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Summary

The emphasis of this dissertation was to improve the process of automated protein struc-

ture determination by nuclear magnetic resonance (NMR). The classical approach towards

NMR structure determination can be organized into the following steps:

� Data collection and processing

� Signal identification (‘Peak picking’)

� Chemical shift assignment

� Collection of conformational restraints

� Structure calculation, refinement and validation

The abovementioned steps are explained in detail in chapter 1.2. Several alternative,

non-classical approaches have been reviewed in (Guerry & Herrmann, 2011) and are briefly

summarized in chapter 1.2.5.

Some of the sequential steps of NMR protein structure determination have already been

successfully automated, which makes them independent from the individual expertise of

the user, more time efficient and more objective. CYANA (Güntert et al., 1997; Güntert

& Buchner, 2015) is a software package that is routinely used for automated chemical

shift assignment (Schmidt & Güntert, 2012), automated Nuclear Overhauser Enhancement

(NOE) assignment and structure calculation of proteins. However, the major goal is to

automate all the steps listed above (with the exception of data collection). Therefore, it

is necessary to develop novel algorithms which perform the individual steps more reliable.

One of these steps, which has not yet been successfully automated represents the fully

automated signal identification of NMR spectra. The step of peak picking is a very crucial

stage in the whole process because NMR signal lists serve as basis for all subsequent steps.

Errors in these lists propagate into all subsequent steps of data evaluation and ultimately
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result in incorrect structures. A fully automated approach to NMR peak picking which is

used on a regular basis is lacking. Therefore one of the major aims of this thesis was to

develop a robust peak picking algorithm and implement it in CYANA. This peak picking

procedure should be combined with the existing FLYA algorithm for resonance assign-

ment, automated NOE assignment and structure calculation with CYANA. A detailed

description of the peak picking algorithm CYPICK can be found in chapter “Peak picking

in multidimensional NMR spectra with CYPICK” (chapter 2).

The CYPICK peak picking algorithm mimics the human approach towards peak pick-

ing as authentically as possible. Manual peak picking is performed by analyzing two-

dimensional contour line representations of the spectrum. The scientist decides with the

aid of geometry and similarity criteria if the contour line at hand belongs to a real pro-

tein signal or represents a spectral artifact. Protein signals resemble concentric ellipses

and comply with specific geometric criteria which artifacts do not fulfill, e.g. approxi-

mate circular shape, after appropriate scaling of the spectral axes, and entire convexity.

CYPICK evaluates the contour lines of local extrema by means of these conditions and

decides whether the signal at hand is real or not.

In the context of the evaluation of CYPICK several input parameters were exten-

sively tested on various NMR spectra of the ENTH-VHS domain At3g16279-(9-135) of

Arabidopsis thaliana (ENTH). The performance of CYPICK was evaluated and com-

pared by calculating scores with the help of manual established reference peak lists. These

scores were also calculated for other prominent programs, i.e. AUTOPSY, NMRViewJ,

CCPN, and CV-Peak Picker, and compared to CYPICK. CYPICK peak lists showed

a higher reliability which is manifested by peak picking more true peaks and less artifacts

than the other programs. Automated peak picking of NOESY spectra was performed

particularly well by CYPICK in comparison to the other programs. CYPICK and the

abovementioned programs were also used to pick the complete data set of NMR spectra

belonging to the Src homology domain 2 from the human feline sarcoma oncogene FES

(SH2) and the Arabidopsis thaliana rhodanese domain At4g01050 (RHO). In these cases

no manual peak lists were available that could be used for score calculation. Automatically

generated ENTH, RHO, and SH2 peak lists were then used in automated chemical shift

assignment by FLYA, automated NOE assignment and structure calculation by CYANA.

Results achieved at these stages were compared to the reference resonance assignment and

the reference structure bundle. CYPICK peak lists led to resonance assignments and

structure bundles of high accuracy. The results were superior when compared to the other
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programs. Even in the challenging case of solely NOESY-based chemical shift assignment

the results of CYPICK stood out for their reliability throughout the data set. CYPICK

was further applied to ten CASD-NMR protein data sets which included NOESY spec-

tra. The peak lists obtained by CYPICK were used in automated NOE assignment and

structure calculation together with the reference chemical shift assignment. In 50% of the

cases the structures could be recalculated with an RMSD bias ≤ 1 Å. For the remaining

proteins correctly folded structures were found, although with slightly higher RMSD bi-

ases ≤ 3 Å. The quality of the results obtained through CYPICK lie between the results

from manually edited and ‘raw’ peak lists.

However, these investigations also revealed that certain functionalities of CYPICK

can be improved or implemented in future projects. The requirements for the presence

of a local extremum should be relaxed in order to identify overlapping signals which do

no possess a local extremum. In this context, it would also be desirable to have a stable

deconvolution method. Additionally, the algorithm should become completely independent

from noise level values. Thereby, very weak signals buried below the global threshold could

be identified. A tool for discarding peaks arising from noise bands would also improve

the overall performance of CYPICK. Furthermore, it would be worthwhile to have the

opportunity to guide the peak picking by additional information such as a 3D structure or

a chemical shift assignment. Contour-based quality factors Qrad and Qcon can in principle

be used to direct automated chemical shift and NOE assignment.

At the end of each NMR structure calculation the question of quality, accuracy and

precision of the calculated structure bundle arises. These features are directly accessible

in X-ray crystallography from the measured data. In NMR spectroscopy no fully well-

established method is available for the determination of this measure. In this context, the

knowledge about the structural information of individual restraints used for the calculation

becomes of interest. Some algorithms that quantify the structural information of restraints

exist, but are not commonly used due to varying reasons. Therefore developing a method

to meaningfully and readily quantify the information content of distance restraint data

sets has been a further target of this thesis. This measure gives an estimation of the

structural precision, the so called RMSD radius, of the resulting structure solely based

on the input restraints. Such a measure is comparable to the resolution and B-factors in

X-ray crystallography. A description of the algorithm and the results are presented in the

chapter “Information content of NMR distance restraints” (chapter 3).
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The information content implementation in CYANA (referred to as I) is mostly based

on probability theory. I is defined as the negative logarithm of the probability that a set of

restraints will be fulfilled by an ensemble of random structures. I is a sum of quotients of a

conditional probability logarithm and a redundancy. The conditional probability quantifies

the probability of an individual restraint to be fulfilled by a random structure. The

redundancy of an individual restraint reflects the probability that an individual restraint

will be fulfilled by a random structure that also fulfills another distance restraint.

The I calculation is performed completely automatic and demands no user input.

Initially, several properties of I have been demonstrated on the basis of distance re-

straints from 27 NorthEast Structural Genomics consortium (NESG) (Wunderlich et al.,

2004) proteins, which varied in size from 5.2 kDa to 22 kDa. The following characteristics

have been observed:

1. The different structural information of varying restraint types, i.e. long-range dis-

tance restraints carry the most structural information, whereas short-range distance

restraints contribute to a significant lesser amount of information.

2. Structurally equivalent restraints lead to an increase in restraint redundancy and a

concomittant individual restraint information loss, such that the overall information

of the data set remains approximately the same.

3. I depends on the upper and lower distance limit, i.e. I increases with a smaller

available conformational space and decreases with a larger available conformational

space.

Furthermore, it was observed that the value of I also depends on the protein size.

It was shown that the information content per residue, Ir, is a measure of information

content that is independent from the size of the protein by scaling the overall I by the

number of ordered residues included in the structure. The information content can be

calculated alternatively with the help of a structure bundle or on the basis of the covalent

geometry of the polypeptide chain. It was demonstrated that both calculation modes are

in good agreement. Finally, it could be observed that Ir of a distance restraint data set is

correlated to the structural precision of a structure bundle that has been determined on

the basis of this data set. It was determined that an Ir > 3 is needed in order to obtain
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a structure bundle with an RMSD radius < 2 Å.

In principle, 3D protein structures can be determined by NMR spectroscopy and X-

ray crystallography. However, in the pharmaceutical industry X-ray crystallography is

sometimes preferred over NMR spectroscopy. Reasons therefore are its potential towards

high-throughput which is in principal enabled by “molecular replacement”. Structure-

based drug design (SBDD) is therefore mostly performed by X-ray crystallography. NMR,

however, has several advantages over X-ray crystallography which are crucial for SBDD,

such as the possibility to study complexes with low binding affinities. Therefore a strategy

to perform SBDD by NMR spectroscopy was developed in collaboration with Dr. Alvar

Gossert and co-workers from Novartis and Dr. Elena Schmidt. Methods and strategies

developed in this context are described in the chapter “Structure-based drug design by

NMR” (chapter 4).

The two major developments within this work were the ‘Protein-ligand NOESY’ which

includes all relevant data for structure calculation of a protein ligand complex, and the

‘FLYA assignment transfer’ which enables obtaining assignments of an unknown protein

ligand complex only by the usage of signal lists from the protein-ligand NOESY’ and a

reference chemical shift assignment. The FLYA assignment transfer has two calculation

modes: a 1-step and a 2-step protocol. The 2-step protocol uses information from the

reference complex assignment and additional information from an available structure.

The SBDD by NMR approach was tested on the basis of the protein MDM4 (Wade

& Li, 2013), which regulates the cancer suppressor protein p53 (Shvarts et al., 1996).

Studies showed that MDM4 is over-expressed in 10–20% of 800 very diverse tumors, which

led to a massive reduction of p53. Accordingly, MDM4 is an interesting target for the

development of anti-cancer strategies. In this study, diverse ligands (peptide-1, peptide-2,

nutlin-3a, fragment) in terms of size, affinity, binding kinetics and chemistry, were analyzed

in complex with MDM4 and 3D structures were determined. The chemical shift assignment

of MDM4 in complex with peptide-1 was utilized as reference for the assignment of further

MDM4 complexes.

The chemical shift assignments of a set of MDM4 complexes was determined on the

basis of peak lists from the protein-Ligand NOESY which includes all necessary data

for assignment and structure calculation in a single spectrum. Automated chemical shift

assignments were performed with the FLYA assignment transfer protocol. Resonance as-

signments showed a high percentage of correctness ranging from 79–95%. Assignments
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on the basis of manual and CYPICK peak lists showed comparable results, whereas the

number of strong peaks was usually slightly higher when using manual peak lists. The

2-step protocol led to a significant improvement in chemical shift assignment of approxi-

mately 10% in case of peptide-2 and approximately 5% in case of the fragment and nutlin.

Peptide-2 is chemically very similar to peptide-1, accordingly the knowledge of the struc-

ture has a higher impact as in case of the fragment and nutlin-3a, which are chemically

very different from peptide-1. Structure calculation results of peptide-1 and peptide-2

led to structure bundles of high quality, with an RMSD radius of approximately 1.0 Å

and RMSD bias < 1.8 Å. Manual and CYPICK peak lists yielded structure bundles of

similar quality. The structure calculation results of nutlin-3a were inferior to peptide-1

and peptide-2 results. When using manual peak lists, structures achieved had RMSD

radius values < 1.0 Å and RMSD bias values of < 2.00 Å. Structure bundles achieved by

CYPICK were even less reliable, i.e. the RMSD radius was 0.8–1.7 Å and the RMSD bias

varied from 2.5–3.3 Å, when using the 1-step and 2-step protocol, respectively. Structure

calculation on MDM4 in complex with the fragment could not be performed and presented

within this thesis due to confidentiality reasons.

The SBDD by NMR protocol has several drawbacks which are in line with the general

limitations of protein NMR. The protein has to be uniformly isotope labeled and the

size should be less than 30 kDa. Within this method ligand signals are measured in

a two-dimensional plane of the Protein-Ligand NOESY, which can quickly suffer from

signal overlap depending on the chemical composition. In this study, the method was

successfully applied to ligands ranging in size from 1–2 kDa.
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Zusammenfassung

Der Schwerpunkt dieser Dissertation lag in der Verbesserung einzelner Aspekte im Prozess

der automatischen Proteinstrukturbestimmung mittels NMR. Der klassische Ansatz zur

NMR Proteinstrukturbestimmung gliedert sich in folgende Schritte:

� Messung und Prozessierung der NMR Daten

� Signalidentifizierung (‘Peak picken’)

� Zuordnung der chemischen Verschiebungen

� Zuordnung der ‘NOE’ Signale

� Strukturrechnung, -verfeinerung und -validierung

Die oben genannten Schritte werden in Kapitel 1.2 ausführlich beschrieben. Alternative

nicht klassische Ansätze werden detailliert in Guerry & Herrmann (2011) diskutiert und

kurz in Kapitel 1.2.5 zusammengefasst.

Die Zuordnung der chemischen Verschiebungen, der NOEs und die Strukturrechung

wurden bereits erfolgreich automatisiert, was die Ergebnisse unabhängig von der individu-

ellen Expertise des Anwenders, zeit-effizienter und objektiver gestaltet. CYANA (Güntert

et al., 1997; Güntert & Buchner, 2015) ist ein Programmpaket, welches routinemäßig zur

automatischen Zuordnung der chemischen Verschiebungen (Schmidt & Güntert, 2012),

der automatischen Zuordnung von Nuclear Overhauser Enhancement Signalen (NOEs)

und der Strukturrechnung von Proteinen verwendet wird. Das Hauptziel jedoch ist es,

alle oben gezeigten Schritte (mit Ausnahme der Messung der Daten) zu automatisieren.

Daher ist es notwendig neue Algorithmen zu entwickeln, die die individuellen Schritte

robust und verlässlich durchführen.

Einer der Schritte, die noch nicht erfolgreich automatisiert wurden, stellt die Signali-

dentifizierung von NMR Spektren dar. Dieser Schritt ist besonders wichtig, da Listen von
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NMR-Signalen Grundlage aller Folgeschritte sind. Fehler in den Signallisten pflanzen sich

in allen Folgeschritten der Datenauswertung fort und können am Ende in falschen Struk-

turen resultieren. Ein komplett automatisierter Ansatz zur Signalidentifizierung, welcher

standardmäßig verwendet wird, existiert bisher noch nicht. Daher war das Hauptziel dieser

Arbeit, einen robusten und verlässlichen Algorithmus zur Signalidentifizierung von NMR

Spektren in CYANA zu implementieren. Dieser Algorithmus sollte mit dem in FLYA

implementierten Ansatz zur automatischen Resonanzzuordnung, der automatischen NOE-

Zuordnung und der Strukturrechnung mit CYANA kombiniert werden. Eine detaillierte

Beschreibung des CYPICK Algorithmus zur Signalidentifizierung von NMR Spektren er-

folgt im Kapitel ‘Peak picking in multidimensional NMR spectra with CYPICK’ (Kapitel

2).

Der in CYANA implementierte CYPICK Algorithmus imitiert den von Hand durch-

geführten Ansatz. Bei der manuellen Methode schaut sich der Wissenschaftler zweidi-

mensionale Konturliniendarstellungen der NMR Spektren an. Er entscheidet anhand ver-

schiedener Geometrie- und Ähnlichkeitskriterien, ob es sich um ein Signal des Proteins

oder um einen Artefakt handelt. Proteinsignale sind ähnlich zu konzentrischen Ellipsen

und erfüllen bestimmte geometrische Kriterien, wie zum Beispiel ungefähr kreisförmiges

Aussehen nach entsprechender Skalierung der spektralen Achsen und gänzlich konvexe

Formen, die Artefakte nicht aufzeigen. CYPICK bewertet die Konturlinien lokaler Ex-

trema nach diesen Bedingungen und entscheidet anhand dieser, ob es sich um ein echtes

Signal handelt oder nicht.

Im Rahmen der Evaluation von CYPICK wurden zunächst Eingabeparameter des

Anwenders intensiv an einer Vielzahl von Spektren der ENTH-VHS Domäne At3g16270-

(9-135) von Arabidopsis thaliana (ENTH) (López-Méndez & Güntert, 2006; López-Méndez

et al., 2006) getestet. Die Leistung von CYPICK wurde basierend auf Score-Werten mit

manuell erstellten Listen verglichen und bewertet. Diese Score-Werte wurden ebenfalls für

Peaklisten, die von den bekannten Programmen AUTOPSY, NMRViewJ, CCPN und

CV-Peak Picker erzeugt wurden, berechnet. CYPICK-Peaklisten zeigten ein höheres

Maß an Robustheit, welches sich durch die konsistente Identifikation von mehr echten

Signalen und weniger Artefakten gegenüber den anderen Programmen manifestierte. Au-

tomatisches Peak Picken von NOESY Spektren wurde besonders gut von CYPICK durch-

geführt. CYPICK und die oben genannten Programme wurden außerdem zur Analyse

der Datensätze der Src Homologie Domäne des humanen Katzensarkoma Onkogens (SH2)

(Scott et al., 2004, 2005) und der Arabidopsis thaliana Rhodanase Domäne At4g01050
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(RHO) (Pantoja-Uceda et al., 2004, 2005) verwendet. In diesen Fällen waren keine

manuellen Peaklisten verfügbar. Zum Vergleich der Leistung der Programme anhand

der Score-Werte. ENTH, RHO und SH2 Peaklisten wurden dann zur automatischen

Zuordnung der Resonanzen, zur automatischen NOE-Zuordnung und zur Strukturrech-

nung verwendet. Resultate, die in diesen Schritten erzielt wurden, konnten dann mit einer

Referenzzuordnung und einem Referenzstrukturbündel verglichen werden. Von CYP-

ICK erstellte Peaklisten führten zu Resonanzzuordnung und Strukturbündeln, die sich

durch eine hohe Genauigkeiten auszeichneten. Die mit CYPICK-Listen erzielten Resul-

tate waren besser als die von den übrigen Programmen produzierten Ergebnisse. Sogar

im Fall der ausschließlich NOE basierten Resonanzzuordnung, zeichneten sich die Re-

sultate, die mit CYPICK-Peaklisten erzeugt wurden, durch eine hohe Robustheit über

den kompletten Datensatz hinweg aus. CYPICK wurde weiter auf zehn Datensätze des

CASD-NMR Projekts (Rosato et al., 2012, 2009) angewandt, welche nur NOESY Spek-

tren beinhalteten. Die von CYPICK erzielten Peaklisten wurden dann zusammen mit den

Referenzresonanzzuordnungen zur automatischen NOE-Zuordnung und Strukturrechnung

verwendet. In 50% der Fälle konnten die Strukturen mit einem RMSD Bias von ≤ 1 Å

wieder berechnet werden. In den übrigen 50% der Fälle wurden Proteine mit korrekter

Faltung berechnet, wenngleich die RMSD Bias Werte bei ≤ 3 Å lagen. Die auf diesem

Datensatz mit CYPICK erstellten Ergebnisse konnten zwischen den manuell editierten

und nicht editierten Listen angesiedelt werden.

Die an CYPICK durchgeführten Evaluationsstudien zeigten auf, dass bestimmte Funk-

tionalitäten von CYPICK noch wesentlich verbessert werden oder in zukünftigen Projek-

ten adressiert werden können. Im Moment benötigt CYPICK ein lokales Extremumkri-

terium, das erfüllt werden muss, damit ein Datenpunkt als Signal berücksichtigt werden

kann. Diese Bedingung sollte gelockert werden, um sogenannten ‘Peakschultern’, die an

der Steigung eines anderen lokalen Extremums lokalisiert sind, berücksichtigen zu können.

Schwache Signale, die nicht genug Konturlinien aufweisen, werden derzeit ausgeschlos-

sen. Eine Verfeinerung der Konturlinienkriterien sollte die Identifikation solcher Signale

ermöglichen. Viele mit identifizierte Artefakte stammen von sogenannten ridges oder

Rauschbändern. Eine Funktionalität zur Erkennung dieser Regionen sollte die Anzahl

der Artefakte deutlich reduzieren. CYPICK nutzt keine externen Informationen über

das zugrunde liegende System. Die Signalidentifizierung könnte durch die Verwendung

zusätzlicher Information, wie zum Beispiel der 3D Struktur oder der Resonanzzuord-

nung verbessert werden. Eine fortschrittlichere Methode zur Dekonvolution überlappender
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Regionen ist notwendig und sollte die Ergebnisse der Signalidentifizierung von CYP-

ICK weiter verbessern. Es ist denkbar, die von den Konturlinien abgeleiteten Peak-

Qualitätstfaktoren in der automatischen Resonanz und NOE-Zuordnung zu verwenden,

um verlässliche und unsichere Peaks unterschiedlich zu behandeln.

Das zweite Ziel dieser Arbeit war es ein Maß zur Quantifizierung der strukturellen

Information von NMR Datensätzen (strukturelle Distanzeinschränkungen) zu entwickeln,

welches schnell und einfach zu berechnen ist. Am Ende jeder Strukturrechnung eröffnet

sich die Frage nach der Qualität, der Genauigkeit und der Präzission des berechneten

Strukturbündels. In der Röntgenkristallographie sind diese Merkmale direkt aus den

Messdaten zugänglich. In der NMR Spektroskopie gibt es jedoch noch keine vollständig

etablierten Methoden zur Bestimmung dieser Größen. In diesem Kontext ist es daher inter-

essant, die strukturelle Information der Datensätze, die zur Strukturrechnung verwendet

wurden, zu quantifizieren. Einige Algorithmen zur Quantifizierung der strukturellen In-

formation von NMR Datensätzen existieren zwar, werden allerdings aus unterschiedlichen

Gründen nicht standardmäßig angewandt. Dieses Maß korreliert mit der Präzission der

resultierenden Strukturen, dem sogenannten RMSD Radius. Ein solches Maß ist vergleich-

bar mit der Auflösung in der Röntgenkristallographie. Eine Beschreibung des Algorithmus

und eine Übersicht der Ergebnisse folgt im Kapitel ‘Information content of NMR distance

restraints’ (Kapitel 3).

Der Informationsgehalt (I) wurde in CYANA implementiert und basiert in erster Linie

auf der Wahrscheinlichkeitstheorie. I wurde definiert als der negative Logarithmus der

Wahrscheinlichkeit, dass ein Datensatz aus Distanzeinschränkungen von einem Ensemble

aus Zufallsstrukturen erfüllt wird. I berechnet sich über den Quotienten einer bedingten

Wahrscheinlichkeit und einer Redundanz. Die bedingte Wahrscheinlichkeit quantifiziert,

wie genau eine individuelle Distanzeinschränkung durch eine Zufallsstruktur erfüllt wird.

Die Redundanz der individuellen Distanzeinschränkung spiegelt die Wahrscheinlichkeit

wider, dass diese von einer Zufallsstruktur erfüllt wird, die auch eine weitere Distanzein-

schränkung erfüllt. Die Berechnung von I wird vollständig automatisch durchgeführt und

bedarf keiner Eingaben des Anwenders.

Zunächst wurde anhand eines Datensatzes bestehend aus 27 NorthEast Structural Ge-

nomics consortium (NESG) (Wunderlich et al., 2004) Proteinen, welche in Größe von 5,2

bis 22 kDa variierten eine Vielzahl von Eigenschaften des I aufgezeigt. Folgende Charak-

teristika konnten gezeigt werden:
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1. Es konnte der Unterschied in der strukturellen Information von verschiedenen Dis-

tanzeinschränkungstypen gezeigt werden. Langreichweitige Distanzeinschränkungen

wiesen die höchste strukturelle Information auf, wobei kurzreichweitige Distanzein-

schränkungen einen deutlich niedrigeren Informationsgehalt zeigten.

2. Strukturell äquivalente Distanzeinschränkungen führten zu einer Erhöhung der Re-

dundanz und einem Verlust an individueller Information, wobei die Gesamtinforma-

tion des Datensatzes gleich blieb oder sich erhöhte.

3. I zeigte eine starke Abhängigkeit von den oberen und unteren Distanzschranken. Der

Informationsgehalt erhöhte sich, wenn der zugängliche Konformationsraum verklein-

ert wurde, wobei sich der Informationsgehalt erniedrigte, wenn ein größerer Konfor-

mationsraum zur Verfügung stand.

Außerdem konnte gezeigt werden, dass I neben der Abhängigkeit von der strukturellen

Information von der Größe des Proteins abhängt. Daher wurde Ir definiert, welcher un-

abhängig von der Proteingröße ist. Dabei wird der gesamte Informationsgehalt des Daten-

satzes mit der Anzahl der geordneten Reste in der Struktur skaliert. Die Anzahl der geord-

neten Reste kann vom Anwender vorgegeben werden, mit Hilfe einer vorhandenen Struk-

tur mittels CYRANGE (Kirchner & Güntert, 2011) bestimmt werden oder basierend auf

der Anzahl der Reste, die lang- und mittelreichweitige Distanzeinschränkungen aufzeigen,

gemessen werden. Es ist möglich, den Informationsgehalt eines Datensatzes entweder

anhand eines Ensembles von Strukturen zu bestimmen oder unter zur Hilfe nahme der

kovalenten Geometrie der Polypeptidkette. Beide Berechnungsmodi stimmten sehr gut

miteinander überein und wiesen eine Korrelation von > 0.99 auf. Schließlich wurde her-

ausgefunden, dass der Ir eines Datensatzes mit der Präzission einer aus dem Datensatz

resultierenden Struktur korreliert. Es wurde demonstriert, dass Ir größer als 3 sein muss,

damit man mit dem zugrunde liegenden Datensatz eine Struktur mit einem RMSD Radius

< 2.0 Å erzielen kann.

Grundsätzlich stehen zwei experimentelle Methoden zur Verfügung, um die 3D Struk-

tur von Proteinen auf atomarer Ebene aufzuklären: die NMR Spektroskopie oder die

Röntgenkristallographie. In der Pharmaindustrie wird tweilweise die Röntgenkristallogra-

phie. gegenüber der NMR Spektroskopie bevorzugt. Gründe dafür sind das Potenzial

zum Hochdurchsatzverfahren, welches hauptsächlich durch die Methode des ‘molekularen

Ersatzes’ ermöglicht wird. NMR hat jedoch einige Vorteile gegenüber der Röntgenkristallo-
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graphie. Zum Beispiel können mit NMR auch Komplexe mit niedrigen Bindungsaffinitäten

untersucht werden. Daher wurden Strategien entwickelt, die NMR für SBDD zugänglicher

machen sollen. Dieses Projekt wurde in Zusammenarbeit mit Dr. Alvar Gossert und Dr.

Elena Schmidt entwickelt. Neue Methoden und Strategien, die in diesem Kontext entwick-

elt wurden, werden im Kapitel ‘Structure-based drug design by NMR’ dargestellt (Kapitel

4).

Die zwei wichtigsten Entwicklungen in diesem Projekt sind das ‘Protein-Liganden

NOESY’, welches alle relevanten Daten zur Strukturrechnung beinhaltet und der ‘FLYA

Zuordnungstransfer’, welcher es ermöglicht, einen unbekannten Protein-Ligand Komplex

nur unter Verwendung von Signalen des ‘Protein-Liganden NOESYs’ und einer Resonanz-

zuordnung eines anderen Komplexes zuzuordnen. Der FLYA Zuordnungstransfer hat zwei

Berechnungsmodi: den Ein-Stufen Prozess und den Zwei-Stufen Prozess. Der Zwei-Stufen

Prozess unterscheidet sich vom Ein-Stufen Prozess darin, dass er zusätzlich zur Resonanz-

zuordnungsinformation noch Information aus einer bereits gelösten Struktur verwendet.

Der SBDD mit NMR Ansatz wurde an dem Beispiel des Proteins MDM4 (Wade &

Li, 2013) getestet. MDM4 reguliert das Tumorsuppressor Protein p53 (Shvarts et al.,

1996). Studien an MDM4 zeigten, dass MDM4 in 10-20 % von 800 sehr diversen Tumoren

überexprimiert wird. Diese Überexpression hat eine massive Reduktion von p53 Aktivität

zur Folge. Folglich ist MDM4 ein interessantes Zielmolekül zur Entwicklung von Anti-

Tumor Strategien. In dieser Studie wurde ein vielfältiger Datensatz an Liganden für

MDM4 (Petid-1, Peptid-2, Nutlin-3a und Fragment) getestet und die Komplexstrukturen

bestimmt. Die Diversität des Datensatzes spiegelte sich in der Größe, der Affinität, den

Bindungskinetiken und der chemischen Komposition wider. Die Zuordnung von MDM4 in

Komplex mit Peptid-1 galt als Referenz für die Zuordnung aller weiteren MDM4 Komplexe.

Die Resonanzzuordnung von einer Reihe von MDM4 Komplexen wurde mit Peaklis-

ten des ‘Protein-Ligand NOESYs’ und einer manuell erstellten Referenzzuordnung au-

tomatisch mit dem ‘FLYA Zuordnungstransfer’ erzeugt. Die auf diese Art generierten

Resonanzzuordnungen zeigten eine Genauigkeit, die zwischen 79 und 95 % variierte. Die

Zuordnungsergebnisse, welche mit manuell und mit automatisch erzeugten Signallisten von

CYPICK erstellt wurden, zeigten vergleichbare Ergebnisse, wobei die Anzahl an ‘starken’

Zuordnungen mit den manuellen Listen meist etwas höher war. Der Zwei-Stufen Zuord-

nungsprozess führte zu einer Verbesserung in der Resonanzzuordnung um etwa 10 % für

MDM4 in Komplex mit Peptid-2 und um etwa 5 % für MDM4 in Komplex mit dem

Fragment und Nutlin-3a. Das Fragment und Nutlin-3a sind chemisch jeweils sehr ver-
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schieden von Peptid-1, wobei Peptid-2 chemisch sehr ähnlich zu Peptid-1 ist. Folglich hat

die Benutzung einer Referenzstruktur in diesem Zusammenhang einen größeren Einfluss.

Strukturrechnungen von MDM4 in Komplex mit Peptid-1 und Peptid-2 führten zu Struk-

turbündeln mit hoher Genauigkeit und Präzission mit einem RMSD Radius von etwa 1.0 Å

und einem RMSD Bias von < 1.80 Å. In diesen Beispielen erzielten manuelle und CYP-

ICK-Peaklisten Strukturbündel ähnlicher Qualität. Die Strukturrechnungsergebnisse von

Nutlin-3a waren deutlich schlechter als die von Peptid-1 und Peptid-2. Mit manuellen

Peaklisten konnten Strukturen mit einem RMSD Radius < 1.0 Å und einem RMSD Bias

von < 2.0 Å erzielt werden. Strukturrechnungen mit CYPICK-Peaklisten führten zu

weniger verlässlichen Ergebnissen. Der RMSD Radius lag in etwa bei 0.8–1.7 Å und der

RMSD Bias variierte von 2.5–3.3 Åmit dem Zwei-Stufen und Ein-Stufen Protokoll respek-

tive. Strukturrechnungsergebnisse zu MDM4 in Komplex mit dem Fragment konnten aus

vetraulichen Gründen nicht in dieser Arbeit durchgeführt und gezeigt werden.

Das SBDD mit NMR Protokoll hat Limitierungen und Beeinträchtigungen, die den

allgemeinen Limitierungen von Protein NMR entsprechen. Das Protein muss uniform

isotopenmarkiert werden und die Größe sollte 30 kDa nicht überschreiten. Bei der Ver-

wendung des ‘Protein-Liganden NOESYs’ werden die Liganden Signale in einer zweidi-

mensionalen Ebene aufgenommen, welche schnell unter Signalüberlappung, die von der

chemischen Komposition abhängig ist, leiden kann. In dieser Studie, wurde die Methode

erfolgreich auf Liganden der Größe 1–2 kDa angewandt.





Chapter 1

Introduction

1.1 Protein NMR structure determination

1.1.1 Outline

Proteins represent a versatile group of macromolecules in living organisms. They satisfy a

multitude of biological tasks, e.g. the catalysis of chemical reactions, transport or storage

of molecules, cell mobility, give structure, grant immunity, transmit signal and control

cell growth and differentiation. Proteins are linear polymers which mainly take an three-

dimensional (3D) active fold. The 3D fold of a protein determines its function and sheds

light on potential roles of the molecule in the cell or displays possibilities to interact

with other molecules. Knowledge of the 3D structure leads for example to possibilities

to understand the protein in a mechanistic manner, since the specificity of the activity

center and the binding pocket depend on the 3D structure. Especially in the case of a

pathogenic germ, the structure gives perspectives to block this molecule in an artificial

manner and thereby inactivating it. Most of the target molecules in the pharmaceutical

industry are proteins, i.e. enzymes, ion channels and membrane receptors. Especially

membrane receptors pose a central field of research in the business of pharmaceuticals

because they control which molecules dock to a cell and pass through the membrane. This

is in particular relevant for drugs which need to act on the inside of a cell and therefore have

to pass the membrane. Consequently, the knowledge of the 3D structure is an essential

component in the field of protein analytic.

In principle, there are two major experimental methods which enable the study of

proteins, nucleic acids or other biomolecules on an atomic level, namely nuclear magnetic

23
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resonance (NMR) spectroscopy and X-ray crystallography. These methods do not exclude

other each in terms of information that can be achieved from them but are complementary

in many ways forming a clearer picture of the molecular structure at hand. There are

significant differences between these two methods in terms of requirements towards the

sample and information which can be deduced from the experiments (Wüthrich, 1986).

Molecule samples for NMR spectroscopy are usually isotopically labeled and in aqueous

or detergent solutions, whereas the size of the protein is in general less than 50 kDa. In

X-ray crystallography the molecule must be crystallized and the crystal must also diffract.

The samples are usually in a solid-frozen state and have virtually no limitation in terms of

size. Sample preparation and data acquisition time is usually short in NMR spectroscopy,

whereas data analysis takes a tremendous amount of time. In X-ray crystallography it is

the other way around, a long time exposure for screening and optimization, but a short

amount of time for data processing is required. A huge advantage of NMR over X-ray

crystallography is the physical state of the sample which is usually closer to the native

environment and therefore one expects the fold of the protein to be closer to the native fold.

Furthermore, the solution conditions can be varied in NMR spectroscopy which renders

possibilities to examine samples under native or denaturing conditions. Additionally,

NMR enables the study of molecule dynamics on time scales from ns to hours and the

investigation of inter-molecular interactions (Billeter, 2015). X-ray crystallography holds

the advantage of a higher atomic resolution for well-diffracting crystals over NMR. The

main disadvantages of NMR are the need for isotopically labeled samples which can be very

expensive and the poor resolution of NMR spectra of large proteins. The main challenge

in X-ray crystallography is to solve the phase problem. In addition, one always has to

consider that the crystallized structure can differ from the native fold of the protein.

In the year 2000 it was reported that approximately 90% of the structures deposited in

the Protein Data Bank (PDB) were solved by X-ray crystallography. Regarding the ratio

of structures solved by NMR and X-ray not much has changed up to now. In December

2016 the PDB contained more than 120,000 entries of which 11,500 were solved by NMR

spectroscopy, and about ten times as much by X-ray crystallography. In the meantime,

both fields have experienced development. X-ray crystallography has been employed for

more than 50 years in the field of protein structure determination. Since the structural

determination of Myoglobin by Kendrew and co-workers in 1958 (Kendrew et al., 1985)

the field has experienced a lot of improvement, e.g. the use of synchrotron sources and

cryo-crystallography (Joachimiak, 2009). Even though NMR still holds many advantages
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over X-ray crystallography, X-ray crystallography is still in many fields preferred over

NMR mainly because of practical reasons, i.e. analysis time. Analysis of NMR data is still

performed manually in many cases, taking up to several months of analysis time for one

protein structure.

CYANA (Güntert et al., 1997; Güntert & Buchner, 2015) is a software package that

incorporates many tools for automated NMR data analysis and structure calculation (ex-

plained below). However, in order to perform a fully automated protocol of NMR structure

determination starting from a processed NMR spectrum, the step of signal identification

has to be automated and implemented in the CYANA software package. Therefore, one

major goal of this PhD thesis was to develop a new robust peak picking algorithm in

CYANA which allows a combination with automated resonance assignment, NOE as-

signment and structure calculation. The contour geometry based peak picking algorithm

CYPICK is introduced in chapter 2. Additionally, the ‘information content’ a method to

help the scientist to quantify the structural information included in NMR restraint data

sets was developed. The information content quantifies the structural information of re-

straint data sets by a single meaningful number, which correlates with the precision of the

resulting NMR structure bundle, as presented in chapter 3. Further, we developed new

methods in collaboration with Dr. Alvar Gossert from Novartis and Dr. Elena Schmidt

which aim to make NMR more accessible towards structure-based drug design, i.e. the de-

velopment of the ‘Protein-Ligand NOESY’ experiment that includes all data necessary for

structure determination in one spectrum and the development of the ‘FLYA assignment

transfer protocol’ that uses chemical shifts from a known protein complex structure and

guides the chemical shift assignment of a new complex structure. Results are presented in

chapter 4.

1.1.2 NMR spectroscopy

The following summary is mainly based on the books “Nuclear Magnetic Resonance” by

P.J. Hore (Hore, 2007) and “Understanding NMR Spectroscopy” by J. Keeler (Keeler,

2010).

NMR is a physical effect which has first been described in 1938 (Rabi et al., 1938).

Principle of NMR is the interaction of the nuclear magnetic moment, µ, with the external

magnetic field, B. Source of µ is the intrinsic quantum property of spin resulting from the

nucleons, which are protons and neutrons. The overall spin of a nucleus is determined by

the spin quantum number, I, which is zero if the number of protons equals the number
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of neutrons. In this case the accordant nucleus have no magnetic moment, and hence

no possibility to interact with the external magnetic field. The angular momentum, ~J ,

associated with nuclear spin is quantized as following:

| ~J | =
√
I(I + 1) · h̄, (1.1)

where I is the spin quantum number, which can take integer or half-integer values and

h̄ is the reduced Planck constant (h/2π). The associated magnetic quantum number, m,

can take values from −I to +I in integer steps. A nucleus can take 2I + 1 states, i.e. if

I = 1/2 two states mz = ±1/2, else if I = 1 three states mz = −1, 0, 1. In an external

magnetic field along a defined z-axis the z-component of the magnetic moment is defined

as:

µz = γIz = γh̄mz. (1.2)

The energy of a spin in a magnetic field of strength B0 can be deviated from the classical

formulation of a magnetic dipole in an external magnetic field:

E = −µzB0 = −γIz = −γh̄mzB0. (1.3)

The external magnetic field B0 is aligned along the z-axis. The energetically favored state

for spins with I = 1/2 is mz = +1/2 (α-state) and the energetically unfavorable state is

mz = −1/2 (β-state). The energy of the α- and β-state, Eα and Eβ , and the resulting

energy difference, ∆E are defined as:

Eα = −γh̄
(

1

2

)
B0 (1.4)

Eβ = −γh̄
(
−1

2

)
B0 (1.5)

∆Eα→β = Eα − Eβ = γh̄B0 (1.6)

Absorption will only occur if the frequency of the electromagnetic radiation, hv, matches

the energy difference between the nuclear spin levels, ∆E. The Larmor frequency ω0
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(Equation 1.7), expressed in rad·s−1, specifies at which angular frequency resonance occurs,

i.e. energy transition between the α- and β-state. ω0 is characteristic for every spin in an

external magnetic field B0.

ω0 = γB0 (1.7)

The most important nuclear spins for NMR spectroscopy are I = 1/2-spins. Important

properties are the gyromagnetic ratio γ and the natural abundance of the isotopes. Popular

isotopes for the investigation of proteins are 1H, 2H, 15N and 13C. I = 1 spins are less

suited for NMR spectroscopy, because they have a quadrupole moment additionally to the

magnetic moment which enables a pathway for much faster relaxation.

Each nucleus in a molecule has a characteristic chemical shift value. The chemical shift

value depends on the gyromagnetic ratio and the strength of the effective magnetic field

Beff that the nucleus experiences. This effective magnetic field Beff is influenced by the

chemical environment of the nucleus, i.e. the electron distribution. The electrons around

the nucleus have a shielding effect towards the external magnetic field B0. Therefore, each

nucleus in a molecule experiences a slightly different effective magnetic field which leads

to individual characteristic chemical shift values.

Due to the dependence of the chemical shift value on the magnetic field it is convenient

to use a scale that is independent from the field strength. Tetramethylsilane (TMS) is a

referencing compound that is used to define zero on the chemical shift scale for 1H and 13C.

All signal positions are expressed by their difference towards the referencing compound.

The chemical shift δ, measured in ppm, is defined as:

δ(ppm) = 106 · v − vref
vref

, (1.8)

where v is the Larmor frequency of the signal of interest and vref is the reference signal.

As already noted before, spin-1/2 nuclei can adopt two states, i.e α and β, in a magnetic

field. The population difference between the α-state, Nα, and the β-state, Nβ , can be

described by the Boltzmann distribution:

Nα
Nβ

= e−
γh̄B0
kT , (1.9)

where k is the Boltzmann constant and T is the absolute temperature. For 1H the energy

difference between those two states at room temperature is close to the thermal energy.
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Accordingly, both states are almost equally occupied. Nevertheless, the alignment along

the external magnetic field is energetically favored. Consequently, when considering an

ensemble of spins a macroscopic bulk magnetization, Mz, aligned with the external field,

can be observed. The size of the equilibrium magnetization, Mz, mainly depends on the

strength of the magnetic field B0 and the temperature of the sample. The achievement

of equilibrium magnetization, as well as changes in equilibrium magnetization can be

visualized by a vector model. Only the z-component of the spins is definite, the y- and

x-component have completely random phases, which often is symbolized by two cones.

Radio frequency (rf) pulses can be used to disturb the thermal equilibrium by applying

short rf-pulses B1, which match the resonance condition, along the x-axis. The Mz vector

is rotated around B1 towards the xy-plane. The duration of the rf-pulse determines the

angle through which the magnetization vector turns. It is common to use 90°- and 180°-

pulses. For example, a 90°-x-pulse rotates the bulk magnetization vector to the −y-axis.

The precession of the magnetization vector at Larmor-frequency is detected by a coil

placed in the xy-plane. The magnetization vector induces a voltage in the coil which is

amplified and then recorded. The recorded signal is called free induction decay (FID). In

order to perform computer based processing, the NMR signal has to be converted from

a voltage to data points with certain intensities first. The analogue to digital converter

(ADC) samples the FID at regular intervals ∆:

∆ =
1

2fmax
, (1.10)

where fmax represents the maximal frequency that can be represented correctly. ∆ is the

dwell time, which specifies the distance between two data points.

The FID is a time-domain signal that oscillates at Larmor-frequency and decays over

time due to relaxation processes. There are two main relaxation mechanisms: First, the

longitudinal relaxation T1 (spin-lattice relaxation), that is responsible for restoring the

thermal equilibrium distribution of the spin population. T1 is enabled by small fluctuating

magnetic fields of nearby spins which allows an exchange of energy with their neighboring

spins (the lattice). Second, the transverse relaxation T2 (spin-spin relaxation), which is

responsible for the exponential decay of the detectable transverse magnetization vector

(FID). Transverse relaxation is fundamentally caused by variations in spin precession

frequencies, which leads to a loss of their phase coherence.
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The FID, recorded as a time-domain signal, is a superposition of all the individual

oscillations, at their Larmor-frequencies, from all detected nuclei in the sample. In order

to extract the frequency-domain signal, Fourier-transformation (FT) is used. FT is a

simple mathematical procedure that multiplies the FID by trial cosine functions. The

area under the resulting function represents the intensity of the signal at the corresponding

frequency. This frequency intensity information is stored in a data matrix, where each data

point corresponds to a specific frequency with certain intensity.

The exponential decay and the length of the recorded FID influences the line width

and shape of the resulting peaks in the spectrum, respectively. Therefore, the acquisition

time of the FID has to be chosen carefully. In typical NMR experiments the line shapes

are in absorption mode, i.e. being entirely positive and symmetrical about the maximum.

A simple 1D NMR experiment starts with a relaxation delay, tr, of a few seconds that

lets the spin come to equilibrium, i.e. bulk magnetization is build up. This is followed by

a short rf-pulse that lasts a few µs (preparation phase). As explained above, this leads

to a detectable signal in the xy-plane, i.e. FID. The FID is then recorded for a specific

time, called acquisition time (tacq), lasting between 50 ms and a few seconds (detection

phase). FT of the FID results in a 1D NMR spectrum. Usually, recording a single FID is

not sufficient due to sensitivity reason. Therefore, it is common to use time averaging by

repeating the above explained procedure N times and adding up the FID, which improves

N times thereby. This severely improves the signal-to-noise ratio, since the random noise

only adds up by
√
N .

Interpretation of 1D NMR spectra is impractical for complex molecules due to signal

overlap. Signal overlap can however be resolved by adding another spectral dimension.

This is shortly explained by the example of a 2D NMR experiment. A 2D NMR experiment

includes additionally to the preparation and detection phase of the 1D experiment, an

indirect preparation (evolution) phase and a mixing period. After the preparation phase,

including for example a 90°-x-pulse, spins can precess freely for a fixed time period t1.

During this period the magnetization is labeled with the chemical shift of the first nucleus.

In the mixing period the state of the magnetization after t1 is retrieved and magnetization

is transferred from the first nucleus to another nucleus. In essence, two mechanisms for

magnetization transfer are available, J-coupling and dipolar coupling (explained below).

Final stage of the 2D experiment is the acquisition time, tacq. During this period the

magnetization is labeled with the second nucleus. FT of tacq would yield a simple 1D

spectrum. Typically, the evolution period t1 is incremented by time steps ∆t1. Thereby,
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one can observe the chronological development of the spins. FT of t1 yields a 2D spectrum.

1.1.3 Nuclear Spin Interactions

In this chapter only nuclear spin interactions with magnetic fields originating from other

spins are explained in detail. Interactions arising from the external magnetic field B0 and

fields induced by rf-pulses are explained above.

J-coupling

The origin of J-coupling (also called scalar coupling or spin-spin coupling) is an indirect

interaction through the electrons involved in the chemical bond between two atoms. J-

couplings hold valuable information on the angle and distance between two atoms, and

most importantly indicate atom connectivities in the molecule. NMR experiments that

use J-coupling as magnetization transfer mechanism give information about the covalent

structure of the molecule. The strength of the coupling decays with the numbers of bonds

separating the coupled atoms. A valuable specific coupling is the three-bond J-coupling.

It has been identified that these couplings vary with the dihedral torsion angle θ between

the participating atoms. This relation is known as Karplus relation (Karplus , 1963):

J(θ) = A+B cos θ + C cos2 θ, (1.11)

where A, B, and C are empirical determined coefficients.

Dipolar coupling

Nuclei generate magnetic fields and can also receive magnetic fields from other nuclei.

This, in contrast to J-couplings, through-space dipolar interaction is crucial for structure

determination by NMR. The interaction between two nuclei i and j is defined as:

Dij(θ) = dij
(
1− 3 cos2 θ

)
(1.12)

with the coupling constant dij :

dij = −µ0

4π

γiγj h̄

r3
ij

, (1.13)

where µ0 represents the permeability of the vacuum, γi and γj represent the gyromagnetic

ratios of nuclei i and j, respectively, rij represents the inter-nuclear distances between
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nuclei i and j, and θ describes the angle between the inter-nuclear distance vector and

the external magnetic field. The strength of the dipolar coupling dij depends on (i) the

distance between the two contributing spins (1/r3
ij), (ii) the gyromagnetic ratio (the larger

the gyromagnetic ratio, the larger the magnetic moment, the larger the local field), and

(iii) the orientation of the vector between the two spins relative to the external magnetic

field B0, θ, which is usually averaged in isotropic media.

The most relevant experiment for structure determination by NMR spectroscopy is

based on dipolar couplings, i.e. the NOESY experiment (Nuclear Overhauser Enhancement

SpectroscopY). Basis of this experiment is the Nuclear Overhauser Enhancement (NOE),

which can be described by cross relaxation between dipolar interacting spins.

1.1.4 Restraint sources for NMR structure calculation

Nowadays, there is a diversity of experimental information available from NMR spec-

troscopy which can be used to obtain protein structures, e.g. distance restraints from

Nuclear Overhauser Enhancement (NOE), Paramagnetic Relaxation Enhancement (PRE)

effect (Battiste & Wagner, 2000), or information about hydrogen bonding (Grzesiek et

al., 2004), J -couplings (Wüthrich, 2003), chemical shifts (Cavalli et al., 2007; Shen et al.,

2008), and residual dipolar couplings (RDCs) (Bax & Grishaev, 2005; Blackledge, 2005).

Nevertheless, distance restraints, especially from NOE experiments, and dihedral restraints

obtained from chemical shifts are still the main source of structural information used in

the conventional approach of structure determination by NMR spectroscopy (Guerry &

Herrmann, 2011). In the following the standard procedures of distance restraints, torsion

angle restraints, and the unique information available from RDCs, are explained.

Distance restraints

NOE experiments represent the most important source of information for NMR structure

calculation. It is possible to calculate structures of proteins solely based on NOE derived

distance restraints (chapter 2.2 and 4). Physical basis of the NOE are dipolar couplings as

explained above. A NOE can be observed if two protons come sufficiently close in space,

usually < 5-6 Å. If the contributing protons are distant in the underlying primary se-

quence, the observation of a NOE directly leads to a significant limitation of the accessible

conformational space.

A source of long distance information are PRE experiments, which can yield distance

restraints from 15-24 Å (Battiste & Wagner, 2000). PRE experiments require the intro-



32

duction of a spin label, i.e. a molecule which possesses an unpaired electron. The PRE

arises from dipolar interactions between the unpaired electron on the spin label and a

nucleus within the protein. These dipolar interactions result in an increase of the nuclear

relaxation rates. Effects of the spin label on NMR signals with respect to the unlabeled

sample can be (i) disappearance of signals, (ii) broadening of signals, or (iii) unaffected

signals. A disappearance of the signals implies a distance < 15 Å between the spin label

and the nucleus. A signal broadening represents a distance in the range of 15-24 Å be-

tween the spin label and the nucleus. If the signal is not affected by the spin label, the

distance between spin label and nucleus is > 24 Å. The usage of PRE experiments is an

option when one wants to investigate low populated states (Clore & Iwahara, 2007), larger

proteins (Battiste & Wagner, 2000) or membrane proteins in detergent micelles (Gottstein

et al., 2012b; Reckel et al., 2011).

Hydrogen bonds (H-bonds), which mainly stabilize secondary structural elements, pro-

vide another source of distance information relevant for structure calculation. They can

be determined by NMR through amide proton exchange rates. Intra-molecular H-bonds

have a much slower exchange rate and can therefore easily be distinguished from transient

H-bonds to surrounding water molecules (Vuister et al., 2011). Another approach to de-

tect H-bond scalar couplings is the application of COSY-type experiments (Grzesiek et

al., 2004).

Dihedral angle restraints

The direct source of angle restraints for protein structure determination is the chemical

shift which depends strongly on local structures, i.e. the secondary structure of the protein.

Protein backbone dihedral angle restraints can be derived from secondary chemical shifts,

i.e. the difference between the observed chemical shift and the random coil chemical shift.

This can be performed by the well-established program TALOS+ (Shen et al., 2009),

which predicts Φ and Ψ values empirically.

3J-coupling constants can also be used to derive angular information by the Karplus re-

lation (Equation 1.11). However, this is complicated by several factors, (i) Several dihedral

angles can correspond to a single 3J value, which can be solved by directly incorporating

the 3J-coupling constant in the structure calculation (Vuister et al., 2011); (ii) the Karplus

coefficient underlie the experimental uncertainty, because they are obtained by comparing

measured values and dihedral angles obtained from X-ray or NMR structures (Vuister et

al., 2011); (iii) the magnitude of the 3J-coupling constant depends on other factors, e.g.
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geometric distortions or hydrogen bonding (Vuister et al., 2011).

Orientational restraints

Equation 1.12 shows that the dipolar coupling of two nuclei i and j depends on the distance

between the two nuclei and the orientation of the distance vector relative to the external

magnetic field. In solution this orientational component, θ, of the dipolar coupling vanishes

as a result of isotropic tumbling. However, residual dipolar couplings (RDCs) can be

reintroduced by weakly aligning the sample in a suitable medium (Tjandra & Bax, 1997).

They give information on the orientation of local groups relative to an alignment tensor.

In order to extract structural information, it is necessary to measure the sample under

isotropic and aninsotropic conditions. Then, the difference in total coupling within these

media is determined. If the dipolar interaction is measured between two directly covalently

bonded nuclei, the distance is fixed and the coupling depends only on the orientation of

the inter-nuclear vector with respect to the alignment tensor (Chen & Tjandra, 2012). In

order to use RDCs in structure determination, refinement or validation, it is necessary to

determine the alignment tensor, i.e. the diagonal elements of the Saupe matrix (amplitude

and rhombicity) and its Euler angles (Vuister et al., 2011). The extraction of structural

information from RDCs is further complicated by their ambiguous nature.

1.2 Automation of protein NMR structure determina-

tion

Several NMR spectroscopy experiments give information on inter-atomic distances and

specific angles which can be used as input for structure calculation algorithms. In these

algorithms a set of random polypeptide chains is generated and folded through MD sim-

ulations in Cartesian or torsion angle space by simulated annealing (SA) (Kirkpatrick et

al., 1983). The potential energy landscape of the polypeptide is represented by a target

function. The goal is to minimize the target function which ideally would become zero if

all input constraints were fulfilled. In principle, the value of the target function represents

the agreement between the resulting structure and the experimental input restraints. The

final result of an NMR structure calculation is an ensemble of structures which represents

the experimental input constraints adequately. An overview of some of the most popular

NMR structure calculation programs is given in Tab. 1.1. Structure calculation results pre-

sented in this thesis have exclusively been performed with CYANA, therefore algorithmic
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details explained in the following correspond to CYANA if not stated otherwise.

Table 1.1: Prominent programs for NMR structure determination.

Name Reference

ARIA (Bardiaux et al., 2009)

CNS (Brünger et al., 1998)

CYANA (Güntert et al., 1997; Güntert & Buchner, 2015)

J-UNIO (Serrano et al., 2012)

Xplor-NIH (Schwieters et al., 2003)

Structure determination by NMR spectroscopy needs several sequential steps which

are summarized in Fig. 1.1. The darker shaded steps are described in more detail in the

following. These steps have a high potential towards automation. Principle reasons for au-

tomating these steps are; first, the process becomes more objective and independent from

individual decisions of the user. Second, automation saves a tremendous amount of time.

Third, the method becomes more accessible towards scientists that are not necessarily

experts in NMR.

Figure 1.1: Flowchart of the individual steps in structure determination by NMR. Steps
presented in dark gray are described in the following in more detail. Additionally, these steps
can be performed iteratively, indicated by back-cycling arrows.
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1.2.1 Signal identification

Signal identification in NMR, i.e. identification of the exact ppm positions of protein

signals and their intensity (in the following called peak picking), is one of the crucial

steps in NMR data analysis. The identified peak lists serve as input for chemical shift

assignment and NOE assignment, which results in distance restraints that are used in

structure calculation. Accordingly, peak lists have to be as accurate as possible because

errors in peak lists add up with every step presented in Fig. 1.1 and can ultimately result

in incorrect structure bundles. When performed manually, peak picking is more or less

an iterative process where one picks and assigns unambiguous signals. Based on the

knowledge gained from the assigned signals, one searches for further signals which are

possibly weaker and/or overlapped. Successful automation of NMR peak picking is still

lacking. Reasons therefore are, cross-peak overlap and artifacts which can be attributed to

baseline distortions, intense solvent lines, ridges and/or sinc wiggles (Baran et al., 2004).

A detailed presentation of prominent peak picking algorithms follows in section 2.1.

1.2.2 Chemical shift assignment

Each NMR sensitive nucleus leads to a peak in a NMR spectrum with a distinct chemical

shift value which originates from the unique chemical environment of the nucleus. As-

signing each of these unique chemical shift values to the correct atom is called chemical

shift assignment. The method for chemical shift assignment, which was mainly developed

by Kurt Wüthrich is called sequence specific assignment (Wüthrich, 1986; Billeter et al.,

1982; Wagner & Wüthrich, 1982). Basis of this method is, first, to identify all spin systems

(grouping) in a spectrum and to connect these spin systems to a certain type of amino

acid (typing), and, secondly, to link the resonances of each amino acid i + 1 to a neigh-

boring amino acid i (linking), and finally to map these segments of spin systems to the

primary sequence (mapping) (Baran et al., 2004). When using unlabeled proteins, spin-

system signals are manifested by through-bond coupling connections whereas sequential

links are realized by through-space dipolar couplings. However, when assigning proteins

of size ≥ 8 kDa it is common practice to use uniformly 13C and 15N isotopically labeled

proteins which makes the assignment much more feasible. In this case, a typical set of

triple resonance NMR spectra includes experiments for backbone assignment, which gen-

erate connectivities between the NH group of residue i and carbon atoms of residue i− 1,

i.e. HNCO, HN(CO)CA, CBCA(CO)NH, and experiments which yield connectivities be-
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tween Ni and Cαi , as well as Ni and Cαi−1, i.e. HN(CA)CO, HNCA, and HNCACB (Lian

& Barsukov, 2011). In general cross-peaks which originate from sequential connections

are weaker than cross-peaks from intra-residual connections. The assignment strategy is

in principle the same for labeled proteins as for unlabeled proteins, first, grouping all HN

correlations into spin-systems, and, secondly, assembling the spin-system in a sequential

manner that is also manifested by through-bond coupling (Lian & Barsukov, 2011). A

typical set for side-chain assignment consists of (H)CC(CO)NH, HCC(CO)NH, HCCH-

TOCSY and 15N-edited TOCSY (Shin et al., 2008).

A significant number of algorithms for either backbone or complete chemical shift

assignment have been introduced in the last couple of years (reviewed in (Baran et al., 2004;

Guerry & Herrmann, 2011)). These algorithms usually implement the above explained

strategy of spin-system grouping, typing to specific amino acids, linking into sequential

segments and mapping onto the primary sequence (Baran et al., 2004). However, the main

difference between these algorithms is in the mapping step which is solved by methods like

exhaustive search, best-first, Monte-Carlo or genetic algorithms. Some popular algorithms

are namely AutoAssign (Zimmerman, 1997), MATCH (Volk et al., 2008), MARS (Jung &

Zweckstetter, 2004), GARANT (Bartels et al., 1996, 1997), PINE (Bahrami et al., 2009),

and FLYA (Schmidt & Güntert, 2012).

Noteworthy progress has been accomplished with the development of the automated

chemical shift assignment algorithm FLYA (Schmidt & Güntert, 2012). The FLYA algo-

rithm holds advantages over other automated methods in terms of (i) quality of the result-

ing backbone and side-chain assignment, (ii) the universality of NMR experiments to be

utilized, (iii) robustness towards imperfect input lists (Schmidt & Güntert, 2012), and (iv)

the versatility of applications, i.e. chemical shift assignment solely based on NOESY spec-

tra (Schmidt & Güntert, 2013a), RNA assignment (Aeschbacher et al., 2013; Krähenbühl

et al., 2014) and assignment of solid-state NMR samples (Schmidt et al., 2013b).

1.2.3 NOE assignment

The classical approach towards structure determination by NMR (Williamson & Craven,

2009) relies on a set of assigned distance restraints from NOESY experiments together

with dihedral angle restraints predicted from chemical shifts. Source of the NOESY cross-

peaks is the magnetization transfer through dipolar couplings (cross-relaxation) between

spatial close nuclear spins. The intensity of the resulting signal depends on the inverse

of the distance between the two atoms. In order to get conformational information from
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a NOESY spectrum the signals have to be assigned. This means the atom-pairs which

give rise to the NOE cross-peaks have to be identified (Wüthrich, 1986). NOE assignment

is a very time-consuming step when performed manually. Thus, several algorithms have

been developed to perform this task automatically: NOAH (Mumenthaler & Braun, 1995;

Mumenthaler et al., 1997), ARIA (Bardiaux et al., 2009), AutoStructure (Huang et al.,

2006), KNOWNOE (Gronwald et al., 2002), CANDID (Herrmann et al., 2002b), and

PASD (Kuszewski et al., 2004). However, those algorithms have to have a high tolerance

towards ambiguity which is especially high at the beginning of the assignment process

(Guerry & Herrmann, 2011).

The CANDID NOE assignment strategy implemented in CYANA (Güntert, 2004)

identifies the atom pairs giving rise to the NOESY cross-peaks in an iterative manner.

CYANA usually performs seven cycles of NOE assignment and structure calculation plus

an additional final structure calculation. In each cycle CYANA is fed with the sequence,

the sequence-specific resonance assignment, the list of unassigned NOESY cross-peak po-

sitions and volumes, and with the 3D structure from the previous cycle, except in the

first cycle. In the first cycle peaks are initially assigned based on the closeness of the

chemical shift coordinates and the cross-peak position. This condition however, should

not be over-interpreted because the spectra used for chemical shift assignment could be

misaligned towards the NOESY spectra or there might be referencing offsets (Guerry &

Herrmann, 2011). The assigned cross-peaks are converted into restraints which are used

as input in a preliminary structure calculation. This preliminary structure is used as a

filter in the following assignment steps among other validation criteria (explained below).

In the final cycle all remaining ambiguous assignments (explained below) are transformed

to unambiguous distance restraints.

As already indicated before, a difficulty in the NOE assignment process is the distinc-

tive width of individual peaks and the limited accuracy of peak position measurements.

Accordingly, usually more than one chemical shift matches the chemical shift closeness

condition. Hence, the method of ambiguous distance restraints (Nilges, 1993, 1995) has

been introduced, which helps to solve the problem of uncertainty in the NMR data. An am-

biguous distance restraint represents all the possible contributions that match the chemical

shift of the cross-peak. The assignment is transferred into an upper distance limit based

on the peak volume. If the assignment of the cross-peak is unique, the upper bound is

calculated from the intensity of the peak into the inter-atomic distance dAB between atoms

A and B. For ambiguous assignments the distance has to be refined with the effective r−6-
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summed distance over all individual distances dk (Nilges, 1993), leading to the effective

distance deff:

deff =

(
n∑
k=1

d−6
k

)− 1
6

, (1.14)

where n represents the number of assignments belonging to one peak. All ambiguous

distance restraints belonging to the same cross-peak get the exact same upper limit value

which is calculated from the effective distance. The ambiguous distance is shorter than any

of the individual distances belonging to the peak. If the correct assignment is among all

ambiguous assignments, the restraints will be fulfilled by the correct structure. This con-

cept enhances the probability of finding the correct assignment and reduces the distorting

effect of wrong assignment on the structure.

The initial NOE assignments are realized via the matching of the chemical shift and

the peak coordinates within an atom-type specific tolerance, as noted above. Those pre-

validated assignments are evaluated by three criteria that are visualized in Fig. 1.2: (i)

the chemical shift of the atom pair (ωA and ωB) and the peak position (ω1 and ω2) need

to be within a given tolerance range (∆ω). The closeness of the match is expressed by

a Gaussian probability (Pshift) (Fig. 1.2 A). (ii) The pre-validated assignment has to be

compatible with the intermediate 3D structure (Pstructure), i.e. atom-pair distances in the

structure bundle (dAB) have to be lower than the calibrated upper limit (uplAB) (Fig.

1.2 C). Assignments whose Pshift · Pstructure product does not exceed a cycle-dependent

threshold are erased from the set of potential assignments. However, the difficulty with

using the structure filter is to distinguish between true violations and violations caused

by insufficient convergence due to sparse data for example (Guerry & Herrmann, 2011).

Accordingly, the native fold of the structure should roughly be achieved in the first cycle.

(iii) Assignments which survived the first filtering process are evaluated by their anchoring

in a network (Pnetwork) that is build-up from all the pre-validated assignments. The basic

idea of network-anchoring (Herrmann et al., 2002b) (Fig. 1.2 B) is that a set of correct

distance restraints forms a consistent network of paths. Correct assignments between

atoms A and B are incorporated in that network and are supported by paths through a

third atom C, e.g. other pre-validated assignments or the covalent polypeptide structure.

Erroneous assignments on the other hand, should not be embedded in the network and

are thus classified as not being anchored. The network-anchoring score (NAB) is the sum
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over all indirect paths AB through a third atom C, being not equal to A or B. Network-

anchoring serves as replacement of the 3D structure filter in the first CANDID cycle.

The concept of Network-anchoring is replaced in alternative NOE assignment protocols

like KNOWNOE (Gronwald et al., 2002) by Bayesian statistics. In these algorithms the

most probable assignment is determined using information from a database of known

structures.

Figure 1.2: Conditions that have to be fulfilled by a valid NOE assignment to two atoms A
and B. A The chemical shift of the atom pair A and B and the cross-peak position have to be
within a given tolerance. B A set of correctly assigned distance restraints forms a consistent
network of paths. Each assignment is evaluated by a score representing the sum over all indirect
paths AB through a third atom C. C Assignments have to be compatible with an intermediate
3D structure (Figure from (Güntert, 2004)).

The overall probability of an assignment is calculated as follows:

Ptotal = Pshift · Pstructure · Pnetwork (1.15)

Remaining assignments which survived the Ptotal filter, now called distance restraints, are

calibrated into upper limits using the 1/r6 dependence of the peak intensity towards the

distance.

Additionally, in automated NOE assignment cycles 1 and 2 the concept of constraint

combination is employed in order to eliminate artifact assignments. The concept of con-

straint combination was first introduced in the CANDID algorithm (Herrmann et al.,

2002b). As the name implies, virtual constraints are generated by combining assign-

ments of two unrelated peaks into one new distance restraint. The principle idea behind

constraint combination is the same as of ambiguous distance restraints: if one correct
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assignment is among the combined ambiguous distance restraints the resulting structure

is not distorted by incorrect assignments.

It has been reported that errors in the automated NOE assignment have a severe im-

pact on the accuracy of the resulting structure bundle (Jee & Güntert, 2003; Buchner &

Güntert, 2015b). These errors can be attributed to sparse data sets, incorrect chemical

shift assignment. or inaccurate NOESY peak picking. It is therefore possible that auto-

mated procedures can converge towards incorrect protein structures. The identification

of incorrect NMR protein structures is not trivial due to the lack of a reliable structure

quality validation tools. However, in many cases the precision of the structure expressed

as the backbone RMSD radius and the agreement between the experimental data and the

resulting structure bundle, expressed in the target function (explained below) are used

instead as a measure of structural quality (Nabuurs et al., 2006). Even though, those

measures are not capable of distinguishing between correct and incorrect results. Due to

the fact that fundamental calculation errors are rarely expressed in terms of precision of

the final structure bundle, but rather in a precise but inaccurate structure, a new con-

sensus structure bundle method implemented in CYANA has been introduced recently

(Buchner & Güntert, 2015a). In case of principle errors in the NOE assignment procedure

the final result of a calculation depends to some extent on the input starting structure,

that is influenced by a random number generator seed. The new consensus structure bun-

dle method comprises 20 individual combined automated NOE assignments and structure

calculations starting from different initial input structures. The final distance restraint

sets from each of the 20 individual calculations are combined into one consensus set of

distance restraints. The consensus distance restraint set is used as input for a structure

calculation which yields the consensus structure bundle (Buchner & Güntert, 2015a).

1.2.4 NMR structure calculation

NMR structure calculation can be performed by molecular dynamics (MD) simulation in

torsion angle or Cartesian space. However, MD with torsional angles instead of Cartesian

coordinates is more efficient. Reasons for this are, (i) the torsion angles are the only

degrees of freedom, (ii) the geometric force field retains only the most important non

covalent interactions in a simplified manner, and (iii) the simulation can be performed

with longer time steps since bond length and bond angles are kept fix in torsion angle

space (Güntert, 2004).

CYANA performs structure calculation by a MD simulation in torsion angle space
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driven by simulated annealing (SA) (Kirkpatrick et al., 1983). This task is realized via

a target function V optimization strategy. The target function serves as the potential

energy and can take values V ≥ 0, whereas V = 0 only if all upper and lower distance

and torsion angle constraints are fulfilled and all non bonded atom pairs satisfy a check

for the absence of steric overlap. The exact definition of the CYANA target function V

(Güntert et al., 1991, 1997) is as following:

V =
∑

c=u,l,v

wc
∑

(α,β)∈Ic

(dα,β − bα,β)2 + wa
∑
i∈Ia

[
1− 1

2

(
∆i

Γi

)2
]

∆2
i . (1.16)

The target function considers upper and lower distance bounds (bα,β) for the distance

(dα,β) between the atoms α and β, as well as torsion angle constraints (θi) in the allowed

ranges [Θmax
i ,Θmin

i ], corresponding to constraint set Ia. Iu, Il, and Iv represent the set of

atoms α and β with upper, lower and van der Waals restraints, respectively. wu, wl, wv

and wa demonstrate the weighting factors for different types of constraints. The torsion

angle violation is considered in the second part of equation 1.16. ∆i is the quantity of the

violation and Γi is the half width of the forbidden range of torsion angle values, which can

be computed as:

Γi = π − Θmax
i −Θmin

i

2
. (1.17)

It is possible to extent the target function with terms for scalar coupling constants, residual

dipolar couplings, pseudocontact shifts, and identity and symmetry restraints for calcula-

tion of symmetric multimers.

In oder to calculate the torsional acceleration in the torsion angle dynamics algorithm

of CYANA the molecule is represented by a tree structure consisting of k+ 1 rigid bodies

connected by k rotatable bonds. Each rigid body compromises one or several mass points

(atoms) for which relative positions are fixed. The rigid bodies are numbered from 0 to

k. The tree structure starts at the N-terminus and terminates at the side-chain of the C-

terminus. Each rigid body, except the base, has a single nearest neighbor in the direction

towards the base, which has a number p(k) lower than k, visualized in Fig. 1.3. The

torsion angle between the rigid body p(k) and k is denoted by Φk. The conformation of

a molecule is uniquely specified by the value of all torsion angles, φ = (φ1, φ2, φ3 . . . φk),
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which are the only degrees of freedom in a torsion angles dynamics calculation (Güntert,

2004).

Figure 1.3: Schematic overview of the molecule representation for torsion angle dynamics
calculation. A: Tree structure of torsion angles for tripeptide the Val-Ser-Ile. The circles
represent the rigid bodies (atoms or rings). Rotatable bonds are depicted by arrows which point
towards the part of the structure that is rotated upon corresponding torsion angle change. B:
Excerpt from the tree structure with an overview of all the quantities required by the CYANA
torsion angle dynamics algorithm (Figure from (Güntert, 2004)).

Quantities shown in Fig. 1.3 allow to calculate the kinetic energy, Ekin, of the entire

system in a recursive and efficient way, which is implemented as described in (Jain et al.,

1993). Together with the potential Energy, Epot, given by the above introduced target

function, it is possible to solve the accordant equations of motion.

Even though using a simplified force field and a target function, the potential energy

landscape of a protein is still complex compromising numerous local minima. Therefore,

it is desirable to have a method which has the potential to overcome energy barriers in

order to reduce the probability of getting caught in a local minimum. SA is a general

method to find the global minimum of a given function, in this case the target function

V . The temperature is a parameter that is proportional to the kinetic energy. A high

kinetic energy allows a molecule to overcome energy barriers and prevents the system

from getting trapped in a local minimum. The SA protocol in CYANA starts form

a random conformation which is generated from the protein amino acid sequence and

characterized by independent torsion angles. The initial minimization stage contains 100

conjugate gradient steps including only restraints that are 3 residues apart form each

other. This is followed by another round of 100 conjugate gradient steps including all

distance restraints. In the first three stages of the protocol a check for steric overlap is

conducted which excludes hydrogen atoms. The repulsive core radii of heavy atoms are

enhanced by 0.15 Å. In the second stage the protein is virtually heated to 10,000 K. The
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high temperature allows to overcome energy barriers and the molecule can adopt every

possible conformation. One-fifth of all N torsion angle dynamic steps are performed at

that temperature. The remaining torsion angle dynamic steps are performed in the third

stage where the temperature is slowly annealed to 0 K. In the fourth stage the hydrogen

atoms are added and 100 conjugate gradient steps, followed by 200 torsion angle dynamic

steps are performed. The final stage includes 1,000 conjugate gradient steps. This five

stage procedure is repeated several times for different initial random structures, which all

lead to a final structure with a local energy minimum.

As noted above the target function only includes the physical component in a simplified

manner. Therefore it is necessary to refine the final structure using a full physical force

field in explicit solvent.

Other prominent structure calculation bundles are Xplor-NIH (Schwieters et al., 2003)

and CNS (Brünger et al., 1998). Both Xplor-NIH and CNS can perform structure calcu-

lation in Cartesian or torsion angles space and use simulated annealing methods (Baran

et al., 2004). Additionally, Xplor-NIH and CNS incorporate a MD simulation in explicit

water for energy minimization and structure refinement.

1.2.5 Alternative NMR structure determination approaches

Chemical-shift based methods

Chemical-shifts are NMR parameters which can be determined straightforward and with

a high degree of accuracy. They are sensitive towards the conformation of native and

non-native molecule states. In structural biology chemical shifts are predominantly used

to predict secondary structures, to guide in structure refinement, and to characterize

conformational changes. Often, only chemical shifts are available. In this case it is useful

to have an approach that can determine the structure directly from chemical shifts.

This can be achieved by using 3D structures and corresponding chemical shifts to

extract molecular fragment conformations that match the experimentally determined sec-

ondary chemical shifts of the protein under investigation. Molecular modeling approaches

are then used to assemble the fragments into 3D structures. Popular methods to per-

form chemical-shift based structure determination are CHESHIRE (Cavalli et al., 2007),

CS-ROSETTA (Shen et al., 2008; van der Schot et al., 2013), and the CS23D web server

(Wishart et al., 2008).
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RDC-based methods

RDCs can be measured by weakly aligning the molecules which leads to a measurable

orientational dependence of the dipolar coupling with respect to the alignment tensor.

The molecular fragment replacement (MFR) (Delaglio et al., 2000) approach is used to

determine structures based on RDCs. The first steo of this method is to search the PDB for

fragments that fit the measured RDCs. In the next step torsion angles from the database

matches are used to assemble a protein structure. These structures are then refined in an

iterative manner, by adjusting backbone torsion angles in order to minimize differences

in the measured and fit RDCs and between the measured and predicted chemical shifts.

RDC-ROSETTA (Rohl &Baker, 2002) can be used to improve the database search for

relevant fragments in ROSETTA by taking the agreement between RDC data into account

analog to the above explained CS-ROSETTA method.

Assignment-free methods

Chemical shift assignment is often considered the most time consuming and tedious step

in NMR protein structure determination. Therefore, assignment-free methods have been

developed that rely exclusively on the distance information in NOESY spectra. An exam-

ple is the CLOUDS (Grishaev & Llinás, 2002) protocol where NOESY spectra are used

to determine a spatial distribution from proton-proton distances that are calculated based

on a relaxation matrix analysis. A MD simulated annealing scheme is used to generate

a set of structured proton clouds. A model structure is fit into this spatial distribution.

CLOUDS has been further developed to SC-CLOUDS (Bermejo & Llinás, 2008) which can

use data from perdeuterated proteins and final structures are assembled by ROSETTA.

1.2.6 Fully automated protocols

The usage of fully automated structure determination protocols for NMR has so far not

been completely established. This task is much more demanding than automating individ-

ual steps due to cumulative errors (Güntert, 2004). It has been reported that reliable NOE

assignment needs at least 90% completeness in chemical shift assignment (Jee & Güntert,

2003). A detailed analysis of combined automated NOE assignment and structure cal-

culation with CYANA (Buchner & Güntert, 2015b) also revealed that 10% missing or

erroneous chemical shifts result in inaccurate structures with RMSD bias above 3 Å. It

has also been presented in that work that the algorithm is relatively robust towards miss-
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ing peaks, errors in peak positions and volumes, and lower resolution (Buchner & Güntert,

2015b). Improvements in the usage of automated protocols has been achieved through the

application of SAIL amino-acids (Kainosho et al., 2006), which results in sharper lines and

reduced signal overlap, hence improved spectral quality (Takeda & Kainosho, 2011).

Prominent programs for fully automated analysis are FLYA (López-Méndez & Güntert,

2006), AUREMOL (Gronwald et al., 2004), and J-UNIO (Serrano et al., 2012).
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Chapter 2

Peak picking in

multidimensional NMR spectra

with CYPICK

This chapter is based on the following publication:

Würz J. and Güntert P. Peak picking in multidimensional NMR spectra with the con-

tour geometry based algorithm CYPICK. Journal of Biomolecular NMR (in press).
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2.1 Introduction

Identifying real signals in an NMR spectrum also known as peak picking plays a central

role in the process of NMR protein structure determination. The resulting peak lists serve

as basis for chemical shift and NOE assignment, followed by structure determination. Peak

lists provide, among other information, the position and the intensity of the signals and

are directly accessible by interactive or automated spectral analysis programs. The quality

of peak lists can be described by: first, including as many true signals as possible, second,

including as few artifacts as possible, and third, the accuracy of the signal positions and

intensities.

It has been reported that peak lists do not have to be flawless to be used for chemical

shift assignment, NOE assignment and subsequent structure calculation. For example,

the automated resonance assignment algorithm FLYA (Schmidt & Güntert, 2012) can

yield more than 90% correct resonance assignments even in extreme cases where 60% of

true peaks are missing or for data sets containing 5 times more artifacts than true peaks

in the input (Schmidt & Güntert, 2012). Automated NOE assignment and structure

calculation with CYANA (Güntert & Buchner, 2015; Herrmann et al., 2002a) can also

tolerate imperfections in input resonance assignment and NOESY peak lists (Buchner &

Güntert, 2015a; Jee & Güntert, 2003). 10% missing or erroneous resonances can result

in structures with an RMSD bias above 3 Å. Missing NOE peaks do not affect NOE

assignment as severely as missing or erroneous resonances. It has been further reported

that the random deletion of 30% NOESY peaks results in structures with an RMSD bias

below 3 Å, whereas the random deletion of 45% NOESY peaks increases the RMSD bias

only slightly above 3 Å (Buchner & Güntert, 2015a). This can be explained by the fact that

NOE data sets usually include a high amount of redundant and short-range data (Chapter

3), which can be excluded from the data set without a loss in structural information. It has

further been reported that the deletion of 30% weak NOESY peaks has a comparable effect

to randomly deleting 30% of all peaks. However, a deletion of 45% weak peaks results

in a significant increase in RMSD bias to 7 Å (Buchner & Güntert, 2015a). This can

be attributed to the fact that weak signals correspond to important structural long-range

information.

The task of automating peak picking remains challenging. Reasons for this are: iden-
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tification of real signals, and in case of NOESY-based spectra, weak signals, is impeded

by low signal-to-noise, signal overlap, and artifacts, e.g. baseline distortions, intense sol-

vent lines, ridges or sinc wiggles. Automating the step of peak picking in the process of

structure determination saves a great amount of time and makes peak picking much more

objective. Therefore, a great deal of work has already been invested in the automation of

peak picking in NMR spectroscopy. Existing algorithms can be classified into four groups:

(1) threshold-based methods, (2) methods that depend on symmetry criteria, (3) peak-

shape based methods, and (4) incorporating peak picking in the design of the experiment.

Combinations of this classification has been implemented in many algorithms. Interactive

spectrum analysis programs like XEASY (Bartels et al., 1995), Sparky (Goddard et al.,

2005), NMRViewJ (Johnson, 2004; Johnson & Blevins, 1994), or CcpNmr AnalysisAs-

sign (Skinner et al., 2016; Vranken et al., 2005) (in the following referred to as CCPN)

allow the user to adjust thresholds manually and allow peak picking by identifying all

local extrema above the adjusted threshold automatically. These methods are useful as

a starting point for semi-automated peak picking which is refined manually afterwards.

WavPeak (Liu et al., 2012) performs the following sequence of steps: wavelet-based

smoothing, identifying all local extrema, and volume-based filtering. PICKY (Alipanahi

et al., 2009) is an SVD-based automated peak picking method. Machine learning and

computer vision approaches have also been employed for peak picking, e.g. CV-Peak

Picker (Klukowski et al., 2015). AUTOPSY (Koradi et al., 1998) includes functions to

determine a local noise level and to separate overlapping signals from resolved signals by

measurements of peak uniformity. Overlapping regions are then resolved with the help

of unique line shapes derived from resolved signals. ATNOS (Herrmann et al., 2002b)

is an automated peak picking software exclusively for NOESY spectra, that uses chemi-

cal shift assignment information to guide peak picking. Peak picking can be performed

in an iterative manner during NOE assignment and structure calculation, making use of

preliminary structural information. Peak picking can be part of NMR data processing,

e.g. MUNIN (Orekhov et al., 2001) that uses a three-way decomposition to decompose

a three-dimensional (3D) NMR spectrum into a sum of components defined as the direct

product of three 1D shapes. The GAPRO peak identification algorithm (Hiller et al.,

2005) produces peak lists for high-dimensional (e.g. 4D, 5D, 6D) APSY-type spectra by

picking peaks in the experimentally recorded tilted 2D projections.

The human approach to peak picking can be described as the analysis of shape and reg-
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ularity of two-dimensional contour lines. Real signals are similar to concentric ellipses and

have a variety of common properties which artifacts do not share, e.g. peak width, convex-

ity or similarity. The shape of NMR signals can be described by a mixture of Lorentzian

and Gaussian shape. Usually NMR signals are displayed in absorption mode in order to

achieve minimal peak width, and positive, symmetric peak shapes. However, real signals

can deviate from the proposed ‘perfect’ shape for a number of reasons, such as limited

digital resolution, spectral overlap and improper phasing of the spectrum. An automated

peak picking procedure should be able to handle these imperfections and shortcomings.

Accordingly, a peak picking approach which tries to mimic the human way of analyzing

these criteria of similarity and symmetry in 2D spectral planes is a promising approach

for an automated procedure. This approach has first been implemented in the Common

Sense Approach to Peak-Picking (Garrett et al., 1991), short CAPP. Our aim was

to develop an effective and fast automated peak picking procedure in CYANA which can

be directly linked to chemical shift assignment and/or NOE assignment, followed by struc-

ture calculation. We reduced the requirements with respect to user intervention as far as

possible in order to increase objectivity and reproducibility in comparison to manual peak

picking. The new peak picking algorithm CYPICK is introduced in this chapter.

In the following sections some of the above introduced peak picking algorithms are

explained in more detail.

ATNOS

Atomated NOESY peak picking (ATNOS) (Herrmann et al., 2002b) is a software which

is used to obtain NOESY peak list from 2D or 3D homonuclear NOESY spectra. The

software is usually combined with automated NOE assignment (Herrmann et al., 2002a)

and structure calculation routines to obtain a direct link between intermediate structures

and raw NMR data. Accordingly, the used NOESY peak list changes with every cycle

of NOE assignment and structure calculation. As input the sequence specific resonance

assignment of the protein in XEASY (Bartels et al., 1995) format, the amino acid sequence

and the spectra are required. Additional conformational restraints can also be included.

The peak picking algorithm follows several steps: ATNOS determines the local base-

line and the local noise level. The baseline determination is based on the FLATT (Güntert

& Wüthrich, 1992) algorithm, whereas the local noise determination is derived from AU-

TOPSY (Koradi et al., 1998). A signal is considered as a peak if a defined signal-to-noise

ratio and a minimal local extremum condition are met. A preliminary chemical shift-
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based NOE assignment is established with CANDID. All signals that have an assignment

which can be linked to a covalent NOE, an NOE which arises from the covalent geome-

try (Güntert et al., 1998), i.e. bond length, bond angles and Karplus relation, are used

to determine spectrum-specific threshold values for the minimal signal-to-noise ratio and

the minimal peak area. Based on these threshold values the initial NOESY peak list

is filtered. In the first cycle no intermediate structure is available. Peaks are validated

by classification into two groups: First, signals with and without and structure-imposed

NOE-observable upper limit, and second, signals that are within a limit from the diagonal

or solvent regions and the remaining peaks. Peaks that are not close to the diagonal and

the solvent signal are kept, all others are discarded. In the second and following cycles

peaks are only categorized in a set of signals which are compatible with the intermediate

structure and those that are not. Further validation criteria applied in all cycles are the

compatibility with the resonance assignment, network anchoring and symmetry consider-

ations. Signals that pass these filters are used as input for CANDID (Herrmann et al.,

2002a) and DYANA (Güntert et al., 1997).

AUTOPSY

The first step of the AUTOPSY algorithm is the determination of the local noise level.

Afterwards the spectrum is divided into connected data points which are above the noise

level via a ‘flood fill’ algorithm (Foley et al., 1990). These connected regions are filtered for

separated peaks based on symmetry and regular shape criteria. In order to determine sym-

metry violations, a function which includes a set of data points and a set of symmetrized

data points is minimized with the symmetry center as parameter. The uniformity of peaks

has proven to be a good measure for well-resolved peaks. In general, a 2D peak can be

factorized into the product of two line shapes and an amplitude. The nonlinear system can

be solved by an iterative method where starting values of the two line shapes are expected

and then one line shape value is kept fixed while the other is modified. The outcome of this

is the error in difference of the combination of line shapes and the data points. This error

correlates with peak uniformity. The line shapes and the chemical shifts of these peaks are

stored and sorted according to their degree of separation. The stored line shapes are then

filtered for unique line shapes and shifts which can be found in several peaks. The line

shapes are grouped by a clustering algorithm. Regions of the spectra which are strongly

overlapping are resolved with the help of unique line shapes and the selected peaks are

integrated. A symmetrization step can be performed on symmetric spectra, e.g. NOESY
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or COSY experiments.

CAPP

CAPP (Garrett et al., 1991) is a peak picking algorithm which tries to imitate the spec-

troscopist’s behavior as realistically as possible by evaluating contour line shapes. The

algorithm follows four steps. First, a contour diagram is generated on a logarithmic in-

tensity scale by defining a cutoff level and a level multiplier. Neighboring contour points

are linearly interpolated. Second, ellipses are calculated which best fit the contour lines.

The center and the radius of each ellipse are determined and optimized by the simplex

method as RMS of the deviation of each contour point and the closest point on the ellipse.

Third, definition of noise ridges. In order to define ridges in dimension x, peaks are sorted

by their y shift. Peaks which are within a defined range are used for the definition of

ridges, if the sum of the radii in x exceeds a minimal length or the set of peaks includes a

minimal number of peaks with x chemical shifts which exceed a minimal length. Fourth,

definition and localization of real peaks. A peak is defined if the conditions: (a) the RMS

between contour point and ellipse is less than a predefined value, (b) its radius is within

a defined range, (c) the ratio of ellipse radii has to be within a defined range and (d)

the circumference ratio between ellipse and contour line should be in a defined range, are

all fulfilled. Ellipses which fulfill requirement (a) through (d) are defined as peaks and

checked for the following requirements: (i) peak center is not a ridge, (ii) at least 2 ellipses

define the peak and (iii) in case of 3D or 4D spectra the peak has to be a local maximum

in each dimension.

CCPN

CCPN (Skinner et al., 2016; Vranken et al., 2005) aims to connect computational tools

used in NMR spectroscopy, especially in terms of different program data formats. In

the CCPN software suite the CcpNmr Analysis program is responsible for the complete

interactive analysis of NMR data using a graphical interface. Results from the analysis

tool can easily be connected to structure calculation (ARIA) and validation software

(e.g. QUEEN). The CcpNmr FormatConverter allows conversion of data in-between all

the common used data formats. Peak picking by CCPN can be performed by manually

adjusting a spectrum-specific threshold and automatically identifying all local extreme

above the defined threshold.
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CV-Peak Picker

CV-Peak Picker (Klukowski et al., 2015) is an automated peak picking procedure that

uses computer vision and machine learning methods for identifying real signals in NMR

spectra. Peaks are identified on the basis of local extrema conditions. The volume of the

identified peaks are then calculated and peaks below a user-defined threshold are discarded.

CV-Peak Picker uses the ‘Histogram of Oriented Gradients’-method to extract features

from the peak shapes. A Support Vector Machine is used as a binary classifier, comparing

all recognized peak shapes to a trained and manually identified peak shape set.

EASY/XEASY

The program EASY (Eccles et al., 1991) was designed for spectral analysis of biomolecular

2D NMR spectra. It includes routines for automated peak picking, spin-system identifica-

tion, sequential resonance assignment and cross-peak integration. The successor XEASY

(Bartels et al., 1995) includes all the EASY functionalities and is capable of also analyzing

3D and 4D spectra. EASY and XEASY provide an interactive and an automatic peak

picking mode. In the interactive mode the user selects peaks with the mouse cursor by

means of the 2D contour plot. Automated peak picking can be performed on anti-phase

peaks or on in-phase peaks. Anti-phase peaks have a symmetry towards their center which

can easily be monitored by an algorithm which uses a symmetry function (Meier et al.,

1987). The peak center is identified as the local maximum of the symmetry function above

a user-defined threshold. In-phase peak picking is performed by selecting all extrema above

a global threshold which is usually one to two times the noise level. Those peaks require

to have a peak width in a predefined range in order to exclude noise spikes or artifacts

stemming from errors in baseline correction or solvent signals.

NMRView and NMRViewJ

The program NMRView (Johnson & Blevins, 1994; Johnson, 2004) can be used for vi-

sualizing and analyzing 2D, 3D or 4D NMR data. The package includes routines for

automated peak picking, analysis, and also aids in assignment. Via the Molecular Data

Viewer it is possible to correlate the calculated structure to the underlying spectra. The

newer NMRView 3.0 version (Johnson, 2004) enables automation of individual steps by

incorporating the Tool Command Language (Tcl). Peak picking in NMRView is per-

formed by identifying local extrema and interpolating the exact position of the maximum.
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Peaks are valued as ‘good’ and ‘bad’ based on the peak width at the threshold. Further

peak information, like the peak width a half height and the peak bounds are determined

and stored. Afterwards the user can interactively delete or add peaks using the graphical

user interface. Further, simple Tcl scripts can be written that filter the peak lists based

on certain user-defined criteria, e.g. peak width.

Non-negative matrix factorization

Peak picking NMR spectral data using non-negative matrix factorization (NMF) (Tikole et

al., 2014) was developed to automatically decompose overlapping peaks from non-uniform

sampling schedules. A basic 2D NMF model is used and sequentially extended to 3D to

decompose the corresponding data tensor. Factorization convergence is measured by an

Euclidean distance cost function.

Sparky

Sparky (Goddard et al., 2005) is a program which can be used to display NMR spectra,

to pick, assign and integrate peaks via a graphical user interface. It is possible to load

spectra with up to 4 dimensions simultaneously. In order to pick peaks the program first

represents the spectrum as a contour plot. Characteristics of the plot can be adjusted, e.g.

the contour levels can be scaled. Single peaks can be picked manually and it is also possible

to pick distinct regions or the whole spectrum based on a threshold which is defined as

the lowest positive and/or negative contour level. The line width can also be defined and

used as a picking criteria.

STELLA

The program STELLA (Kleywegt & Kaptein, 1989) provides both a fully automatic

and a fully manual peak picking algorithm for low-symmetry spectra. The fully automatic

picking is performed by the modules LEARN2 and SMART2. LEARN2 is an interactive

program which learns to distinguish between real and erroneous peaks based on peak shape

representations. The user classifies a set of real and a set of spurious peaks for LEARN2

which in turn creates a peak-definition file. The subsequent program SMART2 can use

the peak-definition file as input. Nevertheless, the peak-definition file is not mandatory.

The following restrictions can be made by the user: (a) the search area can be defined,

(b) definitions of local maximum can be determined, and (c) definitions of a real peak
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can be set. A data point is considered a local maximum if the intensity exceeds a certain

threshold, the data point is not too close to the diagonal, the data point has to be the

local maximum in a defined area, and a predefined number of neighboring points have

to be higher than a specific threshold. If a peak-definition file has been established via

LEARN2, a match factor of the pre-selected local extrema is determined on the basis of

the peak shape. Peaks are then sorted by their match factor. The k -Nearest-Neighbor

algorithm is used to classify the pre-selection into real and spurious peaks. If no peak-

definition file is provided all local extrema are treated as peaks. Finally, the peaks are

interpolated and all relevant information is stored in a binary peak file. The peak picking

algorithm can also be used in an iterative fashion by manual re-evaluation of the output

peak file of SMART2 and using an edited input for LEARN2.
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2.2 Contour Peak Picker Algorithm

As explained above, the human approach to peak picking can be described as the analysis

of shape and regularity of two-dimensional contour lines. Real signals are similar to

concentric ellipses and have a variety of common properties which artifacts do not share,

e.g. peak width, convexity or similarity. Fig. 2.1 contrasts the 2D contour plots of a real

signal and noise.

/home/weber/Desktop/realWed Dec 14 13:37:24 2016(a) Real signal /home/weber/Desktop/artWed Dec 14 13:39:43 2016(b) Noise

Figure 2.1: Contrasting juxtaposition of the contour lines of a real signal (a) and a noise region
(b). The contour lines of the real signal possess a high degree of symmetry and similarity. In
contrast, noise regions do not fulfill these criteria. A decrease in contour level intensity results
in more irregular and jagged contour lines.

A simplified graphical overview of the different steps and picking modes available for

the contour peak picker are presented in Fig. 2.2. CYPICK is implemented in the CYANA

software package.

The first step in the process depicted in Fig. 2.2 is to read the processed NMR spectrum.

NMR spectra are stored in the form of an intensity matrix. The position in the matrix

corresponds to the chemical shift value, whereas the entry itself corresponds to the intensity

of the data point. The routine for reading NMR spectra was implemented by Dr. Donata

Kirchner for BRUKER and UCSF format. Within this work, this reading routine was

extended to XEASY and AZARA format. After storing the spectrum in memory, an

estimate of the intensity of the lowest contour level is required. This can either be the

global noise level (CYPICK command: spec noise) of the spectrum or the local noise

level (CYPICK command: spec localnoise) at each data point. The following step is to

find local maxima. This can either be done over the complete spectral range (CYPICK

command: spec pick contour) or by a frequency filter, which can be provided in the form

of a peak list (CYPICK command: spec pick filter). Then contour lines are created.
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The contour lines belonging to the local extremum are then filtered and analyzed. The

remaining local maxima are stored in a peak list (CYANA command: write peaks). Details

are explained in the following subsections.

Figure 2.2: Graphical overview of the CYPICK peak picking algorithm implemented in
CYANA. The algorithms needs as input a processed NMR spectrum. Three different picking
modes are available for the contour approach: First, the global noise level is determined and
used as intensity of the first contour line (CYPICK command: spec pick global). Second, a
restricted peak picking with a 2D frequency filter that can be provided in the form of a peak
list (CYPICK command: spec pick filter). The position of the 2D peaks is used as a filter
for local maxima which are considered in the contour approach. Third, a local noise level is
determined for every data point in the spectrum (CYPICK command: spec pick local). The
local noise level is used as a first filtering step for local maxima and creation of contour lines.
In the restricted peak picking mode the global noise level is needed for the selection of local
maxima and the estimation of contour level intensities. After appropriate contour line creation,
contour lines are analyzed and peak lists are generated.

2.2.1 Determination of the global noise level

The global noise level, Lglobal is approximated by estimating the median of the abso-

lute intensity values of the spectral data points as implemented in the program PROSA

(Güntert et al., 1992), which assumes that most of the data points in a multidimensional

NMR spectrum are at locations not occupied by signals. The method applied for median

approximation is described in the book ‘Numerical Recipes’ (Press et al., 2007).
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2.2.2 Determination of the local noise level

The local noise level, Llocal(ω1, . . . , ωD) at a given position (ω1, ..., ωD) in a D-dimensional

spectrum, estimation is a reimplementation of the local noise level estimation used in the

program AUTOPSY (Koradi et al., 1998).

Each one-dimensional slice, i.e. each row and column of a 2D spectrum, is subdivided

into segments equal in size to 5% of the number of data points in the accordant dimension.

The segment with the smallest standard deviation within slice ωn represents a specific

noise level for that slice in dimension n and referred to as δn,ωn . Individual noise levels are

represented as a base noise level, being a characteristic value for the complete spectrum,

plus an additional noise level, being characteristic for a specific one-dimensional slice. The

base noise level is defined as the minimal value out of all individual noise levels δn,ωn , as

follows:

δmin = min
n,ωn

(δn,ωn) for n = 1, . . . , D and ωn = 1n, . . . , In, (2.1)

where D represents the dimensionality of the spectrum and In represent the number of

one dimensional slices in the respective dimension n. The additional noise, δ′n,ωn , is then

calculated as:

δ′n,ωn =
√
δ2
n,ωn − δ

2
min. (2.2)

The noise level at a data point with coordinates (ω1, . . . , ωn) is calculated from the noise

level of all the slices that pass through that data point and the base noise level:

Llocal(ω1, . . . , ωn) =

√√√√ D∑
n=1

δ′2n,ωn + δ2
min =

√√√√ D∑
n=1

δ2
n,ωn − (n− 1) · δ2

min. (2.3)

2.2.3 Determination of the local extremum

A data point is only checked for being a local extremum if its intensity exceeds a spectrum-

specific base level. The base level, B, represents the intensity of the lowest contour level

c0 and is defined as:

B = c0 = β · L, (2.4)
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where L denotes either the global noise level Lglobal, or the local noise level Llocal at this

position, depending on the desired picking mode. β is an empirical factor between 2 and 3

(Koradi et al., 1998). If not stated otherwise we used β =3.0. This factor can be adjusted

by the user. However, it is strongly recommended to use the default values for reasons

of objectivity and reproducibility. A data point is considered a local extremum if all the

neighboring data points have an absolute intensity lower than or equal to the investigated

data point. Two modes are provided which are shown schematically for a two-dimensional

spectrum in Fig. 2.3.

(a) diagonal mode (b) no diagonal mode

Figure 2.3: Comparison of diagonal and no diagonal local extremum determination. The
orange data point represents the data point of interest. The grey neighboring points are the
points which are analyzed in the accordant method.

In the diagonal mode all 3D − 1 neighbors are considered, whereas in the no diagonal

case only the direct 2 · D neighbors are taken into consideration, where D represents

the number of dimensions. Generally speaking, the no diagonal mode provides a faster

scanning of the spectrum, whereas the diagonal mode provides more accurate results. The

diagonal mode was used for calculations presented in this study.

2.2.4 Scaling of contour lines

While creating the contour lines they are scaled by a scaling factor σi, the peak width

at half height in ppm for the corresponding dimension i which has to be provided by the

user for each individual dimension i = 1, ..., D (see chapter 2.2.7.1). For example, in a

15N-HSQC spectrum with a peak width at half height of 0.4 ppm in the 15N dimension

and of 0.04 ppm in the 1H dimension, the 1H dimension is scaled with factor 10.0 and the

15N dimension with factor 1.0. The user however only provides σ1 = 0.4 and σ2 = 0.04,

as explained in chapter 2.6.
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2.2.5 Creation of contour lines

If the data point of interest has been classified as a local extremum, contour lines are

determined in a defined peak area. The peak area can in principle be changed by the

user according to the expected peak width in each dimension. However, the algorithm

is insensitive towards the size of the peak area as long as it is chosen sufficiently large.

Larger peak ares, however, do enhance the calculation time.

The next higher contour line ci+1 is determined by multiplying the preceding contour

line, ci by the factors γ.

ci+1 = ci · γ. (2.5)

γ = 1.4 approximately doubles the height of contour line i after 2 contour lines. Whereas,

when using multiplication factor of γ = 1.2 the height of contour line i is approximately

doubled after 4 contour lines. Accordingly, with lower level multipliers one generates more

contour lines within a given intensity range. We extensively tested the usage of different

contour level multipliers and therefore recommend using γ = 1.3.

The number of contour lines encircling a local extremum depends on its absolute in-

tensity. After having defined the peak area and the number of contour lines, the actual

position of the contour points are determined by an algorithm which is very similar to

the marching squares algorithm (Lorensen & Cline, 1987). This algorithm is a reimple-

mentation of the plotting algorithm used in the program PROSA (Güntert et al., 1992).

PROSA was developed to generate closed contour lines, which is vital for the analysis in

CYPICK.

The marching squares algorithm is perfectly suited for this situation because the spec-

tral data points are already rasterized on a regular grid. The peak area is further sub-

divided into sets of 4 data points (2 x 2 squares). Each of these sub-squares is checked

for having an intensity higher or lower as the contour line intensity. 16 cases can be

distinguished which can be further reduced to 4 cases under consideration of symmetry.

These four cases are shown in Fig. 2.4. Based on these cases contour points describing the

contour line are determined by a simple linear interpolation procedure. Contour points

are stored in an array for each local extremum if the contour line is closed and encircles

the local extremum. Otherwise the algorithm searches for another closed contour line in

the defined search space.



Peak picking in multidimensional NMR spectra with CYPICK 61

Figure 2.4: Schmematic representation of the marching squares algorithm. Data points in a
NMR spectrum are rasterized on a regular grid. The algorithm then subdivides this regular grid
into sets of 4 data points (2 x 2 squares). Each sub-square is checked for having an intensity
higher (denoted by ‘+’) or lower (denoted by ‘−’) as the contour line intensity, ci. The four
possible cases are depicted. The position of contour points (denoted by orange circles) is
estimated via linear interpolation.

2.2.6 Filtering of contour lines

After having stored all contour lines belonging to all local extrema above the defined base

level, the contour lines are subjected to a preliminary filtering process:

1. The local extremum of interest has to be inside the contour line.

2. No other local extremum except the local extremum of interest may be inside the

contour line.

3. The number of contour points per contour line has to be greater than or equal to

five. If the number of contour points describing an contour line is lower than 5, the

shape of the contour line does not resemble a concentric ellipse anymore.

4. The number of contour lines per local extremum has to be greater than or equal

to four. This ensures that the contour lines are covering an intensity range that

is greater than twice the intensity of the first contour line when using 1.3 as level

multiplier.
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5. The number of closed contour lines per local extremum has to be greater than or

equal to two. This ensures that parts of the peak are within the predefined peak

area.

In order to check if the local extremum of interest is within the contour line we used the

ray casting algorithm (Shimrat, 1962) which relies on the assumptions of Jordan’s polygon

theorem. In this procedure, a ray is sent out from the point of interest, in this case the

local extremum, and the number of times it intersects with the edges of the contour line are

counted. If the ray crosses the boundary of the contour line, it goes from inside to outside,

then from outside to inside, and so on. As a result, after every two ‘border crossings’ the

ray goes inside. Accordingly, odd numbers of ‘border crossings’ imply that the point of

interest is inside of the contour line, whereas even numbers imply that the point is outside

of the contour line.

2.2.7 Analysis of contour lines

After filtering, the remaining contour lines are analyzed starting from the contour line with

the highest absolute intensity. If the highest contour line does not fulfill the requirements,

the next lower contour line is analyzed. At least two contour lines have to fulfill the

specified conditions.

2.2.7.1 Circular shape

The first condition that has to be fulfilled by a contour line belonging to a real signal,

is the circular shape. As mentioned earlier, the shape of contour lines can be described

by concentric ellipses. However, the width of overlapping peaks can deviate severely.

Therefore, the analysis of overlapping signals is performed independently as explained in

chapter 2.2.9.

NMR contour lines consist of contour points. Connecting contour points by a line

results in a polygon. To this end, we availed ourselves of polygon equations. The contour

line area is determined via Gauss’s area formula (Braden, 1986):

2A =

n∑
i=1

(xi + xi+1) · (yi+1 − yi), (2.6)

where n reflects the number of contour points in the contour line, and x and y represent the

coordinates of the contour points. The circumference of a contour line can be determined
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by summing up all distances between the corresponding contour points:

C =

n∑
i=1

√
(xi − xi−1)2 + (yi − yi−1)2, (2.7)

where n reflects the number of contour points in the contour line and x and y represent

the coordinates of the contour points. For a circle, the area, Acircle, to circumference,

Ccircle, squared ratio is defined as follows:

Acircle

C2
circle

=
π · r2

(2π · r)2
=

1

4π
≈ 0.08 (2.8)

The area-to-circumference squared ratio is determined for each contour line that survives

the filtering step presented in the previous section. This ratio should equal 1
4π in case of

a perfect circle. We then use this ratio and convert it into a quality factor Qrad within

the range of [0, 1]. In this case 1 reflects a perfectly circular shape. Qrad was designed in

a way that also deviations from the perfect circular shape, which can still be present even

though the contour lines were scaled, are considered (see Fig. 2.5). Qrad is defined as:

Qrad = e−750·( a
c2
− 1

4π )
2

. (2.9)

Fig. 2.5 (a) shows Qrad as a function of area to circumference square. The tolerated

range is shaded in grey (Qrad ≥ 0.7). In Fig. 2.5 (b) examples of ellipses with varying

eccentricities and their corresponding Qrad values are visualized.

2.2.7.2 Convexity

Contour lines around a peak extremum are required to form an approximately convex

polygon, i.e. all interior angles are less than 180°. The interior angle αi is calculated via

the scalar product of the two edges forming the vertex i. The convexity of contour points

is checked via the cross product of the two edges connected by the vertex. For some of the

real signals a slight deviation from the perfect convex shape could be observed. Therefore,

a quality factor Qcon, similar to Qrad, within the range of [0, 1] was defined. Qcon = 1.0

corresponds to a convex contour point. Qcon,i is calculated for each contour point of the

contour line. Qcon is the product of all Qcon,i values belonging to the same contour line.
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Figure 2.5: (a) Qrad as a function of area to circumference square. (b) Ellipse examples and
their accordant Qrad values.

Qcon,i and Qcon are defined as:

Qcon,i =


1, αi ≤ π(

2αi
π − 3

)2
, π < αi <

3π
2

0, αi ≥ 3π
2

(2.10)

Qcon =

n∏
i=1

Qcon,i, (2.11)

where n reflects the number of contour points in the contour line, and αi represents the

angle at edge i. The dependence of Qcon,i on the angle αi visualized in Fig. 2.6 (a). The

tolerated range is shaded in gray (Qcon ≥ 0.7). Fig. 2.6 (b) shows polygons with varying

angle α and the accordant Qcon values.
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Figure 2.6: (a) Qcon,i as a function of αi. (b) Examples of different convex and concave
angles and their accordant Qcon values.

2.2.7.3 Absolute quality

Qrad and Qcon values were calculated for real and artifact signals of numerous spectra.

From our investigations, both, Qrad and Qcon were determined to have a value of at least

equal to or greater than 0.7. Further, the product of Qrad and Qcon, Qabs, was required to

be equal to or greater than 0.6. This means that if for example Qrad is somewhere close

to the threshold, Qcon has to have a quality of approximately 0.9.

2.2.8 Interpolation of the local extremum

A local extremum in a D-dimensional spectrum is accepted as a peak if it fulfills all the

contour based criteria (defined above) in one of the D(D − 1)/2 2D contour planes. The

digital resolution of an NMR spectrum limits the accuracy with which NMR signals can

be described. It can be calculated by the quotient of the spectral sweep width and the

number of complex data points which have been acquired. Accordingly, the true position of

a NMR signal is rather somewhere between data points than exactly on the measured data

point. The exact peak position plays a crucial role in chemical shift and NOE assignment.

Therefore, it is of utmost importance to estimate a peak location as accurately as possible.
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Figure 2.7: Cubic spline interpolation of the 15N dimension of a well resolved peak from the
15N-HSQC spectrum of ENTH. Grey circles represent original data points from the spectral
file, connected by straight lines. In the right box the interpolated peak shape is depicted as it
has been performed by the cubic spline interpolation implemented in CYANA (orange data
points).

For the estimation of the exact position of the local extremum a cubic spline interpola-

tion (Press et al., 2007) was implemented. The interpolant is a piece-wise cubic polynomial,

called a spline. Due to the piece-wise definition, splines are more flexible than polynomials

and yet relatively simple and smooth. Thereby, splines do not have the disadvantages of

polynomials, such as strong oscillations between data points. The cubic spline interpola-

tion is performed along each one-dimensional slice passing though the local extremum of

interest.

2.2.9 Deconvolute overlapping peaks

Local maxima which do not fulfill the requirements listed above were analyzed once more

under the considerations for overlapping peaks. In order to resolve overlapping peaks peak

symmetry criteria described in the AUTOPSY (Koradi et al., 1998) publication were

applied. In the program AUTOPSY these criteria were used for determining whether

peaks are overlapping or not. This procedure was adjusted in order to resolve overlapping

peaks in a simple and efficient way.

First, a symmetry center which in principal matches the coordinates of the local ex-

tremum is defined. However, for reasons of accuracy, the exact position was interpolated

by a cubic spline interpolation of the local extremum data points. The new coordinates of

the symmetry center are then determined from this cubic spline. The intensities of neigh-
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Figure 2.8: Example of resolving two overlapping peaks from a 2D 15N-HSQC spectrum.
The blue line represents the original data from the spectrum file; the green line represents
the symmetrized local extremum of higher intensity; the red line represents the difference
spectrum which is achieved by subtracting the green line from the blue line. Afterwards it is
possible to analyze the green and red resolved peaks using the contour approach criteria. The
symmetrization procedure is shown exemplary for a one-dimensional slice through the local
extremum. The procedure is repeated along each one-dimensional slice, each row and column
in case of a two-dimensional spectrum, in the defined peak area.

boring data points at mirror positions k and k′, with respect to the symmetry center,

are compared. Then the symmetrized intensity for point k, Isym,k is calculated from the

minimal value of either the square root of the product of the intensity at the symmetry

related position Ik and Ik′ or the original intensity at point Ik as following:

Isym,k = min
(√

Intk · Intk′ , Intk
)

(2.12)

Symmetrizing all data points with respect to the symmetry center results in the resolved

peak shape (Fig. 2.8; green data points). The symmetrized data points can then be sub-

tracted from the original data points (Fig. 2.8; blue data points), leading to the difference

data points (Fig. 2.8; red data points) which ideally represent the deconvoluted second

peak. It is then possible to create contour lines to the symmetrized slice as well as to the

difference slice.
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2.2.10 Restricted peak picking

Restricted peak picking can be performed by providing a peak lists, e.g. a 2D 15N-HSQC.

The peak list is read with the command read peaks and the spectrum of interest, e.g. a

3D 15N-resolved NOESY, with the command read spectrum. The algorithm goes step

by step though the 2D peak lists and navigates to the exact position in the accordant

dimension of the 3D spectrum. This corresponds to the HSQC dimension in the 3D

NOESY. The algorithm then searches for local extrema along the 3D NOE dimension at

the 2D HSQC position, provided by the peak list, within a user-defined tolerance range (see

chapter 2.6 for description of the exact usage). Contour lines are created for the surviving

local maxima, and the accordant contour lines are analyzed by the above specified criteria.

Local maxima that survive filtering and analysis are stored in a peak list.
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2.3 Materials and methods

2.3.1 Evaluation dataset

The performance of CYPICK was first analyzed on the basis of 16 different spectra of the

ENTH-VHS domain At3g16270-(9-135) from Arabidopsis thaliana (referred to as ENTH,

PDB code 1VDY; BMRB code 5928) (López-Méndez & Güntert, 2006; López-Méndez et

al., 2006) that are summarized in appendix A in Tab. A.1. Spectra were converted to

UCSF (Sparky) format, which can be read by all programs that were used to evaluate

CYPICK. Manually picked peak lists and lists picked automatically by AUTOPSY were

available from an earlier study (López-Méndez & Güntert, 2006). Manually picked peak

lists served as a reference for calculating scores for finding real peaks, artifact peaks, and

an overall score combining both. The exact definition of the scores is given in chapter

2.3.2. CYPICK user input was systematically tested and evaluated on the basis of these

scores with respect to the manual peak lists. Later those scores were also used to compare

CYPICK’s performance to other programs, namely AUTOPSY, NMRViewJ, CCPN,

and CV-Peak Picker.

We further used spectra from the Src homology domain from the human feline sarcoma

oncogene FES (referred to as SH2; PDB code 1VEE; BMRB code 5929) (Scott et al.,

2004, 2005) and the Arabidopsis thaliana rhodanese domain At4g01050 (referred to as

RHO; PDB code 1WQU; BMRB code 6331) (Pantoja-Uceda et al., 2004, 2005), also

summarized in appendix A in Tab. A.1, together with ENTH to evaluate CYPICK.

Chemical shift assignments and NMR solution structures of the proteins ENTH, RHO,

and SH2 have been solved earlier by conventional techniques and their data sets have

previously been used to evaluated the automated assignment algorithm FLYA (Schmidt

& Güntert, 2012). Existing assignments and structure bundles of these proteins were

used to evaluate CYPICK on two more levels: the performance of automated established

peak lists by CYPICK in chemical assignment (performed by FLYA) and in combined

NOE assignment and structure calculation (performed by CYANA). The performance of

CYPICK in these two steps was then compared to the performance of other algorithms

(namely AUTOPSY, NMRViewJ, CCPN, and CV-Peak Picker) in these steps.

CYPICK was further tested on 10 data sets from the CASD-NMR project (Rosato

et al., 2012, 2009), i.e. the human NFU1 iron-sulfur cluster scaffold homolog, Northeast

Structural Genomics Consortium (NESG) target HR2876B (PDB code 2LTM; BMRB

code 18489), the CTD domain of the human NFU1 iron-sulfur cluster scaffold homolog,
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NESG target HR2876C (PDB code 2M5O; BMRB code 19068), the N-terminal domain

of the human mitotic checkpoint serine/threonine-protein kinase BUB1, NESG target

HR5460A (PDB code 2LAH; BMRB code 17524), the RRM domain of the human RNA-

binding protein FUS, NESG target HR6430A (PDB code 2LA6; BMRB code 17504),

the homeobox domain of the human homeobox protein Nkx-3.1, NESG target HR6470A

(PDB code 2L9R; BMRB code 17484), the SANT domain of human DNAJC2, NESG

target HR8254A (PDB code 2M2E; BMRB 18909), a de novo designed protein, IF3-like

fold, NESG target OR135 (PDB code 2LN3; BMRB code 18145) (Koga et al., 2012),

a de novo designed protein, P-loop NTPase fold, NESG target OR36 (PDB code 2LCI;

BMRB code 17613), TSTM1273 from Salmonella typhimurium LT2, NESG target StT322

(PDB code 2LOJ; BMRB code 18214) and the NifU-like protein Saccharomyces cerevisiae,

NESG target YR313A (PDB code 2LTL; BMRB code 18487). For all proteins, 13C-edited

and 15N-edited NOESY spectra were provided. The spectra were automatically picked by

CYPICK using default parameters. Resulting peak lists together with reference chemical

shifts, available from the specified BMRB codes, were then used in structure calculation.

The performance of CYPICK was then analyzed based on the accordant PDB deposited

structures, and compared to RMSD bias values achieved by manually established ‘raw’ and

‘refined’ peak lists. CYPICK peak lists scores were additionally calculated with respect

to ATNOS cycle 7 peak lists that were provided to us by Prof. Dr. Torsten Herrmann1.

2.3.2 Peak list comparison

The agreement between peak lists is determined with an implementation of the Hungarian

algorithm. The Hungarian method (Munkres, 1957; Silver, 1960; Bourgeois & Lasalle,

1971) is an optimization algorithm that solves the assignment problem in combinatorial

optimization (not to be confused with the problem of finding chemical shift assignments

in NMR). Our implementation has a complexity of O(n3) (Edmonds & Karp, 1972). The

Hungarian algorithm determines the ‘cost’ of assigning peak i in a trial peak list, including

N peaks, to a peak j in a reference peak lists, including N0 peaks:

Cij = 1− exp
−min

(
d2
ij ,d

2
cut

2

)
, (2.13)

1Research Director CNRS, Insitut des Sciences Analytiques, Lyon
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where

d2
ij =

D∑
k=1

(
ωik − ωjk

σk

)2

(2.14)

is the squared scaled distance between the two peak positions (ωi1, ..., ωiD) and (ωj1, ..., ωjD)

in a D-dimemsional spectrum, scaled by a chemical shift scaling factor σk. The cutoff dcut

implements the idea that all deviations larger than a certain value dcut indicate that the

two peaks cannot originate from the same atoms. All these peak pairs get the same high

cost regardless of the actual deviation dij ≥ dcut. We used the default value dcut = 3 for

all results presented in this study. The algorithm assigns each of the M = min(N0, N)

peaks in the shorter peak list to a peak in the longer peak list, thereby minimizing the

total cost
∑M
k=1 Cikjk . The result is a list of k = 1, ...,M pairs (ik, jk) of corresponding

peaks in the two peak lists. The computation time can be reduced drastically be using Cij

from Eq. 2.13 instead of dij from Eq. 2.14, and thereby avoiding optimization of peaks

that cannot belong to the same atom.

The quality of peak correspondence is rated by:

H =

M∑
k=1

exp

(
−d2
ikjk
2

)
, (2.15)

H represents the number of corrsponding peak pairs, weighted by the deviation of the

peak positions; 0 ≤ H ≤ M . H can be used to calculate a find score F = H/N0 and an

artifact score A = 1 −H/N . Both scores take values between 0 and 1 (or 0-100%). The

find score gives the fraction of ‘true’ peaks in the reference list that have a corresponding

peak in the trial peak list. The artifact score gives the fraction of ‘artifact’ peaks in the

trial list that do not have a corresponding peak in the reference peak list. If the trial and

reference peak list are identical F = 1 and A = 0. Except for the exact definition of the

number H of corresponding peak pairs, F and 1−A are identical to ‘recall’ and ‘precision’

as defined by (Alipanahi et al., 2009), respectively.

It is possible to calculate an overall score S = (H−w(N−H))/N0, given by the number

of found peaks, H, minus the number of erroneous peaks, NH , weighted by a factor w

that specifies the detrimental effect of artifacts in comparison to found peaks. In the

following applications, we used w = 0.2, assuming that 5 additional artifact peaks are as

severe as one missing true peak, as suggested by observations of their effect on automated

resonance assignment (Schmidt & Güntert, 2012) and structure calculation (Buchner &
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Güntert, 2015a). The overall score combines the find and artifact scores according to

S = F −w(N/N0)A and reaches a maximum value of 1 in the ideal case of identical peak

lists. The score can be calculated for a trial and a reference peak list by using the CYANA

command peaks compare as explained in chapter 2.6.1.

2.3.3 Automated peak picking

CYPICK

Automated peak picking by CYPICK can be performed as explained in chapter 2.6. In

order to evaluate CYPICK, input parameters were systematically tested. The tested

parameters, β (Eq. 2.4) and γ (Eq. 2.5), were varied from 2.0 to 5.0 in steps of 1.0, and

from 1.2 to 1.4 in steps of 0.1, respectively. β is multiplied with the noise level, Lglobal

or Llocal(ω1, ..., ωD) to give the intensity of the first contour line, c0, (Eq. 2.4). γ is the

multiplication factor for generating the next contour level (Eq. 2.5). The exact input used

with the CYPICK algorithm is summarized in Tab. A.2 and Tab. A.3 in appendix A. A

detailed documentation of the usage of CYPICK follows in chapter 2.6.

Other well-established peak picking algorithms were applied to compare the results

to CYPICK. We employed CCPN and NMRViewJ to ENTH, RHO, and SH2, where

a threshold for peak picking has to be defined by the user. All local extrema above the

specified threshold are picked and stored in form of a peak lists. NMRViewJ additionally

comprises methods to determine local threshold which allow, e.g. exclusion of solvent lines.

Automated peak picking of ENTH, RHO, and SH” by CV-Peak Picker was performed

by Piotr Klukowski2 who was responsible for the development of the algorithm. For ENTH,

AUTOPSY and manually picked peak lists were available from an earlier study (López-

Méndez & Güntert, 2006). In the following peak picking with CCPN, NMRViewJ, and

CV-Peak Picker is explained.

The following peak lists needed to be unfolded in the carbon dimensions: 13C-HSQC,

13C-NOESY, HCCH-TOCSY, (H)CCH-TOCSY, HCCH-COSY, HN(CA)CO, HNCA,

HN(CO)CA, HNCO, HBHACONH, CBCANH, and CBCA(CO)NH. In addition, peaks

in the water region were excluded in some cases which are listed in appendix A, Tab. A.8.

Peak lists from different programs were edited exactly the same way in all cases.

2Institue of Computer Science, Wroclaw University of Technology, Wroclaw
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AUTOPSY

Peak picking parameters used in AUTOPSY are summarized in Tab. A.4 in appendix A.

NMRViewJ

Peak picking by NMRViewJ was performed within this work. Clicking the ‘Attributes’

button in the upper left corner of the spectrum window opens a new dialog which allows

control over the way the spectrum is displayed. Below the icon bar, one finds the file

panel. Via the file panel it is possible to control whether positive ‘+’ and/or negative ‘-’

contour levels should be displayed. The contour threshold is controlled via the column

‘Level’, where desired values can be entered. The levels that we used for peak picking

are summarized in Tab. A.5 in appendix A. The ‘Peak pick panel’ then allows the actual

peak picking. ‘Local noise thresholding’ methods can be activated by changing the ‘Noise’

value via the slider. We used ‘Noise’ value 10.0 as recommended on the homepage http:

//www.onemoonscientific.com/.

CCPN

Automated peak picking by CCPN (Version 2.4, Release 2) can be performed by clicking

‘Peak’ and then ‘Peak Finding’ in the main panel. This opens a window, displayed in Fig.

2.9 where parameters for peak picking can be specified.

Figure 2.9: ‘Peak Finding’ window in CCPN. The most relevant peak picking parameters
can be set in the ‘Find Parameters’ tab which is shown here. In the upper panel it is possible
to set whether peak picking is performed on positive, negative or both local extrema. In the
second panel the permissiveness of peak picking can be set. In the third panel the threshold
above which peaks are picked can be set relative to the lowest contour levels. In the example
presented here, scale is set to 1.0 which means that peak picking is performed on what is
visible on the spectrum. It is possible to specify regions which are not to be picked around
an existing picked peak via the exclusion buffer parameter. Remaining parameters were not
documented. Accordingly, we set their values to zero.

Additionally to the parameters explained in Fig. 2.9 it is possible to specify minimal line

http://www.onemoonscientific.com/
http://www.onemoonscientific.com/
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width of peaks to be picked via the ‘Spectrum Widths’ Tab. Furthermore, diagonal regions

in a spectrum can be excluded in a user-defined tolerance area (‘Diagonal Exclusion’). Via

the ‘Region Peak Find’ panel the peak picking can be started by pushing the button ‘Find

Peaks’. Besides, spectral regions for exclusion or inclusion can be specified.

We performed peak picking with CCPN by adjusting the contour level for the indi-

vidual spectra as listed in Tab. A.6 in appendix A. Furthermore, the sign of the peaks to

be picked was adjusted in the window shown in Fig. 2.9. All other parameters were used

as depicted in Fig. 2.9.

CV-Peak Picker

Peak Picking with CV-Peak Picker was performed by Piotr Klukowski. Scanning pa-

rameters used are summarized in Tab. A.7 in appendix A.

2.3.4 Automated chemical shift assignment

Automated chemical shift assignment is performed by the FLYA algorithm (Schmidt &

Güntert, 2012). In all calculations a tolerance of 0.03 ppm for 1H and 0.4 ppm for 13C

and 15N for the chemical shift matching and comparison with a manual reference chemical

shift assignment was used. The reference assignment, indicated by the BMRB codes, was

exclusively used to evaluate the quality of the assignment results. The population size of

the evolutionary algorithm was 50 in most cases. When only backbone spectra were used

for chemical shift assignment we increased the population size to 100. When performing

solely NOESY-based chemical shift assignment a population size of 200 was used following

recommendation discussed in (Schmidt & Güntert, 2013a). The chemical shift assignment

was consolidated from 20 independent runs. Only assignment which could be reproduced

in at least 80% of the 20 runs with an accuracy that deviated from the consensus values

by less than the defined tolerance was classified as ‘strong’, otherwise ‘weak’. The side-

chain terminal amide groups of arginine and lysine were excluded from the assignment

calculations.

2.3.5 Structure calculation

The chemical shift assignment established by FLYA or the reference chemical shift as-

signment was used to obtain torsional angles restraints by TALOS+ (Shen et al., 2009).

Combined automated NOE assignment and structure calculation was performed by the
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standard CYANA protocol (Güntert & Buchner, 2015), using as input the protein se-

quence, assigned chemical shifts, torsional angle restraints, and unassigned NOESY peak

lists. Tolerances for chemical shift and peak position matching were set to 0.03 ppm for

1H and 0.4 for 13C and 15N. NOESY peak intensities of the assigned NOESY peaks were

converted into upper distance limits using the 1/r6 dependence. Structure calculation

was performed starting from 200 conformers using 10,000 torsion angle dynamics steps.

The 20 best conformers in terms of CYANA target function were selected for structure

bundle representation. No energy refinement was performed on the resulting structures.

The quality of structure calculation was exclusively evaluated on the basis of RMSD bias

(Güntert et al., 1998). Structures were first superimposed within their ordered regions

which were either determined by CYRANGE (Kirchner & Güntert, 2011) (in case of

ENTH, RHO, and, SH2) or applied as specified in the corresponding CASD-NMR pub-

lication (Rosato et al., 2015). Then the average structure is obtained by averaging the

coordinates of the atoms in the superimposed conformers in the structure bundle. The

backbone RMSD between the average given structure and the reference mean structure

yields the RMSD bias. The precision of calculated structure bundles is expressed by the

RMSD radius (Güntert et al., 1998), i.e. the average RMSD between individual conformers

and the mean coordinates of the structure.
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2.4 Results and discussions

In order to evaluate our picking algorithm we used the experimental data sets of ENTH,

RHO, SH2, and CASD-NMR (Rosato et al., 2015, 2009). As mentioned previously, the

ENTH, RHO, and SH2 data set includes a complete set of NMR spectra for backbone and

side-chain chemical shift assignment, as well as NOESY spectra for restraint generation.

The data set also includes manually and automatically picked peak lists for ENTH. The

CASD-NMR data set is composed of NOESY spectra, which can be used for restraint

generation. In all cases reference PDB structures and reference resonance assignments

from the BMRB are available.

Different CYPICK peak picking parameters and contour picking modes were system-

atically tested on the ENTH data set for which manually picked peak lists were available.

Manually picked peak lists were used to measure the CYPICK picking accuracy in terms

of find, artifact, and overall score. The most promising parameters were then used in au-

tomated peak picking of RHO, SH2, and CASD-NMR data sets. The resulting peak lists

were further used for chemical shift assignment by FLYA and combined NOE assignment

and structure calculation by CYANA. Results of these steps were compared to reference

chemical shift assignments and reference NMR structure bundles.

Other well established peak picking programs were also used to compare their per-

formance to CYPICK. We utilized AUTOPSY, NMRViewJ, CCPN, and CV-Peak

Picker. Peak lists produced by other programs were also analyzed with the above men-

tioned score values, and utilized in chemical shift assignment and structure calculation.

The results are compared to CYPICK on all three levels, i.e. picking scores, accuracy of

chemical shift assignment, and accuracy of resulting structure bundles.

CASD-NMR NOESY spectra were automatically picked by CYPICK. The resulting

peak lists were used in NOE assignment and structure calculation. CYPICK performance

was assessed by the RMSD bias with respect to a given structure and the score values

with respect to ATNOS cycle 7 peak lists that were provided to us by Prof. Dr. Torsten

Herrmann.

2.4.1 Dependence of peak picking scores on the number of peaks

In Fig. 2.10 the behavior of the scores, used to evaluate peak picking, upon varying the

number of real signals and artifacts is visualized for the 13C-edited NOESY spectrum of the
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Figure 2.10: Influence of the baseline factor β on the number of peaks picked by CYPICK
in the 3D 13C-edited NOESY spectrum of the protein ENTH. (a) Number of peaks picked by
CYPICK (N , blue), constant number of manually picked reference peaks (N0, grey), and
weighted number of matches between the two peak lists (H, green). (b) Find score (green),
artifact score (red), and overall scores (black, blue, gray). The latter are shown for different
values of the weighting factor w.

protein ENTH, exemplary. Peak lists with different fractions of real peaks and artifacts

were produced with CYPICK by varying the baseline factor β, which determines the

height of the first contour line, from 1.0 to 15.0. Decreasing the lowest contour level

increases the number of picked peaks, N , significantly, and to a much lesser degree the

number of real signals, H, (Fig. 2.10 (a)). At low baseline factors the number of picked

peaks N clearly exceeds the number of reference peaks, N0, being indicative of artifacts

which are accumulated. Consequently, the find score F = H/N0 and artifact score A =

1−H/N increase with decreasing baseline factor, β, (Fig. 2.10 (b)). Both scores approach

but do not reach their ideal values of A = 0 and F = 1, i.e. some strong artifacts are

always picked and a small fraction of the manually identified peaks can never be found

by the algorithm. Strong artifacts can be attributed mainly to truncation artifacts of

strong peaks, axial peaks, and a few putative real peaks missing in the manually prepared

reference peak list.

The overall score S = (H − w(N − H))/N0 = F − w(N/N0)A combines find and
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artifact score in order to evaluate peak list by a single number, considering that one strives

towards maximizing the number of real peaks while minimizing the number of artifacts.

The overall score includes the weighting factor, w, accounting for the fact that a missing

real peak has a more detrimental effect on resonance assignment (Schmidt & Güntert,

2012) and structure calculation (Buchner & Güntert, 2015a) than an additional incorrect

peak (Schmidt & Güntert, 2012). Obviously, lower weighting factors reduce the impact

of artifacts in the overall score, whereas higher values increase their effect, as visualized

in Fig 2.10 (b). In our following studies we used w = 0.2 resulting from observations

discussed in (Schmidt & Güntert, 2012; Buchner & Güntert, 2015a).

2.4.2 Evaluation of CYPICK with manually picked ENTH peak

lists

CYPICK was systematically tested with different user-input parameters. The contour

level multiplier, γ, was varied from 1.2 to 1.4 in steps of 0.1, and the base level multiplier,

β was varied from 2.0 to 5.0 in steps of 1.0. In our calculations we used the above mentioned

parameters and defined the peak width in each dimension. The peak width is used as a

scaling factor for the contour lines in the selected dimensions. The exact input parameters

are summarized in Tab. A.2 in appendix A. We analyzed the results of our peak picking

algorithm with the above explained find and artifact score (chapter 2.3.2) of our peak lists

with respect to peak lists that were produced manually. The results are visualized in Fig.

2.17. The computation times for CYPICK varied between 1 s for the 15N-HSQC and 31 s

for the 13C-resolved NOESY spectrum on a standard desktop computer.

The performance of CYPICK did not show a strong dependence on the input parame-

ters in terms of find score especially in spectra which tend to have a higher sensitivity or res-

olution, e.g. 13C- and 15N-HSQC, HNCO, HNCA, HN(CO)CA, CBCA(CO)NH. Most of

these spectra are backbone experiments. Side-chain experiments on the other hand, showed

a stronger dependence on the input parameters, e.g. (H)CC(CO)NH, H(CCCO)NH. This

can be attributed to a higher degree of overlap within the spectrum. The find score is gen-

erally higher in case of overlapping peaks, when γ and β are lower. This can be explained

by the fact, that the lower these two parameters, the more contour lines are created within

the same intensity range. Accordingly, more closed contour lines, which only include the

local maximum of interest, can be created for those overlapping peaks. A disadvantage
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of using lower input parameters is that in general the artifact score is higher. The arti-

fact score on the other hand shows a strong dependence on the input parameters. The

lower these two parameters, the higher the score value. In most cases however the artifact

score is severely reduced by using β > 2.0. In order to get the best peak picking results

the number of real peaks is supposed to be maximized while simultaneously minimizing

the number of artifacts. In the following the results are discussed quantitatively for the

performance of CYPICK on the individual spectra.

The 15N-HSCQ spectrum was picked with a 90% find score and an artifact score of

approximately 20%. In this case the automated peak picking was relatively independent

from the β and γ values. This can be explained by the fact that 15N-HSCQ spectra are

usually the most sensitive experiments with well resolved peaks and nearly no artifacts

(Kwan et al., 2011). Automatic peak picking of the 13C-HSQC resulted in a find score

of approximately 60% and an artifact score of approximately 20%. The automatic peak

picking of 13C-HSQC spectra is usually more demanding due to the high degree of overlap.

HNCO and HN(CO)CA spectra were picked with a find score of almost 100%, and arti-

fact scores that varied from 80% to 20%. The HNCO is the most sensitive triple resonance

experiments and one observes correlations between the NH groups and the preceding car-

bonyl group carbon atom. In an HN(CO)CA spectrum one observes correlations between

the NH group of one residue and its preceding Cα atom. The HN(CO)CA also has a high

sensitivity and almost no overlap. Accordingly, automatic procedures generally achieve

results of high quality. In HNCO however, the artifact score was explicitly higher than

in HN(CO)CA lists. In the case of the ENTH HNCO spectrum artifacts can mostly be

attributed to peaks that showed pronounced sinc wiggles.

In general HNCA and HN(CA)CO spectra were picked with lower find scores than the

HNCO and the HN(CO)CA spectra. The HNCA was picked with a find score of approxi-

mately 80% whereas the artifact score results were dependent on the used parameters and

varied from 80% to 20%. In case of the HN(CA)CO, both found and artifact score showed

a strong dependence on the user-input. The find scores varied from 80% to 60%, whereas

the artifact scores varied from 80% to 10%. The HN(CA)CO experiment correlates the

NH group of the own residues with the carbonyl group of the own and the preceding

residue. The peak belonging to the carbonyl group of the preceding residue is in general

much weaker and can be buried in noise. The HNCA experiment correlates the NH atom

of the own residues with the Cα of the preceding and the own residue. In this case the Cα
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Figure 2.11: Find, artifact and overall score of automatic picked ENTH peak lists with respect
to manual prepared peak lists. Peak lists were produced with the global noise estimation
by CYPICK. Different user-input parameters were systematically tested for the individual
spectra. The x-axis is labeled with β (upper labeling) and γ (lower labeling). β values were
varied from 2.0 to 5.0 in steps of 1.0 and γ values were varied from 1.2 to 1.4 in steps of
0.1. The y-axis is labeled with the Score (%). Find scores are presented in green (upper
panel within subplot), artifact scores are depicted in red (middle panel within subplot), and
overall scores are presented in blue (lower panel within subplot). Subplots are labeled with the
associated spectrum name.
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peak belonging to the preceding residue is also much weaker in intensity than the peak

belonging to the Cα of the own residue. Therefore, an automated peak picking procedure

can fail to identify these weaker signals that are often buried in noise. Using a higher

contour level multiplier means that the intensity range that has to be covered can exceed

the peak’s intensity. In case of HN(CA)CO spectra the estimated global noise level itself

seemed to be simply too high for the detection of low intensity peaks. Missing peaks in

the HNCA and HN(CA)CO, when compared to the manual peak list, can be attributed

to peaks with very weak intensities that also displayed rather irregular peak shapes.

The CBCA(CO)NH spectrum was picked with a find score of 90%, whereas the artifact

score varied from 60% to less than 30%. This experiment correlates the NH atom with

the Cα and the Cβ atom of the preceding residue. In general the resolution is good, but

the sensitivity in terms of signal-to-noise ratio can worsen in case of larger proteins. The

CBCA(CO)NH spectrum of ENTH has a high resolution. Peaks that are not picked by

CYPICK mostly showed a deviation from the regular peak shape. Peak artifacts can

mainly be attributed to a couple of peaks with exceptionally high intensities that contain

sinc wiggles. The CBCANH spectrum was picked with a find score of 70% to 60% and

an artifact score ranging from 80% to 10%. The CBCANH experiment correlates the NH

atom of one residue with the Cα and Cβ atoms of the own and the preceding residue.

The signals belonging to the Cα and Cβ atoms of the own residue are in general stronger

than those belonging to the preceding residue. These atoms were in many cases clearly

buried in noise, leading to lower find score values. In addition some of the peaks showed

irregular peak shapes. Artifacts can also mainly be attributed to sinc wiggles stemming

from peaks with exceptional high intensities.

The HBHA(CO)NH was picked with a find score of approximately 80% to 70% whereas

the artifact score was dependent on the applied parameters and varied between 80% to

20%. This experiment is similar to the CBCACONH, only in this case the NH atom is

correlated with the Hα and Hβ of the preceding residue. In the case of the HBHA(CO)NH

spectrum missing real peaks can mainly be attributed to overlapping signals. Peak artifacts

mainly resulted from picking axial peaks.

The C(CO)NH peak list shows the strongest correlation of find and artifact score on

the picking parameters. Find scores ranging from 80% to 50% and artifact scores between

90% to 20% were obtained. In this experiment the NH atom is correlated with all the

side-chain carbon atoms of the preceding residue. Some of the side-chain carbons are

either buried completely in noise or may simply not be visible, making the peak picking
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especially demanding. This is the case in the ENTH C(CO)NH spectrum. Many real peaks

are not picked because they are deeply buried in noise. Additionally, the sensitivity of the

spectrum is low and, accordingly, many noise peaks were picked. In addition, also noise

ridges of high intensity were present, increasing the artifact score, as some of these signals

showed regular shapes fulfilling the conditions for real peaks. The HC(CO)NH spectrum

was picked with find scores ranging from 60% to 50% and artifact scores varying from 90%

to 30%. This experiment correlates the NH atom of the own residues with all hydrogen

atoms of the preceding residue. Missing peaks can mainly be attributed to overlapping

peaks and irregular peak shapes that cannot be traced back to overlapping signals. A lot

of artifacts were a result of the spectrum’s low sensitivity.

In general, automatic peak picking of COSY and TOCSY spectra showed very high

artifact scores in the same range as find scores. The (H)CCH-TOCSY was picked with

a find score of approximately 40% and artifact scores ranging from 80% to 40%. HCCH-

TOCSY and HCCH-COSY were picked with 60% find scores and artifact score varying

from 80% to 50%. The HCCH-TOCSY correlates each CH shift with all the hydrogen

atoms bound to all other carbons in the same residue. In HCCH-COSY the hydrogen

resonances of the own and the neighboring carbons are visible. Accordingly, it is a less

crowded version of the HCCH-TOCSY. TOCSY and COSY spectra usually have a high

degree of overlap, making automatic peak picking challenging and leads to the omission

of real peaks. Sensitivity was the main reason for having such a high amount of artifacts

in the case of ENTH.

The 13C-NOESY was picked with a find score of 80% and an artifact score varying

from 60% to less than 20%. The results of the 15N-NOESY were similar to 13C-NOESY.

In the NOESY experiments magnetization is transferred between nearby hydrogen atoms

(< 5 Å) by the NOE. NOESY spectra are probably the most challenging cases because

the intensity of the peaks depends on the inverse of the distance between the contributing

atoms. As a results, the most interesting peaks for structure calculation are the peaks

stemming from long-range contacts which have low intensities close to the noise level

or even buried completely in noise. NOESY spectra usually contain a lot of artifacts

complicating automated peak picking.

The current results led to the conclusion that using γ = 1.3 and β = 3.0 yields the

best results. These parameters considerably reduced the number of artifacts, whereas the

number of real peaks is not reduced significantly compared to using the lowest contour



Peak picking in multidimensional NMR spectra with CYPICK 83

and base level multiplier which is also reflected in the overall score.

In order to improve the automated peak picking with CYPICK we utilized the local

noise peak picking mode. In this picking mode a local noise level is determined for each

individual data point. The local noise level intensity is then used to create contour lines.

We thereby expect to reduce the number of peak artifacts, whilst not influencing the

number of real peaks.

A comparison between the find and artifact score for the global and local noise picking

mode is visualized in Fig. 2.12. Generally speaking, the amount of artifacts is reduced by

using the local noise functionalities. However, in cases where peaks with lower intensity

are present, i.e. HN(CA)CO, HNCA, CBCANH, 13C-NOESY and 15N-NOESY, the find

score is also reduced significantly.

Figure 2.12: Comparison of find and artifact scores achieved by local noise and global noise
contour peak picking mode with CYPICK. Find scores are denoted by circles and artifact
scores by triangles. The color code is explained on the right side of the plot. Peak lists were
determined with γ = 1.3 and β = 3.0 in both picking modes.

In the case of 15N-HSQC- and 13C-HSQC-spectra the find score is not affected by

using the local noise picking mode, the artifacts however are slightly reduced. As already

mentioned, the 15N-HSQC is a well resolved spectrum with no overlap and only very
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few artifacts. The 13C-HSQC is picked with a relatively low artifact score, therefore

the local noise mode does not lead to a large improvement. The HNCO, HN(CO)CA, and

CBCA(CO)NH spectrum are picked with a similar or exactly the same find score. However,

the artifact score is reduced significantly. These spectra usually do not have peaks with

low intensity that are close to the noise level, therefore no real peaks are eliminated. In

all remaining spectra the find score is reduced significantly by using the local noise level

mode, therefore it is likely that the usage of these peak lists is probably unfavorable to the

chemical shift assignment. In general, the global noise level is estimated to be much lower

than the actual noise level because the picking itself should mainly depend on contour

line characteristics. In most cases, the local noise is higher than the global noise level.

Accordingly, the possibility of eliminating real peaks rises when having a spectrum with

low sensitivity and signals that are close to the noise level.

Suggestions on the picking mode depend on the quality of the data and the type of

experiment. So far, we can record that using the local noise level estimation is advisable

whenever the sensitivity of the spectrum is high. Nevertheless, before giving explicit

recommendations the influence on chemical shift assignment and structure calculation

should be analyzed.

In Fig. 2.13 we compared results from using the global noise picking mode alone and

using the global noise picking mode combined with functionalities to resolve overlapping

peaks. In general, the amount of correct peaks is enhanced when using functionalities to

resolve overlapping peaks. Find and artifact score are both enhanced in most cases. Usage

of the resolve overlapping function combined with the global noise peak picking mode does

not influence the find score of the HNCO, HN(CO)CA, and the CBCA(CO)NH spectrum.

The artifact score, however, is enhanced significantly in all cases. In most cases, using

the resolve overlap functionalities is unnecessary for these spectra that characteristically

show good resolution. The find score is only slightly enhanced in the remaining spectra,

with HBHA(CO)NH having the highest improvement in find score from 76.0% to 80.6%.

Nevertheless, the artifact score is also enhanced significantly. The increase in artifact

score is lowest in the 15N-HSQC spectrum, from 18.7% to 21.9%. In this case, only an

improvement of about 2.0% is observed when using the resolve overlap functionalities.

In Fig. 2.14 we compared results for using only the local noise picking mode and using

the local noise picking mode combined with functionalities to resolve overlapping peaks.
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Figure 2.13: Comparison of find and artifact scores achieved by global noise and combined
global noise and resolve overlap contour peak picking mode with CYPICK. Find scores are
denoted by circles and artifact scores by triangles. The color code is explained on the right
side of the plot. Corresponding peak lists were determined with γ = 1.3 and β = 3.0 in both
picking modes.

In some cases the find score is not affected at all by the resolving overlap functionalities,

i.e. HNCO, HNCA, HN(CO)CA, CBCANH, CBCA(CO)NH, and HBHA(CO)NH. In case

of HNCA, HBHA(CO)NH, and HN(CO)CA the artifact score is also entirely unaffected.

The remaining spectra show a slight increase in find score, but also a slight increase in

artifact score, e.g. the 13C-HSQC shows the strongest effect when using resolve overlap

functions, i.e. the find score is enhanced from 58.0% to 63.4% and the artifact score also

rises from 16.2% to 23.2%.

The results achieved by the resolve overlap functionalities did not show much improve-

ment in terms of find score. The reason for this might be that a more advanced method

is needed for identifying overlapping signals. So far no measure is available for the iden-

tification of so-called ‘peak shoulders’ which do not have a local maximum of their own.

Accordingly, only overlapping peaks that have a local maximum are considered while oth-

ers are neglected. When using the resolve overlap functionalities the amount of artifacts

also increases significantly. Therefore, one should reconsider a strategy to choose potential
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Figure 2.14: Comparison of find and artifact scores achieved by local noise and combined
local noise and resolve overlap contour peak picking mode with CYPICK. Find scores are
denoted by circles and artifact scores by triangles. The color code is explained on the right
side of the plot. Corresponding peak lists were determined withγ = 1.3 and β = 3.0 in both
picking modes.

peaks from the symmetrized spectrum.

Summarized, the best overall scores could be achieved by using β = 3.0 and γ = 1.3.

In Fig. 2.12-2.14 it was presented that neither the local noise level calculation and the

resolve overlap function, nor a combination of those did bring much improvement in terms

of overall scores. In the next sections the influence of the automatically picked peak lists

on the accuracy of chemical shift assignment and structure calculation is analyzed and

discussed.

2.4.3 Comparison with reference chemical shift assignment

Results of chemical shift assignment correctness performed with CYPICK peak lists, with

respect to a reference chemical shift assignment, are presented in Tabs. 2.1 and 2.2. We

present results which have been achieved with the global noise and the local noise pick-

ing mode combined with functionalities to resolve overlap for the proteins ENTH, RHO,
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and SH2 using peak lists from all available spectra (Tab. 2.1) and solely NOESY-based

chemical shift assignment (Tab. 2.2). An assignment correctness of 100% is equivalent to

reproducing the reference chemical shift assignment within the defined tolerance ranges.

Missing assignments within the reference assignment are not considered.

Table 2.1: Correctness of automated chemical shift assignment with respect to a reference
chemical shift assignment. Assignments are categorized as being correct if the assignment is
within the tolerance range of the reference assignment. Results are compared to the global
noise estimation and the local noise estimation (β = 3.0 and γ = 1.3). All available peak lists
were used in the calculations.

ENTH RHO SH2 ENTH RHO SH2

Lglobal Llocal

Backbone 95.4% 96.4% 97.5% 93.0% 96.7% 97.3%

Side-chain 85.2% 86.2% 81.4% 80.4% 86.1% 82.0%

All atoms 89.4% 90.6% 87.9% 85.5% 90.7% 88.2%

Lglobal + resolve overlap Llocal + resolve overlap

Backbone 95.7% 96.5% 97.5% 94.6% 96.9% 96.9%

Side-chain 84.4% 86.7% 82.2% 81.1% 86.5% 80.7%

All atoms 89.0% 91.0% 88.4% 86.6% 91.0% 87.3%

‘Backbone’: N, HN, C’, Cα, and Cβ ; ‘Side-chain’: all atoms except ‘Backbone’; ‘All atoms’: ‘Backbone’ and

‘Side-chain’

The correctness of the chemical shift assignment varies between 93.0–97.5% for the

backbone atoms N, HN, C’, Cα, and Cβ using all available peak lists. The side-chain

assignments vary between 80.7–86.2% which results in an overall correctness ranging from

85.5–90.7%. In case of ENTH, results achieved by the local noise picking mode have a

lower accuracy when compared to the global noise picking results. However, in case of

RHO and SH2, the local noise picking mode achieved similar results for chemical shift

assignment compared to the global picking mode. In chapter 2.4.2 we showed that by

using the local noise picking mode the number of artifacts was in fact reduced. However,

the number of real peaks was also diminished in case of the less sensitive experiments. This

leads to the conclusion, that a higher number of artifacts is not necessarily harmful for the

chemical shift assignment, provided the real signals are present as complete as possible.

Resolving overlapping peaks does not have a significant influence on the accuracy of the

chemical shift assignment.
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Table 2.2: Correctness of automated chemical shift assignment with respect to a reference
chemical shift assignment. Assignments are categorized as being correct if the assignment is
within the tolerance range of the reference assignment. Results are compared to the global
noise estimation and the local noise estimation (β = 3.0 and γ = 1.3). Only 13C-edited- and
15N-edited-NOESY peak lists were used in the calculations.

ENTH RHO SH2 ENTH RHO SH2

Lglobal Llocal

All atoms 79.3% 79.5% 77.0% 74.9% 81.6% 79.7%

Lglobal + resolve overlap Llocal + resolve overlap

All atoms 76.5% 79.2% 78.4% 77.5% 82.6% 80.0%

‘All atoms’: all atoms except C’

When applying NOESY-based chemical shift assignment we could achieve overall cor-

rectnesses ranging from 74.9–82.6%. In case of ENTH, the global noise picking mode

scores displayed a significant higher accuracy compared to the local noise picking mode.

Whereas, in case of RHO and SH2 the local noise results had a slightly higher accuracy

than the global noise results. Using functionalities to resolve overlapping peaks did not

lead to a significant improvement or deterioration, neither in global noise picking mode nor

in local noise picking mode, in case of RHO and SH2. In peak picking of ENTH spectra

the resolve overlap functionalities led to an decrease and increase of approximately 2.5–3%

in resonance assignment accuracy when using the Lglobal and Llocal picking mode, respec-

tively. Summarized, neither the local noise picking mode nor functionalities to resolve

overlap led to improved chemical shift assignment accuracies.

Before giving explicit recommendations on the picking mode, the influence on auto-

mated NOE assignment and structure calculation is analyzed.

Figure 2.15 displays the individual assignments of the proteins ENTH, RHO and SH2

established from the Lglobal picking mode using all available peak lists. Erroneous assign-

ments occur especially in the side-chains of lysine, leucine, arginine, and phenylalanine.

Reasons for this might be in general the quality of the automatically picked side-chain

peak lists which have significantly lower overall scores (∼ 60%) than backbone peak lists

(> 70%). The quality of the HCCH-COSY spectrum is especially critical in this case

because it is the only spectrum in the data set which yields unambiguous information on

side-chain assignments.
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(a) ENTH

(b) RHO

(c) SH2

Figure 2.15: Results of chemical shift assignment starting from the complete set of automat-
ically picked peak lists: (a) ENTH, (b) RHO, and (c) SH2. Peaklists were established by using
the global noise picking mode in CYPICK(β = 3.0 and γ = 1.3). The primary sequence
of the protein is represented by differently colored rectangles: green, assignment agrees with
reference assignment within a defined tolerance; red, assignment deviates from reference; blue,
no reference assignment is available; black: only a reference assignment is available. Stronger
colors reflect consolidated, safe assignments.
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2.4.4 Comparison with reference combined NOE assignment and

structure calculation

CYPICK NOESY peak lists and the chemical shift assignment which is retrieved from

the automated picked peak lists are used in combined NOE assignment and structure

calculation. A detailed overview of the results from using the global noise estimation with

β = 3.0 and γ = 1.3 are given in Tab. 2.3 and 2.4. Tab. 2.3 shows results from using a

chemical shift assignment that has been established on the basis of the complete set of

automated picked peak lists, whereas Tab. 2.4 shows results that have been achieved solely

based on NOESY spectra.

When using the complete set of automated picked peak lists it was clearly shown that

structures can be recalculated with an RMSD bias close to 1.00 Å. Also, in the much more

challenging case of using only NOESY peak lists it is possible to reliably recalculated the

structure bundles of the three proteins with RMSD bias values < 2.00 Å in case of ENTH

and SH2, and close to 2.00 Å in the case of RHO. Structure bundles recalculated on the

basis of a chemical shift assignment achieved from the full data set are presented in Fig.

2.16 (a)-(c) and solely NOESY based results are presented in Fig. 2.16 (d)-(f).

Structure calculations based on peak lists that were picked using the local noise picking

mode showed different results (appendix A, Tab. A.9). The accuracy of the resulting

structure bundles is reduced, i.e. average backbone and heavy atom RMSD to mean values

are significantly higher and the RMSD bias values are also significantly above 1.0 Å for the

backbone and even above 2.0 Å for the heavy atoms. This can be explained by the fact that

the number of distance restraints is reduced. Especially medium- and long-range restraints

are reduced by approximately 50% in all three calculations, indicative of peaks with lower

intensity that are excluded by the local noise picking mode in NOESY peak picking. These

peaks do not have a strong influence on the accuracy of the chemical shift assignment but

they have an impact on the structure calculation. Therefore, we suggest to not use the

local noise picking mode for the automated peak picking of NOESY spectra. In other cases

it depends on the sensitivity of the spectrum and should be decided individually. Using

functionalities to resolve overlap did not result in a significant improvement, therefore we

suggest to not use these functionalities until they are improved. Further, automated peak

picking is performed by using the global noise picking mode with β = 3.0 and γ = 1.3.
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Table 2.3: Results of automated NOE assignment and structure calculation by CYANA
using the automated chemical shift assignment and 15N- and 13C-NOESY CYPICK lists.
Results are shown for peak lists that were picked by the global noise estimation mode with
β = 3.0 and γ = 1.3.

ENTH RHO SH2

NOE assignmenta

15N-NOESY 1594 2349 1848

13C-NOESY 4567 5265 5973

Assigned cross peaks 4438(74.1%) 4006(52.6%) 4843(61.9%)

Unassigned cross peaks 1723(25.9%) 3608(47.4%) 2978(38.1%)

Restraints

NOE distance restraints

short-range 1393(51.6%) 1241(51.6%) 1381(50.2%)

medium-range 702(26.0%) 426(17.8%) 393(14.3%)

long-range 603(22.3%) 725(30.3%) 976(35.5%)

Dihedral angle restraints (φ/ψ) 107 94 80

Structure statisticsa

Average CYANA target function [Å2] 1.12±0.11 2.75±0.16 5.53±0.27

Restraint violations

Max. distance restraint violations [Å] 0.15 0.22 0.67

Number of violated distance restraints > 0.2 Å 0 1 8

Max. dihedral angle restraint violations (°) 0.25 10.03 11.51

Number of violated dihedral angle constraints > 5 ° - 2 2

Ramachandran plot

Residues in most favored regions 87.6% 86.3% 81.2%

Residues in additionally allowed regions 13.6% 18.4% 17.6%

Residues in generously allowed regions 0.1% 0.0% 1.2%

Residues in disallowed regions 0.0% 0.0% 0.0%

RMSD

RMSD rangeb 9..102,113..130 6..125 8..109

Average backbone RMSD radius [Å] 0.44±0.08 0.27±0.06 0.33±0.04

Average heavy atom RMSD radius [Å] 0.88±0.08 0.63±0.05 0.72±0.06

Backbone RMSD bias [Å] 0.91 1.35 1.24

Heavy atom RMSD bias [Å] 1.66 1.79 1.63

a using automated NOE assignment and structure calculation functionalities of CYANA. b determined by

CYRANGE
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Table 2.4: Results of automated NOE assignment and structure calculation by CYANA
using automated solely NOESY-based chemical shift assignment from and 15N- and 13C-
NOESY CYPICK lists. Results are shown for peak lists that were picked by the global noise
estimation mode with β = 3.0 and γ = 1.3.

ENTH RHO SH2

NOE assignmenta

15N-NOESY 1594 2349 1848

13C-NOESY 4567 5265 5973

Assigned cross peaks 4399(71.4%) 4354(57.0%) 4540(58.0%)

Unassigned cross peaks 1762(28.6%) 3260(43.0%) 3281(42.0%)

Restraints

NOE distance restraints

short-range 1451(59.4%) 1308(55.4%) 1319(53.2%)

medium-range 516(21.1%) 386(16.4%) 330(13.3%)

long-range 476(19.5%) 665(28.2%) 831(33.5%)

Dihedral angle restraints (φ/ψ) 109 110 82

Structure statisticsa

Average CYANA target function [Å2] 8.58±0.65 16.81±0.43 8.26±0.20

Restraint violations

Max. distance restraint violations [Å] 0.63 0.45 0.64

Number of violated distance restraints > 0.2 Å 1 6 3

Max. dihedral angle restraint violations (°) 37.86 30.59 27.85

Number of violated dihedral angle constraints > 5 ° 11 25 8

Ramachandran plot

Residues in most favored regions 83.8% 73.7% 76.4%

Residues in additionally allowed regions 16.1% 26.2% 23.0%

Residues in generously allowed regions 0.1% 0.1% 0.6%

Residues in disallowed regions 0.0% 0.0% 0.0%

RMSD

RMSD rangeb 9..102,113..130 6..125 8..109

Average backbone RMSD radius [Å] 0.51±0.07 0.29±0.06 0.29±0.04

Average heavy atom RMSD radius [Å] 1.02±0.08 0.75±0.07 0.59±0.06

Backbone RMSD bias [Å] 1.43 2.11 1.56

Heavy atom RMSD bias [Å] 2.10 2.55 2.33

a using automated NOE assignment and structure calculation functionalities of CYANA. b determined by

CYRANGE
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(a) ENTH full (b) RHO full (c) SH2 full

(d) ENTH NOESY (e) RHO NOESY (f) SH2 NOESY

Figure 2.16: ENTH, RHO, and SH2 structure bundles calculated from CYPICK peak lists
using chemical shift assignments achieved from all available peak lists ((a)-(c)) and only on
the basis of NOESY peak lists ((d)-(f)). α-helical regions are presented in red, β-sheets are
shown in yellow, and random coil regions in green.

2.4.5 Comparison with other automated peak picking procedures

In order to evaluate the performance of CYPICK, we compared the results from using

the global noise contour picking mode (β = 3.0 and γ = 1.3) to other well-established

automated or semi-automated peak picking algorithms. In case of ENTH we analyzed the

accuracy of the peak picking by calculating score values with respect to manual established

peak lists, and compared the scores from different programs to CYPICK afterwards. For

all three protein data sets the performance in automated chemical shift assignment and

structure calculation is evaluated.
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Table 2.5: Comparison of peak picking performance in-between the different programs. Mean
and standard deviation values of the find, artifact, and overall scores (expressed in %) are
calculated for the individual sets of peak lists.

CYPICK AUTOPSY NMRViewJ CCPN CV-Picker

All

Find score 75 ± 14 72 ± 15 76 ± 12 74 ± 14 72 ± 14

Artifact score 29 ± 11 49 ± 15 44 ± 9 49 ± 17 35 ± 19

Overall score 68 ± 14 56 ± 18 63 ± 11 52 ± 20 58 ± 22

2D

Find score 73 ± 18 65 ± 1 76 ± 16 79 ±13 71±18

Artifact score 1 9± 1 33 ± 8 36 ± 4 54 ± 37 14 ± 5

Overall score 69 ± 17 58 ± 1 67 ± 13 48 ± 46 69 ± 18

Backbone

Find score 84 ± 14 86 ± 10 87 ± 10 84 ± 13 85 ± 15

Artifact score 27 ± 12 40 ± 12 46 ± 8 49 ± 18 26 ± 9

Overall score 77 ± 10 73 ± 9 71 ± 8 63 ± 11 76 ± 12

Side-chain

Find score 65 ± 9 61 ± 13 66 ± 8 66 ± 6 60 ± 7

Artifact score 38 ± 9 62 ± 9 45 ± 12 50 ± 11 46 ± 15

Overall score 56 ± 10 39 ± 14 55 ± 11 50 ± 12 47 ± 11

NOESY

Find score 79 ± 4 72 ± 5 74 ± 10 67 ± 20 73 ± 1

Artifact score 19 ± 9 51 ± 2 41 ± 4 41 ± 29 53 ± 32

Overall score 75 ± 2 56 ± 2 64 ± 7 52 ± 4 46 ± 27

‘ALL’ includes all available peak lists; ‘2D’ only includes the 2D HSQC peak lists; ‘Backbone’ includes CB-

CANH, CBCA(CO)NH, HNCA, HN(CO)CA, HNCO, HN(CA)CO lists; ‘Side-chain’ includes HBHA(CO)NH,

(H)CC(CO)NH, H(CCCO)NH, HCCH-COSY, (H)CCH-TOCSY, HCCH-TOCSY; ‘NOESY’ includes 13C-edited-

and 15N-edited-NOESY.
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Figure 2.17: Find, artifact and overall scores of automatic picked ENTH peak lists with
respect to manual established lists. CYPICK peak lists were picked with the global noise
level mode and the default parameters. AUTOPSY, NMRViewJ, CCPN, and CV-Picker
results have been achieved as explained in chapter 2.3. The x-axis is labeled with the employed
program and the y-axis is labeled with the accordant Score (%). Find scores are presented in
green, artifact scores in red, and overall scores are depicted in blue. Subplots are labeled with
the associated spectrum name.
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A comparison between the average peak-picking performance in-between CYPICK,

AUTOPSY, NMRViewJ, CCPN, and CV-Peak Picker on the ENTH spectra is pre-

sented in Tab. 2.5 and Fig. 2.17. In Tab. 2.5 average score values and their standard

deviations are presented for the respective specified peak lists. Over all spectra, the av-

erage find scores for the different algorithms were similar, ranging from 72–76%, whereas

the average artifact scores displayed a higher degree of variation, from 29–49% (Tab. 2.5).

Also the average overall scores vary appreciably from 55–68% for the different algorithms.

Within this data set CYPICK obtained the highest over all score, the second highest find

score, and by far the lowest artifact score.

Considering only the two 2D HSQC spectra, CYPICK produced peak lists with an ac-

ceptable find score and one of the lowest artifact scores, together with CV-Peak Picker,

both share similar overall scores. CCPN peak lists achieved the highest find and artifact

scores, indicative of an underestimation of the noise threshold. Consequently, their overall

score was lowest. The standard deviations within the ‘2D’ group was relatively high on

account of the significant differences in resolution and overlap of the 15N- and 13C-HSQC

spectra. Automatic peak picking on the 15N-HSQC spectrum is in general performed much

more accurate with find scores around 90% (Fig. 2.17). This can be explained by the fact

that the 15N-HSQC is among the most sensitive experiments with well resolved peaks and

very few artifacts. Automatic peak picking of 13C-HSQC spectra, on the other hand, is

much more demanding due to the high degree of overlap usually being present.

Automatic peak picking of the triple resonance ‘backbone’ spectra for backbone as-

signment yielded uniformly high average find scores of 83–87% (Tab. 2.5). Within this

group CYPICK and CV-Peak Picker achieved the lowest average artifact score of 28%

and 26%, respectively, compared to 40–49% for the other algorithms. Due to their higher

sensitivity and better resolution, backbone assignment spectra are in general more straight-

forward to pick than side-chain experiments. HNCO and HN(CO)CA spectra were picked

with find scores close to 100% by CYPICK (Fig. 2.17), which reflects the high sensitivity

and resolution of these spectra. In HNCA, HN(CA)CO and CBCANH, CYPICK missed

some weak peaks that are buried in noise and show irregular peak shapes. Artifacts within

these lists from CYPICK can be attributed mainly to sinc wiggles.

‘Side-chain’ spectra peak picking was performed with average find scores of 60–66%

and relatively high average artifact scores of 38-62%, which in case of AUTOPSY did

even exceed the find score (Tab. 2.5). The highest average find score was achieved by

the NMRViewJ, CCPN, and CYPICK peak lists. CYPICK peak lists showed the
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lowest average artifact score among the programs, resulting again in the highest overall

score of 56%, closely followed by NMRViewJ, whereas the other algorithms have overall

scores that are 5–17% lower. TOCSY- and COSY-type side-chain assignment spectra

usually exhibit a high degree of overlap, which makes automatic peak picking challenging

and leads to the omission of many real signals by CYPICK because these peaks show

deviations from the expected peak shape.

Automatic peak picking of the 3D NOESY spectra of ENTH was best performed by

CYPICK which produced the highest mean find score of 79% vs. 67–74% for the other

programs, as well as the lowest average artifact score (19% vs. 41–53%), leading to a

significantly higher average overall score (75% vs. 46–64%).

Summarized, when comparing automatic peak picking by CYPICK to the other pro-

grams, the higher robustness manifested by consistently highest overall scores is mainly due

to the fact that CYPICK picks considerably fewer artifacts than other methods (Tab. 2.5,

Fig. 2.17). The find scores are more uniform; those from CYPICK are usually among the

highest. CYPICK performs particularly well in the automated peak picking of NOESY

spectra, which is promising for NOE distance restraint-based structure calculation and

for the solely NOESY-based chemical shift assignment procedure in FLYA (Schmidt &

Güntert, 2013a). The individual scores for each spectrum and program in Fig. 2.17 show

a stable performance of CYPICK without outliers for individual spectra.

Automatically established peak lists of the proteins ENTH, RHO, and SH2 were used

as input for automated chemical shift assignment with FLYA, followed by combined NOE

assignment and structure calculation with CYANA.

Tab. 2.6 summarizes the assignment and structure calculation results obtained using

all available peak lists as input for FLYA. Despite the above described variations in the

peak picking scores, the overall correctness of the chemical shift assignments by FLYA

was relatively uniform over the different peak picking methods that were used to prepare

the input peak list: 88–90% for ENTH, 87–91% for RHO, and 87–88% for SH2. CYPICK

peak lists yielded a chemical shift assignment result that does not deviate by more than

1% from the best assignment.

For ENTH, the assignment correctness was best for AUTOPSY and CYPICK, and

about 4% lower for CCPN, which is in line with the CCPN peak lists showing the lowest

overall score (Tab. 2.5). On the other hand, the fact that AUTOPSY yielded the most

correct assignment could not have been discerned from the peak picking score values.

The correctness of the resonance assignment was reflected in the structural statistics.



98

The backbone RMSD to the reference was 0.90 Å for the structures obtained using

the CYPICK peak lists, and 0.99 Å for AUTOPSY, whereas NMRViewJ, CV-Peak

Picker, and CCPN yielded RMSD bias values well above 1 Å. RMSD radius values were

all significantly below 1 Å.

In case of RHO, NMRViewJ, CYPICK and CV-Peak Picker achieved a similar

overall chemical shift correctness of 89–91%, whereas CCPN yielded 87%. The resulting

structures were closest to the reference for CYPICK with a backbone RMSD to the

reference structure of 1.35 Å, followed by NMRViewJ and CV-Peak Picker with RMSD

bias below 1.75 Å. In case of CCPN, however, the structure calculation converged to an

incorrect structure bundle. This can be explained by a lack of structural information that

could be deduced from the NOESY peak lists. Automated NOE assignment based on

the CYPICK peak lists led to 2392 distance restraints, of which 725 were long-range.

In comparison to that, automated NOE assignment with CCPN peak lists resulted in a

significantly lower number of 1192 distance restraints, of which only 214 were long-range.

For SH2, the chemical shift assignment accuracy was essentially the same with the peak

lists from all programs, showing only 1.2% variation. The structural accuracy was also very

similar. RMSD bias values below 1 Å were achieved with CYPICK and NMRViewJ

peak lists, whereas CV-Peak Picker and CCPN yielded RMSD bias values slightly

above 1.0 Å.

We also obtained resonance assignments by automated chemical shift assignment with

FLYA using as input exclusively the 3D NOESY spectra. This approach is generally

challenging for FLYA and requires good input NOESY peak lists (Ikeya et al., 2011;

Schmidt & Güntert, 2013a). Using the NOESY peak lists from CYPICK 77–80% correct

assignments could be achieved for the three proteins ENTH, RHO, and SH2 (Tab. 2.7).

The peak lists from the other programs yielded in general fewer correct assignments,

except for CCPN in the case SH2, where 80% correct assignments were achieved, as

compared to 77% for CYPICK. This is reflected also in the accuracy in the structures

obtained by automated NOESY assignment based on the FLYA chemical shifts. CYPICK

yielded backbone RMSDs to the reference structure of 1.4–2.1 Å, i.e. for all three proteins

essentially a correct structure, whereas most of the structures obtained for ENTH and

RHO using the peak lists from the other programs were incorrect with RMSD bias values

of 2.4–10.3 Å (Tab. 2.7). Only for the smaller SH2 protein the peak lists from all programs

were sufficient to yield a structure with 1.5–2.2 Å backbone RMSD to the reference. For

ENTH, these results can be compared with the NOESY peak list scores of Tab. 2.5. The
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best overall scores for the NOESY peak lists were achieved with CYPICK (75%), followed

by NMRViewJ (64%), and the other programs (46–56%). The different quality of these

NOESY peak lists is clearly reflected in Tab. 2.7: CYPICK peak lists yielded the highest

assignment correctness (79%) and lowest RMSD bias (1.4 Å), followed by NMRViewJ

(75%/2.4 Å), and the other programs (66–74%/3.6–10.3 Å).

Table 2.6: Percentage of correct assignments with respect to a reference chemical shift
assignment, RMSD radius RMSD bias. All available lists where used in the calculations.

CYPICK AUTOPSY NMRViewJ CCPN CV-Picker

ENTH

Backbone [%] 95.4 96.0 94.9 92.7 94.9

Side-chain [%] 85.2 85.3 83.5 80.7 82.8

All atoms [%] 89.4 89.7 88.2 85.5 87.7

RMSD radius [Å] 0.48 0.33 0.41 0.77 0.74

RMSD bias [Å] 0.91 0.99 1.20 1.78 1.66

RHO

Backbone [%] 96.4 - 95.0 92.6 95.3

Side-chain [%] 86.2 - 88.5 85.5 84.3

All atoms [%] 90.6 - 91.3 87.4 89.1

RMSD radius [Å] 0.27 - 0.35 1.49 0.37

RMSD bias [Å] 1.35 - 1.61 6.41 1.74

SH2

Backbone [%] 96.1 - 91.6 97.1 97.1

Side-chain [%] 81.4 - 83.4 81.4 81.6

All atoms [%] 87.3 - 86.7 87.7 87.9

RMSD radius [Å] 0.21 - 0.22 0.22 0.31

RMSD bias [Å] 0.98 - 0.91 1.23 1.07

’Backbone’, ’Side-chain’ and ’All atoms’ refers to the chemical shift assignment correctness with respect to a

manual chemical shift assignment. ’Backbone’ includes the atoms N, HN, C’, Cα, and Cβ; ’Side-chain’ includes

all atoms except ’Backbone’ atoms, ’All atoms’ includes all atoms. RMSD radius is the average backbone RMSD

of the 20 individual conformers to their mean coordinates. RMSD bias is the backbone RMSD between the

mean coordinates of the structure bundle and the reference structure. Residue ranges for RMSDs calculation,

determined with CYRANGE (Kirchner & Güntert, 2011): 9–102 and 113–130 of ENTH, 6–125 of RHO, and

8–109 for SH2
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Table 2.7: Percentage of correct assignments with respect to a reference chemical shift
assignment, RMSD radius RMSD bias. Only 13C-edited- and 15N-edited-NOESY peak lists
were used in the calculations.

CYPICK AUTOPSY NMRViewJ CCPN CV-Picker

ENTH

All atoms [%] 79.3 71.8 75.4 66.0 73.6

RMSD radius [Å] 0.51 0.61 0.44 4.39 2.98

RMSD bias [Å] 1.43 3.58 2.40 10.31 4.86

RHO

All atoms [%] 79.5 - 76.1 72.2 78.3

RMSD radius [Å] 0.29 - 0.55 4.60 0.43

RMSD bias [Å] 2.11 - 4.46 8.95 3.49

SH2

All atoms [%] 77.0 - 70.8 80.3 79.0

RMSD radius [Å] 0.29 - 0.31 0.38 0.41

RMSD bias [Å] 1.56 - 1.73 1.50 2.20

’All atoms’ refers to the chemical shift assignment correctness with respect to a manual chemical shift assignment

and includes all atoms except C’. For RMSD calculation details see Tab. 2.6.

2.4.6 Structure calculation of CASD-NMR proteins using NOESY

peak lists from CYPICK

Critical Assessment of automated Structure Determination of proteins by NMR (CASD-

NMR) is a project for the blind testing of routine, fully automated determination of

protein structures from NMR data (Rosato et al., 2012, 2009). From the most recent

round of CASD-NMR, NMR data sets are available for ten proteins (Rosato et al., 2015),

comprising NOESY spectra, NOESY peak lists, manually determined reference chemical

shift assignments, and reference structures. Automatic peak picking by CYPICK was

performed on the CASD-NMR data set using default parameters (β = 3.0 and γ = 1.3).

Peak lists were then used in combined NOE assignment and structure calculation by

CYANA, using as input the protein sequence, the reference chemical shift assignment,

the unassigned NOESY peak lists, torsional angles restraints derived from the reference

assignment. The accordant results are summarized in Tab. 2.8. Structure bundles achieved

on the basis of CYPICK peak lists are presented in Fig. 2.18.

Automatic peak picking of CASD-NMR NOESY spectra led to overall scores ranging

from 52–84% with respect to the ATNOS cycle 7 peak lists (Guerry et al., 2015). In most

cases, these scores were lower than those observed above for the NOESY peak lists of the

protein ENTH (Tab. 2.5 and Fig. 2.17). One reason for this are the significantly higher
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artifact scores of the CYPICK peak lists. These were computed with respect to final

ATNOS peak lists, which were filtered based on the known chemical shift assignment and

the 3D structure. Nonetheless, CYPICK and ATNOS peak lists share a considerable set

of the same peaks, expressed in high find scores ranging from 70–93%. It is also possible

that CYPICK identifies true peaks that ATNOS peak lists lack. Available ’refined’ or

’raw’ peak lists were not used as a reference in score computation, due to their idealization

with respect to the HSQC position and the existence of too many peaks that do not possess

a local extremum in the accordant spectrum. In most cases, scores for the 15N-resolved

NOESY peak list are better than for the 13C-resolved NOESY, which is complicated by a

high degree of signal overlap.

Nevertheless, in five out of ten cases, i.e. HR2876B, HR2876C, HR6430A, HR6470A,

and OR135, structure calculation with automatic picked NOESY peak lists by CYPICK

was successful, yielding structures with a backbone RMSD to the reference structure of

0.6–1.1 Å (Tab. 2.8). Also for the other proteins correctly folded structures were found,

albeit with slightly higher RMSD biases of 2.0–3.2 Å. For comparison, the RMSD bias

of the structures obtained by the same approach but based on refined manual peak lists

was 0.4–1.6 Å (Tab. 2.8). In addition to the manually refined final peak lists, the CASD-

NMR data sets include also uncurated, ’raw’ peak lists from earlier stages of the original

structure determination. These ’raw’ peak lists yielded structures with RMSD bias values

of 1.0–7.4 Å (Tab. 2.8). In general, the peak lists from CYPICK thus yielded structures

with an accuracy between those obtained from the manually curated and uncurated peak

lists provided by CASD-NMR.
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Table 2.8: Peak picking and structure calculation results from CASD-NMR proteins

Protein Residues Scores(%) vs ATNOS cycle 7 peak lists Backbone RMSD to reference (Å)

(13C-/15N-NOESY)

Find Artifact Overall CYPICK raw refined

HR2876B 107 76.7/91.1 46.8/35.0 63.2/81.3 0.89 0.95 0.79

HR2876C 97 85.5/93.4 52.0/68.8 67.0/52.5 0.98 0.88 0.71

HR5460A 160 77.5/88.8 54.2/48.1 59.2/72.4 2.95 3.38 1.38

HR6430A 99 72.3/86.9 47.3/35.5 59.4/77.4 1.07 1.15 0.92

HR6470A 69 70.3/82.5 49.7/42.8 56.4/70.1 0.60 0.61 0.37

HR8254A 73 1.95 7.43 0.77

OR135 83 82.3/87.3 46.8/58.7 67.8/62.5 0.95 1.13 0.89

OR36 134 88.0/87.1 58.7/35.7 63.0/77.5 3.02 1.03 0.98

StT322 63 2.08 6.73 1.49

YR313A 119 73.9/89.7 43.8/24.4 62.4/83.9 3.22 1.64 1.59

Residues ranges for RMSD calculation (Rosato et al., 2015): 13–105 for HR2876B, 17–91 for HR2876C, 14–25

and 33–158 for HR5460A, 14-99 for HR6430A, 15–56 for HR6470A, 554–608 for HR8254A, 4–74 for OR136, 2–46

and 53–125 for OR36, 23–63 for StT322, and 17–41 and 45–115 for YR313A. ATNOS peak lists are not available

for HR8254A and StT322 (Guerry et al., 2015).
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(a) HR2876B (b) HR2876C

(c) HR5460A (d) HR6430A

(e) HR6470A (f) HR8254A

(g) OR135 (h) OR36

(i) StT322 (j) YR313A

Figure 2.18: Structure bundles calculated from CYPICK peak lists. α-helical regions are
presented in red, β-sheets are shown in yellow, and random coil regions in green.
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2.5 Conclusions

In this chapter, CYPICK, an automated peak picking procedure implemented in CYANA

that analyzes geometric criteria of contour line plots was introduced. The CYPICK ap-

proach does not use any information about the underlying structural system, .e.g. chemical

shift assignment, or experimental information, e.g. symmetry considerations which makes

it universally employable to any kind of experimental NMR spectrum. The required user-

input is reduced as far as possible, making the approach very objective.

Results presented in chapter 2.4 clearly show that CYPICK peak lists lead to res-

onance assignments and structure bundles of high accuracy. The results are superior

when compared to other programs. Even in the challenging case of solely NOESY-based

chemical shift assignment the results achieved by CYPICK stand out for their robustness

throughout the complete data set. When compared to other programs, CYPICK achieves

a good balance between picking real signals and rejecting artifacts, and the resulting peak

lists are sufficiently good to determine the resonance assignments and 3D structures of

proteins by a fully automatic approach.

Nevertheless, evaluation studies performed on various data sets revealed so far that

certain functionalities of CYPICK can be substantially improved or implemented in future

projects to make peak picking even more reliable:

1. Peak picking by CYPICK requires a local extremum condition to be fulfilled. Sig-

nals that do not present a local extremum, such as ‘shoulders’ located on the slope

of a stronger, overlapping peak, are currently discarded and not further analyzed.

Relaxing the requirement for a local extremum can improve the completeness of peak

list for crowded spectra, such as 13C-HSQC, side-chain HCCH-TOCSY and NOESY.

2. Very weak signals not possessing enough contour lines are currently discarded. Re-

fining the criteria on the regularity of peak contours may enable identifying very

weak but “well-shaped” signals without unduly increasing the number of artifacts.

3. Many of the picked artifacts originate from small regions of the spectrum, typi-

cally narrow noise bands. Their number may be reduced significantly by a better

recognition and exclusion of these regions.

4. Peak picking by CYPICK does not take into account other information than the

local features of the spectrum at and near the location of interest. It has been

shown that especially the number of artifact peaks can be reduced by considering
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self-consistency with a spectrum or between spectra (Hiller et al., 2005), or by guiding

peak picking by external information, such as a known 3D structure (Herrmann et

al., 2002b).

5. In situations of strong overlap CYPICK picks significantly fewer real signals than

can be identified by visual inspection. Improvements may be achieved by the imple-

mentation of more advanced deconvolution methods for overlapping peaks.

6. Contour line based quality factors can in principle be used in automated chemical

shift assignment and NOE assignment.

In conclusion, we developed a stable and versatile automated peak picking method that is

fully integrated into the CYANA software package for automated resonance assignment,

NOESY assignment, and structure calculation.
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2.6 Implementation in CYANA

The CYANA software package, written in Fortran90, can be accessed and controlled via

the scripting language INCLAN. Individual CYANA commands can be combined into

CYANA macros, recognizable by the suffix .cya. Literal CYANA input is written in

bold and other CYANA input is written in italics. In order to allow peak picking by

CYPICK several functionalities, that can be accessed through the commands summarized

in chapter 2.6.1, had to be implemented into CYANA. Macros for performing peak picking

by CYPICK have to be individually adjusted to the user’s need. Nevertheless, a few

examples are given in chapter 2.6.2 (written in typewriterfont).

2.6.1 CYANA commands

read spectrum filename

� filename=string (required)

Name of the spectrum file. In case of xeasy two files will be read; a XEASY

parameter file called filename.3D.param and the data file filename.3D.16. In case

of azara also two files will be read; an azara parameter file called filename.spc.par

and the data file filename.spc. In case of bruker format a parameter file for each

dimension is read. That parameter file has to have the name proc for the first

dimension, proc2s for the second dimension, proc3s for the third dimension and so

on. The data file usually has no suffix. In case of ucsf all the information are stored

in a single data file called filename.ucsf.

� type=string (required)

type specifies the format of the spectral data file and can be azara, bruker, ucsf,

or xeasy.

� format=string (required)

format refers to the experimental definition of the spectrum within the CYANA

library file, e.g. a 13C-resolved NOESY spectrum is defined as: format=”C13NOESY

H HC C”. The order of the atoms has to be the same as they are stored in the

parameter file of the spectrum or the header of the intensity file.

Example: A three-dimensional 13C-resolved NOESY spectrum can be read by: read

spectrum C13NOESY type=xeasy format=”C13NOESY H HC C”
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write spectrum filename

This command converst a spectrum in memory to another spectral format.

� filename=string (required)

� format=string (required)

format can either be ucsf or topspin

Example: A three dimensional 13C-resolved NOESY spectrum can be written to

ucsf format by: write spectrum C13NOESY format=ucsf

spec noise

Calculates the global noise level Lglobal of the spectrum as explained in chapter 2.2.1.

spec pick local

This command determines the local noise spectrum Llocal(ωi, ..., ωD) at each data point

of the specified spectrum as explained in chapter 2.2.2.

� specfile=string (required) specfile equals the name of the spectrum in memory as

specified by filename in read spectrum with the suffix ’.spectrum’.

Example: speck pick local specfile=C13NOESY.spectrum

spec pick contour

� specfile=string (required) Explanation see spec pick local command.

� method=string (optional, default diag) method specifies the condition for local

extremum determination as explained in chapter 2.2.3. Provided modes are diag

(all neighbors of a data point are considered) and nodiag (only direct neighbors of

a data point are considered).

� scale=float list (required) scale is used to specify the scaling factor of the spectral

axes as explained in chapter 2.2.4. The individual scaling factors have to be pro-

vided in the same order as in the format specification above. Individual values are

separated by “,”, e.g. scale=0.03,0.03,0,4.

� contourdim=string list (required)

contourdim defines the 2D plane to be analyzed. Contour lines can only be created

in 2D. Dimensions for which contour lines should be created have to be provided by

the user following CYANA library nomenclature, e.g. contourdim=HC,C.
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� peakarea=float list (optional, default 1.0 for each dimension)

peakarea defines the size of the box in each dimension around a local maximum

within which contour lines are created and analyzed. The size of peakarea can be

provided by the user. Smaller values lead to a faster scanning of the spectrum. For

peak picking it is vital to choose a sufficiently large peakarea otherwise it does not

influence the outcome of the algorithm. Individual sizes, separated by “,”, have to

provided in the same order as specified in format, e.g. peakarea=0.06,0.06,0.8.

� basefactor=real (optional, default 3.0)

basefactor is a multiplication for the Lglobal to give the intensity of the first contour

line, as explained in chapter 2.2.3.

� contourfactor=real (optional, default=1.3)

contourfactor is a multiplication factor for determining the intensity of the next

higher contour line by multiplying with the intensity of current contour line.

� userglobal=real (optional)

Instead of calculating the global noise level Lglobal via spec noise the user can set

Lglobal explicitly.

� range=float list (optional, default minimal and maximal chemical shifts)

range specifies the spectral range in ppm that is to be picked. Ranges belonging

different dimensions can be separated by “,”. The order of the ranges specified has to

correspond to the order of the dimensions given in format, e.g. range=1.0..10.0,

2.0..11.0,0.0..75.0

� only pos,only neg (option) If the option only pos is given only positive signals are

considered, else if the option only neg is given only negative signals are considered.

Is none of these two options set, both negative and positive signals are included in

analysis.

� half pixel cal (option)

There are two ways of interpreting the maximal chemical shift of the spectrum,

usually given in ppm: (i) interpreting the chemical shift as ppm of the edge of the

spectrum, i.e. the left side of the left pixel, or (ii) the center of the first pixel. If the

option half pixel cal is set, the maximal chemical shift is construed as explained

in (ii).
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� sol=string list (optional)

sol specifies dimension that has a solvent signal which should be excluded. The axis

name has to follow the nomenclature of the format specification, e.g. sol=HC,H.

However, the order is irrelevant.

� waterline=float list (optional, default 4.7)

waterline determines the region of the solvent signal to be excluded in ppm. Dif-

ferent positions can be indicated for varying dimensions but have to follow the order

given in sol, e.g. waterline=4.7,4.6.

� watertol=float list (optional, default 0.04)

watertol represents the tolerance range for solvent region to be excluded in ppm, i.e.

waterline± watertol. Different tolerances can be indicated for varying dimensions

but have to follow the order given in sol, e.g. waterline=0.5,0.3.

� include diagonal (option)

If the option include diagonal is set diagonal peaks of corresponding dimensions

are picked.

spec pick global

This command allows automated peak picking above a user specified global cutoff. If

the below listed user input is not specified in detail it is used as explained in spec pick

contour.

� specfile=string (required)

� method=string (optional, default diag)

� only pos,only neg (option)

� half pixel cal (option)

� sol=string list (optional)

� waterline=float list (optional, default 4.7)

� watertol=float list (optional, default 0.04)

� include diagonal (option)
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� userglobal=real (required)

Intensity threshold for peak picking. Only signals that have an intensity above the

specified userglobal values are considered.

spec pick filter

This command allows peak picking by a frequency filter which is provided in the form

of a peak list. If the below listed user input is not specified in detail it is used as explained

in spec pick contour.

� specfile=string (required)

� method=string (optional, default diag)

� scale=float list (required)

� contourdim=string list (required)

� peakarea=float list (optional, default 1.0 for each dimension)

� basefactor=real (optional, default 3.0)

� contourfactor=real (optional, default=1.3)

� userglobal=real (optional)

� range=string (optional, default minimal and maximal chemical shifts)

� only pos,only neg (option)

� half pixel cal (option)

� sol=string list (optional)

� waterline=float list (optional, default 4.7)

� watertol=float list (optional, default 0.04)

� include diagonal (option)

� perm=string (required)

perm specifies the axis labels of the frequency filter, i.e. in case of using a 15N-HSQC

peak lists as frequency filter one has to specify perm=H,HN.
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� piktol=string (optional, default 0.03 for 1H and 0.4 for 13C and 15N)

Via piktol the tolerance range (in ppm) for accepting peaks that are close to the

position of the frequency filter can be defined, e.g. piktol=0.03,0.03,0.4. The

order of the tolerance ranges has to follow the specification in format.

peaks compare

This command can be used to calculate scores between a given peak list and a reference

peak list as explained in chapter 2.3.2.

� selection=string (optional)

selection follows the syntax of the command peaks select as explained in detail

on the homepage http://www.cyana.org/wiki/index.php/Peak_selection.

� width=real (optional, default 1.0)

width is an additional scaling factor for the chemical shift scaling factor σk as

explained in chapter 2.3.2.

� distcut=real (optional, default 3.0)

distcut represents the cutoff dcut for matching to peaks as explained in chapter

2.3.2.

� artifactweight=real (optional, default 0.2)

artifactweight represents the weighting factor w for artifact peaks in the overall

score S as explained in chapter 2.3.2.

� info=full (optional)

If the option info=full is set, complete information on the individual peaks which

could be matched and which could not be matched is given. The first column refers

to the peak index of the first peak list, the second to the peak index of the reference

peak list that could be matched to the corresponding peak (if no reference peak could

be matched the value ’-1’ is set), the third column represents the distance between

the two peaks (in case of not finding a match, the distance is set to ’1000.00’,

otherwise a value between 0.0 and distcut), and the fourth column represents the

match between the two peaks, which is ’0.00’ in case no match is found, otherwise

between 0.00 and 1.0.

http://www.cyana.org/wiki/index.php/Peak_selection


112

2.6.2 CYANA macros

� PCOM.cya

The CYANA macro PCOM.cya can be used to calculate a find, artifact and overall

score of a trial peak list with respect to a reference peak list. In the example below

we used an artifactweight value of 0.5 and info=full to get detailed information

on the individual peaks.

tolerance:=0.03,0.03,0.4

read peaks trial.peaks

read peaks reference.peaks append

peaks compare artifactweight=0.5 info=full

� PICK contour.cya

The CYANA macro PICK contour.cya can be used to pick peaks from a 13-

resolved NOESY spectrum of the ENTH data set.

read seq enth

read spectrum C13NOESY type=xeasy format="C13NOESY HC H C"

spec noise

spec pick contour specfile=C13NOESY.spectrum contourdim=HC,C scale=0.05,0.05,0.1

write peaks C13NOESY format="C13NOESY HC H C"

� PICK filter.cya

The CYANA macro PICK filter.cya can be used to pick peaks from a 13C-resolved

NOESY spectrum of the ENTH data set using a 2D frequency filter in the form a

13C-HSQC peak list.

read seq enth

read peaks C13HSQC

read spectrum C13NOESY type=xeasy format="C13NOESY HC H C"

spec noise

spec pick contour specfile=C13NOESY.spectrum contourdim=HC,C scale=0.05,0.05,0.1

write peaks C13NOESY format="C13NOESY HC H C"

� PICK global.cya

The CYANA macro PICK global.cya can be used to pick only positive peaks from

a 13C-resolved NOESY spectrum of the ENTH data set using an intensity threshold

value.
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read seq enth

read spectrum C13NOESY type=xeasy format="C13NOESY HC H C"

spec noise

spec pick global specfile=C13NOESY.spectrum userglobal=4000.0 only_pos

write peaks C13NOESY format="C13NOESY HC H C"
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3.1 Introduction

Determining the three-dimensional (3D) protein structure is often the first step in the

structural and biophysical characterization of a protein. The calculated structures usually

serve as basis for further investigations, e.g. structure-based drug design (see chapter

4) or homology modeling. Therefore, it is essential to validate the resulting structure

model. This task can in principle be achieved by analysis of the agreement between

the experimental data and the resulting structure model (accuracy), by examining the

uncertainty in the coordinates of the structure model (precision), or by checking physical

and chemical properties of the structure (quality) (Doreleijers et al., 1998). In this chapter,

a new method for determining the information content of NMR distance restraint data

sets is presented (referred to as I). The information content correlates with the structure’s

precision and is comparable to the resolution in X-ray crystallography.

In X-ray crystallography the above mentioned accuracy, precision and quality of struc-

ture models are determined on the basis of R-factors, B-factors and resolution. In the

process of model creation and refinement, one can compare experimental structure fac-

tors Fobs and back calculated structure factors Fcalc (from the structure model). The

difference between Fobs and Fcalc is minimized in the process of refinement and defined as

the R-factor (sometimes called Rwork). Accordingly, the value of the R-factor reflects the

agreement between the structure model and the experimental data (Morris et al., 1992),

hence the accuracy of the structure model. Disorders in the protein crystal or the size of

the protein can lead to uncertainty in the position of the atoms. Resolution in X-ray crys-

tallography quantifies the resolvability of the electron density map, i.e. resolution limits

the precision of the resulting structure model. B-factors (sometimes called temperature

factors), measure the uncertainty of each atom.

In structure determination by NMR spectroscopy one does not have a direct measure

of structural accuracy, precision, and quality from the experimental data and the resulting

structures as in X-ray crystallography. However, several methods which address the aspect

of validating NMR structures with the above introduced X-ray measures have been devel-

oped, i.e. methods that determined the accuracy of structures, e.g. R-FAC (Gronwald et

al., 2002) or DP-Score (Huang et al., 2005); and methods that quantify the structural infor-

mation of NMR restraints, e.g. NOE completeness (Doreleijers et al., 1999) and QUEEN
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(Nabuurs et al., 2003, 2005). The NOE completeness and QUEEN were inspirational for

the development of the information content in this thesis.

The NOE completeness is defined as the ratio of the number of matched observed

NOEs and the number of expected NOEs. The completeness in itself is a more informative

quantity than the number of NOEs alone. However, it does not respect data redundancy

in a meaningful way.

QUEEN (Nabuurs et al., 2003, 2005) is a tool for the quantification of NMR distance

restraint integrated in the structure validation suite CING (Doreleijers et al., 2012). Basic

concepts of QUEEN rely on Shannon’s information theory (Shannon, 1948). According

to this theory, the uncertainty (H) of a variable (x) with a probability density function

p(x) is calculated as:

H(x) = −
∫ ∞
−∞

p(x) log p(x)dx. (3.1)

In case of a biomolecular structure the information of a distance restraint (Hij) is presented

as the uncertainty of the system minus the uncertainty of the system after adding the

restraint. The actual distance of a restraint, Dij , belonging to a pair of atoms i and j can

be found between the experimental upper, uij , and lower, lij , bounds. The probability of

Dij to be found between uij and lij is uniformly distributed over the range [uij , lij ]. The

uncertainty of a distance restraint can then be calculated as:

Hij = −
∫ uij

lij

(
1

uij − lij

)
log

(
1

uij − lij

)
dDij = log(uij − lij) . (3.2)

Based on Eq. 3.2 it is possible to calculate the uncertainty of one atom by calculating

and averaging the uncertainties of the mentioned atom with every other atom in the

structure. In order to calculate the overall uncertainty of the structure in the absence of

distance restraints, Hstructure|0, the uncertainties of the individual atoms are averaged.

The uncertainty of a distance restraint set, R, can be calculated if the uncertainty of the

system after adding the restraints, Hstructure|R, is given. According to this, the structural

information of R can be computed by:

Itotal = Hstructure|0 −Hstructure|R. (3.3)

Despite the availability of methods for the quantification of the structural information
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included in distance restraint data sets, it is still common practice to give an overview of

the data that was used in the calculation, as shown in Tab. 3.1. Drawbacks of this type of

data presentation are, e.g. the lack of quantitative conclusions on the amount of structural

information included.

Table 3.1: Overview of restraints used for structure calculation of Proteorhodopsin as pub-
lished in (Reckel et al., 2011).

NOE distance restraints
Sequential (1 ≤ |i− j| ≤ 2) 239
Medium-range (2 < |i− j| ≤ 4) 50
Long-range (|i− j| > 4) 87

Hydrogen Bonds 133
Dihedral angle restraints

Φ 196
Ψ 196

PRE distance restraints
Upper limits 290
Lower limits 760

RDC restrains 81
Restraints from biochemical experiments 4

i and j refer to the indices of the residues in which the contributing atoms can be find.

The motivation for developing a new approach can be made clear by the example of

a set of structure calculations which were all performed from 1000 distance restraints as

shown in Fig. 3.1. In all cases 3D structures of the same protein are shown which have been

calculated from a different input data set. The most important characteristic observed is

that despite using the same number of distance restraints, the resultant structures display

a strong variation in terms of precision. This leads to the conclusion that the number of

restraints alone is a poor indicator of structural information included in the underlying

data set. Reasons for this are:

1. The information of a data set depends on the type of restraints included.

2. The information depends on the uniqueness of data included.

Generally, distance restraints can be categorized into four groups determined by the

distance between indices of the residues in which atoms i and j can be find in the primary

sequence: intraresidual-range (|i − j| = 0), sequential-range (|i − j| = 1), medium-range

(2 ≤ |i− j| ≤ 4) and long-range (|i− j| < 5). This classification is motivated by the kind

of information that is provided to the structure. Short-range restraints (intraresidual-

and sequential-restraints) can merely define local features of the conformation, medium-

range distance restraints define helical secondary structures, and the all-important long-

range distance restraints determine the tertiary structure. Obviously, long-range distance

restraints carry more structural information than medium-range restraints, which in turn
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are more important than short-range distance restraints.

Figure 3.1: Visualization of three structure bundles of the protein 2JQN. Each structure was
calculated from a different set of distance restraints by CYANA. For all three calculations the
RMSD radius (Å), the information content (denoted by I), the information content per number
of residues in ordered region (Ir, explained below), and the type and number of restraints are
listed. (a) 1000 short-range restraints were used to calculate the structure. The structure
itself is completely elongated and displays no 3D globular fold. (b) 1000 long-range restraints
were used to calculate the structure. The structure is globular but the information contained
in the data is not sufficient to calculate a precise structure, i.e. the RMSD radius is still above
6.00 Å. The calculated information content however is much higher than in example (a). (c)
1000 long-rang restraints were used to calculate the structure. In this case, the structure is
perfectly folded and the information content is much higher than in examples (a) and (b).
The backbone RMSD radius is close to 1.00 Å.

Fig. 3.1 (a) depicts a structure that was calculated from 1000 short-range restraints.

The structure is sprawled, no global fold is recognizable and the structure calculation did

not converge to the same solution. The main reason for this is that only local structural

information was included in the restraint data set. In comparison, the structure bundles

shown in Fig. 3.1 (b) and (c) were calculated from 1000 long-range restraints. Despite

differences in the details, both structures show a similar globular fold and converge to

a similar solution. Fig. 3.1 (c) depicts a perfectly folded ensemble of structures with

a low RMSD radius (1.15 Å). Fig. 3.1 (b) also displays a globular folded structure but

uncertainty remains in many regions underlined by the backbone RMSD radius of 6.32 Å.

The fact that structure 3.1 (c) is inferior to 3.1 (b) even though it has been calculated

from 1000 long-range distance restraints can be explained by data redundancy, i.e. multiple

restraints for the same or very similar distances and regions of the protein. For clarification:

all 1000 restraints used for calculating structure 3.1 (c) are unique with respect to the
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distance they restrain. Whereas, the 1000 restraints used for calculating structure 3.1

(b) show a very high degree of data redundancy. Accordingly, when defining a measure

that quantifies the structural information of a set of distance restraints the effect of data

redundancy and the different structural input of different restraint types should be taken

into consideration.

Our approach focuses currently only on the information included in NMR distance

restraints. This can be rationalized by that fact that distance restraint and torsion angle

restraints remain the main source of structural information (Guerry & Herrmann, 2011),

despite the diversity of existing experimental data. The reason for this is the predomi-

nantly globular structure of proteins, which leads to a high proton density and in turn

yields a dense network of potential NOE distance restraints. The efficiency of the NOE

strongly depends on the inverse of the distance between the interacting protons. Accord-

ingly, the observation of an NOE denotes directly two spatially close protons (< 5-6 Å).

If the two interacting protons are distant with respect to the primary sequence, the ob-

servation of a NOE leads to a significant limitation in terms of available conformational

space.

The information content (I) has been implemented in the CYANA software package

and is also available as a stand-alone software bundle CYINFO. The ideas of I are mostly

based on probability theory. We define the information content of NMR restraint data sets

by the negative logarithm of the probability to fulfill the restraints by random structures,

considering how much each restraint restricts the conformational space of the structure

and how redundant it is with other restraints. The theoretical considerations exposed

above are incorporated in the definition of I and explained in section 3.2.
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3.2 Information content algorithm

The information content, I, quantifies the structural information included in a distance

restraint data set and it is usually monitored against an ensemble of random structures.

I was designed in a way that the information of a set of distance restraints against

a perfectly folded structure bundle is zero or at least close to zero. Thus, I reflects the

structural information ratio between a random structure and a folded structure. It is

therefore possible to link I to the precision of the resulting structure bundle. Hence,

the higher I, the lower the spread of the atomic coordinates of the resulting structure

ensemble.

The information content of a set of distance restraints is defined as the negative loga-

rithm of the probability that a set of restraints will be fulfilled by an ensemble of random

structures:

Information content = − logP (restraints fulfilled by random structure) . (3.4)

Here, we consider a set of n distance restraints A = {A1, ..., An}. A distance restraint Ai

between atoms ai and bi restraints the distance di = d(ai, bi) with an upper limit ui and

a lower limit li: li < di < ui. The aforementioned probability can then be defined as the

conditional probability:

P (data set|random structure) = P (A|0) =

n∏
i=1

P (Ai|0)
1
Ri . (3.5)

P (Ai|0) is the conditional probability that an individual restraint Ai is fulfilled by a

random structure, denoted by “0”. The redundancy of restraints is taken into account

by the exponent 1
Ri

: if two restraints, Ai and Aj , are redundant, i.e. if they restrain the

conformational space in the same or a very similar way, then only one of the two terms

P (Ai|0) and P (Aj |0) should be fully included in the above product. The information

content I (A|0) of a restraint set A in the context of a random structure “0” is given by:

I (A|0) = − logP (A|0) = −
n∑
i=1

logP (Ai|0)

Ri
. (3.6)

P (Ai|0) is positive unless the restraint is inconsistent, i.e the lower bound has a higher

value than the upper bound. Ri is the sum of the individual redundancies Rij of restraint

Ai with all other restraints Aj in the data set. The individual redundancy Rij , defined
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below, is a quantity that should equal zero for a restraint Ai which restricts the confor-

mation in a unique way that is not enforced by restraint Aj , and one for a restraint whose

restriction is completely enforced by Aj . By definition, Rii = 1, and hence Ri ≥ 1. Inter-

mediate values reflect the situation that Aj restricts the conformation in a similar way as

Ai.

For a distance restraint Ai with an upper bound ui and a lower bound li, the probability

to be fulfilled by a random structure, represented by a bundle of conformers, can be

computed as:

P (Ai|0) =
u3
i − l3i

U3
i − L3

i

, (3.7)

truncated to the range [0, 1]. Ui represents the maximum of all corresponding distances

in the bundle of random structures and Li is calculated from the sum of the repulsive

core radii. This expression reflects the ratio between two spheres with radii ui − li and

Ui − Li, respectively, visualized in figure 3.2. The smaller the radii difference of these

two spheres the higher the probability of the corresponding restraint to be fulfilled by a

random structure.

Figure 3.2: Visualization of the allowed region of a structure (depicted in blue) restricted by
a distance restraints Ai (depicted in red) with an upper ui and a lower limit li. The minimal
distance, Li, and the maximal distance, Ui, of the two atoms restrained by Ai is also visualized.

The redundancy Rij of two restraints Ai and Aj is only calculated if these restraints

share a common set of torsion angles. Let Fi and Fj , respectively, be the sets of torsion

angles on which Ai and Aj depend. Rij is zero if the two restraints do not overlap, i.e. if Fi∩

Fj = ∅. Otherwise, the individual redundancy can be defined as the conditional probability
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that restraint Ai will be fulfilled by a random structure that also fulfills restraint Aj :

Rij = P (Ai|Aj , 0) =
u3
i − l3i

(uj + ∆dij)
3 −max (lj −∆dij , 0)

3 , (3.8)

truncated to the range [0, 1], where ∆dij is defined as:

∆dij = min (U (ai, aj) + U (bi, bj) , U (ai, bj) + U (bi, aj)) , (3.9)

where U reflects the maximal distance between the corresponding atom pairs in the en-

semble of randoms structures. ∆dij reflects the maximal difference between the distances

di and dj , i.e. it is a measure of distance similarity. The redundancy Rij yields values

significantly above zero only if ∆dij is reasonably small, i.e. if both atoms of restraint Ai

are close to those of restraint Aj . For two perfectly correlated distances ∆dij will be zero,

and hence Rij = 1. Although the calculation of Rij is based on estimating the upper and

lower bounds that restraint Aj imposes on the distances restrained by Ai, it can be cal-

culated in a meaningful way using random structures that do not have to fulfill restraints

Ai or Aj . Rather, the random structures are used to estimate the separation of the atoms

belonging to restraints Ai and Aj .

The above mentioned redundancy calculation is not suitable if restraint Ai comprises

only a lower bound li, but no upper bound ui. In this case, we compute Rij by considering

that a lower bound di ≥ li is equivalent to an upper bound on the reciprocal distance, 1
di
≥

1
li

, i.e.

Rij =
1
li

3 − 1
ui

3

1
max(li−∆dij ,0)3 − 1

(uj+∆dij)
3

=
max (lj −∆dij , 0)

3

l3i
, (3.10)

in the absence of upper bounds (ui = uj =∞). If there are multiple restraints for the

same distance, the following logic is applied: If a restraint file contains an upper, as well

as a lower limit for the same distance, both limits are taken into consideration. The lower

limit will later be compared to the theoretical, calculated lower limit based on van der

Waals radii. If there are multiple upper limit values for the same distance, only the most

restrictive value is further considered and stored. In case of multiple lower limit values it

is also the most restrictive value that is further taken into consideration.

So far, the calculation of I has been defined on the basis of a random structure ensemble

(in the following referred to as Is). This structure ensemble is only used to have an estimate
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of U . Alternatively, U can be defined by expressions that depend only on the covalent

structure of the molecule. This makes the redundancy and the probability calculation

independent of the bundle of random structures and exactly reproducible. The maximal

distance Ui between two atoms ai and bi can be estimated by a function which only

depends on the number of torsion angles separating the atom pair belonging to the distance

restraint. The calculation of I on the basis of the covalent geometry is referred to as Ia.

For short-range distances involving up to two torsion angles, the maximal distance can be

determined analytically (Güntert et al., 1991). For distances depending on t > 2 torsion

angles, the empirical relationship:

Ui = Umax ·
(

1− e
−2.1·t
Umax

)
(3.11)

with Umax = 2 ·RG is employed, where RG corresponds to the protein’s radius of gyration.

The determination of the empirical relationship between the number of angles and the

correct distance, and the estimation of the radius of gyration are given in chapter 3.3.3

and 3.3.2, respectively.

The presented information content concept can also be generalized to ambiguous dis-

tance restraints with the effective distance d =
(∑m

k=1 d (ak, bk)
−6
)− 1

6

, where the sum

runs over the m assignments (a1, b1) , . . . , (am, bm) (Nilges et al., 1997). The probability

calculation can be used without a change if the distance between the single pair of atoms

is replaced by the corresponding effective distance. The redundancy Rij between two

ambiguous distance restraints Ai and Aj with mi and mj assignments, respectively, is

computed as:

Rij =

mi∑
k=1

1

mj

mj∑
l=1

Rikjl , (3.12)

where Rikjl is the individual redundancy between the kth assignment of restraint Ai and

the lth assignment of restraint Aj . The above defined redundancy calculation is inspired by

the assumption that usually one of the individual assignments of an ambiguous distances

restraint is correct. Assuming that all possible assignments of restraint Aj are equally

probable to be correct, the corresponding probability Rikjl = P (Aik |Ajl) for an individual

assignment Ajl is multiplied by the a priori probability 1
mj

when incorporating it into the

redundancy Rij between the two ambiguous distance restraints.
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3.3 Material and Methods

3.3.1 Experimental data set

The information content, I, has been assessed on the basis of NMR distance restraint

sets of 27 proteins for which a NMR solution structure has previously been determined.

The data sets were obtained from the NorthEast Structural Genomics consortium (NESG)

(Wunderlich et al., 2004) which is a project that solves three-dimensional protein structures

on a large scale using X-ray and NMR data. Tab. 3.2 gives an overview of some charac-

teristics and data bank accession codes of the utilized proteins. Only monomeric protein

structure data sets were selected. The data sets can be obtained directly from the NESG

webpage ( http://psvs-1_4-dev.nesg.org/results/rosetta_MR/dataset.html). The

diversity of the set of proteins was convincing. The size of the proteins ranges from 5.2

kDa to 22 kDa. The α-helical fraction ranges from 0.0-40.0 % and the β-strand fraction

ranges from 0.0-30.0%. Some proteins are purely α-helical while others display structures

dominated by β-strands. Results achieved within this study are demonstrated by using

the example of 2JQN. 2JQN is a protein of medium size within this data set and includes

both α-helical and β-strand secondary structural elements.

Table 3.2: Overview of the dataset used for the evaluation of the information content.

NESG ID PDB Code BMRB code Sequence n α helical β strands random coil
BeR31 2K2E 15702 158 1106 4.5 11.6 81.9
CcR55 2JQN 15821 116 1228 16.7 9.0 72.2
DhR29B 2KPU 16570 90 802 0 36.4 63.5
DrR147D 2KCZ 16100 155 1406 5.1 2.5 90.3
ER382A 2JN0 15079 50 468 1.9 14.8 81.2
GR4 1RZW 6058 123 2369 25.1 6.4 66.4
GmR137 2K5P 15844 78 950 12.2 15.4 70.3
HR1958 1XPW 6344 143 976 5.1 5.8 87.0
HR3646E 2KHN 16250 121 1604 32.2 0.0 74.8
HR4435B 2L1P 17092 83 801 27.0 0.0 70.9
HR4527E 2L33 17169 91 2501 12.9 14.1 83.8
HR4694F 2L05 17436 86 1717 10.3 15.4 72.2
HR5546 2KPW 16572 122 1551 0.0 18.0 80.0
LkR112 2KPP 16563 114 2578 3.2 32.2 71.6
MrR110B 2K5V 15849 98 1633 5.1 27.7 65.1
OR8C 2KKZ 16376 134 2212 2.5 27.0 68.3
PfR193A 2KL6 16358 108 2674 0.0 27.0 70.9
PsR293 2KFP 16186 125 1865 14.1 10.9 72.9
SgR209C 2L06 17031 155 1852 23.8 0.0 74.1
SgR42 2JZ2 15604 66 560 1.9 19.3 76.7
SR213 2HFI 16113 123 2161 35.4 0.0 62.5
SR384 2JVD 15476 48 1053 20.0 0.0 78.0
SrR115C 2KCV 16084 100 3142 75.7 0 24.2
StR65 2JN8 15089 109 1274 29.6 0.0 68.3
StR70 2JZT 7178 142 1525 18.0 7.7 72.2
XcR50 1XPV 6363 78 1559 20.6 7.0 70.3
ZR18 1PQX 5844 91 1174 7.7 18.0 72.2

n refers to the number of distance restraints.

Available distance restraint data sets and the protein sequence were used to recalculate

the NMR structures of the proteins listed in Tab. 3.2 using CYANA. Structure calculation

http://psvs-1_4-dev.nesg.org/results/rosetta_MR/dataset.html
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1PQX 1RZW 1XPV

1XPW 2HFI 2JN0

2JN8 2JQN 2JVD

2JZ2 2JZT 2K2E

2K5P 2K5V 2KCV
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2KCZ 2KFP 2KHN

2KKZ 2KL6 2KPP

2KPU 2KPW 2L1P

2L05 2L06 2L33

Figure 3.4: Recalculated structure bundles from the proteins of the above introduced data set
(Tab. 3.2). Structure calculation was performed with CYANA, as explained, using as input
only the protein sequence and the deposited distance restraint file. The twenty best calculations
in terms of CYANA target function were used for structure bundle representation. Helical
regions are depicted in red, β-sheet regions are shown in yellow, and random coil regions are
shown in green. PyMol was used for visualization.
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was performed with 10,000 torsion angle dynamic steps using 200 starting structures.

The twenty best structures, in terms of CYANA target function, were used for bundle

representation. The recalculated structure bundles are presented in Fig. 3.4 (double sided

figure).

Table 3.3: RMSD radius of recalculated structure bundles and the underlying RMSD range,
which is determined from the ordered regions as explained in chapter 3.3.4.4. Structure bundles
are presented in Fig. 3.4.

PDB code RMSD radius [Å] RMSD range
1PQX 0.97 2-9,13-20,29-34,41-47,51-57,60-71,74-75,78-85
1RZW 0.70 3-14,22-45,49-82,91-110
1XPV 0.55 3-9,16-27,30-37,40-41,44-45,48-61,64-65,68-72
1XPW 1.38 3-9,12-22,25-33,39-80,83-95,104-124,127-140
2HFI 0.81 9-24,39-65,74-94,98-120
2JN0 0.60 4-7,10-15,19-22,25-32,35-47
2JN8 0.83 11-22,27-28,32-90,96-108
2JQN 1.06 3-28,33-52,55-63,70-75,80-99,105-109
2JVD 0.32 6-17,21-22,26-39
2JZ2 0.76 3-15,18-28,31-38,42-56
2JZT 0.96 13-17,20-42,58-65,68-89,95-107,115-126
2K2E 1.01 12-18,22-37,42-64,89-103,107-147
2K5P 1.05 2-8,11-12,18-24,31-65
2K5V 0.69 2-24,27-29,37-46,49-81,84-94
2KCV 0.28 3-17,21-93
2KCZ 1.71 5-23,32-33,42-48,56-57,64-80,89-97,100-110,138-147
2KFP 0.94 2-20,29-33,36-71,74-83,89-100,104-118
2KHN 1.01 25-35,38-45,48-65,70-92,95-100,106-114
2KKZ 0.73 5-54,58-80,90-121
2KL6 0.45 3-48,50-96,98-108
2KPP 0.45 7-38,41-94
2KPU 1.05 8-28,31-41,49-72,76-92
2KPW 1.42 15-21,25-39,43-48,53-59,62-76,86-94,101-106,109-117
2L1P 1.07 22-30,34-55,68-79
2L05 0.56 9-16,19-54,59-82
2L06 1.01 13-19,22-41,43-45,47-77,79-84,86-104,106-148,150-151
2L33 0.61 12-27,31-38,45-82

3.3.2 Radius of gyration estimation

The concept of I is based on the assumption that structures are folded in a globular

manner. The radius of gyration is used to create random structures within the defined

radius limit in the Is calculation mode. If a reference structure is available the radius of

gyration can simply be determined from the coordinates of the PDB file using the CYANA

command structure radius. If the radius of gyration cannot be determined from an

available ensemble of structures, an alternative approach, which relies only on the primary

sequence, is needed. The expected radius, RG, of a single domain protein consisting

of N amino acid residues in its native conformation follows the empirical relationship

RG = 2.2N0.38Å (Skolnick et al., 1997). The radius of gyration limits the value of the
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potential maximal distance (see chapter 3.3.3) between the atom pair being restricted by

restraint Ai in the Ia calculation mode.

3.3.3 Maximal distance estimation

As explained above the information content can be determined on the basis of a random

structure bundle (Is) or on the basis of the covalent geometry of the protein (Ia), which

makes it completely reproducible and independent from the bundle of input structures.

Both, the probability P (Ai|0) (Eq. 3.7) and the redundancy P (Ai|Aj , 0) (Eq. 3.8) rely

on an estimation of the maximal distance, Ui, between the atom pair being restricted by

restraint Ai. In the Is mode, Ui is derived directly from the coordinates of the random

structure bundle. If the Ia mode is preferred, Ui has to be determined in an alternative

way. We therefore chose to estimate Ui based on the number of torsion angles t which

separate the atom pair, i.e. the torsion angles separating the two atoms are summed up.

t was then compared to the real maximal distance between the atom pair derived from a

structure bundle. The relation between the maximal determined distance from the random

structure bundle and t is visualized in Fig. 3.5 exemplary for 2JQN. Remaining proteins

are presented in appendix B, Fig. B.1. The resulting plot has been fit for each protein to

yield the parameters a = 2.1 Å in:

Ui = Umax ·
(

1− e
−a·t
Umax

)
, (3.13)

where t represents the number of torsion angles separating the atom pair, Ui represents

the maximal distance between the atom pair, and Umax corresponds to 2.0 ·RG.

The distance estimated on the basis of t correlates with the real distance. The correla-

tion is especially good in the range of lower t values, i.e. t < 30. The more long range the

distance becomes, the higher the deviation of the real distances from the on t estimated

distance. However, in the range of larger t values, the fit passes through the middle of

the observed distances. Accordingly, some distances are underestimated while others are

overestimated. The deviation between real distance and the estimated distance becomes

more severe at higher t values, because t can only take discrete values, whereas within the

structure bundle the distance can virtually take every value within 2.0 ·RG. The influence

on the information content, i.e. the correlation between Is and Ia is discussed in chapter

3.4.2.
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Figure 3.5: Correlation between the maximal distance of an atom pair and the number of
torsion angles separating the atom pair using the example of 2JQN. The real maximal distances
is derived from a bundle of random structures. The number of torsion angles are determined
from the covalent geometry of the protein. Corresponding values are plotted and fit by Eq.
3.13 (red data points). The exponential fit is used to estimate the maximal distance when no
structure bundle is available.

3.3.4 Work flow

The information content is calculated as explained in chapter 3.6. In the following, addi-

tional commands and tools are explained that were used for performing the experiments

that correspond to the results presented in chapter 3.4. Literal CYANA input is written

in typewriterfont.

3.3.4.1 Generation of restraint type specific data sets

Restraint type specific data sets correspond to data sets that include only short-range, |i-

j| ≤ 1, (intraresidual, |i−j| = 0 and sequential, |i−j| = 1), medium-range, 2 < |i−j| ≤ 5,

or long-range, |i − j| > 5, distance restraints, where i and j refers to the index of the

residues in the primary sequence. The results of I calculated from restraint-type specific

data sets are presented in chapter 3.4.1.1. Data sets can be filtered according to the above

defined classification of short-, medium- and long-range restraints by using the following

CYANA commands:
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� Select only short-range distance restraints

read upl name

distances select "** level=0..1"

write upl short

� Select only medium-range distance restraints

read upl name

distances select "** level=2..4"

write upl medium

� Select only long-range distance restraints

read upl name

distances select "** level=..5 multiple=ifall"

write upl long

The above presented examples read the distance restraint file first (line 1), then select

restraints of a specific type (line 2), and store the selected distance restraints in a new file

(line 3).

3.3.4.2 Changing upper limit values

The upper limit value of a distance restraint has a crucial role in I calculation. It affects

the probability P (Ai|0) and the redundancy Ri with the remaining restraints in the data

set. Therefore, we investigated the influence of the upper limit bound on I by increasing

and decreasing the upper limit value by 1 Å with respect to the original value. All upper

limits of a restraint data set can be changed by the following CYANA commands:

read upl name

distances set "**" bound=bound+1.0

write upl name-upl.upl

The above example, reads the upper limit file first (line 1), then selects all distance

restraints, increases the upper limit value by 1 Å (line 2), and the modified restraint file

is stored (line 3).

3.3.4.3 Generation of random structure bundles

Is relies on an ensemble of random structures. In order to estimate the structural infor-

mation of distance restraint data sets an ensemble of random structures has to be created.

The structure bundle has to be random but also globular, because I is based on the
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assumption that protein structures usually fold in a globular manner. In order to gener-

ate globular random structures, the radius of gyration is determined, either as explained

in chapter 3.3.2 or by estimating the radius of an available structure bundle, using the

CYANA command structure radius. For our test data set, we recalculated the NMR

structures on the basis of the provided distance restraint data sets, as explained above

3.3.1 and determined the radius of the recalculated structures with the CYANA com-

mand. The structure radius is then used as a restraint for random structure generation

by CYANA using the following commands:

read seq name

seed=4290

atom gyr bounds=0.0..14.5

calc_all 200 steps=4000

overview file=random.ovw structures=20 pdb

In the example above, the protein radius is set to 14.5 Å (line 3), and the bundle of

random structures includes 20 conformers (line 5). We tested varying numbers of input

structures S, i.e. 2 and 10, and 10 to 90 in steps of 10. For each number of structures S,

included in the bundle, 10 random structure calculations were performed with a different

seed for creating starting structures (line 2), leading to 10 different bundles including S

structures. The results of the I calculation were averaged over these 10 different structure

bundles, including the same number of structures S. The results are presented in chapter

3.4.1.3.

3.3.4.4 Estimation of the ordered protein regions

Ordered regions of the protein can be determined on the basis of the individual I of

each residue. In this case only restraints which contain secondary and tertiary structural

information, i.e. medium- and long-range distance restraints, were considered. Thereby,

one gets a good approximation of the ordered regions. I of residue i has to be > 1 in order

to contribute to the ordered regions. Residues with I > 1 are summed up and used for

scaling I to give Ir. Fig. 3.6 shows the ordered regions determined on the basis of I and

ordered regions determined from CYRANGE (Kirchner & Güntert, 2011) in the context

of a structure bundle, using the example of 2JQN.

CYRANGE determines a larger range of ordered residues than the I based method.

The I based method ignores lonely residues which are either very informative or not in-

formative, CYRANGE on the other side includes small stretches that are flanked by
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(a) CYRANGE (b) Ordered regions on the basis of I

Figure 3.6: Structure bundle of 2JQN is presented in grey, whereas ordered regions determined
with CYRANGE are depicted in blue ((a)), and ordered regions determined on the basis of
the long- and medium-range information content of individual residues are depicted in red
((b)).

ordered regions. Accordingly, the small helical region pictured in the middle of Fig. 3.6

(a) and (b) is included by CYRANGE and is excluded in case of the I based method,

respectively. This regions is rather uncertain regarding the atomic coordinates, and ac-

cordingly does not bear residues which participate in distance restraints carrying enough

long-range information. Summed up, the I based method gives a good estimation of the

ordered regions in case no protein structure is available. For our investigations we used

the I based method to determined ordered regions on the basis of the original data sets.

The ordered regions are summarized in Tab. 3.3 and were kept the same for all RMSD

radius calculations within this study.

3.3.4.5 Restraint data set minimization

The original data set of 2JQN is used to perform a data set minimization. In this context

minimization is equivalent to deleting distance restraints. Gradually, one distance restraint

is removed from the data set and the impact on I is monitored. For our experiment

we performed two independent runs. In the first we remove in every cycle the restraint

bearing the highest individual information content. In the second run (which is completely

independent from the first run), the restraint with the lowest information content is deleted

from the data set. With every step only one distance restraint is removed. The resulting

restraint data set is used for I and structure calculation. Thereby, we were able to observe

the behavior of I and the RMSD radius.
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3.3.4.6 Generation of sparse data sets

Sparse distance restraint data sets can be generated by deleting a specified percentage of

distance restraints from the original data set randomly. In this experiment 10-90% of the

original data set were deleted in steps of 10. Each deletion of x% was repeated 10 times,

in order to get a representative set of thinned out data sets. The results of this study are

presented in chapter 3.4.4.2. A specific percentage of a distance restraint data set can be

deleted by using the following CYANA commands:

read seq name

seed=4290

read upl name

distances delete "** fraction=0.4"

write upl sparse

In the shown example a distance restraint file, ‘name’ (line 3), is read and 40% of the

distance restraints are randomly deleted (line 4), the resulting set of distance restraints is

stored (line 5). The set of deleted distance restraints can be varied by changing the seed

(line 2).

I is calculated on the basis of the thinned out distance restraint file and the restraint

set is used for structure calculation. I and RMSD radius values are averaged over the 10

deletions and standard deviations are calculated.

3.3.4.7 Structure calculation by CYANA

Structure calculations by CYANA within this project were all performed starting from a

set of distance restraints and the protein sequence. Structure calculation was performed

with 10,000 torsion angle dynamic steps using 200 starting structures. The precision of

calculated structure bundles is expressed by the RMSD radius (Güntert et al., 1998),

i.e. the average RMSD between individual conformers and the mean coordinates of the

structure.
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3.4 Results and Discussion

In the first part of this study, characteristics of the information content, I, e.g. restraint

type-specific I, and the dependence on certain calculation parameters, e.g. number of

random structures, upper and lower limit value, are analyzed and presented. We then

show how I is scaled in order to get a measure that is data set size independent and

comparable, Ir. In the last part we correlate Ir to the precision of the resulting structure

bundle.

3.4.1 General characteristics of the I

3.4.1.1 Restraint type-specific I

The information content of a distance restraint data set has been assessed for different

types of restraints. The type-specific information content results are shown in Tab. 3.4.

Restraints were categorized into intraresidual (|i− j| = 0), sequential (|i− j| = 1), short-

range (|i-j| ≤ 1), medium-range (2 < |i − j| ≤ 5), and long-range(|i − j| > 5), where i

and j refer to the residue indices of the participating atoms. Additionally, the data set

size in percentage of the total number of restraints and the backbone RMSD radius of

a subsequent structure calculation with the corresponding type-specific restraint sets as

input are reported.

Table 3.4: Type-specific I of 2JQN. I and Ir (explained in chapter 3.4.3) are presented.
Furthermore, the data set size and the RMSD radius of the resulting structures calculated
from the corresponding restraint files is presented.

I (Ir) RMSD radius (Å) Data set size [%]

(absolute number)

Intraresidual restraints 11.70 (0.14) 25.56 14.90 (183)

Sequential restraints 19.21 (0.22) 28.62 29.32 (360)

Short-range restraints 30.91 (0.36) 25.72 44.22 (543)

Medium-range restraints 124.9 (1.45) 17.12 22.15 (272)

Long-range restraints 355.22 (4.13) 1.63 33.63 (413)

All restraints 510.42 (5.94) 1.05 100.00 (1228)

Intraresidual restraints: |i− j| = 0; Sequential restraints: |i− j| = 1; Short-range restraints |i-j| ≤ 1; Medium-

range restraints: 2 < |i− j| ≤ 5; Long-range restraints: |i− j| > 5

Tab. 3.4 shows that short-range (intraresidual and sequential) restraints carried the

fewest structural information (I=30.91), even though they represent 44% of the data set.
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This can be explained by the fact that short-range restraints are mostly already fulfilled by

a bundle of random structures due to restraining only local features of the structure that

are already restricted by the covalent geometry of the protein. Accordingly, P (Ai|0) = 1.0,

and the information I(Ai|0) = 0.0. Medium-range restraints contributed a considerable

higher amount of information (I=124.9), i.e. four times as much as short-range restraints

even though they accounted only 22% in numbers to the data set. This can be explained

by the fact that medium-range restraints hold more information, especially in terms of

secondary structural information. The RMSD radius of a structure calculated from only

medium-range restraints however does not improve significantly compared to a structure

that was only calculated from short-range restraints. However, when analyzing the re-

sulting structure models in more detail, it can be observed that the structures calculated

from medium-range restraints included most of the helices of the native fold. The bulk of

the information stemmed from long-range restraints (I=355.22) which was approximately

three times as much as the I of medium-range restraints. Long-range restraints are com-

monly not fulfilled by a random structure, accordingly P (Ai|0) becomes zero. Hence,

the information added is comparatively high, assuming the redundancy is in general low

and implying the prominence of these restraints for structure calculation. The RMSD

radius also reflects the importance of long-range restraints. Structures calculated from a

set of exclusively long-range restraints yield significantly lower RMSD radius values (<

2.0 Å) supporting their central role. I of the complete restraint data set is considerable

higher than I of only long-range data set (I=510.42) what is also reflected in the resulting

structure bundle that has a significantly higher precision (1.05 Å).

The study of the restraint type-specific I on a single distance restraint data set already

reveals its intuitive change with the restraint type and already shows a tendency of the

correlation with the RMSD radius. This will further be analyzed in chapter 3.4.4.

3.4.1.2 Effect of redundant restraints

In this section, we want to exemplify the impact of redundant restraints on the individual

redundancy Ri and the individual information I(Ai|0). Therefore, we created a small

distance restraint data set consisting of six restraints (referred to as data set (a)), which

are visualized in Fig. 3.7 (a), i.e. two short-range restraints (depicted in orange; a and b),

two medium-range restraints (depicted in green; c and d), and two long-range restraints

(depicted in yellow; e and f ). Tab. 3.5 lists the upper limit value of the corresponding

restraint (upl), the individual probability to be fulfilled by a random structure, P (Ai|0),
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the individual redundancy, Ri, and the individual information, I (Ai|0). The overall infor-

mation content of data set (a), I ((a)|0), can be calculated by summing up the individual

I (Ai|0), to give I ((a)|0) =6.76. The restraint type imposed differences in information was

also observed and was in agreement with previous observations.

Table 3.5: Effect of redundant restraints on the individual redundancy Ri and the individual
information content I (Ai|0) of restraint Ai. The distance restraints belonging to set (a), (b),
and (c) are displayed in Fig. 3.7 (a), (b), and (c), respectively, in the context of a structure.

(a) (b) (c)

Ai upl (Å) P (Ai|0) Ri I (Ai|0) upl (Å) P (Ai|0) Ri I (Ai|0) upl (Å) P (Ai|0) Ri I (Ai|0)

a 5.0 0.66 1.00 0.18 5.0 0.66 1.00 0.18 5.0 0.66 1.00 0.18

b 3.5 0.93 1.00 0.03 3.5 0.93 1.00 0.03 3.5 0.93 1.00 0.03

c 5.0 0.04 1.03 1.35 5.0 0.04 1.46 0.95 5.0 0.04 1.03 1.34

d 5.0 0.30 1.03 0.51 5.0 0.30 1.05 0.50 5.0 0.30 1.03 0.51

e 4.4 0.00 1.00 2.43 4.4 0.00 1.01 2.43 4.4 0.00 2.14 1.14

f 4.0 0.01 1.01 2.26 4.0 0.01 1.01 2.26 4.0 0.01 1.02 2.24

g 5.0 0.04 1.46 0.95 4.4 0.00 2.14 1.14

h 4.4 0.00 2.14 1.14

(a) I = 6.76 (b) I = 7.30 (c) I = 7.72

Figure 3.7: Visualization of distance restraint sets that correspond to the restraints specified
in Tab. 3.5.

Then we introduced a medium-range restraint (restraint g in Tab. 3.5) to data set (a)

(now referred to as data set (b)), which was partly redundant with restraint c (see Fig. 3.7

(b)). Restraint g enhanced the redundancy of restraint c from 1.03 to 1.46 and thereby

reduced I of restraint c from 1.35 to 0.95. Restraint d was also effected by the introduced

restraint g, but to a much lesser extent; the redundancy was enhanced from 1.03 to 1.05,

and I was lowered from 0.51 to 0.50. The overall I of data set (b) was 7.30. Compared

to data set (a) the overall I of the data set was enhanced by approximately 0.5. This

however follows the intuitive behavior because restraint g added structural information on

the orientation of the tryptophan side-chain with respect to the valine side-chain atoms.
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An overall gain in I can be justified therewith.

Then we introduced two long-range restraints to data set (a) which were partly re-

dundant with restraint e (referred to as data set (c)), visualized in Fig. 3.7 (c). The

two redundant long-range restraints, g and h, led to an enhancement in redundancy of

restraint e from 1.00 to 2.14 and thereby a reduction in information of restraint e from

2.43 to 1.14. Restraints g and h also had a minor effect on f, whose redundancy was

slightly enhanced from 1.01 to 1.02, and I was reduced from 2.26 to 2.24. The overall I

of restraint set (c)) was 7.72. Adding the two partly redundant long-range restraints g

and h had a similar effect as adding the partly redundant medium-range restraint to data

set (b). Restraint g and h provided additional structural information and reduced the

available conformational space of the valine side-chain with respect to the second valine

side-chain and therefore enhanced the overall I but reduced the individual I values.

3.4.1.3 Dependence of I on the number of random structures

As already noted above, I can be calculated on the basis of a structure bundle, Is, or

based on the covalent geometry of the polypeptide chain, Ia. Is relies on a bundle of

random conformers based on which the maximal distance, Ui, of a specific atom pair, Ai,

is estimated. The probability that a given atom pair distance in a random conformer lies

within x% of its maximal value Ui is approximately given by U3
i − (1− x)3U3

i )/U3
i ≈ 3x.

This probability should equal 1/S to be expected by at least one of the S conformers of a

random structure bundle. Hence, x ≈ 1/3S. This means that, for instance, with S = 20

random conformers, one will approach the true maximal distance on average within less

than 2%. The same approach cannot be used for minimal distances because in general

a very large number of random structures would be necessary to come sufficiently close

to the true minimal distance. However, in the absence of other information the minimal

acceptable distance between two atoms is given by the sum of their repulsive core radii.

In order to verify the proposed number of random structures that should be used for

the I calculation, the impact on I upon changing the number of random structures S has

been assessed. The results, visualized in Fig. 3.8, have been determined on the 2JQN data

set. The number of random structures was increased from 2 to 10, and then from 10 to

90 in steps of 10. For each number S, 10 structure bundles, starting from different seeds,

were created. The structures were created with a restraint on the radius of gyration, as

explained in chapter 3.3.4.3. I was then calculated on the basis of each structure bundle,

thereby determining the average and the standard deviation of I over the 10 different
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structure bundles including the same number of structures S.

I showed an hyperbolic increase at increasing numbers of random structures S. The

average I rose significantly when enhancing the number of structures in the bundle from

2 to 10. The standard deviation of I was also reduced significantly when comparing I

calculated on the basis of 2 structures and 20 or more structures. As proposed above, a

set of 20 random structures was sufficient for the I calculation. Increasing the number

of random structures to > 20 does not influence the I significantly. A larger number of

random structures prolongs computation time, which additionally justifies the usage of 20

structures. Following Is calculations were performed on the basis of a bundle consisting

of 20 random structures if not stated otherwise.

Figure 3.8: Influence of the number of random structures S included in the structure bundle
on I calculation. The number of random structures S was enhanced from 2 to 10, and from
10 to 90 in steps of 10. For each number S, 10 different structure bundles on the basis of a
different seed, were generated as explained in chapter 3.3.4.3. Average I values and standard
deviations were calculated from these 10 calculations. The influence of the number of random
structures on I is presented using the example of 2JQN.

3.4.1.4 Multiple restraints in the data set

I has been defined in a way that multiplying single restraints or the whole data set does

not have an influence on the absolute I value. As explained earlier, in case of multiple
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restraints for the same distance only the more restrictive restraint is kept and considered

for I calculation. I has been calculated for the original distance restraint data set of 2JQN.

This data set was doubled and tripled, and additionally only long-range, short-range or

medium-range distance restraints are doubled successively. The I value remained the same

in all cases (I=510.42).

3.4.1.5 Dependence of I on upper and lower bound

The information content itself is very sensitive towards the value of the upper and lower

limits as already visualized in Fig. 3.2 by the influence of these bounds on the accessible

conformational space. Upper limit values are deduced from the volume or intensity of

the peak corresponding to the atom pair. During calculation the upper and lower bounds

have an influence on the probability of restraint Ai, P (Ai|0) (Eq. 3.7), as well as the

redundancy, Ri (Eq. 3.8). If the upper limit value of restraint Ai was increased and every

other values was kept fixed, probability and redundancy of Ai also increased. This can be

rationalized by the fact that a higher upper limit value corresponds to a larger accessible

conformational space, making a restraint more likely to be fulfilled by a given random

structure and also more likely to be redundant with other restraints Aj . Accordingly, both,

a higher probability and a higher redundancy will yield lower I values comparatively. This

supports the idea that higher upper limit values restrain the tertiary structure less and thus

contain less information if the lower limit remains unchanged. The same characteristics

were monitored when keeping the upper limit of restraint Ai fixed and decreasing the

lower limit of Ai. Diminishing the lower limits enhances the accessible conformational

space compared to the increased lower limit value and making it more redundant with

the remaining restraints. Decreasing the upper limit value has the contrary effect, the

probability and the redundancy is lowered, and hence I rises. Keeping the upper limit

fixed and only enhancing the lower limit also lowers probability and redundancy, and

thereby enhances I. In this case the available conformational space of the restraint is

more restricted and therefore more informative. The behavior of I upon increasing and

decreasing the upper limit value is illustrated in Tab. 3.6 using the example of 2JQN.
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Table 3.6: Dependence of I and Ir on upper limit value (upl) using the example of 2JQN.

upl/lol (Å) I Ir

original 510.42 5.94

upl + 1.0 Å 305.75 3.56

upl − 1.0 Å 798.21 9.28

‘original’: data set remained unmodified; ‘upl + 1.0 Å’: all upper limits were enhanced by 1 Å; ‘upl − 1.0 Å’:

all upper limits were decreased by 1 Å.

When enhancing all upper limits by 1.0 Å, I was drastically reduced from 510.42 to

305.75. Compared to that, lowering all upper limits by 1.0 Å led to a significant increase

in I from 510.42 to 798.21. The behavior exemplified by the data set of 2JQN followed

exactly the above proposed properties.

3.4.1.6 Dependence of I on protein size

Figure 3.9: Correlation between I and number of ordered residues. Ordered regions were
determined on the basis of the original distance restraint data set (Tab. 3.3) using the I based
method explained in chapter 3.3.4.4. The underlying distance restraint data sets belong to the
validation data set introduced in chapter 3.3.1.

I depends on the one hand on the structural information included in the data set, as
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presented before. On the other hand, I increases approximately linear with the size of the

protein. The absolute I of our test data set, introduced in chapter 3.3.1, Tab. 3.2, has

been calculated. The dependence of I on the size of the protein, here expressed in terms

of number of residues in ordered regions, is presented in Fig. 3.9. The number of ordered

residues was plotted against I. The value of I varied between 100 to 900 for ordered

protein ranges from 37 to 119 residues. Deviations from the observed approximate linear

behavior can be attributed to differences in the structural information included.

Generally, larger proteins have larger data sets, because more distance restraints are

necessary to describe the underlying structure accurately. The structures recalculated

from the deposited restraint files, were all characterized by a high structural precision,

expressed in RMSD radius (see Tab. 3.3). However, the value of I varied with the size of

the system. Consequently, I has to be scaled with respect to the size of the underlying

system in order to make it comparable in-between different proteins and to give I an

universal meaning. The scaled I is later correlated to the structural precision (chapter

3.4.3).

3.4.2 Agreement between structure dependent and independent

calculation mode

As already mentioned, we provide two different calculation modes for I; one that depends

on a bundle of random structures (Is) and another one that is independent from random

structures and relies only on the covalent geometry of the protein (Ia). The main differ-

ence between those two calculation modes is the estimation of the maximal distance, Ui,

between the atom pair belonging to the distance restraint of interest. In case of Is, Ui is

deduced from the ensemble of random structures itself. In Ia mode, Ui does only depend

on the number of torsion angles that separate the atom pair. The relationship between the

number of torsional angles and Ui has been determined empirically (Eq. 3.11), as explained

in 3.3.3. We compared Is and Ia calculation modes for our test data set. The results are

shown exemplary for 2JQN in Fig. 3.10. We created different input distance restraint files

by randomly deleting a specific fraction of the original data set, as explained in chapter

3.3.4.6. In Fig. 3.11 Is and Ia are presented for the remaining proteins of the test data

set. The calculation modes correlate very well in most of the data sets, i.e. 1RZW, 2JQN,

2JVD, 2K2E, 2K5V, 2KCZ, 2KFP, 2KHN, 2KPP, 2KPW, 2L1P, 2L05, 2L33, and 2KPU.

Minor deviations between the two calculation modes can be observed for 1PQX, 1XPW,
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Figure 3.10: Agreement between structure dependent and structure independent information
content calculation mode using the example of 2JQN. The percentage of missing distance
restraint is plotted against Is (red) and Ia (blue). Pearson correlation coefficient is 0.99.

2HFI, 2JN8, 2JZ2, 2JZT, 2K5P, 2KCV, 2KKZ, and 2L05. Rather significant deviations

can be observed for 1XPV, 2JN0, and 2KL6. Deviation between results achieved in Is

and Ia mode can be attributed to differences in the Ui value. Ui can achieve higher values

in the structure based mode, i.e. not all distances in the structure bundle are < 2 · RG

(referred to as the theoretical maximal distance Umax. In Ia mode, Umax is used as a fixed

cutoff for the maximal distance estimation (Eq. 3.11). Whereas in Is calculation mode

this limitation is not given and even though the random structures have been calculated

with a constraint on the radius of gyration (chapter 3.3.4.3) it might still be possible that

there are some deflected local conformations which yield Ui values that are higher than

Umax. Furthermore, in the Ia mode Ui takes discrete values for a specific number of angles,

corresponding to a set of atom pairs, in contrast to that in Is mode these atom pairs can

adopt a wide range of Ui values. Despite the differences observed, the Pearson correlation

coefficient of Is and Ia is > 0.99 for the complete data set.
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Figure 3.11: Agreement between structure dependent and structure independent information
content calculation mode on the basis of the complete data set introduced in chapter 3.3.1.
The percentage of missing distance restraint is plotted against Is (blue) and Ia (red).
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Figure 3.12: Correlation between Ir and number of ordered residues. The absolute I is scaled
by the number of residues belonging to ordered regions of the protein. Ordered regions were
determined from the original distance restraint data set (Tab. 3.3). The underlying distance
restraint data sets belong to the validation data set introduced in chapter 3.3.1.

3.4.3 Scaling of I

As presented above, I strongly depends on the size of the underlying system, i.e. the

number of residues in the protein sequence, apart from its dependence on the structural

information. Generally, the larger the occupied conformational space by the protein, the

more restraints are necessary to describe the structure adequately. On account of this

the absolute value of I can be very different, even though the structural precision is

exactly the same. The behavior of I is consistent within one system as presented above

(chapter 3.4.1). However, our aim is to define a system size independent measure which

can be correlated to the structural precision, expressed in RMSD radius. We therefore

define Ir, a measure which is independent from the size of the protein and can be directly

correlated to the structural precision. In Fig. 3.12 we demonstrate the correlation between

Ir and the number of ordered residue regions. In principle, the results presented in Fig.

3.12 are equivalent to the results in Fig. 3.9 with the exception that I is scaled by the

number of ordered residues. The number of ordered residues can either be determined by
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CYRANGE on the basis of a reference structure bundle, can be provided by the user if

ordered regions of the native fold are known, or it can be determined on the basis of the

medium- and long-range information presented in the corresponding regions (the exact

determination of the ordered regions on the basis of I is explained in chapter 3.3.4.4). For

our calculations we used the I based method on the original restraint files to determine the

ordered regions. Fig. 3.12 visualizes, in contrast to Fig. 3.9, that Ir is independent from the

protein size. Ir varied between 3 and 9, whereas I, visualized in Fig. 3.9, varied between

100 and 900. Accordingly, the Ir gives a direct and comparable measure of structural

information, that is in the following chapter connected to the RMSD radius.

3.4.4 Correlation between I and structural precision

3.4.4.1 Data set minimization

Exemplary, the provided 2JQN distance restraint file has been used to minimize the orig-

inal data set as explained in chapter 3.3.4.5. Gradually, one distance restraint is removed

from the data set, I of the reduced data set is determined and a structure bundle is cal-

culated using CYANA. This procedure is repeated until the data set is diminished to one

restraint. In each cycle, the distance restraint with the most informative individual I or

in a second independent run the least informative individual I is withdrawn from the data

set. Thereby, the behavior of I can be monitored and linked to the structural precision,

i.e. RMSD radius. We used the individual information I(Ai|0) of restraints as an indicator

of non-relevant or relevant structural information.

Fig. 3.13 (a) shows the behavior of I upon removing the most informative restraints

first. The I value dropped exponentially, whereas the RMSD radius increased exponen-

tially and reached RMSD radius maximal values between 20–30 Å, which corresponds to

an elongated structure bundle as shown in Fig. 3.13 (a). The significant drop in Ir and

the considerable rise in RMSD radius can be explained by the fact, that when eliminating

the most informative restraints first, preferably long-range non-redundant restraints are

removed first. These restraints hold the most structural information because of the long-

range character and their unique information. Thereby, the structure bundle becomes

rapidly imprecise. With this procedure approximately 200 restraints can be removed and

the structure obtained is still reliable in terms of overall global fold (RMSD radius < 2 Å).

Ir has to be > 3 in this case.

Fig. 3.13 (b) illustrates the behavior of Ir upon least informative restraint withdrawal.
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Figure 3.13: Number of distance restraints vs Ir (red, left axis), and number of distance
restraints vs backbone RMSD (blue, right axis) using the example of 2JQN. Starting from the
original data set, the restraint with the highest I is removed from the data set. The reduced
data set is then used in Ir and structure calculation. Again, the most informative restraint is
withdrawn from the data set, Ir and structures are calculated again. This is repeated until
only a single restraint remains. The results are presented in (a). The same procedure was
performed on the least informative restraint, leading to (b). Structure bundles calculated are
linked to their accordant data set by blue lines. The gray line in both figures corresponds to a
RMSD radius of 2 Å.
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As can be seen, Ir remained stable over approximately 400 reduction steps. The RMSD

radius was also not affected by the removal of these restraints which are either highly

redundant restraints or short-range distance restraints. This underlines the high amount

of redundancy which is usually present in experimental NMR data sets (Doreleijers et

al., 2009). Additionally 600 more distance restraints were removed from the data set

without a significant drop in RMSD radius. The Ir however decreased by about 30%.

This loss in information can mainly be attributed to medium-range distance restraints,

which is illustrated in Fig. 3.13 (b) by the structure bundle corresponding to 200 distance

restraints. This structure bundle achieved the approximate globular fold correctly, but

secondary structural elements are rarely recognizable any more. As has already been

observed in the minimization procedure on the least informative restraints, an Ir > 3 is

necessary to achieve a precise structure bundle with a RMSD radius < 2.0 Å.

3.4.4.2 Sparse data

The complete protein data set was used to examine the characteristics of I upon random

data withdrawal. For each protein 0–90% of the original restraints were randomly deleted.

The deletion was performed 10 times for each percentage, using a different random seed.

The exact performance of this experiment is explained in chapter 3.3.4.6. The reduced

data sets were used to calculate Ir and the RMSD radius of the resulting structure bundle

from a subsequent structure calculation on the reduced data set using CYANA. Ir and

RMSD radius values are averaged over the 10 calculations and standard deviations are

determined. The missing distance restraints (in %) are plotted against the mean value

and the standard deviation of Ir and the RMSD radius, visualized in Fig. 3.14 using the

example of 2JQN. Ir was reduced with rising percentage of missing distance restraints.

Structure bundles presented in Fig. 3.14 refer to one of the 10 calculations, which can be

considered as representative for all calculations since the standard deviations are usually

relative low, except when deleting 80 or 90%. The conclusions that can be drawn from

Fig. 3.14 coincide with observations discussed in chapter 3.4.4.1 and presented in Fig. 3.13:

An Ir of approximately > 3 is necessary to obtain a structure bundle from the data set

with a precision < 2.0 Å.

Results achieved on the basis of the remaining proteins are present in Fig. 3.15. The

results obtained on the complete data set also coincide with previous observations. Gen-

erally, an Ir > 3 is necessary to obtain a structure bundle with a precision < 2.0 Å in a

subsequent structure calculation.
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Figure 3.14: Missing distance restraints in dependence of Ir (red) and RMSD radius (Å)
(blue) using the example of 2JQN. 10 to 90% of the distance restraint data set were deleted
randomly in steps of 10. Each deletion has been performed 10 times. For each of the ten
deletions of a specific percentage Ir and the RMSD radius of the structure bundle resulting from
a subsequent structure calculation with the reduced restraint data set as input are calculated.
Mean and standard deviation values are calculated from these ten calculations. The structure
bundles shown refer to one of the ten structure calculations performed. The gray dotted line
refers to an RMSD radius of 2 Å.

3.4.5 Computation time

The computation time of I depends on the size of the distance restraint files. A standard

information content estimation with a set of about 1100 restraints took about 2 s. An-

other distance restraint data set which included about 6100 distance restraints took 26 s.

Calculations have been performed on an standard desktop PC (Intel Core 2 Quad Q9400

processor).
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Figure 3.15: Missing distance restraints in dependence of Ir (red) and RMSD radius (Å)
(blue) using the complete data set. Subplots are labeled with the PDB code of the protein. 10
to 90% of the distance restraint data set were deleted randomly in steps of 10. Each deletion
has been performed 10 times. For each of the ten deletions of a specific percentage Ir and the
RMSD radius of the structure bundle resulting from a subsequent structure calculation with
the reduced restraint data set as input are calculated. Mean and standard deviation values are
calculated from these ten calculations. The gray dotted line refers to an RMSD radius of 2 Å.



Information content of NMR distance restraints 151

3.5 Conclusions

We introduced the information content I, a quantitative measure of structural information

contained in NMR distance restraints. I is straightforward and fast to calculate. The

calculation is performed completely automatic and does not require user input. However,

user input can be provided if desired (see chapter 3.6). Several intuitive characteristics of

I have been demonstrated:

1. The difference in structural information of varying restraint types has been presented,

i.e. long-range distance restraints carry the most structural information, whereas

short-range distance restraints contribute a significant lesser amount of information.

2. Structural equivalent restraints lead to an increase in restraint redundancy and an

individual restraint information loss, whereas the overall information of the data set

remains the same or is increased.

3. I depends on the upper and lower limit, i.e. I increases with a smaller available

conformational space, and decreases with a larger available conformational space.

We showed that the I value depends aside from the structural information on the

protein size. Therefore, we presented that Ir is an information content measure that is

independent from the size of the protein. The information content can be calculated on

the basis of a structure bundle or on the basis of the covalent geometry of the polypeptide

chain. We demonstrated that both calculation modes are in good agreement. Finally, we

presented that Ir can be correlated to the precision of a structure bundle that has been

determined on the basis of this data set. We showed that an Ir > 3 is needed in order to

obtain a structure bundle with an RMSD radius < 2 Å.

The information content calculation is implemented in CYANA but is also available

as a stand-alone program, CYINFO, and can be downloaded from our web server (http:

//tsushima/info.html). It is also possible to upload data (in XEASY format) directly

onto our server and get I and additional information on individual restraints instantly.

CYINFO does not include any structure calculation routines. If the structure dependent

calculation mode Is is desired a random structure has to be provided otherwise it is possible

to use the structure independent calculation mode Ia.

An extension of the information content to other types of structural restraints is con-

venient, e.g. torsion angle restraints, residual dipolar couplings, or pseudocontact shifts.

http://tsushima/info.html
http://tsushima/info.html
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The basic ideas of probability and redundancy can be directly transferred to other re-

straints. Further, it would be interesting to connect I to structure quality parameters and

investigate if a correlation is present.
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3.6 Implementation in CYANA

In the following literal CYANA input is written in bold and other input is written in

italics.

3.6.1 Command distances information

� method=string (default: angles)

method can either be angles or structure, referring to Ia and Is, respectively.

method=angles determines the information content on the basis of the covalent

geometry without using a three-dimensional structure as input. The calculation

mode structure uses an ensemble of random structures to determine the information

content.

� radius=real (optional)

The radius of gyration can either by specified by the user via radius or if not

specified it is calculated using the empirical relationship R = 2.2N0.38Å (Skolnick

et al., 1997), where N represents the number of residues, as explained in chapter

3.3.2.

� inforange=integer list (optional)

Ordered residue ranges can either be specified by the user or are calculated based on

residues which possess long-range structural information. A region can be specified

by the first and last residue number which are separated by ‘..’. Several ordered

regions are separated by ‘,’ (e.g. inforange=2..48,70..112).

� offset=real (optional, default=0.0) offset is a distance offset (Å) that can be sub-

tracted from ∆dij . offset values which are > 0.0 make the distance similarity

measure ∆dij less sensitive, whereas values < 0.0 make the measure more sensitive.

Higher offset values lead in general to higher redundancies and accordingly lower I

values. Lower offset values have the contrary effect.
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Chapter 4
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4.0 Contributions

This project is a collaboration with Dr. Alvar Gossert1 and co-workers (C. Henry and A.

Widmer), who were responsible for preparing protein and ligand samples, NMR measure-

ments, manual signal identification, and preparing manual protein and ligand chemical

shift assignments. Adjustments regarding the FLYA protocol to enable transfer of chem-

ical shifts have been performed by Dr. Elena Schmidt. Automated peak picking with

CYPICK, automated chemical shift assignment with the 1- and 2-step FLYA assignment

transfer protocol, and structure calculations on the complexes have been achieved within

this work.

1Institute for BioMedical Research, Novartis, Basel.
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4.1 Introduction

Structure-based drug design (SBDD) is a well-established strategy in the field of drug

discovery (Anderson, 2003). High-resolution structures of protein-ligand complexes ac-

celerate drug development in the pharmaceutical industry and medicinal chemistry. A

simplified flowchart of the iterative process is presented in Fig. 4.1. The first step is

cloning, purification and 3D structure determination of the protein (in the following called

target) by either X-ray crystallography, NMR or homology modeling (Anderson, 2003).

This is followed by a detailed analysis of potential binding sites and possible interactions

within the 3D structure and virtual docking of compounds from a data base against the

target. The compounds are then scored by their steric and electrostatic interactions. The

best of these compounds are synthesized, analyzed and the structure of the 3D complex

is determined. Analysis of the complex then reveals potential additional interactions in

the binding pocket and sites on the compound that can be optimized. Additional cycles

Figure 4.1: Simplified flowchart of the iterative process of structure-based drug design. The
3D target structure is determined and potential binding sites are analyzed. Compounds from
a database are then docked against the target using computer programs. The compounds
are ranked based on their interactions with the target. The best of these compounds are
synthesized and analyzed by biochemical assays. This is followed by structure determination
of the complex structure. Analysis of the complex structure reveals potential sides within
the ligand for optimization. The optimized compound then reenters the described process.
This iterative process can be repeated until a compound with desired affinity and specificity is
achieved.
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of synthesis of the optimized compound, structure determination of the new compound

target complex, and further optimization can be performed until an initial weak ligand

transforms into a potent drug-like molecule (Anderson, 2003).

At several stages in the SBDD process, visualized in Fig. 4.1, it is necessary to de-

termine a 3D protein or protein-compound structure. This can in principle be achieved

by NMR spectroscopy or X-ray crystallography. A contrasting juxtaposition of the ad-

vantages and disadvantages of the two methods has already been given in chapter 1.1.

However, SBDD is mainly performed by X-ray crystallography. Reasons for this are its

potential towards high-throughput, which is among other methodical aspects enabled by

molecular replacement (Evans & McCoy, 2008) (MR). MR is a standard procedure for

solving the phase problem and thereby solving structures by X-ray crystallography. As

the name implies MR needs a 3D structure model. The structure model can for example

be a mutant or a homologous structure of the target. In contrast to that, NMR is a low-

throughput method (discussed in more detail below) for which an efficient MR approach

is not available. Most recently a new method called NMR2 (Orts et al., 2016), has been

developed that aims at fulfilling the same task. This approach does not need a protein

chemical shift assignment. A homologous protein structure is needed as starting structure

in a CYANA structure calculation. Inter-molecular NOEs are of semi-ambiguous nature

because only the chemical shift assignment of the ligand is known. Calculated structures

which have the smallest violations are then used for protein-ligand complex representation.

The classical approach towards solving structures by NMR is to perform resonance

assignment, NOE assignment, and structure calculation. New ligands change the chemical

environment of the protein and induce chemical shift changes within the protein, especially

in the binding pocket, with respect to the apo-form or a differently ligated form of the

protein. Conformational changes of the protein that are induced by the ligand also affect

the chemical shifts for the same reason. Accordingly, the time-consuming steps of chemical

shift assignment and NOE assignment have to be performed more or less from scratch.

Consequently, NMR has so far not become a true alternative to X-ray crystallography in

high-throughput SBDD.

Nevertheless, X-ray crystallography has a few limitations. In some cases, it is not

possible to obtain a protein crystal or a protein-ligand co-crystal at all. The success of co-

crystallization depends on the binding affinity of the protein-ligand complex. The weaker a

ligand binds, the lower the probability of achieving a co-crystal. Weak ligands (KD > 100

µM) are common at the beginning of a SBDD project, especially in fragment-based drug
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design (Folkers et al., 2006). Additionally, crystal contacts may hindered the accessibility

for the ligand in the protein crystal. In modern drug discovery it is important to have an

alternative method for determining structures of protein-ligand complexes on a molecular

level.

In order to make NMR more accessible towards SBDD the following aspects have to

be considered: (i) the amount of isotope labeled protein needed for one protein-ligand

complex is rather large and should be reduced (20 mg for a 20 kDa protein), (ii) data

collection time should be reduced (> two weeks measurement time), and (iii) there is

no MR method in NMR, i.e. it takes nearly the same amount of time to determine a

structure of a protein with ligand-2 as it took to determine the structure of the same

protein with ligand-1. All these aspects are addressed in the development of the SBDD

by NMR protocol. The general strategy developed is explained in chapter 4.3.1.

Background of this work was to find novel inhibitors for the protein MDM4 (Wade &

Li, 2013) by fragment-based screening. MDM4 (sometimes called MDMX), is an adaptor

protein which specifically binds to the cancer suppressor protein p53 (Shvarts et al., 1996).

p53 is a human oncosuppressor gene and plays a central role in many cell functions. MDM4

regulates p53 activity. It has been observed that MDM4 is overexpressed in 10-20% of 800

very diverse tumors (Toledo & Wahl, 2006) leading to a massive reduction of p53 which

ultimately allows these cells to proliferate in an uncontrolled manner. Those findings sup-

ported the idea that MDM4 could be an interesting target in anticancer strategies (Toledo

& Wahl, 2007). It was possible to obtain co-crystal structures for several tight-binding

p53-analogous peptides (Kallen et al., 2009) and drugs like nutlin-3a (unpublished). How-

ever, for weak ligands, being present at the beginning of fragment-based drug design, no

crystal structures could be obtained so far. Several computer-assisted methods are avail-

able that can be used to obtain structural models of a protein-ligand complex. However,

these computer programs have their limitations and often fail to predict conformational

changes within the protein that could be induced upon ligand binding. Using experimental

data is therefore much more reliable than using computer predicted complex structures.

Consequently, NMR was used to obtain complex structures of MDM4 with weak binding

ligands. In order to make the process more efficient the SBDD by NMR strategy was

developed within this project which is explained in more detail in the following. To in-

vestigate the general applicability of the process, ligands with diverse properties in terms

of size (200 Da < MW < 1 kDa), affinity (200 nM < KD < 1 mM) and binding kinetics

(1 s−1 > koff < 104 s−1) were studied.



160

4.2 Materials and methods

4.2.1 Generation of reference assignment

The apo-form of MDM4 could not be used as reference assignment, because a lot of signals

were missing in the recorded spectra. Therefore, MDM4 was stabilized with peptide-1 (Ac-

Phe-Met-Aib-Pmp-Clw-Glu-Ac3c-Leu-NH2) (Kallen et al., 2009). For MDM4 in complex

with peptide-1 only a reference backbone assignment was available (Sanchez et al., 2010).

Hence, an automated chemical shift assignment by the standard FLYA protocol (Schmidt

& Güntert, 2012) was performed. The automated achieved chemical shift assignment was

manually checked an edited by Dr. Alvar Gossert and used in all subsequent calculations

as reference. As input for FLYA a HNCACB (Wittekind & Müller, 1993), a HCaliCaroH-

TOCSY (Kovacs & Gossert, 1987) and a Protein-Ligand NOESY (explained below) were

used. Automated resonance assignment by FLYA was performed using tolerances of

0.03 ppm for 1H and 0.4 ppm for 13C and 15N for chemical shift matching and comparison

with the manual refined reference resonance assignment. The reference assignment is

only used to evaluate the quality of the results. The population size of the evolutionary

algorithm was 200 in all cases. The chemical shift assignment was consolidated from 20

independent runs. Only assignments which could be reproduced in at least 80% of the 20

runs with an accuracy that deviated from the consensus values by less than the defined

tolerances was classified as ‘strong’, otherwise ‘weak’. The side-chain terminal amide

groups of arginine and lysine were excluded from the assignment calculations.

Within this study, aside from the MDM4-peptide-1 complex, we studied MDM4 in

complex with peptide-2, nutlin-3a and the fragment, as well as the apo-form of MDM4.

4.2.2 NMR measurements

The Protein-Ligand NOESY (explained in chapter 4.3.2) spectra were recorded by Dr.

Alvar Gossert on a Bruker AV800 spectrometer equipped with a TCI cryoprobe. Mea-

surements were performed at 23◦C. No folding of the indirect dimensions was applied and

the ligand signals were made to appear at 100 ppm in the 13C-dimension after referencing

against DSS. The measurement time was 57 hours.
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4.2.3 Peak picking

Manual peak lists were generated by semi-automatically picking the 15N-HSQC, the constant-

time 13C-HSQC and the 13C-detected HSQC spectra using CcpNmr Analysis (short CCPN)

(Skinner et al., 2016; Vranken et al., 2005). 2D HSQC peak lists were used as root res-

onances for picking the Protein-Ligand NOESY with ATNOS (Herrmann et al., 2002b).

Peak lists were manually edited in Cara (Keller, 2004) to remove artifacts and typically

about 30% additional signals were identified: mostly overlapping signals, signals with very

low intensity and signals close to the diagonal.

Fully automated peak picking was performed with CYPICK (Würz & Güntert, 2016),

by using default parameters (β=3.0 and γ=1.3, see chapter 2.2). The 15N, aliphatic, and

aromatic 13C regions were picked separately. Solvent regions were excluded from the peak

lists and Peakmatch (Buchner et al., 2013) was used to optimally match NOESY peak

lists to the HSQC peak lists. Tab. 4.1 gives an overview of the used picking parameters

and the spectral regions that were selected for automated peak picking.

Table 4.1: Spectral regions that were picked from the Protein-Ligand NOESY by CYPICK.
The regions are specified in ppm.

MDM4 in Peptide-1 Peptide-2 Nutlin-3a Fragment Apo-form

complex with

13Caliphatic 10.8-72.4 10.0-71.0 11.0-71.5 10.2-72.9 10.0-71.0

1HHSQC 0.4-5.6 -0.4-5.6 -0.4-5.7 -0.3-5.6 -0.3-5.6

13Caromatic 112.2-142.2 110.0-140.0 112.7-142.6 112.7-139.2 112.8-139.4

1HHSQC 5.1-7.8 5.0-7.8 5.0-7.8 5.0-7.8 6.2-7.7

15N 104.1-127.3 103.4-126.9 103.0-126.1 102.3-126.8 103.0-127.0

1HHSQC 6.2-10.1 6.0-10.1 6.4-4.9 6.4-10.1 6.5-10.0

13Caliphatic and 13Caromatic regions were picked with scale=0.05,0.1,1.0, 15N spectral regions were picked

with scale=0.06,0.1,0.6. The complete 1HNOE dimension was picked. In all cases only signals with positive

sign were analyzed.

The ligand plane was always picked manually due to the existence of many artifacts.

Ligand planes of the Protein-Ligand NOESY are visualized in appendix C Figs. C.1-C.3.

All NOESY peaks belonging to one MDM4 complex are picked from the same Protein-

Ligand NOESY spectrum. The peaks are separated into two peak lists, i.e. a 13C- and a

15N-NOESY peak list for chemical shift and NOE assignment.
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4.2.3.1 Peak list comparison

Peak list comparison was performed with the CYANA command peaks compare, ex-

plained in chapter 2.3.2. The manual picked peak lists served as a reference in the cal-

culation. Default parameters for width, distcut, and artifactweight were used. The

tolerance for peak matching was set to 0.03 in case of 1H and 0.4 in case of 13C and 15N.

4.2.4 FLYA assignment transfer

Automatic chemical shift assignment of the reference complex was performed with the

standard FLYA protocol (Schmidt & Güntert, 2012) as explained in chapter 4.2.1. A

simplified schematic of the FLYA algorithm is visualized in Fig. 4.2. FLYA generates a

network of expected peaks from the magnetization transfer pathways of the corresponding

experiment and the protein sequence. The position of the expected peaks is known approx-

imately e.g. from the Biological Magnetic Resonance Bank (BMRB) (Ulrich et al., 2008)

statistic mean, f(a), and standard deviation values, σ(a), of the atom a that corresponds

to the expected peak. The assignment process is reduced to finding a mapping between the

expected peaks and the observed peaks, provided in the form of a peak list (see Fig. 4.2).

The mapping procedure is scored and optimized by an evolutionary algorithm combined

with a local optimization. The algorithm is explained in detail in (Schmidt & Güntert,

2012).

Figure 4.2: Assignment strategy of the FLYA algorithm. A network of expected peaks
is deduced from the protein sequence and the underlying experimental specifications. The
expected peaks, whose position is only known approximately from the BMRB statistics for
example, are then mapped to the observed peaks. The mapping procedure is scored and
optimized by an evolutionary algorithm combined with a local optimization. Figure is taken
from (López-Méndez & Güntert, 2006).

In the developed assignment transfer protocol by FLYA the mean atom-specific chem-

ical shift value, f(a), usually taken from the BMRB, is replaced by the resonance as-
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signment of the reference structure which is in our application the assignment of MDM4

in complex with peptide-1. The above introduced standard deviation σ(a) that defines

the chemical shift range is taken from the corresponding atom-specific BMRB statistic.

However, we adjusted σ(a) by multiplying it with a factor α ≤ 1.

In the 1-step FLYA assignment transfer the chemical shift range of expected peaks is

determined from f(a) and α ·σ(a), where f(a) equals the chemical shift assignment of the

reference complex, σ(a) refers to the atom-specific BMRB standard deviation, and α =

0.5. The value for α was found empirically as explained below. In the 1-step protocol

expected NOESY peaks are generated on the basis of random structures, i.e. connectivity

patterns are only obtained for short-range NOEs.

We also established a two-step assignment transfer protocol by FLYA (referred to as

2-step protocol). In the first step of this assignment protocol expected peaks are generated

from an available reference structure. In our application a structure of MDM4 in complex

with peptide-1. The expected NOESY peaks are determined for 1H-1H distances up to

6 Å that could be observed in all individual structures from the structure bundle. The

probabilities of expected NOESY peaks were set to 0.9 to 0.5 in steps of 0.1 for 1H-1H

distances of 4.0-6.0 Å in steps of 0.5 Å, respectively. The chemical shift range of the

corresponding atoms was determined by f(a) and α ·σ(a), where f(a) equals the chemical

shift assignment of the reference complex, σ(a) refers to the atom-specific BMRB standard

deviation, and α = 0.1. Assignments that were classified as ‘strong’ in the first step are

kept fixed in the second step. The second step is otherwise equal to the 1-step protocol,

i.e. f(a) equals the chemical shift assignment of the reference complex, σ(a) refers to the

atom-specific BMRB standard deviation, and α = 0.5. Expected peaks are generated on

the basis of a random structures. The 2-step protocol aims at identifying atom assignments

that do not differ significantly from the reference assignment in the first step and keeping

them fixed in the second step. Whereas, the second step strives for finding assignments

that change considerable with respect to the reference assignment.

As input for the 1- and 2-step FLYA assignment transfer protocol we used 13C- and

15N-NOESY and -HSQC peak lists, the protein sequence, the reference chemical shift

assignment, and in case of the two step protocol the reference structure. In both protocols,

tolerances for chemical shift matching and comparison with a reference assignment, if at

hand, were set to 0.03 ppm in case of 1H and 0.4 ppm in case of 13C and 15N. The

reference assignment is only used to evaluate the quality of the results. The population

size of the evolutionary algorithm was 200 in all cases. Chemical shift assignments were
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consolidated from 20 independent runs. Only assignments which could be reproduced in

at least 80% of the 20 runs with an accuracy that deviated from the consensus values

by less than the defined tolerances was classified as ‘strong’, otherwise ‘weak’. The side-

chain terminal amide groups of arginine and lysine were excluded from the assignment

calculations. Examples and explanations of the exact usage of the FLYA assignment

transfer protocol are given in chapter 4.5.

4.2.5 Generation of CYANA library entries

For non-standard amino acids and organic compounds, library files for CYANA (Yilmaz

& Güntert, 2015) being consistent with the covalent geometry of the Amber force field

(Cornell et al., 1995) were generated with the program Wit!P, using PDB files as input.

4.2.6 CYANA calculations

Structure calculations were performed by CYANA (Güntert et al., 1997; Güntert & Buch-

ner, 2015) using the recently introduced consensus structure bundle method (Buchner &

Güntert, 2015a). Based on twenty individual structure calculations a consensus distance

restraint set is generated, which is used for a final consensus structure calculation. The

twenty conformers of the final consensus structure calculation with the lowest CYANA

target function were selected for representation of the consensus NMR structure bundle.

The input consisted of a sequence file, containing protein and ligand sequence, Wit!P

library files were appended to the standard library, and if needed, restraints for correct

closure of aliphatic rings were generated with the Wit!P CYANA macro and included in

the calculation. The 13C- and 15N-NOESY peak lists that were also used for generating

resonance assignments by FLYA, were used in structure calculation. Additionally intra-

molecular and inter-molecular peak lists were manually prepared for the ligand and used

in the calculation. Intra-molecular ligand and inter-molecular protein-ligand peaks can be

distinguished from one another by the presence and absence of diagonal-symmetric peaks,

respectively (explained below). Inter-molecular peaks from small ligands often do not ob-

tain enough weight in the network anchoring procedure of automated NOE assignment

and sometimes are treated as artifacts by the algorithm. The automated NOE assignment

strategy of CYANA is explained in detail in chapter 1.2.3. Therefore, a set of clearly

visible inter-molecular NOE cross peaks (visualized in appendix C Figs. C.1-C.3) were

defined as true signals, i.e. they have to be assigned by the algorithm and fulfilled in
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structure calculation (CYANA command assign noartifact). In this way, there is no

user bias, that is, no assignment is explicitly defined for these signals by the user, but the

algorithm is not allowed to ignore the signals.

The quality of structure calculation was exclusively evaluated on the basis of RMSD

bias (Güntert et al., 1998). Structures were first superimposed within their ordered re-

gions which were either determined by CYRANGE (Kirchner & Güntert, 2011). Then

the average structure is obtained by averaging the coordinates of the atoms in the super-

imposed conformers in the structure bundle. The backbone RMSD between the average

given structure and the reference mean structure yields the RMSD bias. The precision

of calculated structure bundles is expressed by the RMSD radius (Güntert et al., 1998),

i.e. the average RMSD between individual conformers and the mean coordinates of the

structure.
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4.3 Results and discussion

4.3.1 Strategy for enabling SBDD

The high-throughput strategy developed for solving structures of protein-ligand complexes

starts with carefully determining reference assignments of the protein by the classical ap-

proach. The chemical shift information is then used to guide the automated assignment of

all subsequent protein-ligand complexes. Reference assignments can be established on the

apo-protein or on a well-behaved complex with a ligand. For subsequent protein-ligand

complexes a single sample is prepared and only one Protein-Ligand NOESY (see chapter

Figure 4.3: Strategy for enabling SBDD by NMR. The serial process of determining complex
structures of a target protein and several ligands (orange boxes) is depicted. The reference
protein assignment, which is usually obtained manually, is used in the assignment process
of each individual complex. First, the Protein-Ligand NOESY is recorded. Second, peaks
are picked manually or automatically by CYPICK for example. Third, the peak lists are
used as input in the FLYA assignment transfer protocol together with the reference protein
assignment, ligand peaks can optionally also be included. The FLYA assignment transfer
protocol produces protein assignment and ligand assignments of peptide ligands. Fourth,
these assignments can be used in structure calculation together with the protein and ligand
NOESY peak lists using CYANA. The figure was adapted from (Gossert et al., 2016).
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4.3.2) spectrum is recorded. Assignments are automatically obtained by the FLYA assign-

ment transfer using the reference assignment as additional input. Structure-based drug

design by NMR was enabled by two main developments: The ‘Protein-Ligand NOESY’

explained in chapter 4.3.2, a more efficient way of recording all necessary NOESY spectra

in one single spectrum, and the ‘FLYA assignment transfer’ explained in chapters 4.2.4

and 4.3.3, an automated way of assigning spectra of the target protein in complex with

different ligands based only on NOESY data from the Protein-Ligand NOESY spectrum.

4.3.2 The Protein-Ligand NOESY

The Protein-Ligand NOESY was exclusively developed by Dr. Alvar Gossert and co-

workers. Main principles are visualized in Fig. 4.4. The Protein-Ligand NOESY is a

combined 3D HSQC-NOESY, which includes all signals necessary for the structure deter-

mination of a uniformly 13C and 15N labeled protein and an unlabeled ligand. Usually

this task would need the recording of five NOESY spectra, i.e. (i) 15N-edited 3D NOESY,

(ii) 13Caliphatic-edited 3D NOESY, (iii) 13Caromatic-edited 3D NOESY ((i)-(iii) are needed

to obtain intra-molecular protein NOEs), (iv) 15N/13C-filtered, 15N/13C-filtered NOESY

(for intra-molecular ligand NOEs), (v) 15N/13C-edited, 15N/13C-filtered NOESY (for inter-

molecular protein and ligand NOEs). 15N-edited 1H signals, aliphatic and aromatic 13C-

edited 1H signals are integrated in one NOESY experiment as explained in (Boelens et al.,

1994). The inter-molecular and intra-molecular signals of the ligand are recorded by using

a modified time-proportional phase incrementation (TPPI) procedure on the unlabeled

ligand signals (States et al., 1982; Marion & Wüthrich, 1983; Bodenhausen et al., 1983;

Keeler & Neuhaus, 1985). TPPI allows the unlabeled signals to appear at an arbitrarily

chosen position in the combined 15N/13C dimension. It is advisable to select a region for

the ligand plane where no natural protein signals occur in order to reduce ambiguity. In

our application the ligand signals were shifted to an artificial 13C shift of 100 ppm, which

corresponds to an 15N shift of 126 ppm.

The Protein-Ligand NOESY is an HSQC-NOESY and not a standard NOESY-HSQC

spectrum (Mishra et al., 2014). In a 3D NOESY experiment, one has two indirect dimen-

sions with lower resolution and one direct dimension with higher resolution. Two nuclei

give rise to an NOE, that is a sending and a receiving nucleus. The sending nucleus can be

described by two chemical shifts (13C and 1HHSQC). The receiving nucleus however can

only be described by one chemical shift (1HNOE). Therefore, the 1HNOE dimension was

chosen to be recorded with the highest possible resolution. The sending nucleus obtains a
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lower resolution which in turn can be compensated by the second chemical shift.

Technical details of this procedure will be explained in a future publication by Dr. Al-

var Gossert and co-workers. The full parameter set, including pulse program and detailed

description of how to set up the experiment has been deposited in the Bruker user library

(https://www.bruker.com/service/information-communication/nmr-pulse-program\

discretionary{-}{}{}lib/bruker-user-library.html).

Figure 4.4: Schematic representation of the Protein-Ligand NOESY. On the left, the X-1H
HSQC projection is visualized, specifying the aromatic and aliphatic 13C region and the 15N
region. The ligand plane is indicated by the yellow rectangle and the 1H-1H ligand plane is
presented on the right side. Inter-molecular and intra-ligand examples are depicted.

4.3.3 FLYA assignment transfer

A detailed explanation of the strategy for enabling the automated chemical shift assign-

ment transfer by FLYA is given in chapter 4.2.4. As noted above, the FLYA assignment

transfer uses as input the protein sequence, the Protein-Ligand NOESY peak lists together

with the reference chemical shifts. In general, resonance assignments are less reliable when

only deduced from NOESY spectra (Ikeya et al., 2011; Schmidt & Güntert, 2013a). There-

fore, the loss in information can be compensated by adding chemical shift information from

a reference complex or the apo-form of the protein. We observed that the complex chemical

https://www.bruker.com/service/information-communication/nmr-pulse-program\discretionary {-}{}{}lib/bruker-user-library.html
https://www.bruker.com/service/information-communication/nmr-pulse-program\discretionary {-}{}{}lib/bruker-user-library.html
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shifts did not change dramatically with varying ligands in case of MDM4. Approximately,

50% of the resonances remained at the same position while others did not change by more

than 1 ppm in the 1H dimension. The reference chemical shift assignment replaces the

BMRB statistic in the algorithm which is used to estimate expected peak positions, f(a).

As explained above, we developed a 1-step and a 2-step assignment transfer protocol.

In both protocols the chemical shift range for expected peaks is determined from the

standard deviation of the BMRB, σ(a), belonging to the corresponding atom a and the

provided reference assignment, f(a). In order to achieve the best possible assignment of

the new complex we had to optimize the allowed chemical shift range of an expected peak,

i.e. the multiplication factor α for σ(a). We therefore extensively tested values between

0.05 and 1.0 for α. Best results could be achieved with 0.5 · σ(a). Higher values made

the obtained assignment too independent from the reference chemical shift assignment,

whereas lower values did not allow sufficient deviations in the chemical shift assignment,

which can for example be attributed to conformational changes upon varying ligands. In

the first step of the 2-step protocol we used α = 0.1 because we wanted to reduce the

chemical shift range as far as possible and obtain only assignment that did not change

significantly with respect to the reference assignment.

4.3.4 Application to a diverse set of protein-ligand complexes

In order to demonstrate the range of application of the SBDD by NMR method a diverse

set of ligands was chosen: MDM4 in complex with peptide-1 was used as the reference in

the FLYA assignment transfer protocol (Kallen et al., 2009). The complexes consisted of

MDM4 with: peptide-2, a ligand that is chemically very similar to peptide-1; nutlin-3a, a

drug-like compound; a fragment that is typical for the beginning of a SBDD project; and

the apo-form which exhibits considerably more flexibility.

The diversity of this test set is expressed in terms of affinity and chemical diversity.

Some of the ligands are tight binding compounds, i.e. peptide-2 and nutlin-3a with KD <

1 µM, and a weak binding small compound, i.e. the fragment with KD > 100 µM. Tight

binding compounds bind in the slow exchange regime which implies that two distinct free

and bound states of protein and ligand can be observed on the spectrum. Weak binding

compounds bind in the fast exchange regime, meaning that an average between free and

bound state can be observed. The SBDD by NMR method needs to work in both cases and

should be able to cope with complications arising from both cases. The chemical diversity

is expressed by choosing ligands that are similar to the reference ligand and others that
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(a) peptide-1 vs. peptide-2 (b) peptide-1 vs. nutline-3a

(c) peptide-1 vs. fragment (d) peptide-1 vs. apo form

Figure 4.5: Demonstration of chemical shift changes that are induced by chemically equal or
diverse ligands with respect to the reference complex, using the example of the 15N-HSQC: (a)
peptide-1 and peptide-2 are chemically very similar and accordingly the chemical shift changes
induced are very small; (b),(c) nutlin-3a and the fragment are chemically rather diverse with
respect to peptide-1, as a result chemical shift changes induced are rather large; (d) the
apo-form of MDM4 is rather unstable and accordingly many chemical shifts are missing while
others are shifted with respect to peptide-1. Spectral overlays were kindly provided by Dr.
Alvar Gossert.

vary extremely. The consequence of the chemical diversity are the chemical shift changes

that are induced on the NMR spectrum with respect to the reference complex. Peptide-2

induces only small changes, whereas the other ligands and the apo-state lead to rather

severe changes in the spectrum. The changes induced are visualized in Fig. 4.5, using the

example of a 15N-HSQC spectrum.
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4.3.4.1 Automated peak picking of the Protein-Ligand NOESY with CY-

PICK

In order to reduce spectral analysis time we picked the Protein-Ligand NOESY auto-

matically using CYPICK (Würz & Güntert, 2016) (explained in detail in chapter 2),

and compared automated assignment and structure calculation results in-between man-

ual established and automatically picked CYPICK results. The main focus was laid on

judging whether is is useful to thoroughly prepare manual peak lists or use automatically

determined peak lists for high-throughput analysis.

Automated CYPICK peak lists are compared to manual peak lists by means of find,

artifact, and overall scores (explained in chapter 2.3.2) summarized in Tab. 4.2. Manual

peak lists served as reference peak list.

Table 4.2: Comparison of CYPICK scores with respect to manual peak lists

MDM4 in complex with 13C-NOESY scores (%) 15N-NOESY scores (%)
Find Artifact Overall Find Artifact Overall

Peptide-1 80.3 47.4 65.8 81.1 38.6 70.9
Peptide-2 76.9 44.2 64.7 75.0 34.5 67.1
Nutlin-3a 68.4 29.8 62.6 71.5 35.2 63.8
Fragment 60.7 27.5 56.1 66.2 17.6 63.4
Apo-form 39.4 36.7 34.9 41.7 53.9 31.9

Excluding peak picking results achieved on the Protein-Ligand NOESY of the apo-

form, CYPICK peak lists obtained overall scores in the range of 56–71%. The spectrum

of the apo-form is picked with significantly lower overall scores in the range of 32–35%.

One reason therefore might be that the apo-form behaves more flexible than the ligand-

bound forms of the protein. The flexibility may lead to a loss in signals or signals with

severely lower sensitivity that can only be obtained by manual inspection of the spectrum.

Find scores of peptide-1 are highest with > 80% what can be explained by the high quality

of the Protein-Ligand NOESY for this complex, which is the main reason it was chosen to

serve as reference complex in this study.

4.3.4.2 FLYA assignment transfer of MDM4

The FLYA assignment transfer step is the crucial step in the process of SBDD. Therefore,

samples were optimized to create the best possible experimental conditions. In all samples,

ligand was added in great excess to saturate MDM4. For all samples only one set of protein

signals could be observed, where the fragment, binding in fast exchange, yielded a single

set of averaged signals.
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The ligand can either be assigned manually or automatically by FLYA, if the ligand

is peptide-based, providing the assignment of the free ligand and peak lists of the bound

ligand from the Protein-Ligand NOESY. The protein and ligand resonance assignment can

then be used in structure calculation. In our study ligand assignments were exclusively

obtained manually.

Results achieved by the 1- and 2-step FLYA assignment transfer for the individual

complexes are summarized in Tab. 4.3. In general, assignments obtained from the 2-step

FLYA assignment transfer are more accurate in terms of percent correct assignments and

absolute number of strong assignment compared to the 1-step protocol assignments.

Assignments from peptide-1 were achieved by a standard FLYA protocol since these

shifts were used for transfer to other complexes. Peptide-1 was assigned with an accuracy

of 88-89% by the standard FLYA protocol. Comparison was performed with respect to

a manual assignment with an overall completeness of 75.3%. CYPICK and manual peak

lists achieved very similar values in 1-step and 2-step FLYA assignment protocol, with

respect to percentage correct assignments and number of strong assignments.

Peptide-2 was assigned with an accuracy of 85% and 91–95% with the 1-step and 2-

step protocol, respectively, using a manual assignment. In case of peptide-2 the usage of

a known structure had the highest impact within this data set.

For nutlin-3a the reference assignment included only N and HN shifts, accordingly

the percentage of correct assignments corresponds only to these atoms. Using the 1-step

protocol 82–86% of these shifts were assigned. Chemical shift assignments obtained in the

1-step protocol by manual peak lists and CYPICK peak lists showed an agreement of

more than 80%.

For the fragment assignments achieved by the 1-step and 2-step protocol with manual

and CYPICK peak lists showed similar assignment correctness with respect to a manual

chemical shift assignment (75% completeness). Approximately 78% were correctly assigned

when using the 1-step protocol, whereas approximately 83% were correctly assigned when

using the 2-step protocol. Assignments achieved on the basis of manual and CYPICK

peak lists also showed a high percentage of consistency, which is reflected in a resonance

assignment correspondence of ∼ 90% in case of the 1-step protocol.

Summarized, assignments achieved on the basis of manual and automatically obtained

peak lists by CYPICK lead to protein resonance assignments that show a high degree of

correspondence and correctness with respect to the reference chemical shift assignment.

In general, the knowledge of a structure improves the correctness of resonance assign-
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Table 4.3: Results of the FLYA assignment transfer

MDM4 in Manual peak lists CYPICK peak lists
complex with precentage of correct assignments precentage of correct assignments

(number of strong assignments) (number of strong assignments)
1-step 2-step 1-step 2-step

Peptide-1a 88.5 (914) - 87.5 (920) -
Peptide-2b 84.5 (908) 95.0 (1032) 84.7 (881) 91.4 (990)
Nutlin-3ac 82.2 (895) 90.7 (976) 85.6 (846) 90.7 (965)
Fragmentd 78.6 (904) 83.1 (977) 77.0 (882) 82.3 (962)
Apo-forme 52.9 (785) 57.3 (918) 50.0 (663) 57.3 (902)

a reference assignment is a manual assignment of MDM4 in complex with peptide-1 (75.3% completeness);
peptide-1 was assigned with a standard FLYA protocol
b reference assignment is a manual assignment of MDM4 in complex with peptide-2 (75.1% completeness)
c reference assignment includes only backbone N and HN shifts (9.7% completeness)
d reference assignment is a manual assignment of MDM4 in complex with fragment (75.0% completeness)
e reference assignment includes only backbone N,HN,Cα, and Cβ shifts (23.3% completeness)

ments significantly in case of peptide-2 (improvement of ∼ 10%), which exhibits a very

similar complex structure as peptide-1, and considerable improvements in case of the frag-

ment and nutlin-3a (improvement of ∼ 5%), where the complex structures deviate with a

higher degree from the reference complex structure. The actual correctness of the nutlin-

3a assignment is difficult to predict since no complete reference assignment is available.

Nutlin-3a showed the lowest correspondence in chemical shift assignment from manual and

CYPICK peak lists.

4.3.4.3 Structure calculation results

Chemical shift assignments obtained from the FLYA assignment transfer were then used in

structure calculation together with peak lists from the Protein-Ligand NOESY. Structure

calculation statistics of MDM4 complexes determined by the SBDD by NMR protocol

are summarized in Tab. 4.4. The information content, I, (see chapter 3) of the distance

restraints files that were used for the final consensus structure calculation is summarized

in Tab. 4.5. The fragment is a classified compound, therefore structure calculations on the

MDM4-fragment complex could not be performed within this work.

Structures achieved from manual peak lists, with the exception of the apo-form, can

be characterized by a high precision which is reflected in RMSD radius values < 1.2 Å.

MDM4 in complex with peptide-1 structures were calculated from the manual reference

assignment using either manual peak lists or CYPICK peak lists. Structure bundles from

the consensus structure bundle calculation are presented in Fig. 4.6 (a) and (b). The

calculations from manual and CYPICK results show similar results in terms of RMSD

bias and radius. The information contents of the distance restraint data sets were also

very similar.
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Table 4.4: Structure calculation results of the complexes in terms of RMSD bias and RMSD
radius (Å). Structure calculation has been performed with CYANA as explained.

MDM4 in Manual peak lists CYPICK peak lists
complex with 1-step 2-step 1-step 2-step

RMSD bias (Å) RMSD bias (Å) RMSD bias (Å) RMSD bias (Å)
(RMSD radius) (RMSD radius) (RMSD radius) (RMSD radius)

Peptide-1a 1.58 (1.02) - 1.67 (0.86) -
Peptide-2b 1.52 (1.15) 1.78 (0.82) 1.21 (1.01) 1.28 (1.00)
Nutlin-3ac 1.72 (0.91) 1.89 (0.80) 3.30 (1.74) 2.48 (0.80)
Apo-formd 3.39 (1.81) 4.47 (2.18) 6.02 (7.74) 5.40 (2.66)

a,b RMSD bias is calculated with respect to 3FEA residue ranges: 28–102; RMSD radius residue ranges: 28–102
and 133–140;
aStructure calculation was performed on the basis of a reference chemical shift assignment and the usage of
either manual peak lists or CYPICK peak lists.
c RMSD bias is calculated with respect to 4HG7 residue ranges: 26–108; RMSD radius residue ranges: 26–108
and 130.
d RMSD bias is calculated with respect to 4HG7 residue ranges: 28–102; RMSD radius residue ranges: 28–102.

Table 4.5: Information content of the distance restraints achieved from the consensus struc-
ture calculation.

MDM4 in Manual peak lists CYPICK peak lists
complex with 1-step 2-step 1-step 2-step

I (Ir) I (Ir) I (Ir) I (Ir)
Peptide-1 274.94 (4.58) - 274.84 (4.58) -
Peptide-2 204.72 (3.42) 231.22 (3.85) 228.11 (3.80) 233.94 (3.90)
Nutlin-3a 248.43 (4.14) 276.61 (4.61) 169.22 (2.82) 253.18 (4.22)
Apo-form 99.95 (1.67) 116.04 (1.93) 64.4 (1.07) 91.49 (1.52)

Information content calculation was performed with RG =14.3 Å.

(a) (b)

Figure 4.6: Visualization of MDM4 in complex with peptide-1 structure bundles: (a) calcu-
lated from the manual chemical shift assignment and manual NOESY peak lists; (b) calculated
from the manual chemical shift assignment and CYPICK peak lists. MDM4 is visualized in
gray and peptide-1 in orange.

Structure calculations of MDM4 in complex with peptide-2 were characterized by a

high precision of approximately 1.00 Å. The RMSD bias of these calculations with respect

to the reference X-ray structure (PDB code 3FEA) is < 1.80 Å. Structure bundles of
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(a) (b)

(c) (d)

Figure 4.7: Structure bundles of MDM4 in complex with peptide-2: (a) calculated from
an automated assignment by 2-step protocol and manual peak lists; (b) calculated from an
automated assignment by 2-step protocol and manual peak lists and CYICK; (c) inter-
molecular distance restraints of the structure presented in (a); (d) inter-molecular distance
restraints of the structure presented in (b). MDM4 is visualized in gray, peptide-2 in orange,
and distance restraints are depicted in red.

MDM4 in complex with peptide-2 are visualized in Fig. 4.7 (a) and (b), using the 2-step

assignment protocol in both cases and manual and CYPICK peak lists, respectively. The

consensus structure bundle was selected for representation. The assigned inter-molecular

distance restraints are depicted in Fig. 4.7 (c) and (d), for a structure calculation from

the 2-step assignment protocol using manual and CYPICK peak lists, respectively. The

information content values of the distance restraint files are also in similar ranges, however

slightly lower as those from the MDM4-peptide-1 complex. However, Ir is > 3.0, which was

presented before as a threshold value for obtaining a reliable structure bundle. Differences

in the RMSD radius values can be explained by the differences in the I values. When
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(a) (b)

(c) (d)

Figure 4.8: Structure bundles of MDM4 in complex with nutlin-3a: (a) calculated from
an automated assignment by 2-step protocol and manual peak lists; (b) calculated from an
automated assignment by 2-step protocol and manual peak lists and CYICK; (c) inter-
molecular distance restraints of the structure presented in (a); (d) inter-molecular distance
restraints of the structure presented in (b). MDM4 is visualized in gray, nutlin-3a in orange,
and distance restraints are depicted in red.

comparing the structure bundles depicted in Fig. 4.7 (a) and (b), the difference in precision

of the ligand can be noticed. The position of the ligand is more precise when calculating

from manual peak lists compared to CYPICK peak lists. Peptide-1 is also less buried in

the binding pocket when using CYPICK peak lists. Also the network of inter-molecular

distance restraints is more dense when using manual peak lists compared to CYPICK

peak lists. CYPICK peak lists probably lack too many real long-range signals which

affects the position of peptide-1. The chemical shift assignments obtained before were

very similar for the two cases and can consequently not be responsible for the differences

in the resulting complex structures.
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(a) (b)

Figure 4.9: Structure bundles of the MDM4 apo-form: (a) calculated from an automated
assignment by 1-step protocol and manual peak lists; (b) calculated from an automated as-
signment by 1-step protocol and manual peak lists and CYICK.

The structure calculation of the MDM4-nutlin-3a complex was characterized by RMSD

radius values < 1.0 Å and RMSD bias values of approximately 1.8 Å when using man-

ual peak lists. Results achieved through CYPICK peak lists are less reliable then those

achieved with manual peak lists, i.e. RMSD radius values ranged from 0.80-1.73Å and

RMSD bias values ranged from 2.48-3.30 Å, when using assignments from the 2-step and

1-step protocol, respectively. Ir values support the RMSD radius values. Structure bun-

dles of MDM4 in complex with nutlin-3a achieved from the 2-step protocol assignment

using the manual and CYPICK peak lists are depicted in Fig. 4.8 (a) and (b), respec-

tively. Fig. 4.8 (c) and (d) shows the inter-molecular assigned distance restraints from

the calculation of the structures presented in (a) and (b), respectively. Structure cal-

culations of the MDM4-nutlin-3a complex were in general more complicated than the

peptide-2 calculation. Nutlin-3a was in many calculations not attached to the binding

pocket of MDM4. Therefore, four inter-molecular distance restraints were defined and

used in the structure calculation of the complex. Nevertheless, the position of nutlin-3a

was still rather imprecise. The ligand was flipped in many cases by 180°, especially when

using CYPICK peak lists. Generally, the position of nutlin-3a became more defined when

using manual peak lists. Also the distance restraint network is more dense when compared

to the calculation with CYPICK peak lists. The reason for the imprecision of nutlin-3a is

not completely clear. The chemical shift assignment could be responsible for the resulting

imprecise complex structure.
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Structure calculation of apo-MDM4 was in general performed with a much lower pre-

cision, i.e. ranging from 1.8–7.7 Å. The RMSD bias ranged from 3.4–6.0 Å. The accordant

structure bundles achieved from assignments of the 2-step protocol are depicted in Fig.

4.9 (a) and (b), using manual and CYPICK peak lists, respectively. Apo-MDM4 was

not selected as reference assignment within this study because of the absence of many

signals and the unstable structure. As can be seed from Fig. 4.9 the coordinates of the

atoms are rather uncertain. Especially, the C-terminal helix is rather flexible. However,

automated peak picking by CYPICK was performed poorly. In this case the uncertainty

in the structure could also be retraced to the missing signals in the CYPICK peak lists.
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4.4 Conclusions

In this chapter a new method to allow SBDD by NMR in a high-throughput manner

comparable to X-ray crystallography has been presented. Major developments were: (i)

the Protein-Ligand NOESY which allows recording all data necessary for assignment and

structure calculation of a protein-ligand complex within a couple of hours, and (ii) the

FLYA assignment transfer which guides the automatic assignment of a new complex

structure based on a known structure (complex or apo). With these two developments

the measurement time for obtaining the necessary data was significantly reduced and the

time spend on spectral analysis and obtaining a complete chemical shift assignment was

also reduced significantly.

The FLYA assignment transfer led to correct chemical shift assignments with respect

to manual resonance assignment if available. Differences in chemical shift assignment

obtained with manual and CYPICK peak list are negligible in most cases. The 2-step

assignment protocol however brought some improvement in all studied examples. In case

of nutlin-3a however, the chemical shift assignment is rather uncertain. In this case no

complete manual assignment was available for comparison. Nutlin-3a has further proven

itself to be difficult in structure calculation, also when using manually picked NOESY

peak lists and when adding structural information in the form of a set of manual assigned

inter-molecular distance restraints. The remaining structure calculations were performed

well and their was no need for explicitly defining inter-molecular NOEs. Structure bundles

achieved on the basis of manual peak lists were superior to those obtained from CYPICK

peak lists. Manual refinement of automatically picked peak lists has proven itself worth-

while within this study. The performance of the SBDD by NMR protocol can probably

be improved when adding additional information for chemical shift assignment, i.e. the

measurement of one additional triple-resonance spectrum or one spectrum which gives

information on side-chain assignments.

SBDD by NMR has some additional limitations which are equal to conventional NMR

methods: One has to obtain a uniformly isotope labeled protein which should have a size

below ∼ 30 kDa (in case of non-symmetric proteins). The ligand plane can quickly suffer

from crowding of signals, depending on the chemical composition of the ligand. Ligands

up to 1–2 kDa could in general be analyzed in this study.
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4.5 Usage of the FLYA assignment transfer protocol

in CYANA

In the following literal CYANA input is written in bold and other input is written in

italics. CYANA macros are recognizable by the suffix .cya. Example macros are written

in typewritterfont.

4.5.1 FLYA parameters

� shiftref=string (optional)

Name of the reference chemical shift list for comparison with FLYA results. Has to

be provided in XEASY format.

� shiftassign statistic=string (optional, default bmrb)

Name of the chemical shift statistic that is used for estimating the chemical shift

position of the expected peaks, f(a). In the FLYA assignment transfer protocol the

name of the chemical shift file to be used as statistic can be specified.

� shiftassign iterations=integer (optional, default 15000)

Number of local iterations for improving assignments.

� shiftassign population=integer (optional, default 50)

Population size of the evolutionary algorithm.

� shiftassign sdfac=real (optional, default 1.0)

Multiplication factor α for the atom-specific chemical shift standard deviation from

the BMRB statistics, σ(a).

� shiftassign fix=string (optional)

A chemical shift list can be defined which includes shifts that are kept fixed during

automated chemical shift assignment (Only relevant for the 2-step FLYA assignment

transfer).

4.5.2 FLYA macros

� 1-step FLYA assignment transfer

The 1-step FLYA assignment transfer protocol is described in chapter 4.2.4. Ex-

pected peak positions are derived from the reference chemical shift assignment, which
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is referred to as stat.prot in the following example. The chemical shift range is

determined from the chemical shift value in the reference assignment, f(a), and a

fraction of the atom-specific standard deviation specified in the BMRB, α · σ(a).

The fraction of the standard deviation can be specified via shiftassign sdfac. We

used the factor 0.5 in the 1-step protocol, which we found empirically.

tolerance:=0.02,0.03,0.4

aspeaks:=15NHSQC,13CHSQC,15NNOESY,13CNOESY

read seq protein.seq

shiftref:=reference.prot

shiftassign_statistics:=stat.prot

shiftassign_iterations:=15000

shiftassign_population:=200

shiftassign_sdfac:=0.5

command select atoms

select atoms "* - CZ ?H* @ARG - ?Z @LYA"

end

flya runs=20 shiftreference=$shiftref stages=0 assignpeaks=$aspeaks

� 2-step FLYA assignment transfer

The 2-step FLYA assignment transfer protocol is described in chapter 4.2.4. In the

first step expected peaks are derived from a reference structure in the following

example named ref.pdb. The position of the expected peaks is determined from

the reference chemical shift assignment, which is referred to as stat.prot in the

following example. The chemical shift range is determined from the chemical shift

value in the reference assignment, f(a), and a fraction of the atom-specific standard

deviation specified in the BMRB, α · σ(a). The fraction of the standard deviation

can be specified via shiftassign sdfac. We used the factor 0.1 in the first step of

the 2-step protocol. The second step of the 2-step protocol is equal to the 1-step

protocol, expected peaks are generated from a random structure, the chemical shift

range of the atoms linked to the expected peaks is determined via the reference

chemical shift assignment and 0.5-fold the standard deviation from the BMRB of

the accordant atom.
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tolerance:=0.02,0.03,0.4

aspeaks:=15NHSQC,13CHSQC,15NNOESY,13CNOESY

read seq protein.seq

shiftref:=reference.prot

shiftassign_statistics:=stat.prot

shiftassign_iterations:=15000

shiftassign_population:=200

command select atoms

select atoms "* - CZ ?H* @ARG - ?Z @LYA"

end

#------------------------------------Flya run 01------------------------------------#

shiftassign_sdfac:=0.1

flya runs=20 shiftreference=$shiftref stages=0 assignpeaks=$aspeaks structure=ref.pdb

#write Flya results to folder flya_01

if (master) then

system "mkdir flya_01;cp -f *.* flya_01/.;cp -rf details flya_01/."

#write prot retaining only strong assignments form first run

read prot flya_01/flya.prot

atom select "* tolerance=0.00..0.009"

write prot fix_01.prot

end if

#------------------------------------Flya run 02------------------------------------#

shiftassign_sdfac:=0.5

shiftassign_fix:=fix_01.prot

flya runs=20 shiftreference=$shiftref stages=0 assignpeaks=$aspeaks

# write flya results to folder flya_02

if (master) then

system "mkdir flya_02;cp -f *.* flya_02/.;cp -rf details flya_02/."

end if
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Chapter 5

Conclusions and Outlook

Projects addressed in this dissertation aimed at improving the process of automated struc-

ture determination by NMR. Signal identification in NMR is a time-consuming process

which is performed faster and more objectively by an automated procedure. In order to

perform automated signal identification of NMR spectra within CYANA (Güntert et al.,

1997; Güntert & Buchner, 2015), we developed CYPICK (Würz & Güntert, 2016), a con-

tour geometry based algorithm. We further developed the information content, a tool for

helping the scientist evaluating the information of distance restraints and anticipating the

precision of the resulting structure bundle. The structural information is expressed by a

single number and can be compared to resolution in X-ray crystallography. Additionally,

a new approach for structure-based drug design (SBDD) by NMR was developed. SBDD

by NMR is a procedures that has the aim of performing SBDD in a high-throughput man-

ner by providing information for the chemical shift assignment in the form a resonance

assignment of a reference structure and/or a reference structure. This procedure also aims

at reducing the analysis time.

Results achieved with the new peak picking algorithm CYPICK in fully automated

protein structure determination starting from NMR spectra were promising. The large

scale study on several proteins and a very diverse set of NMR spectra showed that it

is possible to obtain correct chemical shift assignments from CYPICK peak lists and

calculate accurate structures. CYPICK yielded peak lists that are more favorable than

those obtained by other automated peak picking programs with respect to finding more

true peaks, rejecting more artifacts, the correctness of chemical shift assignments, and the

accuracy of 3D protein structures. CYPICK identifies peaks efficiently, i.e. computation
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times varied between 1 s for a 15N-HSQC spectrum and 31 s for a 13C-resolved NOESY

spectrum on a standard desktop computer. CYPICK analyzes only local properties of

the spectrum and is therefore applicable to any type of multidimensional NMR spectrum.

However, these investigations also revealed that certain functionalities of CYPICK

can be improved or implemented in future projects. The requirements for the presence

of a local extremum should be relaxed in order to identify overlapping signals which do

no possess a local extremum. In this context, it would also be desirable to have a stable

deconvolution method. Additionally, the algorithm should become completely independent

from noise level values. Thereby, very weak signals buried below the global threshold could

be identified. A tool for discarding peaks arising from noise bands would also improve

the overall performance of CYPICK. Furthermore, it would be worthwhile to have the

opportunity to guide the peak picking by additional information such as a 3D structure or

a chemical shift assignment. Contour-based quality factors Qrad and Qcon can in principle

be used to direct automated chemical shift and NOE assignment.

CYPICK is also employed in the protein validation tool CYVAL (Kirchner & Güntert,

2016) developed by Dr. Donata Kirchner. CYVAL calculates a structure validation score

on the basis of a peak match between predicted peaks from the structure and picked

peaks by CYPICK from a NOESY spectrum. CYPICK peak lists were also used in the

structure-based drug design (SBDD) by NMR project and yielded chemical shift assign-

ments comparable to those obtained from manual peak picking.

In another project the information content of NMR distance restraints was developed.

The information content is a quantitative measure of structural information included in

NMR distance restraints, which is straightforward and fast to calculate. The computation

time of a data set including 1100 distance restraints took 2 s. For the calculation of

the information content no explicit user input is required, only the protein amino acid

sequence and a distance restraint list have to be provided. The information content can

be calculated within CYANA and is also available as a stand-alone program.

Within this thesis, several characteristics of the information content have been demon-

strated. The information content correlates with the precision of the resulting structure

bundle and is comparable to resolution in X-ray crystallography. We showed that a certain

minimal information content is necessary to obtain a structure bundle that has a precision

better than 2.0 Å.

The information content has not been published yet, but it has been used within our
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group for several tasks. The information content measure has proven itself to be not only

interesting for structure calculation projects, but also represents a direct measurement of

the degree of data sparseness with respect to a reference data set. A measurement of data

sparseness is very useful for studies that investigate the performance of certain methods

with respect to data sets of varying quality. The information content was also used in the

new structure validation tool CYVAL developed by Dr. Donata Kirchner. In this tool the

information content is used in the weighting factor calculation of missing and matching

peaks.

Generally, the concept of the information content can be extended to other types of

structure restraints, e.g. torsion angles constraints, residual dipolar couplings, and pseudo

contact shifts. The investigation of a correlation of the information content with structure

quality parameters would also be interesting in future projects.

In a collaborative project with Dr. Alvar Gossert and Dr. Elena Schmidt the SBDD

by NMR method was developed. The method aims at performing structure calculations

of different ligated forms of a protein in a high-throughput manner, comparable to X-ray

crystallography. Major developments were the ‘Protein-Ligand NOESY’ and the ‘FLYA

assignment transfer’. With these two developments the measurement time for obtaining

the necessary data was significantly reduced and the time spent for spectral analysis and

obtaining a complete chemical shift assignment was also reduced significantly.

The ‘FLYA assignment transfer’ yielded chemical shift assignments of high accuracy

for the new complexes. However, if no complete reference chemical shift assignment is

available, it is difficult to evaluate the accuracy of the chemical shift assignment. A score

for evaluating the automated chemical shift assignment by FLYA would be very helpful.

Structure calculations led to results of varying quality. The structure of MDM4 in complex

with peptide-1 was determined with a high accuracy and precision, whereas the MDM4-

nutlin-3a structure was less reliable. Within this study the helpfulness of the consensus

structure calculation (Buchner & Güntert, 2015a) was demonstrated. The combined and

also the consensus structure bundle directly gave an indication of the quality of the struc-

ture calculation. Improvements in the SBDD by NMR protocol can probably be achieved

by adding additional information for chemical shift assignment, i.e. the measurement of an

additional triple-resonance spectrum or a spectrum which gives information on side-chain

assignments.

SBDD by NMR has, however, some additional limitations which are equal to conven-



188

tional NMR methods: One has to obtain a uniformly isotope labeled protein which should

have a size below ∼ 30 kDa (in case of non-symmetric proteins). The ligand plane can

quickly suffer from crowding of signals, depending on the chemical composition of the

ligand. Ligands up to 1-2 kDa could in general be analyzed in this study.
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Appendix A

CYPICK

Table A.1: Available multidimensional NMR spectra and reference peak lists for ENTH, RHO
and SH2

ENTH RHO SH2

spectrum pointsa widths (kHz)b pointsa widths (kHz)b pointsa widths (kHz)b

15N-HSQC 512 x 128 11.2, 1.8 512 x 64 11.2, 2.7 512 x 46 11.2, 2.7

13C-HSQC 512 x 128 11.2, 8.7 512 x 128 11.2, 15.1 512 x 40 11.2, 7.9

512 x 64 5.4, 4.8

HNCO 27 x 70 8.4,1.4,3.3 46 x 50 8.4, 2.0, 3.3 46 x 50 8.4, 2.0, 3.3

HN(CA)CO 27 x 70 8.4,1.4,3.3 46 x 50 8.4, 2.0, 3.3 46 x 50 8.4, 2.0, 3.3

HNCA 29 x 70 8.4,1.4,4,8 46 x 50 8.4, 2.0, 4.8 46 x 50 8.4, 2.0, 4.8

HN(CO)CA 27 x 70 8.4,1.4,4.8 46 x 50 8.4, 2.0, 4.8 46 x 50 8.4, 2.0, 4.8

CBCANH 32 x 75 8.4,1.4,11.3 46 x 64 8.4, 2.0, 11.3 46 x 64 8.4, 2.0, 11.3

CBCA(CO)NH 32 x 70 8.4,1.4,11.3 46 x 64 8.4, 2.0, 11.3 46 x 64 8.4, 2.0, 11.3

HBHA(CO)NH 26 x 60 8.4,1.4,6.8 46 x 64 8.4, 2.0, 7.5 46 x 64 8.4, 2.0, 8.4

(H)CC(CO)NH 24 x 60 8.4,1.4,11.3 46 x 64 8.4, 2.0, 11.3 46 x 64 8.4, 2.0, 11.3

H(CCCO)NH 27 x 77 8.4,1.4,6.8 46 x 64 8.4, 2.0, 7.5 46 x 64 8.4, 2.0, 6.7

HCCH-COSYc 32 x 85 7.8,6.5,6.8 16 x 80 5.4, 3.9, 5.4 50 x 100 8.4, 11.3, 8.4

17 x 85 5.2,4.0,5.2 16 x 80 6.1, 4.6, 6.1

(H)CCH-TOCSY 44 x 80 8.4,6.5,13.9

HCCH-TOCSY 32 x 120 7.8,6.5,6.8 64 x 100 8.4, 11.3, 8.4 64 x 100 8.4, 11.3, 8.4

15N-edited NOESY 36 x 128 11.2,1.8,10.1 46 x 128 11.2, 2.7, 11.2 46 x 128 11.2, 2.7, 11.2

13C-edited NOESYc 46 x 150 11.2,8.7,8.8 34 x 116 11.2, 7.7, 11.2 40 x 150 11.2, 8.0, 11.2

32 x 128 11.2, 5.1, 11.2

a Points represent the number of complex time domain data points in the indirect dimension. The first number

refers to 15N, if present, or 13C. The second number refers to 1H, if present, or 13C. The direct 1H dimension

was in case of 3D spectra recorded with 512 complex time domain data points (López-Méndez & Güntert, 2006).

b Width represents the spectral width in the direct and the indirect detected dimension(s) (López-Méndez &

Güntert, 2006). c The two sets of values refer to the separately recorded aliphatic and aromatic carbon regions

(López-Méndez & Güntert, 2006).
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Table A.4: Autopsy picking parameters for ENTH spectra.

Spectrum Threshold Extrema to search for

15N-HSQC 0.7·104 ±
13C-HSQC 0.4·103 ±

HNCO 0.8·104 +

HN(CA)CO 0.7·104 +

HNCA 0.9·104 +

HN(CO)CA 0.3·104 +

CBCANH 0.5·104 ±

CBCA(CO)NH 0.5·104 +

HBHA(CO)NH 0.1·105 +

(H)CC(CO)NH 0.3·104 +

H(CCCO)NH 0.6·104 +

HCCH-COSYa 0.4·103 +

0.4·103 +

HCCH-TOCSY 0.5·104 +

(H)CCH-TOCSY 0.2·103 +

15N-edited NOESY 0.9·104 +

13C-edited NOESY 0.4·103 ±
a The first entry refers to the aliphatic region, the second to the aromatic region.

’+’: only positive signals were picked, ’±’: positive and negative signals were picked.

Table A.5: NMRViewJ picking parameters for ENTH, RHO, and SH2 spectra.

Spectrum ENTH RHO SH2

Autolevel Extrema to search Autolevel Extrema to search Autolevel Extrema to search

for for for

15N-HSQC 0.6 ± 0.6 ± 0.9 ±
13C-HSQC 0.8 ± 0.3 + 0.3 ±

HNCO 0.7 + 0.2 + 0.4 +

HN(CA)CO 0.7 + 0.3 + 0.8 +

HNCA 0.7 + 0.2 + 0.6 +

HN(CO)CA 0.4 + 0.2 + 0.3 +

CBCANH 0.6 ± 0.4 ± 0.5 ±

CBCA(CO)NH 0.4 + 0.2 + 0.3 +

HBHA(CO)NH 1.0 + 0.2 + 0.4 +

(H)CC(CO)NH 0.3 + 0.2 + 0.4 +

H(CCCO)NH 0.5 + 0.2 + 0.4 +

HCCH-COSYa 0.3 + 0.3 +

0.7 + 0.1 + 42.3 +

HCCH-TOCSY 0.3 + 0.2 + 0.3 +

(H)CCH-TOCSY 0.2 +

15N-edited NOESY 1.5 + 1.1 + 16.3 +

13C-edited NOESYa 0.2 ± 0.3 ± 0.4 ±

0.2 +

a The first entry refers to the aliphatic region, the second to the aromatic region.

’+’: only positive signals were picked, ’±’: positive and negative signals were picked.
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Table A.6: CCPN picking parameters for ENTH, RHO, and SH2 spectra.

Spectrum ENTH RHO SH2

Threshold Extrema to search Threshold Extrema to search Threshold Extrema to search

for for for

15N-HSQC 7,000 ± 1,000 ± 50,000 ±
13C-HSQC 400 ± 2,000 + 2,000 ±

HNCO 8,000 + 3,000 + 3,000 +

HN(CA)CO 7,000 + 4,000 + 7,000 +

HNCA 9,000 + 7,000 + 6,000 +

HN(CO)CA 3,000 + 3,000 + 3,000 +

CBCANH 5,000 ± 4,000 ± 4,000 ±

CBCA(CO)NH 5,000 + 6,000 + 3,000 +

HBHA(CO)NH 10,000 + 2,000 + 5,000 +

(H)CC(CO)NH 3,000 + 2,000 + 5,000 +

H(CCCO)NH 6,000 + 2,000 + 5,000 +

HCCH-COSYa 400 + 5,000 +

400 + 1,000 + 4,000 +

HCCH-TOCSY 5,000 + 9,000 + 7,000 +

(H)CCH-TOCSY 200 +

15N-edited NOESY 9,000 + 100,000 + 9,000 +

13C-edited NOESYa 400 ± 70,000 ± 3,000 ±

2,000 +

a The first entry refers to the aliphatic region, the second to the aromatic region.

’+’: only positive signals were picked, ’±’: positive and negative signals were picked.
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Table A.8: Excluded water signal regions

Spectrum ENTH [ppm] RHO [ppm] SH2 [ppm]

13C-HSQC 4.65-4.78 4.65-4.78

HCCH-COCSY 4.62-4.78 4.62-4.78

HCCH-TOCSY 4.62-4.78 4.62-4.78 4.62-4.78

(H)CCH-TOCSY 4.62-4.78

15N-edited NOESY 4.62-4.78 4.62-4.78

13C-edited NOESY 4.50-4.92 4.50-4.92 4.50-4.92

4.62-4.78 4.62-4.78 4.62-4.78
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Table A.9: Results of automated NOE assignment and structure calculation by CYANA
using the automated chemical shift assignment and 15N- and 13C-NOESY CYPICK lists.
Results are shown for peak lists that were picked by the local noise estimation mode with
β = 3.0 and γ = 1.3.

ENTH RHO SH2

NOE assignmenta

15N-NOESY 1177 1523 1164

13C-NOESY 2836 3556 3619

Assigned cross peaks 3132(78.0%) 3076(60.6%) 3729(78.0%)

Unassigned cross peaks 881(22.0%) 2003(39.4%) 1054(22.0%)

Restraints

NOE distance restraints

short-range 1029(62.2%) 966(60.1%) 953(53.4%)

medium-range 304(18.4%) 221(13.8%) 244(13.7%)

long-range 321(19.4%) 420(26.1%) 589(33.0%)

Dihedral angle restraints (φ/ψ) 110 94 82

Structure statisticsa

Average CYANA target function [Å2] 0.5±0.13 0.96±0.08 1.21±0.08

Restraint violations

Max. distance restraint violations [Å] - 0.21 0.22

Number of violated distance restraints > 0.2 Å - 1 1

Max. dihedral angle restraint violations (°) - - -

Number of violated dihedral angle constraints > 5 ° - - -

Ramachandran plot

Residues in most favored regions 86.9% 77.7% 75.2%

Residues in additionally allowed regions 12.9% 22.3% 24.4%

Residues in generously allowed regions 0.1% 0.0% 0.4%

Residues in disallowed regions 0.0% 0.0% 0.0%

RMSD

RMSD rangeb 9..102,113..130 6..125 8..109

Average backbone RMSD radius [Å] 0.84±0.18 0.49±0.09 0.56±0.11

Average heavy atom RMSD radius [Å] 1.41±0.18 0.97±0.09 0.98±0.11

Backbone RMSD bias [Å] 1.47 2.78 1.55

Heavy atom RMSD bias [Å] 2.12 3.17 2.04

a using automated NOE assignment and structure calculation functionalities of CYANA. b determined by

CYRANGE
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Table A.10: Results of automated NOE assignment and structure calculation by CYANA
using the chemical shift assignment and the 15N- and 13C-NOESY CYPICK lists. Results
are shown for peak lists that were picked by the global noise estimation mode combined with
resolve overlap functionalities with β = 3.0 and γ = 1.3.

ENTH RHO SH2

NOE assignmenta

15N-NOESY 1813 2848 2276

13C-NOESY 5231 6502 7511

Assigned cross peaks 4787(68.0%) 4293(45.9%) 5120(52.3%)

Unassigned cross peaks 2257(32.0%) 5057(54.1%) 4667(47.7%)

Restraints

NOE distance restraints

short-range 1450(52.0%) 1332(52.6%) 1422(49.5%)

medium-range 729(26.1%) 429(16.9%) 403(14.0%)

long-range 611(21.9%) 772(30.5%) 1046(36.4%)

Dihedral angle restraints (φ/ψ) 108 99 80

Structure statisticsa

Average CYANA target function [Å2] 2.80±0.21 3.48±0.28 4.95±0.25

Restraint violations

Max. distance restraint violations [Å] - 0.4.0 0.74

Number of violated distance restraints > 0.2 Å 8 3 6

Max. dihedral angle restraint violations (°) 10.98 7.22 9.42

Number of violated dihedral angle constraints > 5 ° 3 1 2

Ramachandran plot

Residues in most favored regions 86.6% 78.4% 78.0%

Residues in additionally allowed regions 12.8% 20.6% 20.4%

Residues in generously allowed regions 0.5% 1.0% 1.5%

Residues in disallowed regions 0.0% 0.0% 0.0%

RMSD

RMSD rangeb 9..102,113..130 6..125 8..109

Average backbone RMSD radius [Å] 0.41±0.18 0.22±0.06 0.16±0.03

Average heavy atom RMSD radius [Å] 0.87±0.18 0.57±0.07 0.53±0.05

Backbone RMSD bias [Å] 1.08 1.46 1.43

Heavy atom RMSD bias [Å] 1.62 2.01 1.87

a using automated NOE assignment and structure calculation functionalities of CYANA. b determined by

CYRANGE
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Table A.11: Results of automated NOE assignment and structure calculation by CYANA
using the automated chemical shift assignment and the 15N- and 13C-NOESY CYPICK lists.
Results are shown for peak lists that were picked by the local noise picking combined with
resolve overlap mode with β = 3.0 and γ = 1.3.

ENTH RHO SH2

NOE assignmenta

15N-NOESY 1331 1797 1203

13C-NOESY 3083 4101 4233

Assigned cross peaks 3425(77.6%) 3537(60.0%) 4072(74.9%)

Unassigned cross peaks 989(22.4%) 2361(40.0%) 1364(25.1%)

Restraints

NOE distance restraints

short-range 1058(59.4%) 1041(56.9%) 1030(52.4%)

medium-range 388(21.8%) 285(15.6%) 266(13.5%)

long-range 334(18.8%) 503(27.5%) 670(34.1%)

Dihedral angle restraints (φ/ψ) 110 99 78

Structure statisticsa

Average CYANA target function [Å2] 0.61±0.08 1.03±0.08 1.35±0.06

Restraint violations

Max. distance restraint violations [Å] - - -

Number of violated distance restraints > 0.2 Å - - -

Max. dihedral angle restraint violations (°) - - -

Number of violated dihedral angle constraints > 5 ° - - -

Ramachandran plot

Residues in most favored regions 87.2% 82.8% 76.3%

Residues in additionally allowed regions 12.8% 17.2% 23.6%

Residues in generously allowed regions 0.1% 0.0% 0.0%

Residues in disallowed regions 0.0% 0.0% 0.2%

RMSD

RMSD rangeb 9..102,113..130 6..125 8..109

Average backbone RMSD radius [Å] 0.83±0.10 0.38±0.82 0.42±0.07

Average heavy atom RMSD radius [Å] 1.35±0.10 0.82±0.06 0.81±0.05

Backbone RMSD bias [Å] 1.52 1.59 1.20

Heavy atom RMSD bias [Å] 2.23 2.05 1.68

a using automated NOE assignment and structure calculation functionalities of CYANA. b determined by

CYRANGE
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1PQX 1RZW 1XPV 1XPW

2HFI 2JN0 2JN8 2JQN

2JVD 2JZ2 2JZT 2K2E

2K5P 2K5V 2KCV 2KCZ

2KFP 2KHN 2KKZ 2KL6

2KPP 2KPU 2KPW 2L1P

2L05 2L06 2L33

Figure B.1: Correlation between the maximal distance of an atom pair and the number of
torsion angles separating the atom pair using the complete evaluation data set. The real
maximal distances is derived from a bundle of random structures. The number of torsion
angles are determined from the covalent geometry of the protein. Corresponding values are
plotted and fit by Eq. 3.13 (red data points). The exponential fit is used to estimate the
maximal distance when no structure bundle is available.
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Figure C.1: Peptide-1. Ligand plane of the Protein-Ligand NOESY. Peaks that were selected
as noartifact in automated NOE assignment are marked with a black cross.
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Figure C.2: Peptide-2. Ligand plane of the Protein-Ligand NOESY. Peaks that were selected
as noartifact in automated NOE assignment are marked with a black cross.
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Figure C.3: Nutlin-3a. Ligand plane of the Protein-Ligand NOESY. Peaks that were selected
as noartifact in automated NOE assignment are marked with a black cross.
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computer-supported NMR spectral analysis of biological macromolecules. Journal of

Biomolecular NMR, 6:1-10, 1995.
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Orts J, Wältli MA, Marsh M, Vera L, Gossert A, Güntert P, Riek R. NMR-based de-

termination of the 3D structure of the ligand-protein interaction site without protein

resonance assignment. Journal of the American Chemical Society, 138:4393-4400, 2016.
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Ich möchte mich bei Prof. Dr. Peter Güntert für die Betreuung meiner Arbeit, die hilfrei-
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