
J. W. Goethe-Universität Frankfurt am Main
Fachbereich 12

Institut für Mathematik

Probabilistic Analysis
of Dual-Pivot Quicksort “Count”

Masterarbeit

von Jasmin Straub

Matrikelnummer: 4954615

E-Mail: jstraub@math.uni-frankfurt.de

Betreuer: Prof. Dr. Ralph Neininger

Zweitgutachter: Prof. Dr. Götz Kersting

eingereicht am: 26. Juli 2017

Erklärung zur Masterarbeit

Hiermit erkläre ich, dass ich die vorliegende Arbeit selbständig abgefasst und keine anderen
Hilfsmittel als die angegebenen benutzt habe.

Ich erkläre ferner, dass diejenigen Stellen der Arbeit, die anderen Werken wörtlich oder dem
Sinne nach entnommen sind, in jedem einzelnen Fall unter Angabe der Quellen kenntlich
gemacht sind.

(Ort, Datum) (Unterschrift)

Contents

1 Introduction 4

2 Preliminaries 6
2.1 Some Notation . 6
2.2 Input Model . 7

3 The Dual-Pivot Quicksort Algorithm “Count” 8
3.1 Description of the Partitioning Strategy “Count” 8
3.2 The Dual-Pivot Quicksort Algorithm “Count” 8

4 Summary of the Results 11

5 A Related Pólya Urn Model 13
5.1 Description of the Model and First Results 13
5.2 Relation between the Pólya Urn and Dual-Pivot Quicksort 16

6 The Contraction Method 19
6.1 A General Convergence Theorem . 19
6.2 Preliminary Considerations . 20
6.3 The Dual-Pivot Quicksort Recurrence . 22

6.3.1 The Recurrence for the Expected Costs 23
6.3.2 The Recurrence for the Normalized Costs 24

7 Analysis of the Number of Key Comparisons 25
7.1 The Average Number of Key Comparisons . 25
7.2 Distributional Analysis of the Number of Key Comparisons 25
7.3 The Existence of a Smooth Density . 30

8 Analysis of the Number of Swaps 31
8.1 The Average Number of Swaps . 32
8.2 Distributional Analysis of the Number of Swaps 34

9 The Correlation between Key Comparisons and Swaps 37

10 Conclusion 40

A Appendix 43
A.1 An Alternative Proof of Theorem 8.1 . 43
A.2 Algorithms . 45
A.3 Implementation in R . 47

2

List of Figures

1 Dual-Pivot Quicksort after the First Partitioning Step 4
2 Illustration of the Pólya Urn Model . 13
3 Illustration of S+

n . 17
4 The Definition of D = (D1, D2, D3) . 21
5 A Possible Evolution of W . 27
6 Sample Means for Dual-Pivot Quicksort “Count” 41
7 Sample Std. Deviations and Correlations for Dual-Pivot Quicksort “Count” . 41
8 Histograms and Scatter Plot for Dual-Pivot Quicksort “Count” 42
9 Histograms and Scatter Plot for Classic Quicksort 42

List of Tables

1 Summary of the Asymptotic Results . 40

List of Algorithms

1 Dual-Pivot Quicksort Algorithm “Count” . 9
2 Classic Quicksort with Sedgewick-Hoare Partitioning 45
3 YBB Dual-Pivot Quicksort Algorithm by Yaroslavskiy, Bentley and Bloch . . 46

3

Introduction

1 Introduction

Sorting is present in our everyday lives and at least since the development of computers, it has
become an important field of research. Thus, over the last decades, lots of different sorting
algorithms have been developed. One of the most efficient and most widely used algorithms
is Quicksort. Published by Tony Hoare in 1961, Quicksort is a divide-and-conquer algorithm
which puts an input sequence∗ in increasing order and works as follows: First, we select an
arbitrary element p of the list—the so-called pivot. The main idea of Quicksort is to partition
the remaining elements into two groups: the elements smaller than p and the elements larger
than p. After this partitioning step, the pivot p is at its final position and the partitioning
strategy is then recursively repeated on both parts. A possible implementation of classic
Quicksort can be found in the appendix (Algorithm 2). If we consider the input sequence to
be a random permutation of its elements, classic Quicksort needs on average 2n log(n)+O(n)
comparisons and 1

3n log(n) + O(n) swaps, see e.g. Sedgewick [19, p. 334].

In order to make the sorting procedure more efficient, numerous variants of classic Quick-
sort have been developed over the last decades. One modification is to use k ≥ 2 pivots
instead of one single pivot and to partition the remaining elements into k + 1 groups. The
case k = 2 is called dual-pivot Quicksort and uses two pivots p and q (where we assume p to
be the smaller pivot). The remaining n−2 elements are then partitioned into three parts: the
elements smaller than p (small elements), the elements between p and q (medium elements)
and the elements larger than q (large elements).

p q

< p p < ◦ < q > q

Figure 1: Example of the dual-pivot Quicksort procedure after the first partitioning step.

In contrast to standard Quicksort, where each of the n − 1 remaining elements has to
be compared once to the pivot, the number of comparisons for dual-pivot Quicksort depends
on the concrete partitioning strategy. In his Ph.D. thesis [20], Robert Sedgewick suggested
a dual-pivot Quicksort variant which uses on average 32

15n log(n) + O(n) comparisons and
0.8n log(n) + O(n) swaps and therefore is inferior to standard Quicksort. Also other studies
(e.g. Hennequin [9]) suggested that the multi-pivot approach would not lead to significant
improvements in comparison to classic Quicksort. For this reason, multi-pivot Quicksort did
not receive much attention in the following years.

However, in 2009, Vladimir Yaroslavskiy proposed a dual-pivot Quicksort variant which he
had developed together with Jon Bentley and Joshua Bloch. In the following, we will denote
∗ For our analysis, we assume the input to consist of n distinct elements. Nevertheless, Quicksort also works

for non-distinct data.

4

Introduction

this version by Yaroslavskiy-Bentley-Bloch (YBB) Quicksort. As running time experiments
had suggested a very good performance of YBB Quicksort, it has been used as standard
sorting method for Oracle’s Java 7 runtime library since then. In 2012, Wild and Nebel [24]
proved that a slightly modified version of YBB Quicksort (Algorithm 3 in this work) uses
on average 1.9n log(n) + O(n) comparisons and 0.6n log(n) + O(n) swaps. Moreover, Wild,
Nebel and Neininger [25] analyzed the number of Java Bytecode instructions and found out
that YBB Quicksort executes about 20 % more Java Bytecodes than classic Quicksort. Thus,
they conjectured that the superiority of YBB Quicksort in practice is not caused by a smaller
number of instructions but by “advanced features of modern processors” ([25], p. 25).

In 2014, Kushagra et al. [12] suggested an explanation for the superiority of YBB Quick-
sort: They conjectured that the running time improvements of YBB Quicksort are due to its
better cache behavior. More precisely, they considered another cost measure, the number of
“cache misses”, and came to the conclusion that YBB Quicksort needs significantly less cache
misses than classic Quicksort. Furthermore, they suggested and analyzed a three-pivot Quick-
sort variant with promising results in theory and in practice. However, the number of cache
misses is machine-dependent and not convenient to analyze. For this reason, Nebel, Wild and
Mart́ınez [15] introduced a different but closely related cost measure, the number of scanned
elements, which is defined as the total distance covered by all scanning indices. They show
that YBB Quicksort needs much less element scans than classic Quicksort (1.6n log(n)+O(n)
vs 2n log(n) + O(n) on average) which is, together with the results mentioned before, a con-
vincing explanation for the superior performance of YBB Quicksort in running time studies.

In their article [1], Martin Aumüller and Martin Dietzfelbinger studied and analyzed
several Quicksort versions. Among other strategies, they suggest a partitioning method
“Count” (Strategy C in [1, Section 6]) with the aim of minimizing the expected number
of key comparisons among all dual-pivot Quicksort variants. They show that this minimum
is 1.8n log(n) + O(n) and that the algorithm “Count” (Algorithm 7 of [1]) achieves this lower
bound. In their experimental study, YBB Quicksort and the three-pivot Quicksort algorithm
of Kushagra et al. [12] belong to the fastest algorithms, whereas classic Quicksort and the
algorithm “Count” are noticeably slower. To be more precise, Classic Quicksort is about 8 %
and “Count” Quicksort about 15 % slower than YBB Quicksort (see [1, Section 8.2]). They
try to explain the observed differences by looking at the average instruction count and the
cache behavior of the algorithms and come to the conclusion that “neither standard measures
like the average comparison count or the average swap count, nor empirical measures like the
average instruction count or the cache behavior predict running time correctly when considered
in isolation” (Aumüller and Dietzfelbinger [1, p. 26]).

In this work, we will analyze the dual-pivot Quicksort version “Count” which was sug-
gested by Aumüller and Dietzfelbinger [1, Section 6 and Algorithm 7]. Aumüller et al. [2]
have already derived an exact expression for the average number of key comparisons and

5

Preliminaries

proved that the strategy “Count” minimizes the expected number of comparisons among all
algorithmic dual-pivot strategies. The aim of this master’s thesis is to identify the asymp-
totic distributions of both the number of comparisons and the number of swaps when using
the dual-pivot strategy “Count”. To be more precise, we will derive exact and asymptotic
expressions for the average number of swaps in the dual-pivot Quicksort algorithm “Count”.
Moreover, we will show that both the number of key comparisons and the number of swaps
converge—suitably normalized—to a limit law. The limiting distributions can be identified
implicitly by stochastic fixed point equations from which we can compute asymptotic vari-
ances. In particular, we will see that for large n, both the number of key comparisons and
the number of swaps are concentrated around their mean.

This work is organized as follows: After introducing some notation and the input model
in Section 2, Section 3 describes the dual-pivot Quicksort algorithm “Count”. In Section
4, we give a short overview on the main results which are proven in Sections 5–9. Finally,
Section 10 compares the obtained results to other Quicksort variants and presents the results
of simulation studies.

2 Preliminaries

2.1 Some Notation

� As is common, we write

1{expression} =

1, if expression is true,

0, if expression is false.

� For a random variable X, we denote by L(X), E[X] and Var(X) its distribution, expec-
tation and variance, respectively. Furthermore, we write X d= Y if the random variables
X and Y have the same distribution. The covariance between two random variables X
and Y is denoted by Cov(X,Y) and the correlation coefficient by Corr(X,Y).

� We say that a random variable X is Lp-integrable (1 ≤ p < ∞) if and only if E[|X|p]
is finite. In this case, let ‖X‖p := E[|X|p]1/p denote the Lp-norm for X. A sequence
(Xn)n≥1 of random variables is said to converge in Lp to a random variable X (denoted
by Xn

Lp−→ X) if and only if lim
n→∞

‖Xn −X‖p = 0.

� We define the Wasserstein metric `2 on the space of probability measures on Rd (d ≥ 1)
with existing second moments by

`2(µ, ν) := inf {‖X − Y ‖2 : L(X) = µ,L(Y) = ν} .

The space of the centered probability distributions on Rd with existing second moments
is a complete metric space with regard to the `2-metric. Furthermore, a sequence

6

Preliminaries

(Xn)n≥0 converges in `2 to X if and only if (Xn)n≥0 converges in distribution and with
second moments to X (see Bickel and Freedman [4]).

� The multinomial distribution with n trials and (non-negative) success probabilities
p1, . . . , pk (with p1 + · · ·+ pk = 1) is denoted by M(n; p1, . . . , pk).

� We use the common asymptotic notation, i.e. for functions f, g : N→ R with g(n) 6= 0
for n large enough, we write

. f(n) = O(g(n)) if there exist positive numbers C and n0 such that |f(n)| ≤ C|g(n)|
for all n ≥ n0,

. f(n) = o(g(n)) if f(n)
g(n) → 0 as n→∞,

. f(n) ∼ g(n) if f(n)
g(n) → 1 as n→∞.

� We always denote by “log” the natural logaritm to base e and set

Hn =
n∑
k=1

1
k
, Halt

n =
n∑
k=1

(−1)k

k
and Hodd

n =
n∑
k=1

1{k odd}
k

.

� The following asymptotic expansion is well-known (see e.g. Section 9 of Graham, Knuth
and Patashnik [7]):

Hn = log(n) + γ + O
(1
n

)
,

where γ = 0.5772156649 . . . is the Euler–Mascheroni constant. Furthermore, we have
(see Lemma 8.1 of Aumüller et al. [2]):

Halt
n = − log(2) + O

(1
n

)
.

2.2 Input Model

When analyzing different cost measures of the dual-pivot Quicksort algorithm “Count”,
we will assume that the input sequence A = (A[1], . . . , A[n]) is a random permutation of
{1, . . . , n} (meaning that each of the n! permutations of {1, . . . , n} has equal probability 1/n!
to become the input). In this setting, we can choose the two outer elements as pivots, i.e.
p := min {A[1], A[n]} and q := max {A[1], A[n]}.

For the analysis of the limiting distribution of the normalized costs, it will be more con-
venient to assume that the input consists of a sequence U1, . . . , Un of n independent and
uniformly on the unit interval [0, 1] distributed random variables. In this case, the input
elements are pairwise different almost surely and their ranks form a random permutation of
{1, . . . , n} (see e.g. Mahmoud [14, Section 1.10]).

7

The Dual-Pivot Quicksort Algorithm “Count”

3 The Dual-Pivot Quicksort Algorithm “Count”

3.1 Description of the Partitioning Strategy “Count”

As already mentioned in the introduction, the number of comparisons depends on the concrete
partitioning strategy. This is different from classic Quicksort, where the number of key
comparisons during the first partitioning step is always n − 1 (since each of the n − 1 non-
pivot elements has to be compared once to the pivot). When using two pivots instead of one
single pivot, some of the n− 2 remaining elements have to be compared to both pivots. More
precisely, the following elements have to be compared to both p and q:

� each medium element,

� each small element which is compared to the larger pivot q first,

� each large element which is compared to the smaller pivot p first.

Therefore, in order to minimize the number of key comparisons, small elements should be
compared to p first and large elements should be compared to q first. Of course, we do not
know the type of an element before having it classified. Hence, we need a strategy to determine
whether the next element should be compared to the smaller pivot p or to the larger pivot q
first. A simple strategy would be: “Always compare to the smaller pivot p first”. However,
this strategy does not take into account that we could include the types of the previously
classified elements in our decision. For example, if all of the previously classified elements
were large, this increases the probability that the next element is also large. We will now
present the strategy “Count” which is described in Section 6 of Aumüller and Dietzfelbinger
[1]. The basic idea of this strategy is that the next element is compared to the larger pivot
q first if and only if we have seen more large than small elements so far. We set s0 = l0 = 0
and denote by si (li, respectively) the number of small (large, respectively) elements among
the first i classified elements (i ≥ 1).

Strategy “Count”: If si−1 ≥ li−1, compare the i-th element to the smaller pivot p
first. Otherwise, compare to the larger pivot q first.

It can be shown (see Theorem 15.2 of Aumüller et al. [2]) that this strategy minimizes the
expected number of key comparisons among all algorithmic dual-pivot partitioning strategies.

3.2 The Dual-Pivot Quicksort Algorithm “Count”

The following algorithm (Algorithm 1) is—slightly modified—taken from Aumüller et al. [2,
Algorithm 1] and gives a possible pseudocode for the strategy “Count”. The only difference,
marked in blue, is that Algorithm 1 of Aumüller et al. [2] additionally ensures that p = A[left]
and q = A[right] by swapping A[left] and A[right] if A[right] < A[left].

8

The Dual-Pivot Quicksort Algorithm “Count”

Algorithm 1 Dual-Pivot Quicksort Algorithm “Count”
1: procedure Count(A, left, right)
2: if right ≤ left then
3: return
4: if A[right] < A[left] then
5: p← A[right]; q ← A[left] // in [2]: swap A[left] and A[right]
6: else
7: p← A[left]; q ← A[right] // in [2]: p← A[left]; q ← A[right] instead of lines 6 and 7

8: i← left+ 1; k ← right− 1; j ← i
9: d← 0

10: while j ≤ k do
11: if d ≥ 0 then
12: if A[j] < p then
13: swap A[i] and A[j]
14: i← i+ 1; j ← j + 1; d← d+ 1
15: else
16: if A[j] < q then
17: j ← j + 1
18: else
19: swap A[j] and A[k]
20: k ← k − 1; d← d− 1
21: else
22: if A[k] > q then
23: k ← k − 1; d← d− 1
24: else
25: if A[k] < p then
26: // Perform a cyclic rotation to the left, i.e.,
27: // tmp ← A[k]; A[k] ← A[j]; A[j] ← A[i]; A[i]← tmp
28: rotate3 (A[k], A[j], A[i])
29: i← i+ 1; d← d+ 1
30: else
31: swap A[j] and A[k]
32: j ← j + 1
33: A[left]← A[i− 1] and A[i− 1]← p // in [2]: swap A[left] and A[i− 1]
34: A[right]← A[k + 1] and A[k + 1]← q // in [2]: swap A[right] and A[k + 1]
35: Count(A, left, i− 2)
36: Count(A, i, k)
37: Count(A, k + 2, right)

9

The Dual-Pivot Quicksort Algorithm “Count”

The above algorithm uses three pointers i, j and k, whereby i and j start at the left end
and k starts at the right end. Thus, we have the following initial state (if we assume that
A[left] < A[right], i.e. p = A[left] and q = A[right]):

p q?

i, j k

The idea is to move the pointers so that i−1 marks the position of the rightmost small element,
k + 1 marks the position of the leftmost large element and that the elements A[j], . . . , A[k]
are not classified yet. Hence, the array always has the following form:

p q< p p < ◦ < q ? > q

i j k

Recall that our partitioning strategy “Count” is: “Compare the next element to q first if and
only if we have seen more large than small elements so far”. Considering that, we use a
variable d storing the difference of the number of small and large elements. When classifying
the next element, there are two possibilities:

(1) We have classified as least as many small as large elements so far (i.e. d ≥ 0). In this
case, the next element to be classified is A[j]. According to our strategy “Count”, we
first compare A[j] to the smaller pivot p and then, if necessary, additionally to q.

. If A[j] is small (i.e. A[j] < p), it has to be swapped with A[i].

. If A[j] is medium (i.e. A[j] > p and A[j] < q), no swap is needed.

. If A[j] is large (i.e. if A[j] > p and A[j] > q), we need to swap A[j] and A[k].

(2) We have classified more large than small elements so far (i.e. d < 0). In this case,
the next element to be classified is A[k]. According to our strategy “Count”, we first
compare A[k] to the larger pivot q and then, if necessary, to p.

. If A[k] is large (i.e. A[k] > q), no swap is needed.

. If A[k] is medium (i.e. A[k] < q and A[k] > p), it has to be swapped with A[j].

. If A[k] is small (i.e. if A[k] < q and A[k] < p), we perform a cyclic rotation which
has the same effect as swapping A[k] and A[j] and then swapping A[j] and A[i].

In each of these cases, the pointers have to be moved as described in the algorithm. As soon
as j > k, all elements have been classified. We then swap the pivots to their final positions
and sort the three sub-arrays recursively.

10

Summary of the Results

4 Summary of the Results

In this section, we give a short overview on the main results of this master’s thesis.

In Section 5, we will consider a Pólya urn with initially three balls of different types (one
small, one medium and one large ball). In each step, we draw a ball uniformly at random
from the urn and return it to the urn together with an additional ball of the drawn type.
We will derive some elementary properties of this modified Pólya urn model (Section 5.1)
and discuss its relation to the dual-pivot Quicksort strategy “Count” (Section 5.2). The main
result of Section 5.1 (Theorem 5.2) is the following:

Conditioned on the event “more large than small balls during the first i draws”, the
probability of drawing another large ball in the next step is exactly 1

2 for all i ≥ 1.

Applied to the dual-pivot Quicksort strategy “Count”, this implies that once an element is
compared to the larger pivot q first, there is a 50 percent chance that this element is indeed
large (see Section 5.2).

Section 6 deals with the contraction method and establishes a distributional recurrence
for the costs when sorting a random permutation with the dual-pivot Quicksort algorithm
“Count”. We then define the normalized costs by subtracting the expected values and di-
viding by n. In the following section (Section 7), we use the contraction method in order to
identify the limiting distribution of the normalized number of key comparisons in the dual-
pivot Quicksort algorithm “Count”. More precisely, Theorem 7.3 and Corollary 7.4 state the
following result:

The normalized number C∗n = Cn−E[Cn]
n of key comparisons in the dual-pivot Quicksort

algorithm “Count” when sorting a random permutation of {1, . . . , n} converges in
distribution and with second moments to a random variable C∗ whose distribution
L(C∗) is implicitly characterized by a stochastic fixed point equation. Moreover, as
n→∞, we have

Var(Cn) ∼ σ2
C n

2,

where σ2
C = 1609

300 −
27
50π

2 + 3
10 log(2) = 0.241691110

The results concerning the Pólya urn model of Section 5 are used in Section 8 to show that the
average number E[Sn] of swaps in the dual-pivot Quicksort algorithm “Count” when sorting
a random permutation of {1, . . . , n} is

E[Sn] = 3
4n log(n) +An+ 3

4 log(n) + O(1),

where A = −4
5 + 3

4γ −
1
20 log(2) = −0.40174561 . . . and n → ∞. In fact, we even obtain an

exact result for the average number of swaps (see Theorem 8.1). We then use the contraction

11

Summary of the Results

method again in order to obtain a limiting distribution of the normalized number of swaps
from which we can compute asymptotic variances (see Theorem 8.3 and Corollary 8.4):

The normalized number S∗n = Sn−E[Sn]
n of swaps in the dual-pivot Quicksort algorithm

“Count” when sorting a random permutation of {1, . . . , n} converges in distribution
and with second moments to a random variable S∗ whose distribution L(S∗) is im-
plicitly characterized by a stochastic fixed point equation. Moreover, as n→∞, we
have

Var(Sn) ∼ σ2
S n

2,

where σ2
S = 47

48 −
3
32π

2 + 3
32 log(2) = 0.118873802

Subsequently, in Section 9, we analyze the correlation between the number of key comparisons
and the number of swaps by using the bivariate contraction method and obtain the following
result (see Corollary 9.2):

The covariance between the number Cn of key comparisons and the number Sn of
swaps in the dual-pivot Quicksort algorithm “Count” when sorting a random permu-
tation of {1, . . . , n} is

Cov(Cn,Sn) ∼ σC,S n2,

where σC,S = 43
20 −

9
40π

2 + 7
40 log(2) = 0.0506397663 . . . and n → ∞. Moreover, we

obtain that the correlation between Cn and Sn is, as n→∞,

Corr(Cn,Sn) = Cov(Cn,Sn)√
Var(Cn)

√
Var(Sn)

∼ 0.298755

Finally, we will compare our results to classic Quicksort and YBB Quicksort and we will
perform a simulation study in “R” in order to experimentally validate our results.

12

A Related Pólya Urn Model

5 A Related Pólya Urn Model

In this section, we will establish a connection between dual-pivot Quicksort and a (modified)
Pólya urn model. Thus, we can obtain results concerning dual-pivot Quicksort by analyzing
the Pólya urn model.

5.1 Description of the Model and First Results

Imagine the following (modified) Pólya urn model. At the beginning, the urn contains three
balls: one small, one medium and one large ball. We now draw a ball randomly from the urn,
return it to the urn and additionally add a ball of the drawn type to the urn. We then repeat
this selection procedure. For each i ≥ 0, let Si, Mi and Li denote the numbers of small,
medium and large balls added to the urn during the first i draws (i.e. S0 = M0 = L0 = 0 and
Si +Mi + Li = i for any i ≥ 0).

Figure 2: A possible evolution of the Pólya urn during the first four steps. The corresponding drawn
types in this example are large (•), small (•), small (•) and medium (•), which means
that we have (S4,M4, L4) = (2, 1, 1).

By a short combinatorial argument, the distribution of (Si,Mi, Li) is easily determined:

LEMMA 5.1. For any i, s, m, ` ∈ N0 with s+m+ ` = i, we have

P(Si = s,Mi = m,Li = `) = 2
(i+ 1)(i+ 2) ,

i.e. (Si,Mi, Li) is uniformly distributed on the set
{
(s,m, `) ∈ N3

0 | s+m+ ` = i
}

.

Proof. There are
(i
s,m,`

)
:= i!

s!m! `! ways of arranging s small, m medium and ` large elements.
Any fixed order occurs with probability

1 · . . . · s · 1 · . . . ·m · 1 · . . . · `
3 · 4 · . . . · (i+ 2) = 2 s!m! `!

(i+ 2)! .

Hence, we conclude

P(Si = s,Mi = m,Li = `) =
(

i

s,m, `

)
· 2 s!m! `!

(i+ 2)! = 2
(i+ 1)(i+ 2) .

13

A Related Pólya Urn Model

The main result of this section is the following: Conditioned on the event “more large than
small balls after i draws”, the probability that the next ball is large is exactly 1

2 .

THEOREM 5.2. For any i ≥ 1,

P(Li+1 = Li + 1 |Li > Si) = 1
2 .

The proof of Theorem 5.2 is prepared by the following two lemmas. We first compute the
probability that the urn contains more large than small balls after i ≥ 1 draws. Clearly, this
probability should be near 1

2 if the number i of draws is large.

LEMMA 5.3. For any i ≥ 1,

P(Li > Si) =


i

2(i+1) , if i is even,
i+1

2(i+2) , if i is odd.

Proof. First, by Lemma 5.1 and the law of total probability, we have

P(Li = Si) =
i∑

m=0
P(Li = Si,Mi = m)

=
i∑

m=0
P
(
Mi = m,Si = Li = i−m

2
)

=
i∑

m=0
1{i−m even}

2
(i+ 1)(i+ 2)

=


i+2

2 ·
2

(i+1)(i+2) = 1
i+1 , if i is even,

i+1
2 ·

2
(i+1)(i+2) = 1

i+2 , if i is odd.

Due to symmetry, we obtain

P(Li > Si) = 1
2 P(Li 6= Si) =


i

2(i+1) , if i is even,
i+1

2(i+2) , if i is odd,

which finishes the proof.

The following lemma computes the probability of the event “we have more large than small
balls after i draws and the next ball is large”.

14

A Related Pólya Urn Model

LEMMA 5.4. For any i ≥ 1,

P(Li+1 = Li + 1, Li > Si) =


i

4(i+1) , if i is even,
i+1

4(i+2) , if i is odd.

Proof. Since {Li > Si} =
i⋃

`=1

i−`⋃
s=0
s≤`−1

{Si = s,Mi = i− s− `, Li = `}, we obtain from the law of

total probability

P(Li+1 = Li + 1, Li > Si) =
i∑

`=1

i−∑̀
s=0
s≤`−1

P(Li+1 = Li + 1, Si = s,Mi = i− s− `, Li = `)

=
i∑

`=1

i−∑̀
s=0
s≤`−1

P(Si = s,Mi = i− s− `, Li = `) P(Li+1 = Li + 1|Si = s,Mi = i− s− `, Li = `)

=
i∑

`=1

i−∑̀
s=0
s≤`−1

2
(i+ 1)(i+ 2) ·

`+ 1
i+ 3

= 2
(i+ 1)(i+ 2)(i+ 3)

bi/2c∑
`=1

`(`+ 1) +
i∑

`=bi/2c+1
(i− `+ 1)(`+ 1)


=


i

4(i+1) , if i is even,
i+1

4(i+2) , if i is odd.

The last step follows from the well-known identities
n∑
k=1

k = n(n+1)
2 and

n∑
k=1

k2 = n(n+1)(2n+1)
6

for n ≥ 1.

Proof (of Theorem 5.2). The desired equality now follows directly by combining Lemma 5.3
and Lemma 5.4.

Hence, we have shown that conditioned on the event “more large than small balls after i

draws”, the probability that the next ball is large is exactly 1
2 . In addition to this, we will

also need the probability of the event “we have more large than small balls after i draws and
the next ball is small”.

LEMMA 5.5. For any i ≥ 1,

P(Li > Si, Si+1 = Si + 1) =


i(i+4)

12(i+1)(i+3) , if i is even,
1
12 , if i is odd.

15

A Related Pólya Urn Model

Proof. Just as in the proof of Lemma 5.4, we obtain from the law of total probability

P(Li > Si, Si+1 = Si + 1) =
i∑

`=1

i−∑̀
s=0
s≤`−1

P(Si = s,Mi = i− s− `, Li = `, Si+1 = Si + 1)

=
i∑

`=1

i−∑̀
s=0
s≤`−1

P(Si = s,Mi = i− s− `, Li = `) P(Si+1 = Si + 1|Si = s,Mi = i− s− `, Li = `)

=
i∑

`=1

i−∑̀
s=0
s≤`−1

2
(i+ 1)(i+ 2) ·

s+ 1
i+ 3

= 2
(i+ 1)(i+ 2)(i+ 3)

bi/2c∑
`=1

`(`+ 1)
2 +

i∑
`=bi/2c+1

(i− `+ 1)(i− `+ 2)
2


=


i(i+4)

12(i+1)(i+3) , if i is even,
1
12 , if i is odd.

5.2 Relation between the Pólya Urn and Dual-Pivot Quicksort

For a fixed n ≥ 2, let V ′n =
(
(S′i,M ′i , L′i)

)
0≤i≤n−2 denote the stochastic process describing the

evolution of the numbers of small, medium and large elements when partitioning a random
permutation of {1, . . . , n} with the strategy “Count”. To be more precise, we denote by S′i,
M ′i and L′i the numbers of small, medium and large elements after having classified i elements
with the strategy “Count” (0 ≤ i ≤ n − 2). Then, the process V ′n has the same distribution
as the stochastic process Vn =

(
(Si,Mi, Li)

)
0≤i≤n−2 describing the evolution of the numbers

of types in the previously introduced Pólya urn model with n− 2 draws. The idea is that in
both models, the probability of a concrete path vn =

(
(si,mi, `i)

)
0≤i≤n−2 depends only on

the final values sn−2, mn−2 and `n−2.

LEMMA 5.6. For vn =
(
(si,mi, `i)

)
0≤i≤n−2 ∈ (N3

0)n−1, we have

P(V ′n = vn) = P(Vn = vn).

Proof. If vn =
(
(si,mi, `i)

)
0≤i≤n−2 is a possible realization of V ′n (meaning that the probability

P(V ′n = vn) is positive), we have

P(V ′n = vn) = P
(
(S′n−2,M

′
n−2, L

′
n−2) = (sn−2,mn−2, `n−2)

)
· P
(
V ′n = vn | (S′n−2,M

′
n−2, L

′
n−2) = (sn−2,mn−2, `n−2)

)
.

As (S′n−2,M
′
n−2, L

′
n−2) = (sn−2,mn−2, `n−2) is equivalent to “the pivots are sn−2 + 1 and

16

A Related Pólya Urn Model

sn−2 +mn−2 + 2”, the first factor equals 1
(n

2)
. Moreover, once we condition on the final values

S′n−2 = sn−2, M ′n−2 = mn−2 and L′n−2 = `n−2, every of the possible
(n
sn−2, mn−2, `n−2

)
paths

is equally likely. Hence, we get

P(V ′n = vn) = 1(n
2
) · 1(n−2

sn−2, mn−2, `n−2

) = 2 sn−2!mn−2! `n−2!
n! .

On the other hand, the proof of Lemma 5.1 shows that

P(Vn = vn) = 2 sn−2!mn−2! `n−2!
n!

as well. Thus, both processes have the same distribution.

We note that the proof of the preceding lemma uses arguments similar to those in the proof
of Lemma 3.1 and Lemma 11.2 in Aumüller et al. [2]. Also Section 2.4.7 of Wild’s Ph.D.
thesis [23] characterizes the relation between dual-pivot Quicksort and the Pólya urn model.
In the remainder of this section, we will apply the results from Section 5.1 to the dual-pivot
Quicksort strategy “Count”.

For n ≥ 2, let S+
n , M+

n and L+
n denote the numbers of small, medium and large ele-

ments compared to q first when partitioning an input sequence of length n with the strategy
“Count”. Recall that we compare an element to the larger pivot q first if and only if we have
classified more large than small elements so far. The following graphic (Figure 3) illustrates
the definition of S+

n .

difference of large
and small elements

1
2
3
4

-1
0

in-21
number of
classified elements

Figure 3: Path describing the sequence of classified types: Small elements correspond to down-steps,
medium elements to horizontal steps and large elements to up-steps. The next element is
compared to q first if and only if the path is above the horizontal axis. Thus, S+

n counts
every down-step above the horizontal axis (colored in pink).

The following lemma shows that the expected value of S+
n +M+

n equals the expected value of
L+
n . This means that on average, we have just as many large elements which are compared

to q first as small or medium elements which are compared to q first.

17

A Related Pólya Urn Model

LEMMA 5.7. For any n ≥ 2, we have

E[S+
n +M+

n − L+
n] = 0.

Proof. The relation of Lemma 5.6 between dual-pivot Quicksort and the Pólya urn implies

S+
n

d=
n−3∑
i=1

1{Li >Si, Si+1 =Si+1},

M+
n

d=
n−3∑
i=1

1{Li >Si, Mi+1 =Mi+1},

L+
n

d=
n−3∑
i=1

1{Li >Si, Li+1 =Li+1}.

Thus, using Theorem 5.2, we obtain

E[S+
n +M+

n − L+
n]

=
n−3∑
i=1

P(Li > Si, Si+1 = Si + 1) + P(Li > Si, Mi+1 = Mi + 1)− P(Li > Si, Li+1 = Li + 1)

=
n−3∑
i=1

P(Li > Si)
(
P(Li+1 = Li |Li > Si)− P(Li+1 = Li + 1 |Li > Si)

)
= 0.

LEMMA 5.8. For any n ≥ 2, we have

E[S+
n] = 1

12n−
7
24 + 1

8(n− 1{n even})
.

Proof. Using Lemma 5.5, we obtain

E[S+
n] = E

[
n−3∑
i=1

1{Li >Si, Si+1 =Si+1}

]

=
n−3∑
i=1

P(Li > Si, Si+1 = Si + 1)

=
n−3∑
i=1

(
1{i even}

i(i+ 4)
12(i+ 1)(i+ 3) + 1{i odd}

1
12

)
= 1

12n−
7
24 + 1

8(n− 1{n even})
.

Note that the last step follows easily by induction on n.

18

The Contraction Method

6 The Contraction Method

Introduced in 1991 by Uwe Rösler [17], the contraction method is a useful tool when analyzing
random recursive structures and algorithms. As the application of the contraction method to
dual-pivot Quicksort has already been worked out in Section 4 of Wild, Nebel and Neininger
[25], most results of the remainder of this section can be found there.

6.1 A General Convergence Theorem

This section presents a convergence theorem which we will frequently use in the following
sections. The results can be found in Rösler [18] for the univariate case and in Neininger [16]
for the multivariate case.

Let X be a centered, square-integrable random variable in Rd (d ≥ 1). We assume that
there exist K ≥ 1, square-integrable random d × d matrices A1, . . . , AK and a centered,
square-integrable d-dimensional random vector b such that

X
d=

K∑
r=1

ArX
(r) + b, (1)

where X(1), . . . , X(K) and (A1, . . . , AK , b) are independent and X(r) is distributed as X for
all r ∈ {1, . . . ,K}. We denote by ‖B‖op := sup

‖x‖=1
‖Bx‖ the operator norm of a matrix B and

by Bt the transposed matrix. Then, Lemma 3.1 in Neininger [16] implies the following result.

THEOREM 6.1. If
K∑
r=1

E[
∥∥AtrAr∥∥op] < 1, then there is a unique solution L(X) to (1) among

all centered, square-integrable distributions.

The idea is to see the stochastic fixed point equation (1) as a map within the space of
probability distributions on Rd. Restricted to the space of all centered, square-integrable
distributions, this map is a contraction with respect to the `2-metric. A proof of this assertion
can be found in Neininger [16, Proof of Lemma 3.1]. As the space of the centered probability
measures on Rd with existing second moments is a complete metric space with regard to the
`2-metric, the Banach fixed point theorem implies the existence of a unique fixed point.

Now, let (Xn)n≥0 be a sequence of random variables in R or R2 satisfying the distributional
recursion

Xn
d=

K∑
r=1

A(n)
r X

(r)
I

(n)
r

+ b(n), n ≥ n0, (2)

for some n0 ≥ 1 and K ≥ 1. We assume that I(n) = (I(n)
1 , . . . , I

(n)
K) is a vector of random

integers in {0, . . . , n}. In the univariate case, A(n)
r and b(n) are real-valued random variables

and in the bivariate case, A(n)
r is a 2 × 2 matrix for all r ∈ {1, . . . ,K} and b(n) is a random

vector in R2.

19

The Contraction Method

Moreover, we assume that the following conditions are satisfied:

� (X(1)
j)0≤j≤n, . . ., (X(K)

j)0≤j≤n and (A(n)
1 , . . . , A

(n)
K , b(n), I(n)) are independent for all

n ≥ n0.

� X(r)
j has the same distribution as Xj for all r ∈ {1, . . . ,K} and j ≥ 0.

� Xn, A(n)
r and b(n) are square-integrable for all n and r ∈ {1, . . . ,K}.

� For all n ≥ 0, Xn and b(n) are centered, i.e. E[Xn] = E[b(n)] = 0.

Under these assumptions, we have the following general convergence theorem, see Theorem
4.1 of Neininger [16]:

THEOREM 6.2. Let (Xn)n≥0 satisfy the distributional recursion (2). In addition to the
preceding assumptions, we assume the following conditions:

(A1)
(
A

(n)
1 , . . . , A

(n)
K , b(n)) `2−→ (A1, . . . , AK , b) as n→∞.

(A2)
K∑
r=1

E[
∥∥AtrAr∥∥op] < 1.

(A3) E
[
1{

I
(n)
r ≤`

}
∪
{
I

(n)
r =n

} ∥∥∥(A(n)
r)tA(n)

r

∥∥∥
op

]
→ 0 as n→∞, for ` ≥ 0 and r ∈ {1, . . . ,K}.

Then, the sequence (Xn)n≥0 converges in `2 to some random variable X, where L(X) is the
(among all centered, square-integrable distributions) unique solution of (1). In other words,
the sequence (Xn)n≥0 converges in distribution and with second (mixed) moments to X.

6.2 Preliminary Considerations

In the following sections, we will assume the input to be a sequence U1, . . . , Un of n inde-
pendent and uniformly on [0, 1] distributed random variables. This is in accordance with
our input model as the ranks of U1, . . . , Un form a random permutation of {1, . . . , n}. Note
that the order given in the input sequence is not necessarily the order in which Algorithm 1
processes the elements. However, we do not change the distribution of the costs if we assume
U1 and U2 to be the outermost elements and if we assume U3, U4, . . . , Un to be the sequence of
the remaining elements in the order in which they are read by Algorithm 1. As in the previous
sections, the two outermost elements U1 and U2 are chosen as pivots, i.e. P = min {U1, U2}
and Q = max {U1, U2}. We now denote by D = (D1, D2, D3) the “spacings” between the
pivots on the unit intervall. More precisely, we set (see Figure 4)

D = (D1, D2, D3) = (P,Q− P, 1−Q),

which means that D contains the probabilities for an element to be small, medium or large,
respectively. Obviously, we have D1 +D2 +D3 = 1, so that D3 is determined by D1 and D2.

20

The Contraction Method

It can be proven (see e.g. David and Nagaraja [5], p. 133f) that (D1, D2) has the following
density:

f(D1,D2)(x, y) =

2, for x, y ≥ 0 and x+ y ≤ 1,

0, otherwise.

For a measurable function g : [0, 1]3 → R with E[|g(D1, D2, D3)|] <∞, we therefore have

E[g(D1, D2, D3)] = 2
∫ 1

0

∫ 1−x

0
g(x, y, 1− x− y) dy dx. (3)

0 P Q 1

D1 D2 D3

Figure 4: The Definition of D = (D1, D2, D3)

In what follows, we denote by I(n) = (I(n)
1 , I

(n)
2 , I

(n)
3) the numbers of small, medium and large

elements of the input sequence. It is easy to determine the marginal distribution of I(n)
1 , I(n)

2
and I

(n)
3 .

LEMMA 6.3. The sizes I(n)
1 , I(n)

2 and I(n)
3 of the three subproblems are identically distributed

with
P(I(n)

r = k) = n− k − 1(n
2
)

for r ∈ {1, 2, 3} and k ∈ {0, . . . , n− 2}. Furthermore, we have

E[I(n)
r] = n− 2

3

for all r ∈ {1, 2, 3}.

Proof. We just consider the case r = 1 as the cases r = 2 and r = 3 follow similarly. The
number I(n)

1 of small elements is determined by the rank of the smaller pivot element P . More
precisely,

{
I

(n)
1 = k

}
= {rank(P) = k + 1} = {rank(P) = k + 1, rank(Q) ∈ {k + 2, . . . , n}}

for k ∈ {0, . . . , n− 2}. Hence, there are
(n

2
)

possibilities to choose the two pivots and n−k−1
possibilities to choose the pivots such that we have exactly k small elements. The rest follows
directly by using the fact that I(n)

1 + I
(n)
2 + I

(n)
3 = n− 2.

As already mentioned, given D = (d1, d2, d3), the probability that an element is small, medium
or large is d1, d2 or d3, respectively. Since the random variables U1, . . . , Un are independent,
we get: Given D = (d1, d2, d3), the vector I(n) is multinomially M(n−2; d1, d2, d3) distributed.
We write

L(I(n)) = M(n− 2;D1, D2, D3).

21

The Contraction Method

Since we will use the contraction method in the following sections, we already state two
convergence lemmas.

LEMMA 6.4. For any r ∈ {1, 2, 3}, we have

I
(n)
r

n
→ Dr

as n→∞, both almost surely and in L2.

Proof. Recall that given D = (d1, d2, d3), I(n) is multinomially M(n−2; d1, d2, d3) distributed.
Therefore, conditioned on D = (d1, d2, d3), I

(n)
r
n converges to dr almost surely by the strong

law of large numbers (r ∈ {1, 2, 3}). It follows for r ∈ {1, 2, 3}:

P
(

lim
n→∞

I
(n)
r

n
= Dr

)
= E

[
1{

lim
n→∞

I
(n)
r
n

=Dr

}] = E
[
E
[
1{

lim
n→∞

I
(n)
r
n

=Dr

}∣∣∣∣Dr

]]
= 1.

From the dominated convergence theorem, we also get L2-convergence (note that both I
(n)
r
n

and Dr are in [0, 1]):

lim
n→∞

E
[(I(n)

r

n
−Dr

)2
]

= E
[

lim
n→∞

(I(n)
r

n
−Dr

)2
]

= 0.

LEMMA 6.5. For any r ∈ {1, 2, 3}, we have

I
(n)
r

n
log

(
I

(n)
r

n

)
→ Dr log(Dr)

as n→∞, both almost surely and in L2.

Proof. The almost sure convergence directly follows from Lemma 6.4 and the continuity of
the function x 7→ x log(x) on [0, 1] (with the convention 0 log(0) := 0). The L2-convergence
follows as in the proof of the previous lemma from the dominated convergence theorem (note
that the function x 7→ x log(x) is bounded on [0,1]).

6.3 The Dual-Pivot Quicksort Recurrence

In what follows, we will analyze different cost measures of the dual-pivot Quicksort algorithm
“Count”. Let Cn denote the costs when sorting a random permutation of {1, . . . , n} with
the dual-pivot Quicksort algorithm “Count” and let Tn denote the costs during the first
partitioning procedure. We have

Cn = Tn + costs for the three subproblems.

22

The Contraction Method

Let I(n) = (I(n)
1 , I

(n)
2 , I

(n)
3) denote, as previously, the sizes of the three subproblems. Hen-

nequin [8] showed the following implication:

If the input is a random permutation of {1, . . . , n} and if every key comparison
involves a pivot element of the current partitioning step, then the subproblems are
also random permutations of their elements.

This implies that the ranks of the elements of each subproblem again form a random permu-
tation. Moreover, conditional on their sizes, the three subproblems are independent of each
other. Thus, for n ≥ 2, we obtain the following distributional recursion:

Cn
d=

3∑
r=1

C
(r)
I

(n)
r

+ Tn, (4)

where (C(1)
j)0≤j≤n, (C(2)

j)0≤j≤n, (C(3)
j)0≤j≤n and (Tn, I(n)) are independent and C

(r)
j is dis-

tributed as Cj for r ∈ {1, 2, 3} and j ≥ 0.

6.3.1 The Recurrence for the Expected Costs

In particular, for n ≥ 2, we get the following recursive form for the expected costs:

E[Cn] =
3∑
r=1

E[C(r)
I

(n)
r

] + E[Tn] = 3 E[C
I

(n)
1

] + E[Tn].

Conditioning on the size of the first subproblem and using Lemma 6.3 yields

E[C
I

(n)
1

] = E
[
E[C

I
(n)
1
|I(n)

1]
]

=
n−2∑
k=0

P(I(n)
1 = k)E[Ck] =

n−2∑
k=0

n− k − 1(n
2
) E[Ck].

Hence, the expected costs satisfy E[C0] = E[C1] = 0 and the following recurrence for n ≥ 2:

E[Cn] = 6
n(n− 1)

n−2∑
k=0

(n− k − 1)E[Ck] + E[Tn].

This recurrence has already been derived and analyzed before (see e.g. Section 4.2 of Wild’s
master’s thesis [22]). In Section 4.2.1 of [22], Wild presents an elementary derivation of the
closed form of E[Cn] and obtains the following result for n ≥ 4:

E[Cn] = 1(n
4
) n∑
i=5

(
i

4

)
i−2∑
j=3

(
E[Tj+2]− 2j

j + 2E[Tj+1] + j(j − 1)
(j + 2)(j + 1)E[Tj]

)

+ n+ 1
5

(
E[T4] + 1

2E[T2]
)
.

23

The Contraction Method

6.3.2 The Recurrence for the Normalized Costs

We now define the normalized costs as C∗0 = 0 and

C∗n = Cn − E[Cn]
n

for n ≥ 1.

Thus, (C∗n)n≥0 is a sequence of centered, square-integrable random variables. Using (4) leads
to the following distributional recurrence for C∗n (n ≥ 2):

C∗n
d=

3∑
r=1

A(n)
r C

∗(r)
I

(n)
r

+ b(n),

where (C∗(1)
j)0≤j≤n, (C∗(2)

j)0≤j≤n, (C∗(3)
j)0≤j≤n and (b(n), I(n)) are independent and C

∗(r)
j is

distributed as C∗j for r ∈ {1, 2, 3} and j ≥ 0,

A(n)
r = I

(n)
r

n
and b(n) = 1

n

(
Tn − E[Cn] +

3∑
r=1

E[C
I

(n)
r
|I(n)
r]

)
.

In order to use the contraction method (Theorem 6.2) later, it will be necessary to determine
the limit of b(n). Therefore, we will need the following result.

LEMMA 6.6. If there exist constants A and B such that E[Cn] = An log(n) +Bn+ o(n) as
n→∞, then

1
n

(
−E[Cn] +

3∑
r=1

E[C
I

(n)
r
|I(n)
r]

)
L2−→ A

3∑
r=1

Dr log(Dr).

Proof. Using that I(n)
r ∈ {0, . . . , n− 2} and the fact that

3∑
r=1

I
(n)
r = n− 2, we obtain

1
n

(
−E[Cn] +

3∑
r=1

E[C
I

(n)
r
|I(n)
r]

)

= 1
n

(
−An log(n)−Bn− o(n) +

3∑
r=1

(
AI(n)

r log(I(n)
r) +BI(n)

r + o(I(n)
r))

))

= −A log(n) +A
3∑
r=1

I
(n)
r

n
log(I(n)

r) + o(1)

= −A log(n) +A
3∑
r=1

I
(n)
r

n
log

(I(n)
r

n

)
+A

3∑
r=1

I
(n)
r

n
log(n) + o(1)

= A
3∑
r=1

I
(n)
r

n
log

(I(n)
r

n

)
+ o(1).

The assertion now follows from Lemma 6.5.

24

Analysis of the Number of Key Comparisons

7 Analysis of the Number of Key Comparisons

We will first analyze the distribution of the number of key comparisons. For this, we denote
by Cn the number of key comparisons of the dual-pivot Quicksort algorithm “Count” when
sorting a random permutation of {1, . . . , n} and by TC(n) the number of key comparisons
during the first partitioning step.

7.1 The Average Number of Key Comparisons

Theorem 12.1 of Aumüller et al. [2] contains an exact result for the expected value of Cn for
n ≥ 4:

E[Cn] =9
5nHn −

1
5nH

alt
n −

89
25n+ 67

40Hn −
3
40H

alt
n −

83
800 + (−1)n

10

−
1{n even}

320

(1
n− 3 + 3

n− 1

)
+
1{n odd}

320

(3
n− 2 + 1

n

)
.

Plugging in the asymptotic expansions of Hn and Halt
n , we obtain the following result.

THEOREM 7.1. The average number of key comparisons in the dual-pivot Quicksort algo-
rithm “Count” when sorting a random permutation of {1, . . . , n} is

E[Cn] = 9
5n log(n) +An+ 67

40 log(n) + O(1),

where A = 9
5γ + 1

5 log(2)− 89
25 = −2.38238236 . . . and n→∞.

7.2 Distributional Analysis of the Number of Key Comparisons

As discussed in Section 6.3, the number Cn of key comparisons satisfies the following distri-
butional recurrence for n ≥ 2:

Cn
d=

3∑
r=1
C(r)
I

(n)
r

+ TC(n),

where (C(1)
j)0≤j≤n, (C(2)

j)0≤j≤n, (C(3)
j)0≤j≤n and (TC(n), I(n)) are independent and C(r)

j is
distributed as Cj for r ∈ {1, 2, 3} and j ≥ 0. We now set C∗0 = 0 and

C∗n = Cn − E[Cn]
n

for n ≥ 1.

Just as in Section 6.3.2, we obtain the following distributional recurrence for the normalized
number C∗n of key comparisons (n ≥ 2):

C∗n
d=

3∑
r=1

A(n)
r C

∗(r)
I

(n)
r

+ b
(n)
C ,

25

Analysis of the Number of Key Comparisons

where (C∗(1)
j)0≤j≤n, (C∗(2)

j)0≤j≤n, (C∗(3)
j)0≤j≤n and (b(n)

C , I(n)) are independent and C∗(r)j is
distributed as C∗j for r ∈ {1, 2, 3} and j ≥ 0,

A(n)
r = I

(n)
r

n
and b

(n)
C = 1

n

(
TC(n)− E[Cn] +

3∑
r=1

E[C
I

(n)
r
|I(n)
r]

)
.

In order to apply Theorem 6.2, we have to check the following three conditions:

(A1)
(
A

(n)
1 , A

(n)
2 , A

(n)
3 , b

(n)
C

) `2−→ (A1, A2, A3, bC) as n→∞.

(A2)
3∑
r=1

E[A2
r] < 1.

(A3) E
[
1{

I
(n)
r ≤`

}
∪
{
I

(n)
r =n

}(A(n)
r)2

]
→ 0 for ` ≥ 0, r ∈ {1, 2, 3} and n→∞.

(A1): As we have already shown in Lemma 6.4, A(n)
r = I

(n)
r
n converges in L2 to Ar := Dr

for r ∈ {1, 2, 3} and as n → ∞. Furthermore, according to Lemma 6.6 and Theorem 7.1, as
n→∞, we have

1
n

(
−E[Cn] +

3∑
r=1

E[C
I

(n)
r
|I(n)
r]

)
L2−→ 9

5

3∑
r=1

Dr log(Dr).

It therefore remains to show the convergence of 1
nTC(n). Recall that S+

n , M+
n and L+

n denote
the numbers of small, medium and large elements which are compared to the larger pivot q
first. The number TC(n) of key comparisons during the first partitioning phase includes

� 1 comparison for the pivots U1 and U2,

� 2 I(n)
2 comparisons for the medium elements (each medium element has to be compared

to both pivots),

� I(n)
1 + S+

n comparisons for the small elements (each of the S+
n small elements which are

compared to q first have to be compared to both pivots),

� 2 I(n)
3 − L+

n comparisons for the large elements (each of the I(n)
3 − L+

n large elements
which are compared to p first have to be compared to both pivots).

Altogether, using I(n)
1 + I

(n)
2 + I

(n)
3 = n− 2, we obtain

TC(n) = 1 + I
(n)
1 + 2 I(n)

2 + 2 I(n)
3 + S+

n − L+
n = n− 1 + I

(n)
2 + I

(n)
3 + S+

n − L+
n

and
TC(n)
n

= n− 1
n

+ I
(n)
2
n

+ I
(n)
3
n

+ S+
n

n
− L+

n

n
.

From Lemma 6.4, we get the L2-convergence I
(n)
r
n → Dr as n → ∞. The convergence of the

two remaining terms S+
n
n and L+

n
n is examined in the following lemma.

26

Analysis of the Number of Key Comparisons

LEMMA 7.2. As n→∞, we have

S+
n

n

L2−→ 1{D3>D1}D1,
M+
n

n

L2−→ 1{D3>D1}D2 and L+
n

n

L2−→ 1{D3>D1}D3.

Proof. We define the stochastic process W = (Wi)i≥0 by W0 := 0 and

Wi =
i∑

j=1
(1{the j-th classified element is large} − 1{the j-th classified element is small})

for i ≥ 1. In other words, Wi holds the difference of the number of large and small elements
after having classified i elements. Given D = (d1, d2, d3), W is a random walk on Z with the
following transition probabilities for i ≥ 0, x, y ∈ Z:

P(Wi+1 = y |Wi = x,D = (d1, d2, d3)) =



d1, if y = x− 1,

d2, if y = x,

d3, if y = x+ 1,

0, otherwise.

The following graphic (Figure 5) shows a possible realization of the first steps of W .

difference of large
and small elements

1
2
3
4

-1
0

i1
number of
classified elements

Figure 5: A possible evolution of W . Given D = (d1, d2, d3), W goes one step down with probability
d1, stays at its current state with probability d2 and goes one step up with probability d3.

We now distinguish between two cases:

(1) If d1 < d3, the random walk W has a positive drift. From the strong law of large
numbers, we obtain that in this case, W drifts to +∞ almost surely. We conclude that
on {D3 > D1}, there exists almost surely some random n0 ∈ N such that Wi > 0 for all
i ≥ n0 (which means that from index n0 on, we always compare to q first). Therefore,
the following estimates hold on {D3 > D1}:

I
(n)
1 − n0
n

≤ S+
n

n
≤ I

(n)
1
n
.

Since both the term on the left-hand side and the term on the right-hand side converge
to D1 almost surely, we get that S+

n
n converges to D1 almost surely on {D3 > D1}.

27

Analysis of the Number of Key Comparisons

(2) If d1 > d3, the random walk W has a negative drift and, by the strong law of large
numbers, drifts to −∞ almost surely. Hence, on {D1 > D3}, there exists almost surely
some random n0 ∈ N such that Wi ≤ 0 for all i ≥ n0. As a consequence, the following
estimates hold on {D1 > D3}:

0 ≤ S+
n

n
≤ n0

n
.

Hence, we obtain that S+
n
n converges to 0 almost surely on {D3 > D1}.

Finally, we conclude that

S+
n

n
= 1{D3>D1}

S+
n

n
+ 1{D3<D1}

S+
n

n
+ 1{D3=D1}

S+
n

n
→ 1{D3>D1}D1

almost surely as n→∞. The L2-convergence again follows from the dominated convergence
theorem. With the same arguments, we also obtain

M+
n

n

L2−→ 1{D3>D1}D2 and L+
n

n

L2−→ 1{D3>D1}D3.

It follows as n→∞

TC(n)
n

L2−→ 1 +D2 +D3 + 1{D3>D1}D1 − 1{D3>D1}D3 = 1 +D2 + min {D1, D3} .

Remark: Intuitively, the limit is not very surprising. Every element needs to be compared
at least once, each medium element has to be compared twice and the term min {D1, D3}
contains the additional comparisons for the small and large elements which are compared to
the “wrong” pivot first: If D3 > D1, almost all elements are compared to q first and we have
additional comparisons for almost all small elements. If D1 > D3, on the contrary, almost all el-
ements are compared to p first and we have additional comparisons for almost all large elements.

Altogether, we obtain as n→∞

(
A

(n)
1 , A

(n)
2 , A

(n)
3 , b

(n)
C

) L2−→
(
D1, D2, D3,

9
5

3∑
r=1

Dr log(Dr) + 1 +D2 + min {D1, D3}
)
.

(A2): The “spacings” D1, D2 and D3 are identically distributed with distribution function
P(D1 ≤ x) = P(min {U1, U2} ≤ x) = 1 − (1 − x)2 = 2x − x2 for x ∈ [0, 1]. Thus, D1 has the
density function 2(1− x)1{x∈[0,1]}. We therefore have

3∑
r=1

E[A2
r] = 3 E[D2

1] = 3
∫ 1

0
2(1− x)x2dx = 1

2 < 1.

(A3): For any ` ≥ 0 and r ∈ {1, 2, 3}, we have (A(n)
r)2 ≤ 1 and therefore, as n→∞,

E
[
1{

I
(n)
r ≤`

}
∪
{
I

(n)
r =n

}(A(n)
r)2

]
≤ P(I(n)

r ≤ `)→ 0.

28

Analysis of the Number of Key Comparisons

We can therefore apply Theorem 6.2 and obtain the following result.

THEOREM 7.3. The normalized number C∗n = Cn−E[Cn]
n of key comparisons when sorting a

random permutation of {1, . . . , n} with the dual-pivot Quicksort algorithm “Count” converges
in distribution and with second moments to a random variable C∗ whose distribution L(C∗)
is the (among all centered, square-integrable distributions) unique solution of the following
equation:

C∗ d=
3∑
r=1

DrC∗(r) + 9
5

3∑
r=1

Dr log(Dr) + 1 +D2 + min {D1, D3} ,

where C∗(1), C∗(2), C∗(3) and (D1, D2, D3) are independent and C∗(r) is distributed as C∗ for
r ∈ {1, 2, 3}.

Considering that the convergence holds as well for the second moments of C∗n, we can asymp-
totically compute the variance Var(Cn) of the number of key comparisons.

COROLLARY 7.4. As n→∞, we have

Var(Cn) ∼ σ2
C n

2,

where σ2
C = 1609

300 −
27
50π

2 + 3
10 log(2) = 0.241691110

Proof. By definition of C∗n, we have

1
n2 Var(Cn) = 1

n2 Var(nC∗n + E[Cn]) = Var(C∗n) = E
[
(C∗n)2

]
,

which converges to E[(C∗)2] as n→∞ by Theorem 7.3. In order to compute E[(C∗)2], we set

bC := 9
5

3∑
r=1

Dr log(Dr) + 1 +D2 + min {D1, D3} and obtain

E[(C∗)2] = E

(3∑
r=1

DrC∗(r) + bC

)2
= E

(3∑
r=1

DrC∗(r)
)2+ 2 E

[
bC

3∑
r=1

DrC∗(r)
]

+ E[b2C]

= E
[3∑
r=1

D2
r(C∗(r))2

]
+ E

∑
r 6=s

DrC∗(r)DsC∗(s)
+ 2

3∑
r=1

E[DrbC]E[C∗(r)] + E[b2C]

=
3∑
r=1

E[D2
r]E[(C∗(r))2] + E[b2C]

= 1
2 E[(C∗)2] + E[b2C].

29

Analysis of the Number of Key Comparisons

Solving for E[(C∗)2] and using (3) and a computer algebra system, we find

E[(C∗)2] = 2 E[b2C] = 2 E

(9
5

3∑
r=1

Dr log(Dr) + 1 +D2 + min {D1, D3}
)2

= 1609
300 −

27
50π

2 + 3
10 log(2) = 0.241691110 . . . ,

which provides the above result.

7.3 The Existence of a Smooth Density

In this section, we will show that the limit C∗ of the normalized number C∗n of key comparisons
has a bounded and infinitely differentiable density function. To this end, we use a general
theorem of Leckey [13] which is based on techniques of Fill and Janson [6]. Note that the
limit C∗ satisfies the following distributional equation:

C∗ d=
∞∑
r=1

ArC∗(r) + bC ,

where C∗(1), C∗(2), . . . and (A1, A2, . . . , bC) are independent, C∗(r) is distributed as C∗ for
r ≥ 1, Ar = Dr for r ∈ {1, 2, 3}, Ar = 0 for r ≥ 4 and bC = 9

5
∑3
r=1Dr log(Dr) + 1 + D2 +

min {D1, D3}. Following Definition 4.1 of [13] with m = 1, we denote by αmax and αsec the
two largest elements in (Ar)r≥1 and say that conditions (B1)–(B5) hold if for all r ≥ 1:

(B1) P(αmax ≥ a) = 1 for some constant a > 0,

(B2) P(αsec ≤ x) ≤ λxν for some λ, ν > 0 and all x > 0,

(B3) P(Ar ≤ 1) = 1,

(B4) P(C∗ = c) < 1 for all c ∈ R,

(B5) P
(∞∑
r=1

1{Ar∈(0,1)} ≥ 1
)
> 0.

Theorem 4.2 of Leckey [13] with m = 1 then implies:

THEOREM 7.5. If conditions (B1)–(B5) hold, then C∗ admits a bounded density function
f ∈ C∞(R).

As can easily be seen, the above conditions are satisfied:

(B1) We set, for example, a = 1
3 . As D1 +D2 +D3 = 1, we obtain that

P(αmax ≥ a) = P(max {D1, D2, D3} ≥
1
3) = 1.

30

Analysis of the Number of Swaps

(B2) We set, for example, λ = 12 and ν = 2. Since D1 + D2 + D3 = 1, we also have
min {D1, D2, D3}+ αsec + max {D1, D2, D3} = 1 and obtain for x ∈ (0, 1

2)

P(αsec ≤ x) ≤ P(max {D1, D2, D3} ≥ 1− 2x)

= P({D1 ≥ 1− 2x} ∪ {D2 ≥ 1− 2x} ∪ {D3 ≥ 1− 2x})

≤ 3 P(D1 ≥ 1− 2x)

= 3 P(min {U1, U2} ≥ 1− 2x) = 3(2x)2 = 12x2 = λxν .

For x ≥ 1
2 , the inequality holds trivially.

(B3) Obviously, we have Ar ≤ 1 for all r ≥ 1.

(B4) For all c ∈ R, we have P(C∗ = c) < 1 since the variance Var(C∗) is positive.

(B5) follows directly from the fact that D1, D2 and D3 are in (0, 1) almost surely.

Thus, Theorem 7.5 implies the following result.

THEOREM 7.6. The limit C∗ of the normalized number C∗n = Cn−E[Cn]
n of key comparisons in

the dual-pivot Quicksort algorithm “Count” admits a bounded density function fC ∈ C∞(R).

8 Analysis of the Number of Swaps

We now come to the analysis of the number of swaps. Usually, the term swap describes the
exchange of the values of two variables. Recall that in addition to the swap-operations (see
lines 13, 19, 31, 33 and 34 in Algorithm 1), we also use rotate3 -operations in order to move
elements around (see line 28 in Algorithm 1).

1: procedure swap(x, y)
2: tmp ← x

3: x ← y

4: y ← tmp

leer

1: procedure rotate3(x, y, z)
2: tmp ← x

3: x ← y

4: y ← z

5: z ← tmp

This raises the question of how we should count the number of rotate3 -operations in terms of
the unit swaps. As Wild suggested in his Ph.D. thesis [23, Section 3.2.2], we could consider
a different unit of cost—the number of write accesses to the array—instead of counting the
number of swaps. One swap exactly needs two write accesses whereas a rotate3 -operation
needs three write accesses to the array. In the following, we will therefore count a rotate3 -
operation as 1.5 swaps.

31

Analysis of the Number of Swaps

Remark: Instead of using the rotate3 -operation in line 28 of Algorithm 1, we could also use
two swap-operations. However, this would increase the number of write accesses to the array
since two swap-operations need exactly four write accesses.

For any n ≥ 0, let TS(n) denote the number of swaps during the first partitioning step and
let Sn denote the total number of swaps in the dual-pivot Quicksort algorithm “Count” when
sorting a random permutation of {1, . . . , n}.

8.1 The Average Number of Swaps

For n ≥ 2, the number TS(n) of swaps during the first partitioning step includes

� I(n)
1 + 1

2 S
+
n swaps for the small elements (since there is one swap for each small element

compared to p first and a rotate3 -operation, i.e. 1.5 swaps, for each small element
compared to q first),

� I(n)
3 − L+

n swaps for the large elements compared to p first,

� M+
n swaps for the medium elements compared to q first and

� two swaps at the end in order to bring the pivots to their final positions (both line 33
and line 34 of Algorithm 1 need two write accesses to the array).

Adding this up, we obtain

TS(n) = 2 + I
(n)
1 + I

(n)
3 + 1

2S
+
n +M+

n − L+
n . (5)

It therefore follows from Lemma 5.7, Lemma 5.8 and Lemma 6.3 that, for n ≥ 2, the expected
number of swaps during the first partitioning step is

E[TS(n)] = 2 + E[I(n)
1] + E[I(n)

3] + E[S+
n +M+

n − L+
n]− 1

2E[S+
n]

= 2 + n− 2
3 + n− 2

3 + 0− 1
2

(
1
12n−

7
24 + 1

8(n− 1{n even})

)

= 5
8n+ 13

16 −
1

16(n− 1{n even})
. (6)

We can now derive an exact expression for the expected number of swaps in the Quicksort
algorithm “Count”:

THEOREM 8.1. For n ≥ 4, the average number of swaps in the dual-pivot Quicksort algo-
rithm “Count” when sorting a random permutation of {1, . . . , n} is

E[Sn] =3
4nHn + 1

20nH
alt
n −

4
5n+ 3

4Hn + 1
20H

alt
n −

23
160 −

1
40(−1)n

−
1{neven}

320

(3
n− 1 + 1

n− 3

)
+
1{nodd}

320

(1
n

+ 3
n− 2

)
.

32

Analysis of the Number of Swaps

Proof. Recall that the expected number E[Sn] of swaps for the sorting procedure and the ex-
pected number E[TS(n)] of swaps during the first partitioning step are linked by the following
equality for n ≥ 2:

E[Sn] = 6
n(n− 1)

n−2∑
k=0

(n− k − 1)E[Sk] + E[TS(n)].

Thus, we have to solve the above recurrence with E[S0] = E[S1] = 0. In his master’s thesis
[22, Section 4.2.1], Wild presents an elementary derivation of the closed form of E[Sn] and
obtains the following result for n ≥ 4:

E[Sn] = 1(n
4
) n∑
i=5

(
i

4

)
i−2∑
j=3

(
E[TS(j + 2)]− 2j

j + 2E[TS(j + 1)] + j(j − 1)
(j + 2)(j + 1)E[TS(j)]

)

+ n+ 1
5

(
E[TS(4)] + 1

2E[TS(2)]
)
. (7)

Note that E[Sn] is linear in E[TS(n)], such that we may compute the contributions for each
summand of E[TS(n)] separately. Using the representation (6), we have that E[TS(n)] has
the form an + b − 1

16
1

n−1{n even}
(with a = 5

8 and b = 13
16). Due to linearity, we have that

E[Sn] = E[S(1)
n] − 1

16E[S(2)
n], where E[S(1)

n] and E[S(2)
n] denote the contributions of the terms

an + b and 1
n−1{n even}

to E[Sn], respectively. The case that the expected partitioning costs
have the form an+ b has already been analyzed in Section 4.2.1.1 of Wild [22] and, for n ≥ 4,
we obtain

E[S(1)
n] = 3

4nHn −
33
40n+ 3

4Hn −
27
160 . (8)

In order to compute the contribution E[S(2)
n] of the non-linear part, we set µn := 1

n−1{n even}

for n ≥ 2. Considering (7), we have to compute the double sum

1(n
4
) n∑
i=5

(
i

4

)
i−2∑
j=3

(
µj+2 −

2j
j + 2µj+1 + j(j − 1)

(j + 2)(j + 1)µj
)
.

Plugging in the values of µj , µj+1 and µj+2 yields for i ≥ 5

i−2∑
j=3

(
µj+2 −

2j
j + 2µj+1 + j(j − 1)

(j + 2)(j + 1)µj
)

=
i−2∑
j=3

(−1)j(j+2
2
)

= −4Halt
i + 2(−1)i

i
− 17

6 ,

where the last equality follows easily by induction on i. Furthermore, we get for n ≥ 4 (e.g.

33

Analysis of the Number of Swaps

by induction on n) that

1(n
4
) n∑
i=5

(
i

4

)(
−4Halt

i + 2(−1)i

i
− 17

6

)
= −17

30n−
4
5nH

alt
n −

4
5H

alt
n −

17
30 + 2

5(−1)n

+
1{neven}

20

(3
n− 1 + 1

n− 3

)
−
1{nodd}

20

(1
n

+ 3
n− 2

)
.

Using (7), we obtain

E[S(2)
n] = 1(n

4
) n∑
i=5

(
i

4

)
i−2∑
j=3

(
µj+2 −

2j
j + 2µj+1 + j(j − 1)

(j + 2)(j + 1)µj
)

+ n+ 1
5

(
µ4 + 1

2µ2

)

= −2
5n−

4
5nH

alt
n −

2
5 −

4
5H

alt
n + 2

5(−1)n

+
1{neven}

20

(3
n− 1 + 1

n− 3

)
−
1{nodd}

20

(1
n

+ 3
n− 2

)
. (9)

Considering that E[Sn] = E[S(1)
n]− 1

16E[S(2)
n], the claim follows from (8) and (9).

An alternative proof of Theorem 8.1 uses generating functions and can be found in the ap-
pendix. From the preceding theorem, we can now derive an asymptotic expansion of the
expected number of swaps.

COROLLARY 8.2. The average number of swaps in the dual-pivot Quicksort algorithm
“Count” when sorting a random permutation of {1, . . . , n} is

E[Sn] = 3
4n log(n) +An+ 3

4 log(n) + O(1),

where A = −4
5 + 3

4γ −
1
20 log(2) = −0.40174561 . . . and n→∞.

Proof. The result follows directly from Theorem 8.1 by plugging in the following asymptotic
expansions (see Lemma 8.1 of Aumüller et. al [2] and Section 9 of Graham, Knuth and
Patashnik [7]):

Halt
n = − log(2) + O

(1
n

)
,

Hn = log(n) + γ + O
(1
n

)
.

8.2 Distributional Analysis of the Number of Swaps

As already shown, the total number Sn of swaps satisfies the following distributional recursion
for n ≥ 2:

Sn
d=

3∑
r=1
S(r)
I

(n)
r

+ TS(n),

34

Analysis of the Number of Swaps

where (S(1)
j)0≤j≤n, (S(2)

j)0≤j≤n, (S(3)
j)0≤j≤n and (TS(n), I(n)) are independent and S(r)

j is
distributed as Sj for r ∈ {1, 2, 3} and j ≥ 0. We now define the normalized number of swaps
by S∗0 = 0 and

S∗n = Sn − E[Sn]
n

for n ≥ 1.

Then, (S∗n)n≥0 is a sequence of centered, square-integrable random variables with

S∗n
d=

3∑
r=1

A(n)
r S

∗(r)
I

(n)
r

+ b
(n)
S , n ≥ 2,

where (S∗(1)
j)0≤j≤n, (S∗(2)

j)0≤j≤n, (S∗(3)
j)0≤j≤n and (b(n)

S , I(n)) are independent, S∗(r)j is dis-
tributed as S∗j for r ∈ {1, 2, 3}, j ≥ 0 and

A(n)
r = I

(n)
r

n
and b

(n)
S = 1

n

(
TS(n)− E[Sn] +

3∑
r=1

E[S
I

(n)
r
|I(n)
r]

)
.

Just as in the previous section, we check the following three conditions in order to apply
Theorem 6.2:

(A1)
(
A

(n)
1 , A

(n)
2 , A

(n)
3 , b

(n)
S

) `2−→ (A1, A2, A3, bS) as n→∞.

(A2)
3∑
r=1

E[A2
r] < 1.

(A3) E
[
1{

I
(n)
r ≤`

}
∪
{
I

(n)
r =n

}(A(n)
r)2

]
→ 0 for ` ≥ 0, r ∈ {1, 2, 3} and n→∞.

(A1): We already know (see Lemma 6.4) that A(n)
r = I

(n)
r
n converges to Ar := Dr in L2 for

r ∈ {1, 2, 3} and as n → ∞. Furthermore, according to Lemma 6.6 and Corollary 8.2, as
n→∞, we have

1
n

(
−E[Sn] +

3∑
r=1

E[S
I

(n)
r
|I(n)
r]

)
L2−→ 3

4

3∑
r=1

Dr log(Dr).

It therefore remains to show the convergence of 1
nTS(n). Using representation (5), we have

TS(n)
n

= 2
n

+ I
(n)
1
n

+ I
(n)
3
n

+ S+
n

2n + M+
n

n
− L+

n

n
.

Lemma 6.4 and Lemma 7.2 now imply as n→∞:

TS(n)
n

L2−→ D1 +D3 + 1{D3>D1}
(1

2D1 +D2 −D3
)

= 1{D3>D1}
(3

2 D1 +D2
)

+ 1{D3≤D1}(D1 +D3).

35

Analysis of the Number of Swaps

Remark: Once again, the limit is not very surprising: If D3 > D1, almost all elements are
compared to q first and thus, we need one swap for almost every medium element and a
rotate3 -operation (1.5 swaps) for almost every small element. If D3 < D1, on the contrary,
almost all elements are compared to p first and we have one swap for almost every small or
large element.

The conditions (A2) and (A3) follow just as in the previous section. Theorem 6.2 then
implies the following result.

THEOREM 8.3. The normalized number S∗n = Sn−E[Sn]
n of swaps when sorting a random

permutation of {1, . . . , n} with the dual-pivot Quicksort algorithm “Count” converges in dis-
tribution and with second moments to a random variable S∗ whose distribution L(S∗) is the
(among all centered, square-integrable distributions) unique solution of the following equation:

S∗ d=
3∑
r=1

DrS∗(r) + 3
4

3∑
r=1

Dr log(Dr) +D1 +D3 + 1{D3>D1}
(1

2D1 +D2 −D3
)
,

where S∗(1), S∗(2), S∗(3) and (D1, D2, D3) are independent and S∗(r) is distributed as S∗ for
r ∈ {1, 2, 3}.

Just as in the previous section, we can asymptotically compute the variance of the number
Sn of swaps.

COROLLARY 8.4. As n→∞, we have

Var(Sn) ∼ σ2
S n

2,

where σ2
S = 47

48 −
3
32π

2 + 3
32 log(2) = 0.118873802

Proof. With bS := 0.75
3∑
r=1

Dr log(Dr) +D1 +D3 + 1{D3>D1}(
1
2D1 +D2 −D3), we have

E[(S∗)2] = 2 E[b2S] = 2 E

(3
4

3∑
r=1

Dr log(Dr) +D1 +D3 + 1{D3>D1}
(1

2D1 +D2 −D3
))2

= 47
48 −

3
32π

2 + 3
32 log(2) = 0.118873802

In combination with Theorem 8.3, the claim follows.

Just as in Section 7.3, we obtain the existence of a smooth density function of the limit S∗.

THEOREM 8.5. The limit S∗ of the normalized number S∗n = Sn−E[Sn]
n of swaps in the

dual-pivot Quicksort algorithm “Count” admits a bounded density function fS ∈ C∞(R).

Proof. The existence of a smooth density follows directly from Theorem 7.5 as conditions
(B1)–(B5) are satisfied (see Section 7.3).

36

The Correlation between Key Comparisons and Swaps

9 The Correlation between Key Comparisons and Swaps

In order to analyze the correlation between the number of key comparisons and the number
of swaps, we will use the multivariate version of Theorem 6.2. We set

X0 =
(

0
0

)
and Xn =

(
C∗n
S∗n

)
for n ≥ 1,

where C∗n = Cn−E[Cn]
n is the normalized number of key comparisons and S∗n = Sn−E[Sn]

n the
normalized number of swaps. Thus, (Xn)n≥0 is a sequence of centered, square-integrable
random variables in R2 satisfying the distributional recursion

Xn
d=

3∑
r=1

A(n)
r X

(r)
I

(n)
r

+ b
(n)
X

for n ≥ 2, where (X(1)
j)0≤j≤n, (X(2)

j)0≤j≤n, (X(3)
j)0≤j≤n and (b(n)

X , I(n)) are independent, X(r)
j

is distributed as Xj for r ∈ {1, 2, 3}, j ≥ 0 and

A(n)
r = 1

n

I(n)
r 0
0 I

(n)
r

 and b
(n)
X = 1

n

 TC(n)− E[Cn] +
3∑
r=1

E[C
I

(n)
r
|I(n)
r]

TS(n)− E[Sn] +
3∑
r=1

E[S
I

(n)
r
|I(n)
r]

 .
We again check the three conditions (A1)–(A3) of Theorem 6.2.

(A1): The results of the previous two sections directly imply the convergence

(
A

(n)
1 , A

(n)
2 , A

(n)
3 , b

(n)
X

) L2−→ (A1, A2, A3, bX)

as n→∞, with Ar =
(
Dr 0
0 Dr

)
for r ∈ {1, 2, 3} and

bX =
(
bC

bS

)
=


9
5

3∑
r=1

Dr log(Dr) + 1 +D2 + min {D1, D3}

3
4

3∑
r=1

Dr log(Dr) +D1 +D3 + 1{D3>D1}(
1
2D1 +D2 −D3)

 .

(A2): We have
∥∥AtrAr∥∥op = D2

r for r ∈ {1, 2, 3} and therefore

3∑
r=1

E
[∥∥∥AtrAr∥∥∥op

]
=

3∑
r=1

E[D2
r] = 1

2 < 1.

Condition (A3) follows just as before. Using Theorem 6.2, we get the following result.

37

The Correlation between Key Comparisons and Swaps

THEOREM 9.1. The normalized bivariate random vector Xn converges in distribution and
with second mixed moments to a random variable X whose distribution L(X) is the (among
all centered, square-integrable distributions) unique solution of the following equation:

X
d=

3∑
r=1

(
Dr 0
0 Dr

)
X(r) +


9
5

3∑
r=1

Dr log(Dr) + 1 +D2 + min {D1, D3}

3
4

3∑
r=1

Dr log(Dr) +D1 +D3 + 1{D3>D1}(
1
2D1 +D2 −D3)

 ,

where X(1), X(2), X(3) and (D1, D2, D3) are independent and X(r) is distributed as X for
r ∈ {1, 2, 3}.

We can now analyze the asymptotic covariance Cov(Cn,Sn) between the number of key com-
parisons and swaps.

COROLLARY 9.2. As n→∞, we have

Cov(Cn,Sn) ∼ σC,S n2,

where σC,S = 43
20 −

9
40π

2 + 7
40 log(2) = 0.0506397663 Moreover, concerning the correlation

coefficient between Cn and Sn, as n→∞, we obtain

Corr(Cn,Sn) = Cov(Cn,Sn)√
Var(Cn)

√
Var(Sn)

∼ 0.298755

Proof. By Theorem 9.1, we have as n→∞

1
n2 Cov(Cn,Sn) = 1

n2 Cov(nC∗n + E[Cn], nS∗n + E[Sn]) = Cov(C∗n,S∗n)

= E[C∗nS∗n]→ E[X1X2],

where X1 and X2 denote the first and second component of the limit X from Theorem 9.1.
From the preceding theorem, using that X(1), X(2), X(3) and (D1, D2, D3) are independent
and that X(1), X(2) and X(3) are centered, we get

E[X1X2] = E
[(3∑

r=1
DrX

(r)
1 + bC

)(3∑
r=1

DrX
(r)
2 + bS

)]

= E
[3∑
r=1

D2
rX

(r)
1 X

(r)
2

]
+ E[bC bS]

= 1
2 E[X1X2] + E[bC bS].

38

The Correlation between Key Comparisons and Swaps

Solving for E[X1X2] and using (3) and a computer algebra system, we obtain

E[X1X2] = 2 E [bC bS] = 43
20 −

9
40π

2 + 7
40 log(2) = 0.0506397663

The rest follows by Corollary 7.4 and Corollary 8.4.

Remark: The computed asymptotic variances and correlations hold as well for the version of
“Count” Quicksort given in Aumüller et al. [2]. However, if we had replaced the rotate3 -
operation in line 28 of Algorithm 1 by two swap-operations, we would have obtained slightly
different results. To be more precise, we would have had

TS(n) = 2 + I
(n)
1 + I

(n)
3 + S+

n +M+
n − L+

n .

Thus, due to Lemma 5.7, the expected number of swaps during the first partitioning step would
have been

E[TS(n)] = 2 + n− 2
3 + n− 2

3 + 0 = 2
3n+ 2

3 .

Using Wild’s results [22, Section 4.2.1.1], we would have obtained that the average number of
swaps in the (modified) Quicksort algorithm “Count” when sorting an input sequence of length
n is

E[Sn] = 0.8n log(n)−An+ 0.8 log(n) +O(1),

where A = − 24
25 + 4

5γ = −0.498227 . . . and n→∞. Furthermore, we would have had

TS(n)
n

L2−→ D1 + min {D1, D3}+ 1{D3>D1}D2

as n → ∞ and we would have had the following asymptotic results: Var(Sn) ∼ 0.11966 . . . n2,
Cov(Cn,Sn) ∼ 0.044810 . . . n2 and Corr(Cn,Sn) ∼ 0.26349

39

Conclusion

10 Conclusion

The main results of this work are summarized in Table 1. For the sake of comparison, Table
1 also contains the corresponding results about classic Quicksort and YBB Quicksort.

cost measure error Classic Quicksort YBB Quicksort “Count” Quicksort
Comparisons

expectation O(log(n)) 2n log(n)− 1.51223n∗ 1.9n log(n)− 2.45829n§ 1.8n log(n)− 2.38238n‖

std. dev. o(n) 0.648277n† 0.508930n¶ 0.491620n
Swaps

expectation O(log(n)) 1
3 n log(n) + 0.08129n∗ 0.6n log(n)− 0.12367n§ 0.75n log(n)− 0.40174n

std. dev. o(n) 0.023725n† 0.328365n¶ 0.344780n
Correlation
Coefficient o(1) −0.86404‡ −0.05121¶ 0.29875

Table 1: Summary of the results: asymptotic means, standard deviations and correlation coefficients
for the number of key comparisons and the number of swaps.

As already analyzed by Wild and Nebel [24] and Aumüller and Dietzfelbinger [1], respectively,
YBB Quicksort needs 5 % and “Count” Quicksort 10 % less key comparisons than classic
Quicksort in the asymptotic average. The asymptotic standard deviation of the number of
key comparisons when using YBB Quicksort or “Count” Quicksort is more than 20 % smaller
than the corresponding asymptotic standard deviation in classic Quicksort.

However, when considering the number of swaps, it is just the other way around: YBB
Quicksort needs 80 % more swaps and “Count” Quicksort even 125 % more swaps than classic
Quicksort in the asymptotic average. While the number of swaps in classic Quicksort is highly
concentrated around its mean, the asymptotic standard deviation when using YBB Quicksort
or “Count” Quicksort is much higher.

Regarding the asymptotic correlation coefficient between key comparisons and swaps, it
is striking that the number of comparisons and the number of swaps are positively corre-
lated in “Count” Quicksort, whereas they are almost perfectly negatively correlated in classic
Quicksort. Wild, Nebel and Neininger [25] give the following explanation for the negative
correlation in classic Quicksort: “A “good” run w. r. t. comparisons needs balanced parti-
tioning, but the more balanced partitioning becomes, the higher is the potential for misplaced
elements that need to be moved.” (Wild, Nebel and Neininger [25], p. 24).
∗ see e.g. Sedgewick [19, p. 334] or Table 1 of Wild [22].
† see e.g. Hennequin [8, p. 330] or Section 3.3.3 of Wild [22].
‡ see Table 1 of Neininger [16].
§ see Theorems 3.8 and 3.9 of Wild, Nebel and Neininger [25] with M = 1.
¶ see Theorems 4.3, 4.4 and 4.6 of Wild, Nebel and Neininger [25].
‖ see Corollary 12.2 of Aumüller et al. [2].

40

Conclusion

In order to empirically validate the obtained results, we performed some simulation stud-
ies and compared the asymptotic results with sample means, sample standard deviations and
sample correlation coefficients. We use the “R” implementation given in Appendix A.3 and 500
random permutations of {1, . . . , n} for each n ∈

{
0.5 · 104, 104, 1.5 · 104, 2 · 104, 2.5 · 104, 3 · 104}.

Figure 6 shows that the sample means are very close to the asymptotic expressions, whereas
the sample standard deviations and correlations in Figure 7 are more irregular. Nevertheless,
the depicted results match our computed values from Table 1.

Comparisons

n

104 2 ⋅ 104 3 ⋅ 104

0

105

2 ⋅ 105

3 ⋅ 105

4 ⋅ 105

5 ⋅ 105

Swaps

n

104 2 ⋅ 104 3 ⋅ 104

0

105

2 ⋅ 105

Figure 6: Comparison of sample means of Cn and Sn with the asymptotic results of Table 1 (the
asymptotic results are shown in blue). For each n, the input sample consists of 500 random
permutations.

Comparisons

n

104 2 ⋅ 104 3 ⋅ 104

0.45

0.5

0.55

Swaps

n

104 2 ⋅ 104 3 ⋅ 104

0.32

0.34

0.36

Correlation

n

104 2 ⋅ 104 3 ⋅ 104

0.2

0.3

0.4

Figure 7: The two images on the left compare sample standard deviations of C∗n and S∗n with the
asymptotic results of Table 1. The rightmost image compares sample correlations and the
asymptotic correlation coefficient from Table 1. For each n, the input sample consists of
500 random permutations. The asymptotic results are shown in blue.

In the previous sections, we have seen that both the normalized number C∗n of key com-
parisons and the normalized number S∗n of swaps converge in distribution to random variables

41

Conclusion

with bounded and smooth density functions. To get an idea of how these density functions
may look like, Figure 8 shows histograms representing the relative frequencies of the values
of C∗n and S∗n for a sample of 1000 random permutations of size n = 10000. In order to
examine the relation between the number of comparisons and the number of swaps, Figure 8
additionally shows a scatter plot: Each of the 1000 datapoints is displayed as a dot, where the
normalized number of key comparisons determines the position on the horizontal axis and the
normalized number of swaps determines the position on the vertical axis. In accordance with
our results of Section 9, the scatter plot suggests a positive correlation between the number of
key comparisons and the number of swaps. For comparison, Figure 9 shows the corresponding
results when sorting with classic Quicksort (Algorithm 2).

Comparisons

0 2

0

0.5

1

Swaps

0 2

0

0.5

1

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Scatter plot

−1 0 1 2

0

1

2

Figure 8: Histograms for the distributions of C∗n and S∗n and a scatter plot (plotting S∗n against C∗n)
when sorting with the dual-pivot Quicksort algorithm “Count”. The input sample consists
of 1000 random permutations of size n = 10000.

Comparisons

−1 0 1 2 3

0

0.2

0.4

0.6

Swaps

−0.1 0 0.1

0

5

10

15

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Scatter plot

−1 0 1 2

−0.1

−0.05

0

0.05

Figure 9: Histograms for the distributions of C∗n and S∗n and a scatter plot (plotting S∗n against C∗n)
when sorting with the classic Quicksort algorithm. The input sample consists of 1000
random permutations of size n = 10000.

42

Appendix

A Appendix

A.1 An Alternative Proof of Theorem 8.1

Recall that the average number E[Sn] of swaps and the average number E[TS(n)] of swaps
during the first partitioning step are linked by the recurrence

E[Sn] = 6
n(n− 1)

n−2∑
k=0

(n− k − 1)E[Sk] + E[TS(n)], (n ≥ 2)

with E[S0] = E[S1] = 0. Following Hennequin [9] and Wild [22], we want to solve this
recurrence by using generating functions. We set

S(z) :=
∑
n≥0

E[Sn] zn and T (z) :=
∑
n≥0

E[TS(n)] zn

and use the following lemma (which is Lemma 10.2 in Aumüller et al. [2]).

LEMMA A.1. With the notation as above, we have

S(z) = (1− z)3
∫ z

0
(1− y)−6

∫ y

0
(1− x)3 T ′′(x) dx dy.

In Section 8.1, we have shown that, for n ≥ 2, the average number of swaps during the first
partitioning step is

E[TS(n)] = 5
8n+ 13

16 −
1

16(n− 1{n even})
,

i.e. E[TS(n)] has the form an+b− 1
16

1
n−1{n even}

(with a = 5
8 and b = 13

16). As E[Sn] is linear in
E[TS(n)], we can split E[TS(n)] and compute the contributions of the linear term an+ b and
the non-linear term separately. Due to linearity, we have E[Sn] = E[S(1)

n] − 1
16E[S(2)

n], where
E[S(1)

n] and E[S(2)
n] denote the contributions of the terms an + b and 1

n−1{n even}
to E[Sn],

respectively. With the result for linear partitioning costs in Section 4.2.1.1 of Wild [22], we
obtain for n ≥ 4:

E[S(1)
n] = 3

4nHn −
33
40n+ 3

4Hn −
27
160 . (10)

In order to compute the contribution E[S(2)
n] of the non-linear part, we set

S2(z) :=
∑
n≥2

E[S(2)
n] zn and T2(z) :=

∑
n≥2

1
n− 1{n even}

zn.

Using the expansion
∑
n>k

1{n−k odd}
n−k zn = zkartanh(z) which is valid for all k ∈ Z (where

43

Appendix

artanh(z) := 1
2 log(1+z

1−z), see Aumüller et. al [2, p. 26]) for k = 0, we obtain

T2(z) =
∑
n≥2

(
1{n even}
n− 1 +

1{n odd}
n

)
zn =

∑
n≥1

1{n odd}
n

zn+1 +
∑
n≥2

1{n odd}
n

zn

= z artanh(z) + artanh(z)− z.

Differentiating twice yields

T ′2(z) = artanh(z) + z

1− z2 + 1
1− z2 − 1,

T ′′2 (z) = 2 z + 1
(1− z2)2 .

From Lemma A.1, we obtain

S2(z) = (1− z)3
∫ z

0
(1− y)−6

∫ y

0
(1− x)3 T ′′2 (x) dx dy

= (1− z)3
∫ z

0
(1− y)−6

∫ y

0
(1− x)3 2 x+ 1

(1− x2)2 dx dy

= (1− z)3
∫ z

0
(1− y)−6

∫ y

0
2 1− x

1 + x
dx dy

= (1− z)3
∫ z

0
(1− y)−6(4 log(y + 1)− 2y) dy

= − 2z
5(1− z)2 −

1
20(1− z)3artanh(z) + 4 log(1 + z)

5(1− z)2 −
1
6z

3 + 9
20z

2 − 7
20z.

Thus, we have found a closed form of the generating function S2 of E[S(2)
n] from which we

can now derive the exact value of E[S(2)
n] by taking coefficients. To this end, we use several

identities concerning generating functions. It is well-known that

z

(1− z)2 =
∑
n≥0

nzn,

Furthermore, since we have
∑
n>k

1{n−k odd}
n−k zn = zkartanh(z) for all k ∈ Z (see Aumüller et al.

[2, p. 26]), we obtain

(1− z)3artanh(z) =
∑
n≥1

1{n odd}
n

zn − 3
∑
n≥2

1{n even}
n− 1 zn + 3

∑
n≥3

1{n odd}
n− 2 zn −

∑
n≥4

1{n even}
n− 3 zn.

Moreover, we have (see Aumüller et al. [2], p. 27)

log(1 + z)
(1− z)2 = −

∑
n≥1

nHalt
n zn −

∑
n≥1
Halt
n zn + 1

2
∑
n≥0

(−1)nzn − 1
2
∑
n≥0

zn.

44

Appendix

Altogether, we obtain for n ≥ 4:

E[S(2)
n] =− 2

5n−
4
5nH

alt
n −

2
5 −

4
5H

alt
n + 2

5(−1)n

− 1
20

[
1{n odd}

(1
n

+ 3
n− 2

)
− 1{n even}

(3
n− 1 + 1

n− 3

)]
. (11)

We can now compute the exact average number of swaps in the dual-pivot Quicksort algorithm
“Count” for n ≥ 4 by combining (10) and (11):

E[Sn] = E[S(1)
n]− 1

16E[S(2)
n]

= 3
4nHn + 1

20nH
alt
n −

4
5n+ 3

4Hn + 1
20H

alt
n −

23
160 −

1
40(−1)n

−
1{neven}

320

(3
n− 1 + 1

n− 3

)
+
1{nodd}

320

(1
n

+ 3
n− 2

)
.

A.2 Algorithms

Algorithm 2 Classic Quicksort with Sedgewick-Hoare Partitioning
1: procedure Classic(A, left, right)
2: // We assume a sentinel value A[left− 1] = −∞
3: if right− left ≥ 1 then
4: p← A[right]
5: i← left− 1; j ← right
6: do
7: do i← i+ 1 while A[i] < p
8: do j ← j − 1 while A[j] > p
9: if j > i then swap A[i] and A[j]

10: while j > i
11: swap A[i] and A[right]
12: Classic(A, left, i− 1)
13: Classic(A, i+ 1, right)

Algorithm 2 presents a pseudocode implementation for classic Quicksort by Sedgewick using
Hoare’s crossing-pointer technique (see Algorithm 1 in Wild’s master’s thesis [22]). It chooses
the rightmost element as pivot (as in Program 1.2 of Sedgewick and Flajolet [21]) and uses
two pointers i and j which scan the input from left and right, stop whenever they find a
misplaced element and swap the misplaced elements. The following algorithm (Algorithm
3) shows a version of YBB Quicksort as it is presented in Algorithm 1 of Wild, Nebel and
Neininger [25] with M = 1 (i.e. without using Insertionsort for short subproblems).

45

Appendix

Algorithm 3 YBB Dual-Pivot Quicksort Algorithm by Yaroslavskiy, Bentley and Bloch
1: procedure YBB(A, left, right)
2: if right ≤ left then
3: return
4: if A[right] < A[left] then
5: p← A[right]; q ← A[left]
6: else
7: p← A[left]; q ← A[right]
8: i← left+ 1; k ← right− 1; j ← i
9: while j ≤ k do

10: if A[j] < p then
11: swap A[i] and A[j]
12: i← i+ 1
13: else
14: if A[j] ≥ q then
15: while A[k] > q and j < k do
16: k ← k − 1
17: if A[k] ≥ p then
18: swap A[j] and A[k]
19: else
20: swap A[j] and A[k]; swap A[i] and A[j]; i← i+ 1
21: k ← k − 1
22: j ← j + 1
23: A[left]← A[i− 1] and A[i− 1]← p
24: A[right]← A[k + 1] and A[k + 1]← q
25: YBB(A, left, i− 2)
26: YBB(A, i, k)
27: YBB(A, k + 2, right)

46

Appendix

A.3 Implementation in R

1

2 ## the following implementations of dual - pivot Quicksort " Count " and classic Quicksort
3 ## additionally count the number of key comparisons and the number of swaps
4

5 # ###
6 # ######### ALGORITHM " COUNT " (as it is described in Algorithm 1) ###########################
7 # ###
8

9 ### Partitioning function " Count " ###
10 PartitionCount <- function (left , right){
11 comparisons <<- comparisons + 1
12 if (A[left] > A[right]){
13 q <- A[left]; p <- A[right]}
14 else{
15 p <- A[left]; q <- A[right]}
16 i <- left + 1; k <- right - 1; j <- i
17 d <- 0 # holds the difference between small and large elements
18 while (j <= k){
19 if (d >= 0){
20 comparisons <<- comparisons + 1
21 if (A[j] < p){
22 tmp <- A[i]; A[i] <<- A[j]; A[j] <<- tmp # swap A[i] and A[j]
23 swaps <<- swaps + 1
24 i <- i+1; j <- j+1; d <- d+1}
25 else{
26 comparisons <<- comparisons + 1
27 if (A[j] < q){j <- j+1}
28 else {
29 tmp <- A[j]; A[j] <<- A[k]; A[k] <<- tmp # swap A[j] and A[k]
30 swaps <<- swaps + 1
31 k <- k -1; d <- d -1}}}
32 else{
33 comparisons <<- comparisons + 1
34 while (A[k] > q){
35 k <- k -1; d <- d -1; comparisons <<- comparisons + 1}
36 if (j <= k){
37 comparisons <<- comparisons + 1
38 if (A[k] < p){
39 tmp <- A[k]; A[k] <<- A[j]; A[j] <<- A[i]; A[i] <<- tmp # rotate3 (A[k],A[j],A[i])
40 swaps <<- swaps + 1.5 # a rotate3 - operation is counted as 1.5 swaps
41 i <- i+1; d <- d+1}
42 else{
43 tmp <- A[j]; A[j] <<- A[k]; A[k] <<- tmp # swap A[j] and A[k]
44 swaps <<- swaps + 1}
45 j <- j +1}}}
46 A[left] <<- A[i -1]; A[i -1] <<- p # swap p to its final position
47 A[right] <<- A[k+1]; A[k+1] <<- q # swap q to its final position
48 swaps <<- swaps +2
49 posp <- i -1; posq <- k+1 # posp and posq are the final positions of the pivots
50 return (c(posp , posq))
51 }
52

53

54 ### Dual - Pivot Quicksort Algorithm " Count " ###
55 DualPivotCount <- function (left , right){
56 if (right -left >= 1){
57 partition <- PartitionCount (left , right)
58 DualPivotCount (left , partition [1] -1)
59 DualPivotCount (partition [1]+1 , partition [2] -1)
60 DualPivotCount (partition [2]+1 , right)}
61 }
62

63

47

Appendix

64

65 # for permutations
66 library (" gtools ", lib.loc="˜/R/win - library /3.3")
67

68

69 ##### Verification of E[T_S(n)] for small n (n <= 10) #####
70 max_n <- 10 # change the maximal value for n here
71

72 ## our computed values for E[T_S(n)] are
73 exact _mean_ swaps <- rep (0, max_n)
74 for (n in 2: max_n){
75 if (n %% 2 == 0){ exact _mean_ swaps [n] <- 5/8 * n + 13/16 - 1/(16*(n -1))}
76 else{ exact _mean_ swaps [n] <- 5/8 * n + 13/16 - 1/(16*n)}
77 }
78

79 ## when using the partitioning strategy " Count ", we obtain
80 mean_ swaps <- rep (0, max_n)
81 for (n in 2: max_n){
82 m <- factorial (n) # number of permutations of {1 ,... ,n}
83 perm <- permutations (n,n) # set of all permutations of {1 ,... ,n}
84 comp <- rep (0,m); swap <- rep (0,m)
85 for (i in 1:m){
86 A <- perm[i ,]; comparisons <- 0; swaps <- 0
87 PartitionCount (1, n)
88 comp[i] <- comparisons ; swap[i] <- swaps
89 }
90 mean_ swaps [n] <- mean(swap)
91 }
92

93 print (exact _mean_ swaps); print (mean_ swaps) # we obtain the same results
94 # [1] 0.000000 2.000000 2.666667 3.291667 3.925000 4.550000 5.178571 5.803571 6.430556 7.055556
95

96

97 ##### Verification of E[S_n] for small n (n <= 9) #####
98 max_n <- 9 # change the maximal value for n here
99

100 ## our computed values for E[S_n] are
101 exact _mean_ swaps <- c(0 ,2 ,8/3,rep (0, max_n -3))
102 harm <- cumsum (1/ (1:10))
103 harm_alt <- cumsum (1/ (1:10) *c(-1 ,1))
104 for (n in 4: max_n){
105 if (n %% 2 == 0){
106 exact _mean_ swaps [n] <- 3/4*n*harm[n] + 1/20*n*harm_alt[n] - 4/5*n + 3/4*harm[n] +
107 1/20*harm_alt[n] - 23/160 - 1/40 - 1/320*(3/(n -1) +1/(n -3))}
108 else{
109 exact _mean_ swaps [n] <- 3/4*n*harm[n] + 1/20*n*harm_alt[n] - 4/5*n + 3/4*harm[n] +
110 1/20*harm_alt[n] - 23/160 + 1/40 + 1/320*(3/(n -2) +1/n)}
111 }
112

113 ## when using the dual - pivot Quicksort algorithm " Count ", we obtain
114 mean_ swaps <- rep (0, max_n)
115 for (n in 1: max_n){
116 m <- factorial (n) # number of permutations of {1 ,.. ,n}
117 perm <- permutations (n,n) # set of all permutations of {1 ,... ,n}
118 comp <- rep (0,m); swap <- rep (0,m)
119 for (i in 1:m){
120 A <- perm[i ,]; comparisons <- 0; swaps <- 0
121 DualPivotCount (1, n)
122 comp[i] <- comparisons ; swap[i] <- swaps
123 }
124 mean_ swaps [n] <- mean(swap)
125 }
126

127 print (exact _mean_ swaps); print (mean_ swaps) ## we obtain the same results
128 # [1] 0.000000 2.000000 2.666667 4.291667 5.925000 7.675000 9.536905 11.489286 13.527381

48

Appendix

129

130 # ######### Simulation studies ##
131

132 ##### Empirical validation of the computed asymptotic results #####
133 # change the sample sizes and the input lengths here
134 values _for_n <- c(0.5*10ˆ4 ,10ˆ4 ,1.5*10ˆ4 ,2*10ˆ4 ,2.5*10ˆ4 ,3* 10ˆ4) # vector of input sizes
135 m <- 500 # number of generated permutations
136

137 N <- length (values _for_n)
138 mean_comp <- rep (0,N); mean_swap <- rep (0,N)
139 std_comp <- rep (0,N); std_swap <- rep (0,N); corr <- rep (0,N)
140 for (j in 1:N){
141 n <- values _for_n[j]
142 swap <- rep (0,m); comp <- rep (0,m)
143 for (i in 1:m){
144 A <- sample (1:n, n, replace = FALSE); comparisons <- 0; swaps <- 0
145 DualPivotCount (1,n)
146 comp[i] <- comparisons ; swap[i] <- swaps
147 }
148 mean_comp[j] <- mean(comp); mean_swap[j] <- mean(swap)
149 std_comp[j] <- sd(comp)/n; std_swap[j] <- sd(swap)/n; corr[j] <- cor(comp , swap)
150 }
151

152 # We obtained the following results (see Figure 6 and Figure 7)
153 # mean_comp: [1] 65104.12 141981.03 224763.23 309740.30 398046.39 487445.48
154 # mean_swap: [1] 29884.37 65011.14 102149.82 140316.41 180168.38 219945.66
155 # std_comp: [1] 0.5036020 0.4586641 0.4801899 0.5144635 0.5000543 0.5145687
156 # std_swap: [1] 0.3380717 0.3370387 0.3537372 0.3240614 0.3466012 0.3475795
157 # corr: [1] 0.2725368 0.3304496 0.2328610 0.3143647 0.2440217 0.3050550
158

159

160 ##### Histograms and Scatter Plot #####
161

162 n <- 10ˆ4 # change the input length here
163 m <- 10ˆ3 # change the number of permutations here
164

165 swap <- rep (0,m); comp <- rep (0,m)
166 for (i in 1:m){
167 A <- sample (1:n, n, replace = FALSE); comparisons <- 0; swaps <- 0
168 DualPivotCount (1,n)
169 comp[i] <- comparisons ; swap[i] <- swaps
170 }
171

172 ## if n is even , the average number of comparisons and swaps is
173 exact _mean_comp <- 1.8*n*sum (1/(1:n)) - 0.2*n*sum (1/(1:n)*c(-1 ,1)) - 89/25*n + 67/40*sum (1/(1:n)) -
174 3/40*sum (1/(1:n)*c(-1 ,1)) - 83/800 + 0.1 - 1/320*(1/(n -3) +3/(n -1))
175 exact _mean_ swaps <- 0.75*n*sum (1/(1:n)) + 0.05*n*sum (1/(1:n)*c(-1 ,1)) - 0.8*n + 0.75*sum (1/(1:n)) +
176 0.05*sum (1/(1:n)*c(-1 ,1)) - 23/160 - 1/40 - 1/320*(1/(n -3) +3/(n -1))
177

178 ## create the images
179 par(mfrow =c(1 ,3))
180

181 hist ((comp - exact _mean_comp)/n, breaks =15 , freq=FALSE , col=" grey92 ", main=" Comparisons ",
182 xlab="", ylab="")
183 hist ((swap - exact _mean_ swaps)/n, breaks =15 , freq=FALSE , col=" grey92 ", main=" Swaps ",
184 xlab="", ylab="")
185 plot ((comp - exact _mean_comp)/n ,(swap - exact _mean_ swaps)/n, pch =19 , cex =0.2 , xlab="", ylab="",
186 frame .plot = FALSE , main=" Scatter plot")
187

188

189

190

191

192

193

49

Appendix

194

195 # ###
196 # ######### CLASSIC QUICKSORT ALGORITHM (as it is described in Algorithm 2) #################
197 # ###
198

199 ClassicQuicksort <- function (left , right){
200 # we assume that there is a sentinel value A[left -1] = -infinity
201 if (right -left >= 1){
202 p <- A[right] # choose rightmost element as pivot
203 i <- left -1; j <- right
204 repeat {
205 repeat {i <- i+1; comparisons <<- comparisons +1; if(A[i] >= p){ break }}
206 repeat {j <- j -1; comparisons <<- comparisons +1; if(A[j] <= p){ break }}
207 if (j > i){
208 tmp <- A[i]; A[i] <<- A[j]; A[j] <<- tmp # swap A[i] and A[j]
209 swaps <<- swaps +1}
210 if(j <= i){ break }
211 }
212 tmp <- A[i]; A[i] <<- A[right]; A[right] <<- tmp # swap p to its final position
213 swaps <<- swaps +1
214 ClassicQuicksort (left , i -1)
215 ClassicQuicksort (i+1, right)}
216 }
217

218 ## Note that we have to insert a sentinel value A[0] which is smaller than all elements in A,
219 ## i.e. in order to sort a permutation A of {1 ,... ,n}, we procede as follows :
220 ## A <- c(0, A); ClassicQuicksort (2, n+1); A <- A[-1]
221

222

223

224 ##### Verification of the average number of comparisons and swaps (n <= 9) #####
225 max_n <- 9 # change the maximal value for n here
226

227 ## the exact expected number of comparisons and swaps when sorting a
228 ## permutation of {1 ,... ,n} is
229 exact _mean_comp <- c(0,3,6, rep (0, max_n -3))
230 exact _mean_ swaps <- c(0 ,1 ,11/6,rep (0, max_n -3))
231 harm <- cumsum (1/ (1:10))
232 harm_alt <- cumsum (1/ (1:10) *c(-1 ,1))
233 for (n in 4: max_n){
234 exact _mean_comp[n] <- 2 * (n+1) * (sum (1/(1:(n+1))) - 4/3)
235 exact _mean_ swaps [n] <- 1/3 * (n+1) * (sum (1/(1:(n+1))) - 1/3) - 1/2
236 }
237

238 ## when using ClassicQuicksort , we obtain
239 mean_comp <- rep (0, max_n); mean_ swaps <- rep (0, max_n)
240 for (n in 1: max_n){
241 m <- factorial (n) # number of permutations of {1 ,.. ,n}
242 perm <- permutations (n,n) # set of all permutations of {1 ,... ,n}
243 comp <- rep (0,m); swap <- rep (0,m)
244 for (i in 1:m){
245 A <- c(0, perm[i ,]); comparisons <- 0; swaps <- 0
246 ClassicQuicksort (2, n+1)
247 comp[i] <- comparisons ; swap[i] <- swaps
248 }
249 mean_comp[n] <- mean(comp); mean_ swaps [n] <- mean(swap)
250 }
251

252 print (exact _mean_comp); print (mean_comp)
253 # [1] 0.00000 3.00000 6.00000 9.50000 13.40000 17.63333 22.15238 26.92143 31.91270
254 print (exact _mean_ swaps); print (mean_ swaps)
255 # [1] 0.000000 1.000000 1.833333 2.750000 3.733333 4.772222 5.858730 6.986905 8.152116

50

REFERENCES

References

[1] Martin Aumüller and Martin Dietzfelbinger (2015) Optimal Partitioning for Dual-Pivot
Quicksort, ACM Trans. Algorithms 12, Art. 18, 36 pp.

[2] Martin Aumüller, Martin Dietzfelbinger, Clemens Heuberger, Daniel Krenn and Helmut
Prodinger (2016+) Dual-Pivot Quicksort: Optimality, Analysis and Zeros of Associated
Lattice Paths. Preprint. URL http://arxiv.org/abs/1611.00258.

[3] Martin Aumüller, Martin Dietzfelbinger and Pascal Klaue (2016) How Good Is Multi-
Pivot Quicksort? ACM Trans. Algorithms 13, Art. 8, 47 pp.

[4] Peter J. Bickel and David A. Freedman (1981) Some Asymptotic Theory for the Boot-
strap. The Annals of Statistics 9, 1196–1217.

[5] Herbert A. David and Haikady N. Nagaraja (2003) Order Statistics. Wiley-Interscience,
third edition. ISBN 0-471-38926-9.

[6] James A. Fill and Svante Janson (2000) Smoothness and Decay Properties of the Limiting
Quicksort Density Function. Mathematics and Computer Science (Versailles, 2000), 53–
64. Trends Math., Birkhäuser, Basel.

[7] Ronald L. Graham, Donald E. Knuth and Oren Patashnik (1994) Concrete Mathematics.
A Foundation for Computer Science. second edition, Addison-Wesley.

[8] Pascal Hennequin (1989) Combinatorial Analysis of Quicksort Algorithm. Informatique
théorique et applications 23, 317–333.

[9] Pascal Hennequin (1991) Analyse en moyenne d’algorithmes : tri rapide et arbres de
recherche. Ph.D. Thesis, Ecole Polytechnique, Palaiseau.

[10] C. A. R. Hoare (1962) Quicksort. The Computer Journal 5, 10–15.

[11] Donald E. Knuth (1998) The Art Of Computer Programming: Searching and Sorting.
Addison-Wesley, second edition.

[12] Shrinu Kushagra, Alejandro López-Ortiz, Aurick Qiao, and J. Ian Munro (2014) Multi-
Pivot Quicksort: Theory and Experiments. In: McGeoch, C.C., Meyer, U. (ed.) SIAM
Meeting on Algorithm Engineering and Experiments (ALENEX), pp. 47–60.

[13] Kevin Leckey (2016+) On Densities for Solutions to Stochastic Fixed Point Equations.
Preprint. URL http://arxiv.org/abs/1604.05787.

[14] Hosam M. Mahmoud (2000) Sorting: A Distribution Theory. John Wiley & Sons.

51

REFERENCES

[15] Markus E. Nebel, Sebastian Wild and Conrado Mart́ınez (2016) Analysis of Pivot Sam-
pling in Dual-Pivot Quicksort: A Holistic Analysis of Yaroslavskiy’s Partitioning Scheme.
Algorithmica 75, 632–683.

[16] Ralph Neininger (2001) On a Multivariate Contraction Method for Random Recursive
Structures with Applications to Quicksort. Random Structures Algorithms 19, 498–524.

[17] Uwe Rösler (1991) A Limit Theorem for “Quicksort”. Informatique théorique et Applica-
tions/Theoretical Informatics and Applications 25, 85–100.

[18] Uwe Rösler (2001) On the Analysis of Stochastic Divide and Conquer Algorithms. Algo-
rithmica 29, 238–261.

[19] Robert Sedgewick (1977) The Analysis of Quicksort Programs. Acta Informatica 7, 327–
355.

[20] Robert Sedgewick (1980) Quicksort. Reprint of the author’s Ph.D. Thesis.

[21] Robert Sedgewick and Philippe Flajolet (1996) An Introduction to the Analysis of Algo-
rithms. Addison-Wesley- Longman.

[22] Sebastian Wild (2012) Java 7’s Dual Pivot Quick-
sort. Master’s Thesis. University of Kaiserslautern. URL
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/3463

[23] Sebastian Wild (2016) Dual-Pivot Quicksort and Beyond: Analysis of Multiway Par-
titioning and Its Practical Potential. Ph.D. Thesis. University of Kaiserslautern. URL
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4468

[24] Sebastian Wild and Markus E. Nebel (2012) Average Case Analysis of Java 7’s Dual
Pivot Quicksort. In Leah Epstein and Paolo Ferragina, editors, European Symposium on
Algorithms 2012, volume 7501 of LNCS, pages 825–836. Springer.

[25] Sebastian Wild, Markus E. Nebel and Ralph Neininger (2015) Average Case and Dis-
tributional Analysis of Dual-Pivot Quicksort, ACM Trans. Algorithms 11, Art. 22, 42
pp.

52

