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Abstract

Compact stars can be treated as the ultimate laboratories for testing theories of dense matter. They
are not only extremely dense objects, but they are known to be associated with strong magnetic
fields, fast rotation and, in certain cases, with very high temperatures. Here, we present several
different approaches to model numerically the signatures and properties of these stars, namely:

• The effects of strong magnetic fields on hybrid stars by using a fully general relativistic ap-
proach. We solved the coupled Maxwell-Einstein equations in a self-consistent way, taking into
consideration the anisotropy of the energy-momentum tensor due purely to the magnetic field,
magnetic field effects on equation of state and the interaction between matter and the mag-
netic field (magnetization). We showed that the effects of the magnetization and the magnetic
field on the equation of state for matter do not play an important role on global properties
of neutron stars (only the pure magnetic field contribution does). In addition, the magnetic
field breaks the spherical symmetry of stars, inducing major changes in the populated degrees
of freedom inside these objects and, potentially, converting a hybrid star into a hadronic star
over time.

• The effects of magnetic fields and rotation on the structure and composition of proto-neutron
stars. We found that the magnetic field not only deforms these stars, but also significantly
alters the number of trapped neutrinos in the stellar interior, together with the strangeness
content and temperature in each evolution stage from a hot proto-neutron star to a cold
neutron star.

• The influence of the quark-hadron phase transitions in neutron stars. In particular, previous
calculations have shown that fast rotating neutron stars, when subjected to a quark-hadron
phase transition in their interiors, could give rise to the backbending phenomenon characterized
by a spin-up era. In this work, we obtained the interesting backbending phenomenon for fast
spinning neutron stars. More importantly, we showed that a magnetic field, which is assumed
to be axisymmetric and poloidal, can also be enhanced due to the phase transition from normal
hadronic matter to quark matter on highly magnetized neutron stars. Therefore, in parallel to
the spin-up era, classes of neutron stars endowed with strong magnetic fields may go through
a ‘magnetic-up era’ in their lives.

• Finally, we were also able to calculate super-heavy white dwarfs in the presence of strong
magnetic fields. White dwarfs are the progenitors of supernova Type Ia explosions and they
are widely used as candles to show that the Universe is expanding and accelerating. However,
observations of ultraluminous supernovae have suggested that the progenitor of such an ex-
plosion should be a white dwarf with mass above the well-known Chandrasekhar limit ∼ 1.4
M�. In corroboration with other works, but by using a fully general relativistic framework, we
obtained also strongly magnetized white dwarfs with masses M ∼ 2.0 M�.
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Zusammenfassung

Alle Sterne unseres Universums sind im Laufe von mehreren Millionen Jahren einer Evolution unter-
worfen. Nachdem Sterne ihren Kernbrennstoff erschöpft haben, kollabiert ihr Kern in ihrer letzten
Phase. Abhängig von der vor dem Kollabieren vorhandenen Sternmasse entsteht ein weißer Zwerg,
ein Neutronenstern oder ein schwarzes Loch. Wie in Tabelle 1 zu erkennen, die die Beziehung zwis-
chen Masse und Endstufe des Sterns zeigt, entstehen Neutronensterne, wenn Sterne mit anfänglichen
Massen von etwa 8-30 M� bei Supernovae-Ereignissen kollabieren. Neutronensterne haben typis-
cherweise Radien von 10 km und Massen, die zwischen ein und zwei Sonnenmassen liegen. Folglich
existiert in diesen Sternen stark komprimierte ultradichte Kernmaterie und sie sind somit einzigar-
tige Objekte für die Untersuchung fundamentaler Fragen in der Physik und der Astrophysik, wie
z.B. von möglichen Phasenübergängen zu exotischer Materie und der Gravitationsphysik im starken
Feldregime. Außerdem rotieren Neutronensterne sehr schnell. Viele dieser Objekte haben auch sehr
starke Magnetfelder, die zur Emission von Strahlung führen, welche auf der Erde dann als Leucht-
turmfeuer am Himmel erkannt werden kann. Diese Eigenschaften bieten durch die Möglichkeiten der
Physik dichter Materie und den Fortschritten in der Beobachtungs-Astrophysik die einmalige Gele-
genheit, das Verhalten von Materie und elektromagnetischen Feldern unter extremen Bedingungen
zu testen und zu erforschen, was für terrestrische Experimente unmöglich ist.

Masses des Sterns [M�] Endstadium

1-8 Weißer Zerg
8-30 Neutronenstern
> 30 Schwarzes Loch

Table 1: Masse und Endstufe des Sterns.

Die vorliegende Arbeit beschäfigt sich mit der Wirkung starker Magnetfelder in den verschiedenen as-
trophysikalischen Systemen von Neutronensternen (NS), Proto-Neutronensternen (PNS) und weißen
Zwergen (WD). Das Ziel der Arbeit war, realistische mikrophysikalische nukleare Zustandsgleichun-
gen (EoS), die allgemeine Relativitätstheorie, Temperatur, magnetischen Felder und Rotation als
Komponenten einzufügen, um die Genauigkeit der Neutronensternberechnung zu verbessern und so
die möglichen Ergebnisse aus einer großen Menge an Berechnungen von physikalischen Bedingungen
und Parametern zu erhalten.

Diese Arbeit beginnt mit einer Einführung, Kapitel 1, in der die allgemeinen Eigenschaften von
Neutronensternen dargestellt werden. Zum Beispiel werden Beobachtungen in verschiedenen elek-
tromagnetischen Spektren (Radio, visuell, infrarot, Röntgenstrahlen, γ-Strahlung) verwendet, um
viele der intrinsischen Eigenschaften dieser Sterne abzuleiten. Die überwiegende Mehrheit der
Neutronensterne wird als Pulsare beobachtet, am häufigsten in der Radiofrequenz, jedoch hat
das Fermi-Gamma-Strahl-Weltraumteleskop in den letzten Jahren mehr als 100 Pulsare in Gam-
mastrahlen beobachtet. Derzeit gibt es fast 2000 entdeckte Pulsare1. Jedoch lassen sich nur
wenige Eigenschaften von Neutronensternen aus Pulsarbeobachtungen wie z.B. Massen, Rotation-
sgeschwindigkeiten, grobe Altersabschätzungen und magnetische Feldstärken ableiten. Von ihrer
Geburt in einer Supernova-Explosion unterliegen NS extremen physikalischen Bedingungen nicht nur
in Bezug auf Dichten, sondern auch bezüglich von Temperaturen, elektromagnetischen Feldern und
Rotationsfrequenzen.

In Kapitel 1 wird die Tatsache erörtert, dass die Dichte innerhalb von Neutronensternen höhere
Werte erreicht als die nukleare Sättigungsdichte. In der Tat wurden in den vergangenen Jahren

1Siehe http://www.atnf.csiro.au/research/pulsar/psrcat für Pulsar-Datenbank.
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große Anstrengungen unternommen, um die noch offene Frage nach der Zustandsgleichung für
ultradichte Kernmaterie zu untersuchen. Darüber hinaus wird in den folgenden Kapiteln 2 und 3
eine weitere wichtige Frage angesprochen: Die Auswirkungen des Magnetfeldes sowohl in der EoS
als auch in der Struktur der Neutronensterne. In diesen Kapiteln ermöglichte die Kenntnis der
mikroskopischen Theorie, die mit der Zustandsgleichung zusammenhängt, nicht nur die allgemeine
Struktur des Sterns einschließlich seiner Verformung aufgrund des Magnetfeldes und aufgrund der
Rotation zu studieren, sondern auch seine inneren Zusammensetzung einschließlich der möglichen
Quark- und Hyperonphasen im stellaren Kern zu erforschen.

Bestimmte Klassen von Neutronensternen, die als Soft Gamma Repeater (SGR) und Anomalous
X-ray Pulsars (AXPs) bekannt sind, haben Magnetfelder auf der Oberfläche in der Größenordnung
von 1015 G. Diese Objekte werden Magnetare genannt (Duncan and Thompson, 1992). Obwohl
die internen Magnetfelder von Neutronensternen nicht direkt durch Beobachtungen erkannt werden
können, prognostiziert das Virial Theorem, dass die internen Magnetfelder von hochmagnetischen
Neutronensternen im stellaren Zentrum Werte bis zu 1018 G erreichen können. Dieser Wert wird
in der Newtonschen Mechanik berechnet, indem die in dem Stern gespeicherte stellare magnetische
Energie, B2/8π × 4π/3R3, und die Gravitationsbindungsenergie, 3GM2/5R, gleichgesetzt werden.
Dies führt zu einer Magnetfeldstärke B ∼ 1, 4× 1018 (1.40 M�/M)(R/ 10 km)−2 G.

Der Ursprung starker Magnetfelder in kompakten Sternen ist noch unklar. Eine verbreitete Hy-
pothese bezieht die Fluss-Erhaltung des Vorläufer-Magnetfeldes ein. Allerdings ist diese Idee nicht
für Magnetare geeignet, da ein typischer Neutronenstern mit 1.40 M� einen Radius erfordern würde
der kleiner ist als sein sein Schwarzschild-Radius, um ein Flächenmagnetfeld in der Größenordnung
von 1015 G zu erzeugen. Eine andere Möglichkeit, die von Thompson (1993) vorgeschlagen wurde,
beschreibt einen neugeborenen Neutronenstern, der Konvektion und Differentialrotation kombiniert,
um einen Dynamo-Prozess zu erzeugen, der in der Lage ist, Felder zu generieren, die so groß wie 1015

G auf der Oberfläche des Sterns sind. Die Erwartung ist, dass ein Teil der Rotationsenergie verwen-
det wird, um die Supernova zu einem schnellen magnetischen Bremsen zu bringen. Daraus schließt
man, dass die Entstehung von Magnetaren von Supernovae begleitet wird, die eine Größenordnung
energetischer sind als normale Supernovae. Jedoch zeigte sich, dass die Explosionsenergien der
Supernova-Reste, die mit Magnetare assoziert sind, nämlich Kes 73 (AXP 1E 1841-045), CTB109
(AXP 1E2259 + 586) und N49 (SGR 0526-66), nahe der typischen Supernova-Explosionsenergie
sind. Als Ergebnis stellte sich heraus, dass Vink and Kuiper (2006) keinen Beweis fanden, dass
Magnetare aus schnell rotierenden Proto-Neutronensternen gebildet werden. Deshalb stammen sie
wahrscheinlich von stellaren Vorläufern mit hohen Magnetfeldkernen ab.

Was auch immer der Ursprung starker Magnetfelder sein mag, sie beeinflussen die Zustandsgleichung,
wie beispielsweise aufgrund der Landau-Quantisierung der Energieniveaus der geladenen Teilchen und
der Wirkung des anomalen magnetischen Momentes geladener und ungeladener Teilchen. Außer-
dem beeinflussen Magnetfelder die Struktur der Raum-Zeit, da Magnetfelder nun eine Quelle für
das Gravitationsfeld durch den Maxwell-Energie-Momentum-Tensor sind. Zusätzlich beeinflussen
sie die Struktur von Neutronensternen durch die Lorentzkraft, die mit den ein Magnetfeld erzeu-
genden makroskopischen Strömen verbunden ist. Der Einschluss des Magnetfeldes führt zu einer
Modifikation des Energieimpuls-Tensors und durchbricht dadurch die sphärische Symmetrie des
Sterns. Infolgedessen sind magnetisierte Sterne anisotrop und erfordern somit eine allgemeine Rela-
tivitätsbehandlung, die über die Lösung der Struktur der sphärisch symmetrischen Sterne durch die
Tolman-Oppenheimer-Volkoff (TOV) Gleichungen (Tolman, 1939; Oppenheimer and Volkoff, 1939)
hinausgeht. Dies geschieht in Kapitel 2.

Es ist seit langem bekannt, dass die Anwesenheit starker Magnetfelder die Landau-Quantisierung der
Energieniveaus der geladenen Teilchen erzeugt. Darüber hinaus bewirken Landau-Quantisierungseffekte
auf die EoS eine Anisotropie in den Energie-Impuls-Tensorkomponenten. Man würde also erwarten,
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dass die EoS sowie Beobachtungsgrößen, wie die maximale Masse, durch starke Magnetfelder
beeinträchtigt werden. Frühere Modelle hochmagnetisierter Neutronensterne, die Magnetfeldeffekte
in der EoS enthielten, errechneten die entsprechenden Masse-Radius-Relation unter Verwendung
isotroper TOV Gleichungen. Es ist jedoch zu beachten, dass bei starken Magnetfeldern, bei denen
die Landau-Quantisierungseffekte beachtet werden sollen, die Abweichungen von der sphärischen
Symmetrie signifikant sind.

In diesem Sinne wird im Kapitel 3, der Einschluss von Magnetfeldeffekten sowohl in der EoS als auch
in der Struktur des Sterns durchgeführt. Die Berechnung der stellaren makroskopischen Struktur
beinhaltet das Lösen der gekoppelten Einstein-Maxwell-Gleichungen unter Verwendung einer Metrik,
die in der Lage ist, deformierte Objekte zu beschreiben, d.h. eine zweidimensionale Metrik, die
sowohl radiale als auch polare Winkelkoordinaten berücksichtigt. Vereinfachte Lösungen für das
Problem wurden von Mallick and Schramm (2014) vorgeschlagen, von denen eine Störung der Metrik
durchgeführt wurde. Auf der anderen Seite wurde ein Formalismus mit vollständigen numerischen
Lösungen von Bonazzola et al. (1993) entwickelt und in der LORENE C++ Bibliothek implementiert.
Er berücksichtigt sowohl Drehung als auch Magnetfelder in der stellaren Strukturberechnung von
Neutronensternen. Dieser Formalismus wurde zunächst auf eine Einparameter-Zustandsgleichung
angewendet. Vor kurzem wurde eine selbstkonsistente Berechnung mit Magnetfeldern sowohl in der
Zustandsgleichung als auch in der stellaren Struktur implementiert, um Quarksterne durch Chatterjee
et al. (2015) und Hybridsterne von Franzon et al. (2016b) zu beschreiben.

Im Kapitel 3 nutzten wir die Lorene C++ library für die numerische Relativitätstheorie, um die Ef-
fekte starker Magnetfelder auf Hybridsterne mit Hilfe eines vollständigen Relativitätsansatzes zu un-
tersuchen. Außerdem werden die gekoppelten Maxwell-Einstein Gleichungen unter Berücksichtigung
der Anisotropie des Energieimpuls-Tensors (infolge des Magnetfeldes), der Magnetfeldeffekte auf die
Zustandsgleichung und der Wechselwirkung zwischen Materie und dem Magnetfeld (Magnetisierung)
gelöst. Nach unseren Ergebnissen wird die Neutronensternstruktur, wie z.B. ihre Masse-Radius-
Relation, nicht drastisch durch die Einbeziehung des Magnetfeldes in der EoS und der Magnetisierung
modifiziert. Genauer gesagt erhöht die Wirkung der Einbeziehung der Magnetfeldabhängigkeit oder
der Magnetisierung die maximale Masse nicht, im Gegensatz zu dem, was in früheren Studien be-
hauptet wurde (Paulucci et al., 2011; Rabhi et al., 2009; Dexheimer et al., 2013a). Andererseits
bewirkt das Magnetfeld, dass die zentrale Dichte in diesen Objekten reduziert wird, was wesentliche
Änderungen in der Teilchenzusammensetzung hervorruft und potentiell einen Hybridstern in einen
hadronischen Stern umwandelt.

Das nächste Kapitel, Kapitel 4, behandelt stationäre Konfigurationen von stark magnetisierten Proto-
Neutronensternen. PNS sind neugeborene Kompaktsterne unmittelbar nach dem Gravitationskollaps
des Kerns massiver Sterne, die sich abkühlen und kontrahieren, um Neutronensterne zu werden. Die
Entropie pro Baryon in PNS liegt in der Größenordnung von 1 oder 2 und macht aus ihnen daher sehr
heiße Sterne, deren Temperatur T∼ 50 MeV erreichen kann. Der Zustand in diesen Sternen ist so
extrem, dass Neutrinos auf dynamischen Zeitskalen gefangen werden können. Die Zusammensetzung
und die Struktur von PNS sind stark mit der Anzahl der gefangenen Neutrinos verbunden. Da
das chemische Potential der Neutrinos im Laufe der Zeit im Absolutwert abnimmt, verändert dies
das chemische Gleichgewicht und die Zusammensetzung des Sterns, was zu einem Einfluss auf die
Struktur und Stabilität der Sterne führt. In diesem Zusammenhang hat das Magnetfeld auch einen
großen Einfluss, nicht nur auf die Struktur der PNS, sondern auch auf ihre Teilchenpopulation.

Interessante Ergebnisse des Kapitels 4 sind die Veränderung der Zusammensetzung des Sterns auf-
grund des Magnetfeldes, die Auflösung der sich im Stern befindenden Hyperonen, die Zunahme der
Menge an Neutrinos und die Seltsamkeit am stellaren Kern, welche alle durch Magnetfeldzerfall
induziert werden. Wie mann sehen wird, nimmt mit abnehmendem Magnetfeld die Dichte inner-
halb des Sterns zu, worauf eine Zunahme der Temperatur im stellaren Zentrum folgt. Insbesondere
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nimmt unter der Annahme, dass das Magnetfeld über die Zeit abklingt, die Temperatur in der
Äquatorialebene im inneren Kern zu, während sie in dem äußeren Kern abnimmt. Dies wird durch
die Lorentzkraft verursacht, die ihre Richtung in der Äquatorebene umkehrt.

Abgesehen von Magnetfeldern, Rotations- und Temperatureffekten, kann auch eine Quark-Hadron-
Phasenumwandlung mehrere interessante Phänomene verursachen und die Neutronensternstruktur
stark beeinflussen. Dies wird im Kapitel 5 besprochen, wobei in schnell rotierenden isolierten Pulsaren
ein Quarkdeconfinement eine große Auswirkung auf den sogenannten Bremsindex haben kann, der
während der Spin-Down-Phase leicht messbar sein sollte. Die Umwandlung von hadronischer zu
Quarkmaterie im Kern eines rotierenden Neutronensterns verändert sein Trägheitsmoment. Daher
wird die Zeitspanne, über die die Umwandlung stattfindet, in den Spin-Down Charakteristiken der
Pulsare angezeigt.

Der Wechsel von einer hadronischen zu einer Deconfinementphase im Zentrum von Neutronensternen
durch einen Phasenübergang erster Ordnung führt zu einer drastischen Erweichung der Zustands-
gleichung. Infolgedessen verringern Sterne mit festen Baryonmassen ihre Gravitationsmassen (und
der zentrale Druck steigt) während der Evolutionssequenz. Wenn die Erweichung der EoS sehr aus-
geprägt ist, führt dies zu einer plötzlichen Kontraktion des Neutronensterns bei einer bestimmten
Umdrehungsgeschwindigkeit, die bei der Evolution von schnell rotierenden und isolierten Pulsaren
durch die Spin-up-Ära, auch Backbending Phänomen genannt, beobachtet werden kann (Glenden-
ning et al., 1997). In Kapitel 5 reproduzieren wir das Backbending Phänomen für schnell drehende
Neutronensterne. Aber noch wichtiger ist, dass gezeigt werden kann, dass das Magnetfeld, das als
axi-symmetrisch und poloidal angenommen wurde, auch durch den Phasenübergang von normaler
hadronischer Materie zu Quark-Materie während der Evolution von einem hochmagnetisierten Neu-
tronenstern zu einem nicht-magnetisierten erhöht wird. Daher können parallel zur Spin-up-Ära einige
Klassen von Neutronensternen, die mit starken Magnetfeldern ausgestattet sind, eine ‘Magnetic-up-
Ära’ in ihrem Leben durchlaufen.

Das nächste Kapitel, Kapitel 6, stellt ein weiteres Ergebnis dieser Forschung dar und zeigt, dass es
möglich ist, super-schwere weiße Zwerge im Einfluss von starken Magnetfeldern zu berechnen. Dieses
wichtige Problem ist interessant und aktuell, da solche Sterne die Chandrasekhar-Massengrenze
überschreiten und zur Erforschung des superluminosen Typ-Ia-Supernova (SNIa) beitragen könen.
Wenn sich die Masse des weißen Zwergs, der in einem binären System Materie einfängt, der begren-
zenden Masse nähert, erfährt der Stern eine schnelle Kontraktion. Eine erhöhte Temperatur während
dieses Kollaps kann eine unkontrollierte thermonukleare Reaktion auslösen, die zu einer Supernova-
Explosion des Typs Ia führt. Die Standardbedingungen, die zur SNIa führen, erlauben diesen Sternen,
als Standardkerzen in der Kosmologie verwendet zu werden und haben zur Entdeckung der beschle-
unigten Expansion des Universums geführt. Jedoch wurden durch eine Reihe neuer Beobachtungen
mehrere superluminose SNIa entdeckt, siehe z.B. (Taubenberger et al., 2011). Auf der Grund-
lage dieser Beobachtungen wurde vorgeschlagen, dass die Progenitormasse solcher Explosionen (SN
2006gz, SN 2007if, SN 2009dc, SN 2003fg) die Chandrasekhar-Massengrenze von MCh ∼ 1.4 M�
deutlich übersteigt. Solch eine hohe Masse eines weißen Zwergs kann aus seiner schnellen Rotation
oder einer vorübergehenden hohen Massenkonfiguration in der Fusion von zwei schweren weißen Zw-
ergen gebildet werden (Moll et al., 2014). Darüber hinaus wurde auch vorgeschlagen, dass ein starkes
Magnetfeld für die Stabilität der zusätzlichen Masse (Das and Mukhopadhyay, 2013) verantwortlich
sein kann.

Im Kapitel 6 haben wir stationäre Gleichgewichte von weißen Zwergsternen, die ein starkes poloidales
Magnetfeld enthielten, berechnet und wir stellten die Modifikation der Mass-Radius-Relation der
weißen Zwerge dar, welche durch das Magnetfeld verursacht wurde. Wir fanden, dass eine maximale
weiße Zwergmasse von etwa 2.00 M� unterstützt werden kann, wenn das innere Feld so stark ist
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wie ungefähr 1014 G. Diese Masse ist über 40 Prozent größer als die traditionelle Chandrasekhar-
Grenze. Es soll erwähnt werden, dass die Möglichkeit von Super-Chandrasekhar stark magnetisierten
WDs nicht aus aktuellen theoretischen Überlegungen vollständig ausgeschlossen oder bestätigt wer-
den kann. Auch müssen noch wichtige Fragenstellungen bezüglich einer dynamischen Stabilität in
einer Studie beantwortetet werden, bevor feste Schlussfolgerungen über die Existenz solcher Sterne
gezogen werden können.

Schließlich liefert das Magnetfeld einen anisotropen Druck, was zum Bruch der sphärischen Sym-
metrie der Sterne führt. In diesem Fall kann man das Quadrupolmoment der Massenverteilung
berechnen. Mit dieser Größe präsentieren wir in Kapitel 5 und 6 eine Schätzung der Gravitation-
swelle, die von rotierenden und/oder magnetisierten Neutronensternen und weißen Zwergen emittiert
wird. Im Kapitel 5 wird gezeigt, dass der Neutronenstern vor dem vollständigen Abfallen des Mag-
netfeldes eine Periode schnellerer Verringerung der Emission der Gravitationswellen aufgrund des
Quark-Hadron-Phasenübergangs durchläuft. Im Kapitel 6, wird angesichts der neuen Beobachtung
und Messung des rotierenden und hochmagnetisierten weißen Zwergs AR Scorpii (Marsh et al.,
2016), dessen Masse im Bereich von 0.81M� < Mwd ≤ 1.29M� liegt, gezeigt, dass AR Scorpii,
wie auch andere potentielle weiße Zwerge, nachweisbare Gravitationswellen mit Amplituden, die in
der Bandbreite der nächsten diskutierten Generation von Weltraum-basierten GW-Detektoren liegen,
erzeugen könnten.

Zusammenfassend war ein großer Fortschritt dieser Arbeit in Bezug auf Neutronensterne, die Lorentzkraft
selbstkonsistent zu berechnen, indem die Gleichgewichtsgleichungen für Magnet- und Gravitations-
felder gelöst werden. Wir berücksichtigten die stellaren Verformungen durch Anisotropien, die durch
Magnetfelder induziert wurden, und wir haben gezeigt, dass sowohl die Landau-Quantisierung als
auch die Magnetisierung die Neutronensternstruktur nicht wesentlich verändern (Kapitel 3). Ander-
erseits modifiziert der Einschluss von Magnetfeldern die Teilchenzusammensetzung von Neutronen-
und Proto-Neutronensternen. Wie in Kapitel 3 und 4 besprochen, könnte dies das Abkühlverhalten
des Sterns beeinträchtigen, da es stark von der Partikelzusammensetzung des Objekts abhängt, die
wiederum die Neutrino-Emissionskanäle bestimmt. Der gleiche Formalismus und der mathematische
Aufbau wurde im Kontext eines starken Quark-Hadron-Phasenübergangs im Kapitel 5 verwendet. In
dem den weißen Zwerg behandelden Kapitel 6 wurde die erste relativistische Lösung, die auf solche
Systeme angewendet wurde, beschrieben. Dies ist darauf zurückzuführen, dass hochmagnetisierte
Super-Chandrasekhar weiße Zwerge erst nach 2012 erforscht wurden. Das primäre Ziel dahinter war
die Erklärung eigenartiger, stark leuchtender Typ-Ia-Supernovae. Dies wird uns zweifellos helfen,
das wichtige Problem der besonderen superluminosen Ia-Supernovae zu verstehen und zu erhellen.
Schließlich werden im Kapitel 7 die Ergebnisse dieser Arbeit zusammengefasst und diskutiert. Außer-
dem werden künftige Arbeitsideen vorgestellt, die hilfreich sein können, diese Berechnungen weiter
zu verfeinern.
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Chapter 1

Introduction

Neutron stars (NS) are truly fascinating objects. They are formed in catastrophic astrophysical
events such as supernova explosions. It is also in these events that other forms of compac objects,
as white dwarfs (WD) or black holes (BH), can be created. In a few seconds, these explosions
release the brightness of millions of suns. It is not surprising that such a phenomenon has been
observed since ancient times. For example, the neutron star that formed in the Crab Nebula was
observed in 1968 by Hewish et al. (1968). However, the creation of the Crab Nebula corresponds
to a supernova recorded by Chinese astronomers in AD 1054. Also considered the densest stars
known, neutron stars have about the same mass as the Sun (1 solar mass M� = 1, 989× 1030 kg),
but distributed in a radius of about 10 km. As result, these stars can harbor compressed ultra-dense
nuclear matter in their interiors and provide unique sites for investigating fundamental questions
in physics and astrophysics, including the influence of very fast spin rotation, strong magnetic
fields, properties of nuclear force at high densities, possible phase transitions to exotic matter, and,
of course, gravitational physics in the strong-field regime. Neutron stars are usually observed as
pulsars, which are rotating magnetized neutron stars that produce periodic pulses of electromagnetic
radiation, primarily at radio wavelengths. If these beams point towards Earth, the star becomes
detectable as a pulsating source. Therefore, pulsars can be considered the lighthouses of the sky
(Figs. 1.1 and 1.2). These features, together with the cooperation between dense matter physics
and progress in observational astrophysics, make these stars one of the most and sometimes the
only suitable environment to study the behavior of matter and electromagnetic fields under extreme
conditions.

Neutron stars are distinguished by their microscopic composition made up of nucleons, hyperons and
even quarks. At high pressure, nuclear matter should undergo a phase transition to quark matter.
As a result, hybrid stars (stars with quarks in their cores surrounded by an outer layer of nuclear
matter) can also be formed. Neutron stars can be isolated sources or belong to binary systems where
the companion is usually a lower density star. They have a typical density of ρ ∼ 1014−15 g/cm3 and
are born with high temperatures of the order of T ∼ 1011 K (T ∼ 10 MeV). During the evolution,
temperatures drop to values of keV. At this point, these stars can be considered cold neutron stars,
since the temperature is much smaller than the chemical potential of the particles in the stellar
interior, T� µ. As a consequence, T = 0 is a good approximation while describing neutron stars.
However, as we will see in Chapter 4, this approximation is not valid for proto-neutron stars (PNS),
in which the entropy per baryon is of the order of 1 or 2, making them, therefore, very hot stars with
temperature up to 50 MeV in the stellar center.

One of the first investigations of the structure and the nature of dense stars was proposed by Landau
(1932). The star density would be so high that the nuclei would merge. In addition, in this same
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2 Chapter 1 Introduction

Figure 1.1: Schematic view of a pulsar.
The sphere in the middle represents the
neutron star, the magneta curves are the
magnetic field lines, the yellow cones rep-
resent the emission beams and the black
line represents the axis on which the star

rotates.

Figure 1.2: Optical and X-ray im-
age of the Crab Nebula as measured by
Chandra X-ray Observatory, showing
synchrotron emission in the surround-
ing pulsar wind nebula, powered by in-
jection of magnetic fields and particles

from the central pulsar.

work, it was proposed the existence of a mixed phase separating two distinguished phases, one that
merged and formed a condensated stage and the other one composed of purely nuclei. After the
discovery of the neutron by Chadwick (1932), it was suggested that neutron stars could be the end
point of a supernova evolution (Baade and Zwicky, 1934). Although it is beyond the scope of this
work to study supernovae events, we investigated properties of NS’s and also WD’s (Chapter 6),
which are intrinsically related to such violent explosions. One example is the high angular velocity
of pulsars. According to current observations, the fastest pulsar known, PSR J1748-2446ad, was
detected by Hessels et al. (2006), and it has an incredibly rotation frequency of 716 Hz.

At present, it is commonly accepted that the huge range of densities inside NS’s can be naturally
divided into several regions, as shown in Fig. 1.3, where different theoretical predictions for neutron
star matter are depicted. Typically, the neutron star structure can be divided into an atmosphere,
an outer crust, an inner crust and a core. The outermost part is the atmosphere, which is a layer
of plasma with a few millimeters, where most of the observed radiation is formed and emitted.
With approximately 1 km in thickness, the crust region (inner+outer crust) of neutron stars has an
equation of state (EoS) relatively well-known (Chamel and Haensel, 2008; Lattimer and Prakash,
2001). The EoS describes the relation between the pressure and the energy density of the matter.
The pressure can also depends on other parameters, as the proton fraction and the entropy per
baryon, as we will see in Chapter 4. In general, the composition, the structure and the equation of
state of the outer crust are determined by finding the ground state of cold ionic matter. In other
words, this corresponds to minimizing the Gibbs energy per nucleon at a given pressure. In this case,
one nucleus occupies one neutral unit Winger-Seitz cell which, together with the nucleus and the
electrons, contributes also to the total energy and pressure of the system.

The inner crust of neutron stars begins when neutrons start to drip out of the nuclei at densities of
about ρdrip ∼ 4.3× 1011 g/cm3. From this value to the densities at the crust-core transition point,
one has very neutron rich nuclei immersed in a gas of neutrons. In this case, the equation of state
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Figure 1.3: Possible internal composition of neutron stars. Illustration created by the astro-
physicist Fridolin Weber (http://www.physics.sdsu.edu/fweber).

is usually obtained by many-body techniques such as Hartree-Fock, Thomas Fermi approximation,
and the Compressible Liquid Drop Model.

The core is the region where the matter reachs densities significantly larger than the normal nuclear
density ρ0 ∼ 2.4× 1014 g/cm3. For ρ > ρ0, the EoS in the core is poorly understood. The higher the
density, the higher the uncertainty in the EoS’s, which are derived using different theories of dense
matter and different methods of solution. Typically, the core is composed of electrons, protons
and neutrons forming a relativistic fluid. It is also in the core that exotic degrees of freedom as
hyperons (Glendenning, 1987; Vidaña, 2013; Gomes et al., 2015b), quark matter (Franzon et al.,
2012; Weber, 1999a; Baldo, 2004; Alford et al., 2007) and superconducting phases might appear
inside these objects (Baldo et al., 2003; Kaplan and Reddy, 2002; Lugones and Horvath, 2003).
In this thesis, the stellar core of neutron stars are modeled in Chapter 3 by using a chiral SU(3)
EoS containing nucleons, hyperons and quarks. In Chapter 4, the same model (without quarks)
is employed to calculate the structure of hot PNS’s. In Chapter 5, a different equation of state
composed of two phases, one containing nucleons and one containing quarks was used to investigate
the role played by a quark-hadron phase transition in neutron stars. Note that the results that we
will show here depend quantitatively on the equation of state used to describe the stellar interior and
different EoS’s might result in stronger or weaker effects than those reported in this thesis. However,
our focus is on the qualitative effects of magnetic fields and rotation on the global properties of stars
and any other equation of state could be easily tested within this approach.

Fig. 1.4 shows the predictions for the stellar gravitational mass M (in units of solar mass) and its
radius R (in km) for a variety of EoS models using both exotic (this includes hyperons, quarks, as well
as meson condensates) and non-exotic cores (Demorest et al., 2010). The diagram in Fig. 1.4 is also
referred in the literature to as mass-radius relation or mass-radius diagram. The sequence of stars,
which are labeled by different EoS names, are obtained by solving the Tolman-Oppenheimer-Volkoff
equations (TOV) for the structure of spherically symmetric stars in static gravitational equilibrium
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Figure 1.4: Mass-radius diagram for neutron stars assuming different equations of state. The
horizontal bars correspond to the mass of the three most massive pulsars observed (Demorest
et al., 2010), (Antoniadis et al., 2013) and (Antoniadis, 2014). Equations of state that predict

maximum masses lower than the largest measured NS masses must be ruled out.

(Tolman, 1939; Oppenheimer and Volkoff, 1939). The TOV equations are given by:

dP

dr
= −GE(r)M(r)

c2r2

[
1 +

P(r)

E(r)

] [
1 +

4πr3P(r)

M(r)c2

] [
1− 2GM(r)

c2r

]−1
, (1.1)

dM(r)

dr
= 4πr2E(r), (1.2)

with G Newton’s gravitational constant, P the pressure, E the corresponding energy density, M(r)
the total mass inside the sphere of radius r and c is the speed of light.

The Eqs. (1.1) and (1.2) show the balance between the gravitational force and the pressure that act
on shell with thickness dr and mass dM(r). To be able solve them, one needs to know the energy
density in terms of the pressure. This relation is the equation of state, P = P(E), for the matter
making up the star. This is the reason behind so much effort to developing an appropriate equation
of state for matter in neutron stars, which do need to satisfy the constraints obtained from the mea-
surement of massive neutron stars by Demorest (Demorest et al., 2010) and Antoniadis (Antoniadis
et al., 2013), with masses of (1.97± 0.04) M�, labeled by PSR J1614-2230, and (2.01± 0.04) M�,
labeled by PSR J03487+0432, respectively. Although it is possible to model the stellar interior
with different internal compositions, the detection of these high mass pulsars constrain many of the
proposed EoS’s and excludes the ones that do not explain high masses. In addition, the EoS must
satisfy theoretical limits.

The top left regions in Fig. 1.4 are a set of fundamental constraints which are independent of the de-
tailed physical properties of neutron matter. First, we have the Schwarzschild criterion (’black hole’)
in which spherical stars do not collapse to a black hole for R > 2GM/c2. Second, the EoS is causal
(’causality limit’), i.e., the sound velocity, cs, does not exceed the speed of light c2s := dP/dE ≤ c2.
This, together with the TOV equations, gives the constrain R > 2.9GM/c2.

According to Eq. (1.1), the pressure inside stars decreases monotonically with the radius, since the
pressure gradient is negative. As a consequence, the pressure is maximum at the stellar center and
goes to zero at the surface. The TOV can be numerically integrated from the origin (r = 0), with
the initial conditions M(0) = 0 and E(0) = Ec (energy density at stellar center), to the star’s surface
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where P(R)=0, with R being the stellar radius. From Eq. (1.2), there is a unique relation between
Ec and the mass of stars. Therefore, each equation of state in Fig. 1.4 provides a family of stars
which are parametrized by Ec, whose maximum value is reached at the maximum stellar mass. We
shall have more to say on this matter in the next chapters, where we will build stellar sequences by
changing the central enthalpy of stars and without making the assumption of spherical symmetry
and zero angular velocities (i.e., a static spacetime).

From Fig. 1.4, the lowest maximum mass obtained is 1.4 M�, predicted by the model GS1 (Glen-
denning and Schaffner-Bielich, 1999). The other models predict masses above this value. According
to strange quark matter (SQM) models (Prakash et al., 1995), the only one with quarks, the mass
increases as the radius increases up to the maximum value of the mass. This is the case because
quarks are incompressible and the stellar mass scales with the stellar volume, in other words, M ∝ R3.
On the other hand, the greater the mass, the smaller the radius for nuclear matter EoS’s.

In the present work, we have also considered the usual hypothesis of charge neutrality and beta
equilibrium inside neutron stars. In the next section, we will briefly describe these features.

1.1 Charge neutrality and chemical equilibrium inside neutron stars

Neutron stars in equilibrium are electrically neutral. Let R, M and Zliq be the radius, the mass and
the net charge of a neutron star. In addition, the star is composed of A baryons of mass m. Due to
the gravitational binding energy, one expects M < mA. If we bring a proton of charge e and mass
m from infinity to the stellar surface, the equilibrium configuration of the star is given by:

1

4πε0

Zliqe2

R2
=

GMm

R2
<

G(Am)m

R2
, (1.3)

which gives us the net charge per nucleon in terms of fundamental constants, namely,

Zliq

A
<

4πε0Gm2

e2
,

Zliq

A
< 10−36. (1.4)

As a result, the net charge per nucleon is practically zero inside neutron stars. We stress that this
condition is global, not local. Thereby, there might exist regions in the star where the charge density
is not zero.

Chemical reactions as
n→ p + e− + ν̄e, (1.5)

take place in the interior of the star up to the point when the amount of each constituent (in this
case n, p, e− and ν̄e) remain unchanged. At this point, the system has reached chemical equilibrium,
also referred to as beta-equilibrium (in the case of Eq. (1.5)). In reallity, one assumes stars populated
by more complex degrees of freedom, as for example, the whole baryonic octet, quarks, electrons
and muons, but charge neutrallity and chemical equilibrium are necessary conditions to obtain the
two most basic properties of a neutron star, i.e., its radius and its mass.
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1.2 The stellar mass

The determination of neutron star masses is intriguing, both from the theoretical side and the obser-
vation one. Currently, only a few aspects of neutron stars can be inferred from pulsar observations,
such as masses, spin rates, rough ages, and magnetic field strengths. The first estimate of the
NS mass was carried out by Oppenheimer and Volkoff (1939), where a simple EoS of a relativistic
neutron gas was employed. In this case, the mass for neutron stars was estimated to be 0.7 M�.
On the other hand, based on the TOV equations and the causality principle, it was established that
NS’s with ∼ 10 km radius can not exceed ∼ 3.0 M� (Rhoades Jr and Ruffini, 1974).

The measurement of neutron star masses can only be done for neutron stars in binary systems. In
fact, after the discovery of the first binary radio pulsar (Hulse and Taylor pulsar), it became clear
that the measurement of relativistic orbital effects allow extremely precise mass estimates. In these
systems, Keplerian parameters which are related to the pulsar and companion masses can be very
precisely measured by pulse timing techniques (Manchester and Taylor, 1977).

Fig. 1.5 depicts the measured neutron star masses, with an average mass of the order of 1.34 M�
(Lattimer, 2013). This value can be used to make a simple estimate of the radius of a neutron star
that rotates with a period of P ∼ 1 ms (see next section), assuming that a point at its equator is
in equilibrium, i.e., the gravitational and centrifugal acceleration cancel each other. Based on this,
the stellar radius is given by:

R =

(
GMP2

4π2

) 1
3

, (1.6)

R ∼ 15 km, (1.7)

with G being the Newton gravitational constant and M the mass of the star. With such a small
radius, these stars are clearly very dense, and one can estimate the average density to be:

ρ ' 3M

4πR3
' 1.5× 1014 g/cm3, (1.8)

while the nuclear matter density at saturation is ρ0 ' 2.4× 1014 g/cm3. The pressure in the interior
of one star decreases monotonically with the radius, as well the density, whose value can be, therefore,
higher than the average value obtained in Eq. (1.8). In other words, the density at the stellar center
easily can reach values higher than a couple of times ρ0.

1.3 Rotation

Pulsars rotate extremely fast, which is related to their formation. As the star’s core collapses, its
rotation rate increases as a result of conservation of angular momentum, hence, neutron stars rotate
up to several hundred times per second. In the case of millisecond pulsars, they are thought to
achieve such high speeds because they are gravitationally bound in binary system with another star.
During part of their life, matter flows from the companion star to the pulsar. Over time, the impact
of the accreated matter spins up the pulsar’s rotation.

It makes sense to separate pulsars into two groups: milliseconds and canonical ones. They differ
by the magnetic field strength (see Fig. 1.7), age and rotation period. In Fig. 1.6, we show the
distribution of pulsars with respect to rotation period. One sees that their majority has periods ∼
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Figure 1.5: Measured neutron star masses. Picture taken from Lattimer (2013), updated in
April 2016. Different colors represent different systems (NS’s in a binary system with a main
sequence, a white dwarf or another neutron star) where one can measure neutron star masses.
Note that there are reported NS masses, as for example, the pulsar PSR B1957+20, that may
reach 2.40 ± 0.12 M� (Van Kerkwijk et al., 2011). However, in contrast to the considered
most massive pulsars (PSR J1614-2230 and PRS J038+0432), the reliability of this value is

questioned.

1 s (logP ∼ 0). These are denominated canonical. The other group has rotation period up to P ∼
0.001 s (logP ∼ -3) and are, therefore, denominated millisencond pulsars.

It is important to remark that the first evidence of a pulsar was provided by the first observation
of a rapidly pulsating radio source by Hewish et al. (1968), with a rotation period of P ∼ 1.3 s.
Pulsars have periods extremely short and stable as, for example, the pulsar PRS 1937+214 with
P = 0.00155780644887275 s. These pulses are usually detected in radio frequency, that is why
they are named, therefore, with the letters PRS (Pulsating Radio Source), followed by their right
ascension and degree of declination.

Over time, many hypotheses were proposed to explain the origin of the first observed pulsating radio
source e.g. models of pulsating white dwarfs, eclipsing and oscillating sources, but they were all
ruled out. The correct explanation involved a rotating magnetized neutron star, whose rotation
and magnetic axis are misaligned. This model was proposed independently by Pacini (1968) and
Gold (1975). Thenceforth, the theory of pulsars developed fast and the discovery of the pulsar PSR
B0531+21 (P ∼ 30 ms) in the Crab nebula (Staelin and Reifenstein, 1968) supported even more
the idea of pulsars as rotating and magnetized neutron stars. Today, we understand that many
astrophysical phenomena cannot be explained without neutron stars.
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Figure 1.6: Histogram showing the distribution of pulsar spin periods, in seconds, of all known
pulsars. Figure taken from Konar (2010).

We described above the basics properties of neutron stars. However, in order to comprehend their
physical processes, it is crucial to understand other component: the magnetic field.

1.4 Magnetic fields

A useful tool to study the evolution of pulsars is the P− Ṗ diagram as shown in Fig. 1.7, where P
is the star period and Ṗ is the (time) period derivative. Note that the pulsars are not uniformally
distributed on Fig. 1.7, but in groups that have different evolution interpretations according to
the region occupied on the diagram. Diagonal lines in P− Ṗ diagram imply fundamentally different
surface magnetic field strengths (in units of Gauss, G) and ages for each sub-group of the population.

Magnetic fields on stellar surfaces can be estimated from observations of star’s period and period
derivative. One considers a magnetic dipole which rotates and emits electromagnetic radiation. As a
consequence, the star loses energy and spins down. In this case, if we assume a rotating magnetized
sphere, the total energy loss of the star can be expressed in terms of the time derivative of the
radiated energy as (Shapiro and Teukolsky, 2008):

dE

dt
= −2

3
R6BΩ4 sin2 α, (1.9)

which, as in Classical Electrodynamics, represents the rate of energy emitted by a rotating magnetic
dipole field. In Eq. (1.9), R is the radial coordinate of a surface point with the surface magnetic
field strength B, Ω is the rotational frequency of the star, and α is the angle of inclination between
the magnetic field and the axis of rotation. Substituting the kinetic energy of a rotating body,

E =
1

2
IΩ2, (1.10)
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Figure 1.7: P− Ṗ diagram for binary pulsar (black circles with dots in it), rotation pow-
ered pulsars (black dots), Anomalous X-ray Pulsars (blue stars), Soft Gamma Repeaters (green
crosses), isolated neutron stars (magenta squares), central compac objects (blue dot) and rotat-
ing radio transient (red triangle). Contours of constant inferred surface magnetic field strength

and pulsar age are drawn as diagonal dashed lines. See Kaspi (2010) for details.

with I being the moment of inertia of the star, the surface magnetic field strength (at the pole) in
terms of P(= 2π/Ω) and Ṗ reads:

B =

√
3I

8π2R6 sin2 α
PṖ. (1.11)

Note that the above expression is obtained under a few assumptions. First, the moment of inertia
of the star is constant (in Chapter 5, we will show that the moment of inertia depends both on the
rotation rate and on the magnetic field strength). Second, although the exact mechanism of the
spin-down is a question of debate, the commonly accepted view is that it arises through emission
of magnetic dipole radiation (Eq. 1.9), but other processes could also be considered, including the
emission of gravitational radiation and relativistic particles (pulsar wind).

We can use Eq. (1.11) to estimate the surface magnetic field of stars. For example, the Crab
pulsar has an observed period of P ∼ 0.033 s and a period derivative of Ṗ ∼ 4× 10−13 s/s, with
an experimental mass of ∼ 1.40 M� and a radius of about 10 km. Taking sinα = 1 (maximum
value), which represents a perpendicular rotator, according to Eq. (1.11), the strength of the surface
magnetic field at the pole is B ∼ 4× 1012 G. Moreover, one defines a characteristic age of the star
as τc = P/2Ṗ. For example, the isolated radio pulsars (black dots) in Fig. 1.7 are concentrated in
the region with P = 0.2− 2 s and Ṗ in the range 10−16 − 10−13 s/s. Also, based on the dipole
model, these stars have magnetic fields of the order 1010 − 1013 G and a lifetime as a radio source
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of a few 107 yr (it corresponds to the 10 Myr diagonal line in Fig. 1.7). A similar argument provides
a magnetic field of 1014 − 1015 G for Soft Gamma Repeaters (SGR) (green crosses in Fig. 1.7)
and Anomalous X-ray Pulsars (AXPs) (blue stars in Fig. 1.7). To complete the star zoo, we have
the population of binary pulsars plotted in black circles (with dots in it), which clearly indicate a
connection to the rapidly spinning millisecond pulsars. Also plotted are the mysterious rotating radio
transients (RRATs) and the compact central objects (CCOs). The dashed lines in Fig. 1.7 represent
the surface magnetic field strength and the age of the star.

Soft Gamma Repeaters and Anomalous X-ray Pulsars (upper left corner in Fig. 1.7) are the rel-
evant stars for this work. Although the internal magnetic fields of these stars cannot be directly
constrained by observations, according to Virial theorem arguments, which give an upper estimate
for the magnetic inside neutron stars, they can possess central magnetic fields as large as 1018 G
(Lai and Shapiro, 1991; Fushiki et al., 1989; Cardall et al., 2001). This value is obtained in New-
tonian mechanics by equating the stellar magnetic energy stored within the star, B2/8π × 4π/3R3,
and the gravitaional binding energy, 3GM2/5R. In doing do, the magnetic field strength satisfies
B ∼ 1.4× 1018 (1.40 M�/M)(R/ 10 km)−2 G. It is important to note that the magnetic field contri-
bution to the total mass density is ρ = B2/8πc2. For densities comparable to the nuclear saturation
density, ρ0 ∼ 2.4× 1014 g/cm3, the corresponding magnetic field is B ∼ 2× 1016 G. As a conse-
quence, the field contribution can dominate the matter density in neutron stars. Therefore, the
magnetic field cannot be neglected in the energy-momentum tensor of the system and must be
included in the equations of equilibrium.

SGR and AXPs have typical rotation periods of the order of 10 s. Due to their ’slow’ rotation -
astrophysically speaking - they are powered by their huge magnetic energy reservoirs. These stars are
usually referred to as magnetars (Duncan and Thompson, 1992; Thompson and Duncan, 1993, 1996;
Paczynski, 1992; Melatos, 1999). According to the magnetar catalog1 (Olausen and Kaspi, 2014),
there is currently information available on 29 magnetars: 15 SGRs (11 confirmed, 4 candidates),
and 14 AXPs (12 confirmed, 2 candidate). Moreover, estimates show that the magnetar population
corresponds to about 10% of the NS population (Kouveliotou et al., 1998). Nevertheless, there is
no mass measurement of magnetars. The problem is that one usually measures masses in binary
systems, and all known magnetars are isolated, what makes their masses harder to be measured.

The origin of strong magnetic fields in compact stars is still unclear. One common hypothesis
involves the flux conservation of the progenitor magnetic field (L., 1964). However, this idea is
not suitable for magnetars since a canonical neutron star M ∼ 1.4 M� would require a radius less
than its Schwarzschild radius in order to generate a surface magnetic field of the order of 1015 G
(Tatsumi, 2000). Another possibility suggested by Thompson and Duncan (1993) describes a newly
born neutron star combining convection and differential rotation to generate a dynamo process which
is able to generate fields as large as 1015 G. Part of the rotation energy is then expected to power
the supernova through rapid magnetic braking. One expects, therefore, that magnetar creation is
accompanied by supernovae that are an order of magnitude more energetic than normal supernovae.
However, Vink and Kuiper (2006) showed that the explosion energies of the supernova remnants
associated with AXPs and SGRs, namely, Kes 73 (AXP 1E 1841045), CTB109 (AXP 1E2259+586)
and N49 (SGR 052666), are close to the canonical supernova explosion energy. As a result, Vink and
Kuiper (2006) did not find evidence that magnetars are formed from rapidly rotating proto-neutron
stars, allowing for the possibility that they descend from stellar progenitors with high magnetic field
cores.

1http://www.physics.mcgill.ca/ pulsar/magnetar/main.html
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1.5 Description of this work

Whatever the origin of strong magnetic fields in compact stars (NS’s and WD’s) might be, we intend
in this work to address some intriguing questions:

• what is largest magnetic field that compact stars can support?

• what is the effect of strong magnetic fields on the maximum mass of compact stars?

• how the internal degrees of freedom in neutron stars are affected by magnetic fields?.

Magnetic fields affect locally the microphysics of the equation of state, as for example, due to
the Landau quantization of the energy levels of charged particles and the effect of the anomalous
magnetic moment of charged and uncharged particles. Globally, magnetic fields affect the structure
of neutron stars through the Lorentz force associated with the macroscopic currents that generate
the field. They also affect the structure of the spacetime, as magnetic fields become a source of
the gravitational field through the Maxwell energy-momentum tensor, which is anisotropic. As a
consequence, magnetized stars are also anisotropic and require a general-relativity treatment beyond
the spherical solutions provided by the hydrostatic equilibrium equations of a non-rotating and
non-magnetized neutron star as given by the Tolman-Oppenheimer-Volkoff equations. In addition,
rotation or magnetic fields break the spherical symmetry of stars and such effects have to be included
in a fully general relativistic formalism when describing such objects. This is addressed in Chapter
2, where a fully-consistent equilibria of magnetic stars in axial symmetry, with rotation, is discribed
by using the 3+1 decomposition of spacetime in General Relativity.

We provide also in Chapter 2 a description of numerical methods used in our calculations. In order
to solve the equilibrium configuration, it is assumed that the matter has infinite conductivity. This,
in turn, implies that the magnetic flux is conserved and the magnetic field lines move with the fluid.
This condition is also referred in the literature to as ’froze-in’ magnetic fields, a commum (and well
justified) assumption in astrophysics.

In Chapter 3, a hybrid star model that includes the effect of the magnetic field on the equation
of state, the interaction of the electromagnetic field with matter, the anisotropies in the energy-
momentum tensor, as well as general relativistic aspects is investigated. This study was motivated
by the fact that previous calculations with magnetic-field dependent EoS commonly solved the
general relativistic equations of hydrostatic equilibrium with the assumption of spherical symmetry.
In addition, the effect of the magnetic field gradient was introduced through a ad hoc magnetic field
profile in order to obtain magnetized stellar models. However, as already pointed out by Menezes
and Alloy (2016), ad hoc formulas for magnetic field profiles in neutron stars do not fulfill Maxwell’s
equations (more specifically, Gauss law) and, therefore, are not correct. As we will see in this work,
neutron star models must be treated with more care in presence of anisotropies.

We proceed then to Chapter 4, where the influence of magnetic fields on composition and structure
of proto-neutron stars is discussed. We are going to show in Chapter 3 that the magnetic field has a
huge impact not only on the structure of NS’s, but also on their particle population. Likewise, we will
study in Chapter 4 the effects of strong magnetic fields on a hot and rapidly rotating proto-neutron
star, since the magnetic field can effect the amount of trapped neutrinos and prevent or favour exotic
phases with hyperons and quarks.

In Chapter 5, we discuss the effects of quark-hadron phase transition on the structure of neutron
stars, considering rotation as well as strong magnetic fields. We employ an equation of state that
describes massive hybrid stars composed of nucleons, leptons and quarks in the stellar interior. The
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stellar models, as well as the modification of the mass-radius diagram, are investigated within the
same general relativity approach as described in Chapter 2.

We investigate in Chapter 6 the influence of magnetic fields on the structure of white dwarfs. This
is an important problem, since super-massive magnetized WD’s, whose existence is partially sup-
ported by magnetic forces, could simplify the explanation of observed ultra-luminous explosions of
supernovae Type Ia (SNe Ia). SNe Ia occur in binary systems, when a white dwarf accreting matter
from a companion approaches the Chandrasekhar mass limit of 1.40 M� and becomes unstable. As
a result, thermonuclear explosion develops and an immense amount of energy is suddenly released.
A feature of these events is that SNe Ia have spectra and light curves (evolution of the supernova
brightness with time) amazingly uniform, indicating a common origin and a common intrinsic lu-
minosity. However, recent observations of several supernovae appear to be more luminous than
expected. This would indicate that such explositions occur when the white dwarf has a mass well
above the Chandrasekhar mass limit.

Finally, Chapter 7 summarizes the main findings and concludes this work. Moreover, we provide a set
of appendices: Appendix A presents a description of the electric currents in magnetized Newtonian
stars, Appendix B presents a brief introduction to General relativity and Appendix C contains the
deduction of Einstein’s equations within the 3+1 formalism in General Relativity.

Fig. 1.8 depicts the chapters and the main sections presented in this work. We show also the relation
between them, together with their interdependencies. For example, if one is interested in the particle
population inside magnetized neutron stars (section 3.3.2), which can be compared with the particle
population in proto-neutron stars (section 4.2), then, as a prerequisite, the analys of the mass-radius
relationship for neutron stars is needed (section 3.3.1), which, in turn, requires the reading about
the Einstein-Maxwell equations (section 2.2) and the global stellar quantities (section 2.5).

Parts of the presented texts and figures have been published already in the references listed in
the Preface. Specifically, Chapter 3 is published in Franzon et al. (2015) and in the proceedings
Franzon et al. (2016e), with a small fraction of section 3.3 submitted to PRL (Dexheimer et al.,
2016). The entire Chapter 4 is published in Franzon et al. (2016a) and only adapted for this work.
The Chapter 5 in published in Franzon et al. (2016c). The Chapter 6 is published in Franzon and
Schramm (2015), with a little discussion in section 6.2 about the effects of the Lorentz force on the
crust of neutron stars, as presented in Franzon et al. (2016d), submitted to MNRAS. Still in Chapter
6, section 6.3, we discuss effects of realistic equation of state in white dwarfs, which can be found
in Otoniel et al. (2016), in refereeing process by PRD. We close then Chapter 6 and our results in
section 6.4, by discussing the possibility of rotating and magnetized white dwarfs to be source of
gravitational radiation Franzon and Schramm (2016).
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Chapter 2

Stationary, axisymmetric rotating and
magnetized relativistic neutron stars

In this chapter, we will briefly present the Einstein field equations within the 3+1 formalism in
General Relativity in order to obtain both rotating and magnetized axisymmetric neutron star
configurations. The final system of Einstein equations can be found in Appendix C, as well as
in different works quoted throughout this thesis.

Albert Einstein’s general theory of relativity (GR) is now more than one century old and has been a
pillar for modern physics. Currently, there is no doubt it is a very successful theory, which explains
not only the motion of the planets but it also describes the history and expansion of the universe, the
physics of black holes and the bending of light from distant stars and galaxies. Moreover, neutron
stars are so compact that general relativity is essential to describe their structures. Indeed, the
existence of a maximum neutron star mass is a manifestation of general relativity.

The Einstein field equations describe the properties of the gravitational field around a given mass
and can be written (see Appendix B) in a beautiful compact form as:

Rµν −
1

2
R gµν = 8πTµν , (2.1)

with Rµν being the Ricci tensor, R is the Ricci scalar, gµν is the metric tensor and Tµν the energy-
momentum tensor of matter and electromagnetic fields. The indices µ and ν can range over the set
0,1,2,3. Throughout this chapter, we choose units such that G = c = 1.

In this section, we will summarize the numerical implementation for axysymmetric rotating and
magnetized stars as developed by Bonazzola et al. (1993) and later on by Bocquet et al. (1995).
The numerical code provides tools to solve partial differential equations by means of a multi-
domain spectral method and the source code is publicly available on the homepage of C++ li-
brary LORENE, http : //www.lorene.obspm.fr. The main codes used in this thesis are called
magstar.C and mag star eos.C and are located in the directory Lorene/Codes/Magstar and
Lorene/Codes/Mag eos star for isolated neutron stars. It is worth to mention that LORENE is
a set of C++ classes to solve various problems in numerical relativity as, for example, simulations
of binary neutron stars. Through the next sections, we will try to keep the original notation for the
consistency with the original works.

15
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2.1 Magnetized axysymmetric neutron stars

The equation (2.1) states an intrinsic relation between the geometry of spacetime (on the left-hand
side) and the mass-energy content (on the right-hand side). Behind its economic form, Eq. (2.1)
is highly non-linear. Due to the complexity of the field equations combined to the relativistic-
hydrodynamics equations, analytic solutions are obtained only in special cases as, for example, when
considering spherical symmetry.

As we will be dealing with macroscopic structure of neutron stars endowed with magnetic fields, the
energy-momentum tensor of the system is given by:

Tµν = (E + P) uµuν + P gµν +
1

µ0

(
FµαFαν −

gµν
4

FαβFαβ
)
, (2.2)

where the first two terms in Eq. (2.2) are the perfect fluid contribution, with the matter energy
density E , the isotropic fluid pressure P and the 4-vector fluid velocity uµ. The third term represents
the purely Maxwell energy momentum tensor, with Fαβ being the usual Faraday tensor defined in
terms of the magnetic vector potential Aα as Fαβ = ∂αAβ − ∂βAα.

There are a few attempts to try to solve self-consistently the Einstein field equations coupled to the
matter-field energy momentum tensor for magnetized stars. The presence of magnetic fields induces
a Lorentz force, which breaks the spherical symmetry of the star. In this case, the stellar deformation
needs to be taken into consideration when modelling highly magnetized objects. Recently, Mallick
and Schramm (2014) attempted to compute the structure of neutron stars in strong magnetic
fields by a Taylor expansion of the energy-momentum tensor and the metric around the spherically
symmetric case. There are also global models of neutron stars in which the effect of magnetic fields
on the structure of these stars have been included in a fully general relativistic formalism. In the case
of poloidal magnetic fields, Bocquet et al. (1995) and Cardall et al. (2001) have shown that the star
becomes oblate with respect to the symmetry axis, shrinking in the pole direction and expanding on
the equatorial plane. This is an effect of the Lorentz force acting outward and against gravity. As
we will see, this is the reason why magnetic stars can support more mass than their non-magnetic
counterparts. Note that this deformation is also an effect of the assumption of a poloidal magnetic
field, which makes the star more oblate. Calculations including toroidal magnetic field components
have shown that magnetized stars become more prolate (more cigarette-like) with respect to the
non-magnetized case (Kiuchi and Kotake, 2008; Frieben and Rezzolla, 2012a).

We will now describe the assumptions, the basic equations and the numerical method used in this
thesis in order to construct magnetized stellar models in the same way as in Bonazzola et al. (1993)
and Bocquet et al. (1995). As a general reference, the review by Gourgoulhon (2012) is valuable.
The choice of the coordinates in general relativity is crucial, not only to write the gravitational
equations in an advantageous form, but also to make them easier to solve numerically. With this in
mind, one makes use of symmetries and also of the properties of spacetime to rewrite Eq. (2.1). First,
the spacetime is considered stationary. In practice, it means that the metric tensor components do
not depend on the time or, in other words, it exits a Killing vector in the time direction. Note that
a Killing vector implies the existence of a coordinate system where the metric tensor is independent
of one of the coordinates. One then demands the space time to be axisymmetric, i.e., it should
exist a Killing vector in the azimuth direction φ. As a result, axially symmetry implies that the
metric tensor does not depend on φ. This condition is not restrictive in practice, since most of the
astrophysics objects are axially symmetric. These two symmetries reduce considerably the number
of equations in the final field equations. Finally, the spacetime should be asymptotically flat which
is a natural condition since, at infinity, all GR equations must reduce to the special relativity limit
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represented by the Minkowski metric tensor. Furthermore, this is important numerically, since the
boundary conditions are well known at infinity (flat space time).

Now, let us summarize the general 3+1 formalism used in numerical General Relativity as already
presented in some details in Appendix C. Einstein field equations can be split into dynamical equations
and constraint equations for the metric tensor. The formalism consists in the foliation of the space
time into hypersurfaces1 Σt, labelled by the coordinate time t (Smarr and York Jr, 1978). In other
words, the 3+1 decomposition simply separates the time and the 3-dimensional space by projecting
vectors and tensors onto the hypersurface Σt, which has an induced 3-D metric γij, and into the time
direction, i.e., along the unit 4-vector nµ normal to Σt, whose components are nµ = 1

N(1, 0, 0,Nφ)
and nµ = 1

N(−1, 0, 0, 0), such that nµnµ = −1, with N and Nφ being the lapse function and the shift
vector (see below).

Assuming stationarity and axisymmetry, a general form of the metric tensor reads:

ds2 = gµνdxµxν = −N2dt2 + A2(dr2 + r2dθ2) + λ2r2 sin2 θ(dφ− Nφdt)2, (2.3)

with N(r, θ), A(r, θ), λ(r, θ) and Nφ(r, θ) function only of (r, θ). From Eq. (2.3), we immediately
recognize the induced 3-D spatial metric as:

γij = diag(A2, r2A2, λ2r2 sin2 θ), (2.4)

with the square root of the determinant of the components γij given by
√
γ = A2λr2 sin2 θ. As we

will see, this quantity will be important to calculate global properties, like the mass, of stars.

By the 3+1 decomposition of the energy momentum tensor in Eq. (2.2), the total energy ET (perfect
fluid + magnetic field) of a star endowed with magnetic fields as measured by an Eulerian observer
Oo (observer with four-velocity nµ) is

ET := Tµνnµnν = Γ2 (E + P)− P +
1

2µ0
(BiBi + EiEi), (2.5)

with Γ := −nµuµ being the Lorentz factor relating the Eulerian observer with the co-moving observer
(observer with four-velocity uµ). The total momentum density flux reads:

Jφ := −Tµνnµγνi = (ET + P)A2 λ r sin θU +
1

µ0
A2(BrEθ − ErBθ), (2.6)

and the total stress Sij := Tµνγ
µ
i γ

ν
j is given by:

Sr
r = P +

1

2µ0
(EθEθ − ErEr + BθBθ − BrBr) (2.7)

Sθθ = p +
1

2µ0
(ErEr − EθEθ + BrBr − BθBθ) (2.8)

Sφφ = P + (E + P)U2 +
1

2µ0
(EiEi + BiBi), (2.9)

with U being the physical fluid velocity in the φ direction, as measured by the Eulerian observer O0,

U =
λr sin θ

N
(Ω− Nφ), (2.10)

1 hypersurface is a generalization of the concept of hyperplane. Suppose an enveloping manifold M has n
dimensions; then any submanifold of M of n-1 dimensions is a hypersurface.
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where Ω is the rotation velocity of the star. The electric and the poloidal magnetic field components,
as measured by Oo, necessary to evaluate the quantities in Eqs. (2.5)-(2.9) are given by (Lichnerowicz
et al., 1967):

Eα := Fαβ nβ = (Er,Eθ,Eφ) =

(
1

N

[
∂At

∂r
+ Nφ∂Aφ

∂r

]
,

1

N

[
∂At

∂θ
+ Nφ∂Aφ

∂θ

]
, 0

)
, (2.11)

Bα := −1

2
εαβγσFγσnβ = (Br,Bθ,Bφ) =

(
1

λ r2 sin θ

∂Aφ
∂θ

,− 1

λ sin θ

∂Aφ
∂r

, 0

)
, (2.12)

where εαβγσ is the Levi-Civita tensor related to the metric gµν . As we will see in the next section, the
quantities Aφ and Aφ are derived from the Maxwell equations in curved spacetime. In this thesis, it is
assumed that stars are endowed with poloidal magnetic fields (Br and Bθ are the only non-vanishing
components). In this case, the magnetic vector potential Aµ has the components Aµ = (At, 0, 0,Aφ)
by construction. Note that Frieben and Rezzolla (2012a) constructed toroidal magnetic fields with
the choice Aµ = (0,Ar,Aθ, 0).

One important question about magnetic field in neutron stars is its decay due to dissipation. Hence,
stationary models of neutron stars in magnetic fields require a separation of dynamical and dissipative
timescales, encoded in an assumption of infinite conductivity, i.e., magnetic fields are ’frozen in’ and
carried with the fluid, which is a common assumption in astrophysics. This assumption is exceedingly
well justified for neutron star matter, since the ohmic dissipation timescale is larger than the age
of the universe. As a consequence, the electric current in the fluid would not suffer ohomic decay
(Goldreich and Reisenegger, 1992). Therefore, we assume infinite conductivity inside the stars. In
this case, the magnetic flux BR2 (R the stellar radius) is conserved and the electric field as measured
by the co-moving observer is zero, E′α = Fαβ uβ = 0. As a result, we find the relation between the
magnetic vector components:

At = −ΩAφ. (2.13)

The momentum-energy conservation equation

∇µTµν = 0, (2.14)

gives an equation of stationary motion for the fluid endowed with magnetic fields,

1

E + P

∂ P

∂xi
+
∂ ln N

∂xi
− ln Γ

∂xi
+

Fµν jν
E + P

= 0, (2.15)

with the spatial coordinates xi = (r, θ). The first term in Eq. (2.15) corresponds to the purely matter
contribution, the second represents the gravitational potential, the third accounts for the centrifugal
effects due to rotation, and the last one is the Lorentz force (Fµν jν) induced by the magnetic
field, which, in our case, is generated by the four-electric current jν . Since Aµ = (At, 0, 0,Aφ), then
jν = (jt, 0, 0, jφ), which comes from the assumption of circularity condition. In other words, there
are no meridional electric currents.

Eq. (2.15) is the relativistic version of the Euler equation in Eq. (A.1). In Appendix A, we took the
curl of Eq. (A.1) to show that the Lorentz force in the equation of motion can be written as the
divergence of a scalar function M. In the same way, we can write the Lorentz term in Eq. (2.15) as:

∂M

∂xi
=

Fµν jν
E + P

=

(
jφ − Ω jt

E + P

)
∂Aφ
∂xi

. (2.16)
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Rearranging the Eq. (2.16), the arbitrary function M can be chosen such that:

∂M

∂Aφ
= g(Aφ) =

jφ − Ω jt

E + P
. (2.17)

In other words

M = M(Aφ(r, θ)) =

∫ Aφ

0
g(u) du, (2.18)

which is exactly the same expression as Eq. (A.22) for Newtonian stars endowed with magnetic fields.
The function g(u) is called current function. The choice of the current function is a standard way
to generate self-consistently a dipolar magnetic field throughout the star. Here, the magnetic star
models are obtained by assuming a constant value g(u) = k0 for the dimensionless current function.
From Eq. (2.17) the macroscopic electric current relates to k0 through the expression:

jφ = Ω jt + (E + P) k0. (2.19)

For higher values of the current function, the electric current increases and, therefore, the magnetic
field in the star increases proportionally. In Bocquet et al. (1995), other choices for g(u) different
from a constant value were considered. These choices led to a electric current distribution slightly
different from that corresponding to g(u) = k0, being simply more concentrated in other regions of
the star. As a result, the electromagnetic field had more or less the same structure as considering
a constante current function. There are even more complicated current distributions that could,
in principle, be used, but as shown by Bocquet et al. (1995), they do not allow for numerical
convergence due to the highly non-linear character of Maxwell’s equations (see in the next section).

Finally, the integral form of the equation of motion, Eq. (2.15), for a fluid in presence of magnetic
fields reads:

H(r, θ) + ln N(r, θ)− ln Γ(r, θ) + M(r, θ) = const, (2.20)

where H is the dimensionless log-enthalpy (also called pseudo-enthalpy or heat function) defined as:

H(P) =

∫ P

0

dP′

E(P′) + P′
, (2.21)

which can be cast in terms of the specific enthalpy h,

h(P) =
E(P) + P

mbc2 nb
, (2.22)

as

H(P) := ln h(P) = ln

(
µ

mbc2

)
, (2.23)

with the mean baryon mass mB = Mass(Fe56)/56 = 1.66× 10−27 kg (in the ground state at P=0
and T=0) and µ the baryon chemical potential µ = (E + P)/nb.

2.2 The Einstein-Maxwell Equations

The gravitational field is deduced from the integration of a coupled system of four elliptic partial
differential equations for the four metric functions. In Appendix C, we show the deduction of these
equations. For their original form, see Bonazzola et al. (1993). The final system of gravitational
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equations for the four unknown metric potentials N,A, λ and Nφ are:

∆3ν = 4πA2(ET + Sr
r + Sθθ + Sφφ) +

λ2r2 sin2 θ

2N2
∂Nφ∂Nφ − ∂ν∂(ν + lnλ), (2.24)

∆2[lnA + ν] = 8πA2Sφφ +
3λ2r2 sin2 θ

4N2
∂Nφ∂Nφ − ∂ν∂ν, (2.25)

∆2[(Nλ− 1)r sin θ] = 8πNA2λr sin θ(Sr
r + Sθθ), (2.26)

and [
∆3 −

1

r2 sin2 θ

]
(Nφr sin θ) = −16π

NA2

λ2
Jφ

r sin θ
+ r sin θ∂Nφ∂(ν − 3lnλ), (2.27)

where the short notation was introduced:

∆2 =
∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂θ2

∆3 =
∂2

∂r2
+

2

r

∂

∂r
+

1

r2

∂2

∂θ2
+

1

r2 tan θ

∂

∂θ
ν = lnN

∂α∂β :=
∂α

∂r

∂β

∂r
+

1

r2
∂α

∂θ

∂β

∂θ
.

The dynamical quantities of the perfect fluid were already defined in Eqs. (2.5)-(2.9). The system
(2.24)-(2.27) forms a system of partial differential equations with boundary conditions provided by
the asymptotic flatness, since the behavior of the metric potentials are known at infinity. In order
words, the metric tensor tends towards the Minkowski metric. In this case, from the metric tensor
in Eq. (2.3), one has N → 1, A → 1 , λ → 1 and Nφ → 0 at infinity. According to Bonazzola
et al. (1993), the computation of the metric in the whole space outside the star provides a more
precise numerical method than previous works, since the exact boundary conditions can be used. In
addition, the existence of known boundary conditions at infinity is also useful to recognize the global
quantities, like the mass and the angular momentum of the star. This will be addressed in the next
section.

The components of the magnetic and electric fields in Eqs. (2.11) and (2.12) are determined by the
Maxwell equations. The homogeneous Maxwell equation (Maxwell-Faraday),

∇α(
1

2
εαβγσFγσ) = 0, (2.28)

which represents the Faraday’s law of induction and Gauss’s law for magnetism, is automatically
fulfilled when taking the form Fαβ = ∂αAβ − ∂βAα for the Faraday tensor. On the other hand, the
Gauss’s Law (Maxwell-Gauss) and Ampère’s law (Maxwell-Ampère), which represent the inhomoge-
neous Maxwell’s equations,

∇αFαβ = µ0jβ, (2.29)

with jβ being the free electric current (to distinguish from the bound currents, as we will see in the
next chapter), can be expressed in terms of the magnetic vector potential At and Aφ as (Bonazzola
et al., 1993; Cardall et al., 2001):

∆3At = σAt , (2.30)

and [
∆3 −

1

r2 sin2 θ

](
Aφ

r sin θ

)
= σAφ , (2.31)
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with the sources given by:

σAt =−µ0A2(gttj
t + gtφjφ)

−λ
2

N2
Nφr2 sin2 θ∂At∂Nφ

−
(

1 +
λ2

N2
r2 sin2 θ(Nφ)2

)
∂Aφ∂Nφ

−(∂At + 2Nφ∂Aφ)∂(lnλ− ν)

−2
Nφ

r

(
∂Aφ
∂r

+
1

r tan θ

∂Aφ
∂r

)
, (2.32)

and

σAφ =− µ0A2λ2(jφ − Nφjt)r sin θ

−λ
2

N2
r sin θ∂Nφ(∂At + Nφ∂Aφ)

+
1

r
∂Aφ∂(lnλ− ν). (2.33)

In order to compute models of relativistic neutron stars endowed with poloidal magnetic fields in
fully General Relativity, one needs 11 variables, where 3 are related to the fluid properties: the
energy density E , the pressure P and the enthalpy H. For the gravitational field, there are 4 metric
potentials to be determined (Eqs. 2.24-2.27). Finally, 2 components of the electromagnetic potential
(Eqs. 2.30-2.31) and 2 components of the electromagnetic current need also to be calculated. These
quantities, together with the equation of state consist of a closed system of 11 equations. We have
6 Poisson equations, 4 of them for the metric variables A(r, θ), λ(r, θ),N(r, θ) and Nφ(r, θ) and 2
for the components of the electromagnetic potential At(r, θ) and Aφ(r, θ), respectively. In addition,
1 equation is given by the relation between these quantities, see Eq. (2.13). The hydrodynamic
equation of motion for a star endowed with magnetic field (Eq. 2.20), the expression for the log-
enthalpy (Eq. 2.21) and the expression for the electric current (Eq. 2.19) close the system. Stationary
and axisymmetric configurations are calculated once the EoS is specified, together with the rotation
law, the central enthalpy and the current function k0.

From the numerical point of view, the most important concern is the control of numerical errors
during the calculation. In the next section, we will briefly describe a three-dimension relativistic
generalization of the well-known virial theorem in Newtonian gravity, as formulated for any stationary
and asymptotically flat spacetime by Gourgoulhon and Bonazzola (1994). This formulation (named
GRV3) was obtained within the 3+1 formalism and it represents a useful consistency check of
numerical solutions of the Einstein equations. In addition, a two-dimensional integral identity (named
GRV2) was derived for a general asymptotically flat four-dimensional spacetime by Bonazzola (1973),
and generalized and applied to stars in Bonazzola and Gourgoulhon (1994). Both GRV3 and GRV2
were used to check the accuracy of our solutions.

2.3 General Relativity Virial Identities

2.3.1 GRV3

The General Relativistic Virial Theorem GRV3 was derived by Gourgoulhon and Bonazzola (1994),
taking the expression of the mass (see Eq. 2.42) as a starting point. The ’3’ in the name simply means
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that the integral involving the identity is a 3-dimensional one. For a stationary and axisymmetric
spacetime, GVR3 reads (Gourgoulhon, 2012):∫

Σt

[
4π(Sr

r + Sθθ + Sφφ)− 1

A2

(
∂ν∂ν − 1

2Aλ
∂A∂λ

)
+

3λ2 sin2 θ

8r2A2N2
∂Nφ∂Nφ

]
A2λr2 sin θdrdθdφ

−
∫

Σt

{
1

2r

(
1

A2
− 1

λ2

)[
1

A

(
∂A

∂r
+

1

r tan θ

∂A

∂θ

)
− 1

2λ

]}
A2λr2 sin θdrdθdφ = 0. (2.34)

The expression above reduces to the classical Virial Theorem for stationary configurations at the
Newtonian limit (Gourgoulhon and Bonazzola, 1994).

2.3.2 GRV2

The second virial identity used in this work was obtained by Bonazzola (1973); Bonazzola and
Gourgoulhon (1994) and it is called GRV2, since it involves a 2-dimensional integral. Contrary to
GVR3, the derivation of GRV2 is much simpler once one considers Eq. (2.25) of the Einstein field
equations.

The 2-dimensional flat Laplacian ∆2 allows to write a generic solution of Eq. (2.25) in terms of its
Green function,

lnA(r, θ) + lnN(r, θ) =

∫
Σt
σ r dr dθ

2π
+O

(
1

r

)
, (2.35)

with σ being the source (right hand side term) in Eq. (2.25). However, one of the main properties
of the spacetime considered here is its asymptotically flatness at r→∞. In this case, as we have
already seen A→ 1 and N→ 1. Therefore, the integral term in Eq. (2.35) is zero,∫ ∞

r=0

∫ π

θ=0

[
8πA2Sφφ +

3λ2r2 sin2 θ

4N2
∂Nφ∂Nφ − ∂ν∂ν

]
r dr dθ = 0. (2.36)

This is the GRV2 identity that, together with GVR3, are used to check the consistency of our
numerical solutions.

2.4 Numerical procedure

The treatment of tabulated EoS’s within the code is extremely important, since simple interpolations
can introduce numerical errors, which could result in thermodynamical inconsistency. In LORENE,
the tabulated data are interpolated following the method described by Swesty (1996), to ensure
thermodynamic consistency of the interpolated quantities. First, the enthalpy (Eq. 2.23) and the
term dP/dH = (E + P) (another form of Eq. (2.21)) are evaluated from the tabulated table. Then,
the pressure P and dP/dH are interpolated from the data by means of Hermite polynomials. Finally,
these values are used to evaluate the baryon number density and the energy density as:

nB = (E + P)e−H,

E = dP/dH− P,
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ensuring thermodynamic consistency of E(H),P(H) and nB(H). In the next chapter, we will apply
this formalism for a magnetic-field dependent EoS with E(H,B), where B is the magnetic field. By
choosing the stellar central enthalpy Hc, the standard algorithm to numerically construct magnetized
stellar models is:

• Step 1. One has to choose the constant current function k0 which will give the electric current
distribution inside the star:

jφ − Ωjt = (E + P)k0; (2.37)

• Step 2. At a given step in the iteration process, jφ is deduced from Eq. (2.37). In this equation,
jt cannot be freely chosen, but it is fixed by the Maxwell-Gauss (Eq. 2.30) equation in the
stellar interior;

• Step 3. The component of the electric current jφ comes from the Maxwell-Gauss equation.
With jt and jφ, one solves the Maxwell-Ampère equation (Eq. 2.31);

• Step 4. Then, one solves the Maxwell-Gauss equation in the exterior only, where jt = 0, with
the following boundary conditions at the star‘s surface: the magnetic vector potential Aφ must
be continuous;

• Step 5. The next step consists in determining the matter distribution that agrees with the ob-
tained electromagnetic field by making use of the equation of motion H + ln N− ln Γ + M = C0,
with the central enthalpy H as an input. The constant C0 can be evaluated at every point
within the star. We choose to do it at the stellar center, since M(0, 0) = Γ(0, 0) = 0 and then
C0 = H(0, 0) + ln N(0, 0);

• Step 6. The last step consists in computing the electromagnetic stress-tensor adding them to
the fluid ones and then solving the gravitational field equations.

Lorene code is based on multi-domain spectral methods. These methods provide, among other
advantages, an unique tool for solving partial differential equations. The physical computational
range into several domains. The boundary of each domain is chosen in order to coincide with a
physical discontinuity e.g. the density jumps or the surface of the star, and to obtain the solution
in each of those domains. In the case of stars, the last domain is compactified, with the radial
coordinate u→ 1/r. In this way, the computational domain extend to spatial infinity. Details of
mapping and spectral expansions in the general case of 3D compact object is described by Bonazzola
et al. (1998).

2.5 Global Quantities

Let us now define several quantities that are essential when describing relativistic stars. The surface
of the star is then defined by P = 0.

2.5.1 Total baryon number

As we will be dealing with isolated stars, the total number of baryons remains the same in the system.
In other words, a four-baryon current Jµb defined as:

Jµb = nbuµ, (2.38)
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where nb is the baryon number and uµ the fluid four-velocity, obeys the conservation law:

∇µJµb = 0, (2.39)

that, by means of the Gauss-Ostrogradski theorem (Divergent theorem), can be written as:∫
Σt

JµbnµdS, (2.40)

with dS being the area of the 3-D hypersurface Σt defined as dS =
√
γdrdθdφ, with

√
γ = A2λr2 sin θ,

and nµ is the four-velocity of the Eulerian observer O0. Therefore, making using of Eq. (2.38), the
total number of baryons B can the defined as:

B :=−
∫

Σt

nbuµnµA2λr2 sin θdrdθdφ

=

∫
Σt

ΓnbA2λr2 sin θdrdθdφ, (2.41)

where we have used the fact that Γ = −uµnµ. As a consequence, the stellar baryon mass is simply
MB = mbB, with mb being the mean baryon mass.

2.5.2 Gravitational Mass

The concept of mass in general relativity is more complex than the concept of mass in special
relativity. In fact, general relativity does not offer a single definition of the term mass, but offers
several different definitions that are applicable under different circumstances. For example, the
Komar mass can be defined in any stationary spacetime in terms of the metric and its Killing vector
(Wald (2010), Eq. 11.2.10) as:

M :=

∫
Σt

[2Tµν − Tgµν ] nµξν
√
γdrdθdφ, (2.42)

with nµ being the future unit four-vector normal to Σt, T the trace of Tµν with respect to gµν , and
ξν the time Killing vector given by ξν = Nnν + Nν , with the non-vanishing component of the shift
vector Nν = Nφ. By using Tµν as in Eq. (2.2), we obtain:

M =

∫ [
N(ET + Sr

r + Sθθ + Sφφ) + 2Nφλ(ET + P)Ur sin θ
]

A2λr2 sin θdrdθdφ. (2.43)

This common value, denoted here by M, is sometimes called gravitational mass, to distinguish it
from the baryon mass, MB = mbB. From the condition of asymptotic flatness, ν = ln N→ 0, the
leading term of the solution for ν in Eq. (2.24) is the gravitational potential ν ∼ −M/r, with M
being the gravitational mass of the star as measured by an observer at infinity.
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2.5.3 Angular momentum

The angular momentum is defined as:

J :=−
∫

Tµνnµeνφ
√
γdrdθdφ

=

∫
A2λJφr2 sin θdrdθdφ, (2.44)

with eνφ being the axisymmetry Killing vector. In this thesis, we often refer to the moment of inertia
of the star, which is defined simply as I := J/Ω.

2.5.4 Quadrupole moment

According to Salgado et al. (1994), the quadrupole momentum Q is identified as the leading term
in the asymptotic behavior of the metric potential N(r, θ):

ln N(r, θ)r→∞ ∼ −
M

r
+

Q

r3
P2(cosθ), (2.45)

with P2(cosθ) being the second order Legendre polynomial. According to Bonazzola et al. (1993)
and Salgado et al. (1994), the quadruple moment Q in Eq. (2.45) can be written as:

Q = − 1

4π

∫
σlnNP2(cosθ)r4 sin θdrdθdφ, (2.46)

where σlnN is the source term in Eq. (2.24) (see also Eq. (3.19) in Bonazzola et al. (1993)).

2.5.5 Circumferential radius

A coordinate-independent characterization of the stellar equator can be done by calculating the
circumferential equatorial radius (θ = π/2 ):

Rcirc :=
1

2π
C, (2.47)

with C the proper length of the circumference of the star in the equatorial plane given. In this case,
one gets:

Rcirc =
1

2π

∫ 2π

0

√
γφφdφ

=
1

2π

∫ 2π

0
B(r, θ)r sin θdφ

=reqB(req, π/2), (2.48)

where req is the equatorial coordinate radius.
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2.5.6 Magnetic dipole moment

The magnetic dipole moment µ is defined as the radial component (the orthonormal one) of the
magnetic field of a magnetic dipole seen by an observer at infinity (Cardall et al., 2001):

2µcosθ

r3
= B(r) |r→∞. (2.49)

As we have already seen, the stationary and axi-symmetric stellar configurations are determined by
the choice of the central enthalpy Hc and the current function k0. As we will see in the next chapters,
we can fix the current function k0 as the magnetic dipole moment varies. Note that, it is equivalent
to fix or the current or the magnetic dipole moment, since a certain current function k0 corresponds
to a single value of µ, and vice-versa. Having said that, equilibrium star sequences can be also build
at different fixed magnetic dipole moments, µ. In the next Chapter, all stellar configurations are
obtained at fixed µ.



Chapter 3

A self-consistent study of magnetic
field effects on hybrid stars

In this chapter, we will study the effects of strong magnetic fields on hybrid stars in different
ways. First, we investigate effects of the magnetization and a magnetic-field dependent equation
of state on the global properties of stars. Secondly, we study the effects of magnetic fields on the
populated degrees of freedom inside hybrid stars.

3.1 Magnetic field-dependent equation of state

The effect of strong magnetic fields on the equation of state for compact stars were studied by
many authors (Noronha and Shovkovy, 2007; Rabhi et al., 2008; Strickland et al., 2012; Sinha
et al., 2013). Basically, charged particles become Landau quantized (Landau and Lifshitz, 1960)
in the plane perpendicular to the magnetic field. For our numerical application, we will employ
an extended hadronic and quark SU(3) non-linear realization of the sigma model that describes
magnetized hybrid stars containing nucleons, hyperons and quarks (see Fig. 3.1). Let us now briefly
summarize the main characteristics of this model.

We made use of the effective model that combines a SU(3)-flavor σ model with a Polyakov-loop-
extended Nambu Jona-Lasinio (PNJL) type approach for deconfinement phase transition into quark
degrees of freedom (Papazoglou et al., 1999; Dexheimer and Schramm, 2008, 2010) in a spirit similar
to the PNJL model by Fukushima (2004). Moreover, this approach combines hadrons and quarks
in a single equation of state. As a result, important features of the deconfinement phase transition,
like the strength of the transition, the mixing of phases and also the accompanying chiral symmetry
restoration can be studied.

In mean field approximation, the full Lagrangian reads:

L = LKin + LInt + LSelf + LSB − U + Lmag, (3.1)

with LKin being the kinetic energy term for hadrons, quarks, and leptons, and

LInt = −
∑
i

ψ̄i[γ0(giωω + giφφ+ giρτ3ρ) + M∗i ]ψi, (3.2)

a term that takes in account the interactions between baryons or quarks and vector and scalar
mesons. Index i runs over the three lightest quark flavors (u, d, s), and the baryon octet.

27
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The self interactions of scalar and vector mesons is represented by

LSelf = 1
2(m2

ωω
2 + m2

ρρ
2 + m2

φφ
2)

+g4
(
ω4 + φ4

4 + 3ω2φ2 + 4ω3φ√
2

+ 2ωφ3√
2

)
−k0(σ

2 + ζ2 + δ2)− k1(σ
2 + ζ2 + δ2)2

−k2
(
σ4

2 + δ4

2 + 3σ2δ2 + ζ4
)
− k3(σ

2 − δ2)ζ

−k4 ln (σ2−δ2)ζ
σ2
0ζ0

, (3.3)

and

LSB = −m2
πfπσ −

(√
2m2

kfk − 1√
2

m2
πfπ
)
ζ,

(3.4)

is an explicit chiral symmetry breaking term (responsible for producing the masses of the pseudo-
scalar mesons), and

U(Φ) = (a0T4 + a1µ
4 + a2T2µ2)Φ2

+a3T4
0 log (1− 6Φ2 + 8Φ3 − 3Φ4), (3.5)

it is a potential for the Polyakov Φ field which is used as a order parameter for deconfinement. T is
the temperature, which in our case T=0.

The later is important in order to reproduce a realistic structure for the QCD phase diagram over the
whole range of chemical potentials and temperatures, including realistic thermodynamic behaviour
at vanishing chemical potential as shown by Dexheimer and Schramm (2008). Finally, one has the
magnetic field contribution,

Lmag = −
∑

i ψ̄i(qieγ
µAµ + 1

2κσ
µνFµν)ψi, (3.6)

which represents the magnetic and anomalous magnetic moment interactions with the fermions.

In Eq. (3.6), qi is the electric charge of each particle in multiples of the electron charge e, Aµ is the
electromagnetic field, κ represents the tensorial coupling strength of baryons with the electromagnetic
field tensor, and σµν = i[γµ, γν ]/2 . The mesons included are the vector-isoscalars ω and φ (vector
meson with hidden strangeness), the vector-isovector ρ, the scalar-isoscalars σ and ζ (scalar meson
with hidden strangeness) and the scalar-isovector δ, with τ3 being twice the isospin projection of each
particle. The isovector mesons affect isospin-asymmetric matter and are, consequently, important for
neutron star physics. The coupling constants of the model can be found in Dexheimer and Schramm
(2008, 2010). The hadronic sector was fitted to reproduce the vacuum masses of the baryons and
mesons, nuclear saturation properties, reasonable values for the hyperon potentials and the pion
and kaon decay constants (fπ and fk). The quark sector was fitted to reproduce lattice QCD data
at vanishing chemical potential and phase diagram information, such as the location of the critical
end-point and a continuous first-order phase transition line that terminates on the zero temperature
axis at around four times saturation density.

The effective masses of the baryons and quarks are generated by the scalar mesons except for a small
explicit mass term M0 and the term containing Φ:

M∗B = gBσσ + gBδτ3δ + gBζζ + M0B + gBΦΦ2 (3.7)
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M∗q = gqσσ + gqδτ3δ + gqζζ + M0q + gqΦ(1− Φ). (3.8)

With the increase of temperature and/or density, the σ field (non-strange chiral condensate) de-
creases in value, causing the effective masses of the particles to decrease towards chiral symmetry
restoration. The field Φ assumes non-zero values with the increase of temperature/density and, due
to its presence in the baryons effective mass (Eq. 3.7), suppresses their presence. On the other hand,
the presence of the Φ field in the effective mass of the quarks, included with a negative sign (Eq. 3.8),
ensures that they will not be present at low temperatures/densities. In this way, the interaction with
the medium determines which are the degrees of freedom present in the system.

Charged Fermions endowed with magnetic fields (in the z-direction) have their total energy quantized
into Landau levels ν as (Landau and Lifshitz, 1960),

E∗iνs =

√
k2zi +

(√
M∗2i + 2ν|qi|B− siκiB

)2

, (3.9)

with ki being the fermi momentum and si the spin of each fermion. The last term comes from the
anomalous magnetic moment (AMM) of the particles that splits the energy levels with respect to
the alignment/anti-alignment of the spin with the magnetic field. Note that, according to Eq. (3.9),
uncharged particles also have their energy levels modified by the AMM κi. The AMM constants κi
have values κp = 1.79, κn = −1.91, κΛ = −0.61, κ+

Σ = 1.67, κ0
Σ = 1.61, κ−Σ = −0.38, κ0

Ξ = −1.25,
κ−Ξ = 0.06. The sign of κi determines the preferred orientation of the spin with the magnetic field.
For zero temperature, the sum over the Landau levels ν runs up to a maximum value, beyond which
the momentum of the particles in the z-direction would be imaginary

νmax =
E∗is

2 + siκiB−M∗i
2

2|qi|B
. (3.10)

We choose to include in our calculations the AMM effect for the hadrons only, since the coupling
strength of the particles κi depends on the corresponding magnetic moment, that up to now is not
fully understood for the quarks. Furthermore, it is stated in Weinberg (1990), that quarks in the
constituent quark model have no anomalous magnetic moment, and in Ferrer et al. (2015), that the
AMM of quarks from one-loop fermion self-energy is very small. For calculations including AMM
effects for the quarks, see Chakrabarty (1996); Suh et al. (2001); Perez Martinez et al. (2005); Felipe
et al. (2008). The AMM for the electrons is also not taken into account as its effect is negligibly
small. Properties of the magnetized SU(3) non-linear realization of the sigma model were presented
in Dexheimer et al. (2012a, 2013b) for an effective (ad hoc) variation of the magnetic field inside
the star. In Fig. 3.1, we show the example of the chiral EoS for different asymptotic magnetic fields
strengths.

3.2 Inclusion of gravity

In this section, we included magnetic fields effects in the EoS, something that was not taken into
account by Bonazzola et al. (1993), Bocquet et al. (1995) and Cardall et al. (2001). Here, we follow
the same general relativity formalism and setup as in Chatterjee et al. (2015); Ferrer et al. (2010).
Let us now see how the magnetization term appears in the formalism. Starting from a microscopic
Lagrangian, one can obtain the gauge-invariant fermion contribution to the energy-momentum tensor
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Figure 3.1: EoS of an extended hadronic and quark SU(3) non-linear realization of the sigma
model that describes magnetized hybrid stars containing nucleons, hyperons and quarks for

different asymptotic magnetic fields

(Ferrer et al., 2010; Chatterjee et al., 2015) as:

Tµνf =
1

2
ψ̄(γµ∂ν + γν∂µ)ψ − 1

2
(jµAν + jνAµ)− gµνL, (3.11)

with jµ being the electromagnetic current defined as jµ = iqψ̄γµψ, Aν magnetic-vector potential and
L the Lagrangian density of the fermion system.

As we are interested in studying global properties of highly magnetized neutron stars, like the mass
and the radius, it is necessary to take the thermodynamic average of the energy momentum tensor
Tµνf . In this case, as already shown by Chatterjee et al. (2015); Ferrer et al. (2010), the second term
in Eq. (3.11) can be written as:

−1

2
< jµAν + jνAµ >=

1

2
(FµαMαν + FνβMβν), (3.12)

where the magnetization tensor is given by:

Mαν = ερσανuρmσ, (3.13)

with mσ being the magnetization-four vector:

mσ = −∂Ωf

∂bσ
, (3.14)

with Ωf being the thermodynamic potential for the fermions and bσ the magnetic field 4-vector.
The electromagnetic field tensor can then be expressed as (Gourgoulhon, 2012):

Fαν = ερσανuρbσ, (3.15)
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with the Levi-Civita tensor ε associated here with the Minkowski metric.

Defining the scalar quantity:

M := µ0
mσ

bσ
, (3.16)

the total energy momentum tensor (fluid + magnetization contribution + pure magnetic field) reads:

Tµν =(E + P)uµuν + pgµν

+
M
B

[bµbν − (b · b)(uµuν + gµν)]

+
1

µ0

(
−bµbν + (b · b)uµuν +

1

2
gµν(b · b)

)
. (3.17)

In Eq. (3.17) the first two terms on the right hand side can be identified as the pure (perfect
fluid) fermionic contribution, followed by the magnetization term (the new term in comparison with
Eq. 2.2) and the third term is the pure electromagnetic contribution to the energy-momentum tensor.
B here is the length of the magnetic field 4-vector. As we already have seen, the magnetization M
represents the interaction of the electromagnetic field with matter and it is given by the coupling
between the electric current jµ and the magnetic vector potential Aν (Eq. 3.12).

The magnetic field in the fluid rest frame is bµ = diag (0, 0, 0,B), where B is defined to point into the
z-direction. In the rest frame of the fluid (using uµ = diag (1, 0, 0, 0) and gµν = diag (−1, 1, 1, 1)),
the matter term (perfect fluid + magnetization) in Eq. (3.17) reads:

T0
m0 = E(B), (3.18)

T1
m1 = P(E ,B)−MB, (3.19)

T2
m2 = P(E ,B)−MB, (3.20)

T3
m3 = P(E ,B), (3.21)

where the components T1
m1 and T2

m2 are usually referred to as perpendicular or transversal pressure
(with respect to B) and T3

m3 as parallel or longitudinal pressure, respectively. It is important to note
that both the pressure and the energy density depend now on the magnetic field and, therefore, the
EoS has the form P(E ,B). The third term in Eq. (3.17) corresponds to the usual pure magnetic
field contribution. It can be written as:

T0
B 0 =

B2

2µ0
, (3.22)

T1
B 1 =

B2

2µ0
, (3.23)

T2
B 2 =

B2

2µ0
, (3.24)

T3
B 3 = − B2

2µ0
. (3.25)

In this way, the total contribution to the energy momentum tensor is simply given by T0
0 = T0

m0 + T0
B 0

and Ti
i = Ti

m i + Ti
B i, with i=1,2,3. Therefore, in the rest frame of the fluid, the energy momentum

tensor when considering a magnetic field depend EoS and the magnetization term M is:
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Tµµ =


E + B2

2µ0
0 0 0

0 P−MB + B2

2µ0
0 0

0 0 P−MB + B2

2µ0
0

0 0 0 P− B2

2µ0


Here, let us mention two important points. First, the magnetization term reduces the total pressure
of the system. As a result, we will see that the total mass of the star decreases with the inclusion
of M. Second, the pressure parallel to the magnetic field (T3

3) decreases with the magnetic field,
while the components perpendicular to B increases (T1

1 and T2
2). As a consequence, magnetic fields

induce different pressures in different directions in the star, causing the stars to be deformed with
respect to the symmetry axis.

In the same way as done in Eqs. (2.5-2.9), let us now use Eq. (3.17) in order to obtain the components
of the energy momentum tensor (to appear in the source terms of the field equations) in the 3+1
formalism with the inclusion of the magnetization term M. The corresponding contribution of the
magnetization (mag) to the energy density is:

E(mag) =
1

µ0

[
M
B

(
EθEθ + ErEr

)]
, (3.26)

which needs to be added to Eq. (2.5) in order to have the total energy of the system like ET → ET + E(mag).
The momentum density flux can be written as:

J
(mag)
φ =

1

µ0

[
M
B

(
BθBθ + BrBr

)]
, (3.27)

which is added to Eq. (2.6) to give the total momentum density flux of the system Jφ → Jφ + J
(mag)
φ .

Finally, M contributes to the 3-tensor stress components as:

S
(mag)r
r =

2M
B

BθBθ
Γ2

, (3.28)

S
(mag)θ
θ =

2M
B

BrBr

Γ2
, (3.29)

S
(mag)φ
φ =

2M
B

(
1

Γ2
+ U2

)(
BθBθ + BrBr

)
, (3.30)

where, again, these components are added to the fluid and purely field ones in Eqs. (2.7-2.9) to
obtain the total stress of the system.

The Maxwell equations are also modified with the inclusion of M. In this case, the inhomogeneous
Maxwell equation (Gauss-Ampère) in presence of external magnetic field reads:

∇αFαβ = µ0jβ + µ0∇αMαβ. (3.31)

With the definitions of Eq. (3.13), Eq. (3.15) and Eq. (3.16), the last term can be written as:

µ0∇αMαβ =M∇αFαβ + Fαβ∇αM, (3.32)



Chapter 3 A self-consistent study of magnetic field effects on hybrid stars 33

therefore, the Eq. (3.31) becomes:

∇αFαβ =
1

1−M

[
µ0jβ + Fαβ∇αM

]
, (3.33)

which can be expressed in terms of the magnetic vector potential Aφ in the same way as in Eq. (2.30)
and (2.31). However, the source terms with the inclusion of M become:

σAt =
1

M− 1

[
µ0A2(gttj

t + gtφjφ) + ∂At∂M
]

−λ
2

N2
Nφr2 sin2 θ∂At∂Nφ

−
(

1 +
λ2

N2
r2 sin2 θ(Nφ)2

)
∂Aφ∂Nφ

−(∂At + 2Nφ∂Aφ)∂(lnλ− ν)

−2
Nφ

r

(
∂Aφ
∂r

+
1

r tan θ

∂Aφ
∂r

)
, (3.34)

and

σAφ =
1

M− 1

[
µ0A2λ2(jφ − Nφjt)r sin θ +

1

r sin θ
∂Aφ∂M

]
−λ

2

N2
r sin θ∂Nφ(∂At + Nφ∂Aφ)

+
1

r
∂Aφ∂(lnλ− ν), (3.35)

which is easily reduced to Eq. (2.32) and Eq. (2.33) for M = 0.

In the next section, we will use this fully general-relativity approach to study the effects of strong
magnetic fields on hybrid stars by solving the Maxwell equations (Eqs. 2.30-2.31 with the new sources
as given obove) coupled to Einstein equations (Eqs. 2.24-2.27, together with the contribution due
to the magnetization as given by Eqs. 3.26-3.30) in a self-consistent way taking into consideration
the anisotropy of the energy-momentum tensor due to the magnetic field, magnetic field effects on
equation of state and the interaction between matter and the magnetic field (magnetization). The
equation of state for charge neutral chemically-equilibrated matter was calculated at zero temperature
and over a wide interval of densities and magnetic fields with very small steps (around 100 different
values of magnetic field ranging from 1015 G to 1×1019 G). This 2-dimensional table was included in
the Lorene C++ class library for numerical relativity (Bonazzola et al., 1993; Bocquet et al., 1995)
in order for the code to find the correct magnetic field for each density in each direction of the star
and, then, find the corresponding values for the system’s thermodynamical properties.

3.3 Results

The equilibrium configurations are determined by the central enthalpy Hc and the choice of the
magnetic dipole moment µ. We could have, instead, chosen a fixed current function k0 and allow
the magnetic dipole moment to vary. We chose the former in order to have a better control of
the parameter space. In order to compare the effects of including or not magnetic field into the
equation of state, we perform calculations considering sequences of constant magnetic moment µ
and increasing the central enthalpy (that can be translated into the baryon number density ncB).
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3.3.1 Global properties of magnetic neutron stars

Figure 3.2 displays the gravitational mass (in units of solar mass) as a function of the baryon number
density (in units of fm−3) for a sequence of stars at different fixed magentic dipole moments µ. We
show i) the case when the magnetic field is included only in the structure of the star (no EoS(B), no
mag); ii) the effect of the magnetic field into the equation of state, but without the magnetization
term (EoS(B), no mag) and iii) the effect of the magnetic field into the equation of state plus the
magnetization term (EoS(B), mag) on the neutron stars structure. We also show the non-magnetized
cased denominated TOV.
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Figure 3.2: Relation between the gravitational mass and the central baryon number density
for non-magnetized and magnetized models. In the last case, we also included the effects of the

magnetic field into the equation of state (EoS(B)) and the magnetization term (mag).

According to Figure 3.2, a magnetic-field dependent equation of state does not affect considerably
the mass of highly magnetized neutron stars through the effect on the equation of state for given
magnetic fields when comparing stars with the same baryon number density. For example, the curves
EoS(B) - mag and EoS(B) - no mag, almost overlap in all cases. In addition, when the magnetization
term M is considered, we see a difference in the curve for µ = 3.0× 1032 Am2. This is due to the
fact that the magnetization reduces the total pressure through, for example, the energy-momentum
component T1

m1 = P(E ,B)−MB. As a consequence, the effect of the magnetization is to decrease
the stellar masses.

From this point on, for consistency, we make use of the magnetic field dependence in the EoS and the
inclusion of the magnetization term in all the results that will be shown. For example, the mass-radius
diagram for highly magnetized neutron stars determined by a constant magnetic dipole moment µ
is presented in Figure 3.3. In this figure, we also show calculations for evolutionary sequences at
fixed star baryonic mass of MB = 2.20 M� (gray line). We choose to fix the baryon mass instead
the usual gravitational mass since this is the fixed quantity during the evolution of isolated neutron
stars. In addition, we have chosen a fixed baryon mass of 2.20 M� because its evolution line ends
almost at the maximum mass for the non-magnetized and spherical configuration. In this case, the
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full purple circles represent a possible evolution from a highly magnetized neutron star (a younger
star) to a non-magnetized and spherical one (an older star).
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Figure 3.3: Mass-radius diagram for non-magnetized and magnetized models. The calculation
was done for different fixed magnetic moments µ. The higher the magnetic moment, the higher
the magnetic field strengths throughout the star. Effects of the magnetic field into the equation
of state and the magnetization are also included. The gray line shows an equilibrium sequence
for a fixed baryon mass of 2.2 M�. The absolute values of GRV2 and GRV3 for the spherical
star at MB = 2.2 M� are 8.68 × 10−6 and 3.87 × 10−6, while with magnetic fields the typical

values are ∼ 10−4 for both GVR2 and GVR3.

Looking at different magnetic dipole moment lines in Fig. 3.2 and Fig. 3.3, i.e., µ = 1.0×1032 Am2,
2.0 × 1032 Am2 and µ = 3.0 × 1032 Am2, one sees that increasing µ (and therefore the magnetic
field strengths throughout the star) affects the structure of the neutron star in many ways. First,
the maximum mass increases. This is an effect of the Lorentz force acting outward and against
gravity. For this reason, the star can support more mass. Second, the circular equatorial radius of
the sequence increases and the star becomes much more deformed with respect to the symmetry
axis. This deformation is also an effect of the assumption of a poloidal magnetic field, which makes
the star more oblate. Calculations including toroidal magnetic field components have shown that
magnetized stars become more prolate with respect to the non-magnetized case (Pili et al., 2014a;
Frieben and Rezzolla, 2012b; Mastrano et al., 2015).

Now, we make use of the star with fixed stellar baryon MB = 2.20 M� in Fig. 3.3 to present mi-
croscopic and macroscopic properties as a function of the central magnetic field. First, as shown
in Fig. 3.4, the central baryon number density decreases with the central magnetic field and it has
the maximum value only in the static case. In the other cases, the central baryon number density
reduces at the stellar center. This is due to the Lorentz force, which is related to the macroscopic
currents that create the magnetic field, acting on the matter which has been pushed off-center.
This is analogous to the number density reduction in the rotating star case. As we will see, this
has a huge impact on the particle population of these objects. Second, the gravitational mass also
increases induced by magnetic fields. This is because the gravitational mass as given by Eq. (2.43)
is proportional to the sources of Einstein equations, i.e energy density, pressure, etc., which includes
now the magnetic field contribution. Third, the magnetic dipole moment µ increases with the central
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Figure 3.4: Microscopic and macroscopic star quantities, i.e central baryon number, gravita-
tional mass, dipole magnetic moment and ratio between polar and equatorial coordinate radii,
as a function of the central magnetic field. These curves represent an equilibrium sequence
at fixed baryon mass MB = 2.20 M� for different magnetic field intensities. See the line for

MB = 2.20 M� in Fig. 3.3).

magnetic field, as expected. Fourth, the ratio between the polar and the equatorial radii increases
as the magnetic field increases and, therefore, the star becomes more deformed (oblate). For all
quantities in Figure 3.4, the curves have a qualitatively change in behaviour for a magnetic field
strength of 0.9 − 1.0 × 1018 G. At this point, the magnetic force has pushed the matter off-center
and a topological change to a doughnut-shaped density distribution (no matter at the stellar center)
within the stellar interior can take place (Cardall et al., 2001). However, our current numerical
tools do not enable us to handle toroidal configuration, which gives a limit for the magnetic field
strength that we can obtain within this approach. As a consequence, the baryon number density, for
example, will never reach zero at the center of the star. Still, the value of the magnetic field shown
in Figure 3.4 represents the limit in terms of magnetic field strength for a star at fixed baryon mass
of MB = 2.20 M�.

Note that in Figure 3.4, the ratio between the polar and the equatorial radii can reach 50% for a
magnetic field strength of ∼ 1018 G at the center. Therefore, one sees that the deviations from
spherical symmetry are quite significant and need to be taken into consideration while modelling
these highly magnetized objects and a simple TOV solution can not be applied.

3.3.2 Degrees of freedom in magnetic neutron stars

The changes in the global properties of stars due to the inclusion of the magnetic field into the
gravitational equations are remarkable and, in order to study how the microphysics is modified with
the magnetic field, we present in Figure 3.5 the particle population (Yi = ρi/ρb, with ρi being the
density of each particle and ρB the baryon density) as a function of the baryon chemical potential
µB for different values of the magnetic dipole moment µ for a fixed baryon mass MB = 2.20 M�.
The kinks in the population plot that can be observed for values equal to or greater than µ =
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2.0× 1032 Am2 are due to the Landau quantization. See Fig. 3.4 for the magnetic field values that
correspond to magnetic dipole moments shown in Figure 3.5.
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Figure 3.5: Stellar particle population as a function of the baryon chemical potential. All
figures represent an equilibrium sequence at fixed baryon mass MB = 2.20 M�. As one increases
the magnetic field, the particle population changes inside the star. These stars are represented
in Fig. 3.3 by the full purple circles. For the non-magnetized case (B=0), the vertical red curve

represents the chemical potential reached at the center of the star, namely, 1320 MeV.

For the spherical non-magnetized case, the TOV solution was obtained for a hybrid star (with mixed
phase) composed by the baryon octet, electrons, muons and u, d quarks (no s quark). In Figure 3.5,
the red vertical line represents the baryon chemical potential reached at the center of the maximum
mass star in the non-magnetized case. With the inclusion of the magnetic field through the dipole
magnetic moment of µ = 1.0 × 1032Am2, the central baryon chemical potential is reduced due to
the Lorentz force. The new central value for µB is below the threshold for the creation of quarks,
which are, therefore, suppressed. An even larger effect can be seen in the star for higher values of
the magnetic dipole moments µ = 2.0×1032 Am2, µ = 3.5×1032 Am2, when even the hyperons are
suppressed. As a result, the properties of these objects such as neutrino emission and consequently
the star cooling, are strongly affected by the magnetic field strength in their interior as already
pointed out by Dexheimer et al. (2012a) for a spherical solution.

From Figure 3.5 it is evident that a quark and mixed phase are suppressed if a strong magnetic field
is present in the interior of neutron stars. Therefore, according to our models, we do not expect to
find exotic or quark matter in highly magnetized neutron stars, only protons, neutrons and leptons.

Figure 3.6 shows the magnetic field profile and the enthalpy iso-contours for a star with the maximum
mass for a magnetic dipole moment of µ = 3.5× 1032 Am2. This value roughly corresponds to the
solution with maximum field configuration achieved with the code. In this case, other configurations
different from Fig. 3.4, as depicted in Figure 3.6, can reach magnetic field values higher than
1.0× 1018 G.
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Figure 3.6: Magnetic field surfaces (on the top panel), i.e Aφ iso-contours measured by
the Eulerian observer O0 for the EoS described in the preivous sections. This star is near the
maximum equilibrium configuration achieved by the code and the maximum mass for the value
µ = 3.5 × 1032 Am2, as shown in Figure 3.3. In the bottom panel, the corresponding enthalpy
profile is shown, which corresponds to a central enthalpy of Hc = 0.26 c2 (n = 0.463 fm−3).
The gravitational mass obtained for the star is 2.46 M� and the polar and the central magnetic
fields are 8.59×1017 G and 1.62×1018 G, respectively. The ratio between the magnetic pressure

and the matter pressure in the center for this star is 0.793.

It is instructive to discuss the poloidal magnetic field geometry considered here to describe magnetized
neutron stars. It was already outlined in Chapter 1 that the poloidal field geometry is intuitive, but
it is not the most general case. Unlike the external field geometry, the internal magnetic field
configuration cannot be constrained by direct observations. In addition, it has been suggested that
differential rotation in newborn neutron stars could create a strong toroidal magnetic component.
The effect of purely toroidal fields on the structure of neutron stars were studied in (Kiuchi et al.,
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2009; Frieben and Rezzolla, 2012a). Numerical simulations of purely poloidal or purely toroidal
geometries have found them to be unstable (Braithwaite, 2006; Lander and Jones, 2012). Among
mixed-field configurations, the twisted-torus geometry was found to be the most promising candidate
for a stable magnetic field configuration (Yoshida et al., 2006; Glampedakis et al., 2012; Ciolfi et al.,
2009; Pili et al., 2014b). All these models consider a poloidal-dominated geometry, with toroidal-to-
poloidal energy ratio restricted to less than 10%. Recently, Ciolfi and Rezzolla (2013) succeeded in
producing toroidal dominated twisted-torus configurations, but their stability in nonlinear simulations
needs still to be established. It has been found that while purely poloidal magnetic fields deform a
neutron star shape and matter distribution to an oblate shape (equatorial radius larger than polar
radius), purely toroidal fields fields deform them to a prolate shape. Thus, for magnetized stars with
a purely toroidal geometry, different combinations of the surface deformation are possible depending
on the relative strength of the field. As a consequence, the matter distribution of the star can vary
with the magnetic field geometry in a very complicated way. But, this is beyond the scope of this
work and we leave the general case for future study.

Finally, based on the results presented in this chapter, we recently reported a realistic calculation
of the magnetic field profile for the microscopic description of matter inside strongly magnetized
neutron stars (Dexheimer et al., 2016). Unlike previous estimates, which are widely used in the
literature, we found that magnetic fields increase relatively slowly with increasing baryon chemical
potential (or baryon density) of magnetized matter. More precisely, the increase is polynomial instead
of exponential, as previously assumed. Through the analysis of several different realistic models for
the microscopic description of matter in the star (including hadronic, hybrid and quark models)
combined with general relativistic solutions endowed with a poloidal magnetic field obtained by
solving Einstein-Maxwell’s field equations in a self-consistent way, we generated a phenomenological
fit for the magnetic field profile to be used as input in microscopic calculations.





Chapter 4

Magnetic field effects in proto-neutron
stars

This chapter contains the results of numerical calculations of magnetized and rotating proto-
neutron stars (PNS) within the framework of General Relativity. We applied a hadronic chiral
SU(3) model (already described in Chapter 3 for cold and magnetized neutron stars) to proto-
neutron stars with trapped neutrinos and at fixed entropy per baryon. In the case of PNS’s, as the
neutrino chemical potential decreases in value over time, this alters the chemical equilibrium and
the composition inside stars, leading to a change in the structure and in the particle population
of these objects. We will see how the magnetic field alters the number of trapped neutrinos in
the stellar interior, together with strangeness content and temperature in each evolution stage.

4.1 Stellar interior

When a supernova explodes, it leaves a hot, lepton-rich and rapidly rotating remnant: a proto-
neutron star. Burrows and Lattimer (1986a) and Pons et al. (1999) showed that in a time scale of
10-20 seconds, PNS’s cool significantly and lose their high lepton content mainly through electron
neutrino (ν) emission. As we will see, PNS’s are very hot stars with temperature up to 50 MeV in the
center. The environment in these stars is so extreme, that neutrinos can be trapped on dynamical
time scales and develop a finite chemical potential (Prakash et al., 1997). In addition, it has been
shown that rotation can play an important role in the description of these objects (Goussard et al.,
1997, 1998).

Although the initial evolution of PNS’s from hot, ν-trapped and lepton-rich to cold and ν-free NS’s
is far from equilibrium and characterized by strong instabilities, just a few seconds after the bounce,
they can be approximately considered as a sequence of equilibrium configurations. This is the so-
called Kelvin-Helmholtz phase (Pons et al., 1999; Fischer et al., 2010). During this process, the
structure of the PNS can be divided into a core region, that we will study in this chapter, and an
envelope with entropy per baryon much higher than in the core. In the core, the entropy per baryon
can reach values of sB w 1, 2. A fixed entropy per baryon allows to model a temperature increase
towards the center of the star. These properties make PNS’s quite different objects from the ordinary
cold neutron stars as we saw in Chapter 3. It is worth to mention that the explosion of core-collapse
supernovae is a still poorly understood mechanism. However, as NS’s are born from PNS’s, one
expects that some features currently presented in neutron stars as, for example, magnetic fields and
rotation rates, are related to their progenitors.

41
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We saw in Chapter 1 and Chapter 3 that certain classes of neutron stars possess very strong magnetic
fields on their surfaces on the other of 1012−15 G (Shapiro and Teukolsky, 2008; L., 1964), but the
origin of such high magnetic fields are still under debate. Many authors (Akiyama et al., 2003;
Obergaulinger et al., 2009; Sawai et al., 2013; Sawai and Yamada, 2016; Cerdá-Durán et al., 2008;
Mösta et al., 2015) showed that magnetorotational instabilities (MRI) in proto-neutron stars can
amplify small seed magnetic fields over very short time scales. However, the limit of this amplification
is still unknown. Recently, Rembiasz et al. (2016) showed that the amplification factor seems to
be small and, therefore, the magnetic field cannot be amplified through MRI channel modes. In
addition, Rembiasz et al. (2016) suggested that another physical process, a MRI-driven turbulent
dynamo, could further amplify small seed magnetic fields in PNS’s.

Our study here focus mainly on the effects of magnetic fields in PNS’s, not on the origin of the
field itself. With this in mind, we will investigate the response of the structure of PNS’s, as well
the number of trapped neutrinos and particle composition to a given magnetic field in the stellar
interior. Pons et al. (2001b) addressed the importance of quarks in the evolution process of PNS’s.
The appearance of quarks softens the equation of state and may lead to less massive and smaller
stars (Lattimer and Prakash, 2001). In addition, quarks would alter the neutrino emissivities and,
therefore, influence other properties like the surface temperature in PNS’s and NS’s. In a future
work, we hope also to investigate the role played by phase transitions from quark to hadronic matter
inside the stars, but here, we neglect possible effects of a quark phase. This is a good approximation
since we have shown in Chapter 3 that quarks are suppressed by strong magnetic fields. However,
in the hadronic version of the model as described in Chapter 3, hyperons are included as the ”exotic
matter” component that can, potentially, soften the equation of state. Note that there is no reason to
ignore the appearance of hyperons, as they should appear at about two times saturation density, and
their presence might produce distinct neutrinos signals that can be detected in the next generation
neutrino detectors (Diwan and Jung, 2000).

In order to simulate proto-neutron star conditions, trapped neutrinos are included by fixing the lepton
fraction YL = ΣiQlini/nB, with the lepton number Ql being non-zero only for leptons (Burrows and
Lattimer, 1986b; Keil and Janka, 1995; Gudmundsson and Buchler, 1980). The entropy per baryon
sB = S/A = s/nB is also fixed in the core of the star (Burrows and Lattimer, 1986b; Pons et al.,
2001b, 1999; Stein and Wheeler, 2006). For the first approximate stage of a PNS evolution, we
choose sB = 2, YL = 0.4. For the second stage, the star has cool down through neutrino emission
and has reached beta β−equilibrium. This state is represented by sB = 1. The last and final stage,
a cold NS in beta equilibrium, is simply represent by T = 0.

The temperature is not expected to be constant in the interior of compact stars. Sophisticated
approaches have realistic profiles for temperature (Reddy et al., 1998b; Pons et al., 2001a), but, in
this thesis, we do not attempt to make use of them since the aim is only to investigate magnetic
field effects on different approximate stages of the star evolution. For this reason, as an approxima-
tion, we am going to consider different values of fixed entropy per baryon throughout the star. In
Fig. 4.1, it is shown the three equations of state used to describe both a cold neutron star (T=0 and
β−equilibrium) and two different approximate stages of evolution of PNS’s (sB = 1, β−equilibrium
and sB = 2, YL = 0.4).

4.2 General Relativistic Calculation

In order to model stationary and axi-symmetric neutron and proto-neutron stars in presence of strong
poloidal magnetic fields, we solve the coupled Einstein-Maxwell field equations by using the equations
of state shown in Fig. 4.1. As it was already shown by Goussard et al. (1997), the equation of motion
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Figure 4.1: Equations of state for proto-neutron and neutron stars. Note that the T = 0 and
sB = 1 in β-equilibrium lines almost overlap.

Eq. (2.15) remains the same when describing proto-neutron stars at fixed entropies per baryon sB.
In this case, there is no entropy gradient throughout the star, i.e., ∂isB = 0, where i stands for
the spatial coordinates (r, θ). Consequently, the additional term Te−H∂isB present in the equation
of motion (Eq.4 in Goussard et al. (1997)) for hot stars disappears and the standard numerical
procedure (as described in Chapter 2) can be used both for cold and hot stars. Finally, let us note
that the special case with T = const is not realistic, since one expects higher temperatures at higher
densities in stars.

As we are interested in studying how the internal properties of isolated proto-neutron stars change
over time, we have fixed the stellar baryonic mass to MB = 2.35 M�. This value represents a star
whose gravitational mass is close to the maximum mass allowed by TOV solutions of neutron and
proto-neutron stars described within the EoS’s in Fig. 4.1. At a fixed baryon mass, we can then
compare how strangeness (through the presence of hyperons) and neutrinos are distributed inside
the star along its temporal evolution.

The magnetic equilibrium configurations are determined by the choice of the current function k0. In
table 4.1, we show the corresponding central baryon number density and the central magnetic field
reached in stars for a given k0. Increasing the value of k0 arbitrarily, we will find a point where the
magnetic force will push the matter off-center so strongly that a topological change to a toroidal
configuration takes place (Cardall et al., 2001). As our current numerical tools do not enable us to
solve such equilibrium configurations (our input is the stellar central enthalpy is finite and cannot
be zero, as it would be the case for toroidal shape solutions), there is a limit for the magnetic field
strength that one can obtain within this approach. We obtain a maximum current function close to
k0 = 39000, which corresponds to a central magnetic field ∼ 1018 G in all three approximate stages
of star evolution.

Throughout this chapter, we make use of equations of state that contain hyperon degrees of freedom.
Hyperons contain one or more strange quarks as their internal constituents. This enables us to study
how strangeness is distributed inside stars. For example, in Fig. 4.2, we depict the strangeness density,
ns, which is defined as the sum over the amount of strangeness of each baryon species multiplied by
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Table 4.1: Relation between the current function k0, central baryon number density nc
B, central

Bc and surface magnetic field Bs, and gravitaional mass Mg for a star at fixed baryon mass
MB = 2.35 M�. We considered three different approximate evolution states from a hot proto-
neutron star to a cold neutron star. We have also added the absolute values of the GRV2 and

GRV3 (numerical errors) for all solutions.

EoS k0 n c
B(fm−3) Bc(1018G) Bs(1018G) Mg(M�) GRV2 GRV3

0 0.694 0 0 2.03 3.88× 10−6 5.24× 10−6

T=0 35000 0.509 1.01 0.36 2.07 9.63× 10−6 9.78× 10−6

39000 0.424 1.07 0.46 2.09 1.01× 10−5 1.23× 10−5

0 0.721 0 0 2.04 6.81× 10−4 9.03× 10−4

sB = 1 35000 0.514 1.02 0.34 2.08 8.54× 10−4 9.68× 10−4

β 39000 0.402 1.06 0.45 2.11 9.01× 10−4 9.82× 10−4

0 0.790 0 0 2.01 4.80× 10−4 1.30× 10−4

sB = 2 35000 0.575 1.04 0.37 2.04 4.73× 10−4 1.42× 10−4

YL = 0.4 39000 0.474 1.10 0.47 2.06 5.01× 10−4 1.57× 10−4

its number density, as a function of the stellar coordinate radius r for several k0 values. The panel on
the top corresponds to a cold neutron star, T=0 in β-equilibrium. In the middle and in the bottom
panels in Fig. 4.2, we depict the strangeness density profile as a function of the coordinate radius for
proto-neutron star matter in two situations: hot with sB = 1 and in β-equilibrium and at very high
entropy per baryon sB = 2 with trapped neutrinos YL = 0.4, always assuming a fixed star baryon
mass MB = 2.35 M�. In this figure, the vertical lines represent the stellar surface (coordinate radius)
for non-magnetized stars. We have chosen to show all quantities as function of the coordinate radius,
since there is no appropriate definition for the circular coordinate radius in the polar direction.

Hyperons are supposed to appear inside cold, beta-equilibrated, neutrino-free stellar matter at a
density of about 2 times nuclear saturation density. According to the upper panel in Fig. 4.2, the
magnetic field changes significantly the amount of strange matter in neutron stars. In particular,
strangeness disappears completely for a central magnetic field strength of ∼ 1018 G (see table 4.1).
The Lorentz force acts outwards and reduces the stellar central baryon density, so that its value is
below the threshold for the creation of hyperons, which are, therefore, suppressed inside the star.

In Fig. 4.2, we show the strangeness density profile in equatorial (θ = π/2) and polar directions
(θ = 0). For spherical stars, the amount of strangeness is the same in all directions. However, since
the magnetic field breaks the spherical symmetry, magnetized stars will be deformed with respect to
the symmetry axis. In this case, they will become oblate objects with polar radius (θ = 0) smaller
and equatorial radius (θ = π/2) which will be larger than in the case without magnetic fields. As a
result, strangeness will be asymmetrically distributed throughout the star. For higher values of the
magnetic field, the strangeness density can be considered almost constant for a large range of radii,
see e.g. the middle panel in Fig. 4.2 for a central field of ∼ 1018 G (k0 = 39000) and θ = π/2. Note
that the corresponding surface magnetic field obtained for the models in Fig. 4.2 are higher than
the observed ones in the surface of neutron stars. Nevertheless, according to the Virial theorem the
magnetic field reached at the center (where strangeness will appear) of neutron stars is expected to
be so high as the magnetic field values found here.

The study of strangeness distribution inside NS or PNS are motivated also by the change of the
neutron star cooling rates in presence of hyperons (Prakash et al., 1992; Pethick, 1992; Chatterjee
and Vidaa, 2016). Since the strangeness is directly related to the amount of hyperons and the
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Figure 4.2: Strangeness density profile on equatorial (θ = π/2) and polar coordinate radii
(θ = 0) for one neutron star, T=0 in β-equilibrium, one PNS with fixed entropy per baryon
sB = 1 in β-equilibrium and one PNS star with sB = 2 and fixed lepton fraction YL = 0.4. All
stars have the same fixed baryon mass MB = 2.35 M� (see Table 4.1 for the corresponding
gravitational masses). Different k0’s correspond to different current functions and character-
ize different magnetic field strength profiles. For the largest k0 values, the cold star has no

strangeness.
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Figure 4.3: Baryon number density profile in the equatorial plane (θ = π/2) for the most
magnetized stars studied at fixed baryon mass of MB = 2.35 M� (see Table 4.1 for more details),
assuming 3 different approximate stages of evolution: T=0 and β-equilibrium; sB = 1 and β-

equilibrium and sB = 2 with YL = 0.4. In all cases, the current function is k0 = 39000.

corresponding channels for neutrino emission, it will affect the cooling behaviour of the star due to
the magnetically induced deformation of the star.

As stated by Cardall et al. (2001); Franzon and Schramm (2015), the Lorentz force can reverse
its direction in the equatorial plane in magnetized stars. The Lorentz force is obtained from the
derivative of the magnetic potential M(r, θ), which has a minimum at some radius inside the star
(see Fig. 6.3 in Chapter 6). This means that the Lorentz force will chance its sign and, therefore,
act differently in different parts of the star. In addition, if we suppose that the magnetic field decays
over time during the magnetic field evolution in proto-neutron stars, we see from Fig. 4.2 that for
sB = 1 and β-equilibrium and sB = 2 with YL = 0.4 that the amount of strangeness becomes higher
in the inner core of the star, but it is reduced in the outer layers (crossing lines) for a decreasing k0.
This behaviour is not seen for cold neutron stars, where the strangeness increases in all directions
as the magnetic field decays (see upper plot Fig. 4.2).

Note that for the most magnetized stars studied here (see larger k0 in table 4.1), the maximum
density can be reached away from the stellar center. To illustrate this, in Fig. 4.3 we show the
baryon number density profile in the equatorial plane for a star with MB = 2.35 M� assuming the
3 different approximate evolution states: 1) T=0 and β-equilibrium; 2) sB = 1 and β-equilibrium
and 3) sB = 2 with YL = 0.4. In the second case, the maximum baryon number density is not at
the stellar center. The other cases do not present this behaviour. This is because stars with lower
densities in the inner core become easily more deformed due magnetic fields. As one can see from
Fig. 4.3, the maximum baryon number density is shifted away from the center (for the second case),
however, this tiny effect is not enough to change the particle population inside stars. Nevertheless,
a more comprehensive study of the subject would be very desirable by using the formalism from
Cardall et al. (2001).

Neutrinos are mainly produced by electron capture as the progenitor star collapses. However, most
of them are temporarily prevented from escaping because their mean free paths are considerably
smaller than the radius of the star. This is the well-known trapped-neutrino era, where the entropy
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Figure 4.4: Electron neutrino density profile as a function of the equatorial and polar coor-
dinate radii for one proto-neutron star with MB = 2.35 M� (see Table 4.1 for the corresponding

gravitational masses) assuming sB = 2 and YL = 0.4.

per baryon is about 1-2 through most of the star and the total number of leptons per baryon has a
typical value of YL w 0.4. It is worth to mention that the amount of neutrinos, on the other hand,
depends on the EOS used (Tan et al., 2016).

In Fig. 4.4, we show the electron neutrino number density profile as a function of the coordinate
radius for a star at fixed baryon mass of MB = 2.35 M�. This same star is depicted in the bottom
plot in Fig. 4.2. The magnetic field reduces the amount of neutrinos present at the center of the
star. For example, for the free magnetic field solution, the maximum electron neutrino density is ∼
0.048 fm−3 at the center of the star. In the maximally magnetized case, this value is reduced to
∼ 0.030 fm−3. Note that according to Fig. 4.4, the amount of trapped neutrinos decreases as the
magnetic field significantly drops for coordinate radii & 5 km (in the equatorial plane, θ = π/2).
However, the opposite effect is seen for radii . 5 km. In addition, since the stars are deformed
due to the magnetic field, the neutrino flux leaving the PNS’s will be asymmetric, having different
values in the polar and equatorial directions. These differences may have an observable impact on
the neutrino flux from magnetized PNS’s.

In Figs. 4.5 and 4.6, we show the temperature throughout a PNS for two approximate stages that
reproduce temporal evolution stages. In Fig. 4.6, the expected initial star (just after the bounce)
is lepton rich and extremely hot. For a non-magnetized and spherical star, the temperature at
the center reaches values close to 50 MeV. On the other hand, when the strong magnetic field is
included, the central temperature reaches values below 40 MeV. This same effect is observed (with
lower values) for a hot and β-equilibrated PNS model. In Fig. 4.5, the difference in the central
temperature between the non-magnetized and the highest magnetized solution is of the order of 2
MeV, much less than in the neutrino ν trapped era. This is related to the stiffness of the equation
of state. According to our model, the equation of state describing the first approximate stage of
evolution is softer than in the other stages.

According to Prakash et al. (2001); Reddy et al. (1998a); Pons et al. (2001a); Prakash et al. (2001),
larger lepton fraction YL disfavours hyperonic degree of freedom in the stellar interior. As a result,
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Figure 4.6: Same as in Fig. 4.5 but for one proto-neutron star with sB = 2 and YL = 0.4 (see
Table 4.1 for the corresponding gravitational masses).

the respective EOS’s becomes stiffer. This can be seen in Prakash et al. (2001), where a lot of
hyperons were present in a β-equilibrated matter. In our approach, the couplings do not favor a
large amount of hyperons in β-equilibrated matter. In this case, the main effect of fixing YL is to
make the star more isospin symmetric and, as a consequence of a softer EOS, less massive.

For a PNS with sB = 2 and YL = 0.4, the surface temperature of the core is ∼ 13 MeV while for
sB = 1 and β-equilibrium it is ∼ 2 MeV. However, in both cases, with the decay of the magnetic
field, the temperature increases in the inner layers of the star and decreases in the outer layers. Note
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that the same effect was observed for the strangeness density and neutrino distribution inside the
star.

The presence of strong magnetic fields affects the star surface thermal distribution (Aguilera et al.,
2008). The knowledge of the correct temperature distribution in PNS’s and NS’s is crucial for
modelling the cooling of these stars. Thus, models that include the presence of high magnetic fields
should be reconsidered, not only to investigate the effects of the anisotropy of the energy-momentum
tensor due to the magnetic field, but also to include the asymmetric temperature distribution in these
objects.

To close this chapter, we will investigate the contribution of rotation to the breaking of the spherical
symmetry. In the cases studied here, we have seen that the magnetic field does not only affect
the macroscopic structure of stars, but also it impacts their microscopic composition. Such a study
is extremely important if one wants to understand the thermal evolution of stellar systems where
spherical symmetry is broken.

Although PNS’s are probably strongly differentially1 rotating (Baumgarte et al., 1999; Morrison
et al., 2004; Ansorg et al., 2009), we model uniformly rotating stars in order to estimate the effect
of rotation on strongly magnetized stellar models within a fully general relativity calculation. The
effect of the centrifugal force due to rotation in neutron stars was considered already by many authors
(Cook et al., 1994; Nozawa et al., 1998; Salgado et al., 1994; Negreiros et al., 2010; Komatsu et al.,
1989; Weber et al., 1991). However, only few works presented self-consistent calculations taking
into account both magnetic field and rotation effects on the neutron star structure (Bocquet et al.,
1995; Pili et al., 2014b; Frieben and Rezzolla, 2012a). Here, we contribute to this discussion by
including the temperature effects on a rotating and magnetized lepton rich PNS described by the
EoS with sB = 2 and trapped neutrinos YL = 0.4.

In the same spirit as we already showed in Fig. 3.5 in Chapter 3, in Fig. 4.7 we depict the internal
composition of proto-neutron stars in 3 scenarios: A) a non-rotating and non-magnetized proto-
neutron star at fixed baryon mass of MB = 2.35 M�; B) the same star as in A), but rotating at a
frequency of 900 Hz. This frequency is used since the star becomes strongly deformed and it allows
us to better study the effects of rotation on the microscopic properties of proto-neutron stars. The
results of this analysis can be generalized to other frequencies. Finally, we include the magnetic field
in the solution B). In this case, one obtains a rotating and magnetized proto-neutron star model
denoted by C)for the maximum value of the magnetic field achieved with the code. In this star,
the maximum central magnetic field is 3.76× 1017 G. Note that this maximum magnetic field lies
below the value obtained for non-rotating proto-neutron stars ∼ 1018 G for the same baryon mass.
In Fig. 4.7, the particles on the left hand side of the dashed black lines A), B) and C) represent the
populated degrees of freedom inside the corresponding PNS’s.

The centrifugal force due to rotation pushes the matter outwards. As a consequence, the star
expands in the equatorial direction and decreases the central number density. For example, in the
case A) the baryon density at the center is 0.790 fm−3. But if this star rotates at 900 Hz (case B),
one obtains a central density of 0.541 fm−3. And, finally, the corresponding rotating and magnetized
star C) yields a central baryon number density of 0.497 fm−3. For stronger magnetic fields such an
effect is further increased. From Fig. 4.7, we see that the amount of electron neutrinos is not reduced
in rotating PNS’s. On the other hand, exotic particles are almost suppressed inside these objects.
They might vanish completely in stars rotating faster than the case considered here. Moreover, the
magnetic field (in case C) further reduces the central number density and, therefore, further modifies
the internal degrees of freedoms.

1Differential rotation is seen when different parts of a rotating object move with different angular velocities
at different latitudes and/or depths of the body and/or in time. This indicates that the object is not solid.
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Chapter 5

Strong phase transition in magnetized
neutron stars

In this chapter, we study the effects of a strong quark-hadron phase transition in magnetized
neutron stars. Previous calculations have shown that fast rotating neutron stars, when subjected
to a quark-hadron phase transition in their interiors, could give rise to the backbending phe-
nomenon characterized by a spin-up era. First, we reproduce the results as already obtained
by many authors in the case of fast spinning neutron stars (Zdunik et al., 2006; Chubarian
et al., 2000; Cheng et al., 2002; Heiselberg and Hjorth-Jensen, 1998; Zdunik et al., 2004; Glen-
denning et al., 1997). Then, we include magnetic field effects into the problem and study the
consequences.

5.1 Motivation

Glendenning et al. (1997) proposed a method for finding the dependence of a specific EoS on the
behavior of neutron stars observables, such as the spin frequency and the frequency derivative.
They showed that phase transitions inside neutron stars can be accessed through the backbending
phenomenon, where stars spin up over time as a consequence of a phase change in their cores.
However, the exact mechanism responsible for the spin-down of stars is still unclear. The most
accepted idea is that these stars spin down because of magnetic torques, losing energy through
magnetic dipole radiation (MDR). In this way, rotating magnetized stars behave as oblique rotators
(Pacini, 1967, 1968; Gold, 1975). In addition to the dipole radiation, processes such as emission
of gravitational radiation and pulsar wind can also contribute to the braking index of neutron stars
(Ostriker and Gunn, 1969; Ferrari and Ruffini, 1969; Blandford and Romani, 1988; Manchester et al.,
1985). In all cases, the star energy loss can be described by a power law:

dE

dt
= −CΩn+1, (5.1)

with C being a term that accounts for the pulsar structure, E the kinetic energy, Ω the pulsar angular
velocity and n the braking index (see Eq. 5.3). In this way, this equation describes the dependence
of the braking torque on the rotation frequency.

According to the MDR theory, a rigid star with a constant dipole magnetic field and a constant
moment of inertia has the canonical braking index of n = 3 (see Eq. 5.5). However, in the presence
of rotation, the moment of inertia is not constant in time and, therefore, one has to considerer the
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52 Chapter 5 Strong phase transition in magnetized neutron stars

dependence I(Ω). In this case, the star responds to changes due to the centrifugal force becoming
oblate. This effect reduces the value of the braking index from the standard oblique rotator model
to a value of n < 3 (Hamil et al., 2015). Furthermore, the microphysics impacts strongly the braking
index, which can have values in the range of−∞ < n <∞ in presence of a first-order phase transition
(Glendenning et al., 1997; Chubarian et al., 2000).

In case of a phase transition, its duration epoch is governed by a slower loss of the star angular
momentum due to radiation. This can be seen in the behaviour of the I(Ω) curves in the next
sections. In addition, the phase change in the stellar interior can introduce not only a spin-up era,
but also an increase in the magnetic field throughout the star.

5.2 Equation of state with quark-hadron phase transition

The transition from confined to deconfined matter inside neutron stars has been extensively studied
over the last years and, in many cases, also applied to study properties of hybrid stars (Bombaci
et al., 2007, 2009; Yasutake et al., 2011; Dexheimer et al., 2012b; Lenzi and Lugones, 2012; Ayvazyan
et al., 2013; Brillante and Mishustin, 2014; Alvarez-Castillo and Blaschke, 2015; Dexheimer et al.,
2015; Franzon et al., 2015; de Carvalho et al., 2015). Despite this progress, at the present moment,
there are still substantial uncertainties in the equation of state regarding the description of the stellar
matter at supra-nuclear densities.

In this chapter, we make use of an equation of state with quark-hadron phase transition to describe
the stellar interior. The hadronic phase, composed of nucleons (together with leptons), is described
in the framework of a relativistic mean-field theory and takes into account many-body forces con-
tributions in the baryon couplings. For the quark phase, the MIT bag model with vector interaction
was used. In addition, we describe here the deconfinement phase transition by using the usual
Maxwell construction (not Gibbs, like in the model presented in Chapter 3) in order to reproduce a
sharp phase transition, since we are interested in maximum effects due to the phase transition. The
equation of state is depicted in Fig. 5.1 and it is described in details by Gomes et al. (2015a).

Both hadronic (H) and quark (Q) phases are charge neutral and the conditions of chemical equilibrium
determine the position or the transition density. This transition is described by a regime of constant
pressure, which leads to a discontinuity in the energy density and in the baryon number density,

PH = PQ and µHn = µQn , (5.2)

which is known as the Maxwell criteria. For the parametrizations used in this work, the phase
transition occurs at µB = 1101.30 MeV, which corresponds to a transition pressure of P0 = 0.16 fm−4

and an energy gap of ∆ε = 0.52 fm−4.

The issue of whether the phase transition takes place in a Maxwell or a Gibbs scenario (energy
density changes in the phase transition) depends on the surface tension between the two phases.
The comparison of both scenarios in the investigation of hybrid stars has been studied in several
works, see e.g. Bhattacharyya et al. (2010); Hempel et al. (2009); Yasutake and Kashiwa (2009);
Yasutake et al. (2011); Alaverdyan et al. (2010). Furthermore, the threshold values of the surface
tension necessary to describe each type of transition scenario have been calculated by Lugones et al.
(2013) and Garcia and Pinto (2013). However, such estimations are highly model dependent, and
the issue of possible phase transition scenarios remains an open question. Finally, we could have used
other equations of state with quark-hadron phase transition, and it could be that other EoS’s show
stronger quantitatively effects. However, we do not expect that the results will change qualitatively
by the use of other equations of state.
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Figure 5.1: EOS for neutron star matter including a deconfinement phase transition for the
parametrization ζ = 0.040 of the MBF formalism. The bag constant is B= 160 MeV4 and the

vector coupling (gV/mV)2 = 2.2 fm2.

5.3 Rotating neutron stars

Aside from magnetic fields, rotation is a crucial observable in stellar astrophysics. Rapidly rotating
general relativistic stars were already described by Komatsu et al. (1989); Cook et al. (1992); Ster-
gioulas and Friedman (1994). In this section, we calculate stationary equilibrium configurations of
uniformly rotating cold neutron stars within the general relativity framework as already discussed in
the previous chapters.

We assume that the internal composition of rotating neutron stars is described by the equation of
state as depicted in Fig. 5.1. The dependence of the internal structure of the NS with rotation is
crucial, since the centrifugal force due to the rotation will help to stabilize the star against collapse
and the star will be deformed, i.e., compressed in the polar direction and enlarged in the equatorial
direction. With this in mind, different rotation frequencies produce different relations between the
mass and the radius for rapidly rotating stars as shown by Friedman and Ipser (1992); Spyrou and
Stergioulas (2002); Zdunik et al. (2008); Haensel et al. (2009); Zdunik et al. (2004).

Effects of rotation on the backbending phenomenon in neutron stars were considered before by
Zdunik et al. (2006); Chubarian et al. (2000); Cheng et al. (2002); Heiselberg and Hjorth-Jensen
(1998). As the stars spin down due to the loss of angular momentum, the central density increases
and a phase transition to pure quark matter might occur (Cheng et al., 2002; Glendenning et al.,
1997). In order to investigate if the equation of state in Fig. 5.1 produces similar mass-radius
diagrams as in Zdunik et al. (2006), we show in Fig. 5.2 the baryonic mass as a function of the
circular equatorial radius for neutron stars with frequencies ranging from 0 to 1200 Hz. Similar
mass-radius diagrams MB(Req) were also obtained by Zdunik et al. (2004). In their case, it was
shown that equations of state with hyperon degrees of freedom can also produce the backbending
phenomenon. Here, we have neglected additional exotic phases with hyperons in order to investigate
exclusively the effects of a quark-hadron phase transition.
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Figure 5.2: Baryon mass versus equatorial radius for neutron stars at different fixed rotation
frequencies. These configurations were calculated using the EoS presented in Fig. 5.1.

According to Fig. 5.2, the mass-radius curves present inflexion points (with a minimum in the baryon
mass MB) for frequencies between ∼900 Hz and ∼1200 Hz. This defines a region (at fixed baryon
masses) where the backbending phenomenon may appear in the stars. Conclusions along this line
were already studied by Zdunik et al. (2006). The diagram in Fig. 5.2 shows that, as the frequency
increases, both the baryon mass and the radius of the stars increase, which is a direct effect of the
centrifugal forces due to rotation. We choose to show in Fig. 5.2 the baryon mass instead the usual
gravitational mass since this is the fixed quantity during the evolution of isolated neutron stars, as
it was already discussed in the context of PNS evolution in Chapter 4.

In Fig. 5.3, we present the moment of inertia as a function of the rotational frequency f for two
different stars at fixed baryon masses of MB = 1.90 M� and MB = 2.15 M�. Both the moment of
inertia I and the angular velocity Ω are decreasing functions of time. According to the Figure 5.3,
for the star with MB = 1.90 M�, there is a reduction in the spin-down rate when this star undergoes
a phase transition. This effect is more pronounced in the case of MB = 2.15 M�, in which the
quark-hadron phase transition induces a spin-up era in the star’s evolution. During this time, the
star will lose energy due to dipole radiation but, still, it will spin faster. This same effect was already
reported by Glendenning et al. (1997) and Weber et al. (1997).

The braking index n is defined through the relation (Gao et al., 2015):

n =
ΩΩ̈

Ω̇2
, (5.3)

in other words, the braking index of a star can be obtained directly from the frequency Ω of the
pulsar and its time derivatives, Ω̇ and Ω̈. The rotating energy loss (Eq. 5.1) due to the emission of
radiation can be represented by the equation:

dE

dt
=

d

dt

(
1

2
IΩ2

)
= −CΩn+1. (5.4)
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Figure 5.3: Relation between the moment of inertia and the frequency for rotating neutron
stars at different fixed baryon masses, 1.90 M� and 2.15 M�.

From equation Eq. (5.4), one can rewrite Eq. (5.3) in the form:

n(Ω) = 3− 3I′Ω + I′′Ω2

2I + I′Ω
, (5.5)

with I′ and I′′ being the first and the second derivatives of the angular momentum with respect to
the angular velocity Ω, dI

dΩ and d2I
d2Ω

, respectively. As a result, the braking index is now written in a
frequency-dependent manner, n(Ω).

If one ignores the changes in the moment of inertia during the spin-down evolution, it can be seen
from Eq. (5.5) that a purely dipole radiation yields a braking index of 3. However, few measurements
of braking indices of isolated neutron stars are available in the literature (Gao et al., 2015; Hamil
et al., 2015), and in all cases, one has n < 3. In order to determine accurately the braking index n,
high precision measurements of the angular velocity Ω and their corresponding time derivatives Ω̇ -
which show how stars are slowing down - are necessary . For this reason, braking index observations
are much easier for young pulsars, not only because they spin very fast, but also because the braking
is not affected by low timing noise or glitches (sudden increase in the rotational frequency of a
rotation-powered pulsar). In addition, for older pulsars, the measurements of Ω̇ and Ω̈ might require
many years and yield very small values.

In order to evaluate the braking index in presence of a quark-hadron phase transition, we make use
of the rotating configurations already shown in Fig. 5.3. The results are depicted in Fig. 5.4. In
this case, the braking index does not deviate from 3 for slow rotation. However, as the frequency
increases, it can reach values far from 3. In addition, when the phase transition is reached in the
core of the star, there is an anomalous behaviour in the braking index curve n(Ω), whose extreme
case is seen for the higher mass case MB = 2.15 M�, where the braking index reaches values from
−∞ to +∞.

From this point on, we will focus on the effects of a quark-hadron phase transition on highly
magnetized neutron stars. Bear in mind that, in contrast to rotation-powered pulsars, the strongly
magnetized neutron stars rotate slowly (P ∼ 10 s, as we showed in the P− Ṗ diagram in Chapter
1) and, therefore, are powered by their magnetic fields.
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Figure 5.4: Braking index as a function of the frequency for rotating neutron stars. The
curves correspond to the same stars as shown in Fig. 5.3.

5.4 Magnetized neutron stars

In this section, we will discuss the effects of strong magnetic fields on the global properties of neutron
stars, which are subjected to a sharp quark-hadron phase transition in their interior. Stationary and
axi-symmetric stellar models are constructed with the same numerical procedure and mathematical
set-up as in Chapter 2.

In Chapter 2, we saw that the magnetic field is generated by the azimuthal component the electro-
magnetic current 4-vector ju:

jφ = Ωjt + (E + P)k0, (5.6)

with jt being the time component of the electric current, Ω the stellar angular velocity, E the energy
density and P the isotropic contribution to the pressure. The magnetic stellar models are obtained by
assuming a constant current functions k0 and a constant magnetic dipole moment µ. Although other
choices for k0 do not alter the conclusions qualitatively, we stress that a more comprehensive study
of the field changes and the corresponding variation of current distributions would be very desirable.
Such an analysis, however, requires much more insight into the microscopics of the currents in the
different hadronic and quark phases and is beyond the scope of this chapter, where just an initial
discussion of possible observable effects of field decay in highly magnetized stars is addressed.

We show in Fig. 5.5 the mass-radius diagram for stars at different fixed magnetic dipole moments
µ and different current functions k0. From Fig. 5.5, the masses and the radii increase by increasing
the magnetic dipole moment that reaches µ = 3× 1032 Am2 and the current function that reaches
k0 = 40000. A star with MB = 2.15 M� would be represented by a horizontal line in Fig. 5.5, in
such a way that is does not reach the largest value of µ, in other words, it corresponds to a set of
evolutionary sequences with smaller magnetic dipole moments.

The existence of the backbending phenomenon in fast rotating neutron stars is determined by the
combination of three quantities: the baryon mass MB, the total angular momentum J and the
rotational frequency f. Minimum values of MB at fixed f with a monotonic behaviour of MB versus
J leads to the backbending phenomenon (Zdunik et al., 2006, 2004). In parallel to this, we conclude
that the backbending in highly magnetized neutron stars depends also on three quantities: the baryon
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Figure 5.5: Mass-radius diagram for magnetized models. The calculations were done for
different fixed current functions k0 and different fixed magnetic dipole moments µ.

mass MB, the magnetic dipole moment µ and the current function k0. In this case, the magnetic
dipole loss leads to a quark-hadron phase transition inside the stars, followed by an increase in the
electric current (and, therefore, the magnetic field) through Eq. (5.6), which it is related to the
change of the type of matter in the star with a different equation of state. In contrast, rotating
stars at fixed baryon masses have their frequency increased by angular moment loss during the
backbending epoch.

As we already discussed for the case of rotation (but without magnetic field in Fig. 5.3), the moment
of inertia changes drastically from a constant value in the case of a more realistic treatment. In
addition, a slower reduction of the moment of inertia, which is followed by a spin-up of the star, is
observed when the equation of state that describes the matter inside these objects includes a strong
quark-hadron phase transition. We show the effect of magnetic fields on the moment of inertia I
for highly magnetized stars in Fig. 5.6 and Fig. 5.7. We present I as a function of the central and
surface star magnetic fields, Bc and Bs, respectively. These calculations are done for stars with the
same fixed baryon masses as the ones presented in Fig. 5.3.

From Fig. 5.6, one can see that the higher the central magnetic field, the higher the moment of
inertia of the stars. This effect is due to the Lorentz force which allow stars to support more mass.
In addition, the circular equatorial radius of the sequence increases, as can be seen in the mass-
radius diagram in Fig. 5.5 for higher current functions or magnetic dipole moments. According to
Fig. 5.6, the maximum central magnetic field reached in stars depends strongly on the stellar mass.
For example, a star with MB = 1.90 M� has a maximum central magnetic field of ∼ 7.0× 1017 G,
whereas the star with MB = 2.15 M� can have a central magnetic field up to 1.0× 1018 G.

By assuming that the magnetic field decays over time, and fixing the baryon mass, each curve
depicted in Fig. 5.6 represents the time evolution of the stellar magnetic field and moment of inertia
of a different star. In other words, younger stars decrease in size and as the magnetic field decays,
the central density increases. During this time, these stars might change from a hadronic to a quark
phase in the core. In particular, the increase of the central magnetic field as shown in Fig. 5.6 may
represent a signature of a phase transition inside these objects. However, internal magnetic fields
cannot be directly constrained by observation. For this reason, we present in Fig. 5.7 the same star
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Figure 5.6: Relation between the moment of inertia and central magnetic field for magnetized
neutron stars with different fixed baryon masses, 1.90 M� and 2.15 M� , respectively.
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Figure 5.7: Same as in Fig. 5.6 but as a function of the surface magnetic field.

configurations as shown in Fig. 5.6, but as a function of the (polar) surface magnetic field, which
can potentially be observed.

Looking at the star with fixed baryon mass of 1.90 M� in Fig. 5.7, one sees that the moment of
inertia, which decreases in time, has a slower reduction when the star passes through the phase
transition. However, for the star with baryon mass of 2.15 M�, the surface magnetic field in fact
increases due to the phase transition. In this case, the moment of inertia as a function of Bs exhibits
a small “magnetic-up era”, whereas this same effect is much more evident when the central magnetic
field Bc is considered.

According to Fig. 5.6, during the “magnetic-up era”, a MB = 2.15 M� star has increased the value of
its central magnetic field by an amount of 0.23× 1018 G, while the surface magnetic field varies from
0.37× 1018 G to 0.38× 1018 G (see Fig. 5.7). For a star with MB = 1.90 M�, the central magnetic
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field increases by an amount of 0.1× 1018 G, while the surface magnetic field always decreases.
Such effects might be associated with giant flares presented in magnetars (Mallick and Sahu, 2014).

5.5 Gravitational wave emission from neutron stars

We will use now the model discribed in the previous sections to make a simple estimate of the
gravitational wave (GW) strength in highly magnetized neutron stars. The deformation of magnetized
neutron stars can be quantified by their quadrupole moment Q with respect to the rotational axis.
According to Bonazzola and Gourgoulhon (1996), the gravitational wave amplitude h0 emitted by a
perpendicular rotator is given by:

h0 =
6G

c4
Ω2

D
Q, (5.7)

with G being the gravitational constant, c the speed of light, D the distance of the star and Ω its
rotational velocity.

Assuming that a star with MB = 2.15 M� rotates at a frequency of f = Ω/2π = 1 Hz at a distance
D = 10 kpc (typical distance of observed magnetars), we show in Fig. 5.8 the GW emission amplitude
for different central magnetic fields. As already depicted in the relation between the moment of inertia
I and the magnetic field (see Fig. 5.6), one sees that the GW amplitude h0 can change significantly
as the magnetic field decays over time showing a backbending behaviour as the star undergoes a
quark-hadron phase transition. According to Fig. 5.8, the star may have a period of faster reduction
in the gravitation waves emission before the magnetic field reduces to lower values.
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Figure 5.8: Gravitational wave amplitude as a function of the central magnetic field for a
star with MB = 2.15 M�.

In the models considered here, the rotation and magnetic axes are aligned. In this case, even stars
strongly deformed do not emit gravitational radiation. However, an estimate of the strength of
gravitational wave emission can be deduced if we assume that the magnetic axis and the rotation
axis are not aligned, as it seems to be the case, for example, in observabed pulsars. This is a good
approximation as long as rotational and magnetic field effects do not start to compete in deforming
the star. For strong magnetic fields and as long as the rotation frequency is small, this assumption
should hold true.





Chapter 6

Effects of strong magnetic fields and
rotation on white dwarf structure

In this final chapter, as a spin-off of our studies, we compute models for white dwarfs in the
presence of strong magnetic fields and rotation. We obtain models of super-Chandrasekhar
magnetized white dwarfs assuming white dwarfs composed of Carbon atoms in an electron back-
ground. These models possibly contribute to super-luminous supernova Type Ia, showing that
magnetic white dwarfs might be the progenitors of such peculiar events. Finally, we show also
the possibility of white dwarfs to be source of gravitational radiation.

6.1 Introduction

It is generally accepted that stars born with masses below around 10 solar masses end up their
evolutions as white dwarfs (Weber, 1999b; Shapiro and Teukolsky, 2008; Glendenning, 2012). With a
typical composition mostly made of carbon, oxygen, or helium, white dwarfs possess central densities
up to ∼ 1011 g/cm3 with a mass comparable to that of the Sun, which is distributed in a volume
comparable to that of the Earth. Together with neutron stars and black holes, they are endpoints
of stellar evolution and play a key role in astrophysics.

However, the existence of white dwarfs was one of the major puzzles in astrophysics until Fowler
(1926), based on the quantum-statistical theory developed by Fermi (1926) and Dirac (1926), showed
that white dwarfs are supported by the pressure of a degenerate electron gas. In addition, Chan-
drasekhar (1931) found that there is a limit in the stellar mass, beyond which degenerate white
dwarfs are unstable. This critical mass is the so-called Chandrasekhar limit and is about 1.4 M�.

White dwarfs can be very hot (Althaus et al., 2009), fast rotating (Arutyunyan et al., 1971; Boshkayev
et al., 2013) and strongly magnetized (Coelho et al., 2014a; Lobato et al., 2016). Their observed
surface magnetic fields can be so strong as 109 G (Terada et al., 2008; Reimers et al., 1996; Schmidt
and Smith, 1995; Kemp et al., 1970; Putney, 1995; Angel, 1978). As in the neutron star case, an
estimate for the internal magnetic field in WD’s follows from the Virial theory by equating the
magnetic field energy with the gravitational binding energy, which leads to an upper limit for the
magnetic fields inside WD’s of ∼ 1013 G. On the other hand, analytic and numeric calculations,
both in Newtonian theory as well as in General Relativity theory, showed that WD’s may have
internal magnetic fields as large as 1012−16 G (Angel, 1978; Shapiro and Teukolsky, 2008; Bera and
Bhattacharya, 2014; Franzon and Schramm, 2015).

61



62 Chapter 6 Effects of strong magnetic fields and rotation on white dwarf structure

As the mass of an accreting white dwarf in a binary system approaches the limiting mass, the star
undergoes a rapid contraction. Elevated temperature during this collapse can trigger a runaway
thermonuclear reaction resulting in a supernova Type Ia (SNIa) explosion. The standard conditions
that lead to the SNIa allow them to be used as standard candles in cosmology, and has led to the
discovery of the accelerating expansion of the Universe (Riess et al., 1998). However, based on recent
observations of several superluminous supernovae Type Ia (Scalzo et al., 2010; Howell et al., 2006;
Hicken et al., 2007; Yamanaka et al., 2009; Taubenberger et al., 2011), it has been suggested that
the progenitor mass of such explosions (SN 2006gz, SN 2007if, SN 2009dc, SN 2003fg) significantly
exceeds the Chandrasekhar mass limit.

Previous studies showed that magnetic white dwarfs can have their masses increased up to 2.58 M�
for a magnetic field strength of 1018 G at the center of the star (Das and Mukhopadhyay, 2013).
Nonetheless, such approach violates not only macro physics aspects, as for example, the breaking
of spherical symmetry due to the magnetic field, but also microphysics considerations, which are
relevant for a self-consistent calculation of the structure of these objects (Coelho et al., 2014b).
In addition, a self-consistent newtonian structure calculation of strongly magnetized white dwarfs
showed that these stars exceed the traditional Chandrasekhar mass limit significantly (M ∼ 1.9 M�)
for a maximum field strength of the order of 1014 G (Bera and Bhattacharya, 2014).

In this chapter, we model static and rotating magnetized white dwarfs in a self-consistent way
by solving Einstein-Maxwell equations with the same approach as in the previous chapters. The
presence of such a strong magnetic field can locally affect the microphysics of the stellar matter,
as for example, due to Landau quantization. However, Bera and Bhattacharya (2014) showed that
Landau quantization does not affect the global properties of white dwarfs. Globally, the magnetic
field can affect the structure of WD’s, since it contributes to the Lorenz force, which acts against
gravity. In addition, it contributes also to the structure of spacetime, since the magnetic field is now
a source for the gravitational field through the Maxwell energy-momentum tensor. In the following,
as we are interested in global effects that magnetic fields and rotation can induce in WD’s, we
simplify the discussion assuming white dwarfs that are predominately composed by 12C (A/Z = 2)
in a electron background.

6.2 Mass-radius diagram for static highly magnetized white dwarfs

In this section, we present the mass-radius diagram for static magnetized white dwarfs. The relation
between mass and radius of non-magnetized white dwarfs was first determined by Chandrasekhar
(Chandrasekhar, 1939). Recently, studies of modified mass-radius relations of magnetic white dwarfs
were proposed, for example by Das and Mukhopadhyay (2012), Suh and Mathews (2000) and Bera
and Bhattacharya (2014). As we also found in this work, these authors show that the mass of white
dwarfs increases in the presence of magnetic fields.

In Fig. 6.1, we show the isocontours in the (x, z) plane of the poloidal magnetic field lines for a
static star with central enthalpy of Hc = 0.0063 c2. As we will see in Fig. 6.4, this value of the
enthalpy results in the maximum gravitational mass of relativistic, static and magnetized white
dwarfs achieved within the code, namely, 2.09 M�, which corresponds to a central mass density
of 2.79× 1010 g/cm3. It is known that at sufficiently high densities, reactions as inverse β-decay
or nuclear fusion can take place in the interior of white dwarfs (Chamel et al., 2013; Coelho et al.,
2014b). The issue has been addressed in a recent work by collaborators and I in Otoniel et al. (2016).

In Fig. 6.2, we show the mass density distribution for the same star as in Fig. 6.1. As expected,
the mass density is not spherically distributed and the maximum mass density is not at the center
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Figure 6.1: Isocontours of the magnetic field strength in the (x, z) plane, with a gravitational
mass of 2.09 M� and a magnetic dipole moment of 1.30× 1034 Am2. The ratio between the
magnetic pressure and the matter pressure at the center of the star is about 1, and the magnetic

field at center reaches 1.03× 1015 G.

of the star. In this case, the central magnetic field reaches a value of 1.03× 1015 G, whereas the
surface magnetic field was found to be 2.02× 1014 G. The figure illustrates that the Lorentz force
exerted by the magnetic field breaks the spherical symmetry of white dwarfs considerably and acts
as a centrifugal force that pushes the matter off-center. For a better understanding of this aspect,
we make use the equation of motion (Chapter 2, Eq. 2.15) for the static case, Γ = 0,

H(r, θ) + ν(r, θ) + M(r, θ) = C, (6.1)

and plot these quantities in the equatorial plane as shown in Fig. 6.3. The constant C can be
calculated at every point in the star. We have chosen the center, since the central value of the
magnetic potential M(r, θ) is zero and the central enthalpy Hc is our input to construct solutions.
The Lorentz force is the derivative of the magnetic potential M(r, θ) in the equation Eq. (6.1) and
reaches its maximum value off-center (req ∼ 350 km, see Fig. 6.3). As already discussed by Cardall
et al. (2001), the direction of the magnetic forces in the equatorial plane depends on the current
distribution inside the star. In addition, the magnetic field changes its direction in the equatorial
plane and, therefore, the Lorenz force reverses the direction inside the star. In our case, this can
be seen from the qualitative change in behaviour of the function M(r, θ) around req ∼ 350 km
(Fig. 6.3). It is worth to mention that we have studied also the effects of the Lorentz force due to
high magnetic fields on the geometry of the neutron-star crust in Franzon et al. (2016d), showing
that the thickness of the crust can change (either increase or decrease), depending on the polar
angle under the influence of the Lorentz force.

Fig. 6.4 depitcs the relation between the mass and the circular equatorial radius for magnetized white
dwarfs. The magnetic field is included in the calculation through the current function k0. The higher
k0, the higher the magnetic field strength. The stellar sequence (different curves labeled by different
k′0 s) is obtained by changing the central enthalpy of the star (or the central density). The value
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Figure 6.2: Isocontours of the baryon number density in the (x, z) plane for the
same star as shown in Fig. 6.1. The central baryon density for this star is

1.679× 10−5 fm−3 (2.79× 1010 g/cm3).
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Figure 6.3: Behaviour of the different terms of the equation of motion as a function of the
equatorial coordinate radius for the same star as shown in Fig. 6.1.

k0 = 800 roughly corresponds to the solution with maximum field configuration achieved within the
code. For low magnetic fields, the sequences follow the mass-radius relation as for non-magnetic
WD’s, ultimately reaching the Chandrasekhar mass limit. As the magnetic field strength is increased,
the deviation from the non-magnetic curve increases, resulting in configurations with masses well
above the Chandrasekhar limit of 1.4 M�. In this calculation, we found a maximum mass for a
relativistic white dwarf of 2.09 M� for a magnetic field strength at the stellar center of B ∼ 1014 G
(end of the yellow line in Fig. 6.4). Fig. 6.4 clearly demonstrates that WD masses larger than the
standard Chandrasekhar limit for the non-magnetic case can be supported by strong magnetic fields.
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Figure 6.4: Mass-radius diagram for magnetized white dwarfs. Different curves represent
different values of the current function k0. We also compare the maximum white dwarf mass
obtained in the Newtonian case (in black) and in the relativistic one (in red) for the maximum
electric current value for which numerical convergence is achieved. This diagram is quite similar
to the MR diagram calculated in Bera and Bhattacharya (2014). However, those authors have
evaluated only Newtonian white dwarfs. All curves in this figure were calculated for a ratio
between the magnetic and matter pressure less than or quite close to 1 at the center of the star.

Recently, during the writing process of this thesis, collaborators and I improved the work presented
above, taking into account possible instabilities due to electron capture and nuclear fusion reactions
in the cores of white dwarfs (Otoniel et al., 2016). The stellar interior was composed of a regular
crystal lattice made of carbon ions immersed in a degenerate relativistic electron gas. We found that
magnetized white dwarfs violate the standard Chandrasekhar mass limit significantly, even when
electron capture and pycnonuclear instabilities are present in the stellar interior. In addition, the
maximum magnetic field found is an order of magnitude smaller than in Franzon and Schramm
(2015). This is because we modeled the stellar interior with a much more realistic equation of state
than just a simple electron gas, and we considered the density threshold for nuclear fusion reactions,
which restricts the central density of white dwarfs in ∼ 9.25×109 g/cm3, limiting the stellar masses
and, therefore, their radii, which for very massive and magnetized white dwarfs cannot be smaller
than ∼ 1100 km.

6.3 Rotating magnetized white dwarfs

White dwarfs can also spin very fast. Typically, white dwarfs can rotate with periods of days or even
years. On the other hand, according to Mereghetti et al. (2009), one of the fastest observed WD
possesses a spin period of 13.2 s, a value similar to the ones observed in Soft Gamma Repeaters
and Anomalous X-ray pulsars, known as magnetars (Duncan and Thompson, 1992; Thompson and
Duncan, 1993). A relation between white dwarfs and magnetars was addressed by Malheiro and
Coelho (2015), where the authors speculated that SGRs and AXPs with low magnetic fields on the
surface might be rotating magnetized white dwarfs.

Rigidly rotating non-magnetized white dwarfs were already studied long time ago in the Newtonian
framework (Krishan and Kushwaha, 1963; Anand, 1965; James, 1964; Roxburgh and Durney, 1966;
Monaghan, 1966; Geroyannis and Hadjopoulos, 1989). In addition, the structure of rapidly rotating
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white dwarfs was performed in general relativity by Arutyunyan et al. (1971), and more recently
by Boshkayev et al. (2013), where the authors used Hartle’s formalism (Hartle, 1967) to solve the
approximate Einstein equations. It is obvious that all rotating stars have to satisfy the mass-shedding,
or Keplerian limit, as a condition of stability. This limit is reached when the centrifugal force due
to rotation does not balance gravity anymore and the star starts to lose particles from the equator,
defining an upper limit to the angular velocity of uniformly rotating stars.
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Figure 6.5: Mass-radius diagram for static and rotating white dwarfs. The TOV solution is
shown in black, and the red (dotted) curve indicates the Keplerian sequence for rotating WD’s.
In the bottom left-hand corner the gravitational mass as a function of the central density for

the same sequence of stars is shown.

In Fig. 6.5, we depict the Tolman-Oppenheimer-Volkoff solution for the structure of a spherically
symmetric white dwarf, together with the mass-shedding frequency limit solutions. In the first place,
by comparison of Fig. 6.4 and Fig. 6.5, one sees that magnetic fields are more efficient than rotation
in increasing the maximum mass of white dwarfs. The maximum mass obtained for a relativistic and
magnetic white dwarf is 2.09 M�, whereas the maximum mass achieved by rotation is ∼1.45 M�.

The relation between the Keplerian frequency (fK) and the central density of the star is displayed in
Fig. 6.6. With higher angular velocity, the centrifugal forces increase, pushing the matter outward,
therefore acting against gravity. As a result, the stars are allowed to have more mass, increasing
the central density. This is possible, because the centrifugal forces due to rotation (fc ∝ rΩ2) have
much more effect on the outer layers of the star. On the other hand, for non-rotating magnetized
stars, the Lorenz force acts mainly in the inner layers of the star, reducing, and not increasing, the
central densities in these objects as shown by Franzon et al. (2015).

Henceforth we investigate the role played by the magnetic field in uniformly rotating white dwarfs.
For a star with central enthalpy of Hc = 0.005 c2, whose mass is close to the maximum mass in the
static case, we present results for a white dwarf which is A) rotating with its Keplerian frequency
and non-magnetized and B) rotating (with its Keplerian frequency) and magnetized. For the case
A), the star rotates with its Keplerian frequency of 0.99 Hz. In addition, in order to compute stellar
solutions for the case B), we turn on the magnetic field until the limit of numerical convergence
is reached. We perform a calculation for different current functions k0, from zero (case A) to the
maximum value of the magnetic field (case B). As a result, the Keplerian frequency increases with
the magnetic field as shown in Fig. 6.7. In this way, equilibrium configurations are obtained for higher
centrifugal forces and, therefore, if the star can rotate faster, in consequence it can also support
higher masses. According to Fig. 6.6, non-magnetized white dwarfs can reach a maximum Keplerian
frequency of 1.52 Hz. However, in the magnetic case (Fig. 6.7), the maximum Keplerian frequency
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Figure 6.6: Keplerian frequency as function of the central baryon density for the sequence
as shown in Fig. 6.5. The maximum frequency reached by a non-magnetized and uniformally

rotating white dwarf is 1.52 Hz.

is reduced to 1.13 Hz, which corresponds to a white dwarf with gravitational mass of ∼ 1.57 M�
and a central magnetic field of 1.87× 1014 G.
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Figure 6.7: Keplerian frequency as function of the central magnetic field for a white dwarf at
fixed central enthalpy of Hc = 0.005 c2.

6.4 Gravitational waves from white dwarfs

The main motivation of this section is provided by the recent binary system discovered by Marsh et al.
(2016). This system is composed of a main sequence star and a fast spinning and magnetized white
dwarf with a mass that lies in the range 0.81M� < Mwd ≤ 1.29M�. The pulsating white dwarf is
called AR Scorpii, AR Sco for short. In the case of AR Sco, this was the first radio pulsations detected
in any white dwarf system. In addition, due to its high magnetic field combined with rotation, such
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type of WD’s are called ’white dwarf pulsar’. AR Sco rotates at a frequency of f = 8.538 mHz in a
distance of d ∼116 pc (1pc = 3.08×1013 km) from Earth. In view of this new recent observation and
measurement, we make an estimate of the GW strength h0 (as already shown in Eq. 5.7) emitted
by rotating and magnetized white dwarfs.

The Lorentz force induced by magnetic fields change the structure of white dwarfs, which, in the case
of poloidal fields, become oblate objects. This is the same effect as the one produced by rotation. In
both cases, the star deformation with respect to the magnetic and/or rotation axis can be quantified
by the stellar quadrupole moment.

As predicted by Einstein (1916), gravitational waves are generated by objects that have quadrupole
moment varying in time, such as colliding black holes, collapse of stellar cores, coalescing neutron
stars, white dwarf stars, etc. Such systems disrupt the space-time producing GW that radiate from
the source and travel at the speed of light through the Universe, carrying information about their
sources, as well as the nature of gravity itself.

Currently, the main ground-based gravitational waves interferometer operating is the twin Laser
Interferometer Gravitational-wave Observatory (LIGO) which sensitivity is designed to detect GW
amplitude of one part in 1021 within the frequency bandwidth in the range 30 - 7000 Hz. In the
next years, a second generation of detectors, as for example, advanced-LIGO and advanced-Virgo,
will be operating. Furthermore, the space-based gravitational waves detector Laser Interferometer
Space Antenna (LISA) (Danzmann et al., 1996) has been planning to be launched. LISA operates
a space-based gravitational waves detector sensitive at frequencies between 0.03 mHz and 0.1 Hz.

The Deci-Hertz Interferometer Gravitational Wave Observatory (DECIGO) (Seto et al., 2001) is
a plan of a future Japanese space mission for observing GW’s in frequency bandwidth similar to
LISA, however, at lower gravitational waves amplitudes. This fact, as we are going to see, makes
DEGICO suitable to detect gravitational waves from fast rotating and/or magnetized white dwarfs.
Meanwhile, another space-based interferometer has been proposed as a successor to LISA, the Big
Bang Observer (BBO) (Phinney et al., 2003), with both frequency bandwidth and gravitational
waves amplitudes similar to the ones of DECIGO.

In Fig. 6.8, we depict the frequency bandwidth of different space-borne gravitational wave interfer-
ometers, the Laser Interferometer Space Antenna (LISA), BBO and DECIGO. In this figure, we show
also the estimate of gravitational wave amplitude for stars at different fixed baryon masses. First,
a white dwarf with MB = 1.29 M�, rotating at 8.538 mHz, is represented by the letter (d), having
h0 lower than the ones expected to be detected by BBO and DECIGO. This star, however, has its
gravitational wave amplitude raised with the inclusion of magnetic fields, case (c), and can be, po-
tentially, detected by BBO. This behavior is similar to the case of a white dwarf with MB = 0.81 M�
(red line), which lies in the amplitude range of both BBO and DECIGO when magnetized, case (a),
not being, however, a potential candidate when purely rotating, case (b).

In order to investigate if purely rotating white dwarfs are able to produce detectable GW, we included
in Fig. 6.8 calculations for magnetized and rotating white dwarf models at fixed baryon mass of
MB = 0.50 M�. This star rotates at different rotation frequencies of f = 10−5 Hz (yellow line),
10−3 Hz (blue line) and 10−2 Hz (green line), respectively. We fix then f and we include the
magnetic field. As can be seen from Fig. 6.8, the white dwarf MB = 0.50 M� rotating at f = 10−2

Hz and without magnetic fields (begin of the green line), is in the range of detectability of the
BBO detector. In addition, if this star is magnetized, this would lead to a maximum GW amplitude
in the range of detectability of both BBO and DECIGO interferometers (also close to LISA line).
The results of this analysis can be generalized to other frequencies or masses. However, as the
frequency increases, the star approaches to the mass-shedding (Kepler) limit, which for the white
dwarf MB = 0.50 M� is f ∼ 0.02 Hz.
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Figure 6.8: The dashed black curves represent the spectra for LISA, DECIGO and BBO
interferometers. The vertical yellow, blue and green lines are rotating and magnetized white
dwarfs at a fixed baryon mass of MB = 0.50 M�, while the red line represents AR Scorpii (with
and without magnetic fields) at a frequency of 8.538 mHz. The models (a), (b), (c) and (d)
are estimates of gravitational wave amplitudes by using the supposed masses and the rotation

frequency of the pulsar white dwarf AR Scorpii.

In addition, for the star MB = 0.50 M� the magnetic field that corresponds to the minimum GW
amplitude that lies on the DECICO predictability curve is ∼ 1010 G. More importantly, this value is
just one order of magnitude higher than surface magnetic fields already observed in white dwarfs.
Therefore, this makes magnetized white dwarfs good candidates of future GW observation and
detection by the new generation of GW interferometers.

Note that white dwarfs with lower masses have gravitational wave amplitude of about three order of
magnitude higher than (non rotating) highly magnetized neutron stars, as presented in the Chapter
5. This is related to the scale of the quadrupole moment, which is of the order of Q ∼ 1042 kg.m2 in
magnetic white dwarfs, while this value reduces to ∼ 1038 kg.m2 for neutron stars. In addition, the
WD’s considered here are much closer to Earth than a typical neutron star, contributing to make
them good sources for gravitational wave emission and detection.





Chapter 7

Summary

This thesis reflected our interest in understanding the effects of strong magnetic fields in different
astrophysical systems: neutron stars, proto-neutron stars and white dwarfs. For this purpose, we
incorporated realistic microphysical nuclear equations of state, general relativity, temperature, mag-
netic fields and rotation in order to increase the realism of compact star calculations and, thus,
explore the possible outcomes from a large set of physical conditions and parameters.

7.1 Summary of Our Results

In Chapter 1 (Introduction), general properties of neutron stars were presented. Among them,
the fact that the vast majority of neutron stars are observed as pulsars, most of them in radio
frequency. We also discussed the fact that magnetars are neutron stars in which strong magnetic
fields are the main source of energy. Moreover, their spin periods (2-12 s) and spin-down rates
(10−13 − 10−10 ss−1) indicate external dipole fields on the stellar surface of up to 1015 G. In addition,
the virial theorem allows to estimate a maximum limit to the magnetic field (irrespective of the
configuration) in the interior of these stars. Most estimates point towards a maximal theoretical
value of about 1018 G in the stellar center, indicating that the maximum values considered within
this work are still realistic. Therefore, magnetars are stars powered by their magnetic energy reservoir.
However, the exact mechanism responsible for the origin of such strong fields in compact stars is
still unclear, although hypotheses involving magnetic flux conservation and dynamo process are the
most accepted ones.

Independently of the origin of such strong magnetic fields, they affect locally the microphysics of the
equation of state and globally the structure of neutron stars, since magnetic fields induce different
pressures in different directions in the star, causing them to be deformed with respect to their
symmetry axis. It has been also shown that the presence of strong magnetic fields generates Landau
quantization on the energy levels of charged particles. Moreover, magnetic field effects on the EoS
gives rise to an anisotropy in the energy-momentum tensor components and, thus, one would expect
that observational quantities, such as stellar maximum mass, to be affected by strong magnetic fields
through effects in the EoS.

In Chapter 3, we made use of the Lorene C++ library for numerical relativity (presented in Chapter
2) to study self-consistently the effects of strong magnetic fields on hybrid stars by the use of a fully
general-relativity approach. We solved numerically the coupled Maxwell-Einstein equations by means
of a pseudo-spectral method, taking into consideration the anisotropy of the energy-momentum
tensor due to the magnetic field, magnetic field effects on the equation of state, the interaction
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between matter and the magnetic field (magnetization), and the anomalous magnetic moment of the
hadrons. Previous models of highly magnetized neutron stars, which included magnetic field effects
on the EoS, computed the corresponding mass-radius relations using (incorrectly) isotropic TOV
equations. However, as we showed, EoS corrections are small when compared with the corrections
due to the anisotropy from the pure magnetic field contribution. More specifically, the effect of
inclusion of a magnetic-field dependent equation of state or the magnetization does not increase
the maximum mass significantly in contrast to what has been claimed by previous studies (Paulucci
et al., 2011; Rabhi et al., 2009; Dexheimer et al., 2013a). In addition, we found that the maximum
magnetic field reached at the center of neutron stars is of the order of 1.6× 1018 G. Furthermore,
the Lorentz force induced by the field acts against gravity and pushes the matter outwards, reducing
the central density in these objects. In this case, assuming that the magnetic field decays over time,
stars would not only become less massive and smaller, but also go through phase transitions to more
exotic phases with hyperons and quarks in their interior. Thereby, these features potentially modify
the cooling behaviour of magnetized stars. This topic will be studied in detail in forthcoming studies.

In the next chapter, Chapter 4, we treated stationary configurations of strongly magnetized proto-
neutron stars. We saw that the same general relativity formalism presented in Chapter 2 can be
used for both cold and hot stars when the equation of state for proto-neutron stars is given at
fixed entropies per baryon. Moreover, the composition and the structure of PNS’s are strongly
related to the number of trapped neutrinos. As the neutrino chemical potential decreases, this alters
the chemical equilibrium and the composition inside the star, leading to an impact on the stellar
structure. In this context, we showed that the magnetic field has also a very large impact not only
on the structure of PNS’s, but also on their particle population.

More specifically, there is a change in the composition of stars due to the magnetic field, pushing
hyperons out, and decreasing the amount of neutrinos and the strangeness at the stellar center.
Furthermore, as the magnetic field decreases over time, the density inside stars increases, which is
followed by an increase in temperature. Especially important (giving that the magnetic field reduces
during the life of stars), is the fact that the temperature in the equatorial plane increases in the inner
core, while it decreases in the outer core. This fact is related to the Lorenz force, which reverses its
direction in the equatorial plane, acting, therefore, differently throughout the star.

Still in Chapter 4, we studied the properties of PNS’s subjected to fast rotation. The results indicate
that the electron neutrino distribution of rotating proto-neutron stars does not differ much from their
non-rotating counterpart. This is due to the fact that the centrifugal forces (fc ∝ rΩ2) act mainly
on the outer layers of the star. We also included magnetic fields in the rotating PNS model. As
expected, the reduction in the central densities is even more pronounced and magnetic fields suppress
exotic phases in rotating PNS even further, as in the case of cold neutron stars. A combination of
both magnetic field and rotation effects can impact, for example, the nucleosynthesis in the winds
of PNS’s (Vlasov et al., 2014).

In addition, the scenario of transformation of a proto-neutron star into a neutron star could be
influenced by a quark-hadron phase transition, since at higher temperatures the transition happens
at lower densities. Such stars would be composed of hot quark and hadronic matter at different
leptons fractions and fixed entropies. In the future, it would be interesting to couple the results
showed in Chapter 4 to a hybrid star scenario with a quark-hadron phase transition in the star core.

Aside from magnetic fields, rotation and temperature effects, a quark-hadron phase transtion can also
be related to several interesting phenomena. This was discussed in Chapter 5, where fast rotating
isolated pulsars provided an observable of quark deconfinement called braking index, a quantity that
can be measurable during the star spin-down epoch. The conversion of nuclear matter to quark
matter in the core of a rotating neutron star alters its moment of inertia. Hence, the epoch over
which conversion takes place is signaled in the spin-down characteristics of pulsars.
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We showed that the change from a confined to a deconfinement quark phase at the center of neutron
stars leads to a drastic softening of the equation of state. As a result, stars at fixed baryon masses
decrease their gravitational masses (although their central pressure increase) during their evolutionary
sequence. When the softening of the EoS is very pronounced, this leads to a sudden contraction
of the neutron star at a critical angular velocity, which can be observed during the evolution of
fast rotating and isolated pulsars through the spin-up era, also known as backbending phenomenon
(Glendenning et al., 1997). We reproduced the backbending phenomenon for fast spinning neutron
stars. But, more importantly, we showed that the magnetic field, assumed here to be axi-symmetric
and poloidal, can also be enhanced due to the phase transition from normal hadronic matter to
quark matter during the evolution from a highly magnetized neutron star to a non-magnetized one.
Therefore, in the same way that isolated pulsars have their frequencies increased in presence of
a quark-hadron phase transition, the magnetic field can be amplified in highly magnetized hybrid
neutron stars. As a result, stars endowed with strong magnetic fields may go through a “magnetic-up
era” in their lives.

In Chapter 5, we calculated the mass-radius relationship, MB(Req), for both rotating and magnetized
neutron stars. We concluded that the mass-radius diagram and the shape of stars change significantly
with the consistent inclusion of magnetic fields. The excess mass of the star is related to the Lorenz
force, which increases with the magnetic field and, therefore, helps the star to support more mass
than in the non-magnetized case. At the same time, the equatorial radii of theses stars increase,
becoming much larger than their non-magnetized counterpart.

In addition to the already known backbending phenomenon for fast spinning pulsars, which depends
on a specific relation between the baryon mass MB, the angular momentum J and the rotation
frequency f of the star, we saw that the mass-radius diagram for highly magnetized neutron stars
presents inflexions in the diagram MB(Req) versus the current function k0, with a monotonic be-
haviour at fixed magnetic dipole moment µ. This is a similar condition that generates the back-
bending in rotating pulsars. Based on this, we found that the backbending phenomena depends
on the triple values (MB, µ, k0) for neutron stars endowed with strong magnetic fields. This set of
quantities has, therefore, its rotating counterpart given by (MB, J, f).

The next chapter, Chapter 6, presented a spin-off of our research, where we were able to calculate
super-heavy white dwarfs in the presence of strong fields. This is an interesting and timely important
problem, since such stars can exceed the Chandrasekhar mass limit and contribute to superluminous
Type Ia supernovae. With this in mind, static equilibria of stationary and axisymmetric white dwarf
stars endowed with strong poloidal magnetic fields were carried out. Moreover, we presented a
modication on the white dwarf mass-radius relation generated by the magnetic field. We found that
a maximum white dwarf mass of about 2.00 M� may be supported if the interior field is as strong as
approximately 1014 G. This mass is over 40 percent larger than the traditional Chandrasekhar limit.

The structure of relativistic, axisymmetric and uniformly rotating magnetized white dwarfs were also
investigated self-consistently and all effects of electromagnetic field on the star equilibrium were
taken into account. In this context, we have also shown the increasing of the Keplerian frequency
with the magnetic field. The higher the magnetic field, the higher the Lorenz force, which, in turn,
helps the star to support more mass than in the non-magnetized case. As a result, if these stars are
more massive, they can rotate faster.

As we showed throughout this work, stellar magnetic fields supply anisotropic pressure, leading to the
braking of spherical symmetry in stars. In this case, one can also compute the quadrupole moment
of the mass distribution. With this quantity in hand, we presented in Chapter 5 and 6 an estimate of
the gravitational wave strength emitted by magnetized neutron stars and white dwarfs. In Chapter 5,
before the magnetic field decays completely, the neutron star presented a period of faster reduction in
the gravitational waves emission due to the quark-hadron phase transition. In Chapter 6, in view of
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the new recent observation and measurement of the rotating and highly-magnetized white dwarf AR
Scorpii, we showed this star, as well as other white dwarfs, might generate detectable gravitational
waves with amplitudes that lie in the bandwidth of the next discussed generation of space-based
gravitational waves detectors.

Finally, due to the lack of Earth-based experiments involving matter and electromagnetic fields at
extreme conditions, astrophysical observations of compact objects can provide a unique chance of
understanding the underlying physics. In addition, the solutions presented in this work are fully
relativistic and self-consistent, since all the effects related to the magnetic field on the equilibrium
of stars were taken into account. Note that our results might depend on the equation of state used
to describe stellar interiors and different EoS’s might result in stronger or weaker effects than those
reported in this thesis. Nevertheless, we believe that the general conclusions obtained within our
consistent models will remain the same. In addition, although we have assumed a purely poloidal
magnetic field in this work, which is not the most general one, one can have a fair idea of the
maximum magnetic field strength that can be reached inside these stars. Furthermore, we have
shown using full general relativity, that strong magnetic fields severely impact both the microphysics
and the global structure of compact objects.

7.2 Future Work

Finally, we present several issues to be explored in the future.

1. The phase transition from hadronic to quark matter impacts the structure of NS’s. In this case,
one can study the effects of quark-hadron phase transition and hyperonic matter on the evolution of
binary neutron stars systems. The stars will spiral in toward each other and will release gravitational
radiation which may be observable with ground-based detectors. The use of numerical-relativity
simulations of binaries with distinct nuclear equations of state with hyperons degree of freedom
and quark-hadron phase transition to describe the neutron stars interior could be used to study
the impact of the nuclear equation of state on the last orbits of binary neutron stars and possible
signature of these exotic phases through the postmerger GW’s emission. As a first kick-off, we have
been using LORENE C++ library to perform calculations of the final phase of inspiral of a binary
system consisting of two neutron stars. This calculation will be used to study the effects of different
microphysics on the gravitational wave frequency at the innermost stable cicular orbit (ISCO), which
marks the end of the inspiral phase. More importantly, such a calculation and the models presented
in this work will serve in the future as the initial data conditions for simulations of realistic EoS
hydrodynamical mergers.

2. An extension of our work is the study of global properties of magnetized neutron stars endowed
with both poloidal and toroidal magnetic field components. In order to achieve this goal, we will
implement the publicly available numerical code XNS1 and include realistic EoS tables into the code.
The XNS code solves axisymmetric equilibrium configuration of neutron star in General Relativity
(Bucciantini and Del Zanna, 2011; Pili et al., 2014b). XNS allows to include and model rotating
stars endowed with magnetic fields either purely toroidal, purely poloidal or in the mixed twisted
torus configuration.

3. Moreover, the matter in the inner crust of neutorn stars is made of nuclei embedded in a neutron
gas along with the uniform electron gas. Further, the matter is in beta-equilibrium and maintains
charge neutrality. The outer crust contains nuclei arranged in a body-centered cubic lattice immersed
in a gas of free electrons. In these cases, the magnetic field may impact the composition and the

1http://www.arcetri.astro.it/science/ahead/XNS/
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equation of state of crustal matter. Consequently, one can investigate the change in the nuclei
composition induced by magnetic fields in the inner and outer crust of neutron stars in order to build
self-consistent magnetized stellar models, not only for the core, but also for the crust region.





Appendix A

Electric current in Newtonian
magnetized stars

The Euler equation in presence of magnetic fields can be written as:

1

ρ

−→
∇p+

−→
∇φ−

−→
∇φr +

−→
F

ρ
= 0, (A.1)

with
−→
F being the Lorentz force

−→
F =

−→
j ×
−→
B . Taking the curl of Eq. (A.1), we have:

−→
∇ ×

(−→
F

ρ

)
= 0, (A.2)

since the curl of a gradient is zero, Eq. (A.3) can be expressed in terms of a scalar function M (to
be determined):

−→
∇M =

−→
F

ρ
. (A.3)

Note that:
−→
∇M ·

−→
B =

−→
F ·
−→
B

ρ
=

(
−→
j ×
−→
B ) ·

−→
B

ρ
= 0, (A.4)

in other words, M is constant along the magnetic field lines B. The magnetic field B satisfies also
the Maxwell equation: −→

∇ ·
−→
B = 0. (A.5)

In this case, B can be written in terms of a stream function, so that
−→
B =

−→
∇ × −→u . In spherical

coordinates (r, θ, φ), the components of the axisymmetric magnetic fields (no dependence on φ) are:

Br =
1

r2 sin θ

∂u

∂θ
, (A.6)

Bθ = − 1

r sin θ

∂u

∂r
, (A.7)
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and, therefore, the total magnetic field is:

−→
B =

1

r2 sin θ

∂u

∂θ
r̂ − 1

r sin θ

∂u

∂r
θ̂ +Bφφ̂. (A.8)

Now, using the definitions of Br and Bθ, it is possible to show that
−→
∇u ·

−→
B = 0. By comparing this

with Eq. (A.4), the function M has the same property as u. As a consequence, one has M = M(u).
And, according to the Ampère-Maxwell equation, the electric current is given by:

4π
−→
j =
−→
∇ ×

−→
B

=
1

r sin θ

∂

∂θ
(Bφ sin θ)r̂ − 1

r

∂

∂r
(rBφ)θ̂

+
1

r

[
∂

∂r
(rBφ)− ∂

∂θ
Br

]
φ̂ (A.9)

=4π(
−→
j pol +

−→
j torφ̂), (A.10)

where the poloidal component
−→
j pol rewritten as:

−→
j pol =

1

4πr sin θ

−→
∇(rBφ sin θ)× φ̂, (A.11)

Note that in Eq. (A.11) the electric current does not depend on the stream function u. This is due
to the fact that the poloidal current depends only on the toroidal magnetic field component Bφ.
On the other hand, using the expressions (A.6) and (A.7), the toroidal component of the current is
given by:

−→
j tor = jφφ̂ = − 1

4πr sin θ
∆∗u φ̂, (A.12)

where the definition was used:

∆∗u = − 1

r sin θ

[
∂2u

∂r2
− 1

r2

1

tan θ

∂u

∂θ
+
∂2u

∂θ2

]
. (A.13)

We make use of the expression
−→
∇u× φ̂ to rewrite Eq. (A.8) as:

−→
B =

1

r sin θ
(
−→
∇u× φ̂) +Bφφ̂, (A.14)

which represents the generic form of the magnetic field that can be generated by the electric currents
in Eqs. (A.11) and (A.12). In this case, the Lorentz force reads:

−→
F =
−→
j ×
−→
B = (

−→
j pol +

−→
j tor)× (

−→
Bpol +

−→
j tor)

=
−→
j pol ×

−→
Bpol + jφφ̂×

−→
Bpol +Bφ

−→
j pol × φ̂, (A.15)

with
−→
j pol ×

−→
Bpol = 0, since the equation of motion Eq. (A.1) (and, therefore, the Lorentz force)

is axisymmetric. Moreover,
−→
j pol and

−→
Bpol are parallel vectors. As a result, from Eqs. (A.11) and

(A.14), one has:

rBφ sin θ = f(u). (A.16)
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Using the expressions for jφ, jpol and Bpol, the Eq. (A.15) is expressed as:

−→
F = − 1

4πr sin θ

[
∆∗u
−→
∇u

r sin θ
−Bφ

−→
∇(rBφ sin θ)

]
, (A.17)

which, from Eq. (A.3), can be expressed in terms of the function M :

4πρ
dM

du
= − ∆∗u

r2 sin θ
− f(u)

r2 sin2 θ

df

du
, (A.18)

where the definitions for f(u) and the chain rule
−→
∇M = dM

du

−→
∇u,

−→
∇f = df

du

−→
∇u were used. The

equation (A.18) is known as Grad-Shafranov equation and represents the equilibrium equation in
ideal magnetohydrodynamics (MHD) for a two dimensional fluid.

Using Eq. (A.18) to eliminate ∆∗u in Eq. A.12, the total electric current reads:

4π
−→
j = − df

du

−→
B pol +

1

r sin θ

[
4πρ

dM

du
r2 sin2 θ + f(u)

df

du

]
φ̂, (A.19)

with
−→
B pol the first term in Eq. (A.14). Finally, with f(u) as defined in Eq. (A.16) and

−→
B =

−→
B pol +

−→
B tor, we have:

−→
j =

1

4π

df

du

−→
B + ρr sin θ

dM

du
φ̂. (A.20)

The function f(u) and M(u) need to be chosen. In the case of purely poloidal magnetic fields, we
have f(u) = 0. We can write:

dM

du
= g(u), (A.21)

where g(u) is a function to be chosen. Here, we replace the stream function u by the magnetic
vector potential Aφ:

M =

∫ Aφ

0
g(u′)du′. (A.22)

The simplest choice of g(u) is g(u) = k0 = const.





Appendix B

A brief review of General Relativity

In this chapter, we present the basic aspects of Einsteins’s theory of General Relativity. We want to
introduce to the reader the basics tools and concepts that will be used throughout this manuscript.
A complete description of the General Relativity Theory can be found in many textbooks, see e.g.
Wald (2010).

B.1 General Relativity

The general theory of relativity includes the geometric theory of gravitation published by Albert
Einstein in 1915 and the current description of gravitation in modern physics. General relativity
generalizes special relativity and Newton’s law of universal gravitation, providing a unified description
of gravity, as a geometric property of space and time, or spacetime. In particular, the curvature of
spacetime is directly related to the energy and momentum of whatever matter and radiation are
present. The relation is specified by the Einstein field equations, a system of partial differential
equations.

The most important quantity in General Relativity is the metric tensor. Roughly speaking, the
metric tensor is a function that tells how to compute the distance between any two points in a given
space. For example, in flat and Euclidean space (i.e. our ordinary space and time), we have that
the infinitesimal distance ds between two points is just given by the Pythagoras theorem:

ds2 = dx2 + dy2 + dz2. (B.1)

According to Eq. (B.1), the multiplication factors placed in front of the spatial differential dis-
placements dxi are egual to 1, with i running from 1 to 3 and xi being the cartesian coordinates
xi = (x, y, z). We can rewrite Eq. (B.1) in the following form:

ds2 = gijdx
idxj , (B.2)

with gij being the metric tensor (or simply the metric). In the case of Eq. (B.2), the Einstein
summation (a convention) was used, i.e., repeated indexes are implicitly summed over:

ds2 = g11dx
1dx1 + g12dx

1dx2 + g22dx
2dx2 + . . . . (B.3)
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Nevertheless, due to the symmetry of the flat and Euclidean space, one has gij = δij , with δij being
the the Kronecker delta, which is 0 for i 6= j and 1 for i = j. As result, g11 = g22 = g33 = 1 and
the other combinations are zero, which recovers the relation in Eq. (B.1). The metric tensor can be
written in a matrix form so that gij = dig(1, 1, 1). On the other hand, if we choose to use spherical
coordinates to map this flat and Euclidean space xi = (r, θ, φ), Eq. (B.1) becomes:

ds2 = dr2 + r2dθ2 + r2 sin2 θdφ2, (B.4)

with the metric tensor components given by gij = dig(1, r2, r2 sin2 θ). Note that the terms g11, g22

and g33 can depend on the coordinates (r, θ), but they still represents a Cartesian space. According
to Eq. (B.1) and (B.4), each choice of coordinates gives a new form for the metric tensor gij .

In Euclidean space, the time and spatial coordinates transform in a Galilean form as:

x′ = x− vt, (B.5)

t′ = t, (B.6)

where x′ and t′ are the spatial coordinate and time as measured by an observer moving with constant
velocity v with respect to the coordinate system (t,x). Here, we have assumed that the motion of
the particle is the x direction. However, according to the transformations, Albert Einstein (Einstein,
1905) showed that the Maxwell equations are not covariant (they do not have same form) for different
observers. This inconsistency with Maxwells equations of electromagnetism led to the birth of Special
Relativity, which applies in the special case in which the curvature of spacetime due to gravity is
negligible. In addition, the description of the motion of particles occurs in a four-dimensional space-
time, where the transformations in Eqs. (B.5) and (B.6) are valid in the limit of small gravitational
fields and velocities.

In Special Relativity, Eqs. (B.5) and (B.6) are replaced by the Lorentz transformation:

x′ = γ(x− vt), (B.7)

t′ = γ
(
t− v

c2
x
)
, (B.8)

where γ is the Lorenz factor γ = (1 − v2/c2)−1/2. For v � c, Eqs. (B.7) and (B.8) reduce to
Eqs. (B.5) and (B.6). Furthermore, as time is on the same foot as the spatial coordinates, in a
flat four-dimension space time, the coordinates are represented by a tensor as xµ = (x0, x1, x2, x3),
where µ assume values 0,1,2,3. The zero component refers to time t and x1, x2, x3 stand for spatial
coordinates. In this case, the line element ds (see Eq. B.2) in rectangular coordinates (Minkowski
space-time) is given by:

ds2 = −dt2 + dx2 + dy2 + dz2, (B.9)

and by
ds2 = −dt2 + dr2 + r2dθ2 + r2 sin2 θdφ2, (B.10)

in spherical coordinates. We adopted the units c = 1. As can be checked, Eqs. (B.9) and (B.10)
are invariant under the Lorentz transformation (Eq. (B.7) and (B.8)), i.e, ds2 = ds′2.
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B.2 General Relativity

B.2.1 Cristoffel symbols

In this section, we will relate the coordinates ξa of a referential where a particle is free falling with
the coordinates of an arbitrary referential xµ. Both indices a and µ can assume values 0, 1, 2, 3. In
the rest frame of the particle, locally inertial, its equation of motion is given by:

d2ξa

dτ2
= 0, (B.11)

with τ being the proper time of the particle. Assuming that ξa = ξa(xµ), a infinitesimal change in
the coordinate xµ implies a change of dξa = ∂ξa

∂xν dx
ν in the coordinate ξa. In this case, one takes

the derivative Eq. (B.11) with respect to τ to obtain:

d

dτ

(
d2ξa

dτ2

)
= 0, (B.12)

(
∂ξa

∂xν

)
d2xν

dτ2
+

(
∂2ξa

∂xµ∂xν

)
dxµ

dτ

dxν

dτ
= 0. (B.13)

Multiplying Eq. (B.13) by ∂xλ

∂ξa , we have:

d2xλ

dτ2
+ Γλµν

dxµ

dτ

dxν

dτ
= 0, (B.14)

where Γλµν is defined as:

Γλµν =
∂xλ

∂ξa
∂2ξa

∂xµ∂xν
, (B.15)

which are the Christoffel symbols. Equation Eq. (B.14) is known as geodesic and it defines the path
of a particle in an arbitrary referential. Note that if Γλµν = 0, the local inertial frame is recovered,

with an equation of motion similar to Eq. (B.11). Thereby, Γλµν is interpreted as the force that

alters the particle motion. As we will see, gµν plays the role of the gravitational potential, while Γλµν
represents the gravitational force.

From (B.2), in the locally inertia frame, one has:

dτ2 = ηαβdξ
αdξβ, (B.16)

with ηαβ being the metric tensor and dτ the proper time. On the other hand, an arbitrary referential
with metric tensor gµν , the distance between two points is given by:

dτ ′2 = gµνdx
µdxν . (B.17)

Through the chain rule and making use of Eqs. (B.16) and (B.17), :

gµν =
∂ξα

∂xµ
∂ξβ

∂xν
ηαβ, (B.18)

which relates the Minkowski metric tensor with the metric tensor in arbitrary referential.



84 Appendix B A brief review of General Relativity

Taking the derivative of (B.18) with respect to xλ, and using the notationg gµν,λ =
∂gµν
∂xλ

, we have:

gµν,λ =
∂2ξα

∂xλ∂xµ
∂ξβ

∂xν
ηαβ +

∂ξα

∂xµ
∂2ξβ

∂xλ∂xν
ηαβ, (B.19)

that, with Eqa. B.15 and (B.18), is rewritten as:

gµν,λ = Γσλµ gσν + Γσλν gµσ. (B.20)

Adding gλν,µ, subtracting gµλ,ν in Eq. (B.20) and by using gαβ = gβα and Γσµλ = Γσλµ, one has:

gµν,λ + gλν,µ − gµλ,ν = 2gσνΓσµλ. (B.21)

Multiplying the last equation by gρν , one concludes that:

Γρµλ =
1

2
gρν
(
∂gµν
∂xλ

+
∂gλν
∂xµ

−
∂gµλ
∂xν

)
, (B.22)

which shows that the Chistoffel symbols are just function of the metric tensor and its derivatives. In
this case, for flat space time of any kind, one has Γρµλ = 0.

B.2.2 Einstein Equation

The above equation shows the Christoffel symbols in terms of a generic metric tensor and its deriva-
tives. The same results are obtained assuming that the covariant derivative (see Eq. (B.27) below
for its definition) of the metric tensor is zero, ∇µgµν = 0. With Eq. (B.22) and its derivatives, one
builds the Riemann tensor (Glendenning, 2012; Weinberg, 1972):

Rρσµν = Γρσν,µ − Γρσµ,ν + ΓασνΓραµ − ΓασµΓραν , (B.23)

with the following properties:

I. Rµνρσ = −Rµνσρ;
II. Rανρσ +Rασνρ +Rαρσν = 0;

III. Rρσµν = gραR
α
σµν

IV. Rµνρσ = −Rνµρσ = −Rµνσρ;
V. Rµνρσ = Rρσµν = Rσρνµ. (B.24)

From the set of equations in Eq. (B.24), two new objects are defined. First, the Ricci tensor,

Rµν = Rρµνρ, (B.25)

and the scalar curvature:
R = gµνRµν ., (B.26)

with covariant derivative of vector fields (or tensors) Aµ:

Aµ;ν ≡
dAµ
dxν

− ΓλµνAλ, (B.27)
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one has the Bianchi identity:
Rαµνρ;σ +Rαµσν;ρ +Rαµρσ;ν = 0, (B.28)

which, multiplied by gµν and choosing σ = α, gives:

gµνRαµνρ;α + gµνRαµαν;ρ + gµνRαµρα;ν
= 0. (B.29)

Making use of the property (III) in Eq. (B.24), one has the following result:

2Rαρ;α −R;ρ = 0, (B.30)

which, multiplied by gµρ, can be rewritten as:

2Rµν;ν − gµνR ;ν = 0, (B.31)

i.e., (
Rµν − 1

2
gµνR

)
;ν

= 0, (B.32)

where the Einstein tensor is defined as:

Gµν ≡ Rµν− 1

2
gµνR, (B.33)

which, naturally, satisfies the property:
Gµν;ν = 0, (B.34)

which satisfies the condition:

Gµν = kTµν , (B.35)

with k being a constant (to be determined) and Tµν the energy-momentum tensor of the system.
Note that the choice in Eq. (B.35) is possible, since Tµν is divergence free. Eq. (B.35) is the Einstein
field equation.

B.3 Spherical solutions of Einstein Equations

The Einstein equations can be written as:

Gµν ≡ Rµν −
1

2
gµνR = kTµν . (B.36)

To ilustrate how to calculate the structure of stars, it is convenient to solve Eq. (B.35) for spherically
symmetric metric. For this, we use the Schwarzschild metric,

ds2 = e2ν(r)dt2 − e2λ(r)dr2 − r2dθ2 − r2sin2 (θ) dφ2, (B.37)

which represents the distance between two points on the spherical surface with coordinates (r, θ, φ).
Still, the radial functions e2ν(r) and e2λ(r) need to be found. From Eq. B.37, the components of the
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metric tensor are:

g00 = e2ν(r), (B.38)

g11 = −e2λ(r), (B.39)

g22 = −r2, (B.40)

g33 = −r2sin2(θ). (B.41)

Therefore, the matrix that represents the covariant metric tensor components is diagonal and sym-
metric,

gµν =


e2ν(r) 0 0 0

0 −e2λ(r) 0 0
0 0 −r2 0
0 0 0 −r2sin2θ

 , (B.42)

with the contravariant components of the metric tensor given by:

gµν =


e−2ν(r) 0 0 0

0 −e−2λ(r) 0 0
0 0 − 1

r2
0

0 0 0 − 1
r2sin2θ

 , (B.43)

where the relation gµνgµν = I emerges.

In order to solve Eq. (B.35), the first step is to find the Christoffel symbols, which, from Eq. B.15
and the components of the metric tensor, are:

Γ1
00 = ν ′e2(ν−λ), Γ0

10 = ν ′,

Γ1
11 = λ′, Γ1

22 = −re−2λ, (B.44)

Γ1
33 = −r sin2 θe−2λ, Γ0

10 = ν ′,

Γ2
12 = Γ3

13 =
1

r
, Γ3

23 = cot θ,

Γ2
33 = − sin θ cos θ,

and the components of the Ricci tensor are given by:

R00 =

(
−ν ′′ + λ′ν ′ − ν ′2 − 2ν ′

r

)
e2(ν−λ), (B.45)

R11 = ν ′′ − λ′ν ′ + ν ′2 − 2λ′

r
, (B.46)

R22 =
(
1 + rν ′ − rλ′

)
e−2λ − 1, (B.47)

R33 = R22 sin2 θ. (B.48)

The scalar curvature in Eq. (B.26) can be written as:

R = g00R00 + g11R11 + g22R22 + g33R33, (B.49)

and, therefore, using the results for the Ricci tensor with the metric tensor components as in
Eq. (B.43), one gets:

R = e−2λ

(
−2ν ′′ + 2λ′ν ′ − 2ν ′2 − 2

r2
+

4λ′

r
− 4ν ′

r

)
+

2

r2
. (B.50)
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Finally, the Einstein equations can be expressed as:

G 0
0 = − 1

r2

d

dr

[
r
(

1− e−2λ
)]
, (B.51)

G 1
1 = e−2λ

(
1

r2
+

2ν ′

r

)
− 1

r2
, (B.52)

G 2
2 = e−2λ

(
ν ′′ + ν ′2 − λ′ν ′ + ν ′ − λ′

r

)
, (B.53)

G 3
3 = G 2

2 . (B.54)

From now on, we are going to consider in Eq. (B.35) the term which contains information about the
energy content of the system. Assuming that the stellar interior is described by an energy-momentum
tensor of a perfect fluid, we have:

Tµν = (p+ ε)uµuν − pgµν , (B.55)

with uµ being the four-velocity of the fluid defined as:

uµ =
dxµ

dτ
. (B.56)

For an observer co-moving with the fluid, ~u = 0, the time component of uµ is:

u0 =
dt

dτ
, (B.57)

therefore,

u0 =
1
√
g00

= e−ν , (B.58)

and, finally,
u0 = eν . (B.59)

Motivated by the tensor algebra, where scalars are represented by tensors with equal covariant and
contravariant indices, we rewrite Eq. (B.55) as:

T ν
µ = (ε+ p)uµu

ν − pδ ν
µ , (B.60)

with
T 0

0 = ε, (B.61)

the energy density and
T i
i = −p, (B.62)

the pressure components of the system, where i = 1, 2, 3 are the spatial coordinates. In this case,
we find:

G 0
0 = − 1

r2

d

dr

[
r
(

1− e−2λ
)]

= kε, (B.63)

which, by integration in r, gives us:

e−2λ = 1− k

r

∫ r

0
ε(r′)r′2dr′. (B.64)
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On the other hand, the stellar mass enclosed in a element dr, at distance r from the center of the
star is:

M(r) = 4π

∫ r

0
ε(r′)r′2dr′, (B.65)

so that the total stellar mass is M ≡M(R), with R being the stellar radius. In this case, Eq. (B.64)
becomes:

e−2λ = 1 +
kM(r)

4πr
, (B.66)

with k being a constant to be determined. In order to do so, we apply the Einstein equations
outside the star, i.e, in the region where there is no matter or moment flux, and, therefore, Tµν = 0.
Multiplying Eq. (B.35) by gµν and using,

gµνgµν = 4, (B.67)

we find that the escalar curvature is:
R = 0, (B.68)

the Ricci tensor,
Rµν = 0. (B.69)

In other words,
R00 = 0, (B.70)

and
Rii = 0. (B.71)

From R00 (already obtained in Eq. (B.48)), equation Eq. (B.70) becomes:(
−ν ′′ + λ′ν ′ − ν ′2 − 2ν ′

r

)
e−2λ = 0. (B.72)

In the same way, R11 gives: (
ν ′′ − λ′ν ′ + ν ′2 − 2λ′

r

)
e−2λ = 0, (B.73)

which summed with Eq.(B.72) gives the result:

ν ′(r) + λ′(r) = 0. (B.74)

At infinity, the Minkowski metric needs to be recovered. In this case, the metric potentials in
Eq. (B.37), e2ν(r) and e2λ(r), go to 1. Thereby, we have that the product of those terms, namely
e2(ν(r)+λ(r)), goes also to 1, which implies:

ν(r) + λ(r) = 0. (B.75)

With R22 e g22, from Eq. (B.71) for i = 2, we have:(
1 + 2rν ′

)
eν = 1, (B.76)

that can be rewritten as:
d

dr

(
re2ν

)
= 1, (B.77)
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whose integration turns out to be:

e2ν = 1− 2GM

r
, (B.78)

where the integration constant is chosen to be −2GM , with G being the gravitational constant and
M the gravitational mass of the star. If we compare Eq. (B.78) with Eq. (B.66), knowing that
λ = −ν and having M ≡M(r = R), the constant k reads:

k = −8πG. (B.79)

Therefore, the final form of Einstein equations is:

Rµν − 1
2Rgµν = 8πGTµν . (B.80)





Appendix C

Einstein equation in the 3+1 formalism

In this appendix, we will present the formalism that couples Einstein equations to Maxwell equa-
tions. In this context, this chapter serves as a guide necessary to understand the physics of highly
magnetized compact stars.

General relativity is ruled by the Einstein equations (EE):

Rµν −
1

2
Rgµν = 8πGTµν , (C.1)

with Rµν being the Ricci tensor (see Eq. B.25), R the Ricci scalar and Tµν the energy-momentum
tensor of matter and electromagnetic fields. The constants G is the Newton’s gravitational constant.

Equation (C.1) states an intrinsic relation between the geometry of the spacetime (on the left-hand
side) and the mass-energy content (on the right-hand side). Due to the non-linearity and complexity
of EE combined to the relativistic-hydrodynamics equations, one cannot find analytic solutions,
excepted in special cases, as for example, for spherically symmetric systems. In this section, we
address the formalism necessary to obtain the gravitational field equations that were be used in the
numerical calculation in Chapters 1-6, together with different matter contents to be described by
the energy momentum tensor on the right-hand side of Eq. (C.1).

The 3+1 decomposition of spacetime (Misner et al., 1973) is a usual way to obtain the gravitational
field equations in General Relativity. The idea behind it is simple, and it consists in the foliation of
the 4 dimension spacetime in spacelike hyper-surfaces parametarized by the time coordinate t: Σt.
The most important feature of this approach is the separation of the temporal coordinate from the
spatial ones. As we will see, this is useful to project four-vectors and also tensors in their time and
spatial components.

Before focusing on the energy-momentum tensor, Tµν , let us introduce a generic observer O, co-
moving with the fluid, whose timelike 4-vector velocity uµ satisfies:

uµuµ = −1. (C.2)

One can define an operator ⊥, orthogonal to uµ, and, therefore, purely spatial, with components:

⊥αβ= δαβ + uαuβ, (C.3)

with δαβ being the Kronecker delta. Note that, ⊥αβ uβ = (δαβ + uαuβ)uβ = uα + uα(−1) = 0.
In the so-called 3+1 decomposition, physical quantities are obtained from the projection of the
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energy-momentum tensor. For example, the energy density as measured by the observer O is:

E = Tµνu
µuν , (C.4)

the momentum density flux is written as:

pα = −Tµνuµ ⊥να, (C.5)

while the energy flux (the corresponding Pointing vector for an electromagnetic field) reads:

φα = −Tµνuν ⊥µα, (C.6)

and, finally, the components of the stress tensor as measured by O are:

Sαβ = Tµν ⊥µα⊥νβ . (C.7)

As the left-hand side of Einstein’s equations is symmetric, it implies that Tµν is also symmetric and,
therefore, the momentum density and the energy flux are equal, what reflects the equivalence of
mass and energy in general relativity. From Eq. (B.34), we saw that ∇µGµν = 0, which implies that
Tµν is divegence free:

∇µTµν = 0 . (C.8)

The properties presented above are can be applied to any every energy-momentum tensor.

C.1 3+1 decomposition of space time

The basic idea of the decomposition of space and time consists in foliating the spacetime in terms of
a set of hypersurfaces Σt parametrized by a constant value of the time coordinate t. In this way, all
vectors or tensors on Σt have purely spatial components and evolve in time from one hypersurface
to the next.

Fig. C.1 shows a hypersurface Σt, where one defines a unit timelike four-vector, nµ, normal to
Σt, which satisfies the normalization condition nµnµ = −1. Note that the gradient of the time
coordinate t is parallel to nµ and, therefore,

nµ = −N∇µ t, (C.9)

with N being the lapse function, which measures the rate of change of the time coordinate along
the vector nµ. As we will see, the lapse N will be a building block to obtain the metric in the
3+1 decomposition (see Eq. (C.18)). In the same way as for the projector ⊥αβ , which gives the
spatial component of a four-velocity uµ, one can define a purely spatial metric γij associated to
each hypersurface Σt:

γij := gij + ninj , (C.10)

with i and j being spatial indices running from 1 to 3. Thus, the components of a orthogonal
projector onto Σt reads:

γij = gij + ninj . (C.11)

For example, applying the operator from Eq. (C.11) on the normal vector nµ, and using that
nµnµ = −1, we find γijn

i = (gij + ninj)n
i = nj − nj = 0, what demonstrates that the three-

dimensional metric tensor γij is orthogonal to nµ.
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Figure C.1: Foliation of the spacetimeM by a family of hypersurfaces Σt. Figure taken from
Gourgoulhon and Bonazzola (1994).

The unit normal vector nµ is timelike. In this case, we can consider observers whose four-velocity
are nµ. These are called Eulerian observers Oo. Likewise, using Eqs. (C.4), (C.5) and (C.6), and
having the correspondence uµ → nµ and ⊥αβ→ γij , the energy density, the momentum density and
the stress tensor as measured by Oo are given by:

E = Tµνn
µnν , (C.12)

pi = −Tµνnµγνi , (C.13)

Sij = Tµνγ
µ
i γ

ν
j . (C.14)

Therefore, the associated 3+1 decomposition of the energy-momentum tensor reads:

Tµν = Enµnν + pµnν + nνpµ + Sµν . (C.15)

In the 3+1 formalism, x0 = t and the triplet xi = (x1, x2, x3) corresponds to the spatial coordinate
system on each hypersurface Σt. In this case, a basis vector eµ can be split into a part parallel to
nµ and a part tangent to Σt, i.e.,

eµ = Nnµ + βµ, (C.16)

where the spacelike vector βµ is called shift vector, also a building block used to obtain the final
form of the metric tensor in the 3+1 formalism. Note that nµβ

µ = 0 by construction. It is possible
to show that the components of the normal vector nµ read:

nµ = (−N, 0, 0, 0), nµ =
1

N
(1,−βi). (C.17)

Both definitions of lapse function and the shift vector will be crucial to get the final Einstein gravi-
tational fields equations. We make use of the lapse function and shift vector to express the generic
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line element in a 3+1 decomposition of space time as:

ds2 = gαβdx
αdxβ = −Ndt2 + γij(dx

i + βidt)(dxj + βjdt). (C.18)

Another important tensor that will be useful to deduce the Einstein equation in a 3+1 decomposition
is the extrinsic curvature tensor defined as:

Kij :=
1

2N
L~βγij =

1

2N

(
βk
∂γij
∂xk

+ γkj
∂βk

∂xi
+ γik

∂βk

∂xj

)
, (C.19)

where L~β is Lie derivative γij along the vector field ~β. The extrinsic curvature describes how the
hypersurface is embedded in the four-dimensional spacetime. Note that Kij has purely spatial
components, whose trace is just K = γijKij .

C.2 3+1 decomposition of Einstein equation

In the same way as we did for the energy momentum tensor Tµν , we will project now the geometric
part of Einstein’s equations first (A) twice onto Σt, then (B) twice along nµ and, finally, (C) once
on Σt and once along nµ. In the manifold where gµν is the metric, we have, as usual:

Riemann tensor :4Rαβγσ, (C.20)

Ricci tensor :4Rµν , (C.21)

Scalar curvature :4R =4Rµµ, (C.22)

where the number 4 stands for four dimensions. But, in the 3 dimension manifold with metric γµν
(remember that γµν is purely spatial). We keep the µ and ν as indices to make the comparison more
clear), one has:

Riemann tensor : Rαβγσ, (C.23)

Ricci tensor : Rµν , (C.24)

Scalar curvature : R = Rµµ. (C.25)

It is really important to note that 4Rαβγσ and Rαβγσ are different, because the former contains
temporal derivatives of gµν , while the latter does not. With the relationship between 4Rαβγσ and
Rαβγσ given in the above equations, I will obtain important expressions, namely, the Gauss, the
Codazzi, and the Ricci equations. The steps will be the following:

• 1. To obtain the Gauss equation, we will project the Riemann tensor 4Rαβγσ onto the hyper-
surface Σt;

• 2. To obtain the Codazzi equation, we will project one index of 4Rαβγσ into the normal
direction nµ;

• 3. To obtain the Ricci equation, we will project two indices of 4Rαβγσ into the normal direction
nµ.

The first relation between 4Rαβγσ and Rαβγσ gives the Gauss equation:

Rαβµν +KαµKβν −KανKβν = γσαγ
τ
βγ

ρ
µγ

λ
ν

4Rλρστ , (C.26)
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and the Codazzi equation is given by:

DµKαν −DαKµν = γσαγ
τ
µγ

ρ
νn

λ 4Rστρλ, (C.27)

where Dµ is the projection of the covariante derivative onto Σt: Dµ = γσµ∇σ. The last equation of
interest is the Ricci one:

L~nKαβ = −nµnνγσβγτµ 4Rνστµ −
1

α
DβDαN −KµαK

µ
β . (C.28)

C.2.1 Evolution and constraint equations

We can eliminate the Riemann tensor 4Rαβγσ in Einstein’s equations (C.1) by making use of the
Gauss, Codazzi and Ricci equations to obtain the momentum and energy constraint equations, and
the evolution equation in the 3 + 1 decomposition for the metric γµν and the extrinsic curvature
Kµν . The Hamiltonian constraint equation, which comes from the Gauss equation (C.26) is:

R+K2 −KµβK
µβ = 16πE, (C.29)

where E is the total energy density defined as E := nµnνTµν . And from the Codazzi equation
(C.27), we have the momentum constraint:

DµK
µ
α −DαK = 8πJα, (C.30)

being Jα the momentum density defined as Jα := −γσαnλTσλ. From the Ricci equation (C.28), we
have the evolution equation for the extrinsic curvature components:

L~nKαβ = DβDαN +N(Rαβ −KKαβ − 2Kσ
αKβσ)+ (C.31)

− 8πN(Sαβ −
1

2
γαβ(S − ρ)) + L~βKαβ,

with Sαβ = γταγ
σ
βTτσ being the projection of the stress tensor onto the hypersurface. Finally, one

obtains from the definition of extrinsic curvature Kαβ in Eq. (C.19):

L~tγαβ = −2NKαβ + L~βγαβ, (C.32)

which represents the evolution equation for γαβ.

As we are working with the 3D hypersurface, the Lie derivative in the evolution equations is reduced
to a partial temporal derivative L~t → ∂t. In doing so, our new Hamiltonian constraint, momentum
constraint and both evolution equations are, therefore,

(A) : R+K2 −KijK
ij = 16πE, (C.33)

(B) : DjK
ij −Dj(γ

ijK) = 8πpi, (C.34)

and

(C) : −L~βKij = −DiDjN +N(Rij +KKij − 2KikK
k
j )

− 8πN(Sij −
1

2
γij(S − E)), (C.35)
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with L~βKij being the Lie derivative of the extrinsic curvature along the vector field ~β. The term S

is simply given by the trace S = γijSij .

C.3 Stationary, axisymmetric and circular spacetimes

Due to the symmetry of magnetized stars, we make use of a spherical type coordinate system such
that xα = (x0, x1, x2, x3) = (t, r, θ, φ), with the coordinate radius r ∈ [0,∞) and the angular polar
coordinate θ ∈ [0, π]. As usual, the φ is the coordinate azimuth angle. In Fig. C.2, we show the
spatial coordinates (r, θ, φ) and the associated natural basis vectors (~er, ~eθ, ~eφ).

Figure C.2: Spherical coordinates as commonly used in physics: radial distance r, polar angle
θ, and azimuthal angle φ.

In this context, stationary and axisymmetry spacetime is represented by the conditions:
∂gαβ
∂t

= 0 (stationary condition),

∂gαβ
∂φ

= 0 (axysymmetric condition),

where gαβ corresponds to the metric in the spherical polar coordinate system (t, r, θ, φ). In other
words, a spacetime is stationary when the metric potentials, as it appears, for example, in Eq. (C.18),
do not depend on time, and axysymmetric means that the metric potentials are invariant under the
change of the azimuth angle φ. Another way to establish such symmetries is through the Lie
derivative of the metric gµν along the generator of symmetries ~ξ (Killing vectors), i.e, L~ξ = 0, with

~ξ = ~∂t and ~ξ = ~∂φ being the generator of symmetries in time and in the azimuth direction.

Another important concept which relates the coordinate t and φ is the circular motion of the fluid.
Assuming that the system rotates around the z axis, the angular velocity Ω of the fluid is defined as:

Ω :=
dφ

dt
. (C.36)
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In what follows, we will be dealing with spacetime that is stationary, axysimmetric and circular, since
there is no fluid motion in the meridional surfaces, i.e. no convection, as ensured by Eq. (C.36).
We can then label a point in spacetime with the set of coordinates (t, φ) and complete it with the
coordinates (r, θ), such that the full coordinate system has (xµ) = (t, r, θ, φ). Another important
consequence of circular spacetimes is that some metric potentials are identically zero,

gtr = gtθ = gφr = gφθ = 0 (no meridional motion).

C.3.1 Quasi-isotropic and Maximum slice coordinates

In a 2D surface corresponding to the coordinates (r, θ), the line element induced gµν can be written
as:

gαβdx
αdxβ = A2(dr2 + r2dθ), (C.37)

with A being a function of A(r, θ). Note that grr = A2 and gθθ = A2r2, i.e, gθθ = r2grr. In this
context, the coordinates (xµ) = (t, r, θ, φ) are called quasi-isotropic coordinates (QI).

In order to determine the metric potentials related to the coordinates (t, φ), one defines a scalar
function Nφ = Nφ(r, θ)

Nφ(r, θ) := −
~ξ · ~χ
~χ · ~χ

, (C.38)

in terms of the time and azimuth Killing vectors, ~ξ and ~χ, respectively. Since gtφ = ~ξ · ~χ and
gφφ = ~χ · ~χ, then gtφ = −Nφgφφ, with gφφ chosen to be:

gφφ := λ2r2 sin2 θ, (C.39)

where B(r, θ) is a function of the coordinates (r, θ). Note that, for A→ 1 and λ→ 1, Eqs. (C.37)
and (C.39) reduce to the metric components in flat spacetime as shown in Eq. (B.4). As a conse-
quence, a circular stationary and axysymmetric 4-metric can be cast in the form:

ds2 = −N2dt2 +A2(dr2 + r2dθ2) + λ2r2 sin2 θ(dφ−Nφdt)2, (C.40)

with N(r, θ), A(r, θ), λ(r, θ) and Nφ(r, θ) function only of (r, θ). Comparing with the metric in
the 3+1 formalism in Eq. (C.18), we have that N corresponds to the lapse function, and the shift
vector has components:

βi = (0, 0,−Nφ), (C.41)

where the spatial 3-D metric γij is:

γij = A2(dr2 + r2dθ2) + λ2r2 sin2 θdφ2, (C.42)

and its inverse:

γij =
1

A2
(dr2 +

1

r2
dθ2) +

1

λ2r2 sin2 θ
dφ2. (C.43)

As a result, we can evaluate the extrinsic curvature as given in Eq. (C.44):

Kij =
1

2N

(
−Nφ∂γij

∂φ
+ γkj

∂(−Nφ)

∂xi
+ γik

∂(−Nφ)

∂xj

)
, (C.44)
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which, due to the fact that the spacetime is axysymmetric, i.e., ∂γij/∂φ = 0, and γij diagonal, the
non-zero components of Kij are:

Krφ = −λ
2r2 sin2 θ

2N

∂Nφ

∂r
, (C.45)

and

Kθφ = −λ
2r2 sin2 θ

2N

∂Nφ

∂θ
, (C.46)

with the properties Krφ = Kφr and Kθφ = Kφθ. Note that the diagonal elements of the extrinsic
curvature tensor, i.e., Krr, Kθθ and Kφφ, are identically zero. Therefore, the trace K = γijKij

becomes K = 0. In addition, the term KijK
ij , which appears in the Hamiltonian constraint in

Eq. (C.33) reads:

KijK
ij =γiiγijKijKij

=2(γrrγθθKrθKrθ + γθθγφφKθφKθφ)

=
λ2r2 sin2 θ

2A2N2

[(
∂Nφ

∂r

)2

+

(
1

r

∂Nφ

∂θ

)2
]
. (C.47)

The choice of the coordinates in General Relativity is not only crucial to write the gravitational
equations in an advantageous form, but it can also make the problem easier to solve numerically. In
our case, due to the symmetry of the problem, a polar-spherical type coordinates is chosen, namely,
the Maximal-Slicing-Quasi-Isotropic coordinates (MSQI).

By isotropic coordinates we refer to the choice of the spatial coordinate (r, θ, φ), which makes
possible to write the spatial part of the metric γµν (see Eq. (C.11)) in terms of 3 independent
components by imposing the isothermal gauge γrθ = γrφ = 0 and γθθ = r2γrr. For maximumslice,
we refer to the extrinsic curvature (also defined in Eq. (C.44)), i.e., a condition is imposed on the
extrinsic curvature so that Tr Kµν = 0. This condition represents the extremal of the volume
element in 3D defined as V =

∫
Σ

√
−γd3x, i.e., ∂tV = 0 if Kµ

µ = 0. In other words, it is a way to
avoid a singularity.

C.4 Einstein field equations in 3+1 formalism

In this section we deduce the Einstein’s equations in the 3+1 formalism. We begin with the trace
(with respect to the 3-D metric γij) of the evolution equation Eq. (C.35) to obtain:

DiD
iN = N [R+ 4π(S − 3E)] , (C.48)

that, by using the expression for R in the momentum constrain equation (Eq. C.34), becomes:

DiD
iN = N

[
4π(S + E) +KijK

ij
]
, (C.49)

where the 3D Laplacian DiD
iN is given by the standard formula:

DiD
iN =

1
√
γ

∂

∂xi

(
√
γγij

∂N

∂xj

)
, (C.50)
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with xi = (r, θ, φ) being the spatial coordinates. Since N = N(r, θ) (and then ∂N/∂φ = 0) and
γij is diagonal, the non-vanishing components of the Laplacian in Eq. (C.50) are:

DrD
rN =

1

A2

[
1

λ

∂λ

∂r

∂N

∂r
+

2

r

∂N

∂r
+
∂2N

∂r2

]
, (C.51)

and

DθD
θN =

1

A2

[
1

λr2

∂λ

∂θ

∂N

∂θ
+

1

r2 tan θ

∂N

∂θ
+

1

r2

∂2N

∂θ2

]
. (C.52)

Making use of Eqs. (C.51), (C.52) and (C.47), Eq. (C.49) becomes:

∂2N

∂r2
+

1

r2

∂2N

∂θ2
+

2

r

∂N

∂r
+

1

r2 tan θ

∂N

∂θ
=

4πNA2(E + S) +
λ2r2 sin2 θ

2A2N2

[(
∂Nφ

∂r

)2

+

(
1

r

∂Nφ

∂θ

)2
]

− ∂lnλ

∂θ

∂N

∂θ
− 1

r2

∂lnλ

∂θ

∂N

∂θ
, (C.53)

where the relation (1/λ)∂λ/∂r = ∂lnλ/∂r was used.

Now, let’s focus our attention on the Hamiltonian constrains in Eq. (C.33) to determine the scalar
curvature R, which is related to the Ricci tensor as in Eq. (B.25) with the corresponding exchange
gµν → γij and Rµν → Rij , i.e, R = γijRij . The Ricci tensor, in turn, is written in terms of the
Riemann tensor as in Eq. (B.25), which depends only on the Christofel symbols as in Eq. (B.23).
The Christofel symbols are functions of the metric tensor and its derivatives as in Eq. (B.22). As a
result, by using the 3D metric γij , we obtain the 3D Christoffel symbols, which are used to calculate
both the spatial Riemann tensor and, finally, the 3D Ricci tensor R. In this case, the Hamiltonian
constrain (Eq. (C.33)) reads:

1

A

[
∂2A

∂r2
+

1

r

∂A

∂r
− 1

A

(
∂A

∂r

)2

+
1

r2

∂2A

∂θ2
− 1

Ar2

(
∂A

∂θ

)2
]

+
1

λ

(
∂2λ

∂r2
+

3

r

∂λ

∂r
+

1

r2

∂2λ

∂θ2
+

2

r2 tan θ

∂λ

∂θ

)
+
λ2r2 sin2 θ

2A2N2

[(
∂Nφ

∂r

)2

+

(
1

r

∂Nφ

∂θ

)2
]

= −8πA2E. (C.54)

The only equation left up to now is the momentum constrain in Eq. (C.34). As already calculated,
we have that K = 0, which simplifies Eq. (C.34). However, in order to evaluate the term DjK

j
i ,

we make use of the standard expression for the divergence of a symmetric tensor:

DjK
j
i =

1
√
γ

∂

∂xj
(
√
γKj

i )−
1

2

∂γik
∂xi

Kjk, (C.55)

to obtain

DjK
j
i =

1
√
γ

∂

∂r
(
√
γKr

i ) +
1
√
γ

∂

∂θ
(
√
γKθ

i ), (C.56)
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where we have used that the 3D metric is diagonal, the extrinsic curvature tensor has non-vanishing
components for non-diagonal terms and the system is axysymmetric. According to these conditions,
terms such as (∂γrθ/∂r)K

rθ, (∂γθθ/∂r)K
θθ and ∂/∂φ are identically zero.

The term Kr
i is non-zero only for the component Kr

φ and Kθ
φ. For example, Kr

r = γrαKαr, but
γrα is diagonal, what implies that α = r for non-trivial solutions. As a consequence, we have
Kαr = Krr = 0 and, therefore, Kr

r = 0. The same argument is valid for the other zero components.
Finally, among all combinations, the only non-zero component of the divergent DjK

j
i is such that

i = φ:

DjK
j
φ =

1
√
γ

∂

∂r
(
√
γKr

φ) +
1
√
γ

∂

∂θ
(
√
γKθ

φ) = 8πpφ, (C.57)

where we used the fact that DjK
j
φ = 8πpφ as in Eq. C.34. More importantly, see that there is no

momentum in r and θ directions. This is a consequence of the axysymmetry adopted throughout
this work.

Then, we have that:

Kr
φ =γrαKαφ = γrrKrφ,

Kθ
φ =γθαKαφ = γθθKθφ,

which with the help of Eqs. (C.45)-(C.46) and (C.43), allows Eq. (C.57) to be written as:

sin2 θ

2A2λr2

∂

∂r

(
λ3r4

N

∂Nφ

∂r

)
+

1

2A2λ sin θ

∂

∂θ

(
λ3

N
sin3 ∂N

φ

∂θ

)
= −8πpφ,

which, multiplying by the factor A2λ/r sin θ, can be rewritten as:

sin θ

r3

∂

∂r

(
λ3r4

N

∂Nφ

∂r

)
+

1

r sin2 θ

∂

∂θ

(
λ3

N
sin3 ∂N

φ

∂θ

)
= −16πA2λ

pφ
r sin θ

. (C.58)

At last, we consider in Eq. (C.35) the components i = j = φ such that the Lie Derivative of the
extrinsic curvature (left hand side term) is given by:

L~βKφφ =

(
βk
∂Kφφ

∂xk
+Kkφ

∂βk

∂φ
+Kφ

∂βk

∂φ

)
= 0,

where we have replaced γij by Kij in Eq. (C.44) to obtain L~βKij and the fact that Kφφ = 0 and

the shift vector βk is a function only of (r, θ). In this case, Eq. (C.35) becomes:

DφDφN =N(Rφφ − 2KφkK
k
φ)

− 8πN(Sφφ −
1

2
γφφ(S − E))

=N(Rφφ − 2KφkK
k
φ)

+ 4πNλ2r2 sin2 θ(Srr + Sθθ − S
φ
φ − E), (C.59)

where we have made use of the expressions S = Srr+Sθθ+Sφφ and γφφ = λ2r2 sin2 θ. We need now to

determine Rφφ, KφkK
k
φ and DφDφN . For DφDφN , we can make use of the fact that the covariant

derivative of a scalar filed coincides with the partial derivative of this scalar, i.e., DiN = ∂iN . In
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this case, by using the definition of the covariant derivative of a vector field, we find:

Dφ(DφN) =∂φ(

0︷︸︸︷
∂φN)− Γiφφ∂iN

=− Γrφφ∂rN − Γθφφ∂θN

=
λ2r2 sin2 θ

A2

[
∂N

∂r

(
1

λ

∂λ

∂r
+

1

r

)
+
∂N

∂θ

1

r2

(
1

λ

∂λ

∂θ
+

1

tan θ

)]
, (C.60)

and

KφkK
k
φ =γrr(Krφ)2 + γθθ(Kθφ)2

=
λ2r4 sin2 θ

4A2N2

[(
∂Nφ

∂r

)2

+

(
1

r

∂Nφ

∂θ

)2
]
, (C.61)

and from Eqs. (B.25), (B.23), (B.22), the Ricci tensor Rφφ becomes:

Rφφ =
−λr2 sin2 θ

A2

(
∂2λ

∂r2
+

3

r

∂λ

∂r
+

1

r2

∂2λ

∂θ2
+

2

r2 tan θ

∂λ

∂θ

)
(C.62)

Finally, with Eqs. (C.60), (C.61) and (C.62), Eq. (C.59) can be cast in the form:

1

N

[
∂N

∂r

(
1

λ

∂λ

∂r
+

1

r

)
+
∂N

∂θ

1

r2

(
1

λ

∂λ

∂θ
+

1

tan θ

)]
=

− 1

λ

(
∂2λ

∂r2
+

3

r

∂λ

∂r
+

1

r2

∂2λ

∂θ2
+

2

r2 tan θ

∂λ

∂θ

)
− λ2r2 sin2 θ

2N2

[(
∂Nφ

∂r

)2

+

(
1

r

∂Nφ

∂θ

)2
]

+ 4πA2(Srr + Sθθ − S
φ
φ − E), (C.63)

which, using the short notation defined as:

∂f∂g :=
∂f

∂r

∂g

∂r
+

1

r2

∂f

∂θ

∂g

∂θ
, (C.64)

we get:

1

Nλ
∂λ∂N +

1

Nr

(
∂N

∂r
+

1

r tan θ

∂N

∂θ

)
+

1

λ

(
∂2λ

∂r2
+

3

r

∂λ

∂r
+

1

r2

∂2λ

∂θ2
+

2

r2 tan θ

∂λ

∂θ

)
+
λ2r2 sin2 θ

2N2
∂Nφ∂Nφ

= 4πA2(Srr + Sθθ − S
φ
φ − E), (C.65)

Note that Eqs.(C.53), (C.54), (C.58) and (C.65) are equations for the four (unknowns) metric po-
tentials N,λ,A and Nφ as already shown in Eq. (C.40). To obtain the final gravitational equations,
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we first multiply Eq. (C.53) by λ and Eq. (C.65) by Nλ. Then we add both to get:[
∂2

∂r2
+

3

r

∂

∂r
+

1

r2

∂2

∂θ2
+

2

r2 tan θ

∂

∂θ

]
(Nλ)

= 8πA2Nλ(Srr + Sθθ ). (C.66)

Next, we divide Eq. (C.53) by N , we add it to Eq. (C.54) and, from the result, we subtract
Eq. (C.65) to yield:

1

N

∂2N

∂r2
+

1

rN

∂N

∂r
+

1

r2N

∂2N

∂θ2
+

1

A

∂2A

∂r2
+

1

rA

∂A

∂r
+

1

r2A

∂2A

∂θ2

= 8πA2Sφφ +
1

A2
∂A∂A+

3λ2r2 sin2 θ

24N2
∂Nφ∂Nφ. (C.67)

Finally, the final system of equations is achieved by rearranging Eq. (C.66) to obtain:

∆2[(Nλ− 1)r sin θ] = 8πNA2λr sin θ(Srr + Sθθ ) . (C.68)

Rearranging Eq. (C.67) we get

∆2[lnA+ ν] = 8πA2Sφφ + 3λ2r2 sin2 θ
4N2 ∂Nφ∂Nφ − ∂ν∂ν , (C.69)

and, in closing, reorganizing Eq. (C.53) and Eq. (C.58), we obtain:

∆3ν = 4πA2(E + S) + λ2r2 sin2 θ
2N2 ∂Nφ∂Nφ − ∂ν∂(ν + lnλ) , (C.70)

and [
∆3 − 1

r2 sin2 θ

]
(Nφr sin θ) = −16πNA

2

λ2
pφ

r sin θ + r sin θ∂Nφ∂(ν − 3lnλ) , (C.71)

where the short notation was introduced:

∆2 =
∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂θ2
(C.72)

∆3 =
∂2

∂r2
+

2

r

∂

∂r
+

1

r2

∂2

∂θ2
+

1

r2 tan θ

∂

∂θ
(C.73)

ν = lnN. (C.74)

In addition, in the final gravitational field equation system, Eqs. (C.68)-(C.71), terms like ∂Nφ∂Nφ

defined in Eq. (C.64) were used. Finally, the equation of motion for the matter, ∇µTµν = 0, in the
MSQI coordinates is given by:

N
√
γ

∂

∂xj
(√
γSii
)
− N

2

∂γjk
∂xi

Sjk + Sjk
∂N

∂xj
+ E

∂N

∂xi
+ Jφ

∂Nφ

∂xi
= 0, (C.75)

where xi stands for r and θ. In the next pages this equation of motion is applied to a perfect fluid
with and without a magnetic field.
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C.5 Application to astrophysical cases

C.5.1 Perfect fluid without magnetic field

The first and simplest case we can treat is the perfect fluid without magnetic field. In this case, we
have the energy-momentum tensor:

Tµν = (e+ p)uµuν + pgµν , (C.76)

with uµ =
(
ut, 0, 0, uφ

)
being the fluid four-velocity for the fluid comoving observer O1. In our

coordinate, the Eulerian observer O0 (the observer with four-velocity nµ ) is related to the O1

observer by the Lorentz factor,
Γ := −nµuµ = Nut. (C.77)

Then, fluid velocity U measured by O0 is:

U =
A2λr sin θ

N

(
Ω−Nφ

)
, (C.78)

and with the normalization of the 4-velocity uµuµ = −1 we get Γ =
(
1− U2

)− 1
2 . In this scenario,

the energy density, momentum density and stress tensor of a perfect fluid (PF) as described by
Eq. (C.76) are obtained from Eqs. (C.12)-(C.14):

EPF = Γ2 (e+ p)− p, (C.79)

JPFφ = (E + p)A2λr sin θU, (C.80)

SPF r
r = p = Sθθ , SPF φ

φ = p+ (E + p)U2. (C.81)

Then, the equation of motion (C.75) becomes:

1

e+ p

(
∂p

∂xi

)
+
∂ν

∂xi
− ∂

∂xi
lnΓ = −F ∂Ω

∂xi
, (C.82)

with F = uφu
t = A2λ

N Γ2Ur sin θ. Defining the heat function as

H(n) :=

∫ n

0

1

e (n′) + (pn′)

dp

dn

(
n′
)
dn′, (C.83)

which can be written as H (n) = lnf (n), being f (n) := e+p
n the relativistic enthalpy per baryon.

As a result, the equation of motion is:

∂

∂xi
(H + ν − lnΓ) = −F ∂Ω

∂xi
, (C.84)

and, as usual, xi are de radial and angular coordinates r and θ. Integrating the above equation for
the case of uniform rotation, i.e., Ω = cte we have:

H (r, θ) + ν (r, θ)− lnΓ (r, θ) = C. (C.85)

In Chapter 2, it is shown that the constant C can be calculated at every point in the star. We will
treat now the equation of motion taking into account a perfect fluid endowed with a magnetic field.
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C.5.2 Perfect fluid with magnetic field

Carter (1973), showed that the most general electric current for stationary, axisymmetry spacetime
is given by:

jµ =
(
jt, 0, 0, jφ

)
. (C.86)

There it is also shown that the electromagnetic field tensor Fαβ must come from the potential Aα,
which has the property: Aα = Atdt+Aφdφ. In this case, the electric field measured by the observer
O0 (Lichnerowicz et al., 1967) is:

Eα = Fαβn
β = (C.87)(

0,
1

N

[
∂At
∂r

+Nφ∂Aφ
∂r

]
,

1

N

[
∂At
∂θ

+Nφ∂Aφ
∂θ

]
, 0

)
,

and the magnetic field given by:

Bα = −1

2
εαβγσF

γσnβ = (C.88)(
0,

1

A2λr2 sin θ

∂Aφ
∂θ

,− 1

A2λ sin θ

∂Aφ
∂r

, 0

)
,

where εαβγσ is the Levi - Civita tensor related to the metric gµν . Assuming that matter inside the
star has infinite conductivity, the electric field measured by the coming observer O1 must be zero,
i.e. E′α = Fαβn

β = 0. This condition leads to the following relation of the 4-vector potential inside
the star:

∂At
∂xi

= −Ω
∂Aφ
∂xi

, (C.89)

which for the case of rigid rotation, Ω = const, becomes (up to some additive constant):

At = −ΩAφ. (C.90)

C.5.3 Maxwell equations

Fµν can be derived from the potential Fµν = Aν,µ −Aµ,ν , so that the Maxwell equation

Fαβ;γ + Fβγ;α + Fγα;β = 0, (C.91)

is automatically satisfied. The remaining Maxwell equations,

Fαβ;β = 4πjα, (C.92)

can be expressed in terms of the two non- vanishing components of the magnetic vector potential
Aµ. For example, the Maxwell-Gauss equation for At reads (Lichnerowicz et al., 1967):

∆3At =− µ0A
2(gttj

t + gtφj
φ)

− λ2

N2
Nφr2 sin2 θ∂At∂N

φ

−
(

1 +
λ2

N2
r2 sin2 θ(Nφ)2

)
∂Aφ∂N

φ

− (∂At + 2Nφ∂Aφ)∂(lnλ− ν)

− 2
Nφ

r

(
∂Aφ
∂r

+
1

r tan θ

∂Aφ
∂r

)
, (C.93)
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and from the Maxwell-Ampere equation, we have an equation for Aφ:[
∆3 −

1

r2 sin2 θ

](
Aφ
r sin θ

)
=− µ0A

2λ2(jφ −Nφjt)r sin θ

− λ2

N2
r sin θ∂Nφ(∂At +Nφ∂Aφ)

+
1

r
∂Aφ∂(lnλ− ν). (C.94)

In this approach, the equation of motion can deduced from (C.85) by adding the Lorentz force term
fα = Fαβj

α:
∂

∂xi
(H + ν − lnΓ)− 1

e+ p

(
jφ − Ωjt

) ∂Aφ
∂xi

= 0. (C.95)

The integrability condition says the last term can be written in terms of a function M(r, θ):

− 1

e+ p

(
jφ − Ωjt

) ∂Aφ
∂xi

=
∂M

∂xi
. (C.96)

As already discussed in Chapter 2, there is a current function f : R→ R such that

jφ − Ωjt = (e+ p) f(Aφ), (C.97)

with Aφ being the magnetic vector potential and f(x) an arbitrary function f(Aφ) that needs to
be chosen (Bocquet et al., 1995). In our case, we construct stellar models for constant values of
f(Aφ) = f0. As shown by Bocquet et al. (1995), the current function can have a more complex
structure, however this does not affect significantly the global properties of stars.

As a result, integrating the equation of motion on gets:

H (r, θ) + ν (r, θ)− lnΓ (r, θ) +M (r, θ) = const, (C.98)

where

M (r, θ) = M (Aφ (r, θ)) :=

∫ Aφ(r,θ)

0
f (x) dx (C.99)

To make clear why these current function f(x) and the magnetic potential function M(r, θ) appear in
the problem, in Appendix A we showed in Newtonian physics that the electric current in magnetized
stars is also related to a current function (see Eq. (A.22)). In this case, one has the correspondence
u→ Aφ and k0 → f(x).

The stress-energy tensor of the magnetic field is calculated using the standard formula:

TEMαβ =
1

4π

(
FαµF

µ
β −

1

4
FµνF

µνgαβ

)
, (C.100)

from which one can obtain the sources of the gravitational fields. Replacing Tµν by TEMαβ in
Eqs. (C.12)-(C.14), the electromagnetic contribution (EM) contribution to the total energy of the
system is:

EEM =
1

2µ0
BiBi, (C.101)
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while the EM contribution to the momentum density can be written as:

JEMφ =
1

µ0
A2(BrEθ − ErBθ), (C.102)

and the stress 3-tensor components are given by:

SEMr
r =

1

2µ0
(EθEθ − ErEr +BθBθ −BrBr) (C.103)

SEMθ
θ =

1

2µ0
(ErEr − EθEθ +BrBr −BθBθ) (C.104)

SEMφ
φ =

1

2µ0
(EiEi +BiBi), (C.105)

where the electric and magnetic field components are given in Eq. (C.87) and Eq. (C.88). Moreover,
the total energy of the system is E = EPF + EEM , the total momentum density flux is Jφ =
JPFφ + JEMφ and the total stress tensor S = SPF + SEM .
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