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Abstract

The development of tractable forward looking models of monetary

policy has lead to an explosion of research on the implications of adopt-

ing Taylor-type interest rate rules. Indeterminacies have been found to

arise for some specifications of the interest rate rule, raising the possi-

bility of inefficient fluctuations due to the dependence of expectations

on extraneous “sunspots”. Separately, recent work by a number of

authors has shown that sunspot equilibria previously thought to be

unstable under private agent learning can in some cases be stable when

the observed sunspot has a suitable time series structure. In this paper

we generalize the “common factor” technique, used in this analysis,

to examine standard monetary models that combine forward looking

expectations and predetermined variables. We consider a variety of

specifications that incorporate both lagged and expected inflation in

the Phillips Curve, and both expected inflation and inertial elements

in the policy rule. We find that some policy rules can indeed lead to

learnable sunspot solutions and we investigate the conditions under

which this phenomenon arises.

JEL classification: E52, E32, D83, D84.
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ity.

1 Introduction

The development of tractable forward looking models of monetary policy,
together with the influential work of (Taylor 1993), has lead to an explosion
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of research on the implications of adopting Taylor-type interest rate rules.
These rules take the nominal interest rate as the policy instrument and direct
the central bank to set this rate according to some simple (typically linear)
dependence on current, lagged, and/or expected inflation and output gap,
and possibly on an inertial term to encourage interest rate smoothing.

While these simple policy rules for many reasons are advantageous to
both researchers and policy makers, it has been noted by some authors,
e.g. (Bernanke and Woodford 1997), (Woodford 1999) and (Svensson and
Woodford 1999), that the corresponding models exhibit indeterminate steady-
states for large regions of the reasonable parameter space. This presence of
indeterminacy is thought undesirable because associated with each indeter-
minate steady-state is a continuum of sunspot equilibria, and the particular
equilibrium on which agents ultimately coordinate may not exhibit wanted
properties.

Though having their informal origins in Keynes’ notion of animal spirits,
analysis of sunspots has, in the past, been couched principally in the theoreti-
cal literature. However, applied macroeconomists began to take notice when,
in the mid nineties, (Farmer and Guo 1994) showed that calibrated real busi-
ness cycle models, modified to include externalities or other non-convexities,
exhibited sunspots; and furthermore, these sunspots could be used to ex-
plain fluctuations at business cycle frequencies. This applied interest has
spread to the literature on monetary policy, and, in an empirical sense, has
culminated with the argument of (Clarida, Gali, and Gertler 2000) that the
volatile inflation and output of the seventies may have been due to sunspot
phenomena. In particular, they combine a standard forward-looking “New
Keynesian” IS-AS model1 with a simple estimated forward-looking Taylor
rule, using data from the 1960’s and 1970’s, and find that the corresponding
steady-state is indeterminate; they conclude that the fluctuations in output
gap and inflation may be well explained by agents coordinating on a volatile
sunspot equilibrium.

The existence of sunspot equilibria raises the question of whether it is
plausible that agents will actually coordinate on them. One natural criterion
for this is that the sunspot equilibria should be stable under adaptive learn-

1This model has also been called the “New Phillips Curve” or “optimizing IS-
AS” model, and is obtained as a linearization of an optimimizing equilibrium model
with “Calvo” pricing. For discussion, derivation and citations to the earlier litera-
ture, see (Clarida, Gali, and Gertler 1999), (Woodford 1996), (Woodford 1999) and
(Woodford 2003).
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ing.2 Although it has been shown by (Woodford 1990) that stable sunspots
can exist in simple overlapping generations models,3 the sunspots in many
calibrated applied models are lacking this necessary stability. For example
(Evans and Honkapohja 2001) show that sunspots in the Farmer-Guo model
are unstable, and (Evans and McGough 2002a) describe a stability puzzle
surrounding the lack of stable indeterminacies in a host of non-convex RBC-
type models.4

The existence of indeterminacies in monetary models, together with the
instability of indeterminacies in RBC-type models, raises a natural question:
Are sunspot equilibria in the New Keynesian models stable under learning?
This specific question has been addressed by (Honkapohja and Mitra 2001),
who consider a purely forward looking AS curve and analyze a variety of in-
terest rules including those dependent on current, lagged, and expected infla-
tion and output gap, and those also dependent on an interest rate smoothing
term. They find that if the interest rate depends only on expected inflation
and expected output gap then there can exist stable equilibria that depend
on finite state sunspots; otherwise, the sunspot equilibria they consider are
not learnable.5

Independent of the monetary policy literature, work on multiple equilib-
ria and stability in macroeconomic models has continued, and recent research
has emphasized that stability under learning of sunspots can depend upon
the way in which a particular equilibrium is viewed, or represented. (Evans
and Honkapohja 2003c) found that finite state sunspots in a simple forward
looking model can be stable even though previous research had suggested
that no stable sunspots exist in these models. The apparent paradox is re-
solved as follows: all sunspot equilibria in these models can be represented as
a linear dependence on lagged endogenous variables and a sunspot variable

2Eductive approaches could also be considered. See, for example, (Guesnerie 1992),
(Evans and Guesnerie 2003) and (Desgranges and Negroni 2001). Stability under eductive
learning appears to be somewhat more stringent than stability under adaptive learning.

3For the local stability conditions see (Evans and Honkapohja 1994) and (Evans and
Honkapohja 2003b).

4Other examples of stable sunspot equilibria include (Howitt andMcAfee 1992), (Evans,
Honkapohja, and Romer 1998), (Evans, Honkapohja, and Marimon 2001) and (Evans and
McGough 2003).

5For these models stability under learning of “fundamental” (minimal state variable)
solutions has been studied by (Bullard and Mitra 2001), (Evans and Honkapohja 2003d)
and others. For a survey with references see (Evans and Honkapohja 2003a). An important
early instability result was obtained by (Howitt 1992).
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taking the form of a martingale difference sequence. These representations
are always unstable under learning. However, when the sunspot is a finite
state Markov process, the associated equilibrium is also finite state and thus
has an alternate representation depending solely on the sunspot. When rep-
resented in this manner, the associated learning dynamics indicate stability
for some (but not all) regions of the parameter space.

In (Evans and McGough 2003), we studied sunspot equilibria in a uni-
variate stochastic linear forward looking model that incorporates a lag. We
found that any given equilibrium may be viewed, or represented, in two fun-
damentally different ways: in the usual way, as a linear dependence on once
and twice lagged endogenous variables and on a sunspot having zero condi-
tional mean; and in a new way, on once lagged endogenous variables and on
a sunspot exhibiting serial correlation. We referred to the usual way of view-
ing sunspots as the “general form” representation of the equilibrium, and to
the new way of viewing sunspots as the “common factor” representation of
the equilibrium.6 We found that the stability of the equilibrium in question
depended on the chosen representation. In particular, for the model we con-
sidered, stable common factor sunspots were found to exist in abundance,
even though, as was already well known, there exist no stable general form
sunspots.

This new line of research indicates the need for careful analysis of sunspot
stability in applied models. Every sunspot equilibrium has a common factor

representation, and the stability properties of common factor representations

are different from their general form counterparts. Thus, stability analysis
must incorporate both general form and common factor representations. In
this paper, we generalize common factor analysis to apply to standard mod-
els of monetary policy, and carefully investigate the stability of the resulting
representations. We follow (Bullard and Mitra 2002) and (Honkapohja and
Mitra 2001) by specifying a simple New Keynesian IS-AS model, except that,
for added generality, as in (Galí and Gertler 1999) and much applied work, we
allow for some dependence on lagged inflation in the Phillips curve. We close
the model with a variety of interest rate rules: like Bullard and Mitra, we
consider rules depending on current, lagged, and expected inflation; and like

6In (Evans and McGough 2002b) we show that common factor sunspot representations
exist in some cases where finite state Markov sunspot solutions do not exist.
We remark that (Evans and McGough 2002b) and (Evans and McGough 2003) focus on

models with real roots, but we show elsewhere that coomon factor sunspots representations
exist more generally when there are complex roots.
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Honkapohja and Mitra, we also consider rules depending on lagged nominal
interest rates. For each model we consider three calibrations of the IS-AS
structure, as well as some alternative parameter values. Analytic results
are, in general, unavailable, and so we test stability numerically by consid-
ering, for each calibration, a lattice over the space of policy parameters. At
each point in the lattice, indeterminacy and stability of the corresponding
equilibria are examined. Our main result supports the findings and advice
of Honkapohja and Mitra, and indeed it makes their cautionary note more
urgent: All models in which the policy rule depends on some form of expec-
tations of future variables exhibit stable common factor sunspots for some
parameter values. To be sure, these parameter values are not always rea-
sonable, but, in some cases, they closely match calibrations. Furthermore,
these stable sunspots exist even when the policy rule also depends on other
aggregates, such as current inflation or output, and lagged interest rate. We
also find that no general form sunspots are stable, thus emphasizing the
importance of analyzing common factor representations.

This paper is organized as follows. Section two presents the various mon-
etary models under consideration, as well as the associated learning theory
and the extension of common factor analysis to monetary models. To con-
serve space and facilitate comprehension, we include explicit computations
of equilibrium representations in the Appendix and for only one policy rule,
and simply note that the remaining policy rules can be analyzed in a similar
fashion. Section three contains the results of our investigations. The policy
rules are classified into four types and discussed in separate subsections. In
each case we consider numerous permutations of calibration, Phillips curve
structure, indeterminacy nature, and representation type, and thus a careful
catalog of all possible results would be tedious if not infeasible. Therefore, we
provide a summary of the main features followed by a more careful discussion
of the particularly interesting results. Section four concludes.

2 Theory

In this section we develop the theory necessary to analyze the stability of
sunspot equilibria. We begin by specifying the models of interest. Then, for
expedience, we choose a particular specification and develop the associated
equilibrium representations and learning analysis. It is straightforward to
modify this developed theory for application to other model specifications,
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and thus we omit the details concerning these other models. We initially
develop the theory under the rational expectations assumption. Then, be-
ginning in Section 2.4, we relax this assumption and study the stability of
the solutions under adaptive learning.

2.1 Monetary Models and Policy Rules

We explore the possibility of existence of stable sunspots using several vari-
ants of the New Keynesian Monetary model. All specifications have in com-
mon the following forward looking IS-AS curves:

IS : xt = −φ(it − Etπt+1) + Etxt+1 + gt (1)

AS : πt = β(γEtπt+1 + (1− γ)πt−1) + λxt + ut (2)

Here xt is the output gap, πt is inflation, and gt and ut are independent,
exogenous, stationary, zero mean AR(1) shocks with damping parameters
0 ≤ ρg < 1 and 0 ≤ ρu < 1 respectively. These equations can be derived from
first principles using techniques described, for example, in (Woodford 2003),
and are obtained as the linearization around a steady state. Setting γ = 1
yields the formulation with pure Calvo price-setting, but we allow 0 < γ < 1
as, for example, in the “hybrid” model of (Galí and Gertler 1999) in which
there is a proportion of rule-of-thumb price setters. Hybrid models are also
discussed in (Woodford 2003).

The region and nature of a model’s indeterminacy depends critically on
the specification of the policy rule. To better understand the role of this
specification, we analyze a number of policy rules, which we parameterize as
follows:

PR1 : it = αππt + αxxt (3)

PR′

1 : it = απEtπt + αxEtxt (4)

PR2 : it = αππt−1 + αxxt−1 (5)

PR3 : it = απEtπt+1 + αxEtxt+1 (6)

PR4 : it = θit−1 + (1− θ)απEtπt+1 + (1− θ)αxxt (7)

PR1, PR
′

1, PR2, and PR3 are the rules examined by (Bullard and Mitra
2002). We have omitted the intercepts for convenience, and in each policy
rule πt can be interpreted as the deviation of inflation from its target. These
are all Taylor-type rules in the spirit of (Taylor 1993). We assume throughout
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that απ, αx ≥ 0 and thus the αππt term in PR1 indicates the degree to which
monetary policy authorities raise nominal interest rates in response to an
upward deviation of πt from its target. PR1 assumes that current data on
inflation and the output gap are available to policymakers when interest
rates are set. Given the criticism that this assumption is not realistic, a
point emphasized in (McCallum 1999), (Bullard and Mitra 2002) look at
three natural alternatives: a slight modification yields PR′

1 in which policy
makers condition their instrument on expected values of current inflation and
the output gap; in PR2 policy makers respond to the most recent observed
values of these variables; and in PR3 they respond instead to forecasts of
future inflation and the output gap.7 Finally, PR4 is the rule examined in
the theoretical part of (Clarida, Gali, and Gertler 2000), and is the simplest
form of the empirical interest rate rules that they estimate. A parameter
value 0 < θ < 1 corresponds to inertia in interest rate setting, with policy-
makers responding gradually to changes in information.

2.2 Determinacy

As usual, the model is said to be determinate if there is a unique nonexplosive
REE and indeterminate if there are multiple nonexplosive solutions (though
we will see below that this definition can be refined in a helpful way).8 The
determinacy of a model can be analyzed by writing the reduced form equation
as a discrete difference equation with the associated extraneous noise terms
capturing the errors in the agents’ forecasts of the free variables. If the
nonexplosive requirement of a rational expectations equilibrium pins down
the forecast errors, that is, if the dimension of the unstable manifold is equal
to the number of free variables, then the model is determinate. On the other
hand, if the errors are not pinned down, that is, if the dimension of the
unstable manifold is less than the number of free variables, these forecast
errors can capture extrinsic fluctuations in agents’ expectations that are not
inconsistent with rationality. In this case, multiple equilibria exist; these

7Because at the moment we are assuming rational expectations and a common infor-
mation set, we do not need to specify whose forecasts are represented in the interest rate
rules (4), (6) and (7). We will return to this matter when we discuss the economy under
learning.

8By “nonexplosive” we mean that the conditional expectation of the absolute value of
future variables is uniformly bounded over the horizon. For a detailed discussion of this
and related concepts see (Evans and McGough 2003).
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types of equilibria are sometimes called sunspots.
To illustrate our methodology, consider PR1 or PR3. Combining the

policy rule (3) or (6) with (1) and (2) leads to the first-order reduced form

H




xt

πt

πt−1

gt
ut


 = F




Etxt+1
Etπt+1

πt

gt+1
ut+1


−




0
0
0
wg

t

wu
t


 .

The specific form of F,H are given in the Appendix for PR1. Let the free
variables be written yt = (xt, πt)

′, so that εt = yt−Et−1yt is the forecast error,
thus capturing potential sunspots. Writing also ŷt = (xt, πt, πt−1, gt, ut)

′ and
wt = (wg

t , w
u
t )

′ the model can be rewritten as

ŷt = F−1Hŷt−1 + F−1Mwt +Nεt (8)

for suitable M,N . Here we are using the fact that F is invertible. Note that
by virtue of the rational expectations assumption εt is a martingale difference
sequence, i.e. a stochastic process such that Etεt+1 = 0.

Recall that a Rational Expectations Equilibrium (REE) is any process yt
that satisfies the reduced form equations and is nonexplosive. The above
analysis has shown that if yt is an REE then there is a martingale difference
sequence (mds) εt such that the associated process ŷt solves (8). However,
there is no guarantee that a given mds εt yields a nonexplosive solution; it is
precisely this issue that is addressed by the nature of the indeterminacy.

To understand for which mds εt the model is nonexplosive, we assume
that F−1H is diagonalizable and factor it as F−1H = S(Λ⊕ ρ)S−1. Here we
employ the direct sum notation

A⊕B =

(
A 0
0 B

)

for matrices A and B. ρ is a diagonal 2 × 2 matrix with diagonal elements
ρg and ρu and Λ contains the remaining three eigenvalues of F−1H. We then
change coordinates to zt = S−1ŷt, thus allowing us to rewrite (8) as

zt = (Λ⊕ ρ)zt−1 + w̃t + ε̃t, (9)

where w̃t = S−1F−1Mwt and ε̃t = S−1Nεt. If the eigenvalues of F−1H are
all real then the columns of S are the corresponding linearly independent
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eigenvectors. If two eigenvalues are complex then we assume that the matrix
of eigenvectors, S and the matrix of eigenvalues Λ are altered to allow for a
matrix factorization with real entries. This can be achieved via the following
observation: If A is a real 2× 2 matrix with complex eigenvalues µ± iν and
complex eigenvectors u± iv then

A = S

[
µ −ν
ν µ

]
S−1

where the columns of S are v and u. If A is n×n then it can be decomposed
similarly as SDS−1 with D a block diagonal matrix with the real eigenvalues
and 2 × 2 blocks corresponding to the complex eigenvalues on its diagonal.
Also, here and throughout the paper, the eigenvalues in Λ are assumed or-
dered in decreasing magnitude.

Now the conditions for determinacy are clear. If λ1 and λ2 lie outside
the unit circle, then nonexplosiveness requires zit = 0 for i = 1, 2. Thus
the forecast errors are pinned down by the requirement that w̃it + ε̃it = 0
for i = 1, 2; that is, the dimension of the unstable manifold, which in this
simple linear framework is the direct sum of the eigenspaces corresponding
to the explosive eigenvalues, is two, and there is a unique mds εt such that
the associated process yt is nonexplosive.

If |λ1| > 1 and |λ2| < 1 then the only implied restriction is that z1t = 0.
The forecast errors must satisfy w̃1t+ ε̃1t = 0 but are otherwise unrestricted.
Thus there is a one dimensional continuum of equilibria, and, consequently,
we say the model exhibits order one indeterminacy. Finally, if λi is in the
unit circle for all i, the process yt is nonexplosive regardless of the mds εt.
There is a two dimensional continuum of equilibria, and we say the model
exhibits order two indeterminacy.

We have focused on cases of determinacy and indeterminacy, but one
other possibility should be noted. If |λ3| > 1, so that there are three roots
outside the unit circle, then the model is explosive: there exist no nonexplo-
sive solutions and with probability one at least one of the components of yt
tends to infinity in absolute value as t → ∞.

2.3 Representations

A rational expectations equilibrium representation (REER) is a discrete dif-
ference equation, any solution to which is an REE. As is now well known,
see e.g. Chapters 8 and 9 of (Evans and Honkapohja 2001), (Evans and
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Honkapohja 2003c) and (Evans and McGough 2003), a given REE may have
many representations, and the stability of the REE under learning may be
representation dependent. In this subsection we construct the representations
of interest, noting that the particular form of the representation depends on
the nature of the indeterminacy.

Assume first that for i = 1, 2 we have |λi| > 1 and also assume that
|λ3| < 1. For the solution to be nonexplosive the mds sunspots ε1t and
ε2t must be chosen so that ε̃it + w̃it = 0 for i = 1 and 2. The associated
representation is given by

yt = −(S11

2 )−1
(

0 S13

0 S23

)
yt−1 − (S11

2 )−1S14

2 ĝt, (10)

where for convenience, we write ĝt = (gt, ut)
′. Here and in the sequel, Sij =

(S−1)ij and

Sij

k =

(
Sij Sij+1

Skj Skj+1

)
.

Thus, in the determinate case, the unique nonexplosive solution takes the
form

yt = a+ byt−1 + cĝt, (11)

where a = 0 because in the structural equations we have omitted intercepts.
We include the intercept term a here and below because under learning agents
will be assumed to estimate its value.

2.3.1 Order One Indeterminacy.

Order one indeterminacy occurs when |λ1| > 1 and the remaining eigenvalues
have norm less than one. Notice this implies λ1 is real; however λi for i > 1
may be complex. For reasons discussed below, in the indeterminate case, we
only consider real eigenvalues. To obtain a nonexplosive solution, we require
that z1t = 0, and that the mds εt satisfy ε̃1t + w̃1t = 0. We now proceed to
develop the general form and common factor representations.

General Form Representations: As is shown in the Appendix, imposing
the restriction z1t = 0 for all t leads to General Form (GF) representations

yt = a + byt−1 + hyt−2 + cĝt + f ĝt−1 + eξt. (12)

where ξt is an arbitrary one-dimensional mds and a = 0. There are actually
two representations of this form, i.e. two distinct nontrivial sets of parameter
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coefficients (b, h, c, d) which yield solutions of this form. These are obtained
by combining z1t = 0 with either the i = 2 or i = 3 equation from (9), i.e.
with

zit = λizit−1 + w̃it + ε̃it (13)

and then using the definition of zt to rewrite the equation in term of yt. The
Appendix gives details. Note that the General Form representations express
the REE as a dependence of the endogenous variables on two lags, current
and lagged intrinsic noise, and a sunspot exhibiting no serial correlation.

Common Factor Representations: As with the general form representa-
tion we impose z1t = 0 and that the mds εt satisfy ε̃1t + w̃1t = 0. There will
be two Common Factor (CF) representations, again obtained by combining
z1t = 0 with (13) for either i = 2 or i = 3. However, we now rewrite (13) as

zit = (1− λiL)
−1(w̃it + ε̃it).

We interpret the noise term on the right to be a sunspot ζt and thus write
zit = ζt with

ζ t = λiζt−1 + ε̆t,

where ε̆t = w̃it + ε̃it. Note that since only one dimension of εt is restricted,
we can take ε̆t to be an arbitrary univariate mds. Combining this with the
restriction z1t = 0 and using the definition of zt yields a CF representation
of the form

yt = a+ byt−1 + cĝt + dζt, (14)

and a = 0. Again there are two CF representations of this form. Note that in
these representations, the endogenous variables depend on one lag, current
intrinsic noise, and a serially correlated sunspot.

For reasons that are now apparent, complex eigenvalues pose difficulties
for common factor representations; if λi is complex, it is not possible to write
the sunspot ζt as a serially correlated process with real damping parameter.
This problem is not insurmountable - in fact we consider it in another pa-
per - however, we feel it is best avoided for now, as our story is well told
by focusing on the real case.9 Therefore, throughout the paper, our analy-

9In the case of complex eigenvalues, one must simultaneously incorporate the nonexplo-
siveness condition z1t = 0 and both complex eigenvalues, thus representing the sunspot as

a VAR. This does not pose a problem; however, once learning is incorporated, difficulties

arise. Specifically, the PLM associated with a complex common factor representation is

underspecified out of equilibrium, as there is no explicit dependence on lagged endoge-
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sis in the indeterminate region pertains to representations obtained via real
eigenvalues.

2.3.2 Order Two Indeterminacy

General Form Representations: Now all eigenvalues are in the unit circle
and thus there is no concern over the nonexplosiveness restriction. Pick
real eigenvalues λi, and λj, where i, j = 1, 2, 3 and i �= j. Combining the
two equations (13) for i and j with the definition of zt we obtain three
representations of the form (12) except that now ξt is an arbitrary two-
dimensional mds. See the Appendix for details on the required (b, h, c, d).

Common Factor Representations: Combining the two i �= j equations
from (13) and defining the VAR sunspot

ζt = (λi ⊕ λj)ζt−1 +

(
w̃it

w̃jt

)
+

(
ε̃it
ε̃jt

)
,

we obtain CF representations of the form (14) except that now of course ζt is
two-dimensional. Again, further details on (b, c) are given in the Appendix.

2.3.3 Discussion

For PR1 and PR3 with γ = 1 the procedure to provide solution representa-
tions could be simplified since πt−1 no longer appears in the structural equa-
tions. πt−1 could thus be dropped from the first-order form of the model.
However, the above analysis does also cover this case. If γ = 1 then in the
determinate case b = 0. Similarly, when γ = 1 and the model is indetermi-
nate, the general form representations satisfy h = 0. In this case one of the
CF representations satisfies b = 0, with a serially correlated sunspot ζt, and
the other CF representation has a serially uncorrelated sunspot with b �= 0.

We close this section with a brief discussion of REERs under policy
rules PR2 and PR4. In the case of PR2, given by (5), the state vari-
able in the first-order form must be enlarged to include xt−1. Then ŷt =

nous variables. This implies that the T-map must be formed using orthogonal projections.

Again, this is straightforward, in theory; however, to compute the eigenvalues of the Ja-

cobian of the T-map, one must differentiate endogenously determined second moments.

We have worked out the details of this analysis for the models considered here, and initial

investigations reveal no stable sunspots. Therefore, due to the technical nature of this

exercise, as well as the fact that it does not appear to add important details to our current

story, we present these results in a different work.
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(xt, πt, πt−1, xt−1, gt, ut)
′ and zt becomes 6× 1. The methodology for obtain-

ing solutions is analogous and in fact the form of the solution representations
for yt = (xt, πt) is as above. For PR4, given by (7), the state vector is written
as ŷt = (xt, πt, it, πt−1, it−1, gt, ut)

′, zt is 7× 1 and yt = (xt, πt, it)
′. However,

the procedure for determining REERs remains analogous.

2.4 Learning

We use expectational stability as our criterion for judging whether agents may
be able to coordinate on specific solutions, including in particular sunspot
equilibria. This is because, for a wide range of models and solutions, E-
stability has been shown to govern the local stability of rational expectations
equilibria under least squares learning. In many cases this correspondence
can be proved, and in cases where this cannot be formally demonstrated the
“E-stability principle” has been validated through simulations. Before giving
details, we provide an overview of E-stability; for further reading see (Evans
and Honkapohja 2001).

The models analyzed in this paper can be written in reduced form as
follows:10

yt = AE∗

t yt+1 +Byt−1 + Cĝt. (15)

We now write E∗

t yt+1 to indicate that we no longer impose rational expecta-
tions, and at issue is how agents form their time t expectations E∗

t . Backing
away from the benchmark that agents are fully rational, we assume that
agents believe the endogenous variable yt depends linearly on lagged en-
dogenous variables, current (and possibly lagged) exogenous shocks ĝt, and
exogenous sunspots. The latter will either be serially uncorrelated or have an
AR(1) structure. Combining these regressors into the vectorXt, we postulate
a perceived law of motion (PLM) yt = Θ′Xt. Agents then use this perceived
law of motion to form their expectations of yt+1. A rational expectations
solution will correspond to one or more values for the parameter vector Θ.

Under real-time learning agents will estimate Θ using an algorithm such
as recursive least squares and these estimates will be updated over time.
Given a particular value for Θ the corresponding expectations E∗

t yt+1 can be
computed, the expectations can be substituted in the reduced form equation
above, and the true data generating process, or actual law of motion (ALM),

10When PR′

1
is used the reduced form also depends on expectations of contemporaneous

endogenous variables E∗

t
yt. This extended reduced form is considered in the Appendix.
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thus determined. If the perceived law of motion is well specified then the ac-
tual law of motion will have the same form: yt = T (Θ)′Xt. In particular, the
ALMwill depend linearly on the same variables as did the PLM. Thus a map,
known as the T-map, is constructed, taking the perceived parameters to the
implied parameters. A fixed point of this map constitutes a representation
of a rational expectations equilibrium.

We note that associated with a given reduced form model there may be
multiple well-specified PLMs, and the specification of the PLM determines
the representation of the REE that agents are trying to learn. For example,
it is reasonable for Xt to include a constant, once lagged y, current ĝ, and
the serially correlated sunspot ζ; in this case agents would be trying to learn
a common factor representation. It is also reasonable for Xt to include a
constant, once and twice lagged y, current and once lagged ĝ, and a mds
noise term ξ; in this case agents would be trying to learn a general form
representation. Finally, we note that a fixed point of the T-map defines not
just an equilibrium, but also a representation of that equilibrium.

Once the T-map is obtained, the stability under learning of a particular
representation can be addressed as follows. Let the equilibrium represen-
tation be characterized by the fixed point Θ∗, and consider the differential
equation

dΘ

dτ
= T (Θ)−Θ. (16)

Notice that Θ∗ is a rest point of this ordinary differential equation. The
representation corresponding to the fixed point is said to be E-stable if it is
a locally asymptotically stable equilibrium of (16). The E-stability principle
tells us that E-stable representations are locally learnable for Least Squares
and closely related algorithms. That is, if Θt is the time t estimate of the
coefficient vector Θ, and if Θt is updated over time using recursive least
squares, then Θ∗ is a possible convergence point, i.e. locally Θt → Θ∗ if and
only if Θ∗ is E-stable. The intuition behind this principle is that a reasonable
learning algorithm, such as least squares, would gradually adjust estimates
Θt in the direction of the actual parameters T (Θt) that are generating the
data. For an E-stable fixed pointΘ∗ such a procedure would then be expected
to converge locally.

The above discussion has implicitly assumed a rest point Θ∗ that is locally
isolated. In this case it is locally asymptotically stable under (16) provided
all eigenvalues of the Jacobian of T at Θ∗ have real parts less than one, and
it is unstable if the Jacobian has at least one or more eigenvalue with real
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part greater than one. Because we are studying sunspot equilibria, the set of
rest points of (16) may have unbounded continua as connected components.
Along these components the T map will always be neutrally stable, and thus
will have at least one eigenvalue equal to unity.11 In this case we say a
sunspot equilibrium representation is E-stable if the Jacobian of the T -map
has eigenvalues with real part less than one, apart from unit eigenvalues
arising from the equilibrium connected components.

We consider separately the determinate and two indeterminate cases.

2.4.1 Determinate case

The real and complex cases can be handled simultaneously. Agents are as-
sumed to have the PLM (11). As indicated above, we make the (fairly stan-
dard) assumption that, for agents forming expectations at time t, the current
value of yt is not in the information set, but all time t exogenous variables, as
well as lagged values of y, are known at t. From the PLM yt = a+ byt−1+cĝt
we compute E∗

t yt+1 = a+ bE∗

t yt+ cE∗

t ĝt+1. Using E∗

t yt = a+ byt−1+ cĝt, and
assuming for convenience that ρ is known so that E∗

t ĝt+1 = ρĝt, yields

E∗

t yt+1 = (I2 + b)a + b2yt−1 + (bc + cρ)ĝt.

Inserting this expression into (15) and solving for yt as a linear function of
an intercept, yt−1 and ĝt yields the T-map given by

a → A(I2 + b)a (17)

b → Ab2 + B (18)

c → A(bc+ cρ) + C. (19)

The relevant Jacobians are given by

DTa = A(I2 + b) (20)

DTb = b′ ⊗A+ I2 ⊗ Ab (21)

DTc = I2 ⊗ Ab+ ρ′ ⊗ A, (22)

where ⊗ denotes the Kronecker product of two matrices.

11The number of unit eigenvalues will be equal to the dimension of these components.
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2.4.2 Order One Indeterminacy

We employ the same notation as above and consider common factor and
general form representations separately. We consider common factor repre-
sentations first because their form is quite similar to the representation of
determinate equilibria.12 In each case we compute E∗

t yt+1 for the assumed
PLM, insert into (15) and solve for yt as a linear function of the explanatory
variables contained in the PLM. We omit the details, which are straightfor-
ward, and simply write down the T-map and corresponding Jacobians.

Common Factor Representations: If the roots are real then ζt is AR(1).
Agents are assumed to have the PLM (14). The T-map is given by equations
(17)-(19) and

d → A(bd+ dλi). (23)

The relevant Jacobians are given by (20)-(22) and

DTd = A(b+ I2(λi)),

where I2 (x) = x⊕ x.
General Form Representations: Agents are assumed to have the PLM

(12). The corresponding T-map is given by equation (17) together with

b → A(b2 + h) +B (24)

h → Abh (25)

c → A(bc+ cρ + d) + C (26)

f → Abf (27)

e → Abe. (28)

The relevant Jacobians are given by (20), (22), DTf = I2 ⊗ Ab, DTe = Ab,
and

DTbh =

(
b′ ⊗ A+ I2 ⊗ Ab I2 ⊗ A

h′ ⊗A I2 ⊗ Ab

)

2.4.3 Order Two Indeterminacy

The analysis is almost the same as for order one indeterminacy. Learning
the CF-representation in the case of order two indeterminacy is affected only

12This is not simple coincidence and helps explain why common factor representations

may be stable when general form representations are not.

16



in that the sunspot is now a VAR so that the T-map in the d variable is
amended to have the form

d → Abd+ Ad(λi ⊕ λj).

The associated Jacobian is

DTd = I2 ⊗ Ab+ (λi ⊕ λj)⊗A.

Analysis of learning the GF-representation in case of order two indeter-
minacy is the same as for order one indeterminacy.

3 Results

We studied stability of general form and common factor sunspots in five
models, which differed only in the specification of the monetary policy rule,
and the models are identified by the number of the corresponding policy rule
as given by equations (3)-(7). The models were analyzed using three different
calibrations of the parameters in the IS-AS curves, as due to (Woodford
1999), (Clarida, Gali, and Gertler 2000) and (McCallum and Nelson 1999);
the relevant parameter values are given in Table 1 below.

Table 1: Calibrations

Author(s) β φ λ
W .99 1/.157 .024

CGG .99 1 .3
MN .99 .164 .3

For convenience in interpreting the numerical results below we note that
1/.157 � 6.3694 .

Also, each policy rule was analyzed both with and without lagged inflation
in the Phillips curve. When lagged inflation was included, the coefficient γ
was set equal to one half. Finally, for all policy rules, the exogenous noise
terms were taken to have damping parameter equal to .9. For each calibration
(and for γ = 1 and .5), a lattice over the square (0, 10) × (0, 10) in policy
space (απ, αx) was analyzed. For PR4 we also computed results for several
values of θ.

Some general results were found across all or most of the policy rules
and calibrations investigated, and are therefore worth summarizing before
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presenting more specific results in detail. Throughout this section we will
use “stable” to mean “stable under learning” as determined by E-stability.

1. In no case were General Form sunspot solutions stable.

2. In the determinate case the unique nonexplosive solution is always sta-
ble under learning, except for PR2, in which unstable cases exist.

3. The explosive case arises only for PR2, and with low γ, for PR1 and
PR′

1.

4. Order two indeterminacy exists only for PR3 and is never stable.

5. Common Factor sunspot solutions exist13 for all policy rules, but are
only stable for PR3 and PR4.

6. Indeterminacy, and stable CF sunspots, arise more frequently with the
purely forward AS curve γ = 1, but do also arise with γ = 0.5.

3.1 Policy Rule 1

As noted in Section 2, policy rule 1 has a natural variant, which we label
PR′

1. We summarize the results for PR1 and PR′

1 in separate subsections
below.

3.1.1 PR1

For ease of exposition, we restate, at the beginning of each subsection, the
specification of the relevant policy rule. PR1 is given by

PR1 : it = αππt + αxxt.

PR1 with γ = 1 (i.e. no lagged inflation in the AS) has been analyzed by
a number of authors, including (Bullard and Mitra 2002) and (Honkapohja
and Mitra 2001). Bullard and Mitra found that the region in policy space
corresponding to E-stability is precisely the region corresponding to determi-
nacy; this result was obtained analytically and is independent of calibration.

13In line with our earlier discussion, the statement “Common Factor sunspot solutions
exist” is now to be interpreted as asserting the existence of CF sunspot representations
based on real roots.
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Because of this result, Bullard and Mitra would recommend this policy rule
if it were feasible. However, as discussed above, it is widely agreed that
current values of inflation and GDP are not available to policymakers. We
include results for this policy rule primarily because it serves as a useful
benchmark. We find that the result of Bullard and Mitra is robust to the
inclusion of inflation inertia in the Phillips curve: in all cases investigated,
determinacy implies stability under learning. In addition, when the model is
indeterminate no solutions are stable, including CF sunspot solutions.

An example lattice is plotted in Figure 1 for the Woodford calibration
with γ = 1. Here and in all figures containing lattice plots, each lattice
point is marked with a symbol indicating properties of the associated steady
state: lattice points associated with determinate steady states are marked
with an ‘×’; lattice points associated with indeterminate steady states and for
which common factor representations exist (i.e. there exist at least two real
eigenvalues) are marked with a ‘∗’, and lattice points associated with indeter-
minate steady states for which no common factor representations exist (i.e.
there exists at most one real eigenvalue) are marked with a ‘·’. Also, if there
exists a stable representation associated with the steady state, the symbol
marking the lattice point is circled. CF sunspots exist for all indeterminate
cases, a finding that extends to the other calibrations with γ = 1.

Figure 1 Here

Figure 2 shows the regions of determinacy and indeterminacy pertaining
to the CGG calibration with γ = .5. The main result that all CF and GF
sunspots are unstable still holds, but the region of determinacy is altered and
here it is no longer the case that CF sunspots always exist. The failure of
CF sunspots to exist seems to depend principally on the inertial term in the
Phillips curve. When γ is set equal to one, all indeterminate steady states
support common factor sunspots. The MN calibration yields much the same
picture as the CGG calibration. Note that the range of policy parameters
displayed does not necessarily coincide with the 10× 10 grid, and also varies
across figures; this was done to emphasize features particular to given figures.

Figure 2 Here

One further result of interest (not shown) is that sufficiently low values of
γ > 0 together with passive response to inflation (low απ) can yield the
explosive case.
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Under our information assumptions, when policymakers use PR1 they ef-
fectively have an information advantage relative to private agents. This is
because policymakers are conditioning policy on contemporaneous endoge-
nous variables, which are assumed not available to private agents when their
forming expectations. This information asymmetry does not arise under PR′

1

to which we now turn.

3.1.2 PR′

1

PR′

1 is given by
PR′

1 : it = απE
∗

t πt + αxE
∗

t xt.

This policy can be thought of as a contemporaneous rule that is feasible even
if current values of the endogenous variables πt and xt are not known at time
t. We continue to make the assumption that all t-dated exogenous variables
and all lagged variables are observed prior to expectations formation. As
discussed further in Section 3.3, below, we are also making the homogeneous
expectations assumption that policymakers and private agents form expec-
tations in the same way. In contrast to our PR1, under PR

′

1 policy makers
and private agents are treated as having the same information set.

In a rational expectations equilibrium Etπt = πt and Etxt = xt. This
implies that the REE, their representations, and the regions of determinacy,
indeterminacy, and explosiveness will be precisely as they were under PR1.
However, out of equilibrium, agents may make errors when forecasting cur-
rent values of the endogenous variables. In particular, because learning
dynamics are in part determined by out of equilibrium behavior, the stabil-
ity properties of the model under PR′

1 may be different than under PR1: see
the Appendix for details on how the learning analysis is altered.

(Bullard and Mitra 2002) analyzed PR′

1, though with a slightly different
interpretation of the timing structure: they assume that expectations formed
at t use only information available at time t− 1. Although this differs from
our assumption that exogenous variables at t are part of the information set,
it can be verified that the E-stability conditions are identical for the two
information assumptions. Bullard and Mitra show, analytically, that their
results for PR1 hold also for PR′

1. In particular, the regions of determinacy
are the same for both policy rules, and, for each policy rule, a steady state
is stable under learning if and only if it is determinate.

We obtain the same correspondence and find that it also extends to the
stability of sunspot solutions. We have already noted that the regions of de-
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terminacy, indeterminacy, and explosiveness are the same for PR1 and PR′

1.
In addition, our numerical analysis indicates that for all parameter combi-
nations considered, all determinate steady-states are stable under learning,
and no stable indeterminacies exist. Our results thus tend to reinforce those
of (Bullard and Mitra 2002), who in consequence recommend Taylor rules of
the form PR′

1 with απ > 1.

3.2 Policy Rule 2

PR2 is given by
PR2 : it = αππt−1 + αxxt−1.

PR2, with γ = 1, was also studied by Bullard and Mitra. Numerically, and
using the Woodford calibration, they found that, unlike PR1, there were
determinate cases for which the REE was not stable under learning. They
concluded that policy rules dependent on lagged output gap and inflation may
not be advisable because agents may fail to coordinate on the equilibrium
even though it is unique. We find that this result is robust to the calibrations
considered here and extends to the specification with inertial inflation in the
Phillips curve. Figure 3 gives an example plot using the CGG calibration
and with γ = .5. In this Figure, lattice points left unmarked correspond to
explosive steady states.

Figure 3 Here

Aggressive response to output gap and inflation may yield explosive steady
states. In fact, using the Woodford calibration one obtains that even passive
response to output gap (αx > .35) together with a Taylor rule (απ > 1) yields
an explosive steady state. In the indeterminate region CF representations
exist but they are not stable.

3.3 Policy Rule 3

PR3 is given by
PR3 : it = απE

∗

t πt+1 + αxE
∗

t xt+1.

Before giving the results we discuss the interpretation of this rule under learn-
ing. Under least squares learning private agents are assumed to recursively
estimate the parameters of their PLM and use the estimated forecasting
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model to form the expectations E∗

t πt+1 and E∗

t xt+1 that enter into their de-
cisions as captured by the IS and AS curves. Under PR3 and PR4 forecasts
also enter into the policy rule. Because we are now relaxing the rational ex-
pectations assumption, one can in principle distinguish between the forecasts
of the private sector, which enter the IS and AS curves, and the forecasts of
the Central Bank, which enter policy rule PR3 or PR4. We will instead adopt
the simplest assumption for studying stability under learning, which is that
the forecasts for the private sector and the Central Bank are identical. This
can either be because private agents and the Central Bank use the same least
squares learning scheme, or it could be because one group relies on the others’
forecasts. In the latter case, for example, the Central Bank might be setting
interest rates as a reaction to private sector forecasts, as in (Bernanke and
Woodford 1997) or (Evans and Honkapohja 2003a). The homogeneous ex-
pectations assumption was also adopted in (Bullard and Mitra 2002).14 Since
we are searching for stable sunspot equilibria, the homogeneous expectations
assumption appears to give the greatest likelihood for finding them.

We now turn to the results. For policy rule PR3, all determinate steady
states are stable and no explosive steady states are observed. However, in
contrast to PR1 and PR2, policy rule PR3 can exhibit stable sunspots, and
the region of stability may include economically reasonable parameter values.
This result corroborates and extends those of (Honkapohja and Mitra 2001),
who showed the existence of stable noisy K-state Markov sunspots for this
policy rule. We discuss the relationship of our results to theirs below.

For the W and CGG calibrations, and for both values of γ, stable common
factor representations exist. The region of stability typically corresponds to
aggressive (“active”) policy response to the output gap and to inflation, i.e.
αx > 1 and απ > 1; however, using the W calibration, even passive policy
can yield stable common factor sunspots. For the MN calibrations, stable
CF representations exist, but not in the 10 × 10 benchmark policy space
(αx > 12 yields stable sunspots).

Consider Figure 4, showing the regions of stability of CF representations
for the Woodford calibration with γ = .5. In this Figure, unmarked lattice
points indicate order two indeterminacy. We see that any combination of ac-
tive or passive policy, with respect to expected inflation and expected output

14The implications of heterogeneous expectations in the context of the New Keyen-
sian monetary model is examined in (Honkapohja and Mitra 2002). This issue is further
discussed in (Evans and Honkapohja 2003a)
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gap, can lead to stable common factor sunspots.15

Figure 4 Here

The results are particularly dramatic for the W calibration, but regions of
stable CF sunspots with plausible policy parameters appear also with the
CGG calibration.

We now relate these results to those found elsewhere in the literature.
(Bullard and Mitra 2002) studied this model with γ = 1, and showed that
all determinate equilibria were stable under learning. Our findings indicate
that this result extends to models that include lagged inflation in the Phillips
curve. Bullard and Mitra also found that for indeterminate steady-states the
MSV solution16 may be stable, and pointed out that whether agents could
learn sunspots in this case was an open question. Clearly the answer to this
question is a resounding yes. In particular, common factor representations
can be thought of as MSV representations together with serially correlated
sunspots, and we have found that these sunspots may be stable.

(Honkapohja andMitra 2001) studied this model, with γ = 1, and demon-
strated that finite state “resonance frequency” sunspots exist and are stable
for a region of the parameter space. These solutions take the form

yt = cĝt + dst

where st is a K × 1 vector representing a K-state Markov process with
transition probabilities that satisfy particular conditions sometimes called
“resonant frequency conditions.” This result is consistent with and, in fact,
suggestive of ours.

In (Evans and McGough 2002b) we show that there is an intimate link
between CF representations and finite-state sunspots in univariate models.
For the current model with γ = 1 our solutions (14) satisfy b = 0 and thus
take the form

yt = cĝt + dζt,

where, in the case of order-one indeterminacy, ζt is an AR(1) process ζt =

15Similar results hold with γ = 1; we report our findings for γ = .5 to emphasize that
inflation inertia in the AS curve does not destabilize the indeterminacy.

16By MSV solution is meant a solution that depends on a minimal number of state
variables. For a discussion see (McCallum 1983) and (Evans and Honkapohja 2001).
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λiζt−1 + ε̆t.
17 Particular choices of the mds ε̆t yield solutions of the form

yt = cĝt + dst with the required transition probabilities. When 0 < γ < 1
our CF solutions take the form

yt = byt−1 + cĝt + dζt,

where now b �= 0. The condition that the AR(1) coefficient is λi, for i = 2, 3,
i.e. equal to a critical eigenvalue, is the resonant frequency condition for
CF solutions. Our PR3 result can thus be thought of as a generalization of
the Honkapohja-Mitra finding: we extend the economic model to the case
γ < 1, in which the model has backward looking components, and we exhibit
and study the more general representations taking the form of CF sunspot
solutions.

(Evans and Honkapohja 2003d) studied optimal discretionary policy in
the model (1)-(2), with γ = 1, and advise an interest rate designed specif-
ically to offset any destabilizing forward looking behavior of agents. Their
recommended interest rate rule takes the form

it = δπE
∗

t πt+1 + δxE
∗

t xt+1 + δĝĝt,

where δπ = 1 + λβφ−1(α+ λ2)−1, δx = φ−1, δĝ =
(
φ−1, λφ−1(α + λ2)−1

)
and

α ≥ 0 parameterizes the weight placed by the policy maker on output relative
to inflation volatility. Note that optimal policy requires a dependence on ĝt
as well as on inflation and output forecasts, but the presence of this term does
not affect determinacy or stability.18 (Evans and Honkapohja 2003d) show
that this rule is invariably determinate and that the REE is always E-stable
and hence stable under least squares learning. This rule is recommended in
preference to other interest rate policies, such as fundamentals based rules
depending only on ĝt, which they show to be unstable under learning even
though they are consistent with the REE corresponding to optimal discre-
tionary policy.

The size of the stable determinacy region surrounding this policy depends
on the structural parameters. We investigated this point by analyzing nine

17If ε̆t is white noise then ζ
t
is a stationary AR(1) process since |λi| < 1. For general

mds ε̆t the process ζ
t
need not be stationary, but ζ

t
will be nonexplosive in conditional

mean (and ζ
t
can be expressed as an absolutely summable infinite moving average process

in ε̆t−s).
18In the reduced form, only the coefficient C of ĝt is affected. This does not affect the

E-stability conditions or the conditions for determinacy, as can be seen from the Appendix.
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lattices over the square (0, 10)×(0, 10) in policy space (απ, αx) corresponding
to all permutations of λ ∈ {.024, .3, 1} and φ ∈ {.164, 1, 1/.157}, with γ = 1.
In each case there are qualitatively similar regions: stable determinacy (Fig-
ure 4, region A) lies at least part way along the horizontal axis for απ > 1
and is bounded above by a downward sloping line, unstable indeterminacy
(Figure 4, region B) lies at least part way along the vertical axis for απ < 1
and is bounded on the right by a downward sloping line. The area of stable
CF sunspots (Figure 4, region C) is the region that remains. However, quan-
titatively we find the following: first, for fixed λ, as φ gets smaller, the region
of stable indeterminacy shifts up, replaced by stable determinacy, and the
region of unstable indeterminacy appears unaffected; second, for fixed φ, as λ
gets smaller, the region of stable indeterminacy shifts up slightly, replaced by
stable determinacy, and again, the region of unstable indeterminacy appears
unaffected.19

The existence of stable sunspots in part of the parameter space pro-
vides an important caveat to following the advice of (Evans and Honkapohja
2003d). Policy makers may think the economy is in a determinate and stable
region of its parameter space and thus that agents will learn the intended
equilibrium; however, if policy makers are wrong about the values of the key
parameters λ and φ, agents may instead coordinate on an inferior sunspot
equilibrium.

Stability and determinacy respect small continuous movements in para-
meter values, and thus for any particular calibration, the Evans-Honkapohja
rule will work well locally. (Evans and Honkapohja 2003d) also show that
the system under learning remains locally stable even when policy makers
are simultaneously updating estimates λ and φ.20 However, numerical re-
sults suggest that the margin for error available to policy makers when at-

19In the case γ = 1 analytic stability results are possible. We find that provided
αx �= 1/φ then necessary and sufficient conditions for the existence of stable sunspots are
given by

γ (1− απ) + αx (1− β) > 0

γ (1− απ) + αx (1 + β) > 2(1 + β)/φ.

These are precisely the same restrictions obtained by (Honkapohja and Mitra 2001) for
noisy finite-state Markov sunspot solutions.

20That is, locally there is asymptotic convergence both of structural parameter estimates
to their true values λ, φ and forecasts E∗

t
xt+1, E

∗

t
πt+1 to their RE values. Hence locally

the economy converges to the REE corresponding to optimal discretionary policy.
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tempting to follow the Evans-Honkapohja rule, can depend critically on the
structural parameters. As an extreme, but perhaps not implausible example,
we obtained results for λ = 1, φ = 6.3694, and γ = 1. The value φ is the
one used in the W calibration, and λ = 1 is within the range of estimates
from the literature mentioned on p. 170, footnote 32, in (Clarida, Gali, and
Gertler 2000).

Figure 5 Here

In Figure 5 we see that a triangle of stable determinacy exists, but it is
bordered by unstable indeterminacy on the left, and, even more ominously,
by stable indeterminacy on the right. We conclude that in some cases learn-
able sunspots abound in regions not far from those corresponding to optimal
policy. Our findings also import a more general warning: simply following a
Taylor rule with aggressive response to expected inflation is not necessarily
stabilizing for the economy. This warning is emphasized for the parame-
ter values used in Figure 5. Note that even for αx = 0, stable sunspots
exist if απ > 1.7. In contrast, if the CGG values are correct then the Evans-
Honkapohja rule is quite robust.

3.4 Policy Rule 4

PR4 is given by

PR4 : it = θit−1 + (1− θ)απE
∗

t
πt+1 + (1− θ)αxxt,

where θ > 0. This policy rule is of particular interest in part because it is
the form of the rule specifically considered in part IV of (Clarida, Gali, and
Gertler 2000). Furthermore, the issue of inertia in policy rules, captured by
θ > 0, has been discussed extensively in the literature. (Clarida, Gali, and
Gertler 2000) use the value θ = 0.68 based on (quarterly) estimates from the
pre-Volker period, but there is no agreement that this is an appropriate value.
On the one hand (Rudebusch 2002) argues that the usual empirical evidence
for monetary policy inertia may well be illusory and that the true value of θ
may be zero or small. On the other hand (Rotemberg and Woodford 1999)
have argued that Taylor-type rules with θ > 1 may be close to optimal.21

Interest rate rules with θ > 1 are often called “superinertial.”

21The superinertial rules considered by (Rotemberg and Woodford 1999) depend on
current inflation and output.
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(Honkapohja and Mitra 2001) analyzed PR4 numerically, for γ = 1, and
found that for the CGG calibration of λ and φ and with their estimated
values of αx, απ and θ for the pre-Volker era, the sunspot solutions that we
call general form representations were unstable under learning. We confirm
this result and we find also that although CF-sunspot solutions do exist,
they are not stable under learning. Figure 6 shows the results for the CGG
calibration of λ and φ with θ = 0.68: in the 10× 10 policy grid for (αx, απ),
there are no stable CF sunspots, while all determinate steady states are
learnable. Furthermore, these results are robust both to the inclusion of
lagged inflation in the Phillips curve, 0 < γ < 1, and to the magnitude of
0 < θ < 1.

Figure 6 Here

However, as with PR3, we find that there are many cases in which stable
CF sunspots exist, and the location of this region in policy space is very
sensitive to the values of structural parameters assumed. Even with the CGG
calibration for λ and φ and with θ = 0.68, there exist stable CF sunspots for
sufficiently large values of απ. Furthermore, for other values of λ and φ we
find that the possibility of stable CF sunspots needs to be taken seriously.
For example, for the values φ = 1/.157 and λ = 1 examined earlier, stable CF
sunspots exist for passive responses to output gap, and aggressive responses
to inflation; further, as θ gets small, the response to inflation required for
stability becomes reasonably valued: see Figure 7 in which we set θ = 0.1.

Figure 7 Here

Because the region of stable indeterminacy depends on the structural pa-
rameters φ and λ, as well as the interest rate smoothing term θ, we again
test the robustness of our results to alternative calibrations. We analyzed
27 lattices over the square (0, 10) × (0, 10) in policy space (απ, αx) corre-
sponding to all permutations of λ ∈ {.024, .3, 1}, φ ∈ {.164, 1, 1/.157}, and
θ ∈ {.05, .5, .9}. For this exercise we set γ = 1. In general, there are two re-
gions of indeterminacy: an unstable region along the vertical axis for απ < 1:
see Figure 7, Region B; and a triangular region of stable CF sunspots in the
southeast corner: see Figure 7, Region C; the remaining region corresponds
to stable determinacy: see Figure 7, Region A. We find that as φ and λ
get smaller, and as θ gets larger, the region of stable indeterminacy shifts
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to the right, replaced by stable determinacy. The unstable region appears
unaffected.22

One conclusion that emerges from this analysis is that while stable sunspots
do exist under PR4 for sufficiently aggressive responses to expected inflation,
the policy maker may hedge against the danger, which depends on the true
values of λ and φ, by setting the smoothing term 0 < θ < 1 to be fairly high.

Finally, it is of interest to examine the case of superinertial rules with
θ > 1. To remain consistent with the superinertial rules already in the
literature, we modify PR4 so as to ensure that the coefficients on expected
inflation and current output gap are positive:

PR′

4 : it = θit−1 + χ
π
E∗

t
πt+1 + χ

x
xt.

We examined equilibria corresponding to a 10×10 lattice over (χ
π
, χ

x
) policy

space, and for θ = 1.1 and 2, and γ = 1 and .5. For the W, CGG, and MN
calibrations, this rule performed well; for all permutations of θ and γ and over
the entire benchmark lattice the corresponding steady states were stable and
determinate. However, stable indeterminacy was found for the alternative
calibration φ = 1/.157, and λ = 1: see Figure 8. The existence of these
stable sunspots is robust to the permutations of θ and γ.

Figure 8 Here

3.5 Discussion

Sunspot equilibria are stable under learning only for Taylor-type policy rules
that depend on forecasts of future inflation, and only for certain solution
representations that we call “common factor” representations. However, for
such forward looking rules stable CF sunspots are abundant. The location of
the region of stable sunspot solutions depends on the structural parameters φ
and λ in the IS and AS curves. When these parameters are large, the region
of stable CF sunspots, in the policy parameter space, includes realistic values
for feedback coefficients in the interest rate rule. Given uncertainty about
the true values for φ and λ, the possibility of stable sunspots appears to

22We did consider the impact of lowering γ. Intuition suggests that including a back-
ward looking component in the AS curve might reduce the possibility of indeterminacy.
However, we find that the region of indeterminacy is unaffected. Interestingly, for values
of θ near .5 we find that lowering γ may destabilize otherwise stable indeterminacy.
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be of genuine concern, and the possibility, in the indeterminate case, of all
solutions being unstable is equally troubling.

Stable CF sunspot solutions can arise even if there are backward looking
components to inflation and even if there is inertia (interest rate smooth-
ing) in the monetary policy rule. This possibility had not been previously
recognized in the literature. Interest rate inertia does, however, increase the
region of stable determinacy relative to the benchmark policy square.

4 Conclusion

This paper has examined the question of whether macroeconomic fluctua-
tions, taking the form of coordination on extraneous exogenous variables,
are likely to emerge under adaptive learning when the economy is character-
ized by New Keynesian IS-AS equations and monetary policy follows a form
of Taylor rule. Both purely forward-looking and hybrid, partly backward-
looking inflation equations were examined. We have emphasized that the
possibility of “sunspot equilibria” that are stable under adaptive learning
depends critically on the representation of the solution, i.e. on the econo-
metric specification used by agents when they estimate and update their
forecasting model.

In many cases stationary sunspot equilibria can be represented either as
“general form” VARs, driven by serially uncorrelated sunspots, or as “com-
mon factor” sunspot solutions, in which the extraneous sunspot variables
are autoregressive processes with resonant frequency coefficients. Common
factor sunspots generalize finite state Markov sunspots, which were an early
focus in the sunspot literature and which have recently been shown to yield
the possibility of stable sunspots in purely forward looking linear models.
In the New Keynesian model, we find that common factor sunspots can in-
deed be stable under learning, in many cases, even though the general form
solutions with serially uncorrelated sunspots are not.

In particular, Taylor-type interest rate rules that depend on forecasts of
future inflation can generate stable common factor sunspot solutions, and
this risk is particularly high when there are strong IS and AS effects. This
possibility arises even if the AS equation includes backward looking com-
ponents and the interest rate rule includes inertia. This result is deeply
troubling since monetary policy is often viewed as forward looking. If the
structural model and its key parameters are known, or can be estimated fairly
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precisely, then an appropriately designed forward looking policy can deliver
a stable determinate equilibrium (indeed an optimal stable equilibrium) and
the sunspot problem will not arise. However, for some structural parameters
the required precision is high and the margin for error small. In contrast,
policy rules depending on forecasts of current output and inflation do not
appear to be subject to these difficulties.
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Appendix
To illustrate the details of the technique we focus on the policy rule PR1

given by (3). In this case

H =




1 + φαx φαπ 0 −1 0
−λ 1 β(γ − 1) 0 −1
0 1 0 0 0
0 0 0 ρg 0
0 0 0 0 ρu


 and F =




1 φ 0 0 0
0 βγ 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1




Order one indeterminacy. This occurs when |λ1| > 1 and the re-
maining eigenvalues have norm less than one. Notice this implies λ1 is real;
however λi for i > 1 may be complex. For reasons discussed above, in the in-
determinate case, we only consider real eigenvalues. To obtain a nonexplosive
solution, we require z1t = 0, and ε̃1t + w̃1t = 0.

General Form Representations: A general form representation is the
usual recursive system describing the equilibrium and is characterized by a
sunspot that forms a martingale difference sequence. Fix i = 2 or 3. We may
then use the nonexplosiveness condition z1t = 0 together with the equation

zit = λizit−1 + w̃it + ε̃it

to obtain the following representation.

yt = (S11

i )−1
(

0 −S13

λiS
i1 λiS

i2 − Si3

)
yt−1 + (S11

i )−1
(

0 0
0 λiS

i3

)
yt−2

−(S11

i )−1S14

i ĝt + (S11

i )−1
(

0 0
λiS

i4 λiS
i5

)
ĝt−1

+(S11

i )−1
(

0
1

)
w̃it + (S11

i )−1
(

0
1

)
ε̃it.

The identities

w̃it =
(
(FS)i4, (FS)i5

)
wt

ξ̃it =
(
Si1, Si2

)
εt

wt = ĝt − ρĝt−1

may be used to place this representation in the form given in the text.
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Common Factor Representations: Again assume |λ1| > 1 and the remain-
ing eigenvalues have norm less than one. Let εt be a mds with ε̃1t + w̃1t = 0.
Pick i = 2 or 3. The REE associated to εt must satisfy the equation

zit = λizit−1 + w̃it + ε̃it,

or
zit = (1− λiL)

−1(w̃it + ε̃it).

We interpret the noise term on the right to be a sunspot ζt and thus write
zit = ζt with

ζt = λiζt−1 + w̃it + ε̃it.

Combining this with the restriction z1t = 0 yields two common factor repre-
sentations of the form

yt = −(S11

i )−1
(

0 S13

0 Si3

)
yt−1 − (S11

i )−1S14

i ĝt + (S11

i )−1
(

0
1

)
ζt.

Order two indeterminacy.
General Form Representations: Now all eigenvalues are in the unit circle

and thus there is no concern over the nonexplosiveness restriction. Pick real
eigenvalues λi, and λj. We can write

(
zit
zjt

)
= (λi ⊕ λj)

(
zit−1
zjt−1

)
+

(
w̃it

w̃jt

)
+

(
ε̃it
ε̃jt

)
.

This can be rearranged to yield the following representation:

yt = (Si1
j )

−1

(
λiS

i1 λiS
i2 − Si3

λjS
j1 λjS

j2 − Sj3

)
yt−1 + (Si1

j )
−1

(
0 λiS

i3

0 λjS
j3

)
yt−2

−(Si1
j )

−1Si4
j ĝt + (Si1

j )
−1

(
λiS

i4 λiS
i5

λjS
j4 λjS

j5

)
ĝt−1

+(Si1
j )

−1

(
w̃it

w̃jt

)
+ (Si1

j )
−1

(
ε̃it
ε̃jt

)
.

Common Factor Representations: Again, pick real eigenvalues λi, and λj.
Then we may define the VAR sunspot

ζt = (λi ⊕ λj)ζt−1 +

(
w̃it

w̃jt

)
+

(
ε̃it
ε̃jt

)
.
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The resulting CF representation has the form

yt = −(Si1
j )

−1

(
0 Si3

0 Sj3

)
yt−1 − (Si1

j )
−1Si4

j ĝt + (Si1
j )

−1ζt.

Learning. For PR1 the reduced form is(
xt

πt

)
= AEt

(
xt+1

πt+1

)
+B

(
xt−1

πt−1

)
+ C

(
gt
ut

)
,

where

A =

(
δ φ(1− απβγ)δ
λδ βγ + λφ(1− απβγ)δ

)

B =

(
0 −φαπβ(1− γ)δ
0 β(1− γ)− λφαπβ(1− γ)δ

)

C =

(
δ −φαπδ
λδ 1− λφαπδ

)
,

and δ = (1 + φ(αx + λαπ))
−1.

For PR′

1 the reduced form is(
xt

πt

)
= AE∗

t

(
xt+1

πt+1

)
+B

(
xt−1

πt−1

)
+ C

(
gt
ut

)
+DE∗

t

(
xt

πt

)

where

A =

(
1 φ
λ βγ + λφ

)

B =

(
0 0
0 β(1− γ)

)

C =

(
1 0
λ 1

)

D =

(
−φαx −φαπ

−λφαx −λφαπ

)

For all of our policy rules the CF-PLM is given by

yt = a+ byt−1 + cĝt + dζ t
ζt = λiζt−1 + ε̆t.
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The associated T-map is

a → (A(I2 + b) +D)a

b → Ab2 +Db+B

c → A(bc+ cρ) +Dc+ C

d → A(bd+ dλi) +Dd

The relevant Jacobians are given by

DTa = A(I2 + b) +D

DTb = b′ ⊗ A+ I2 ⊗Ab+ I2 ⊗D

DTc = I2 ⊗Ab+ ρ′ ⊗ A+ I2 ⊗D

DTd = Ab+ λi ⊗ A+D.

The E-stability conditions are that the real part is less than 1 for every eigen-
value of DTi, i = a, b, c, d. The general form case can be handled similarly.
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Figure 1: Policy Rule 1, Woodford Calibration, γ=1
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Figure 2: Policy Rule 1, CGG Calibration, γ=.5
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Figure 3: Policy Rule 2, CGG Calibration, γ=.5

  απ

α x





1 1.2 1.4 1.6 1.8 2
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
Figure 5: Policy Rule 3, λ=1, φ=1/.157
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Figure 7: Policy Rule 4, φ=1/.157, λ=1, θ = .1

απ

α x

B 

A 

C 



0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10
Figure 8: Policy Rule 4', φ = 6.3694, λ = 1, γ = 1, θ = 2
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