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Zusammenfassung

Moderne Smartphones stellen eine Vielzahl an Möglichkeiten zur Erfassung von Daten
zur Verfügung. Sensoren zur Positionsbestimmung können Aufschluss über den Ort eines
Nutzers geben. Kontextinformationen aus Anwendungen bieten ein Bild über die aktuelle
Leistung des Nutzers. Eine Vielzahl an weitern Sensoren bieten zudem die Möglichkeit
physiologische Daten eines Nutzers zu messen. Von einer Einschätzung des Benutzerzu-
stands können Anwendungen profitieren, in dem Benutzerinformationen oder Funktion-
alitäten auf den Zustand zugeschnitten werden können. Ein Benutzer unter Stress prof-
itiert gegebenenfalls von anderen Aspekten als ein Benutzer, dessen Zustand als gelang-
weilt bewertet wird.
Es ist möglich mittels entsprechender Sensoren eine Vielzahl physiologischer Signale die
vom menschlichen Körper erzeugt werden zu erfassen. Insbesonders Signale wie Herzrate
oder elektrodermale Aktivität können genutzt werden, um Rückschlüsse auf den aktuellen
Zustand des Benutzers zu ziehen. Die Herzrate eines Benutzers kann zum Beispiel nicht
nur dafür genutzt werden um zu bestimmen wie aufgeregt dieser ist, sondern erlaubt mit-
tels weiterführender Verarbeitung der entsprechenden Messwerte auch eine Bestimmung
der mentalen Belastung des Nutzers. Andere Maße wie elektrodermale Aktivität lassen
einen Rückschluss auf die emotionale Aufregung eines Benutzers zu.

Sowohl Herzrate als auch elektrodermale Aktivität können zuverlässig über relativ klei-
ne und drahtlose Sensoren gemessen und an mobile Geräte wie Smartphones übertragen
werden. Zur Messung der Herzrate bieten sich Sensoren an wie sie beispielsweise im Sport
genutzt werden, da sie eine ausreichende Genauigkeit bieten und weit verbreitet sind.
Elektrodermale Aktivität benötigt zwei Sensoren auf der Haut an bestimmten Stellen des
Körpers. Hierfür gibt es Lösungen, die ähnlich wie ein Armband getragen werden können.
Kontextinformationen, die Rückschlüsse auf Position und Bewegung zulassen, können
über eingebaute Sensoren eines mobilen Gerätes wie GPS oder Accelerometer gemessen
werden.

Es existieren verschiedene Modelle um den Zustand einer Person näher zu beschreiben.
Russell veranschaulicht in einem zweidimensionalem Modell mit Hilfe der Achsen Aufre-
gung und Valenz verschiedene Emotionen, wie z.B. Stress, Langweile oder Entspannung.
Yerkes und Dodson beschreiben den Zusammenhang zwischen Aufregung und Perfor-
manz. In der von Yerkes und Dodson beschriebenen Kurve wird je nach Schwierigkeit der
Aufgabe eine hohe Performanz bei einem mittlerem Aufregungslevel erreicht. Zu hohe
oder zu niedrige Aufregungslevel führen zu einer niedrigeren Performanz.

Es existieren zwar einige Arbeiten und Modelle, die auf Basis physiologischer Daten
den Benutzerzustand bestimmen, jedoch eignen sich hiervon nur wenige um in mobilen
Szenarien genutzt zu werden. Die Kombination mit Kontextinformationen wurde bisher
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ebenfalls nur eingeschränkt untersucht.

In dieser Arbeit wird ein Modell vorgestellt, welches Kontextinformationen und phys-
iologische Daten eines Nutzers als Eingabe für mobile Anwendungen nutzt. Auf Basis
der Daten wird der aktuelle Benutzerzustand bestimmt, welcher abhängig von der Art
der Anwendung für Adaptionen genutzt werden kann. Mobile Szenarien stellen dabei
verschiedene Anforderungen an das Modell. Zum einen sind physiologische Daten teil-
weise durch Bewegung beeinflussbar, zum anderen befindet sich der Nutzer nicht in einer
kontrollierten Umgebung und ist verschiedenen ablenkenden Faktoren ausgesetzt. Auch
muss in mobilen Szenarien berücksichtigt werden, dass durch unvorhergesehene Ereig-
nisse wie den Ausfall eines Sensors auch zu Interpretation notwendige Daten wegfallen
können.

Um einem möglichst breitem Spektrum an mobilen Anwendungen gerecht zu werden,
bietet das Modell sowohl emotionale als auch kognitive Aspekte als Ausgabe. Der emo-
tionale Zustand des Benutzers basiert dabei auf dem zweidimensionalen Ansatz von Rus-
sell um verschiedene Zustände zu unterscheiden. Um die kognitiven Aspekte abzudecken,
wird die mentale Belastung des Benutzers bestimmt.

Für das Modell werden elektrodermale Aktivität und Herzrate als physiologische Sig-
nale genutzt, da beide Signale mit relativ kleinen Sensoren messbar sind welche den Be-
nutzer nicht behindern. Als Kontextinformationen werden Bewegung und Performanz
genutzt. Schritte werden über Accelerometer erfasst, welche in einer Vielzahl mobiler
Geräte integriert sind. Die Performanz eines Benutzers wird von der Anwendung selbst
an das Modell übermittelt.

Das eigentliche Modell basiert auf einem Fuzzy Logik basiertem Ansatz. Fuzzy Logik
ermöglicht es Unschärfe auszudrücken sowie einen kontinuierlichen Strom an Daten zu
verarbeiten. Ein weiterer Vorteil des Fuzzy Logik Ansatzes sind die relativ einfach kon-
figurierbaren Regeln, für die keine tieferen Kenntnisse im Programmcode notwendig sind
da sie in nahezu normaler Sprache formuliert werden können.

Vor Nutzung der Daten als Eingabe im Modell werden verschiedene Schritte zur Vorver-
arbeitung der Daten vorgenommen. Danach werden die Eingangsdaten fuzzifiziert und
ihnen basierend auf der jeweiligen Fuzzy Funktion Werte zugewiesen. Eingangsdaten im
Modell sind Herzrate, Herzraten Variabilität, elektrodermale Aktivität, Performanz des
Benutzers und Anzahl der Schritte. Schritte werden in drei (niedrig, mittel und hoch) und
Performanz in fünf Klassen (sehr niedrig bis sehr hoch) unterteilt. Die physiologischen
Signale werden jeweils in fünf Klassen (niedrig bis hoch) unterteilt.

In zwei Schritten werden die Eingabesignale in emotionale und kognitive Werte umge-
wandelt. Über ein erstes Set bestehend aus mehreren Fuzzy Regeln werden die Eingabes-
ignale in Aufregung, Valenz, mentale Belastung und Kontext umgewandelt. Für Aufre-
gung und Valenz sind sieben verschiedene Klassen möglich (sehr niedrig bis sehr hoch).
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In einem zweiten Schritt werden die Ergebnisse aus dem ersten Schritt, Aufregung,
Valenz und Kontext, anhand von weiteren Fuzzy Regeln in die emotionalen Benutzerzu-
stände umgewandelt. Mit den Werten von Valenz und Aufregung wird ein 7x7 Gitter
basierend auf dem Modell von Russell genutzt um Werte von acht emotionalen Zuständen
zu bestimmen.

Kontextinformationen wurden im Rahmen von Performanz in die Fuzzy Regeln zur
Überführung in die acht emotionalen Zustände integriert. Diese acht Zustände, arlarmiert,
aufgeregt, glücklich, entspannt, müde, gelangweilt, traugrig und frustriert, haben jeweils
vier Klassen, die ihren Wert beschreiben (sehr niedrig, niedrig, mittel und hoch). Die acht
emotionalen Zustände mit ihren jeweiligen Werten sind die Ausgabe für Anwendungen,
die den emotionalen Zustand nutzen.

Der kognitive Benutzerzustand wird aus Performanz des Benutzers, Anzahl der Schritte
und mentaler Belastung überführt. Der kognitive Zustand wird in vier Klassen unterteilt:
niedrig, mittel, hoch und sehr hoch. Da gerade hohe kognitive Belastungen interessant
sind, wurde der hohe Bereich in hoch und sehr hoch unterteilt.

Die Werte werden am Ende über ein Verfahren zur Defuzzifierung wieder in Werte
umgerechnet. In dieser Arbeit wurde das Verfahren der gewichteten Mittelwerte genutzt.
Die Werte werden an die jeweiligen nutzenden Anwendungen weitergegeben, welche
basierend auf den Ausgabewerten des Modelles mögliche Adaptionen bestimmen und
anwenden.

Das Modell wurde als ein im Hintergrund laufender Service für das Betriebssystem
Android implementiert. Zur Konfiguration der Sensoren wird ein simples Userinterface
geboten. Vor Nutzung des Modells wird eine cirka fünf minütige Baseline Messung emp-
fohlen. Der Service stellt die Ergebnisse des Modells über eine Schnittstelle anderen An-
wendungen zur Verfügung. Während der Laufzeit des Services werden aktuelle Werte im
User Interface angezeigt.

Verschiedene Anwendungen wurden entwickelt und genutzt um das entwickelte Mod-
ell zu evaluieren. Die Anwendungen decken dabei unterschiedliche Arten von Anwen-
dungstypen ab, um verschiedene Aspekte des Modells zu evaluieren. Anwendungen zur
Unterhaltung könnten mehr vom emotionalen Zustand profitieren, wohingegen leistung-
sorientierte Anwendungen vom kognitiven Zustand profitieren können.

Das Spiel ”Zone of Impulse” ist ein Weltraum-Shooter und passt verschiedene Spielele-
mente basierend auf dem Benuterzustand an, um einen Ausgleich zwischen zwei gegen-
einander spielende Benutzer zu schaffen. Angepasst werden unter anderem Elemente
wie die Aufladezeit einer Spezialfähigkeit oder die Geschwindigkeit des eigenen Raum-
schiffes. Das Spiel nutzt vor allem den emotionalen Zustand eines Benutzers. Zunächst
wurde bestimmt, welcher der acht Ausgabezustände erwünscht sind und welche nicht.
Die beiden Zustände in denen der Nutzer aufgeregt oder glücklich sind werden dabei
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angestrebt. Zwei weitere Zustände wurden als Übergangszonen definiert und vier Zu-
stände als nicht erwünscht. Abhängig davon, ob ein Benutzer in einem erwünschtem,
einem Übergangszustand oder einem unerwünschten Zustand war, wurde keine Adap-
tion, eine einfache Adaption oder eine erhöhte Adaption durchgeführt, um den Benutzer
in einen erwünschten Zustand zu führen oder zu halten.

Eine weitere genutzte Anwendung zur Evaluation ist ein Vokabeltrainer. Die Vokabel-
trainer Applikation bietet zu einer Vokabel jeweils vier mögliche Antworten an. Innerhalb
eines Zeitlimits muss die richtige aus den vier Vorgaben ausgewählt werden um Punkte
zu erreichen. Sowohl emotionaler als auch kognitiver Zustand wurden zur Adaption der
Schwierigkeit genutzt. Der emotionale Zustand wurde zunächst in zwei erwünschte und
drei unerwünschte Zustände eingeteilt. Drei weitere Zustände sind als Übergangszustände
definiert. Für den kognitiven Zustand war der mittlere Bereich erwünscht, ein hoher Wert
wurde als Übergangszustand gesehen. Niedrige und sehr hohe Werte für den kognitiven
Zustand waren unerwünscht.

Zur Evaluierung des Modells wurden weitere Anwendungen untersucht. Unter an-
derem wurde eine Anwendung mit Informationen rund um einen Flughafen, die basierend
auf dem Benutzerzustand eines von drei verschiedenen User Interfaces anezeigt näher un-
tersucht. Gestresste Benutzer erhalten ein reduziertes Interface, wohingegen gelangweilte
Benutzer mehr Funktionalitäten zur Verfügung gestellt bekommen.

Außerdem wurden erste Untersuchungen zur Kombination von Benutzerzustand und
der Wahl des Level of Detail beim Rendern von Videos durchgeführt. Weitere genutzte
Anwendungen waren unter anderem ein Spiel, welches physiologische Daten als direkte
Eingabe zur Steuerung des Spiels nutzt sowie ein Adaptionsmanger, welcher basierend
auf dem Benutzerzustand verschiedene Einstellungen des Telefons änderte, wie z.B. den
Klingelton in stressigen Situationen lautlos zu stellen.

Im Rahmen einer Studie wurden verschiedene Aspekte des Modells mit Hilfe von zwei
Anwendungen evaluiert. Um sowohl kognitive als auch emotionale Aspekte abzudecken,
wurden das Spiel ”Zone of Impulse” und der Vokabeltrainer zur Evaluierung herangezo-
gen. In der Studie wurden beide Anwendungen mit Modell, ohne Modell und mit einem
teilweise integriertem Modell in verschiedenen Szenarien gegenüber gestellt. Ein Teil der
insgesamt 41 Studienteilnehmer waren in einer Versuchsgruppe, die den Test außerhalb
der kontrollierten Laborumgebung auf der Straße durchführte. Verschiedene Bewertun-
gen zu Spaß, Überforderung und Unterstützung wurden erfasst sowie zusätzlich die kog-
nitive Belastung über den NASA-TLX Fragebogen.

Die Ergebnisse der Studie unterstützen die These, dass die Kombination aus physiol-
ogischen Daten und Kontextinformationen die Interpretationsqualität des Benutzerzus-
tandes verbessern. In der Studie wurde für ”Zone of Impulse” eine Version mit komplet-
tem Modell und eine Version ohne Kontextinformationen gegenüber gestellt. Spaßwurde
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in der Version mit intgrierten Kontextinformationen signifikant besser bewertet. Der As-
pekt Überforderung wurde nicht signifikant besser bewertet.

Die Verbesserung der Interpretationsqualität, wenn physiologische Daten und Kontex-
tinformationen kombiniert werden, wird auch von einem Vergleich zwischen einer Version
mit und einer Version ohne Modell für beide Anwendungen unterstützt. Für beide An-
wendungen wurde die Version mit intergriertem Modell in den NASA-TLX Fragebögen
signifikant besser bewertet. In den subjektiven Fragebögen wurden die meisten Aspekte
nicht signifikant besser bewertet.

Neben der Verbesserung der Interpretation durch Kontextinformationen wurde auch
untersucht, ob das Modell in mobilen Szenarien zuverlässige Ergebnisse liefert und ak-
tzeptabel ist. Der Tragekomfort der Sensoren wurde von den Versuchsteilnehmern gut
bewertet, sie fühlten sich durch die Sensoren nicht eingeschränkt. Neben dem Tragekom-
fort wurden beide Anwendungen in unterschiedlichen Szenarien miteinander verglichen.
Ein Teil der Versuchsteilnehmer befand sich in einer sitzenden Position in einem Gebäude.
Der andere Teil der Versuchsteilnehmer lief während des Tests außerhalb des Gebäudes
umher und musste teilweise während der Nutzung der mobilen Anwendungen mit der
Umwelt interagieren. Die Ergebnisse zeigten, dass es zwischen beiden Testgruppen keine
signifikanten Unterschiede in der Bewertung der verschiedenen Aspekte gibt. Das führt
zu der Vermutung, das die Zuverlässigkeit der Interpretation in mobilen Szenarien nicht
von stationären Szenarien abweicht.

Ein weiterer wichtiger Aspekt ist die Robustheit des Modelles, da in mobilen Szenar-
ien die Möglichkeit besteht, dass einer der Datenkanäle ausfällt. In der Studie wurde für
beide Anwendungen jeweils eine Version erstellt, in der ein Eingabesignal der physiologis-
chen Daten entfernt wurde. Die Ergebnisse der verschiedenen Fragebögen zeigten, dass
zwischen beiden Versionen kein signifikanter Unterschied besteht und der Verlust eines
Eingabesignals kompensiert werden konnte. Jedoch wurden in der Studie relativ normale
Situationen getestet. In extremeren Situationen besteht die Möglichkeit, dass der Verlust
eines Eingabesignals sich deutlicher bemerkbar macht.

Die Interpretation des Benutzerzustands auf Basis verschiedener Informationsquellen
ist ein bedeutsames Thema in der Forschung. Es existieren Modelle und Anwendungen,
die physiologische Daten zur Interpretation des Benutzerzustandes heranziehen. Bisher
wurde dies jedoch nur eingeschränkt in Bezug auf mobile Anwendungen und der Nutzung
in mobilen Szenarien betrachtet. In dieser Arbeit wurde ein Modell vorgestellt, dass durch
die Kombination physiologischer Daten mit Kontextinformation versucht die Herausfor-
derungen, die in mobilen Szenarien auftreten, zu addressieren. Eine durchgeführte Studie
zeigte positive Ergebnisse für verschiedene evaluierte Aspekte wie Robustheit, Nutzer-
akzeptanz der Sensoren sowie Zuverlässigkeit der Interpretationsergebnisse in mobilen
Szenarien.
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Das vorgestellte Modell wurde für einen kleinen Teil an möglichen Situationen evaluiert.
Weitere Untersuchungen mit anderen Anwendungen, anderen Situationen oder anderen
physiologischen Daten sind notwendig, um ein genaueres Urteil zur Zuverlässigkeit des
Modells fällen zu können. Die Weiterentwicklung neuer mobiler Geräte, wie Smartwatches
oder Augmented Reality Brillen, bietet zudem weitere interessante Möglichkeiten für zu-
künftige Studien.
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Abstract

Modern mobile devices offer a great variety of data that can be recorded. This broad
range of informations offers the possibility to tailor applications more to the needs of a
user. Several context informations can be collected, like e.g. information about position or
movement. Besides integrated sensors, a broad range of additional sensors are available
which can be connected to a mobile device. These additional sensors offer for example the
possibility to measure physiological signals of a user.

The human body offers a broad range of different signals. These signals have been used
in several examples to conclude on the state of a user. The different signals allow to get
a deeper insight into emotional or mental state of a user. Electrodermal activity gives
feedback about the current arousal level of a user. Heart rate and heart rate variability can
give an estimation about valence and mental load of a user.

Several models exist to conclude from information like valence and arousal on different
emotional states. Russell defined a two dimensional model, using valence and arousal to
define affective states. Yerkes and Dodson developed a curve that expresses the relation-
ship between arousal and performance of a user.

Different examples exist, that use physiological signals to determine the user state for
tailoring and adapting of applications. At the time of this work most of these examples
did not address the usage of physiological signals for user state estimation in mobile ap-
plications and in mobile scenarios. Mobile scenarios lead to several challenges that need
to be addressed. Influencing factors on physiological signals, like e.g. movement have to
be controlled. Furthermore a user might be interrupted and influenced by environmental
aspects. The combination of physiological data and context information might improve
the interpretation of user state in mobile scenarios.

In this work, we present a model that addresses the challenges of usage in mobile sce-
narios to offer an estimation of user state to mobile applications. To address a broad range
of mobile applications, affective and cognitive state are provided as output. As input heart
rate and electrodermal activity are used, as well as context information about movement
and performance. Electrodermal activity is measured by a simple sensor that can be worn
as a wristband. Heart rate is measured by a chest strap as used in sports.
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The input channels are transformed to affective and cognitive state based on a fuzzy
rule based approach. With help of fuzzy logic, uncertainty can be expressed and the data
continuously being processed. At the start, input channels are fuzzified by defined func-
tions. After a that, a first fuzzy rule set transforms the input signals into values for valence,
arousal and mental load. In a second step, these values and context information are trans-
formed with another fuzzy rule set to values for affective and cognitive state.

Affective state is based on the model of Russell, where valence and arousal are used to
determine different emotional states. The output of the model are eight different affective
states (alarmed, excited, happy, relaxed, tired, bored, sad and frustrated), which can have
a high, medium, low or very low value as output. Cognitive state is determined based
on mental load and context information about performance and movement. The output
value can be very high, high, medium or low. The model was implemented as background
service for Android devices. Different applications have been used for evaluation of the
model. The model has been integrated in a multiplayer space shooter game, called ”Zone
of Impulse”, which mainly benefits from the affective state. Cognitive state is more ad-
dressed in applications like a simple vocable trainer, which adapts difficulty based on user
state.

A study to evaluate different aspects of the model has been conducted. The study was
designed to investigate the suitability of the model for mobile scenarios. The game ”zone
of impulse” and the vocable trainer have been investigated in different configurations.
Versions with integrated model have been compared to version of the applications without
model, as well as versions of the model without context information.

In total 41 participants took part in the study. A part of the participants had to do the
tasks of the study in a mobile scenario, walking around several streets. The remaining
participants had to do the tasks in a controlled environment in a sitting position. Different
aspects were collected with ratings and questionnaires.

Overall, participants rated that they did not feel impaired by the sensors they had to
wear. The results showed, that the combination of physiological data and context infor-
mation had an advantage against versions without context information in part of the rat-
ings. A comparison between versions with and without model showed, that the subjective
mental load ratings were significantly better for the version with model. Subjective ratings
for aspects like fun, overstrain and support were mixed.

When comparing the application versions in indoor and outdoor scenarios, no signif-
icant difference could be found, which leads to the assumption that there is no loss of
interpretation quality in outdoor scenarios. The results also showed that the model seems
to be robust enough to compensate the loss of an input channel, as there was no significant
difference between application versions with full integrated model and versions with one
channel lost.
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With the model developed in this work, context information and physiological data
were combined to improve user state estimation. Furthermore pitfalls of user state es-
timation in mobile scenarios are overcome with this combination. However, the model
has only been evaluated with a limited amount of applications and situations that mobile
scenarios offer.
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1. Introduction

1.1. Motivation

In the last years, mobile devices pervaded more and more areas of everyday life. Mobile
devices get smarter and more powerful. In the past, mobile devices had only a limited
functionality and were not small and lightweight. The usage of integrated sensors makes
mobile devices smarter and extends the application scenarios, from just using them as a
telephone to a multimodal communication assistant, which has integrated functionalities
like e.g. navigation or playing music.

Applications from many different areas found their way onto mobile devices. Tasks
like searching for the next public transport connection or a nearby restaurant can be done
mobile. New devices like smartwatches or google glass, offer new possibilities in daily
life. Recent surveys showed that in representative total population with age 16 and above
65% of people living in Germany use at least a smartphone [Cor15a].

In different applications, a broad range of information is used to tailor the application
to the situation of the user, aiming for a better Human Computer Interaction (HCI). As-
sistants on mobile devices help to organize information to the needs of a user, based on
different context information like location or entries in the calendar. Examples for existing
systems are google Now[Inc15b], Microsoft Cortana [Cor15b] and Apple’s Siri [Inc15a].

Besides context information, physiological signals allow to add new aspects to applica-
tions. Many researchers developed and evaluated concepts of using physiological signals
for an interpretation of affective states, emotions and cognition. Nearly all examples of
current research in this area, were developed and evaluated for controlled environments.
When stepping out of the lab, additional aspects have to be considered.

Combining context information and physiological signals offers great potential. Appli-
cations would be able to not solely decide on the context, but also include the state of the
users themselves for adaptation and assistance in applications. In this work these topics
will be examined, concepts will be developed and finally evaluated with different applica-
tions.

1



1. Introduction

1.2. Definitions and Limitations

This thesis covers a broad range of different topics and areas. The focus of this work
is on the Human Computer Interaction area, some topics will be limited to the aspects
addressed by HCI. Examples are emotions, affect and cognitive state. This work focuses
on different defined categories of user state for HCI, based on psychological concepts of
affect and emotion, which are used within recent state of the art research in the area of HCI.
A detailed definition and overview of emotions as used in psychological research will not
be given.

Context information is used in this work. Depending on the definition of context in-
formation in the literature, physiological signals are part of it or not. When talking about
context information in this work, physiological signals are not included and will be looked
at separately.

1.3. Thesis

Physiological signals can give an insight in the emotions, cognition and other parts of
the current state of the user. In this thesis, physiological signals are examined and used
as an input signal for mobile applications. Mobile scenarios vary, as the user can sit at
home using a mobile device or be outside trying to catch a bus. Context information help
narrowing down the current situation. As physiological signals are partially influenced
by different aspects, like for example movement. These aspects have to be considered in
modeling of user state.

The thesis will examine, how physiological signals can be used to conclude on the cur-
rent state of a user for mobile applications. The questions, how different types of mobile
applications can be supported and how interpretation in mobile scenarios can be handled,
will be examined. To reach this goal different concepts and models used in recent research
are examined and finally adapted to fit to the challenges of mobile scenarios.

In a second step, context information is examined and integrated to support and im-
prove the developed model. The question if and how context information coming from
mobile applications and mobile phone can improve interpretation quality, will be exam-
ined in this work.

Finally, the concept will be examined under aspects of robustness, as it may happen
in mobile scenarios, that one or more input channels get lost due to bad connections or
empty batteries. The question if a channel loss can be compensated without a big drop in
interpretation quality will be investigated.

This work will introduce background information on used concepts and methods, needed
for understanding the scope of this thesis in chapter 2. Chapter 3 will give an overview
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and an analysis of current research and state of the art concepts and applications. The re-
sults of this analysis is followed by the presentation and outline of the three theses, which
are the foundation of this work in chapter 4. In the following chapters, an overview of
the concept (chapter 5), the details of the model (chapter 6) and finally the implementation
of the concepts (chapter 7) will be presented. Chapter 8 introduces several applications,
which use the developed concepts. Different studies, supporting the thesis, are presented
in chapter 9. Finally, the thesis closes with a conclusion and gives an outlook on future
work in chapter 10.
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2. Background

This thesis addresses several different research areas. For a better understanding of the
thesis, an overview and introduction of the most important topics is given. This chapter
starts with a brief introduction of physiological signals, the mechanisms of the nervous
system followed by a detailed introduction of electrodermal and cardiovascular activity.

Several definitions, that will be needed for the interpretation of the used signals, like
arousal, valence and mental load, are introduced accompanied by models and concepts
for interpretation of user state. In the following subchapter, an introduction to context
information and its definitions is given. Finally, methods and concepts for implementation
of classification models used in current research are introduced.

2.1. Biology of Physiological Signals

To understand what physiological measures are and how they can be used, knowledge
of biology of the human body is needed. The human body contains many signals that
can be measured and quantified. Body functions are regulated by the nervous and the
endocrine system. The endocrine system regulates functionalities like reproduction and
digestion. It uses hormones for communication of signals via circulatory systems to their
target. In comparison to the nervous system, it reacts slower. The nervous system on the
other hand regulates functionalities, which need in most cases a quick reaction like receiv-
ing and responding to a stimulus from the environment. The nervous system regulates
these functionalities by electrical signals and the release of neurotransmitter. [She08]

This chapter will take a closer look at the nervous system and its components. The two
main divisions of human nervous system controlling physiological signals are the central
nervous system (CNS) and the peripheral nervous system (PNS). The CNS consists of brain
and spinal cord. PNS on the other hand, consists of different neurons, mainly sensory and
motor neurons. Both systems are closely interconnected with each other as well as with
the endocrine system. [She08]
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2. Background

Figure 2.1.: Overview of the human nervous system and it several parts and functionalities
in the human body [She08]

Figure 2.1 shows the subdivision and relationship of the different parts of the nervous
system and the corresponding locations in the human body. As shown in the figure, the
PNS can be further distinguished in different parts, which will be introduced in the fol-
lowing after a short description of CNS.

2.1.1. Central Nervous System

The CNS consists of the brain and spinal cord of the human body. The parts of CNS are
shown in red in the human body on the left side of figure 2.1. In contrast to the PNS, the
CNS is protected by the blood-brain barrier and bones of the head and spine. Its main
tasks are the processing of incoming information from the PNS and transmitting orders to
the efferent division of the PNS.

Measures of the CNS are for example electroencephalography (EEG), measures of brain
metabolism (Positron emission tomography (PET)) and event-related potentials (ERP)
[RSI98].
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2.2. Electrodermal Activity

2.1.2. Peripheral Nervous System

The PNS consists of nerve fibers. It can be divided in an afferent and efferent part. The
afferent part transmits signals and information of sensory stimuli of the environment to
the CNS. Vice versa, the efferent part receives information, orders and signals from the
CNS. [CR02]

The PNS is subdivided into the autonomic nervous system (ANS) and somatic nervous
system (SNS). The SNS (shown in green in figure 2.1) covers functionalities that are re-
sponses to stimuli of the environment, e.g. regulate motor neurons to control movement
of muscles. Most parts of the SNS can be controlled intentional by the human. The au-
tonomic nervous system (shown in blue in figure 2.1) covers mainly functions of inner
organs, like e.g. breathing and can mostly not be controlled intentional by the human.
It is divided into sympathetic, parasympathetic and enteric nervous system. The enteric
nervous system is mainly responsible for the digestive system. Sympathetic and parasym-
pathetic nervous system are antagonists respectively to each other. Sympathetic nervous
system goes hand in hand with a high alertness, attention and energy production. The
impact on the human body are e.g. higher heart rate and inhibited digestion. On the other
hand, parasympathetic system is connected with a relaxation and calm down of the body.
Functionalities like heart rate and energy production slow down. [CR02]

Measures of the PNS are for example cardiovascular activity (autonomous part of the
PNS), measures of the eccrine system (e.g. electrodermal activity for the somatic part of
the PNS) and respiratory measures (autonomous part of PNS) [RSI98].

2.2. Electrodermal Activity

Electrodermal activity (EDA), often also referred to as Galvanic Skin Response (GSR) is
the electrodermal reaction of the skin. The term electrodermal activity covers the electrical
characteristics of the skin. EDA is involved in studies of many different research areas.
Research about EDA began in the early 1900s by Vigouroux, who measured tonic skin
resistance in 1879 and 1888 and Hermann and Luchsinger who examined innervation of
cat sweat glands in 1878 [Bou92].

In the following physiology and the different components of EDA will be described as
well as measurement and interpretation of EDA.

2.2.1. Physiology

The skin serves as a barrier between body and environment. It consists of different compo-
nents and layers as shown in figure 2.2, for example sweat glands. Two different types of
sweat glands exist, eccrine and apocrine sweat glands. Both types have different functions.

7



2. Background

Eccrine sweat glands are primarily responsible for the regulation of body temperature. On
the palm and plantar position, the eccrine sweat glands respond to psychological stimuli
[Ede72], which is based on the high density of sweat glands on the hand [SMFC87]. The
apocrine sweat glands are limited to different areas of the body and are less studied than
the eccrine sweat glands. Their primary function is as well the regulation of body temper-
ature. In contrast to the eccrine sweat gland, the apocrine sweat glands are not directly
open on the surface of the skin [SMFC87].

Figure 2.2.: Eccrine sweat gland [CTB07]

Figure 2.2 shows a profile of a eccrine sweat gland in the skin. The secretory part of the
sweat gland lays in the subcutis. The duct connects the secretory part with the epidermis.
Sweat, produced in the secretory part rises up the duct. When sweat fills the duct, the
skin gets more conductive and the resistance of skin is lowered. EDA reacts within a time
frame of 1 to 3 seconds after a stimulus appeared [CTB07]. Several studies showed that
the sweat glands are connected to the sympathetic nervous system [CTB07].

2.2.2. Measurement

EDA can be either measured endosomatic or exosomatic. For exosomatic measurement a
small direct or alternating current is used to measure conductance of skin. Endosomatic
methods measure skin conductance without current. The output of the different measure-
ment methods differentiate. Exosomatic measurement with direct current leads to skin
resistance or conductance. Measured with alternating current, exosomatic measurement
leads to skin impedance and skin admittance. Endosomatic measurement on the other
hand leads to skin potential. In many studies, exosomatic measurement with direct cur-
rent is the preferred method of measurement. [CTB07]

Several devices for measurement of EDA exist. Most devices have two electrodes which
are placed on the palm of the hand. Electrodes are mostly made of silver/silver chloride
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(Ag/AgCl) to minimize bias potential and polarization [CTB07]. Figure 2.3 shows possible
placements for the electrodes. The most recommended electrode position is position 2.
Another possible position for electrode placements are the feet.

Most studies use the non-dominant hand for measurement. This is motivated by the
fact, that the skin of the non-dominant hand might show less skin lesion in comparison to
the dominant hand. Furthermore, the dominant hand is free for other tasks in this case.
[CTB07]

Figure 2.3.: Possible electrode positions for EDA measurement at the left hand [CTB07]

Measurement can be influenced by different aspects. One influencing factor is the ac-
tual condition of the skin. If a subject washes the skin with an abrasive soap, electrical
properties of the skin might vary [VC73]. Therefore Venables [VC73] recommends to let
subjects wash their hands before electrode placement with a non-abrasive soap. Besides
condition of skin, measurement can also be influenced by humidity, ambient temperature
and time of day. Several values of EDA can rise, with rising room temperature. [Bou92]
recommends a room temperature of 23 Celsius and keeping humidity constant, if possible.
Due to the issue that time of day can influence the values, these needs to be controlled in
studies.

Different aspects of EDA can be measured, which are divided in phasic and tonic mea-
sures. The most used measures are Skin Conductance Level (SCL) and Skin Conductance
Response (SCR). SCL is a tonic measure and reacts slower over time. SCR, on the other
hand, counts to the phasic measures and reacts fast. Both will be described in Detail in the
following.

2.2.3. Skin Conductance Level

SCL reacts within a time frame of 10 seconds to minutes [CTB07]. SCL is measured in
microsiemens. The range is normally between 2 to 20 µS, when SCL is measured at the
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distal phalanges with exosomatic measurement and direct current.
When a new situation or stimulus is happening, SCL rises comparatively fast and de-

creases over time when at rest. Figure 2.4 shows the SCL of two different subjects. At the
first 20 seconds, both subjects were at rest. After the rest period, three stimuli were pre-
sented. The curve shows the variation of SCL values between different subjects. Subject 1
starts at 10 µS, subject 2 at 5 µS. The curves also show the increase in SCL, when a stimulus
is presented at 20, 35 and 50 seconds. The first time the stimulus was presented, the rise in
SCL was bigger than the second and third time when the stimulus was repeated.

Figure 2.4.: Progress of Skin Conductance Level of two different persons [CTB07]

The measured values of a person cannot be compared with another person’s values. A
value of 1 µS might be a high value for one person, for another person it might be the
minimum. Due to the individual differences, electrodermal activity has to be normalized.
In this work, SCL is normalized by calculating the percentage of the overall SCL span:

SCLnormalized =
SCL(t)− SCLmin

SCLmax − SCLmin
∗ 100[in%] (2.1)

Minimum SCL values can be determined in a baseline measurement during a resting pe-
riod. Maximum value can be determined over time or as proposed by [CTB07] initially by
blowing up a balloon until it bursts. Interpretation might get more accurate with growing
data set.

2.2.4. Skin Conductance Response

SCRs are elevations in form of small waves in the SCL. They are the phasic components
of EDA. Figure 2.5 shows the course of a SCR. They can occur after a stimulus or spon-
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taneously without a stimulus. When occurring without a stimulus, the SCRs are called
Non-specific SCRs (short NS-SCR). If a SCR is a response to a stimulus, it occurs after a 1-4
seconds latency window after the stimulus occurred. [CTB07]

Figure 2.5.: Wave of a SCR [CTB07]

Different aspects of SCRs can be measured and analyzed. Minimum values for SCRs am-
plitude lay between 0.01 and 0.05 µS, to be interpreted as a SCR [CTB07]. After [CTB07],
values for amplitude of a SCR normally range between 0.1 and 1.0 µS and have a rise time
of 1-3 seconds. Magnitude and amplitude are two measures, which are commonly used
and calculated. Magnitude is the average number of all SCRs of every stimulus presen-
tation, even when there was not a response to the stimulus. For amplitude, on the other
hand, only SCRs over the signals minimum value are used.

2.3. Cardiovascular System

The main part of the cardiovascular system is the heart, which is a muscle that regulates
blood flow in the human body through several blood vessels. The circulatory system cir-
culates blood through the body to transport oxygen, carbon dioxide, nutrients and blood
cells to cells in the body. [CR02]

Several measures can be derived from the cardiovascular system, like for example blood
pressure or heart rate. These measurements, their recording and interpretation are dis-
cussed in the following.

2.3.1. Physiology

The cardiovascular system is controlled by the sympathetic and parasympathetic systems
of the autonomic part of the PNS. The heart itself consists of different chambers (shown in
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figure 2.6), which are electrically connected. During a diastole, the heart is filling up with
blood, which gets pumped through the blood vessels in the systole.

Figure 2.6.: Electrical activity of the heart [CTB07]

The electrical process of a heart beat can be recorded with an electrocardiogram (ECG)
and consists of different characteristic (see figure 2.7): a P-wave, the QRS complex and a
T-wave. During the end of a diastole, the P-wave is produced by the depolarization of the
atrial node. When the atrial node contracts, a QRS complex follows on the P-wave. During
QRS complex, ventral node contracts and at the end repolarizes, which can be seen as the
T-wave. [CR02]

Figure 2.7.: QRS complex of a heart beat [CTB07]
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2.3.2. Measurement

Activity of the heart can be measured by an electrocardiogram (ECG) in detail. It supports
diagnosis of diseases and functional disorders of the heart. The in the previous subchapter
introduced electrical processes can be measured by several electrodes. The first ECG was
developed and measured by Einthoven in 1895 [Ein95].

Figure 2.8.: Electrode placement after Einthoven [CTB07]

Several systems exist to place electrodes on a subject, depending on which aspects of the
electrical process is desired to be measured. Figure 2.8 shows the electrode placement of
Einthoven, placing the three electrodes at the right arm, the left arm and the left leg. With
this bipolar lead, the potential difference between the arms and the leg are measured. The
electrode placement based on Wilson is on the chest [CTB07].

In comparison to a full ECG, mobile heart rate monitors offer only limited information.
Wireless heart rate monitors are mainly used in sports and measure heart beats per minute.
First wireless heart rate monitor was published in 1983 by the company Polar [TBBM86].
Most heart rate monitors use a chest strap with two integrated electrodes, which measure
the R-Peaks of the heart beats. Based on the R-Peaks, heart rate and RR-intervals can be
calculated.

Other cardiovascular activity is measured with different devices, which do not base on
the electrical activity of the heart. For example blood pressure is measured with an inflated
arm cuff and blood or pulse volume with a plethysmograph.

2.3.3. Blood Pressure

Blood pressure describes the amount of pressure that is needed to push the blood through
the circulatory system. Blood pressure in arteries is higher than in the veins. It is measured
in millimeters of mercury (mm Hg) and can be measured systolic and diastolic. Systolic
blood pressure is higher than diastolic, as systolic blood pressure is measured, when the
heart contracts at a ventricle systole. Diastolic blood pressure is measured when the blood
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vessels return to their origin size. [CR02] A average value for a 20 year old adult at rest is
around 120 for systolic and 70 for diastolic blood pressure [CR02].

Blood pressure can be influenced by different factors like age, weight and stress [SRQ01].
Continuous measurement of blood pressure data in real time is at the moment not possible,
due to the in- and deflating of the arm cuff [Man08].

2.3.4. Heart Rate

The heart beats between 60 to 70 times a minute in an adult human during light activity.
Within a minute, between 5 and 7 liters of blood are pumped through the circular system
by the heart. [CR02]

Besides age, several other factors influence heart rate. Trained persons have usually
a lower heart rate, than persons doing no exercise. The maximum heart rate is age-
dependent and declines with increasing age. Heart rate is very variable between different
persons. A stress test can determine the exact maximum heart rate. Several formulas exist,
to calculate an average maximum heart rate based on age. The most common and widely
distributed formula to calculate maximum heart rate was developed by Haskell and Fox
[Kol01] in the early 1970s:

HRmaximum = 220−Age (2.2)

Tanaka, Monahan & Seals developed in 2001 a formula based on more than 18000 test
subjects [TMS01]:

HRmaximum = 208− (Age ∗ 0, 7) (2.3)

Even though the formula of Haskell and Fox is more commonly used and widely dis-
tributed, the formula of Tanaka, Monahan and Seals reached better results.

For resting heart rate, the US National Health Institute published values for adults. Ath-
letes have a resting heart rate between 40 and 60, other adults resting heart rate varies
between 60 and 100 [oH13].

2.3.5. Heart Rate Variability

Heart Rate Variability (HRV) describes the variation of intervals between two heart beats.
The difference between two heart beats is measured in milliseconds. HRV can be used to
quantify the mental effort of a person [RSI98].

HRV can be analyzed by time-domain or with spectral methods. Malik et al. [MBC+96]
described several standards for the procedure of analysis. To calculate the power spec-
trum density, parametric and nonparametric methods can be used. Both offer different
advantages and disadvantages. Auto-regression or a Fourier Transformation can be used.
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The high frequency band ranging from 0.15 to 0.4Hz reflects activity of the parasympa-
thetic parts of the ANS, the low frequency band between 0.04 and 0.15 Hz reflects sympa-
thetic parts of ANS. The frequency band around 0.1Hz is used to determine mental effort
[VTM87]. Typically, parts of the low frequency band are used, ranging from 0.06 to 0.14
Hz.

Figure 2.9 shows two examples for the result of a spectral analysis. Figure 2.9 (a) shows
a relaxed person. Figure 2.9 (b), on the other hand, has a flattened low frequency band,
which indicates a higher mental load.

Figure 2.9.: Example for two HRV power spectra from [VTM87]. The left one shows a
relaxed participant, the right one a participant under stress.

After spectral analysis Vicente [VTM87] proposes to integrate the power of the low fre-
quency band (ranging from 0.06 Hz to 0.14 Hz) and normalize it with the average value
from baseline measurement. By subtracting this result from 1, a value between 0 and 1 is
the result, where 0 correlates to no and 1 to a high mental effort.

2.4. Mental Load

Mental load is a measurement, that is used in many areas. However, no unique definition
of mental workload exists. Many definitions of workload include that mental workload
is composed of the interaction between a task and different aspects of the user, like ca-
pabilities and motivation [Mor79] [Jex88] [Kra91]. Based on different definitions Kramer
summarized workload in [Kra91] as:

”Mental workload has been defined as the ”costs” a human operator incurs as
tasks are performed.”

The ”costs” described in the definition stand for the capacity a human operator is using
for the task.
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Workload does not necessarily rise with task difficulty. Tulga and Sheridan [TS80] re-
ported that an increasing demanding task does not imply a higher level of workload. They
conclude that user lowered their mental effort, as the task was getting too difficult to solve
appropriately.

Despite the lack of an unique definition, mental workload is been used in many studies
and applications. Mental load can be measured in different ways: subjective with rating
scales, by performance measures or with help of physiological signals. In the following
the different measurement methods will be described further.

2.4.1. Physiological Measures

Depending on the scenario and the aspects of workload, several physiological signals
come into consideration for measurement of mental workload. Kramer [Kra91] exam-
ined different physiological signals as measurement for mental load under the aspects of
sensitivity, diagnosticity, intrusiveness and reliability. Kramer stated, that different phys-
iological signals measure different aspects of mental workload. Part of the study were
event-related potentials measured from the brain, cardiovascular activity, pupil diameter
and measures of respiration. EDA turned out to be only useful to identify shifts between
situations of different kinds of workload. Event-related potentials achieved highest di-
agnosticity to determine mental workload. On the other hand, measurement of ERP is
intrusive in comparison to other measures.

Changes in pupil diameter proved to be a reliable measure for mental workload. Kramer
[Kra91] recommends to use pupil diameter measurement only in controlled experimental
conditions, where the head movement can be controlled, due to the difficulty of fast and
exact determination of diameter changes. Since the study of Kramer, measurement devices
for pupil diameter improved dramatically, allowing a fast measurement with eye-tracking
systems even in situations, where the user is moving the head, e.g. during driving a car
[PKSH10]. However, pupil diameter measurement requires a user to have some sort of
camera in direction of the eyes.

Cardiovascular measures in the study of Kramer [Kra91] were blood pressure, blood
volume and ECG. As described in chapter 2.3.5 HRV can be used for assessment of mental
workload. Meshkati [Mes88] examined besides HRV several other physiological signals
regarding their usage for mental load measurement and calls it the most promising mea-
surement for workload.

2.4.2. Subjective Ratings

The most famous rating scale for mental workload assessment is the NASA Task Load
Index (NASA-TLX) originally designed for aviation which was introduced by Hart in
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[HS88]. The NASA-TLX is a multidimensional scale to obtain workload of a person. The
NASA-TLX is divided into six different subscales, which are shown and further described
in table 2.1. Each subscale is divided into 20 items to allow a rating between low and high
or good and poor. Before answering the six scales (mental demand, physical demand, tem-
poral demand, effort, performance and frustration level), user have to fill out a weighting
for the six aspects to rate which of the scales influences them more in comparison to the
other scales. Based on the results of these weighing, the results of the six scales are calcu-
lated. In the end, all six scales are added together for the mental workload.

Title Endpoints Descriptions
Mental Demand Low/High How much mental and perceptual activity was

required (e.g. thinking, deciding, calculating,
remembering, looking, searching, etc.)? Was
the task easy or demanding, simple or complex,
exacting or forgiving?

Physical Demand Low/High How much physical activity was required (e.g.,
pushing, pulling, turning, controlling, activat-
ing, etc.)? Was the task easy or demanding,
slow or brisk, slack or strenuous, restful or la-
borious?

Temporal Demand Low/High How much time pressure did you feel due to
the rate or pace at which the tasks or task
elements occurred? Was the pace slow and
leisurely or rapid and frantic?

Effort Low/High How hard did you have to work (mentally and
physically) to accomplish your level of perfor-
mance?

Performance Good/Poor How successful do you think you were in ac-
complishing the goals of the task set by the ex-
perimenter (or yourself)? How satisfied were
you with your performance in accomplishing
these goals?

Frustration Level Low/High How insecure, discouraged, irritated, stressed
and annoyed versus secure, gratified, content,
relaxed and complacent did you feel during the
task?

Table 2.1.: Rating scale definitions of the NASA-TLX [Har06]
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These six subscales address the challenge of a clear workload definition. The six aspects
of workload were designed to meet most people’s experience of mental workload [Har06].

In [Har06] the usage of NASA-TLX has been examined over the last 20 years. In total
550 studies from different countries were reviewed by Hart [Har06] regarding different
aspects like study environment, focus of the study etc. The results showed, that visual
and or auditory displays were focus of most studies with a portion of 31 %. Looking on
the environments of the studies, Air Traffic Control (10), civilian (12) and military cockpits
(5) had the biggest portions. Computer users had a portion of 7 and user of portable
technologies like smartphones had a portion of 4.

Besides the NASA-TLX several other rating scales for mental workload exist, like for
example the Subjective Workload Assessment Technique questionnaire (SWAT) [RN88].
The SWAT questionnaire consists of an additive multidimensional representation of three
dimensions, like shown in figure 2.10. The dimensions are: time load, psychological stress
and effort load.

Figure 2.10.: Three-dimensional workload model of Reid and Nygren [RN88]

Each of these dimensions is divided into three level: low, medium and high. The single
definitions of each level for each scale is shown in table 2.2. To assess workload with
SWAT, two steps have to be conducted. The first step, called the scale development, is
based on 27 cards, which contain all possible combinations of the three scales and its three
levels. The participant is asked to sort the cards in order of increasing workload by own
perception. In the next step, the participant rates its workload on the scales. Finally, each
rating is converted to a value between 0 and 100, based on the scale of step 1.

Luximon et al. [LG01] developed a simplified version of the SWAT questionnaire to
handle pitfalls like missing sensitivity of low workloads. They compared different types
of simplification of the card sorting step. Card Sorting was compared with SWAT without
card sorting and a method of pair wise comparison.

The results showed, that the approach of SWAT without card sorting was most sensitive,
pairwise comparison moderate to more sensitive and the full card sorting process lead to
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I. Time Load
1. Often have spare time. Interruptions or overlap among activities occur

infrequently or not at all.
2. Occasionally have spare time. Interruptions or overlap among activi-

ties occur infrequently.
3. Almost never have spare time. Interruptions or overlap among activi-

ties are very frequent, or occur all the time.
II. Mental Effort Load
1. Very little conscious mental effort or concentration required. Actively

is almost automatic, requiring little or no attention.
2. Moderate conscious mental effort or concentration required. Complex-

ity of activity is high due to uncertainty, unpredictability, or unfamil-
iarity. Considerable attention required.

3. Extensive mental effort and concentration are necessary. Very complex
activity requiring total attention.

III. Psychological Stress Load
1. Little confusion, risk, frustration, or anxiety exists and can be easily

accommodated.
2. Moderate stress due to confusion, frustration, or anxiety noticeably

adds to workload. Significant compensation is required to maintain
adequate performance.

3. High to very intense stress due to confusion, frustration, or anxiety.
High extreme determination and self-control required.

Table 2.2.: Rating scale definitions of SWAT [RN88]

least sensitivity.
Both introduced questionnaires, NASA-TLX and SWAT, have been widely used, espe-

cially in determination of workload in aircraft multitask situations [RDMP04]. However,
subjective ratings require that a user fills out a questionnaire or answers question. During
interaction with a system, this might lead to an interruption in workflow.

2.4.3. Performance Measures

Besides subjective ratings and physiological signals, mental load can also be estimated by
performance measures like error rate, click rate or time span to solve a task. Task perfor-
mance can be measured by a primary-secondary-task scenario [Lin91]. User focus on a
primary task, while a secondary task is offered for situations of low workload in the pri-
mary task. Depending on how well users perform at the secondary task, workload can be
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estimated.

This approach is more objective as the subjective ratings, but offers only limited accuracy
in the determination of different workload levels. Furthermore performance measure are
not reliable in every situation, a person can be distracted from the environment or occupied
with multitasking switching between different other tasks. If a person does not engage
enough with the secondary task, workload estimation is very inaccurate or not possible.

2.5. Arousal

Arousal is defined as a state of high (excited, stimulated, awake) or low (calm, sleepy)
activity. The terms tension-relaxation or activation are also commonly used in the sense of
arousal. Arousal is widely used in different psychological concepts and models. It was first
introduced in 1912 by Wundt [WP12], who proposed tension-relaxation as a dimension for
describing emotions.

Many psychological models for the interpretation of emotions, affect and state of a per-
son have arousal as one of their parts. Some of them will be described in chapter 2.7 in
detail. In the following, methods of measuring arousal, physiological or subjective, will be
introduced.

2.5.1. Physiological Measures

Different physiological signals can be used to conclude on the current arousal level.
Changes in Skin Conductance Level correlate to arousal, as well as in parts of measured
EEG [BL00]. A rising Skin Conductance Level, corresponds to a rising level of arousal.
In the EEG the alpha waves (10-13 Hz) correlated to low arousal as well as an increase in
frequency correlated to an increase in arousal [BL00].

Besides EDA and EEG, pupil diameter is a measurement for arousal [BMEL08]. Studies
of Bradley et al. [BMEL08] showed, that pupil response correlated with emotional arousal
and covaried to Skin Conductance Level. Decreased blood volume pulse and increased
heart rate have also shown to correlate to arousal [MA07].

2.5.2. Subjective Measures

Different subjective measures exist, that have a scale for arousal in one or another way
integrated. The self-assessment questionnaire manikin (SAM), developed by Lang et al.
[BL94] is a questionnaire consisting of three single scales for arousal, dominance and va-
lence. The items of each scale are presented as drawn pictures, offering a nonverbal possi-
bility of assessing the different values. The scale for arousal is shown in figure 2.11. High
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arousal is represented by a figure implying movement and high alert. Low arousal on the
other hand is represented by a sleeping figure.

Figure 2.11.: Arousal scale of the SAM questionnaire [BL94]

Besides SAM, other questionnaires address arousal in different ways. For example the
Affect Grid, which will be introduced in detail in subchapter 2.7.2, has no single scale for
arousal as it is integrated in a two dimensional scale of valence and arousal.

2.6. Valence

Valence describes whether a situation or feeling is positive or negative. The term pleasure
is also commonly used in the same way as valence. Frijda [Fri86] defines valence in the
following way:

”Events, objects, and situations may possess positive or negative valence; that
is, they may possess intrinsic attractiveness or aversiveness”

Valence has been used in many concept and models to describe affect [RWM89]. In the
following, different concepts of measuring valence with physiological signals or subjective
measures are introduced.

2.6.1. physiological measures

Different physiological measures can be used, to conclude on the level of valence. One
commonly used measure is the analysis of facial expression with help of an electromyo-
gram (EMG). Electrodes for EMG are placed near the cheek and at the forehead to measure
smiling and frowning [MA07].

Besides EMG, heart rate, irregularity of respiration and pupil diameter have shown po-
tential to determine level of valence [MA07].

2.6.2. Subjective Measures

Similar to arousal, different subjective measures exist, that have a scale for valence but do
not measure valence solely. The SAM questionnaire also offers a scale for valence, shown
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in figure 2.12. In this case, the figure ranges from a smiling to a depressed looking figure.

Figure 2.12.: Valence scale of the SAM questionnaire [BL94]

Besides the SAM questionnaire, the affective grid has also a dimension, which covers
valence on a nine point scale for valence.

2.7. Modelling Psychological User State

No clear definition of emotion and how to measure it exists [WR10] [KJK81]. Different
models exist, to further describe the psychological state, mostly based on valence and
arousal or similar concepts [YRS11]. The models describe different emotions or differ-
ent aspects of an emotional or affective state. As this thesis concentrates on the aspects
of computer science, only a short overview of the most commonly used models within
Human Computer Interaction (HCI) is given.

Russell developed models to describe the affective state of a person (see 2.7.1 and 2.7.2)
and the core affects (2.7.3). Yerkes and Dodson defined the Yerkes-Dodson law, which
describes the process of performance of a person (see chapter 2.7.4). Csikszentmihalyi de-
fined the flow zone, communicating the ideal zone between skill and challenge (see chap-
ter 2.7.5). These models and concepts are further described in the following subchapters.

2.7.1. Russell’s Circumplex Model of Affect

The circumplex model of affect based on Russell [Rus80] (figure 2.13(a)) is a two dimen-
sional model, describing different states of affect by a linear combination of valence (x-axis)
and arousal (y-axis). The arousal is a description of the activation level of a person. Va-
lence describes if the feeling is pleasant or unpleasant. Due to the valence and arousal axis,
the model is also often called valence-arousal space.

The first version of the model, with 8 different emotions is shown in figure 2.13(a) as
it was predicted by Russell before testing, with the affects pleasure (0°), excitement (45°),
arousal (90°), distress (135°), displeasure (180°), depression (225°), sleepiness (270°) and
relaxation (315°) on the circle.
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(a) Predicted model of Russell [Rus80] (b) Circumplex model with 28 words [Rus80]

Figure 2.13.: Left: first version of circumplex model [Rus80], right: model based on several
studies [Rus80]

Based on several studies, Russell determined the position of 28 different emotions in the
circumplex model. The results showed, that the original predicted model with the eight
different affects corresponded to the most of the different scaling variations of the 28-word
version of the model (shown in figure 2.13 (b)).

The original circumplex model, with 8 different affective states is especially suitable
for applications like games. The extended model with 28 different affective states on the
circumplex model might be to fine granulated.

2.7.2. Russell’s Affect Grid

The affect grid itself is not a model for emotion or affect. The affect grid developed by Rus-
sell [RWM89] is designed to offer a one-item scale for determination of current affect state.
The affect grid is a 9x9 grid with the axis unpleasant-pleasant and high arousal - sleepiness
shown in figure 2.14. Pleasant-unpleasant and high arousal - sleepiness correspond to the
scales, which are often used for two dimensional models to describe emotions or affect,
like the two models of Russell described in the previous subchapters 2.7.1 and 2.7.3.

Studies of Russell et al. [RWM89] showed, that the affect grid had validity and reliability
in studies, where current mood or affect were recorded with help of the grid.

The grid was designed to easily access the state of a person, for a broad range of ap-
plications and studies. Application areas of the affective grid are manifold. Examples are

23



2. Background

Figure 2.14.: Affect grid by Russell [RWM89]

studies about music [HTS02] or games [MA07]. As the affective grid helps to determine
the affective state, it is a measure, that has its strengths in applications, which aim for a
certain affective state like games, instead of controlling performance level.

2.7.3. 12-point affect circumplex

The 12-point affect circumplex (12-PAC) was developed by Yik et al. [YRS11]. The model
is based on 12 different core affects. Yik et al. [YRS11] define core affect as ”the simplest
feeling” which cannot be further reduced to anything simpler in psychological terms. Core
affects are a part of a mood and a person always has one of the core affects.

Figure 2.15 shows the 12 different affects, a combination of activation and pleasure level,
with their position and angle at the circle. Each 30° one core affect is denoted. The figure
also shows for each core affect a possible emotional state, e.g. sad or gloomy for a state of
deactivated displeasure. The angles are only an estimation, as they cannot be determined
exactly. Studies presented by Yik et al. [YRS11] show that the model was robust and is
highly correlated with other mood scales. [YRS11]

As the model has basic definitions of the different affective states in comparison to the
circumplex model, it is suitable to express an emotion or affect by its basic components.
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Figure 2.15.: Circumplex model divided into 12 core emotions [YRS11]

2.7.4. Yerkes-Dodson Law

In 1908 Yerkes and Dodson defined the Yerkes-Dodson law, based on results of their stud-
ies [YD08]. The law describes the relationship between performance and arousal in a curve
shown in figure 2.16(b).

The curve shown in figure 2.16(b) distinguished between two different situations: sim-
ple and difficult tasks. During a simple task, performance stays high when reaching a
certain level of arousal. In this scenario, subjects are able to focus the attention on the task.
On the other hand, during a difficult task, subjects only achieve high performance during
a mid level of arousal. Higher arousal values lead to a decrease in performance. In this
situation, the resources of a person are overextended. Typical examples for this situation
are multitasking and divided attention.
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(a) Curve of Hebb (b) Yerkes-Dodson curve

Figure 2.16.: Left: Hebbian version of Yerkes-Dodson curve [DCP+07], right: Yerkes-
Dodson curve based on current studies [DCP+07]

Figure 2.16(a) shows a result of the work from Hebb [Heb55]. Based on different studies,
he came to the same results as Yerkes and Dodson. The difference between both researches
is the differentiation based on task difficulty. Hebb did not distinguish between simple and
difficult tasks to describe the relationship of arousal and performance.

Applications areas for the Yerkes-Dodson law are especially learning and tasks, where a
certain performance level should be kept. The difficult task of the original Yerkes-Dodson
law compares to multitask situations in mobile scenarios, where user play a game or use
an application, but also have to pay attention to the environment.

2.7.5. Flow

Csikszentmihalyi defined the original Flow model in 1991, which describes the relation-
ship between challenge and skill [Csi91][NC02]. The relationship is visualized in figure
2.17 (b). The flow zone represents the optimal state between challenge (y-axis) and skill
(x-axis) requirements. If the challenge is to low, the user is in a state of boredom. On the
other side, if the challenge is to high, the user experiences a state of anxiety. Csikszentmi-
halyi defines flow as a state in which a person enjoys and is totally involved in the activity
[Csi91].

Figure 2.17 (b) shows the already revised model by Ellis et al. [EVM94]. Ellis et al.
revised the model by adding an apathy zone, when challenge and skills are low. This
revised model is especially suitable for games. Typical application areas for this model are
for example situations, in which the action itself is the goal instead of achieving a given
performance level. Examples are games, drawing and sports. [NL08]
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(a) Revised model by Ellis et al. from [NL08] (b) relation between arousal and flow [PSS+14]

Figure 2.17.: Models for the relation between arousal and flow

Flow can be measured in different ways. A questionnaire, the flow state scale developed
by Jackson and Marsh [JM96], quantifies the flow experience of a person in a subjective
way. Physiological measures allow a objective estimation of flow experience. Peifer et
al. [PSS+14] described the relationship between flow experience and arousal in a upturn
U curve 2.17 (a). With low arousal user experience boredom, under high arousal they
experience stress. In a mid level of arousal, flow experience achieves high values.

2.8. Context

Several definitions of context exist. One of the most used definition of context is from
Abowd et al. [AD99], who define context as:

”Context is any information that can be used to characterize the situation of
an entity. An entity is a person, place, or object that is considered relevant
to the interaction between a user and an application, including the user and
application themselves.”

Based on this definition, every information that leads to a closer description of the sit-
uation of a user is defined as context. In the following context sensitivity and context
information and its categorization will be described.

2.8.1. Context Information

Context information can be distinguished between explicit and implicit gathered context
information. [AD99] gives as an example for implicit context the identification of a user
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via vision based approaches, where on the other hand identification by a login form would
be explicit information.

Figure 2.18.: Table of physical sensor types, that are widely used in mobile devices [BDR07]

Indulska and Sutton [IS03] distinguish between three different sources of data, to collect
context information: physical, logical and virtual sensors. Physical sensors collect physical
data. Figure 2.18 shows a broad range of physical sensors that are widely distributed.
Virtual sensors on the other hand collect context data from applications or services, e.g.
mouse-clicking rate. The so called logical sensors use the data collected by physical and
virtual sensors, as well as other data sources to conclude on certain information. [IS03]

Different categories can be defined for the type of context information. The most com-
monly used are the categories defined by Ryan et al. [RPM98] and Day et al. [AD99]. Ryan
et al. [RPM98] define the categories location, environment, identity and time. Dey et al.
[AD99] also define the categories location, identity and time, but changed environment to
the category activity. They motivate that with the fact, that activity gives an information
about what is happening, where on the other side they argue that environment is only
another description of context itself.

Context information can further be distinguished in primary and secondary context in-
formation [AD99]. Primary context information are for example information about the
identity of a person. Secondary context information can be collected based on primary
context information, e.g. contact details of a person based on the identity. [AD99]
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2.8.2. Context Awareness or Sensitivity

Context awareness or sensitivity is defined as the capacity to adapt to a situation or envi-
ronment based on information about the context. A first definition was given in 1994 by
Schilit et al. [ST94]:

”Context-aware computing is the ability of a mobile user’s application to dis-
cover and react to changes in the environment they are situated in.”

Dey [Dey01] defined a context-aware system in 2001 more general comparing to [ST94],
to fit to a broader range of applications :

”A system is context-aware if it uses context to provide relevant information
and or services to the user, where relevancy depends on the user’s task.”

In addition to this definition Dey [Dey01] defined three different categories of context-
aware application types, that were also kept as general as possible. The three categories
are: presentation of information, automatic execution and tagging of context. Presentation
of information offers for example the possibility to present information or services to a
user, tailored to the current context. Automatic execution covers applications that might
cover some kind of automation depending on the current context, e.g. the current location.
Tagging of context with information can be used for similar future situations. [Dey01]

2.9. Concepts of User State Modelling

Different concepts exist in computer science for classification or estimation of an user state.
In this subchapter, the background and foundations for the most commonly concepts used
in the modeling of user state based on physiological data will be introduced. At first, a
short overview of neural networks will be given, followed by an introduction of support
vector machines, Fuzzy logic and Bayesian networks.

2.9.1. Neural Networks

Neural networks are based on neurons. The neurons of a neural network are inspired by
the neurons of the human brain, which collect, process and transmit signals. McCulloch
and Pitts [MP43] described a neuron mathematically. An example for a neuron for neural
networks is shown in figure 2.19:

Figure 2.19 shows the input and output links, as well as the parts of the neuron itself,
the input and activation functions and the output value. Every input link has a weight
W. These input weights get summed up by the input function. The activation function
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Figure 2.19.: Russell-Norvig Neuron [RN04]

is applied to the result of the input function to determine the output ai. The activation
function can be a threshold or a sigmoid function. [RN04]

The topology of the networks can be cyclic (Feedforward networks) or acyclic (Recurrent
networks). Cyclic networks feed their output back to the input. Neural networks can have
single or multiple layer. In single layer networks, input neurons are directly connected
with the output neuron. Single layer networks can represent linear functions, multi-layer
networks on the other hand are more expressive and can represent nonlinear functions as
they have several layer of neurons between input and output neurons. [RN04]

Neural networks are able to learn. Different learning algorithms for neural networks ex-
ist. Most learning algorithms are based on the principle of back propagation with gradient
descent for optimization. To train a neural network with backpropagation, training sets
are needed, to compare the output of the training sets with the correct result. The error be-
tween correct result and output of the neural network are then compared and propagated
back through the network to adjust the weights between the neurons. [RN04]

Single layer networks allow efficient and fast learning. The more layer the network has,
the more complex gets the efficient solution of the learning process with backpropagation.
[RN04]

2.9.2. Support Vector Machine

The support vector machine (SVM), or also called Kernel machines, is a fast and efficient
method for classification. They offer the same expressiveness as neural networks, but have
a more efficient learning algorithm. SVMs are based on the idea, that different objects of
a set get divided by vectors into different classes. These vectors have support vectors,
which run parallel to the dividing vectors through the closest point of each divided class.
To determine support vectors, a training data set is needed where it is known which data
belongs to which class. Figure 2.20 shows an example for determination of dividing vector
and support vectors. [RN04]
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(a) Division into two classes in two dimensional space (b) Transformation of solution into three dimensional
space

Figure 2.20.: Transformation of classes for preparation of vector calculation [RN04]

Figure 2.20 (a) shows an example of two classes (black and white dots), that should be
divided into two separate classes. The shown solution is a circle and not linear. To solve
the problem, the function is transformed into the three dimensional space (x1,x2,...). The
nonlinear border between the two classes of figure 2.20(a) is now a linear border. When
transformed back into two dimensional space, by projection to the axis x1 and x2, a vector
shown in figure 2.20, is the result.

On both sides of the vector, a parallel supporting vector is determined, going through
the closest point of the set to the vector (see figure 2.21). This supporting vectors allow a
fast and efficient determination in which class a point belongs to.

Depending of the number of dimensions that are needed to calculate the support vectors,
the computation gets complex. To handle this problem, Kernel functions are used which
have a high performance in calculation. Depending on the problem, different Kernel func-
tions can be used. An overview of Kernel functions and details of their functionality is
given in [STC04].

SVMs were examined in different use cases. Russell and Norvig [RN04] list recogni-
tion of hand written numbers as an example. In this example, SVMs were compared to
approaches with other approaches like neural networks. The virtual SVM had a higher
classification rate as Neural networks approaches in the study.
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Figure 2.21.: Transformation back from three to two dimensional space followed by deter-
mination of supporting vectors (dashed lines) [RN04]

2.9.3. Fuzzy Logic

Zadeh [Zad65] introduced Fuzzy sets and fuzzy logic in 1965. Fuzzy logic is based on the
idea to describe sets where an element can not only be in or outside of a set, but also be
partially a member of a set. This allows the handling of imprecision for different applica-
tions.

A typical fuzzy system is based on three steps: fuzzification of input, logic processing
and defuzzification of output. In the first step, the input is fuzzified and represented as
a fuzzy set. Fuzzy sets are defined by membership functions, which assign each point of
the set a value between 0 and 1. This value describes the grade of membership to a certain
set. Figure 2.22 shows two examples for membership functions, showing temperature and
pressure. Different fuzzy regions are defined, for example cold, cool, tepid, warm and hot
for temperature. Depending on the input value on the x-axis, degree of membership can
be determined (y-axis). E.g. if pressure is around 1200 a degree of membership for ”OK”
and ”Strong” is returned, as the result is within both sets.
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Figure 2.22.: Example for membership function for temperature and pressure [Cox92]

During logical processing, fuzzy rules are applied to transform the fuzzified input to the
fuzzified output. Rules are based on IF and THEN. Additionally logical operators AND,
OR and NOT are defined, called Zadeh operators. OR defines the maximum, AND the
minimum and NOT the complement [RN04]:

AND : x ∧ y = min(x, y) (2.4)

OR : x ∨ y = max(x, y) (2.5)

NOT : ¬x = 1− x (2.6)

An example for a rule is ”IF temperature is cold THEN pressure is strong”. The results
of rules are the degree of membership to the certain fuzzy sets.

In a last step, the result of the logic processing is defuzzified. Different methods for
defuzzification exist to choose a value out of the different possible solution sets and the
degree of membership. During defuzzification, each variable is mapped to a correspond-
ing crisp value out of it’s solution fuzzy sets. For example, for the pressure value 1200
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from figure 2.22 defuzzification decides if the result is ”Ok” or ”Strong”. Van Leekwijck
and Kerre list several defuzzification methods in [VLK99].

In contrast to neuronal networks, the membership functions have to be created and can
not be learned. Zadeh [Zad96] states, that the main purpose of fuzzy logic in comparison to
other methods like Bayesian and neural networks is, that it offers a method for computing
with words.

34



3. State of the Art

Some work has been done in the field of modeling and using physiological data in differ-
ent applications and scenarios. Some of the most important related work and approaches
will be described in this chapter to narrow down the contribution of this work. At first,
the current research areas addressing this topic will be introduced. In a second step, differ-
ent approaches for continuous modelling of physiological data to emotions or other states
will be introduced and a conclusion will be drawn. In the following chapters, different
approaches in the area of using mental load or affective state in applications or user in-
terfaces as well as context-sensitive applications will be described. The chapter finishes
with a conclusion on the current state-of-the-art of combining physiological signals with
context information for applications.

3.1. Research Areas

Different research areas exist, that are based on the usage of physiological signals as in-
put. The two most commonly used terms are ”Affective Computing” and ”Physiological
Computing”. In the following a short definition of both areas and their challenges will be
presented.

3.1.1. Physiological Computing

One of the current research areas dealing with physiological signals in applications is the
area of Physiological Computing. Fairclough [Fai09] defined physiological computing as:

”Physiological Computing uses real-time psychophysiology to represent the
internal state of the user (e.g. cognitions, motivation, emotion), which is used
as the basis for real-time system adaptation.”

Physiological Computing focuses on psychological states based on physiology. The bio-
cybernetic loop is the heart of a psychophysiological computing system [Fai09]. The loop
includes the whole cycle of measuring and interpreting data up to the adaptation and the
reaction of the user. Figure 3.1 shows the cycle of a biocybernetic loop based on [PBB95].
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User
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Figure 3.1.: biocybernetic feedback loop based on [Fai09]

The feedback loop is able to work in a positive or negative way for feedback control
or switch between both. Negative feedback control aims on keeping the user in a certain
state. The positive feedback control on the other hand aims for performance instability, for
example to increase the challenge or engagement of a user. Depending on the application
area, either positive or negative feedback control supports the purpose of the application.
Games e.g. may benefit from positive feedback control. Keeping an user in a certain work-
load zone on the other hand may benefit from negative feedback control.

3.1.2. Affective Computing

The area of affective computing was introduced by Rosalind Picard, who defined in 1995
in [Pic95] Affective Computing as follows:

”I call ”affective computing”, computing that relates to, arises from, or influ-
ences emotions.”

In contrast to Physiological Computing, affective computing focuses on the emotional or
affective aspect of a user or the system, where physiological computing covers a broader
range of different user states. Affective Computing has the aim to give computers and
machines the possibility to handle affective state of an user, based on input from different
sensors [TT05]. Besides covert physiological signals as used in physiological computing,
affective computing also makes use of measures like facial expression and speech.

The current challenges in affective computing are similar to the challenges in physiolog-
ical computing. In both areas, reliable models for user state have to be explored more in
detail.
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3.2. Continuous Modelling of User State

Different models and approaches exist, to interpret physiological signals. One of the chal-
lenges is to assess affective or emotional state continuously during runtime of applications.
In chapter 2.9 different models were introduced, which are the base for the specific state-of-
the-art models that are used in current research. These current efforts in research, covering
different methods, will be presented in this chapter. Especially the type of affect or user
state and its values, which are determined, is of interest for this work as well as the applied
method itself and its classification rates.

3.2.1. Neural networks

Approaches based on neural networks are widely distributed. Nicolaou et al. [NGP11]
developed an approach using Long Short Term Memory Neural Networks (LSTM). The
methodology of the approach is shown in figure 3.2. Input signals are facial expression,
shoulder gesture and audio cues.

Figure 3.2.: Methodology and model of Nicolaou et al. [NGP11]

The approach is divided in four steps: Pre-processing, Segmentation, feature extraction
and continuous prediction. The Sensitive Artificial Listener Database (SAL-DB) is the basis
for pre-processing and segmentation, as well as feature extraction. The prediction part of
the model is based on two different approaches: a variation of neural networks, the LSTM
neural network and the Support-Vector Regression (SVR).
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LSTMs have different advantages in comparison to recurrent neural networks (RNN)
for the continuously modelling of affect and emotional states. LSTMs and RNN differ by
the nodes, as the LSTM has connected memory blocks as nodes. These memory blocks
contain a storage and multiplicative gates. The gates handle the state of the memory cell.
This allows the LSTM to learn over a longer time than RNN.[NGP11]

Evaluated against a human coder, the prediction of valence and arousal values were
similar or slightly better, than an average human-intercoder. In single cue-prediction, the
system achieved a correct prediction of 84% for valence. [NGP11] LSTMs have been used
mainly in models that were based on speech and facial expression recognition. Especially
for speech recognition, the bidirectional version of LSTMs seems to be a good solution
[GS05].

3.2.2. Fuzzy Logic

Several examples of current research exist, that use an fuzzy logic approach for interpreta-
tion of affective state. Mandryk et al. presented in [MA07] an approach to model physio-
logical data continuously to emotional state. Based on the affect grid of Russell presented
in chapter 2.7.2, the created model is specialized to computer games, modelling the states
fun, boredom, challenge, excitement and frustration.

Mandryk et al. used Galvanic Skin Response (GSR), electrocardiogram (ECG) and elec-
tromyogram (EMG) to compute emotional states. ECG has been measured by three elec-
trodes placed on the chest. For EMG measurement two electrodes have been placed in the
face of the participants to measure smiling and frowning activity. Electrodermal activity
(EDA) was measured by two electrodes placed at two fingers. These physiological signals
get normalized in a first step. Based on these normalized values, values for valence and
arousal are calculated (figure 3.3 (a)). The valence and arousal values get transformed to
an emotion value.

To transform the physiological signals into valence and arousal values 22 rules based on
fuzzy logic are applied to the normalized signals (shown in figure 3.3(a)). Arousal is based
on EDA and heart rate (HR). On the other hand valence is generated by the two EMG
values and heart rate. The 22 rules are based on the relationship between physiological
signals and psychological interpretation and are presented in detail in [MA07]. Valence
and arousal are expressed in six different levels: very low, low, mid low, mid high, high
and very high.

In the second step (shown in figure 3.3(b)), valence and arousal are transformed into
emotion values by 67 rules. The rules are based on the affect grid and can be found in detail
in [MA07]. The affective grid (see 2.7.2) was modified, the nine point scale of the grid was
reduced to a six point scale. The areas for the five different emotions in the affective grid,
shown in figure 3.4 were defined based on the circumplex model of Russell. The x- and
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(a) Transformation of physiological signals to
valence-arousal space

(b) Transformation of arousal and valence to five af-
fective states

Figure 3.3.: Model of the fuzzy-rule system by Mandryk et al. [MA07]

y-axis divide the grid in the vertical and horizontal direction. As in the affective grid, the
x-axis ranges from unpleasent to pleasant feeling and the y-axis ranges from sleepiness
to high arousal. The output of the emotion was divided into four levels: very low, low,
medium and high (figure 3.4).

Figure 3.4.: The five affective output states in the affective grid [MA07]

The model was created with data sets of six participants. Six other participants were
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used to evaluate this model. Besides measurement of physiological data, participants had
to fill out subjective ratings about their current emotional state. The results showed a
correlation for fun and excitement. Challenge correlated with one half of the participants.
The others commented, that they calm down during high degrees of challenge, which
does not meet the model of challenge. Frustration and boredom did not correlate with the
subjective ratings. Mandryk and Atkins state that scaling issues might be the problem in
this case.

Another example for the usage of fuzzy logic is the work of Rani et al. [RSSA03]. The
work of Rani et al. focuses on detecting anxiety instead of a broader range of affective
states. Cardiovascular Activity, EDA, EMG and temperature were measured. From the
18 measured signals, only signals with a high correlation rate were used as input for the
fuzzy system. The results of a first study were used to formulate the rules, which resulted
in 3x n rules for n input channels.

In a first study of Rani et al. [RSSA03], six participants had to solve three different tasks
with two different difficulty levels each to produce different levels of anxiety. Participants
had to rate their subjective anxiety level after each task on several 9-item Likert-scales. The
output of the anxiety classifier system was compared to the subjective ratings. The results
showed a mean percentage error between 14 to 16 percent for different training data sets.
In this study, the fuzzy logic approach was also compared to a decision tree approach. The
mean percentage error for the decision tree ranged between 9 and 41 percent for the same
data sets. The decision tree approach performed in best case better than the fuzzy logic
approach, but the fuzzy approach turned out to be more stable across different situations.

3.2.3. Support Vector Machine

The support vector machine (SVM) is in comparison to the other used machine learning
methods the newest method. Several current research uses support vector machines. Sun
et al. [SKC+12] used a SVM for interpretation of stress based on ECG, EDA and an ac-
celerometer. For evaluation, data set of 20 participants in six different situations were
used. With a randomly chosen subset of the gathered data sets, the SVM was trained and
afterwards evaluated with the remaining data sets. The classification rate was based on
the training sets size. With only 3 out of 20 data sets, a classification rate of approximately
73 % was achieved. Using 18 out of 20 data sets, led to a classification rate of 81%.

Sun et al. [SKC+12] compared the SVM approach to Bayes networks and a decision tree.
Bayes networks had the second best classification rate, ranging from 67% for 3 training
sets to 78% for 18 training sets. Decision trees had the worst result in comparison to SVM
and Bayes Networks, ranging from 64% to 78% classification rate.

Zhai et al. [ZB06] used a SVM to distinguish between stressed and relaxed states, based
on EDA, ECG, skin temperature and pupil diameter. In total, 32 participants took part
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in the study. Participants had to do the Stroop Color Stress Test [Str35] in different con-
figurations. Out of the 32 data sets, 12 were used for training and the remaining 20 for
evaluation. Classification rate was on average 90.1%.

Liu et al. [LRS05] used SVM in a study to determine anxiety, engagement, boredom,
frustration and anger in real-time. EDA, ECG and EMG were used as physiological input.
The participants had to solve two different tasks: the game Pong and an anagram task.
Both tasks were designed to cover a broad spectrum of the five selected affective states.

In total, 15 participants took part in the study. The SVM reached 85.8 % classifica-
tion rate in average, ranging between 82.8 to 88.8% classification rate for single affective
states. The SVM approach was compared to regression trees, Bayesian networks and k-
nearest-neighbor approaches, with the same data sets. Judging by classification rate, SVM
performed best, followed by regression trees, which had an average classification rate of
83.5%. K-nearest-neighbor and Bayesian networks had classification rates of 75.1 respec-
tively 74%.

When comparing training and testing times, regression trees performed best. The SVM
approach was two times slower than regression trees in training and 3 times slower in
testing.

3.2.4. Other Approaches

Besides the mentioned approaches (neural networks, fuzzy logic and support vector ma-
chines), several other methods have been used in research. Some of them have been men-
tioned in the previous subchapters, as they have been compared to one of the other meth-
ods in studies. One other approach, which was one of the first ones with a high classifica-
tion rate, will be described in the following.

In the work of Picard [PVH01] et al. eight different affective states, shown in figure 3.5,
were defined, based on arousal and valence. To determine valence and arousal, EMG,
EDA, blood volume pulse and respiration were measured.

Figure 3.5.: Table of 8 different emotional states used in the work of Picard et al. [PVH01]
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The model based on a hybrid sequential floating forward search with Fisher projection
(SFFS-FP). It was compared with a solely sequential floating forward search (SFFS) and
Fisher projection (FP) in the study. The results showed significantly better results for the
SFFS-FP with a classification rate of 80.8 % for the 8 different affective states.

3.2.5. Conclusion

The different approaches presented in this subchapter have different advantages and dis-
advantages for usage in a big variety of applications and in mobile scenarios. None of the
models reaches a 100% classification rate. Different aspects have to be considered when
choosing a model for affect classification. One aspect is the number of input and output
channels. A model, that works well for distinguishing between only two affective states
based on one input signal, might not achieve the same high classification rates for multi-
modal input and a higher number of affective states output.

When favoring a model with a classification rate as high as possible, the support vector
machine approach seems very promising. Different comparative studies showed, that the
SVM approach had the best classification rates under different conditions. On the other
hand, when aiming for a fast and efficient training and testing process, regression trees
outperformed the SVM.

Besides SVM, fuzzy logic also achieved high values in classification rate in the presented
work. In comparison to SVM, fuzzy logic has its advantages in the comprehensibility of
the configuration. Rules can be defined with words, which are also understandable for
persons without computer science background.

3.3. Integrating Workload Measurement in Applications

Various works did research about the usage of heart rate variability and other physiolog-
ical signals in user interfaces, especially regarding reducing complexity or multi-tasking
scenarios. Rowe et al. [RSI98] did a study comparing mental effort determined by Heart
Rate Variability (HRV) and subjective measures. Chen and Vertegaal [CV04] implemented
a user interface integrating mental workload for interruption management. Afergan et al.
[APS+14] based their work on a brain imaging technique. The examples will be further
discussed in the following.

3.3.1. Difficulty Adaptation in Air Traffic

In the work of Rowe et al. [RSI98] participants of a study had to control an air traffic
scenario in a game, preventing objects to collide. The parameter movement was divided
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into constrained and unconstrained movement, adapted in the aspects of speed, directions
and moderation. Objects with constrained movement had predefined routes.

Thirteen persons participated in an early study. Participants were connected with three
electrodes to a stationary ECG. Each participant had to play five different scenarios with
different difficulty levels. For subjective rating of mental effort, NASA Task Load Index
(NASA-TLX) was used. The results showed a decrease of HRV in the low frequency area
which means an increase in mental effort, when task difficulty was increasing. This corre-
lated to the subjective rating, which also showed an increase in mental effort.

When task difficulty reached a certain difficulty level, HRV increased, which would
mean a lower mental effort. Rowe et al. [RSI98] state that evidence suggested that par-
ticipants reached the point where they moved from a resource-limited condition to a data-
limited condition. Before reaching this level, participants increased their level of mental
effort to hold a certain level of performance. After reaching the point, where participants
got more data, than they could handle and realize, that a certain performance level can
not be hold due to limited resources. In this case, participants seemed to accept a lower
performance and lowered their mental effort.

3.3.2. Dynamic Difficulty based on Brain Metrics of Workload

Similar to the study presented by [RSI98] the work of Afergan et al. [APS+14] used an
interface for unmanned aerial vehicles (UAV) to test dynamic difficulty based on work-
load. Workload is measured with help of brain metrics based on functional near infrafred
spectroscopy (FNIRS). FNIRS sensors require two probes placed on the forehead of a user,
one on each side.

The interface used for the study is shown in figure 3.6. Participants of the study had to
direct UAVs to targets (both shown in red). Several obstacles (shown in blue and yellow)
had to be avoided on the track. When one of the UAVs arrived at one of the targets, new
targets were shown.

Figure 3.6.: Screenshot of the UAV test application [APS+14]

After a calibration task, to distinguish between high and low difficulty, participants had
to do the UAV task in each condition for 10 minutes. The adaptive condition used an
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interface, which adapted count of UAVs on the map based on current workload. The non-
adaptive condition on the other hand changed the count of UAVs randomly every 20 to 40
seconds.

In total, 12 participants took part in the study. Measurements like number of successes,
failures and performance were used to compare both conditions. Results showed, that
participants had nearly the same count of UAVs in both conditions (4.41 in the adaptive
version to 4.69 in the non adaptive condition). There was no significant difference in num-
ber of completed tasks between conditions. The failure rate on the other hand is decreased
significantly in the adaptive version in comparison to the non-adaptive version. The au-
thors conclude, that participants are more attentive and engaged in the adaptive version,
which leads to a lower failure rate.

Aferang et al. [APS+14] show in their work, that dynamic difficulty adaptation can
lower the failure rate in an application. Studies and application were conceptualized for a
stationary environment.

3.3.3. Physiologically Attentive User Interface for Interruption Management

Chen et al. [CV04] developed a mobile application, which uses heart rate variability and
motor activity based on electroencephalography (EEG) to regulate notifications. The au-
thors distinguished between four different states shown in figure 3.7. States were divided
by high and low mental workload as well as high and low motor activity. When mental
load and motor activity were high, it was assumed that user were e.g. writing, meeting or
lecturing. If mental load was high, but motor activity low, possible activities of the user
are driving, reading or thinking.

Figure 3.7.: Table showing the definition of the four different user states [CV04]

44



3.4. Integrating Affective State in Games and Applications

Based on these states phone call, messaging and email notifications were adapted as well
as the messaging status. In state 1 phone call notifications are set to ring, messaging and
email notification to vibrate and messaging status to available. State 2 differs only slightly
from the adaptations of state 1. The profile is the same, except the messaging status, which
is set to busy. In state 3 all notifications are set to vibrate and messaging status to available.
In state 4, the state with high mental load and high motor activity, all notifications are set
to silent mode and messaging status to busy.

A wearable system was used for measurement of physiological data, which allows a live
transmission of the physiological data. For measurement of ECG three electrodes were
placed at the chest. EEG was measured with one electrode placed on the head of the user.

In a first user study the correct notification state was identified in 83 percent of the cases
in a group of 6 participants. This work presented by Chen and Vertegaal is one of the
first systems, which was considering the usage of physiological data in mobile scenarios.
Sensors were chosen to be wearable but needed wires to connect the electrodes to the
measurement system. One of the electrodes was fixed at the head, which might lead to a
low user acceptance in terms of usability.

3.4. Integrating Affective State in Games and Applications

One big research area on the usage of physiological data is the gaming area. Several models
and games have been developed and researched, using physiological data as a direct or
indirect input for gaming allowing to adapt or control a game. Several examples will be
introduced in the following.

3.4.1. Integration of Physiological Signals in Gameplay

Drachen et al. [DNYP10] describe a study with three different first-person shooter games.
Electrodermal Activity and heart rate were measured during gameplay and compared to
subjective ratings of the gamer. The subjective rating was measured with game experi-
encequestionnaire (GEQ) by Ijsselsteijn et al. [IPDK08].

In total 16 participants took part in the study. The commercial games Prey, Doom 3 and
Bioshock were tested. All of these are first person shooters with horror elements. Each
participant had to play each game 20 minutes and was interrupted every 5 minutes to
fill out the game experience questionnaire. Heart rate and EDA was measured with a
stationary device. Physiological signals were normalized using the average baseline over
all measurements.

The results showed correlations between the measured arousal level and the results from
the subjective ratings. Heart rate correlated negatively with the GEQ dimensions compe-
tence, immersion, flow, challenge and positive affect. Heart rate correlated positively to
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tension and negative affect. [DNYP10] conclude that this is an indicator that a high heart
rate is linked to frustration and tension, where on the other hand a low heart rate is linked
to the flow state. EDA only correlated to negative affect and frustration.

Besides the work of Drachen et al., the research of Dekker and Champion [DC07] inte-
grated physiological signals into the engine of Half-Life 2. For measurement, a Lightstone
device from WildDivine was used, measuring ECG and EDA. Averages values of partici-
pants were gathered in previous measurements. The setup is shown in figure 3.8 (a).

(a) Game setup with physiological measurement de-
vice [DC07]

(b) Screenshot of the game [DC07]

Figure 3.8.: Biofeedback game of Dekker et al. [DC07]

The game was adapted in different ways. Movement speed and sound volume were
adapted by heart rate and EDA. Other effects appeared if a certain threshold for one of the
signals was reached. For example, the screen was shaking, when a certain high heart rate
level was reached in comparison to the measured average values. Calming down lead to
several advantages for the player, like semi transparent walls. Several visual effects were
also adapted by heart rate, like the black and white version of the game (shown in figure
3.8 (b)), which appeared if the heart rate was below the average. If a player was too calm,
game AI adapted difficulty, by spawning of additional enemies.

In a first evaluation, 14 subjects took part. In total, 8 of 14 participants noticed the en-
hanced version in comparison to the normal version and 9 out of 14 prefer the enhanced
version. 10 of the 14 participants recognized the influence of their physiological signals on
visualization and 12 recognized the influence on other events (e.g. sound adaptation).
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3.4.2. Using Physiological Data as Direct and Indirect Input

Nacke et al. [NKLM11] focused in their work on the classification of using physiological
signals as direct and indirect input in games. A 2D jump and run game was developed
(shown in figure 3.9), which is used with different physiological controls for a study.

Figure 3.9.: Screenshot of the game used in the study of Nacke et al. [NKLM11]

For implementation of the game a C library was implemented, called SensorLib, which
offers an interface for different physiological sensors. For their research described in
[NKLM11] blood volume pulse (BVP), Galvanic Skin Response (GSR), ECG, EMG, res-
piratory (RESP) and temperature (TEMP) sensor were integrated. For passing the data to
the game, the physiological signals were processed.

Five different game mechanics were implemented, which can be controlled by physio-
logical signals. One game mechanic is the enemy target size. As bigger enemies are the
easier to hit, size of the shadow around the enemy can be increased, which also increases
the hit range. Besides target size, the flame length of the flamethrower can be controlled,
speed and jump height as well as the weather condition and boss speed in the boss fight.
Besides these game mechanics, one more game mechanic especially for gaze movement
had been implemented, Medusa’s gaze. This ability allows the gamer to activate the abil-
ity by a special item and freeze/slow down enemies by looking at them during the ability
is active.

In the study, participants had to play three different versions of the game. Two versions
with physiological control and one control version without physiological integration. Sen-
sor mapping and threshold values for game mechanics were collected in another study
previous to this study. Participants had to play each game condition at least 10 minutes or
until completion of the level.
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Figure 3.10.: Sensor mapping for the first study [NKLM11]

Figure 3.10 shows the mapping of physiological signals and game mechanics in the two
game versions with physiological input. RESP, TEMP and EMG were used as direct con-
trol. GSR and ECG on the other hand were used as indirect game control. Gaze tracking
was a special case, which was in both versions.

Results showed that participants 8 of 10 participants prefer direct control (EMG, RESP,
TEMP) in comparison to indirect control (ECG, GSR). Participants criticized the slow re-
action time of indirect control measurements as there was no direct feedback to an action.
In comparison to the game version without physiological signals, participants reported a
greater immersion in the game versions with physiological control. The authors recom-
mend to use indirect physiological input as dramatic device in games to alter the game
world, when used for direct control.

3.4.3. Continuous Evaluation of Emotional Experience in Games

Mandryk et al. [MAI06] conducted a study, based on the model described in chapter 3.2.2.
The goal of this work was to develop a methodology to measure playability and user ex-
perience in an objective way. The game NHL 2003 was used on a PlayStation 2 in the
experiment. Physiological data was collected by a ProComp Infiniti system, which mea-
sured GSR, ECG, EMG for smiling and frowning. The game was played in three different
situations: against a computer, against a stranger and against a friend. Before each session,
players had to rest for five minutes.
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Figure 3.11.: Frustration of a participant under different situations [MAI06]

The physiological data sets were analyzed with the fuzzy logic approach of Mandryk.
The results showed that participants enjoyed playing against a friend more, than playing
against a stranger or especially a computer. Figure 3.11 shows the frustration of a partici-
pant under different conditions. The graphs show a significantly lower frustration during
a friend condition in contrast to the computer or stranger condition.

Other work in the area of game evaluation using physiological signals has been done by
Nacke et al. [NGL10] [NL10]. In comparison to Mandryk et al. [MAI06], Nacke et al. used
the physiological signals without a direct mapping to affective states.

3.4.4. Influencing the Affective Experience - the Emotion Engine Framework

The work of Nogueira et al. [NRON13] addresses the aspect of immersion of gamer.
Nogueira et al. developed a framework which learns based on the emotional state dur-
ing different situations to allow modeling the affective gaming situation of a player.
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Figure 3.12.: Architecture of the Emotion Engine [NRON13]

Nogueira et al. [NRON13] propose the Emotion Engine biofeedback loop system. The
framework consists of different separate components. One component, called PIERS inter-
prets the physiological input in an emotional state. The following two components, ARES
and CLEARS create an affective response profile and regulate based on the preferences of
the user. The GLaDOS component acquires the occurring events in the game and passes
them to the ARES component to adapt the affective response profile. CLEARS selects a
game event or parameter, which is passed via GLaDOS to the game engine, when the
emotional state of the user differs from the desired state.

As physiological measures heart rate, EDA and EMG are used and transformed into
arousal and valence. The survival horror game Vanish was used to demonstrate a first
integration of the framework in a game.

3.5. Conclusion on Integration of Physiological Signals in
Applications

In chapter 3.3 several examples using mental workload and cognitive aspects, for adapt-
ing interfaces or applications, were presented. The shown examples all realized real time
adaptation, but lack in addressing mobile situations. In many cases, sensors were used
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which might lead to impairment of the user during usage in mobile scenarios due to wires.
Also influencing factors in mobile scenarios are not taken into account.

Besides cognitive aspects, different examples of current research focusing on usage of
affective state in one or another way, were presented. A broad variety of similar examples
exist, therefore this analysis outlined different aspects of integration of physiological data
by a few examples. The presented examples showed, that user state, may it be affective
or cognitive can be determined with relatively high classification rates. In most cases, the
measured signals were analyzed after the study, instead of adaptation in real time. The
work of Nogueira et al. [NRON13] presented an approach of an framework for real-time
adaptation in games.

Most of the examples, except the work of Chen and Vertegaal [CV04], were developed
with stationary measurement devices. The work of Chen uses mobile sensors, but does
not address the mobile aspect and its challenges.

The introduced example of Mandryk et al. [MA07] in chapter 3.4.3 presents an approach
of using affective state interpretation for evaluation in game research. The goal of this
work was to evaluate the game but the approaches presented have the potential in use of
real-time adaptation in applications.

In difference to the other research presented in this chapter, the aim of the work of Nacke
et al., was not to classify emotional or affective states. But the work of Nacke proved an im-
portant point, that indirect used physiological signals may not get consciously perceived
by the user.

The different research done shows promising models and concepts for interpreting cog-
nitive or affective state of a user. But up to today, the analysis shows, that several aspects
like mobility or real-time adaptation have only been addressed at the surface.

3.6. Context-Sensitive Interfaces

Context sensitive interfaces are able to react to the environment or a situation. Many exam-
ples for context sensitive interfaces exist as well in desktop as in mobile devices. Modern
mobile devices offer a great variety of different sensors, an example is shown in figure
3.13. In the area of mobile context-sensitive interfaces, personal assistants reached a wide
distribution amongst mobile devices within recent years.
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Figure 3.13.: Integrated sensors in the iPhone 4 [LML+10]

Mobile personal assistants manage information flow and offer several functionalities in
one place for the user of a mobile device based on the current situation. Several examples
exist, like e.g. Google Now, Microsoft Cortana and Apples Siri. All three mentioned ex-
amples do not use physiological signals but a broad variety of different kinds of context
information as an input to arrange the overview of information [Inc15a] [Cor15b] [Inc15b].

3.6.1. Apple Siri

Siri is developed by Apple and was first released in September 2011 with iOS5. Currently
Siri only runs on iOS devices. Siri is mainly a speech recognition software for assistance.
Like Google Now and Cortana, Siri also offers a natural language interface. It uses infor-
mation about past searches to predict and individualize future search results.

Functionalities that can be controlled via speech are for example setting alarms (fig-
ure 3.14(a)), writing messages (3.14(b)), showing information of contacts (figure 3.14(c)) or
making calls. Speech recognition can also be used to write text in other applications of the
device like e.g. applications for social networks.
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(a) Setting of alarms (b) Dictation of emails via voice (c) Presentation of contact infor-
mation

Figure 3.14.: Screenshots of Apple Siri [Inc15a]

Siri is able to react to requests by asking for details to refine and optimize results. In
comparison to Google Now and Cortana, Siri uses less context information and offers less
functionality.

3.6.2. Google Now

Google Now is developed by Google and was released in 2012 with Android version 4.1.
Currently Google Now is available for Android OS and Apple’s iOS. It is mainly based on
the Google search engine combined with several context information gathered from other
applications and sensors of the device.

When opening Google Now, a screen with an overview of information that might cur-
rently be important to the user is shown. For example current weather forecast, traffic to
work or nearby interesting locations are shown (for example as shown in figure 3.15 (a)
and (b)). Google Now gathers information for example from the email inbox and the cal-
endar. If an email contains information about a flight or a flight ticket, it will be shown at
the day of the flight together with information about punctuality of the flight and when to
leave the house to arrive on time at the airport. Regularly travelled routes are also shown,
e.g. traffic for the way to the office in the morning and back home in the evening.
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(a) Google Now screenshot with
traffic and weather forecast

(b) Google now screenshots with
results of coffee stores nearby the
current location

Figure 3.15.: Screenshots of Google Now [Inc15b]

As shown in figures 3.15, at the top of the screen, the Google search bar is shown, which
can be used by typing an a item to search for or by saying the keyword ”OK Google” fol-
lowed by the item of search. Besides the typical search function, Google Now supports
different voice commands. For example an alarm can be created by the words ”OK Google
set an alarm for .. ”. Besides alarm settings, other commands are available for e.g. infor-
mation search, starting applications, navigating to an address, sending emails or searching
for nearby stores. Answers to requests are given by showing of notifications or search re-
sults. When asked a question for search on the internet via voice recognition, Google Now
reads the top answer depending on the results.

3.6.3. Microsoft Cortana

Cortana was developed by Microsoft and first released in 2014 with version 8.1 of Win-
dows Phone. With the introduction of Windows 10, Cortana also became available for
desktop systems, followed by Android and iOS versions in later 2015. The software is
currently available in 9 different languages and 15 regions.

Cortana offers services similar to Google Now voice recognition for different activities,
like setting an alarm or launching an application. The screenshots shown in figure 3.16 (a)
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and (b) show the start screen of Cortana and an overview for information around a flight.
Features like traffic of frequently travelled routes and an overview of news tailored to the
own interests are also offered. Other features are for example weather forecast, overview
of appointments, sending messages and making calls. It is also built to adapt to regional
differences, for example the voice feedback is talking in region specific idioms and the
chinese version, known as Xiao Na, features a different set of graphics (c).

(a) Screenshot of the main view of
Cortana offering voice recognition

(b) Information overview of a
flight

(c) Xiao Na, the Chinese localisa-
tion of Cortana

Figure 3.16.: Screenshots of Microsoft Cortana [Cor15b]

A search bar is placed at the bottom and has similar functionality as the Google search
bar in Google Now. Search queries can be done by typing in a term or asking Cortana
via voice recognition. The answer is delivered by showing the search results or giving the
answer to a question, if possible.

3.7. Conclusion of Context Information in Mobile Applications

Several state of the art examples of current research in the area of context sensitive user
interfaces and applications have been introduced. The currently popular assistants allow
adaptation to several aspects of context, offering information tailored to the situation, e.g.
offering navigation or information about nearby places.
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Up to date, integrated sensors in smartphones allow to conclude on many different con-
text information of the environment of a user, like e.g. location. Only little can be said
about the mental or psychological situation of the users themselves by only using context
information that does not include physiological signals.

3.8. Combining Physiological Signals and Context Information

Only few examples exist, supporting or enriching the interpretation of user state based on
physiological signals by context information. In the work of Sun et al. [SKC+12], context
information is used, to control influencing factors on different physiological signals, to im-
prove interpretation. Other research did take part outside the lab, but did not use context
information for interpretation, like the work of Healey and Picard [HP05], who measured
stress based on HRV during driving a car.

3.8.1. Activity Awareness

Sun et al. [SKC+12] addressed in their work the problem, that different physiological
signals may react diverse when using outside of controlled laboratory conditions. In their
work, ECG and EDA were measured. Especially heart rate is known for having different
values in different conditions like sitting, standing or walking. To address the problem,
Sun et al. used an accelerometer to detect movement.

Figure 3.17.: Sensors for measurement of ECG, EDA and Activity used in the study of Sun
et al. [SKC+12]

Figure 3.17 shows the sensors, which were used in the first study of Sun et al. Based
on the position of the sensor, three different states of activity can be identified: sitting,
standing and walking. Figure 3.18 shows the result of the first study.
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Figure 3.18.: Results of the study of Sun et al. [SKC+12] for the single subjects

The results showed, that accelerometer helped interpreting the mental workload of a
person under different activities. The classification rate significantly decreased for the
different classification methods, when accelerometer was not used.

3.9. Conclusion

Situations of smartphone usage can partially be identified with the help of context infor-
mation. In chapter 3.6, several context-sensitive interfaces were introduced, that conclude
on current situation the user is in, offering help and information. However, these inter-
faces do not give an insight into the state of the users themselves, like affective feelings or
mental workload.

Different examples have been presented in chapter 3.3 and 3.4, using physiological sig-
nals to give an insight into the user. Physiological signals have been used to determine
affective aspects, emotions and cognitive aspects like mental workload. The used models
proved to deliver reliable results in the presented studies. On the other hand, the exam-
ples were designed for stationary settings. As many physiological signals are influenced
by movement or other aspects, these examples may fail in mobile scenarios as the inter-
pretation of physiological signals is influenced.

When combining the interpretation of physiological signals and context information for
user state interpretation, the introduced examples of current research show, that there is
still work needed. Many examples did not use context information in any way in their ap-
plications and examples to control influence of physiological signals by aspects like move-
ment. Most evaluations presented in this chapter were only conducted in a laboratory with
a controlled environment.

Besides the example of Sun et al. [SKC+12], which uses an accelerometer, plenty other
context information exists, measured by sensors integrated in mobile phones. Examples
for context-sensitive interfaces were presented in chapter 3.6, which show a broad band-
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width of usage scenarios for context information.
Already known models, presented in chapter 3.2, have to be examined for their suit-

ability and usage in mobile scenarios, as well as their extension by context information.
Further context information besides movement has to be examined for usefulness in sup-
porting user state interpretation. The lack of context information in the user state classifi-
cation and its suitability for mobile scenarios is part of this thesis, and will be presented in
the next chapter.
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This theses is divided into three theses to examine different aspects of physiological data
and context information as an input for mobile applications. The integration of physiolog-
ical signals allows to analyze the state of a user, which can be used to adapt an application
to the users’ needs. As described in the State of the art section, many integrations of phys-
iological data into stationary applications have been done, but a lack of models for usage
scenarios beyond stationary settings exist. One big challenge is the conceptualization and
implementation of a model for mobile scenarios. This requires to examine if and how ex-
isting models for mainly stationary usage can be used and integrated in mobile scenarios.

In mobile scenarios many disturbing factors appear, which can at least be better con-
trolled or do not occur in stationary scenarios. For example movement can influence phys-
iological signals like heart rate. Furthermore, mobile applications have several limiting
factors. They are currently limited e.g. in screen size and battery. Measures have to be
taken, to guarantee the robustness and reliability of the model and interpretation of user
state in different scenarios.

As a result of the requirements of the mobile scenario, a better knowledge of the current
environment and situation of the user is needed. This requires to gather context informa-
tion to integrate into the model for a better interpretation of user state.

In the following the theses of this work, investigating the mentioned problems and ques-
tions, will be introduced and in detail described in the following subchapters. Approaches
for the solutions will be introduced within the following chapters.

4.1. Mobile Scenarios

Before defining the theses in detail, this section will give a brief overview of how a mobile
scenario is defined within this work and how they differ from laboratory settings. Statistics
showed, that mobile devices are used in many different situations. Situations of usage can
differ by locations, movement or distraction of the environment. When a person is not
at home or office, applications have to deal with typical limitations like battery lifetime
and network coverage. Movement on the other hand can split the attention of an user, as
the environment needs a certain amount of attention to prevent accidents. Many of these
defined situations can be determined by context information.
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4.2. Theses

Thesis I:

The combination of physiological signals and context information improves the interpretation of
user state.

Mobile devices offer a broad range of sensors, which collect additional information
about the context. We assume that context information helps to improve the interpretation
of physiological signals and the model for interpretation itself by controlling influencing
factors on physiological signals and providing additional information about the environ-
ment. This raises the following question:

• Can context information provided by application and mobile phone improve the
interpretation quality of user state?

Chapter 4.3 gives a short overview how this thesis will be investigated in this work.

Thesis II:

A general model for the combination of physiological signals and context information as an input
for user state interpretation in mobile applications can be defined.

The current state of the art in this area was described in the previous chapter. Only
[SKC+12] investigated the usage of physiological data in mobile scenarios briefly. We
assume that current models can be extended and modified to suit the needs of mobile
scenarios. This raises the following questions:

• Can a model be defined that supports different types of applications, e.g. learning
and entertainment?

• Can a model be defined, that supports the usage in mobile scenarios, e.g. usage of
an application during travel without loss of quality in interpretation and without
impairing the user?

A short overview, how the thesis and these two questions will be investigated is given
in chapter 4.4.

Thesis III:

The model developed in thesis II is robust enough to handle the loss of input channels.
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In mobile scenarios, there is always the possibility that one of the input channels gets
lost because of e.g. battery life time or connection problems. We assume that the model is
robust and reliable enough to compensate the temporary or permanent loss of one input
channel and deliver reliable results. This thesis raises the following question:

• Can loss of a channel, e.g. by empty battery, be compensated without a big drop in
interpretation quality?

Handling of channel loss and reliability in this work, will shortly be introduced in chap-
ter 4.5.

4.3. Combination of Physiological Signals and Context
Information

A difference between stationary and mobile scenarios is the broad range of possible envi-
ronments and situations, which can occur and influence the behavior of an user. Modern
mobile devices offer sensors like step-sensor, Global Positioning System (GPS) and many
more. These sensor offer valuable information of the context the user is interacting in.

An analysis of available sensor data will be done and available information categorized.
The data gets preprocessed and is then transmitted to the different input channels to cor-
rect external influencing factors on physiological signals. Furthermore, context informa-
tion itself is used to improve the interpretation of user state, because it can be used as
an additional information itself instead of a solely usage to control influencing aspects on
physiological signals.

Thesis I aims to integrate context information into the model defined in thesis II, allow-
ing a more reliable interpretation of physiological signals.

4.4. Model for Mobile Applications

Existing approaches for the integration of physiological data into applications need to be
examined on their suitability for mobile scenarios. For mobile scenarios, processing of data
needs to be fast and continuously, as the situation might change within seconds.

In this thesis existing approaches for user state interpretation are analyzed, used and
extended for a broad range of mobile applications. The characteristics of mobile scenarios
and its influence on usage of physiological data are investigated. As an input, physiolog-
ical signals need to be chosen based on the restrictions given by the mobile scenario. Sen-
sors for measurement need to be as small and unobtrusive as possible. The signals need to
be continuously processed to achieve a high reliability in the interpretation of user state.
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The output of the model is the current state of the user, like e.g. affective or cognitive state,
which allows mobile applications to adapt the interface, content or other components.

With thesis II, a model for integration of physiological data into mobile applications
will be validated. This allows the adaptation of user interfaces or content in applications
based on the current state of the user to achieve the goal of a higher user experience in
comparison to applications without support of physiological data.

4.5. Reliability of Input Channel Handling

The mobile scenario requires a certain robustness of the model, to handle the loss or cor-
ruptness of input signals. The model needs to adjust if one of the physiological signals or
parts of the context information is missing. With the validation of thesis III, the proposed
model is adapted to handle the loss of input channels with an minimal loss in accuracy of
user state interpretation.

To assure a robust model, the question, how big the accuracy of the model is, when one
measurement or input channel falls away, has to is investigated to give an appropriate es-
timation for different scenarios. This information itself can be used as feedback within the
model. The model needs to be tested with several configurations for different applications
to give an estimation.

4.6. Conclusion

As introduced in thesis II, a model for integration of physiological signals into mobile
applications is needed. Different physiological signals will be examined about their suit-
ability for mobile usage. Existing models will be analyzed and adapted to fit the usage
scenarios. As a result the model will deliver an estimation of current user state, which is
defined by different categories. These values can be used as an input in mobile applica-
tions of different areas for adaptation.

The combination of physiological signals and context information gathered by inte-
grated sensors of mobile devices leads to more accurate and reliable results. User status is
refined and influences on the physiological signals controlled. Furthermore, the combina-
tion of both input channels leads to a higher robustness and reliability of the model.
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5. Concept

After introducing the state of the art and theses of this work, this chapter will describe the
overall concept and architecture of the developed model and will give an overview over
different parts of the concept. In a first step the requirements for the use of physiological
data in mobile scenarios are described. In the following, sensors and physiological sig-
nals are analyzed and examined regarding their suitability for the scenarios. Chapter 5.3
presents an analysis of different context information and the usage of this in the model.

The output of the model is defined, as well as a method is chosen for interpretation of the
signals. Mobile applications that might use this model are addressed. Finally, the chapter
closes with an overview of the biocybernetic loop and a presentation of the abstract model.

5.1. Requirements in Mobile Scenarios

Mobile scenarios differ in many aspects from solely desktop scenarios. They are charac-
terized by a broad range of different situations that can occur during the usage of mobile
applications. Users are not bound to a location, often multitasking is done during us-
age of applications (e.g. walking to the bus, driving etc.). The resources of a user are
limited.[TOTK04] [OTRK05]

The state of a user can be influenced by different surrounding factors, like e.g. noise
or traffic. Furthermore interaction with application can be interrupted by external factors,
like interaction with other people. Therefore context has to be considered for a correct
interpretation of user state.

Besides these aspects, the hardware on which the applications are running differs from
desktop versions. Mobile devices offer only limited resources regarding screen space, bat-
tery lifetime etc. Devices are very heterogenic and offer a great variety of hardware and
operating systems (e.g. iOS, Android, Blackberry).

User often have only sparse time to use an application when travelling or being at a
public place. Therefore, the solution for the theses defined in chapter 4, needs to fulfill
several criteria. In the following subsections, different aspects of the concept and their
requirements will be introduced.
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5.1.1. Measurement of Physiological Data

Measurement of physiological signals requires the user to wear different sensors. It might
be useful, to have sensors that are comfortable to wear and allow free movement of the
user in different situations that can occur in daily routine. Therefore transmission between
sensors and mobile device needs to be wirelessly and have to allow continuously reliable
measurement. Users should not feel impaired in any way or be constantly reminded of
wearing sensors. One other important aspect is, that the measurement equipment should
not look curious to not make the user feel intimidated.

Physiological signals have to be chosen based on these requirements. An overview of
signals used in related works and which physiological signals will be used in this work
and which sensors have been chosen will be explained section 5.2.

5.1.2. Processing of Physiological Data

As the signals and values of physiological data vary from person to person in most cases,
baselines have to be measured and the processing has to be adapted to the user. The more
data is measured, the better the accuracy of interpretation will be. Therefore it is preferred
to measure the signals over a long time frame in the background instead of only for the
timespan of application usage. Data needs to be processed effectively in the background
to not use more resources of the already limited resources of a smartphone as needed.

This requires a data structure for collecting physiological data of a person, which is
frequently reset when a certain time frame expires or sensors are not worn any longer.
Reconfiguration of baseline and physiological sensors have to be considered.

5.1.3. Models for Classification

Several different models, which can be used to classify user state, have been introduced in
the background and state of the art chapter. Most of them did not address the mobile as-
pect explicitly. To fit to mobile scenarios a model is needed, that only needs a short time for
learning about the physiology of a user. Rather the model should learn in the background
and only need a short period of time for baseline measurement and configuration.

To improve robustness, the model should support a fast reconfiguration phase as it is
possible, that sensors are taken off by the user and not worn for some time. Depending
on the measurement some sensors require to remeasure the baseline, as the values might
vary in comparison to the earlier measurement.

Besides the integration of physiological signals, the model is also required to have a high
flexibility for the integration of context information. Depending on the mobile device of
an user not all sensors for context information might be available. The model needs to be
robust and reliable enough for such situations.
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5.1.4. Output

Applications on mobile devices have a great variety, ranging from applications like games
to more performance oriented office applications. The state of the art analyses showed,
that it is possible to determine different emotional, affective or cognitive aspects of an user
from physiological signals. As the presented examples in the state-of-the art section in
chapter 3 show, games and applications, which have the goal to entertain an user, may
benefit more from the affective state instead of cognitive aspects. On the other hand ap-
plications, aiming for a certain performance level of the user and the goal to keep an user
within this level, may benefit from information about cognitive aspects. Examples for such
applications are learning and office applications or applications that need a high amount
of mental resources.

Based on that analysis the concept will cover affective and cognitive aspects to allow
support for a broad variety of applications.

5.2. Physiological Signals

For further thoughts about the concept and the model it is important to decide, which
physiological signals are measurable in mobile scenarios. A broad range of signals is used
in different applications, but not all of these are applicable for mobile scenarios. Require-
ments have been described in section 5.1.1. In this section, different physiological signals
will be reflected briefly regarding these requirements. A decision will be made about the
signals as well as sensors will be presented, which will be used.

5.2.1. Overview of Physiological Signals

Not all physiological signals can be measured without impairment of the user. For the use
in mobile settings, it is important to use unobtrusive sensors that allow wireless transmis-
sion of data as described in the requirements section 5.1.1. The sensors need to be as small
as possible to achieve a high user acceptance.

For that reason, the concept is based on electrodermal activity and heart rate. Both
signals can be measured with relatively small sensors. As described in 2.5.1, electrodermal
activity can be used to determine the arousal level of an user. Heart rate can be used
to determine the valence in some cases or to run a spectral analysis for determination of
mental effort (see chapter 2.4).

Other physiological measures like electroencephalography (EEG) or electromyogram
(EMG) require at the moment relatively big sensors or sensors in a prominent place. For
example EMG electrodes are commonly placed in the face. EMG is used in many research
projects and applications, described in the State of the Art section in chapter 3. But most
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of these projects had not to deal with mobile scenarios and its requirements.

Due to these constraints, a heart rate monitor that allows Bluetooth transmission as used
in sports is used for heart rate measurement (e.g. Polar or Zephyr HxM). For measurement
of electrodermal activity, the Q-Sensor from Affectiva will be used as input channel in
the model. In early studies, wired stationary devices were used for first evaluation of
applications. In later stages, Q-Sensor, Zephyr HxM and Polar H6 were integrated.

Two heart rate sensors were integrated because of the different options and additional
sensors they offer. Polar H6 offers a higher battery lifetime but otherwise Zephyr HxM
offers more additional information measured by the heart rate monitor. Depending on the
application scenario, one of the sensors might be more suitable than the other. Q-Sensor
was chosen because it measures wirelessly and reliable Electrodermal activity (EDA).

5.2.2. Affectiva Q-Sensor 2.0

The Q-Sensor was originally developed at the Massachusetts Institute of Technology by
Poh et al. [PSP10] and was distributed as Q-Sensor 2.0 curve by Affectiva. Besides skin
conductance it measures temperature and movement. It allows wireless transmission of
the measured data via an integrated Bluetooth module.

Figure 5.1.: Q-Sensor 2.0 from Affectiva [Aff11]

As shown in figure 5.1 the sensor is worn as a wristband. Two Ag/AgCl electrodes
are placed at the inner side of the arm. As described in the background area, EDA is
normally measured at the palm. A study described in [PSP10] shows that EDA can also
be measured with the Q-Sensor at the distal forearm. Furthermore the participants of this
study did not feel discomfort in a long time study. In this long time study of Poh et al.
[PSP10] the Q-Sensor was also tested against devices, which are approved by the Food
and Drug Administration (FDA) in the United States. Results showed, that the Q-Sensor
offers very high accuracy comparable to FDA approved devices.
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With help of the integrated sensor for movement of the arm and body temperature,
influencing factors can be controlled in the interpretation of EDA values. Q-Sensor has
been used in several other research projects, e.g. in the evaluation of child-robot interaction
[LHMP13].

5.2.3. Zephyr HxM

Zephyr HxM (shown in figure 5.2) is a heart rate monitor consisting of a strap and a trans-
mitter. Transmission is done wirelessly via Bluetooth. Out of the cardiovascular measures,
Zephyr HxM measures heart rate and RR-intervals. Furthermore calories, steps, speed
and distance can be measured with integrated sensors. Integrated algorithms address the
problem of noise and movement artifacts [Tec10].

Zephyr HxM has been used in different research projects like in a phone-based health
assistant [SBVL11], the involvement of audience at public events [PTS+10] and different
research projects at the National Aeronautics and Space Administration (NASA) [RC12].

Figure 5.2.: Zephyr HxM BT [Tec10]

The data is transmitted wirelessly via Bluetooth 2.0. A version supporting the Bluetooth
Smart standard was not available at the time of this work. Because of the Bluetooth 2.0
transmission, the battery life time is only about 26 hours. In comparison to Polar H6, bat-
tery can be recharged with an included charging station. An open software development
kit is offered by Zephyr Technologies and the heart rate monitor is supported by different
publicly available applications.

5.2.4. Polar H6 Heart Rate Monitor

The Polar H6 (shown in figure 5.3) heart rate monitor consists of an adjustable strap and
a transmitter. The electrodes are on the inside of the strap. Strap and transmitter are both
water resistant and have a battery lifetime of around 300 hours. The Polar H6 measures
RR-intervals, heart rate (HR) and several other additional information.

[NDJ+09] proved the validity and reliability of former versions of the H6, the Polar
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RS810 in comparison to electrocardiogram (ECG) devices. The results showed, that short
term Heart Rate Variability (HRV) measurement is as reliable and valid as stationary de-
vices. Several commercial applications exist, that support the Polar H6.

Figure 5.3.: Polar H6 [Ele13]

The H6 supports the Bluetooth smart standard, which allows the wireless transmission
with low energy consumption leading to longer battery lifetimes. The transmission range
is approximately 10 meters, which should be sufficient for most scenarios.

5.3. Context Information

Modern smartphones offer a variety of sensors, which can be used to collect context in-
formation as presented in the state of the art section 3.6. Based on a gyroscope or magne-
tometer sensor, activity of an user can be determined. For example, if an user is moving,
how fast and in which direction. Integrated Global Positioning System (GPS) sensors offer
location information.

These two measures are especially interesting for the model. A further distinction of
how context information is categorized and used in the model is described in detail in
the following subchapter. Some of context information that can be acquired is shortly
introduced in the following, followed by a conclusion on the choice of integrated context
information.

5.3.1. Categorization of Context Information

In a first step, context information is categorized depending on the usage within the model.
Several categorization concepts for context information exist. For this work, context infor-
mation has been divided into two main categories, the two main purposes of context infor-
mation in the model: correction and improvement. Both categories are presented in figure
5.4 and 5.5. Respectively, the context information used for correction serve as an input in
the preprocessing of the physiological signals. Context information used for improvement
can be used in different steps of a model.
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Figure 5.4.: Context information used for correction

Measures for correction of physiological data (shown in figure 5.4) fall into the class of
controlling influencing factors of these physiological measures. For example, temperature
and movement sensor integrated in the Q-sensor can be used to control interpretation of
EDA values, which rise because of arm movement or changing temperature. For the heart
rate, movement and position are important to control the interpretation. As introduced in
chapter 2.3, heart rate can be influenced by position or movement of the body. In this case,
the integrated step sensor of the smartphone is used to determine movement. The posi-
tion, if an user is sitting or standing, might be determined with a combination of different
sensors. The movement sensor integrated in the Q-Sensor collects information about arm
movement. In combination with the step sensor sitting, standing and walking might be
distinguished reliably to a certain level.

Figure 5.5.: Context information used for improvement of the interpretation of physiolog-
ical signals

As mentioned, context information is also used for direct improvement of interpretation
in the model. Context information, which falls into this category is shown in figure 5.5.
Information, like e.g. location or movement in general, can be used to offer additional in-
formation to determine user state more accurate. For example, different user interfaces or
information in the application can be offered based on location-awareness or difficulty of
a game can be lowered based on performance. Context information of this category is not
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only received by integrated hardware sensors, but also by applications, like performance
measures or a current score.

Some information can be used in both categories. For example movement falls into the
category of correction because it can be used for correction of HR and EDA, when a person
is moving. Movement falls also in the category of improvement because of the fact that
movement can also be used for general improvement of current user state, e.g. adaptation
of user interface, when a person is walking.

5.3.2. Location

Location can be determined in different ways, for example by GPS sensors, cell ID or Wi-
Fi. The three mentioned ways for location determination have different advantages and
disadvantages. GPS is very power consuming, depending on the refresh rate. Other dif-
ferences between the sensors can be found in accuracy and time needed for refreshment
of position. The accuracy of position estimation can depend on the different conditions.
Bad weather or walls of a building might influence the accuracy of GPS. Within buildings,
position accuracy of location acquisition over Wi-Fi might be better than GPS, depending
on the situation in the building.

With help of GPS sensor, it can also be determined, if a person is travelling fast, e.g. by
car or train. The technical details of implementation and integration into the model will be
introduced in detail chapter 6 and 7.

5.3.3. Movement

An aspect regarding controlling the effects of the environment on the user is movement. By
using built-in sensors like gyroscope or magnetometer, movement can be determined with
help of different detection algorithms. Different operating systems, like e.g. Android, of-
fer a specialized step application programming interface (API), delivering the steps taken
without the need to implement detection algorithms.

If an user is moving, the distraction from using an application is bigger than when an ap-
plication is used in a non-moving scenario. When moving, users have to split attention to
pay attention to the environment to e.g. prevent accidents. The interpretation of affective
and cognitive state can be enhanced, e.g. difficulty can be reduced, when walking.

When using physiological data, movement information is also needed to control influ-
encing effects of movement on the data. For example, heart rate may rise when walking
fast.
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5.3.4. Context Information - Application Information

Depending on the application, several pieces of information might be useful to be inte-
grated into the model. Performance statistics can be used in games or learning applica-
tions. In other applications performance measures like the time needed for a certain task
may be an indication for current state. The value is not useful for control, but for improve-
ment of user state interpretation.

Values for statistics have to be transmitted from the application to the interpretation
model. This measure depends strongly on the type of application. Some applications may
also not offer statistics or it might not be reasonable. The usage of statistics are further
described in the section of the specific applications.

5.3.5. Other Context Information

Besides the previous described context information, modern smartphones offer sensors to
measure even more context information. Examples for other sensors integrated in smart-
phones are proximity sensor, microphone, photometer or magnetometer. The proximity
sensor allows to determine if a user is holding the phone near the face, the microphone
measures the noise level and the photometer can measure the illuminance of the environ-
ment.

Based on these sensors, extensions of the model like identifying with help of the pho-
tometer if a user is sleeping (in a dark room) or not could be added. These information is
not integrated in the model, as the model concentrated on movement, location and appli-
cation information. But the possibility exists to integrate them.

5.3.6. Conclusion

As shown in this section, different context information can be collected. They can be used
for control of measured physiological signals, as well as for improvement of the user state
interpretation itself.

From the presented context information, location, movement and application informa-
tion like performance are important for this work. Movement is primary used for cor-
rection of physiological signals, performance and location for improvement of user state
interpretation.

For location, GPS sensor was selected for this work. As the power consumption might
be higher than with the other sensors, a refresh of position information is only done occa-
sionally. For determination of movement, the integrated step sensor API is used, having
the advantage of not needing a separate implementation of step determination based on
accelerometer etc. Out of the application information, performance was chosen to be a
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suitable measure for most scenarios. It might especially be a benefit for applications in-
volving any kind of performance as e.g. games. The implementation and technical details
will be described in chapter 7.

5.4. Output

As defined in the requirements analysis, to cover a broad range of different applications,
affective and cognitive state are needed. In chapter 2.9 different psychological models
were described for the determination of affective state. In the following, an overview of
the concepts used for affective and cognitive state are given.

5.4.1. Affective Value

Different models have been used in affective and physiological computing to determine
the affective state. As presented in the state of the art analysis in chapter 3, the number
of different states, which have been distinguished, range between 2 and 8. In most cases,
basic emotions or a model based on the two-dimensional valence-arousal approach, has
been used.

In this work, it was decided to use a model with eight different affective states based
on the two-dimensional valence-arousal model of Russell. The theory that valence and
arousal span up a two-dimensional space is well established and widely used within the
area of affective computing. The eight different states are based on the original circumplex
model of Russell introduced in 2.7.1. As eight states might be too detailed for reliable
interpretation of physiological signals when signals get lost or are corrupt, the eight states
can be combined in a set of four states. This offers a more reliable interpretation, when
needed depending on available signals.

The chosen sensors allow to measure arousal and valence based on EDA and HR. The
literature showed, that Skin Conductance Level correlates to arousal (see 2.5.1). In the
same way, HR is associated with valence. Besides HR, different context or application
information can be additionally used for valence. The details of the interpretation and the
eight different affective states will be presented in chapter 6.

5.4.2. Cognitive Value

In most studies, presented in the state of the art analysis, mental workload had been de-
termined and distinguished into different levels. Mostly, mental workload has been mea-
sured based on a HRV analysis or different aspects of EEG measurement. EEG sensors
are up to the date of this work not unobtrusive enough to meet the requirements for mo-
bile scenarios. Based on the used heart rate sensors, a spectral analysis can be done to
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calculate mental workload. The results will be normalized and categorized into different
level of workload: low, medium, high and very high. Categories have been chosen based
on the Yerkes-Dodson curve, implying a higher performance under a medium amount of
stress. Details of the analysis, the signal processing and the normalization of HRV will be
described in the following chapter.

5.5. Method of Interpretation

As presented in the state-of-the-art analysis several models exist. All models have certain
advantages and disadvantages. For the thesis, a model respecting as many aspects of the
requirements as possible, has to be chosen. In the following, an overview of important
aspects and the grade to which the different models meet them, is given. Finally, a model
for interpretation is chosen.

5.5.1. Learning and Configuration

Learning and configuration are an important point. As described in the requirement sec-
tion, learning and configuration needs to be fast and flexible. Neural networks and support
vector machine (SVM)s are able to learn the classification of data with help of different al-
gorithms and methods. The learning process requires data sets for training. As presented
in chapter 3.2.1, different kinds of neural networks, the recurrent networks, are further-
more able to reevaluate and adapt during runtime.

In comparison to SVMs and artificial neural network (ANN), fuzzy logic itself has not a
learning process. The rules are defined by an expert. As introduced in chapter 2.9.3, this
rules can be expressed with ”IF... THEN..” rules in a linguistic way.

As Mandryk and Atkins [MA07] state, an advantage of fuzzy logic models is, that no
data of all possible states is needed in comparison to ANN. Different affective states are
hard to measure in studies. An example is an extreme affective states like sadness.

5.5.2. Classification Rate

As stated in the conclusion in chapter 3.2.5, SVMs achieve the best classification rate. The
studies showed, that the classification rate of SVM and ANN improved, when the number
of training data sets increased.

Fuzzy logic on the other hand was evaluated in studies by determination of least
squared error. In the study of Rani et al. [RSSA03] the least squared error was relative
stable and only differ slightly between different number of data sets. The other evaluated
approach based on a regression tree, was slightly better in classification rate under good

73



5. Concept

conditions, but with only few data sets, fuzzy set approach outperformed the regression
tree approach.

5.5.3. Flexibility and Robustness

During usage in mobile scenarios, input channels might change. Additional ones could
get connected or connection to established channels can get lost. Neural networks would
have to change the weighting of nodes, implying a new learning step of new data sets. The
same would apply for SVMs. Fuzzy logic systems on the other hand can be configured in
advance by an expert, offering different rule sets to cover different sensor configurations.

When adding completely new input channels the models need to be modified. When
using Fuzzy Logic, new rules have to be defined for the additional input channels by an
expert. The other approaches need training data sets to learn the new configuration.

A further advantage of fuzzy logic is the handling of noise. As Novak et al. state
[NMM12] the inter- and intrasubject variability can create noise, which can be handled
by fuzzy logic approaches in comparison to the other introduced methods, leading to bet-
ter and stable results.

5.5.4. Conclusion

Analyzing the different aspects, the models have different advantages and disadvantages.
None of the introduced models meet all criteria. For this work, a fuzzy logic approach has
been selected. The selection was made based on the advantages of fuzzy logic approaches
in configuration and handling of noise, as these points are important aspects in mobile
scenarios. Classification rate of SVMs might be better, but the values achieved with fuzzy
logic approaches still seem to be sufficient and may be increased in combination with con-
text information.

The applied method, its functions and variables, will be described in detail in the fol-
lowing chapter 6, the implementation of the concept in chapter 7.

5.6. Applications or Mobile Scenarios

For proof of concept, different mobile applications are needed. To test the affective state as
well as the cognitive state, applications for entertainment are needed, as well as applica-
tions managing and using the cognitive state for adaptation. Examples for entertainment
are games, which have been widely studied with physiological input, but mostly not in
mobile scenarios. For cognitive state adaptation, applications used under a high amount
of stress or for learning, are used. Many state of the art work in the area of adaptation
based on cognitive state is from the area of workload management in flight and aeronau-
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tics, which may not be ideal candidates for mobile scenarios. Adaptation of the current
cellphone state, like presented in the interruption management example in chapter 3.3.3,
seems a more promising approach for cognitive state in mobile scenarios.

The applications get the information of affective and cognitive state by the model. The
decision about how and when something in the application will be adapted is done in
the application itself to allow a high degree of flexibility. For this decision, simple rule-
based systems can be integrated in the applications. For that reason, the model needs to
communicate the results of the user state interpretation in an understandable format.

Developed applications and their mechanism for adaptation will be described in detail
in chapter 8. First studies and evaluations with these applications will be described in
chapter 9.

5.7. Concept

The in chapter 3.1.1 introduced biocybernetic loop, is the heart of many adaptive applica-
tions in the area of physiological computing. In this chapter, the process of the loop for the
scope of this work, will be presented, as well as a detailed model based on the decisions
made in this chapter. The model is divided into several steps, reflecting the different stages
of a biocybernetic loop.

5.7.1. Biocybernetic Loop

The process of the biocybernetic loop can be divided into two main parts besides the user
in this work: the application itself and the user state classification. As shown in figure 5.6,
the biocybernetic loop involves in the first two steps, the signal processing of the physio-
logical and context signals as well as the interpretation and classification of the user state,
based on the input.

On the application side, a feedback controller handles the incoming values of affective
and cognitive state and chooses an adaptation. Afterwards, the application realizes the
adaptation, which is presented to the user. The concept is flexible enough to realize nega-
tive, positive or mixed feedback loops.

The decision, if a loop is positive, negative or switches is controlled within the applica-
tion. The user state classification part only processes and interprets the data.

5.7.2. Overview

To meet and address the different points collected in the requirements analysis for mobile
scenarios, a model has been developed for structuring the different parts of the solution
into different steps. The model, shown in figure 5.7, consists of three steps, separating the
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Figure 5.6.: Biocybernetic loop for the concept

solution in ”Signal Preprocessing”, ”User State Interpretation”, and ”Application”. These
separation of the problem in different steps allows a higher flexibility if one part of the
model is changed or removed.

The preprocessing step receives the different input signals from the external sensors
and the smartphone itself. The signals are then checked for corruptness and availability.
Several steps, like spectral analysis or normalization are done, before the transmission of
the values to the user state interpretation.

The received values in the user state interpretation get transformed with two fuzzy logic
systems. In the first fuzzy logic system, valence, arousal, mental load and context are de-
termined. The second fuzzy logic system finally transforms them to cognitive and affective
state.

These values are transmitted to the application. The application decides then about
adaptation and represents the result to the user. Besides the cognitive and affective value,
the processed physiological signals from the signal processing step are also available for
the application. This allows to use physiological signals directly for direct and indirect
control of applications.

The most important steps, models and applications of the single components of the dif-
ferent steps will be briefly explained in following subsections of the this concept chapter
and in detail in chapter 6.

Data Channels

As input are several data channels used. In this work physiological signals and several
in smartphone integrated sensors are used. Sensors for measurement in mobile scenar-
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Figure 5.7.: Architecture of the model consisting of four different layers

ios have to fulfill several requirements, which will be taken into account when choosing
physiological signals and available sensors. The requirements, the choice of physiological
signals and the chosen sensors are in detail introduced in chapter 5.2.

Signal Processing

In the signal processing step, different algorithms for spectral analysis and signal prepro-
cessing need to be implemented. After preprocessing and power spectrum density calcu-
lation, the results of power spectrum density (PSD) and EDA get normalized.

Besides transmitting the processed values to the interpretation part, the signals are also
transmitted directly to the application, if the application wants to use the input directly,
for example for direct control of applications by physiological signals. The single steps of
the signal processing will be presented in chapter 6.2.

Affective Value

Affective value is calculated based on physiological signals and context information. It
reflects an abstract value of the current emotional state of the user. This value is especially
useful in applications like games, where the affective aspect is in the foreground of the ap-
plication. The processing of the input channels, calculation of the output and the different
possible results will be further discussed in chapter 6.4.
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Applications can adapt, based on the output of Affective Value or can ignore this value
and choose to use one of the other values for adaptation based on the usage scenario of the
application.

Cognitive Value

The cognitive value reflects the current cognitive state of a user, based on mental effort
and context information. Especially in applications like e.g. in learning or other scenarios
where performance is the most important aspect, cognitive value is useful.

Like the affective value, this value might not be suitable for every application depending
on the application scenario. Developers of certain applications have to decide if they use
or discard this value.

Context Information

Context information is collected by different sources. On the one hand input from different
sensors, integrated in the smartphone. On the other hand information from the applica-
tion itself, like performance measures or usage statistics. This information can be used to
help processing affective and cognitive state in the same layer or as a direct input into the
application input logic layer.

A further description of the different context information types and how they are used
will be given in section 6.5 and 6.4.

Application

The application consists of two different parts in the concept. On the one hand a feedback
controller, that chooses adaptation based on affective or cognitive state. On the other hand,
a connection to the signal processing unit is established. With help of this direct input,
applications that adapt to the direct physiological parameters can be realized. Examples
here fore are e.g. visualization in games, which synchronize with heart rate or gaming
modes that allow a direct influence of the game when using heart rate.
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In this chapter, the components of the concept will be described further. In a first step,
an overview of the user interpretation part of the model will be given. The model used
for transformation of physiological data to affective and cognitive state will be described.
Preprocessing of signals and the single steps of this process for transforming physiological
data in to affective and cognitive factors like valence, arousal and mental effort will be
introduced. Context information will be categorized and the usage of these in the model
will be explained. These values are transformed to an affective and a cognitive state of the
user. Both steps are based on fuzzy logics which will be described as well. Finally, the
parts of the model, handling robustness and reliability are described and a conclusion is
drawn.

6.1. Model Overview

Continuing the model overview from chapter 5, more details of the interpretation of phys-
iological and context information is given in this section. The model shown in figure 6.1
is based on the fuzzy physiological approach of [MA07]. As described in chapter 3, the
model is suitable for continuous modelling of physiological data and has different advan-
tages for mobile scenarios (see 5.5 for further details).

In comparison to the work of Mandryk and Atkins [MA07] the model differs in some as-
pects. The input channels differed, as in mobile scenarios not every measure is suitable for
mobility due to available wireless sensors. Instead of heart rate (HR), Electrodermal activ-
ity (EDA) and electromyogram (EMG) the signals heart rate (HR), Heart Rate Variability
(HRV) and Electrodermal activity (EDA) were used as physiological input. Additionally
context information was added.

The original model concentrated on games, where the aspects boredom, challenge, ex-
citement, frustration and fun were chosen as output. In the model presented in this work,
more aspects are included as the range of applications is broader. Therefore input is not
only transformed into valence-arousal space but also mental effort was calculated for a
cognitive state of the user. In a second step, valence, arousal, cognitive aspects and context
are transformed into affective states and a cognitive state.

In the first step, signals are fuzzified by membership functions (see 6.3 for details). Af-
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terwards fuzzy rules transform these value to a membership value in valence, arousal and
mental effort (6.4.1 and 6.5.1). These value are then combined with context information
and used as an input for the second step. In the second step, the values are transformed to
values for affective and cognitive value with help of fuzzy rules (6.4.2 and 6.5.2).

Figure 6.1.: Overview of the processing of input by fuzzy rule sets to the final output for
affective and cognitive state

In the first step of data processing, context information is used to correct interpretation of
physiological data. In the second step it is used to improve the determination of different
states. In the following sections, the single steps of the model will be explained in detail.
For a better understanding of the overall process of affective and cognitive state, each will
be described in the whole with the different steps instead of separating the steps of the
model. The following section will start with the preprocessing of the input, followed by
the processing of context information. After that, the parts of the model for affective state
will be described followed by a section for cognitive state.

6.2. Preprocessing of Physiological Signals

After receiving the physiological signals, several steps have to be taken for preprocess-
ing of the signals. The signals have to be checked for corruptness and depending on the
measure to be normalized for further processing. In the following, the necessary steps for
EDA, HR, HRV and context information are presented.
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6.2.1. Electrodermal Activity

In a first step, a baseline has to be determined for normalization. Baseline can be mea-
sured during a few minutes of resting time. For normalization, maximum value is also
needed. To determine maximum value, Lykken and Venables [LV71] suggest to let partici-
pants blow up a balloon until it bursts. Another possibility, if it is not possible to measure
maximum values, is to take the current maximum value and refine it as soon as higher
values have been measured. When using this approach, accuracy might not be high at the
beginning, but improves over time. As introduced in chapter 2.2.3, skin conductance level
is normalized with the following formula:

SCLnorm(t) =
SCL(t)− SCLmin

SCLmax − SCLmin
∗ 100 (6.1)

Corruptness of the signal is checked by two aspects: battery lifetime and by checking
the signal availability itself. Depending on the sensor, false data may be transmitted when
battery gets low. To prevent this case, battery lifetime of Q-Sensor is regularly checked, as
the values of battery life time are transmitted by the application programming interface
(API).

6.2.2. Heart Rate

To normalize heart rate, the age of the user is needed. As described in chapter 2.3.4, Tanaka,
Monahan & Seals [TMS01] developed a formula for calculating maximum heart rate:

HRmax = 208− (Age ∗ 0, 7) (6.2)

As the heart rate may never reach the maximum value, except in the case of users doing
sports, the maximum was set at 80% of HRmax as at this level the anaerobic zone starts
[BBC16]. To determine the minimum value a baseline is measured during a resting period
in a sitting position. In the same way, as the SCL is normalized, heart rate is normalized
with:

HRnorm(t) =
HR(t)−HRmin

(HRmax ∗ 0.8)−HRmin
∗ 100 (6.3)

The signal is checked for corruptness by checking if the different successive heart beats
are plausible. If they have to high variation, signal is very likely corrupted.

6.2.3. Heart Rate Variability

The HRV is given in milliseconds between two R-Peaks of heart beats. As described in
chapter 2.3.5, mental effort can be determined by a spectral analysis of HRV intervals. The
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power of low frequency in the band of 0.06 - 0.14 Hz reflects the autonomic system and
mental load. The result of the integration of power spectrum in this band is normalized
by a division with baseline measurement results. When subtracting the result from 1 the
result is a value between 0 and 1, where 0 represents a low mental load and 1 a high mental
load. This can be expressed by the following formula:

mentalLoad(t) = 1− PSD(t)

PSDbaseline
(6.4)

As the signal has already been checked for corruptness in the heart rate preprocessing,
the signal does not need to be checked in this step.

6.2.4. Context Information

Preprocessing of context information includes the normalizing of steps for movement and
identifying the location with help of predefined areas. Performance information from the
application itself already have to be normalized, transmitting a value between 0 and 1,
where 0 relates to a low and 1 to a high performance.

Steps are normalized to a value between 0 and 1. As maximum value for steps are 140
steps per minute used, which correlates to jogging. Everything beyond is not of interest,
as it might not be reached in usage scenarios. Normal walking has around 70 to 75 steps
a minute. Steps are normalized by dividing the current count of steps by the maximum of
140 steps a minute:

stepsnormalized(t) =
steps(t)

140
(6.5)

6.3. Fuzzyfication of Input

Context information is used for both, affective and cognitive state. To be integrated in the
model, movement gets fuzzified as well as performance, if available.

6.3.1. Movement

In the preprocessing, steps were normalized to a movement value between 0 and 1. Based
on this value, movement is fuzzified into three sets: low, medium and high. The member-
ship functions are shown in figure 6.2.

Low movement corresponds to no or only slow movement, where as medium corre-
sponds to activity like walking and high to fast walking or running. The membership
functions have been defined based on tests of different conditions of movement and statis-
tics. The area for low movement has been defined relatively small, as different parameters
rise relatively fast with even low movement.
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Figure 6.2.: Membership functions for modelling the movement

The movement variable is used in the first step of determine affective and cognitive
factors as well as in the second step to determine the output.

6.3.2. Performance of Application Usage

A normalized performance parameter can be transmitted by an application as described
in the preprocessing step. The normalized value is then transformed by a membership
function (shown in figure 6.3) in one of five different states: very low, low, medium, high
and very high.

The five classes are equidistant, as the performance is already normalized. Performance
is used for valence in the first step and in the second step for affective and cognitive state.

Figure 6.3.: Membership functions for modelling the performance
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6.3.3. Physiological Signals

After the preprocessing step described in 6.2, the values are normalized. For fuzzification
of the signals, membership functions have been created. The membership function for
EDA is shown in figure 6.4.

Figure 6.4.: Membership function for fuzzification of electrodermal activity

The five classes are equidistant based on the normalized value. Five classes have been
chosen to cover a certain width of states. A finer granularity would not lead to better
results, as this would require a more accurate and controlled measurement of the signals.

The membership functions for EDA and HR are shown in figure 6.5.

Figure 6.5.: Membership function for fuzzification of heart rate

As described in the preprocessing section, power spectrum density (PSD) of low fre-
quency area is normalized after spectral analysis. The normalized value is in a first step
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transformed to a fuzzy variable. Same as heart rate and electrodermal activity, HRV is
categorized into five classes in figure 6.6.

Figure 6.6.: Membership function for fuzzification of LF PSD results

6.4. Affective Value

The affective value is based on EDA, HR and context information. Due to the fact that
the interpretation is based on the valence-arousal model, the physiological signals and
context information get transformed in a valence and an arousal value. These values are
transformed in percentages of membership in different affective states in the second step.

6.4.1. Transformation to Valence and Arousal

Valence and arousal are quantified with help of a system of fuzzy rules based on the results
of HR, EDA and movement. As the base for determination of affective state will be a 7x7
affective grid, which will be described in detail in the following subsection, membership
functions of valence and arousal (see figure 6.7) are each divided into seven classes: very
low, low, mid low, medium, mid high, high and very high.

Context information was used to control influencing effects on HR and EDA. To control
influencing factors, movement was used. To improve the interpretation of valence, perfor-
mance is integrated in the fuzzy rules. The fuzzified values of movement and performance
were integrated in the fuzzy rules. In total 15 rules for valence and 10 rules for arousal were
created. They were based on the psychophysiological background introduced in chapter
2. HR correlates to valence, as well as EDA correlates to arousal. The rules for arousal are
shown in the following table 6.1:
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(a) Arousal

(b) Valence

Figure 6.7.: Membership functions of valence and arousal

if (EDA is high) then (arousal is very high)
if (EDA is high and movement is not low) then (arousal is high )
if (EDA is mid high) then (arousal is high)
if (EDA is mid high and movement is not low) then (arousal is mid high)
if (EDA is medium) then (arousal is mid high)
if (EDA is medium and movement is not low) then (arousal is medium)
if (EDA is mid low) then (arousal is medium)
if (EDA is mid low and movement is not low) then (arousal is mid low)
if (EDA is low) then (arousal is mid low)
if (EDA is low and movement is not low) then (arousal is very low)

Table 6.1.: Fuzzy rule set for interpreting arousal based on EDA and movement
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The results are the memberships in the different arousal and valence sets. The whole set
of fuzzy rules for interpretation of valence can be found in the Appendix.

6.4.2. Processing Affective State

Valence and arousal reflect the affective state of an user and are used as input in the second
step together with context information. The output of this step are eight different affective
states. The transformation and rule sets are described in the following.

The processing of the affective state is based on the circumplex model of Russell and
the affect grid, described in 2.7.1 and 2.7.2. In the original model of Russell [RWM89],
eight different words, describing an emotional state, are plotted as points on a circumplex
graph. The original affect grid is a 9x9 grid, with valence and arousal axis. In this work,
the affect grid was reduced to a 7x7 grid for simplification. This 7x7 grid was divided into
eight different areas, by projecting the eight states of the Russell circumplex on the grid.
Every area is described with 2 words with help of the extended Russell circumplex model,
which had 32 different emotions on the circumplex. The result is shown in figure 6.8.

Figure 6.8.: Model for the interpretation of valence and arousal to eight affective states

Eight states allow a detailed reflection of the affective state in mobile scenarios. A further
possibility is the reduction to 4 states, clustering two states to one state. This could be done
like shown on the right side of figure 6.8. State 1 and 2 can be clustered to a positive and
active state, as well as state 3 and 4 can be clustered to a positive but inactive state. The
same is possible for state 5 and 6, a negative and inactive state, as well as 7 and 8, a negative
and active state. This simplification to four states offers a solution in robustness, when not
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enough signals are available to distinguish between 8 states to offer enough reliability

Valence and arousal were transformed by 146 fuzzy rules to the eight affective states
(see Appendix B.4). The membership functions were generated based on matching phys-
iological data and subjective rating of previous studies. Like in [MA07] the output of the
membership functions generates four different levels: very low, low, medium and high.
The membership function of state 1 (alarmed, astonished) is shown in figure 6.9. Very low
has only a small portion of possible membership, as it reflects the areas where a certain
affective state is nearly not occurs.

Figure 6.9.: Membership function for modelling affective state 1 (alarmed, astonished)

As the eight different affective states are very similar in the following processing steps,
the steps will be shown only for state 1 (alarmed, excited) as an example. The membership
functions as shown in figure 6.9 also apply for the other affective states.

Besides the membership function, the affective state can also be presented in the affective
grid. Figure 6.10 shows the representation of affective state 1 in the affective grid. High
membership is represented in dark blue, which are cells of the grid that are completely
within the area of the affective state. Medium membership is represented by blue, which
are cells that are at least 50% and less than 90% inside the affective state. Low membership
is represented in light blue, which are cells that are less than 50% but at least 10% inside
the affective state area. Cells with less than 10% have a membership of very low.
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Figure 6.10.: Representation of affective state 1 in the affective grid, with the different
memberships

After calculation of the memberships in the different affective states, the output needs
to be defuzzified to have a crisp value for the applications. Different approaches for de-
fuzzification exist. A widely distributed method is the center of gravity approach [Ros09],
which will be used in this work.

6.5. Cognitive Value

The cognitive value is mainly based on HRV and reflects how cognitive occupied an user
is. HRV and its relation to the psychological counterparts are in detail described in chapter
2.3.5 and 2.4.1. The two processing steps to get the cognitive state of the user are described
in the following subsections in detail.

6.5.1. Processing Mental Load

In the second step, cognitive value is processed based on the fuzzified PSD values of the
first step. Even so, no other signals are influencing the mental load value and mental load
could have been directly transformed in this case, the step is done to offer the possibility
of adding new data channels for mental load to the model in the future, e.g. electroen-
cephalography (EEG) measures.

Membership functions transforms power spectrum density and context information to
mental effort, which is shown in figure 6.11. The output of mental load is categorized in
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four different states: low, medium, high and very high. A set of fuzzy rules transforms the
fuzzified results of PSD to a mental load value.

Figure 6.11.: Membership function for transformation of LF PSD results to mental load

The shape of the membership function is based on the curve of Yerkes and Dodson,
presented in chapter 2.7.4. Based on this curve, the best performance would be reached
in a medium stress load, in this case mental stress. In low and high areas, performance
decreases. The high area was divided in two parts, to offer more details on high mental
load level, as they are typically more interesting for most applications in comparison to
the low mental load area.

In total five rules were used for transformation. The full set of rules is shown in appendix
B.3. The rules were based on power spectrum density solely.

6.5.2. Calculating Cognitive State

In the end of the processing, the cognitive value represents a combination of mental effort
based on HRV, environment and performance statistics. This value might not be important
for every application, but is important for applications where a user has to perform well
in a given task for work purposes instead of fun. The membership function for cognitive
state is shown in figure 6.12.

The membership functions are identical to the membership functions for mental load in
the previous section. Cognitive state is divided into four states: low, medium, high and
very high. Like outlined in the mental load processing section, a further distinction of low
cognitive states might not be as interesting as high cognitive states.

Context information which is used are performance for statistics of success or fail in an
application (e.g. learning applications) and movement to improve the interpretation of
power spectrum density further or to give a tendency in which direction cognitive state
might go. When moving, a user may be distracted by the environment, lowering the cog-
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Figure 6.12.: Membership function for transformation to cognitive state

nitive availability. In this case, mental load might be higher as it would normally be in a
not-moving situation. Performance is used to identify the cognitive state in different situ-
ations. For example, when mental load is high and performance very low, cognitive state
is very high.

In total, 15 fuzzy rules have been created, shown in table 6.2. The rules are based on
principles and observations made in studies, presented in chapter 2.

6.6. Handling Robustness

As one of the theses focuses on robustness, several steps have been taken to ensure robust-
ness of different aspects of the model. Key points for robustness are especially loss of a
signal, corrupted signals and influencing factors of the physiological signals.

Detection of corruptness and signal loss are handled in the preprocessing step. The
details for detection are described in chapter 6.2. To handle this case, two approaches are
integrated. In a first step, it is checked, if lost or corrupted signals can be replaced by other
input channels.

In the second approach, if one important input channel is lost or corrupted and cannot
be replaced, the output states can be reduced to allow more reliable results. As described in
section 6.4.2, the eight affective states can be reduced to four states, allowing more reliable
results for these four states, instead of less reliable results for eight different states

Besides signal loss or corruptness, influencing factors on physiological signals have to
be controlled to improve robustness and reliability of the model. Especially heart rate is
easily influenced by movement. Based on context information, like e.g. step sensor, the
physiological signals can be controlled, which is integrated in the preprocessing step.
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6.7. Conclusion

In this and the previous chapter, the model and its processes were presented in detail. The
single steps, from input to interpretation of user state and the intermediate steps. The
model starts with a preprocessing of the signals combined with first steps for improving
robustness. After this, signals were transferred in two steps to an affective and a cognitive
state with a fuzzy logic approach.

The calculation of affective state is based on the affect grid and the circumplex model of
Russell. Cognitive state is mainly based on a spectral analysis of HRV combined with con-
text information. In the first step of the fuzzy logic approach, input signals were fuzzified
and afterwards transformed with fuzzy rules to values for affect, valence and mental load.
These values together with context information were then again transferred with fuzzy
rules to an affective and cognitive state.

The model addresses the defined requirements (see 5.1) of mobile scenarios and offers
several approaches for improvement of robustness under different situations. In the fol-
lowing chapter, the implementation of the proposed model will be presented, followed by
a chapter introducing several different applications in which the implementation of this
model was integrated.
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if (mentalLoad is very high) then (cognitiveState is very high)
if (mentalLoad is very high and performance is very high) then (cognitiveS-
tate is high )
if (mentalLoad is very high and performance is high) then (cognitiveState is
high )
if (mentalLoad is high) then (cognitiveState is high)
if (mentalLoad is high and movement is high) then (cognitiveState is very
high)
if (mentalLoad is high and performance is very low and movement is low)
then (cognitiveState is very high )
if (mentalLoad is high and performance is very low and movement is not
low) then (cognitiveState is very high )
if (mentalLoad is medium) then (cognitiveState is medium)
if (mentalLoad is medium and movement is high) then (cognitiveState is
high)
if (mentalLoad is medium and performance is very low and movement is
low) then (cognitiveState is low )
if (mentalLoad is medium and performance is very low and movement is
high) then (cognitiveState is high )
if (mentalLoad is low) then (cognitiveState is low)
if (mentalLoad is low and movement is high) then (cognitiveState is medium)
if (mentalLoad is low and performance is high) then (cognitiveState is
medium )
if (mentalLoad is low and performance is very high) then (cognitiveState is
medium )

Table 6.2.: Fuzzy rule set for interpreting cognitive state based on mental load and
performance
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7. Implementation

Chapter 5 and 6 described the architecture, model and details of processing physiological
input and context information into different user states. This chapter describes the im-
plementation and realization of these concepts from first steps like connecting sensors to
the final output and its forwarding to the applications itself. The requirements that are
needed to be fulfilled by the applications to receive and process the information are also
introduced. The implemented engine will be called MUSE, standing for ”mobile user state
estimation”.

7.1. Development Environment

When developing for mobile devices, many different software development kits (SDK)
and operating systems exist. The most popular ones are Android, Apple iOS, Windows
Phone and Blackberry OS. Developed native applications are not compatible across the
operating systems. The only way to run an application on all of these platforms would be
a web-based solution.

Several aspects and requirements lead to the decision of an implementation for mobile
devices running Android operating systems. A web-based solution was not a possible so-
lution, due to the integration of external and internal sensors. At time of development,
Android SDK had several advantages compared with other operating systems like Win-
dows Phone or iOS. One advantage was the support of Bluetooth in the SDK, which is
needed by the chosen sensors and the wide distribution of Android OS. In August 2014
Android OS had a market share of 84.8% [IDC16]. Bluetooth was early integrated in the
SDK of Android. Apple’s iOS supports Bluetooth LE since version 6, which was released
in 2012.

For testing and debugging, a LG Nexus 5 has been used. The Nexus 5 was one of the first
Android Smartphones supporting the Bluetooth Smart standard and the new step sensor
application programming interface (API) available since Android 4.4.
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7.2. Architecture of the MUSE Engine

As proposed in chapter 5, the processing and interpretation of physiological data and con-
text information is done in a background service due to limited resources on smartphones.
Background services have the advantages of running the whole time in the background,
independent of the applications that use them.

PSD
Analysis

EDA 
Analysis

Context 
Analysis

Fuzzyfication

Sensors

Application

Signal Analysis

Affective State Cognitive State

Fuzzy Logic 
Systems

Affective State

Fuzzy Logic 
Systems

Cognitive State

Figure 7.1.: Architecture of the background service

Within the background service, some steps are running simultaneously during the exe-
cution of the service. When the service is running, processing of data and calculations are
constantly done. The most important functions, which are executed simultaneously are
power spectrum density (PSD), Electrodermal activity (EDA) and context analysis. PSD
Analysis is done, as soon as enough data is collected. EDA and context analysis is done
from the start. The architecture of the background service is shown in figure 7.1.

Integration of sensors will be described in section 7.3, followed by a presentation of the
data processing steps of physiological signals and context information in section 7.4 and
7.5.
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7.3. Integration of Physiological Sensors

The sensors that have been chosen for measurement of EDA and heart rate (HR) have been
introduced in chapter 5.2. The sensors are connected over Bluetooth. Between the sensors
is a difference regarding the kind of Bluetooth connection. Q-Sensor and Zephyr HxM
work with the Bluetooth 2.0 standard, while Polar H6 supports the newer Bluetooth 4 with
Low Energy. Implementation of these two connections differ. Both are further described
in the following in the sections of the respective sensor.

7.3.1. Zephyr HxM

The Zephyr HxM comes with a SDK and a documentation of the format in which the data
is transmitted. As mentioned before, Zephyr HxM works with Bluetooth 2.0 standard.
Initialization of connection is very similar to the Q-Sensor.

The HxM transmits data packets with several information every second. The sensor can
only transmit data but not receive it. Each packet consists of the heart rate, speed, distance
and an array with the last 15 heart rate time stamps. With these time stamps, RR intervals
can be calculated.

7.3.2. Q-Sensor

Affectiva Q-Sensor transmits the measured data via a Bluetooth serial port for communi-
cation. Data is transmitted in a packet format as a stream of a string. Within this string,
information from the integrated sensors is transmitted. The information of the motion sen-
sor is encoded in a z, y and x value. Furthermore battery lifetime and temperature besides
EDA, which is given in microsiemens. The structure of the packet looks like shown in
figure 7.2.

Figure 7.2.: Q-Sensor packet format [Aff11]

This packet format is transmitted in form of a stream of a string, which looks like the
following:

0,0.39,0.12,0.86,3.55,32.9,0.068 r n
1,0.40,0.07,0.90,3.55,32.9,0.071 r n
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2,0.39,0.23,0.95,3.56,32.9,0.071 r n
3,0.39,0.21,0.86,3.55,32.9,0.071 r n

Once the sensor is paired with the device, it gets connected with a Bluetooth Socket. In
the next step an RFComm Socket constantly receives the stream. The string is parsed and
information relevant information forwarded to the processing of the signals.

7.3.3. Polar H6

The Polar H6 supports the Bluetooth 4 standard with low energy. The Bluetooth 4.0 stan-
dard offers several generic attribute profiles (GATT). One of this GATT profiles is a spe-
cialized profile for heart rate monitors [SIG11], which is supported by the Polar H6. Based
on the heart rate profile, different information can be accessed.

Due to the standard for heart rate monitors, the implementation could also be used for
other heart rate monitors which support the heart rate profile, for example the Polar H7 or
Sigma R1.

7.4. Data Processing

To calculate the values for valence, arousal and mental effort, the physiological signals
have to be processed in several ways. In the following the implemented processing steps
are described. Besides calculating of these values, a configuration and baseline phase has
been implemented, which will be described in detail in the following subsection.

7.4.1. Baseline Measurement

A baseline is measured before the model can be used. Baseline should be measured in a
period of rest in a sitting position before first usage. The size of a measurement windows
needs to be a power of 2, as the fast Fourier transformation is used for calculation. Mea-
surement takes 5 minutes and 20 seconds, which corresponds to 5 measurement windows
of 64 seconds and can be manually started.

A function is implemented, that allows the user to reset the baseline and measure it
again. From time to time or when sensors have been removed this function should be
used.

Baseline is needed for normalization of EDA and the result of power spectrum density.
For PSD five windows are calculated and the lowest is stored for later normalization. EDA
uses the minimum value in expressed in µS for normalization. In both cases, if there is a
lower value in future measurement, the current baseline is replaced by this value.
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7.4.2. EDA Analysis

EDA is received in µS. Tonic level of EDA is analyzed, based on the change in compari-
son to the baseline and the current maximum value. EDA is normalized with the simple
formula:

SCLnorm(t) =
SCL(t)− SCLmin

SCLmax − SCLmin
∗ 100 (7.1)

Maximum value is stored and replaced, if the current value is higher than the maximum
value. The longer the measurement period is, the more accurate is the normalization.
Within the first time of measurement it might not be reasonable to use the normalized data
but the normalized change in percent between baseline and current value. Another option
would be to let the user experience a situation of high arousal after baseline measurement
to also get an estimation for the maximum value.

7.4.3. Power Spectrum Density

To calculate the power spectrum density of Heart Rate Variability (HRV), several step have
to be done. At first, data needs to be preprocessed. In the next step, data is divided
into several windows of 32 or 64 seconds (depending on configuration) length to apply a
sliding window approach. Length of these windows has been chosen based on the further
processing steps and on the fact that the reaction time should not be too long in mobile
environments.

After the preprocessing, a Fast Fourier Transformation (FFT) is applied to the windows.
FFT offers the advantage of a faster and more efficient processing of the data as the normal
Fourier transformation. One requirement of the FFT is, that the length of the input has to
be a power of 2. As there are no integrated functions for signal processing in Java a library
[SW15] has been integrated for several signal processing functions, e.g. the FFT.

The output is the value in µS of the low frequency area between 0.06 Hz and 0.14 Hz.
To determine the mental effort of a user, this value has to be normalized with the average
of the baseline measurement. Result is a number between 0 and 1, where 0 means that
mental effort is low and 1 stands for a high mental load.

mentalLoad(t) = 1− PSD(t)

PSDbaseline
(7.2)

Calculation of PSD was evaluated by comparing the results of different data sets with
other established programs, like Kubios HRV [TNL+14]. For this reason, a set of measure-
ments were done with Polar RS800. Measurements were saved as text files which were
used as an input for both programs. Results showed that the results of calculation were
similar.
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7.5. Integration of Context Information

Android offers access to many of the integrated sensors of a smartphone. In this work,
context information based on information from the smartphone itself, concentrated on
motion. The implementation of this aspect into the background service is further explained
in the following subsection. Context information transmitted by the application itself is
explained in the last subsection.

7.5.1. Motion

Different kinds of motion can be registered. On the one hand motion of the smartphone
itself, on the other hand motion in the environment. The second one is the more interesting
aspect for this work. Most smartphones with Android offer different ways to collect data
about motion of an user. Gyroscope and accelerometer are hardware based sensors, which
are integrated in modern smartphones. Gravity, linear acceleration and rotation vector
sensor can exist as hardware or software solution in a smartphone.

Android offers an integrated API for a Step Sensor. Two different kinds are available,
the step counter sensor and the step detector sensor. Step counter sensor has a latency
of up to 10 seconds, step detector has only 2 seconds latency. The first one offers more
accuracy. In this work, the more accurate step counter sensor is used, due to the fact that
data is transmitted continuously and changes in adaptation might be fast enough.

Once initialized, the step sensor is triggered after each recognized step. The return value
are the amount of steps taken since initialization. Step detector would only trigger an event
and return a timestamp than the total amount of steps taken.

Both step sensors need a special hardware solution. Nexus 5 is one of the few devices
at time of implementation, which offered this solution. Step sensor is available since API
level 19 of Android and Android version 4.4.

7.5.2. Information from Applications

Besides information from the device itself, information can also be received by the applica-
tion. Several information about performance or usage might be interesting for adaptation,
based on the kind of application. This information is optional and not necessarily to be
transmitted by the application.

The background service has the possibility to receive a value from the application once
background service and application are connected. This value is a number between 0 and
1 and expresses how well or successful a user is doing. The range of values is split into five
different zones, standing for ”very negative”, ”negative”, ”neutral”, ”positive” and ”very
positive”. How the statistics of the application are mapped to these five states is decided
by the application itself.
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7.6. Integration of Fuzzy Logic

Different frameworks and libraries exist written in Java, offering fuzzy logic functionali-
ties. In this work jFuzzyLogic [CAF13] has been used, an open source Java based library,
offering a broad range of membership functions and defuzzifier. jFuzzyLogic is offered in
two different versions, a full version and a smaller core version. For integration into the
MUSE engine, the core version has been used as it offers a higher performance with limited
resources and visualization is not needed. For definition of fuzzy rules, the standardized
Fuzzy Control Language (FCL) is used.

The rules are defined in the Fuzzy Control Language in a separate file. This allows
changes and adaptations of the rule set without knowledge of Java or looking into the
source code of the engine. For realization of the fuzzy logic rules described in the chapter
6, separate files for the first fuzzy system, transforming physiological signals into affective
and cognitive factors as well as a separate file for affective and cognitive state have been
created.

Membership functions can easily be described (see 6). In a similar way fuzzy variables
and defuzzification can be described. For more details see [CAF13].

FUZZIFY s e r v i c e
TERM poor := ( 0 , 1 ) ( 4 , 0 ) ;
TERM good := ( 1 , 0 ) ( 4 , 1 ) ( 6 , 1 ) ( 9 , 0 ) ;
TERM e x c e l l e n t := ( 6 , 0 ) ( 9 , 1 ) ;

END FUZZIFY

Listing 7.1: Example for membership function in fuzzy control language

7.7. Connection to Background Service

Several functions and steps need to be implemented in the application to receive the results
from the background service. After receiving this information, the application decides
which values are used and which adaptation takes place under which circumstances. In
the following the most important steps for integration into an application are introduced.

7.7.1. Binding the Service

When the background service is running, applications can connect easily to the service.
The application needs an Activity that handles connection and received values for adap-
tation. Multiple applications can bind to the service at the same time.
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7.7.2. Managing Service Lifecycle

To handle and manage the service lifecycle, the service connection used in bind service
needs to be implemented. The service connection initializes the connection, as soon as
the service is bound and requests data from the service. Service connection handles also
the case, if service gets disconnected. The following shows an example for the Service
connection:

p r i v a t e f i n a l ServiceConnect ion mConnection =
new ServiceConnect ion ( ) {
@Override
publ ic void onServiceConnected (ComponentName componentName ,
IBinder s e r v i c e ) {

mService = new Messenger ( s e r v i c e ) ;
mBound = true ;
t r y {

Message msg = Message . obta in ( null , 1 ) ;
msg . replyTo = mMessenger ;
mService . send (msg ) ;

} catch ( RemoteException e ) {}
Message msg = Message . obta in ( null , MSG GET HRV ) ;
msg . replyTo = mMessenger ;
t r y {

mService . send (msg ) ;
} catch ( RemoteException e ) {
e . p r i n t S t a c k T r a c e ( ) ;

}
}
@Override
publ ic void onServiceDisconnected (ComponentName
componentName){}

} ;

Listing 7.2: Example for service connection

7.7.3. Implementing Incoming Handler

Background service needs an instance of IncomingHanlder to handle the received mes-
sages. Several messages are defined for the single values. These, and their possible values
are listed later in this subsection. The following code shows the Incoming Handler:
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7.7.4. Additional configuration

For security reasons, Intent Filter and service need to be added in the AndroidManifest.xml
of the application. The following shows the lines added to one of the example applications:

<i n t e n t−f i l t e r >
<a c t i o n android : name=”android . i n t e n t . a c t i o n .MAIN” />
<category android : name=”android . i n t e n t . category .LAUNCHER” />

</i n t e n t−f i l t e r >

Listing 7.3: Configuration of Intent Filter for connecting applications

Without these lines added, Android blocks the connection between application and ser-
vice.

7.7.5. Transmitted Values

The adaptation itself is done by the application to allow a broad range of different kinds
of applications. Based on the given values, the application has to make a decision if and
which elements get adapted. Based on the kind of application, some values might be
ignored. Transmitted values and the possible values are listed in the following table:

Value Possible Values
alarmed high, medium, low, very low
excited high, medium, low

happy,content high, medium, low, very low
relaxed high, medium, low, very low

tired high, medium, low, very low
bored high, medium, low, very low

sad high, medium, low, very low
frustrated high, medium, low, very low

cognitive state high, medium, low, very low
movement high, medium, low

cognitive state very high, high, medium, low

Table 7.1.: Transmitted values of the engine

The values are all defined in the model and concept, introduced in chapter 6. The first
eight values are from the affective state. Values for cognitive state are listed at the bottom.

Besides these values, the raw data is also transmitted. This makes sense for applications,
where physiological data is used for direct adaptation and control. For example to control
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speed of gameplay based on heart rate.

7.8. Configuration and Start of Service

The background service offers a simple user interface for configuration and start of the
service. In this user interface, it can be chosen, which sensors should be used. The inter-
face (shown in figure 7.3) is very simple designed and offers a quick view of the current
measured values. The corresponding affective or cognitive State is not visualized at the
moment.

Figure 7.3.: User Interface of the background service, overview of current measures

The overview allows to control if the signals are connected and that the values are in a
reasonable range. EDA, HRV spectrum, HR, HRV Baseline and HRV are shown, together
with buttons allowing to restart baseline measurement or to connect/disconnect sensors.
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7.8. Configuration and Start of Service

After start the Bluetooth connection is checked and a list of available sensors is shown.
The user can choose between these sensors. If Bluetooth is not activated, a dialogue opens
which asks to activate Bluetooth. Once sensors have been chosen, the overview screen is
shown. After starting the service, it is running in the background until terminated com-
pletely by the user.
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As described in chapter 5, different application areas and scenarios might take advantage
of the current user state. In the scope of this work, several applications have been de-
veloped as a proof of concept in the area of rendering, games, eLearning and adaptation
manager, addressing different concepts for use of MUSE engine. The applications, the
integration of the engine and the results of first studies are explained in this chapter.

8.1. Zone of Impulse

”Zone of Impulse” is a multiplayer space-shooter for smartphones, that was developed at
Goethe University Frankfurt [RSK12] [Rei11]. The goal was to develop a game, that allows
two players with different skill levels to play together. If one of the players is overstrained,
gameplay adapts to make it easier for this player. On the other side, gameplay gets harder
for a player if the player is not challenged enough. The biofeedback version adapts game
difficulty in a way that allows both players to enjoy gameplay, independent of their skills.

8.1.1. Application

The goal of the game is simple: two players compete against each other and have to try to
shoot the opponent as often as possible within a limited time frame. The game is settled in
a space environment. The interface is shown in figure 8.1. Each player controls a spaceship
by using the tilt sensor in the smartphone, shooting is done by tapping on the screen.
Further controls are shown in figure 8.2. The score is shown next to the health bar in the
upper left and upper right corner of the screen. In the middle of the upper screen the
remaining time is shown.
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Figure 8.1.: Screenshot of the extended version of Zone of Impulse

In the lower right an icon visualizes the progress of the special ability slow-mo. The
slow-mo ability can be activated, when the icon is fully charged. After activating, the
spaceship of the opponent is slowed down for a few seconds. Another special ability is
the shield which can spawn in the center of the screen. This ability protects the player for
several seconds from getting shot by the enemy.

Originally, electrodermal activity (EDA) and heart rate (HR) were measured to adapt
several game elements. Electrodermal activity and heart rate were collected by a station-
ary device in the original version. Gameplay is adapted based on the score and the inter-
pretation of the physiological data. Game elements that can be adapted are speed of the
own ship, recharging time of the slow-mo ability and shield spawn time.

health barfire special abilityshield object

+

SLOW!

Figure 8.2.: Control of gameplay [Rei11]

The original version developed in the master thesis [Rei11] was extended by several
items and instead of EDA and heart rate, the MUSE engine was integrated. In the ex-

108



8.1. Zone of Impulse

tended version a visualization of the difficulty level is integrated in the interface, shown
in the lower left of the screen. One big aspect that changed were the sensors for measuring
EDA and heart rate, which are now smaller and more suitable for mobile scenarios as the
previous sensors. The changes of the adaptation rules by integrating MUSE engine will be
described in the following subsections.

8.1.2. Model

For adaptation of gameplay, only affective state has been used combined with the current
score of the player. The eight different affective states of the MUSE engine have been
divided into desired, undesired and transition states, like shown in figure 8.3. As it is the
aim of the game that the user has a good time, the desired states (marked in green) are
characterized by positive valence and a certain level of arousal. The two neighbored states
are transition states (marked in yellow), where slight adaptations are done to get the user
back in one of the green states. Undesired states are marked red and are characterized by
a mainly negative valence. Adaptations in gameplay are done to get the user back in one
of the desired states.

Figure 8.3.: Desired and undesired states during gameplay of Zone of Impulse

8.1.3. Rule Set

After integration of the MUSE engine, these rules were modified like shown in table 8.1.
When the user is in a desired state, no adaptation is done. Adaptations are only done, if

109



8. Applications and Adaptations

the user is in a transition or undesired state. In an undesired state, difficulty is decreased
or increased more than in a transition state to get the user back into one of the green states
faster. Within the game, user state is checked every 30 seconds to decide on possible adap-
tations. Initial set of adaptations and rules was defined based on previous studies.

Affective State Score -> Ship Speed Shield Slow-Mo
undesired state high decrease 2x decrease 2x decrease
undesired state low increase 2x increase 2x increase
transition state high no change decrease decrease
transition state low no change increase increase

Table 8.1.: Adaptation rules for Zone of Impulse

A high score means, that the player is currently leading whereas a low score means, that
the player is currently loosing. A high score leads to an increase in game difficulty, where
as a low score leads to an decrease of difficulty. Depending on the affective state, adapta-
tion is done stronger (undesired state) or only slightly (transition state). Every adaptation
aspect had five possible levels. Shield spawn time and recharge time of slow-mo ability
are adapted in undesired states. If maximum level was reached, no further adaptation is
done.

8.2. Beats Down

The game ”Zone of Impulse” uses calculated values for affective and cognitive state for
adaptation of gameplay. Adaptations were passively, instead of controlling gameplay ac-
tively. A further developed game ”Beats Down” uses the heart rate for direct interaction
with the game and addresses other aspects as ”Zone of Impulse”. Heart rate can be influ-
enced directly by the user and can be increased or decreased. This aspect has been used,
to implement two different game modes.

8.2.1. Application

The game was developed in a Bachelor thesis at Goethe University Frankfurt [Smy12]. The
game is based on a simple whack-a-mole principle. The game field consists of 12 different
fields (see figure 8.4(a)). If one of the fields is flashing up red, the user has to hit this field
as fast as possible to collect points. Two different gaming modes were implemented: a
challenge and a relax mode. In both scenarios, heart rate was used to influence gameplay
directly.
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In the challenge mode, users had to raise their heart rate to raise the frequency of blink-
ing fields. Due to a higher frequency, more points can be achieved as there are more op-
portunities to hit the field. Raising of heart rate can for example be achieved by movement
or sports. During a first study users did activities like climbing stairs and running around
to raise the heart rate. In the relax mode, users had to calm down and lower the heart rate
to get a bonus multiplier. Decreasing heart rate can be achieved by sitting down, relaxing
or controlled breathing. Based on how much the heart rate decreased, multiplier was 2x,
3x or 4x.

The figures show the relax mode (figure 8.4 (a)), as well as a person playing the game
during challenge mode (figure 8.4 (b)). The interface of challenge mode is similar to the
relax mode.

(a) Relax mode (b) Participant during gameplay

Figure 8.4.: Screenshots of Beats Down and photos of gameplay

In a first user study 13 users participated. All participants had to play each game mode
in randomized order. After each gaming session, participants had to rate the game modes
regarding different aspect, for example enjoyment during gameplay. The results showed
that participants rated enjoyment in relax and challenge mode higher than the normal
mode, which did not offer any physiological interaction.
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8.2.2. Model

In this application, only raw values of heart rate have been used instead of affective and
cognitive state. A 60 second long baseline has been collected right before the start of the
game instead of the baseline collected by the background service. This has been done to
ensure that the game works with an actual value instead of a baseline, that might have
been taken in a sitting position and user is for example now standing.

Game elements were adapted based on change in heart rate regarding the measured
baseline. If current heart rate was 10 or 20 percent higher or lower than the previous heart
rate, the different elements got adapted. For challenge mode, game speed is adapted by
increasing the frequency of flashing lights by the percentage of heart rate raise. Relax
mode on the other hand adapted the multiplier based on the percentage heart rate was
decreased. The multiplier for doubling points (2x) was activated after lowering the heart
rate 10%, 4x multiplier was activated for a decrease of 20%.

8.3. Affective Vocable Trainer

The vocable trainer was developed in a bachelor thesis [Kle13]. The goal was to develop
a vocable trainer for mobile situations, where difficulty of vocables is adapted by the state
of the user to support the user in the learning flow.

8.3.1. Application

The application is kept simple and offers 3 different learning modes (figure 8.5 (b)): normal
mode without biofeedback, a dynamic mode where adaptation is based on performance
only and a biofeedback mode. For adaptation based on physiological data, mental load
and arousal have been chosen in the original version of the trainer. In the original applica-
tion, baseline of Heart Rate Variability (HRV) and EDA was measured within a 5 minutes
time frame before start of the game. After integration of the MUSE engine, rules were
adapted and will be presented in subchapter 8.3.3.
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(a) Main menu (b) Setting window, showing three
different modes

(c) Training of vocabulary

Figure 8.5.: Screenshots of the vocabulary trainer application

The different modes are kept simple. A word is presented together with different pos-
sible answers. Time is limited and visualized by a circle filling up (figure 8.5(c)). Some
gamification elements like a score and bonus points when a certain amount of vocables
in a row is correct are integrated. Currently only german-spanish is available as learnable
language.

In a first evaluation during the bachelor thesis the three different modes (dynamic, sen-
sor and normal) were evaluated regarding learning performance. In a study, 12 partici-
pants had to test each mode in randomized order. In the sensor mode, participants had
more vocabulary correct and a higher score (72 of 90) than in the normal (60 of 90) and
dynamic mode (67 of 90).

8.3.2. Model

Originally a simple rule based system was integrated for adaptation of difficulty level.
With integration of MUSE engine, arousal and mental load were mapped to affective and
cognitive state. By integrating the engine, baseline values are submitted directly. Baseline
measurement can be removed from the application, allowing a direct start of the game.

Thinking in regards of the affective state, the green marked states in figure 8.6 have been
chosen as positive for learning. To achieve these states or to keep an user in one of these
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states is the goal. Desired states are characterized by a medium cognitive state and affec-
tive states with a certain level of arousal and positive valence. The red marked states are
critical and it is not desired that the user is in one of these states. The undesired states
can be identified by a low arousal and negative valence. This also takes into account the
Yerkes-Dodson curve. In these states, users are not activated and tend to have a nega-
tive valence. To reach a certain performance during the learning process users need to be
activated.

Yellow states are states, which are between desired and undesired states. In this case, it
is not critical to get the user immediately into a green state but first steps are taken to get
the user back in a green state.

Figure 8.6.: Desired and undesired cognitive and affective states during usage of the vo-
cabulary trainer

Regarding cognitive state very high and low values are undesired states. If mental load
is low, difficulty of vocab trainer is raised. On the other hand, a very high mental load
leads to a decrease in difficulty. In total the application supported three difficulty levels.
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8.3.3. Rule Set

Additional context information besides performance is integrated. In this scenario, steps
of an user are used to identify movement. To adapt difficulty, timer and difficulty of the vo-
cabulary can be changed. Each aspect has three different levels. The rule set was extended
from 4 to 15 different rules. Table 8.2 shows the rules, explaining which states lead to an
increase or decrease in timer speed or difficulty. If the user is already in a desired state,
no further adaptation is done. The rules handle only the situations in which an adaptation
should be done.

Affective State Cognitive State Steps -> Timer Difficulty
undesired state very high low OR high decrease decrease
undesired state high low decrease no change
undesired state low low OR high increase increase
undesired state medium low increase no change
undesired state high high decrease decrease
undesired state medium high decrease decrease
transition state low low increase increase
transition state medium low increase no change
transition state high low decrease no change
transition state very high low no change decrease
transition state low high no change increase
transition state medium high increase no change
transition state high high decrease no change
transition state very high high decrease decrease

Table 8.2.: Adaptation rules for vocabulary trainer

The application checks every 60 seconds for adaptation to prevent a too fast adaptation
which might lead to a negative state.

8.4. Mental Adaptation Manager

The application Mental was originally developed in a bachelor thesis [Reh13]. Mental
offers an overview of physiological measures of the user, which can be used to config-
ure adaptations. In the adaptation manager, users can configure several so called recipes,
which allow to adapt different basic functions of the smartphone. For example, if the user
is concentrated (expressed by a high mental load) and should not be disrupted, the ringing
tone can be set to silent.
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8.4.1. Application

In the main window of the application, all physiological signals that are connected to the
application are visualized (figure 8.7 (a)). Workload and Arousal are normalized based
on the baseline value and the highest value measured in the measuring window and are
visualized as a value between 0 and 100. Some other aspects are also shown, like details
of the workload measurement and the actual EDA value. Figure 8.7 (b) shows the tab
in which the recipes can be configured. In a simple ”IF... THEN...” style rules can be
configured in the application to switch to different profiles, e.g. work or home. The profiles
themselves can be configured in the third tab. Currently functions like volume of the
ringing tone, rejection of calls and notification about new messages can be configured.

(a) Overview of workload and
arousal in the status tab

(b) Overview of all configured
recipes

(c) Configuration of different pro-
files for adaptation

Figure 8.7.: Screenshots of the application Mental

When giving the configuration of adaptation rules into the hands of the user, the design
of the application has to make sure, that the values are understandable for the user. A first
study solely concentrated on the usability and understandability of the interface itself, in-
stead of testing the whole application. For user with a deeper knowledge of physiological
signals, a window with additional values is integrated.
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8.4.2. Model

The model is not applied itself as the rules are made by the users themselves. The model
is only used to correct and control physiological data. The application is more a way
of configuring the rules for several adaptations of basic functions. At the moment the
application is working with the normalized values, but an extension for an integration of
a visualization of the model is planned.

8.5. Airline Application

The airline application was developed in a master thesis [Kol14]. The goal was do de-
velop different interfaces for different situations to examine if adaptation of user interface
elements might be useful depending on the situation. In the application, three different
interfaces are offered based on the state of the user. At an airport, users can be under stress
because of catching a flight in very short time. On the other hand, users at an airport can
be bored because of long waiting periods for the next or a delayed flight. The different
states covered by the interfaces are boredom, neutral and stressed.

(a) Mixed interface (b) Reduced interface (c) Extended interface

Figure 8.8.: Screenshots showing the main menu in the three different modes of the airline
application
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8.5.1. Application

To address the three different states, three interfaces were developed: reduced, mixed and
an extended interface. Depending on which user interface is shown, different functionali-
ties are offered. The reduced interface, which is offered to user in very stressful situations,
offers a reduced interface (shown in figure 8.8 (b)) with only the most important informa-
tion like check-in, buying tickets and flight schedule. In neutral situations, where the user
is whether stressed nor bored, a mixed interface is used. The mixed interface, shown in
figure 8.8 (a), offers more functionality than the reduced interface, like an option to mark
favorites and more functionalities hidden behind the ”more” button. The extended inter-
face is designed for situations where users are bored and offers plenty of functionalities.
The interface is shown in figure 8.8 (c). Besides the function that are offered by the mixed
interface, the extended interface additionally offers tools like a currency converter or en-
tertainment like games.

Besides the main menu and the interface, some functionalities also differ in the different
versions. One example is the booking of a flight. In the reduced mode, passenger informa-
tion is already filled out in the form and no additional information about the destination
is shown. In the extended interface, passenger information is not automatically filled out,
but additional information about flight and destination are shown.

In the original version of the airport application, the MUSE engine was not integrated
directly but used for testing. The user interfaces were only used for testing and evaluating
them under different stressful situations. The integration of the MUSE engine allows live
adaptation of the interface at start of the application. Adaptation did only take place at the
start of the application and not during usage to minimize irritation of the user.

8.5.2. Model

Depending on affective state and cognitive state, an interface is chosen. As shown in figure
8.9, the dark blue marked states are states of high stress or frustration, where the reduced
interface should be used. The medium blue marked states, state 2, 3 and 4 are states with a
positive valence and a balanced arousal level, which would be optimal for the mixed user
interface. States 5 and 6, marked in light blue, would be the states where the extended
interface should be preferred as the user is in an inactive state.
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Figure 8.9.: Assignment of the three interfaces to affective and cognitive states

When the user is in one of the inactive states and/or cognitive state is low, the extended
interface is offered that gives more information and functionalities like games to activate
and involve the user. In stressful states and/or if cognitive state is very high or high, the
reduced interface is offered to not stress the user any further than necessary and to support
the user. Medium cognitive load or balanced affective states lead to the mixed interface.

8.6. Adaptation of Level of Detail

Besides the examples for mobile applications, the MUSE engine was also used for testing
of level of detail (LOD) algorithms aiming for a LOD adaptation based on physiological
signals. The level of detail influences the quality of a scene. If a user is less attentive, lower
quality in the rendering of images may be sufficient. This may especially lead to a better
performance on mobile devices by applications using this adaptation mechanism. In the
past, eye tracking has been used in different research projects [CCW03] to adapt the (LOD)
of a rendered scene to speed up rendering. Based on the arousal of a user, conclusions
regarding attention can be drawn in a more general way, than in case of e.g. eye-tracking.
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8.6.1. Concept

The goal is, to select a LOD algorithm based on the EDA of a user. The workflow of the
concept is shown in figure 8.10). Based on EDA, a LOD algorithm is selected. In our
first evaluation, two different kinds of LOD algorithms have been tested. In the next step,
rendering of the scene is adapted and presented to the user.

EDA Choose LOD
Distance . . . Perception

Rendering

Figure 8.10.: Workflow of LOD adaptation based on electrodermal activity

The first study aimed for a comparison of different LOD strategies and detail levels in
pre-rendered videos. Figure 8.11 shows an example of two different LOD versions of a
scene. The images with the blue background show the difference of the current rendered
image in comparison to the original image. If EDA is high (left part of the figure), a higher
LOD is assumed to be more suitable. In the other case, if EDA is low, a lower LOD is
sufficient.
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Figure 8.11.: Example scenes of the test videos with different LOD and EDA curves

8.7. Recommendations for Integration of MUSE

Different types of applications have varying requirements in details of the user state. In
this chapter, different examples and areas for applications were presented. As an example,
learning applications might profit more from cognitive state where on the other hand gam-
ing applications might profit more from affective state. Therefore it is crucial to analyze the
requirements of applications before designing adaptations or using it for other purposes.
In the following, the presented applications are summarized and recommendations given.

8.7.1. Gaming & Entertainment

Two different games have been used, to test the integration of the MUSE engine. The first
example, Zone of Impulse (see section 8.1) is a game, which aims to keep the user in a flow
state (2.7.5) by using the user state indirectly. Preferred states were reduced to two of the
eight states of the model (state 2 and 3), whereas state 1 and 4 were states, where the game
reacted slightly to get the user back into one of the desired states. The remaining states are
not desired and lead to a stronger reaction of the game, to get the user in one of the desired
states.

To test direct control of gameplay by physiological data, the game Beats Down, pre-
sented in chapter 8.2 has been developed. First tests showed, that usage of affective or
cognitive state are not suitable for direct control, as participants were not sure about how
to control them. Therefore, physiological signals were integrated without the interpre-
tation of affective or cognitive state. Based on the test results, we recommend to select
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and use physiological signals for direct control carefully. In related work of Nacke et al.
[NKLM11], results were similar. It should be clearly understandable for users, how the sig-
nals can be influenced. For most users it might be clear, how to influence heart rate but for
example not how to influence electrodermal activity. A visualization of the physiological
values in the interface of the game supported the user in the task.

8.7.2. Other Applications

Besides gaming and entertainment, three other mobile applications have been developed
using cognitive and affective state. The first example was a vocable trainer application
presented in 8.3, adapting different parameters like difficulty of vocabulary or speed. As
the application is focused on learning, cognitive state was mainly used for adaptation.
Besides cognitive state, affective state was also used to ensure that the user is not getting
into a demotivated or frustrated state. First results showed, that participants were more
effectively learning in a version with adaptation.

In the second example, an airport application (see section 8.5), the interface was adapted.
Depending on the affective and cognitive state, one of three different user interfaces is dis-
played. User interfaces differed in complexity of the shown options and in visual aspects
and were optimized for stressful, boring and neutral situations.

The third application, the application Mental (section 8.4) offers to define adaptation
rules for different functionalities of mobile devices, like e.g. muting the ring phone.

8.7.3. Other Examples

Besides mobile applications, the MUSE engine has also been used in testing of other appli-
cations. One example, which was presented in this chapter, is the concept for adaptation
of LOD 8.6. In a first study, different videos were presented to measure the impact of a
searching task regarding level of detail to physiological signals like electrodermal activity.
Results showed, that it might be possible to adapt level of detail based on the electroder-
mal activity of an user. This offers a broad spectrum of possible applications, especially
adapted rendering on mobile devices to save resources.
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After detailed description of the concepts and its applications in the previous chapters, the
different theses from chapter 4 are further investigated with help of several studies. Before
the evaluation of the developed model and theses, the signal processing for determination
of congitive and affective state are investigated. At first, two studies for evaluation of
cognitive state estimation will be presented, followed by a first study for the evaluation of
affective state estimation.

Finally, a study is presented addressing the different theses. With regards of the de-
scribed theses, different aspects of the model are evaluated and presented in detail, like
usage of the model in outdoor scenarios or loss of input channel.

9.1. Prestudy - Evaluation of Cognitive State

To evaluate the estimation of cognitive state its main component, the determination of
mental load based on heart rate variability has been evaluated in two different studies.
Both studies and its result will be described briefly in the following.

9.1.1. Study I - Measuring Mental Load with a Polar Heart Rate Monitor

In a first study presented in [SK11], the results of spectral analysis were compared to sub-
jective ratings of NASA Task Load Index (NASA-TLX) rating, to determine if the perceived
subjective workload correlates to the interpretation.

Four different tasks had to be solved by the participants, which were expected to trigger
different levels of mental load. Task 1 was a simple reading task, where participants had
to read a short simple text within 4 minutes. In task 2, participants had to solve verbal
arithmetical tasks while sitting. Task 3 consisted of a Stroop Color Test [Str35], whereas
task 4 was similar to task 2 but involved walking. In total 6 male participated with a mean
age of 28 years.
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Figure 9.1.: Normalized results of the study [SK11]

The results showed, that mental load values for the tasks differed. Figure 9.1 shows
the results of NASA-TLX rating, result of spectral analysis as well as the upper bound
for normal low frequency values of spectral analysis as found by Malik et al. [MBC+96].
Analysing the correlation between PSD and NASA-TLX results of the tasks, a correlation
coefficient of 0.34 is returned. For 6 participants this value does not indicate a significant
correlation. Task 1 had the lowest results in the subjective rating and also low results in
the results of spectral analysis. Task 2 had even lower results regarding PSD analysis, even
if it was rated as more stressful than task 1 in the NASA-TLX rating. This could be due
to the design of task 1. During task 1, participants were under a high amount of stress at
the beginning, but then recognized that they had more then enough time at the end of the
task. Task 3 and 4 had nearly the same results in the spectral analysis, but task 4 was rated
lower in the NASA-TLX. This might be influenced by the walking during task 4.

To summarize the results, the most stressful task according to PSD analysis, was also
the most stressful task according to subjective rating in the NASA-TLX. The results gave a
first hint, that it could be possible to distinguish the mental load of different tasks by heart
rate variability analysis. Furthermore, the results also showed, that control of movement
might be crucial for correct interpretation of mental load, when looking at the results of
task 4.
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9.1.2. Study II - Visual Recognition Task

In a study, presented in [SSK11], the implementation of mental workload analysis was fur-
ther investigated. Heart rate variability was measured for determination of mental work-
load, as well as NASA-TLX for a subjective rating of workload. The aim of the study was
to find out, when a user recognizes different variations of an email icon. Variations of
the email notification icon ranged from a small envelope in the task bar, to a more salient
bigger blinking icon.

In total 10 participants took part, aged between 23 and 29. Participants had to solve
three different tasks. Task 1 was a simple task of comparing the quality of images, task 2
was resting in front of the computer and task 3 solving Sudokus. The normalized results
for all three tasks are shown in figure 9.2. Details of the study can be found [SSK11].

Figure 9.2.: Normalized results of the study

Time needed for first recognition of the icon as well as normalized (Heart Rate Variabil-
ity (HRV)) and NASA-TLX results were compared. The results showed a correlation of
estimated mental workload and subjective rating. Running a linear regression resolves in
r2 = 0.88. Further details of the study can be found in [SSK11].

9.1.3. Conclusion

The results were gained with tasks and activities addressing different level and aspects of
mental workload. Both studies showed, that results of spectral analysis were compara-
ble to the results of subjective ratings, which leads to the assumption that cognitive state
results in the MUSE engine are reliable.
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9.2. Prestudy - Evaluation of Affective State

In contrast to cognitive state, affective state is challenging to evaluate. As in some exam-
ples in the state-of-the-art section mentioned, it is difficult to measure the whole spectrum
of affective states, especially the states with negative valence, e.g. sadness.

9.2.1. Evaluation of Arousal

For the example of combining measurement of arousal with adaptation of level of detail
(LOD) presented in chapter 8.6, a first study was conducted. Electrodermal activity (EDA)
was measured as well as participants had to fill out a SAM questionnaire (see chapter 2.5.2
and 2.6.2) for a subjective rating of their arousal and valence on a nine point scale.

In a first study, 12 videos with a length of 90 seconds were produced with two differ-
ent scenes and two different LOD algorithms (distance and projection-size). For a better
comparison of the results, a variant of the video without any applied LOD algorithm was
produced. The aim of the study, was to examine if there is a correlation between the ac-
tivation level of an user measured in EDA and the noticed differences by the user in the
rendered scenes.

The study was divided into two sequences. In the first sequence, each participant was
asked to watch six videos and rate the quality afterwards. In the second sequence, partic-
ipants were also asked to especially look at the quality of single objects in the scene to get
them more activated followed by the quality rating. The quality rating was divided into 10
items, where 1=very bad and 10= very good. The videos in each sequence were presented
in randomized order. The results lead to the assumption, that it is possible to adequately
adapt the LOD based on the current arousal level derived of the EDA.

Figure 9.3.: Results for quality rating and EDA in the first study, comparing the first and
second sequence

In total 24 participants, aged between 21 and 35, 5 female and 19 male, took part in the
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study. Figure 9.3, the results of the quality rating an EDA measurement are shown. The
results of the quality rating (shown in the left of the figure), show that quality rating of
the videos was broader in the second part. This leads to the observation, that participants
rated the visual quality of a scene in more detail when they were more actively involved.

Looking at EDA results, shown in the right part of the results, 83.3 % of the participants
showed a significantly higher skin conductance level in the second part of the test, when
actively searching for differences.

Comparing the results of arousal rating in the self-assessment questionnaire manikin
(SAM) scale with the results of EDA, no correlation could be found. This may be ex-
plained by that the subjective experienced arousal was not big enough for a difference in
the ratings, but could be detected with EDA.

9.2.2. Conclusion

The results for evaluating the correctness of affective state are mixed. As stated, the evalu-
ation of affective states or emotions is difficult, as in most studies the whole range of states
cannot be covered. The results of evaluating arousal in 9.2.1 were not satisfying, which
might be due to a failure in study design or lack of subjective rating scale.

9.3. Evaluation of Theses

A concept and model for the interpretation of physiological signals and context informa-
tion to a user state has been developed in chapter 5 and 6. Applications of these models
have been presented in chapter 8. To prove the three theses for this model introduced in
chapter 4, different aspects need to be evaluated.

It is difficult, to compare the developed model with other models as introduced in re-
lated work (see chapter 3). The models differ in input channels and several aspects, that
might lead to not comparable situations. Therefore it was decided instead of comparing to
existing models, to compare the model of the MUSE engine under different situations. In
the following, the concept for proving the three theses will be presented.

9.3.1. Combination of Physiological Signals and Context Information

Thesis I (see 4.2) investigates the combination of context information and physiological
signals for improvement of user state interpretation. The implemented model offers two
different ways of context information integration: for control and direct improvement of
user state interpretation.

Context information for control of physiological signals is only important, if the user
is outside of a controlled environment, where signals can be influenced by aspects of the
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environment. The second step, using context information for direct improvement of inter-
pretation can also influence the interpretation in controlled environments.

To prove the thesis, the test needs to compare the full model with a version of the model,
which only has physiological signals as input and a control group which has no integration
of the model at all in the application. The test has to be taken in controlled environments
as well as in outdoor environments, to evaluate the usefulness of context information. The
results will be described in section 9.9.

9.3.2. Model for Mobile Scenarios

The model was developed for mobile scenarios, offering different improving and control-
ling aspects for mobility. To test thesis II (see 4.2), that a model for the integration of phys-
iological signals and context information in mobile scenarios can be defined, tests need to
be done outside the lab under realistic conditions of everyday life.

A test has been developed, involving different scenarios: test in a controlled environ-
ment in a sitting position and an outdoor test, which involves movement and interaction
with the environment. The details of the test will be described in section 9.4 and the results
in section 9.8.

9.3.3. Robustness

To prove thesis III (see 4.2) how robust and reliable the system is when one of the measure-
ments falls away, different version of the models have been used. In total, there were three
versions of each application. Each of the versions had one or more of the input signals
missing. The versions were:

• a version using only physiological data and no context information

• a version where one of the physiological data channels is missing.

• a version with all physiological signals and context information

A comparison between the model without context information and the model with all
input channels is done for thesis I (9.9). The results of the comparison between the model
with channel loss and the full model is presented in 9.10.

9.4. Test Design

The test was designed to prove the three thesis introduced in chapter 4. For testing, dif-
ferent applications, described in chapter 8 have been modified and used. In the following,
test environment, test setting and test setup will be introduced.
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9.4.1. Test Environment

The evaluation takes part in two different scenarios. On the one hand indoor tests for a
controlled environment. On the other hand outdoor tests, to prove the concept in mobile
scenarios that require more attention of the user to the environment.

The tests for the indoor scenario are conducted in the usability lab of Goethe University.
Participants were seated on a couch during the test. For the outdoor scenario partici-
pants have to walk around the Campus Bockenheim in Frankfurt and through different
buildings. In the outdoor scenario participants were guided and given directions by the
experimenter. During the outdoor scenario, participants were constantly moving, whereas
the participants of the indoor scenario were sitting.

9.4.2. Test groups

The participants are divided into four groups. In the first step, participants are divided in
indoor and outdoor group. In each of these two groups, participants are divided further
into a non-stress and a stress group as shown in figure 9.4.

Figure 9.4.: Test groups for evaluation

The stress group gets additional arithmetical tasks during usage of the applications to
increase the stress and mental load level. The no-stress group had only to concentrate on
the applications. The division into different stress groups was done, to simulate indoor
and outdoor situations under different kind of mental load and stress.

9.4.3. Test Procedure

To cover a broader range of applications, two applications with different concept have
been chosen. The application VocabTrainer (see 8.3) and the game Zone of Impulse (see
8.1) have been chosen for the study. The vocable trainer application makes primarily use
of the cognitive state of an user, where as the game Zone of impulse primarily uses the
affective state.

To assess subjective aspects of cognitive and affective state, different questionnaires and
surveys have been used and developed. Subjective mental load is measured by the NASA
Task Load Index questionnaire, introduced in chapter 2.4.2. Additionally, a questionnaire
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about user experience was created, addressing several important points for affective and
cognitive state, like fun, if the user felt overstrained or if the user felt supported.

The test was divided in several steps. The order of applications was randomized in each
test. The sequence of the study is visualized in table 9.1.

Time Description
5 minutes Information about the test for the participant
3-5 minutes Introduction questionnaire and consent form
5-10 minutes fitting of the sensors and baseline measurement for 5

minutes
Application 1a
Short break, NASA-TLX and usability survey
Application 1b
Short break, NASA-TLX and usability survey
Application 1c
Short break, NASA-TLX and usability survey
Application 2a
Short break, NASA-TLX and usability survey
Application 2b
Short break, NASA-TLX and usability survey
Application 2c
Short break, NASA-TLX and usability survey

Table 9.1.: Test procedure of evaluation

At the beginning, each participant was informed about test procedure and had to fill
out a consent form and a demographic questionnaire. After this step, sensors were placed
on the participant and a 5 minutes and 20 second long baseline was measured in a sitting
position. This part of the test took place in the laboratory, independent of the test group.

In the next step, the main part of the study starts. In randomized order, participants
had at first to play three different versions of Zone of Impulse or three different versions of
vocable trainer. The three versions of the chosen application itself were also in randomized
order. Details on the different versions of the applications will be given in the following
subsection. After usage of each version, participants had a short break and to fill out
NASA-TLX and the other survey for the current version.
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9.4.4. Application Versions

To test different aspects of the model, like context integration or robustness, variations of
the original application have been developed. The following versions of the applications
”Zone of Impulse” and ”Vocable Trainer” have been created:

• Zone of Impulse without the model in the background and any adaptation

• Zone of Impulse with full biofeedback model

• Zone of Impulse without EDA

For the partial model only heart rate and context information had been chosen. In phys-
iologically enhanced games usage of EDA is more common instead of heart rate. For the
stress test of the model in the background it has been chosen to only use heart rate to test
the worst case scenario of channel loss for gaming situations.

In the same way, the application ”vocable trainer” had a version, that was reduced to
having only EDA. In a learning application, mental effort based on HRV would be more
useful but for the stress test of the model, EDA has been chosen. The versions of ”Vocable
Trainer” are:

• Vocable Trainer without the model in the background and any adaptation

• Vocable Trainer with full biofeedback model

• Vocable Trainer without HRV

9.5. Execution of Test and Demographic Survey

The test was executed between June and July 2014. In total 41 people participated in the
test. The distribution of participants over the different groups is shown in table 9.2. Four
of the participants were female, 36 male with an average age of 25 years. The duration of
the test was approximately between 45 to 90 minutes, depending on the test group.

Group Number of Participants
stress indoor 16

stress outdoor 8
indoor 9

outdoor 8

Table 9.2.: TLX values for Vocable Trainer
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Asked about their smartphone experience, participants rated their experience in aver-
age with 4.24 (1=”not an experienced user” and 6=”very experienced user”). In average,
participants regularly use the internet on mobile devices rated with 4.38 (1=”do not use
it”, 6=”use it very often”).

9.6. Impairment by Sensors

After the study, participants were asked if they felt impaired by wearing the sensor during
the test. The rating of the sensors is shown in figure 9.5. In total, participants did not feel
impaired by wearing the sensors. Average rating over all groups was 1.63, with a standard
deviation of 1.03 on a scale from 1=”I did not feel impaired” to 6=”i did feel impaired”.
The outdoor scenario involved movement and interaction with the environment like tak-
ing stairs, open doors and following directions. In the indoor scenario, participants were
sitting on a couch.

Figure 9.5.: Results of wearing comfort rating (1=did not feel impaired by sensors, 6=did
feel impaired by sensors)

The rating shows a small difference between the groups with additional stress and the
groups without stress. The best rating was given in the indoor group without stress, fol-
lowed by the outdoor group with no additional stress. The groups of participants which
experienced additional stress, rated the impairment on average with 1.9. Participants with-
out additional stress rated the impairment aspect better, with an average score of 1.3.

In summary, the results show that the chosen sensors are suitable for mobile scenarios
and did not impair the participants.
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9.7. Comparison of Physiological Versions against Normal
Version

In this section, the results of two of the three versions of each of the both applications
are compared: the version with the full model and the version without any integration
of physiological signals and context information. In the following, the results for vocable
trainer and zone of impulse are presented.

9.7.1. Vocable Trainer

For the vocable trainer, survey results and NASA-TLX were recorded and analyzed. The
results show a difference in some points, which will be discussed in the following. The
expectation is, that ratings for overstrain are lower or similar in the version with integrated
model in contrast to the version without model. In the same way, it is expected, that the
ratings for fun and support are the same or slightly higher for the version with the model,
depending on the adaptations that were done in the applications. Mental load is expected
to be lower in the versions with integrated model.

Survey Results

In the survey, three aspects had to be rated: overstrain, support and fun. The results for
fun, overstrain and support are shown in figure 9.6 (a), (b) and (c) for the single test groups.
Table 9.3 shows the absolute average values for overstrain, support and fun.

When looking at the average values for the model and the version without model across
the test groups, only a difference in the fun ratings exist. Overstrain was rated with 3.2
(no model) and 3.12 (model) on average on a scale from 1 to 6, with 1=”i did not feel
overstrained” and 6=”i felt overstrained”. When looking on the aspect of overstrain in
the single test groups, in the groups without stress was nearly no difference between the
ratings. In the rating of the stress groups, the indoor participants rated the version with no
model slightly better, the outdoor participants rated the version with model slightly better.
When comparing the group with and the group without model in a Wilcoxon signed rank
test, the differences are not significant (p=0.6871).
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(a) Overstrain ratings of Vocable Trainer (b) Support ratings of Vocable Trainer

(c) Fun ratings of Vocable Trainer

Figure 9.6.: TLX rating of vocable trainer for the version without and with model

No Model Model
overstrain 3.2 3.12

support 3.66 3.63
fun 4.34 4.02

Table 9.3.: Rating results for the aspects overstrain, support and fun for vocable trainer
with and without integrated model

The absolute average values for support, shown in table 9.3 are similar to the results of
overstrain and do not significantly differ with values of 3.66 and 3.63 (1=”I did not feel
supported” and 6=”I felt supported”). Looking at the results of the single groups, both
version reached nearly the same values and do not differ significantly in the stress indoor
and both no stress groups, with a slightly better rating for the version without model. In
the stress outdoor group, the version with the physiological model was rated higher, but
not on a significant level. A paired Wilcoxon signed rank test between the group with and
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without model shows no significant difference for the support rating(p=0.8236).
Looking at the average fun rating in table 9.3, there was a difference between the two

versions. The version without model reached a slightly better rating with 4.34 in compar-
ison to 4.02 (1=”I had no fun”, 6=”I had fun”). Looking at the results in the single groups
shown in figure 9.6(c), the version with no model was always rated better in contrast to
the version with model. A Wilcoxon signed rang test shows that fun is rated significantly
better in the group without model (p=0.0077). One reason here for might be, that difficulty
increases when mental load of an user is low. This increase in difficulty might lead to a
decrease in fun.

NASA-TLX results

Besides the survey with aspects of fun, overstrain and support the NASA-TLX was
recorded and analyzed for each version of the application. Figure 9.7 shows the results
of the rating in the different groups in a graph and table 9.4 the absolute values.

Figure 9.7.: TLX rating of vocable trainer for the version without and with model

no model model
stress indoor 61.76 59.2

stress outdoor 66.75 56.75
indoor 44.15 35.89

outdoor 39.46 35.91

Table 9.4.: TLX values the versions with and without engine of vocable trainer
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The NASA-TLX produces values between 0 and 100, where 0 stands for a low and 100
for a high mental load. The results show only a small difference between the two stress
groups. In both stress groups, participants had lower mental load ratings in the version
with integrated model (indoor: 59.2 to 61.76, outdoor: 56.75 to 66.75). In the groups with-
out stress, the differences were higher, especially in the indoor group. In both groups the
mental load ratings were lower for the version with integrated model (indoor: 35.89 to
44.15, outdoor: 35.91 to 39.46). A Wilcoxon signed rank test comparing if the version with-
out integrated model has higher mental load values as the version with model leads to the
result, that mental load in the version without model is significantly higher (p=0.001408).

9.7.2. Zone of Impulse

As Zone of Impulse is a game, survey about overstrain, support and fun is more important,
as the ratings of NASA-TLX. In the following, results of both are presented, comparing the
version without model to a version with the model.

Survey Results

The average rating results for the survey comparing both versions are shown in table 9.5.
The results for the single groups are shown in figure 9.8.

The average values show a difference in the overstrain rating and no or only slight dif-
ference in fun and support rating. The average value for overstrain in the version with
model is 3, in the version without model 3.41 (1=”I did not feel overstrained”, 6=”I felt
overstrained”). When looking at the results in the single groups for overstrain, overstrain
rating is for the version using the model in every group lower, except the outdoor stress
group. As this is the group with the highest amount of stress, participants might not have
recognized a difference because of a too high stress load.

Looking at the average value for support, there was no difference between both versions.
When analyzing the results of support rating for the single groups, the result is mixed. Two
groups felt supported by the version without the model, one felt supported by the version
with model and one group was undecided. The two stress groups felt more supported by
the version without model. But in general the rating for the stress groups was very low
regarding support, as users seemed to feel not supported in general.

136



9.7. Comparison of Physiological Versions against Normal Version

(a) Overstrain rating for Zone of Impulse (b) Support rating for Zone of Impulse

(c) Fun rating for Zone of Impulse

Figure 9.8.: Rating results for the aspects overstrain, support and fun for Zone of Impulse
with and without integrated model

No Model Model
overstrain 3.41 3

support 2.46 2.46
fun 4.29 4.37

Table 9.5.: Absolute rating results for the aspects overstrain, support and fun for Zone of
Impulse with and without integrated model

The results of the average fun rating were close together, with a rating of 4.29 for the
version without model and 4.37 for the version with model (1=”I had no fun”, 6=”I had
fun”). When looking at the results of the single groups, the groups are similar to the
support rating indifferent about the fun rating. The indoor group without stress clearly
preferred the version with integrated model. The outdoor group without stress rated both
versions equal. Stress outdoor rated both versions nearly equal and stress indoor rated the
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version without model only slightly better.
Overall there was no significant difference for support and fun rating between both ver-

sions over all groups. Looking at the results of a paired Wilcoxon rank sum test, overstrain
was rated significantly better in the group with integrated model with a p-value of 0.02723.

NASA-TLX Results

Besides the already presented aspects, NASA-TLX was also recorded for Zone of Im-
pulse. As it is a game with the main goal fun the expectation was that the results of the
NASA-TLX are in general lower, than in comparison to the NASA-TLX ratings of the vo-
cable trainer. The results are visualized in figure 9.9 and the absolute average values of
each group are shown in table 9.6.

Figure 9.9.: TLX rating of Zone of Impulse for the version without and with model

no model model
stress indoor 53.06 46.87

stress outdoor 58.37 55.29
indoor 39.37 36.89

outdoor 43.62 42.21

Table 9.6.: TLX values the versions with and without model of Zone of Impulse

As expected, the average NASA-TLX ratings are lower in contrast to the results of voca-
ble trainer. In the stress groups, there is a significant difference between the ratings of both
versions. The version with integrated model got lower ratings for mental load as the ver-
sion with no integrated model (stress indoor: 53.06 to 46.87, stress outdoor: 58.37 to 55.29).
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In the groups without stress, the version with model had also the lower mental load rat-
ings but the difference was smaller (indoor: 39.37 to 36.89, outdoor: 43.62 to 42.21). In this
case a Shapiro Wilk test showed, that both data sets are normally distributed. A paired
t-test comparing if the version without integrated model has higher mental load values as
the version with model leads to the result, that mental load in the version without model
is significantly higher (p=0.04861).

9.7.3. Conclusion

Summarizing the results of the comparison between versions with and without model of
two different applications, there has to be made a difference between the application that
focuses on cognitive state and the game, which focuses on affective state.

In the vocable trainer overstrain and support rating showed no significant difference
between both versions. Fun was rated significant better in the version without model.
However, the NASA-TLX rating showed a difference in mental load. The version with
integrated model leads to significant lower mental load values in contrast to the version
without model.

Zone of Impulse had a significant difference in the overstrain rating and no significant
difference in the support and fun rating. The version with model had significant better
ratings regarding overstrain than the version without. The mental load results showed also
significant differences between both versions. The version with integrated model leads in
all four groups to lower mental load values than the version without model.

Both applications showed no positive difference in support and fun for the version with
model. But both applications showed lower values in mental workload ratings, when
using the version with model. Zone of Impulse also showed better rating values for over-
strain in the version with model. In conclusion, participants had approximately equal
values for support and fun but the model lead to lower workload ratings, as a positive
effect of the model.

9.8. Comparison of Indoor and Outdoor Scenarios

To examine if the model works also for outdoor scenarios, the results of indoor and out-
door test groups have been compared. For both, vocable trainer and zone of impulse, the
ratings for fun, support and overstrain as well as NASA-TLX are compared for the version
with integrated model and are presented in the following.

The expectations are, that the version with model shows no significant worse results in
the ratings of outdoor scenario in comparison to the indoor results.
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9.8.1. Vocable Trainer

For the vocable trainer results of overstrain, support and fun ratings were compared be-
tween indoor and outdoor groups for the version with complete integrated model. The
same was done for the results of NASA-TLX rating.

Survey Results

The results for the different ratings of both groups are visualized in figure 9.10. Table 9.7
shows the absolute average values of the single aspects and situations.

Figure 9.10.: Comparison of ratings of fun, support and overstrain for the indoor and out-
door scenarios of Vocable Trainer with full integrated model

The results showed, that the outdoor group rated the applications slightly better in all
three aspects in both versions: fun and support were higher, overstrain was lower. The
absolute numbers are presented in table 9.7.

fun support overstrain
indoor 3.92 3.48 3.28

outdoor 4.19 3.88 2.88

Table 9.7.: Absolute ratings of fun, support and overstrain for the indoor and outdoor sce-
narios of Vocable Trainer with full integrated model

Fun rating has with 0.27 and support with 0.4 difference only a slightly higher rating
in outdoor than in the indoor group. With a difference of 0.4 points participants in the
outdoor group felt less overstrained. A two-sided Wilcoxon signed rank test comparing
the ratings leads to the result that there are no significant differences in the ratings.
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model
stress indoor 59.2

stress outdoor 56.75
indoor 35.89

outdoor 35.46

Table 9.8.: Average values of NASA-TLX rating of vocable trainer

NASA-TLX Results

The results of NASA-TLX rating for the version of vocable trainer with integrated model
are presented in figure 9.11. The absolute numbers are shown in table 9.8.

Figure 9.11.: NASA-TLX ratings for Vocable Trainer with integrated model

The figure shows that there is nearly no difference between the values for stress indoor
in comparison to stress outdoor, as well as for no stress indoor in comparison to no stress
outdoor. Testing the data for indoor and outdoor group with a Shapiro Wilk test for nor-
mal distribution leads to the result that both are normally distributed. A two-sided t-test
confirms that the differences are not significant.

9.8.2. Zone of Impulse

For Zone of Impulse, the same aspects were analyzed as for the vocable trainer to make
a comparison between stress indoor and stress outdoor group, as well as between indoor
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and outdoor groups without stress.

Survey Results

The results of fun, support and overstrain rating are shown in figure 9.12 as well as the
absolute average numbers in table 9.9.

Figure 9.12.: Comparison of ratings of fun, support and overstrain for the indoor and out-
door scenarios of Zone of Impulse

The results showed that the ratings for fun, support and overstrain are slightly lower in
the outdoor scenario in comparison to indoor. The absolute average values are shown in
table 9.9.

fun support overstrain
indoor 4.64 2.64 3

outdoor 3.95 2.19 3

Table 9.9.: Comparison of ratings of fun, support and overstrain for the indoor and outdoor
scenarios of Zone of Impulse

A two-sided Wilcoxon rank sum test shows that there is no significant difference be-
tween the indoor and outdoor groups for all three aspects.

NASA-TLX Results

The results of NASA-TLX rating for Zone of Impulse with integrated model are presented
in figure 9.13. The absolute numbers are shown in table 9.14.

The figure shows, that there are slightly higher mental load values for outdoor group in
comparison to indoor group. The same applies for the comparison between stress indoor
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Figure 9.13.: NASA-TLX ratings for Zone of Impulse with integrated model

model
stress indoor 46.87

stress outdoor 55.29
indoor 36.89

outdoor 42.21

Figure 9.14.: Average values of NASA-TLX rating of Zone of Impulse

and stress outdoor group. Stress outdoor group has slightly higher ratings. Shapiro Wilk
tests show that the results of both groups are normally distributed. A two sided t-test
shows, that there is no significant difference between indoor and outdoor group as well as
between stress indoor and stress outdoor group.

9.8.3. Conclusion

Summarizing the results, vocable trainer showed no significant difference in survey rat-
ings for support, overstrain and fun. Also the rating of NASA-TLX shows no significant
difference between the indoor and outdoor group, as well as between the indoor stress
and outdoor stress group. The same results were observed for Zone of Impulse.

When looking at the questions raised for thesis II in chapter 4.2, the results indicate
to support the question regarding loss of quality in interpretation during mobility, as no
significant difference between both situations could be identified in the study. For a test
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on equivalence, a two one-sided test would be required. For this test, an upper and lower
bound for equivalence would be needed to be defined subjectively. For a reliable definition
of these bound, more data is needed.

9.9. Context Integration

Another important aspect of this work was the integration of context information. Results
of a previous study were used to compare the version with context information of Zone of
Impulse with a version, which had the same model but no integrated context information.
The test setup was the same, participants played the game for five minutes. Afterwards
they had to rate aspects like fun and support. In total, 11 participants took part. As the
previous study had only one test group, indoor without additional stress, the results were
compared to the indoor group of the actual study.

In both studies, the same ratings scale was used. As the previous study only had fun
and support ratings, only these values are compared. Figure 9.15 and table 9.10 show the
results of the rating for fun and support for the version of the model with and without
integrated context information.

Figure 9.15.: Fun and support rating for version with and without context

context no context
fun 5.33 4.64

support 3.44 2.91

Table 9.10.: Fun and support rating for version with and without integrated context infor-
mation as well as the version without integrated model
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The comparison of the results shows, that fun and support were rated higher for the ver-
sion with integrated context information in contrast to the version without context infor-
mation. The result of the t-test for support rating leads to a positive statistically tendency
that support rating for integrated context is higher, but the result is not statistically sig-
nificant with a p-value of 0.111. The t-test result for fun rating shows, that fun was rated
significantly higher in the version with integrated context, than in the version without
integrated context (p=0.04526).

This indicates that the model with integrated context information might lead to better
results. A comparison between indoor and outdoor has been done in the previous sub-
chapter 9.8, showing that the version with model leads to no significant different results in
indoor and outdoor scenarios.

9.10. Loss of Input Channels

To test the reliability and robustness of the model, a version with one missing input chan-
nel has been created for each of the applications. In the following rating results for both
applications will be presented.

9.10.1. Vocable Trainer

Two versions of the model have been used for this test. An unmodified version with the
complete model and one version, which had no heart rate (HR) as input and therefore
no HRV. HRV has been chosen as it is expected to be the worst case scenario of channel
loss, as HRV is important for cognitive state. In the following results of the survey and
NASA-TLX are presented.

Survey Results

The average results of both versions for overstrain, support and fun are shown in table
9.11. The results for the single test groups are visualized in the figures 9.16.

The average results show, that there are slight differences between the full model and
the reduced model. Rating of overstrain, support and fun differ only slightly between the
version with model and the version with channel loss. This leads to the assumption that
the channel loss can be compensated without a decrease in ratings.

When looking at the results of the stress groups (indoor and outdoor), the values for the
reduced model for overstrain was slightly decreased and support increased. The aspect
fun was rated nearly the same for stress indoor and outdoor. In the group without stress,
the reduced model achieved slightly higher ratings.
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(a) Rating for overstrain (b) Rating for support

(c) Rating for fun

Figure 9.16.: Ratings for overstrain, support and fun for the version with model and with
channel loss

Model Input loss
overstrain 3.12 3.1

support 3.63 3.8
fun 4.02 4.12

Table 9.11.: Rating results for the aspects overstrain, support and fun for vocable trainer
with full model and a version with loss of an input channel

A Wilcoxon signed rank test showed, that the differences in the ratings of support, over-
strain and fun were not significant.

NASA-TLX Results

The results of NASA-TLX ratings for mental load are visualized in figure 9.17. Table 9.12
shows the absolute values.
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Figure 9.17.: TLX rating of vocable trainer for the version with full and reduced model

The average results shown in table 9.12, imply that there is no significant difference
in workload rating in the groups without stress for the mental load rating. In the stress
indoor group, mental load was slightly higher for the model with channel loss in contrast
to the full model. In the stress outdoor group, the opposite was happening. The model
with channel loss was rated slightly better, than the full model.

model loss of channel
stress indoor 59.2 65.04

stress outdoor 56.75 57.66
indoor 35.89 36.44

outdoor 35.91 37

Table 9.12.: Average values of NASA-TLX rating of vocable trainer for the version with full
and reduced model

The results of a paired t-test for NASA-TLX ratings show no significant difference be-
tween the version with full model and the version with channel loss.

9.10.2. Zone of Impulse

As Zone of Impulse is a game and makes extensive use of the affective state, the version
with missing input channel will be reduced by EDA. In the following the results will be
presented.
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Survey Results

The results for overstrain, support and fun rating for both versions are presented in figure
9.18. The figures show, that there is no big difference between the ratings in the single
groups.

(a) Ratings for support (b) Ratings for overstrain

(c) Ratings for fun

Figure 9.18.: Ratings for support, overstrain and fun for the version with model and a ver-
sion without a missing input channel

Table 9.13 shows the average ratings for fun, overstrain and support for both versions.
The average values show no significant difference between both versions. The difference is
less than 0.05 points on the 6 point rating scale for each aspect. When taking a closer look
at the results of the single groups, there are no big differences between the most ratings.
A Wilcoxon signed rank test showed that there is no significant difference between the
two versions for the ratings. This implies, that the reduced model with input channel loss
compensates the difference of the lost input channel reliable enough.
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Model Input loss
overstrain 3 3.05

support 2.46 2.49
fun 4.37 4.37

Table 9.13.: Rating results for the aspects overstrain, support and fun for Zone of Impulse
with full model and a version with loss of an input channel

NASA-TLX Results

Looking at the NASA-TLX rating results, the results of the survey can be confirmed. Figure
9.19 shows the results of the single groups, table 9.14 shows the average values.

Figure 9.19.: TLX rating of Zone of Impulse for the version without and with model

When taking a closer at the average values, the indoor group as well as the stress out-
door group had nearly no difference between the values. The outdoor group had a dif-
ference of 5.67 points between loss of channel and version with full model. The reduced
model had in this case the lower mental load rating, implying that mental load was lower
than in the full model.
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model loss of channel
stress indoor 46.87 49.7

stress outdoor 55.29 57.08
indoor 36.89 36.07

outdoor 42.21 36.54

Table 9.14.: Rating results for the aspects overstrain, support and fun for Zone of Impulse
with full model and a version with loss of an input channel

A paired t-test shows, that the differences between the full model and the model with
channel loss are not significant within the single groups.

9.10.3. Conclusion

The results for this part of the study showed that in both applications, vocable trainer and
zone of impulse, the results for the versions with full and reduced model had only small
differences in the survey ratings, which turned out to be not significant. In both cases, the
NASA-TLX ratings for mental load supported the results. This leads to the assumption,
that a channel loss can be compensated.

This study is limited to only a small part of possible situations. Relatively normal situ-
ations have been covered, extreme situations might lead to other results. The loss of more
than two channels might for example lead to wrong interpretation results as not enough
information would be available. In this case the model, as it is used in this study, would
have no physiological input if two channels are lost.

9.11. Conclusion

A study was created, testing different versions of two applications under different condi-
tions. In total 41 participants were divided into four different groups: outdoor and indoor
as well as an outdoor and indoor group with additional stress. Different configurations of
the model have been used: the complete model, a version with loss of an input channel
and a version of the application with no integration of the model at all. Summarizing up
the results of the study, five different aspects have been presented to support the three
theses.

However, the study is limited and covered only a small part of possible aspects that can
appear in reality. In the following a conclusion for the three theses will be drawn, based
on the conclusion of study results. A comparison of the results to results of related work,
as e.g. presented in the chapter 3 is difficult as other aspects were evaluated with different
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test settings.

9.11.1. Results Thesis I

In our first thesis, we assume that the combination of physiological signals and context
information leads to better results in the interpretation of user state. To prove this thesis a
model based on a fuzzy logic approach was designed. Different physiological signals and
context information have been chosen as input. As output, affective and cognitive state
were chosen to cover a broad range of possible applications.

In 9.7 a version without model is compared to a version with full integrated model for
two applications. The results showed no significant difference in support and overstrain
rating for the application vocable trainer between both versions (with and without model).
However, fun was rated better in the version without model, which might be explained
by the rising difficulty. Zone of Impulse had a significant difference in the rating of over-
strain. Overstrain was rated better in the group with integrated model. Fun and support
did not show a significant difference in ratings. Comparing the results of NASA-TLX for
both versions, the version with integrated model was rated significantly better for both
applications as the mental load values were lower.

In section 9.9 a comparison of a version with the full integrated model and a model
without context information, which was used in a previous study was done. The study
was only executed for zone of impulse and only part of the rating aspects was covered.
The results showed a significant better rating for the aspect fun for the version with full
model. Support had no significant difference between both groups, but the calculated p-
value for testing if the version with full model is rated better, shows with 0.111 a positive
trend.

In conclusion thesis I, the combination of physiological signals and context information,
is supported by the results of the comparison in section 9.7. The version with the model
combining physiological and context information was rated significantly better than a ver-
sion without a model for task load rating and partially for overstrain. The thesis is fur-
ther supported by the significant better fun rating results of the comparison in section 9.9,
where the current version with model was compared to a version without context integra-
tion.

9.11.2. Results Thesis II

In the second thesis, it was assumed that a general model for mobile scenarios can be
created. A general concept has been developed, visualizing the flow between an inter-
pretation controller, the user and the application. The interpretation controller uses the
input of physiological signals from the user to estimate the user state. The user state is
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then given to the application, which decides about possible adaptations. The fuzzy based
model is the core of the interpretation controller and was designed to be as flexible as
possible, addressing different requirements of mobile scenarios. Additionally, context in-
formation influence the interpretation by controlling environmental influencing aspects
on the physiological signals as well as an additional information in the interpretation step
itself.

In a first step, wearing comfort of sensors was evaluated. In chapter 9.6, the study re-
sults are presented asking the user about impairment through sensors during usage. The
result showed, that participants did not feel impaired by wearing the sensors in any of the
situations during the test.

In a next step presented in 9.8, the results of both applications were compared in indoor
and outdoor tests with the full integrated model. The results show no significant difference
between usage of the model in indoor and outdoor scenarios for both applications. This
leads to the assumption, that the model is also working in outdoor scenarios.

In conclusion thesis II is supported by the results presented in chapter 9.6, which showed
that the sensors for measurement did not impair the participants. Furthermore the thesis
seems to be supported by the results of the comparison of indoor and outdoor scenario,
presented in section 9.8.

9.11.3. Results Thesis III

The third thesis addresses the aspect of robustness and reliability of the model. As the
model should be used in mobile scenarios, it is important to address aspects like loss of an
input channel or noisy signals. Several mechanisms have been integrated into the inter-
pretation controller, to guarantee a better reliability and robustness.

A comparison between a version with integrated model and a version where one input
channel was lost, was presented in section 9.10 for both applications. The results showed
that there was not a significant decrease in ratings, when one input channel was missing.

Thesis III, the reliability of the model, is supported by the results presented in section
9.8 and 9.10. The results showed, that a loss of an input channel can be compensated, as
well as that the model also seems to work independent of influencing factors from the
environment in the outdoor situations of the test. The results might vary for more extreme
situations, which were not covered in the study.
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An insight into the current state of the user, e.g. feelings or mental workload, is a valuable
input for applications. Depending on the current state, applications might offer adapta-
tions to increase aspects like usability or performance. Further information not only about
the user, but also about the situation the user is in, can be used as additional input. Es-
pecially in mobile scenarios, the combination of both can lead to a higher accuracy in
interpretation.

The state of the art analysis showed only one example, that combines physiological sig-
nals and context information for improvement of user state interpretation. Especially in
mobile applications and scenarios, the lack of context might lead to bad or false interpre-
tations, as many physiological signals can be influenced by environmental aspects. The
presented state of the art example used activity tracking for control of heart rate, which
increases when an user is moving. The results of the state of the art analysis also showed,
that there are nearly no examples, which are designed for mobile scenarios. This work
tried to fill the gap, by developing a model which addresses mobile scenarios and integra-
tion of context information.

In this thesis a model was developed, combining physiological signals and context in-
formation as input.As physiological input, EDA and heart rate have been chosen, as they
can be measured easily with wireless sensors and offer a broad variety of psychological
interpretation.

After an analysis of requirements needed to be fulfilled by a model to address challenges
of mobile scenarios, a fuzzy based approach has been chosen to process and interpret the
input channels. Based on heart rate variability and context information, the cognitive state
of a user is estimated. Electrodermal activity (EDA), heart rate and context information are
used to estimate the affective state of a user, based on the affective grid and valence-arousal
model.

The implementation of the engine called MUSE (mobile user state estimation), running
as a background service on mobile devices, has been presented. The engine was integrated
into different presented applications, covering a broad range of application types, like
learning of vocabularies, games or an airline information application.

In a first study, the engine has been tested in indoor and outdoor scenarios, with two
applications and under different stressful situations. The applications have been tested
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with different configurations, allowing a first comparison between mobile and nonmobile
scenarios as well as a comparison of the model with and without integrated context infor-
mation. Furthermore the loss of input channels has been evaluated.

In the following sections, the single theses will be discussed and examined and a sum-
mary will be given. The chapter closes with a presentation of future work.

10.1. Combining Context and Physiological Input

To prove thesis I, the combination of context information and physiological input, a model
was created using both as an input channel. The model creates an output in form of affec-
tive and cognitive state of the user. State-of-the-Art analysis showed, that only the work
of [SKC+12] combined context information and physiological signals in a first try.

An analysis and categorization of context information has been done. Context infor-
mation was divided into two categories: context information for controlling influence on
physiological signals and context information used for improving interpretation. The first
one was used to control influencing aspects on the physiological input, which might lead
to false interpretations. The second one was used as additional information enriching the
interpretation, e.g. giving information about the location of the user (e.g. at home or work).

After the analysis of possible available information, it was chosen to integrate location,
step sensor as well as information from the application itself. The information from the
application itself utilizes information about the performance of the user, e.g. gaming score
or error rate. The model provides an interface where the application can transmit this
information to the interpretation controller.

To answer the question, if context information provided by application and mobile
phone can improve the interpretation quality of user state, two aspects have been inves-
tigated in the study. On the on hand, the model has been tested by comparing the model
with context integration to a version, where only physiological signals and no context in-
formation was used. The results showed, that fun was rated better in the version with
integrated context information. The result for the aspect support was not significant, but
had a slight tendency for better ratings in the version with integrated context.

On the other hand, a comparison between a version with and without integrated model
has been done for indoor and outdoor scenarios. The version with model had physio-
logical and context information integrated. The results showed a significant better rating
for overstrain for the application zone of impulse and a negative rating for fun in vocable
trainer. All other subjective ratings had no significant difference in the rating results. Fur-
thermore the results showed a significant better rating of task load index for the version
with integrated model for both applications.

In conclusion, for both evaluated aspects the results were either not significant different
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or significant better. These results indicate, that thesis I can be answered positively within
this work.

10.2. A Fuzzy Logic based Model for Mobile Scenarios

To prove thesis II, a general model has been created, addressing different research ques-
tions regarding mobile scenarios. One of the requirements was, that measurement devices
for physiological signals should be as small as possible and not impair the user. There-
fore, it has been chosen to measure EDA and heart rate (HR), as there are small sensors
available, which transmit data wirelessly. For collecting context information, sensors in-
tegrated in modern smartphones have been chosen (Global Positioning System (GPS) and
step sensor).

As the possible applications that may benefit from the model are from a broad range
of different areas, it has been chosen to use affective and cognitive state as output. The
interpretation controller processes the incoming information and signals and transmits
values for affective and cognitive state to the application, which then decides about usage
and adaptation.

The core of the model was based on a fuzzy logic approach, which is used in different
examples in current research. After analyzing different methods, the fuzzy logic approach
met most of the requirements. In a first step, input signals are fuzzified. Afterwards, the
input is transformed to affective and cognitive state in two steps. In the first step valence,
arousal and mental load are determined, based on a fuzzy rule set and the fuzzified in-
put. Afterwards these values and additional context information are used to calculate the
values for affective and cognitive state, based on a second fuzzy rule set.

The output of cognitive state can have one of four different states: low, medium, high
and very high. These values express how cognitive occupied an user is. The affective state
on the other hand is divided into eight states, which can each have one of four different
values. The affective state interpretation is based on the circumplex model and affective
grid of Russell, which are based on valence and arousal. The eight states have been defined
based on the affects on the circumplex. Each of this eight affective states can have one of
the following four values: very low, low, medium and high.

Studies were done to prove the correct interpretation by the model. The results of cog-
nitive state seem to correlate with the results of subjective ratings in the presented studies.
As number of participants in studies were low, further studies need to be done for proving
significance of the result.

For thesis II, the following questions have been raised in chapter 4.2:

• Can a model be defined that supports different types of applications, e.g. learning
and entertainment?
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• Can a model be defined, that supports the usage in mobile scenarios, e.g. usage of
an application during travel without loss of quality in interpretation and without
impairing the user?

To answer the first question, the model was evaluated in several studies with applica-
tions making use of cognitive state as well as applications making use of the affective state.
In the study the model was evaluated with a game and a vocable trainer. For the different
aspects, both showed compareable results.

To answer the second question, a comparison between usage of the applications in in-
door and outdoor scenarios was done. The results showed no significant difference be-
tween the usage of the model in indoor and outdoor sceanrios.

Additionally, a study about impairment of the users through sensors was done, to an-
swer the question if a model can be defined, that meets the criteria to not impair the user
in mobile scenarios. The results showed, that participants did not feel impaired by the
sensors in outdoor and indoor scenarios. Finally, indoor and outdoor scenarios were com-
pared, to prove that the model is suitable for mobile situations. The results showed, that
the version with model performed also better in this comparison than the version without
model.

10.3. Reliability and Robustness

For proving thesis III, the reliability and robustness of the model, different mechanisms
have been integrated in the model to ensure these aspects. The first step in the model, to
ensure robustness, is the signal check. In this step, availability of all signals is checked as
well as a possible corruptness of the signals. In a second step, reliability and robustness
is increased by context information to control influencing factors on physiological signals.
This step is done in the signal processing, before signals get fuzzified. A further method
is to reduce the number of output states, leading to less details on affective and cognitive
state, but more reliable results.

If an input channel is lost or corrupted, other channels can be used to compensate the
loss. For example, loss of heart rate, which is used for valence might be compensated
by context information like performance, assuming that a high performance might more
likely be correlated to a positive valence than the other way round.

Depending on which channel is lost, estimation quality might vary. As the context in-
formation about performance provided by the application is only optional, a loss of the
movement channel might influence the accuracy of estimation dramatically. As heart rate,
which is used for valence estimation, is easily influenced by movement and movement
cannot be recognized, valence cannot be estimated if performance is not available.
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When losing heart rate as input channel, performance value is needed as well to com-
pensate the valence value and the mental load estimation for the cognitive state. Cognitive
state estimation based on performance will only give a tendency if the user is in a medium
state or not. If the user is not in a medium state, the performance could be low because of
a very low mental load or because of a high mental load. Aspects of EDA might be used in
this case, to distinguish between very low and very high cognitive state, but has not been
evaluated yet.

A reduction of output states reduces the eight affective states to only four. This might
still be enough for most applications and produces more reliable results, depending on
which input channel got lost. Further possible but not yet implemented functionalities for
improvement of reliability and robustness will be discussed in section 10.5.

The thesis was validated in the test by a combination of different aspects that were
tested. A comparison of tests in indoor and outdoor situation showed that influencing
factors seem to be controlled. When comparing the full version of the model to a ver-
sion where an input channel is lost, the results showed that this could be compensated.
The ratings showed no significant difference within two tested applications for different
situations.

In conclustion, the results indicate that thesis III can be validated within this work, based
on the results of channel loss evaluation within this work. However, the study was limited
to only a few possible situations out of the situations that could happen in everydays life.

10.4. Summary

Summarizing the previously in detail discussed results of this thesis, two improvements
are achieved by the presented model. On the one hand improvements in the interpretation
of physiological signals by adding context information have been achieved. On the other
hand, the developed model supports the usage of physiological signals in mobile applica-
tions by controlling influencing aspects and giving a reliable estimation of user state even
when one input channel gets lost. The study only evaluated a small part of possible appli-
cations types and scenarios, but the results showed a benefit of the model for the covered
applications and scenarios.

The state-of-the-art analysis showed, that models for estimating user state based on
physiological signals lack from the integration of additional context information. The
presented models concentrated nearly all only on physiological signals for user state es-
timation. As physiological signals can be influenced by different environmental aspects,
these models may not work appropriate under non-laboratory conditions. The presented
context-sensitive interfaces on the other hand do not give an insight in to the state of the
user. With the model presented in this work, context-information has been integrated and
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used to overcome the challenge of controlling influencing factors as well as improving user
state interpretation by environmental aspects.

The combination of physiological signals and context information in the model also led
to the suitability of the engine for mobile applications. Presented state-of-the-art work
was designed for stationary situations not addressing the aspects of mobile scenarios. The
developed model was integrated into different mobile applications. Studies showed a
benefit of the application versions with integrated engine in comparison to the versions
without integration, as well as similar results comparing controlled indoor with outdoor
scenarios.

10.5. Future Work

With the proposed concept and model, it has been proven that physiological signals and
context information can be combined for the interpretation of user state in mobile scenar-
ios. But this work also showed that there are still aspects which can be examined further
and raise additional questions.

The model was tested and designed with EDA and HR as input. As mobile technologies
are evolving fast, other sensors might become available, offering different kinds of physio-
logical signals as an input. The model was designed to be extendable. For an extension by
other sensors, different aspects have to be considered and examined. New sensors might
require new kind of signal preprocessing and context information to control influencing
factors.

Other possible future additions to the model are new context information channels.
Only few context information has been integrated to the model, many more exist and can
be measured by integrated smartphone sensors. Besides that, new devices like e.g. google
glass or smartwatches offer new context information. Connected homes might also add
valuable information about everyday situations, which can improve interpretation.

The applications the model was tested with were mainly applications developed for
smartphones. In a further step, the information of user state interpretation could also be
offered to other devices or services. For example, the information about user state could be
combined in an office with a sign at the door. Based on the user state, the sign at the door
could visualize the current state and a person might be disturbed or not. When offering
the data to other services or applications, privacy issues arise that need to be addressed. In
this work, the interpreted data never left the local smartphone, but for future applications
privacy issues need to be examined and discussed.

In the studies that were presented in this work not all aspects could be covered. Further
studies should be done, giving an estimation for the loss of reliability depending on which
input channels are available or lost. An interesting point would be to give input channels
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a weighting, e.g. rating EDA higher for the determination of arousal than other measures.
This could lead to more reliable interpretations if one physiological signals delivers data
that is not corrupted but contradictory to other information.

The model has only been tested primary with two applications. Tests and studies with
other applications are needed to verify the model more in detail. Besides that, the model
was tested in indoor and outdoor scenarios, but extended tests over a bigger time span
would be useful as the tests only took 90 minutes at maximum. In a longer time span
other effects might appear that might not have been considered so far.

This work was a first step in the direction of using physiological data as input beyond
controlled environments. Several other aspects arise from this work, which could be ex-
amined in further future work.
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B. Fuzzy Rule Sets

This appendix lists the different rules used for the single steps of the model in detail. The
model is presented in chapter 6

B.1. Transformation of Arousal

Membership to one of the seven states for arousal (very high, high, mid high, medium,
mid low, low and very low) is determined based on EDA and movement.

if (EDA is high) then (arousal is very high)
if (EDA is high and movement is not low) then (arousal is high )
if (EDA is mid high) then (arousal is high)
if (EDA is mid high and movement is not low) then (arousal is mid high)
if (EDA is medium) then (arousal is mid high)
if (EDA is medium and movement is not low) then (arousal is medium)
if (EDA is mid low) then (arousal is medium)
if (EDA is mid low and movement is not low) then (arousal is mid low)
if (EDA is low) then (arousal is mid low)
if (EDA is low and movement is not low) then (arousal is very low)

B.2. Transformation of Valence

Membership to one of the seven states for valence (very high, high, mid high, medium,
mid low, low and very low) is determined based on heart rate, performance and move-
ment.
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B. Fuzzy Rule Sets

IF HR is high THEN valence is high
IF HR is high AND Movement is high THEN valence is medium
IF HR is high AND (Performance is High OR mid High) AND movement is
not high THEN valence is very high
IF HR is high AND (Performance is low OR mid low) AND movement is not
high THEN valence is mid high
IF HR is high AND (Performance is High OR mid High) AND movement is
high THEN valence is high
IF HR is mid high THEN valence is mid high
IF HR is mid high AND movement is high THEN valence is medium
IF HR is mid high AND performance is high THEN valence is high
IF HR is mid high AND (performance is low OR performance is mid low)
THEN valence is medium
IF HR is medium THEN valence is medium
IF HR is medium AND movement is high THEN valence is mid low
IF HR is medium AND (performance is high OR performance is mid high)
THEN valence is mid high
IF HR is mid low THEN valence is mid-low
IF HR is mid low AND movement is high THEN valence is medium
IF HR is mid low AND (performace is high OR performace is mid-high)
THEN valence is mid-high
IF HR is low THEN valence is low
IF HR is low AND movement is not low THEN valence is very low
IF HR is low AND performance is low THEN valence is very low
IF HR is low AND (performance is high OR mid high) THEN valence is mid
low

B.3. Transformation of Mental Effort

Membership to one of the four states for mental effort (low, medium, high, very high) is
based on normalized power spectrum density results from HRV analysis.

IF PSD is low THEN mental effort is low
IF PSD is mid low THEN mental effort is medium
IF PSD is medium THEN mental effort is medium
IF PSD is mid high THEN mental effort is high
IF PSD is high THEN mental effort is very high
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B.3. Transformation of Mental Effort

B.4. Transformation of Affective State

B.4.1. State 1 - Alarmed, Astonished

IF arousal is medium THEN state1 is very low
IF arousal is mid low THEN state1 is very low
IF arousal is low THEN state1 is very low
IF arousal is very low THEN state1 is very low
IF valence is very low THEN state1 is very low
IF valence is low THEN state1 is very low
IF valence is very high THEN state1 is very low
IF valence is high THEN state1 is very low
IF arousal is mid high AND valence is mid low THEN state1 is very low
IF arousal is mid high AND valence is mid high THEN state1 is very low
IF arousal is medium AND valence is medium THEN state1 is low
IF arousal is high AND valence is mid low THEN state1 is low
IF arousal is high AND valence is mid high THEN state1 is low
IF arousal is mid high AND valence is medium THEN state1 is medium
IF arousal is very high AND valence is mid low THEN state1 is medium
IF arousal is very high AND valence is mid high THEN state1 is medium
IF arousal is high AND valence is medium THEN state1 is high
IF arousal is very high AND valence is medium THEN state 1 is high
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B.4.2. State 2 - Excited, Happy

IF arousal is very low THEN state2 is very low
IF arousal is low THEN state 2 is very low
IF arousal is mid low THEN state2 is very low
IF arousal is medium THEN state2 is very low
IF valence is very low THEN state2 is very low
IF valence is low THEN state2 is very low
IF valence is mid low THEN state2 is very low
IF valence is medium THEN state 2 is very low
IF arousal is medium AND valence is medium THEN state2 is low
IF arousal is mid high AND valence is medium THEN state2 is low
IF arousal is medium AND valence is mid high THEN state2 is low
IF arousal is very high AND valence is mid high THEN state2 is low
IF arousal is mid high AND valence is very high THEN state2 is low
IF arousal is mid high AND valence is mid high THEN state2 is medium
IF arousal is high AND valence is mid high THEN state2 is medium
IF arousal is mid high AND valence is high THEN state2 is medium
IF arousal is high AND valence is high THEN state2 is high
IF arousal is very high AND valence is high THEN state2 is high
IF arousal is high AND valence is very high THEN state2 is high
IF arousal is very high AND valence is very high THEN state2 is high
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B.3. Transformation of Mental Effort

B.4.3. State 3 - Happy, Content

IF arousal is very low THEN state3 is very low
IF arousal is low THEN state3 is very low
IF arousal is mid low THEN state3 is very low
IF arousal is medium THEN state3 is very low
IF valence is very high THEN state3 is very low
IF valence is high THEN state3 is very low
IF valence is very low THEN state3 is very low
IF valence is low THEN state3 is very low
IF arousal is medium AND valence is medium THEN state3 is low
IF arousal is mid high AND valence is high THEN state3 is low
IF arousal is mid low AND valence is high THEN state3 is low
IF arousal is medium AND valence is mid high THEN state3 is medium
IF arousal is mid high AND valence is very high THEN state3 is medium
IF arousal is mid low AND valence is very high THEN state3 is medium
IF arousal is medium AND valence is high THEN state3 is high
IF arousal is medium AND valence is very high THEN state3 is high
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B.4.4. State 4 - Relaxed, Calm

IF arousal is very high THEN state4 is very low
IF arousal is high THEN state4 is very low
IF arousal is mid high THEN state4 is very low
IF arousal is medium THEN state4 is very low
IF valence is medium THEN state4 is very low
IF valence is very low THEN state4 is very low
IF valence is low THEN state4 is very low
IF valence is mid low THEN state4 is very low
IF arousal is medium AND valence is medium THEN state4 is low
IF arousal is medium AND valence is mid high THEN state4 is low
IF arousal is mid low AND valence is medium THEN state4 is low
IF arousal is mid low AND valence is very high THEN state4 is low
IF arousal is very low AND valence is mid high THEN state4 is low
IF arousal is mid low AND valence is mid high THEN stat4 is medium
IF arousal is low AND valence is mid high THEN state4 is medium
IF arousal is mid low AND valence is high THEN state4 is medium
IF arousal is low AND valence is high THEN state4 is high
IF arousal is low AND valence is very high THEN state4 is high
IF arousal is very low AND valence is high THEN state4 is high
IF arousal is very low AND valence is very high THEN state4 is high
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B.3. Transformation of Mental Effort

B.4.5. State 5 - Tired, Sleepy

IF arousal is medium THEN state5 is very low
IF arousal is mid high THEN state5 is very low
IF arousal is high THEN state 5 is very low
IF arousal is very high THEN state5 is very low
IF valence is very low THEN state5 is very low
IF valence is low THEN state5 is very low
IF valence is high THEN state5 is very low
IF valence is very high THEN state5 is very low
IF arousal is medium AND valence is medium THEN state5 is low
IF arousal is low AND valence is mid low THEN state5 is low
IF arousal is low AND valence is mid high THEN state5 is low
IF arousal is mid low AND valence is medium THEN state5 is medium
IF arousal is very low AND valence is mid low THEN state5 is medium
IF arousal is very low AND valence is mid high THEN state5 is medium
IF arousal is low AND valence is medium THEN state5 is high
IF arousal is very low AND valence is medium THEN state5 is high
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B.4.6. State 6 - Bored, Depressed

IF arousal is medium THEN state6 is very low
IF arousal is mid high THEN state6 is very low
IF arousal is high THEN state6 is very low
IF arousal is very high THEN state6 is very low
IF valence is medium THEN state6 is very low
IF valence is mid high THEN state6 is very low
IF valence is high THEN state6 is very low
IF valence is very high THEN state6 is very low
IF arousal is medium AND valence is medium THEN state6 is low
IF arousal is medium AND valence is mid low THEN state6 is low
IF arousal is mid low AND valence is medium THEN state6 is low
IF arousal is very low AND valence is mid low THEN state6 is low
IF arousal is mid low AND valence is very low THEN state6 is low
IF arousal is mid low AND valence is mid low THEN state6 is medium
IF arousal is mid low AND valence is low THEN state6 is medium
IF arousal is low AND valence is mid low THEN state6 is medium
IF arousal is low AND valence is low THEN state6 is high
IF arousal is low AND valence is very low THEN state6 is high
IF arousal is very low AND valence is low THEN state6 is high
IF arousal is very low AND valence is very low THEN state6 is high
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B.4.7. State 7 - Sad, Miserable

IF arousal is very high THEN state7 is very low
IF arousal is high THEN state7 is very low
IF arousal is very low THEN state7 is very low
IF arousal is low THEN state7 is very low
IF valence is medium THEN state7 is very low
IF valence is mid high THEN state7 is very low
IF valence is high THEN state7 is very low
IF valence is very high THEN state7 is very low
IF arousal is medium AND valence is medium THEN state7 is low
IF arousal is mid low AND valence is low THEN state7 is low
IF arousal is mid high AND valence is low THEN state7 is low
IF arousal is medium AND valence is mid low THEN state7 is medium
IF arousal is mid high AND valence is very low THEN state7 is medium
IF arousal is mid low AND valence is very low THEN state7 is medium
IF arousal is medium AND valence is low THEN state7 is high
IF arousal is medium AND valence is very low THEN state7 is high
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B.4.8. State 8 - Frustrated, Angry

IF arousal is medium THEN state8 is very low
IF arousal is mid low THEN state8 is very low
IF arousal is low THEN state8 is very low
IF arousal is very low THEN state8 is very low
IF valence is medium THEN state8 is very low
IF valence is mid high THEN state8 is very low
IF valence is high THEN state8 is very low
IF valence is very high THEN state8 is very low
IF arousal is medium AND valence is medium THEN state8 is low
IF arousal is mid high AND valence is medium THEN state8 is low
IF arousal is medium and valence is mid low THEN state8 is low
IF arousal is very high AND valence is mid low THEN state8 is low
IF arousal is mid high AND valence is very low THEN state8 is low
IF arousal is mid high AND valence is mid low THEN state8 is medium
IF arousal is mid high AND valence is low THEN state8 is medium
IF arousal is high AND valence is mid low THEN state8 is medium
IF arousal is high AND valence is low THEN state8 is high
IF arousal is high AND valence is very low THEN state8 is high
IF arousal is very high AND valence is low THEN state8 is high
IF arousal is very high AND valence is very low THEN state8 is high
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B.3. Transformation of Mental Effort

B.5. Transformation of Cognitive State

if (mentalLoad is very high) then (cognitiveState is very high)
if (mentalLoad is very high and performance is very high) then (cognitiveS-
tate is high )
if (mentalLoad is very high and performance is high) then (cognitiveState is
high )
if (mentalLoad is high) then (cognitiveState is high)
if (mentalLoad is high and movement is high) then (cognitiveState is very
high)
if (mentalLoad is high and performance is very low and movement is low)
then (cognitiveState is very high )
if (mentalLoad is high and performance is very low and movement is not
low) then (cognitiveState is very high )
if (mentalLoad is medium) then (cognitiveState is medium)
if (mentalLoad is medium and movement is high) then (cognitiveState is
high)
if (mentalLoad is medium and performance is very low and movement is
low) then (cognitiveState is low )
if (mentalLoad is medium and performance is very low and movement is
high) then (cognitiveState is high )
if (mentalLoad is low) then (cognitiveState is low)
if (mentalLoad is low and movement is high) then (cognitiveState is medium)
if (mentalLoad is low and performance is high) then (cognitiveState is
medium )
if (mentalLoad is low and performance is very high) then (cognitiveState is
medium )
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