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Abstract

This thesis is concerned with quantum dynamical propagation methods suitable
for high-dimensional systems, and their application to excitation energy transfer
(EET), electron transfer (ET), and intra-molecular vibrational redistribution (IVR)
in molecular aggregates. The theoretical description of these processes, which are
often ultrafast – with time scales in the range of femtoseconds to picoseconds – is
challenging, both with regard to quantum dynamical simulations and electronic
structure calculations.

The present thesis comprises two parts. The first part concerns the implementation
of a novel quantum dynamical method based on Gaussian Wavepackets (GWPs):
the 2-Layer Gaussian-MCTDH (2L-GMCTDH) method. This method, which has
recently been proposed in [S. Römer, M. Ruckenbauer, I. Burghardt, The Journal
of Chemical Physics, 2013, 138, 064106] was implemented in a Fortran90 code
and applied to various high-dimensional test systems. The second part of the
thesis addresses the combined electronic structure and dynamical study of a novel
type of donor-acceptor systems that have been investigated in a joint project
with experimental collaboration partners at Strasbourg University. In both parts,
numerical applications focus on high-dimensional model Hamiltonians for EET and
ET processes.

Regarding the first part, the interest of using GWP-based methods is two-fold:
First, GWPs represent spatially localized basis sets that are useful for on-the-fly
dynamics in conjunction with electronic structure calculations. Second, they are
naturally suited for the explicit representation of quantum mechanical system-bath
type problems where a large number of vibrational bath modes are weakly per-
turbed from equilibrium. In this context, various methods exist that are based upon
classically evolving GWP bases. A major improvement results from variational
methods which involve optimized, non-classical GWP trajectories. In particular,
the variational Gaussian-based Multi-Configuration Time-Dependent Hartree (G-
MCTDH) and its variational Multi-Configurational Gaussians (vMCG) variant
were originally derived as semiclassical variants of the Multi-Configuration Time-
Dependent Hartree (MCTDH) method. However, the G-MCTDH and vMCG
methods mostly use Frozen Gaussian (FG) basis sets that are far less flexible than
the single-particle (SPF) representation of standard MCTDH. As a consequence, a
significantly larger number of GWPs are generally required to reach convergence.



To remedy the lack of flexibility of the FG basis sets, the abovementioned two-layer
(2L-G-MCTDH) approach has been introduced: Here, the first layer is composed
of flexible SPFs, while the second layer is composed of low-dimensional FGs. The
numerical scaling properties are significantly improved as compared with the con-
ventional G-MCTDH and vMCG schemes. The first implementation of the method
in an in-house Fortran90 code is presented, along with applications to (i) a model
of site-to-site vibrational energy flow in the presence of intra-site vibrational energy
redistribution (IVR) and (ii) a multidimensional donor-acceptor electron transfer
system described within a linear vibronic coupling model. The second system re-
lates to a model for ET at an oligothiophene-fullerene interface relevant to organic
photovoltaics. Besides the description of the implementation, a detailed assess-
ment of the convergence properties and comparison with multi-layer MCTDH
(ML-MCTDH) benchmark calculations is presented. Finally, a perspective is given
on the future combination with the existing ML-MCTDH scheme; indeed, such a
combination is straightforward since the first layer of the 2L-G-MCTDH approach
can be chosen to be orthogonal.

Regarding the second part of the thesis, two generations of a novel donor-acceptor
(DA) system for organic photovoltaics applications, involving self-assembled block
co-oligomers DA dyads and triads with perylene-diimide (PDI) accepter units, are
addressed within a collaborative project with S. Haacke and S. Mery (University of
Strasbourg). Based upon detailed excited-state electronic structure investigations
along with quantum dynamical and kinetic studies, the relevant ET formation
and recombination steps are characterized quantitatively, in view of optimizing the
chemical design and reducing recombination losses.

In a first-generation variant of the abovementioned DA systems, which involves
liquid-crystalline triads, we were able to show that a highly efficient inter-chain
ET process prevails over intra-molecular ET, leading to fast recombination. Due
to the latter, this system turns out to be inefficient for photovoltaic applications.
To fully understand the elementary steps, high-dimensional quantum dynamics
simulations were carried out using the ML-MCTDH method, in collaboration with
Matthias Polkehn from our group. In the second-generation variant, which is in
the focus of the present thesis, both the nanomorphology and the chemical design
were modified. The present work, focuses upon the aspect of chemical design, by
characterizing a series of modified DA’s, with donor units of varying length while
the PDI accepter units remain unchanged. The intra-molecular ET is observed in
these systems, but the processes are comparatively slow, of the order of tens to
hundreds of picoseconds. Hence, a kinetic analysis using the Marcus-Levich-Jortner
rate theory is employed. Among the main results of the study is that addition of an



electron donating amine unit strongly increases the lifetime of the charge-separated
state, and therefore reduced recombination losses.

Overall, the present thesis shows how a combination of high-dimensional quantum
dynamics, electronic structure calculations, and vibronic coupling model Hamil-
tonians can be employed to obtain an accurate picture of EET, ET, and IVR in
high-dimensional molecular assemblies. Furthermore, the 2L-GMCTDH method
paves the way for accurate and efficient on-the-fly calculations; a suitable set-up
for such calculations is currently in progress.





Zusammenfassung

Diese Arbeit befasst sich einerseits mit neuen methodischen Entwicklungen im
Bereich der hochdimensionalen Quantendynamik und andererseits mit der kombi-
nierten Anwendung von Quantendynamiksimulationen und elektronischen Struk-
turrechnungen an hochdimensionalen molekularen Systemen. Im Anwendungsteil
dieser Arbeit liegt der Fokus auf Energie- und Ladungstransferprozessen, sowie
der intra-molekularen Verteilung von Schwingungsenergie in molekularen Aggre-
gaten. Energie- und Ladungstransferprozesse spielen eine wichtige Rolle in vielen
reaktiven Prozessen der Chemie, Biologie und Physik. Diese treten sowohl in iso-
lierten Molekülen, als auch molekularen Aggregaten, wie Lichtsammelkomplexen
und photo-aktiven organischen Materialien, auf. Typische Zeitskalen dieser Trans-
ferprozesse befinden sich im ultra-schnellen Bereich von Femto- bis Pikosekunden.

Die vorliegende Arbeit ist in zwei Themenbereiche gegliedert. Der erste Teil be-
handelt die Implementierung einer neuartigen Quantendynamikmethode, welche
Gaußsche Wellenpakete (GWP) als Basis nutzt, die sogenannte 2-Layer-Gaussian-
Multi-Configuration Time-Dependent Hartree (2L-G-MCTDH)-Methode. Diese
Methode, die auf einer hierarchischen Darstellung der Wellenfunktion beruht, wur-
de in [S. Römer, M. Ruckenbauer, I. Burghardt, The Journal of Chemical Phy-
sics, 2013, 138, 064106] vorgeschlagen und in der vorliegenden Arbeit in einem
Fortran90-Code umgesetzt. Anhand dieses Codes wurden erste Anwendungen an
hochdimensionalen Systemen durchgeführt. Der zweite Teil dieser Arbeit befasst
sich mit der Untersuchung eines neuartigen Typs von Donor-Akzeptor-Systemen
mittels einer Kombination von elektronischen Strukturrechnungen, Quantendyna-
miksimulationen und kinetischen Simulationen. Diese Untersuchung ist Teil einer
DFG/ANR-Kooperation mit den Arbeitsgruppen von Prof. S. Haacke und Dr. S.
Méry (Universität Straßburg). Beide Teile konzentrieren sich auf Energie- und
Ladungstransferprozesse in hochdimensionalen Systemen.

Im Rahmen der Quantendynamik sind GWP-basierte Methoden von besonderem
Interesse, weil GWP-Funktionen eine lokalisierte Basis bilden und dadurch beson-
ders für semi-klassische Dynamik in Kombination mit on-the-fly elektronischen
Strukturrechnungen geeignet sind. Weiterhin sind GWP-Funktionen ebenfalls für
die explizite Beschreibung von Schwingungs-Badmoden in System-Bad Problemen
geeignet, da hier eine hohe Anzahl an schwach gekoppelten Schwingungsmoden
zu behandeln ist. Verschiedene aktuell gebräuchliche Methoden verwenden im Sin-
ne der semi-klassischen Dynamik klassisch propagierte GWP-Funktionen. Stark
verbesserte Resultate liefern allerdings nicht-klassische GWP-Trajektorien, wie



sie insbesondere in der Gauß-basierten Multi-Configuration Time-Dependent Har-
tree (G-MCTDH)-Methode oder deren variational Multiconfigurational Gaussian
(vMCG)-Variante verwendet werden. Diese Methoden wurden ursprünglich als
semi-klassische Varianten der hochflexiblen Multi-Configuration Time-Dependent
Hartree (MCTDH)-Methode konzipiert. Allerdings werden diese Methoden meist
mit sogenannten Frozen-Gaussian (FG) basierten Basissätzen genutzt. Im Ver-
gleich zur single-particle (SPF)-Basis der MCTDH-Methode sind FG-Funktionen
deutlich weniger flexibel, sodass generell eine größere Anzahl an GWP-Funktionen
benötigt wird, um konvergierte Rechnungen zu erhalten.

Um die mangelnde Flexibilität der GWP-Basis auszugleichen, wurde die oben er-
wähnte 2L-G-MCTDH Methode eingeführt. Diese basiert auf einem hierarchischen
2-Layer-Ansatz. Die erste Ebene – d.h. der erste Layer – ist dabei aus flexiblen
SPFs aufgebaut, wohingegen der zweite Layer als Summe niedrigdimensionaler FG-
Funktionen konstruiert wird. Infolgedessen sind die Skalierungseigenschaften der
Methode im Vergleich zu den herkömmlichen G-MCTDH- und vMCG-Schemata
deutlich verbessert. Eine erste Implementierung der Methode in einem Fortran90-
Code wird in dieser Arbeit vorgestellt; dabei stand insbesondere auch eine Im-
plementierung für nicht-adiabatisch gekoppelte elektronische Zustände im Vorder-
grund. Erste Anwendungen an zwei repräsentativen Modellsystemen betreffen zwei
Typen von Prozessen: Das erste System beschreibt den intra-molekularen Schwin-
gungsenergietransfer entlang einer Kette molekularer Einheiten (wie z.B. in einer
Peptidkette), in denen als Konkurrenzprozess lokale Schwingungsenergietransfer-
prozesse stattfinden. Das zweite System beschreibt den multidimensionalen La-
dungstransfer innerhalb eines Donor-Akzeptor-Systems, das anhand eines linearen
vibronischen Kopplungsmodells beschrieben wird. Neben der Anwendungsseite wird
die Implementierung im Detail besprochen und die verbesserten Skalierungseigen-
schaften sowie der Vergleich zu ML-MCTDH-Rechnungen demonstriert. Schließlich
wird eine Perspektive bezüglich der Kombination mit der ML-MCTDH Methode
vorgestellt; diese ist ohne Weiteres möglich, da die SPF-Funktionen in der obersten
Ebene (first layer) eine orthogonale Basis bilden.

Der zweite Abschnitt dieser Arbeit befasst sich mit zwei Generationen eines neuarti-
gen Donor-Akzeptor Systems zur Anwendung in der organischen Photovoltaik, das
wie oben erwähnt in den Straßburger Arbeitsgruppen von S. Méry und S. Haacke
entwickelt wurde. Die relevanten Systeme basieren auf selbst-assemblierenden Co-
Oligomer Donor-Akzeptor-Dyaden und -Triaden, die eine Perylendiimid-Akzeptor-
Einheit verwenden. Detaillierte elektronische Strukturrechnungen, insbesondere
auch für angeregte Zustände, dienen als Basis für quantendynamische und kineti-
sche Untersuchungen, um die relevanten Ladungsseparations- und- Rekombinati-



onsschritte quantitativ zu beschreiben. Die Optimierung dieser Schritte durch ein
geeignetes chemisches Design der Donor-Akzeptor-Komponenten steht im Vorder-
grund dieser Studie. Dabei sollen insbesondere Rekombinationsverluste reduziert
werden.

Bezüglich der ersten Generation des Donor-Akzeptor-Systems wurde gezeigt, dass
ein hocheffizienter inter-molekularer Ladungstransfer gegenüber dem intramoleku-
laren Ladungstransfer innerhalb einer Donor-Akzeptor-Dyade oder -Triade deutlich
bevorzugt ist. Obwohl dies zu einer ultra-schnellen initialen Ladungstrennung führt,
erweist sich das System jedoch als ineffizient für die Nutzung in der Photovoltaik.
Dies ist darauf zurückzuführen, dass aufgrund der dreidimensionalen Stapelan-
ordnung des Donor-Akzeptor-Systems die relevanten Transferintegrale gegenüber
der Rekombinationsrate vernachlässigbar sind. Eine quantendynamische Analyse
entstand in Kooperation mit Matthias Polkehn und umfasste hochdimensionale
Quantendynamiksimulationen mittels der ML-MCTDH-Methode. Die vorliegende
Arbeit konzentriert sich vor allem auf die zweite Generation der Donor-Akzeptor-
Materialen, bei der sowohl die Nanomorphologie als auch das chemische Design
modifiziert wurden. In dieser Arbeit liegt der Fokus auf letzterem Aspekt, wobei
eine systematische Untersuchung von einer Reihe modifizierter Donor-Akzeptor-
Varianten durchgeführt wurde. Die beobachteten Ladungstransferprozesse in diesen
Systemen sind allerdings vergleichsweise langsam - im Bereich von hunderten Pi-
kosekunden - weshalb eine kinetische Analyse mit Hilfe der Marcus-Jortner-Levich
Theorie angewendet wurde. Ein wesentliches Ergebnis dieser Studie zeigt, dass
durch die Einführung einer Amin-Gruppe die Lebensdauer der ladungsseparier-
ten Zustände stark verlängert und daher die Ladungsrekombinationen deutlich
reduziert wird.

Zusammenfassend zeigt diese Arbeit, dass eine Kombination von hochdimensiona-
len Quantendynamiksimulationen, elektronischen Strukturrechnungen und parame-
risierten Modellen ein detailliertes Bild von Energie- und Ladungstransferprozessen
in hochdimensionalen molekularen Aggregaten liefern kann. Mit Blick auf die ver-
wendeten quantendynamischen Methoden ist weiterhin hervorzuheben, dass die
neue 2L-G-MCTDH-Methode im Rahmen dieser Arbeit erstmalig implementiert
wurde. Neben ersten Anwendungen auf parametrisierte Modelle ebnet diese Metho-
de den Weg für genaue und effiziente on-the-fly Rechnungen. Eine entsprechende
Erweiterung der aktuellen Implementierung ist momentan in Arbeit.





Für Claudia
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Deutsche Zusammenfassung

Die vorliegende Arbeit befasst sich einerseits mit neuen methodischen Entwicklun-
gen im Bereich der hochdimensionalen Quantendynamik und andererseits mit der
kombinierten Anwendung von Quantendynamiksimulationen und elektronischen
Strukturrechnungen an hochdimensionalen molekularen Systemen. Im Anwendungs-
teil dieser Arbeit liegt der Fokus auf Energie- und Ladungstransferprozessen, sowie
der intra-molekularen Verteilung von Schwingungsenergie in molekularen Aggre-
gaten. Energie- und Ladungstransferprozesse spielen eine wichtige Rolle in vielen
reaktiven Prozessen der Chemie, Biologie und Physik. Diese treten sowohl in iso-
lierten Molekülen, als auch molekularen Aggregaten, wie Lichtsammelkomplexen
und photoaktiven organischen Materialien, auf. Typische Zeitskalen dieser Trans-
ferprozesse befinden sich im ultra-schnellen Bereich von Femto- bis Pikosekunden.

Die Herausforderung einer theoretischen Studie dieser Phänomene besteht in der
Notwendigkeit einer kombinierten Betrachtung von elektronischer Struktur und
Quantendynamik hochdimensionaler Systeme. Problematisch ist in diesem Zusam-
menhang die ungünstige, exponentielle Skalierung des Rechenaufwandes beider
Methoden mit steigender Anzahl an Freiheitsgraden. Die bestmögliche Kombinati-
on aus hoch-qualitativen elektronischen Strukturrechnungen und hochdimensiona-
len Quantendynamiksimulationen ist daher nur in seltenen Fällen anwendbar und
Näherungen müssen eingeführt werden. Dem begegnet man häufig auf zwei Arten:
Entweder durch die Verwendung von sogenannten on-the-fly Methoden, bei de-
nen Quantendynamiksimulationen durch semi-klassische Dynamikmethoden ersetzt
und mit hoch-qualitativen elektronischen Strukturrechnungen kombiniert werden,
oder durch die Anwendung von parametrisierten, vorberechneten Potentialflächen,
die durch passende Modell-Hamiltonians, wie Gitter- und vibronische Kopplungs-
Modelle, beschrieben werden. Diese werden dann in Kombination mit genauen
Quantendynamikmethoden verwendet. Im Rahmen der ersten Methode finden häu-
fig der Surface Hopping-Ansatz, die Ab Initio Multiple Spawning (AIMS)-Methode
oder klassisch und variationell propagierte Gaußsche-Wellenpakete (GWP) Anwen-
dung. Die zweite Methode wird häufig in Kombination mit der Multi-Configuration
Time-Dependent Hartree (MCTDH)-Methode und ihrer hierarchischen multi-layer
(ML-MCTDH)-Variante verwendet. Bei zu großen Systemen kann es notwendig sein,
auf gemischt quanten-klassische Methoden oder andere Ansätze zurückzugreifen.
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Diese Arbeit behandelt beide oben genannten Näherungen und kombiniert Aspekte
beider Ansätze. Sie ist dementsprechend aufgeteilt in zwei thematische Abschnitte.
Der erste Teil behandelt die Implementierung eines neuen Typs einer hierarchischen
Quantendynamikmethode, die auf GWPs als Basis aufbaut, die 2-Layer-Gaussian-
MCTDH (2L-G-MCTDH)-Methode. Diese Methode wurde in Ref. [1] vorgeschlagen
und in dieser Arbeit in einem Fortran90-Code implementiert. Vergleichbare auf
GWPs basierende Methoden sind häufig auf wenige Freiheitsgrade beschränkt. Dies
trifft besonders auf die variational Multi-Configurational Gaussian (vMCG) Me-
thode zu. Mit dieser können lediglich etwa 10 Freiheitsgraden behandelt werden,
sofern konvergierte Ergebnisse erhalten werden sollen. Diese Arbeit zeigt, dass der
neue 2L-G-MCTDH-Ansatz es erlaubt, genaue und konvergierte Ergebnisse für
100 und mehr Freiheitsgrade zu bekommen, die in ihrer Qualität an die von ML-
MCTDH Rechnungen heranreichen. In Verbindung mit on-the-fly elektronischen
Strukturrechnungen ebnet diese Methode den Weg hin zu genauen Quantendyna-
miksimulationen auf genauen Potentialflächen.

Der zweite Teil befasst sich mit der Studie eines neuen Typs eines Donor-Akzeptor-
Systems für die organische Photovoltaik. Diese Untersuchung ist Teil eines Gemein-
schaftsprojekts mit den Arbeitsgruppen von Prof. S. Haacke und Dr. S. Méry der
Universität Straßburg. Die relevanten Ladungstransferprozesse, die die Ladungs-
trennung und -rekombination beschreiben, werden mit Hilfe von elektronischen
Strukturmethoden und einer Analyse der Elektronentransferkinetik untersucht.
Besonderes Augenmerk liegt dabei auf dem Einfluss des chemischen Designs um
Ladungsrekombinationsverluste zu verringern. Weiterhin werden hochdimensionale
Quantendynamiksimulationen des Vorgänger-System vorgestellt. Diese wurden in
Kollaboration mit M. Polkehn mit der ML-MCTDH-Methode durchgeführt und
eröffnen die Möglichkeit für weiterführende Untersuchungen, die die molekulare
Packung in neuartigen Donor-Akzeptor-Materialen betrachten.

Die vorliegende Arbeit befasst sich zunächst mit der Beschreibung und Implemen-
tierung der neuartigen 2L-G-MCTDH-Methode in einem Fortran90-Code. Diese
kombiniert in einem hierarchischen Wellenfunktions-Ansatz die flexiblen single
particle functions (SPF) der konventionellen MCTDH-Methode mit einem zeit-
abhängigen GWP-Basissatz aus sogenannten frozen Gaussians (FGs). In dieser
Arbeit ist der Ansatz auf zwei Layer begrenzt, lässt sich allerdings ohne Weiteres
mit bereits existierenden hierarchischen Methoden, wie der Multi-Layer-MCTDH
(ML-MCTDH)-Methode kombinieren.



Die Verwendung von FGs begründet sich in der besseren, numerischen Stabilität
im Vergleich zu thawed Gaussians (TGs). FGs besitzen im Gegensatz zu TGs eine
feste Breite, wodurch sie an Flexibilität einbüßen. Dies ist besonders bei mehreren,
kombinierten Freiheitsgraden ausgeprägt ist. Beide Ansätze sind im Bezug auf die
Flexibilität allerdings den sehr flexiblen SPFs der MCTDH-Methode unterlegen.
Auf Grund dessen muss häufig eine große Anzahl an Basis-Funktionen (sogenannte
Konfigurationen) verwendet werden, was die Konvergenz der G-MCTDH-Methode
erschwert. In der vMCG-Methode, einem Spezialfall von G-MCTDH, werden alle
Freiheitsgrade in einer Mode kombiniert. Um konvergierte Rechnungen zu erhalten,
benötigt man daher eine große Zahl an Konfigurationen und ist in ihrer Anwendung
auf etwa 10 Freiheitsgrade limitiert. Dies liegt an der ungünstigen Skalierung der
rechenintensiven Propagation der GWPs, die mit der Anzahl der Freiheitsgrade
(d) und der Anzahl an Konfigurationen (n) exponentiell (∼ (dn)3) skaliert.

Der 2L-G-MCTDH-Ansatz verwendet im ersten Layer orthogonale SPFs, ähnlich
denen der MCTDH-Methode. Die first layer SPFs werden in diesem Fall aller-
dings durch eine Linearkombination von nicht-orthogonalen, multidimensionalen
GWPs (anstelle einer Grid-Darstellung), ähnlich des G-MCTDH-Ansatzes, aus-
gedrückt. Auf diese Weise bewegen sich die FGs in einem kleinen Subraum und
die Propagation erfordert weniger Rechenaufwand zu Vergleich mit den vMCG-
und G-MCTDH-Methoden. Die Berechnung der mean-fields im ersten und zweiten
Layer erhält auf diese Weise ein stärkeres Gewicht und muss gegen diese Ver-
besserung ausbalanciert werden. Dies erreicht man durch eine sinnvolle Wahl der
Modenaufteilung und -kombination der Freiheitsgrade des Systems. Auf diese Wei-
se können signifikante Verbesserungen der Skalierungseigenschaften im Vergleich
zu G-MCTDH und vMCG erreicht werden.

Im Rahmen dieser Arbeit wurde die Methode zur Verwendung mit nicht-adiaba-
tischen Systemen, bestehend aus mehreren elektronischen Zuständen, erweitert.
Drei Ansätze werden dazu vorgestellt: Die bereits bekannten single-set und multi-
set Varianten, sowie ein Hybrid-Ansatz. Beim single-set Ansatz wird der elek-
tronische Freiheitsgrad ähnlich wie die anderen Moden über ein eigenes Partikel
beschrieben. Die anderen SPFs gehören hier keinem elektronischen Zustand expli-
zit an. Der multi-set Ansatz hingegen stellt die Gesamtwellenfunktion als Summe
über zustandsspezifische Wellenfunktionen dar, sodass jede einem elektronischen
Zustand zugeordnet ist. Der Hybrid-Ansatz kombiniert die beiden ersten Ansätze.
Hierbei sind die first-layer Moden zustandsspezifisch, allerdings gilt dies nicht für



die zugrunde liegende GWP Basis, sondern nur für die Koeffizienten im zweiten
Layer.

Im Rahmen der Besprechung der Implementierung wird zum Einen auf den allge-
meinen Programmabauf, zum Anderen allerdings auch auf tiefer gehende Details,
wie das Speichermanagement und die effiziente Berechnung der Tensor-Form der
Wellenfunktion über eine Multi-Summen-Struktur der Matrix-Vektor Produkte
eingegangen. Hierbei wurde darauf Wert gelegt, dass das mehrmalige Berechnen
von Produktintegralen vermieden wird. Um eine effiziente Anwendbarkeit dieser
Methode gewährleisten zu können, ist es notwendig, dass die praktische Skalierung
des Programmcodes der theoretischen nahekommt. Die Skalierungseigenschaften
des implementierten Programmcodes wurden anhand zweier Modellsysteme analy-
siert und entsprechen sehr genau den theoretischen Vorhersagen und unterstreichen
eine effiziente Implementierung.

Die Methode wurde mit dem vorgestellten Programmcode erfolgreich an zwei
repräsentativen Modellsystemen angewendet. Das erste System verwendet einen
intra-molekularen Schwingungstransfer-Hamiltonian um den Energietransfer ent-
lang einer Kette von mehreren Untereinheiten (Sites) zu beschreiben. Der zwei-
te Hamiltonian beschreibt den ultra-schnellen Ladungstransfer in einem Donor-
Akzeptor System mit einer variablen Pointcaré-Rekurrenzzeit. Für beide Systeme
wurden zum Einen eine sehr gute Übereinstimmung zu Referenzmethoden, und
zum Anderen hervorragende Konvergenzeigenschaften erhalten. Eine grundlegende
Erkenntnis ist, dass die Modenverteilung und -kombination entscheidend für die
Qualität der Ergebnisse sein kann.

Typische Probleme, die bereits bei der G-MCTDH-Methode auftreten, bleiben
allerdings bestehen. Die Methode leidet an Singularitäten in den Überlapp- und C-
Matrizen, die auf Grund von zu großem Überlapp der GWPs und den infolge dessen
linearen Abhängigkeiten auftreten. Die Wahl der nicht besetzten GWPs kann dabei
einen erheblichen Einfluss auf die numerische Stabilität und die Ergebnisse haben.
Dies trifft besonders auf kombinierte Moden zu, die nur eine geringe Anzahl an
physikalischen Moden enthalten.

Die gezeigten Ergebnisse des 2L-G-MCTDH sind sehr vielversprechend. Die Me-
thode ist zudem mit bereits existierenden hierarchischen multi-layer-MCTDH-
Methoden flexibel kombinierbar, da dort lediglich der unterste layer durch die



GWPs ersetzt werden muss. Die Parallelisierung des Codes sollte es zudem möglich
machen, die Anzahl der zu behandelnden Freiheitsgrade deutlich zu erhöhen, sodass
die Methode bis zu oder sogar mehr als 1000 Freiheitsgraden anwendbar ist. Zudem
eignet sich die Methode ebenfalls zur Kombination mit on-the-fly elektronischen
Strukturrechnungen vergleichbar zur DD-vMCG Methode, da Gauß-Funktionen
eine semi-klassische Beschreibung der Trajektorien über Ort und Impuls der GWPs
ermöglichen. Da die elektronischen Strukturrechnungen – man benötigt hier die
Gradienten und den Hessian – der limitierende Faktor sind, ist es notwendig, ih-
re Anzahl zu reduzieren. Jede elektronische Strukturrechnung entspricht hierbei
einer Konfiguration aus dem Wellenfunktions-Ansatz. Im 2L-G-MCTDH werden
allerdings zum Teil deutlich über 10 000 Konfigurationen benötigt, wodurch es
unumgänglich, ist ein Sampling-Schema zu entwickeln, um die Anzahl der Konfigu-
rationen und damit den Rechenaufwand deutlich zu verringern. Dies kann zudem
mit einem Datenbank-Ansatz und Fit-Schemata basierend auf neuralen Netzwerken
erweitert werden.

Der zweite Abschnitt dieser Arbeit befasst sich mit zwei Generationen eines neuen
Donor-Akzeptor Systems, die in den Arbeitsgruppen von S. Méry und S. Haacke
der Universität Straßburg synthetisiert und spektroskopisch charakterisiert wur-
den. Diese Systeme haben die Eigenschaft selbst-assemblierte, flüssigkristalline
Strukturen zu bilden. Die vorliegende Arbeit befasst sich hauptsächlich mit der
theoretischen Untersuchung der zweiten Generation in Lösung, die eine Weiter-
entwicklung zur Ersten darstellt. Beide Systeme beinhalten gleiche Strukturtypen.
Als Akzeptor kommt stets eine Perylendiimid-Einheit zum Einsatz. Der Donor ver-
wendet als Grundstruktur eine Bisthiophen-Einheit, die häufig als Donor-Material
Verwendung findet. Die Donor und Akzeptor Einheiten sind zudem über eine
Ethylenbrücke miteinander verbunden.

Die Steady-State-Ergebnisse zum ersten System zeigen in Lösung (Chloroform)
einen zweischrittigen Ladungstransfer (CT) mit einem vorhergehenden Energie-
transfer vom Donor zum Akzeptor. Der Ladungstransfer läuft mit einer Zeitkon-
stanten von etwa 3 ps ab. Das Bild ändert sich allerdings im flüssigkristallinen
Film. Hier wird ein nur noch einschrittiger, ultra-schneller Ladungstransferprozess
innerhalb von 50 fs ohne vorgeschalteten Energietransfer beobachtet. Der Grund
für diesen ultra-schnell gebildeten CT-Zustand liegt in der molekularen Packung
der Moleküle im Flüssigkristall, in dem die molekularen Ebenen mit einem Winkel
von etwa 70° verkippt sind. Quantendynamische Rechnungen zeigen, dass es daher



nach der anfänglichen Photo-Anregung zur Bildung eines inter-molekularen CT-
Zustands, einem ladungsgetrennten CS-Zustand, zwischen benachbarten Molekülen
(CS(-1)) kommt. Es zeigt sich, dass dieser sehr stabil ist und ein quasi-stationärer
Zustand erreicht wird. Dies wird zum Einen durch sehr kleine Transferintegrale
und zum Anderen durch die resultierende Coulomb-Barriere für weiter entfern-
te CS-Zustände bedingt. Sowohl das System in Lösung, als auch das System im
Flüssigkristall zeigen eine sehr kurze Lebensdauer von nur etwa 50 fs, sodass die
mögliche Anwendung in der organischen Photovoltaik limitiert ist.

Die zweite Generation wurde mit dem Ziel entwickelt, die Lebensdauer des CT-
Zustandes stark zu verlängern. Um dies zu erreichen, wurde das System modular
aufgebaut. Die zentrale Donor-Einheit ist variabel in ihrer Länge und besteht
aus Fluoren- und Thiophen-Einheiten (Dn). Zwischen Donor und Akzeptor ist
zudem eine Verknüpfungs-Einheit eingefügt, die entweder eine Benzothiadiazol-
Gruppe (δ+) oder eine simple Phenyl-Gruppe (δ) beinhaltet. Die spektroskopische
Charakterisierung der Systeme mit elektronischen Strukturmethoden offenbart zwei
verschiedene photo-chemische Prozesse für die δ- und δ+-Gruppen. Die δ-Variante
zeigt einen Verlauf vergleichbar mit den Ergebnissen der ersten Generation in
Lösung, bei dem der Ladungstransfer auf einen Energietransfer vom Donor auf den
Akzeptor folgt. Die Zeitskalen sind allerdings um eine Größenordnung langsamer.
Bei der δ+-Variante zeigt sich stattdessen ein langsamer, direkter Ladungstransfer
innerhalb von 90 ps. Die Lebensdauer des CT-Zustandes steigt in beiden Systemen
dabei um den Faktor 10. Einen noch stärkeren Einfluss auf die Lebensdauer hat
allerdings die Einführung einer Amin-Gruppe (δ−) am anderen Ende der Donor-
Einheit. Diese verlängert die Lebensdauer in Kombination mit einer optimalen
Donorlänge von n = 1 insgesamt um den Faktor 50. Auf den photo-chemischen
Prozess des Ladungstransfers hat sie aber keinen Einfluss.

Untersuchungen mit zeitabhängiger Dichtefunktionaltheorie (TDDFT) zeigen, dass
bei der δ-Variante drei Zusände beteiligt sind, während es bei der δ+-Variante vier
sind. Beiden gemeinsam sind die lokalen, angeregten Donor- bzw. Akzeptorzustände
und der CT-Zustand. Bei der δ+-Variante findet sich ein zusätzliche lokale Donor-
zustand, der hauptsächlich auf der Benzothiadizol-Gruppe lokalisiert ist. Während
man mit der δ-Variante einen exzitonisch gekoppelten Zustand der beiden lokalen
Donor- bzw. Akzeptorzustände findet, ist dies bei der δ+-Variante nicht der Fall.



Eine Analyse der Elektron- und Lochdichten zeigt, dass durch die δ−-Gruppe
der Abstand der Schwerpunkte der Dichten vergrößert wird. Um die längere CT-
Lebensdauer durch das Anfügen der δ−-Gruppe genauer zu charakterisieren, wurde
eine kinetische Analyse mit Hilfe der Marcus-Jortner-Levich Theorie durchgeführt.
Dazu wurden sowohl experimentelle, als auch TDDFT Ergebnisse miteinbezogen.
Es zeigt sich, dass durch die δ−-Gruppe die Dichte-Schwerpunkte um bis zu 3Å
weiter voneinander entfernt sind und es damit einhergehend zu einer Verringerung
der elektronischen Kopplung kommt.

Weitergehende Untersuchungen der zweiten Generation des Donor-Akzeptor Sys-
tems behandeln die photo-chemischen Eigenschaften und Prozesse in selbst-orga-
nisierten, flüssigkristallinen Strukturen und sind aktuell in Arbeit. Die Ergebnisse
der vorgestellten Untersuchung der beiden Donor-Akzeptor Systeme zeigen, dass
das chemische Design bezüglich einer Eigenschaft lediglich als ein Baustein im
gesamten Entwicklungsprozess betrachtet werden kann, um die Lebensdauer von
CT-Zuständen in funktionellen Materialien zu steigern.

Die im Rahmen der vorliegenden Arbeit erhaltenen Ergebnisse zeigen, dass die
Kombination von elektronischen Strukturrechnungen und hochdimensionalen Quan-
tendynamiksimulationen entscheidend für die Beschreibung von Energie- und La-
dungstransferprozessen ist. Die richtige Wahl der Methode und notwendigen Nä-
herungen spielt dabei eine entscheidende Rolle im Bezug auf die Qualität und
Anwendbarkeit der Ergebnisse. In diesem Zusammenhang wurde eine neuartige
Methode implementiert und erfolgreich angewendet. Diese, auf Gaußschen Wellen-
paketen basierende, hierarchische Methode ist zudem nicht nur im Zusammenhang
mit Modell-Hamiltonians – wie in der vorliegenden Arbeit gezeigt –, sondern auch
mit on-the-fly elektronischen Strukturrechnungen anwendbar. Diesbezüglich befin-
den sich weiterführende Entwicklungen momentan in Bearbeitung.





1 | Introduction

Excitation energy transfer (EET) and electron transfer (ET) processes play an
important role in many areas of chemistry, biology, and physics. EET and ET
are crucial steps in many reactive processes involving isolated molecules as well
as molecular aggregates like light harvesting complexes, and various types of func-
tional materials employed in photovoltaics and as light emitting diodes.[2–7] To the
extent that photoinduced processes are considered, EET and ET kinetics are often
ultrafast, with characteristic time scales in the femtosecond and picosecond regime.
From the point of view of the theoretical description, the challenge is twofold, since
both quantum dynamical simulations and electronic structure calculations need
to be performed in many dimensions. Therefore, one needs to choose appropriate
methods in order to describe both aspects with sufficient accuracy. As shown in
Fig. 1.1, the optimal choice would lead one to combine accurate potentials from
high-level ab initio electronic structure methods and accurate high-dimensional
quantum dynamics. However, this combination cannot be realized in practice, due
to the unfavorable scaling properties of both electronic structure and dynamics
methods with the number of degrees of freedom. In a real-world example, one
therefore needs to employ approximations. These need to be chosen judiciously,
such that the chemical and physical properties of interest are described correctly.

To achieve reasonable approximations for high-dimensional molecular systems,
two types of approximations are currently employed. First, in the so-called di-
rect dynamics, or “on-the-fly” methods, one approximates the quantum dynamics
by performing semi-classical dynamics in combination with high-level electronic
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Figure 1.1: Sketch about the different levels of accuracy employable in the theoretical
investigation of a molecular system with quantum dynamic simulations and electronic
structure calculations.
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CHAPTER 1. INTRODUCTION

structure methods, as exemplified by the surface hopping approach,[8] the ab ini-
tio multiple spawning method (AIMS),[9–11] or classically or variationally evolving
Gaussian Wavepackets.[12–18] Second, one can resort to parametrized, pre-computed
potential energy surfaces represented by suitable model Hamiltonians, e.g., vibronic
coupling models[19–21] or lattice models.[22–24] These can be combined with accu-
rate quantum dynamical approaches, in particular multi-configurational methods
of the Multi-Configuration Time-Dependent Hartree (MCTDH)[25] family and its
hierarchical multi-layer (ML-MCTDH) variants.[26,27] If the systems are too large,
one might need to resort to mixed quantum-classical methods or reduced-dynamics
approaches.

This thesis addresses both types of approaches mentioned above, and combines
quantum dynamical and electronic structure aspects. The two main parts of the
thesis concern the following topics:

• First, the implementation of a novel hierarchical quantum dynamical method
based on Gaussian wavepackets (GWPs): the 2-Layer-Gaussian-MCTDH
(2L-G-MCTDH) method. This method, which has been proposed in Ref.
[1], has been implemented in a Fortran90 code. This method breaks the
bottleneck of currently available GWP-based approaches, especially regarding
the vMCG method which essentially cannot be converged for systems beyond
∼10-15 degrees of freedom. As shown in this thesis, the 2L-G-MCTDH
method ensures an accurate, convergeable representation for ∼ 100 degrees
of freedom and more, that is close to ML-MCTDH methods. While on-the-fly
calculations have not yet been carried out in the framework of this thesis,
a suitable set-up based upon the 2L-G-MCTDH approach is currently in
preparation.

• Second, a novel type of donor-acceptor systems for organic photovoltaics is
investigated, within a joint project in collaboration with Prof. S. Haacke and
Dr. S. Méry (University of Strasbourg). Using electronic structure methods
and a kinetic analysis, the relevant ET formation and recombination steps are
characterized, in view of optimizing the chemical design and reducing recom-
bination losses. In a first-generation variant of this system, high-dimensional
quantum dynamical studies were performed using the ML-MCTDH method
in collaboration with M. Polkehn.[28] These studies pave the way for follow-up
investigations addressing the molecular packing of novel class of DA materials.

2



Against this background, the thesis is organized as follows. In part I the fundamen-
tal methods and concepts that are needed for the description and understanding of
the two main projects are introduced. First, an introduction to electronic structure
theory (chapter 3) is given. Second, quantum-dynamical techniques are introduced,
with a focus on multi-configurational techniques and GWP-based approaches (chap-
ter 4). Last, several types of model Hamiltonians are introduced that are suitable
to describe EET and ET phenomena (chapter 5). The remaining two parts address
the implementation of the hierarchical 2L-G-MCTDH approach and its application
to EET and ET processes in many dimensions (Part II), and the investigation of
the above mentioned donor-acceptor systems (Part III).
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Part I

Theoretical Background and
Methods





2 | The Born-Oppenheimer Ap-
proximation and Beyond

2.1 The Schrödinger Equation and the Molecu-
lar Hamiltonian

Unlike very large molecular systems like proteins or nucleic acids, which are usually
studied with classical approaches such as Molecular Dynamics (MD) simulations,
for small molecular systems one is able to employ methods accounting for quantum
effects. To this end, the time-dependent Schrödinger Equation (TDSE)[29] is solved
numerically,

ĤΨ(~r, ~R, t) = ih̄
∂

∂t
Ψ(~r, ~R, t) (2.1)

The high-dimensional wave function is a function of electronic (~r) and nuclear (~R)
coordinates and time (t). Ĥ represents the Hamiltonian of the system and contains
all information and interactions for the description of the system of interest. This
equation treats the dynamics and time-dependent properties of a given system.
If the Hamiltonian of the system is time-independent, it is possible to separate
the spatial variables (~r, ~R) from the temporal dependence on t according to a
separation ansatz,

Ψ(~r, ~R, t) = φ (t)ψ
(
~r, ~R

)
(2.2)

After inserting Eqn. 2.2 in Eqn. 2.1 and rearranging the equation, the time-
independent SE (TISE) is obtained,

Ĥψ(~r, ~R) = Eψ(~r, ~R) (2.3)

Here, the discussion is focused on molecular systems employing the molecular
Hamiltonian which depends on the electronic and nuclear degrees of freedom as
follows,[30,31]

Ĥtot =−
M∑
A=1

1
2MA

∇2
I −

N∑
i=1

1
2∇

2
i −

N∑
i=1

M∑
A=1

ZA
|ri −RA|

+
M∑
A=1

M∑
B>A

ZAZB
|RA −RB|

+
N∑
i=1

N∑
j>i

1
|ri − rj|

(2.4)
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MA represents the ratio of the masses of nucleus A and an electron (such that
the electron mass is set to me = 1) and ZA is the charge of nucleus A. The first
two terms contain the kinetic energy of the system. The third term represents
the Coulomb attraction between electrons and nuclei, whereas the last two terms
denote the repulsion between pairs of nuclei and pairs of electrons. A molecule
is characterized by the number of nuclei M and electrons N (3 (M +N) spatial
degrees of freedom in total). Additionally, electrons feature an additional quantum
number to account for the spin (noting that nuclear spin will be disregarded in the
present context).

2.2 The Born-Oppenheimer Approximation
The Born-Oppenheimer (BO) approximation is one of the key approximations in
quantum chemistry. Since the nuclei are much heavier than the electrons, one can
assume that the electronic degrees of freedom respond instantaneously to changes
in the nuclear configuration.[30,31] Following this approximation, the first term of
Eqn. 2.4, the kinetic energy of the nuclei, can be neglected and the fourth term, the
repulsion between the nuclei can be considered to be constant for a given molecular
structure. The third term, the Coulomb attraction, only depends parametrically
on the nuclei. The resulting Hamiltonian is called the electronic Hamiltonian (Eqn.
2.5),[32]

Ĥel(R) =−
N∑
i=1

1
2∇

2
i −

N∑
i=1

M∑
A=1

ZA
|ri −RA|

+
N∑
i=1

N∑
j>i

1
|ri − rj|

+ V (R) (2.5)

where V (R) = ∑M
A=1

∑M
B>A

ZAZB
|RA−RB |

is an additive term for the nuclear repulsion,
which is assumed to be constant for a specific nuclear geometry. Considering this
Hamiltonian, the electronic Schrödinger equation is constructed as follows,

ĤelΨel

(
~r; ~R

)
= Eel(~R)Ψel

(
~r; ~R

)
(2.6)

where the electronic wave function and the electronic energy depend parametrically
on the nuclear geometry. This is also true for the total energy,

Etot(~R) = Eel(~R) +
M∑
A=1

M∑
B>A

ZAZB
|RA −RB|

(2.7)

The nuclear Hamiltonian Ĥnuc can be generated using the same assumptions. The
electronic coordinates are replaced by their average values, such that the nuclei
move in the average field of the electrons,
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Ĥnuc = T̂nuc + Etot
(
{~R}

)
(2.8)

with T̂nuc = −∑M
A=1

1
2MA
∇2
I . The total wave function can be written as a product

of a nuclear and an electronic wave function.,

Ψ
(
~r, ~R

)
= Θnuc (R) Ψel

(
~r; ~R

)
(2.9)

From this expression the nuclear and the electronic Schrödinger Equations may be
solved separately,

ĤelΨel

(
~r; ~R

)
= Eel(~R)Ψel

(
~r; ~R

)
(2.10)

i
∂

∂t
Θnuc

(
~R
)

=
[
T̂nuc + Etot(~R)

(
{~R}

)]
Θnuc

(
~R
)

(2.11)

where Eel(~R) from the first equation determines the potential Etot(~R) appearing
in the second equation for the nuclei.

The Born-Oppenheimer approximation is an adiabatic approximation, where nu-
clear motion takes place on a single Born-Oppenheimer potential energy surface
(PES) defined by a single ~R-dependent eigenvalue of the electronic Schrödinger
equation. The Born-Oppenheimer approximation is no longer valid when two or
more electronic states are nearly degenerate, which is known as “breakdown of
the Born-Oppenheimer approximation”. In this case, so-called non-adiabatic cou-
pling matrix elements cannot be neglected. This is typically the case in regions
exhibiting conical intersections or avoided crossings.

2.3 Beyond Born-Oppenheimer: Non-Adiabat-
ic Effects

As indicated in the last section, the BO approximation breaks down when two or
more electronic states become degenerate. Many phenomena appearing in molec-
ular physics, especially in photochemistry and photophysics, cannot be described
correctly within the BO approximation. These phenomena include dynamics at
avoided crossings and conical intersection. In order to be able to describe the
excited state quantum dynamics of a molecular system, one has to go beyond the
Born-Oppenheimer approximation and a more general ansatz is needed.

The solution of Eqn. 2.10 yields a set of electronic eigenfunctions ψi
(
~r; ~R

)
para-

metrically depending on the nuclear coordinates. The total wave function Ψ(~r, ~R, t)
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is then written as linear combination of these electronic eigenfunctions and nuclear
wave functions ϕi

(
~R
)
,[33]

Ψ(~r, ~R, t) =
∑
i

ψi
(
~r; ~R

)
ϕi
(
~R
)

(2.12)

Inserting Eqn. 2.12 into the TDSE (Eqn. 2.1) and integrating over the electronic
coordinates yields coupled equations for the nuclear wave functions ϕj

(
~R
)
,[

T̂nuc + E (R)
]
ϕj
(
~R
)
−
∑
i

Λ̂jiϕi
(
~R
)

= ih̄
∂

∂t
ϕj
(
~R
)

(2.13)

with the off-diagonal matrix elements Λ̂ji, defining the non-adiabatic coupling
operators,[33]

Λ̂ji = −
〈
ψj
(
~r; ~R

)
|T̂nuc|ψi

(
~r; ~R

)〉
(2.14)

Within the BO-approximation these coupling operators are neglected. As one can
see from Eqn. 2.14, Λ̂ji describes the coupled motion and dynamical interaction
of the electronic and nuclear degrees of freedom.[33] For a two-state model using a
more intuitive matrix representation one obtains,

ih̄
∂

∂t

ϕ1

(
~R
)

ϕ2

(
~R
) =

T̂nuc + E1

(
~R
)

Λ̂12

(
~R
)

Λ̂21

(
~R
)

T̂nuc + E2

(
~R
)ϕ1

(
~R
)

ϕ2

(
~R
) (2.15)

Eqn. 2.15 is still formulated in an adiabatic representation. But for quantum
dynamical simulations, it is often more intuitive and preferable from a numerical
point of view to use a so-called diabatic representation of the matrix formulation.
By applying an appropriate unitary transformation to the electronic wave functions,
a diabatic representation is formulated (Φdia

(
~r; ~R

)
), such that the kinetic energy

couplings Λ̂ji are replaced by potential-type couplings,

Φdia
(
~r; ~R

)
= S

(
~R
)
ψadia

(
~r; ~R

)
(2.16)

Using these diabatic electronic wave functions, Eqn. 2.15 changes to,

ih̄
∂

∂t

ϕ̃1

(
~R
)

ϕ̃2

(
~R
) =

T̂nuc + V dia
1

(
~R
)

V12

(
~R
)

V21

(
~R
)

T̂nuc + V dia
2

(
~R
)ϕ̃1

(
~R
)

ϕ̃2

(
~R
) (2.17)

This representation is in general more convenient as the calculations of the deriva-
tive couplings is avoided, which can be ill-behaved exhibiting a singularity at conical
intersections. Furthermore, the diabatic states have a well defined electronic char-
acter, giving a more intuitive understanding than the adiabatic representation. For
special cases such as diatomics and isolated two-state systems the unitary transfor-
mation can be determined analytically. However, in general a strictly diabatic basis
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does not exist.[34] Therefore, in order to perform the unitary transformation, several
methods have been developed to perform a quasi-diabatization procedure, where
the derivative couplings are approximately eliminated.[35–37] For more information
and a more detailed discussion, see Refs. [21] and [33].
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3 | Electronic Structure Theory

This chapter aims to give an overview about the electronic structure methods that
are employed in this work. The methods in this chapter are introduced against the
background of the fundamental concepts and approximations in the previous chap-
ter. As one of the basic approximate methods, the Hartree-Fock (HF) method[32] is
described. Before introducing the very efficient Density Functional theory (DFT)[38]

and its time-dependent variant (TDDFT),[39] more accurate methods such as Con-
figuration Interaction (CI),[32] second-order Møller-Plesset Perturbation Theory
MP(2),[40,41] second-order approximate Coupled Cluster (CC2)[42] and the second-
order Algebraic Diagrammatic Construction (ADC(2))[43,44] are presented, which
often serve as a high-level benchmark for DFT functionals. If not stated differently,
all equations are given in atomic units (the Planck constant h̄, the elementary
charge e, the electron mass me and the speed of light c are set to 1). Small in-
dices indicate the electronic coordinates and capital indices indicate the nuclear
coordinates.

3.1 Hartree-Fock Approximation
The Hartree-Fock approximation is one important step towards modern quantum
chemistry. To tackle many-electron problems, solving the Schrödinger Equation for
only two interacting electrons is the fundamental problem in quantum chemistry.
A significant contribution to a solution to this problem is the approach of D. R.
Hartree and V. A. Fock developed in the 1930s.

A simple, but insufficient ansatz for the N -electron wave function is the Hartree-
Product Ψel (x1, x2, . . . , xN ;R) = χi (x1)χj (x2) · · ·χk (xN). The Hartree-Product
is simply the product of one-particle spin orbitals χj (xi) for each electron.[32]

However, this does not satisfy the antisymmetry principle by Pauli, meaning that
two electrons must be distinguishable by at least one quantum number. The Pauli
principle can be fulfilled by using a Slater determinant to build an antisymmetric
wave function,
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Ψ0 (x1, x2, . . . , xN ;R) = 1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

χi(x1) χj(x1) · · · χk(x1)
χi(x2) χj(x2) · · · · · ·
· · · ·
· · · ·

χi(xN) · · · · · · χk(xN)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= |χi(x1)χj(x2)...χk(xN)〉 (3.1)

Eqn. 3.1 depicts the simplest antisymmetric wave function, which can be used to
describe the ground state of an N -electron system. The Hartree-Fock approach
is based on the variational principle, which in turn ensures that the best wave
function of a given functional form yields the lowest possible ground state energy
for this form. Using the exact wave function and the exact Hamiltonian would
yield the exact minimum energy,[32]

E0 ≥
〈
Ψ0

∣∣∣ Ĥ ∣∣∣Ψ0

〉
(3.2)

With this one can minimize the energy E0 of the system with respect to the spin
orbitals and derive an equation (the Hartree-Fock equation) that takes the form
of an eigenvalue problem,

f̂ (i)χi(xi) = εχi(xi) (3.3)

where f̂ (i) is an effective one-electron operator, the Fock operator, and is given as,

f̂ (1) = ĥ (1) + vHF (1)

= −1
2∇

2
1 −

M∑
A=1

ZA
r1A

+
N∑
j 6=i

[
Ĵj (1)− K̂j (1)

]
(3.4)

Here, h (i) represents the one-particle Hamiltonian and vHF (i) the average potential
experienced by electron i. vHF (i) includes a Coulomb operator (Ĵ) and an Exchange
(K̂) operator,

Ĵj (1)χi (1) =
[∫

χ∗j (2) r−1
12 χj (2) dx2

]
χi (1) (3.5)

K̂j (1)χi (1) =
[∫

χ∗j (2) r−1
12 χi (2) dx2

]
χj (1) (3.6)

The Coulomb operator describes the average local potential at x1 arising from an
electron in χj, whereas the exchange operator describes the exchange of electron 1
in spin-orbital χj with electron 2 in spin-orbital χi.[32] Hence, the many-electron
problem has been replaced by an one-electron problem, where one electron moves
in the mean field of all other electrons. Thus the potential for one electron depends
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on the spin orbitals of all other electrons and Eqn. 3.3 is non-linear. This equation
has to be solved iteratively by a self-consistent-field (SCF) method. This is ac-
complished by making an initial guess for the spin orbitals calculating the average
potential vHF (i) for each electron. Then, by solving the eigenvalue problem a new
set of spin orbitals is obtained. These can be used to repeat the procedure until
the orbitals and the field do not change any more, they reach self-consistency.

3.2 Post Hartree-Fock Methods
As shown in the previous section 3.1 Hartree-Fock does not describe the electron
electron correlation explicitly, but it treats it as an average interaction. With a
sufficiently large basis set the HF wave function can cover approximately 99% of
the total energy. But the remaining 1% are very often the most important part for
the description of chemical phenomena. The electron-electron correlation energy
is therefore defined as the difference between the exact energy of the system and
the HF energy E0 obtained in the limit of a complete basis set,[32]

Ecorr = Eexact − E0 (3.7)

Several methods have been developed to account for the electron electron corre-
lation. In the following, the Configuration Interaction (CI), the Møller-Plesset
Perturbation Theory (MP(2)), Coupled Cluster (CC2) and Algebraic Diagram-
matic Construction (ADC(2)) method are introduced. All these methods use HF
as a starting point for improving the wave function, since already ~99% of the
problem are described correctly.

3.2.1 Configuration Interaction

Hartree-Fock determines the energetically best trial wave function using a single
determinant. In order to improve this wave function a multi-determinant descrip-
tion may be chosen. In Configuration Interaction the wave function is given as
a linear combination of Slater determinants, where the expansion coefficients are
obtained by requiring that the energy should be a minimum. As basis for deter-
minants it is suitable to use excited determinants, such that for a singly excited
determinant |Ψa

i 〉 one spin orbital is replaced by another spin orbital, for a doubly
excited determinant two spin orbitals are replaced by two other spin orbitals, etc.
up to n-tuply excited determinants,[32]
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|Ψ〉 = c0 |Ψ0〉+
( 1

1!

)2∑
i,a

cai |Ψa
i 〉+

( 1
2!

)2∑
ab
ij

|Ψab
ij 〉+

( 1
3!

)2∑
abc
ijk

|Ψabc
ijk〉+ · · · (3.8)

The factor
(

1
n!

)2
ensures that every individual excitation is counted only once. To

obtain the corresponding energy the (linear) variational method is employed, where
a matrix representation of the Hamiltonian in the basis of the N -electron functions
of Eqn. 3.8 is built. This is referred to as the full CI matrix.[32] The structure of the
hermitian full CI matrix is shown in Eqn. 3.9. As simplification the singly/doubly
excited determinants are denoted as |S〉 and |D〉,

〈
Ψ0

∣∣∣ Ĥ ∣∣∣Ψ0

〉 〈
Ψ0

∣∣∣ Ĥ ∣∣∣S〉 〈
Ψ0

∣∣∣ Ĥ ∣∣∣D〉 · · ·〈
S
∣∣∣ Ĥ ∣∣∣Ψ0

〉 〈
S
∣∣∣ Ĥ ∣∣∣S〉 〈

S
∣∣∣ Ĥ ∣∣∣D〉 · · ·〈

D
∣∣∣ Ĥ ∣∣∣Ψ0

〉 〈
D
∣∣∣ Ĥ ∣∣∣S〉 〈

D
∣∣∣ Ĥ ∣∣∣D〉 · · ·

... ... ... . . .

 (3.9)

From the variational method one obtains the matrix equation,

(H− EI) c = 0 (3.10)

Solving this secular equation is equivalent to diagonalizing the CI matrix. The
lowest eigenvalue corresponds to the CI energy.[32] Although this method is con-
ceptually rather simple, it is computationally very expensive already for small
systems. In practice one therefore often uses a truncated excited determinant basis
by limiting the excitation level.

According to Brillouin’s Theorem, stating that singly excited determinants |S〉 will
not interact directly with the reference determinant |Ψ0〉 (resulting in

〈
S
∣∣∣ Ĥ ∣∣∣Ψ0

〉
=

0), truncating the excitation level to one (CI with Singles (CIS)) does not give an
improvement to the ground state HF energy.[32] The first level of improvement is
therefore obtained by including double excitations. This is referred to as either CI
with Doubles (CID) or CI with Singles and Doubles (CISD). The Computational
effort of CISD scales with N6 and typically covers 80-90% of the correlation energy.
One major drawback asides the bad scaling behavior for truncated CI methods is
the fact that they are not size consistent and size extensive. They therefore recover
less electron correlation with growing system size.
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3.2.2 MP(2)

A different non-variational but size consistent (and size extensive) method is the
Many-Body Perturbation Theory (MBPT).[41] The underlying concept behind the
MBPT is the assumption that the problem that is to be solved differs only slightly
from a problem, where a solution is known. Therefore, the solution to the new
problem should be somehow closely related to the solution of the existing and solved
problem. The system Hamiltonian is then be expressed by two parts: A reference
Hamiltonian(Ĥ0) and the perturbation Hamiltonian (Ĥ ′). As a requirement the
perturbation operator should be small compared to the reference,

Ĥ = Ĥ0 + λĤ ′ (3.11)
Ĥ0Φi = EiΦi i = 0, 1, 2, . . . ,∞ (3.12)

λ is the perturbation parameter determining the strength of the perturbation. The
solution to the Schrödinger Equation for the reference Hamiltonian Ĥ0 (λ = 0) is
known and forms a complete set. For the sake of simplicity only the lowest energy
state will be considered and the perturbation is time-independent in the following.
The perturbed Schrödinger equation is given by,[41]

ĤΨ = EMBPTΨ (3.13)

By setting λ = 0 one obtains H = H0, Ψ = Φ0 and EMBPT = E0. The wave
function and the energy are now expanded as a Taylor expansion in λ:

Ψ = λ0Ψ0 + λ1Ψ1 + λ2Ψ2 + λ3Ψ3 + . . . (3.14)
EMBPT = λ0E0 + λ1E1 + λ2E2 + λ3E3 + . . . (3.15)

Inserting these expressions in Eqn. 3.13 yields,(
Ĥ0 + λĤ ′

) (
λ0Ψ0 + λ1Ψ1 + λ2Ψ2 + . . .

)
=

=
(
λ0E0 + λ1E1 + λ2E2 + . . .

) (
λ0Ψ0 + λ1Ψ1 + λ2Ψ2 + . . .

)
(3.16)

This is correct for any value of λ, therefore we can gather all terms of λ with the
same power,
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λ0 : Ĥ0Ψ0 = E0Ψ0

λ1 : Ĥ0Ψ1 + Ĥ ′Ψ0 = E0Ψ1 + E1Ψ0

λ2 : Ĥ0Ψ2 + Ĥ ′Ψ1 = E0Ψ2 + E1Ψ1 + E2Ψ0 (3.17)
· · ·

λn : Ĥ0Ψn + Ĥ ′Ψn−1 =
n∑
i=0

EiΨn−1

These are the zero-, first-, second- and nth-order perturbation equations. Where
the zeroth-order equation is just the Schrödinger equation for the unperturbed
case.[41]

Since the goal is to use MBPT to calculate the correlation energy, one has to
choose an appropriate reference Hamiltonian. This leads to the Møller-Plesset-
MBPT.[40,41] In 1934 C. Møller and M.S. Plesset applied the MBPT to the calcu-
lation of the correlation energy by using a sum over Fock operators. In the sum
of Fock operators the average electron electron repulsion

〈
V̂ee
〉
is counted twice

and the perturbation becomes V̂ee − 2
〈
V̂ee
〉
. This is also known as the fluctuation

potential,

Ĥ0 =
N∑
i=1

F̂i =
N∑
i=1

ĥi +
N∑
j=1

(Ĵj − K̂j)


=
N∑
i=1

ĥi +
N∑
i=1

N∑
j=1

〈
ĝij
〉

=
N∑
i=1

ĥi + 2
〈
V̂ee
〉

(3.18)

Ĥ ′ = Ĥ − Ĥ0 =
N∑
i=1

N∑
j>i

ĝij −
N∑
i=1

N∑
j=1

〈
ĝij
〉

= V̂ee − 2
〈
V̂ee
〉

This choice is furthermore the only one which gives a size extensive, and therefore
preferable, method. The zeroth-order wave function is given by the HF determinant
and the zeroth-order energy is just the sum of the molecular orbital (MO) energies.
The first order energy correction yields the negative of the average of the electron-
electron repulsion

〈
V̂ee
〉
and accounts for the double counting in zeroth-order. One

therefore obtains the HF energy as first order energy,

MP(0) : EMP (0) =
〈
Φ0

∣∣∣ Ĥ0

∣∣∣Φ0

〉
=

N∑
i=1

εi (3.19)

MP(1) : EMP (0) + EMP (1) =
〈
Φ0

∣∣∣ Ĥ0

∣∣∣Φ0

〉
+
〈
Φ0

∣∣∣ Ĥ ′ ∣∣∣Φ0

〉
= E (HF ) (3.20)

Accordingly, the first contribution to the electron correlation energy is given by
the second order term,
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E2 =
occ∑
i<j

virt∑
a<b

〈
Φ0

∣∣∣ Ĥ ′ ∣∣∣Φab
ij

〉 〈
Φab
ij

∣∣∣ Ĥ ′ ∣∣∣Φ0

〉
E0 − Eab

ij

(3.21)

The matrix elements between the HF and a doubly excited state are given by two-
electron integrals over MOs. In accordance with Koopmans’ theorem the difference
of the total energy between two Slater determinants becomes a difference in MO
energies. The MP(2) energy is given as,[41]

EMP (2) =
occ∑
i<j

virt∑
a<b

(〈
ϕiϕj

∣∣∣ϕaϕb〉− 〈ϕiϕj ∣∣∣ϕbϕa〉)
εi + εj − εa − εb

(3.22)

Since MP(2) is not variational, a lower energy does not correspond to a better
description. Typically MP(2) often overestimates the electron electron correlation.
To account for that the spin-component scaling (SCS) approach can be used. This
has first been introduced by Grimme[45] and improvements are especially observed
for molecules which contain pitfalls for MP(2). In the SCS approach an individual
scaling factor is used for the same-spin contributions of the correlation energy.

3.2.3 CC2

Further improvements towards the description of the electron electron correlation
can be achieved with the Coupled Cluster (CC) method. Like MBPT, it is non-
variational but size-consistent (and size extensive). But contrary to MBPT, which
adds all types of corrections up to a given order, CC is intended to include all
corrections of a given type to infinite order.[42,46]

In CC an excitation operator (also called cluster operator) is defined,

T̂ = T̂1 + T̂2 + T̂3 + · · ·+ T̂N (3.23)

The operator T̂i acting on a HF reference wave function Ψ0 generates all ith excited
Slater determinants,

T̂1Ψ0 =
occ∑
i

virt∑
a

taiΨab
ij (3.24)

T̂2Ψ0 =
occ∑
i<j

virt∑
a<b

taiΨab
ij (3.25)

The corresponding Coupled Cluster wave function is defined with the exponential
operator eT̂ in Eqn. 3.26.[46] The exponential operator is furthermore expanded in
a Taylor expansion,
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ΨCC = eT̂Ψ0 (3.26)

eT̂ = 1 + T̂ + 1
1 T̂

2 + 1
6 T̂

4 + · · · =
∞∑
k=0

1
k!T

k (3.27)

Using Eqn. 3.26 the Schrödinger equation can be written as,

ĤeT̂Ψ0 = EeT̂Ψ0 (3.28)

The CC energy is then evaluated by projecting the the CC Schrödinger equation
onto the reference wave function.[46] After expanding out the exponential terms
one obtains the CC energy,

ECC =
〈
Ψ0

∣∣∣ ĤeT ∣∣∣Ψ0

〉
(3.29)

Again to reduce computational effort usually a truncated second-order approach
(CCSD) is applied. But in contrast to truncated CI, truncated CC is size consistent
and size extensive.[46] To save further computation time an additional approxi-
mation can be used. In the Second-Order Approximate Coupled-Cluster (CC2)
method only a subset of the full CCSD equation is included by approximating the
doubles contributions to first order only.[42,46] CC2 scales with N5 and typically
gives better results as CIS or CCS.

3.2.4 ADC(2)

The Algebraic Diagrammatic Construction (ADC) scheme can be derivated from
the intermediate state representation (ISR).[43] As a starting point the exact N -
electron ground state |ΨN

0 〉 is used. The excitation operators are represented by
pairs of creation and annihilation operators,

{ĈJ} = {c†aci; c†ac†bcicj, i < j, a < b} (3.30)

By applying excitation operators ĈJ one obtains a set of correlated excited states,

|ΨN
J 〉 = ĈJ |ΨN

0 〉 (3.31)

The resulting states can than be allocated to the various excitation classes (singles,
doubles, etc.).However, these excited states do not form an orthonormal basis. One
therefore needs to orthogonalize by employing the Gram-Schmidt orthogonalization
scheme. This yields the basis of intermediate states {|Ψ̃N

J 〉} which can be used to
represent the hermitian ADC matrix (which is shifted by the exact ground state
energy EN

0 ),
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MIJ =
〈
Ψ̃N
I

∣∣∣ Ĥ − EN
0

∣∣∣ Ψ̃N
J

〉
(3.32)

Diagonalizing the ADC matrix will, in principle, result in the exact excitation
energies.

Up to this point no approximation according the exact N -electron ground state
wave function has been employed. Since the exact N -electron ground state wave
function is not known, one needs a suitable approximation. This is done by using
the Møller-Plesset-MBPT up to a specific order as ground state wave function, i.e.
MP(2) results in ADC(2). ADC(2) typically scales with N5 similar to CC2 and
gives qualitatively similar results.

3.3 Density Functional Theory
Density Functional Theory (DFT) represents a different approach towards solving
the SE. Due to its high efficiency, DFT is a widely used method. In general DFT
is an exact method, but in order to apply DFT as a quantum chemical method,
approximations have to be utilized. As a consequence, the just presented methods
often serve as a benchmark for DFT calculations. In the following, the basics of
Ground-State DFT are introduced. Thereupon, the extension to excited states,
the Linear Response Time Dependent DFT is presented.

3.3.1 Ground-State Density Functional Theory

The basic idea behind Density Functional Theory is to express the energy of an
electronic system not by a wave function, but as a functional of the electron
density. The main advantage of using the electron density is in the reduction
of dimensionality. Instead of solving a 4N -dimensional wave function (including
the spin) one uses a single three-dimensional function to describe a N -electron
molecule.

The basis of DFT as used nowadays are the Hohenberg-Kohn theorems (HK). In
1964 P. Hohenberg and W. Kohn provided a proof that the electronic ground state
energy and its properties are related uniquely to the electron density (HK1). The
second theorem establishes a density-based analogue of the variation principle. The
energy functional E0 [ρ′] for a trial density function ρ′ (r) is always greater or equal
the exact ground state energy (HK2).[38]
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The next step in the progression of DFT was done by W. Kohn and L.J. Sham
in 1965[47] by considering a system consisting of N non-interacting electrons in an
external potential vext (r). This is selected such that the electron density ρref (r)
of a reference system is identical to its exact electron density ρexact (r),

ρref (r) =
N∑
i=1
|ψKSi |2= ρexact (r) (3.33)

The energy functional EDFT is given as,

EDFT [ρ (r)] =
N∑
i=1

〈
ψKSi

∣∣∣∣−1
2∇

2
i

∣∣∣∣ψKSi 〉
−
〈
ψKSi

∣∣∣∣∣
M∑
A

ZA
|ri −RA|

∣∣∣∣∣ψKSi
〉

+
N∑
i=1

〈
ψKSi

∣∣∣∣∣ 1
2

∫ ρ (r′)
|ri − r′|

dr′
∣∣∣∣∣ψKSi

〉
+ Exc [ρ (r)] (3.34)

where the first term describes the kinetic energy, the electron nuclear attraction
is given by the second term, the third term depicts the coulomb repulsion and
the last term defines the exchange-correlation energy. The exchange-correlation
energy contains the kinetic energy correction for the interacting system, terms that
compensate the non-classical effects of self-interaction, exchange and correlation.
In other words, everything that is unknown or not given in an exact form. For an
exact Exc [ρ (r)] functional DFT would yield the exact energy.

Similar to the HF approach one has to solve the Kohn-Sham equation,

ĥKSi ψKSi = εKSi ψKSi (3.35)

with the Kohn-Sham Hamiltonian ĥKSi , given as,

hKSi = −1
2∇

2
i −

M∑
A=1

ZA
|ri −RA|

+
∫ ρ 〈r′〉
|ri − rj|

dr′ + Vxc[ρ (r)] (3.36)

where Vxc[ρ (r)] is the exchange-correlation functional. In turn, finding a suitable
exchange-correlation potential is the key to solve the Kohn-Sham equation. Many
functionals have been developed and many (improved) variants are available today
(functionals using the Local Spin-Density Approximation (LDSA) like the Slater
exchange functional,[48] the Generalized Gradient Approximation (GGA) like the
Perdew, Burke, and Ernzerhof (PBE) functionals[49,50] or meta-GGA functionals
as the Tao, Perdew, Staroverov, and Scuseria functional (TPSS). One of the most
famous functionals is represented by the B3LYP functional by Becke and Lee,
Young and Parr.[51] B3LYP is a hybrid functional which mixes a certain amount
Hartree-Fock exchange into the computation. It is also possible to add certain
amounts of PT(2) correction for dynamic correlation (“double hybrid” functionals
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e.g. B2PLYP[52]) into the calculation. The choice of the functional depends on the
problem at hand. Therefore, a thoroughly performed benchmark against post-HF
ab-initio methods should be done before choosing a specific functional.

3.3.2 Linear Response Density Functional Theory

So far, the presented Kohn-Sham equations are limited to time-independent prob-
lems. Further the Hohenberg-Kohn theorems are only formulated for these systems
and need to be reformulated for time-dependent problems. The Runge-Gross
theorem[39] fills this gap and can be seen as the time-dependent analogue of the
HK theorems. It states that a one-to-one mapping between time-dependent po-
tentials and time-dependent functionals exist. With this and by the introduction
of the action functional it is possible to derive a set of working equations, the
time-dependent Kohn-Sham equations,

i
∂

∂t
ψKSi (r, t) = F̂KSψKSi (r, t) (3.37)

with the time-dependent Kohn-Sham orbitals ψKSi (r, t) = ∑M
j=1 ci,j (t)χKSj (r).

Eqn. 3.37 can be expressed in a density matrix form,
∑
q

[
FpqPqr −PpqFqr

]
= i

∂

∂t
Ppr (3.38)

where Fpq represents the time-independent Kohn-Sham Hamiltonian matrix with
the Kohn-Sham orbitals as basis. Furthermore, the density matrix is related to the
electron density by Eqn. 3.39

ρ (r, t) =
M∑
p,q

cp (t) c∗q (t)χKSp (r)χ∗KSq (r)

=
M∑
p,q

Ppqχ
KS
p (r)χ∗KSq (r) (3.39)

Now, a small time-dependent perturbation gpq (via an oscillating external field) is
applied (effectively making the external potential time-dependent). Then, the first
order (linear) response to the density matrix and the time-dependent Kohn-Sham
Hamiltonian is given as ,

Ppq = P(0)
pq + P(1)

pq (3.40)
Fpq = F(0)

pq + F(1)
pq (3.41)

Insertion of Eqns. 3.40 and 3.41 into Eqn. 3.38 yields,
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∑
q

[
F(0)
pq P(1)

qr −P(1)
pq F(0)

qr + F(1)
pq P(0)

qr −P(0)
pq F(1)

qr

]
= i

∂

∂t
P(1)
pr (3.42)

where the first order change in the KS Hamiltonian is given by,

F(1)
pq = gpq + ∆F(0)

pq (3.43)

For the first order change of the density matrix P(1)
qp it turns out that it is only

different from zero, when q corresponds to an occupied and p to a virtual orbital.
One therefore obtains two coupled equations and by Fourier transformation one
obtains the TDDFT working equations. For convenience, occupied orbitals are
labeled i, j and virtual orbitals are labeled a, b,

ω∆Pia (ω) = (εa − εi) ∆Pia (ω) +
∑
jb

[〈aj | ib〉+ 〈aj | δvxc | ib〉] ∆Pjb (ω)

+
∑
jb

[〈ab | ij〉+ 〈ab | δvxc | ij〉] ∆Pbj (ω) (3.44)

−ω∆Pia (ω) = (εa − εi) ∆Pai (ω) +
∑
jb

[〈ib | aj〉+ 〈ib | δvxc | aj〉] ∆Pjb (ω)

+
∑
jb

[〈ij | ab〉+ 〈ij | δvxc | ab〉] ∆Pjb (ω) (3.45)

These equations can be transformed into a non-hermitian eigenvalue equation, the
TDDFT or Casida[53] equation, A B

B∗ A∗

 ∆Pia
∆Pai

 = −ω
1 0

0 −1

 ∆Pia
∆Pai

 (3.46)

The Elements A and B are given as,

Aia,jb = (εa − εi) δijδab + 〈ia | jb〉+ 〈ia | δvxc | jb〉 (3.47)
Bia,jb = 〈ia | bj〉+ 〈ia | δvxc | bj〉 (3.48)

Here, the first term of Aia,jb represents the difference of orbital energies for ε and
εa. The second term stems from the linear response of the Coulomb Operator. The
last term depicts the response to the exchange-correlation functional.

One substantial problem of TDDFT is the description of charge transfer states.
Not only are the excitation energies obtained usually dramatically too low, but also
TDDFT does not recover the correct 1

r
dependence along the charge separating

coordinate. If a long-range charge transfer excited state is considered the overlap
between the occupied and virtual orbitals is assumed to be equal to zero, as a
consequence, all terms except the first one of Eqn. 3.47 vanish. This excitation
energy is solely determined by the difference of the orbital energies. This is, in
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general, a poor estimate. As all terms of B vanish they do not contribute at
all to charge transfer states. This problem is also known as electron-transfer
self-interaction error (ET-SI).[54]

One option to overcome this problem is to include HF exchange in the exchange-
correlation potential. To this end the corresponding equation are given in Eqns.
3.49 and 3.50,

Aia,jb = (εa − εi) δijδab + 〈ia | jb〉 − cHF 〈ij|ab〉+ (1− cHF ) 〈ia | δvxc | jb〉 (3.49)
Bia,jb = 〈ia | bj〉 − cHF 〈ib | aj〉+ (1− cHF ) 〈ia | δvxc | bj〉 (3.50)

Now, the terms comprising cHF do not vanish. By adding more HF exchange the
correct 1

r
long-range behavior is recovered. Another approach is provided by the so

called range-separated functionals. Here, depending on the distance the amount of
HF exchange is modulated in the exchange correlation functional. Functionals using
this approach are for example the CAM-B3LYP[55] or ωB97XD[56] functionals.
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4 | Quantum Dynamical Methods

A well established method to study the dynamics of large molecular systems like
proteins or nucleic acids is to run Molecular Dynamics (MD) simulations. Here,
classical equations of motion (EOM) are numerically integrated in order to learn
about the properties of such systems. This does not work if one wants to describe a
non-relativistic molecular system, including quantum effects as tunneling and non-
adiabatic transitions, e.g. for the interpretation of experiments in the femtosecond
regime. For the description of such systems, one needs to solve the Schrödinger
equation. This can be done in two ways:

• in the time-independent picture by diagonalising the Hamiltonian (for more
details, methods and references see chapter 3),

• in the time-dependent picture by propagation of a wave packet (focus of this
chapter).

The time-dependent form of the Schrödinger equation (TDSE) is given by):[29]

ih̄
∂Ψ
∂t

= ĤΨ (4.1)

Unfortunately this equation can only be solved analytically for up to two particles,
e.g. the hydrogen atom. However, several approximations have been developed to
solve the Schrödinger equation numerically. A key step, as already mentioned in
more detail in chapter 2.2, towards this was the Born-Oppenheimer approximation,
by separating nuclear and electronic motion. The nuclei of a molecular system can
now be described as point masses moving on a potential energy surface (PES), where
the electrons react instantaneously to the new nuclear configuration. However,
this approximation breaks down at certain areas on the PES, e.g. when two
electronic configurations (states) are strongly coupled as it is the case at conical
intersections or avoided crossings. Then, the nuclei have to be described by moving
on several, coupled electronic states (non-adiabatic picture). The PES can be
obtained by employing quantum chemical (QC) methods (c.f. chapter 3) along
selected molecular coordinates, which have to be pre-selected appropriately. With
these cuts one is able to parametrize a Hamiltonian that can be used in the quantum
dynamic (QD) simulation. The QC methods are then also able to provide further
information (gradients, Hessian, molecular properties like polarizabilaties, charge
distribution, etc.) of critical or important points on the PES of the investigated
system.
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Several methods have been developed in parallel to study quantum molecular
dynamics. In the 1970s and 1980s, mainly methods based on many classical tra-
jectories, which represent the wave packet, were employed. Since the classical
treatment introduces a quite significant error, semi-classical and mixed quantum-
classical approaches have been developed, where the simple, trajectory based pic-
ture remains and quantum wavefunctions are represented by trajectory ensembles
that are “dressed” with quantum phase information. In mixed quantum-classical
methods, the system is split into a classical and a quantum part (where the latter
represents, e.g., electronic degrees of freedom (DOFs)). These methods have the
advantage to study systems with many DOFs, as the dynamics of the nuclei is still
described classically. A prominent representative for semiclassical methods is the
Gaussian wavepacket (GWP) method introduced by Heller in the 1970s.[57,58] A
prominent example of mixed quantum-classical schemes is the mean-field Ehrenfest
method.[59,60]

One of the first full QD simulations was performed for H+H2.[61,62] In combination
with grid based methods like the discrete variable representation (DVR) of Light
in the 1980s[63–65] and the Dirac-Frenkel variational principle (DF-VP)[48,66,67] a
method was introduced which is able to provide exact quantum dynamics, the
so-called standard method. However, this method suffers from an exponential
scaling with the number of degrees of freedom (both for the computational effort
and the memory requirements) and is therefore only applicable to small systems,
typically up to 5-6 DOFs.

In order to extend the range of feasible numbers of DOFs, approximate wave
function approaches were developed using the variational principle to derive ap-
proximate solutions to the TDSE.

A rather simple ansatz is the use of a Hartree product with one basis function for
each DOF in the Time-Dependent Hartree (TDH) method.[48,68,69] For TDH the
computational cost is drastically reduced, but with the drawback that correlations
between den DOFs are not treated correctly anymore. An extension to TDH was
to use several Hartree products instead of only one. This led to the famous Multi-
configuration Time-Dependent Hartree (MCTDH) method.[25,70] While MCTDH is
an extension to TDH it has a similar structure as the standard method, with the
difference that time-dependent rather than time-independent basis functions are
used, resulting in a more flexible basis such that fewer basis functions are needed.

28



The Standard Method

A further development was the use of combined particles, where several modes
were comprised into a multidimensional particle. Due to these developments and
further tweaks, e.g. regarding the numerical integration, MCTDH is able to treat
up to 100 DOF.

As an extension to MCTDH, the Gaussian-MCTDH (G-MCTDH) method combin-
ing the GWP approach of Heller with the multi-configurational setup of MCTDH
was developed.[14] While it was first thought of as a way to split the system into
primary and secondary modes (e.g., for system-bath type dynamics), where the
secondary modes are combined into a multidimensional GWP to describe environ-
mental near-harmonic modes, the G-MCTDH method in its general form replaces
partially or completely the basis functions with GWPs in a sum of products like
fashion.[15]

A special variant of the G-MCTDH approach is the variational multi-configuration
Gaussian (vMCG) method. vMCG uses a multidimensional GWP where all DOFs
are combined into a multidimensional GWP, and the wavefunction is constructed
from superpositions of such multidimensional GWPs.[14] Although this method
shows a very bad convergence behavior, convergence can only be achieved for very
few DOFs. vMCG is especially useful in conjunction with on-the-fly electronic
structure calculations, such that there is no necessity to pre-compute the PES.

In the following, some of these developments will be presented and explained in
more detail, including the standard method, Time-Dependent Hartree, MCTDH
and its Gaussian variants (G-MCTDH and vMCG). Atomic units are assumed
throughout, such that h̄ = 1.

4.1 The Standard Method
The standard approach to solve the time-dependent Schrödinger equation (Eqn.
4.1) is to expand the wave function in a time-independent direct-product basis,
whose coefficients are then propagated numerically. A p-dimensional wave function
is then written as,

Ψ
(
x1, . . . , xp, t

)
=

N1∑
j1

· · ·
Np∑
jp

Aj1,...,jp (t)
p∏

κ=1
χ

(κ)
jκ

(xκ) (4.2)

where Ajκ are the time-dependent coefficients, χ(κ)
jκ

are the time-independent basis
functions and Nκ denotes the number of basis functions used for the kth degree of
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freedom (DOF). The equations of motion (EOMs) are obtained by applying the
Dirac-Frenkel variational principle:

〈δΨ|ih ∂
∂t
− Ĥ|Ψ〉 = 0 (4.3)

This leads to the EOMs,

iȦj1,...,jp =
∑
l1,...,lp

〈χ(1)
j1
· · ·χ(p)

jp
|Ĥ|χ(1)

l1
· · ·χ(p)

lp
〉Al1,...,lp

iȦ = HA (4.4)

This set of coupled linear first-order differential equations can then be solved by
using numerical integration techniques like split-propagator[71–73] or Lanczos[74]

methods. The computational effort (typically measured by the number of float-
ing point operations) for this method increases exponentially with the number of
degrees of freedom p and is therefore proportional to fNp+1. The effort for the
time-independent Hamiltonian matrix can be neglected, since it is only needed
to be calculated once. A further, even more striking, bottleneck is the memory
requirement, which also increases exponentially with the number of DOFs propor-
tional to fNp. For example with p = 6 DOFs and N = 20 basis functions per
DOF, one gets 64 · 106 functions in total and a coefficient vector requiring already
1 GB of memory. Since several of these coefficient vectors have to be stored during
the integration, even on typical workstations not more than 6 DOF can be treated
with this method.

4.2 Time-Dependent Hartree
To overcome the limitations of the standard method, approximate methods for
solving the TDSE have been developed. One of the simplest approaches is the
Time-Dependent Hartree (TDH) approach.[69,75] In this ansatz (Eqn. 4.5) the wave
function is written as a product of one-dimensional functions

(
ϕj
)
, which are called

single particle functions (SPFs), forming a Hartree product (c.f Hartree-Fock in
section 3.1). To keep it short and simple the ansatz will be presented for only two
dimensions, but the expansion to higher dimensions is straightforward,

Ψ (x1, x2, t) = a (t)ϕ1 (x1, t)ϕ2 (x2, t) (4.5)

This ansatz is not unique, because the phase and normalization factors can be
moved between the SPFs. Therefore the (redundant) coefficient a (t) is introduced
in order to be able to freely choose the phase of the SPFs. In differential form the
introduced constraints are written as,
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〈ϕ1|ϕ̇2〉 = 〈ϕ2|ϕ̇1〉 = 0 (4.6)

This ensures that the norm of the SPFs does not change and that they stay
normalized during the whole propagation, if they have been normalized initially.
By applying the DF-VP one can again derive the equations of motion. While the
equation for the coefficients is very similar to the one for the standard method,
one now gets an additional equation for the single particle functions,

iȧ = Ha (4.7)
iϕ̇j =

(
H(j) −H

)
ϕj (4.8)

where the Hamiltonian is expressed as H = 〈ϕ1ϕ2|Ĥ|ϕ1ϕ2〉 and the mean-field
operator is written as H(j) = 〈ϕi|Ĥ|ϕj〉.
The computational effort for this is rather small and scales linearly. However, the
performance of this method is often very poor due to the simplistic ansatz. Due to
the use of only one configuration, it is not able to capture the correlations between
coupled DOFs sufficiently.

4.3 Multi-Configuration Time-Dependent Har-
tree (MCTDH)

A natural improvement for TDH is to use multiple configurations rather than only
one. An improved multi-configurational method as a tool for accurate quantum dy-
namics is the Multi-Configuration Time-Dependent Hartree (MCTDH)[25] method.
As an ansatz for the wave function one uses a linear combination of Hartree prod-
ucts (sum over products ansatz) which is expanded in a direct product of f sets of
orthonormal, time-dependent, basis functions ϕκ, the single particle functions:[25]

Ψ
(
~X1,

~X2, . . . ,
~Xf , t

)
=
∑
J

AJ (t) ΦJ

(
~X1,

~X2, . . . ,
~Xf , t

)
(4.9)

=
n1∑
j1

n2∑
j2

· · ·
nf∑
j
f

Aj1,j2,...,jf (t)
f∏
κ=1

ϕ
(κ)
jκ

(
~Xκ, t

)
(4.10)

In Eqn. 4.9 a multi-index notation is used
(
J = j1, j2, . . . , jf

)
. Eqn. 4.10 is, at

first sight, very similar to the ansatz of the standard method. However, there
are two major differences. The orthonormal basis functions or SPFs ϕ(κ)

jκ
, are now

time-dependent. Hence, the basis is more flexible and fewer basis functions are
needed in order to converge the calculations. As second difference, the coordinates
~Xκ are now combined/composite coordinates, where several degrees of freedom
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are combined within a d-dimensional particle ~Xκ =
(
x

(κ)
1 , x

(κ)
2 , . . . , x

(κ)
d

)
. As a

consequence, less particles (f) are needed and more degrees of freedom can be
investigated. Typically MCTDH is feasible with up to 50-100 DOFs.

As for TDH, the representation of the wave function is not unique. Two different
sets of SPFs (with different sets of coefficients) can span the same Hilbert subspace
H (κ) and one can freely alternate by linearly transforming between these two sets
of H (κ). As a consequence, the Dirac-Frenkel variational principle fixes only the
time evolution of H (κ), leaving some freedom to the time evolution of the SPFs
ϕ

(κ)
jκ

, which can lead to singularities during the propagation.[25] Therefore, to ensure
singularity-free propagation, the initial SPFs are chosen orthonormal (Eqn. 4.11)
and their individual time-evolution is fixed such, that they stay orthonormal during
the propagation at all times. This is achieved by a constraint operator ĝ(κ) (Eqn.
4.12),[25]

〈ϕ(κ)
jκ
|ϕ(κ)
j′κ
〉 = δjκj′κ (4.11)

〈ϕ(κ)
jκ
|ϕ̇(κ)
j′κ
〉 = −i 〈ϕ(κ)

jκ
|ĝ(κ)|ϕ̇(κ)

j′κ
〉 (4.12)

This constraint operator is a hermitian but otherwise arbitrary operator which acts
exclusively on the κth mode. Complementary to the single-particle functions, one
can define so called single hole functions (SHF) ψ(κ)

lκ
. They arise when expanding

the total wave function in the SPFs of a single mode κ,

Ψ =
nκ∑
lκ=1

ψ
(κ)
lκ
· ϕ(κ)

lκ
(4.13)

ψ
(κ)
lκ

=
n1∑
j1

· · ·
nκ−1∑
jκ−1

nκ+1∑
jκ+1

· · ·
nf∑
j
f

Aj1,...,jκ−1,lκ,jκ+1,...,jf
(t)

f∏
κ′ 6=κ,

ϕ
(κ′)
j′κ

(4.14)

As for the ansatz, one can define a reduced multi-index for the SHF, where the κth
index is missing J(κ) = j1, . . . , jκ−1, jκ+1, . . . , jf , or where the κth index is replaced
by index lκ, J(κ:lκ) = j1, . . . , jκ−1, lκ, jκ+1, . . . , jf . The SHF can then be written in
a shorter notation:

ψ
(κ)
lκ

=
∑
J(κ)

AJ(κ:lκ)

f∏
κ′ 6=κ

ϕ
(κ′)
j
κ′

(4.15)

With the single hole functions one is able to define so called mean-field Hamiltonian
operators,

Ĥ
(κ)
jl = 〈ψ(κ)

jκ
|Ĥ|ψ(κ)

lκ
〉 (4.16)

and density matrices,
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ρ
(κ)
jl = 〈ψ(κ)

jκ
|ψ(κ)
lκ
〉 (4.17)

4.3.1 Equations of Motion

The equations of motion for the ansatz (Eqn. 4.9) can be derived, again, by
applying the Dirac-Frenkel variational principle (Eqn. 4.3).[25] The variation of the
wave function δΨ is expressed as,

δΨ =
∑
J

δAJΦJ +
∑
J

AJδΦJ (4.18)

The variation of the configurations δΦJ is expanded in a sum of products where
one SPF is varied at a time, with the AJ and the remaining SHFs being untouched,

∑
J

AJδΦJ =
∑
κ


∑
j1

· · ·
∑
jκ

· · ·
∑
j
f

AJ(κ:jκ)
δϕ

(κ)
jκ

∏
κ′ 6=κ

ϕ
(κ′)
j
κ′


 (4.19)

=
f∑
κ=1

nκ∑
jκ=1

δϕ
(κ)
jκ
ψ

(κ)
jκ

(4.20)

Inserting this in the variational principle yields:

∑
J

[
δAJ 〈ΦJ |i

∂

∂t
− Ĥ|Ψ〉

]
+

f∑
κ=1

nκ∑
jκ=1

[
〈δϕ(κ)

jκ
ψ

(κ)
jκ
|i ∂
∂t
− Ĥ|Ψ〉

]
= 0 (4.21)

In order to solve this equation both terms have to be equal to zero. Since the A
coefficients and the SPFs can be varied independently, one can treat these terms
separately,[25]

δAJ

〈
ΦJ

∣∣∣∣∣ i ∂∂t − Ĥ
∣∣∣∣∣Ψ
〉

= 0 ∀J (4.22)〈
δϕ

(κ)
jκ
ψ

(κ)
jκ

∣∣∣∣∣ i ∂∂t − Ĥ
∣∣∣∣∣Ψ
〉

= 0 ∀j, κ (4.23)

Additionally, the expression for the time derivative of the total wave function Ψ is
needed:

∂Ψ
∂t

=
∑
J

dAJ
dt

+
∑
J

AJ
∂ΦJ

∂t

=
∑
J

dAJ
dt

+
∑
κ

∑
jκ

∂ϕ
(κ)
jκ

∂t
ψ

(κ)
jκ

(4.24)
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4.3.1.1 Variation of the Coefficients

First, the time derivative of the coefficients ∂A
∂t

is determined with Eqn. 4.22. Since
the variation of the coefficients δAJ is arbitrary, the bracket has to become zero and
one does not need to consider δAJ . Inserting the derivative of the wave function
(Eqn. 4.24) in the remainder gives:

0 =i
∑

L

dAL
dt
〈ΦJ |ΦL〉+

∑
κ

∑
lκ

〈
ΦJ

∣∣∣∣∣∣ ∂ϕ
(κ)
lκ

∂t

〉
+
〈

ΦJ

∣∣∣∣∣ Ĥ∑
L

ALΦL

〉
0 =idAJ

dt
+
∑
L

{
AL

〈
ΦJ

∣∣∣∣∣∑
κ

ĝ(κ)ΦL

〉
− AL

〈
ΦJ

∣∣∣ Ĥ ∣∣∣ΦL

〉}
∀J

i
dAJ
dt

=
∑
L

〈
ΦJ

∣∣∣ Ĥ − ĝ(κ)
∣∣∣ΦL

〉
(4.25)

Here, the orthonormality of the SPFs and the relation from Eqn. 4.12 have been
used.[25]

4.3.1.2 Variation of the Single Particle Functions

Second, the time derivatives of the SPFs are derived by beginning with Eqn. 4.23.
Inserting Eqn. 4.24 yields:

i


∑
L

〈
δϕ

(κ)
jκ
ψ

(κ)
jκ

∣∣∣∣∣ dALdt ΦL

〉
+
∑
κ′

∑
l
κ′

〈
δϕ

(κ)
jκ
ψ

(κ)
jκ

∣∣∣∣∣∣ ∂ϕ
(κ)
jκ

∂t
ψ

(κ)
lκ

〉
−

−
〈
δϕ

(κ)
jκ
ψ

(κ)
jκ

∣∣∣ Ĥ ∣∣∣Ψ〉
 = 0 ∀j, κ (4.26)

From this equation one can obtain the EOMs on two different paths. The more
traditional way is to substitute the result for dAJ

dt
(Eqn. 4.25). The second, alter-

native way, is more elegant though and preferable. Here, the variation of the SPFs
is split into two parts with the help of a new orthogonal projector P̂ (κ) acting on
the space spanned in the κth DOF by the SPFs,

P̂ (κ) =
nκ∑
jκ

∣∣∣ϕ(κ)
jκ

〉 〈
ϕ

(κ)
jκ

∣∣∣ (4.27)

δϕ
(κ)
jκ

can now be split into two parts,[25]

δϕ
(κ)
jκ

= P̂ (κ)δϕ
(κ)
jκ

+
(
1̂− P̂ (κ)

)
δϕ

(κ)
jκ

(4.28)

where
(
1̂− P̂ (κ)

)
projects onto the space orthogonal to the space spanned by the

SPFs for the κth DOF. In Eqn. 4.28 the variation is therefore split, where one
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part is in the space of the original SPFs (A) and the other part is in the space
orthogonal to that (B). Accordingly, Eqn. 4.23 can be rewritten,〈

P̂ (κ)δϕ
(κ)
jκ
ψ

(κ)
jκ

∣∣∣∣∣ i ∂∂t − Ĥ
∣∣∣∣∣Ψ
〉

︸ ︷︷ ︸
(A)

+
〈(

1̂− P̂ (κ)
)
δϕ

(κ)
jκ
ψ

(κ)
jκ

∣∣∣∣∣ i ∂∂t − Ĥ
∣∣∣∣∣Ψ
〉

︸ ︷︷ ︸
(B)

= 0 (4.29)

The projector acting on δϕ(κ)
jκ

can be expanded in a linear combination of SPFs, as
the projector P̂ (κ) projects any vector into the space spanned by the SPF of the
κth degree of freedom,

P̂ (κ)δϕ
(κ)
jκ

=
∑
lκ

clκϕ
(κ)
lκ

(4.30)

Introducing this in (A) one gets,

(A) =
∑
lκ

c̄lκ

〈
ϕ

(κ)
lκ
ψ

(κ)
lκ

∣∣∣∣∣ i ∂∂t − Ĥ
∣∣∣∣∣Ψ
〉

=
∑
lκ

c̄lκ
∑
J(κ)

AJ(κ:lκ)

〈
ΦJ(κ:lκ)

∣∣∣∣∣ i ∂∂t − Ĥ
∣∣∣∣∣Ψ
〉

(4.31)

where the solution for the bracket term is already given by Eqn. 4.22, stating that
for any configuration this bracket is equal to zero and thus also (A) is equal to
zero. With (A) being eliminated one only needs to consider part (B). Rewriting
(B) by using the fact that

(
1̂− P̂ (κ)

)
is hermitian and inserting the time derivative

of the total wave function (Eqn. 4.24) one gets,

0 =i
∑
J

dAJ
dt

〈
δϕ

(κ)
jκ
ψ

(κ)
jκ

∣∣∣ (1̂− P̂ (κ)
)

ΦJ

〉

+
∑
κ′

∑
lκ

i

〈
δϕ

(κ)
jκ
ψ

(κ)
jκ

∣∣∣∣∣ (1̂− P̂ (κ)
) ∂ϕ(κ′)

∂t
ψ

(κ′)
l
κ′

〉

−
〈
δϕ

(κ)
jκ
ψ

(κ)
jκ

∣∣∣ (1̂− P̂ (κ)
)
Ĥ
∣∣∣Ψ〉 (4.32)

This equation can be reduced by the fact that the projection
(
1̂− P̂ (κ)

)
of a SPF

ϕ
(κ)
jκ

on the orthogonal complement of the span
{
ϕ

(κ)
jκ

}
is always zero,[25](

1̂− P̂ (κ)
) ∣∣∣ϕ(κ)

jκ

〉
= 0 (4.33)

therefore the first term vanishes. Further, in the second term, the operator P̂ (κ)

acts only on the κth DOF, hence the sum reduces to one term. By substituting
Ψ = ∑

lκ
ψ

(κ)
lκ
ϕ

(κ)
lκ

the above equation reduces to,
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0 =
∑
lκ

i

〈
δϕ

(κ)
jκ

∣∣∣∣∣∣
(
1̂− P̂ (κ)

) ∂ϕ(κ)
lκ

∂t

〉〈
ϕ

(κ)
jκ

∣∣∣ϕ(κ)
lκ

〉
−
∑
lκ

〈
δϕ

(κ)
jκ
ψ

(κ)
jκ

∣∣∣ (1̂− P̂ (κ)
)
Ĥ
∣∣∣ψ(κ)

lκ
ϕ

(κ)
lκ

〉

=
∑
lκ

i

〈
δϕ

(κ)
jκ

∣∣∣∣∣∣
(
1̂− P̂ (κ)

) ∂ϕ(κ)
lκ

∂t

〉
ρ

(κ)
lκ

−
∑
lκ

〈
δϕ

(κ)
jκ

∣∣∣ (1̂− P̂ (κ)
)
Ĥ

(κ)
jl ϕ

(κ)
lκ

〉

=
〈
δϕ

(κ)
jκ

∣∣∣∣∣∣
∑
lκ

(
1̂− P̂ (κ)

)ρ(κ)
lκ

∂ϕ
(κ)
lκ

∂t
− Ĥ(κ)

jl ϕ
(κ)
lκ

〉 (4.34)

where we have used the above introduced definitions for the density matrix and
the mean-field Hamiltonian. Furthermore, the variation δϕ(κ)

jκ
is arbitrary in this

scalar product, hence, the sum on the right in the above equation has to be zero,
in order for the scalar product to be equal to zero,

0 =
∑
lκ

(
1̂− P̂ (κ)

)ρ(κ)
lκ

∂ϕ
(κ)
lκ

∂t
− Ĥ(κ)

jl ϕ
(κ)
lκ

 (4.35)

Using again the constraint operator ĝ(κ),

iP̂ (κ)ϕ
(κ)
lκ

∂t
= P̂ (κ)

∣∣∣ĝ(κ)ϕ
(κ)
lκ

〉
(4.36)

and after rearranging the equation to have
∂ϕ

(κ)
lκ

∂t
alone on one side, one ends up

with,[25]

i
∂ϕ

(κ)
lκ

∂t
=
∑
lκ

[
ĝ(κ) +

(
ρ

(κ)
lκ

)−1 (
1̂− P̂ (κ)

) (
H

(κ)
jl − ĝ(κ)

)]
ϕ

(κ)
lκ

(4.37)

Where the expression P̂ (κ) = 1̂−
(
1̂− P̂ (κ)

)
has been used to simplify the equation.

4.3.2 Choice of Constraints

The MCTDH EOMs have been derived without an explicit definition of the con-
straint operator ĝ(κ). Since this operator is arbitrary and does not affect the quality
of the MCTDH wave function, one typically chooses ĝ(κ) = 0 for all modes κ.[25]

Rewriting Eqns. 4.25 and 4.37 using matrix notation and using the shorthand

notation for the time derivatives
(
dAJ
dt

= ȦJ ,
∂ϕ

(κ)
lκ

∂t
= ϕ̇

(κ)
lκ

)
and the Hamiltonian

matrix H = 〈ΦJ |Ĥ|ΦL〉, the equations of motion simplify to,
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i~̇A = H~A (4.38)

i~̇ϕ =
[(
ρ(κ)

)−1 (
1̂− P̂ (κ)

)
H(κ)

]
~ϕ(κ). (4.39)

With these one obtains unambiguous equations of motion for the coefficients and
the SPFs, where the latter are coupled by mean-fields, meaning that every SPF
evolves under an effective Hamiltonian, averaged over all remaining modes (κ 6= κ′).

4.3.3 Representation of the Single Particle Functions

Having derived the working equations for MCTDH, still nothing has been said
about how the basis functions ϕ(κ)

jκ
are represented. In order to implement these

equations (Eqns. 4.38 and 4.39), the single particle functions have to be represented
by a finite set of basis functions. This is done by expanding the SPFs in a set
of primitive, time-independent basis functions.[25] There exist several approaches
to do this which have been successfully used. For example, when treating polar
angles, spherical harmonic functions Ylm (θ, ϕ) can be used.[76] Furthermore, one can
employ a collocation scheme of the fast Fourier transform (FFT) or the mostly used
discrete variable representation (DVR). The DVR can simplistically be understood
as basis functions sitting locally on grid points. This is done by using a primitive
basis in orthogonal polynomials and diagonalizing the position operator q̂ in this
basis. Then, a set of DVR basis functions and grid points are obtained, which can
be used in the propagation.

4.3.4 Representation of the Hamiltonian

An efficient way in representing the Hamiltonian for the MCTDH method is to use
a sum of products of single particle operators ĥ(κ)

r ,

Ĥ =
m∑
r=1

cr

f∏
κ=1

ĥ(κ)
r (4.40)

where cr are the expansion coefficients.[25] With this one can rewrite the Hamilto-
nian and mean-field elements:
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〈
Φj

∣∣∣ Ĥ ∣∣∣ΦL

〉
=

m∑
r=1

cr

f∏
κ=1

〈
ϕ

(κ)
jκ

∣∣∣ ĥ(κ)
r

∣∣∣ϕ(κ)
lκ

〉
(4.41)

H
(κ)
jl =

m∑
r=1
H(κ)
r,jlĥ

(κ)
r

H(κ)
r,jl =cr

∑
J(κ)

ĀJ(κ)

∑
l1

〈
ϕ

(1)
j1

∣∣∣ ĥ(1)
r

∣∣∣ϕ(1)
l1

〉
. . .

. . .
〈
ϕ

(κ−1)
jκ−1

∣∣∣ ĥ(κ−1)
r

∣∣∣ϕ(κ−1)
lκ−1

〉 〈
ϕ

(κ+1)
jκ+1

∣∣∣ ĥ(κ+1)
r

∣∣∣ϕ(κ+1)
lκ+1

〉
. . .

. . .
〈
ϕ

(f)
j
f

∣∣∣∣ ĥ(f)
r

∣∣∣∣ϕ(f)
l
f

〉
AL(κ)

(4.42)

4.3.5 Scaling Properties

Based on these findings one can deduce the scaling behavior of this method. Due
to the use of the efficient sum of products representation of the Hamiltonian, the
effort for calculating the action of the single particle operators ĥ(κ)

r on the SPFs
grows linearly with the number of DOFs and is proportional to mfnN2. For small
values of n and f this is the dominant contribution. When going to larger systems
(i.e. larger n and f) the dominant contribution, however, becomes the calculation
of the mean-field matrices. Their effort depends exponentially on the number of
modes f and is proportional to sf 2nf+1.[25] The total numerical effort is therefore,

effortMCTDH ≈ mfnN2 +mf 2nf+1 (4.43)

In comparison to the effort of the standard method the major gains in compu-
tational cost stem from the reduction of the number of configurations (c.f. n vs.
N). Also important to mention are the reduced memory requirements due to this
reduction.

4.3.6 Multi-Layer-MCTDH

An extension to the conventional MCTDH method has been introduced by the
multi-layer-MCTDH (ML-MCTDH) method.[26,27,77,78] The ML-MCTDH wavefunc-
tion ansatz is given by a hierarchical representation. The ansatz for the ML-
MCTDH wavefunction is, in principle, identical to that from MCTDH (Eqn. 4.10.
The difference to the conventional MCTDH scheme is the representation of the
single particle functions. The SPFs are expanded in a MCTDH-like tensor form,
but in a smaller subspace with less degrees of freedom. This procedure can be
repeated (M − 1) times such that a M -layer representation of the wavefunction
is obtained. The last layer of the ML-MCTDH scheme is then similar to the con-
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ventional MCTDH representation, where the SPFs are expanded in terms of the
underlying primitive basis, but in a low-dimensional subspace.

The ML-MCTDH approach can reduce the memory requirements and computation
time drastically by choosing an appropriate mode distribution and mode combi-
nation in the various subspaces. With the ML-MCTDH method more than 1000
DOFs are accessible and can be propagated.

4.4 Gaussian-MCTDH
To first order, a Gaussian function is a good approximation for the description of
wave packet dynamics. As long as the potential is nearly harmonic and the wave
packet is not too broad and stays of Gaussian form throughout the propagation
(e.g. the coherent state[57,79]), the potential can be sufficiently well described by
a Taylor expansion up to second order. Heller and Lee showed in a solution to
the TDSE that the GWP centre coordinate and momentum (q, p) follow classical
trajectories.[57,80] An extension to the Heller wave function is the use of a multi-
configurational approach as in the already introduced MCTDH scheme.

In the Gaussian-MCTDH (G-MCTDH) approach some or all single particle func-
tions ϕ(κ)

jκ
(c.f. Eqn. 4.10) are replaced by parametrized Gaussian functions G(κ)

jκ
,

so called Gaussian wavepackets (GWPs).[14,15,81] Here, the GWPs do not follow
classical trajectories, but the time-derivatives of their parameters are obtained
variationally. Compared to the traditional, fully flexible SPFs, the GWPs are
less flexible, but are advantageous in an efficient treatment of a large number of
modes, due to the analytical calculation of high-dimensional integrals (Gaussian
moments), which is much more efficient compared to the numerical integration
over large, high-dimensional DVR grids in MCTDH. Additionally, in contrast to
the time-independent primitive grid representation, a GWP represents a localized
basis moving in phase space. An obvious disadvantage is the non-orthogonality of
the GWPs.
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4.4.1 Ansatz

The wave function ansatz of the G-MCTDH method in its hybrid form[14,15] is
given by

Ψ
(
~X, t

)
=
∑
J

AJ (t) ΦJ

(
~X, t

)
(4.44)

=
n1∑
j1

n2∑
j2

· · ·
nf∑
j
f

Aj1,j2,...,jf (t)
( p∏
κ=1

ϕ
(κ)
jκ

(
~Xκ, t

)) f∏
κ=p+1

g
(κ)
jκ

(
~Xκ, t

)
(4.45)

with ϕ(κ)
jκ

as in standard MCTDH and the multidimensional GWPs g(κ)
jκ

taking the
form,

g
(κ)
jκ

(
~Xκ, t

)
= g

(κ)
jκ

(
~Λ(κ)
jκ

(t) , ~Xκ

)
= exp

[
~XT
κ a

(κ)
jκ

(t) ~Xκ +
(
~ξ

(κ)
jκ

(t)
)T ~Xκ + η

(κ)
jκ

(t)
]

(4.46)

The time evolution of the GWP is determined by complex, time-dependent parame-
ters ~Λ(κ)

jκ
=
(
a

(κ)
jκ
, ~ξ

(κ)
jκ
, η

(κ)
jκ

)
. Here, the complex, symmetric matrix a(κ)

jκ
controls the

width of g(κ)
jκ . The off-diagonal terms of a(κ)

jκ
characterize the coupling between the

degrees of freedom within a combined mode GWP. The next parameter ~ξ(κ)
jκ

repre-
sents the center of the GWP in phase space with the relation ~ξ(κ)

jκ
= −2a(κ)

jκ
~qκjκ +i~pκjκ

and real parameters ~qκjκ and ~pκjκ . ~q
κ
jκ

stands for the GWPs center in position space,
whereas ~qκjκ represents the center in momentum space. The last parameter η(κ)

jκ

defines the norm and the phase of the GWP. With these parameters it is possible
to transform the GWP into the typical Heller form.[57] Typically, the real part of
η

(κ)
jκ

is used to fix the norm of the GWP to
∥∥∥g(κ)

jκ

∥∥∥ = 1 (which is possible since the
complex phase parameter is ill determined from the variational equations). The
imaginary part is set to zero or evolves with the classical action. This reduces the
parameters which have to be determined variationally to ~Λ(κ)

jκ
=
(
a

(κ)
jκ
, ~ξ

(κ)
jκ

)
.

In practice, two variants are used: thawed Gaussians (TG) and frozen Gaussians
(FG). For the TGs all above mentioned parameters are propagated while for the
FGs the width is fixed. In the latter case, the width matrix can be chosen to be
diagonal (resulting in a product of 1-dimensional GWPs) and therefore the GWP
g

(κ)
jκ

can be rewritten (Eqn. 4.47) with the parameters which are time-dependent
being further reduced to ~Λ(κ)

jκ
=
(
~ξ

(κ)
jκ

)
,
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g
(κ)
jκ

(
~Xκ, t

)
=

dκ∏
d

N
((
a

(κ)
jκ

)
dd
,
(
~ξ

(κ)
jκ

)
d

)
× exp

[(
a

(κ)
jκ

)
dd
x2
κ,d +

(
~ξ

(κ)
jκ

(t)
)
d
xκ,d

]
(4.47)

where N (a, ξ) = (−2Re (a) /π)1/4 exp
(
(Re (ξ))2 /4Re (a)

)
is the normalization fac-

tor and xκ,d = ( ~xκ)d is a shorthand notation. Eqn. 4.47 states that each FG
corresponds to a product of one-dimensional FGs.

4.4.2 Equations of Motion

The equations of motion can again be derived by applying the Dirac-Frenkel
variational principle. Here, only the final equations for the GWP-only case (p = 0)
will be presented. For details see Ref. [14, 15] or chapter 6 (c.f. 2-Layer-G-MCTDH
EOMs).

In the GWP-only case the wave function Ψ is given by,

Ψ
(
~X, t

)
=

n1∑
j1

n2∑
j2

· · ·
nf∑
j
f

Aj1,j2,...,jf (t)
f∏
κ=1

g
(κ)
jκ

(
~Xκ, t

)
(4.48)

With the single hole functions given as,

ψ
(κ)
jκ

=
∑
J(κ)

A
J(κ:jκ)GJ(κ) (4.49)

where G
J(κ) = ∏

κ′ 6=κ g
(κ′)
j
κ′
. The mean field operators are defined as,

Ĥ
(κ)
jj′ =

〈
ψ

(κ)
jκ

∣∣∣ Ĥ ∣∣∣ψ(κ)
j′κ

〉
(4.50)

The EOMs for the coefficients ~A and the GWP parameters ~Λ can be obtained by
applying the DF-VP and are given as,

iS ~̇A =
(
H(G) − i~τ

)
~A (4.51)

iC(κ)~̇Λ(κ) = ~Y (κ) (4.52)

Here, the shorthand notations for the overlap matrix SJJ ′ = 〈GJ |GJ ′〉, the differen-
tial overlap τJJ ′ =

〈
GJ

∣∣∣ ∂
∂t
GJ ′

〉
and the Hamiltonian matrix H(G)

JJ ′ =
〈
GJ

∣∣∣ Ĥ ∣∣∣GJ ′

〉
are used. Both, the matrices S and τ are defined in a direct product space, e.g.
S = S(1) ⊗ · · · ⊗ S(f). Due to the differential overlap matrix τ , which is a function
of the time-dependent GWP parameters, a dynamical correlation between the co-
efficients ~A and the GWP parameters ~Λ arises. This allows to set the phase of the
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GWPs to zero as mentioned above. The matrix C(κ) and the vector ~Y (κ), which
define the evolution of the GWPs, are given as,

C
(κ)
jκα,j

′
κβ

=
〈

∂

∂Λ(κ)
jα

g
(κ)
jκ

∣∣∣∣∣∣
(
1̂− P̂ (κ)

) ∂

∂Λ(κ)
j′β

g
(κ)
j′κ

〉
(4.53)

Y
(κ)
jα =

∑
j′

〈
∂

∂Λ(κ)
jα

g
(κ)
jκ

∣∣∣∣∣∣
(
1̂− P̂ (κ)

)
Ĥ

(κ)
jj′ g

(κ)
j′κ

〉
(4.54)

Since the GWPs form a non-orthogonal basis the definition for the projector is not
identical to the conventional MCTDH propagator (c.f. Eqn.4.27) and therefore, is
given by,

P̂ (κ) =
∑
jj′

∣∣∣g(κ)
jκ

〉((
S(κ)

)−1
)
jj′

〈
g

(κ)
j′κ

∣∣∣ (4.55)

with the inverse of the overlap matrix between the GWPs S(κ)
jj′ =

〈
g

(κ)
jκ

∣∣∣ g(κ)
j′κ

〉
.

The dynamics of the GWP parameters can be seen as pseudo-classical, which for
a single Gaussian function reduces to Hamilton’s classical equations for the center,
momentum and width of a GWP as derived by Heller.[57] This connection follows
from the analogy of the quantum Lagrangian L = 〈H〉 − i

〈
Ψ
∣∣∣ ∂Ψ
∂λα

〉
λ̇α and the

classical Lagrangian L = H − pq̇.[13,67,82,83] When two or more Gaussian functions
are used, a non-classical coupling occurs from the off-diagonal elements in the C
matrix.

4.4.3 Special Case: vMCG

A special case of the G-MCTDH method is given by the variational multi-configu-
ration Gaussian (vMCG) method. Here, all degrees of freedom are chosen to be
combined in a multidimensional GWP Gj. Then, Eqn. 4.48 reduces to a sum over
multidimensional GWPs,

Ψ
(
~X, t

)
=

n∑
j

Aj (t)Gj

(
~X, t

)
(4.56)

By combining all degrees of freedom into one particle/GWP the equations of motion
for the GWP parameters ~Λ simplify in the sense that the mean field matrices reduce
to the density matrix. While the working equations for the coefficients essentially
do not change, the equations for the parameters now read,
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Ciα,jβ = ρij

(
S

(αβ)
ij −

[
S(α0) (S)−1 S(0β)

]
ij

)
(4.57)

Yiα =
∑
l

ρil

(
H

(α0)
ij −

[
S(α0) (S)−1H

]
ij

)
(4.58)

with the density matrix ρij = ĀiAj and α and β referring to the derivatives of the
Gaussian functions with respect to the parameters of the GWPs,

S
(αβ)
ij =

〈
∂gi
∂λiα

∣∣∣∣∣ ∂gj∂λjβ

〉
(4.59)

H
(αβ)
ij =

〈
∂gi
∂λiα

∣∣∣∣∣ Ĥ
∣∣∣∣∣ ∂gj∂λjβ

〉
(4.60)

For α or β equal to zero no derivative is done and only the GWP remains,

∂gi
∂λiα

α=0= gi (4.61)

4.4.4 Properties of the Gaussian-MCTDH Approach

The G-MCTDH approach (hybrid and all-GWP) as well as the vMCG variant are
used for two types of applications. While the first approach is very suitable for
system-bath type problems, where the system can be partitioned into primary and
secondary modes, e.g. effective modes and environmental bath modes,[15,81,84,85] the
vMCG variant is mainly used in combination with on-the-fly electronic structure
calculations.[17,18,86] Convergence properties of these methods tend to be favorable if
the modes, described by GWPs, remain near-harmonic, but in anharmonic systems
a large number of GWPs may be required. E.g. this has been shown for a pyrazine
benchmark system with 24 DOF near a conical intersection, showing complicated
dynamics.[81]

Originally, this method was intended to use high dimensional TGs. Compared to
MCTDH this seems a reasonable choice as the DOFs within a high dimensional
GWP are correlated through the off-diagonal terms in the width matrix. However,
this proved to be rather unstable and worked only in typical system-bath situations,
where only a small number of GWPs are necessary because of almost harmonic
bath modes. As a consequence, nowadays almost only FGs are used. In general,
these are more numerically robust, but of course lack correlations between the
combined DOFs within such a FG. Hence, a larger number of configurations is
needed for the calculation to converge and capture the correlations appropriately.
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The vMCG method usually does not converge well. Because of the lack of cor-
relation between the DOF within one GWP, many configurations are needed to
describe the wave packet dynamics appropriately and to conserve the results. But,
due to this unreduced particle every GWP reflects one complete configuration,
e.g. a representation of the system. Hence, vMCG is especially suitable to use in
conjunction with on-the-fly electronic structure calculations. On the other hand
(G-)MCTDH is typically used in combination with parametrized model Hamiltoni-
ans, where one needs to pre-compute selected cuts of the potential energy surface
(PES) and do a multidimensional fit. This is not only a tedious, but also insuffi-
cient work as one might not cover the PES correctly or miss out important areas.
On-the-fly dynamics (or direct dynamics) therefore bear the advantage that the
PES is only calculated at points where the wave function is located. However, in
order to have a sufficient accuracy, an appropriate electronic structure method has
to be chosen (c.f. chapter 3). Consequently, the electronic structure calculations
become the dominant computational effort.

4.4.5 Scaling Properties of G-MCTDH

For the sake of brevity only the scaling behavior of the all-GWP G-MCTDH
approach is discussed. The scaling of the mixed variant, however, can easily be
derived by combining both behaviors. In the following, for simplicity it is assumed
that each mode has the same number of SPFs n(1) = · · · = n(f) := n and that
every FG contains the same number of DOFs d1 = · · · = d

()
f := d. The scaling

is derived similarly to the MCTDH method. The most expensive steps are the
calculation of the mean fields Ĥ(κ)

jj′ and solving the system of linear equations for
the GWP parameters ~̇Λ(κ). The effort for the mean fields is essentially identical
to the MCTDH method. Solving the linear equations can be done in various
ways. Typically this is done by inverting the C matrix. An inversion of a complex
hermitian matrix scales cubically with the dimensionality and is therefore in the
order f (dn)3. The overall effort of the G-MCTDH method is then given as,[14,81]

effortG−MCTDH = mf 2nf+1 + f (dn)3 (4.62)

where again a sum of products Hamiltonian (Eqn. 4.40) is assumed. As one directly
sees from this term, combining many degrees of freedom into a high-dimensional
GWP will be particularly disadvantageous. This is especially pronounced for
the vMCG method, where all DOF are combined into one mode (f = 1). As a
consequence only a limited number of FGs can be used and numerical convergence
is difficult to achieve.
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and Charge Transfer

Excitation energy (EET) and electron transfer (ET) processes play an important
role in many areas of biology, physics and chemistry. EETs and ETs are crucial steps
in many processes where isolated molecules, molecular aggregates, light harvesting
complexes, photovoltaics and light emitting diodes (and their organic counterparts)
are involved. For example in organic photovoltaic (OPV) systems, three elementary
steps have to be considered:

1. creation of electron-hole pairs (excitons)

2. exciton transport (EETs) and dissociation (ETs) at donor-acceptor junctions

3. transport and capture of charge carriers at the electrodes.

For a better understanding of these processes, it is necessary to describe the EET
and ET kinetics (section 5.1). In this work, the focus lies on the initial exciton
transport and dissociation, i.e. the charge generation. To study this, several
models have been developed and two of them, based on the Marcus theory,[87] are
presented in the following (section 5.2). However, these models are not sufficient
for the description of ultrafast non-adiabatic ETs. Therefore, in section 5.3 model
Hamiltonians for the description of energy transfers are discussed, which can be
used in conjunction with the methods discussed in chapters 3 and 4.

5.1 Charge and Exciton Generation
The first step in (E)ET processes is the creation of an excited state. Such an
excited state may be the result of a scattering process with another molecule, a
preceding EET step, or created by an optical absorption. In the latter case, a
photon which is in resonance with the energy gap between the highest occupied
molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO)
is absorbed. Hence, an electron from the HOMO is promoted (excited) to the
LUMO. Therefore a hole and an unpaired electron is left behind in the HOMO,
illustrated by the sketch in Fig. 5.1(a). This electron-hole pair, also called exciton,
is an electronically quasi-particle bound via the Coulomb attraction.
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LUMO

HOMO

(a) photoexcitation

donor acceptor

(b) EET

Figure 5.1: (a) Illustration of the creation of an electron-hole pair via a photo-
excitation and (b) and an excitation energy transfer process between donor and acceptor.

Applying this to a donor-acceptor molecule (or complex), an electron is excited
to the LUMO of the donor D → D∗, where D∗ indicates the excited state of the
donor. Then, the energy can be transferred to the acceptor,

D∗A→ DA∗

where the donor returns to the ground state and an electron from the acceptors
HOMO is excited to the LUMO (EET, Fig. 5.1(b)). Alternatively to the EET, an
electron can be transferred from the donor to the acceptor, creating a so called
charge transfer (CT) state,

D∗A→ D+A−

After the ET event the donor is left with a hole in its HOMO and the acceptor
carries an additional electron in its LUMO. As an alternative, the CT state can be
formed after an initial EET, followed by a hole transfer from the acceptor to the
donor,

DA*→ D+A−

5.2 Electron Transfer Theories
The classical description of an electron transfer is based on the transition state
theory and the Arrhenius relation. Marcus theory uses this as basis to describe the
transfer of an electron from a spherical donor to a spherical acceptor molecule in
solution via a classical reaction coordinate. The distortion of the donor, acceptor
and the environment from their equilibrium configuration is described by two
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Figure 5.2: Illustration of the Marcus model for (a) the normal and (b) inverted
regime. ∆G0 represents the difference of the Gibbs free energy, ∆G‡ is the expression
for the activation energy and λ is the reorganization energy.

parabolas, which are shifted relatively to each other according to the reaction
Gibbs free energy ∆G0 (Fig. 5.2).

The transfer rate for the Marcus Theory is given as,

kET = 2π
h̄

|VDA|2√
4πλkBT

exp
(
− (∆G0 + λ)2

4λkBT

)
(5.1)

where VDA represents the coupling (transfer integral) between the two donor and
acceptor states, T is the temperature and kB is the Boltzmann constant. In the
case of a weak coupling, |VDA|2 is taken to be exponentially dependent on the
distance between donor and acceptor RDA,

|VDA|2= |V 0
DA|2exp (−βRDA) (5.2)

The reaction rate is mainly dependent on two variables: the difference in Gibbs free
energy ∆G0 for the both states and the reorganisation energy λ. ∆G0 describes
the reaction energy of the transfer process, while λ gives insight into the change
of the electrostatic field of the environment and the reorganization of the internal
modes.

If the value of ∆G0 is smaller than λ the transfer rate kET increases with the
absolute of the reaction Gibbs free energy |∆G0|. This behavior is typically referred
to as the normal regime. If |∆G0| increases even more, becoming larger than λ,
the reaction rate decreases with growing |∆G0|. This is typically referred to as the
inverted regime. This change in behavior is due to an increased activation energy
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Figure 5.3: (a) Illustration of the Marcus transfer rate dependence of |∆G0| and (b)
illustration of the Marcus-Jortner-Levich scheme.

∆G‡ for the transfer, as the crossing of the both state parabolas is increased in
energy. In the case of λ = ∆G0 the reaction becomes barrierless.

Within the framework of a simplified model, only taking into account the elec-
trostatic interaction with the solvent, λ can be approximated by the Born-Hush
approach,[88]

λ = e2

4πε0

 1
2rD+

+ 1
2rA−

− 1
RDA

( 1
n2 + 1

ε

)
(5.3)

where ε is the dielectric constant and n the refraction index of the solvent, rD+

and rA− are the radii of the oxidized donor and reduced acceptor and RDA is
the distance of the centroids of acceptor and donor. The reaction energy ∆G0

can either be measured or calculated. For example, when the solvation after the
transfer process is rapid, one can approximate ∆G0 by,

∆G0 = ED/D+

ox −
(
E

A/A+

red + ED∗

)
− e2

ε

(
rD+ + rA−

)
(5.4)

where ED/D+
ox and EA/A+

red are the standard redox potentials of the donor and acceptor
respectively, ED∗ is the energy of the donor excited state and ε is the dielectric
constant of the medium.

An extension to the classical Marcus theory is given by the Marcus-Levich-Jortner
theory. Here, one assumes that the low-frequency, classical reaction coordinate
is coupled to high-frequency intra-molecular (quantum) modes. Since the energy
of the high-frequency mode is usually much higher than the thermal energy, one
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assumes, that for the initial state only the vibrational ground state is occupied.
Therefore, one has a single initial, but several final vibrational states and therefore
several pathways are to be considered,

kMLJ
ET =2π

h̄

|VDA|2√
4πλsolkBT

∞∑
n=0

(
λmol
E
vib

)n
n! exp

(
−λmol
Evib

)

exp
(
−(∆G0 + λsol + nEvib)

2

4λsolkBT

)
(5.5)

Evib represents the vibrational energy of the high-frequency vibrational mode.
The manifold of the vibrational final states is included in the reaction Gibbs
free energy. Here, λ is now considered to be comprised of two terms describing
the reorganization energy of the solvent (λsol) and the nuclear coordinates (λmol).
λsol can be approximated as before by the Born-Hush model, while λmol can be
extracted from electronic structure calculations.

5.3 Model Hamiltonians for the Description of
Energy and Charge Transfer Processes

For the theoretical investigation of energy and electron transfer processes, a Hamil-
tonian is needed to describe the physical properties of such processes. The Hamilto-
nian carries all information about the internal DOFs of the system, the environment
and electron-phonon-couplings. The full molecular Hamiltonian would describe
all physical effects and aspects explicitly. However, the computational effort for
accurate methods typically rises exponentially with the number of DOFs and the
full Hamiltonian cannot be used. Therefore it is necessary to focus on specific
DOFs and interactions of the Hamiltonian, describing the elementary parts of the
energy or electron transfer process of interest.[31]

The first step towards an accurate and efficient description is to use a system-bath-
type Hamiltonian, where the Hamiltonian consists of three main parts,

ĤET = Ĥsystem + Ĥbath + Ĥsystem−bath (5.6)

As Eqn. 5.6 shows, the Hamiltonian is split into a system Hamiltonian Ĥsystem, a
Hamiltonian representing the environment, here denoted bath Hamiltonian Ĥbath,
and the system-bath Hamiltonian Ĥsystem−bath, which couples the system to the
environment. The setup and approximation of Ĥsystem is crucial for a reasonable
description of the investigated process on the one hand and on the other hand to
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keep the computational costs sufficiently low. The system Hamiltonian is further
split into an electronic and nuclear part and an interaction between those. This
enables the possibility to include only the relevant DOFs and electronic states and
couplings or to approximate these with simple expressions. In contrast, Ĥbath de-
scribes the environment of the system under study. Depending on the environment,
the Hamiltonian has to be chosen appropriately, i.e. if the system is in solution or
embedded in a high-dimensional molecular arrangement like a protein or nucleic
acid, also enabling the description of dissipative and relaxation effects. Several
appropriate models are available such as a Langevin description or hierarchical
normal mode representations (also see the IVR Hamiltonian below). Ĥsystem−bath

finally characterizes the coupling between the system and the environment, e.g. a
linear coupling to one or a few modes of the system.

A simple system-bath Hamiltonian for the study of energy transfer dynamics of
a donor-acceptor system in a dissipative environment can be written in a normal
mode representation and mass-weighted coordinates as depicted in Eqn. 5.6. In
a pure electronic expression the system Hamiltonian represents the excitation of
molecular sites on a basis of localized molecular excitations,

Ĥsystem =
nstate∑
α=1

εα |α〉 〈α|+
nstate∑
β 6=α

∆α,β |α〉 〈β| (5.7)

where εα represents the excitation energy of state |α〉 and ∆α,β a constant coupling
between states |α〉 and |β〉. The bath Hamiltonian may be written as a sum of
independent harmonic oscillators for each state,

Ĥbath =
nstate∑
α=1

n(α)∑
i=1

1
2

((
p̂

(α)
i

)2
+
(
ω

(α)
i q̂

(α)
i

)2)
(5.8)

where ω(α)
i represents the frequency of a harmonic oscillator of the bath. The

coupling between the environment and the system can be expressed with a linear
coupling,

Ĥsystem−bath =
nstate∑
α=1

n(α)∑
i=1

c
(α)
i q̂

(α)
i |α〉 〈α| (5.9)

where c(α)
i controls the strength of the coupling between the states and the ith

mode of the bath. Here, every state is supposed to have its own local environment.
Due the coupling to the bath, the site are shifted in energy and a counter term
may have to be included to correct this behaviour,
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Ĥcounter =
nstate∑
α=1

n(α)∑
i=1

(
c

(α)
i

)2

2
(
ω

(α)
i

)2 |α〉 〈α| (5.10)

Another type of energy transfer Hamiltonians focuses solely on the vibrational
energy redistribution. Specifically, an intra-molecular vibrational energy redis-
tribution Hamiltonian in a normal mode representation is introduced. Such a
Hamiltonian describes the relaxation of energy from an initial vibrationally excited
state into other vibrational DOFs of a polyatomic molecule. Here, an anharmonic,
Morse-like, potential is expanded with respect to the mass-weighted normal mode
coordinates qi. Therefore, a N -dimensional vibrational Hamiltonian is obtained,

ĤIV R = 1
2

N∑
i

(
p̂2
i + ω2

i q̂
2
i

)
+

N2∑
i,j

Ki,jqiqj +
N3∑
i,j,k

Ki,j,kqiqjqk + . . . (5.11)

where Ki,j,... describes the anharmonic coupling constants. By employing such a
Hamiltonian it is possible to study energy transfer processes and obtain transfer
rates in macro molecular arrangements. This vibrational Hamiltonian could also
be used as bath Hamiltonian, if a more detailed description would be necessary
due to a strong coupling to specific environmental modes.
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The 2-Layer-Gaussian-MCTDH
Method: Implementation and

Applications





The first main project of this work is the development, implementation and first
application of the novel 2-Layer Gaussian-Multiconfigurational Time-Dependent
Hartree (2L-G-MCTDH) method which was developed in our group by S. Römer et
al.[1] The 2L-G-MCTDH method is a new variant of the existing Gaussian-MCTDH
(G-MCTDH) method and uses a hierarchical structure of the wave function, analo-
gously to the ML-MCTDH approach.[26,27,77,78] Given that the G-MCTDH method
and its vMCG variant have to overcome several bottlenecks, as mentioned in sec-
tion 4.4, the goal of the 2L-G-MCTDHmethod is to alleviate these by combining the
flexible MCTDH-like single particle functions with factorizable multi-dimensional
frozen Gaussians. As a result, the expensive variational evolution of the Gaussian
parameters is reduced to low-dimensional subspaces.

This part is divided into four chapters: In chapter 6 the method is introduced and
the equations of motion are derived. Together with an extension to multi-state
wavefunctions the improved scaling properties are discussed. Chapter 7 focuses on
the implementation of the novel method and gives insights into the overall program
structure, scaling properties and further details to specific algorithms. In chapter 8
the developed code is tested and approved by application to two systems. The
first system is a model system for intra-molecular vibrational energy redistribution
in a molecular chain. The second example describes an ultrafast charge transfer
state formation in a donor-acceptor system. Lastly, in chapter 9 the results are
summarized and an outlook to future developments is given.
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6 | The 2L-G-MCTDH Method

The G-MCTDH and vMCG approaches encounter their limits very quickly when
using frozen Gaussians (FGs) as basis functions. Therefore it is necessary to re-
introduce correlations into the FG-based wavefunction ansatz. To bridge between
the fully flexible combined-mode SPFs of the MCTDH method and the moving
FG basis sets, a new ansatz has been proposed in [1] which employs a novel type
of FG based SPFs.

In this chapter, the concept of the novel 2-Layer-Gaussian MCTDH method is
introduced. The ansatz of the wavefunction is discussed and the equations of motion
are derived with the help of the Dirac-Frenkel variational principle, following.[1]

Against this background, the improved scaling properties are shown from theoretical
estimates. Following this, an extension of the method for multi-state Hamiltonians
is demonstrated.

6.1 Wave Function Ansatz
To retain the flexibility of the original MCTDH type SPFs, the wave function ansatz
in the new 2L-G-MCTDH scheme is taken exactly as in the MCTDH method in
the first place, i.e., the wave function is constructed as a sum over products of
SPFs. In a second step, as will be discussed below, the SPFs are expanded in an
FG basis. Hence, the starting point is the wave function

Ψ
(
~X, t

)
=
∑
J

AJ (t) ΦJ

(
~X, t

)

=
n1∑
j1

n2∑
j2

· · ·
nf∑
j
f

Aj1,j2,...,jf (t)
f∏
κ=1

ϕ
(κ)
jκ

(~xκ, t) (6.1)

where J is a multi-index with J = j1, j2, . . . , jκ, . . . , jf , the coefficients AJ (t) are
complex-valued, and the configurations ΦJ

(
~X, t

)
are expanded as a product of

SPFs ϕ(κ)
jκ

. The κ = 1, 2, . . . , f describe a set of modes ~X =
(
~x1, ~x2, . . . , ~xf

)
.

The SPFs are then expanded in a G-MCTDH like approach, with FGs as basis
functions,

ϕ
(κ)
j (~xκ, t) =

∑
Lκ

B
(κ)
jκ,Lκ

(t)G(κ)
Lκ

(~xκ, t) =
∑
Lκ

B
(κ)
jκ,Lκ

(t)
fκ∏
µ=1

g
(κ,µ)
lκ,µ

(
~xκ,µ, t

)
(6.2)
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where Lκ = lκ,1, lκ,2, . . . , lκ,µ, . . . , lκ,fκ is also a multi-index. The multi-dimensional
GWPs are identical to the GWPs used in the G-MCTDH approach, but now carry
a double index referring to the smaller (κ, µ)-subspace (c.f. 4.46),

g
(κ,µ)
lκ,µ

(
~xκ,µ, t

)
= g

(κ,µ)
lκ,µ

(
~Λ(κ,µ)
lκ,µ

(t) , ~xκ,µ
)

= exp
[(
~xκ,µ

)T
a

(κ,µ)
lκ,µ

(t) ~xκ,µ +
(
~ξ

(κ,µ)
lκ,µ

(t)
)T
~xκ,µ + η

(κ,µ)
lκ,µ

(t)
]

(6.3)

with the GWP parameters ~Λ(κ,µ)
lκ,µ

=
(
a

(κ,µ)
lκ,µ

, ~ξ
(κ,µ)
lκ,µ

, η
(κ,µ)
lκ,µ

)
, where ~ξ(κ,µ)

lκ,µ
again describes

the GWP center position in phase space ~ξ(κ,µ)
lκ,µ

= −2a(κ,µ)
lκ,µ

~q
(κ,µ)
lκ,µ

+ i~p
(κ,µ)
lκ,µ

. As this
approach uses FGs rather than TGs, the width matrix can be chosen to be diagonal
such that the multi-dimensional GWPs can be written as a product of 1-dimensional
GWPs,

g
(κ,µ)
lκ,µ

(
~xκ,µ, t

)
=

dκ,µ∏
d

N
((
a

(κ,µ)
lκ,µ

)
dd
,
(
~ξ

(κ,µ)
lκ,µ

)
d

(t)
)

× exp
[(
a

(κ,µ)
lκ,µ

)
dd
x2
κ,µ,d +

(
~ξ

(κ,µ)
lκ,µ

)
d

(t)xκ,µ,d + η
(κ,µ)
lκ,µ

(t)
]

(6.4)

where N (a, ξ) = (−2Re (a) /π)1/4 exp
(
(Re (ξ))2 /4Re (a)

)
is the same normaliza-

tion factor as for the GWPs in G-MCTDH.

In other words, a two-layered G-MCTDH ansatz is constructed where the first-layer
SPFs ϕ(κ)

jκ
have more flexibility than the conventional GWPs (c.f. G-MCTDH),

due to the time-evolving B(κ)
jκ,Lκ

coefficients.[1]

Like in the standard (G-)MCTDH ansatz, the representation of the wave function
in terms of the new (first-layer) SPFs (Eqn. 6.2) is unique only up to change of
spanning sets. For any subspace H (κ) that is in the span of a finite number of
SPFs of the form of Eqn. 6.2, one can find – by adapting the coefficients B(κ)

jκ,Lκ

appropriately – an orthogonal basis of H (κ), which is still of the form of Eqn. (6.2).
Thus we are free to use the same ’gauge’ freedom as in standard MCTDH and the
first-layer SPFs ϕ(κ)

jκ
can be chosen to be orthonormal at all times,〈

ϕ
(κ)
jκ

∣∣∣ϕ(κ)
lκ

〉
=δjl (6.5)

P̂ (κ) (t)
(
i
∂

∂t
− ĝ(κ)

) ∣∣∣ϕ(κ)
jκ

〉
=0 (6.6)

For the derivation of the EOMs the constraint operator ĝ(κ) is chosen to be equal
to zero, as typically done in MCTDH.
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By the use of parametrized Gaussian functions one retains the efficient treatment
of a large number of modes due to the analytic calculations of high dimensional
integrals, but sacrificing some flexibility of the SPFs. As for the first layer, the
representation of each SPF is not unique, which results in a free choice of η(κ,µ)

lκ,µ
.

(This is similar to G-MCTDH where the variational equations for the GWP phase
parameter are undetermined.) Typically the real part Re

(
η

(κ,µ)
lκ,µ

)
is fixed, such that

the GWP g
(κ,µ)
lκ,µ

is normalized at any time, while the imaginary part Im
(
η

(κ,µ)
lκ,µ

)
is

set to zero. For the FGs the only time-dependent parameters of the GWPs are the
positions in phase space ~Λ(κ,µ)

lκ,µ
=
(
~ξ

(κ,µ)
lκ,µ

)
.

6.2 Equations of Motion
In order to derive the equations of motion it is convenient to define some shorthand
notations. First, we define the first- and second-layer single hole functions (SHFs),

ψ
(κ)
j′ =

∑
J(κ)

A
J(κ:j′)ΦJ(k) (6.7)

ψ
(κ,µ)
l′ =

∑
jκ

∑
L(µ)

B
(κ)
jκ,L

(µ:l′)G
(κ)
L(µ:l′)

ψ(κ)
jκ

(6.8)

where J (κ) = j1, . . . , jκ−1, jκ+1, . . . , jf and J (κ:j′) = j1, . . . , jκ−1, j
′, jκ+1, . . . , jf are

reduced multi-indices and Φ
J(κ) = ∏

κ′ 6=κ ϕ
(κ′)
j
κ′

is a reduced configuration. The

quantities L(µ), L(µ:l′) and G
(κ)
L(µ:l′) are defined analogously. Second, given the

definition of the SHFs, one is able to rewrite the wave function Ψ as,

Ψ =
∑
jκ

ϕ
(κ)
jκ
ψ

(κ)
jκ

=
∑
lκ,µ

g
(κ,µ)
lκ,µ

ψ
(κ,µ)
lκ,µ

(6.9)

The equations of motion are again derived by applying the DF-VP (Eqn. 4.3) to
the wave function ansatz. The variation of the wave function δΨ is given by,

δΨ =
∑
J

δAJΦJ +
∑
κ,jκ

δϕ
(κ)
jκ
ψ

(κ)
jκ

=
∑
J

δAJΦJ +
∑

κ,jκ,Lκ

δB
(κ)
jκ,Lκ

G
(κ)
Lκ
ψ

(κ)
jκ

+
∑

κ,µ,lκ,µ

δg
(κ,µ)
lκ,µ

ψ
(κ,µ)
lκ,µ

=
∑
J

δAJΦJ +
∑

κ,jκ,Lκ

δB
(κ)
jκ,Lκ

G
(κ)
Lκ
ψ

(κ)
jκ

+
∑

κ,µ,lκ,µ,α

δΛ(κ,µ)
lκ,µ,α

(
∂

∂α
g

(κ,µ)
lκ,µ

)
ψ

(κ,µ)
lκ,µ

(6.10)

where α refers to one of the time-dependent GWP parameters ~Λ(κ,µ)
lκ,µ

. The varia-
tions of the coefficients δAJ , δB

(κ)
jκ,Lκ

and the parameters δΛ(κ,µ)
lκ,µ,α

are independent
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and therefore three independent equations are obtained from the Dirac-Frenkel
variational principle,

0 =
〈

ΦJ

∣∣∣∣∣
(
i
∂

∂t
− Ĥ

) ∣∣∣∣∣Ψ
〉

∀J (6.11)

0 =
〈
G

(κ)
Lκ
ψ

(κ)
jκ

∣∣∣∣∣
(
i
∂

∂t
− Ĥ

) ∣∣∣∣∣Ψ
〉

∀κ, jκ, Lκ (6.12)

0 =
〈
∂

∂α
g

(κ,µ)
lκ,µ

ψ
(κ,µ)
lκ,µ

∣∣∣∣∣
(
i
∂

∂t
− Ĥ

) ∣∣∣∣∣Ψ
〉

∀κ, µ, lκ,µ, α (6.13)

6.2.1 Variation of the First-Layer Coefficients

The time derivatives of the first-layer coefficients are obtained using Eqn. 6.11
analogously to the MCTDH coefficients (c.f. Eqn. 4.22). Therefore, one obtains
the same EOM (with ĝ(κ)),

iȦJ =
∑
J ′

〈
ΦJ

∣∣∣ Ĥ ∣∣∣ΦJ ′

〉
AJ ′ (6.14)

6.2.2 Variation of the Second-Layer Coefficients

Before treating Eqn. 6.12, the orthogonal projector P̂ (κ) (Eqn. 4.27) is used to split
off the part of G(κ)

Lκ
that lies in the κth subspace that is already spanned by the

first-layer SPFs ϕ(κ)
jκ

,

G
(κ)
Lκ

= P̂ (κ)G
(κ)
Lκ

+
(
1̂− P̂ (κ)

)
G

(κ)
Lκ

(6.15)

Eqn. 6.12 can then be rewritten,

0 =
〈
P̂ (κ)G

(κ)
Lκ
ψ

(κ)
jκ

∣∣∣∣∣
(
i
∂

∂t
− Ĥ

) ∣∣∣∣∣Ψ
〉

+
〈(

1̂− P̂ (κ)
)
G

(κ)
Lκ
ψ

(κ)
jκ

∣∣∣∣∣
(
i
∂

∂t
− Ĥ

) ∣∣∣∣∣Ψ
〉

(6.16)

Since P̂ (κ)G
(κ)
Lκ

is a linear combination of first-layer SPFs ϕ(κ)
jκ

and ψ(κ)
jκ

is a linear
combination of configurations Φ

J(κ) , the product P̂ (κ)G
(κ)
Lκ
ψ

(κ)
jκ

is then a linear
combination of the first layer configurations ΦJ (c.f. MCTDH Eqn. 4.31),

P̂ (κ)G
(κ)
Lκ
ψ

(κ)
jκ

=
∑
J

cJΦJ (6.17)

Together with Eqn. 6.11 this implies that the first term in Eqn. 6.16 vanishes (i.e.,
the SPFs move only in the space that is not yet spanned) and reduces to,
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0 =
〈(

1̂− P̂ (κ)
)
G

(κ)
Lκ
ϕ

(κ)
jκ

∣∣∣∣∣
(
i
∂

∂t
− Ĥ

) ∣∣∣∣∣Ψ
〉

=
〈
G

(κ)
Lκ
ϕ

(κ)
jκ

∣∣∣∣∣ (1̂− P̂ (κ)
)(

i
∂

∂t
− Ĥ

) ∣∣∣∣∣Ψ
〉

=
∑
j′
iρ

(κ)
jκj
′
κ

〈
G

(κ)
Lκ

∣∣∣∣∣ (1̂− P̂ (κ)
) ∂
∂t
ϕ

(κ)
j′κ

〉

+ i

〈
ψ

(κ)
jκ

∣∣∣∣∣ ∂∂tψ(κ)
j′κ

〉〈
G

(κ)
Lκ

∣∣∣ (1̂− P̂ (κ)
)
ϕ

(κ)
j′κ

〉
−
〈
G

(κ)
Lκ

∣∣∣ (1̂− P̂ (κ)
)
Ĥ(κ)
jκj
′
κ

∣∣∣ϕ(κ)
j′κ

〉
(6.18)

where the definitions for the density matrix ρ(κ)
jκj
′
κ

=
〈
ψ

(κ)
jκ

∣∣∣ψ(κ)
j′κ

〉
and the first-layer

mean-fields Ĥ(κ)
jκj
′
κ

=
〈
ψ

(κ)
jκ

∣∣∣ Ĥ ∣∣∣ψ(κ)
j′κ

〉
have been used. Using

(
1̂− P̂ (κ)

) ∣∣∣ϕ(κ)
j′κ

〉
= 0

(c.f. Eqn. 4.33) and the ’gauge’ freedom to choose orthonormal SPFs one gets,

0 =
∑
j′κ

{
iρ

(κ)
jκj
′
κ

〈
G

(κ)
Lκ

∣∣∣∣∣ ∂∂tϕ(κ)
j′κ

〉
−
〈
G

(κ)
Lκ

∣∣∣ (1̂− P̂ (κ)
)
Ĥ(κ)
jκj
′
κ

∣∣∣ϕ(κ)
j′κ

〉}

=
∑
j′κL′κ

{
iρ

(κ)
jκj
′
κ

[〈
G

(κ)
Lκ

∣∣∣G(κ)
L′κ

〉 ∂
∂t
B

(κ)
j′κL′κ

+
〈
G

(κ)
Lκ

∣∣∣∣∣ ∂∂tG(κ)
L′κ

〉
B

(κ)
j′κL′κ

]

−
〈
G

(κ)
Lκ

∣∣∣ (1̂− P̂ (κ)
)
Ĥ(κ)
jκj
′
κ

∣∣∣G(κ)
L′κ

〉
B

(κ)
j′κL′κ

 (6.19)

With the definition of the overlap(S̃(κ)
jκLκ,j

′
κL
′
κ
), Hamiltonian (H̃(κ)

jκLκ,j
′
κL
′
κ
) and differ-

ential overlap matrix elements (τ̃ (κ)
jκLκ,j

′
κL
′
κ
),

S̃
(κ)
jκLκ,j

′
κL
′
κ

=δjκj′κ
〈
G

(κ)
Lκ

∣∣∣G(κ)
L′κ

〉
(6.20)

τ̃
(κ)
jκLκ,j

′
κL
′
κ

=δjκj′κ

〈
G

(κ)
Lκ

∣∣∣∣∣ ∂∂tG(κ)
L′κ

〉
(6.21)

H̃
(κ)
jκLκ,j

′
κL
′
κ

=
〈
G

(κ)
Lκ

∣∣∣∣∣ (1̂− P (κ)
) [(

ρ(κ)
)−1 Ĥ(κ)

]
jκj
′
κ

G
(κ)
L′κ

〉
(6.22)

one can rewrite the equation and obtain the EOM for the coefficients ∂
∂t
B

(κ)
j′κL′κ

=
Ḃ

(κ)
j′κL′κ

:
∑

j′′κj′κL′κ

iρ
(κ)
jκj
′
κ
S̃

(κ)
j′′κLκ,j′κL′κ

Ḃ
(κ)
j′κL′κ

=
∑

j′′κj′κL′κ

ρ
(κ)
jκj
′
κ

{
H̃

(κ)
jκLκ,j

′
κL
′
κ
B

(κ)
j′κL′κ

−iτ̃ (κ)
jκLκ,j

′
κL
′
κ
B

(κ)
j′κL′κ

}
∑

j′′κj′κL′κ

iS̃
(κ)
j′′κLκ,j′κL′κ

Ḃ
(κ)
j′κL′κ

=
∑

j′′κj′κL′κ

{
H̃

(κ)
jκLκ,j

′
κL
′
κ
B

(κ)
j′κL′κ
− iτ̃ (κ)

jκLκ,j
′
κL
′
κ
B

(κ)
j′κL′κ

}
(6.23)
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6.2.3 Variation of the GWP Parameters

The time derivatives of the GWP parameters are obtained from Eqn. 6.13. Before-
hand, one can define a non-orthogonal second-layer projector as for the first-layer,

P̂ (κ,µ) =
∑

lκ,µl
′
κ,µ

∣∣∣g(κ,µ)
lκ,µ

〉((
S(κ,µ)

)−1
)
lκ,µl

′
κ,µ

〈
g

(κ,µ)
l′κ,µ

∣∣∣ (6.24)

where S(κ,µ) =
〈
g

(κ,µ)
lκ,µ

∣∣∣ g(κ,µ)
l′κ,µ

〉
is the second-layer overlap matrix. With the projector

it is again possible to split off the part that lies in the (κ, µ)th subspace H (κ,µ)

spanned by the second-layer SPFs g(κ,µ)
lκ,µ

,

∂

∂α
g

(κ,µ)
lκ,µ

= P̂ (κ,µ) ∂

∂α
g

(κ,µ)
lκ,µ

+
(
1̂− P̂ (κ,µ)

) ∂

∂α
g

(κ,µ)
lκ,µ

(6.25)

Since P̂ (κ,µ)g
(κ,µ)
lκ,µ

ψ
(κ,µ)
lκ,µ

is a linear combination,

P̂ (κ,µ) ∂

∂α
g

(κ,µ)
lκ,µ

ψ
(κ,µ)
lκ,µ

=
∑
jκ,Lκ

cjκ,LκG
(κ)
Lκ
ψ

(κ,µ)
lκ,µ

(6.26)

the first term of Eqn. 6.25 can be rewritten as,〈
P̂ (κ,µ)g

(κ,µ)
lκ,µ

ψ
(κ,µ)
lκ,µ

∣∣∣∣∣
(
i
∂

∂t
− Ĥ

) ∣∣∣∣∣Ψ
〉

=
∑
jκ,Lκ

c̄jκ,Lκ

〈
G

(κ)
Lκ
ψ

(κ,µ)
lκ,µ

∣∣∣∣∣
(
i
∂

∂t
− Ĥ

) ∣∣∣∣∣Ψ
〉

= 0 (6.27)

Together with Eqn. 6.12 the first term of Eqn. 6.13 vanishes and Eqn. 6.13 reduces
to,

0 =
〈
∂

∂α
g

(κ,µ)
lκ,µ

ψ
(κ,µ)
lκ,µ

∣∣∣∣∣ (1̂− P̂ (κ,µ)
)(

i
∂

∂t
− Ĥ

) ∣∣∣∣∣Ψ
〉

(6.28)

With the help of Eqn. 6.9 one is able to rewrite this equation and by using the
definitions for the second-layer density matrix ρ(κ,µ)

lκ,µl
′
κ,µ

=
〈
ψ

(κ,µ)
lκ,µ

∣∣∣ψ(κ,µ)
l′κ,µ

〉
and second-

layer mean-fields matrix elements Ĥ(κ,µ)
lκ,µl

′
κ,µ

=
〈
ψ

(κ,µ)
lκ,µ

∣∣∣ Ĥ ∣∣∣ψ(κ,µ)
l′κ,µ

〉
one obtains the

EOM for the GWP parameters,

0 =
∑
l′κ,µ

{
iρ

(κ,µ)
lκ,µl

′
κ,µ

〈
∂

∂α
g

(κ,µ)
lκ,µ

∣∣∣∣∣ (1̂− P̂ (κ,µ)
) ∂
∂t
g

(κ,µ)
l′κ,µ

〉

−
〈
∂

∂α
g

(κ,µ)
lκ,µ

∣∣∣∣∣ (1̂− P̂ (κ,µ)
)
Ĥ(κ,µ)
lκ,µl

′
κ,µ

∣∣∣∣∣ g(κ,µ)
l′κ,µ

〉}
(6.29)

=
∑
l′κ,µ,β

iρ
(κ,µ)
lκ,µl

′
κ,µ

〈
∂

∂α
g

(κ,µ)
lκ,µ

∣∣∣∣∣ (1̂− P̂ (κ,µ)
) ∂

∂β
g

(κ,µ)
l′κ,µ

〉
∂

∂t
Λ(κ,µ)
l′κ,µ,β

(6.30)

−
∑
l′κ,µ

〈
∂

∂α
g

(κ,µ)
lκ,µ

∣∣∣∣∣ (1̂− P̂ (κ,µ)
)
Ĥ(κ,µ)
lκ,µl

′
κ,µ

∣∣∣∣∣ g(κ,µ)
l′κ,µ

〉
(6.31)
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With the definitions for the C matrix and ~Y vector,

C
(κ,µ)
lκ,µα,l

′
κ,µβ

=ρ(κ,µ)
lκ,µl

′
κ,µ

〈
∂

∂α
g

(κ,µ)
lκ,µ

∣∣∣∣∣ (1̂− P̂ (κ,µ)
) ∂

∂β
g

(κ,µ)
l′κ,µ

〉
(6.32)

Y
(κ,µ)
lκ,µα

=
∑
l′κ,µ

〈
∂

∂α
g

(κ,µ)
lκ,µ

∣∣∣∣∣ (1̂− P̂ (κ,µ)
)
Ĥ(κ,µ)
lκ,µl

′
κ,µ
g

(κ,µ)
l′κ,µ

〉
(6.33)

one obtains the variational EOMs for the GWP parameters in matrix notation,

iC(κ,µ)~̇Λ(κ,µ) = ~Y (κ,µ) (6.34)

6.3 Summary of Equation of Motions
To recapitulate, the equations of motion are presented in matrix notation:

i ~̇A =H(Φ) ~A (6.35)

iS̃
(κ) ~̇B(κ) =

[
H̃

(κ) − iτ̃ (κ)
]
~B(κ) (6.36)

iC(κ,µ)~̇Λ(κ,µ) =~Y (κ,µ) (6.37)

The dynamical equations combine a standard MCTDH-like equation for the first-
layer coefficients ~A, a G-MCTDH-like equations for the second-layer coefficients
~B(κ) and the GWP parameters ~Λ(κ,µ). Due to the hierarchical two-layer structure
the equation for the GWP parameters is restricted to the lower (κ, µ)th subspace
(c.f. κth subspace in G-MCTDH) and therefore leading to a significant reduction
of the numerical effort for inversion of the C(κ,µ) matrix.

6.4 Scaling Properties
The scaling behavior is again analyzed by counting the multiplications for the
evaluation of the EOMs. For the scaling analysis the same assumptions are made
as for G-MCTDH: f1 shall be the number of first-layer modes (κ = 1, · · · , f1).
Each first-layer mode κ is split into the same number of second-layer modes f (1) =
· · · = f(f1) =: f2. We further assume that the length of all basis sets is n(1) =
· · · = n(f1) =: n1 in the first-layer and n(1,1) = · · · = n(f1,f2) =: n2 in the second-
layer is equal for all modes and that all second-layer SPFs have the same number
d1,1 = · · · = df1,f2

= d2 of degrees of freedom.

The numerically most expensive steps turn out to be the calculation of the first-
and second-layer mean-fields (Ĥ(κ)

jκj
′
κ,µ

and Ĥ(κ,µ)
lκ,µl

′
κ,µ

) and solving the system of linear

equations for ~̇Λ(κ,µ) (particularly the C matrix inversion). Similar to G-MCTDH
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and MCTDH the Hamiltonian is expanded as a sum of products (c.f. Eqn. 4.40),
both in the first and the second layer:

Ĥ =
m1∑
t=1

at

f1∏
κ=1

ĥ
(κ)
t (~xκ) (6.38)

ĥ
(κ)
t (~xκ) =

m2∑
u=1

bκt,u

f2∏
µ=1

ĥ
(κ,µ)
t,u

(
~xκ,µ

)
(6.39)

The second-layer Hamiltonian operators are further expanded to get the one-
dimensional operators acting on a DOF,

ĥ
(κ,µ)
t,u

(
~xκ,µ

)
=

m3∑
v=1

d2∏
d=1

ĥ
(κ,µ,d)
t,u,v

(
xκ,µ,d

)
(6.40)

By counting the number of multiplications needed to evaluate these function one
gets the overall scaling of the 2-Layer-Gaussian-MCTDH method,[1]

effort2L-G-MCTDH ∼ m1f
2
1n

f1+1
1 +m1m2f1f2n1n

f2+1
2 (f2 + n1) + f1f2 (d2n2)3

(6.41)
The first term represents the scaling for the first-layer mean-fields and is equivalent
to G-MCTDH, the second term describes the scaling of the second-layer mean-
fields and the last term stands for the effort for the C matrix inversion. For
the mean-fields only correlated terms contribute (uncorrelated terms fall back to
the corresponding density matrices) and need to be considered. As a side note
it should be mentioned that solving the equation for ~̇B(κ) is only slightly less
expensive (∼ m1m2f1f2n1n

f2
2 multiplications) than the calculation of the second

layer mean-fields.

As already mentioned the scaling for the first-layer mean-fields is similar to that
for the mean-fields of G-MCTDH. However, since the first-layer SPFs of the two-
layer approach are designed to be more flexible than the G-MCTDH GWPs, one
can expect that fewer basis functions (n1) are needed. Therefore the calculation
becomes (assuming the same number of Hamiltonian terms m1 = m) indeed less
expensive.

By comparing the scaling of G-MCTDH (c.f Eqn. 4.62) to the two-layer variant
(Eqn. 6.41) one can directly see a big improvement resulting from the last term
whose scaling is reduced from

(
d̃n
)3 → (d2n2)3, since the C matrix inversion is

now carried out in the lower-dimensional second-layer subspaces. Nevertheless one
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has to find a balance between the gain and the additional effort for the second-layer
mean-field calculation (second term of Eqn. 6.41).

6.4.1 Scaling Properties: Examples

Here, two examples are presented that convey a better understanding of the im-
proved scaling behavior of the two-layer method. In particular, the effort of vMCG
and 2L-G-MCTDH is compared, such that we consider specifically f = f1 = 1 and
consequently m = m1.

The first example is based on a reduced 4-DOF vibronic coupling model for the
electronically excited states of the pyrazine molecule, where the dynamics around
the S2 — S1 conical intersection is studied.[81] As reported in Ref.,[81] a large
number of 200 GWPs was necessary to achieve a sufficiently converged vMCG
result. Therefore, the relative effort, with d = 4 and n = 200, can be approximated
as n2+(dn)3 = 512.0× 106. MCTDH calculations for the same system were carried
out with ∼ 10 SPFs; the effort of these reference calculations will be taken as a
lower-limit estimate for the 2L-G-MCTDH effort calculation.

To be on the safe side, a rather conservative guess of n1 = 20 SPFs is taken in our
two-layer calculations. Two cases with different mode combination schemes are
considered:

1. four 1-dimensional second-layer modes (f2 = 4, d2 = 1,m2 = 14)

2. two 2-dimensional second-layer modes (f2 = 2, d2 = 2,m2 = 8)

Here, the first case is less favorable due to the more costly second-layer mean-
field calculation. For the first case we assume n2 = 5 GWPs per second-layer
mode, resulting in overall nf2

2 = 54 = 625 second-layer GWP configurations (to
be compared with 200 GWPs for vMCG). Based on this, the numerical effort,
from Eqn. 6.41, of 84.0× 106 is calculated. This is around 16% of the effort one
estimates for vMCG, even though the latter employed less configurations.

An even better scaling is achieved for the second case with two 2-dimensional
second-layer modes. Assuming n2 = 15 second-layer GWP configurations per
second-layer mode (resulting in nf2

2 = 152 = 225 in total) one obtains a relative
effort of 23.8× 106, which is about 5% of the corresponding vMCG effort. The
doubly logarithmic plot in Fig. 6.1(a) illustrates the behavior of the numerical
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Figure 6.1: Comparison of of the estimated scaling behavior of 2-Layer-G-MCTDH vs.
vMCG. with increasing number of configurations. nconf refers to nconf = n for vMCG
and nconf = n

f2
2 for 2L-G-MCTDH. (a) 4 DOFs with f1 = 1,m1 = 1, n1 = 20, f2 =

2,m2 = 8 and d2 = 2 for 2L-G-MCTDH. (b) 30 DOFs with f1 = 1,m1 = 1, n1 =
20, f2 = 3,m2 = 100 and d2 = 10 for 2L-G-MCTDH. For details on the numerical effort
see chapter 4.4.5 (vMCG) and chapter 6.4 (2L-G-MCTDH).

effort with increasing number of configurations compared to vMCG with the same
parameter set (f2 = 2, d2 = 2,m2 = 8). Already around 30 configurations (nf2

2 ,
not n2!) a turn over is seen, indicating that 2L-G-MCTDH is more favorable than
vMCG.

The second example is an extension of the previous model to estimate the scaling for
more DOFs. Typically, vMCG is used with up to 30 DOF. For this dimensionality
up to 50 Gaussian basis functions are practicable,[89] but the results are presumably
not yet converged (noting that for the small 4-DOF pyrazine system, 200 GWPs
were necessary for a near-converged result). For vMCG the relative effort is then
3.375× 109, already one order of magnitude higher than for the 4-DOF example.
With 2L-G-MCTDH, using again n1 = 20 first-layer SPFs, where each SPF contains
three 10-dimensional second-layer modes (f2 = 3, d2 and assuming m2 = 100), a
comparable numerical effort is reached for 12 GWP functions per second-layer
mode. This results in nf2

2 = 123 = 1728 second-layer GWP configurations, which
is a significantly larger number than for vMCG. This is again illustrated in Fig.
6.1(b). One can see that the turn-over point is noticeably shifted towards a lower
total number of configurations. Hence, the 2-Layer-Gaussian approach becomes
more and more favorable with a growing number of DOFs.
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6.5 Multi-State 2-Layer-Gaussian-MCTDH
So far the method has only been described for single-surface systems. To be able
to study non-adiabatic dynamics, the representation of the Hamiltonian and the
wave function ansatz have to be extended in order to describe a multi-state wave
function and the equations of motion need to be reformulated.

2L-G-MCTDH uses a sum-of-products representation of the Hamiltonian (see Eqn.
6.38). By expanding the Hamiltonian in a set of electronic states one can rewrite
the Hamiltonian,

Ĥ =
ns∑
s

ns∑
s′
|s〉 Ĥ(ss′) 〈s′| (6.42)

where ns is the number of electronic states.[25] Each component of the Hamiltonian
corresponds to a combination of two electronic states (s = s′ or s 6= s′) and is then
further expanded in a sum of products of one-particle Hamiltonians as in Eqns.
6.38, 6.39 and 6.40. Finally, each term carries two additional indices (s, s′).

There are several options of how to choose the multi-state wave function ansatz.
The simplest approach is the so-called single-set formulation,[90,91] where the elec-
tronic states are treated as an additional mode like the other DOFs. The number
of single particle functions for such an electronic mode is then equal to the number
of electronic states (Eqn. 6.43). In this approach the configurations ΦJ describe
the wave packet on all electronic states such that usually more configurations are
needed in order to converge the calculation,

Ψ
(
~X, t

)
=
∑
J

ns∑
s

A
(s)
J (t) ΦJ

(
~X, t

)
|s〉

=
n1∑
j1

n2∑
j2

· · ·
nf∑
j
f

ns∑
s

A
(s)
j1,j2,...,jf

(t)
f∏
κ=1

ϕ
(κ)
jκ

(~xκ, t) |s〉 (6.43)

This represents a time-independent approach for the electronic particle and is
used within this work for the 2-L-G-MCTDH. Another approach for the single-set
variant – which is not employed in this work – uses time-dependent electronic
SPFs,

Ψ
(
~X, t

)
=

n1∑
j1

n2∑
j2

· · ·
nf∑
j
f

N∑
js

Aj1,j2,...,jf ,js (t)
f∏
κ=1

ϕ
(κ)
jκ

(~xκ, t)
∣∣∣ϕ(el)
js

(t)
〉

(6.44)

with an arbitrary number of N electronic SPFs of type
∣∣∣ϕ(el)
s

〉
= ∑ns

s cjss (t) |s〉.
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The alternative approach is the so-called multi-set formulation.[92,93] Here, the
SPFs are restricted to belong to a specific electronic state (→ ϕ

(κ,s)
jκ

). Hence, the
B-coefficients and the GWPs are also state-specific. In this approach the wave
function is written as a linear combination of state-specific wave functions,

Ψ
(
~X, t

)
=

ns∑
s

Ψ(s) |s〉

=
∑
J

ns∑
s

A
(s)
J (t) Φ(s)

J

(
~X, t

)
|s〉

=
n1∑
j1

n2∑
j2

· · ·
nf∑
j
f

ns∑
s

A
(s)
j1,j2,...,jf

(t)
f∏
κ=1

ϕ
(κ,s)
jκ

(~xκ, t) |s〉 (6.45)

with,

ϕ
(κ,s)
jκ

(~xκ, t) =
∑
Lκ

B
(κ,s)
Lκ

(t)G(κ,s)
Lκ

(
~xκ,µ, t

)
(6.46)

In addition to these two standard approaches one can think of a new scheme explic-
itly tailored to the two-layer approach, where the single- and multi-set approach
are combined. This approach will be called “hybrid-set” in the following. Here,
the first-layer SPFs are still state-specific, in the sense that the B coefficients are
restricted to one electronic state. However, the GWPs are “shared” by all electronic
states. Therefore, the ϕ(κ,s)

jκ
now read as follows:

ϕ
(κ,s)
jκ

(~xκ, t) =
∑
Lκ

B
(κ,s)
Lκ

(t)G(κ)
Lκ

(
~xκ,µ, t

)
(6.47)

In the following, equations of motion for these three approaches will be presented.
The derivation follows the same steps as outlined in chapter 6.2.

6.5.1 Single-Set 2L-G-MCTDH

First, the EOMs for the single-set variant are presented. As compared to the
single-state EOMs, the equation for the A coefficients now carries the indices for
the electronic states,

i ~̇A(s) =H(Φ,ss′) ~A(s′) (6.48)

where the Hamiltonian matrix elements are defined as

Ĥ
(Φ,ss′)
JL =

〈
ΦJ

∣∣∣ Ĥ(ss′)
∣∣∣ΦL

〉
(6.49)

Likewise, the new density matrices are state-specific; these are derived from state-
specific single hole functions,
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ρ
(κ,s)
jκ,j
′
κ

=
〈
ψ

(κ,s)
jκ

∣∣∣ψ(κ,s)
j′κ

〉
(6.50)

ρ
(κ,µ,s)
lκ,µl

′
κ,µ

=
〈
ψ

(κ,µ,s)
lκ,µ

∣∣∣ψ(κ,µ,s)
l′κ,µ

〉
(6.51)

where the SHFs are given by,

ψ
(κ,s)
j′ =

∑
J(κ)

A
(s)
J(κ:j′)ΦJ(κ) (6.52)

ψ
(κ,µ,s)
l′ =

∑
jκ

∑
L(µ)

B
(κ)
jκ,L

(µ:l′)G
(κ)
L(µ:l′)

ψ(κ,s)
jκ

(6.53)

Since the SPFs are not exclusive to one state, the projectors do not change.

With these definitions, the equation for the B coefficients is then written as,

iS̃
(κ) ~̇B(κ) =

 ns∑
s

ns∑
s′
H̃

(κ,ss′) − iτ̃ (κ)

 ~B(κ) (6.54)

with,

H̃
(κ,ss′)
jκLκ,j

′
κL
′
κ

=
〈
G

(κ)
Lκ

∣∣∣∣∣ (1̂− P (κ)
) [(

ρ(κ,s)
)−1 Ĥ(κ,ss′)

]
jκj
′
κ

G
(κ)
L′κ

〉
(6.55)

Similarly to the changes for the A coefficients, one obtains additional sums over
the electronic states and therefore state-specific mean-fields. The formula for the
GWP parameters looks identical at first sight,

iC(κ,µ)~̇Λ(κ,µ) =~Y (κ,µ) (6.56)

but the definitions of the C matrix and the ~Y vector are again changed by additional
sums over the electronic states:

C
(κ,µ)
lκ,µα,l

′
κ,µβ

=
[ ns∑
s

ρ
(κ,µ,s)
lκ,µl

′
κ,µ

]〈
∂

∂α
g

(κ,µ)
lκ,µ

∣∣∣∣∣ (1̂− P̂ (κ,µ)
) ∂

∂β
g

(κ,µ)
l′κ,µ

〉
(6.57)

Y
(κ,µ)
lκ,µα

=
ns∑
s

ns∑
s′

∑
l′κ,µ

〈
∂

∂α
g

(κ,µ)
lκ,µ

∣∣∣∣∣ (1̂− P̂ (κ,µ)
)
Ĥ(κ,µ,ss′)
lκ,µl

′
κ,µ

g
(κ,µ)
l′κ,µ

〉
(6.58)
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6.5.2 Hybrid-Set 2L-G-MCTDH

For the hybrid-set approach the definitions for the density matrices are unchanged,
but the single-hole functions are redefined as follows:

ψ
(κ,s)
j′ =

∑
J(κ)

A
(s)
J(κ:j′)Φ

(s)
J(κ) (6.59)

ψ
(κ,µ,s)
l′ =

∑
jκ

∑
L(µ)

B
(κ,s)
jκ,L

(µ:l′)G
(κ)
L(µ:l′)

ψ(κ,s)
jκ

(6.60)

Additionally the first-layer projector,

P̂ (κ,s) =
∑
jκ

∣∣∣ϕ(κ,s)
jκ

〉 〈
ϕ

(κ,s)
jκ

∣∣∣ (6.61)

is now defined to be state specific.

The EOMs for the hybrid-set case show that the equations for the GWP parameters
are the same as for the single-set case. While the equation for the A coefficients
only differs by state specific configurations in the Hamiltonian matrix (Ĥ(Φ,ss′)

JL =〈
Φ(s)
J

∣∣∣ Ĥ(ss′)
∣∣∣Φ(s′)

L

〉
), the EOM for the B coefficients is now given by,

iS̃
(κ) ~̇B(κ,s) =

ns∑
s′

[
H̃

(κ,ss′) − iτ̃ (κ)
]
~B(κ,s′) (6.62)

where

H̃
(κ,ss′)
jκLκ,j

′
κL
′
κ

=
〈
G

(κ)
Lκ

∣∣∣∣∣ (1̂− P (κ,s)
) [(

ρ(κ,s)
)−1 Ĥ(κ,ss′)

]
jκj
′
κ

G
(κ)
L′κ

〉
(6.63)

such that only the definition of the projector is changed.

6.5.3 Multi-Set 2L-G-MCTDH

Lastly, the multi-set approach is presented. Since the GWPs are now also state-
specific, one needs to rewrite the second-layer single-hole functions,

ψ
(κ,µ,s)
l′ =

∑
jκ

∑
L(µ)

B
(κ,s)
jκ,L

(µ:l′)G
(κ,s)
L(µ:l′)

ψ(κ,s)
jκ

(6.64)

Furthermore, the second-layer projector,

P̂ (κ,µ,s) =
∑
lκ,µ

∑
l′κ,µ

∣∣∣g(κ,µ,s)
lκ,µ

〉 (
S(κ,µ,s)

)−1 〈
g

(κ,µ,s)
l′κ,µ

∣∣∣ (6.65)

becomes state specific as well. In fact, all EOMs change by making the GWPs state
specific. In particular, the equations for the A and B coefficients exhibit additional
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state indices. (These equations are not presented here since they represent a
straightforward extension to the single-state form.) The equations for the GWP
parameters read as follows,

iC(κ,µ,s)~̇Λ(κ,µ,s) =~Y (κ,µ) (6.66)

with the definitions for C(κ,µ,s) and ~Y (κ,µ,s) vector, where essentially only one sum
over the electronic states is still present,

C
(κ,µ,s)
lκ,µα,l

′
κ,µβ

=ρ(κ,µ,s)
lκ,µl

′
κ,µ

〈
∂

∂α
g

(κ,µ,s)
lκ,µ

∣∣∣∣∣ (1̂− P̂ (κ,µ)
) ∂

∂β
g

(κ,µ,s)
l′κ,µ

〉
(6.67)

Y
(κ,µ,d)
lκ,µα

=
ns∑
s′

∑
l′κ,µ

〈
∂

∂α
g

(κ,µ,s)
lκ,µ

∣∣∣∣∣ (1̂− P̂ (κ,µ)
)
Ĥ(κ,µ,ss′)
lκ,µl

′
κ,µ

g
(κ,µ,s′)
l′κ,µ

〉
(6.68)

6.5.4 Comparison of Single-Set, Multi-Set, and Hybrid-
Set Approaches

All of the three presented approaches have their advantages and disadvantages. The
single-set approach is the computationally cheapest approach, but one might need
more SPFs as compared to the multi-set in order to achieve convergence. Especially
in non-adiabatic dynamics situations where the potential energy surfaces are very
similar for the different electronic states – e.g., nearly parallel – single-set can be
useful. In other cases, the multi-set approach is the preferred variant. The hybrid
approach builds a bridge between these two approaches by making the first-layer
SPFs state specific and therefore more flexible. Nevertheless, the GWPs are still
state independent and one might need to many of them. Again, the features of
the dynamics on coupled electronic states will determine which approach is best
adapted.
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7 | The 2L-G-MCTDH Method:
Implementation Details

A central part of this work is the implementation of the 2L-G-MCTDH method.
The implementation was initiated by Matthias Ruckenbauer (post-doctoral fellow
in our group from 2011-2013) and further extended within this work. Fortran90 was
chosen as programming language as it is designed to be easily readable and create
high-performance codes, especially for scientific computations. In this chapter
details about the implementation of the code are presented. First, the overall
structure of the program is illustrated, second, the setup of the wave function
is demonstrated, and third, an efficient algorithm for the evaluation of matrix-
vector products is demonstrated; this algorithm is adapted to the wave function in
tensor form and a sum-over-products (SOP) form of the Hamiltonian and is used
extensively in the program. Finally, additional remarks are made with regard to
the implementation of some selected equations.

7.1 Program Structure
The program is structured in a modular way, where each module focuses on a
specific task or part of the program. The modules of the program are listed in Tab.
7.1. In general, the modules are inter-dependent. This dependency is reflected in
this list such that modules generally depend on those listed above.

The program flow follows the natural flow of a time propagation. After reading the
input and operator files, the wave function is created, along with some auxiliary
arrays that store the derivatives of the wave function, the arrays that store the
Hamilton operator, and arrays to store the first- and second-layer Hamiltonian and
mean-field matrices. After initializing the wave function – which is usually done
by reading it from a file – the time propagation starts with the integration loop.
In each integration step, the derivatives are computed and the wave function is
propagated for the chosen timestep. After checking if the wave function should be
written to file and/or the propagation is finished, the whole process is repeated
or the calculation is finalized. Fig. 7.1 illustrates the program flow in a simplified
manner.
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Table 7.1: Module structure of the program.

module description
sysparam handles type definitions for real and integer variables
timingmod organizes the timing measurements for subroutines and

the total program
global handles definitions, e.g. conversion factors and globally

available parameters
psi definition of the wave function, auxiliary functions for

easier access on specific elements
invert includes the routines that drive the inversion of the pro-

gram
storagemod contains definitions and initialization routines for storage

arrays, e.g. Gaussian moment pre-factors
gaussmod comprises routines that handle GWP related operations

like the calculation of Gaussian moments (overlap and
pre-factors)

hamilton includes anything related to the Hamilton operator
derivatives contains the routines necessary to calculate the time-

derivative of the wave function
writing handles all output regarding the wave function, properties

and expectation values
integrators handles the integration of the wave function (presently

two integrators are implemented: Adams-Bashforth-Moul-
ten[94] and 4th order Runge-Kutte[95,96])

propagator driver for the propagation
inputmod organizes reading of the input and operator file
init_wf handles the initialization of the wave function (read from

file or setting a random initial condition)
main main program, follows the same process as the flow chart

in Fig. 7.1
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read inputstart

read
operator

initialize

calculate
derivatives

integrate
timestep

write
output?

write wave
function

final
time?

finalize
calculation

end

yes

no

no

yes

integration loop

Figure 7.1: Flowchart illustrating the overall composition of the program.
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7.2 Memory Layout

7.2.1 Memory Layout of the Wave Function

The structure of the wave function is organized within several arrays. The number
of first-layer modes f is stored in a variable with the same name f. The number of
second-layer modes for each κ-mode is stored in the array f_kappa. Each second-
layer mode can be composed of individual degrees of freedom and their number
for each κ, µ-mode is stored in mudim. The number of first- and second-layer SPFs
are stored in the arrays n_kappa and n_kappamu, respectively.

The coefficients and GWP parameters are stored in separate arrays. The A and
B coefficients are uniquely defined with a multi-index J = j1, j2, . . . , jf in case of
the first-layer coefficients A, and Lκ = l1, l2, . . . , lfκ for the second-layer coefficients
B. The coefficients are both stored in individual one-dimensional arrays. For the
A coefficients, the array index is equivalent to the multi-index J (i), i.e., A (i) =
A (J (i)). Here, nAconfig = ∏f

κ nκ gives the total number of first-layer configurations
and therefore the length of the A coefficient array. The sequence of configurations
is organized such that the sub-indices jκ are incremented from left to right resulting
in,

J(1) = 11, 12, . . . , 1κ, . . . , 1f
J(2) = 21, 12, . . . , 1f
... ...
J(n1) = n1, 12, . . . , 1f
J(n1 + 1) = 11, 22, . . . , 1κ, . . . , 1f
J(n1 + 2) = 21, 22, . . . , 1f
... ...
J(nAconfig) = n1, n2, . . . , nf

for the order of the A coefficient array avector. The array for the B coefficients
bvector is organized in a similar way in blocks with increasing κ. Each κ block
is further organized in smaller sub-blocks with increasing jκ. These κ, jκ blocks
then have a similar structure as the A coefficients, containing the B(κ)

jκ,Lκ
with an

increasing number of the Lκ (i) index.

Within the program FGs are used throughout. Hence, the GWPs are stored as
one-dimensional GWPs in the two-dimensional array gaussians, containing the
three parameters ~Λ(κ,µ)

lκ,µ
=
(
a

(κ,µ)
lκ,µ

, ~ξ
(κ,µ)
lκ,µ

, η
(κ,µ)
lκ,µ

)
to describe the GWP. The total
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gaussians =



a
(κ=1,µ=1,d=1)
lκ,µ=1 ξ

(1,1,1)
1 η

(1,1,1)
1

a
(1,1,2)
1 ξ

(1,1,2)
1 η

(1,1,2)
1

... ... ...
a
(1,1,d1,1)
1 ξ

(1,1,d1,1)
1 η

(1,1,d1,1)
1

a
(1,1,1)
2 ξ

(1,1,1)
2 η

(1,1,1)
2

... ... ...
a(1,1,1)
n1,1

ξ(1,1,1)
n1,1

η(1,1,1)
n1,1

a
(1,2,1)
1 ξ

(1,2,1)
1 η

(1,2,1)
1

... ... ...
a
(1,f1,1)
1 ξ

(1,f1,1)
1 η

(1,f1,1)
1

a
(2,1,1)
1 ξ

(2,1,1)
1 η

(2,1,1)
1

... ... ...

a

(
f,ff ,df,f

f

)
n
f,f
f

ξ

(
f,ff ,df,f

f

)
n
f,f
f

η

(
f,ff ,df,f

f

)
n
f,f
f



Figure 7.2: Memory setup of the gaussians array

dimension of the gaussians-array is nprimGauss × 3, where nprimGauss is the total
number of one-dimensional GWPs. A one-dimensional GWP g

(κ,µ,d)
lκ,µ

is described
by four indices

{
κ, µ, lκ,µ, d

}
. κ and µ define the mapping to the first- and second-

layer modes, d is the primitive dimension (the DOF) of the GWP and lκ,µ is the
number of the second-layer configuration the GWP belongs to. The array is then
built in several blocks, all divided into smaller sub-blocks. The GWPs are stored
in blocks with increasing κ, where each κ block is divided into smaller blocks with
increasing µ. The (κ, µ) blocks are further subdivided in blocks with increasing
lκ,µ, each defining a multi-dimensional GWP which is stored with increasing d. An
illustration of this ordering scheme is given in Fig. 7.2,

It should be noted that the width parameter a of the GWP is related to the
standard deviation of a Gaussian distribution by,

a = 1
2
√
σ
. (7.1)

Due to this relation, the width of the GWPs is inversely proportional to a, thus
the width is reduced with increasing a.
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7.2.2 Memory Layout of the Hamiltonian

The sum-of-products (SOP) Hamiltonian (Eqns. 6.38, 6.39 and 6.40) is organized
within several variables and arrays as explained below. The number of first-layer
operator elements is given by the variable me. The coefficients for these operator
elements at are stored in the array ae.

The numbers of summands for the second-layer Hamilton operators for each κ sub-
space are stored in the array me_rek. The coefficients for the second-layer Hamilton
operators are stored in array be. On the level of the second-layer operators the code
distinguishes between (Cartesian) kinetic energy elements (T̂ ) and potential terms
(V̂ ). The array op_reksemu stores the information which type of operator belongs
to this operator element. In this context a “0” identifies a potential term (built-up
of monomials of type x̂n), while “1” calls the kinetic energy calculation. Presently,
only Hamiltonians in the form of monomials and polynomials are implemented.
An extension of the code to other (user-defined) functions is easily possible, since
the necessary local harmonic approximation – which is required to express the
Hamiltonian matrix elements in Gaussian moments – has already been generalized
to third order.

Finally, the elements defining the one-dimensional elements are stored in the ar-
rays me_reksemu and op_primdim. me_reksemu stores the number of summands
included in this operator element and op_primdim holds the information about the
one-dimensional operator elements of the monomial order.

7.3 Implementation Details

7.3.1 Gaussian Moments

One of the key advantages of using parametrized GWPs as basis functions is the
availability of analytic expressions for integrals of type

〈g |xn | g′〉 =
∫ ∞
−∞

ḡ (x)xng′ (x) dx (7.2)

i.e., so-called Gaussian moments. Any Gaussian moment of this form can be rear-
ranged to give the zeroth-order moment (i.e., the overlap of the GWPs) multiplied
with a prefactor. The zeroth-order moment of a one-dimensional GWP is given as
follows, using the definition of the GWPs as introduced above,
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〈g | g′〉 =
∫ ∞
−∞

exp
(
āx2 + ξ̄x+ η̄

)
exp

(
a′x2 + ξ′x+ η′

)
dx

=exp (η̄ + η′)
∫ ∞
−∞

exp
(
(ā+ a′)x2 +

(
ξ̄ + xi′

)
x
)
dx

=exp (q)
∫ ∞
−∞

exp
(
−ox2 + px

)
dx

=exp
(
q + p2

4o

)
1√
o

∫ ∞
−∞

exp
(
−y2

)
dy

=exp
(
q + p2

4o

)
1√
o

√
π

o

=exp

η̄ + η′ −
(
ξ̄ + ξ′

)2

4 (ā+ a′)

√− π

ā+ a′
(7.3)

where −o = ā+ a′,p = ξ̄ + ξ′, q = η̄ + η′ and y =
√
o
(
x− p

2o

)
.

An arbitrary Gaussian moment is then expressed by,

〈g |xn | g′〉 = 〈g | g′〉 ·
m=bn2 c∑
j=0

 n

2j

(p
2

)(n−2j)
o(j−n)

j∏
k=1

2j − 2k + 1
2

 (7.4)

where m = bn2 c = n
2 if n is even and m = bn2 c = n−1

2 if n is odd. The second term
then corresponds to the pre-factor.

The function gmoment_factor computes Gaussian moments of arbitrary order. In
the following equations, where Gaussian moments appear, the shorthand notation
M(κ,µ,d)
lκ,µl”κ,µ (n) will be used for the pre-factor.

7.3.2 Kinetic Energy Operator

The kinetic energy operator is given as a sum over the single κ-modes,

T̂ =
∑
κ

T̂ (κ) (7.5)

with,

T̂ (κ) =
fκ∑
µ

T̂ (κ,µ) (7.6)

Further, as the µ-modes can be multi-dimensional,

T̂ (κ,µ) =
dimκ,µ∑
d

T̂ (κ,µ,d) (7.7)

The standard Cartesian form for the latter (one-dimensional) operator is,
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T̂ (κ,µ,d) = − 1
2mκ,µ,d

∂2

∂xκ,µ,d
2 (7.8)

One matrix element of the first-layer kinetic Hamiltonian is then given by,〈
ΦJ

∣∣∣ T̂ ∣∣∣ΦJ ′

〉
=
∑
κ

〈
ΦJ

∣∣∣ T̂ (κ)
∣∣∣ΦJ ′

〉
=
∑
κ

〈
ϕ

(κ)
jκ

∣∣∣ T̂ (κ)
∣∣∣ϕ(κ)

j′κ

〉
·

∏
λ 6=κ

〈
ϕ

(λ)
j
λ

∣∣∣ϕ(λ)
j′
λ

〉
︸ ︷︷ ︸ = 1 if jλ = j′λ ∀λ

= 0 otherwise

(7.9)

with,

〈
ϕ

(κ)
jκ

∣∣∣ T̂ (κ)
∣∣∣ϕ(κ)

j′κ

〉
=
∑
Lκ

B̄(κ)
jκ,Lκ

∑
L′κ

 fκ∑
µ

〈 fκ∏
ν

g
l
(κ,ν)
κ,ν

∣∣∣∣∣∣ T̂ (κ,µ)

∣∣∣∣∣∣
fκ∏
ν′
g

(κ,ν′)
l′
κ,ν′

〉B(κ)
j′κ,L′κ


=
∑
Lκ

B̄(κ)
jκ,Lκ

·
∑
L′κ

 fκ∑
µ

〈
g

(κ,µ)
lκ,µ

∣∣∣ T̂ (κ,µ)
∣∣∣ g(κ,µ)
l′κ,µ

〉
·

·
fκ∏
ν 6=µ

〈
g

(κ,ν)
lκ,ν

∣∣∣ g(κ,ν)
l′κ,ν

〉B(κ)
j′κ,L′κ


and, when expanding into the sub-dimensions of the µ/ν-modes:

=
∑
Lκ

B̄(κ)
jκ,Lκ

∑
L′κ

fκ∑
µ

dimκ,µ∑
d

dimκ,µ∏
d′

〈
g

(κ,µ,d′)
l
κ,µ,d′

∣∣∣∣ T̂ (κ,µ,d)
∣∣∣∣ g(κ,µ,d′)
l′
κ,µ,d′

〉 ·
·
fκ∏
ν 6=µ

〈
g

(κ,ν)
lκ,ν

∣∣∣ g(κ,ν)
l′κ,ν

〉B(κ)
j′κ,L′κ


=
∑
Lκ

B̄(κ)
jκ,Lκ

∑
L′κ

fκ∑
µ

dimκ,µ∑
d

(〈
g

(κ,µ,d)
l
κ,µ,d

∣∣∣∣ T̂ (κ,µ,d)
∣∣∣∣ g(κ,µ,d)
l′
κ,µ,d

〉
·

·
dimκ,µ∏
d′ 6=d

〈
g

(κ,µ,d′)
l
κ,µ,d′

∣∣∣∣ g(κ,µ,d′)
l′
κ,µ,d′

〉 · fκ∏
ν 6=µ

〈
g

(κ,ν)
lκ,ν

∣∣∣ g(κ,ν)
l′κ,ν

〉B(κ)
j′κ,L′κ


=
∑
Lκ

B̄(κ)
jκ,Lκ

∑
L′κ

fκ∑
µ

dimκ,µ∑
d

(
FuncT(κ,µ,d)

lκ,µ,l
′
κ,µ
·
〈
g

(κ,µ,d)
l
κ,µ,d

∣∣∣∣ g(κ,µ,d)
l′
κ,µ,d

〉
·

·
dimκ,µ∏
d′ 6=d

〈
g

(κ,µ,d′)
l
κ,µ,d′

∣∣∣∣ g(κ,µ,d′)
l′
κ,µ,d′

〉 · fκ∏
ν 6=µ

〈
g

(κ,ν)
lκ,ν

∣∣∣ g(κ,ν)
l′κ,ν

〉B(κ)
j′κ,L′κ


=
∑
Lκ

B̄(κ)
jκ,Lκ

∑
L′κ

fκ∑
µ

dimκ,µ∑
d

FuncT(κ,µ,d)
lκ,µ,l

′
κ,µ
·
dimκ,µ∏
d′

〈
g

(κ,µ,d′)
l
κ,µ,d′

∣∣∣∣ g(κ,µ,d′)
l′
κ,µ,d′

〉 ·
·
fκ∏
ν 6=µ

〈
g

(κ,ν)
lκ,ν

∣∣∣ g(κ,ν)
l′κ,ν

〉B(κ)
j′κ,L′κ

 (7.10)
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FuncT(κ,µ,d)
lκ,µ,l

′
κ,µ

represents a function that computes the factor to be multiplied to
the overlap of two GWPs to get the kinetic energy element between them for a
given set of κ, µ, d and lκ,µ, l′κ,µ indices, i.e.,〈

g
(κ,µ,d)
l
κ,µ,d

∣∣∣∣ T̂ (κ,µ,d)
∣∣∣∣ g(κ,µ,d)
l′
κ,µ,d

〉
= FuncT(κ,µ,d)

lκ,µ,l
′
κ,µ

〈
g

(κ,µ,d)
l
κ,µ,d

∣∣∣∣ g(κ,µ,d)
l′
κ,µ,d

〉
(7.11)

7.3.3 Potential Energy Operator

The potential is given as,

V̂ (~x) =
m∑
t=1

at

f∏
κ

v̂
(κ)
t (~xκ) (7.12)

with,

v̂
(κ)
t (~xκ) =

mκ∑
u=1

b
(κ)
t,u

fκ∏
µ

v̂
(κ,µ)
t,u

(
~xκ,µ

)
(7.13)

where,

v̂
(κ,µ)
t,u =

mκ,µ∑
v

dimκ,µ∏
d

v
(κ,µ,d)
t,u,v

(
xκ,µ,d

)
(7.14)

The v(κ,µ)
t,u are arbitrary functions in the degrees of freedom of the κ, µ-mode and

v
(κ,µ,d)
t,u,v are the corresponding one-dimensional expressions in the individual DOFs.
One matrix element of the first-layer potential energy operator is then,

〈
ΦJ

∣∣∣ V̂ ∣∣∣ΦJ ′

〉
=

m∑
t

at

f∏
κ

〈
ΦJ

∣∣∣ v̂κt ∣∣∣ΦJ ′

〉

=
m∑
t

at

f∏
κ

〈
ϕ

(κ)
jκ

∣∣∣ v̂(κ)
t

∣∣∣ϕ(κ)
j′κ

〉
(7.15)

with,

〈
ϕ

(κ)
jκ

∣∣∣ v̂(κ)
t

∣∣∣ϕ(κ)
j′κ

〉
=
∑
Lκ

B̄
(κ)
jκ,Lκ

∑
L′κ

mκ∑
u=1

b
(κ)
t,u

fκ∏
µ

〈
g

(κ,µ)
lκ,µ

∣∣∣ v̂(κ,µ)
t,u

∣∣∣ g(κ,µ)
l′κ,µ

〉B(κ)
j′κ,L′κ


(7.16)

If v̂(κ,µ)
t,u corresponds to a monomial expression, the integral

〈
g

(κ,µ)
lκ,µ

∣∣∣ v̂(κ,µ)
t,u

∣∣∣ g(κ,µ)
l′κ,µ

〉
can be rewritten in terms of Gaussian moments using the above defined pre-factor
M(κ,µ,d)
lκ,µl”κ,µ (n),

〈
g

(κ,µ)
lκ,µ

∣∣∣ v̂(κ,µ)
t,u

∣∣∣ g(κ,µ)
l′κ,µ

〉
=

mκ,µ∑
v

dimκ,µ∏
d

〈
g

(κ,µ,d′)
l
κ,µ,d

∣∣∣∣ v(κ,µ,d)
t,u,v

∣∣∣∣ g(κ,µ,d)
l′κ,µd

〉
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=
mκ,µ∑
v

dimκ,µ∏
d

M(κ,µ,d)
lκ,µl”κ,µ (n)

〈
g

(κ,µ,d′)
l
κ,µ,d

∣∣∣∣ g(κ,µ,d)
l′κ,µd

〉
(7.17)

where n corresponds to the exponent of the corresponding monomial, e.g. v(κ,µ,d)
t,u,v =

x2
κmu,d → n = 2.

7.3.3.1 Local Harmonic Approximation

If the potential terms v̂(κ,µ)
t,u are not represented by monomial terms, the Local

Harmonic Approximation (LHA) can be used to describe the potential. For the
LHA the potential of one (combined) µ-mode is then expanded in a power series
around the center, ~qκ,µ (t), of the multidimensional GWP:

v̂
(κ,µ)
t,u = vκ,µ + ~v′κ,µ

(
~xκ,µ − ~qκ,µ

)
+ 1

2
(
~xκ,µ − ~qκ,µ

)
v′′κ,µ

(
~xκ,µ − ~qκ,µ

)
(7.18)

where the local potential energy v
(
~qκ,µ

)
is written as vκ,µ, v′i

(
~qκ,µ

)
= v′κ,µ,i =

∂vκ,µ
∂xi

represents the vector of first derivatives in the sub-dimensions of (κ, µ), and

v′′i,j
(
~qκ,µ

)
= v′′κ,µ,i,j = ∂2vκ,µ

∂xi∂xj
the matrix of second derivatives in these dimensions.

The integral of equation (7.16) is thus expanded as follows,〈
g

(κ,µ)
lκ,µ

∣∣∣ v̂(κ,µ)
t,u

∣∣∣ g(κ,µ)
l′κ,µ

〉
LHA

=

=vκ,µ
〈
g

(κ,µ)
lκ,µ

∣∣∣ g(κ,µ)
l′κ,µ

〉
+
〈
g

(κ,µ)
lκ,µ

∣∣∣ v′κ,µ (~xκ,µ − ~qκ,µ)〉
+ 1

2
〈
g

(κ,µ)
lκ,µ

∣∣∣ (~xκ,µ − ~qκ,µ) v′′κ,µ (~xκ,µ − ~qκ,µ)〉
=
〈
g

(κ,µ)
lκ,µ

∣∣∣ g(κ,µ)
l′κ,µ

〉vκ,µ +
dimκ,µ∑
d

v′κ,µ,d (M (κ,µ,d)
LκL

′
κ

(1)− qκ,µ,d
)

+1
2v
′′
κ,µ,d,d

(
M

(κ,µ,d)
LκL

′
κ

(2)− 2M (κ,µ,d)
LκL

′
κ

(1) qκ,µ,d + qκ,µ,d
)

(7.19)

+
dimκ,µ∑
d′ 6=d

(1
2v
′′
κ,µ,d,d′

(
~qκ,µ

) (
M

(κ,µ,d)
LκL

′
κ

(1)− qκ,µ,d
) (
M

(κ,µ,d′)
LκL

′
κ

(1)− qκ,µ,d′
))

7.3.4 Expansion of Matrix-Vector Products in a Multi-
Sum Structure

The most time-consuming steps in the propagation scheme result from high-
dimensional matrix-vector products that are present in both layers. An efficient
scheme that is adapted to the SOP form of the Hamiltonian and the tensor form
of the wavefunction is given by the evaluation of “multi-sums” as detailed below.
For a standard matrix-vector product, this leads to an advantageous N (d+1) scaling
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(where N is the number of grid points and d is the number of DOFs), as discussed,
e.g., in [97].

In the 2L-G-MCTDH scheme, such matrix-vector multiplications appear in many
equations, including the calculation of mean-fields, the EOMs for the A and B coef-
ficients, etc. This chapter aims to describe the implemented “multi-sum” algorithm
which attempts to avoid multiple calculations of the same integrals. The gain in
efficiency, however, goes along with increased memory consumption. Therefore, in
the following algorithm two auxiliary arrays array and array2 are used.

An example for such multi-sums is given in Eqn. 7.16. Expanding this equation
into the individual sums, and using again the general expression for the Hamilton
operator, gives,

∑
Lκ

B̄
(κ)
jκ,Lκ

∑
L′κ

mκ∑
u=1

b
(κ)
t,u

fκ∏
µ

〈
g

(κ,µ)
lκ,µ

∣∣∣ ĥ(κ,µ)
t,u

∣∣∣ g(κ,µ)
l′κ,µ

〉B(κ)
j′κ,L′κ

 =

=
mκ∑
u=1

∑
Lκ

B̄(κ)
jκ,Lκ

nκ,1∑
l′κ,1

〈
g

(κ,1)
lκ,1

∣∣∣∣ ĥ(κ,1)
t,u

∣∣∣∣ g(κ,1)
l′κ,1

〉 nκ,2∑
l′κ,2

〈
g

(κ,2)
lκ,2

∣∣∣∣ ĥ(κ,2)
t,u

∣∣∣∣ g(κ,2)
l′κ,2

〉
· · ·

· · ·
nκ,µ∑
l′κ,µ

〈
g

(κ,µ)
lκ,µ

∣∣∣ ĥ(κ,µ)
t,u

∣∣∣ g(κ,µ)
l′κ,µ

〉
· · ·

nκ,fκ∑
l′
κ,fκ

〈
g

(κ,fκ)
l
κ,fκ

∣∣∣∣ ĥ(κ,fκ)
t,u

∣∣∣∣ g(κ,fκ)
l′
κ,fκ

〉
B

(κ)
j′κ,L′κ

 (7.20)

where the integrals
〈
g

(κ,µ)
lκ,µ

∣∣∣ ĥ(κ,µ)
t,u

∣∣∣ g(κ,µ)
l′κ,µ

〉
are calculated by the function funcH.

The calculation starts with the last κ, fκ-mode, going from the highest to the lowest
second-layer mode. Therefore the bracket

〈
g

(κ,fκ)
κ,l
fκ

∣∣∣∣ ĥ(κ,fκ)
t,u

∣∣∣∣ g(κ,fκ)
κ,l′
κ,fκ

〉
is calculated for

all lκ,fκ and lκ,f ′κ and distributed in an n(κ)
conf × nκ,fκ array (auxiliary array1). The

lκ,fκ hereby determines the row and each integral with the right-hand-side l′κ,fκ is
written to n(κ)

conf/nκ,fκ columns in the same order as l′κ,fκ appears in the multi-index
L′κ. Then the right hand side B coefficients B(κ)

j′κ,L′κ
are multiplied component-wise

to each column of array1. This is illustrated in the upper part of Fig. 7.3. array1

is then copied to array2 and array1 is used with dimension n
(κ)
conf

n
κ,fκ

× nκ,fκnκ,fκ−1.

Then array1 is again constructed in a similar way with the lκ,fκ−1,l′κ,fκ−1-brackets.
Each lκ,fκ−1 contributes to nκ,fκ columns (every nκ,fκ−1 column) and each l′κ,fκ−1

is written to n
(κ)
conf

n
κ,fκ

n
κ,fκ−1

columns (again, according to their appearance in L′κ).
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From array2 every ∑l′
κ,fκ

is built (see lower part of Fig. 7.3) and multiplied to the
according cells in array1. This means that each lκ,fκ-row is repeated nκ,fκ times.

Then array2 is reshaped to the same dimension as array1 and array1 copied
to array2. array1 is again reshaped by dividing the old width and multiplying
the old height by nκ,fκ−2. The cells are calculated in the same fashion as above
and distributed among array1. The ∑l′

κ,fκ
−1 sums are built and multiplied to the

according cells. This scheme is repeated for all remaining µ-modes. In the last step
after µ = 1 the sums over lκ,1 for the last array2 (with dimensions nκ,1 × n(κ)

conf)
are built and multiplied with the left-hand-side B coefficients.

This scheme is used in variations wherever similar kinds of multi-sums appear,
e.g., in the derivatives for the A and B coefficients, the first- and second-layer
mean-fields, the density matrices, etc.

Although the implemented algorithm uses two 1-dimensional auxiliary arrays for
the multi-sum calculation, it is easier to understand for two 2-dimensional arrays
changing their shape between the different rounds, as explained above. In order
to avoid permanent creation and destruction of these arrays, they are allocated
once at the beginning. For a two-dimensional array as it is used in the algorithm,
this array would need to be of length n(κ)

conf × n(κ)
conf . This can get extremely large

for a large number of configurations such that the available memory is exceeded.
Therefore, in the program the two indices are combined into one index to save
memory. This way the length of the arrays used in the above example can be
reduced to n(κ)

conf × max
(
nκ,f

)
. These arrays are used in different dimensions for

the first- and second-layer multi-sums throughout the algorithm, resulting in 4
permanent arrays (work_beta1 and work_beta2 for the first-layer, work_gamma1
and gamma2 for the second-layer) with lengths nAconfig×max (nκ) for the work_beta
arrays and n(κ)

conf × max
(
nκ,f

)
for the work_gamma arrays.

7.3.5 Technical Details

Important steps in the calculation of the EOMs are the inversion of the first-layer
density matrix ρ(κ), the inversion of the C matrix and inversion of the overlap
matrix. A well-known problem is the occurrence of singularities in these matri-
ces. Even in standard MCTDH, the initial density matrix ρ(κ) is highly singular
since only few configurations – or only a single configuration – are initially popu-
lated. When using Gaussian basis functions, the occurrence of such singularities
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1311
2311
1321
· · ·

1312
· · ·

2334

B
(κ,2)
κ,l′1,3,l′3,l′4

multiply⇒

(11)4 (11)4 (11)4 · · · (12)4 · · · (14)4

(21)4 (21)4 (21)4 · · · (22)4 · · · (14)4

(31)4 (31)4 (31)4 · · · (32)4 · · · (14)4

(41)4 (41)4 (41)4 · · · (42)4 · · · (14)4

array1

⇓ copy

(11)4 · 1311 (11)4 · 2311 (11)4 · 1321 · · · (12)4 · 1312 · · · (14)4 · 2334
(21)4 · 1311 (21)4 · 2311 (21)4 · 1321 · · · (22)4 · 1312 · · · (14)4 · 2334
(31)4 · 1311 (31)4 · 2311 (31)4 · 1321 · · · (32)4 · 1312 · · · (14)4 · 2334
(41)4 · 1311 (41)4 · 2311 (41)4 · 1321 · · · (42)4 · 1312 · · · (14)4 · 2334

array2

⇓ multiply
(11)3 (11)3 (12)3 · · · (13)3

(21)3 (21)3 (22)3 · · · (23)3

(31)3 (31)3 (32)3 · · · (33)3

(11)3 (11)3 (12)3 · · · (13)3

(21)3 (21)3 (22)3 · · · (23)3

(31)3 (31)3 (32)3 · · · (33)3

(11)3 (11)3 (12)3 · · · (13)3

(21)3 (21)3 (22)3 · · · (23)3

(31)3 (31)3 (32)3 · · · (33)3

(11)3 (11)3 (12)3 · · · (13)3

(21)3 (21)3 (22)3 · · · (23)3

(31)3 (31)3 (32)3 · · · (33)3

array1 ⇒ · · ·

Figure 7.3: Illustration of the first steps in the multi-sums algorithm. For illustra-
tion, the wave function is built for a second-layer Hamiltonian matrix element fκ=4,
µ = 2, l2=2, l′2=3, n1=2, n2=4, n3=3, n4=4. Furthermore, the shorthand notation
〈g(κ,z)
x |ĥ(κ,z)

t,u |g
(κ,z)
y 〉 ≡ (xy)z is used for the Hamiltonian elements. For the B coefficients

the shorthand notation B(κ,2)
κ,a1,b2,c3,d4

≡ abcd is used. In the first round array1 is con-
structed and distributed according to L′κ (see text for details) and in a second step the
right-hand-side B coefficients are multiplied onto the according elements on array1 and
copied to array2. Here, the colors indicate the cells each B coefficient is multiplied to.
The second round follows the same procedure, after constructing array1 the sums over∑
l′
κ,fκ

are built and again multiplied on array1 and copied to array2. In array2 the
colors show cells that are summed up. They are then multiplied to the corresponding
cells in array1. This procedure is then repeated for the remaining µ-modes.
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is aggravated due to linear dependencies within the non-orthogonal GWP basis,
which typically appear when a large overlap of two or more GWPs is observed.
Furthermore, as in the case of standard MCTDH, the standard initial conditions
where one coefficient is set to 1.0 and all others to 0.0 causes the first-layer density
matrix to be singular at the beginning of the propagation. Since these matrices all
need to be inverted during the evaluation of the EOMs, these singularities have to
be “smoothed out” numerically as they prohibit a regular inversion. The standard
way of handling such singularities is to regularize the relevant matrices, which is
here done by adjusting all eigenvalues below a pre-defined threshold value dthreshold
as follows,

EEV = EEV + dthreshold × exp
(
− EEV
dthreshold

)
(7.21)

Typical values for dthreshold are in the range of 10−6 to 10−8. This regularization
scheme is entirely analogous to the standard MCTDH code.

Another technical detail concerns the orthogonalization of the first-layer SPFs ϕ(κ)
jκ

.
This is done by employing the Gram-Schmidt orthogonalization[98–100] scheme once
at time t = 0, before propagating the wave function. In this context, one has to be
aware that only the first SPF is left unchanged and the others change accordingly.

7.3.6 Additional Remarks on Selected Equations

In this chapter some special remarks are made regarding the equations of motion
for the B coefficients and the GWP parameters. Here, the first- and second-layer
projectors were introduced in the derivation. In order to implement these formulas
in the Fortran90 code these projectors have to be expressed explicitly. Therefore,
the explicit formulas are presented here.

First, the expression for the C matrix and the ~Y vector are shown. As starting
point Eqn. 6.32 is used,

C
(κ,µ)
lκ,µd,l

′
κ,µd

′ = ρ
(κ,µ)
lκ,µl

′
κ,µ

〈
∂

∂ξ
(κ,µ,d)
lκ,µ

g
(κ,µ)
lκ,µ

∣∣∣∣∣∣
(
1̂− P̂ (κ,µ)

) ∂

∂ξ
(κ,µ,d′)
l′κ,µ

g
(κ,µ)
l′κ,µ

〉

= ρ
(κ,µ)
lκ,µl

′
κ,µ

〈 ∂

∂ξ
(κ,µ,d)
lκ,µ

g
(κ,µ)
lκ,µ

∣∣∣∣∣∣ ∂

∂ξ
(κ,µ,d′)
l′κ,µ

g
(κ,µ)
l′κ,µ

〉
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−
∑
Pκ

∑
P ′κ

〈
∂

∂ξ
(κ,µ,d)
lκ,µ

g
(κ,µ)
lκ,µ

∣∣∣∣∣∣ g(κ,µ)
pκ,µ

〉((
S(κ,µ)

)−1
)
pκ,µ,p

′
κ,µ

〈
g

(κ,µ)
p′κ,µ

∣∣∣∣∣∣ ∂

∂ξ
(κ,µ,d′)
l′κ,µ

g
(κ,µ)
l′κ,µ

〉
(7.22)

where Pκ and P ′κ are multi-indices like Lκ and L′κ. The same is done for the ~Y
vector. Additionally, the Hamiltonian is expanded explicitly in the product form.
Starting from Eqn. 6.33,

Y
(κ,µ)
l
κ,µ,d

=
∑
l′κ,µ

〈
∂

∂ξ
(κ,µ,d)
lκ,µ

g
(κ,µ)
lκ,µ

∣∣∣∣∣∣
(
1̂− P̂ (κ,µ)

)
Ĥ(κ,µ)
lκ,µl

′
κ,µ
g
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where H(κ,µ)
t,u denotes the first-layer mean-field matrix.

Finally, the expression for the B coefficients (Eqn. 6.36) is rewritten:

i ~̇B(κ) =
[(
S̃

(κ)
)−1

H̃
(κ) − i

(
S̃

(κ)
)−1

τ̃ (κ)
]
~B(κ) (7.24)

This expression is split into two components,[(
S̃

(κ)
)−1

H̃
(κ) ~B(κ)

]
(7.25)

and,

−
[
i
(
S̃

(κ)
)−1

τ̃ (κ) ~B(κ)
]

(7.26)

These two components are considered individually in the following.

Expanding Eqn 7.26 is straightforward as no projector is involved in this term. The
Gaussian moments are expressed, as introduced above, as the prefactor multiplied
with the zeroth order overlap,[(

S̃
(κ)
)−1

τ̃ (κ) ~B(κ)
]
jκ,Lκ

=
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Here, the differential overlap matrix τ̃ (κ) is further expanded in the derivatives of
the GWP parameters. The first half is expanded similarly to the ~Y vector and the
second half is given as,[(
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 (7.28)

where P = p1, . . . , pf is a first-layer index like J .

All other formulas introduced in the derivation of the equations of motion can be
straightforwardly expressed, similarly to the second half of the derivatives for the
B coefficients and are therefore not further mentioned here.

7.3.7 Auxiliary Programs

The implementation described above applies to the main program, which is re-
sponsible for the propagation of the wave function with a given Hamilton operator.
There, all DOF expectation values and variances, trajectories of the GWPs and
properties of the wave function, e.g. norm and autocorrelation function, are written
to files. Two further auxiliary programs were developed, using the same modules
as in the main program, in order to simplify the creation of input files and the
analysis of the propagation (i.e., computation of expectation values, plotting one-
dimensional projections of the wave function, etc.).

The auxiliary program for the creation of the input files for the main program uses
a similar, but not identical, input structure as the MCTDH package.[101] If only the
Cartesian kinetic energy operator and potentials consisting of monomial operator
elements are used, then a typical MCTDH operator file can be expected to work
without any changes. The inputfile however uses a different notation, adapted to
the main program.
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(a) shell-q (b) shell-q-half (c) shell-q-half-nn

Figure 7.4: Overview of employed initial GWP positions.

Within this program, various possibilities to place the initial, unoccupied GWPs
have been implemented. The most relevant examples are presented here. The stan-
dard option is the shell-q option. Here, the GWPs are placed next to each other
with a specified overlap (in the input-file), creating a 1-dimensional shell around
the occupied GWP (Fig. 7.4(a)). Another option is offered by the shell-q-half
keyword. Here, only the initial occupied GWP takes the initially specified width
(typically the coherent state width of the corresponding harmonic oscillator of the
potential). The width of neighboring GWPs is reduced by multiplying the initial
width by a factor of 2: anew = 2a0 (see Fig. 7.4(b)). Additionally the option
shell-q-half-nn is available. Here, all next-neighbor GWP that are added have
a reduced width by a factor of 2 (Fig. 7.4(c)).

These options can be useful to avoid the appearance of singularities in the overlap
matrix, due to a large overlap between two or more GWPs. The influence of the
choice among the presented variants on the propagation is investigated in section
8 for a 3-site system.

The “analysis” program can be used to analyze the propagation. Several options
are available for this purpose:

• calculate expectation values of an arbitrary operator (following the rules
mentioned above)

• create plots of one- and two-dimensional projections of the wave function
onto desired DOFs

• calculate the cross-correlation function

• calculate first- and second-layer natural populations

• create restart files.
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7.4 Scaling Observations
In this section, the scaling behavior of the most time consuming part of the code
will be reviewed: the calculation of the mean-fields. Additionally, the scaling
behavior of the total computation time is presented.

The scaling behavior of the code has been analyzed using the system from chapter
8.1. Two sets of compositions were chosen for the scaling analysis:

• f1 = 5, f2 = 2 and d2 = 2 (system 1)

• f1 = 4, f2 = 4 and d2 = 2 (system 2)

All first-layer modes were assigned the same number of combined modes and the
second-layer modes consisted of two DOFs.

The scaling was analyzed as a function of either the first-layer or second-layer
configurations, i.e., n1 and n2 respectively. The numbers of configurations per
mode were chosen to be 3, 5, 7 and 9, both for first layer and second layer,
taken individually. Therefore, for each analysis four parameters could be obtained,
showing the behavior for smaller and larger numbers of configurations.

First, the second-layer scaling is analyzed. Here, the focus lies on the total scaling
and the second-layer mean-fields. The theoretical scaling for system 1 should

Table 7.2: Observed numerical scaling behavior for the total and second-layer com-
putation time. Two different compositions of the modes were investigated. Depicted
are the exponents xn representing the scaling. System 1 consists of f1 = 5 first-layer
and f2 = 2 second-layer modes, while system 2 is build of f1 = 4 first-layer and f2 = 4
second-layer modes. In both cases the second-layer modes were combined modes with
two dimensions. The scaling was observed for four different numbers of first-layer con-
figurations between 3 to 9. The theoretical scaling should be ≈ x3 for system 1 and
≈ x5 for system 2.

system 1 system 2
n1 total second-layer mean-fields total second-layer mean-fields
3 3.6 3.6 5.0 5.6
5 3.5 3.7 5.4 5.5
7 3.6 3.8 5.3 5.6
9 3.9 3.7 5.2 5.4
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be proportional to nf2+1
2 ≈ n3

2, for both the total and second-layer scaling. For
system 2, the scaling should be ≈ n5

2. Tab. 7.2 shows the numerical scaling of the
program and the second-layer mean-fields as a function of the number of second-
layer configurations for different first-layer configurations. The scaling is in a good
agreement with the theoretical scaling, revealing only a small overhead. It turns
out that the total scaling of system 2 is slightly below the second-layer mean-field
scaling. A possible reason for this is that in the total scaling, the less expensive
parts are included whose effect is reduced as more configurations are considered.

A similar result is obtained for the first-layer scaling of system 1 in Tab. 7.3. The
theoretical scaling for this system – both for total and mean-field scaling – should
be ∼ n

f1+1
1 ≈ n6

2. The observed scaling is only slightly higher, showing a small
overhead for the calculation. System 2 shows the expected scaling behavior of the
first-layer mean-field calculation. However, the total scaling of system 2 shows
a different performance and scales almost linearly with the number of first-layer
configurations. The reason is that the calculation of the second-layer mean-field
matrices is still the most expensive part, exceeding the computation time of the
first-layer mean-fields. Tab. 7.4 illustrates this behavior. Although the contribution
for the calculation of the first-layer mean-fields grows with more SPFs, the second-
layer mean-fields still take almost 50 % of the total computation time. Therefore an
almost linear behavior is observed for the first-layer scaling with more second-layer
configurations n2. This was not observed for the second-layer scaling in system

Table 7.3: Observed numerical scaling behavior for the total and first-layer compu-
tation time. Two different compositions of the modes were investigated. Depicted are
the exponents xn representing the scaling. System 1 consists of f1 = 5 first-layer and
f2 = 2 second-layer modes, while system 2 is build of f1 = 4 first-layer and f2 = 4
second-layer modes. In both cases the second-layer modes were combined modes with
two dimensions. The scaling was observed for four different numbers of first-layer con-
figurations between 3 to 9. The theoretical scaling should be ≈ x6 for system 1 and
≈ x5 for system 2.

system 1 system 2
n2 total first-layer mean-fields total first-layer mean-fields
3 6.3 6.5 3.6 5.2
5 6.2 6.5 1.5 5.2
7 6.2 6.5 1.2 5.2
9 5.7 6.6 1.0 5.2
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1, although there were only 2 second-layer modes. This is, however, in agreement
with the theoretical scaling (Eqn. 6.41), as the calculation of the second-layer
mean-fields is more expensive for the same number of SPFs and modes, due to the
non-orthogonal second-layer SPFs.

Table 7.4: Observed numerical scaling for system 2 (f1 = 4, f2 = 4 and d2 = 2). The
percentage of the total computation time is shown for the first- and second-layer mean-
fields with increasing n1; n2 = 5 for all variants.

n1 first-layer mean-fields [%] second-layer mean-fields [%]
3 0.31 50.83
5 1.74 50.29
7 5.90 48.28
9 14.61 42.26
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8 | The 2L-G-MCTDH Method:
Applications

This chapter presents the application of the 2L-G-MCTDH method to two model
systems, using the code which was presented in the preceding chapters. In particu-
lar, (i) site-to-site vibrational energy transfer in a molecular chain, as an example
of intra-molecular vibrational redistribution (IVR), and (ii) charge transfer in a
donor-acceptor system, as an example of high-dimensional non-adiabatic dynamics,
are studied. Both model systems can be extended to a variable number of modes,
permitting to analyze the scaling behavior of the 2L-G-MCTDH method. The re-
sults were compared with reference calculations obtained with either the MCTDH
method or the ML-MCTDH method.

For the IVR Hamiltonian adapted from Schade and Hamm,[102] a detailed analysis
of the 2L-G-MCTDH set-up will be presented for a small system with 15 DOFs,
followed by the application of the method to analogous systems with 35 and 90
DOFs. This is followed by the presentation of the ultra-fast non-adiabatic charge
transfer dynamics for a series of different bath-mode realizations ranging from 20
to 100 DOFs for the 2L-G-MCTDH method for coupled electronic states, using
the single-set approach described in the preceding chapter.

8.1 Vibrational Energy Transfer in a Molecular
Chain

8.1.1 Model Hamiltonian

The first application concerns a Hamiltonian describing site-to-site vibrational
energy transfer in a molecular chain. This Hamiltonian is adapted from Schade
and Hamm[102] and is a suitable model to test the 2L-G-MCTDH implementation
for a single-surface problem involving a variable number of coupled vibrational
degrees of freedom. This model was originally designed to mimic energy transport
in proteins.[102]

As illustrated in Fig. 8.1, the model system is built up from a variable number
of sites i (i = 1, . . . , n) which are coupled to each other via so-called transporting
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Figure 8.1: Representation of the Schade-Hamm Hamiltonian[102] for a n = 5 site
system with m = 4 modes per site

modes qi,j that exhibit nearest-neighbor bi-linear couplings. Further, each site
contains additional modes qi,j, 1 < j ≤ m. These (m − 1) higher-frequency
modes are locally coupled to the central transporting mode via the cubic coupling
∆ which induces Fermi resonances and, hence, gives rise to efficient vibrational
redistribution.

The analytic expression for the mass- and frequency weighted Hamiltonian in
atomic units is given as,

Ĥ = 1
2

n∑
i=1

m∑
j=1

ωi,j
(
p̂2
i,j + q̂2

i,j

)
−

n−1∑
i=1

kq̂i,1q̂i+1,1 + ∆
n∑
i=1

m∑
j=2

q̂2
i,1q̂i,j (8.1)

where ωi,j is the frequency of the corresponding mode. As explained above, j = 1
always corresponds to a transporting mode and j > 1 corresponds to a higher-
frequency mode. The transporting modes were chosen to be resonant, i.e., equal
frequencies are assumed for all transporting modes ω1,1 = ω2,1 = ω3,1 = · · ·.
Furthermore, as already mentioned, the high-frequency modes communicate with
the transporting mode via Fermi resonances, i.e., resonance conditions such that
ωi,k = 2ωi,k′ inducing rapid on-site energy redistribution. Hence, the frequencies at
a given site i are doubled with increasing ordering number

{
ωi,1, ωi,2, ωi,3, · · ·

}
={

ωi,1, 2ωi,1, 4ωi,1, · · ·
}
.

Fig. 8.2 shows a 3D representation of two-dimensional cuts along the potential,
i.e., the near-harmonic potential along the two transporting modes q1,1 and q2,1

(8.2(a)) and the anharmonic potential along a transporting mode q1,1 and the local
mode q1,2 (8.2(b)). The model Hamiltonian (Eqn. 8.1) generates a potential in
the subspace of a given transporting mode and a coupled site-local mode that is
bonding only in a restricted, shallow region. The non-bonding character depends
on the strength of the anharmonicity given by the coupling parameter ∆.
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Figure 8.2: 3D representation of the potential energy surfaces (PES) along the trans-
porting and high-frequency modes.

By choosing the coupling parameters k and ∆ appropriately, the site-local IVR
can be switched on and off. By increasing the coupling ∆ relative to k, the IVR
efficiency is increased. In the calculations presented below, the coupling between
the sites has been set to k = 0.15 and the intra-site coupling was either chosen to
be very small ∆ = 0.01 or rather high ∆ = 0.10.

Higher intra-site coupling values lead to problems in the propagation – both for
(ML-)MCTDH and 2L-G-MCTDH – due to the non-bonding part of the potential,
resulting in a reflection at the grid ends in the (ML-)MCTDH calculations and
escaping GWPs for the 2L-G-MCTDH method, (i.e., the GWPs move downhill in
the non-bonding potential region).

8.1.2 Initial Condition

The initial condition in all of the following calculations is set up such that all
high-frequency modes are initialized with qi,2:m = pi,2:m = 0.0. All transporting
modes except for the first are also set to q2:n,1 = p2:n,1 = 0.0. The transporting
mode on site 1, however, is displaced. This is done by shifting the initial GWP
to have a (virtual) overlap of 0.8 with a virtual GWP located at q1,1 = 0.0. The
initial momentum is set to zero. The initial condition for the first transporting
mode is therefore q1,1 = 0.944 and p1,1 = 0.0. The width of the initially populated
wave packet in all modes was set to the coherent-state width of the corresponding
harmonic oscillator

(
a = mω

2

)
.[79] Therefore, the width is set to a = 0.5, since

the Hamiltonian is set up in mass- and frequency-weighted coordinates. For 2L-
G-MCTDH, the initial condition was defined by populating only one Gaussian
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basis function of the transporting mode. The unoccupied GWPs are arranged as
described in section 7.3 using an overlap of 0.8 with the next-neighbor GWPs.

8.1.3 3-Site System: Method Evaluation

The 3-site system is a minimal realization that was chosen to check the implemen-
tation, verify whether the method shows correct convergence properties, and assess
how mode combination and the choice of the initially unoccupied GWPs affect the
calculation. To evaluate and answer these questions, several calculations have been
performed.

The 3 sites all contain 5 modes per site, adding up to a total of 15 degrees of
freedom. In the following calculations, each site corresponds to one first-layer
particle, ensuring a symmetrical and equal description of all sites. The 5 modes
within a site are split into a variable number of second-layer particles. While the
central transporting mode is always set to be an uncombined second-layer mode,
three variations of combination schemes for the four high-frequency modes are
tested. Fig. 8.3 illustrates these variants. The simplest and most flexible approach
is to use a single second-layer mode for each high-frequency mode (“4x1 scheme”).
The opposite limit is to put all four modes into one distinct second-layer particle
(“1x4 scheme”). The third scheme is a compromise between the two previous
approaches, where two 2-dimensional second-layer modes are constructed (“2x2
scheme”). This setup is especially useful in the case of strong coupling (∆ = 0.1).

All three first-layer modes use the same number of SPFs nκ and all second-layer
modes are also set up symmetrically, such that in all three first-layer modes the
same number of second-layer SPFs nκ,µ are used.

In order to investigate the convergence behavior for the first-layer and second-
layer configurations, either the number of second-layer configurations or first-layer
configurations is fixed, respectively. For all three basis set-ups presented above
(i.e., shell-q, shell-q-half and shell-q-half-nn), the convergence behavior is
analyzed.

8.1.3.1 MCTDH vs. ML-MCTDH

The different combination schemes are compared within a MCTDH or ML-MCTDH
setup, which are used as reference calculations. In particular, the ML-MCTDH
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(a) Mode Combination scheme 1: All high-frequency modes
combined into one second-layer particle (1x4).
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(b) Mode Combination scheme 2: Two high-frequency modes
combined into one second-layer particle (2x2).
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(c) Mode Combination scheme 3: All high-frequency modes
are separated into individual particles (4x1).

Figure 8.3: Mode Combination schemes for the 3 site system. (a) 1x4 scheme, (b)
2x2 scheme and (c) 4x1 scheme.

method is used with the same combination schemes as described above for the 2L-
G-MCTDH. By contrast, the mode combination schemes presented above cannot
be used directly with the MCTDH method and needs to be adapted. Therefore,
each second-layer particle is treated as a MCTDH mode. This means that for the
1x4 splitting, f = 6 modes are used and for the 2x2 splitting f = 9 are used. The
4x1 scheme (f = 12) is unfeasible for the MCTDH method due to the exponential
scaling of the numerical effort.

The ML-MCTDH calculations are performed with nκ = nκ,µ = 5 first-layer and
second-layer SPFs for both transporting and high-frequency modes. Since the
MCTDH calculations are computationally quite expensive for this setup, they use
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Figure 8.4: Comparison of (a) the site energies and (b) position of modes q1,1 and
q1,2 calculated with MCTDH and ML-MCTDH for different mode combinations.

nκ
(
q:,1

)
= 5 SPFs for the transporting and nκ

(
q:,2:m

)
= 3 SPFs for the high-

frequency modes.

First, the energy flow through the chain is compared and analyzed. Fig. 8.4(a)
shows the different results. In general, the results show that the energy is dis-
tributed among the three sites along the chain. While the energy for site 2 is
almost continuously oscillating, sites 1 and 3 show a delay in the oscillations due
to the transport along the chain. The comparison shows that the three combi-
nation schemes have no visible influence. Only differences between MCTDH and
ML-MCTDH are visible.

Furthermore, the expectation values of the modes are compared directly. For
illustration purposes, the expectation values for the modes q1,1 and q1,2 are shown
in Fig. 8.4(b) for the different setups. As expected, the trend is similar to that
of the energy distribution. For mode q1,1, MCTDH and ML-MCTDH only differ
slightly and mode combination does not have a significant influence. Mode q1,2

shows a similar behavior. The calculations show only slightly deviations in the
amplitudes, but all quantitative features are visible. This is also valid for the other
high-frequency modes that are not shown. Since the MCTDH and ML-MCTDH
results are nearly identical and show the same behavior, only the ML-MCTDH
calculations are used to compare to the 2L-G-MCTDH results.

For the comparison of the 2L-G-MCTDH results to the reference calculations, the
same combination scheme is used throughout.
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8.1.3.2 1x4 Combination Scheme

First, the first-layer convergence properties of the 1x4 scheme are analyzed in
combination with the shell-q basis. For this purpose, the number of second-layer
SPFs has been fixed to nκ,µ = 5 for each mode. One can see in Fig. 8.5(a) for the
modes q1,1 (transporting mode on site 1) and q1,2 (first high-frequency mode on site
1) that the results do converge with an increasing number of first-layer SPFs. This
can be seen especially for the q1,2-mode in Fig. 8.5(a). Furthermore, the results
show a very good agreement to ML-MCTDH over the time period of 2000 fs. To
reproduce the ML-MCTDH results, 7 SPFs are needed (at least for q1,2), and 5
SPFs already show the same features, even over a duration of 5000 fs.

Second, the second-layer convergence properties are analyzed for the same setup.
The same calculations as before are performed with an increasing number of second-
layer nκ,µ SPFs for a fixed number of nκ = 5 first-layer SPFs per mode. Again, a
clear improvement with increasing number of second-layer configurations is visible.
As can be seen in Fig. 8.5(b), 3 second-layer configurations do not suffice as mode
q1,1 is not described correctly, since the amplitude is slightly smaller. The same
holds true for mode q1,2.

Fig. 8.5(b) also shows a problem arising from the GWP basis. Although five GWPs
are sufficient to accurately describe the dynamics of the modes up to 5000 fs, using
more GWPs can lead to numerical instabilities due to singularities arising from
a large overlap of two (or more) GWPs. As a consequence, the timesteps of the
adaptive integrator drop down and do not recover, so that the calculations are
eventually stopped.

Due to these problems, no more than 5 SPFs per first- and second-layer mode can
be used for the combination of the shell-q basis setup and the 1x4 combination
scheme. But, as shown in Fig. 8.6, this is sufficient to achieve an almost perfect
agreement with the reference results. Fig. 8.6 shows the energy redistribution
among the sites for nκ = nκ,µ = 3 and nκ = nκ,µ = 5. While for 3 SPFs the results
strongly differ from the reference, 5 SPFs show a very good agreement up to the
depicted 5000 fs.

Next, the shell-q-half initial setup is analyzed. Therefore the same expecta-
tion values are compared. This setup should reduce the problems arising from
singularities caused by a large overlap of the GWPs.
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Figure 8.5: First and second layer convergence for modes q1,1 and q1,2 with 2L-G-
MCTDH (colored lines) compared to ML-MCTDH(black lines). (a) nκ,µ = 5 for the
first-layer convergence and (b) nκ = 5 for the second-layer convergence. The mode
combination scheme 1x4 in conjunction with the shell-q basis is used.
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Figure 8.6: Comparison of ML-MCTDH (black) and 2L-G-MCTDH (blue) for the
energy redistribution along the 3 sites over 5000 fs. The results for (a) nκ = 3, nκ,µ = 3
and (b) nκ = 5, nκ,µ = 5 are shown. The mode combination scheme 1x4 in conjunction
with the shell-q basis is used.

Again, first the convergence behavior with the number of first-layer SPFs is con-
sidered. The number of second-layer configurations is again fixed to nκ,µ = 5. The
results for mode q1,1 (Fig. 8.7(a)) show that the result does not change with the
addition of more first-layer SPFs. Three first-layer SPFs seem to be sufficient, but
the second-layer basis might be too restrictive and therefore prohibits a better
description.

However, mode q1,2 (nκ = 3, Fig 8.7(a)) seems to be strongly dependent on the
number of second-layer SPFs. The results do not seem to be converged with 5
second-layer SPFs. As Fig. 8.7(a) shows, 7 second-layer SPFs are also not sufficient
to cover all features correctly (i.e., the small rise in amplitude at ∼1600 fs for q1,2),
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Figure 8.7: First and second layer convergence for modes q1,1 and q1,2 with 2L-G-
MCTDH (colored lines) compared to ML-MCTDH(black lines). (a) nκ,µ = 5 for the
first-layer convergence and (b) nκ = 3 for the second-layer convergence. The mode
combination scheme 1x4 in conjunction with the shell-q-half basis is used.

but the calculation almost shows the same result as for nκ,µ = 5, and therefore
indicates a good convergence behavior. Unfortunately, with 9 second-layer SPFs,
numerical problems due to singularities arise and an extension of the basis is not
possible.

The convergence with the number of second-layer SPFs is analyzed for a rather
small number of first-layer SPF nκ = 3, because a larger number of nκ are again
found to cause severe problems due to singularities. Fig. 8.7(b) shows an almost
converged result for nκ,µ = 5, which is hardly improved by using nκ,µ = 7 SPFs.
While the description of q1,1 is in quite good agreement for nκ = 5 or more, the
comparison for q1,2 to the reference again reveals problems, as the small rise in
amplitude at ∼1600 fs is again not reproduced correctly.

Consequently, these results, as compared to the shell-q basis setup, are not quite
as good, due to the insufficient description of the modes by the shell-q-half
basis setup. However, the plot for the energy redistribution (Fig. 8.8) shows that
the overall performance until 5000 fs is showing all features for nκ = nκ,µ = 5, but
is slightly worse than shell-q.

The last basis setup that is investigated is the shell-q-half-nn setup. Here, the
problem of singularities should be almost eliminated, as only two GWPs with the
same width are present in each DOF. However, this means that presumably more
SPFs are needed for a correct description. Also the convergence behavior might be
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Figure 8.8: Comparison of ML-MCTDH (black) and 2L-G-MCTDH (blue) for the
energy redistribution along the 3 sites over 5000 fs. The results for (a) nκ = 3, nκ,µ = 3
and (b) nκ = 5, nκ,µ = 5 are shown. The mode combination scheme 1x4 in conjunction
with the shell-q-half basis is used.

worse, as the added GWPs are getting increasingly narrow. Note that this setup
is equal to shell-q-half for nκ,µ = 3.

Fig. 8.9(a) shows the first layer convergence for modes q1,1 and q1,2. One can
see that for mode q1,1, the results do not improve much with more SPFs. In-
deed, nκ = 5 appears to be sufficient. Furthermore, a slightly faster oscillation
frequency is observed, possibly due to the narrower GWPs compared to shell-q
and shell-q-half. Mode q1,2, however, does not show a convergence behavior
up to 9 first-layer SPFs. The description is again limited by the second-layer con-
figurations as for the shell-q-half setup. Up to 1000 fs the results are almost
identical but then begin to diverge. For mode q1,2, the small increase in amplitude
at 1600 fs is again not described correctly by this basis setup. A positive side note
is that absolutely no numerical problems occurred during the propagation. The
integration is stable throughout all propagations.

Fig. 8.9(b) shows the second-layer convergence. For mode q1,1, one sees that 5
second-layer SPFs are enough to reach convergence. Again, for mode q1,2 this is
not the case. Up to about 1200 fs the results are almost identical for all number
of SPFs except for nκ,µ = 3. By increasing nκ,µ, the time at which the results
begin to diverge is increased by almost 500 fs. Furthermore, the small increase in
amplitude is again not captured with this basis setup.

Since no problems occurred with an increasing number of SPFs, the results for up
to 9 first and second-layer SPFs can be presented. The lower limit in this case is
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Figure 8.9: First and second layer convergence for modes q1,1 and q1,2 with 2L-G-
MCTDH (colored lines) compared to ML-MCTDH(black lines). (a) nκ,µ = 5 for the
first-layer convergence and (b) nκ = 3 for the second-layer convergence. The mode
combination scheme 1x4 in conjunction with the shell-q-half-nn basis is used.
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Figure 8.10: Comparison of ML-MCTDH (black) and 2L-G-MCTDH (blue) for the
energy redistribution along the 3 sites over 5000 fs. The results for (a) nκ = 5, nκ,µ = 5
and (b) nκ = 9, nκ,µ = 9 are shown. The mode combination scheme 1x4 in conjunction
with the shell-q-half-nn basis is used.

represented by the calculation with nκ = nκ,µ = 5 as 3 SPFs give the same result
as for shell-q-half. As can be seen in Fig. 8.10 the results with nκ = nκ,µ = 9
are in good agreement to (ML-)MCTDH. The overall behavior is well described
with this basis setup. 5 first- and second-layer SPFs are not sufficient, especially
at the end around 4000 fs.

8.1.3.3 2x2 Combination Scheme

In this setup, the 4 high-frequency modes are split among two multi-dimensional
GWPs. Thus, there are 3 multi-dimensional GWPs per first-layer SPF, where
one SPF contains the transporting mode and two combined particles carry 2 high-
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Figure 8.11: First and second layer convergence for modes q1,1 and q1,2 with 2L-G-
MCTDH (colored lines) compared to ML-MCTDH(black lines). (a) nκ,µ = 5 for the
first-layer convergence and (b) nκ = 5 for the second-layer convergence. The mode
combination scheme 2x2 in conjunction with the shell-q-half basis is used.

frequency modes each. This scheme should cause the modes to be more flexible
and the same number of SPFs should show better results.

Similarly to the 1x4 combination scheme, the results for the different basis setups
are analyzed. However, the results with the shell-q basis show a very problematic
behavior due to singularities and cause the time-steps of the propagation to be
very small (< 10−6 fs). Hence, only the calculations with the two other setups are
presented.

Fig 8.11(a) shows the results for modes q1,1 and q1,2 for a fixed number of nκ,µ = 5
second-layer SPFs with basis setup shell-q-half. For mode q1,1 nκ = 3 SPFs
are already sufficient. Yet, for q1,2 at least nκ = 5 SPFs are needed to get a
near-converged result. More SPFs only add small corrections to the amplitude.
As expected, the results show a better consistency with the ML-MCTDH results
compared to the 1x4 scheme as the small rise in amplitude at 1600 fs is captured
correctly in these calculations.

Turning to the results for a fixed number of second-layer configurations, nκ = 5
shows the same problems as for the 1x4 scheme. Calculations with more than
nκ,µ ≥ 7 exhibit problems due to singularities. Results for mode q1,1 (Fig. 8.11(b))
show a very good agreement with the reference for nκ,µ = 5. The result for q1,2

is however limited by the first-layer SPFs, as already seen in Fig. 8.11(a), where
nκ = 9 SPFs shows a good agreement.

104



Vibrational Energy Transfer in a Molecular Chain

 0.0102
 0.0103
 0.0104
 0.0105

E
 [H

]

Site 1

ML−MCTDH 2L−G−MCTDH

 0.0102
 0.0103
 0.0104
 0.0105

E
 [H

]

Site 2

 0.0102
 0.0103
 0.0104
 0.0105

 0  1000  2000  3000  4000  5000

E
 [H

]

time [fs]

Site 3

(a) nκ = 3, nκ,µ = 3

 0.0102
 0.0103
 0.0104
 0.0105

E
 [H

]

Site 1

ML−MCTDH 2L−G−MCTDH

 0.0102
 0.0103
 0.0104
 0.0105

E
 [H

]

Site 2

 0.0102
 0.0103
 0.0104
 0.0105

 0  1000  2000  3000  4000  5000

E
 [H

]

time [fs]

Site 3

(b) nκ = 5, nκ,µ = 5

Figure 8.12: Comparison of ML-MCTDH (black) and 2L-G-MCTDH (blue) for the
energy redistribution along the 3 sites over 5000 fs. The results for (a) nκ = 3, nκ,µ = 3
and (b) nκ = 5, nκ,µ = 5 are shown. The mode combination scheme 2x2 in conjunction
with the shell-q-half basis is used.

Therefore, the energy re-distribution along the sites is also shown with nκ = 9 SPFs.
As above the results with 5 first- and second-layer SPFs are in good agreement
to the reference calculations (Fig. 8.12). The use of 9 first-layer SPFs only gives
negligible improvement. Hence nκ = 5 is enough to capture the correct behavior.

The basis setup shell-q-half-nn again shows no problems during the propaga-
tions and no singularities or problematic time-step drops. The results also show
a very good convergence behavior with the number of first-layer SPFs nκ (Fig.
8.13(a)). While mode q1,1 shows already a good agreement for nκ = 3, mode q1,2

shows convergence with increasing first-layer SPFs. However, the results differ
slightly from the reference. The frequency shift, that was observed for the 1x4
scheme, is not present in these results (at least for nκ ≥ 7).

Similarly to the previous results with a fixed number of first-layer configurations
(nκ = 5), nκ,µ = 5 SPFs are at least needed to obtain a nearly converged re-
sult for mode q1,1 (Fig. 8.13(b)). Mode q1,2 is again restricted by the first-layer
configurations as nκ = 9 SPFs are needed for a nearly perfect agreement.

As for the 1x4 combination scheme, the results of the energy re-distribution among
the site chain are depicted for 5 and 9 first- and second-layer SPFs. While 5 SPFs
are not sufficient, 9 SPFs give a very good agreement compared to the reference
calculations. This again shows the excellent convergence behavior of the method
for the present system.
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Figure 8.13: First and second layer convergence for modes q1,1 and q1,2 with 2L-G-
MCTDH (colored lines) compared to ML-MCTDH(black lines). (a) nκ,µ = 5 for the
first-layer convergence and (b) nκ = 5 for the second-layer convergence. The mode
combination scheme 2x2 in conjunction with the shell-q-half-nn basis is used.
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Figure 8.14: Comparison of ML-MCTDH (black) and 2L-G-MCTDH (blue) for the
energy redistribution along the 3 sites over 5000 fs. The results for (a) nκ = 5, nκ,µ = 5
and (b) nκ = 9, nκ,µ = 9 are shown. The mode combination scheme 2x2 in conjunction
with the shell-q-half-nn basis is used.

8.1.3.4 4x1 Combination Scheme

The 4x1 combination scheme revealed severe numerical problems. With none of the
three tested basis setups – not even the shell-q-half-nn setup – was it possible
to use more than 3 second-layer configurations. Hence, the calculations for the
shell-q-half-nn setup are identical to the shell-q-half setup. Furthermore,
no calculation reached a reasonable propagation time due to singularities for the
shell-q setup.

Since only with nκ,µ = 3 second-layer SPFs, we could reach more than a few
femtoseconds, the results do not show good agreement to the reference calculations.
In the previous combination schemes, at least 5 SPFs were necessary for near-
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Figure 8.15: Comparison of ML-MCTDH (black) and 2L-G-MCTDH (blue) for the
energy redistribution along the 3 sites over 5000 fs. The results for (a) nκ = 3, nκ,µ = 3
and (b) nκ = 9, nκ,µ = 3 are shown. The mode combination scheme 4x1 in conjunction
with the shell-q-half basis is used.

converged results. Here, the situation is different, as one can see for the energy
distribution (Fig. 8.15). Even nκ = 9 first-layer SPFs are not able to make up for
the inaccurate description by the second-layer modes.

8.1.3.5 Conclusion

The results presented above show that the 2L-G-MCTDH method in general per-
forms well and shows good convergence properties. Nevertheless the choice of mode
combination and the setup of the unoccupied GWPs is crucial, regarding numerical
stability and reliability of the results.

The 1x4 combination scheme is the least flexible of the investigated schemes. Here,
the best result is obtained with the shell-q basis setup. However, because of
numerical issues caused by singularities due to the large overlap of (at least) two
GWPs, no more than 5 second-layer SPFs could be used for the calculations.
Curiously, the problem also appeared for too many first-layer SPFs with only
5 second-layer SPFs. The reason for this is not yet understood, but a possible
reason might be the less flexible second-layer SPFs, as all high-frequency modes
are combined together in one second-layer mode. As more second-layer SPFs are
not feasible, it is not directly possible to confirm this assumption. The same
problem occurred for the shell-q-half basis setup with this mode combination.
However for 5 first- and second-layer SPFs the results are in a good agreement to
the reference. Using the basis shell-q-half-nn eliminates all these problems and
also demonstrates the very good convergence properties by increasing the number
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of GWPs. But, the results show quite a remarkable difference to the reference
calculations, because of the bad description of the high-frequency modes.

By using the 2x2 combination scheme, significantly improved results are obtained.
Both shell-q-half and shell-q-half-nn show a nearly perfect agreement to
the reference calculations. While for shell-q-half, 5 first and second-layer SPFs
are sufficient (more SPFs again caused numerical problems), for shell-q-half-nn
at least 9 first and second-layer SPFs are needed.

Finally, the most flexible combination scheme, i.e., the 1x4 scheme, caused severe
numerical problems. While for shell-q, no calculation reached a reasonable
propagation time, shell-q-half as well as shell-q-half-nn are only stable with
3 first and second-layer SPFs and are therefore equivalent. However, these are not
sufficient to get a reasonable agreement.

If possible, the shell-q and shell-q-half basis setup should be employed in
order to use less numbers of configurations. To avoid numerical instabilities, one
should check another mode combination scheme or try a different setup (width
and position in phase space) of the unoccupied GWPs.

8.1.4 5-Site System (35 DOFs)

In this section, the results for a 5-site system comprising a total of 35 DOFs are
discussed. The 35 DOFs distribute equally among the 5 sites, where each site is
attributed one first-layer mode. Each site consists of 7 modes, i.e., 1 transporting
mode and 6 high-frequency modes. The transporting modes q:,1 are again set
up in an individual second-layer mode, separated from the high-frequency modes.
Combining the 6 high-frequency modes in one particle would require many SPFs,
which would probably be problematic regarding the numerical stability. Therefore,
always three high-frequency modes are combined, as a compromise of the above
mentioned 1x4 and 2x2 combination schemes or, using the same naming convention,
constructing a 2x3 combination scheme. As basis setup shell-q-half is chosen,
since it gave a reasonable result for small numbers of SPFs for the 3 site system
and was quite stable.

As reference, a ML-MCTDH calculation is employed, using the same mode setup.
The system parameters are chosen identical to the 3 site system: k = 0.15 and
∆ = 0.10. For the ML-MCTDH calculation again 5 SPFs for the first- and second-
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Figure 8.16: Comparison of ML-MCTDH (black) and 2L-G-MCTDH (blue) for (a)
the transporting modes and (b) the first 5 high-frequency-modes of the 5 sites for
5000 fs.

layer modes are used. The calculations for 2L-G-MCTDH are presented with the
same number of SPFs.

Fig. 8.16 shows the results for a period of 5000 fs. Since all modes are in resonance
with each other, one sees an efficient energy transfer between the sites. The excess
energy that is initially localized at site 1 takes about 1100 fs to move from site 1 to
site 5. Therefore, a back and forth transfer takes about 2200 fs. The results are in
a good agreement to the ML-MCTDH calculation. Over the complete time period,
a similar behavior for all 5 transporting modes is observed. The high-frequency
mode q1,2 shows a slight deviation from the reference. This is especially visible in
the amplitude of the oscillations. Furthermore, a slight shift of the frequency of
the oscillations for this mode is observed. The other high-frequency modes show a
better agreement.

The site energies and the energy transfer along the sites depicted in Fig. 8.17
confirm the good agreement to the reference calculations. A slightly faster energy
transfer is observed, especially seen for site 1 at around 4200 fs. For comparison,
the result with only 3 SPFs is plotted, underlining the good convergence behavior of
the method. Until ∼2000 fs, corresponding to the time range of one energy transfer
cycle, the results are comparable, but then exhibit a more oscillatory behavior
as the correlations are not captured correctly any more and an equilibrium state
seems to be reached more rapidly.
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Figure 8.17: Comparison of ML-MCTDH (black) and 2L-G-MCTDH (red: nκ =
3,nκ,µ = 3 and blue: nκ = 5, nκ,µ = 5) for the site energies of the 5 sites for 5000 fs.

8.1.5 18-Site System (90 DOFs)

The last system that is studied for this Hamiltonian is a rather large example
with 18 sites, comprising 90 degrees of freedom. Each site consists of 5 modes,
i.e., 1 transporting mode and 4 high-frequency modes. After explaining the mode
partitioning, the results of the 2L-G-MCTDH code and the ML-MCTDH package
are compared. Here, two intra-site coupling parameters ∆ = 0.01 and ∆ = 0.1 are
compared; for the inter-site coupling the same value k = 0.15 as before is taken.

8.1.5.1 System Partitioning

For this system, the mode combination is crucial for the description. For both
the ML-MCTDH and 2L-G-MCTDH methods, it is not possible to follow the
same approach as for the 5-site system. In the latter, one site corresponds to
one first-layer particle. Here, this would result in 18 first-layer modes, which is
unfeasible due to the exponential scaling behavior. Therefore, several sites have to
be combined into one first-layer particle. Various partitioning schemes (Tab. 8.1)
have been employed and compared to each other.

Scheme 1 represents the natural follow-up of the previously used partitioning
schemes. Similar to the 1x4 combination scheme for the 3 site system, the trans-
porting modes have a specific second-layer mode and the four high-frequency modes
are combined into one mode. In this scheme, three sites are combined, but DOFs
from different sites are not combined in the same second-layer particle. Therefore,
f = 6 first-layer modes with fκ = 6 second-layer modes are obtained. This is
expected to be the computationally most expensive, but also most flexible scheme.
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The second scheme is a small variation of the first one. Instead of having a specific
second-layer mode for themselves, several transporting modes are combined. Due
to the reduction of second-layer modes per first-layer mode, up to four sites can be
combined in one first-layer mode. Therefore, f = 5 first-layer modes are obtained,
where two comprise only three sites. Each first-layer mode consists of up-to fκ = 5
second-layer modes.

The first two schemes have only up to 4 DOFs combined into one second-layer
particle. For a 2L-MCTDH setup, this is feasible, but a higher-dimensional mode
combination is not possible due to the exponential rise of the numerical effort and
memory requirements of the grid representation. Especially the transporting modes
need around 30 grid points per mode, resulting in a large number of 304 grid points
for scheme 2. Therefore, the following schemes 3 and 4 are not applicable with a
2L-MCTDH setup. However, for the GWP setup more modes can be combined; a
possible drawback is, however, that more SPFs might be required in turn.

Hence, scheme 3 increases the mode combination of scheme 2. Furthermore the
second-layer modes are now not restricted to only contain high-frequency modes of
one site. Here, the high-frequency modes with the same frequency q:,j are combined
together. As they are uncoupled to each other, this should reduce the number of
SPFs required for these second-layer modes, as the FGs are not directly coupled
due to the diagonal width matrix. Six DOFs are combined, giving a total number
of 15 second-layer modes, that are distributed among f = 5 first-layer modes
(→ fκ = 3). Here, packets of qi:i+5,1, qi:i+5,3 and qi:i+5,5 for 5 sites are combined in
the first three first-layer modes and the modes qi:i+5,2 and qi:i+5,4 are combined in
the remaining two first-layer particles.

The fourth and last scheme combines even more DOFs in a second-layer mode.
By combining 9 DOFs, the number of first-layer modes can be reduced to three.
The particles, containing the modes qi:i+9,2 and qi:i+9,4 are combined into one first-
layer particle, such that fκ = 4 second-layer modes are used. The other first-layer
modes contain fκ = 3 second-layer modes. This should be the computationally
least flexible, but also the computationally least expensive (for 2L-G-MCTDH)
approach. For more details, the reader is referred to Tab. 8.1.

Furthermore, an additional 5-Layer partitioning scheme (denoted as scheme 5L,
not depicted in Tab. 8.1) is used exclusively for the ML-MCTDH calculations,
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since the 2-layer approach did not yield converged results within reasonable times
with ML-MCTDH. The scheme is illustrated in Fig. 8.18. The multi-layer tree is
split in two halves, such that the first nine sites are depicted in the first half (Fig.
8.18(a)) and the remaining nine in the second half (Fig. 8.18(b)).

8.1.5.2 Small Intra-Site Coupling – ∆ = 0.01

First, the results for the small intra-site coupling ∆ = 0.01 are presented. The ML-
MCTDH result is taken to be converged. Both for ML-MCTDH and 2L-G-MCTDH,
nκ = nκ,µ = 3 SPFs together with partitioning scheme 1 are employed. ML-
MCTDH gives the same results for schemes 1, 2 and 5L, all being converged. For
this setup, the 2L-G-MCTDH results are in perfect agreement with ML-MCTDH.
This can be seen for the transporting modes and for the site energies in Fig. 8.19.
The plot shows the sequential transfer of energy to site 18 and back to site 1. The
energy is transported along the chain almost without any disturbance, due to the
small intra-site coupling. It takes around 6600 fs to complete a full transfer cycle.

8.1.5.3 Large Intra-Site Coupling – ∆ = 0.1

The results for a larger intra-site coupling of ∆ = 0.1 are here summarized for the
2L-G-MCTDH method as compared with ML-MCTDH reference results. To start
with, schemes 1, 2 and 5L are discussed for the ML-MCTDH method, followed by
schemes 1 to 4 for the 2L-G-MCTDH method.

First, the results for the ML-MCTDH calculations are compared for the partitioning
schemes 1 and 2, as well as scheme 5L. The calculations with scheme 1 use 3 SPFs
for all first and second-layer modes, as more configurations were not feasible.
These calculations do not represent a fully converged result. The same holds
true for the results with scheme 2. Here, due to a higher-dimensional mode
combination of the transporting modes, 5 SPFs per first- and second-layer mode
could be used. By contrast, the results obtained with the 5-layer setup (scheme
5L) represent converged results. For the transporting modes q:,1, the difference is
rather small. Scheme 2 shows a negligibly slower oscillation frequency and slightly
smaller amplitudes, whereas scheme 1 presents a slightly faster osclillation with
larger amplitudes (Fig. 8.20(a)). However, the differences are more pronounced for
the energy distribution along the sites. The amount of energy reaching the last
site – but also the sites in the middle of the chain – is higher for schemes 2 and
5L than for scheme 1. Furthermore, the calculation with scheme 5L also shows
a slightly slower energy transfer by about 200 fs back to site 1, as one can see at
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Figure 8.19: Comparison of ML-MCTDH (black, 2 layers) and 2L-G-MCTDH (blue)
for (a) the q:,1 modes and (b) the site energies for the 18 site system (site number
increasing from top to bottom). ML-MCTDH and 2L-G-MCTDH employ the same
mode partitioning and the same number of configurations (nκ = 3, nκ,µ = 3). The
intra-site coupling is small with ∆ = 0.01.

Table 8.2: Overview of the numbers of first- and second-layer SPFs for the 18 site
system. The ordering of the modes is identical to Tab. 8.1. The square brackets denote
first- or second-layer modes. ngaussconf is the total number of GWP configurations.

scheme nκ nκ,µ ngaussconf

1 [3,3,3,3,3,3] [3,3,3,3,3,3],[3,3,3,3,3,3],[3,3,3,3,3,3] 13 122[3,3,3,3,3,3],[3,3,3,3,3,3],[3,3,3,3,3,3]

2 [5,5,5,5,5] [5,5,5,5,5],[5,5,5,5,5],[5,5,5,5,5] 53 125[5,5,5,5,5],[5,5,5,5,5]
3 [7,7,7,7,7] [5,5,3],[5,5,3],[5,5,3],[5,5,5],[5,5,5] 3325
4 [7,7,7] [7,7,7],[7,7,7],[5,5,5,5] 9177

∼6500 fs. Overall, the energy profile with scheme 1 is more shallow such that the
energy transfer is described to be less effective than for the other two partitioning
schemes. The behavior of schemes 2 and 5L is nevertheless similar, and will be
used as a point of comparison for the calculations reported below.

Second, the results obtained with the 2L-G-MCTDH method are compared for
the different schemes, and to the ML-MCTDH reference results. The number of
first-layer and second-layer SPFs that are employed for the various schemes, are
depicted in Tab. 8.2. These correspond to the largest number of configurations
that can be employed to achieve a numerically stable propagation. As a general
observation, one should note that more second-layer SPFs can be used if more
DOFs are combined into a given second-layer mode.
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Figure 8.20: Comparison of 2 layer ML-MCTDH (black and red) and 5 layer ML-
MCTDH (blue) for (a) the q:,1 mode and (b) the site energies for sites 1, 9, 10 and
18 of the 18 site system. For the 2-layer ML-MCTDH results schemes 1 (black) and
scheme num2 (red) are depicted. The 5-layer calculation employs the scheme 5L. The
intra-site coupling is small with ∆ = 0.1.

Similarly to the ML-MCTDH results, the differences for the center modes q:,1 are
very small. The energy transfer shows more pronounced differences between the
schemes, depicted in Fig. 8.21(a). While schemes 3 and 4 show a very similar
redistribution among the sites, schemes 1 and 2 show a different behavior for
site 1 as more energy is transferred compared to the other schemes, showing a
better agreement with the ML-MCTDH results. For scheme 2, the first site retains
more energy over the complete propagation time after the initial energy transfer.
However, the amount of energy received by site 18 is equal for all four schemes with
2L-G-MCTDH. It is very similar to the 2L-MCTDH calculation with scheme 1,
and therefore smaller than for the 5L-MCTDH calculation. Furthermore, the local
energy of sites 2 to 17 is described rather well by all 2L-G-MCTDH calculations
and is in agreement with the ML-MCTDH results.

The good description of the energy flow can be attributed to the fact that the
transporting modes are not combined in scheme 1; these modes are therefore more
flexible as compared with a combined description. This is especially pronounced
when comparing to scheme 2. Here, for the 2L-G-MCTDH results, the energy
loss is remarkably smaller for site 1 and the energy transfer to the high-frequency
modes is overemphasized as can be seen in Fig. 8.21(b). The energy located in the
high-frequency modes of site 1 (q1,2:5) is transferred back more rapidly for scheme
1, which is in better agreement to the reference calculations. In general, the overall
energy transferred to the high-frequency modes seems to be overestimated by the
2L-G-MCTDH calculations.
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Figure 8.21: Comparison of the site energies (a) including the energy of the transport-
ing modes and (b) excluding the energy of the transporting mode. The ML-MCTDH
results with schemes 1 and 5L and the four partitioning schemes in combination with
2L-G-MCTDH are shown. Depicted are sites 1, 9, 10 and 18.

Scheme 4 represents the opposite of scheme 1 regarding mode combination. Scheme
4 has the highest mode combination employed. As a result, more SPFs can be
employed. Furthermore, it shows some improvements compared to scheme 3 due
to the combination of uncoupled modes having a similar behavior. Although the
results show a good agreement, especially for the energy transfer and the center
modes, the description of the high-frequency modes is worse than the results with
scheme 1 or ML-MCTDH.

The best agreement for the 2L-G-MCTDH method is achieved with mode com-
bination scheme 1. In this scheme mode combination is reduced to a minimum.
Therefore the modes are more flexible and no (direct) mode couplings between
modes in the same second-layer particle exist. As a consequence, less configurations
need to be used to achieve a near-converged result. A full comparison for all sites
regarding the mode positions of the transporting modes and the site energies is
shown in Fig. 8.22. In comparison to the small intra-site coupling ∆ = 0.01 the
energy transfer along the sites is reduced, as one can deduce from the smaller
amount of energy received from site 18. The results for the mode positions exhibit
a small deviation of the oscillation frequency for all transporting modes. However,
the energy transfer along the site-chain is in a good agreement, showing only minor
deviations mainly for sites 17 and 18.

Overall, the 2L-G-MCTDH method shows a good agreement to the reference
calculations for this kind of system. By employing a higher-dimensional mode
combination, even larger numbers of degrees of freedom are accessible. A redesigned
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Figure 8.22: Comparison of ML-MCTDH (black, scheme 5L) and 2L-G-MCTDH
(blue, scheme 1) for (a) the q:,1 modes and (b) the site energies for the 18 site system
(site number increasing from top to bottom). The intra-site coupling is ∆ = 0.1.

mode combination scheme may be used for this purpose, following the concept of
scheme 4.

8.2 Non-Adiabatic Charge Transfer Dynamics
The second system to which the 2L-G-MCTDH method has been applied, is a
donor-acceptor system composed of an oligothiophene (OT4) donor moiety and a
fullerene (C60) acceptor moiety, as depicted in Fig. 8.23. This system is a minimal
model for the charge transfer in a paradigm system of organic photovoltaics, i.e.,
a so-called bulk heterojunction composed of poly-3-hexylthiophene (P3HT) and
phenyl-C61 butyric acid methyl ester (PCBM) components.[103–108] The P3HT-
PCBM system exhibits an ultrafast charge transfer, on a time scale of ∼50 fs to
200 fs.[104,105,109,110] In a previous study in our group, by Tamura et al.,[84,85] a Linear
Vibronic Coupling (LVC) electron-phonon Hamiltonian has been parametrized
for this system. To this end, electronic structure calculations using long-range-
corrected density functional theory and an ab initio based diabatization procedure
were performed.[84] Furthermore, the LVC was combined with an ab initio generated
spectral density of the phonon modes of the system. Here, geometry displacements
for all normal modes were used to obtain vibronic couplings. The results presented
here are obtained considering the original data and procedures presented in Ref.
[84, 85].
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Figure 8.23: (a) OT4/C60 interface model system, where the five- or six-membered
ring of C60 and the π-conjugate plane of OT4 are arranged in parallel. (b) Scheme of
the electron transfer with the LUMOs of OT4 and C60.

8.2.1 Hamiltonian

The abovementioned LVC model describes the coupling of an excitonic donor state
(OT∗4-C60), denoted XT, to a charge separated state (OT+

4 -C−60), denoted CT.

The Hamiltonian takes the general form,

Ĥ = Ĥ0 + ĤR + ĤB (8.2)

where Ĥ0 refers to the electronic part, ĤR is the part depending on the inter-
fragment distance coordinate R and ĤB represents the collection of the intra-
molecular “bath” modes.[85] The individual parts are given as follows,

Ĥ0 =−∆XT-CT |CT〉 〈CT|+ γ (|XT〉 〈CT|+ |CT〉 〈XT|) (8.3)

ĤR =ωR2
(
R̂2 + P̂ 2

)
+ κRR̂ |CT〉 〈CT|

+ γRR̂ (|XT〉 〈CT|+ |CT〉 〈XT|) (8.4)

ĤB =
N0∑
i=1

ωi
2
(
x̂2
i + p̂2

i

)
+

N0∑
i=1

κix̂i |CT〉 〈CT|+
N0∑
i=1

κ2
i

2ωi
(8.5)

The Hamiltonian uses mass- and frequency-weighted coordinates. The diagonal
coupling parameter κR and the vibronic couplings κi reflect the displacement of the
CT equilibrium geometry from the XT reference geometry. The bath Hamiltonian
(Eqn. 8.5) represents the intra-fragment modes, which are diagonally coupled to
the CT state. The last term of Eqn. 8.5 corresponds to the CT reorganization
energy λ = ∑N0

i=1
κ2
i

2ωi
.

The electron-phonon-couplings κi were determined by projecting the displacement
between the XT and the CT minima onto the CT normal mode coordinates (Fig.
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Figure 8.24: (a) Schematic illustration of the XT/CT potential crossing. (b) Phonon-
induced shifts ∆x for the vibrational normal modes of the OT+

4 and C−60 fragments. (c)
Broadend spectral densities, based upon a convolution of the original data shown in
(b).

8.24(a)). The normal mode analysis yields N0 = 246 normal modes in total for
both separate fragments.[85]

The discrete distribution of the electron-phonon couplings, depicted in Fig. 8.24(b),
has been used to construct a smooth spectral density J(ω) function, representing a
continuous density of modes that gives a better description of the high-dimensional
polymer system. A Lorentzian envelope function (Eqn. 8.6) was used to convolute
the discrete spectrum,

J (ω) =π2

N0∑
i=1

κ2
i δ (ω − ωi)

=π2

N0∑
i=1

κ2
i

π

∆
(ω − ωi)2 + ∆2

(8.6)

where the parameter ∆ specifies the Lorentzian width. As a reference value, the
width ∆0 is used that was determined from the root mean square of the frequency
spacings of the original, discrete couplings. Fig. 8.24(c) illustrates the continuous
spectral density for two different choices of the width ∆. The calculations presented
below are performed with a Lorentzian width of ∆ = 0.25∆0.

The continuous spectral density can then be re-discretized with an arbitrary number
of N bath modes for an equidistant sampling interval ∆ω,[111]

J (ω) =π2

N∑
i=1

κ2
i δ (ω − ωi)

κi =
( 2
π
J (ω) ∆ω

) 1
2

(8.7)

Using this re-discretization scheme, several setups of variable dimensionality were
generated, as described in the next section.
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Table 8.3: Frequency spacings and Poincaré recurrence times for the different bath
mode realizations.

# bath modes ∆ω [cm−1] τp[fs]
19 154.3 216
39 74.8 446
59 49.4 675
79 36.8 906
99 29.4 1135

8.2.2 Series of Re-Discretizations

Following the re-discretization procedure explained above, several realizations of
the Hamiltonian were obtained for different numbers of bath modes, as listed in
Tab. 8.3. These finite-dimensional realizations have different Poincaré recurrence
times τp = 2π

∆ω . For times smaller than τp, though, the dynamics is effectively
irreversible for all realizations. Therefore the different simulations are compared
for a simulation time that is less than the shortest Poincaré time (τp = 216 fs).
The calculations reported below show a propagation time of about 180 fs.

The re-discretization is done for the frequency range from 0 cm−1 to 2920 cm−1,
since the small peak at around 3500 cm−1 plays no important role. As a side effect,
the Poincaré recurrence time is increased since the width of the frequency window
decreases.

The total number of DOFs is given by the number of bath modes plus the inter-
fragment distance coordinate R. The calculations are again performed with the
MCTDH-package[101] and the 2L-Gaussian code presented above. MCDTH (20
modes) and ML-MCTDH (40, 60, 80 and 100 modes) calculations serve as ref-
erences. The initial condition for all calculations corresponds to a wave packet
which is centered at the reference XT state minimum potential, i.e., all modes are
initialized at qi = pi = 0.0.

8.2.3 Results and Discussion

Fig. 8.25 shows the results for the different setups. In each panel, the upper trace
shows the XT state population, and the lower traces correspond to the real and
imaginary parts of the electronic coherence,
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ρXT,CT (t) = Tr {|XT〉 〈CT| ρ̂ (t)}
= Tr {|XT〉 〈CT| |ψ (t)〉 〈ψ (t)|} (8.8)

where the pure-state density operator ρ̂ (t) = |ψ (t)〉 〈ψ (t)| is defined by the wave-
function that is propagated in the full dimensionality of the system. The imaginary
part of the electronic coherence (Eqn. 8.8) Im

(
ρXT,CT

)
determines the state-to-

state population flux.[85]

As can be inferred from Fig. 8.25, the photogenerated XT state decays rapidly
within 10 fs, followed by pronounced oscillatory features in the first 50 fs to 100 fs.
Furthermore, the initial XT state does not deplete completely and keeps a residual
population of PXT ∼ 0.1 even beyond the interval of 180 fs that is shown here.

The initial oscillatory behavior of the XT population is mirrored in the oscillations
of the electronic coherence. This indicates that electronic coherence is at the origin
of the oscillatory population observed in the initial 50 fs time. After this time, the
electronic coherence dephases due to the coupling to the vibrations. Note that the
imaginary part of the electronic coherence decays to zero. The real part, however,
persists and indicates a stationary coherent superposition of the XT and CT states.

In accordance with the construction scheme described above, all re-discretizations
– with 20, 40, 60, 80 and 100 modes – show the same results and can be taken to
be converged. In the following, we give details of the numerical setup.

Tab. 8.4 shows the mode partitioning used for the various realizations. Although
all modes are only indirectly coupled through the electronic subsystem, it turned
out that mode combination is crucial for the 2-Layer-Gaussian setup. Interestingly,
mode combination according to the frequency ordering of the bath modes seems
to result in an unstable propagation. A possible reason for this is that modes
which have a strong electron-phonon coupling are combined within a particle and
therefore cause numerical issues. However, the partitionings presented in Tab.
8.4 result in more stable propagations. All calculations shown here employ the
single-set setup; the results of the hybrid-set and multi-set setups will be briefly
addressed below.
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Figure 8.25: Comparison of the results of the non-adiabatic charge transfer for different
numbers of bath modes plus inter-fragment distance coordinate (20, 40, 60, 80 and 100).
Also, the 2L-G-MCTDH calculations are compared to the reference (ML-)MCTDH
calculations.

The reference calculations are performed for the 20 mode system with MCTDH
and with 40 to 100 modes with the ML-MCTDH method. The ML-MCTDH
calculations are not restricted to a 2-layer setup and therefore, up to 6 layers can
be used. The reference calculations are numerically converged.

For all different bath mode representations, the 2L-Gaussian-MCTDH method
shows very good – in fact, almost perfect – agreement with the reference calculation.
Even for the calculation with 100 modes, the initial decay of the XT state and
the electronic coherence are depicted correctly. The correct description of the real
part of the electronic coherence results in the correct characterization of the final
superposition of the XT and CT states. Also, the admixture of the XT state with
PXT ∼ 0.1 is captured.
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Table 8.4: Mode partitioning for the various rediscretizations of the spectral density
for OT4/C60.

# Modes f
(
fκ,µ

)
µd

20

1(1) [b1,b5,b9,b13,b17]
2(1) [b2,b6,b10,b14,b18]
3(1) [b3,b7,b11,b15,b19]
4(1) [b4,b8,b12,b16]
5(1) [R]

40

1(3) [b1,b6,b11,b16],[b21,b26,b31],[b36,b2,b7]
2(3) [b12,b17,b22,b27],[b32,b37,b3],[b8,b13,b18]
3(3) [b23,b28,b33,b38],[b4,b9,b14],[b19,b24,b29]
4(3) [b34,b39,b5],[b10,b15,b20],[b25,b30,b35]
5(1) [R]

60

1(4) [b1,b10,b20,b30],[b40,b50,b11,b21]
[b31,b41,b51,b2],[b12,b22,b32,b42]

2(4) [b52,b3,b13,b23],[b33,b43,b53,b4]
[b14,b24,b34,b44],[b54,b5,b15,b25]

3(4) [b35,b45,b55,b6],[b16,b26,b36,b46]
[b56,b7,b17,b27],[b37,b47,b57,b8]

4(4) [b18,b28,b38,b48],[b58,b9,b19,b29],[b39,b49,b59]
5(1) [R]

80

1(4) [b1,b10,b20,b30],[b40,b50,b60,b70]
[b11,b21,b31,b41],[b51,b61,b71,b2]

2(4) [b12,b22,b32,b42],[b52,b62,b72,b3]
[b13,b23,b33,b43],[b53,b63,b73,b4]

3(4) [b14,b24,b34,b44],[b54,b64,b74,b5]
[b15,b25,b35,b45],[b55,b65,b75,b6]

4(4) [b16,b26,b36,b46],[b56,b66,b76,b7]
[b17,b27,b37,b47],[b57,b67,b77,b8]

5(4) [b18,b28,b38,b48],[b58,b68,b78,b9]
[b19,b29,b39,b49],[b59,b69,b79]

6(1) [R]

100

1(4) [b1,b10,b20,b30,b40],[b50,b60,b70,b80,b90]
[b11,b21,b31,b41,b51],[b61,b71,b81,b91,b2]

2(4) [b12,b22,b32,b42,b52],[b62,b72,b82,b92,b3]
[b13,b23,b33,b43,b53],[b63,b73,b83,b93,b4]

3(4) [b14,b24,b34,b44,b54],[b64,b74,b84,b94,b5]
[b15,b25,b35,b45,b55],[b65,b75,b85,b95,b6]

4(4) [b16,b26,b36,b46,b56],[b66,b76,b86,b96,b7]
[b17,b27,b37,b47,b57],[b67,b77,b87,b97,b8]

5(4) [b18,b28,b38,b48,b58],[b68,b78,b88,b98,b9]
[b19,b29,b39,b49,b59],[b69,b79,b89,b99]

6(1) [R]
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Table 8.5: Overview of the number of first- and second-layer SPF for the various
re-discretizations of the spectral density for OT4/C60.

# modes nκ nκ,µ ngaussconf

20 [8,8,8,8,10] [8],[8],[8],[8],[10] 356
40 [8,8,8,8,8] [7,6,6],[7,6,6],[7,6,6],[7,6,6],[8] 7840
60 [7,7,8,7,9] [5,5,5,5],[5,5,5,5],[5,5,5,5],[5,5],[10] 14 540
80 [5,5,5,5,5,8] [4,4,4,4],[4,4,4,4],[4,4,4,4],[4,4,4,4],[4,4,4,4],[8] 6464

100 [6,6,5,5,5,7] [5,5,5,4],[5,4,5,4],[5,4,5,4],[5,4,5,4],[5,4,3,3],[8] 10 356

The LVC model Hamiltonian is of course a favorable system for the 2L-G-MCTDH
method as it comprises only displaced harmonic oscillators and a linearly dependent
XT-CT coupling.

Tab. 8.5 illustrates the number of first- and second-layer SPFs. The numbers rep-
resent the calculations for which a stable propagation is possible. The calculation
for 20 modes represents a converged result, the others are nearly-converged. Also,
it is notable that the results most strongly depend on the number of first-layer
SPFs, as the A-coefficients describe the electronic degree of freedom. The number
of second-layer SPFs – corresponding to the number of GWPs – mainly describe
the vibrational coupling and are responsible for the correct admixture of the XT
state at the end. This can be seen by comparing the results for 20 and 100 modes.
For the 20-mode calculation, the highest number of second-layer GWPs can be
employed (under stable propagation conditions) and the behavior at the end of
the propagation – here, 100 fs to 180 fs – is in perfect agreement. For 100 modes,
where the calculation represents near-converged results, the agreement is still very
good and shows all features correctly, but the population of the XT state is slightly
higher than for the reference.

But, one should keep in mind that the reference uses a 6-layer setup for the wave
function description. Therefore, Fig. 8.26 shows an additional comparison with a
2-layer setup for ML-MCTDH. There one can see that the result obtained with
2L-G-MCTDH is in fact in better agreement with the 5-layer reference calculation,
underlining the suitability of GWPs for a system-bath Hamiltonian.

Lastly, good convergence properties are observed for the 100-mode example. Fig.
8.27 illustrates the convergence behavior for the first 70 fs of the XT state popu-
lation with a series of basis sets of increasing size (here denoted minimal, small,
medium, large, see Tab. 8.6). With an increasing basis set size, the method con-
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Figure 8.26: Comparison of the 6-layer ML-MCTDH (black) reference calculation to
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Figure 8.27: Convergence behavior for the 99 mode re-discretization of the spectral
density for OT4/C60. The reference ML-MCTDH calculation is depicted in black and
the various 2L-G-MCTDH results in color.

verges progressively to the correct results. For the first 50 fs, the basis-sets medium
and large give the same results showing an almost converged result. Tab. 8.6 shows
the number of SPFs for the four different realizations. However, the large basis
again exhibits problems arising from singularities due to too high overlaps of the
GWPs.

8.2.3.1 Remarks on Single-Set, Hybrid-Set and Multi-Set

All results presented above have been obtained using the single-set approach. How-
ever, calculations with the hybrid-set and multi-set approaches have also been
performed for the present system. Here, we briefly comment on the performance
of these variants.

First, the performance of the hybrid-set approach is very close to the single-set
approach. In principle, one would expect some additional advantage of the hybrid-
set approach, i.e., one would expect to achieve a qualitatively similar result to the
single-set approach with a lower number of first-layer configurations. However, in
order to obtain a comparable result as for the single-set scheme, a similar number
of first-layer SPFs had to be employed for the hybrid approach, too.
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Table 8.6: Number of first- and second-layer SPFs for different basis compositions for
the 99 mode discretization used in Fig. 8.27.

Basis nκ nκ,µ ngaussconf

minimum [3,3,3,3,3,3] [2,2,2,2],[2,2,2,2],[2,2,2,2],[2,2,2,2],[2,2,2,2],[3] 249
small [4,4,4,4,4,7] [3,3,3,3],[3,3,3,3],[3,3,3,3],[3,3,3,3],[3,3,3,3],[7] 1669

medium [6,6,5,5,5,7] [5,5,5,4],[5,4,5,4],[5,4,5,4],[5,4,5,4],[5,4,3,3],[8] 10 356
large [7,7,8,8,7,8] [5,5,5,5],[6,5,6,5],[5,5,6,5],[7,5,6,6],[6,5,3,5],[9] 29 977

A possible reason for this might be the peculiarities of the investigated model
system: In this system the coupling of the distance mode R and the harmonic
oscillator bath is purely vibronic, as they are not coupled directly. The description
of the electronic subsystem in the present implementation is completely shifted
into the first-layer coefficients A. Therefore, the number of first-layer coefficients
stays identical when expanding the single-set approach into the hybrid approach.
As a consequence, the description of the electronic coherence and hence the quality
of the results is very similar for equal numbers of first-layer SPFs.

Lastly, the multi-set approach did not yield results of comparable quality as ob-
tained with the single-set and hybrid-set approaches. Furthermore, an oscillation
in the total energy of the system is observed. The reason for these problems is still
unclear and under further investigation. A potential bug in the code cannot be
ruled out.
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To summarize, the novel 2-Layer-Gaussian-MCTDH method has been presented,
and its implementation into a Fortran90 code has been described in detail. This
method combines the flexible single-particle functions (SPFs) used in MCTDH
with a time-evolving GWP basis set of frozen Gaussian (FG) type in a two-layer
wavefunction ansatz. FG basis set have proven to be numerically more robust than
thawed Gaussians, but as a consequence lack flexibility, especially compared to
conventional SPFs. Therefore, the original G-MCTDH approach that uses high-
dimensional, factorizable FGs, encounters convergence problems when moving
towards higher dimensions. Even though the FG basis functions are uncorrelated,
their propagation is expensive due to an unfavorable cubic scaling (∼ (dn)3) with
the number of DOFs (d) and the number of configurations (number of basis func-
tions n). This is especially emphasized in the vMCG method, where all DOFs are
combined into a single multi-dimensional particle.

In the present two-layer approach, the orthogonal first-layer SPFs are represented
by a linear combination of non-orthogonal multi-dimensional GWPs and therefore
accommodate correlations like conventional multi-dimensional MCTDH combined
modes.[1] Furthermore, the second-layer FGs now evolve in low-dimensional sub-
spaces, which require a less expensive propagation. The additional effort resulting
from the calculation of the first- and second-layer mean-fields then needs to be bal-
anced against these advantages. By a suitable mode partitioning and combination,
significant improvements regarding the scaling properties, compared to G-MCTDH
(vMCG) can be achieved.

In the framework of this thesis, the method has been extended to multi-state,
non-adiabatic systems. Three formulations of multi-state wavefunctions have been
implemented: On the one hand, the single-set and multi-set approaches as known
from MCTDH[25] and, on the other hand, a hybrid approach which mixes the single-
set and multi-set forms. Specifically, in the single-set approach, the electronic states
are represented by an additional first-layer particle, whereas the multi-set approach
employs a sum of state-specific wavefunctions. In the third, hybrid, approach, the
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first-layer particles are state specific, similar to the multi-set approach, but the
multi-dimensional GWPs in the second layer are shared between the states.

In this work, a first implementation of the method has been presented, including
details regarding the memory layout of the wavefunction and the efficient treatment
of the tensor form of the wavefunction which leads to a multi-sum structure of
all matrix-vector products. The multiple calculation of products of integrals is
thus avoided. Furthermore, the scaling properties of the code have been analysed,
especially with respect to the first- and second-layer mean-fields which represent
the most expensive elements of the method. The scaling properties have been
found to be in good agreement with the theoretical prediction.

The method has been successfully applied to two types of model systems. The
first Hamiltonian describes intra-molecular vibrational energy redistribution (IVR)
in a site-based model system, while the second Hamiltonian describes ultrafast
charge separation in a donor-acceptor system. Propagation times were typically in
the range of 2 ps for the IVR dynamics, and within 50 fs to 200 fs for the charge
transfer system where various rediscretizations of the spectral density, with variable
Poincaré recurrence times, were treated. For these systems, excellent convergence
properties as compared with ML-MCTDH benchmark calculations were found.
These results also show that the mode partitioning within the first layer and the
mode combination in the second layer play an important role for the quality of the
results.

However, the method suffers from similar problems as the original G-MCTDH
(vMCG) method, where singularities of the overlap matrix and the C matrix arise
from too large overlaps between GWPs and therefore linear dependencies within
the non-orthogonal GWP basis. Especially the choice of the initially unoccupied
Gaussian basis functions shows a large influence on the numerical stability and
the results of the method. In particular, many GWPs with the same width tend
to exhibit singularities. This is particularly pronounced for small numbers of
combined DOFs in one second-layer GWP mode. In contrast, more configurations
can generally be used within higher dimensional combined modes. This problem
can be alleviated by choosing unoccupied GWPs which feature different widths for
the GWPs. By this choice, the GWPs do not develop a near-unity overlap, and
the singularities are reduced. However, more configurations may be required to
achieve a good agreement to the reference calculations.
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Regarding the comparison between the three types of multi-state approaches (single-
set, multi-set, hybrid), the single-set method has been shown to be in good agree-
ment for the second system. Similar results were obtain for the hybrid approach,
showing no improvement by needing less first-layer configurations as compared
to single-set. However, this is probably related to the investigated system. The
convergence properties of the multi-set approach are somewhat different within the
current implementation.

Overall, these results can be considered to be promising. Importantly, the method
can be easily combined with the existing ML-MCTDH approach (as implemented
in the Heidelberg-MCTDH[112] and Quantics packages[113]), since only the final
layer needs to be replaced with GWPs.[1] All upper layers – and specifically the
first layer in the 2L-G-MCTDH scheme – are equivalent to the upper layers of the
ML-MCTDH method. By replacing the final layer with the factorizable, multi-
dimensional GWPs, the efficient, analytical Gaussian integrals can be combined
with the flexible, multi-layer treatment. As a result, a very large number of DOFs
become accessible. In addition, within our in-house code, multi-core parallelization
can be introduced, such that up to 1000 DOFs can be calculated even within our
2-layer scheme. For this purpose, the algorithm treating the multi-sum structure
will need to be revisited.

As the GWPs provide a semi-classical trajectory-like picture via the GWP positions
and momenta, the method can be combined with on-the-fly electronic structure
calculations, similar to the Direct Dynamics-vMCG (DD-vMCG) method.[17,18] As
the on-the-fly electronic structure calculations – including the gradient and Hessian
calculation – are the limiting factor in the propagation of the wavefunction, the
challenge in this context is to reduce the number of configurations where electronic
structure calculations are performed. Therefore, one needs to develop a sampling
and interpolation scheme which matches the large number of 2L-GMCTDH con-
figurations with the much smaller set of geometries where electronic structure
calculations are carried out. For this purpose, one might adopt a database ap-
proach as used for the DD-vMCG method[17] together with neural network based
PES fitting schemes.[114]

131





Part III

Electronic Structure and
Quantum Dynamical

Characterization of Novel
Donor-Acceptor Systems





10 | Molecular Design of Novel
Donor-Acceptor Systems

This project focuses on two generations of a novel type of covalently bound
bisthiophene-perylene diimide type donor-acceptor materials, which were synthe-
sized and spectroscopically characterized in the groups of S. Méry and S. Haacke at
Strasbourg University. In the framework of a joint DFG/ANR project on “Molec-
ular Level Approaches to Photosensitive Nanostructured Materials: A Combined
Theoretical and Experimental Study of Ultrafast Energy and Charge Transfer”,
our group has investigated these systems by employing state-of-the-art electronic
structure and high-level quantum dynamical methods.

As mentioned above, two generations of the relevant materials have been investi-
gated, which differ both in their chemical composition and nanoscale morphology.
The first-generation system consists of DAD triad combinations that are organized
in smectic liquid crystalline (LC) films, while the second-generation system ex-
hibits DA dyads or DAD triads with a different ordering in lamellar mesophases.
In both cases, a highly organized nanomorphology is generated by design. Since
the first-generation system was found to be comparatively inefficient, a central aim
has been the optimal engineering of the second-generation system at a molecular
level.

This project part summarizes results obtained for the first-generation system to-
gether with M. Polkehn from our group (section 10.1), and then focuses mainly on
the second-generation systems in solution. Different variants of these systems are
introduced, the experimental observations are summarized (section 10.2.1), and
quantum chemical results (section 10.2.3) are discussed. Finally, an analysis of
the charge separation and charge recombination kinetics with the Marcus-Levich-
Jortner rate theory (section 10.2) is presented.

The dynamics observed in the two generations of donor-acceptor systems under
study span several orders of magnitude. In the first-generation system, the initial
charge separation is ultrafast, on a time scale of less than 100 fs, while recombination
occurs on a scale of tens of picoseconds and triplet formation is observed on a
nanosecond time scale. To investigate the initial, ultrafast dynamics, we undertook
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a dynamical study using the ML-MCTDH method is closely related to the study
of the oligothiophene-fullerene model system addressed in the previous chapter. In
the second-generation system, by contrast, charge separation is much slower, in
the range of tens to hundreds of picoseconds. Therefore, the focus of the present
study gradually shifted from quantum dynamical investigations to kinetic studies
in the course of the investigations.

10.1 First Generation Donor-Acceptor Material
in Solution and Liquid Crystalline Film

In this section, the results of spectroscopic and theoretical studies on the first-
generation bisthiophene-perylene system (Fig. 10.1(a)) are presented[115–119] The
spectroscopic results for the system in solution and in a liquid crystalline (LC) film
are briefly summarized, together with the electronic structure results for this system
in solution (section 10.1.1). This is followed by the results of high-dimensional
quantum dynamics for a model system of the LC film (section 10.1.2).
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Figure 10.1: (a) Sketch of the molecular structure of the DAD compound. (b) For the
theoretical description the triad has been reduced to a DA dyad, which is justified by
the localized character of the excitations. The siloxane groups (R) and the hexyl-groups
are reduced to methyl-groups. The dyad (DA) is therefore build of the acceptor moiety
(A), N,N -dimethylperylene-3,4,9,10-dicarboximide (MePTCDI), and the donor moiety
(D), 5-(4-methoxyphenyl)-4-methy-5’-4-methylphenyl)-2,2’-bithiophene (BT).
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10.1.1 Spectroscopic and Quantum Chemical Character-
ization of the First Generation DAD

The first generation of the donor-acceptor material, a donor-acceptor-donor triad
(see Fig. 10.1(a)), was spectroscopically characterized in the group of S. Haacke at
Strasbourg University,[115–117] both in solution and in a LC film. The steady-state
absorption and emission spectra in chloroform show a broad absorption band of the
donor molecule around 300 nm to 425 nm, whereas the acceptor shows a three-peak
absorption at 460 nm, 490 nm and 525 nm (indicating a vibrational progression).
The acceptor band exhibits a spectral overlap with the emission of the donor moiety.
The absorption spectrum of the DAD triad is given by the sum of the absorption
spectra of the individual molecular moieties. The emission spectrum does not show
the expected emission band of the donor moiety, suggesting that excitation energy
transfer takes place. The absorption spectrum of the film shows essentially the
same features, but the overall spectrum is red-shifted by ∼0.1 eV and the acceptor
absorption is significantly weaker. In addition, a low-energy shoulder at 400 nm
is present. These features indicate the presence of an inter-molecular, excitonic
coupling between neighboring DAD molecules. The red-shift can be interpreted as
an effect of J-aggregate formation, as will be further discussed below.

The pump-probe experiments exhibit a remarkably different photochemistry in
solution and in the LC film. In solution, an ultrafast excitation energy transfer
(EET) from the donor to the acceptor moiety is followed by charge separation on
a timescale of about 2.7 ps, EET is found to be absent in the LC film. Instead, an
ultrafast charge transfer (CT) state formation is found (Fig. 10.2). Additionally, a
recombination time of ∼50 ps is observed, as well as triplet formation on a longer
time scale (>1 ns). These factors severely limit the transient photocurrent and
therefore the applicability as a photovoltaic device.

On the theory side, we have aimed to understand these widely different properties
of the excitations in solution and the LC film in detail. The electronic struc-
ture results that were initially obtained in our group by by J. Wenzel et al.[119]

illustrate that the electronic transitions in solution can be understood in terms
of well-separated excitations of the D and A moieties (denoted as D1 and A1),
together with a principal intra-molecular CT state (Fig. 10.3). To reduce the
computational cost, the electronic structure calculations were done only for the
DA dyad species (see Fig. 10.1(b)). This does not conflict with the experimental
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(c)
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Figure 10.2: Left Panel: Schematic illustration of the kinetic pathways of the first-
generation DAD triad system in (a) solution and (b) LC phase. The time scales for
the EET and CT steps have been obtained from pump-probe spectroscopy.[115,116]
Right Panel: (c) Proposed photoreaction mechanism of the DAD system by selective
excitation of the D1 state. The energies of the three principal excited states are shown
for four different geometries, which have been obtained by ground and excited state
geometry optimizations, performed in the gas phase. Energies are given for the system
in chloroform solution, calculated with COSMO.[119–121]

results, since the presence of two donor moieties only increases the photoabsorption
cross-section. Furthermore, the siloxane and alkyl-chains are shortened to methyl
groups to further reduce the computation time. The spectroscopic properties of the
DA dyad are expected to be essentially unchanged. By performing excited state
optimizations, the experimental kinetic pathway in chloroform (c.f. Figs. 10.2(a)
and 10.2(c)) was confirmed. The calculations have been performed at the TDDFT
level with a self-adapted functional, which was benchmarked against the high-level
CC2 method with the triple-zeta basis set TZVP.[122] The solvent contributions
were taken into account with the conductor-like screening model (COSMO)[120,121]

and the solvent equilibrated to the ground state.

10.1.2 Charge Separation in Liquid Crystalline 1st Gen-
eration Donor-Acceptor Material

As shown in section 10.1.1, the charge transfer formation time scales change dras-
tically between solution and the smectic LC film. While the formation is rather
slow in solution (few tens of picoseconds), an ultrafast charge transfer is observed
in LC film. To understand this change, a combined electronic structure and quan-
tum dynamical analysis that is tailored to the nanoscale order of the LC phase is
performed.[123]
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HOMO LUMO+4

Figure 10.3: Vertical electronic transitions in the DA system, including local excita-
tions of the donor moiety (D1) and acceptor moiety (A1), along with a D→A charge
transfer transition. Calculations were carried out at the TDDFT level with suitable
benchmarks using the CC2 approach.
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Figure 10.4: (a)Schematic representation of the smectic LC phase stabilized by the
stacking of the siloxane side chains including the 70° tilt angle between the molecular
planes. (b) Fragment taken from the supra-molecular assembly in the smectic LC phase.
(c) Molecular structure of a stacked D-A pair corresponding to the LC phase geometry,
with the most relevant nuclear modes.

Fig. 10.4 illustrates the stacked DA model structure taken from the X-ray structure
of the LC film.[117] The molecular packing within the LC phase shows that the
DAD molecules are not stacked directly above each other, i.e., they do not form
an H-aggregate. Instead they are shifted due to a large tilt angle of ∼70° between
the molecular plane and the normal plane of the crystal. As a consequence, the
donor and acceptor moieties are shifted on top of each other. Therefore, inter-
molecular π-stacking of monomers of the same type does not occur, but is observed
between donor-acceptor pairs of neighboring, parallel segments. Furthermore, an
initially delocalized exciton, that is extended across several donor units, creates
a J-aggregate, rather than a H-aggregate[31,124] as one would expect for vertically
stacked donor-acceptor monomers. This leads to the idea that inter-molecular DA
interactions could effectively compete with intra-molecular EET and CT processes.
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To investigate and clarify the elementary processes in the smectic LC phase, elec-
tronic structure calculations for selected fragments are combined with high dimen-
sional quantum dynamics using a vibronic Hamiltonian in a generalized electron-
hole (e-h) representation.[22,125] An e-h pair is represented by |νeµh〉 ≡ |νµ〉, where
the electron is located at site νe = ν and the hole is located at site µh = µ. A
localized e-h pair |νν〉 corresponds to Frenkel excitonic (XT) configuration on the
donor or acceptor moieties:

∣∣∣DXT
i

〉
= |ν = i, µ = i〉 (where i = 1, . . . , ND) and∣∣∣AXTj 〉

= |ν = j, µ = i〉 (where j = 1, . . . , NA). Consequently, a non-local e-h pair
(|νµ〉, with ν 6= µ (ν = 0, µ = 1, . . . , N)) represents a charge-separated (CS) state
(
∣∣∣D+

i A
−
j

〉
= |νiµj〉). To simplify matters, the short-hand notation CS(n) is used

to identify the subsets of CS configurations with an electron-hole separation of
i− j ≡ n.

In the electron-hole representation, the Hamiltonian takes the form,

Ĥ = Ĥel + Ĥe-ph (10.1)
= Ĥon-site + Ĥcoupl︸ ︷︷ ︸

Ĥel

+Ĥe-ph (10.2)

where Ĥ is written as the combination of an electronic part (Ĥel) and a phonon part
including electron-phonon interactions (Ĥe-ph). The electronic part, Ĥel, includes
the on-site energies (Ĥon-site) and the intra- and inter-molecular electronic couplings
(Ĥcoupl). Ĥe-ph represents the phonon (vibrational) Hamiltonian including the
electron-phonon (e-ph) coupling. To be more specific, the on-site energies are
defined as,

Ĥon-site =εD
ND∑
i=1

∣∣∣DXT
i

〉 〈
DXT
i

∣∣∣+ εA

NA∑
i=1

∣∣∣AXTi 〉 〈
AXTi

∣∣∣
+

ND∑
i=1

NA∑
j=1

ε
D+
i A
−
j

∣∣∣D+
i A
−
j

〉 〈
D+
i A
−
j

∣∣∣ (10.3)

where the on-site energies of the excitonic donor (εD) or acceptor (εA) states are
taken to be equal for all fragments. εD+

i A
−
j
represents the energies of the CS states

and are defined by an effective Coulomb barrier, as shown in Fig. 10.5. The on-site
energies εD, εA and ε

D+
i A
−
j

for Frenkel states and nearest-neighbor electron-hole
states (i.e., e-h distance |i− j|≤ 1) have been determined by ADC(2) calculations
for a stacked DA dimer fragment at the Franck-Condon geometry as shown in Fig.
10.4(c). The on-site energies for the charge separated states with large electron
hole distances |i − j|> 1, on the other hand, rely on complementary TDDFT
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(a) (b)

Figure 10.5: (a) Schematic representation of the LC stack consisting of ND donor
and NA acceptor molecules. The highlighted CS(-1) configuration is the state to which
the initial charge separation occurs, according to the electronic structure calculations.
(b) Coulomb barrier obtained from electronic structure calculations, calculated with
ωB97XD/SVP as implemented in the Gaussian09 software package[126].

calculations for larger fragments that are used to determine the Coulomb barrier.
The energies of the Coulomb barrier, ε

D+
i A
−
j

(see Fig. 10.5) have been calculated
by using only two monomers (one donor and one acceptor), representative of a CS
configuration, whereas the other sites are replaced by point charges. Furthermore,
an external field of 50 V µm−1 has been applied in the calculations.

The electronic coupling part of the Hamiltonian is given as follows,

Ĥcoupl =JD
ND∑
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ND∑
j=1
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(10.4)

and describes the various types of intra- and inter-molecular couplings, i.e. the
excitonic couplings between donor and acceptor moieties (JD,JA,JDA), charge
transfer couplings between excitonic states and intra-molecular CT states or charge-
separated stacked donor/acceptor pairs (κD,κA) and transfer integrals for electron
and hole transfers (te,th) that determine the transient conductivity of the separated
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charge carriers. The pairwise (ij) interactions are restricted to nearest-neighbor
couplings in our current analysis.

Lastly, the electron-phonon coupling Hamiltonian reads as,

Ĥe-ph =T̂ph
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ξD
}
,
{
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}
,
{
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})
+
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where the kinetic energy operator T̂ph is chosen to be electronically diagonal in
order to fulfill the requirement of a diabatic Hamiltonian. The potential energy
terms V̂ represent selected PES cuts of the system that were fitted by an analytic
procedure. The relevant modes are chosen and identified by an analysis of the
Frank-Condon gradients. As shown in Fig. 10.4(c), these modes represent high-
frequency bond-length alternations (BLA) modes on the donor and acceptor, as well
as a low frequency torsional degree of freedom located only on the donor moiety.[119]

Furthermore, an inter-molecular mode specific to the LC phase, representing the
modulation of the distance between two layers of DA chains is taken into account.

The efficiency of the various competing transfer pathways depends on the magnitude
of the respective couplings and on the resonance offsets determined by Ĥon-site. A
detailed analysis[123] shows that (i) the excitonic coupling is sizable (JD =−0.1 eV)
and will lead to initial delocalization at the lower band edge of the donor J-
aggregate, (ii) the intra-chain charge transfer coupling (κintra

D =0.002 eV) is much
weaker than the inter-molecular charge transfer coupling (κinter

D =0.025 eV), (iii) the
transfer integrals for electron (te =0.0005 eV) and hole (th =0.0013 eV) transport
are small.

The results of the high dimensional quantum dynamical simulations are summa-
rized in Fig. 10.6 and show a rapid decay of the excitonic donor population and
complementary rise of the CS state population on an initial time scale of ∼50 fs. Cu-
mulative populations are shown, i.e., PXT

D = ∑
i P

XT
Di

and PCS(n) = ∑
i,j PD+

i A
−
j

(for
i − j = n). Strikingly, practically all population accumulates in the CS(n = −1)
states. This is due to (i) the unfavorable energetics of the CS(n 6= −1) states
resulting from the Coulomb barrier (c.f. Fig. 10.5), and (ii) the small transfer inte-
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Figure 10.6: Full quantum dynamical evolution for the coupled excitonic donor and CS
manifolds (156 states, 48 modes) obtained from Multi-Layer Multi-Configuration Time-
Dependent Hartree (ML-MCTDH) calculations. Spatially resolved populatiions of the
different CS states. The ultrafast excitonic decay of the integrated D-XT populations
matches the rise of the initial CS(-1) state, while the other CS(±n) states are almost
not populated due to a high Coulomb barrier and small transfer integrals.[123]

grals (te, th), precluding a rapid formation of a photocurrent. After ∼250 fs, the
charge transfer is essentially complete and a quasi-stationary state of the CS(−1)
populations is reached.

The observed time scales are in excellent agreement with the CT formation time
deduced from experiment for the LC film (i.e. ∼60 fs),[116] along with the observa-
tion that recombination rather than photocurrent formation apparently dominates
in the first-generation LC material.

10.2 Chemical Design of Second-Generation Do-
nor-Acceptor Systems

As summarized in the preceding section, the first generation of the bisthiophene-
PDI type donor-acceptor triads exhibited two different pathways for the formation
of a charge transfer state in solution and in a smectic LC film. While for the
isolated molecules a 120 fs resonant energy transfer from the donor to the acceptor,
the formation of a CT state within 2.5 ps is observed. The CT state showed a fast
recombination time of 50 ps and a partially formation of the donor triplet state.
Within the LC film the CT state is formed much more rapidly in 0.4 ps, in absence
of the resonance energy transfer. Furthermore, a slightly longer recombination
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time of 1.2 ns was observed. Due to these relatively short lifetimes, an efficient
charge separation is not possible.

In view of these findings, the groups of S. Méry and S. Haacke at Strasbourg
University set out to design a second-generation material that exhibits both changes
in the chemical composition and in the nanoscale morphology. In the present
section, we focus on the chemical design aspects and analyze a series of systems
whose donor moieties are systematically modified. Based upon this analysis, we
attempt to rationalize the appearance of long-lived charge transfer states, indicating
slow recombination rates in the second-generation systems.

The second generation of oligomers (Fig. 10.7) was synthesized with the aim
of increasing the intra-molecular CT lifetime to over 1 ns, indicating that the
recombination rate is reduced accordingly. At the same time, the almost 100 %
CT formation efficiency should be conserved. These new DA systems consist of
several building blocks which have different effects on the DA electronic coupling
and intra-molecular reorganization of the CT state formation and lifetime. While
the acceptor remains unchanged as compared with the first generation, the donor
is modified and is now composed of a bisthiophene-fluorene group with a variable
number of donor units, Dn (from n = 0 to 3). The donor and acceptor moieties
are linked via a short and flexible ethylene group. Furthermore, between the
linker and the donor a spacer block can be chosen from two variants: The first
variant exhibits a high electron affinity, while the second one exhibits a lower
electron affinity, denoted δ+ and δ. The δ group is composed of the sequence
thiophene-phenyl-thiophene-phenyl, whereas the δ+ is built up of the sequence
thiophene-benzothiadiazole-thiophene-phenyl. As an optional addition, an amine
group (δ−), acting as an electron donating group, can be attached to the end of
the donor block.

The electron-deficient benzothiadizole group is a well known low-band-gap co-
polymer and can act as acceptor for the near-by bisthiophene units.[127–129] For
better solubility and mesophase formation, along with the good stacking properties
of the PDIs, alkyl chains are attached to the fluorene-moieties in the donor-blocks.
Although dyads (D-A) and triads (D-A-D or A-D-A) were produced, this work
focuses solely on the dyad systems.
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Figure 10.7: Illustration of the variable molecular structure of the second generation
systems. One molecular unit always consists of the acceptor block (A), the donor block
(Dn) of variable length and the linker block (δor δ+. Additionally, a terminal amine
group (δ−) can be added.

10.2.1 Experimental Results in Solution

In the following, the spectroscopic observations are presented, followed by the
characterization of the systems with high-level electronic structure methods and
TDDFT.

The electronic structure analysis is done first for the individual donor species,
followed by the complete donor-acceptor dyad. The acceptor is untouched and
was characterized thoroughly for the first generation; therefore the results are only
briefly summarized. For further analysis the DFT functionals are benchmarked
against ab initio results, such that the photochemical pathways and the influence
of various building blocks can be discussed. A combined analysis of the charge
separation and recombination times is presented at the end of this chapter using
Marcus-Jortner-Levich theory.

10.2.1.1 Steady-State Properties

First, the absorption spectra of the individual molecules (D1δ and D1δ+) as well
the total system (D1δA and D1δ+A) were analyzed.[130] Whereas the D1δ donor
molecule shows only one peak (408 nm), the spectra of the D1δ+ moiety exhibit
two peaks(424 nm and 510 nm). The peaks resemble the spectra of the individual
molecular units (Dn and δ+), where the lower excited states at 510 nm is located on
the δ+ moiety. The peaks of D1δ+ are red-shifted by 12 nm and 30 nm, respectively,
as compared to the single molecular units, indicating the presence of an electronic
coupling between D1 and δ+. This is further emphasized since only one fluorescence
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peak, which corresponds to the δ+ group and is red-shifted by 49 nm, is visible in
the emission spectra for D1δ+.

The acceptor spectrum is the same as for the first generation as it is the same
molecular unit. Linking D1δ+ and the acceptor together introduces no further
spectral shift for both moieties. This suggests a negligible electronic coupling
between those two moieties. It should be noted that the emission spectrum of D1δ

overlaps with the absorption spectrum of A. This is not the case for D1δ+. From
this one might suggest that excitation energy transfer from D1δ to A occurs, while
EET is not expected to appear for D1δ+.

10.2.1.2 Photodynamics in CHCl3

The pump-probe experiments exposed two different pathways for the δ and δ+

variants depicted in Fig. 10.8.

The δ variant shows a similar, but overall slower, behavior than the first generation
DAD triad. With a time constant of 1.2 ps, EET from the donor to the acceptor
occurs and is followed by CT formation with a time constant of 14 ps. On long
time scales, the CT state recombines and the ground state is recovered. The time
constant for charge recombination can be deduced from the CT lifetime of ∼500 ps.

Figure 10.8: Schematic illustration of D1δA and D1δ+A species and the relevant EET
and CT transfer steps from time-resolved spectroscopy.[130] The measured time scales
refer to solution phase measurements with chloroform solvent.

The δ+ variant, however, leads to a different picture. Upon exciting the donor and
forming the excited state on the D1δ+ moiety, no EET is observed to the acceptor.
Instead, the CT state is formed directly with a time constant of 90 ps. This fits
to the observation that the red shifted peak in the emission spectrum of D1δ+

does not overlap with the absorption band of the PDI. The time constant for the
recombination is observed to be ∼480 ps and is in a similar time range as D1δA.
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10.2.1.3 Molecular Design of Long-Lived CT States: Effect of Donor
Length and δ−on the Photodynamics

As mentioned before, the donor length is now made variable by concatenating
n donor units (Dn), and adding a δ− group. Our experimental collaborators[130]

measured several variants with increasing donor length (up to n = 3) with and
without the δ− group.

The formation and recombination time constants for the investigated variants are
shown in Tab. 10.1. As can be seen, the δ+ group does not have a significant
influence on the recombination kinetics. Hence, the influence of the δ− group is
only shown for δ−DnδA as the effect is comparable for both species. Upon adding
the δ− group, the biggest influence is seen for the D1 moiety. While the formation
time stays almost the same, recombination times are significantly increased by
a factor of 2.5 for molecules including δ+ (0.48 ns for D1δ+A versus 1.2 ns for
δ−D1δ+A) and even a factor of 4.5 for molecules containing the δ group (0.51 ns
for D1δA versus 2.3 ns for δ−D1δA).

A possible reason is the larger spatial separation between the charges by stabilizing
the positive charge farther away from the acceptor to the other end of the molecule.

This could also explain the observations for the recombination times when varying
the donor length. While the formation time is not changed for δ−DnδA, the
recombination time has a maximum for n = 1. For n = 2 the spatial extent of the
donor might already be too large, such that the influence of δ− gets less significant.
For Dnδ+A the donor length has no impact on the kinetics. The formation time
(∼100 fs) and recombination time (∼450 fs) remain almost identical.

Table 10.1: Charge Transfer state formation and recombination time constants for
Dnδ+A and δ−DnδA

Dnδ+A δ−DnδA
n Formation (ps) Recomb. (ps) Formation (ps) Recomb. (ns)
0 90 410 20 0.4
1 90 480 14 2.3
2 150 440 14 1.1
3 140 430
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Table 10.2: Charge Transfer state formation and recombination time constants de-
pendence on the solvent.

Toluene TCE Chloroform
Solvent dielectric constant ε ε = 2.38 (3.5a) ε = 3.42 ε = 4.81

D1δA
Formation (ns) 0.026 0.014 0.014
Recombination (ns) 5.70 4.0 0.50

δ−D1δA
Formation (ns) 0.030 0.019 0.014
Recombination (ns) 6.7 6.0 2.3

D1δ+A
Formation (ns) 0.26 0.15 0.090
Recombination (ns) 6.2 2.8 0.48

δ−D1δ+A
Formation (ns) 0.12
Recombination (ns) 1.2

a An effective dielectric constant of 3.5 is found in the literature for toluene,
to account for the effect of its strong electric quadrupole moment.[131]

10.2.1.4 Effect of the Solvent

Furthermore, the influence of the solvent polarity on the time constants of charge
separation and charge generation is investigated. The results for three different
solvents (chloroform, toluene and trichloroethylene (TCE)) are compared. As
Tab. 10.2 shows, the CT states of all molecules are stabilized, i.e., their lifetime
is increased. Furthermore, the stabilizing effect of the δ− group is reduced for
toluene and TCE, as it is observed for chloroform. A reason for this might be the
experimental limitations. The pump-probe experiments of the Strasbourg group do
not inform about time scales beyond 6 ns. Hence, a precise determination was not
possible and would require measurements over longer time spans.[130] The formation
times are almost unaffected by the solvent polarity and only increase slightly.

10.2.2 Computational Details

The second generation systems represent very large molecular species. Therefore,
the application of high-level ab initio methods like CC2 is only possible to a limited
extent. Hence, TDDFT is the method of choice and a suitable DFT functional
is used after validation against the CC2 benchmark results. For the ground state
optimizations of the single donor molecules, the RI-SCS-MP(2) method is used,
while for the complete dyad molecules the B3LYP[51] functional is chosen due to
the increased computational effort.
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Since the formation of the CT state is of significant importance for this work,
long range corrected DFT functionals as implementented in Gaussian09D[126] are
employed to account for the electron-transfer self-interaction error (see chapter 3.3).
Mainly the ωb97XD[56] and CAM-B3LYP[55] functionals are used.

The employed basis sets comprise the reparametrized Ahlrich basis sets def2-SVP
and def2-TZVP.[132]

Some calculations incorporate solvent effects that are included using the conductor-
like screening model (COSMO).[120,121] Calculations are performed using a solvent
cavity equilibrated to the ground state charge distribution.

The analysis of the CT formation and recombination kinetics with the Marcus-
Jortner-Levich method uses the distance of electron and hole density centroids.
The distances are calculated employing the method implemented in the MultiWfn-
package[133] incorporating the corresponding orbital transitions by using the expan-
sion coefficients as weights based on excited state calculations.

The quantum chemical calculations are performed mostly with the Gaussian09
package.[126] Excited state calculations with the high-level ab initio methods RI-
CC2 and RI-ADC(2) are done with the Turbomole 6.4 package.[134] Furthermore,
this package is used for the ground state geometry optimizations. Finally, the
COSMO calculations are performed with the Orca 3.0 package.[135] In this package,
with hybrid-functionals the excitation energies can only be calculated with the
Tamm-Dancoff-approximation (TDA)[136] and are not directly comparable to the
Gaussian09 results.

10.2.3 Quantum Chemical Characterization of the Donor
and the Donor-Acceptor Dyad

This section presents the results of the electronic structure calculations – of the
ground state and the excited states – for various building blocks of the donor-
acceptor system. First, the results for the single donor units D0δ and D0δ+ are
presented, and second, the results for the PDI acceptor that were previously
obtained in our group by J. Wenzel et al.[118,119] are briefly summarized. Second,
the donor-acceptor dyad is characterized for both δ- and δ+-variants.
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In view of the fact that the systems under study are computationally expensive,
a benchmark and the initial analysis is presented for the shorter D0 donor block,
even though the main interest from the experimental side is in the D1 species.
It is therefore important to note that the first absorption peak at 424 nm in the
spectrum for D0δ+ is strongly blue shifted by ∼60 nm (from 424 nm to 365 nm,
compared to the longer donors.

10.2.3.1 Ground-State Geometry – D0δ

The torsions of bisthiophene systems have a large influence and are possible chan-
nels for EET and CT processes within the dyad.[137,138] The ground state structure
of D0δ is optimized with the RI-SCS-MP(2) method in combination with the def2-
TZVP basis set and is shown in Fig. 10.9. All torsional angles between the rings
in the system differ from 180◦ due to steric effects (c.f. Fig. 10.9 and Tab. 10.3).
While for the phenyl A the methyl group of the thiophene ring B leads to a repul-
sion and therefore a twist in the torsion α, the other ring torsions are distorted
due to repulsion of the sulfur atoms.

The central C-C bond length between the two thiophene rings (D and E) is 1.45Å,
which is between the lengths of a typical C=C double bond (1.34Å) and a C-C
single bond (1.55Å),[139] and indicates a delocalized π-system. The fluorene unit
exhibits a nearly completely planar structure for the rings, with bond lengths
between that of typical single C-C bonds and double C=C bonds, again indicating
a delocalized π-system.

Figure 10.9: Ground state structure of D0δ for RI-SCS-MP(2)/def2-TZVP. Rings
are denoted with A to F and torsions between the rings are named from α to ε. The
fluorene unit is taken as one moiety.

The comparison to the B3LYP/def2-TZVP structure demonstrates a typical prob-
lem of DFT. The torsional barriers in delocalized π-system are usually overes-
timated and therefore the structure is flattened.[140,141] This is documented by
the values of the torsional angles in Tab. 10.3 in the 4th column. The C-C bond
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Table 10.3: Structural parameters of D0δ and D0δ+ for RI-SCS-MP(2)/def2-TZVP.
The values are also compared to B3LYP/def2-TZVP.

Parameter RI-SCS-MP(2)/def2-TZVP [°] B3LYP/def2-TZVP [°]
D0δ D0δ+ D0δ D0δ+

α (C-C-C-S) 225.5 225.3 223.0 221.7
β (S-C-C-C) 209.0 198.7 198.3 190.6
γ (C-C-C-S) 208.1 197.2 201.3 189.7
δ (S-C-C-S) 216.6 214.5 205.2 202.3
ε (S-C-C-C) 211.1 211.0 203.3 203.3

length yields 1.45Å and is represented very good with respect to the RI-SCS-MP(2)
results.

10.2.3.2 Ground-State Geometry – D0δ+

The ground state structure for D0δ+ is obtained again with RI-SCS-MP(2)/def2-
TZVP and shown in Fig. 10.10. Similarly to D0δ, the molecular unit is not planar
due to steric effects. While most of the geometrical properties are comparable
to D0δ, the torsional angles β and γ are flattened by 10° compared to D0δ (see
Tab. 10.3). Further, the C-C bond between B-C and C-D is slightly shortened
(∼0.01Å), indicating a slightly increased double bond character of these bonds.
Due to the electron-deficient benzothiadiazole bridge the π-system adjusts in order
to account for the electron deficiency to get an improved delocalization.

The comparison to B3LYP/def2-TZVP exhibits the same behavior, resulting in a
planarized molecular geometry with respect to the MP(2) geometry.

Figure 10.10: Ground state structure of D0δ+ for RI-SCS-MP(2)/def2-TZVP. Rings
are denoted with A to F and torsions between the rings are named from α to ε. The
fluorene unit is taken as one moiety.
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10.2.3.3 Excited State properties – D0δ

Excited state calculations are performed with RI-CC2/def2-TZVP in vacuum, using
the RI-SCS-MP(2) geometries.

Tab. 10.4 presents the first five vertical excited singlet states. Only the first
excitation shows a significant oscillator strength. Hence, this state corresponds to
the bright donor state that is excited in the absorption experiments. The excitation
is mainly characterized by a HOMO-LUMO transition depicted in Fig. 10.11. Direct
comparison to experimental data is not possible, as the absorption data is not
available for D0δ. However, a very rough approximation can be made as the longer
D1δ unit shows one peak at 408 nm. The first peak in the absorption spectrum
of D0δ+A is strongly blue shifted compared to D1δ+A by ∼60 nm. The estimated
peak position at 348 nm (∼3.56 eV) is very close to the calculated result, indicating
a good agreement to the experiment. Unfortunately, accurate calculations with
RI-CC2/def2-TZVP were not feasible for D1δ.

Table 10.4: First five excited states of D0δ calculated by CC2/def2-TZVP. Together
with the energy and the oscillator strength, the two highest MO contributions and the
character of the excitation are shown.

Excitation
State Energy [eV] fosc MO contributions Character

1 3.437 2.66 H→L (87.1%) π → π∗

H-1→L+1 (6.7%)
2 3.985 0.05 H→L+1 (57.4%) π → π∗

H-1→L (30.4%)
3 4.234 0.11 H-1→L (36.8%) π → π∗

H→L+1 (16.6%)
4 4.284 0.01 H→L+3 (25.1%) π → π∗

H→L+2 (12.1%)
5 4.344 0.02 H→L+4 (45.9%) π → π∗

H-1→L+4 (9.9%)

10.2.3.4 Excited State properties – D0δ+

The vertical excitations for D0δ+ are presented in Tab. 10.5. An additional bright
state is observed experimentally due to the replacement of the phenyl group by
the benzothiadiazole group. This is reproduced by the RI-CC2/def2-TZVP results.
The first excited state with an excitation energy of 2.61 eV shows again mainly a
HOMO-LUMO excitation together with an oscillator strength of 1.24. The third
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3.44 eV

HOMO LUMO

Figure 10.11: Illustration of the bright donor D0δ excitation. The excitation is mainly
composed of a HOMO→LUMO transition.

excited state with an excitation energy of 3.60 eV and an oscillator strength of
1.45 is mainly composed of an HOMO-LUMO+1 excitation and corresponds to the
second bright state. The transitions are depicted in Fig. 10.12. The second bright
state corresponds to the donor excitation as for the bright excitation of D0δ, while
the first bright state is mainly located on the δ+ unit.

Experimentally, both states are separated by ∼0.97 eV (again, roughly approxi-
mated by a manual shift of ∼60 eV (86 nm)), showing a very good agreement to
the CC2 results with an energy difference of 1.0 eV. The absolute values of the
excitation energies are slightly higher (∼0.2 eV) compared to the experiment.

Table 10.5: First five excited states of D0δ+ calculated by CC2/def2-TZVP. Together
with the energy and the oscillator strength, the two highest MO contributions and
the character of the excitation are shown. The first bright excitation is highlighted in
orange and the second bright state in red.

Excitation
State Energy [eV] fosc MO contributions Character

1 2.609 1.24 H→L (89.3%) π → π∗

H-1→L (5.2%) π → π∗

2 3.379 0.05 H-1→L (65.6%)
H-2→L (17.4%)

3 3.604 1.45 H →L+1 (74.6%) π → π∗

H→L+2 (4.7%)
4 4.018 0.05 H→L+2 (53.7%) π → π∗

H-1→L+1 (7.8%)
5 4.118 0.06 H-5→L (17.7%) π → π∗

H-9→L (17.3%)
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2.61 eV

3.60 eV
HOMO

LUMO

LUMO+1

Figure 10.12: Illustration of the bright donor D0δ+ excitation. The first excitation
(2.61 eV) is mainly composed of a HOMO→LUMO transition and the second excitation
(3.60 eV) is mainly composed of a HOMO→LUMO+1 transition.

10.2.3.5 Properties of PDI

In the second generation materials, the same acceptor unit is used as in the
first generation species. Therefore, the relevant quantum chemical results, gained
from the first generation, are briefly recapitulated.[119] Among the large number
of theoretical investigations on individual perylenediimide compounds,[142–148] our
focus lies on the properties of PDI as an acceptor. The results detailed in the
following were obtained using the RI-CC2 method with the TZVP basis set.[119]

Tab. 10.6 presents the first five excited states of the PDI moiety. The energeti-
cally lowest excited state with an excitation energy of 2.62 eV corresponds to a
HOMO-LUMO (π-π∗) transition with a noteworthy oscillator strength of 0.8. As
the next higher lying excited states have practically no oscillator strength, this
state resembles the experimentally observed bright state (in chloroform at about
2.4 eV).[115,116] While the second excited state is a dark π-π∗ transition, the third
and fourth excited states correspond to dark n-π∗ transitions with a substantial
CT character.

Excited state geometry optimizations in the first excited state showed bond length
alternations for the C-C bonds of the perylene ring systems. This is directly linked
to the HOMO-LUMO transition. Bonds with a binding character in the HOMO
(and a non-binding character in the LUMO) are elongated, while bonds with a
binding character in the LUMO are shortened. Therefore, these BLA coordinates
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Table 10.6: First five excited states of PDI for CC2/TZVP.

Excitation
State Energy [eV] fosc MO coefficients Character
S1 2.62 0.797 H → L (0.982) π → π∗

S2 3.49 0.000 H-1 → L (0.810) π → π∗

H → L+3 (-0.481)
S3 3.49 0.000 H-7 → L (0.681) n→ π∗

H-8 → L (0.564)
S4 3.50 0.000 H-8 → L (-0.702) n→ π∗

H-7 → L (0.570)
S5 3.72 0.000 H-4 → L (0.856) π → π∗

H → L+2 (-0.378)

are expected to be the relevant relaxation modes for the CT and EET processes
in the DA(D) system.

10.2.3.6 Ground-State Geometries of D0δA and D0δ+A

The ground-state geometries for D0δA and D0δ+A could not be optimized with
RI-SCS-MP(2)/def2-TZVP in a reasonable time and are therefore optimized using
DFT with the hybrid-functional B3LYP and the def2-TZVP basis set.

Figure 10.13: Ground state geometry of D0δ+A optimized with B3YLP/def2-TZVP.
Donor and acceptor are found to be in a co-planar arrangement. Views are from above
and the side of the acceptor.

The acceptor is attached to the D0δ and D0δ+ via an ethylene bridge to the δ+-side
of the donor moiety. It was found that a linear arrangement of donor and acceptor
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for both donor variants is optimal as depicted for D0δ+A in Fig. 10.13. The two
angles Θ and Φ, as defined in Fig. 10.14, describe the ethylene bridge region,
which connects the donor and acceptor moieties. These angles and the other above
introduced structural parameters are presented in Tab. 10.7.

N

O

OS Θ
Φ

Figure 10.14: Excerpt of the ethyl bridge region of the DA dyad molecule. The
dihedral angle d(C-C-C-C) = d(Θ) and d(C-C-C-N) = d(Φ) are highlighted in red.

The angles for Θ and Φ show that the phenyl-group of the donor unit is essentially
co-planar to the acceptor unit and is attached co-linearly in both variants. The
torsional parameters α to ε as introduced in section 10.2.3.1 are very similar for
D0δ+A compared to D0δ+ and therefore the geometries are again described to
be too flat. However, for D0δA the B3LYP structure tends to be less flattened
being closer to the RI-SCS-MP(2) structure of D0δ. The length of the C-C bond
connecting the two neighboring thiophene rings with 1.45Å is equivalent to the
individual donor moieties. Since the geometries provide a good agreement in the
bond lengths of the system and a reasonable agreement for the torsional angles,
the study of the excited states is done on the basis of the B3LYP geometries.

Table 10.7: Structural parameters of D0δA and D0δ+A for B3LYP/def2-TZVP.

Parameter B3LYP/def2-TZVP [°]
D0δA D0δ+A

α (C-C-C-S) 225.5 222.3
β (S-C-C-C) 203.4 191.1
γ (C-C-C-S) 204.4 189.5
δ (S-C-C-S) 213.1 202.7
ε (S-C-C-C) 207.5 203.5
Θ (C-C-C-C) 103.1 90.2
Φ (C-C-C-N) 181.7 181.3
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10.2.3.7 Excited State properties of D0δA

The vertical excited states are calculated using the B3LYP/def2-TZVP geometries.
As reference method the RI-CC2 method in conjunction with the relatively small
basis set def2-SVP is chosen, since a larger basis set could not be applied. For
the single donor units D0δ and D0δ+ the calculations with this smaller basis set
yield comparable results regarding the relative excitation energies and orbital
contributions of the relevant states. However, the excitation energies are shifted
to higher energies by about ∼0.2 eV.

First, the D0δA system is characterized. Tab. 10.8 presents the first five vertical ex-
citations calculated with RI-CC2/def2-SVP in vacuum. Three relevant transitions
can be identified and are marked with a corresponding color. The local acceptor
excitation (AS1) is colored in blue (2.80 eV), the local donor excitation (DS1 in
red (3.60 eV) and the corresponding charge transfer state (CT) is depicted in green
(3.21 eV). Higher lying excitations correspond to local excitations (n→ π∗,π → π∗)
or further charge transfer states. The excitation energy of the acceptor state is
equivalent to the one of the previous study shown in section 10.2.3.5. The local
excitations correspond to the local excitations, indicating a clear separation of the
two sub systems as shown by the experimental absorption spectra.

Table 10.8: First five excited states of D0δA calculated with CC2/def2-SVP. Together
with the energy and the oscillator strength are the two highest MO contributions and
the character of the excitation shown. The relevant excitations are colored accordingly
to Fig. 10.15

Excitation
State Energy [eV] fosc MO contributions Character

1 2.803 1.03 H-2→L (96.7%) π → π∗

2 3.210 0.00 H→L (82.2%) π → π∗

H-1→L (15.3%)
3 3.603 2.91 H →L+1 (86.6%) π → π∗

H-1→L+5 (7.4%)
4 3.657 0.00 H-13→L (63.8%) π → π∗

H-2→L+4 (23.8%)
5 3.700 0.00 H-22→L (73.2%) n→ π∗

H-22→L+2 (23.8%)

In Fig. 10.15 the transitions are depicted with the corresponding molecular orbitals.
They show that the acceptor and donor excitation are indeed local excitations, as
they have been found for the single molecular units.
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HOMO-2 LUMO

HOMO LUMO+1

Figure 10.15: Illustration of the D0δA excitations. The local acceptor excitation AS1
in blue is composed of a HOMO-2→LUMO transition, the donor excitation DS1 in red
is mainly composed of a HOMO→LUMO+1 transition. Therefore, the CT excitation
in green is composed of a HOMO→LUMO transition.

The absorption experiments showed two bright absorptions, one for the D0δ unit
(3.04 eV) and one (2.36 eV) for the acceptor. The calculated values are both too
high in energy by about 0.35 eV (possibly due to the small basis set). However,
the relative energy difference of 0.68 eV is nearly reproduced with 0.8 eV. The CT
state is described to be energetically between the two bright states.

10.2.3.8 Excited State properties of D0δ+A

The excited states for D0δ+A are calculated again with RI-CC2/def2-SVP. The first
ten vertical excitations are presented in Tab. 10.9. There, four relevant excitations
can be identified, resembling the local excitations on the acceptor unit (AS1 with
2.81 eV, in blue), the two local excitations on the D0δ+ unit (DS1 with 2.75 eV
in orange and DS2 with 3.77 eV in red) and the charge transfer state (CT1 with
2.99 eV in green). The excitations on the D0δ+ unit correspond to the excitations
on the single moiety, but are slightly energetically higher compared to the RI-
CC2/def2-TZVP results. But, the relative energy difference of these two states is
nearly identical with 1.02 eV versus the experimental 0.99 eV.

The excitation energy for the acceptor is identical to the one for D0δA, indicating
again a negligible excitonic coupling between both moieties for the ground state
structure. The MO contributions, on the other hand, show a negligible mixing of
the MO contributions between DS1 und AS1. Furthermore, the calculations show a
significant change in the oscillator strength for DS1 and AS1: DS1 gains oscillator
strength while AS1 loses it. However, RI-ADC(2)/def2-SVP calculations predict
the AS1 state to be lower in energy than the DS1 state and therefore gaining the
oscillator strength in this case. This might be an effect of the too small basis, which
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Table 10.9: First ten excited states of D0δ+A calculated by CC2/def2-SVP. Together
with the energy and the oscillator strength are the two highest MO contributions and
the character of the excitation shown. The relevant excitations are colored accordingly
to Fig. 10.16

Excitation
State Energy [eV] fosc MO contributions Character location

1 (DS1) 2.748 2.46 H→L+1 (74.0%) π → π∗ D→D
H-2→L (16.3%)

2 (AS1) 2.811 0.22 H-2→L (79.7%) π → π∗ A→A
H→L+1 (15.9%)

3 (CT1) 2.986 0.00 H →L (90.3%) π → π∗ D→A
H-1→L (7.9%)

4 3.554 0.01 H-1→L (69.0%) π → π∗ D→A
H-13→L (16.0%) A→A

5 3.645 0.00 H-1→L (40.0%) π → π∗ D→A
H-13→L (26.7%) A→A

6 3.667 0.00 H-13→L (43.0%) π → π∗ A→A
H-1→L (26.4%) D→A

7 3.699 0.00 H-23→L (71.6%) n→ π∗ A→A
H-23→L+2 (10.8%)

8 3.706 0.00 H-22→L (71.3%) n→ π∗ A→A
H-22→L+2 (11.1%)

9 (DS2) 3.774 1.25 H→L+4 (80.4%) π → π∗ D→D
H-3→L+1 (3.4%)

10 3.899 0.02 H-14→L (62.6%) π → π∗ A→A
H-2→L+7 (14.1%)

predicts both states to be too close in energy and therefore a mixing of the orbital
contributions is seen. Therefore, in this molecular arrangement donor and acceptor
form a J-aggregate as the energetically lowest state gains in intensity. Also, the
calculated absolute excitation energies are too high compared to the experiments,
but the relative energies again fit to the absorption experiments.

10.2.3.9 DFT Benchmark

Further investigation of the DA system involves geometry optimizations of excited
states. This is not achievable on modern computer clusters in a reasonable amount
of time for high-level ab inito methods. Hence, a method that is capable – at least
to a certain degree – to reproduce the results of the reference method needs to be
employed. In this work, the working approach is TDDFT and the reference method
was chosen to be RI-CC2/def2-SVP and the aim of this method benchmark is to
reproduce the relative energy differences of the relevant vertical excitations.
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HOMO-2 LUMO

HOMO LUMO+1

HOMO LUMO+4

Figure 10.16: Illustration of the D0δ+A excitations. The local acceptor excitation
AS1 in blue is mainly composed of a HOMO-2→LUMO transition, the donor excitation
DS1 in orange is mainly composed of a HOMO→LUMO+1 transition and the DS2
excitation in red is mainly composed of a HOMO→LUMO+4 transition. Therefore,
the CT excitation in green is composed of a HOMO→LUMO transition.

Fig. 10.17 gives an overview over the results for the relevant states for the tested
functionals. Additionally, the CIS and the RI-ADC(2)/def2-SVP results are plotted.
If not stated differently the basis set def2-TZVP is used.

The local transitions are described rather well by most of the DFT functionals and
by CIS – at least for the relative energy differences. However, the tested functionals
and CIS do not show the same mixing of the AS1 and DS1 MO contributions, as
their energy levels are more separated. A mixing of the DS1 and DS2 states is not
found. B3LYP and CIS stick out by describing all states too low (B3LYP) or too
high (CIS) in energy, while the other functionals describe them to be in roughly
the same energy range.

As expected, the description of the CT state is problematic for DFT due to
the ET-SI error (see section 3.3.2). This can be corrected to some extent by
including more HF exchange. The functional B3LYP and the CIS method in a
sense represent the two limits of HF exchange in this benchmark, with 20 % and
100 % HF-exchange. Therefore, the CT state description is shifted to very low
(B3LYP) or very high (CIS) energies and the right balance needs to be found.
Increasing the HF exchange from 20 % (B3LYP) to 50 % (BHLYP) shifts the CT
state in the range of the DS1 state and the local excitations in the same energy
range as for the reference. But the CT state is still lower than the AS1 state. The
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Figure 10.17: Comparison of the excitation energies for D0δ+A with various methods
for the four relevant excited states.

specially adjusted functional B575LYP by J. Wenzel et al.[119] as it was used for
the description of the first generation system with 57.5 %[119] HF exchange shifts
the CT state slightly above the acceptor state. However, the energy difference
between AS1 and DS1 is described to be too large.

A slightly better description is found for ωB97XD and CAM-B3LYP. These two
functionals are also hybrid functionals incorporating HF-exchange as the other
functionals, but additionally include a long-range correction to account for the ET-
SI error. ωB97XD additionally includes the second empirical dispersion correction
from Grimme.[52] While ωB97XD describes the energy difference between DS1 and
AS1 to be slightly less than CAM-B3LYP, the CT state is calculated to be even
higher than the DS2 state. However, CAM-B3LYP sets the CT state similar to
the reference calculations between AS1 and DS2. CAM-B3LYP and ωB97XD are
examined further.

Tab. 10.10 presents an overview of the first vertically excited states for D0δ+A
with the ωB97XD and CAM-B3LYP functionals. Both functionals predict the four
relevant states to be the first four excited states. The relative energy difference
between DS1 and DS2 is calculated to be equal for these, while the AS1 state is
separated a bit further from the DS1 state for ωB97XD. And, as already mentioned
above, the CT state is described differently by these two functionals. Since the
orbital contributions get quite complicated, only the location of the excitation is
given to keep the table as simple as possible.
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Table 10.10: Results for D0δ+A for DFT functionals ωB97XD/def2-TZVP (a) and
CAM-B3LYP/def2-TZVP (b). Only the location of the excitation and not the MO
contributions are given.

(a) ωB97XD/def2-TZVP

State Ex [eV] fosc location
1 2.55 1.84 D→D
2 2.70 0.58 A→A
3 3.47 0.58 D→D
4 3.62 0.00 D→A
5 3.78 0.00 A→A
6 3.84 0.70 D→D
7 3.96 0.00 A→A
8 4.00 0.06 A→A
9 4.09 0.00 A→A

10 4.12 0.00 A→A

(b) CAM-B3LYP/def2-TZVP

State Ex [eV] fosc location
1 2.46 1.69 D→D
2 2.66 0.66 A→A
3 2.84 0.00 D→A
4 3.37 0.48 D→D
5 3.51 0.00 D→A
6 3.62 0.45 D→D
7 3.74 0.00 A→A
8 3.92 0.00 A→A
9 3.98 0.05 A→A

10 4.06 0.12 D→D

Furthermore, both functionals show a problem regarding the second donor state.
An additional bright donor state, comparable to DS2, appears with similar MO
contributions. As only 10 states could be calculated for the CC2 reference (due to
the large computational effort), it is not clear if this state is an artifact of the DFT
calculations – it appears for all tested functionals separated by 0.3 eV to 0.5 eV to
DS1 – or is really present. In the following calculations, the lowest of these two
bright states is always taken as the DS2 state.

Based on these results, the CAM-B3LYP functional is chosen for the calculation
of the excitation energies on the optimized excited state geometries. The optimiza-
tions themselves are done with the ωB987XD functional to account for empiric
dispersion correction.

10.2.3.10 Mechanism of the Charge Separation

In order to study and confirm the proposed mechanism of the charge separation
for the two donor variants, state specific excited state geometry optimizations are
performed for the molecules D0δA and D0δ+A. The optimizations are done again
in vacuum. However, the relative state energies for the relevant state specific
optimized geometries do not give a reasonable agreement with the experimentally
observed photochemical pathway. To be more specific, for the D0δ+A variant,
experimentally the DS1 state is a precursor to the CT state, but the results in
vacuum show that from the DS1 state, no further state – except for the ground state
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– is accessible. Therefore, using the excited state optimized structures, the excited
state calculations are done with an implicit solvent description of chloroform by
the COSMO method employing a solvent cavity equilibrated to the ground state
charge distribution. Since the ORCA 3.0 package is only capable of employing
the TDA[136] for hybrid functionals, the energies slightly differ from previously
presented results in the DFT benchmark.

From the calculations in chloroform, the following photochemical scenario can be
deduced. Note, though, that the following presented sketches give no information
about actual state crossings.

Upon photo-excitation of the donor-moiety in D1δA, the excitation energy is trans-
ferred via EET from the donor-unit to the acceptor unit. This is followed by the
formation of the charge transfer state, before the charges recombine.

This transfer pathway is compatible with the calculated energetics for the δ-
substituted system D0δA in Fig. 10.18(a). From the calculated energetics one
can deduce that excitonic mixing between the AS1 and DS1 states occurs near the
optimized geometry of the DS1 state and two excitonic coupled states (ES1 and
ES2) are obtained. After relaxation into the AS1 state, the CT1 state is formed.
The ES1 state shows a mixture of approximately 60 % DS1 transition and 40 %
AS1 transition, whereas the mixing for ES2 is interchanged. The pathway is very
similar to that of the first generation system found in chloroform. The transfer
rates are ignored for now, as the presented electronic structure energetics cannot
give further insights into the dynamics.

A first analysis regarding the influence of the chemical design on the photophysics
was done by comparing the results of D1δ+A with D1δA. The fluorescence spectrum
is strongly red shifted for D1δ+ compared to D1δ resulting in a lacking overlap
with the absorption spectrum of the acceptor. As a consequence a direct charge
transfer state is observed after initial excitation of the donor unit.

In full agreement with the reaction scenario derived from the experiments, the DS2

is initially excited, followed by a subsequent transfer to the DS1 state. From there
the CT1 state is formed directly. Due to the fast subsequent transfer from the
DS2 to the DS1 state, no excitonic coupled states for the donor and the acceptor
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(b) D0δ+A

Figure 10.18: Illustration of possible photochemical pathways for the D0δA and
D0δ+A species, obtained from geometry optimizations for the respective electronic
states. Relative energies are reported for a series of equilibrium structures for the
respective state, shown along the x axis (GS refers to the ground state equilibrium
structure). All energies refer to chloroform solvent. (a) Excitonic coupling between the
DS1 and AS1 states (ES1 and ES2) is observed at the DS1 equilibrated geometry. (b)
In the relaxed AS1 structure a excitonic coupled state is found, but not reached upon
excitation of the DS1 state.

are found during the pathway. However, the optimized geometry for AS1 reveals
excitonic coupled states for DS1 and AS1 but is not reached.

10.2.3.11 Influence of δ− and the Length of the Donor Moieties

As the pump-probe experiments reported in section 10.2.1 have shown, the addi-
tion of the δ− group only influences the charge recombination times. Hence, the
quantum chemical results for the excitations of the relevant excited states for eight
variants of the dyad system are compared to each other to investigate the influ-
ence of the δ− group. Variants with two donor lengths taking the values n = 0, 1
combined either with the δ or the δ+ group and optionally extended with the δ−
group, resulting in eight (2× 2× 2) possible combinations.

The calculations are done at the ground-state optimized structure and include
an implicit solvent description by the COSMO method, using a solvent cavity
equilibrated to the ground state charge distribution. In Fig 10.19 both the results
for vacuum and the solvated molecules are included. As mentioned above, the
ORCA 3.0 package is only capable of employing the TDA for hybrid functionals,
hence, the energies presented there differ slightly from previously presented results
in the DFT benchmark. The results in vacuum presented in the Fig. 10.19 are
obtained with the setup excluding solvent effects.
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Figure 10.19: Excitation energies in vacuum and chloroform, obtained using the
COSMO solvent model in conjunction with TD-DFT using the CAM-B3LYP functional.
For each of the five relevant electronic states and all dyad species indicated along the
abscissa, vacuum (vac) energies are indicated along with the corresponding shifted
energies for the solvated species (solv.) immersed in a solvent cavity equilibrated to
the ground state charge distribution. Note that the shift is negligible for AS1 and DS2
(<0.1 eV) such that a single entry is given for these states.

In a simplified manner one can say that the acceptor is slightly shifted higher
in energy due to the TDA. This means that the DS2 and AS1 states are falsely
described to be closer in energy. Note that the energy differences compared to the
experimental results below represent the full TDDFT results in vacuum.

Fig. 10.19 presents the vertical excitation energies for the relevant excitations for
the eight variants. The first aspect to notice is that an additional CT2 state appears
in the relevant energy range. This is essentially the case for the D1 and δ− variants,
where the CT2 state is lowered in energy. In the case of δ−D1δA and δ−D1δ+A,
the state even gets very close to the CT1 state in the calculations including a
solvent. Therefore, this state could play a role in the CT recombination: e.g. a
superposition of CT1 and CT2 could stabilize the CT state. In the other variants
the role of the CT2 state is negligible.

Since the orbital contributions for some excitations are more complicated, the
corresponding electron-hole densities are presented for the variant δ−D1δ+A in Fig.
10.20. The lowest local excitation AS1 and DS1 are equivalent to the excitations
for D0δ+A shown in Fig. 10.16. For D1δ+A the DS1 and AS1 states show a relative
energy difference of 0.5 eV. This is close to the experimental value of ∼0.56 eV.
The experimental value for δ−D1δ+A is not available, but the calculations suggest
an even smaller energy gap of 0.4 eV between these two state. The densities for the
DS2 excitation, however, differ. While for the D0δ+A variant the hole is spread
almost over the complete D0δ+ moiety, here, the hole density is only located on the
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Figure 10.20: Illustration of the electron (right panel) and hole (left) densities for
the five corresponding states shown in Fig. 10.19. The densities have been computed
using a method which corresponds to the orbital transitions of the excitation using
the amplitudes as weights as it is implemented in the MultiWfn-package[133] using the
vacuum calculations as a basis.

D1 unit. Consequently the excitations show a somewhat local character – although
the D1δ+ unit exhibits a delocalized π-system. The two charge transfer states
CT1 and CT2 correspond to these two donor states. The hole-density for CT1 is
therefore equivalent to the hole density for DS1 and analogously for CT2 and DS2.

The effect of the δ−-group is to pull the positive charge – i.e., the hole – spatially
further apart from the negative charge, the electron, on the acceptor. Therefore
the electron-hole distance RCC is analyzed for the CT states. Since the electron
and hole are delocalized over a certain range over the donor and acceptor, the
distance is calculated using centroids of the electron and hole densities. As a
measure of the electron and hole densities, several ansaetze, like Mulliken[149,150] or
ESP charges[151,152] can be used.

In this work, the centroids of the above calculated electron and hole densities are
chosen to be the measure of choice. Tab. 10.11 presents the calculated distances
for the electron and hole densities, together with the radii (RMSD) of the densities,
which are also calculated by the MultiWfn-package. The results show that the
donor length and the δ−-group both increase the distance RCC . The effect, however,
is bigger for the δ−-group, resulting in an increase of at least 3.0Å and a maximum
increase of 6.0Å for (δ−)D1δA.
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Table 10.11: For the various combinations of donor/acceptor moieties, (i) electron-
hole centroid distance RCC , in the lowest energy CT1 state, along with (ii) radii of
electron (r−) and hole (r+) densities are shown.

Structure Distance RCC [nm] r+ [nm] r− [nm]
D0δA 2.0 0.6 0.4
D1δA 2.3 0.8 0.4
D0δ+A 2.0 0.6 0.4
D1δ+A 2.2 0.7 0.4
δ−D0δA 2.3 0.7 0.4
δ−D1δA 2.9 1.0 0.4
δ−D0δ+A 2.3 0.7 0.4
δ−D1δ+A 2.5 0.9 0.4

The increase of the electron-hole distance can be completely related to the spatially
more delocalized densities of the hole. The radii of the densities grow proportional
to the increase of the distance, or in other words the density is pulled towards
the δ− group. In the case of the longer donor units the effect is smaller for
the δ+-variant and the spatial stretch is reduced. The electron density on the
acceptor is completely unchanged by the δ− group as the radii of the densities
show, underlining the separation of the systems by the ethylene bridge.

Furthermore, the CT2 state shows a very large increase of RCC of about 20Å with
respect to the CT1 state. At this point the role of the CT2 state is still unclear
and further analysis towards this is presented in the next section.

The spectroscopic picture of the photochemical process for δ−D0δ+A is equivalent
to the one presented for D0δ+A. This fits to the experimental results, where mainly
the recombination time is effected by the addition of the δ− unit. The main
change in the electronic structure results is that the CT2 state is lowered in energy
compared to D0δ+A, but is still too high in energy to play a more important role
in the charge separation.

10.2.4 Analysis of the Charge Formation and Charge Re-
combination times.

The experimental and quantum chemical results can be summarized in five points:
(i) The δ-variants exhibits an ultrafast (<1.0 ps) energy transfer to the acceptor,
followed by the CT formation on a ∼10 ps time scale. The results are comparable
to those of the first generation system. The QC results are in line and show three
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relevant states being important for the photochemical process and agree to the
experimental results

(ii) The δ+-variants on the other hand does not have an initial energy transfer to
the acceptor, but shows a significantly slower electron transfer in ∼100 ps directly
from the donor unit. In contrast to the δ-variants, here, QC results indicate four
relevant states which are involved in the photochemical process and are able to
describe the results.

(iii) For both spacer molecules (δ or δ+) the CT lifetimes are increased up to a
5-fold upon adding the terminal amine group δ−. An optimal donor length of
n = 1 is found accordingly in chloroform and possibly other solvents, but the
experimental results are limited to lifetimes around 3 ns and cannot be measured
accurately.

(iv) Electronic structure modeling gives evidence for a stabilizing effect of the
CT2 state by the δ−-group. This CT state is characterized by a much larger
charge separation. Due the solvent influence both CT states may become nearly
degenerate, in particular for n = 1, such that an effectively larger charge separation
is suggested for variants incorporating δ−D1.

(v) As pointed out in section 10.1.1, solvent polarity (from chloroform to toluene)
slows down the CT state recombination by up to one order of magnitude. CT
formation is affected to a lesser extend by a factor of 2 or 3 at most.

10.2.4.1 Marcus-Jortner-Levich-Analysis

For a more detailed analysis of the observed influence of the molecular structure and
solvent polarity on the charge transfer state formation and recombination times,
the Marcus-Jortner-Levich (MLJ) theory for electron transfer (as introduced in
section 5.2) is used. In contrast to the classical Marcus theory, this modified
version is not restricted to the high-temperature regime and allows the inclusion
of internal vibrations. Eqn. 10.6 recalls the MLJ formula presented above,

kMLJ
ET =2π

h̄

|VDA|2√
4πλsolkBT

∞∑
n=0

(
λmol
E
vib

)n
n! exp

(
−λmol
Evib

)
·

· exp
(
−(∆G0 + λsol + nEvib)

2

4λsolkBT

)
(10.6)
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where VDA is the electronic coupling (transfer integral) between the donor and
acceptor states, T is the temperature and kB is the Boltzmann constant. λmol

represents the intra-molecular reorganization energy and is computed via the ge-
ometry optimizations in the relevant states presented above. Evib represents the
energy of an effective, high-frequency vibrational mode and is set to 1500 cm−1

(0.186 eV) corresponding to a characteristic C=C bond stretching. λsol is the sol-
vent reorganization energy and is estimated by the Born-Hush approach[88] for the
different solvents:

λ = e2

4πε0

 1
2rD+

+ 1
2rA−

− 1
RDA

( 1
n2 + 1

ε

)
, (10.7)

Here, n represents the refractive index and ε the dielectric constant of the solvent.
The values for RCC , r+ and r− are taken from Tab. 10.11.

The Gibbs free energies for the charge separation (∆G0
CS) and charge recombination

(∆G0
CR) are calculated with the help of continuum dielectric theory,[153]

∆G0
CS = [Eox (D)− Ered (A)]− e2

4πε0εRCC

+ e2

8πε0

(
1
r+ + 1

r−
1
εref
− 1
ε

)
− E00 (10.8)

∆G0
CR =− [Eox (D)− Ered (A)]− e2

4πε0εRCC

+ e2

8πε0

(
1
r+ + 1

r−
1
εref
− 1
ε

)
(10.9)

where Eox and Ered are the experimentally determined oxidation and reduction
potential energies. εref = 8.93 is the dielectric constant of dichloromethane,[154]

in which the potentials were measured.[130] E00 refers to the energy of the excited
state from which the charge transfer state is formed. In the case of the δ-variant,
the CT state is formed from the acceptor state A∗ and in the case of the δ+-variant
it is formed from (Dnδ+)∗ (also see above).

Tabs. 10.12 and 10.13 summarize all further parameters appearing in Eqns. 10.6
to 10.9 for various solvents and molecules, along with the computed solvent reor-
ganizations and Gibbs free energies.

The first aspect to note is that the charge recombination takes place in the so-called
Marcus inverted regime as −∆G0

CR > λCR = λmol + λsol. While the CT formation
in δ−Dnδ+A and Dnδ+A takes place in the normal Marcus regime, for δ−DnδA
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Table 10.12: First part of the parameters for the MLJ model. Ered and Eox are
the reduction and oxidation potential energies determined experimentally.[130] E00 is
the lowest excited state, from which the CT states are formed. λmol is the computed
reorganization energy for charge separation and recombination.

Parameter D1δA D1δ+A δ−D1δ+A
Ered (eV) −0.40 −0.40 −0.40
Eox (eV) 0.80 0.89 0.81
Ered (eV) 2.32 1.92 1.92
λCSmol (eV) 0.33 0.30 0.28
λCRmol (eV) 0.57 0.68 0.69

and DnδA it is in the (nearly) optimal Marcus regime with a difference of −∆G0
CS

and λCS being less than 0.06 meV. From this one can conclude that a change in
solvent polarity should have a stronger influence on the charge recombination than
on the charge formation times. This fits very well to the observed results (see
Tab. 10.2) as the solvent influence is indeed significantly stronger for the charge
recombination. As the refractive index is nearly identical for all three solvents, one
can infer that the main solvent influence comes from the dielectric constant.

Furthermore, using the experimentally observed electron transfer rates for k, one
can exploit Eqn. 10.6 to calculate an approximate electronic coupling. The results
predict a residual solvent dependence of the electronic coupling VDA, which may be
expected due to e.g. solvent-induced electrostatic interaction shielding.[155,156]How-
ever, the accuracy of the model is uncertain, as the approximation made for λsol is
very crude and would require an accurate description like explicit molecular-based
(rather than an implicit continuum-based) modeling of the solvent.[157]

The computed electronic coupling energies VDA are rather small, in the range
of 0.3 meV to 2.0 meV, in accordance with electronic couplings for similar dyad
compounds like the first generation system[28,123] and electronic couplings obtained
by a similar approach for different large organic donor and acceptor compounds.[131]

Interestingly, the faster charge separation in the δ variants appears to be a result
of a 2 to 3-fold stronger “hole” coupling between A∗ and the CT state, compared
to (D1δ+)∗ and the CT state.[28,123]

Regarding the molecular design it is very interesting to compare the results for
DδA/δ−D1δA and D1δ+A/δ−D1δ+A in chloroform. As seen in Tab. 10.2 the
addition of δ− to D1δ+A leads to a nearly 3-fold increase in the CT state lifetime.
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Table 10.13: Second part of the parameters for the MLJ model.Estimated solvent
reorganization energies λsol and Gibbs free energies using Eqns. 10.7 to 10.9 for charge
separation ∆G0

CS and charge recombination ∆G0
CR.

Molecule Parameter Toluene TCE Chloroform
ε 3.5 3.42 4.89
n 1.496 1.477 1.446

D1δA

λsol (eV) 0.333 0.344 0.568
−∆G0

CS (eV) 0.739 0.725 0.907
λCS = λmol + λsol (eV) 0.663 0.674 0.898
−∆G0

CR (eV) 1.580 1.594 1.412
λCR = λmol + λsol (eV) 0.903 0.914 1.138

D1δ+A

λsol (eV) 0.349 0.360 0.595
−∆G0

CS (eV) 0.323 0.309 0.500
λCS = λmol + λsol (eV) 0.649 0.660 0.895
−∆G0

CR (eV) 1.594 1.609 1.418
λCR = λmol + λsol (eV) 1.029 1.040 1.275

δ−D1δ+A

λsol (eV) 0.554
−∆G0

CS (eV) 0.585
λCS = λmol + λsol (eV) 0.834
−∆G0

CR (eV) 1.333
λCR = λmol + λsol (eV) 1.244

Using Eqn. 10.9 this can be related to a reduction by a factor of 1.7 in the
approximated electron coupling VDA (Tab. 10.14).

As the electronic couplings in these systems tend to be rather weak, |VDA|2 can be
taken taken to be exponentially dependent on the distance between electron and
hole (RCC):[158]

|VDA|2= |V 0
DA|2exp (−βRCC) (10.10)

Typical values for the decay length scale β have been reported to be in the range
of β ∼0.3Å−1 to 0.7Å−1 for electron transfer trough covalent bonds or involving
carrier tunneling in organic molecules.[158–161]

As shown in Tab. 10.11 the electronic structure results predict that the addition of
the δ− group to D1δA increases the electron-hole distance by 3Å in the CT1 state.
For the CT2 state the increase results in as much as 18Å. Using the 1.75-fold
decrease of VDA, this would correspond in a rather small β value of 0.34Å−1 for
CT1 and an unrealistic, even smaller value of 0.06Å−1 for CT2. Therefore one can
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Table 10.14: Electronic couplings for charge recombination and formation, calculated
via Eqn. 10.6 by using the experimental rates in Tab. 10.2.

V (meV) Toluene TCE Chloroform

D1δA
Formation 1.783 2.385 2.392
Recombination 0.313 0.376 0.535

D1δ+A
Formation 0.682 0.975 1.381
Recombination 0.236 0.343 0.495

δ−D1δ+A
Formation 0.886
Recombination 0.306

conclude that the experimental observed CT state is essentially of CT1 character,
which is possibly slightly mixed with a CT2 character due to the near-degeneracy
with the CT2 state for δ−D1δ+A.

10.3 Conclusion and Outlook
This part of the thesis has focused on two generations of novel class of cova-
lently bound bisthiophene-perylene diimide donor-acceptor systems that have been
designed and spectroscopically investigated by our collaboration partners at Stras-
bourg University. In view of the lack of efficiency of the first generation material
(see section 10.1.1), a second-generation material has been developed, whose pho-
tochemical properties have been thoroughly characterized by electronic structure
methods and kinetic analysis. The combined experimental and theoretical results
lead to a plausible picture of the photochemical pathway, along with estimated
rates for charge separation and charge recombination.

The first generation material exhibits a two-step charge transfer formation in solu-
tion, via (i) excitation energy transfer by excitonically coupled donor and acceptor
states from the donor to the acceptor, followed by (ii) charge separation between
the covalently bound donor and acceptor moieties.[115,116] Quantum chemical results
employing an implicit solvent description confirmed this photochemical pathway
involving basically three relevant states.[119]

For the self-assembled phase in a liquid crystalline (LC) film, the system showed an
ultrafast (∼60 fs) charge transfer formation directly after initial excitation. Elec-
tronic structure analysis and high-dimensional quantum dynamical studies lead to
the conclusion that the ultrafast charge transfer formation is the consequence of
the generation of an inter-molecular charge separated (CS) state. This charge sepa-
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rated state, whose generation is favored by a tilt angle of 70° between the molecular
planes, proves to be very stable compared to longer-range charge separated states,
resulting from a Coulomb barrier and small transfer integrals. A quasi-stationary
state of the local CS(-1) state is therefore reached, precluding a rapid formation of
a photocurrent.[28,123] A comparatively short recombination time of ∼50 ps, as well
as triplet formation on longer time scales (>1 ns), are observed. The applicability
of the material in a photovoltaic device is therefore severely limited.

To circumvent local trapping and recombination while keeping the high charge
generation efficiency, a second generation material was designed. The concept
was to to increase the CT lifetime, i.e., reduce recombination. To this end, a
first investigation was carried out in solution phase, by a joint spectroscopic and
theoretical analysis. For the systems investigated here, the CT lifetime could
indeed be increased up to 10-fold as compared to the first generation. Overall, the
kinetic is comparatively slow, of the order of tens to hundreds of picoseconds.

Analysis with the aid of the Marcus-Jortner-Levich (MJL) formula proved the small
electronic couplings to be the main reason for relatively slow CT recombination
times and therefore a long lifetime. Previous experiments on a family of similar
compounds, where donor and acceptor moieties are connected by an alkyl spacer
of increasing length, support this conclusion.[162] Here, an additional amine (δ−)-
group is shown to further reduce the electronic coupling and thus further enlarge
the CT lifetime by a factor of 2 to 5 for an optimal donor length of (n = 1).
Most likely this is given by an increase of the electron-hole distance in the charge
transfer state. Electronic structure calculations show a slight increase for the
lower-lying CT1 state and a possible mixing with a different CT2 state, showing a
much larger electron-hole separation. However, the MLJ analysis does not confirm
this. Interestingly, changing the donor length for variants without the terminal
δ− does not influence the charge separation or recombination kinetics, which is in
agreement with other reports.[163]

Furthermore, the influence of the solvent polarity on the CT lifetime proves that
the interaction with the environment is of key importance. Together with the
observation for the previous generation materials, one may expect that in a self-
assembled film of these compounds the inter-molecular interaction may strongly
modify the conclusions drawn here. This suggests that tailoring the intrinsic
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donor acceptor alkyl side
chains

Figure 10.21: Illustration of the zipper-like molecular packing of D0δ+A dyads. Ac-
ceptor molecules are π-stacked along the b axis and donor molecules are flipped. The
molecules are not laying perfectly on top of each other, but are slightly shifted.

building blocks should only be seen as one of the relevant building blocks in the
design process of optimizing the CT lifetime in functional films.

Recently, as detailed in Ref. [164, 165], it was shown by electron diffraction and
X-ray scattering methods that the second generation materials form highly ordered
lamellar mesophases that feature well-defined donor and acceptor domains, where
the acceptors are interlaced such that a zipper-like structure is formed.[165,166]

As illustrated in Figs. 10.21 and 10.22, the DA system is arranged in an alternating
stacking pattern. While the acceptors are in close contact with each other in
two dimensions (along a and b), the donors can only interact along the stacking
direction (b axis) due to the alternating pattern caused by the hexyl-side chains.

a

c

Figure 10.22: Full atomistic representation of the D0δ+A dyads in LC film with
highlighted unit cell.
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Thus, the acceptor molecules are π-stacked on top of each other, creating possible
“quantum wells” for charge carrier transport. The analysis of the photochemical
properties of these mesoscopic phases, as done for the first generation system, is
currently ongoing.

In particular, based on the spectroscopic and electronic structure results and
the MLJ analysis presented above, a theoretical analysis of the charge transport
properties, focusing on electron and hole mobilities, is currently performed by
Kinetic Monte Carlo simulations.[167,168]

175





11 | Conclusion and Outlook

This thesis presents methodological developments and applications in the area
of high-dimensional quantum dynamics. The focus is placed upon multi-configu-
rational methods, and applications to transfer phenomena in large systems, no-
tably excitation energy transfer, electron transfer, and intra-molecular vibrational
redistribution in molecular aggregates. On the application side, investigations
combining electronic structure methods, high-dimensional quantum dynamics and
parametrized model Hamiltonians are employed. Since the relevant elementary
processes are often ultra-fast, this approach creates a unique tool for the real-time
description and thorough understanding of these elementary steps.

In the first part, the implementation of the novel 2L-G-MCTDH method, proposed
in Ref. [1], has been has been presented. This method remedies the lack of flexi-
bility of existing GWP-based multi-configurational methods such as G-MCTDH
and its vMCG variant. The key novelty in the method is the hierarchical con-
struction of the wavefunction, similar to the multi-layer (ML)-MCTDH method.
In fact, a combination of the method with the existing ML-MCTDH scheme is
straightforward, as the first-layer of the 2L-G-MCTDH approach is chosen to be
orthogonal.

Within the present implementation of the 2L-G-MCTDH method, excellent con-
vergence properties and an improved scaling behavior have been demonstrated.
However, numerical problems such as instabilities due to singularities, as a result
of linear dependencies within the non-orthogonal GWP basis, remain to some
extent. The method has been successfully applied to two model systems, showing
very good agreement with reference calculations by the multi-layer (ML)-MCTDH
method for up to 100 DOFs. The first system is a model of site-to-site vibrational
energy flow in the presence of intra-site vibrational energy redistribution. The sec-
ond system relates to a model for electron transfer at an oligothiophene-fullerene
heterojunction of relevance to organic photovoltaics.

The second part addresses two generations of a novel donor-acceptor system for or-
ganic photovoltaic applications, which was designed by our partner groups (S. Méry,
S. Haacke) at Strasbourg University. These systems rely on self-assembled block
co-oligomer DA dyads and triads, which have been computationally investigated in
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the present thesis. We have been able to show that the first generation variant (i)
exhibits a highly efficient inter-chain ET process in a liquid-crystalline film, which
is preferred over intra-molecular charge transfer, (ii) despite the highly efficient
initial charge transfer, the material shows inefficient long-range charge separation
due to large recombination rates and small transfer integrals. As a consequence,
the first-generation material proves unsuitable for photovoltaics applications. To
obtain a full understanding of the elementary steps, high-dimensional quantum
dynamics simulations have been carried out using the ML-MCTDH method, in
collaboration with Matthias Polkehn.

The present work has mainly focused on the second generation material, where
both the nanomorphology and the chemical design have been modified. The goal is
an increase the lifetime of the primary charge separated state (CT state), indicating
reduced recombination. To this end, the second generation material is composed of
a donor unit of variable length and additional electron withdrawing and donating
groups. A rather slow electron transfer in the range of a tens to hundred picoseconds
is observed, with an extended lifetime of the CT state. A kinetic analysis using the
Marcus-Jortner-Levich rate theory is employed, revealing small electronic couplings
for both charge separation and recombination processes. The addition of an amine
group strongly increases the lifetime, due to an increase of the distance between the
electron and hole density centroids. Therefore, a reduction of the recombination
losses is expected. Indeed, this type of system proves to be a promising candidate
for practical applications.

To conclude, this thesis has demonstrated (i) a major new development in the design
of Gaussian-based multi-configurational methods, by the 2L-GMCTDH scheme
and (ii) a combined electronic structure and high-dimensional quantum dynamics
investigation of EET, ET and IVR processes. In the absence of numerically exact
methods for high-dimensional molecular systems, the right choice of methods is
crucial for a comprehensive study of the relevant processes, and approximations
need to be introduced. In this context, the multi-configurational techniques that
have been applied and implemented in this thesis play an important role. Moreover,
the new hierarchical GWP based techniques bring a significant advantage since
they can be used both in the context of model Hamiltonians (as shown in this
thesis) and in the context of efficient and accurate on-the-fly quantum dynamics in
many dimensions. Further developments in this direction are currently in progress.
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