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Background: High-dimensional biomedical data are frequently clustered to identify subgroup structures
pointing at distinct disease subtypes. It is crucial that the used cluster algorithm works correctly.
However, by imposing a predefined shape on the clusters, classical algorithms occasionally suggest a
cluster structure in homogenously distributed data or assign data points to incorrect clusters. We ana-
lyzed whether this can be avoided by using emergent self-organizing feature maps (ESOM).
Methods: Data sets with different degrees of complexity were submitted to ESOM analysis with large
numbers of neurons, using an interactive R-based bioinformatics tool. On top of the trained ESOM the dis-
tance structure in the high dimensional feature space was visualized in the form of a so-called U-matrix.
Clustering results were compared with those provided by classical common cluster algorithms including
single linkage, Ward and k-means.
Results: Ward clustering imposed cluster structures on cluster-less ‘‘golf ball”, ‘‘cuboid” and ‘‘S-shaped”
data sets that contained no structure at all (random data). Ward clustering also imposed structures on
permuted real world data sets. By contrast, the ESOM/U-matrix approach correctly found that these data
contain no cluster structure. However, ESOM/U-matrix was correct in identifying clusters in biomedical
data truly containing subgroups. It was always correct in cluster structure identification in further canon-
ical artificial data. Using intentionally simple data sets, it is shown that popular clustering algorithms typ-
ically used for biomedical data sets may fail to cluster data correctly, suggesting that they are also likely
to perform erroneously on high dimensional biomedical data.
Conclusions: The present analyses emphasized that generally established classical hierarchical clustering
algorithms carry a considerable tendency to produce erroneous results. By contrast, unsupervised
machine-learned analysis of cluster structures, applied using the ESOM/U-matrix method, is a viable,
unbiased method to identify true clusters in the high-dimensional space of complex data.
� 2017 The Authors. Published by Elsevier Inc. This is an open access article under theCCBY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

High-dimensional data is increasingly generated in biomedical
research. An intuitive approach at utilizing these data is the search
for structures such as the organization into distinct clusters. For
example, gene expression profiling by grouping genes and samples
simultaneously is a widespread practice used to identify distinct
subtypes of diseases [1–3]. Usually, disease-specific expression-
patterns are displayed on a clustered heatmap [4] as the most pop-
ular graphical representation of high dimensional genomic data
[5]. Such plots show the cluster, respectively distance, structure
at the margin of the heatmap as a dendrogram. A typical example
result of this approach is shown in Fig. 1 that resembles results of
genetic profiling analyses where several subgroups were suggested
[2,3,6,7].

However, the data underlying the heatmap in Fig. 1 is displayed
in Fig. 2. It consists of an artificial data set with 4002 points, in a 3D
view resembling a golf ball [8], that with its equidistant distance
distribution lacks any cluster structure. The apparent structure
seen in the heatmap of Fig. 1 (left panel) is a direct result from a
weakness of most clustering algorithms. That is, these methods
impose a structure onto the data instead of identifying structure
in the data. The majority of clustering algorithms use an implicit
or explicit shape model for the structure of a cluster, such as a
sphere in k-means or a hyperellipsoid in Ward clustering. This
means, given a predefined number of clusters k, a clustering
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Fig. 1. Visualization of high dimensional data. Left panel: data presented in the form of a clustered heatmap as commonly used to identify groups of subjects (rows) sharing a
similar gene expression profile. Data is presented color coded with smaller values in red and larger values in green. The dendrogram at the left margin of the matrixplot shows
the hierarchical cluster structure. This suggests several distinct clusters up to possibly 4–11 subgroups, for which the right panel shows a silhouette plot for a six cluster
solution. The silhouette coefficients for the six clusters indicate how near each sample is to its own relative to neighboring clusters. Values near +1 indicate that the sample is
far away from the neighboring clusters while negative values indicate that those samples might have been assigned to the wrong cluster. The average silhouette coefficient is
positive. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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algorithm calculates the coverage of the data with k of these geo-
metric shapes, independently of whether or not this fits the struc-
ture of the data. This can result in erroneous cluster associations of
samples or in the imposing of cluster structures non-existent in the
data.
The example (Figs. 1 and 2) shows how cluster algorithms may
suggest a more complex data structure than truly present. Cluster-
ing algorithms such as those mentioned above are implemented in
standard data analysis software packed with laboratory equipment
or in widely used statistical data analysis software packages.



Fig. 2. Golf ball data set (data set #1) from the Fundamental Clustering Data Suite
(FCPS) [8]. This is the data on which the clustering shown in Fig. 1 was based. This
data set contains 4002 points on a sphere with equal distances of each point to its
six nearest neighbors.
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However, it is imperative that the quality of the algorithm for
biomedical data structure analysis correctly reflects the truly
included clusters. Toward this end, emergent self-organizing fea-
Fig. 3. U-matrix representation of the golf ball data set (data set #1, see Fig. 2) showing
grid of 82 � 100 neurons where opposite edges are connected. The dots indicate the so
those neurons whose weight vector is most similar to the input. The U-matrix is flat and s
that the gold ball data contains no cluster structure at all, which is correct. Compare th
ture maps (ESOM) are proposed as a viable, unbiased alternative
method to identify true clusters in the high-dimensional data
space produced in biomedical research [9,10], or, as a comparable
method the vector-filed representation of high-dimensional struc-
tures [11]. ESOM/U-matrix overcomes imposing of clusters by
addressing the structures in the high dimensional data without
assuming a specific cluster form in which the clusters need to be
squeezed. Moreover, ESOM/U-matrix rate is an intuitive, haptically
interpretable representation with a sound basis in bioinformatics
[12].

Therefore, the present work aimed at analyzing whether erro-
neous cluster identification can be avoided by the application of
ESOM [13] with the use of the U-matrix [14]. As a start point, when
applying this method to the same data shown in Fig. 2, no cluster
structure was suggested (Fig. 3). Hence, the present paper will
point at research pitfalls of clustering analysis and proposes an
approach that circumvents major errors of other algorithms, that
unfortunately are the standard in this field and therefore often rou-
tinely chosen by data scientists involved in biomedical research.
2. Methods

2.1. Data sets

The first data set consisted of the above-mentioned ‘‘golf ball”
data composed of 4002 data points. The points are located on the
surface of a sphere at equal distances from each of the six nearest
neighbors. This data set was taken from the ‘‘Fundamental Cluster-
ing Problems Suite (FCPS)” freely available at https://www.uni-
marburg.de/fb12/datenbionik/data [8]. This repository comprises
a collection of intentionally simple data sets with known
the result of a projection of the 4002 points evenly spaced on a sphere onto a toroid
-called ‘‘best matching units” (BMUs) of the self-organizing map (SOM), which are
tructures as evident in the 3D view (top) and in the top view (bottom). This indicates
e imposture of a structure by classical clustering algorithms in Fig. 1.
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Fig. 4. Cluster analyses of two cluster-less data sets, i.e., the ‘‘uniform cuboid” (left) and the ‘‘S folded” (right) data sets (#2 and #3, respectively. Top panels: 3D display of the
original data sets. Middle panels: Data presented in the form of a clustered heatmap as commonly used to identify groups of subjects (rows). Data is presented color coded
with smaller values in red and larger values in green. The dendrogram at the left margin of the matrixplot shows the hierarchical cluster structure identified by the ward
algorithm suggesting the existence of several subgroups in the cluster-less data. Bottom panels. U-matrix representation of data sets #2 and #3 showing the result of a
projection of the data points onto a toroid grid of 82 � 100 neurons where opposite edges are connected. The dots indicate the so-called ‘‘best matching units” (BMUs) of the
self-organizing map (SOM), which are those neurons whose weight vector is most similar to the input. The U-matrix fails to display valleys clearly separated by ridges. Hence,
a clustering attempt fails with this method, which is the correct result for the present data sets. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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classifications offering a variety of problems at which the perfor-
mance of clustering algorithms can be tested. The data sets in FCPS
are especially designed to test the performance of clustering algo-
rithms on particular challenges, for example, outliers or density
versus distance defined clusters can be tested on the algorithms.

The second and third data sets present data sets akin to set #1,
i.e., also of structure-less data. Specifically, the second data set,
called ‘‘uniform cuboid” was constructed by filling a cuboid with
uniformly distributed random numbers in x, y and z directions.
The third data set, called ‘‘S folded” consisted of uniformly dis-
tributed random data on a two dimensional plain that was subse-
quently folded to form the letter ‘‘S” in the third dimension. In both
data sets, a group structure was clearly absent by construction,
similarly to the first data set.



Fig. 5. U-matrix representation of a classical dataset composed of microarray data of acute myeloid or lymphoblastic leukemia first used to propose the use of clustering
algorithms to automatically discover distinctions between genetic profiles without previous knowledge of these classes [15] (data set #4). The figure shows the result of a
projection of the data points onto a toroid grid 4000 neurons where opposite edges are connected. The cluster structure emerges from visualization of the distances between
neurons in the high-dimensional space by means of a U-matrix [36]. The U-matrix was colored as a geographical map with brown or snow-covered heights and green valleys.
Thus, valleys indicate clusters and watersheds indicate borderlines between different clusters. On the 3D-display (top) of the U-matrix, the valleys, ridges and basins can be
seen. Valleys indicate clusters of similar drugs. The mountain range with ‘‘snow-covered” heights separates main clusters of leukemia. On the top view (bottom), the dots
indicate the so-called ‘‘best matching units” (BMUs) of the self-organizing map (SOM), which are those neurons whose weight vector is most similar to the input. The BMUs
are colored according to the obtained clustering of the data space, i.e., in magenta for acute myeloid leukemia (AML) and in light blue for acute lymphoblastic leukemia (ALL).
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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A fourth and fifth data sets originated from the biomedical lit-
erature. Specifically, a classical data set that had been assembled to
demonstrate the feasibility of cancer classification based solely on
gene expression monitoring was chosen [15]. The data was avail-
able at https://bioconductor.org/packages/release/data/experi-
ment/html/golubEsets.html. In brief, this data set comprised
microarray analyses of 72 bone marrow samples (47 acute lym-
phoblastic leukemia, ALL, 25 acute myeloid leukemia, AML) that
had been obtained from acute leukemia patients at the time of
diagnosis. Following preparation and hybridization of RNA from
bone marrow mononuclear cells, high-density oligonucleotide
microarrays analyses had been performed for 6817 human genes
[16]. The original analyses had identified roughly 1100 genes reg-
ulated in the leukemia samples to a higher extent than expected by
chance. This gene set was available for identifying cluster struc-
tures in a typical biological data set (data set #4). The expectation
at the clustering algorithm was to reproduce the original data set
composition of ALL versus AML [15]. Subsequently, the cluster
structure was destroyed by permutation, i.e., patients were ran-
domly assigned to a gene expression vector without regard of the
original association respectively clinical diagnosis (data set #5).

In a sixth data set, the complexity of the second data set was
further increased. A set of microarray data comprising differen-
tially expressed genes was available from a previous publication
[2]. The data consisted of whole-genome expression profiles from
patients with leukemia or controls, specifically, from 266 patients
with acute myeloid leukemia, 15 patients with acute promyelo-
cytic leukemia, 163 patients with chronic lymphocytic leukemia,
and 108 healthy matched controls [2]. The expectation at the
ESOM/U-matrix algorithm was to reproduce the composition of
this data set.

The seventh to tenth data sets were again, as data sets #1–#3,
artificial data sets created for testing clustering algorithms taken
from the FCPS. The selection comprised the ‘‘target”, ‘‘two dia-
monds”, ‘‘wing nut” and ‘‘L-sun” data sets, named according to
their visual appearance (Fig. 8 left column). These data sets pose
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Fig. 6. Analysis of permutated microarray data (data set #5) obtained from data set #4 with the two-cluster structure destroyed by permutation of the data. Left: Ward
clustering of the data, indicated by the dendrogram above the matrixplot of the permutated microarray data of acute myeloid or lymphoblastic leukemia [15]. Observation of
the dendrogram would suggest, as expected, a two-cluster structure. Right: U-matrix display of the data. A cluster structure was clearly absent.
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different degrees of challenge on the clustering algorithm. That is,
in the ‘‘target” data set there are distinct outliers, in the two ‘‘two
diamonds” data set the clusters almost touch at one corner. The
‘‘wing nut” data set contains two clearly separated clusters with
different densities just at the touching borders of the clusters.
Finally, ‘‘L-sun” is a simple data set with three clearly distinct clus-
ters of different shapes that can be used to identify the borders of
the geometrical model for a cluster shape that is often implicitly
imposed onto the data structure by the cluster algorithm.

2.2. Analysis of the data cluster structures

Data were analyzed using the R software package (version 3.3.1
for Linux; http://CRAN.R-project.org/ [17]). The main analytical
methods made use of unsupervised machine learning to identify
structures within the data space [18]. This was obtained by the
application of emergent self-organizing feature maps (ESOM) that
are based on a topology-preserving artificial neuronal network
(Kohonen SOM [13,19]) used to project high-dimensional data
points xi 2 RD onto a two dimensional self-organizing network con-
sisting of a grid of neurons. There are two different prototypical
usages of SOM, those where the neurons represent clusters, and
those where the neurons represent a projection of the high dimen-
sional data space. In SOMs where the neurons are identified with
clusters in the data space, typically a small number of neurons is
used. It can be shown that this type of SOM usage is identical to
a k-means type of clustering algorithm [20]. The second prototype
are SOMs where the map space is regarded as a tool for the char-
acterization of the otherwise inaccessible high dimensional data
space. A characteristic of this SOM usage is the large number of
neurons. Thousands or tens of thousands neurons are used. Such
SOMs allow the emergence of intrinsic structural features of the
data space (ESOM). Emergence in this regard is a precisely defined
phenomenon of multi agent systems [21].

The central formula for SOM learning is
Dwi ¼ gðtÞhðbmui; ; r; tÞðxi �wiÞ where xi is a data point, bmui the
closest neuron for xi in the SOM (best matching unit, BMU), wi

the weight vector of neuron ni, h(. . .) the neighborhood and
gðtÞ 2 ½0;1� the learning rate. Learning rate and neighborhood are
decreased during learning [15]. Let Ui be the set of neurons in
the immediate neighborhood of a neuron ni in the map space.
The U-height of a neuron uh(ni) is the sum of all data distances d
(. . .) from the weight of ni to the weight vectors of the neurons in
Ui: uhðniÞ ¼

P
n2Ui

dðwðniÞ;wðnÞÞ. A visualization of all U-heights at
the neuron’s coordinates in an appropriate way gives the U-
matrix [10].

The U-matrix is the canonical tool for the display of the distance
structures of the input data on ESOM [14]. Specifically, the U-
matrix is based on a planar topology of the neuron space. Embed-
ding the neuron space in a finite but borderless space such as a
torus avoids the problems of borderline neurons [14]. High dimen-
sional datasets are usually projected by ESOM onto a finite but bor-
derless output space. The typical space is a grid of neurons on a
torus (toroid). This avoids the problem of neurons on borders
and subsequently boundary effects [14]. For toroid ESOM neuron
grids four adjoining instances of the same U-matrix are used in
order to visualize all the ridges and mountains of the borderless
U-matrix. This is called a tiled display [14]. The tiled display has,

http://CRAN.R-project.org/


Fig. 7. U-matrix representation of a microarray analyses derived data set comprising blood gene expression data in healthy subjects and in patients with acute myeloid
leukemia, acute promyelocytic leukemia or chronic lymphocytic leukemia [2] (data set #6). The figure shows the result of a projection of the data points onto a toroid grid
4000 neurons where opposite edges are connected. The cluster structure emerges from visualization of the distances between neurons in the high-dimensional space by
means of a U-matrix [36]. The U-matrix was colored as a geographical map with brown or snow-covered heights and green valleys. Thus, valleys indicate clusters and
watersheds indicate borderlines between different clusters. On the 3D-display (top) of the U-matrix, the valleys, ridges and basins can be seen. Valleys indicate clusters of
similar drugs. The mountain range with ‘‘snow-covered” heights separates main clusters. On the top view (bottom), the dots indicate the so-called ‘‘best matching units”
(BMUs) of the self-organizing map (SOM), which are those neurons whose weight vector is most similar to the input. The BMUs are colored according to the obtained
clustering of the data space, i.e., light blue for healthy subjects, red for acute myeloid leukemia (AML), green for acute promyelocytic leukemia (APL) and yellow for chronic
lymphocytic leukemia (CLL). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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however, the disadvantage, that each input data point is repre-
sented on four locations. Therefore, the tiled U-matrix is trimmed
at cluster borders such that only one representation of each data
point remains. This leads to U-matrix landscapes with curved
boundaries [10].

Thus, the D dimensional feature space was projected onto a two
dimensional toroid grid [14] of so-called neurons. The size of the
grid was chosen to meet the following three main criteria. Firstly,
it should not be too small as it has been shown that in that case
SOMs degenerate to a k-means like clustering algorithm with no
potential to show emergent structures on a U-matrix [20]. Sec-
ondly, it should not be too large to avoid that each input data point
can be represented on the map on a separate neuron with a sur-
rounding area of other neurons interpolating the data space. This
would have the effect that the cluster borders, i.e., their visualiza-
tion as ‘‘mountains” in the U-matrix (see next paragraph) will be
broadened and flattened. Thirdly, edge ratios between 1.2 and
the golden ratio of 1.6 should be applied as it has been observed
that SOMs perform better if the edge lengths of the map are not
equal [23]. Combining the requirements for size and form of the
SOM, as a starting point for the exploration of structures in a data
set a SOM with 4000 (80 � 50) neurons has been successful in
many applications and was approximately applied to the present
data sets #4–#6. The size can be increased in larger data sets to
provide two or more neurons to each data point, such as for the
present data set #1 with n = 4002 points that were projected on
a grid with 82 rows and 100 columns. For small data sets of, e.g.,
less than 200 points, the number of neurons provided for each
point can be further increased from two to approximately six to
obtain a better resolution of the projection.

On the SOMs with sizes as determined according to the heuris-
tics described above, each neuron held the input vector from the
high-dimensional space and a further vector carrying ‘‘weights”
of the same dimensions. The weights were initially randomly
drawn from the range of the data variables and subsequently
adapted to the data during the learning phase that used 25 epochs.
A trained emergent self-organizing map (ESOM) is obtained that
represents the data points on a two-dimensional toroid map as
the localizations of their respective ‘‘best matching units” (BMU),
i.e., neurons on the grid that after ESOM learning carried the vector
that was most similar to a subjects’ data vector. On top of the
trained ESOM the distance structure in the high dimensional fea-
ture space was visualized in the form of a so-called U-matrix
[12,24]. This facilitated drug classification by displaying the
distances between the BMUs in the high-dimensional space in a
color-coding that employed a geographical map analogy where
large ‘‘heights” represent large distances in the feature space while
low ‘‘valleys” represented data subsets which are similar.
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‘‘Mountain ranges” with ‘‘snow-covered” heights visually separate
the clusters in the data [25]. These procedures were performed
using our interactive R-based bioinformatics tool available as R
library ‘‘Umatrix” (M. Thrun, F. Lerch, Marburg, Germany, http://
www.uni-marburg.de/fb12/datenbionik/software [22]; file http://
www.uni-marburg.de/fb12/datenbionik/umatrix.tar.gz; publica-
tion and CRAN upload of the R library under the same name pend-
ing). Results of ESOM/U-matrix based clustering were compared
with the cluster structure identified by using classical clustering
algorithms including single-linkage, Ward and k-means clustering
[26].
3. Results

Applying Ward hierarchical clustering to the cluster-less ‘‘golf
ball” data set (data set #1) resulted in the suggestion of a cluster
structure (Fig. 1 left). According to the visual inspection of the den-
drogram at the left margin of the matrix plot, Ward clustering
hinted at least two very distinct clusters up to possibly 10–11 sub-
groups. In sharp contrast with this result was the interpretation of
the structure analysis by applying the ESOM and U-matrix
approach to the cluster-less golf ball data set. A flat U-matrix
resulted (Fig. 3), which correctly indicated the absence of any
Fig. 8. Comparative performance of the ESOM/U-matrix (right column) versus classical cl
clusters can be easily spotted visually (left column). Each data set represents a certain
standard clustering methods, e.g. single-linkage, Ward und k-means, are not able to solve
cluster structure. In the latter, the cluster structure emerges from visualization of the dist
The U-matrix was colored as a geographical map with brown or snow-covered heights an
between different clusters. For further examples, see the ‘‘Fundamental Clustering Proble
in this figure legend, the reader is referred to the web version of this article.)
meaningful cluster structure. Similar results were obtained with
the cluster-less ‘‘uniform cuboid” (data set #2) and the also
cluster-less ‘‘S folded” (data set #3) examples. That is, while ward
clustering again found clearly separated groups (Fig. 4 middle pan-
els), the ESOM/U-matrix method produced no meaningful cluster
structure as indicated by the impossibility to observe a clear sepa-
ration of data by ridges in the geographical landscape analogy of
the U-matrix representation (Fig. 4 bottom panels).

While the ESOM/U-matrix method did not impose a cluster
structure where none was in the data, it was able to identify a clus-
ter structure in biomedical data previously assembled to demon-
strate the feasibility of cancer classification based solely on gene
expression monitoring [15]. The U-matrix resulting from that data
set correctly indicated the original clustering into acute myeloid
leukemia and acute lymphoblastic leukemia (data set #4), which
was evident as a large mountain range or watershed between the
two types of leukemia (Fig. 5). By contrast, when destroying the
cluster structure of data set #4 by permutation, the results of
applying the ward algorithm could still be interpreted as suggest-
ing two clustersin data set #5 whereas the ESOM/U-matrix clearly
indicated no coherent cluster structure (Fig. 6). A successful clus-
tering of biomedical data was again obtained in the more complex
leukemia data set (#6) where the ESOM/U-matrix method indi-
cated four different clusters that could be clearly seen as valleys
ustering algorithm in identifying groups in pre-structured data sets (#7–#10) where
problem that is solved by clustering algorithms with varying success. While the
all problems satisfactorily, the ESOM/U-matrix method provides always the correct
ances between neurons in the high-dimensional space by means of a U-matrix [36].
d green valleys. Thus, valleys indicate clusters and watersheds indicate borderlines
ms Suite (FCPS)” freely available at [8]. (For interpretation of the references to color
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surrounded by ‘‘snow-covered” mountain ranges (Fig. 7). Hence,
the ESOM/U-matrix method correctly identified groups in microar-
ray data with a clear cluster structure.

The superior performance of the ESOM/U-matrix approach to
classical clustering algorithms prevailed in further data sets
(#7–10) assembled with known a priori classifications [8]. Specifi-
cally, data sets from the FCPS provided similar evidence for consis-
tently correct cluster identification when using the ESOM/U-matrix
(Fig. 8), whereas other methods such as single linkage, Ward or
k-means occasionally failed in correct cluster assignment of the
data points.
4. Discussion

In the analysis of multivariate biomedical data, the identifica-
tion of clusters respectively subgroups is a task of central interest.
Interpretations of data, the planning of subsequent experiments or
the establishment of stratified therapy approaches may depend
upon a valid cluster structure found in a biomedical data set. The
present analysis emphasized that classical hierarchical clustering
algorithms carry a considerable tendency to produce erroneous
results. This can lead to wrong cluster associations of samples or
to the imposing of cluster structures that are non-existent in the
data. Both types of error will skew the data interpretation. This is
a known phenomenon in clustering [27,28]. To ameliorate it, inde-
pendent methods to (in)validate the cluster structures such as sil-
houette plots [29] have been recommended to be added to the
cluster analysis of biomedical data [30]. However, these plots can
also be misleading. The silhouette plot in Fig. 1 (top right panel)
shows the results obtained for ‘‘golf ball” data set with six clusters
obtained using theWard algorithm. The average silhouette value of
0.22 apparently confirmed the clustering. This value is consider-
ably higher than the average silhouette value of 0.09 elsewhere
presented to support a cluster structure spotted in the gene
expression profiles from 21 breast cancer data sets (Fig. 2 in [31]).

The use of ESOM [13] and the U-matrix [14] provides obvious
advantages to classical clustering algorithms and their combina-
tion with supporting assessments. ESOM are based on the
topology-preserving projection of high-dimensional data points
onto a two dimensional self-organizing network. The U-matrix
allows to visually (in)validate cluster structures in the data
directly, without the help of additional analyses of plots. If a high
dimensional data set contains distance and/or density based clus-
ters, the resulting U-matrix landscape possesses a clear valley -
mountain ridge - valley structure as in the present AML/ALL data
set (Fig. 4). Importantly, the ESOM/U-matrix does not impose clus-
ter structures onto a data set. For data without any cluster struc-
ture, such as the ‘‘golf ball”, ‘‘uniform cuboid” and ‘‘S folded” data
sets, the resulting U-matrix landscapes were a conglomerate of
humps and dips without letting any consistent structure to be
observed. This allows visually assessing the quality of a clustering
as an implicit analytical step during clustering [13,14].

Unsupervised machine-learned analysis of cluster structures
provides a valid method for subgroup identification in high-
dimensional biomedical data. However, as already mentioned in
the methods section of this paper, it has to be noted that a previous
contemplation of Kohonen-type neuronal networks for analyzing
high-dimensional biomedical data, in particular microarray data
[32,33], provided a reluctant judgment of their utility in this field.
This owes to an unfortunate selection of only 30 or less neurons for
the output grid in these attempts. It has been shown that with such
small numbers of neurons, SOM are equivalent to a k-means clus-
tering and lose their superior clustering performance [20]. By con-
trast, the presently proposed ESOM/U-matrix uses 4000 or more
neurons, which ameliorates the problems with representing a high
dimensional space in a lower space without losing distance rela-
tions and is therefore suitable to obtain the correct cluster struc-
ture of microarray and other biomedical data.

Cluster identification is a central target in the analysis of high-
dimensional biomedical data as a general strategy for discovering
and predicting classes independently of previous biological knowl-
edge [15]. The analytical method is, however, crucial to avoid
non-reproducible pattern recognition due to an exaggeration of
accidental outliers from otherwise homogenous data sets. Consid-
ering the present demonstration with the golf ball data, previous
findings focused on the identification of an increasing number of
subgroups in, e.g., cancer data might merit reconsideration. It is
imperative, that the quality of the algorithm for data analysis cor-
rectly reflects cluster structures which are really in the data.
Toward this end, we have proposed ESOM/U-matrix method as a
viable, unbiased alternative method to identify true clusters. If a
high dimensional data set contains distance and/or density based
clusters, the resulting U-matrix landscape possesses a clear
valley-mountain ridge-valley structure. In biomedical informatics,
the method has been already successfully applied to pain-related
[34] and pharmacological [35] data sets. Apart from the presently
used R implementation, the method is also implemented available

in Matlab or JAVA (http://www.uni-marburg.de/fb12/daten-

bionik/software). In addition, the 3D structure of the U-matrix
allows intuitive cluster recognition and can provide a haptic access
to the data space by means of 3D-printing [22,25].
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