.eu/), The Agri-
cultural Model Intercomparison and Improvement Project
AgMIP (http://www.agmip.org/), Land Surface, Snow and
Soil Moisture Model Intercomparison Project LS3MIP (http:
/lwww.climate-cryosphere.org/activities/targeted/1s3mip) or
already finished (e.g., WATCH model intercomparison; Had-
deland et al., 2011, ISI-MIP Fast Track; Schewe et al., 2014).
They may improve the quantification of the world’s water re-
sources and guide investigation of various sources of uncer-
tainty. Development of an improved method for correcting
the global state-of-the-art precipitation products, by building
on the work of Fuchs et al. (2001), would enable a better
quantification of global precipitation.
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5 Data availability

The WaterGAP output will become freely available for the
public within the framework of the ISI-MIP project phase 2a
but it is not yet known where the data will be hosted (please
check https://www.isimip.org/outputdata/ for updates). The
homogenized climate forcing WFDEI_hom is not included
within the ISIMIP2a project phase. All model outputs used
in this study are available on request from the corresponding
author.
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Appendix A: Modification of WaterGAP 2.2 (ISIMIP2a)
compared to WaterGAP 2.2

— Deficit irrigation based on Doll et al. (2014), with only
70 % of irrigation water demand in grid cells which
have a groundwater depletion of at least 5 mm yr~! dur-

— A new land cover input based on MODIS data from the ing 1980-2009 and where the fraction of water with-

year 2004 (using the dominant land cover class per 0.5°
cell instead of the land cover class at the grid center).

Updated lake and wetland inputs based on the Global
Lakes and Wetlands Database (GLWD) (Lehner and
Doll, 2004) and the Global Reservoir and Dam
database (GRanD) version 1.01 (Lehner et al., 2011) as
well as information on operation years from available
electronic resources.

Different ocean—land mask: while WaterGAP 2.2 uses
the ocean—land mask from the IMAGE model (Alcamo
et al., 1998), being the standard for WaterGAP develop-
ment and covering 66 896 grid cells, here the WATCH-
CRU ocean—land mask with 67420 grid cells is used.
The main differences occur in coastal areas (for which
static attributes, such as soil moisture capacity, of the
standard land mask are transferred to the new neigh-
boring cell, while some other coastal cells disappeared),
and due to the inclusion of many more islands in the Pa-
cific Ocean (that obtained attributes values from nearest
grid cells).
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drawals for irrigation is larger than 5 % of total water
withdrawals for the same time period.

Man-made reservoirs are no longer assumed to exist
over the whole simulation period but only from the year
of their construction onward. This includes also regula-
tion of the outflow of natural lakes by dams.

For lakes, reduction of evaporation due to decreasing
lake area is calculated according to Eq. (1) in Hunger
and Doll (2008), resulting in a lower but more realistic
lake area and thus evaporation reduction with decreas-
ing lake storage.

For WaterGAP calibration, we used observed stream-
flow data from 30 years. For GSWP3, PGFv2.1, and
WFD, we used data from 1971 to 2000 if available
for the time period. Due to the offset in radiation of
WFD_WEFDEI forcing (and consequences for model
results, see Miiller Schmied et al., 2014), we cali-
brated WFDEI_hom using preferably the period 1980—
2009 and used these calibration parameters for the
WFD_WFDEI simulation.
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Appendix B: Indicators A, and B,

Figure B1. Indicator A, representing dominance of the change of P for the change in Q (Eq. 3) from 1911-1940 to 1941-1970. Grey color
indicates that the change in Q is zero, such that A, cannot be computed. Red color indicate areas where A, is negative, i.e., change in P had
the opposite sign of the change in Q; therefore, P was not the dominant driver for change in Q. Results are shown for WaterGAP as driven
by the climate forcings GSWP3 (a), PGFv2.1 (b), WFDEI_hom (c¢), and WED (d).

Figure B2. Indicator A, representing dominance of the change of P for the change in Q (Eq. 3) from 1941-1970 to 1971-2000. Grey color
indicates that the change in Q is zero, such that A, cannot be computed. Red color indicate areas where A, is negative, i.e., change in P had
the opposite sign of the change in Q; therefore, P was not the dominant driver for change in Q. Results are shown for WaterGAP as driven
by the climate forcings GSWP3 (a), PGFv2.1 (b), WFDEI_hom (c), and WFD (d).
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Figure B3. Indicator B, quantifying the relative dominance of anthropogenic impact on Q change (i.e., Q — Qnat) as compared to the
change in Q (Eq. 5) from 1911-1940 to 1941-1970. Grey color indicates that the change in Q is zero, such that B,, cannot be computed.
Red color indicates areas where By, is less than 0, and the change in anthropogenic impact is not consistent with the change in Q; therefore,

the anthropogenic impact is not the dominant driver for change in Q. Results are shown for WaterGAP as driven by the climate forcings
GSWP3 (a), PGFv2.1 (b), WFDEI_hom (c), and WED (d).

SIS dP=0

Figure B4. Indicator B, quantifying the relative dominance of anthropogenic impact on Q change (i.e., Q — Qnat) as compared to the
change in Q (Eq. 5) from 1941-1970 to 1971-2000. Grey color indicates that the change in Q is zero, such that B, cannot be computed.
Red color indicates areas where By, is less than 0, and the change in anthropogenic impact is not consistent with the change in Q; therefore,
the anthropogenic impact is not the dominant driver for change in Q. Results are shown for WaterGAP as driven by the climate forcings
GSWP3 (a), PGFv2.1 (b), WFDEI_hom (c), and WED (d).
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Abstract. The assessment of water balance components using global hydrological models is subject to climate
forcing uncertainty as well as to an increasing intensity of human water use within the 20th century. The un-
certainty of five state-of-the-art climate forcings and the resulting range of cell runoff that is simulated by the
global hydrological model WaterGAP is presented. On the global land surface, about 62 % of precipitation evap-
otranspires, whereas 38 % discharges into oceans and inland sinks. During 1971-2000, evapotranspiration due
to human water use amounted to almost 1 % of precipitation, while this anthropogenic water flow increased by
a factor of approximately 5 between 1901 and 2010. Deviation of estimated global discharge from the ensemble
mean due to climate forcing uncertainty is approximately 4 %. Precipitation uncertainty is the most important
reason for the uncertainty of discharge and evapotranspiration, followed by shortwave downward radiation. At
continental levels, deviations of water balance components due to uncertain climate forcing are higher, with the
highest discharge deviations occurring for river discharge in Africa (—6 to 11 % from the ensemble mean). Un-
certain climate forcings also affect the estimation of irrigation water use and thus the estimated human impact of
river discharge. The uncertainty range of global irrigation water consumption amounts to approximately 50 % of
the global sum of water consumption in the other water use sector.

1 Introduction

which can only be provided by modelling approaches due

The interest in global-scale water resources assessments has
increased in the last two decades. There has been an increas-
ing number of publications in this field (Web of Science,
topic “global scale” AND “water resources”, 1981-1990:
0 entries; 1991-2000: 6 entries; 2001-2010: 64 entries;
2011-2015: 85 entries), and a number of global hydrologi-
cal models (GHMs) have been developed (Bierkens, 2015).
The UN and other international organizations require global-
scale information on water resources and their use, e.g. UN-
ESCO’s World Water Assessment Programme (www.unesco.
org/water/wwap) or the Transboundary Waters Assessment
Programme (TWAP, http://www.geftwap.org/twap-project),

to a lack of observations with global coverage. Such model-
based assessments require meteorological variables as cli-
mate forcing input. Currently, a number of state-of-the-art
global-scale climate forcings are available that are all based
on weather models and differ in terms of methodology in-
cluding the underlying reanalysis and in terms of observa-
tion data used for bias correction. Different climate forcings
result in large differences in simulated water fluxes and states
as has already been shown by Biemans et al. (2009) for pre-
cipitation uncertainty and by Miiller Schmied et al. (2014)
regarding the uncertainty caused by two climate forcings that
differ with respect to other climate variables. Analyses of the
impact of different climate forcings are currently the focus of

Published by Copernicus Publications on behalf of the International Association of Hydrological Sciences.
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Table 1. Summary of climate forcing characteristics used in this study. Abbreviations: precipitation — P, temperature — 7', shortwave down-

ward radiation — SWD, longwave downward radiation — LWD.

Name Time span  Basis Bias correction Reference
GSWP3 1901-2010  20th Century Reanalysis =~ GPCC v6 (P), and undercatch correc-  http://hydro.iis.u-tokyo.
using NCEP atmosphere tion (Hirabayashi et al., 2008) CRU  ac.jp/GSWP3
land model TS3.21 (other variables)
PGFv2 1901-2012  NCEP-NCAR reanalysis =~ CRU TS3.21 (P, T), no precipitation =~ Updated version of
undercatch correction, U Maryland, Sheffield et al. (2006),
CRU TS3.21 cloud cover (SWD), U  information based on
Maryland (LWD) personal communication
with J. Sheffield (2015)
WFD 1901-2001  ERA-40 reanalysis GPCCv4 (P), undercatch correction  Weedon et al. (2010)
using Adam and Lettenmaier (2003),
CRU TS 2.1 cloud cover (SWD),
CRU TS 2.1 temperature (T')
WFD_WFDEI  1901-2010 WFD 1901-1978, GPCC v5 (v6 for 2010) (P), under- Weedon et al. (2014)
WFDEI (based on catch correction using Adam and Let-
ERA-Interim reanalysis) tenmaier (2003), CRU TS 3.1/3.21
afterwards cloud cover (SWD), CRU TS 3.1/3.21
temperature (7)
WFDEI_hom 1901-2010 As WFD_WFDEI, but Homogenization: Haddeland et al.

WFD homogenized us-
ing a multiplicative ap-
proach for SWD and
LWD and additive ap-
proach for T

(2012), Miiller Schmied et al. (2016)

model intercomparison studies such as the Inter-Sectoral Im-
pact Model Intercomparison Project (ISIMIP) in its phase 2a,
where (among other sectors) several global and regional wa-
ter models are driven by four state-of-the-art climate forcings
and compared to historical observations of, for example, dis-
charge and actual evapotranspiration. In particular, the propa-
gation of climate forcing uncertainty at multiple scales (grid-
cell level, continental, global) is one topic to be addressed in
ISIMIP2a.

Humans increasingly influence the water cycle through
water abstractions (Oki and Kanae 2006), in particular for
irrigation (e.g. Siebert et al., 2015) but also for other pur-
poses like thermal power plant cooling, manufacturing, live-
stock production and domestic sectors (Florke et al., 2013).
Quantification of sectoral water abstractions and consump-
tive water use (also called water consumption, the amount of
the abstracted water that evapotranspires during human wa-
ter use or is incorporated in products), and in particular of the
source of water, is highly uncertain due to lack of data (Doll
etal., 2016). In some regions, irrigation by groundwater leads
to groundwater depletion problems (Dol et al., 2014a; Wada,
2016), and it has been estimated that in groundwater deple-
tion areas, farmers irrigate with only 70 % of the optimal
amount of water (Dol et al., 2014a).

Proc. IAHS, 374, 53-62, 2016

Given the large uncertainties, we aim to answer the fol-
lowing research questions by using the Water Global As-
sessment and Prognosis (WaterGAP) GHM in its version 2.2

(ISIMIP2a):

1. How does climate forcing affect computed runoff at the

grid-cell level?

2. How does climate forcing uncertainty and human water
use affect long-term average water balance components
(including human water use) on global and continental

scales?

In Sect. 2 we briefly present the model and climate forcings
used in this study. Results are presented and discussed in
Sect. 3. The paper ends with a conclusion (Sect. 4), where
we answer the research questions, followed by an outlook.

2 Data and methods

The global water availability and water use model WaterGAP
(Alcamo et al., 2003; Doll et al., 2003; Miiller Schmied et al.,
2014) was applied using version WaterGAP 2.2 (ISIMIP2a).
The main model characteristics of version 2.2 are described
in Miiller Schmied et al. (2014), and the differences to
the ISIMIP2a version are described in Miiller Schmied et

proc-iahs.net/374/53/2016/
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Figure 1. Long-term (1971-2000) average net cell runoff of the
model variants, displayed as absolute numbers for GSWP3 (a)
and differences to the other forcings, computed as PGFv2 mi-
nus GSWP3 (b), WFD minus GSWP3 (¢), WFD_WFDEI minus
GSWP3 (d) and WFDEI_hom minus GSWP3 (e). Negative values
in (a) indicate that water inflow into cell from upstream and by pre-
cipitation is larger than outflow due to evaporation from surface wa-
ter bodies. All units in mm yr_1 .
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al. (2016). WaterGAP has a spatial resolution of 0.5 x 0.5°
(i.e. 55 x 55km at the Equator) and consists of five water
use models that are linked through the Ground Water Surface
Water Use submodule with the WaterGAP global hydrology
model (WGHM). Within WGHM, water storage changes in
several compartments and freshwater fluxes are modelled at
a daily time step. WGHM is calibrated to match long-term
average discharge at 1319 observation points (from GRDC
database) within 1 % deviation by adjusting one to three pa-
rameters (calibration details in Miiller Schmied et al., 2014).

Four state-of-the-art climate forcings provided
by the Inter-Sectoral Impact Model Intercompari-
son Project (ISIMIP) in its current phase 2a (https:
/Iwww.isimip.org/about/#simulation-rounds-isimip2a) plus
a fifth homogenized forcing were used to force WaterGAP.
Table 1 summarizes the main characteristics of all five
climate forcing datasets. For a detailed description, the
reader is referred to Miiller Schmied et al. (2016). The
names of the model runs are similar to the names of the
climate forcings.

3 Results and discussion

3.1 Global runoff at grid-cell level

Net cell runoff (computed as outflow minus inflow of each
grid cell) differs considerably between the different climate
forcing datasets (Fig. 1). This can be attributed to large differ-
ences between climate forcings at grid-cell level, in particular
with respect to precipitation. Different observational datasets
are used to bias-correct P (PGFv2 based on CRU and the
others based on different versions of GPCC). This results in
large differences (in both directions) at the regional scale for
South America and South East Asia. Obviously, the unequal
P gauging networks underlying the observational datasets
and/or varying regionalization approaches lead to the large
differences. In addition, PGFv2 is not corrected for under-
catch of solid precipitation (J. Sheffield, personal commu-
nication, 2015) while all other datasets are. As undercatch
correction (e.g. Adam and Lettenmaier, 2003) leads to the
highest P increases in northern (snow-dominated) latitudes,
P (and consequently net cell runoff) is lower for PGFv2 (red
areas in the northern latitudes in Fig. 1b).

The main reason for the large discrepancies between
GSWP3 and WFD in equatorial regions (Fig. Ic) is at-
tributable to systematically smaller SWD (Fig. A3c) in
energy-limited areas for the WFD dataset. This effect is
lessened in the combined WFD_WFDEI dataset (Fig. 1d)
and even more in the homogenized forcing WFDEI_hom
(Fig. 1e), as WFDEI shows systematically higher SWD than
WEFD. The higher SWD in parts of Asia, western Africa and
Australia (Fig. A3d, e) does not influence net cell runoff sig-
nificantly because these regions are water-limited: evapora-
tion and runoff are mainly controlled by precipitation and
not by available energy. In many regions where SWD is in-

Proc. IAHS, 374, 53-62, 2016
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Figure 2. Continental water balance components 1971-2000 (km?3 yr—1); ensemble mean of the five climate forcings. Abbreviations: actual
evapotranspiration (AET), discharge into oceans and inland sinks (Q), actual water consumption (WCa).

Table 2. Global water balance components for land area (except Antarctica and Greenland) in % of precipitation (row 1) for the five model
variants and 1971-2000. Cells representing inland sinks were excluded but discharge into inland sinks was included.

No. Component GSWP3  PGFv2 WFD  WFDEI_hom WFD_WFDEI
1 Precipitation P (km3 yr~1) 109631 103525 110690 111050 111050
2 Actual evapotranspiration AET? 61.3 61.1 63.0 62.0
3 Discharge into oceans and inland sinks Qb 37.8 38.1 36.2 37.2
4 Water consumption (actual) WCa 0.9 0.8 0.9 0.8
5 Change of total water storage dS / dz¢ —0.01 —0.03 —0.02 —0.02 —0.07

@ AET does not include evapotranspiration caused by human water use, i.e. actual water consumption WCa. b Taking into account anthropogenic water use.
¢ Total water storage (TWS) of 31 December 2000 minus TWS of 31 December 1970, divided by the number of 30 years.

creased, LWD is decreased (and vice versa), which reduces
the effect on net radiation. T effects model results via the
equation for potential evapotranspiration (Priestley and Tay-
lor, 1972), via snow dynamics as well as the leaf area in-
dex model that affects canopy evaporation (details in Miiller
Schmied et al., 2014). As T differs only little between the
forcing datasets (Fig. A2), effects of T differences on simu-
lated net cell runoff are expected to be relatively small.

3.2 Continental water balance components

Figure 2 displays the continental-scale partitioning of pre-
cipitation into actual evapotranspiration AET, river discharge
Q, and human water consumption WCa. South America and
Africa have nearly the same absolute amount of AET, but val-
ues for Q differ strongly. As a consequence of extensive irri-
gated agriculture especially in India and China (Siebert et al.,
2015), the highest water consumption occurs in Asia, where

Proc. IAHS, 374, 53-62, 2016

2.5 % of precipitation is evapotranspired, mainly due to ir-
rigation. For the other continents, water consumption plays
— relative to the other water balance components — only a
marginal role. The lowest runoff coefficient (Q/P) is found
in Africa (0.21), whereas runoff coefficients vary between
0.34 (Oceania) and 0.47 (Europe) for the other continents.
Hence, differences in P result in higher relative uncertainties
of estimated water resources for Africa. The deviation from
the mean continental value for Q among the climate forcings
is between —5.9 (calculated as min Q / mean Q) and 10.9 %
(max Q /mean Q) for Africa, whereas for all other conti-
nents deviations are lower (—5.4 and —2.2 as minimum Q,
2.5-5.0 % as maximum Q).

3.3 Global water balance components
Compared to the continental-scale deviation of water bal-

ance components, the impact of climate forcing uncertainty

proc-iahs.net/374/53/2016/
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Figure 3. Development of water abstractions (sum of return flows
and consumptive use) and water consumption (the amount of water
that is evapotranspired or incorporated in products, light colours) of
the five water use sectors considered in WaterGAP for 1901-2010.
Values for irrigation (modelled with 70 % of demand in grid cells
with groundwater depletion) are averaged across the five climate
forcings; other sectors are modelled independently of climate forc-
ing and taken from Florke et al. (2013).

is levelling out at the global scale to a certain degree (Ta-
ble 2). Global runoff coefficients vary between 0.362 and
0.381, and deviation of global Q from the ensemble mean
is —3.8 to 3.7 %. Actual evapotranspiration is estimated to
range between 61.1 and 63.0 % of global P (Table 2). The
lowest value for AET (and highest value for Q) is com-
puted when using WFD climate forcing. Here, average global
SWD is 15 W m~2 lower compared to the other forcings (see
also Miiller Schmied et al., 2016, their Fig. 1). In absolute
numbers, differences in AET and Q resulting from the five
climate forcings are considerable. For example, global dis-
charge values range from 39 200 to 42200 km?3 yr—!: the un-
certainty range is equal to thrice the total water consumption
(~930km? yr=1).

On the global scale, sectoral water uses have strongly in-
creased since 1901 (Fig. 3). Whereas overall water abstrac-
tions (consumptive use) are about 650 (260) km? yr_1 in
the year 1901, values are about 5 times higher with 3700
(1250) km? yr’1 in 2010. In contrast to Miiller Schmied et
al. (2016, their Fig. 1), where water consumption of each
climate forcing is presented using different time step ag-
gregations, Fig. 3 shows the proportion of potential (if wa-
ter were available without limitation) consumptive water use
components (light colours) and the amount of return flows
(dark colours). The most important water use sector regard-
ing both abstraction and consumption is the irrigation sector.
The sum of potential water consumption of all water use sec-
tors (except irrigation) throughout the period 1971-2000 is
112km3 yr~!, whereas the sums of potential irrigation water
consumption vary between 834 and 894 km3 yr—! depend-

proc-iahs.net/374/53/2016/

ing on the climate forcings. Together with the other potential
water uses (manufacturing, cooling of thermal power plants,
domestic and livestock sector), the demand of consumptive
water uses ranges from 946 to 1006 km? yr=!. Due to lim-
ited water availability to satisfy the demand, actual water
consumption (WCa) ranges between 915 (WFD) and 960
(PGFv2) km?3 yr’1 (all numbers 1971-2000). Hence, water
availability reduces the impact of climate forcing uncertainty
when modelling water use demand. The uncertainty range of
estimated global irrigation water consumption due to the cli-
mate forcing is therefore about 50 % of the sum of all the
other water use sectors.

4 Conclusions

Within this study, the WaterGAP 2.2 (ISIMIP2a) model was
used to assess water balance components on grid-cell, conti-
nental and global scale as well as the development of human
water use on the global scale. The research questions can be
answered as follows:

1. How does climate forcing affect computed runoff at the
grid-cell level?

On the grid-cell level, the effect of climate forcing uncer-
tainty on computed runoff is very large. In particular, us-
age of different observation-based products to bias-correct
reanalysis data affects the spatial distribution of runoff. Fur-
thermore, undercatch correction (or the lack thereof) of P
leads to differences in model estimates. Whereas 7 uncer-
tainty does not lead to clearly visible spatial differences in
computed runoff, SWD uncertainty was found to have a large
impact in energy-limited regions like tropical Africa. For
water-limited areas, this is not the case.

2. How does climate forcing uncertainty and human water
use affect long-term average water balance components
on global and continental scales?

Climate forcing uncertainty is high (Figs. A1-A4), and most
important are differences in P and SWD. At the continental
scale, these uncertainties lead to large differences in calcu-
lated water balance components, in particular in regions with
high P uncertainty and low runoff coefficient (e.g. Africa).
Global-scale values vary less in relative terms as deviations
even out with spatial aggregation. The uncertainty range of
estimated global irrigation water consumption due to uncer-
tain climate forcing is around 50 % of the water consumption
in the other water use sectors.

Multi-model hydrological assessments as done by the
ISIMIP initiative for both historical periods (e.g. Haddeland
et al., 2011) and future scenarios (e.g. Schewe et al., 2014)
will help to relate the uncertainties of water balance com-
ponents at different scales of aggregation that are caused by
different climate forcings to uncertainties due to the hydro-
logical models themselves. To constrain both types of un-
certainty, model calibration not only of mean annual river

Proc. IAHS, 374, 53-62, 2016
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discharge (as done for the WaterGAP model) but also of
remote-sensing-based data like total water storage variations
from GRACE (Eicker et al., 2014; Doll et al., 2014b, 2016) is
promising, but collection and sharing of in situ data remains
crucial (Fekete et al., 2015).

5 Data availability

The WaterGAP output will become freely available to the
public within the framework of the ISIMIP project phase 2a,
but it is not yet clarified where the data will be hosted (please
check https://www.isimip.org/outputdata/ for updates). The
homogenized climate forcing WFDEI_hom is not included
within the ISI-MIP project. All model outputs used in this
study are available on request from the corresponding author.

Proc. IAHS, 374, 53-62, 2016
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Figure A1. Long-term (1971-2000) average precipitation of the model variants, displayed as absolute number for GSWP3 (a) and differences
to the other forcings, computed as PGFv2 minus GSWP3 (b), WFD minus GSWP3 (¢), WFD_WFDEI minus GSWP3 (d), and WFDEI_hom
minus GSWP3 (e). All units in mm yr—L.

Figure A2. Long-term (1971-2000) average temperature of the model variants, displayed as absolute number for GSWP3 (a) and differences
to the other forcings, computed as PGFv2 minus GSWP3 (b), WFD minus GSWP3 (¢), WFD_WFDEI minus GSWP3 (d), and WFDEI_hom
minus GSWP3 (e). All units in °C.
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Figure A3. Long-term (1971-2000) average shortwave downward radiation of the model variants, displayed as absolute number for

GSWP3 (a) and differences to the other forcings, computed as PGFv2 minus GSWP3 (b), WFD minus GSWP3 (c¢), WED_WFDEI mi-
nus GSWP3 (d), and WFDEI_hom minus GSWP3 (e). All units in Wm2.
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Figure A4. Long-term (1971-2000) average longwave downward radiation of the model variants, displayed as absolute number for

GSWP3 (a) and differences to the other forcings, computed as PGFv2 minus GSWP3 (b), WFD minus GSWP3 (c¢), WED_WFDEI mi-
nus GSWP3 (d), and WFDEI_hom minus GSWP3 (e). All units in Wm2.
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Abstract Groundwater depletion (GWD) compromises crop production in major global agricultural areas
and has negative ecological consequences. To derive GWD at the grid cell, country, and global levels, we
applied a new version of the global hydrological model WaterGAP that simulates not only net groundwater
abstractions and groundwater recharge from soils but also groundwater recharge from surface water bodies
in dry regions. A large number of independent estimates of GWD as well as total water storage (TWS) trends
determined from GRACE satellite data by three analysis centers were compared to model results. GWD and
TWS trends are simulated best assuming that farmers in GWD areas irrigate at 70% of optimal water require-
ment. India, United States, Iran, Saudi Arabia, and China had the highest GWD rates in the first decade of the
21st century. On the Arabian Peninsula, in Libya, Egypt, Mali, Mozambique, and Mongolia, at least 30% of the
abstracted groundwater was taken from nonrenewable groundwater during this time period. The rate of
global GWD has likely more than doubled since the period 1960-2000. Estimated GWD of 113 km*/yr during
2000-2009, corresponding to a sea level rise of 0.31 mm/yr, is much smaller than most previous estimates.
About 15% of the globally abstracted groundwater was taken from nonrenewable groundwater during this
period. To monitor recent temporal dynamics of GWD and related water abstractions, GRACE data are best
evaluated with a hydrological model that, like WaterGAP, simulates the impact of abstractions on water stor-
age, but the low spatial resolution of GRACE remains a challenge.

1. Introduction

The temporal development of groundwater storage depends on (1) the inflow into the groundwater body
from the soil or from surface water bodies (recharge) and (2) the outflow from the groundwater to surface
water bodies (base flow) or due to groundwater abstractions. All groundwater abstractions initially lead to a
decrease of stored groundwater volume within the cone of depression of hydraulic heads around the
pumping well. The cone of depression can stabilize if the lowered hydraulic heads have induced a decrease
of base flow or an increase of groundwater recharge that balance the abstractions [Zhou, 2009]. Then,
groundwater storage stabilizes at a lower equilibrium level as compared to the situation without ground-
water abstractions. If, however, groundwater abstractions cannot be balanced by increased recharge and
decreased discharge over a number of years, a long-term decline of hydraulic heads and groundwater stor-
age, i.e., groundwater depletion (GWD), will result. Given the stochastic nature of climate, consideration of a
time period of 10-30 years appears appropriate for defining GWD. If GWD occurs, groundwater is no longer
exploited as a renewable resource but as a nonrenewable one. The rate of renewal is smaller than the rate
of consumption, and the abstracted water very often stems from a wetter time period with higher recharge
than today.

Even where groundwater systems are not affected by groundwater abstractions, long-term average ground-
water recharge is not exactly equal to long-term average base flow, such that long-term changes in ground-
water storage may occur. This is due to slow hydraulic head changes in response to temporally changing
groundwater recharge. While large aquifers show unsteady conditions over thousands of years (e.g., in for-
merly wet but now desert regions like the Nubian aquifer system in North Africa which still discharges
groundwater [Gossel et al., 20041), smaller aquifers are affected by decadal trends of groundwater recharge
due to anthropogenic climate change. However, in most groundwater systems not affected by groundwater
abstractions, long-term average base flow is at least roughly equal to long-term average groundwater
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recharge [Bredehoeft, 2002]. Therefore, base flow reductions can only balance groundwater abstractions
that are not larger than natural groundwater recharge, unless recharge from surface water bodies can be
induced. Most cases of GWD occur in semiarid and arid regions, where runoff and groundwater recharge
from soils are small and large amounts of irrigation water are required for crop production [Margat et al.,
2006].

GWD is generally considered to be problematic with respect to (1) maintaining the natural capital for future
generations, (2) land subsidence [Konikow and Kendy, 2005], (3) negative ecological effects of decreased
base flow that may even lead to drying-up of wetlands and rivers, (4) saltwater intrusion, (5) increasing
pumping costs, and (6) declining water supplies for some of the world’s major agricultural areas, putting
sustained crop production at risk. In addition, the water volume no longer stored in the ground ends up in
the oceans, leading to sea level rise [Konikow and Kendy, 2005].

GWD has been quantified in some regions using well observations (e.g., High Plains Aquifer, United States
[McGuire, 2011]) or modeling (e.g., Central Valley Aquifer, United States [Faunt, 2009]), or by subtracting
modeled or observed estimates of other water storage compartments from satellite-based GRACE estimates
of total water storage (TWS) change (e.g., Northern India and adjacent areas [Tiwari et al., 2009]; Central Val-
ley, United States [Famiglietti et al., 2011]). The amount of global GWD is disputed. An average GWD of 127
and 195 km?>/yr for the time period 1993-2008 was estimated by Konikow [2011] and Wada et al. [2012a],
respectively, while Pokhrel et al. [2012] computed a much higher value of 362 km?/yr for 1981-2007. While
the first two studies estimated a strong increase of global annual GWD over time, the value remains almost
constant between 1950 and 2000 in the study of Pokhrel et al. [2012]. The three studies used different esti-
mation approaches. Konikow [2011] derived global GWD based on (1) rather detailed information from local
modeling or observations for the United States, (2) less precise information from a mix of methods for five
aquifer systems outside the United States, and (3) an extrapolation approach for the rest of the world where
depletion was determined by multiplying estimated groundwater withdrawals with the ratio of ground-
water depletion to withdrawals in the United States around 2000 (0.15). Wada et al. [2012a] used a global
hydrological model to compute GWD, with a spatial resolution of 0.5° X 0.5°, by subtracting groundwater
abstractions from the sum of natural groundwater recharge and return flow from irrigation [Wada et al.,
2012b]. Country-specific groundwater abstractions (not sector-specific) from the IGRAC GGIS database
(http://www.un-igrac.org) were downscaled using total cell-specific water demand and surface water avail-
ability. To achieve a better fit to independent estimates, a correction was applied to nonarid grid cells such
that global depletion was reduced to 80% of the computed value. Base flow reduction due to groundwater
depletion was not modeled. Pokhrel et al. [2012] also applied a global hydrological model but only used
information on total water abstractions, not on groundwater abstractions. They assumed cell-specific GWD
whenever no “near-surface” water derived from current runoff was available to satisfy computed water
demand [Pokhrel et al., 2012]. The larger depletion estimates may be due to an underestimation of availabil-
ity of “near-surface” water and the fact that in case of irrigated areas equipped with surface irrigation only,
any lack of surface water supplies can in reality not be compensated by groundwater abstractions but will
lead to deficit irrigation.

With the study presented here, we wanted to (1) identify GWD areas world-wide in a consistent manner,
taking into account that in semiarid and arid areas surface water bodies may be the most important source
of groundwater recharge, (2) derive improved values of cell-specific, country, and global GWD, and (3) con-
currently estimate the degree of deficit irrigation (irrigation below optimal). In addition, we wanted to
assess the use of global-scale quantifications of TWS changes from GRACE satellites to monitor GWD.

Using the global hydrological and water use model WaterGAP, it is possible to simulate GWD by computing
groundwater storage change as the (daily) difference between groundwater recharge and the sum of base
flow and net groundwater abstraction, with base flow declining with decreasing groundwater storage [Doll
et al, 2012]. Net groundwater abstractions are based on more detailed information on groundwater and
surface water abstractions compared to Wada et al. [2012a]. In particular, information on irrigated areas
equipped with surface water or groundwater irrigation was compiled for more than 15,000 national and
subnational administrative units [Siebert et al., 2010], and information about artificial drainage was used to
model irrigation return flows to groundwater [Doll et al., 2012]. Nevertheless, it was found that WaterGAP
overestimates GWD in the High Plains Aquifer HPA (United States) for which the globally best GWD data,
based on a very large number of well observations, are available [Doll et al., 2012]. When some amount of
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groundwater recharge from the playas (small wetlands) in the HPA was assumed, overestimation decreased.
The remaining overestimation was suspected to be caused by an overestimation of groundwater abstrac-
tion as WaterGAP assumes that farmers irrigate optimally while in reality they may apply less water in case
of water scarcity.

While in humid areas groundwater can be assumed to discharge into surface water bodies, in semiarid and
arid areas like the HPA it is more likely that surface water bodies recharge the groundwater. In the HPA,
there are 61,000 playas, small seasonal wetlands with groundwater recharge rates that are 1-2 orders of
magnitude larger than diffuse groundwater recharge from soil [Gurdak and Roe, 2010]. However, the stand-
ard version of WaterGAP 2.2 assumes that groundwater discharges into surface water in all grid cells. For
this study of global GWD, we modified WaterGAP 2.2 such that in all semiarid and arid regions of the globe,
groundwater is recharged from lakes, reservoirs, and wetlands. In addition, we adjusted the routing of water
between the storage compartments soil, groundwater, surface water bodies, and river.

We then used the reliable independent information for the HPA to design model variants which varied by
the amount of irrigation water use and the quantity of groundwater recharge from surface water bodies
(section 2). We apply selected variants to simulate GWD world-wide and compare the results to independ-
ent GWD estimates (section 3). For the first time at the global scale, time series of GRACE total water storage
TWS are compared to modeled TWS to assess GWD (section 3). Based on these comparisons, we compute a
best estimate of GWD and related groundwater abstractions (section 3). In sections 4 and 5, we discuss the
results and draw conclusions.

2. Methods

2.1. Description of WaterGAP 2.2a

With a spatial resolution of 0.5° X 0.5° (55 km X 55 km at the equator), WaterGAP 2.2 simulates continental
water flows and storages as well as human water use for all land areas of the globe excluding Antarctica
[Alcamo et al., 2003; Doll et al., 2003; Miiller Schmied et al., 2014]. Sectoral water uses for irrigation, livestock,
households, manufacturing, and cooling of thermal power plants are computed by separate models. With a
daily time step, the irrigation water use model GIM [Doll and Siebert, 2002] computes consumptive water
use for the fraction of each grid cell that is irrigated, consumptive use being defined as the part of the with-
drawn water that evapotranspires during use. For all other sectors, both water withdrawals and consump-
tive water use are quantified by the water use models. Temporal development of domestic, manufacturing,
and cooling water use is calculated as water use intensity (water use per capita or unit industrial output,
considering structural and technological change over time) multiplied by the driving force of water use,
either population (for domestic use), national manufacturing output (as Gross Value Added, which is a share
of Gross Domestic Product), or national thermal electricity production [Florke et al., 2013]. Temporal devel-
opment of consumptive irrigation water use is driven by time series of climate and annually changing val-
ues of irrigated area per country [Doll et al., 2012].

Using monthly time series of irrigation water use and annual time series for the other water uses, taking
into account information on the source of water, and making assumptions on irrigation water use efficien-
cies and return flows, the submodel GWSWUSE computes net abstractions from groundwater (NA,) and
from surface water (NA;) [Doll et al., 2012]. The groundwater fractions of sectoral water uses are assumed to
be constant in time due to lack of data. Net abstractions are computed as the difference of water with-
drawals (gross water abstractions) from the specific source and the return flows from water use sites. Net
abstractions are negative if withdrawals are smaller than return flows. For NA, this can only occur in case of
irrigation from surface water.

Monthly time series of NA; and NA; are inputs to the WaterGAP Global Hydrology Model (WGHM), together
with climate and physiogeographic data. With a daily time step, WGHM computes, for each 0.5° grid cell,
flows among the water storage compartments canopy, snow, soil, groundwater, lakes, man-made reservoirs,
wetlands, and rivers (Figure 1). “Global” lakes, reservoirs, and wetlands are distinguished from “local” ones
by the fact that they are recharged not only by the runoff of the cell but also by the streamflow from
upstream cells (Figure 1). If there are multiple lakes (or reservoirs or wetlands) within a grid cell, they are
lumped into one. While global lakes are distinguished from global reservoirs, local lakes and reservoirs are
lumped together into one local lake. The water balance of global lakes and reservoirs, which can cover
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Figure 1. Schematic of water storage compartments (boxes) and flows (arrows) within each 0.5° grid cell of the WaterGAP Global Hydrol-
ogy Model, including the simulation of water use impacts on water storage in groundwater and surface water. Compared to WaterGAP
2.1h [Doll et al., 2012, Figure 1], routing of surface runoff and base flow was modified to simulate that not the whole runoff from land R; is
routed through the surface water bodies. In addition, in semiarid and arid regions, groundwater recharge is assumed to occur beneath sur-
face water bodies (lakes, wetlands, and reservoirs but not rivers), while in humid areas, groundwater recharges surface water bodies. Flows
that are only modeled in semiarid and arid regions are shown in red and those occurring only in humid regions are shown in green.

more than one grid cell, is computed in the grid cell where the outflow of the lake or reservoir is located.
Monthly values of NA; and NA; are distributed evenly to all days of the months and subtracted from
groundwater and surface water bodies, respectively. Flows include actual evapotranspiration, total runoff,
groundwater recharge, and streamflow. Total runoff as computed by the vertical water balance is heuristi-
cally partitioned into fast surface and subsurface runoff R, and groundwater recharge R, as a function of
relief, soil texture, hydrogeology, and the existence of glaciers or permafrost [Doll and Fiedler, 2008]. Both
runoff components are routed to the river storage compartment of the grid cell applying a newly devel-
oped fractional routing algorithm (section 2.1.3) and are transported as streamflow to the downstream grid
cell (Figure 1). WaterGAP 2.2 is calibrated against mean annual streamflow at 1319 gauging stations by
adjusting one to three parameters in the upstream cells, and the adjusted main calibration parameter “run-
off coefficient” is regionalized to grid cells outside the calibration basins based on climatic and physiogeo-
graphic basin characteristics. WaterGAP 2.2a is based on a slightly different precursor version of WaterGAP
2.2 [Muller Schmied et al., 2014].

2.1.1. Modeling of Groundwater Recharge From Surface Water Bodies

In WaterGAP 2.1h [Doll et al., 2012] and 2.2 [Miller Schmied et al., 2014], there is no groundwater recharge
from surface water bodies as groundwater is assumed to discharge into surface water bodies [Doll et al.,
2012, Figure 11. In these model versions, groundwater storage changes are computed as

dGWS

T:RgfobeAg (1)
where GWS denotes volume of water stored in the groundwater compartment, t time, R, diffuse ground-
water recharge from soil, Q, base flow from groundwater to surface water bodies, and NA; net groundwater
abstraction (groundwater withdrawals minus return flow from irrigation with both surface water and
groundwater). Q is proportional to GWS and is set to zero if GWS becomes negative. At the start of the
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simulation (in 1901), GWS is set to zero everywhere, and in case of relatively small NA,, increases quickly.
Negative GWS values can only be reached where NA, is positive and larger than R, and correspond to the
situation where the hydraulic head of the groundwater has fallen below the surface water table. NA, is neg-
ative if due to surface water irrigation, irrigation return flows exceed groundwater withdrawals [Doll et al.,
2012].

In WaterGAP 2.23, it is assumed that in semiarid and arid areas, groundwater recharge from surface water
bodies (lakes, wetlands, and reservoirs) Ry s, occurs. Ry s, recharges the groundwater storage compart-
ment (red arrows in Figure 1) and

% =Rg+Rgwb—Qp—NAy (2)
Semiarid and arid areas are defined as those areas where mean annual precipitation does not exceed 50%
of potential evapotranspiration (except areas north of 60°N). Even though fg,,, s, defined as Ry s, per
unit area of surface water body, is assumed to be constant, the groundwater recharge from surface water
bodies in each grid cell varies temporally with the dynamically varying size of the surface water bodies
which depends on the water storage in the surface water body. In WaterGAP 2.23, rivers are assumed to
always receive base flow from groundwater, and evaporation from rivers is simulated.

2.1.2. Fractional Routing

In WaterGAP 2.1h and 2.2, base flow Q, leaving the groundwater storage of the grid cell is discharged first
into the lakes, reservoirs, and wetlands of the grid cell (if existing). If “local” lakes exist, for example, the sum
of Q, and R; flows into the “local” lakes storage compartment of a grid cell, and the total outflow of “local”
lakes flows into “local” wetlands [Doll et al., 2012, Figure 1]. Only if there are no lakes, reservoirs, and wet-
lands in a grid cell, Q, directly discharges into the river storage. With this approach, if surface water bodies
recharge groundwater, the recharged groundwater would again recharge the surface water bodies as Qy,
thus creating a short circuit. In addition, if all surface water flows generated within the 0.5° grid cell were
added to the local lakes (or local wetlands), too much water would be retained in surface water body stor-
age, resulting in an unrealistically high Ry .. Therefore, a so-called fractional routing scheme has been
implemented in WaterGAP 2.2a. This new scheme for routing water within each grid cell assumes that (1) in
arid and semiarid areas, base flow Q, directly flows into the river and (2) only part of the surface runoff (and
the base flow in case of humid conditions) recharges the surface water bodies, while the rest directly
recharges the river storage compartment (Figure 1). The fraction reaching the surface water bodies £, is
proportional to the area of all surface water bodies (except rivers) as a fraction of the cell area. In this study,
we assume that the drainage basin of the surface water bodies is 20 times larger than the maximum extent
of the surface water bodies (but not larger than the cell area).

To conserve mass, land area in percent of cell area is made variable in WaterGAP 2.2a. Evaporation from sur-
face water bodies that varies with water storage is now interpreted as a change in surface water body area
which needs to be balanced by a corresponding change of land area. Due to technical constraints, however,
this cannot be implemented for global lakes and reservoirs as they may cover more than one grid cell. In
addition, the total volume of precipitation over surface water bodies is adjusted to the changed surface
water body area.

2.1.3. Modification of the Computation of Net Groundwater and Surface Water Abstractions

In WaterGAP 2.1h, irrigation water use efficiency, the ratio of consumptive use to abstractions, was assumed
to be the same for surface water and groundwater irrigation. Country-specific values were compiled from a
large number of studies without distinction of the source of water [Doll et al., 2012]. However, based on lim-
ited data, we suspect that efficiencies are higher in the case of groundwater abstractions. In WaterGAP 2.2
and 2.2a, water use efficiency for groundwater irrigation is set to 0.7 world-wide, a value estimated for India
[Central Ground Water Board (CGWB), 2009, p. 18], while the compiled country-specific values are applied for
surface water irrigation (e.g., 0.378 for India and 0.5 for United States). This leads to reduced estimates of
net and gross groundwater abstractions for irrigation, as consumptive irrigation water use from surface
water and from groundwater is computed in WaterGAP and then divided by the efficiencies to calculate
water abstractions. With this adjustment and assuming optimal irrigation (see variant IRR100 in Table 1) or
deficit irrigation at only 70% of optimal irrigation (see variant IRR70_S in Table 1) throughout the country,
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we estimate groundwater abstraction in

Table 1. Model Variants of WaterGAP 2.2a )
India to have been between 209 and

Groundwater Recharge per Consumptive Water Use CU for

3 . .
Abbreviation  Unit Area of Surface Water Irrigation as a Fraction of Opti- 290 km /yr du”ng 2000-2009, which fits
of Variant Body fyur sws (MM/d) mal Water Use (%) well to the independent estimate of
IRR100 0 100 250 km>/yr in 2010 of Margat and van der
IRR100_5 10 100 Gun [2013, Table 5.3]. With the lower
IS 10 70 (groundwater) irrigation water use effi-
NOUSE_S 10 0, and no other water use 9 9
IRR70_S3 3 70 ciencies of WaterGAP 2.1h, a much higher
IRR70_S1 1 70 estimate for groundwater abstractions in

India of 459 km3/yr (2000-2009, optimal
irrigation) would be computed.

The computation of return flow was modified such that a larger fraction of irrigation return flow reaches the
groundwater. In WaterGAP 2.2 and 2.2a, this fraction is computed as 0.95-0.75 fy,q;, (fraction of grid cell
that is artificially drained), instead of 0.8-0.6 f,,4i,. For India, for example, it was estimated that 10% of return
flow from irrigation contribute to surface water resources [Gupta, 2004]. Both adjustments in the computa-
tion of net abstractions result in lower NA; values as compared to WaterGAP 2.1h. They also lead to a
smaller increase of streamflow due to return flows in regions with groundwater irrigation, which is more
consistent with the fact that even in regions like the HPA with very intensive groundwater irrigation, such
increases have not been reported.

2.2. Model Variants

In the presented modeling study, we analyzed various model variants to identify which model variant is
best suited to simulate GWD at the global scale. The design of the variants, with different degrees of deficit
irrigation and fg,,, . (groundwater recharge per unit area from surface water bodies in semiarid grid cells),
was inspired by information about the HPA. The HPA in central United States can be considered to be the
best observed groundwater depletion area world-wide, regarding irrigated area, water use, groundwater
recharge, and GWD estimates. In the HPA, like in many semiarid and arid regions, deficit irrigation is likely
to occur due to water scarcity at least in the central and southern part, i.e., the volume of water applied is
less than the amount that would allow the plants to evapotranspire at the optimal potential evapotranspira-
tion rate. Experts estimate that in the HPA the amount of applied irrigation water is only 70% of optimal (B.
Scanlon, personal information, 2011). Therefore, in some variants of WaterGAP we reduced consumptive irri-
gation water use CU (sum of NA; and NA;) to 70% of its standard (optimal) value (IRR70 runs in Table 1). “_S"
refers to the implementation of groundwater recharge from surface water bodies, with f;,,, .4 of either 1,
3, or 10 mm/d (based on Gurdak and Roe [2010]; see section 4.1). IRR100 assumes optimal irrigation and no
Rg_swe- In the NOUSE_S variant, no water use at all is assumed to occur. Table 2 shows global values of
groundwater and surface water use 2003-2009 (period for which we evaluated GRACE data of TWS) as com-
puted with consumptive irrigation water use either being optimal or at 70% of optimal. Please note that the
actual value of global irrigation water use can be expected to be between the two values. Irrigation is by far
the most important water use sector, in particular in terms of CU. NA, is slightly negative in case of optimal
irrigation which means that globally averaged there is a net recharge of groundwater due the high return
flow from irrigation with surface water. Compared to WaterGAP 2.1h [Doll et al., 2012, Table 1], total water
abstractions for irrigation as well as NA; are strongly reduced in both the IRR70_S and IRR100_S variant.

Table 2. Global Water Use 2003-2009 as Computed by WaterGAP 2.2a (Rounded, Except Net Groundwater Abstractions NA; and Net
Surface Water Abstractions NA,)?

Sector Total Water Abstractions (km?/yr) GW Fraction (%) CU (km*/yr) GW Fraction (%) NAg (km*/yr) NA, (km?/yr)
Irrigation (optimal) 2400 29 1100 42

Irrigation (70% of opt.) 1700 29 800 42

Livestock 30 0 30 0

Domestic 350 36 60 36

Manufacturing 340 26 140 24

Thermal power 590 0 16 0

Total (IRR100_S) 3700 24 1400 39 =57/ 1422
Total (IRR70_S) 3000 23 1050 38 38 1003

2GW: groundwater; CU: consumptive use.
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For all model variants the monthly precipitation monitoring product GPCC v6 [Schneider et al., 2013] as well
as monthly data of temperature, cloud cover, and number of wet days of the CRU TS 3.10 data set [Harris
et al., 2014] were used. Monthly precipitation was distributed evenly to all wet days in the month, while the
other climate variables were interpolated to daily values.

2.3. Comparison to Independent GWD Estimates

Year-to-year change of groundwater storage GWS per grid cell was determined by subtracting mean GWS in
year i from mean GWS in year i + 1. Please note that GWS is not the total amount of groundwater storage in
each grid cell (which is unknown) but a relative value that develops according to equation (2) if ground-
water storage is set to zero at the beginning of the model runs in 1901. The trend of GWS and thus GWD
was determined by averaging the year-to-year changes over the respective years. A positive GWD is equiva-
lent to a decrease in GWS over time. Independent estimates of GWD in a number of aquifers and regions
world-wide were taken from literature. These estimates were derived by a wide variety of methods, includ-
ing (1) observations of groundwater well levels combined with estimates of storage capacity, (2) local-scale
modeling, and (3) translation of regional GRACE TWS changes to GWD by estimating changes in other stor-
age compartments by models or observations. When GWS decreases over only a few years, this may be due
to climatic variability and is not necessarily related to a long-term depletion of the groundwater by human
water use. For the comparison, however, all decreasing trends of GWS are called GWD.

2.4. Comparison to GRACE TWS

Starting in 2003, the GRACE satellites allow the determination of TWS variations with a monthly time resolu-
tion and a low spatial resolution of a few 100 km. If TWS as seen by GRACE is continuously declining over a
long period of time, GWD can be suspected to occur. However, TWS is not only affected by groundwater
storage but also by water storage in snow and ice, soil, lakes, and wetlands. On a short time scale of a few
years, declining TWS can be due to GWD but also to climatic drought conditions which lead to a decline of
water storage in soil, surface water bodies, and groundwater (e.g., in Australia [Leblanc et al., 2009]). On a
decadal time scale, a TWS decline can be caused by GWD but also by climate change, with a loss in snow
and ice storage or, in case of decreased runoff, loss in water storage in all other compartments. Therefore, a
global hydrological model is necessary to interpret GRACE-based TWS declines, by identifying which stor-
age compartment contributes how much to the observed TWS decline.

To assess TWS variations from GRACE satellite observations, monthly gravity field models provided by three
different analysis centers were taken into account: GFZ-RLO5 [Dahle et al., 2013], CSR-RLO5 [Bettadpur, 2012],
and ITG-Grace2010 [Mayer-Gurr et al,, 2010]. The GRACE solutions are available as spherical harmonic expan-
sion up to a maximum degree of 60 (CSR), 90 (GFZ), and 120 (ITG). To isolate the hydrologic contribution to
the TWS changes, background models for ocean, Earth, and pole tides, atmospheric and oceanic mass varia-
tions (AOD1B-RL04 for ITG and RLO5 for GFZ and CSR [Flechtner, 20071), and glacial isostatic adjustment were
reduced either directly during the data processing or in a postprocessing step. As GRACE cannot observe geo-
center motion, the coefficients of degree 1 (geocenter motion including trend) were replaced using the time
series provided by Rietbroek et al. [2012a, 2012b]; degree 2 coefficients, which are strongly influenced by tidal
aliasing errors, were substituted according to Cheng [2004]. The gravitational potential provided by GRACE
was converted to masses in terms of equivalent water heights following Wahr et al. [1998]. All three GRACE
solutions were smoothed by applying the nonisotropic filter DDK3 [Kusche, 20071, the isotropic part of which
can be compared to a 240 km Gaussian filter [Kusche et al.,, 2009]. To allow a comparison to WaterGAP TWS,
the hydrological model output, converted to a spherical harmonic expansion up to degree of 120, was
smoothed using the same procedure. Based on annual mean TWS from both GRACE and WaterGAP, TWS
trends were computed like GWS trends. As ITG-Grace2010 data were only available from January 2003 to
August 2008, the ITG-Grace2010 trend (2003-2009) was computed by multiplying the ITG-Grace2010 trend
(2003-2008) by the GFZ-RLO5 trend (2003-2009) to GFZ-R05 trend (2003-2008) ratio.

3. Results

3.1. High Plains Aquifer
GWD simulated for the High Plains Aquifer HPA can be compared to GWD derived from water level observa-
tions at more than 9000 wells measured in winter or early spring (here assumed to be in January) when
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Figure 2. Groundwater depletion (GWD) in the High Plains Aquifer (United States) from January 2003 to January 2009. Comparison of
groundwater storage (GWS) as computed by variants of the WaterGAP 2.2a model to GWS estimates based on observations wells [McGuire,
2011]. GWS in January of each year is shown as groundwater levels observed in January before the pumping season were evaluated in
McGuire [2011]. Observational values of Strassberg et al. [2009] refer to January-March periods. “2.1h standard” refers to model version of
Doll et al. [2012]. In addition, (top) monthly net abstractions NA; and NA; as well as monthly areal fractions of surface water bodies are

shown.

irrigation wells were not pumping and water levels had recovered from pumping during the previous irriga-
tion season [McGuire, 2007, 2009, 2011]. To translate water level changes to TWS changes, McGuire used the
area-weighted average-specific yield of 0.15. Strassberg et al. [2009] analyzed seasonal groundwater levels

at approximately 1000 wells, applying the same average-specific yield. Of all six WaterGAP 2.2 variants
(Table 1), IRR70_S, with irrigation at 70% of optimal and a groundwater recharge per unit area of surface
water body of 10 mm/d, shows the best fit to observed depletion (Figure 2). All other variants (except

NOUSE_S) overestimate observed depletion. While average GWD between January 2003 and 2009 was

16 mm/yr according to observations, IRR70_S results in 18 mm/yr (Table 3).

If the recharge from surface water bodies, here mostly local wetlands, is assumed to be only 3 or T mm/d,
GWD increases slightly. More runoff is retained in the local wetlands, such that the fraction of surface water
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Table 3. Water Balance Components of the High Plains Aquifer (United States) 2003-2008°

Water Balance Component Period Independent Estimate IRR100 IRR100_S IRR70_S
Ry 2003-2008 n.a. 20 20 20
Ry swb 2003-2008 na. 0 6 6
NAy 2003-2008 n.a. 43 43 30
Qp 2003-2008 n.a. 9 12 14
dGWS 2003-2008 —16° —32 —29 —18
Ry 1971-2000 32¢ 24 24 24
Ry_swo 1971-2000 n.a. 0 6 6
GW abstractions 2005 48° 63 63 45
Irrigated area 2005 66,379 66,187 66,187 66,187

2All values in mm/yr, except irrigated area (in km?). Modeled change in groundwater storage dGWS is computed from changes of
mean annual groundwater storage, with negative values meaning a decrease over time. GW: groundwater.

®McGuire [2011] (note: dGWS evaluated every January from 2003 to 2009).

Scanlon et al.[2012].

dUSGS [2009].

bodies remains higher than in the variants with 10 mm/d (Figure 2, top). In the IRR100 variants, GWD is
strongly overestimated with 32 mm/yr in case of IRR100. Ry_ss of 10 mm/d decreases GWD by only 3 mm/
yr (Table 3). Still, variant IRR100 of WaterGAP 2.2a results in a smaller depletion than WaterGAP 2.1h [Doll

et al., 2012, Figure 2] because modeled groundwater abstractions are lower and return flows higher in
WaterGAP 2.2 and 2.2a due to changed assumptions on irrigation water use efficiency and return flows (sec-
tion 2.1.3). The spatial distribution of modeled GWD, with highest values in the southern HPA, fits well to
the map of GWD since predevelopment (beginning of significant irrigation) of McGuire [2011] (not shown).
Schuh [2013] showed that the spatial distribution of GWD 1950-2009 computed with IRR70_S fits quite well
to the respective map based on well observations by McGuire [2011].

GWD does not only depend on NA,; and Ry s, but also on diffuse groundwater recharge R, and base flow
Qp. Table 3 (upper part) shows the groundwater balance of the HPA for the years 2003-2008. R is the same
for all three variants. Q, increases from variant IRR100 to IRR100_S because of the additional Ry ., while it
increases from variant IRR100_S to IRR70_S because of decreased NA,. Thus, GWD differences among the
three variants are less than would be expected if only NA, reduction or increase of total groundwater
recharge would be considered. Table 3 also shows a comparison of independent estimates of Ry, ground-
water abstraction, and irrigated area with the respective WaterGAP values. Average R, of WaterGAP is 25%
lower than the value estimated by Scanlon et al. [2012] from groundwater chloride data. Ry s is calculated
as 6 mm/yr averaged over the whole HPA but unfortunately no independent estimate is available. Ground-
water abstraction in case of IRR70_S is close to the USGS [2009] estimate for 2005, as is the total irrigated
area in the HPA (Table 3). From this comparison, we conclude that variant IRR70_S is suited best to simulate
GWD in the HPA.

3.2. Comparison of Simulated GWD to Independent GWD Estimates for Selected Regions

Around the World

To evaluate GWD as simulated by WaterGAP 2.2a variants, we compared simulated GWD to independently

estimated values of GWD for selected regions. Where possible, comparison was done against carefully esti-

mated GWD during a 40-50 year long period at the end of the 20th century, and during a period after 2000
(Table 4). Outlines of the comparison regions can be seen in Figure 3.

As IRR70_S was designed to fit to HPA conditions for 2003-2008, it is not surprising that it fits well to inde-
pendent GWD estimates for 2000-2009 and reasonably well for 1950-2000. GWD in the Central Valley is
best simulated with IRR100 for the period 1961-2000, but strongly underestimated for 2001-2009. This can
be explained by the fact that WaterGAP assumes a temporally constant fraction of consumptive water use
to be taken from groundwater. This assumption is appropriate if farmers are equipped with either surface
water or groundwater irrigation infrastructure. In the Central Valley, however, farmers have the infrastruc-
ture to switch, in case of surface water scarcity, to groundwater. This was done from 2006 onward when
drought conditions prevailed in the Central Valley [Famiglietti et al., 2011]. GWD in the Western Volcanic Sys-
tems of the United States is underestimated, while the stronger GWD in the Western Alluvial Basins is cap-
tured quite well at least for 1960-2000. The small GWD in the deep confined bedrock aquifers of the United
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Table 4. Comparison of Groundwater Depletion (GWD) Computed by Three WaterGAP 2.2a Variants to Independent Estimates for Selected Regions (See Figure 3)°

Modeled GWD (mm/yr (km*/yr))

Independently Estimated

Study Region Area (1000 km?) Period GWD (mm/yr (km*/yr)) IRR100 IRR100_S IRR70_S
United States
High Plains aquifer 488 1950-2000' 10 (5) W 25 (12) 23 (11) 15 (7)
2000-2009' 21 (10 W 35(17) 32(15) 20 (10)
Central Valley aquifer 53 1961-2000° 26 (1) M 23 (1) 20 (1) 14 (0.8)
2001-2009*° 73 (4) M, G 31(2) 27 (1) 21 (1)
Western volcanic systems 172 1961-2000* 0.5 (0.1) O 0.6 (0.1) 0.1 (0) 0.1 (0)
2001-2008* 2(04)0 1(0.2) 0.3 (0.1) 0.3 (0)
Western alluvial basins 480 1961-2000* 520 4(2) 3(2) 3(1)
2001-2008* 0.6 (0.3) 0 6(3) 6(3) 5(3)
Deep confined bedrock aquifers 521 1961-2000* 0.6 (0.3) O 0.6 (0.3) 0.4 (0.2) 0.4 (0.2)
2001-2008* 0.6(0.3)0 0.7 (0.4) 0.7 (0.4) 0.7 (0.4)
Gulf coastal plain 518 1961-2000" 8(4)0 1(0.5) 1(0.5) 0.8 (0.4)
2001-2008* 16 (8) O 0(0) —0.1(-0.1) —02(-0.1)
Atlantic coastal plain 265 1961-2000* 0.7 (0.2) O 4(1) 4(1) 4(1)
2001-2008* 1(0.3)0 4(1) 4(1) 4(1)
Mississippi basin 3418 2002-2005° 7 24) W 4(13) 3(12) 2(8)
Northern India and Adjacent Areas
Three-states region 410 2002-2008 43+£11(18%5)G 75 (31) 67 (27) 45 (18)
Tiwari study region 2070 2002-2008° 26*4(54+9)G 25 (53) 23 (47) 14 (29)
Jacob study region 1843 2003-2009° 19 (35 G 28 (52) 25 (46) 16 (30)
Bangladesh 130 1985-2007"° 2(02) W 17 (2) 17 (2) 6(0.8)
2003-2006'° 10 + 2 W/5-31 G (1 + 0.2 W/0.6-4 G) 31 (4) 31 (4) 15 (2)
2003-2007'° 7 +1W/3-19 G (0.9 + 0.2 W/0.4-3 G) 31 (4) 31 (4) 15 (2)
Irrigated Indus basin 350 2007"! 89 (31)M 60 (21) 55(19) 39 (14)
Northeastern China
North China Plain 140 2000-2008'2 27 (4) M 155 (22) 152 (21) 127 (18)
Hai river basin 330 1958-1998"2 7QW 33(11) 32(11) 24 (8)
1999-2006"* 134w 73 (24) 71 (23) 58 (19)
2003-2006'* 23 W/12 G (8 W/4 G) 73 (24) 71(23) 59 (20)
2003-2010"° 25+3(8*1)G 83 (27) 81(27) 67 (22)
Middle East and North Africa
Saudi Arabia 1725 1980-2000'° 6(10) 0 6(10) 6(10) 4(7)
TEWI 740 2003-2006'7 —5+3(-4%+2)G 10 (8) 10 (7) 7 (5)
2007-2009"7 35+-5(26+3)G 13 (10) 14 (10) 10 (8)
Nubian sandstone aquifer system 1965 1960-2000'8 0.4 (0.8) M 0.8 (2) 0.8 (2) 0.5 (1)
North Western Sahara aquifer system 918 1960-2000'° 2(1O 0.6 (0.6) 0.4 (0.3) 0.2 (0.2)

2GWD is listed both in mm/yr and km*/yr (in parentheses). In the former case, the area of the grid cells used for determining the WaterGAP estimates (column 2) was also applied
to the independent estimates. The letters in the column “independently estimated GWD" refer to the following. W: groundwater well observations; M: modeling; G: derived from
GRACE TWS data; O: other methods. The Tiwari and Jacob study areas are essentially the same and cover Northern India and adjacent areas. TEWI: Tigris-Euphrates plus Western Iran.
References: 1, McGuire et al. [2003]; 2, McGuire [2011]; 3, Faunt [2009] cited in Konikow [2011]; 4, Konikow [2011]; 5, Famiglietti et al. [2011]; 6, Rodell et al. [2007]; 7, Rodell et al. [2009]; 8,
Tiwari et al. [2009]; 9, Jacob et al. [2012]; 10, Shamsudduha et al. [2012]; 11, Cheema et al. [2014]; 12, Liu et al. [2011]; 13, Liu et al. [2010]; 14, Moiwo et al. [2009]; 15, Feng et al. [2013];
16, Abderrahman [2006] in Foster and Loucks [2006]; 17, Voss et al. [2013]; 18, Bakhbakhi [2002] cited in Table 6.3 of Margat and van der Gun [2013]; 19, Mamou et al. [2006].

States is simulated well but the temporal development is not (not shown). The strong GWD in the Gulf
Coastal Plain, which mainly occurs in the Mississippi Embayment Aquifer System, is significantly underesti-
mated by WaterGAP because WaterGAP likely overestimates groundwater recharge R, there. In the Atlantic
Coastal Plain, all variants of WaterGAP strongly overestimate depletion. The independent GWD estimate for
the large Mississippi basin is based on water levels in only 58 monitoring wells and can therefore be
regarded to be quite uncertain, and likely an overestimation given the more reliable data of Konikow [2011].
When summing up the GWD estimates of the US depletion regions for the first decade of the 21st century
(except for Mississippi basin) and comparing it to the IRR70_S value, the independent estimate is approxi-
mately 50% higher, while for the second half of the 20th century, the independent estimate is approxi-
mately 10% lower than the IRR70_S value.

The largest GWD world-wide has happened in the three-states region in Northern India (Figure 3), for which
Rodell et al. [2007] derived GRACE-based estimates of GWD. Clearly, the results of IRR70_S fit very well to
this estimate. With IRR100, GWD would be overestimated by two thirds. Taking into account groundwater
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Figure 3. Groundwater depletion 1980-2009 computed as the difference between (a) IRR100_S and NOUSE_S and (b) IRR70_S and

NOUSE_S (mm/yr). Regions for which independent GWD estimates are available are delineated.

recharge from surface water bodies, in IRR100_S, would still result in an overestimation by one half. There
are two independent GRACE-based GWD estimates for the larger “Tiwari study region” and for the very simi-
lar “Jacob study region” which stretch from Afghanistan to Bangladesh and encompass the three-states
region (Figure 3). For a comparable time period, the estimated average annual GWD are 54 [Tiwari et al.,
2009] and 35 km>/yr [Jacob et al.,, 2012], respectively. While the latter value is similar to the simulated
IRR70_S value, the former is similar to the IRR100 value. However, when looking at only one of four subre-
gions of Tiwari et al. [2009], at subregion b which approximately covers the Indus basin, estimated GWD is
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10 km?/yr while the IRR70_S value is 13 km?/yr (not shown in Table 4). The independent GWD estimate for
the irrigated part of the Indus basin during the wet year 2007 computed by Cheema et al. [2014] is higher
than the highest WaterGAP estimate obtained by IRR100 (Table 4). However, in our opinion, the value
obtained by Cheema et al. [2014] strongly overestimates actual GWD. With 31 km?/yr, it is 3 times larger
than the GWD estimate of 10 km?/yr of Tiwari et al. [2009]. The high value of GWD is caused by assuming, in
the model of Cheema et al. [2014], a base flow of 20 km*/yr. If base flow were zero, GWD would be reduced
to 11 km?/yr, which is similar to the value of IRR70_S and of Tiwari et al. [2009]. As GWD computed by
Cheema et al. [2014] would correspond to a water table decline of more than 1 m/yr in most areas within
the Indus basin, it is unlikely that there could be any significant base flow under these conditions, i.e., the
model assumptions made by Cheema et al. [2014] seem implausible. In Bangladesh, IRR70_S falls into the
very large observational range for the time period after 2000, better than IRR100, while long-term GWD
appears to be overestimated least with IRR70_S (Table 4).

WaterGAP strongly overestimates a number of independent estimates of GWD in Northeastern China, by
approximately a factor of 4 (Table 4). This is mainly caused by an underestimation of Ry, which according to
Liu et al. [2011] is 92 mm/yr in the North China Plain while WaterGAP computes only 12 mm/yr. GWD in
Saudi Arabia is equal to the independent estimate if optimal irrigation is assumed (Table 4), while GWD in
the Nubian Sandstone Aquifer System fits best to the independent estimate in case of deficit irrigation.
Even assuming optimal irrigation, the independent estimate of GWD in the North Western Sahara Aquifer
System is underestimated by WaterGAP (Table 4). The strong increase of GWD after 2007 that is estimated
for the Tigris-Euphrates-Western-Iran (TEWI) region using GRACE TWS (Table 4) is assumed to be caused by
intensive well construction in Iraq due to a strong drought and thus decreased surface water availability in
2007 [Voss et al., 2013]. However, Voss et al. [2013] stated that they overestimate GWD after 2007 due to
underestimating storage decline in surface water bodies. The strong GRACE-based decline of groundwater
storage 2007-2009 is not represented well by WaterGAP, possibly because a constant fraction of ground-
water use is assumed in the model.

Assuming that consumptive irrigation water use is approximately equal to NA; in GWD areas, GWD that
would be caused by other degrees of deficit irrigation can roughly be estimated from the difference DIFF70
between GWD for optimal irrigation and GWD for 70% deficit irrigation (Table 4). For irrigation at only x per-
cent of optimal, the difference between GWD for optimal irrigation and GWD for x percent deficit irrigation
can be approximated as DIFF70-(100-x)/30. Comparing the independent GWD estimates to the GWD values
computed with the three WaterGAP variants (Table 4) and to rough estimates of GWD derived for other
degrees of deficit irrigation with the approximation above, it appears that WaterGAP 2.2a variant IRR70_S
fits mostly best to reliable independent estimates where WaterGAP is at all able to compute GWD reason-
ably. No conclusions about deficit irrigation can be drawn where R, of WaterGAP 2.2a is implausible, or
where, in contrast to the model assumption, the fraction of groundwater use varies strongly over time (like
in the Central Valley and TEWI).

3.3. Simulated GWD at the Global Scale

GWD is generally considered to be driven by groundwater abstractions. However, groundwater storage can
also decline over a certain period if groundwater recharge is decreasing due to climate variability. To isolate
the impact of groundwater abstractions on groundwater storage, we compute GWD (as shown in the fol-
lowing maps and tables) as the difference between GWD in model variants with abstraction (IRR100_S,
IRR70_S) minus GWD in the model variant without any water use NOUSE_S. Figure 3 shows average annual
GWD during the time period 1980-2009 as computed by WaterGAP 2.2a, for the two model variants
IRR100_S and IRR70_S. In those areas of the globe not shown in Figure 3, about 20 grid cells display GWD
values of more than 5 mm/yr, many of them in grid cells where large cities are located. Results of variant
IRR100, i.e., without additional groundwater recharge from surface water bodies in dry areas, look rather
similar to IRR100_S results and are therefore not shown.

Clearly, GWD with annual rates of at least 5 mm/yr is concentrated in few semiarid and arid regions around
the globe (all nongray grid cells in Figure 3). The most intensive GWD can be found in those regions that
are well known for GWD and are listed in Table 4. The following additional GWD areas can be identified
from Figure 3: large parts of central and southern India, large parts of Iran, southeastern part of Spain, parts
of Libya and Tunisia, parts of Turkey and Syria, and parts of northern and central Mexico, and of the
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Figure 4. Water flows determining groundwater storage changes, for 1980-2009, for IRR70_S, in mm/yr. (a) Diffuse groundwater recharge R, (b) groundwater recharge from surface
water bodies Ry s (€) net abstraction from groundwater NA, (d) base flow as a fraction of total natural groundwater recharge (Ry + Ry_sws). White areas in Figure 4d indicate grid cells

where total groundwater recharge is zero.

Californian coast. Groundwater depletion in the southeastern part of Spain as well as on the Canary Islands,
in northwestern Mexico (Hermosillo) and in southern Libya (Murzuk), is confirmed by Custodio [2010].
According to our computations, average annual GWD during 1980-2009 has exceeded 50 mm/yr in many
cells even with deficit irrigation (orange, red, and purple grid cells in Figure 3b). Such groundwater storage
losses could correspond to groundwater table declines of more than 0.5 m/yr averaged over the whole grid
cell (approximately 2500 km?). Please note that GWD shown in Northeastern China overestimates actual
GWD by a factor of about 4 (compare Table 4).

To understand the spatial pattern of GWD, its drivers, i.e,, the flows into and out of the groundwater storage
compartment, are shown in Figure 4. In GWD areas, R, is generally less than 100 mm/yr. A comparison of R,
(Figure 4a) with Ry . (Figure 4b) shows that the latter dominates total groundwater recharge in parts of
Northeastern Brazil, the Sahel region, South Africa, Pakistan, India, China, Central Asia, and Australia. Irriga-
tion with surface water causes artificial groundwater recharge and balances groundwater depletion (grid
cells shown in blue colors in Figure 4c). Only grid cells shown in brown colors are subject to a positive net
groundwater abstraction. The impact of human water use on ecologically relevant base flow is shown in
Figure 4d. In WaterGAP 2.2a, positive NA, values (Figure 4c) lead to reduced base flow to surface water
bodies as compared to the sum of diffuse groundwater recharge and recharge from surface water bodies
(Figure 4d), reaching a reduction to zero in GWD areas. Negative NA, values, indicating groundwater
recharge due to irrigation with surface water, lead to base flow that is larger than groundwater recharge
from soil by precipitation (and not irrigation) and from surface water bodies.

3.4. Applicability of Global-Scale GRACE Estimates of Total Water Storage (TWS) Variations to
Monitor GWD

Figure 5 compares GWS and TWS trends computed by WaterGAP 2.2a (IRR70_S). GWD areas (red in Figure
5a) clearly correspond to areas with negative TWS trend (Figure 5b). However, there are additional areas
with strong decreasing TWS trends of more than 20 mm/yr (e.g., in Florida and the southeastern South
America) which represent climate-related decreases of surface water storage. In the green grid cells in Fig-
ure 5¢, the TWS trend is almost equal to the GWS trend. These areas correspond well with the GWD areas
seen in Figure 5a, in particular the intensively exploited HPA (United States), three-states region (Northern
India), Hai river basin (Northeastern China), and Saudi Arabia. GRACE data, however, are not available with a
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Figure 5. (a) GWS trend IRR70_S (mm/yr), (b) TWS trend IRR70_S (mm/yr), (c) GWS trend as a fraction of TWS trend, (d) TWS trend IRR70_S filtered (mm/yr), for 2003-2009. Positive trends
indicate a decrease of GWS or TWS over time. Red polygons in Figure 5¢ show the main GWD areas/countries HPA (United States), Saudi Arabia, TEWI region, three-states region (North-
ern India), and Hai river basin (Northeastern China).

spatial resolution of 0.5°. When TWS computed by WaterGAP with a spatial resolution of 0.5° is filtered with
the DDKS3 filter used for GRACE data (see section 2.4), the pattern of TWS trend is significantly smoothed,
and the localization of GWD areas is hampered (compare Figure 5d to Figure 5b). In all light and dark
orange grid cells shown in Figure 5c, the GWS trend is smaller than the TWS trend. Where water storage
trends are not caused by overabstraction of groundwater but climatic variations, trends in the compart-
ments snow, soil, and surface water bodies can be as large as or larger than trends in groundwater storage.
This shows that a TWS trend seen by GRACE should not be interpreted as being mainly caused by a GWS
trend.

3.5. Comparison of Modeled Trends of TWS to GRACE Observations

The ensemble mean GRACE TWS trend during 2003-2009 (Figure 6a) can be compared to the filtered
WaterGAP trend (variant IRR70_S) (Figure 5d). Over most of the globe, the sign of the trends agree between
WaterGAP and GRACE. This can also be verified in Figure 6b where areas with different signs are shown in
light yellow. For example, in the United States, decreasing trends are identified by both for eastern, central
(HPA), and western United States. The trend in the eastern region is, according to WaterGAP (Figure 5a), not
related to GWD. In the HPA, both GRACE and WaterGAP show an increasing TWS trend in the northern part
and a decreasing trend in the central and southern part. Further coinciding negative trends can be found in
Spain, Central Asia (from the Caspian Sea to Northwestern China), Irag, and Iran, and also in the three other
main GWD areas world-wide (Saudi Arabia, three-states region in Northern India, and Hai river basin in
Northeastern China). In addition, there is a clearly coinciding negative trend in Argentina that is not related
to GWD but to meteorological drought. The strong negative GRACE trend in Greenland is not reflected by
WaterGAP as the glacier and ice sheet dynamics are not simulated by WaterGAP and climate observations
are poor.

For 27% of the grid cells (outside Greenland), WaterGAP IRR70_S TWS trends are within the range of the
three GRACE TWS trends from the different analysis centers (green in Figure 6b). Simulated trends are
mostly smaller than the GRACE ensemble mean trend (in particular in Australia). This, however, is not the
case in the main GWD areas except TEWI (Table 5). While two of the three GRACE trends show an increase
of TWS for the HPA, the ITG-Grace2010 trend is very close to the WaterGAP IRR70_S TWS trend, i.e., the
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Figure 6. (a) Ensemble mean TWS trend (mm/yr) from GRACE (GFZ-RLO5, CSR-RLO5, and ITG-Grace2010) 2003-2009, and (b) ratio of IRR70_S trend and ensemble mean GRACE trend. In
Figure 6a, a positive trend indicates a decrease of TWS over time. In Figure 6b, areas where GRACE and WaterGAP trends have the opposite sign are shown in yellow. In black, outlines of
the main GWD areas/countries HPA (United States), Saudi Arabia, TEWI region, three-states region (Northern India), and Hai river basin (Northeastern China) are shown.

Table 5. Comparison of Trends in Simulated TWS in Main GWD Areas/Countries to Three Different (Filtered) GRACE Solutions, for 2003-2009 (mm/yr)*

WaterGAP WaterGAP WaterGAP GRACE GRACE GRACE
IRR70_S Unfiltered IRR70_S Filtered IRR100_S Filtered GFZ-RLO5 CSR-RLO5 ITG-Grace2010
High Plains aquifer 1.9 4.5 9.1 -0.2 —35 49
Hai river basin (Northeast China) 60.4 422 49.2 6.5 YAl 59
Three-states region (Northern India) 44.6 325 46.9 24.1 254 29.4
Tiwari study region 16.5 174 251 179 16.2 173
Saudi Arabia 53 5.5 7.2 6.2 3.2 =75
TEWI (2003-2009) 129 11.8 14.1 223 19.8 189
TEWI (2003-2006) 6.6 7.7 10.2 10.8 =3} =25
TEWI (2007-2009) 220 18.8 213 40.6 453 na.

Positive trends indicate a decrease of TWS over time. Location of the areas is shown in Figure 5c.
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Table 6. Average Annual Groundwater Depletion (GWD) and Its Relation to Total Groundwater Abstractions in Countries Modeled by
WaterGAP 2.2a (GWD IRR70_S Minus GWD NOUSE_S, Without Grid Cells With Big Cities in which Irrigation Water Withdrawals Are Less
than 5% of Total Water Withdrawals)®

GWD 1960-2000 GWD/Groundwater Abstractions ~GWD 2000-2009 GWD/Groundwater Abstractions

Country (km>/yr) 1960-2000 (km?/yr) 2000-2009
Afghanistan 0.14 0.04 0.28 0.09
Algeria 0.16 0.11 0.32 0.12
Argentina 0.1 0.04 0.06 0.02
Australia 0.09 0.04 0.22 0.06
Bangladesh 0.24 0.03 1.92 0.10
China 242 0.04 6.27 0.07
Egypt 1.07 0.29 1.45 0.30
Greece 0.08 0.04 0.29 0.08
India 21.70 0.16 43.13 0.21
Iran 481 0.20 9.98 0.29
Iraq 0.09 0.08 0.36 0.21
Israel 0.11 0.23 0.18 0.31
Italy 0.12 0.02 0.12 0.02
Jordan 0.06 0.10 0.19 0.20
Kazakhstan 0.08 0.07 0.07 0.06
Kyrgyzstan 0.39 0.23 —0.21 —0.21
Libya 0.98 0.52 233 0.59
Mexico 2.02 0.23 3.21 0.24
Moldova 0.60 0.29 —0.05 —0.08
Morocco 0.13 0.03 0.17 0.03
Oman 0.21 0.69 0.37 0.71
Pakistan 244 0.07 361 0.08
Romania 0.23 0.12 —0.10 —0.09
Saudi Arabia 430 0.64 9.04 0.68
Spain 0.51 0.09 1.17 0.13
Syria 0.79 0.19 1.92 0.25
Tunisia 0.12 0.12 0.29 0.15
Turkey 0.20 0.02 0.49 0.04
Ukraine 0.44 0.09 —0.14 —0.08
United Arab Emirates 0.21 0.58 0.99 0.62
United States of America 10.66 0.17 23.47 0.19
Yemen 0.37 0.27 0.90 035
Other countries 0.17 0.00 0.25 0.00
Global 56 0.12 113 0.17

Values for China were obtained by multiplying the WaterGAP estimate for the Hai river basin by 0.25, to account for the obvious
overestimation of WaterGAP compared to independent estimates (Table 4). Values for the United States were obtained by multiplying
the WaterGAP value by 0.9 for 1960-2000 and by 1.5 for 2000-2009, based on a comparison to independent estimates for individual
GWD regions in the United States (Table 4 except Rodell et al. [2009]). Only countries with GWD larger than 0.06 km?/yr for 1960-2000
are listed. Negative values for the period 2000-2009 indicate an increase of groundwater storage due to reduced groundwater
abstractions.

trend of the WaterGAP version that fits very well to GWD as observed from groundwater well observations.
With optimal irrigation (IRR100_S), the TWS decrease would be higher than estimated by any of the three
GRACE solutions. Thus, for the HPA, WaterGAP IRR70_S total and groundwater storage trends results are
supported by both GRACE data and groundwater well observations. Regarding the Hai river basin, the
extreme overestimation of independently estimated GWD (Table 4; derived only partly from GRACE data)
by all variants of WaterGAP is confirmed by GRACE TWS trends (Table 5). For the globally most intensive
GWD in the three-states region, GRACE TWS trends confirm, as does the GRACE-based GWD estimate of
Rodell et al. [2009] (Table 4) that deficit irrigation at 70% of optimal irrigation is consistent with GRACE
observations. This is also true for the larger Tiwari study region (Figure 3). This supports that GWD in this
region is quantified well by both WaterGAP and Jacob et al. [2012], but overestimated by Tiwari et al. [2009]
(Table 4). In case of Saudi Arabia, the IRR70_S TWS trend falls within the range of the three GRACE solutions,
while IRR100_S overestimates the decline of GRACE TWS. This differs from the result of comparison to GWD
independent estimates where IRR100_S resulted in a better fit, albeit for the earlier time period 1980-2000.
In the TEWI region, WaterGAP TWS decrease is within the range of the three GRACE solutions for the period
2003-2006, but underestimates the 2007-2009 GRACE trends by more than 50%, which could be explained
by a massive construction of groundwater wells in Iraq in the drought year 2007 (see section 3.2).
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3.6. Best Estimate of Global Groundwater Depletion

Based on the comparison of GWD and TWS trends simulated by WaterGAP 2.2a variants with a large range
of independent estimates from the literature, but also taking into account the plausibility of water fluxes
constraining GWD (sections 3.1-3.5), we conclude that it is likely that farmers perform deficit irrigation in
GWD regions. The deficit irrigation model variant IRR70_S, with only 70% of optimal irrigation requirement,
leads to declining groundwater and total water storages that correspond reasonably well to independent
estimates in many regions world-wide. To derive a best estimate of global groundwater depletion and
depletion in individual countries due to human water use, we compute GWD, like for Figure 3, as the differ-
ence between GWD of IRR70_S minus GWD of NOUSE_S (without any water abstractions) but do not con-
sider GWD in those cells where big cities are located (ESRI shapefile) and water abstraction for irrigation
accounted for less than <5% of total water abstraction during the time period 1960-2000. This was done to
correct for the erroneous model assumption that the complete groundwater demand also of big cities is
supplied from the grid cell in which the city is located. Finally, the country values for China and the United
States were corrected based on independent GWD estimates that are very likely to be more accurate than
WaterGAP results (Table 4). In the case of China, the GWD simulated in the Hai river basin was multiplied by
0.25, while the GWD values for the United States were multiplied by 0.9 for the time period 1960-2000 and
by 1.5 for the period 2000-2009 (compare section 3.2).

Table 6 provides average annual GWD for those 32 countries for which GWD in the period 1960-2000 was com-
puted to exceed 0.06 km?/yr. Average annual GWD has increased from 1960-2000 to 2000-2009 in all countries
except Italy and five countries which all have been subject to a strong decrease of irrigated areas after the end
of the Soviet Union. In each of the five countries with the largest GWD, i.e., in India, United States, Iran, Saudi
Arabia, and China (in decreasing order), GWD has more than doubled from 1960-2000 to 2000-2009. GWD in
Bangladesh, Greece, Iraq, Jordan, and United Arab Emirates has even more than tripled according to our com-
putations. GWD as a fraction of groundwater abstractions shows to what extent a country depends on nonre-
newable groundwater for its groundwater supply. These fractions have also increased over time but not as
strongly as GWD since renewable groundwater abstractions have increased, too (Table 6). The fraction reaches
a maximum of 0.68 for Saudi Arabia, which corresponds quite well to the estimate that “nonrenewable ground-
water resources supplied about 66% of the total national needs in 2000” [Abderrahman, 2006].

Global GWD is estimated to have doubled from 56 km?>/yr during the period 1960-2000 to 113 km>/yr dur-
ing 2000-2009. In the two time periods, 10-12% and 13-17%, respectively, of the globally abstracted
groundwater was taken from nonrenewable groundwater; the lower values would result under the assump-
tion that irrigation is done at the optimal rate everywhere, while the upper values would be obtained in
case of 70% deficit irrigation world-wide. Groundwater depletion outside the 32 countries was very small
(Table 6). However, in four countries with relatively small groundwater abstractions, the relative reliance on
nonrenewable groundwater is high. In Mongolia, Mozambique, Qatar, and Mali, 30-74% of the abstracted
groundwater was nonrenewable in 2000-2009, increasing from the earlier period.

4. Discussion

4.1. Global-Scale Modeling of Groundwater Recharge From Surface Water Bodies

For this study of global GWD, we selected a simple approach for simulating the fact that in semiarid and
arid areas, surface water bodies tend to recharge the groundwater while in humid areas, groundwater
mostly recharges surface water bodies via base flow. With this approach, it is not possible to simulate the
temporal dynamics of water exchange between surface water bodies and groundwater that are due to
changing hydraulic gradients. Only the dynamics due to changing areas of surface water bodies are mod-
eled. Different from representation in our model, there are no distinct boundaries between areas of losing
and gaining surface water bodies. For example, we found that due to our delineation of semiarid and arid
areas, the Sandhill wetlands in the northern HPA, north of the playa regions, are modeled as losing surface
water bodies while in reality they are recharged by groundwater [LaGrange, 2005].

Unfortunately, it was not possible to constrain the value of the parameter fg,, 5. by modeling GWD in the
HPA. While the combination of 70% deficit irrigation with groundwater recharge per unit surface water area
fawr_swo = 10 mm/d yielded the best fit of all variants (Figure 2), the decrease from 100% to 70% of optimal
irrigation lowered GWD by 11 mm/yr, while assuming groundwater recharge from surface water bodies but
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optimal irrigation lowered GWD by only 3 mm/d. So at least for the HPA, with a strong groundwater over-
draft in some southern and central grid cells, GWD is much more sensitive to the degree of deficit irrigation
than to the assumed fy,,, sup. Gurdak and Roe [2010] compiled a large number of observed groundwater
recharge estimates from the playas of the southern HPA. They cite infiltration rates beneath playas fyur swo
ranging from 1.5 to 43 mm/d. Besides, they point out that infiltration is highest immediately after filling of
the seasonal playas and that a lack of evaporite minerals in the playas indicates a significant infiltration.

Groundwater recharge from large lakes or reservoirs in dry areas can be expected to be high. However, due
to the permanent existence of the surface water body, hydraulic gradients may be lower. Various studies on
groundwater recharge from Lake Nasser identified a significant recharge of the underlying groundwater
from Lake Nasser, but quantitative estimates vary extremely. When steady state conditions of groundwater
recharge are assumed, observed hydraulic gradients in the adjacent aquifer and estimates of hydraulic con-
ductivity lead to very small values of groundwater recharge per unit of lake area of 5-50 mm/yr [Metwaly

et al., 2006; Ghoubachi, 2012]. Dynamic groundwater modeling showed that recharge rates decrease for
decades after the reservoir was filled. For 1970-2000, groundwater recharge from Lake Nasser is computed
to be 1000 mm/yr (or 3 mm/d) and will decrease to 14% of this value for the period 2000-2030 [Kim and
Sultan, 2002]. Based on these three studies, we conclude that we possibly overestimate groundwater
recharge from permanent water bodies if we assume a daily groundwater recharge of 10 mm.

4.2. Monitoring GWD Using GRACE

When assessing GWD using GRACE gravity changes in regions with oil production, the amount of extracted
oil must be subtracted from total continental mass loss to obtain TWS changes. However, we found that
even on the Arabian Peninsula, oil production is small compared to consumptive irrigation water use. Based
on oil production data from BP [2009], we estimated that in Saudi Arabia and in Oman, oil production in
2002-2008 was about 4% of consumptive water use for irrigation. Only in the small countries Qatar and
Kuwait, both fluxes are of similar magnitude.

GRACE TWS are certainly very useful for monitoring GWD in particular where the dynamics of groundwater
and surface water withdrawals are high and not well monitored. To derive GWD, GRACE TWS should not
only be combined with model-based estimates of soil and snow storage as it has been done in most studies
le.g., Tiwari et al., 2009; Jacob et al., 2012] but should be jointly analyzed together with models like Water-
GAP that simulate surface water and groundwater storage variations as impacted by humans as well. Then,
GRACE data can contribute better to an improved understanding of GWD and its causes, and climatic rea-
sons for groundwater storage decreases can be distinguished from GWD due to human water abstractions.

In such a joint analysis, uncertainties of the hydrological model (see section 4.3) and of GRACE data need to
be taken into account. One important uncertainty stems from the low spatial resolution of GRACE and thus
the need of filtering, with the resulting leakage errors [Werth and Guntner, 2010]. A comparison of trends of
filtered and unfiltered WaterGAP TWS for major GWD areas (Table 5 and Figures 5b and 5d) shows that
trends for GWD regions with intensive GWD as large as the HPA or the three-states regions in Northern
India have significantly decreased due to filtering, while this is not the case for even larger regions like Saudi
Arabia or the Tiwari study region. The TEWI region shows that the effect of filtering on trends may vary over
time, with filtering either increasing or decreasing the trend (Table 5).

Another uncertainty stems from the different approaches to process GRACE data. A part of the uncertainty
of GRACE TWS trends can be quantified by comparing GRACE data from different analysis centers (Table 5).
Different TWS trends were determined for river basins by Jensen et al. [2013] depending on the method to
evaluate GRACE data (e.g., fingerprint method with and without using data on sea level, or an approach
very similar to our method for deriving TWS values). For example, decreasing trends ranged between 16
and 23 km?>/yr for the Ganges basin and between 2 and 17 km?/yr for the Indus basin (period August 2002
to July 2009). For the TEWI region, Voss et al. [2013] determined an average TWS decline of 27 mm/yr for
the period 2003-2009, as compared to the range of 21-24 mm/yr for the three GRACE products of this
study (derived from values in Table 5 by correcting the filtering effect by multiplying with the ratio of unfil-
tered to filtered IRR70_S TWS). Looking at shorter time periods, GRACE CSR results (also used by Voss et al.
[2013]) show a stronger change in TWS trends before and after 2007 than GRACE GFZ, the latter fitting bet-
ter to WaterGAP results than GRACE CSR (Table 5). According to WaterGAP, climate-driven TWS decrease in
2007-2009 is 15 mm/yr (computed using variant NOUSE_S), and human water use driven TWS decrease
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only 7 mm/yr. Comparing WaterGAP results to GRACE GFZ-RLO5 trends, one could deduce that human
water use has caused a TWS decrease of 29 mm/yr instead of only 7 mm/yr during this period. However, it
is not possible to deduce if the additionally depleted water stems from groundwater or surface water use.

4.3. Uncertainties of Derived GWD and Deficit Irrigation

Given the groundwater storage balance (equation (2)), simulated GWD as well as the estimated degree of defi-
cit irrigation strongly depend on computed groundwater recharge Ry and net groundwater abstractions NAg in
case of optimal irrigation. Estimates of optimal irrigation are a function of irrigated area, crops, growing season,
climate, and irrigation water use efficiency. Based on the computed net and gross irrigation water requirements
under optimal conditions, NA, is computed as a function of the fractions of groundwater and surface water use
and the assumptions about return flows [Doll et al., 2012]. R, depends on knowledge about daily climate varia-
bles, land cover, relief, and soils. This makes computation of Ry and NAg and thus GWD highly uncertain. Gleeson
and Wada [2013] found that much of the uncertainty of groundwater stress in the United States and India is
related to groundwater recharge estimates. It is, however, not possible to conclude from their study whether
the uncertainty of water use estimates is more or less important than the uncertainty of recharge estimates as
only two water use estimates were used that were not independent of each other.

As an example, the strong overestimation of GWD in the North China Plain/Hai river basin is very likely due
to a strong underestimation of Ry, with 12 mm/yr for the North China Plain (for 2000-2008) in WaterGAP
(plus 5 mm/yr groundwater recharge from surface water bodies), as compared to 94 mm/yr estimated by
Liu et al. [2011]. As no streamflow observations are available for the North China Plain, a regionalized value
for the runoff coefficient is applied in WaterGAP (section 2.1). If regionalization of the runoff coefficient
would be done based on proximity instead of basin characteristics, the runoff coefficient would be 1 instead
of 4, and R, would increase to almost 40 mm/yr. Interestingly, with a former version of WaterGAP with a dif-
ferent regionalization algorithm (but also based on basin characteristics) and driven by different climate
data, Ry in the North China Plain is estimated to be almost 40 mm/yr in 2000-2008 and 60 mm/yr in 1961~
1990 [Doll and Fiedler, 2008]. Modeled and independently estimated NA, values are similar (140 mm/yr ver-
sus 130 mm/yr, time period 2000-2008). This supports the adjustment of the NA; computation made for
WaterGAP 2.2a. Assuming a higher irrigation efficiency for groundwater use (resulting in reduced ground-
water abstractions for irrigation) and a decreased return flow fraction to surface water bodies in WaterGAP
2.2a as compared to 2.1h [Doll et al., 2012] resulted in a 20% decrease of NA, in the HPA.

Even though modeled long-term annual average GWD over regions may fit well to independent estimates,
this can be due to a balancing of errors over time or space. The same is true for modeled water abstractions.
As an example, GWD in the HPA is underestimated by IRR70_S in 2003 but overestimated in 2004, com-
pared to well observation in 2003-2004 (Figure 2). IRR70_S groundwater abstractions in the whole HPA fit
very well to estimates of USGS [2009], supporting the assumption of a 70% deficit irrigation. However, for
the Northern HPA, optimal irrigation leads to the best fit to USGS data, while it is 70% deficit irrigation for
the Central HPA and even 50% deficit irrigation in the dry Southern HPA that would reflect USGS ground-
water abstractions [Schuh, 2013, Table 4]. Obviously, our best estimate of 70% deficit irrigation can only be
regarded a rough overall estimate given spatial and temporal heterogeneity.

To validate the spatial pattern of modeled GWD at the 0.5° grid scale, which strongly depends on the irri-
gated areas in the grid cell, it is not possible to rely on GRACE due to its coarse spatial resolution. Satellite
radar altimetry observations of land subsidence can be compared to spatial patterns of modeled GWD in
case of compressible underground material. Based on radar altimetry, land subsidence was detected for
areas around the seven Iranian cities shown in Figure 3, and groundwater tables had been observed to
decline (but not enough data are available to estimate GWD) [Motagh et al., 2008].

Temporal development of groundwater abstractions and GWD only reflects changes in total abstractions
due to climate, extension of irrigated areas, population growth, etc. Changes in irrigation water use efficien-
cies, cropping pattern, and groundwater abstractions as a fraction of total abstractions are not taken into
account in WaterGAP. While an increase of groundwater abstractions as a fraction of total abstractions has
been documented for United States and India [Siebert et al., 2010], there is little information globally. This
increase has been estimated at the global scale only by a simulation approach that calculates groundwater
abstractions as a function of total water withdrawals and surface water availability [Wada et al., 2014]. The
grid-specific but temporally constant fractions of sectoral groundwater use applied in WaterGAP may
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slightly underestimate groundwater abstractions after 2000, and more strongly overestimate those in the
1960s, but uncertainty of groundwater abstractions due to the unresolved temporal development of the
groundwater fractions are expected to be only a small part of the overall uncertainty.

An additional uncertainty of computed GWD stems from the fact that WaterGAP does not simulate groundwater
dynamics by considering hydraulic head gradients but by using a simple water balance approach. On one hand,
groundwater recharge from surface water bodies induced by lowered hydraulic heads due to groundwater
abstractions is not simulated in the model. This should lead to an overestimation of simulated GWD by Water-
GAP. On the other hand, depending on the aquifer properties and the distance between abstractions and sur-
face water bodies, the cone of depression and thus the reduction of base flow may take a very long time to fully
develop, maybe more than 100 years [Bredehoeft, 2002]. As WaterGAP assumes that base flow reduces in pro-
portion to groundwater storage, WaterGAP should underestimate GWD in cases of long lag times for base flow
reduction, as is particularly the case for groundwater abstractions from deep confined aquifers.

4.4. Comparison to Other Estimates of Global GWD

We derived that average global GWD during the periods 1960-2000 and 2000-2009 was 56 and 113 km>/yr,
respectively. For 1993-2008, the average GWD was 95 km>/yr (no correction done for United States). This
value is much smaller than the rather implausible value (362 km*/yr during 1987-2007) of Pokhrel et al.
[2012] (see section 1). It is smaller than the values of Konikow [2011] and Wada et al. [2012a] who estimate an
average GWD of 121 km>/yr (1991-2008) and 195 km?>/yr (1993-2008), respectively. The corresponding sea
level rise caused by GWD according to this study is 0.26 mm/yr only, compared to 0.34 and 0.54 mm/yr. The
differences cannot be explained by the fact that we subtracted GWD that was probably due to erroneous
modeling of the water supply of big cities. This would add only 5 km>/yr to the GWD values of this study. Tak-
ing into account the natural climate-induced groundwater storage changes by subtracting groundwater stor-
age changes computed in case of no water abstractions decreases GWD by 2-3 km?>/yr, depending on the
time period considered. Had we not corrected the IRR70_S values for China and the United States, the deter-
mined global GWD would be 14 km?/yr higher at most.

One reason for the discrepancy to both studies is the GWD estimate for the Tiwari study region (Northern
India and surrounding regions) with an average GWD of 54 km>/yr during 2002-2008 according to the
GRACE-based study of Tiwari et al. [2009]. This value, which accounts for almost half of the global GWD esti-
mate of this study during the first decade of the 21st century, is used directly by Konikow [2011] and indi-
rectly by Wada et al. [2012a] because the latter adjust GWD in all nonarid grid cells by a correction factor
that was heavily influenced by the Tiwari et al. [2009] value and reduces the computed value for the Tiwari
study region from 71 km?/yr to the GRACE-based value of 54 km>/yr (compare Figure S4 of Wada et al.
[2012a] to their Figure 1). However, a more recent GRACE-based study for a very similar area by Jacob et al.
[2012] only estimated a GWD of 35 km?>/yr, to which GWD simulated with IRR70_S fit well (Table 4). In addi-
tion, the TWS trend of IRR70_S falls into the range of the three GRACE solutions analyzed in this study.

Consideration of the overestimated GWD from the study by Tiwari et al. [2009] can explain two thirds of the
difference between the global GWD estimates of Konikow [2011] and this study. In addition, as there are no
guantitative studies on GWD for many areas of the globe, 30% of Konikow’s global GWD is derived by
extrapolation of the relation between GWD and total water withdrawals in the United States, and total with-
drawals in those areas not covered by studies [Konikow, 2011].

The much higher global GWD estimate of Wada et al. [2012a] could be related to differences in estimated
groundwater recharge and abstractions, but also to the fact that they do not model three processes that
decrease GWD, and which are simulated by the version of WaterGAP applied in this study: (1) deficit irrigation,
(2) base flow reductions due to groundwater abstractions (as noted by Konikow [2011]), and (3) groundwater
recharge from surface water bodies. Relative overestimation of GWD due to neglecting baseflow reduction is
expected to be particularly high in areas where net groundwater abstraction does not strongly exceed
groundwater recharge. In these areas, net abstraction can be balanced by decreased base flow.

5. Conclusions

Applying an improved version of the global hydrological and water use model WaterGAP 2.2a that takes
into account groundwater recharge from surface water bodies in semiarid and arid regions, groundwater
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depletion GWD was quantified. Groundwater abstractions are based on spatially highly resolved informa-
tion on the fraction of irrigated areas that is equipped with surface water or groundwater irrigation which
was, however, assumed to be constant over time due to lack of data. Reduction of base flow due to water
abstractions as well as return flows from irrigation with surface water was simulated (see sections 2.1.1 and
2.1.3). Final GWD estimates were corrected for the natural temporal variability of groundwater storage and
the likely overestimation of GWD in grid cells with big cities. By comparing model results to a large number
of independent regional-scale estimates of GWD and estimates of relevant water fluxes like groundwater
recharge and groundwater abstractions, it was found that GWD can be modeled best if it is assumed that
deficit irrigation occurs in GWD areas, with only 70% of the optimal irrigation water amount.

The modeled spatial distribution of GWD areas around the globe on the continents fits well to information
from the literature. To derive a best estimate of GWD at the country and global scales, model results were
corrected for the United States and China based on reliable independent estimates (section 3.6). According
to our estimation, India, United States, Iran, Saudi Arabia, and China are the countries with the highest GWD
rates in the first decade of the 21st century. In the countries on the Arabian Peninsula, and in Libya, Egypt,
Israel, Mali, Mozambique, and Mongolia, at least 30% of the abstracted groundwater was taken from nonre-
newable groundwater during this time period. In all but a few countries, average annual GWD has strongly
increased from the period 1960-2000 to the period 2000-2009. We compute that global GWD has doubled
from an average 56 km>/yr to an average 113 km?/yr, but considering the increase in the groundwater frac-
tion of total water abstractions over time, it is likely that it more than doubled between 1960-2000 and
2000-2009. The fraction of global groundwater abstractions from nonrenewable groundwater has increased
from approximately 11% to 15%.

With 95 km?>/yr for 1993-2008, our best estimate of global GWD is somewhat smaller than the previous esti-
mate by Konikow [2011], and much smaller than the two estimates that are, like ours, derived from global
hydrological modeling [Wada et al., 2012a; Pokhrel et al., 2012]. Advantages of our GWD estimates are a
detailed groundwater use database, the consideration of deficit irrigation in GWD areas based on compari-
son to independent groundwater well and GRACE-based GWD estimates, the simulation of base flow reduc-
tion by groundwater abstraction and the simulation of groundwater recharge from surface water bodies.
Nevertheless, modeling uncertainties remain high, as discussed in sections 4.1 and 4.3. According to our
best estimate, contribution of groundwater depletion to sea level rise was only 0.26 mm/yr for 1993-2008
(and 0.31 mm/yr for 2000-2009).

While it was found that the seasonal variation of TWS as observed by GRACE cannot be used to quantify
groundwater abstractions [Doll et al., 2014], GRACE TWS trends can help to constrain (ground)water abstrac-
tion in conjunction with a hydrological and water use model like WaterGAP. In particular, monitoring of
recent temporal dynamics of water abstraction not (yet) documented could be achieved. Still, the low spa-
tial resolution of GRACE data remains a challenge as GWD is often quite local.
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Abstract

To assess the impact of climate change on freshwater resources, change in mean annual runoff
(MAR) is only a first indicator. In addition, it is necessary to analyze changes of river flow
regimes, i.e. changes in the temporal dynamics of river discharge, as these are important for
the well-being of humans (e.g. with respect to water supply) and freshwater-dependent biota
(e.g. with respect to habitat availability). Therefore, we investigated, in a global-scale
hydrological modeling study, the relation between climate-induced changes of MAR and
changes of a number of river flow regime indicators, including mean river discharge, statistical
low and high flows, and mean seasonal discharge. In addition, we identified, for the first time
at the global scale, where flow regime shifts from perennial to intermittent flow regimes (or
vice versa) may occur due to climate change. Climate-induced changes of all considered river
flow regime indicators (except seasonal river flow changes) broadly follow the spatial pattern
of MAR changes. The differences among the computed changes of MAR due to the
application of the two climate models are larger than the differences between the change of
MAR and the change of the diverse river flow indicators for one climate model. At the
sub-basin and grid cell scales, however, there are significant differences between the changes
of MAR, mean annual river discharge, and low and high flows. Low flows are projected to be
more than halved by the 2050s in almost twice the area as compared to MAR. Similarly,
northern hemisphere summer flows decrease more strongly than MAR. Differences between
the high emissions scenario A2 (with emissions of 25 Gt C yr™! in the 2050s) and the low
emissions scenario B2 (16 Gt C yr~!) are generally small as compared to the differences due
to the two climate models. The benefits of avoided emissions are, however, significant in those
areas where flows are projected to be more than halved due to climate change. If emissions
were constrained to the B2 scenario, the area with ecologically relevant flow regime shifts
would be reduced to 5.4%—6.7% of the global land area as compared to 6.3%—7.0% in A2. In
particular, under the B2 scenario, fewer rivers will change from perennial to intermittent (or
transitional) river flows.
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1. Introduction

When assessing the impact of climate change on freshwater
resources at the global scale, it is most common to look at
changes of mean annual runoff (MAR), i.e. the difference
between the long-term averages of annual precipitation and
evapotranspiration (Bates et al 2008). While changes in
MAR are of major interest as they represent changes of
total renewable water resources, the assessment of these
changes alone is not sufficient for supporting sustainable
water management. According to Gosling er al (2011), ‘the
common use of MAR as a measure of the response of
hydrological systems to climate change is oversimplistic’.
More specific analyses of climate change impacts on runoff
components like groundwater recharge (Doll 2009), or on
river discharge, i.e. runoff accumulated along the drainage
direction, are required.

River discharge (also called river flow) varies over space
and time. The relevant temporal scales range from minutes
(e.g. in the case of flash floods) to decades (e.g. in the
case of water resource assessments). River flow regimes
describe the temporal patterns of flow variability. Knowledge
about changing river flow regimes is paramount for assessing
climate change risks related to freshwater. Estimation of
changes in seasonality, interannual variability, statistical low
and high flows, and floods and droughts is required to
understand the impact of climate change on humans and
freshwater ecosystems. River flow regime alterations affect
humans with respect to water supply, navigation, hydropower
generation and flooding, and they affect ecosystems with
respect to habitat suitability for freshwater-dependent biota
(Poff and Zimmerman 2010). Of particular relevance for
freshwater ecosystems are shifts from perennial to intermittent
flow regimes or vice versa, as they have a strong impact on
biota living in the river (Bond ef al 2010) and on riparian
vegetation (Stromberg et al 2005).

Climate change impact studies for individual drainage
basins mostly focus on changes of river discharge and
aspects of its temporal variability, in particular seasonality
(Kundzewicz et al 2007). Global-scale studies on the impact
of climate change on river flow regimes are still rare
(e.g. Milly et al 2002, Hirabayashi et al 2008, Doll and
Zhang 2010). Our study was inspired by Gosling ef al (2011)
who applied a global hydrology model (GHM) (without the
capability to route water downstream) and six catchment
models to compute the impact of climate change on MAR
in six catchments (one catchment model per catchment).
In addition, they simulated the impact of climate change
on monthly runoff as well as on monthly low and high
flows, and related the changes of these regime indicators to
changes in MAR. For the Rio Grande and the Okavango, they
found that flow seasonality would not change under climate
change, while it would change significantly in the other four
catchments. Changes in low and high flows were found to be
generally similar to changes of mean annual flows, with some
exceptions.

The objective of this study was to better understand, at
the global level, how climate-induced changes of indicators

of the river flow regime, which are important for the
well-being of humans and ecosystems, relate to changes of
MAR. We wanted to find out how significant the results of
resource-intensive ensemble studies on the impact of climate
change on MAR would be for assessing impacts on river
flow regimes. We used the state-of-the-art global water model
WaterGAP (Alcamo et al 2003, Doll et al 2003) to translate
four climate scenarios (as computed by two global climate
models) into scenarios not only of MAR but also of a number
of flow regime indicators, and of shifts between perennial
and intermittent flow regimes. As flow regimes are affected
by human water use, predominantly by irrigation, we also
took into account the impact of climate change on irrigation
water use. In section 2, both the WaterGAP model and
the climate data are described. In addition, we introduce
the investigated flow regime indicators, in particular how
perennial and intermittent flow regimes are identified globally
by WaterGAP. In sections 3 and 4, computational results are
presented and discussed. Finally, conclusions are drawn.

2. Methods
2.1. Model description

With a spatial resolution of 0.5° x 0.5° (55 km x 55 km
at the equator), the global water resources and use model
WaterGAP simulates water flows and storages as well as
human water use for all land areas of the globe excluding
Antarctica (Alcamo et al 2003, D61l et al 2003). For this
study, WaterGAP 2.1g was applied. Water use, i.e. water
withdrawals and consumptive water use, is estimated by
separate models for the sectors’ irrigation (D61l and Siebert
2002), livestock, households and industry. The WaterGAP
Global Hydrology Model (WGHM) computes groundwater
recharge, total runoff generation and river discharge, taking
into account the impact of human water use and man-made
reservoirs on river discharge (Doll 2009, Doll and Fiedler
2008). For each grid cell, the vertical water balance is
computed, and the resulting runoff is routed laterally within
the cell through a groundwater store and various surface
water stores (so-called ‘local’ surface water bodies that are
only fed by runoff of the cell, and so-called ‘global’ surface
water bodies that also receive water from upstream cells). All
groundwater generated within one cell is assumed to return to
surface water within each grid cell. The effect of surface water
bodies on water balance and flow dynamics is modeled by
first routing the runoff generated within the grid cell through
‘local’ lakes, reservoirs and wetlands. The difference between
precipitation and potential evapotranspiration is computed
for each surface water type within the grid cell, thus taking
into account the effect of the surface water balance on cell
runoff. The water volume resulting from grid cell runoff is
added to the discharge from the upstream grid cell and routed
through ‘global’ lakes, reservoirs and wetlands, and through
the river storage compartment. The total runoff of a grid cell
may be negative as it includes the water balance of surface
water bodies which may be negative. Negative surface water
balances occur if water bodies fed from upstream evaporate
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more water than falls as precipitation on the water bodies in
the cell. Grid cell discharge is assumed to represent discharge
in the largest river within the grid cell, and is routed to the next
downstream cell according to the global drainage direction
map DDM30 (Déll and Lehner 2002). WaterGAP is tuned in
a basin-specific manner against long-term average discharge
at 1235 gauging stations (discharge data provided by GRDC,
grdc.bafg.de), by adjusting 1-3 model parameters (Hunger
and Doll 2008).

Important WaterGAP inputs include time series of
monthly values of climate variables as well as information
on soil and land cover. Monthly climate data are downscaled
to daily data, in the case of precipitation using the available
number of wet days per month. Monthly climate data,
except for precipitation, are provided by the CRU TS 2.1
data set (Mitchell and Jones 2005). As precipitation input,
0.5° gridded monthly time series of the GPCC Full Data
Product Version 3 (Rudolf and Schneider 2005) were used,
together with the number of wet days from the CRU TS 2.1
data set.

2.2. Modeling climate change impacts

We considered four different climate change scenarios,
comparing runoff and river flow regimes resulting from the
climate during the time period 1961-90 to runoff and flow
regimes resulting from the climate during 2041-70 (the
2050s). The two IPCC greenhouse gas emissions scenarios
A2 and B2 (Nakicenovic and Swart 2000) were translated
into climate change scenarios by two state-of-the-art global
climate models, the ECHAM4/OPYC3 model (Rockner et al
1996, hereafter referred to as ECHAM4) and the HadCM3
model (Gordon et al 2000). In the A2 scenario, emissions
increase from 11 Gt C yr~! (CO,-equivalent) in 1990 to
25 Gt C yr~!' in the 2050s, but they only increase to
16 Gt C yr~! in the case of scenario B2. Due to large
climate model uncertainties, the same emissions scenarios are
translated to rather different climate scenarios, in particular
regarding precipitation.

Changes in mean monthly precipitation and temperature
between the periods 1961-90 and 2041-70 as computed
by the climate models were used to scale the grid cell
values of observed monthly precipitation and temperature
between 1961-90 that drive WaterGAP in the control run
(delta change method). In a first step, the climate model
data were interpolated from their original resolutions to the
WaterGAP resolution of 0.5° x 0.5°. Then, in the case
of temperature, observed values were scaled by adding
to them the difference of the climate model values of
future (2041-70) and present-day (1961-90) temperature.
The 30 yr perturbed precipitation time series was produced
by multiplying observed values by future climate model
precipitation as a ratio of the present-day precipitation.
If present-day monthly precipitation was less than 1 mm,
precipitation was scaled additively, like temperature. The
impact of changed interannual variability and the predicted
increased variability of daily precipitation could not be taken
into account in this study due to the delta change method.

Finally, the impact of altered radiation, humidity or wind
speed on evapotranspiration was also neglected.

We simulated not only the impact of climate change on
runoff but also on irrigation water use. Thus, the future flow
regimes analyzed in this study are impacted by climate change
impacts on both runoff and irrigation water use. Irrigation
water use in each grid cell is computed as a function of
irrigated area (Siebert er al 2005) and the 30 yr temperature
and precipitation time series. To isolate the impact of climate
change, we kept the irrigated area as well as domestic,
industrial and livestock water uses constant at the level of
the year 2002 in all simulations. Equally, dams remained
constant at the 2002 level. Differently from river discharge,
computed runoff is essentially unaffected by human water
use and thus by the impact of climate change on irrigation
water use (except for some effect of water use on the extent of
surface water bodies which affects evapotranspiration).

2.3. Flow regime indicators

All indicators were computed based on 30 yr of monthly
values. We considered the impact of climate change on MAR
(Rmean) and on the following indicators of the river flow
(discharge) regime in each 0.5° grid cell.

® Omean: Mmean annual river discharge.

e (Qgp: monthly discharge that is exceeded in nine out of ten
months (low flow).

e (O1o: monthly discharge that is exceeded in one out of ten
months (high flow).

e Opjr: mean river discharge in December to February
season.

e OmaMm: mean river discharge in March to May season.
e (Ojja: mean river discharge in June to August season.

e Oson: mean river discharge in September to November
season.

All discharge indicators represent the actual discharge as
affected by human water withdrawals. In addition, we also
analyzed the climate impact on mean annual river discharge
that would occur without any human water withdrawals.
Furthermore, we computed shifts from perennial to
intermittent river flow regimes and vice versa due to climate
change. There are no general definitions for perennial
rivers versus intermittent rivers. Wilhelm (1997) stated that
intermittent rivers fall dry at least one month per year. In
the US National Hydrography Dataset (USGS 2000), rivers
are classified as ‘intermittent’ if they ‘contain water for
only part of the year, but more than just after rainstorms
and at snowmelt’, and ‘perennial’ if they ‘contain water
throughout the year, except for infrequent periods of severe
drought’. Based on monthly discharge during 1961-90 (with
anthropogenic impact, i.e. reservoirs and water withdrawals),
we defined three regime types and determined the regime type
of each grid cell using WaterGAP. If more than 350 out of the
360 months had a discharge value larger than a threshold value
of 0.0001 km?/month (0.04 m® s~!), the cell was classified
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as ‘strictly perennial’. If this was the case in less than 321
months, it was classified as ‘strictly intermittent’, otherwise
as ‘transitional’. The classification algorithm was derived
by trial-and-error based on digital data sets that represent
information on perennial and intermittent river reaches from
maps, the VMAPO and ESRI Big Rivers data sets. The
VMAPO data set is an updated version of the Digital Chart of
the World and contains ‘streams/rivers’ which are either ‘non-
perennial/intermittent/fluctuating” or ‘perennial/permanent’
(VMAPO hydrography layer, file hydro-water-course-1.shp,
field HYC-DESCRI). Also based on the Digital Chart of
the World, ESRI produced a global Big Rivers layer with
the attributes ‘perennial’ and ‘intermittent’ in which only
large rivers are included. The threshold value may represent
a situation where river flow velocity is 0.1 m sL wetted
width is 20 m and water depth is 2 cm, i.e. when the
river is essentially dry. A flow regime shift was identified
if classification differed for the present and future climates,
and the number of months with discharge below the threshold
changed by at least 3.

3. Results
3.1. Climate change impacts on MAR and discharge

Averaged over 30 yr, runoff is approximately the difference
between mean precipitation P and mean actual evapotranspi-
ration (AET), and is essentially unaffected by human water
withdrawals. Figure 1(a) shows the per cent change of MAR
until the 2050s (2041-70) as compared to the period 1961-90,
in case of emissions scenario A2, using climate scenarios
derived by either the climate model ECHAM4 or HadCM3.
In figure 1(a), green and pink color mostly indicate cells
with a negative mean runoff, which only occurs if there are
lakes or wetlands that are fed by discharge from upstream.
Surprisingly, there are a number of cells where MAR (P—
AET) will become less negative, i.e. increase, even though the
surrounding positive runoff values decrease (due to decreased
precipitation and increased temperature), e.g. in northeastern
Brazil and southern Africa and southern Australia (figure 1(a),
in green). This is caused by decreased inflow into the surface
water bodies from upstream cells, which leads to a reduction
of the effective open water area and thus a reduced cell AET. If
this decrease of AET exceeds the decrease of P due to climate
change, MAR becomes less negative.

Maps of MAR changes like those of figure 1(a) do
not show changes in river flow volumes unless the grid
cell is at the upstream edge of the river basin and thus
does not receive any inflow from an upstream cell. For all
other grid cells, climate change impact on river discharge
is different from climate change impact on runoff because
discharge aggregates runoff from cell to cell along the
drainage direction. Hence the locations of many rivers that
are fed by large upstream areas are clearly visible in the
maps that show the impact of climate change on discharge
(figure 1(b)—(d)) but not in the runoff maps (figure 1(a)).
Examples include the Amazon, Sdo Francisco (northeastern
Brazil), Nile, Zambezi, Mekong and Siberian rivers where

changes in upstream runoff are obviously carried downstream.
The effect of flow accumulation and lateral routing can be
analyzed by comparing the impact of climate change on mean
runoff (figure 1(a)) with the impact of climate change on
mean discharge that would occur if there were no human
withdrawals (figure 1(b)). In the ECHAM4 A2 scenario,
for example, mean river discharge of the Amazon in the
downstream (eastern) section would increase even though
runoff in these grid cells would decrease. Discharge change
reflects more strongly the increased runoff in the upstream
(western) part of the basin. In the HadCM3 A2 scenario, both
discharge and runoff decrease in the downstream section of
the Amazon, but discharge less than runoff as runoff decrease
in the upstream part of the basin is smaller than in the
downstream part. In this scenario, it is the Sdo Francisco in
northeastern Brazil that is predicted to have an increased mean
river discharge in its downstream section even though runoff is
reduced very strongly there (figure 1(b)). At a smaller spatial
scale, the strong runoff decrease at the North American Pacific
coast, for the HadCM3 A2 scenario, translates into a smaller
decrease of discharge due to more runoff in the headwater
area.

Actual mean annual river discharge can be much smaller
than natural mean annual discharge that results from the
aggregation of upstream runoff. Around the year 2000, mean
annual discharge had decreased by more than 10% on one
sixth of the global land area (excluding Antarctica and
Greenland) compared to natural conditions without man-made
reservoirs and water withdrawals (D61l 2009). As the same
absolute changes to lower values result in higher per cent
changes, per cent changes of actual river discharge due
to climate change (figure 1(c)) are higher than per cent
changes of river discharge that would occur if there were no
human water withdrawals (figure 1(b)). For example, if river
discharge is decreased by 50% due to water withdrawals, any
per cent flow increase due to climate change would double
as compared to considering natural flows. Due to the coarse
change classes in figure 1, this effect is visible only in areas
with strong anthropogenic discharge reductions (e.g. central
USA and Canada, Spain, Turkey). For 7% (ECHAM A2) and
5% (HadCM A2) of the global land area (excluding Antarctica
and Greenland), per cent changes of river discharge altered
by human water withdrawals are at least 10 percentage points
higher (e.g. 30% instead of 20%) than changes of discharge
that is assumed to be unaffected by water withdrawals.

3.2. Climate change impacts on low and high flow

The broad global patterns of climate change impact on
monthly low flows Qg (figure 1(d)) are similar to the patterns
for mean annual discharge Qmean (figure 1(c)). The pattern
of change of Qqp derived from the output of either of the
two climate models is more similar to the pattern of change
of Omean computed with the same climate model output than
to the pattern of change of Qgo derived from the output of
the other climate model. However, at smaller scales, there
are significant differences between climate-induced changes
of mean annual discharge and low flows. Per cent decreases
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Figure 1. Impact of climate change on MAR Ryeqn (2), on mean annual river discharge Qpean* that would occur without water

withdrawals (b), on mean annual river discharge Qean (With water withdrawals) (c) and on low flows Qg (with water withdrawals) (d) by
the 2050s. Per cent changes between 1961-90 and 2041-70, as computed by WaterGAP applying climate change scenarios computed by the
climate models ECHAM4 and HadCM3, each interpreting the IPCC greenhouse gas emissions scenario A2. For cells where MAR (a) is less
than or equal to zero in 1961-90, runoff changes are indicated by green in the case of increasing future runoff (or less negative difference
between precipitation and actual evapotranspiration) and pink in the case of decreasing (more negative) future runoff, while no change is
represented by light yellow (class —1 to 1). For cells where discharge is equal to zero in 1961-90, increasing future discharge is indicated

by green, while no change is represented by light yellow ((b)—(d)).

of Q9o are often higher than per cent decreases of Qmean,
e.g. in Australia and South America, and there are areas
where Qoy decreases, while Qmean increases (e.g. in Great
Britain for ECHAM4 A2 or in western France for HadCM3
A2, figures 1(c) and (d)). The strong differences between the
climate-induced per cent changes of mean annual flows and
low flows become obvious if per cent change of Qg as a
fraction of per cent change of Qmean is considered (relative

change, figure 2(a)). There are not many cells where the
per cent changes of Qmean and Qgq are rather similar (green
color). Predominantly, the per cent change of Qg is larger
than that of Qnean (dark yellow). Where Qmean decreases in
the future (indicated by cross-hatching in figure 2), this means
that the relative discharge variability increases. For ECHAM4
A2, for example, this is the case in southern and northeastern
South America, southern Africa, most of Australia, France
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Figure 2. Climate change impact on low flows Qg (a) and high flows Q¢ (b) as compared to the climate change impact on mean annual
river discharge Omean, and climate change impact on monthly flow variability (c), for climate scenarios ECHAM A2 and HadCM A2. Per
cent changes of Qgo (Q1¢) as a fraction of per cent changes of Qnean between 1961-90 and 2041-70. Negative values indicate that the
direction of change differs between Omean and Qgg (Q19) ((a) and (b)). Per cent change of Q19 minus Qg between 1961-90 and 2041-70 (c).

and South China (figure 2(a) left). Where Qmean increases,
dark yellow in figure 2(a) indicates that discharge variability
is reduced. According to both climate models, Qgg increases
more strongly than Qmpean in the eastern USA, Scandinavia
and the European part of Russia. There, winter low flows
will likely increase due to more winter precipitation as rain.
However, in most of the Asian part of Russia and in some
parts of Canada Qg increases less then Qpean (light yellow).

On a significant fraction of land all around the globe, the
directions of change differ between Qgp and Qmean (Orange
and red colors in figure 2(a)). Q9o is computed to decrease
but Omean to increase in northern India, parts of the USA, the
central part of South America and the northern Nile upstream
of the Assuan High Dam (depending on the climate scenario).
Cells where Qqg increases and Qmean decreases are more
rare and are located, among others, in Europe, e.g. in the
Alps where winter low flows strongly increase due to higher
temperatures and less water storage as snow.

The relative climate change patterns of the monthly high
flows Qi are similar to those of Qgy with respect to the
dominance of grid cells with the same direction of change, but
the percentage changes of Q19 and Qmean are more similar,
in particular where Qpean decreases (figure 2(b)). Where
Omean increases, the per cent change of Qg is predominantly
larger than that of Qmean (dark yellow), indicating more
strongly increased high flow discharge values. Grid cells
with opposite signs of change for Qi are as dispersed as
in the case of Qgp. In some parts of Siberia, where Qmean
increases due to increased annual precipitation, decreased
snow accumulation during winter leads to an absolute
(red/orange) or relative (light yellow) decrease of Q1p. Q1o
increases in the upstream areas of the Amazon even though
Omean decreases significantly (HadCM3 A2, figure 1(c)).
Where Qgp and Qmean Show opposite signs of change, Q1o
and Qmean mostly change in the same direction (e.g. western
USA and India), and vice versa (e.g. eastern USA, compare
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Table 1. Land area (in per cent of total land area of the Earth excluding Antarctica and Greenland) affected by changes of long-term
average runoff and river flow regime indicators between 1961-90 and 2041-70, computed by WaterGAP applying climate change scenarios
from the ECHAM4 and HadCM3 climate models, each interpreting the IPCC greenhouse gas emissions scenarios A2 and B2. In each field,
the range of land area due to the use of the two climate models is given. The extreme classes of changes were chosen in order to see areas
where values are at least halved (—50%) or doubled (>100%). The column ‘not defined’ refers to the area where the 1961-90 values of
indicators are less than (only for Ryean) Or equal to zero. P: mean annual precipitation (climate model output downscaled with delta change
method). Rpean: MAR. QF . : mean annual river discharge (without water withdrawals). Qyean: mean annual river discharge. Qgg: monthly

mean*

discharge that is exceeded in nine out of ten months (low flow); here, the land area in the —10 to 10% change range also includes the
13—-14% of the land area where both current and future Qg is zero. The ‘not defined’ area refers to the 1-2% of the global land area where
future Qg stops being zero. Q1: monthly discharge that is exceeded in one out of ten months (high flow). Op;r: long-term average river
discharge in December to February season. Onmam: long-term average river discharge in March to May season. Ojja: long-term average river
discharge in June to August season. Oson: long-term average river discharge in September to November season.

Not

Change (%) —100to —50 —50 to —10 —10to 10 10-100 >100 defined
Scenario A2 B2 A2 B2 A2 B2 A2 B2 A2 B2
P 0-0 0-0 13-15  11-15 44-53 48-56 31-41 2940 0-2 0-2 0
Rinean 5-5 44 17-18 16-19 21-26 23-29 42-43 42-44 5-9 3-8 4

 ean 4-5 34 18-19  16-19 22-27 24-31 45-46 43-47 4-9 3-8 1

mean 5-5 34 18-19 1620 22-27 23-31 44-44 42-46 5-10 3-9 1
() 8-9 6-7 16-18  15-18 28-32 29-35 34-36 33-38 6-9 5-10 12
[0 5-5 4-5 18-18 16-18 22-26 23-29 4142 42-43 6-11 4-11 2
Opir 67 6-7 17-18  16-17 1825 19-28 4242 4145 7-14 5-12 2
OmaM 5-5 4-4 2020 18-18 1822 18-23 41-41 43-46 10-16 7-14 1
Ona 67 4-5 24-27 22-26 2429 26-30 30-34 33-35 5-10 5-11 2
Oson 8-9 6-7 20-26  18-29 19-22 19-23 3640 3544 6-13 5-11 2

figures 2(a) and (b)). The difference between Q19 and Qyg can
be regarded as a measure of temporal variability of monthly
river flows, with 8 out of 10 months having discharge within
this range (figure 2(c)). It is strongly correlated with per cent
change of Qmean, With some exceptions in snow-influenced
regions.

Globally, Qg increases less with climate change than
Omean- By the 2050s, Qg9 will have increased by 10-100%
on only 34-36% for emissions scenario A2 (33-38% for B2)
of the land area while the corresponding area for Qmean 1S
44-449% (43-46%) (table 1). The area where Qgy decreases
to less than 50% of its 1961-90 value is almost twice as large
as the corresponding area for Qpean. Differently from Qq, the
land area fractions of changes in Q1 are very similar to those
of Omean (table 1). Besides, the land area fractions of changes
in Omean are very similar to those of Rpyean, but not to those of
precipitation P (table 1). On about half the global land area,
precipitation is projected to change by less than 10%, while
this is the case for only about a quarter of the global land area
for MAR and discharge (table 1). Extreme decreases by more
than 50% are not projected at all for precipitation.

3.3. Climate change impacts on seasonal river discharge

Figure 3 shows the very heterogeneous pattern of per cent
change of seasonal river discharges as a fraction of the per
cent change of QOmean (relative seasonal discharge changes).
Climate change will lead to strong changes in the seasonality
of discharge almost everywhere. Only on a very small part of
the land area will seasonal discharge change approximately
like annual discharge (shown in dark green in figure 3).
For both climate models, seasonality will remain stable with
increasing Qmean in parts of Canada and Australia (while, for

Australia, regions with increasing discharge strongly differ
between the two climate models, compare figure 1(c)). In
northeastern Brazil and southern Africa, seasonality will
remain stable with strongly decreasing Qmean. In most regions
north of 30-35°N (southern rim of the Mediterranean Sea),
summer discharge Qjja is projected to decrease. In areas with
decreasing Qmean (like in central Europe), Oyja will decrease
more (dark yellow in figure 3), while even in many areas with
increasing Qmean, like in northern Europe, Qjja will decrease
(orange and red in figure 3). For winter flows, the opposite
is visible (figure 3). In Mexico, a shift from winter/spring
to autumn discharge can be recognized (in particular for
ECHAM4 A2). In South Asia, Qyja is projected to increase
more strongly than QOmean due to a strengthening of the
monsoon, while Opjr may even decline in some areas.

Patterns of relative seasonal river discharge changes are
related to patterns of relative low and high flow changes
(figures 2(a) and (b)). If, for example, low flows during
1961-90 occur in northern hemisphere winter, like in the Alps
and the European part of Russia, both Opjr and Qg increase
due to increased temperatures and thus rainfall and runoff in
winter. In Siberia, where the temperature rise is not sufficient
to convert snowfall into rainfall, the increases of both Qpjr
and Qg are much smaller. The decrease of spring discharge in
eastern USA (with increasing Qmean, figure 3) is connected (at
least for ECHAM4 A2) with a clear increase in Qg (figure 3).
Globally, more land area will suffer from decreased Qjja than
from decreased Qpean (table 1). This is also true for Qson but
here the two climate models differ more strongly.

3.4. Shifts of river flow regimes from perennial to intermittent
or vice versa due to climate change

To assess the capability of WaterGAP to identify the flow
regime types ‘perennial’ and ‘intermittent’, we compared the
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Figure 3. Climate change impact on mean seasonal river flows as compared to the climate change impact on long-term average annual river
discharge Qpean for climate scenarios ECHAM A2 and HadCM A2. Per cent changes of mean river discharge from December to February
(DJF), March to May (MAM), June to August (JJA) or September to November (SON) are shown, as a fraction of per cent changes of Omean,
between 1961-90 and 2041-70. Negative values indicate that the direction of change differs between Qpean and the seasonal discharges.

WaterGAP map with information from maps as captured
in the VMAPO and ESRI Big Rivers data sets. The
spatial patterns derived from WaterGAP are similar to the
patterns on the maps. WaterGAP appears to underestimate
intermittency in northeastern Brazil, northern, northeastern
and central Australia, Ethiopia and central India, while it
identifies intermittent rivers in Spain, different from the
maps. However, in northeastern Brazil, many large rivers
have been made perennial by dams. While dam effects on
river flows are simulated by WaterGAP, the impact of dams

may not be reflected in maps, in particular if they predate
dam construction. The intermittent grid cells identified by
WaterGAP in Siberia are caused by a lack of water flows
during the cold period, and Russian maps might not label such
arctic rivers as intermittent.

The global pattern of flow regime shifts under the
impact of the HadCM3 A2 climate scenario (figure 4)
reflects both the current flow regime and the future climate
changes. Flow regime shifts from perennial to transitional or
intermittent until the 2050s are projected, for example, for
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Figure 4. Regime shifts among perennial (P), transitional (T) and intermittent (I) river flow regimes occurring between 1961-90 and
2041-70 due to climate change (as computed with WaterGAP, climate scenario HadCM3 A2).

California, the Caribbean, southern Africa, West Africa and
around the Mediterranean Sea (figure 4). Such shifts are also
computed for northeastern Brazil and northeastern Australia
but, as discussed above, the current regime may already be
intermittent (misclassified by WaterGAP). Flow regime shifts
to the perennial regime may occur in western USA, parts
of China, western and central Australia and on the southern
rim of the Sahara. Flow is computed to become perennial in
parts of Siberia, Canada and Alaska due to warmer winters.
There is certainly a significant correlation between changes in
Rmean and flow regime shifts under a given climate scenario
(compare figure 1(a) right-hand side to figure 4). An even
higher correlation is observed between changes in statistical
low flow Qgq (figure 1(d) right-hand side) and flow regime
shifts as Qg takes into account changes in temporal variability
(consider, for example, Spain and northern India). With the
HadCM3 A2 climate scenario, 6.3% of the global land area
(except Greenland and Antarctica) will have experienced flow
regime shifts by the 2050s, with the corresponding impacts
on freshwater-dependent biota. On 1.8% of the land area,
the flow regime will no longer be perennial, and also on
1.8% it will no longer be intermittent. Transitional regimes
shift to intermittent ones on 1.4% of the land area, and to
perennial ones on 1.3%. Extreme regime shifts from perennial
to intermittent, where the fraction of months with (almost)
no discharge increases from less than 3% to more than
11% (section 2.3), occur on 0.4% of the land area, e.g. in
Venezuela, the Caribbean and India. The reverse occurs on
0.2% of the land area, e.g. in China, Pakistan and the Sahel.
With the ECHAM4 A2 scenario, flow shifts are identified
on 7.0% of the global land area, with dominant shifts to
wetter conditions. In the case of B2 emissions, flow shifts
are projected to occur on only 5.4% (HadCM3) or 6.7%
(ECHAM4) of the global land area. In particular, the area
where flow will no longer be perennial would be particularly
reduced. This is true for both climate models.

4. Discussion

It is well known that different global climate models translate
the same greenhouse gas emissions scenario into strongly
differing climate change scenarios, with precipitation changes
being more uncertain than temperature changes (Bates et al
2008). Therefore, the presented climate change impacts,
which are based on the scenarios of only two climate models,
can only be considered to be illustrative but do not show the
full range of uncertainty. The aim of this study was not to
derive quantitative estimates of climate change impact but
to improve our understanding of the relation between the
impact of climate change on MAR and the impact of climate
change on river flow regime indicators that are more relevant
for water management purposes. In this section, we wish to
discuss the quality of the modeled impacts on the river flow
regime for a given climate change scenario, considering the
capability of WaterGAP to simulate river flow regimes under
historical climate (section 4.1), and the way in which GCM
scenarios are translated into climate input for WaterGAP
(section 4.2). In addition, we discuss the relevance of the
computed flow regime indicators for the rivers within each
grid cell (section 4.3).

4.1. Quality of the modeled flow regime indicators as related
to the quality of the hydrological model

Because WaterGAP is tuned against mean annual discharge, it
can model MAR and mean annual discharge reasonably well
for most grid cells that are located within the 1235 tuning
basins covering 48.7% of the global land area excluding
Greenland and Antarctica (Hunger and D61l 2008). However,
model results for individual grid cells can be completely
wrong, in particular if they are in semi-arid/arid areas outside
calibration basins (e.g. in western and central Australia).
Model calibration also leads to more realistic values for
statistical monthly Qgg and Q1o and mean monthly discharges,
but this is mainly caused by adjustment of the mean and not of
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the variance. Nevertheless, monthly Qgo and Q19 were shown
to be estimated quite well for most observation stations (D61l
et al 2003). A comparison of observed and modeled flow
regime indicators for four river discharge gauging stations
(not shown) indicated that Q9o and Q19 are modeled quite
well, while mean monthly and seasonal discharges may suffer
from an inadequate simulation of snow and ice, or water
storage in surface water bodies.

4.2. Quality of the modeled flow regime indicators as related
to the translation of GCM climate change scenarios into
input for the hydrological model

It cannot be assessed how well WaterGAP (or any other
hydrological model) can translate climate change to change
in runoff and discharge, as appropriate observations are still
lacking. Certainly, consideration of the method to produce
climate input for WaterGAP under conditions of changed
climate is crucial for understanding the uncertainty of the
computed flow regime changes. The applied delta change
method does not take into account future changes in the
interannual variability of climate variables, as mean monthly
changes are added to (or multiplied by) time series of
observed climate. This will likely lead to an underestimation
of the changes in Qgp and @19, and of shifts between
perennial and intermittent flow regimes, as interannual climate
variability is projected to increase in the future on all temporal
scales (Bates et al 2008). The delta change method can also
lead to implausible shifts in the seasonality of precipitation
if the climate model does not model the observed seasonality
of precipitation reasonably well. This affects the analysis of
seasonal river flows. Alternative methods may avoid these
problems but have other drawbacks. Statistical bias correction
of climate model output against observed climate, for
example, can represent future change of climate variability.
However, bias correction alters the climate change signal for
specific locations and months (Hagemann et al 2011). For
most river basins, the long-term average temperature change
was found to decrease by bias correction as compared to the
original climate model runs, and the precipitation change was
found to increase for most river basins (Hagemann ef al 2011).
The uncertainty due to statistical bias correction may be of
the same order of magnitude as the uncertainty related to the
choice of the GCM or the applied global hydrological model
(Hagemann et al 2011). An additional constraint of our study
is that we did not take into account changes of radiation,
humidity or wind speed.

4.3. Relevance of the computed river flow regime indicators

As runoff can be conceptualized as a vertical flow of water
per unit land area, with units of, for example, mm yr_l, the
runoff computed for any 0.5° grid cell can be regarded as
an average value of the grid cell. In contrast, river discharge
is defined as the lateral flow of water along a river channel.
In the case of global-scale models, it is assumed that there
exists exactly one river channel in each grid cell, while in
reality there may be many (in particular small tributaries to

one main river). While computed grid cell discharge can be
thought of as the sum of the discharges in all river channels
within the grid cell, the temporal variability of river discharge
is expected to vary strongly among the diverse river channels.
For example, small tributaries are expected to have a much
higher temporal variability than the main river, e.g. a larger
Q90-t0-Omean ratio. Regarding the definition of perennial and
intermittent flow regimes, a grid cell identified as perennial
in WaterGAP may contain small intermittent tributaries. This
has to be taken into account when a map of regime shifts like
the one shown in figure 4 is interpreted. Computed river flow
regime indicators and their changes should be assumed to be
relevant only for the main river within each grid cell.

5. Conclusions

How is the impact of climate change on river flow regimes
related to the impact on mean annual runoff (MAR)? With the
exception of seasonal flows, climate-induced future changes
of the considered river flow regime indicators broadly follow
the spatial pattern of increases and decreases of MAR
generated in the grid cell. However, there are important
differences at the sub-basin and grid cell scales. In grid
cells where river flow is fed from upstream cells, the impact
of climate change on mean river discharge represents the
aggregated response of upstream runoff to climate change,
and differs from the impact on MAR. Downstream reaches
of major rivers often show an opposite sign of change with
respect to MAR and mean annual discharge. Where natural
river discharge has been reduced significantly due to human
water withdrawals, relative changes (expressed in per cent
change) of actual mean river discharge are higher than relative
changes of natural mean river discharge or mean runoff. On
about 5% of the global land area, the impact of climate
change by the 2050s would be underestimated by at least 10
percentage points if the influence of water withdrawals were
neglected.

MAR is projected to increase by more than 10% on
50% of the global land area (excluding Antarctica and
Greenland) by the 2050s. This is also true for mean annual
river discharges and high flows but not for low flows.
The area where low flows will increase by more than
10% is approximately eight percentage points smaller. On a
significant part of the land area, low flows may decrease even
though mean annual river discharges increase.

Climate-induced changes of seasonal river flows are
not correlated with changes of MAR. Our global-scale
study confirms projected changes of seasonal river flow
dynamics in basins where winter precipitation currently is
dominated by snowfall. In these basins, winter or spring
flows are likely to increase, while summer flows are likely to
decrease. In most regions north of 35°N, summer discharge
is projected to decrease. Of all four seasonal discharges,
June—July—August discharge shows the largest global land
fraction with significant river flow decreases and the smallest
fraction with significant flow increases, even though in the
monsoon areas it is projected to increase.
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Flow regime shifts among perennial, transitional and
intermittent regimes indicate strong changes in habitat
conditions for freshwater biota and therefore a strong impact
of climate change on freshwater ecosystems. Flow regime
shifts by the 2050s may occur on 6.3-7.0% (A2) or 5.4-6.7%
(B2) of the global land area, mainly in semi-arid areas as
well as in some cold areas (from intermittent to transitional
or transitional to perennial only) where during 1961-90 there
was (almost) no river flow in the winter months due to
freezing. Shifts from perennial to intermittent (intermittent to
perennial) flow regimes correlate with decreases (increases)
in mean runoff, but even more with decreases (increases) in
statistical low flows.

This study has improved our understanding of the
relation between climate-induced changes of MAR, the major
indicator of the impact of climate change on freshwater
resources, and river flow regime indicators that are relevant
for the well-being of humans and freshwater ecosystems. We
found that the differences between changes of MAR related
to the use of two different climate models are still larger
than the differences between the change of MAR and the
change of the investigated river flow indicators (except for
seasonal discharge). If larger ensembles of climate models
were considered, the spread of computed MAR changes
would be even larger (Gosling et al 2010). Therefore, broad
conclusions about climate-induced changes of river flow
regimes can be derived from ensembles of mean annual and
seasonal runoff. Unfortunately, it seems impossible to define
general rules for translating changes of MAR into changes
of river flow regime indicators because the relation between
these changes depends on the climate model applied.
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8 Answers to the research questions

In the following, and based on the six papers (Chapters 2—7) as well as Appendix A1-3, the
research questions from Chapter 1.5 are answered. Furthermore, and where appropriate,
an outlook for future model development or further studies is given.

8.1 Model evaluation

The first part of the research topic deals with the evaluation of the global hydrological
model WaterGAP and is divided into two parts.

8.1.1 Evaluation of net radiation and its components with station-based
observations

Net radiation as the main driver of the calculation of potential evapotranspiration is subject
to parameter uncertainty (e.g., land-cover-dependent attributes) as well as uncertainty of
climate input. Within paper 1, a thorough assessment of radiation components as
simulated by WaterGAP (or taken from climate input data) was carried out via comparison
to station-based observations. Three main questions (RQs 1-3) were answered in this
context.

RQ 1 How is the performance of simulated upward radiation components of WaterGAP
compared to observations?

WaterGAP considers land cover dependent values for albedo and emissivity together with
climate input variables to calculate the upward radiation components. Within paper 1,
WaterGAP output as forced with two climate input data sets (WFDEI, PGFv2) and two
setups of ERA-Interim reanalysis was compared to observation data from 16 stations of the
Baseline Surface Radiation Network (BSRN, both short- and longwave upward fluxes) as
well as to data from 43 (shortwave) and 14 (longwave) stations of the Global Energy
Balance Archive (GEBA). Two efficiency metrics (one absolute, one relative) were used to
assess model performance. Upward shortwave radiation is directly dependent on
downward shortwave radiation and is only affected by surface albedo, which varies in
WaterGAP with land cover type as well as snow dynamics, indicating that upward flux
cannot be evaluated without considering downward flux. For shortwave downward flux, a
systematic overestimation of the mean value was found together with very high
correlations (close to 1 with a bit more spread for GEBA stations) and a slight
underestimation of variability. For shortwave upward radiation, the Kling—Gupta efficiency
metric varies greatly between the reference data (for BSRN around 0.7, for GEBA around
0.5) and is in general relatively low. There is no systematic over- or underestimation, but
the spread is the largest among all radiation components. Hence, the performance of
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shortwave upward flux depends strongly on the specific locations of the observation
stations in terms of mean bias. Obviously, there is a mismatch of albedo values for the 0.5°
grid cell with those of the station observations, which is reasonable, as the measurement
footprint of the observations is small (and in many cases artificially constrained to a
standard vegetation) and the land cover heterogeneity of the grid cell cannot be
represented. Mean correlations are moderate (ranging from 0.8 to 0.9), whereas the mean
variability of the simulations is lower than those of the observations, which is consistent
with the underestimated variability of shortwave downward radiation of the two climate
input data and ERA-Interim. As the albedo value is already coupled to snow dynamics in
WaterGAP, there is little room for improvements in the current model structure.
Nevertheless, albedo varies only with snow dynamics, and it could be tested whether a
dynamic albedo variation (e.g., dependent upon vegetation or soil saturation dynamics)
leads to improved model results in terms of mean bias and correlations.

Upward longwave radiation is simulated by considering a land-cover-based (but static)
emissivity value and temperature provided by the climate input data set. Kling—Gupta
efficiency metrics are around 0.9 and thus the highest among the radiation components.
The mean bias indicator is slightly below 1 and nearly without variation; hence simulations
tend to underestimate longwave upward radiation systematically by a small amount.
Higher emissivity values of WaterGAP could thus improve modeling of this component.
Correlationis 1 for BSRN stations and close to 1 for GEBA stations. In contrast, the variability
of simulated upward longwave radiation flux is lower than that of the observations. This is
likely related to the static emissivity values taken into account in WaterGAP simulations.
Hence, a coupling of emissivity values to snow dynamics (see the discussion in paper 1)
could help to improve the variability indicator at least for the stations in areas where snow
falls.

RQ 2 Is it beneficial to substitute standard climate input data and calculation of upward
radiation components by ERA-Interim reanalysis?

Due to a closed energy balance and the additional observations that are included via data
assimilation techniques, the usage of reanalysis is of interest not only for downward
radiation components but also for the upward components. In paper 1, two setups of ERA-
Interim reanalysis were compared to station observations as well as WaterGAP simulations
forced with two standard climate input data sets (WFDEI, PGFv2). Within ERAID, only
downward radiation components from ERA-Interim were taken into account, whereas in
ERAIN the upward components were also considered.

Upward shortwave radiation of ERAIN does not perform better than that from WFDEI.
ERAIN underestimates mean value, and PGFv2 variability performs better than ERAIN
(WFDEl is close to ERAIN for BSRN). There is no difference for correlations. In summary, the
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Kling—Gupta efficiency metric does not vary among ERAIN, PGFv2 and WFDEI. Even though
the mean absolute bias of ERAIN is slightly lower than of the WaterGAP calculations, a clear

improvement is not visible.

Longwave upward radiation of ERA-Interim performs better than the WaterGAP estimates
for all indicators and reference data sets (except mean absolute bias and GEBA stations).
This can be for two reasons. Firstly, surface temperature within ERA-Interim could be closer
to that of the station data. However, this is not very likely as temperature is a frequently
(in space and time) measured meteorological variable and also basis for the climate input
data. Furthermore, it was found that temperature is not the main driver of longwave
upward radiation. Secondly, emissivity values of WaterGAP could be too low compared to
ERA-Interim. This would explain the slight underestimation of the mean value in
comparison to the observations. Here, a land-cover-specific comparison of simulated and
observed upward radiation could be helpful. The variability performance indicator of ERA-
Interim longwave upward radiation matches the observations but is underestimated in the
case of WaterGAP calculations. The static emissivity value of WaterGAP could be a reason
for this, and efforts to, e.g., couple emissivity with snow dynamics could improve the
variability of the simulations.

However, the low amount of available station data measurements and the questionable
representativeness compared to the 0.5° grid cell (see discussion in paper 1) hamper a
general assessment of the radiation fluxes. Even though longwave upward radiation could
be improved by using ERA-Interim reanalysis data, the consistency of WaterGAP
simulations is lost when that is done. For example, the snow dynamics are simulated within
WaterGAP and coupled to the albedo value. At least for regions with relevant snow
dynamics, different states of this compartment (ERA-Interim vs. WaterGAP) will lead to
inconsistencies and could influence water resources modeling.

Long-term average potential evapotranspiration (PET) values increase when upward
radiation components are used from ERA-Interim reanalysis, especially in energy-limited
regions (7% higher than for WFDEI climate input data). Those regions are of interest as
variations in PET are directly related to altered values of actual evapotranspiration and thus
water resources simulation. However, to assess the plausibility of simulated PET values
(due to radiation input data as well as the PET approach), efforts to validate those
estimations, e.g., to evaporation pan observations, are needed.

RQ 3 What is the likely uncertainty of net radiation and its components?

It remains a challenge to answer this question due to a lack of ubiquitous ground-based
and highly qualitative radiation measurements. Nevertheless, for the two station-based
observation databases that were considered in paper 1 and based on the mean absolute
bias efficiency metric, some initial conclusions can be drawn. Independent of calculations
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of WaterGAP or ERA-Interim reanalysis, the (median of the) mean absolute bias for net
radiation is, at around 20 Wm, the highest uncertainty among the radiation components.
The mean absolute bias of the other radiation components shows a dependency on the
calculation method (climate input data and WaterGAP vs. ERA-Interim reanalysis) and the
reference database. Shortwave downward radiation uncertainty is, at 12 to 18 Wm?,
higher than longwave downward radiation uncertainty (8 to 10 Wm2). This is somewhat
surprising, as global averages of longwave downward radiation are (in absolute numbers)
a factor of 2 higher than shortwave downward radiation, indicating that there is a more
significant relative bias of shortwave downward radiation. Both radiation components are
best covered with observations (number of stations/number of months), thus allowing
relatively strong conclusions to be drawn. The assessment of the remaining radiation
components is conducted with limited confidence due to the small number of observation
stations, and mean absolute bias varies greatly between the calculation method and
reference data set between 7 and 20 Wm™=.

8.1.2 Evaluation of the sensitivity of simulated water balance components to
climate input data

One major focus of this dissertation is the sensitivity of simulated water balance
components to climate input data and the role of calibration in that regard. In the following,
RQ 4 and RQ 5 are answered.

RQ 4 What is the sensitivity of simulated water balance components, including human
water use, to state-of-the-art climate input?

Climate input data have a huge impact on model outputs, as indicated both in global
numbers and spatial patterns in the papers 2—4. In paper 2, and taking WaterGAP 2.2 as
well as two climate input data as an example, the difference in global-scale precipitation P
(~ 2000 km?3 yr?) is translated into a strongly differing global estimate of river discharge
into oceans and inland sinks Q in the same quantity (paper 2, Table 2). Even though both
precipitation variables of that study are based on the same data source family, differences
in global-scale water balance components exist due to the approach of handling
precipitation undercatch. Despite global sums of actual evapotranspiration (AET) being
equal among the two climate input data, the spatial pattern differs greatly (especially in
the tropics). For AET, climate input data uncertainty has the second-largest impact after
calibration (or no calibration) in that assessment (paper 2, Figure 3).

Within papers 3 and 4, the number of investigated climate input data was increased to five
state-of-the-art data sets, including one homogenized climate input data set. As shown in
paper 3 (Table 4), global sums for the original P data sets are (despite station density
differing significantly) very similar both for the continents and the global scale. Different
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handling of precipitation undercatch (or neglecting it) leads here to significant variation in
P (~ 8000 km3yr! Table 4). In contrast to paper 2, AET differs by 5500 km3 yr? at the global
scale, whereas Q ranges about 3000 km3 yr'. Mean global temperatures are very close
among the climate input data of this study (paper 3, Fig. 2), and there are only small
differences in spatial distribution (paper 4, Fig. A2), meaning that this variable can be seen
as consistent regardless of the climate input. With Fig. 2 of paper 3 and Figs. A3 and A4 of
paper 4 taken into account, reasonable differences exist for downward radiation fluxes in
the climate input data, resulting in inconsistencies when simply concatenating two
reanalysis-based climate input data. Net radiation differs globally by up to 15 Wm™2 with
corresponding consequences for PET (20 000 km? yr?), but interestingly there is not much
impact on AET (1000 km? yr), compared to the homogenized climate input data where net
radiation and PET are similar to the other climate input data. Nevertheless, the
homogenization of climate input data avoids offsets in radiation, water fluxes and storages
to a large degree (as described in paper 2).

Human water use is, in global sum, not very sensitive to climate input data uncertainty.
Despite only one water use sector (irrigation) being modeled using climate input data
(among other data sources), irrigation has the largest proportion of overall water with-
drawals and water consumption (paper 4, Fig. 3). Hence, uncertainty in simulated irrigation
water use amounts to approximately 50% (or around 50 km?3 yr!) of the global sum of water
consumption of the other water use sectors (paper 4). Anyhow, global-scale actual water
consumption from five climate input data varies only by about 5% (paper 3, Table 2) and
human water use accounts for only roughly 1% of precipitation (paper 4, Table 2).

In summary, the largest proportion of climate input data uncertainty in simulated global
freshwater fluxes is related to precipitation, and especially due to the different handling of
precipitation undercatch effects. For future creation of climate input data sets, this kind of
uncertainty needs to be addressed carefully (e.g., as in Beck et al., 2017) to enable a best
estimate of water resources.

RQ 5 How does the WaterGAP calibration approach affect the uncertainty of climate
input data?

The calibration using long-term average observed river discharge in ~54% of global land
area (excluding Antarctica and Greenland) greatly reduces the uncertainty of climate input
data in these regions. In calibration areas, uncertainty of climate input data is reduced to
1.6% for the sums of simulated river discharge, and for the homogeneous climate input
data sets. In contrast, for non-calibrated regions, this variation is 18.5% (paper 3, Table 5).
For the two alternative climate input data in paper 2 (WFDEI, CRU), 82% of the related
uncertainty is generated in non-calibration areas. Variation of river discharge on the grid-
cell level is, at 37% for calibration and 74% for non-calibration regions, still high. As
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simulated river discharge is forced to observed values in calibration regions, the uncer-
tainty of climate input data is transferred to actual evapotranspiration there, which differs
greatly in those regions and less for non-calibrated regions (paper 3, Table 5). Due to limited
water availability, the human water use demand cannot be fully satisfied, which reduces
the effect of climate forcing uncertainty on human water use estimations (paper 4).

8.2 Model modification

The focus of the second part of this dissertation is to analyze the effect of model
modifications (in terms of including or refining process description, input data sets or
algorithms) on corresponding model results as well as model parameters. The following
five research questions deal with consequences of model development in general (RQ 6),
the effect of newly introduced land cover information (RQ 7), improved process
representation (integrating reservoir commissioning years, RQ 8), updated soil water
capacity information (RQ 9) and a modified calibration scheme (RQ 10).

RQ 6 What is the effect of WaterGAP development on water flows and storages between
version 2.1d and version 2.2?

Between the publication of WaterGAP model version 2.1d and 2.2, more than a decade of
model development took place, resulting in various model versions integrating dozens of
new features/data sets (Table 1). The improvement of the simulation of water fluxes and
storages is (apart from specific project-related issues) the driving force of WaterGAP
development. In sum, this resulted in a more complex hydrological model structure on the
one hand and (hopefully) a better assessment of water flows and storages on the other. In
order to quantify the cumulative effect of model development, one part of paper 2 deals
with the comparison of WaterGAP 2.2 with a version that is similar to version 2.1d.
Specifically, water balance components were compared in terms of global sums as well as
spatial distribution. The long-term average global sum of river discharge (actual
evapotranspiration) is calculated to be about 450 km3 yr lower (higher) for the modeling
structure of version 2.1d. Spatial differences in actual evapotranspiration (and also of
renewable water resources) are visible especially in areas with surface water bodies and in
snowy regions (Fig. 3d and 4d of paper 2) but are in sum moderate as values increase
(decrease) by more than 10 mm yr? only at 12% (14%) of the land surface. The general
increase of simulated river discharge between versions 2.1d and 2.2 (Table 5 of paper 2) is
in line with that result, even though different climate input data were used in the
assessments of Table 5. Satisfied water consumption is only around 50 km?3 yrtlower in the
old model structure, meaning that model structure does not have a strong effect on this
water balance component (despite the many modifications in that component). For both
model variants, a large share (around 90%) of water use demand could be satisfied.
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Regarding model performance, the widely used Nash—Sutcliffe efficiency was used to
investigate river basins with aggregations of KOppen—Geiger climate zones (paper 2, Table
4). In sum, there are significantly more basins with higher model performance in model
version 2.2, which holds true also for the climate zones, especially for temperate C and
continental D climates, indicating that the model development led to more realistic
simulation of monthly river discharges in those climate zones. However, there are still
challenges left, especially for the dry B climates. Change of total water storage during a
30-year period differs significantly and is mainly related to the lack of a decrease of
groundwater storage in the model structure of 2.1d (due to the absence of groundwater
abstractions). Spatial patterns of total water storage amplitudes differ mainly in snow-
dominated regions (due to snow algorithm), along large rivers (due to variable river velocity
approach) and in areas where water is withdrawn from the groundwater (not considered
in 2.1d). In terms of water balance closure, the model structure of 2.1d (as emulated in
version 2.2 of paper 2) has an error which is a magnitude higher than those of version 2.2.

In general, model development from version 2.1d to 2.2 leads to improved results in terms
of monthly river discharge, and it is expected that this also leads to a more realistic
assessment of renewable water resources as well as total water storage changes. However,
simulated river discharge on the global scale tends to be higher with model structures of
version 2.2 and afterwards.

RQ 7 What is the impact of an alternative land cover map on simulated water flows and
storages?

An updated land cover map, based on satellite information from MODIS from the year
2004, was introduced in WaterGAP 2.2. As part of paper 2, the effect of this alternative
land cover input was investigated by comparison to a model variant with the previous
(map-based) input. The effects on global sums of actual evapotranspiration as well as river
discharge is, at around 200 km3 yr?, lower than those of the model structure (see RQ 6),
and no other global-scale values differ (paper 2, Table 2), even though land cover class
differs in a large number of grid cells (paper 2c, Figure 2). The effect of varying land cover
attributes on radiation calculation (and consequently actual evapotranspiration as well as
renewable water resources) is visible especially in energy-limited regions. Additional
impact is visible in areas where total soil water capacity changed due to different rooting
depths (paper 2, Fig. 3c, Fig. 4c). Large differences in river discharge seasonality exist only
in areas where land cover changed in a significant number of grid cells, e.g., for the Rhine
basin (paper 2, Fig. 5). Also, changes in Nash—Sutcliffe efficiency metrics are only marginal
(paper 2, Table 4), indicating that a modified land cover input map has no large effect on
simulated river discharge, even though differences exist for a substantial number of grid
cells in terms of land-cover-based attributes. The low sensitivity to changes in land cover
input limits the ability of WaterGAP to simulate hydrological effects due to land cover
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change, but this is also hard to assess for other modeling approaches (e.g., Li et al., 2009).
On the other hand, variations of total water storage are impacted by land cover attributes
strongly in those regions with significant changes (e.g., for the Yangtze, see paper 2, Fig.
7¢). Hence, the question of whether the modified land cover input leads to improvements
in total water storage variations should be studied basin by basin via comparing to satellite
gravimetry (GRACE) data.

RQ 8 How does the integration of reservoir commissioning years affect the model results?

Within model version 2.2 (ISIMIP2a), the year in which each reservoir was commissioned
was implemented, i.e., the year when the dam started its regulation activities. This required
thorough preparation of input data as well as code modifications. The effect of this model
modification on simulated water fluxes is described in detail in Appendix Al. In a model
experiment study, one model variant with reservoir commissioning years was considered
as well as one that assumes that all reservoirs have been in operation since the beginning
of the 20™ century (the handling of all model versions except 2.2 (ISIMIP2a)). The global
sum of maximum (and actual) reservoir storage volume reflects the historical dynamics
when commissioning years are considered (Fig. A1). Model performances of simulated to
observed monthly river discharge were compared for the years before and after
commissioning and especially for those 214 river basins that have a considerably high
relative reservoir storage volume. Remarkable differences exist for the time period before
the upstream reservoir(s) began operation, and the model variant that considers
commissioning years performs significantly better for all investigated model efficiency
metrics (Fig. A2). Only small differences in model efficiency exist for the period after
reservoir(s) began operation, and model performance is (in most cases) lower than for the
pre-reservoir-commissioning time period. This indicates that the generic reservoir
algorithm is not able to capture the management of the reservoirs in a realistic way.
However, that is not expected as reservoir management is highly dependent on economic,
political and other decisions which can hardly be captured with a generic approach, e.g.,
that of Hanasaki et al. (2006). In summary, the implementation of reservoir commissioning
years improved the simulation of monthly river discharge especially in those river basins
with a considerable amount of reservoir storage volume and for the time period before the

reservoir began operation.

RQ 9 What is the effect of an updated spatial input map of total available soil water
capacity?

The availability and quality of spatially distributed data sets on soil properties have
improved in the past. For example, the number of soil profiles in the World Inventory of
Soil Emission Potentials (WISE) database has doubled in the past 15 years, and they contain
depth-varying attributes such as available water capacity for each 20 cm (Batjes, 2012).
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Updating the spatial input data of WaterGAP therefore ensures that the latest available
information from the scientific communities is used to generate such data sets. WaterGAP
2.2b was used to test the effect of an updated total available soil water content (TAWC)
data set. Two non-calibrated model variants were run, one with the input map of Batjes
(1996) and the other one with data from Batjes (2012). This experiment is described in
Appendix A2 and allows this research question to be answered.

Global average TAWC for the top meter increase from 105 mm m™ to 112 mm m™ when
the updated data set is taken into account. In most regions of the global land surface, TAWC
increases, but for northeastern Eurasia values decrease (Fig. A4). Similar patterns are visible
when multiplying TAWC by rooting depth to obtain the maximum soil water storage. Due
to the overall increased maximum soil water storage, the mean amplitude of soil water
storage increased from 59 to 62 mm when the updated TAWC map is used. This is of
particular interest, as this storage compartment shows, in comparison to other models,
relatively small amplitudes (e.g., Khandu et al., 2016). Significant regional differences in
runoff exist (more runoff in northeastern Eurasia, less in many other regions, Fig. A6) which
could have a positive influence on calibration parameters. For the large areas where the
calibration parameter y is at the maximum value (indicating too much simulated runoff)
the greater amount of water that is kept in the soil water storage (and evaporates) could
help to decrease runoff and therefore the y value (see also Appendix A3). For northeastern
Eurasia, where vy is as its minimum value (Fig. 8 in Appendix A3), a decrease of maximum
soil water storage leads to an increased calibration parameter. The regional differences in
runoff and actual evapotranspiration are balanced out at the global scale. Runoff
(evapotranspiration) decreased (increased) only slightly by 3 mm yrl. In summary, the
update of TAWC lead to slight increases of soil water storage variation. Regional differences
in runoff and actual evapotranspiration with in slight general decrease of global-scale
runoff are also resulting due to the updated TAWC input.

RQ 10 How does river discharge measurement uncertainty influence calibration
parameters and simulated freshwater fluxes?

The common standard in (catchment) hydrological modeling is to use a calibration routine
that adapts model parameters with the aim of reproducing, e.g., observed river discharge
with a reasonable agreement. In GHMs, such approaches are only sparsely used. WaterGAP
is the only model that considers a basin-specific calibration routine to match the simulated
to the observed long-term average river discharge (see also Chapter 1). This was mainly
done to allow for water resources assessment with high accuracy. However, as reported in
the literature (e.g., Coxon et al., 2015), measurement uncertainty of discharge observations
can be significant, which is currently not considered in the WaterGAP calibration routine.
In addition, the usage of additional calibration parameters can lead to physically
implausible values on the grid-cell level (e.g., see the discussion in paper 2), which needs
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to be avoided. Therefore, an optional 10% uncertainty of long-term average measured river
discharge was taken into account in the WaterGAP calibration scheme. Appendix A3
describes this approach and the resulting effects on calibration parameters as well as
simulated freshwater fluxes.

The assumed 10% uncertainty of observed river discharge is implemented in a four-step
calibration approach (for details see Appendix A3). The assessment of model parameters
showed that the usage of additional calibration parameters could be reduced when the
observation uncertainty is considered (Table A7), and in most cases the parameter values
are less extreme (Figs A7, A8). However, for semi-arid and arid regions WaterGAP still over-
estimates river discharge by at least a factor of 2. The choice of climate input data greatly
influences the calibration scheme, and the homogenized WFD/WFDEI climate input data
lead to the least usage of extreme calibration parameters (Table A7). Discharge seasonality
is influenced in those cases where the observed river discharge from the specific (or
upstream) basin is varied by 10%, and the modified calibration approach can have
significant impacts on discharge amplitudes (e.g., Rhine in Fig. A8). Model efficiencies are
affected by the calibration scheme only slightly. Global sums of river discharge and
evapotranspiration are affected by roughly 250 km3 yr'! with an overall increase of river
discharge when discharge uncertainty is taken into account. This effect was traced back as
a complexinterplay of upstream and downstream basins especially in the calibration areas,
but minor effects also occur in the non-calibrated areas where the calibration parametery
is regionalized.

In summary, the modified calibration scheme of WaterGAP leads to less extreme
calibration parameters and only slight changes in model efficiencies as well as global-scale
water balance components. Significant differences in discharge seasonality are visible in
the basins where the uncertainty of observed river discharge became effective in the
calibration routine.

8.3  Model application

The third and last part of the thesis consists of three applications of WaterGAP. In
particular, a best estimate of water balance components at the global and continental scale
is provided (RQ 11), an integrated study of how to assess groundwater depletion is
presented (RQ 12) and the question is answered of how river flow regimes will likely be
altered as a consequence of climate change (RQ 13).
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RQ 11 What is the current best estimate of global and continental freshwater fluxes and
storages with WaterGAP?

There is a long tradition of assessing global-scale freshwater fluxes (e.g., Baumgartner and
Reichel, 1975; Korzun, 1978, and references therein). By using GHMs that are constrained
by a closed water balance, global (and grid-cell-specific) water balance components can be
of great value in assessing e.g., the river discharge, as well as variations in total (and single)
water storage compartments. With all the model improvements as well as the updated
calibration structure taken into account, the most recent model version 2.2b can be seen
as the WaterGAP model version to determine the best estimate of global (continental)-
scale water balance components. The water balance components as calculated with
WaterGAP 2.2b and driven by homogenized WFD/WFDEI climate input for the continents
and the global land surface is shown in Table 3 for the standard climate period 1971-2000
and in Table 4 for the IPCC AR5 reference period 1986—-2005. As shown in paper 3, the
choice of time period for such assessments is important due to the inter-annual (and inter-
decadal) variations of meteorological variables and corresponding hydrological fluxes. This
is also visible when Tables 3 and 4 are compared. Differences in simulated global river
discharge Q between the two time periods are, at around 800 km? yr?, close to the
estimation of consumptive water use. The comparison of Q from Table 3 with the previous
WaterGAP versions (and other references in papers 2 and 3) shows that values are well in
the range of other estimates. Specific reasons for the higher simulated values of WaterGAP
2.2 (ISIMIP2a) include the land-ocean mask and are discussed in paper 3.

Table 3: Continental and global scale water balance components (except for those of Antarctica and
Greenland) from WaterGAP for homogenized WFD/WFDEI climate input data and the years 1971-2000. P:
precipitation; AET: actual evapotranspiration; Q: discharge into oceans and inland sinks (computed as sum of
net cell runoff); WCa: water consumption (actual, sum of NAs and NAg); NAs: net abstraction from surface
water (actual); NAg: net abstraction from groundwater; dS/dt: change of total water storage. All values are
given in km3 yri,

Component  Africa Asia Europe’ N America Oceania SAmerica Global

P 21315 24834 13254 16894 5978 29328 111602
AET? 17131 14126 7304 10275 4002 17785 70623
Qb 4123 10122 5873 6525 1954 11491 40088
WCa 74 632 94 134 17 31 983
NAs® 111 790 60 75 24 47 1106
NAgd 37 -157 35 59 -7 -16 -123
ds/dte 13 -46 17 -41 5 21 92

2 AET does not include evapotranspiration caused by human water use, i.e., WCa. ® Taking into account
anthropogenic water use. ¢ Satisfied demand from surface waters. ¢ Negative values indicate that return flows
from irrigation with surface water exceed groundwater abstractions. ¢ Total water storage (TWS) of 31
December 2000 minus TWS of 31 December 1970, divided by 30 years. f Includes the entire Russian
Federation.
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Table 4: Continental and global scale water balance components (except for those of Antarctica and
Greenland) from WaterGAP for homogenized WFD/WFDEI climate input data and the years 1986—2005. P:
precipitation; AET: actual evapotranspiration; Q: discharge into oceans and inland sinks (computed as sum of
net cell runoff); WCa: water consumption (actual, sum of NAs and NAg); NAs: net abstraction from surface
water (actual); NAg: net abstraction from groundwater; dS/dt: change of total water storage. All values are
given in km3 yr?.

Component  Africa Asia Europe’ N America Oceania SAmerica Global

P 21205 24776 13375 16863 5798 28917 110934
AET? 17266 14154 7384 10311 3909 17696 70720
QP 3873 9960 5913 6432 1867 11182 39227
WCa 84 724 97 144 20 36 1105
NAs® 122 890 68 85 29 56 1251
NAg® -39  -166 29 59 -9 -21 -146
ds/dte -17 -62 -20 -25 2 3 -119

2 AET does not include evapotranspiration caused by human water use, i.e., WCa. ° Taking into account
anthropogenic water use. ¢ Satisfied demand from surface waters. ¢ Negative values indicate that return flows
from irrigation with surface water exceed groundwater abstractions. ¢ Total water storage (TWS) of 31
December 1985 minus TWS of 31 December 2005, divided by 20 years. f Includes the entire Russian
Federation.

RQ 12 How can groundwater depletion at the global scale being assessed using multiple
sources of observations jointly with hydrological modeling?

If “(...) groundwater abstractions cannot be balanced by increased recharge and decreased
discharge over a number of years, a long-term decline of hydraulic heads and groundwater
storage, i.e., groundwater depletion (GWD), will result” (D6l et al., 2014a: 5698). Hot spot
GWD areas are e.g., the High Plains Aquifer in the US and the Ganges Delta of Bangladesh
and northwestern India. In the literature, many approaches exist to characterize the
anthropogenic pressure on groundwater aquifers (e.g., Gleeson et al., 2012; Wada et al.,
2010). The novelty of the approach in paper 5 is that it combines data from global
hydrological modeling, groundwater well observations, independent estimates and GRACE
satellite total water storage anomalies to determine GWD areas (and intensities) for the
global scale in a consistent way. WaterGAP 2.2a was applied, including a newly integrated
algorithm to compute groundwater recharge from surface water bodies in semi-arid/arid
regions. That reflects the hydrological process that occurs frequently in dry regions when
surface water bodies “lose” water to the groundwater and do not receive it from the
groundwater (as in the case of humid areas). As GWD is related to the amount of water
that is artificial pumped e.g., for extensive crop irrigation, the quantification of water
abstractions from groundwater plays a key role. Some assumptions while calculating water
withdrawals have to be made (e.g., constant fractions of areas equipped with surface water
or groundwater irrigation) due to the lack of data. By comparison to independent estimates
(including observations) of GWD and groundwater recharge, it was found that a model
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version in which a deficit irrigation of 70% from the optimalirrigation is assumed resembles
observed depletion. This is also supported by the likely local reduction of irrigation
intensities when water supply is limited. Global-scale GWD was quantified as having
doubled (from 56 to 113 km?3 yrt) between the time periods 1960-2000 to 2000-2009 and
is smaller than previous estimates. The countries with the highest GWD rate in 2000-2009
are India, the United States, Iran, Saudi Arabia and China. Furthermore it was found that
trends of GRACE total water storage anomalies can, together with a global water availability
and water use model (like WaterGAP), help to monitor temporal dynamics of water
abstractions, but the low spatial resolution of GRACE remains a challenge. The spatially
explicit quantification of human water abstractions is still subject to assumptions due to
partly missing statistical data (for both time and space) and leads to uncertainties in model-
based assessments of GWD. For example, groundwater recharge in the Hai River basin
(China) are underestimated with WaterGAP, which leads to a significantly higher GWD
estimate than GRACE and regional assessments.

RQ 13 What is the impact of climate change on river flow regimes?

It is expected that climate change will have substantial impacts on freshwater ecosystems
and thus it is of interest to quantify those effects. In paper 6, a new indicator for detecting
changes of river flow regimes was developed. It extends the widely used quantification of
mean (runoff or river discharge) change by seasonality and statistical low-flow/high-flow
components. This provides better insight into, e.g., the seasonal pattern of flow regime
change in relation to mean changes. WaterGAP 2.1g was forced with two bias-corrected
GCMs and two greenhouse gas emission scenarios (namely A2 and B2; see paper 6 for
details). The statistical low-flow indicator Qgo was assessed to follow broadly the change of
mean river discharge Qmean despite significant differences being visible; e.g., the per-cent
decreases of Qgo are often higher than those of Qmean (€.g., in Australia and South America),
and there are some areas where Qgo decreases while Qmean increases (and vice versa). In
other areas (e.g., the eastern USA, Scandinavia and the European part of Russia), Qg
increase is greater than Qmean increase. In general, this means that relative discharge
variability increases with the climate change projections. Also, seasonal river discharge
patterns will likely differ with climate change in some areas.

In addition, a new indicator was developed that aims to quantify river flow regime shifts.
Based on map information of perennial and intermittent river segments, generic thresholds
for the specific river stream characteristics were estimated and used to quantify shifts in
river flow regimes due to climate change. When the two GCMs and emission scenarios are
taken into account, significant flow regime shifts in the 2050s are calculated to take place
in 6.3—7.0% (A2 scenario) and 5.4—6.7% (B2 scenario) of global land area. Substantial
changes occur mainly in semi-arid areas and cold regions. Flow regime shifts from perennial
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to intermittent (intermittent to perennial) correlate with decreased (increased) mean
runoff and especially with decreased (increased) Qgo.

The development and application of those new indicators have allowed for new insights
into spatial variability of river flow regime as impacted by climate change. However, the
assessment is limited to one GHM and only two GCMs (with two emission scenarios each).
It is expected that more robust conclusions can be drawn when multiple GHMs are driven
with multiple GCMs under different emission scenarios. Such a multi-model, multi-scenario
assessment could be done within the framework of the Inter-Sectoral Impact Model
Intercomparison Project (ISIMIP), e.g., in the upcoming Phase ISIMIP2b (Frieler et al., 2016).
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9 Conclusions and outlook

The assessment of water balance components and related indicators by means of global
hydrological models (GHMs) has evolved significantly over the previous 25 years. Due to
the closed water balance and inclusion of hydrological processes as well as human
influence on the terrestrial water cycle, GHMs are valuable tools for water resources
assessment. Furthermore, GHMs are frequently used to quantify water-related impacts of
projected climate change. One GHM, namely the freshwater availability and use model
Water — Global Assessment and Prognosis (WaterGAP,) is the subject of detailed analyses
in this thesis. The dissertation contains six peer-reviewed papers along with a total 13
research questions that are structured in three parts in accordance with the title
“Evaluation, modification and application of a global hydrological model”. The majority of
the research questions are related to the various sources of uncertainty in global water
assessments and to challenges that still remain for the current generation of GHMs.

Different ways to calculate net radiation within WaterGAP (or taking from a reanalysis) as
the basis for potential (and actual) evapotranspiration are the focus of the first part. Based
on efficiency metrics with station-based observations, it is shown that the upward
shortwave radiation calculation in WaterGAP is as plausible as from a state-of-the-art
reanalysis (ERA-Interim) and performs well overall compared to observations, even though
the energy balance is not closed in WaterGAP. The longwave upward radiation component
of ERA-Interim reanalysis fits better to observations than those calculated by WaterGAP,
which could be improved if the emissivity value were increased and coupled to snow
dynamics. The mean absolute uncertainty of net radiation is, independent of reference
data set and modeling approach, around 20 Wm™ and the highest among the radiation
components. Thus, and given the impact of net radiation uncertainty on water resources
assessment (Doll et al., 2016), quantification of net radiation with high accuracy remains a
subject for research.

The uncertain climate input data are the focus of the second part of the model evaluation.
Assuming that the considered state-of-the-art climate input data sets are equally likely to
be correct, the sensitivity of simulated freshwater fluxes and water storages to alternative
climate input data was assessed in model experiments. In general, the range of simulated
discharge increases with the number of alternative data sets considered. It was shown that
the major uncertainty remains due to different handling of precipitation undercatch in the
climate input data sets. Two of the common global precipitation data sets (CRU, GPCC) are
similar in their continental and global values even though station densities vary
significantly. Appropriate handling of precipitation undercatch is thus a very important
challenge and is currently subject to improvements (Beck et al., 2017). Inconsistent
combination of two of the most frequently used climate input data sets (WFD, WFDEI) leads
to significant impacts on simulated water storage and fluxes. It was shown that a
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homogenization approach could reduce this inconsistency greatly. The sensitivity of global-
scale sums of simulated irrigation water use to different climate input data sets is about
50% of the sum of all the other water use sectors. Given the relation of absolute values,
this can be seen as relatively low sensitivity, but differences might be very significant at
grid-cell or regional level. Water availability limitations that prevent fulfillment of the full
water demand are reducing this sensitivity even further. The calibration approach of
WaterGAP reduces the uncertainty due to climate input in calibrated areas to around 1.6%,
compared to 18.5% in non-calibrated areas, but variations among the climate input data
remain at the grid-cell level. The lack of river discharge observations (or the sharing of such
data) in some parts of the Earth limits more constrained assessments of global water

resources.

The second part of the thesis deals with the effect of model modification on model output
as well as model parameters. The basic objective was to quantify the impact of
implementing new data sets, new/refined processes and an updated calibration structure
in a total of five research questions.

The modifications of model structure from an initial WaterGAP version to version 2.2 led
to significant improvements in the simulation of monthly river discharge, especially for
temperate and continental Koppen—Geiger climate zones. It is expected that other
components of the water balance are also improved with the updated model structure.
However, challenges for model improvement remain, especially in the dry climates.
WaterGAP tends to overestimate river discharge in many of those basins by at least a factor
2. Therefore, future model development should focus on those areas. The inclusion of
capillary rise from groundwater could increase the amount of evaporation. In the current
model structure, exfiltration and subsequent evaporation from temporary ponds in semi-
arid/arid regions are not implemented, and the first efforts have been made to investigate
the potential of this additional contribution (Nagel, 2012). As WaterGAP contains only one
soil layer (with varying thickness according to the rooting depth), the actual soil water
content is typically low in those regions. Even though precipitation increases the soil water
storage, the relative soil water storage is still very low, which limits the ability to evaporate
water from the soil. Hence, the inclusion of a second soil layer could increase the
evaporation of the top layer and thus help to reduce the simulated runoff in those regions.
However, model complexity would strongly increase as water transport between the soil
layers has to be parameterized.

The integration of the calendar year in which reservoirs were commissioned into WaterGAP
improves the simulated river discharge significantly, especially for the time period before
the reservoir began operation. The analyses showed that the generic reservoir algorithm is
subject to improvements as model performance is substantially lower after the reservoirs
are commissioned and the timing of peak flows (e.g., in Nile River basin downstream of the
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Aswan Dam) does not match. However, reservoir management rules are typically not
publically available, which limits the capability of improving generic or individual reservoir

algorithms.

Two spatial data sets were updated in order to allow the integration of state-of-the-art
input data. The effect was assessed by setting up model experiments with two versions
that differ only in that specific data set. A satellite (MODIS)-based land cover map replaced
map-based input data, resulting in a change in land cover type for a large part of the land
surface. However, the effect of updating the input data was moderate and much lower
than, e.g., the effect of calibration (or a lack thereof) or forcing the model with alternative
climate input data. In particular, global sums of river discharge to the oceans and inland
sinks as well as actual evapotranspiration vary by only ~200 km?3 yr. At least for some river
basins with wide-spread changes in land cover, differences in river discharge seasonality
were also found (e.g., the Yangtze River basin). Updating the land cover input data led to
improvements in simulated river discharge in some regions and to a lower performance in

other regions.

The spatial input data on total available water capacity were updated to a database with a
much higher number of in situ data. Global mean values of total available water capacity
increased by 7%. In most regions of the land surface (except for northeastern Eurasia) the
values increased, and this pattern holds true for the maximum soil water storage, which is
calculated by multiplying the updated input data (for the first meter) by land-cover
dependent rooting depth. The mean amplitude of soil water storage increased slightly, and
significant spatial differences in runoff exist; however the effect on global-scale averages is
very small. The model output improves in the sense that runoff is slightly decreased
(resulting in lower calibration demand) and variations of total water storage are increased.

The calibration routine of WaterGAP was modified to consider a potential 10% uncertainty
of long-term average river discharge observations in a four-step scheme. As a result, the
number of basins in which additional calibration parameters are needed was reduced by
14%. With this approach, in 43% to 50% of the river basins (varying among climate input
data) no additional correction factors were needed. Furthermore, for most of the basins
where those additional parameters are still required, parameter values are less extreme.
The model performance compared to non-modified observed river discharge reduced only
slightly, and global-scale river discharge and evapotranspiration differ by roughly
250 km?3 yr: the same order of magnitude as the modified land cover input data. However,
in around the half of the river basins, additional calibration parameters are still required.
Future research should focus therefore on developing alternative calibration approaches,
and first experiences on a multi-criterial calibration and data assimilation scheme with

WaterGAP are in progress.
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The third and final part of the thesis contains three applications of the WaterGAP model.
The most current WaterGAP version 2.2b, forced with homogenized climate input data,
was used to assess global-scale and continental-scale water balance components for two
time periods. For the standard climate period 1971-2000, river discharge to the oceans and
inland sinks is computed to be 40 000 km3 yr! and actual evapotranspiration as
70 500 km3 yr'l, Water consumption is calculated to be roughly 1% (1000 km3 yr?) of the
global-scale precipitation, and > 60% is consumed in Asia. For the IPCC AR5 reference
period 1986-2005, the numbers differ only slightly. The 700 km? yr?! less precipitation in
that period translates into a 850 km3 yr* lower river discharge and 100 km3 yr* higher
actual evapotranspiration. In addition, annual averages of water consumption increase by
120 km3 yr! in the later time period. As WaterGAP is calibrated to river discharge
observations for 54% of the global land surface (excluding Antarctica and Greenland), it is
expected that this assessment is reasonably well constrained. By enhancing highly
qualitative river discharge observations and sharing available data, the assessment of water
resources and water balance components could be improved in the future.

Assessing groundwater depletion at the global scale is the focus of the second WaterGAP
application. For semi-arid and arid regions, the process of groundwater recharge below
surface water bodies was integrated, which helps to improve the agreement of simulated
groundwater depletion as compared to independent estimates. Furthermore, it was found,
that in areas where groundwater depletion already occurs, farmers likely decrease the
irrigation to 70% of optimal irrigation demand. For many study regions where independent
observations or estimates were available, the model configuration with both groundwater
recharge below surface water bodies and deficit irrigation fits best to observations or other
(model- or data-based) estimates. The uncertain data and assumptions for human water
use limit such model-based assessments (see also DOll et al.,, 2016). Global-scale
groundwater depletion was estimated to be lower than reported in previous studies and
has doubled from 1960-2000 to 2000-2009. Data from the GRACE satellite were tested
regarding their ability to monitor temporal dynamics (and trends) of water abstractions,
but the low spatial resolution of GRACE, as well as the fact that GRACE observes changes in
the total water column and does not directly observe groundwater or groundwater
depletion, remains challenging. This study showed that a combination of hydrological
modeling and observation data could increase the plausibility of groundwater depletion
simulation.

In the third example, WaterGAP was applied for an impact study of climate change on river
flow regimes. Several new indicators were developed which allow for a more in-depth view
on changes in discharge variability and seasonality for ecologically relevant river flow
regimes. With two GCMs with two greenhouse gas emission scenarios taken as input data,
WaterGAP simulates substantial changes in river discharge variation. In addition, an
indicator for defining perennial and intermittent rivers was developed and applied
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regarding shifts under climate change. Significant shifts in river flow regime were calculated
for roughly 6% of the global land surface in the 2050s. For future research, a multi-model
and multi-scenario study should be conducted in order to strengthen the robustness of
such ecologically highly relevant flow regime shifts.

Specific research needs according to the research questions have already been touched
upon in the sections above. Based on the findings of the thesis, future research ideas and
applications with the WaterGAP global hydrological model are

- assessment of the role of potential evapotranspiration equations for simulating
potential water flux to the atmosphere, and validating with reference data, e.g. pan
evaporation observations;

- integration of a gradient-based groundwater model for an improved representation
of surface water-groundwater interaction, a more physically based groundwater
depletion assessment, the opportunity to include capillary rise and thus increase
evaporation, and the quantification of reservoir impoundments, e.g., according to
Chao et al. (2008);

- improvement of simulations in semi-arid and arid regions by, e.g., including the
exfiltration process and subsequent evaporation in temporary ponds, as well as
capillary rise from the groundwater and a second shallow soil layer on the top to
increase the relative soil storage saturation after precipitation events, which would
increase evaporation and reduce river discharge;

- development of a standardized evaluation framework (e.g., to assess model
modifications) including multiple observations for model validation, taking into
account data-driven products (e.g., Fekete et al., 2002; Gudmundsson and
Seneviratne, 2016);

- advancement and application of the calibration and data assimilation approach of
Eicker et al. (2014) and Schumacher et al. (2016b) to assimilate multiple sources of
observation (GRACE, river discharge, altimetry) for the global scale.

In general, global hydrological models provide valuable assessments of global-scale water
fluxes and storages. They are used as integrated tools for assessing water resources in
transboundary river basins where data sharing among countries is often limited due to
political issues and could be of benefit for international initiatives such as the World’s Large
Rivers Initiative (http://unesco-chair.boku.ac.at/index.php/wlri.html). Some ideas for a
more robust assessment of the terrestrial hydrological cycle could comprise

- the development of consistent, up-to-date climate input data including a plausible
way to deal with the problem of precipitation undercatch;

- conducting consistent model intercomparison studies under historical and climate
change conditions with the aim of investigating the reasons for varying model
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output as found in previous studies (Haddeland et al., 2011; Schewe et al., 2014) in
a structured way;

- increasing the plausibility of historical and projected water use assessments, e.g.,
under the framework of the Water Futures and Solutions initiative (WFaS; Wada et
al., 2016a);

- the development of a multi-model seasonal forecast system, e.g., for drought
warnings in a community-driven approach;

- understanding the HyperHydro initiative (http://www.hyperhydro.org/) as a call for

joint and community-driven development of a global hydrological model with high
resolution to support the initial ideas of Wood et al. (2011) and Bierkens et al.
(2015), who defined a potential application in water management for data-scarce
regions.

As models are only simplified representations of the reality and some of the uncertainties
that are described within this thesis will persist in the near future, there is still room for
improving global hydrological models, as well as indicators and applications that are based
on the model output. By the evaluation, modification and application of the global
hydrological model WaterGAP, valuable insights are given in this highly interesting topic.
These will hopefully build a strong basis for further research in the scientific community.

165



10 Schlussfolgerung und Ausblick

In den letzten 25 Jahren gewann die Quantifizierung von globalskaligen Wasserhaushalts-
komponenten sowie wasserrelevanten Indikatoren mittels globaler hydrologischer
Modelle (GHMs) wesentlich an Bedeutung. Die geschlossene Wasserbilanz, der explizite
Fokus auf die Abbildung terrestrischer hydrologischer Prozesse sowie (in den meisten
Fallen) die Beriicksichtigung des menschlichen Einflusses auf den Wasserkreislauf, etwa in
Form von Wasserentnahmen fiir den Bewasserungsbedarf, stellen wesentliche
Eigenschaften von GHMs dar. In dieser Dissertation wird das Wasserverfligbarkeits- und
Nutzungsmodell Water — Global Assessment and Prognosis (WaterGAP) fiir detaillierte
Analysen verwendet. Die Arbeit beinhaltet sechs begutachtete Artikel in Fachzeitschriften
und gibt Antworten auf insgesamt 13 Forschungsfragen, die hinsichtlich des Titels in
»Auswertung, Weiterentwicklung und Anwendung eines globalen hydrologischen Modells*
dreigeteilt dargestellt sind. Hauptsachlicher Fokus der Forschungsfragen ist der Umgang
mit verschiedenen Aspekten der Unsicherheit der globalskaligen Berechnung von
Wasserhaushaltskomponenten und der Benennung von damit zusammenhangenden
Herausforderungen der derzeitigen Generation von GHMs.

Verschiedene Wege zur Berechnung der Nettostrahlung oder die direkte Verwendung aus
sogenannten Reanalysen als Grundlage fiir die Berechnung der potentiellen (und aktuellen)
Evapotranspiration bilden den ersten Teil dieses Teilgebietes. Basierend auf dem Vergleich
mit stationsbasierten Beobachtungsdaten wurden Giitemalie berechnet. Es konnte gezeigt
werden, dass die Berechnung der ausgehenden kurzwelligen Strahlungs-komponente von
WaterGAP dhnlich plausibel ist wie der aktuelle Reanalyse-Ansatz von ERA-Interim, und
eine insgesamt zufriedenstellende Ubereinstimmung mit Messwerten vorliegt. Das ist
insofern von Bedeutung, als dass, im Gegensatz zu WaterGAP, Reanalysen eine
geschlossene Energiebilanz aufweisen und auf diverse Beobachtungsdaten gestiitzt sind.
Es konnte gezeigt werden, dass die langwellige ausgehende Strahlungskomponente der
ERA-Interim-Reanalyse besser mit den Beobachtungen lbereinstimmt. WaterGAP kdnnte
verbessert werden, indem der Emissionsgrad erhdht sowie eine Kopplung an die
Schneedynamik entwickelt wird. Die mittlere absolute Unsicherheit der besonders
relevanten Nettostrahlung wurde mit etwa 20 W m2 quantifiziert. Im Vergleich mit den
anderen Strahlungskomponenten ist diese die héchste. Daher, und in Bezug zur Sensitivitat
der simulierten Wasserressourcen auf Unsicherheiten der Nettostrahlung (Doll et al.,
2016), bleibt die plausible Berechnung der Nettostrahlung eine Herausforderung fir
zuklinftige Forschung.

Die Unsicherheiten der klimatischen Antriebsdaten (im Folgenden lediglich Antriebsdaten
genannt) sind Schwerpunkt des zweiten Teils der Evaluation. Unter Annahme, dass die
verwendeten Antriebsdaten in gleichem MaRe Anspruch auf Plausibilitdt und Fehlerfreiheit
haben, wurde die Sensitivitdit von simulierten Wasserfliissen und -speichern auf
verschiedene Antriebsdaten in Modellexperimenten untersucht. Es konnte gezeigt werden,
dass die Unsicherheit der Antriebsdaten hauptsachlich auf die unterschiedlich angewandte
Methodik der Niederschlagskorrektur insbesondere des Schneeniederschlages zuriick zu
fihren ist. Daneben wurden fir zwei der am haufigsten verwendeten globalen
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Niederschlagsdatensatze (CRU, GPCC), trotz sehr unterschiedlicher Stationsdichten, grol3e
Ubereinstimmungen der kontinentbezogenen und globalen langjihrigen Niederschlags-
mengen gefunden, die allerdings nach Anwendung der beschriebenen Niederschlags-
korrektur signifikante Differenzen aufweisen. Daher ist ein plausibler Ansatz der Nieder-
schlagskorrektur fir solche Eingangsdaten von essentieller Bedeutung fiir die globalskalige
Modellierung der Wasserressourcen und sollte in Zukunft weiter erforscht werden. Erste
Ansatze etwa von Beck et al. (2017) zeigen, dass die Kombination von Beobachtungsdaten
und Modellergebnissen zu diesem Zweck von Bedeutung sein kann. Inkonsistenzen der
Strahlungskomponenten bei der Kombination von zwei der am haufigsten verwendeten
Antriebsdaten (WFD, WFDEI) wirken sich signifikant auf die Simulation der Wasserspeicher
und -flisse aus. Ein vorgestellter Homogenisierungsansatz reduziert diese Inkonsistenzen
erheblich. Die Unsicherheit der Antriebsdaten wirkt sich nur in relativ geringem MaRe auf
die globalen Summen (nicht aber notwendigerweise auf Gitterzellen-Ebene bzw. Regionen)
des Bewdsserungswasserbedarfes aus und wird durch die Verfligbarkeit der
Wasserressourcen zusatzlich verringert. Darliber hinaus fiihrt der Kalibrierungsansatz von
WaterGAP zu einer Reduzierung der Antriebsdaten-Unsicherheit auf etwa 1,6 % in den
Gebieten, wo langjahrige Messreihen des Durchflusses zur Verfligung stehen. Im Gegensatz
dazu, ist die Unsicherheit in nicht-kalibrierten Gebieten mit 18,5 % bedeutend hdéher.
Nichtsdestotrotz sind Unterschiede auf Gitterzellen-Ebene in beiden Gebieten erkennbar.
Fehlende Durchflussmessungen oder der nicht erfolgte Datenaustausch auf etwa der Halfte
der Landoberflache verringern die Moglichkeit, durch einen solche Kalibrierung die
Wasserressourcen besser auf Beobachtungen zu stitzen.

Der zweite Teilaspekt der vorliegenden Arbeit behandelt die Auswirkung der Modell-
entwicklung auf simulierte Ergebnisse sowie auf Modellparameter. Das Ziel war, zu zeigen,
wie sich die Einbeziehung neuer Datensatze, neuer oder veranderter Prozessabbildung
sowie ein aktualisierter Kalibrieransatz auswirken. Dieser Teil umfasst ebenfalls 5
Forschungsfragen.

Die Weiterentwicklung der Modellstruktur der initialen WaterGAP-Version 2.1d bis zur
Version 2.2 fihrte zu entscheidenden Verbesserungen in der Simulation von monatlichen
Durchflissen, insbesondere in warmgemaRigten Regenklimaten sowie borealen Klimaten.
Es ist davon auszugehen, dass durch diese Entwicklung die Berechnung anderer
Wasserhaushaltskomponenten  verbessert wurde. Nichtsdestotrotz bleibt die
Verbesserung der Simulationen in Trockenklimaten eine groRe Herausforderung der
Modellentwicklung, denn hier wird haufig der Durchfluss um den Faktor zwei iberschatzt.
Die Berticksichtigung des kapillaren Aufstieges aus dem Grundwasser kdnnte sich auf die
Erhohung der Evaporation auswirken. Zudem sind in der derzeitigen Modellstruktur
spezielle Prozesse aus Trockengebieten nicht integriert. Erste Grundlagen zur Darstellung
von Exfiltrationsprozessen und nachfolgender Evaporation von temporaren Wasserflachen
in semi-ariden / ariden Gebieten wurden durch Nagel (2012) gelegt. In WaterGAP ist der
Bodenspeicher vertikal nicht differenziert, sondern in Abhédngigkeit der Durch-
wurzelungstiefe unterschiedlich machtig. Daher wird in trockenen Gebieten trotz
eintretender Niederschlage oft eine sehr geringe relative Bodenfeuchte simuliert, die
entsprechend geringe Evaporationsverluste zur Folge hat. Die vertikale Differenzierung in
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zwei Bodenspeicher kénnte die relative Wassersattigung im oberen Speicher infolge von
Niederschlagsereignissen und damit die Evaporation erhéhen, was wiederum zu einer
Reduktion des simulierten Abflusses (Durchflusses) fiihren kann. Nattrlich ist dies mit einer
weitaus komplexeren Modellstruktur verbunden, da z.B. Austauschprozesse zwischen den
Bodenspeichern entsprechend parametrisiert werden mussen.

Die Beriicksichtigung des Kalenderjahres, in dem das Management neugebauter Stauseen
beginnt, flihrte zu einer wesentlichen Verbesserung der Durchfluss-Simulation,
insbesondere in dem Zeitraum, bevor der Stausee existierte. Die Analyse hat jedoch auch
gezeigt, dass der generische Stausee-Algorithmus Verbesserungspotential hat, da die
Modellgite fir die Zeitreihe nach Inbetriebnahme der Stauseen signifikant schlechter ist
als unter unbeeinflussten Bedingungen vor der Inbetriebnahme. Dies wurde exemplarisch
am zeitlich verschoben simulierten Monat der hochsten Durchfliisse im Nil unterhalb des
Assuan-Staudammes gezeigt. Das Verbesserungspotential von generischen (oder auch von
individuellen) Stausee-Algorithmen ist jedoch eingeschrankt, da Bewirtschaftungsregeln
von Stauddammen typischerweise nicht 6ffentlich einsehbar sind.

Die Auswirkung der Aktualisierung zweier rdaumlich verteilter Eingangsdaten auf
Modellergebnisse wurde in Simulationsexperimenten analysiert. Ein satellitenbasierter
Landbedeckungs-Datensatz (MODIS) hat dabei eine kartenbasierte raumliche Information
ersetzt. Es hat sich gezeigt, dass in einer Vielzahl an Gitterzellen der Landbedeckungstyp
modifiziert wurde. Allerdings wirkt sich dies im Vergleich zu der Unsicherheit von
Antriebsdaten oder der Frage ob kalibriert wird (oder nicht) nur gering auf
Modellergebnisse aus. Globale Summen des Durchflusses in Ozeane und Inlandsenken
sowie die aktuelle Evapotranspiration unterscheiden sich nur um etwa 200 km? a™.
Anderungen in der Durchflusssaisonalitit treten lediglich in Einzugsgebieten mit
groRflichigen Anderungen der Landbedeckung (z.B. Yangtze) auf. Bezogen auf die
Modellgiite gibt es Regionen, in denen sich der simulierte Durchfluss verbessert hat, aber
auch Gebiete, in denen das Gegenteil der Fall ist.

Auch die raumlich verteilte Information zum verfligharen Bodenwasserspeicher im
obersten Meter wurde auf eine Datenbasis aktualisiert, in die wesentlich mehr Profildaten
eingegangen sind. Die mittleren Werte des verfliigharen Bodenwasserspeichers im oberen
Meter vergroRerten sich um 7 %. Mit Ausnahme von Nordost-Eurasien erhdhten sich in den
meisten Gebieten der Landfliche diese Werte, ebenso der maximal verfiigbare
Bodenwasserspeicher unter Berlicksichtigung der Landbedeckungs-spezifischen
Durchwurzelungstiefe. Die mittlere Amplitude des Bodenwasserspeichers erhohte sich,
und signifikante rdumliche Unterschiede im Abfluss wurden ermittelt, auch wenn die
Auswirkung auf die Summe globalskaliger Wasserhaushaltskomponenten nur gering
ausfallt. Insgesamt wurde eine Verbesserung im Sinne einer leichten Verringerung des
Abflusses (und entsprechende Erhéhung der aktuellen Evapotranspiration) festgestellt, die
Amplituden vom Gesamtwasserspeicher erhdhten sich ebenfalls.

Der Kalibrieransatz von WaterGAP wurde angepasst, um bei Bedarf bei den Durchfluss-
messungen eine mittlere Messunsicherheit in Hohe von 10 % zu berlcksichtigen. Ein
vierstufiger Ansatz wurde implementiert, der zu einer deutlichen Reduzierung der Anzahl
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von Einzugsgebieten mit zusatzlichen Korrekturfaktoren (um 14 %) gefiihrt hat. Mit diesem
Ansatz konnte in 43 % bis 50 % der Einzugsgebiete (die Variation entsteht durch alternative
Antriebsdaten) auf zusatzliche Korrekturfaktoren verzichtet werden. Dartiber hinaus liegen
die Werte der zusatzlichen Korrekturfaktoren fir die meisten der Einzugsgebiete mit einem
solchen Bedarf ndher an dem Wert 1, sodass eine solche Anpassung weniger extrem ist.
Die Modellgiite reduziert sich mit dem Ansatz nur geringfligig und globalskalige Summen
des Durchflusses in Ozeane und Inlandsenken sowie die aktuelle Evapotranspiration
unterscheiden sich lediglich um etwa 250 km3® a! im Vergleich zur Kalibrierung ohne
Messunsicherheit. Trotz der wesentlichen Verbesserungen werden noch in etwa der Halfte
der Einzugsgebiete zusatzliche Kalibrierfaktoren bendétigt. Es besteht also Bedarf an
alternativen Kalibrieransatzen. Erste Schritte hinsichtlich einer multikriteriellen
Kalibrierung und Daten-Assimilierung von WaterGAP konnten bereits erfolgreich
durchgefiihrt werden.

Der dritte und letzte Teil dieser Dissertation beinhaltet drei Anwendungsbeispiele von
WaterGAP. Mit der derzeit aktuellsten WaterGAP Version 2.2b und unter Verwendung
eines homogenisierten Antriebsdatensatzes (WFD/WFDEI) wurden die Wasserhaushalts-
komponenten fiir zwei Zeitschritte und die globale Landflache sowie die Kontinente
berechnet. Fir die Klimanormale 1971 bis 2000 wurde der Zufluss zu den Ozeanen sowie
in Inlandsenken mit 40000 km3® a?' berechnet, die aktuelle Evapotranspiration mit
70500 km3 al. Der konsumtive Verbrauch durch Wassernutzung wurde mit etwa 1 %
(1000 km? a) des Niederschlages auf der globalen Skala quantifiziert. Mehr als 60 % der
Wassernuztung findet in Asien statt. Fir die im IPCC AR5 verwendete Referenzzeitreihe
1986 bis 2005 sind die Werte dhnlich. Die etwa 700 km3 a* geringeren Niederschlage fihren
zu etwa 850 km? a! niedrigeren Durchflissen und einer 100 km3 a! héheren Evapotrans-
piration. Daruiber hinaus steigt die konsumtive Wassernutzung um 120 km3 at in dieser
Zeitreihe. Da WaterGAP in etwa 54 % der globalen Landflache (mit Ausnahme der Antarktis
und Gronland) auf mittlere Jahreswerte des gemessenen Durchflusses kalibriert ist, ist
davon auszugehen, dass die Quantifizierung dieser Wasserhaushaltskomponenten gut
durch Messungen gestiitzt wird. Eine qualitativ hochwertige Durchflussmessung von
bislang nicht erfassten Einzugsgebieten, sowie der Austausch von vorhandenen Daten kann
eine bessere Abschatzung der globalen Wasserressourcen und -haushaltskomponenten
mit solchen Modellen in Zukunft weiter beférdern.

Die globalskalige Abschatzung der Grundwasserzehrung (groundwater depletion) ist
Gegenstand des zweiten WaterGAP-Anwendungsbeispieles. Zu diesem Zweck wurde in
semi-ariden und ariden Gebieten der Prozess der Grundwasserneubildung unterhalb von
Oberflaichengewdssern entwickelt, was zu einer Verbesserung der Simulation von
Grundwasserzehrungen im Vergleich zu unabhangigen Messungen fiihrte. Zusatzlich
wurde erarbeitet, dass in Gebieten mit Grundwasserzehrungen eine Defizitbewdsserung
mit 70 % des optimalen Wasserbedarfes wahrscheinlich ist. In vielen Gebieten, in denen
unabhangige Beobachtungen oder Abschdtzungen vorlagen, hat die Kombination aus
Grundwasserneubildung unter Oberflachengewdassern sowie die Defizitbewdsserung zu der
besten Ubereinstimmung gefiihrt. Die unsichere Datengrundlage und zahlreiche
Annahmen in Bezug auf die Wassernutzung wirken sich limitierend auf eine bessere
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Abschatzung der Grundwasserzehrung aus (siehe auch DOll et al., 2016). Nach den
WaterGAP-Berechnungen verdoppelte sich die globalskalige Grund-wasserzehrung
zwischen 1960 bis 2000 und 2000 bis 2009. Schwerefelddaten der GRACE-Satelliten wurden
hinsichtlich der Beobachtung von zeitlicher Dynamik und Trends von Wasserentnahmen
untersucht. Die grobe Auflésung von GRACE, und weil GRACE Anderungen im
Gesamtwasserspeicher beobachtet, nicht jedoch direkt die vom Grundwasserspeicher,
bleiben wesentliche Hindernisse in diesem Zusammenhang. Insgesamt hat dieses Beispiel
zeigen konnen, dass eine Verknlipfung von hydrologischer Modellierung mit
Beobachtungsdaten die Plausibilitat der Abschatzung von Grundwasser-zehrung erhéhen
kann.

Im dritten Anwendungsbeispiel wurde der Einfluss des Klimawandels auf FlieRregime
untersucht. Eine Reihe von Indikatoren wurden entwickelt, die einen Einblick in
Veranderungen von Durchflussvariabilitdit und -saisonalitdt hinsichtlich 6kologisch
relevanter FlieRregime erlauben. Unter Verwendung von Daten zweier Klimamodelle und
zweier Emmissionsszenarien wurden mit WaterGAP wesentliche Veranderungen in der
Durchflussvariabilitat berechnet. Zusatzlich wurde ein neuer Indikator entwickelt, mit dem
der Charakter des FlieRregimes (perennierend, intermittierend) bestimmt wird. Es konnte
gezeigt werden, dass etwa um das Jahr 2050 mit Anderungen des FlieRregimes auf rund
6 % der globalen Landflache zu rechnen ist. Zukiinftige Forschung sollte fir eine robustere
Quantifizierung dieser (nicht nur fiir die Okologie) relevanten FlieRregime-Anderungen ein
multi-Modell- und multi-Szenario-Ansatz beinhalten.

In den vorangegangenen Ausfiihrungen wurden bereits spezifische Forschungsbedarfe und
Herausforderungen dargestellt. Basierend auf den Erkenntnissen dieser Dissertation
konnen folgende Forschungsideen und Anwendungen fir WaterGAP definiert werden:

- Bewertung der Rolle von Ansadtzen zur Berechnung der potentiellen Evapo-
transpiration unter Verwendung von Verdunstungskesseln als Referenzdaten;

- Die Einbindung eines gradientenbasierten Grundwassermodells dirfte zu einer
verbesserten Simulation der Oberflaichen-Grundwasser-Interaktion, einer
physikalisch besser beschriebenen Grundwasserzehrung, der Moglichkeit der
Einbeziehung von kapillarem Aufstieg (und der damit verbundenen erhdhten
Evaporation des Bodens) sowie der Moglichkeit der Quantifizierung der
Grundwassererhohung durch Stauseen (z.B. nach dem Ansatz von Chao et al., 2008)
fuhren;

- Die Simulation von Wasserressourcen in semi-ariden und ariden Gebieten sollte
vordringlich verbessert werden. Dies koénnte durch die Einbeziehung von
Exfiltrationsprozessen und nachfolgender Evaporation in temporaren Wasser-
flachen, dem kapillaren Aufstieg von Grundwasser und der Einflihrung eines
zweiten Bodenspeichers (um  die relative  Wassersattigung  nach
Niederschlagsereignissen und damit die Evaporation zu erhéhen) erreicht werden;

- Eine standardisierte Validierungsumgebung, die verschiedenartige Beobachtungs-
daten umfasst (u.a. datenbasierte Produkte z.B. Fekete et al., 2002; Gudmundsson
and Seneviratne, 2016) kann die Bewertung von Modellanderungen unterstiitzen;
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- Das Kalibrierungs/Datenassimilations-Werkzeug von Eicker et al. (2014) und
Schumacher et al. (2016b) sollte weiterentwickelt werden, um verschiedene
Beobachtungsdaten (z.B. GRACE, Durchflussmessungen, Altimeterdaten) auf der
globalen Skala anzuwenden.

Im Allgemeinen liefern globale hydrologische Modelle einen wertvollen Beitrag zur
Quantifizierung globalskaliger Wasserflisse und -speicher. Daher sollten diese Modelle als
integrierte Werkzeuge fiir internationale Initiativen wie die World‘s Large Rivers Initiative
(http://unesco-chair.boku.ac.at/index.php/wlri.html) oder etwa die Quantifizierung von
Wasserressourcen in grenziiberschreitenden Flusseinzugsgebieten (in denen der
Datenaustausch oftmals aus politischen Griinden eingeschrankt ist) verstarkt verwendet
werden. Folgende Vorschldage zur robusteren Berechnung des terrestrischen hydrolo-
gischen Kreislaufes umfassen die:

- Entwicklung von konsistenten und zeitlich aktuellen Antriebsdaten unter
Berlicksichtigung eines plausiblen Ansatzes zur Niederschlagskorrektur;

- Durchfiihrung von moglichst konsistenten Modellvergleichsstudien (sowohl
historisch als auch mit Szenarien) mit dem Ziel, die Griinde fiir unterschiedliche
Modellausgaben (siehe Haddeland et al.,, 2011; Schewe et al.,, 2014) zu
untersuchen;

- Erhoéhung der Plausibilitdit von historischen und szenario-gestlitzten Wasser-
nutzungen zum Beispiel im Rahmen der Water Futures and Solutions Initiative
(WFaS, Wada et al., 2016a);

- Entwicklung eines multi-Modell-Ansatzes fiir saisonale Vorhersagen (z.B. von
Diirren) als gemeinschaftliche Aufgabe der globalen hydrologischen Modelle;

- Ubersetzung der Ziele der HyperHydro-Initiative (http://www.hyperhydro.org/)
(Wood et al., 2011; Bierkens et al., 2015) als Aufruf zu einer gemeinschaftlichen
Entwicklung eines Modellsystems mit hoher raumlicher Auflésung zur
Unterstlitzung des Wassermanagements in datenarmen Gebieten.

Alle Modelle bilden die Realitat teils stark vereinfacht ab, und einige der Unsicherheiten,
die in dieser Arbeit beschrieben sind, werden auch in naher Zukunft bestehen bleiben. Es
konnte gezeigt werden, dass weiterhin Entwicklungsbedarf fiir globale hydrologische
Modelle besteht und auch modell-basierte Indikatoren sowie Anwendungen weiter-
entwickelt werden sollten. Durch die Evaluation, Entwicklung und Anwendung des globalen
hydrologischen Modells WaterGAP konnten einige Einblicke in dieses Themengebiet
gegeben werden. Diese werden hoffentlich die Entwickler und Anwender von globalen
hydrologischen Modellen bei der weiteren Arbeit unterstiitzen.
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Appendix A: Impact of model modification on simulated water storages and
fluxes

In this chapter, three examples of model modification and the respective impacts on
simulation results are described. The first example (Appendix A1) focuses on an improved
process representation, namely the inclusion of reservoir commissioning years. The second
(Appendix A2) shows the effects of an updated total soil water capacity input map. Finally,
a modified calibration scheme and its effect on model parameters and simulated water
fluxes are presented in Appendix A3.

Al Integrating reservoir commissioning years

Al.1 Background

In all model versions except 2.2 (ISIMIP2a), dams and their corresponding reservoirs are
treated as being present over the entire simulation period. When the model is run without
the reservoir algorithm, reservoirs are treated as (global) lakes. Especially when starting
the model runs in the early 20" century (at which time in reality only a few reservoirs were
already in operation), this can lead to an unrealistic simulated river discharge seasonality
(compared to the observed one) due to 1) the presence of a water body (where in reality
none was present) and 2) the reservoir algorithm (which leads to water storage and release
processes that would not occur if the dam were not yet in operation). In the context of the
Inter-Sectoral Impact Model Intercomparison Project (ISIMIP), phase 2a, the participating
modeling groups were asked to account for the year reservoirs were commissioned in their
modeling efforts; hence this feature was included in the model version 2.2 (ISIMIP2a).

Al1.2 Implementation

Based on information from the Global Reservoir and Dam database (GRanD; Lehner et al.,
2011) version 1.1 as well as electronic resources (e.g., websites from the operation
companies or http://www.wikipedia.org), the calendar year was obtained in which each of

the 1109 currently implemented reservoirs was commissioned. In cases where more than
one reservoir outflow was assigned to a grid cell, the year of the reservoir with the larger
storage capacity was considered. The WaterGAP code was modified in such a way that, in
the year when the dam was commissioned, reservoir area increases to its full extent (thus
land area fraction is adjusted), the reservoir starts filling and the reservoir algorithm (after
Hanasaki et al., 2006, described in Doll et al. (2009)) is enabled. The storage capacity of
those reservoirs that are already in operation in the model initialization year is set to the
maximum value. In the case of regulated lakes, in contrast, a natural water body is already
present before dam construction. Several new input data were created (e.g., a file with the
operation year and yearly files with spatial information on reservoir area), and a thorough
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check of outflow cells and their representation in the drainage network was undertaken. In
addition, the precision of input files (reservoir area and volume) was changed from integer
to float values, which is especially beneficial for representing the smaller reservoirs with
reasonable accuracy.

A1.3 Study setup and evaluation design

WaterGAP 2.2 (ISIMIP2a) was applied to three socio-economic scenarios, following the
ISIMIP modeling protocol (https://www.isimip.org/protocol/#isimip2a). In the variable

socio-economic (varsoc) scenario, reservoir operation years, as well as time-varying human
water use, were taken into account to mimic the historical dynamics of these features. In
the present-day socio-economic (pressoc) scenario, human water use was set to the
intensity of the year 2000 for the entire simulation period, and only those reservoirs
commissioned until (and including) the year 2000 are in operation for the full simulation
period. The pressoc scenario is intended to represent “present-day” human impact. The
model was calibrated using the varsoc scenario as described in the appendix of Miiller
Schmied et al. (2014), and calibrated parameter values were used for the pressoc scenario.

In order to show the effect of the reservoir operation years on simulated river discharge
and derived model efficiency, discharge observation stations from the Global Runoff Data
Centre (GRDC) were selected which are located downstream of reservoirs that have a
considerable effect on river discharge. The frequently used degree-of-regulation index
(expressed as the ratio of upstream storage capacity to mean river discharge without
human impact) (Eisner, 2015; Lehner et al., 2011) was calculated for each of the 1319 grid
cells that contain calibration stations. Firstly, those grid cells with an indicator value larger
than 0.5 were selected, which corresponds to 257 stations. Such an indicator value means
that natural river discharge can be stored theoretically for half a year within the artificial
upstream reservoir(s) and should thus have a considerable impact on discharge seasonality.
As the effect of river regulation should be most visible at the next station downstream of a
reservoir, the closest downstream station was selected (i.e., in the case of equal upstream
reservoir storage capacity the grid cell with the lowest mean naturalized river discharge).
This reduced the number of evaluation stations to 214. The observed discharge time series
was divided into a pre-commissioning time period and a period in which the reservoir is in
operation if at least one reservoir is within the basin. If more than one reservoir is present
in a basin, the commissioning year of the reservoir with the largest storage volume was
taken into account (except for the two downstream stations on the Nile, where the year of
the Aswan reservoir was used instead of that of Lake Victoria). The Nash—Sutcliffe efficiency

E\s (Nash and Sutcliffe, 1970) and the Kling—Gupta efficiency metric £, as well as the

latter's components (Eycy., as @ measure of mean bias, E; as a measure of

Ggamma

variability and E, as a measure of timing) (for details of £ see paper 1 and Gupta et
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al., 2009; Kling et al., 2012) were used to evaluate the simulated monthly river discharge
against observed values separately for the pre- and post-commissioning time period.

A1l.4 Results

The development of global-scale reservoir storage for the varsoc and pressoc scenario is
shown in Fig. Al. Especially between the 1950s and 1980s, storage capacity (solid blue line)
strongly increased. The simulated actual reservoir storage differs considerably between the
two scenarios up to the 2000s and converges afterward.
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year

Fig. Al: The global sum of maximum storage capacity and simulated actual storage for two scenarios: starting
the model run with reservoir status of the year 2000 (comparable with model runs without implementation
of the operation year pressoc, blue color) and integrating reservoir operation years (varsoc, red color). Solid
lines represent the maximum reservoir storage capacity, whereas dashed lines show the actual storage.
Values are given in km3.

The effect of implementing reservoir commission years into WaterGAP on model
efficiencies is shown in Fig. A2. Only the 214 basins with a high impact from reservoirs are
displayed, and the time series are divided into pre- and post-commissioning years. In
general, the efficiencies of simulations before the reservoir was commissioned are better
for both scenarios compared to the time series after the dam was commissioned. In
addition, the varsoc scenario fits better than the pressoc in the pre-commission time series.

This is reflected by better E,g and £, values for varsoc and pre-reservoir-commission

time series. The single components of E are also improved in that time period. For the

years after dams began operation, the efficiencies of varsoc and pressoc are very similar,
as the reservoir algorithm is enabled in both cases, and the simulated river discharge of
each is similar. The generic reservoir algorithm is not perfect for the majority of reservoirs
because the efficiency criteria of the varsoc scenario before reservoirs were commissioned

are better than after applying the reservoir algorithm (Fig. A2).
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Fig. A2: Nash-Sutcliffe and Kling—Gupta efficiency metrics as well as their components for the 214 gauging
stations considerably impacted by reservoir flow regulation. Results are shown for varying historical human
impact (varsoc) and constant present-day human impact (pressoc) for the time period before reservoirs were

commissioned (top) and afterwards (bottom).

The effect of the inclusion (or lack of inclusion) of the commissioning year is visualized for
three reservoirs (Table Al) in Fig. A3. For the Nile, the timing of peak flow is much improved
for varsoc compared to pressoc for the pre-commissioning years. Afterwards, model
simulations are comparable and the reservoir algorithm is not able to represent the
reservoir operation scheme of the Aswan Dam as peak flows are shifted by around 6
months. The later simulated peak flow is also visible in the pre-commissioning time period
for the varsoc scenario. In the Volta basin, the filling-up of the reservoir after 1965 is well
simulated using the varsoc scenario. For both time periods, varsoc seasonality is closer to
the observed values, but differences are smaller than those of the Nile. A clear benefit of
the varsoc scenario and the pre-commissioning time period is visible for the Salado gauging
station. Even though there is a shift in timing, peak, and low flows are well captured when

the year of commissioning is taken into account.

Table A1l: Characteristics of selected river discharge stations and upstream reservoirs.

River Station Lat Lon Upstream Reservoir  Indicator of
reservoir  operation flow

capacity year * regulation
[km?]
Nile Aswan Dam  23.75 32.75 376 1970 5.6
Volta Senchi 6.25 0.25 155 1965 4.7
Salado  El Arenal -25.75 -63.75 3 1973 4.1

* of the reservoir with largest storage capacity in the case of more than one upstream
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Fig. A3: River discharge seasonality and monthly river discharge for selected stations (Table A1) where the
reservoir began operation during the calibration time series (i.e., the time series in which discharge
observations were available).

Al1l.5 Summary

The implementation of the reservoir operation years generally improves the simulation of
river discharge for the years before the reservoir was commissioned, which is visible in
better agreement to observed river discharge both for efficiency metrics and for discharge
seasonality. However, the generic reservoir algorithm is not able to handle all reservoirs
sufficiently.
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A2 Adapting input map of total soil water capacity

A2.1 Background

In WaterGAP, the maximum soil water storage Smax is calculated by using a spatially
distributed input map of total available water capacity (TAWC) for the top meter, which is
then multiplied by the land-cover-specific effective rooting depth of the specific grid cell
(see the appendix in Miller Schmied et al. (2014) for description). The original TAWC map
was derived from Batjes (1996) based on the World Inventory of Soil Emission Potentials
(WISE) database. Within this version of WISE, 4353 globally distributed soil profiles were
included which were used to derive pedotransfer functions (PTFs) to calculate TAWC. The
updated WISE database contains information on 10250 soil profiles (Batjes, 2012), is
available at 5-arc-minute resolution and also includes information on available water
capacity that is now available for different soil depth intervals.

A2.2 Implementation

The dominant TAWC unit per 5-arc-minute grid cell was taken into account. For each of the
five 20 cm soil layers, TAWC (provided in cm m™) was divided by 5 (to derive TAWC per
0.2 m layer), and TAWC was subsequently summed up over the profile and converted to
mm mL. Those layers without TAWC values (e.g., due to shallow soils or too many rocks
underground) were ignored in the calculation. The average TAWC of the 0.5 x 0.5° grid cell
was obtained using zonal statistics within ESRI ArcGIS software. Around 2500 grid cells did
not contain values (e.g., because they are fully covered with water or rocks). Here, the
values from Batjes (1996) were used instead.

A2.3 Study setup and evaluation design

The differences between the two input versions are displayed in Fig. A4, which shows TAWC
in the first meter of the soil profile for Batjes (2012) and its differences to Batjes (1996), as
well as those values for the maximum soil water storage (where TAWC is simply multiplied
by rooting depth of the land cover class) (Fig. A4). To assess the effect on storage variations,
the mean annual amplitude of the soil water storage was calculated. WaterGAP 2.2b with
a homogenized combination of WATCH Forcing Data based on ERA40 (until 1978) and
WATCH Forcing Data based on ERA-Interim afterward was run as a “NoCal” scenario; i.e.,
all calibration parameters were set to 1.0 globally. The only difference between both model
runs is the TAWC input. Mean amplitude was obtained from monthly maximum minus
monthly minimum soil water storage per year for the time period 1981-2010 (Fig. A5).
Finally, annual average runoff from land (same time period) was assessed (Fig. A6).
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A2.4 Results

Global average TAWC of Batjes (2012) is 112 mm m, whereas it is 105 mm m™ for Batjes
(1996). The red colors in Fig. A4 (c) show areas where the updated version has larger values
than the previous version (vice versa for bluish colors). Except for large parts of
northeastern Eurasia, most of the global land areas have increased TAWC values in the

updated version. This general picture is still the same when considering the rooting depth,
i.e., Smax (Fig. A4 b, d).

jes (2012) ©® &

Fig. Ad: Total available soil water capacity (TAWC) from Batjes (2012) (a); maximum soil water storage Smax,
which is derived by multiplying TAWC with a land cover dependent rooting depth (b); and absolute difference
between TAWC (c) and Smax (d) calculated as Batjes (2012) minus Batjes (1996). Red colors indicate higher
values in Batjes (1996).

The increasing Smax corresponds to an increased soil water storage amplitude at least for
some areas (including the tropics except for the upper Amazon, eastern North America,
Europe) and to a decrease in the upper Amazon and northeastern Eurasia (Fig. A5). The
global mean amplitude of soil water storage increased from 58.7 mm (Batjes, 1996) to 61.8
mm (Batjes, 2012).
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Fig. A5: Mean yearly soil water storage amplitude based on a non-calibrated WaterGAP 2.2b run and the
TAWC input of Batjes (2012) (a), and absolute differences to the version of Batjes (1996) (red colors indicate
higher values in Batjes (1996)) (b). Units are given in mm.

When analyzing mean runoff from land for the same time period (Fig. A6), the spatial
pattern differs from the previous figures. Western North America, southern Africa, main
parts of Australia and parts of Europe show reduced runoff values when TAWC from Batjes
(1996) is used instead of the updated version. In these regions, evapotranspiration
increases when the updated TAWC input map is used. Global average runoff
(evapotranspiration) with the updated TAWC version is estimated at 328 (348) mm yr?,
compared to 331 (345) mm yr! for Batjes (1996). Hence, regional differences are balanced

out when summed up for the global scale.

mean runoff [mml/yr]
I s

SRR RO

Fig. A6: Mean yearly runoff from land [mm yr!] with a non-calibrated WaterGAP 2.2b run and the TAWC
input of Batjes (2012) (a) and relative differences [%)] to the version of Batjes (1996) (red colors indicate higher
values in Batjes (1996)) (b).

A2.5 Summary

Updating the spatial input map of total available soil water capacity leads to spatial
differences in maximum soil water storage, the annual amplitude of soil water storage and
in average annual runoff. In global numbers, the effect — a 3 mm difference — is not very
large. However, evapotranspiration increases with increasing maximum soil water storage
and vice versa. A comparison with observed river discharge by using a calibrated version
with each of the input data could help to assess which input map might be more accurate.
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A3 A modified calibration approach to account for uncertainty in river discharge

measurements

A3.1 Background

So far, WaterGAP has employed a calibration scheme (Calstq) that forces simulated long-
term average river discharge to match the observed value within a maximum permitted
deviation of + 1% (Ddll et al., 2003; Hunger and Doll, 2008). During calibration, a maximum
of three parameters are adjusted: (1) the basin-wide uniform parameter y (or 3 in
Bergstrom, 1995) determines the amount of water draining the soil column within a given
time step. High parameter values reduce outflow even if soil water storage is nearly
saturated, and vice versa (Miller Schmied et al., 2014, their appendices A3, B1). (2) The
area correction factor (CFA) is computed if adjusting y in the limits 0.1 and 5.0 did not yield
an acceptable runoff estimate. Allowed to range between 0.5 and 1.5, CFA adjusts the
runoff of each grid cell (so-called net cell runoff, computed as the outflow of the grid cell
minus the inflow to it) in each grid cell of the basin. Net cell runoff is multiplied by the value
symmetrically around 1.0, dependent upon the sign of the long-term water balance in the
individual grid cell (see also Hunger and Doll, 2008). (3) In cases where y and CFA are not
sufficient to match the observed river discharge, the station correction factor (CFS) is
applied that simply multiplies river discharge in the grid cell in which the observation
station is located with a factor (without value limitation) to match the observed long-term
average annual river discharge. This is mainly done to avoid error propagation to the next
downstream basin.

The calibration approach described above implicitly assumes that there is no measurement
uncertainty in the long-term average annual river discharge data used for parameter
estimation which was obtained from the Global Runoff Data Center (GRDC). A recent study
of Coxon et al. (2015), however, showed that even for presumably high-quality discharge
stations in the United Kingdom measurement uncertainty of, e.g., high-flows or low-flows
mostly ranges between 20 and 40% but may be as high as 80% in single cases. It is to be
expected that this uncertainty range holds true (or is even higher) for other discharge
observation stations as well, especially in regions where high-quality measurements are
not available. Forcing WaterGAP to a maximum deviation of £1% therefore leads to over-
justifying the accuracy of discharge observations. Furthermore, Eicker et al. (2014) and
Schumacher et al. (2016a) use WaterGAP in a calibration/data assimilation environment
including model parameter sets in an ensemble approach. Hence, it is required to include
an uncertainty range of the model parameters and/or data sets. Finally, previous analysis
has shown that the usage of CFA and CFS may lead to physically implausible (negative)
values for actual evapotranspiration for the grid-cell level, which needs to be avoided.
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The modification of the calibration routine (Caliox) now considers (optionally) a 10%
measurement uncertainty in annual observed river discharge values. The value of 10% was
chosen as an arbitrary value as Coxon et al. (2015) did not provide errors at the annual level
and assuming that uncertainties level out for yearly averages.

A3.2 Implementation

The calibration routine was modified to a four-stage scheme that is indicated by a specific
calibration status (CS):

1) The basin is sufficiently calibrated to long-term average annual observed river
discharge Qobs (99-101%) by varying y in its assigned limits only.

2) A 10% uncertainty (referring to the 90-110% range) of Qubs is assumed and is again
tested by varying y only.

3) CFA hasto be applied to match Qobs With 10% uncertainty (referring to the 90-110%
range).

4) ACFSvalueis needed to match Qops With 10% uncertainty (referring to the 90-110%
range).

For this analysis, WaterGAP 2.2b was calibrated using a homogenized combination of
WATCH Forcing Data and WATCH Forcing Data based on ERA-Interim (WFDEI_hom; see
Miller Schmied et al., 2016b). In addition, the impact of climate input uncertainty was
considered by using alternative climate input data from CRU TS 3.23, as well as CRU TS 3.23
plus GPCC v7 precipitation.

A3.3 Effect on calibration parameters

Including a 10% Qubs uncertainty (calibration status > 1) in the calibration scheme leads to
a slightly higher mean y of 3.93, compared to 3.89 (WFDEI_hom) which means that more
precipitation is kept as soil water. For 57 (61) basins, y values are smaller (larger) with Calio%
which is a result of a complex interplay of higher calibration demand of downstream basins
in cases where Qops Uncertainty is applied upstream. CFA is not required at all for 659 basins
with Caliox% (sum of CS1 and CS2 in Table A7), whereas this is the case for only 512 basins
with Calsta. In 540 basins, CFA is closer to unity with Caliox (one basin with Calsta); for 778
basins, CFA is equal in both calibration setups (thereof 512 basins with CFA = 1.0, 236 basins
with CFA = 0.5 and 30 basins with CFA = 1.5). The modified calibration approach leads to a
general reduction of CFS usage in the case of WFDEI_hom to 386 river basins (compared to
462 basins in Calsta). In 452 basins, CFS values are closer to unity for Calio%, whereas this is
the case for 12 basins and Calsta (for 855 basins, CFS values remains one among the two
calibration setups). As shown in Table A7, for 43 to 50% of the river basins, no additional
calibration parameter (CFA, CFS) is needed in Calios. Using the modified approach,
additional calibration parameters are avoided in around 14% of the river basins. The effect
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of the calibration scheme on the parameters is shown graphically in Fig. A7. Parameter
values for y are close to the 1:1 line and thus not very sensitive (except for the 9% of the
basins with changes). In contrast, CFA and CFS are strongly influenced by the assumed 10%
uncertainty.
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Fig. A7: Scatter plots of calibration parameters y (left), CFA (center) and CFS (right) for calibration considering
(Calio%) and not considering (Calsta) 10% uncertainty in observed river discharge. Blue colors for CFA and CFS
indicate basins with a value closer to unity, and red colors the opposite. Grey colors (CFA) indicate no changes
in the parameter value. Horizontal and vertical lines for CFA and CFS indicate the value of unity, whereas the
diagonal line in all three plots shows the 1:1 line.

The spatial pattern of calibration parameters is shown in Fig. A8 for the WFDEI_hom climate
input data. In the majority of river basins y is at the lower or upper limit (210 basins with y
=0.1, 675 with y = 5.0) for Calio%, whereas these numbers reduce to 199 and 665 for Calsta.
This effect results from uncertainty propagation to downstream basins, i.e., when observed
discharge in the upstream basin is increased or reduced by 10%. The differences in y as
calculated with Caliox minus Calsta are shown in the top row of Fig. A8. CFA values are
generally closer to unity with Calio% but still are at the minimum value of 0.5 for 232 basins
and at the maximum value of 1.5 for 32 basins (284 and 50 basins with Calst, respectively).
Values for CFS are also closer to unity with Calio% (see also Fig. A7). Hence, the modified
calibration scheme reduces the need for strong calibration parameters (CFA/CFS).
However, CFS values are below 0.5 in many semi-arid and arid regions which means that
WaterGAP over-estimates river discharge by at least a factor of 2.
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Fig. A8: Spatial distribution of calibration parameters y (top row), CFA (center) and CFS (bottom) for

WaterGAP 2.2b calibration forced with WFDEI_hom (left column), considering a 10% uncertainty of mean
annual observed river discharge and differences to a calibration not considering this uncertainty (right
column, calculated as Caliox minus Calst,). Reddish colors in the right column indicate higher parameter values
for Calig%. Hatched areas represent non-calibrated regions.

The effect of climate input data on calibration status is shown in Table A7. Similar to the
calibration with the homogenized WFD/WFDEI climate input data, WaterGAP 2.2b was
calibrated with CRU TS 3.23 (CRU) as well as with CRU TS 3.23 but GPCCv7 for precipitation
(CRUGPCC; except for the year 2014, when CRU precipitation was used). The number of
basins with specific calibration status varies greatly, implying a strong effect of climate
input data on calibration parameters. From the three climate input data sets investigated
here, WFDEI_hom has the smallest number of basins that require CFA and CFS.
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Table A7: Calibration status (CS see Appendix A3.2) with number of calibration basins (#) and corresponding
percentage (%) of all 1319 calibration basins of the WaterGAP 2.2b calibration forced with three climate input
data sets (homogenized WFD+WFDEI (WFDEI_hom), CRU TS 3.23 (CRU), CRU TS 3.23 but GPCCv7 for
precipitation (CRUGPCC)).

WEFDEI_hom CRU CRUGPCC
# % # % # %
475 36 399 30 394 30
184 14 165 13 183 14
274 21 326 25 356 27
386 29 429 33 386 29

A W N

A3.4 Effect on discharge seasonality, model efficiency and water balance components

Discharge seasonality is affected by the modified calibration routine in most cases where
the calibration status > 1 was assigned to the selected basins (that are used in Miller
Schmied et al., 2014). In Fig. A8, the two seasonality graphs are very close for calibration
status 1. As here the modification of the y parameter alone is sufficient to match long-term
average river discharge, differences in the graphs occur only downstream of basins where
the observed discharge was modified by 10% (e.g., in the case of the Congo). The
differences in the simulated discharge seasonality are dependent on the calibration status
and the value of the parameters CFA and CFS. In some cases, simulated river discharge
seasonality fits better to the observed ones with Caliox; in others it does not. For example,
the peak flow of the Orange River fits perfectly to the observed value, but, e.g., the peak
flow of the Rio Paraa River is significantly overestimated when the 10% uncertainty of
discharge observations is considered. For the Rhine basin, the modified calibration scheme
leads to even higher seasonal amplitude than Calsta and the observations. Hence, the choice
of the calibration scheme influences not only the parameter values but also the seasonality.
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Fig. A8: Observed and simulated discharge seasonality of WaterGAP 2.2b runs with Calyoy (blue color), Calst,

(red) and observed values (black) including a 10% variation of mean monthly values (grey) and an indicator

of calibration status (CS; see Sect. A3.2) for the large river basins that were used in Miller Schmied et al.
(2014).
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Because differences in seasonality were observed (Fig. A8), the popular Nash-Sutcliffe
model efficiency (NSE) was calculated and aggregated separately as mean values for each
calibration status (Table A8) to test whether model performance differences between the
calibration schemes exist. Note that WaterGAP is calibrated for the stations used in this
assessment but not for monthly flows. Thus, seasonal dynamics and monthly variations are
not calibrated using the discharge observations. The comparison was made in two ways.
Firstly, the observed river discharge was taken as a reference of a common way of
comparing modeling output with observations. However, as the observed river discharge
can be modified during calibration, this also leads to a problematic evaluation of the effect
of the calibration scheme itself. In order to allow for a fair comparison of NSE values,
observed monthly river discharge was increased (reduced) by 10% for Calio% in the basins
where CS is larger than 1 and vy is at the upper (lower) limit. The values in Table A8 show
only slight differences between the model results when observed river discharge is
modified accordingly to the calibration. In contrast, when the original observations were
taken as a reference, model performance decreased. Interestingly, CS 2 and 3 provide the
best median NSE values, whereas the basins where all calibration parameters are needed

show the weakest performance.

Table A8: Nash—Sutcliffe efficiency for WaterGAP 2.2b including/excluding a 10% uncertainty of observed
mean annual river discharge according to calibration status (CS). In column “Qqrig”, monthly observed river
discharge was taken from the GRDC database, whereas in column “Qumod” the monthly river discharge values
of a specific station were modified by 10% in case this was done during the calibration.

CS Calio% Calsta
Qorig Qmod Qorig
0.52 0.52 0.53
0.60 0.63 0.62
0.59 0.62 0.62
0.41 0.44 0.45
All basins  0.53 0.55 0.54

A W N -

The general calibration approach of WaterGAP varies the proportion of evapotranspiration
and runoff via the parameters y and the area correction factor (CFA Miller Schmied et al.,
2014, their eq. Al11, Sect. B1). Therefore, the actual evapotranspiration and river discharge
(where CFS is also modifying simulation results) are modified, albeit only to a minor extent
(Table A9). The slightly higher (lower) river discharge (actual evapotranspiration) in the case
of Calio% could be related to a complex interplay of calibration parameters in calibrated and
non-calibrated regions (due to regionalization of y). In calibrated (non-calibrated) regions,
actual evapotranspiration is 186 (48) km? yr! lower for Calio%s, whereas river discharge is
higher, at 186 (46) km3 yr. In both regions, y has slightly higher mean values for Calio%. As
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it is expected that higher y would lead to less runoff (discharge), and this is in contrast to
the increased discharge of Calio%, a thorough assessment of model parameter behavior was
done at the basin scale. In basins with high y values (> 4) for Calst, Y for Calio% is lower or
remain the same, irrespective of whether observed river discharge is modified by 10% or
not. In contrast, in basins with low y values (< 1) for Calsta, Y for Caliox is higher only when
observed river discharge has to be adapted by 10%. In all cases, mean CFA and CFS are
closer to 1. Hence, the overall increase of river discharge in Calio% relates to basin-specific
characteristics during the calibration. It is assumed that for non-calibrated regions basin-
specific characteristics also lead to a slight increase in river discharge for Caliox even though
mean y increases.

Table A9: Global-scale water balance components (except for those of Antarctica and Greenland) for
WaterGAP 2.2b for the two calibration schemes and 1971-2000. All units are given in km3 yr?,

Variable Calio% Calsta

Precipitation 111602 111602
River discharge* 40 088 39 855
Actual evapotranspiration 70 623 70 857
Actual use from surface water 1106 1106
Net abstraction from groundwater -123 -123
Actual water consumption 983 982
Change in total water storage -92 -93
Absolute water balance error 0 0

* computed as sum of net cell runoff

A3.5 Summary

The modified calibration routine for WaterGAP 2.2b takes a 10% uncertainty of mean
annual observed river discharge in a four-stage calibration approach into account.
Compared to a version that does not consider this uncertainty, fewer additional calibration
parameters (CFA, CFS) are required; and if they are required, mean parameter values are
closer to unity. This behavior can be seen as successful, as the y parameter (which can be
described physically) itself has a greater influence on model results and physically
implausible effects should reduce when disaggregating the additional calibration
parameters to the grid-cell level. However, calibration parameters and the need to modify
observed river discharge are strongly influenced by climate input data uncertainty.
Discharge seasonality differs in basins where the uncertainty of observed river discharge is
assumed. The Nash—Sutcliffe model efficiency is not affected significantly, and global-scale
river discharge is increased slightly when discharge uncertainty is taken into account.
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