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Deutsche Zusammenfassung

Auf Längenskalen von einem Fermi (1 fm“ 10´15m), was ungefähr dem Radius eines
Protons entspricht, ist die starke Wechselwirkung die vorherrschende Kraft des Univer-
sums. Gemeinsam mit der elektromagnetischen und schwachen Wechselwirkung ist sie
Teil des Standardmodells der Teilchenphysik, welches unter Ausschluss der Gravitation
sämtliche bekannte Teilchen und deren Interaktionen beschreibt. Der starken Wechsel-
wirkung kommt dabei die Rolle des Zusammenschlusses fundamentaler Materie zuteil.

Die Geschichte der Theorie hinter dieser starken Kraft reicht mehr als 60 Jahre
zurück. Zu einer Zeit, in der immer neue Teilchen in Experimenten entdeckt wurden,
gelang es M. Gell-Mann und J. Ne’eman unabhängig voneinander diese schematisch
miteinander in Verbindung zu setzen. Als Teil einer SU(3)-Flavor-Symmetrie formten
Baryonen so Oktetts und Dekupletts, Mesonen Oktetts und Singlets. Das Ω´ Baryon,
welches von Gell-Mann vorhergesagt werden konnte um das Baryon Dekuplett zu ver-
vollständigen, wurde 1964 am Brookhaven National Laboratory gemessen. 1969 wurde
Gell-Mann dafür der Nobelpreis der Physik verliehen, for his contributions and discov-
eries concerning the classification of elementary particles and their interactions.

Die Bausteine der SU(3)-Flavor-Darstellung, sogenannte Quarks, blieben jedoch in
Experimenten unbeobachtet. Sie sollten in drei Generationen existieren (up, down,
strange) und fraktale Ladungen (2{3, ´1{3, ´1{3) aufweisen. So würden Baryonen
aus je drei Quarks und Mesonen aus einem Quark-Antiquark-Paar bestehen. Doch
unter anderem bereitete das Ω´ erneut Probleme. Mit Spin 3{2 und als gebundener
Zustand von drei strange Quarks (sss) sollte dieses eine symmetrische Wellenfunktion
aufweisen, was jedoch dem für Fermionen geltenden Pauli-Prinzip widersprach. Lö-
sung bat ein zusätzlicher Freiheitsgrad für Quarks, die sogenannte Farbladung. Diese
ermöglicht die Unterscheidung der Quarks in mindestens einer Quantenzahl, wodurch
ihre Wellenfunktionen wieder antisymmetrisch sind. Innerhalb dieser zusätzlichen exak-
ten SU(3)-Farbsymmetrie müssen Hadronen dann als farbneutrale Zustände vorliegen.
Baryonen sind so antisymmetrisch in Farbindizes (εabcqaqbqc) und Mesonen symmetrisch
(qaq̄a) realisiert. Dieser zusätzliche Freiheitsgrad ist namensgebend für die Theorie der
starken Wechselwirkung, die sogenannte Quantenchromodynamik (QCD).

Bei der Formulierung der Quantenchromodynamik als nicht-abelsche Eichtheorie mit
Symmetriegruppe SUp3qC erhält das Eichfeld durch die acht Generatoren der Gruppe
acht 4-Vektorpotentiale, die acht Gluonenfeldern entsprechen. Die Gluonen sind die
Träger der starken Kraft und erlauben es den Quarks durch Emission oder Absorp-
tion ihre Farbe zu ändern. Sie treten jedoch nicht nur in Verbindung mit den Quarks,
sondern auch in antisymmetrischer Form im Feldstärketensor auf. Dadurch kommt
es zu dreifach und vierfach Gluon-Gluon-Wechselwirkungen im Eichfeld-Term der La-
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viii Deutsche Zusammenfassung

grangedichte. Diese Interaktionen führen zu charakteristischen Eigenschaften der QCD.
Zum einen führen sie auf kleinen Abständen, bei der räumlichen Separation eines Quark-
Antiquark-Paares dazu, dass sich die Gluonenfelder nicht ausbreiten, wie man es aus
der Elektrodynamik erwarten würde, sondern sich gegenseitig anziehen. Das Quark-
Antiquark-Paar ist also durch einen konstanten String von gluonischen Feldlinien, und
dadurch mit einer konstanten Kraft, miteinander verbunden. Man sagt Quarks unter-
liegen dem sogenannten Confinement ( “Gefangenschaft” ). Das Trennen eines solchen
Paares führt bei genügend Energiezufuhr nur zur Erzeugung eines neuen Quark-Antiquark
Paares und es wird angenommen, dass, obwohl der analytische Beweis fehlt, diese Eigen-
schaft Grund dafür ist, warum einzelne Quarks unbeobachtet bleiben. Zum anderen
führen sie zur Abnahme der Kopplungskonstante für zunehmende Energien oder kleinere
Abstände. Quarks und Gluonen verhalten sich in diesen Regionen wie in einer freien
Theorie. Diese Eigenschaft bezeichnet man als asymptotische Freiheit. Dadurch lässt
sich die QCD für kleine Energien nicht als Entwicklung in ihrer Kopplung untersuchen.
Vorgänge in diesen Bereichen, wie die Formation des Hadronenspektrums, bleiben für
die Störungstheorie unzugänglich. Anders als für den Fall der Quantenelektrodynamik
ist die QCD streng nicht-perturbativ. Für die Entdeckung des Aspekts der asymptotis-
chen Freiheit erhielten D. Politzer, F. Wilczek und D. Gross 2004 den Nobelpreis der
Physik.

Eine der wenigen Methoden, die in der Lage sind die Quantenchromodynamik auch
auf solch kleinen Energieskalen ohne Annahmen zu untersuchen, sind sogenannte Gitter-
eichtheorien. Hier wird die Theorie der QCD diskretisiert und auf ein vierdimension-
ales, endliches, euklidisches Raumzeit-Gitter gelegt. Wichtig ist dabei erst einmal nur,
dass die Theorie im Kontinuum a Ñ 0 wiederhergestellt wird. Die exakte Form der
Diskretisierung ist damit nicht eindeutig und erlaubt gewisse Freiheiten. Allen gemein
sind die Vorteile der Gitterregularisierung : Durch den endlichen Gitterabstand a er-
hält die Theorie einen ultravioletten Cutoff, wodurch keine Divergenzen auftreten. Die
endliche euklidische Raumzeit ermöglicht darüber hinaus die exakte Berechnung der in
der Feldtheorie auftretenden Pfadintegrale. Das Gitter erhält darüber hinaus die lokale
SUpNcq-Eichinvarianz und viele der Symmetrien, die verletzt sind, werden im Kontin-
uum wiederhergestellt und stellen damit also kein größeres Problem dar. Dies ist nicht
der Fall für die chirale Symmetrie. Diese wird in der wahrscheinlich prominentesten
Diskretisierung der Fermionenwirkung, der sogenannten Wilson-Fermionenwirkung, ex-
plizit gebrochen und im Kontinuum nicht wiederhergestellt. Ursache dieses Symme-
triebruchs auf dem Gitter ist ein zusätzlich eingeführter Term, der wiederum ein anderes
Gitterartefakt kontrollieren soll. Diese beiden Umstände werden im Nielsen-Ninomiya-
Theorem miteinander verknüpft. Danach stellen sie zwei von insgesamt vier Konse-
quenzen der Fermion-diskretisierung dar, von denen stets eine unvermeidlich ist. Heute
existieren auch Diskretisierungen, die versuchen diesen Effekt zu mildern oder tatsächlich
chirale Symmetrie im Kontinuum wiederherzustellen.

Die unverkennbaren Stärken der Gitter-QCD erlauben die Untersuchung einer Viel-
zahl interessanter Fragestellungen. So können zum Beispiel unter Abwesenheit von
Fermionen, mit reiner SUp3q Eichtheorie, die Wechselwirkungen zwischen Gluonen oder
Quark-Antiquark-Paaren untersucht werden. Dieser Bereich ist dem Experiment un-
zugänglich und trägt zum Verstehen von Confinement oder der Formation von Hadronen
bei. Mit Hilfe experimenteller Daten gelingt es ferner gesamte Spektren beobachteter
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Hadronen auf dem Gitter zu berechnen. Das unterstützt nicht nur die Annahme der
QCD als korrekte Theorie der Teilchenphysik überall dort, wo Gitter und Natur übere-
instimmen, sondern mag vielleicht auch eine Physik jenseits des Standardmodells im-
plizieren, wo dies nicht der Fall ist. Auch die QCD-Phasenstruktur lässt sich für
hohe Temperaturen oder nicht verschwindende Dichten untersuchen. Das Auflösen des
Columbia Plots, der chirale Phasenübergänge für verschiedene Flavor-Setups zusammen-
fasst, sei da nur ein Beispiel für eine moderne Problemstellung.

Neben einer explizit gebrochenen chiralen Symmetrie, die auf dem Gitter in der
Regel in Kauf genommen wird, existieren noch weitere Umstände, die Gittersimulatio-
nen verkomplizieren. Im Vordergrund steht der immense Aufwand, der benötigt wird,
um letztendlich Aussagen über das Kontinuum tätigen zu können. Einer der größten
Vorteile des Gitters - die Möglichkeit Pfadintegrale exakt zu berechnen - verlangt nach
einer euklidischen Raumzeit. Denn trotz der endlichen Ausdehnung des Hyperwür-
fels ist der Parameterraum der Pfadintegrale zu groß für eine praktische Simulation.
Während die fermionischen Freiheitsgerade ausintegriert werden können, ist das System
dennoch durch die Eichfreiheitsgrade bestimmt. Es werden sogenannte Monte-Carlo-
Methoden eingesetzt, um den Raum der möglichen (Eich-)Feldkonfigurationen auf eine
für das Pfadintegral relevante Teilmenge zu reduzieren. Das ist nur in einer euklidischen
Raumzeit möglich und, zum Beispiel, im Falle eines vorhandenen chemischen Potentials
selbst dann nicht. Zusätzlich wird diese Aufgabe gegebenenfalls durch Fermionendeter-
minanten erschwert. Diese tragen nach dem Ausintegrieren der Fermionenfreiheitsgrade
zum Eichintegral bei und erfordern selbst wieder großen numerischen Aufwand. Mit
kleiner werdenden Quarkmassen werden die Fermionenmatrizen beinahe singulär, so-
dass die iterativen Prozesse zu deren Bestimmung wesentlich langsamer konvergieren
und somit viel Zeit in Anspruch nehmen. Das Berechnen der Eichfelder auf diese Weise
erfordert den Einsatz moderner Supercomputer.

Unter anderem aus diesen Gründen arbeiten auch heute noch Gittersimulationen mit
unphysikalischen Quarkmassen. In der Hadronenspektroskopie werden typischerweise
Simulationen für Pionmassen von 200 - 300 MeV angeführt, welche wesentlich günstiger
sind, als am physikalischen Punkt. Der naive Kontinuumslimes a Ñ 0 wird dadurch
jedoch um die Notwendigkeit eines zusätzlichen chiralen Limes erweitert. Um die Ex-
trapolation allein von Gitterrechnungen ausgehend zu motivieren, muss der physikalische
Punkt dann immer noch ansatzweise erreicht werden. Ferner muss sichergestellt werden,
dass sich physikalische Begebenheit und Beobachtungen währenddessen nicht ändern.

Darüber hinaus stellte die euklidische Zeit des Gitters für Streuprozesse lange ein
Problem dar. Die darin auftretenden Resonanzen sind im Gegensatz zu stabilen Zustän-
den (im Rahmen der starken Wechselwirkung) keine Eigenzustände des Hamiltonians
und können nicht direkt mit euklidische Korrelatoren untersucht werden. Ihre Eigen-
schaften sind durch Streu- und Übergangsamplituden definiert, die wiederum nur in
Minkowski-Zeit vorliegen. Eine analytische Fortsetzung der euklidischen Korrelations-
funktionen zum Minkowski-Raum ist für kleine Energien zwar über chirale Störungs-
theorie möglich, wegen der Auflösung der Korrelatoren selbst jedoch häufig nicht in
vernünftigem Maße. Großes Aufsehen innerhalb der Gittergemeinschaft gewann 1991
die von M. Lüscher gefundene Methode um über Gitterrechnungen indirekt Streuam-
plituden berechnen zu können. Darin wird das diskrete Energiespektrum euklidischer
Zwei-Teilchen-Zustände im endlichen Volumen mit der elastischen Streuamplitude im
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unendlichen (Minkowski-)Volumen in Verbindung gebracht. Die Lüscher-Methode wurde
seither um inelastische Streuungen erweitert und ihre Anwendung stellt einen moder-
nen Zweig der Hadronenspektroskopie dar. Der Umfang dieser Methode auf Basis von
Gitterrechnungen ist jedoch um ein Vielfaches aufwändiger, verglichen mit der kon-
ventionellen Spektroskopie gebundener Zustände. Es Bedarf einer hervorragenden Au-
flösung verschiedener Zwei-Teilchen-Zustände und Simulationen auf mehreren Volumina
sind essentiell. Die Zwei-Teilchen-Zustände hängen dabei, unter Anderem, von der Pion-
masse ab, wodurch sich Ergebnisse für leichtere Pionen eventuell komplett verändern.
Die Berechnung des einfachsten Streuprozess ππ Ñ ρ Ñ ππ liegt so erst seit „2004 im
Rahmen der numerischen Möglichkeiten.

An großem Interesse, sowohl theoretisch als auch experimentell, erfreut sich aktuell
die Erforschung exotischer Hadronen. So werden jene Hadronen bezeichnet, die vom
konventionellen Quarkmodell (qq̄ bzw. qqq) abweichen oder Quantenzahlen besitzen, die
nicht mit dem Quarkmodell vereinbar sind. Im Fall von Mesonen kann es sich so alter-
nativ um einen Aufbau rein aus Gluonen (gg), einem zusätzlichen Gluon (qgq̄) oder zwei
Quark-Antiquark-Paaren halten (qqq̄q̄). Kandidaten für solch einen exotischen Aufbau
sind meist Zustände nahe der jeweiligen Mehr-Teilchen-Schwellen mit den entsprechen-
den Zerfallskanälen oder solche, deren Beobachtungen stark der theoretischen Erwartung
widersprechen. Eines der besten Beispiele ist das Tetraquark ZCp3900q, welches 2013
unabhängig von BES III und dem Belle-Experiment bestätigt wurde. Dieser geladene
Zustand zerfällt in ein Pion (π˘) und ein J{ψ-Meson, was auf ein vorhandenes charm-
anticharm-Paar schließen lässt. Die Ladung des Zustands ist nur durch die zusätzliche
Anwesenheit eines leichten Quarkpaares möglich, wodurch der Inhalt des ZCp3900q min-
destens vier Quarks umfassen muss. Ein aktuelles Beispiel für ein exotisches Baryon sind
die 2015 von der LHCb-Kollaboration am CERN identifizierten Pentaquarks P`C p4380q
und P`C p4450q, die als kurzlebige Zustände im Zerfallskanal Λ0

b Ñ J{ψK´p auftreten.
Im Fokus dieser Arbeit liegen jedoch andere Tetraquark-Kandidaten. Zum einen

wird das a0p980q untersucht. Es ist Teil des auf theoretischer Ebene schlecht verstande-
nen Nonetts leichter skalarer Mesonen mit Quantenzahlen IpJP q “ 1p0`q. Diese werden
im nicht-relativistischen Quarkmodell, neben 1`´, 1`` und 2``, als P -Wellen iden-
tifiziert und sollten gegenüber den pseudoskalaren Mesonen und Vektormesonen ohne
Bahndrehimpuls, 0´` und 1´´, den S-Wellen, wesentlich höhere Massen aufweisen als
sie experimentell gefunden wurden. Ferner ist die Massenhierachie der Zustände inner-
halb des Nonetts invertiert zu der, die man von der konventionellem Quark-Antiquark
Interpretation erwarten würde. Es liegt eine Massenentartung zwischen f0p980q und
a0p980q vor, wobei im qq̄-Bild das isosinglet σ und das isotriplet a0 entartet sein sollten.
Die Interpretation der Mesonen dieses Nonetts als Tetraquarks löst das beobachtete Bild
beinahe natürlich auf. Darin würde das σ aus einem zusätzlichen leichten Quark Paar
bestehen, wohingegen das f0 und a0 um einen zusätzliches strange Quark Paar erweitert
würden. Die Massenhierarchie wäre invertiert, wie beobachtet, und die Massenentartung
zwischen f0 und a0 wäre durch den gemeinsamen strange-Inhalt ebenso erklärt.

Sehr verwandt zu diesem Problem verhält sich die Situation um das D˚s0p2317q
herum. In der konventionellen Quark-Antiquark-Intepretation ist dieses Meson ein cs̄-
Zustand, wird jedoch unterhalb der DK-Schwelle beobachtet, genauso wie sein Partner
Ds1p2460q unterhalb der D˚K-Schwelle beobachtet wird. Die Nähe der beiden Zustände
zueinander, sowie ein Verhalten ähnlich des a0p980q knapp unter der KK̄-Schwelle, sind
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mitunter Motivation für eine Tetraquark-Interpretation der beiden Zustände. Ferner
werden beide DsJ als leichter beobachtet als sie von Modellen oder Gitterberechnungen,
die dem konventionellen Ansatz folgen, vorhergesagt werden.

Diese Dissertation ist wie folgt aufgebaut. Kapitel 1 widmet sich erneut der Moti-
vation der vorliegenden Arbeit mit Fokus auf der Gitterdiskretisierung sowie der Unter-
suchung möglicher Tetraquark-Kandidaten in deren Rahmen. Im zweiten Kapitel wird
ein vorangehendes Wissen der Quantenfeldtheorie angenommen, sodass wir uns umge-
hend mit den theoretischen Grundlagen der Gitterdiskretisierung beschäftigen können.
In gewohnter Weise besprechen wir separat den gluonischen und fermionischen Anteil
der QCD Wirkung. In beiden Fällen gelangen wir von einer naiven Diskretisierung
zu Wilsons ursprünglicher Formulierung und besprechen anschließend Alternativen und
Wirkungen mit verbessertem Kontinuumslimes. Daraufhin erläutern wir schematisch
stochastische Integrationsmethoden die zur Lösung des Gitter-QCD-Pfadintegral ver-
wendet werden, bei denen man sich effektiv auf eine relevante Teilmenge von Eichfeld-
konfigurationen beschränkt. Die Grundlagen der Gitter-QCD schließen wir mit dem
Kontinuumslimes ab, auch wenn dieser im Rahmen dieser Arbeit keine Anwendung
findet.

In Kapitel 3 erweitern wir dann die theoretischen Grundlagen der Mesonenspek-
troskopie auf die Untersuchung eventueller Vier-Quark-Zustände. Dabei bedienen wir
uns dem Beispiel des a0p980q und schildern zusätzliche Schwierigkeiten, die bei einer
solchen Untersuchung auftreten. Anders als bei simplen Grundzuständen sind wir bei
diesen Kandidaten dazu gezwungen, idealerweise das gesamte Zwei-Teilchen Spektrum
der entsprechenden Quantenzahlen aufzulösen. Dazu verwenden wir eine Basis von
Erzeugungsoperatoren, die sowohl die Zwei-Teilchen-Zustände auflösen soll, als auch
den entsprechenden Kandidaten auf einen Zwei- oder Vier-Quark-Inhalt hin model-
lieren soll. Generell unterscheidet man dabei den Aufbau der Tetraquarks. Zwei eng
gebundene Quark-Antiquark-Paare, bei denen die Restkräfte zu einem gebundenen Vier-
Quarkzustand führen, bezeichnet man als mesonisches Molekül. Sind die beiden Quarks
zu einem Diquark und die beiden Antiquarks zu einem Antidiquark zusammengebunden,
so stellt der gebundene Diquark-Antidiquark-Zustand erneut ein mögliches Farbsinglett
dar. Häufig wird mit der Verwendung des Begriffs ‘Tetraquark’ auf eine solche Konfigu-
ration referiert. Wir nutzen diesen jedoch umfangreicher als generelle Bezeichnung eines
Vier-Quarkzustandes. Darüber hinaus führen wir in diesem Kapitel detailliert die ver-
wendeten Techniken zur Abschätzung von Quarkpropagatoren auf dem Gitter ein. Jede
besprochenen Technik ist ein relevantes Element dieser Arbeit und zur Untersuchung
des Gesamtbildes nicht zu vernachlässigen.

Kapitel 4 beschäftigt sich mit technischen Aspekten dieser Arbeit. So bestimmen
wir zum einen eine charm-Quarkmasse innerhalb unseres Nf “ 2 ` 1-Ensembles, in
dem wir pseudoskalare Mesonen so anpassen, dass sie mit den Energien der erwarteten
open-charm-Mesonen übereinstimmen. Dies ermöglicht uns dann im späteren Verlauf
die qualitative Untersuchung eines Kandidaten für das D˚s0p2317q. Zusätzlich unter-
suchen wir eine Vielzahl verschiedener Möglichkeiten, um die Elemente der für uns rel-
evanten Matrix von Korrelationsfunktionen zu berechnen. Diese Methoden entsprechen
unterschiedlichen Kombinationen der in Kapitel 3 eingeführten Propagator-Techniken
und bilden das Fundament jeder anschlißenden Analyse. Es ist daher von besonderer
Wichtigkeit die effizienteste Strategie zur Berechnung jedes einzelnen Elements zu bes-
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timmen, da bereits einzelne problematische Fälle Auswirkungen auf die gesamte Matrix
mit sich bringen. Die Klasse jener problematischer Kandidaten identifizieren wir im Ver-
lauf dieser Arbeit genauer und behandeln sie in diesem Kapitel noch einmal gesondert.

Das fünfte Kapitel ist das Letzte dieser Arbeit und präsentiert die Resultate ver-
schiedener Analysen zu den beiden untersuchten Tetraquark-Kandidaten a0p980q und
D˚s0p2317q. Wir betrachten dabei verschiedene Unterprobleme der jeweiligen Kandi-
daten und legen so eine umfangreiche Analyse der berechneten Daten aus. Abschließend
fassen wir Erkenntnisse und Ergebnisse dieser Arbeit zusammen und geben einen Aus-
blick auf zukünftige Forschungsperspektiven.



1
Introduction

Quantum Chromodynamics (QCD) is the established theory of strong interactions. It
is based on quarks and gluons as fundamental constituents of hadronic matter, such as
mesons and baryons. Its formulation as a non-abelian gauge theory makes the mediators
of the strong force, the gluons, go through self-interactions. Through these interactions
the coupling of QCD decreases for increasing energies. The feature of asymptotic freedom
hence dominates QCD at short distances or large energies, where quarks and gluons
interact only weakly. In this region a perturbative expansion in the QCD coupling
becomes possible. At energies below the QCD scale ΛMS « 220 MeV the coupling
becomes too large so that perturbative studies can not be applied. To obtain insights on
processes below this scale, e.g. the hadronic spectra, a non-perturbative approach has
to be considered.

Lattice QCD, originally proposed by K. Wilson [1], provides an ultraviolet and in-
frared cutoff for the theory by defining a shortest distance a in an enclosed volume
L3 ˆ T . The ideal hierarchy of scales being

ΛIR “ L´1 ! mπ, . . . ,mD,mB ! a´1 “ ΛUV. (1.1)

The regularization is realized by defining the theory on a finite, four-dimensional Eu-
clidean spacetime grid. On this grid the path integral formulation of quantum field
theory is utilized, where path integrals become finite objects. In analogy to statistical
mechanics, stochastic integration methods, such as Markov chain Monte Carlo methods,
are used to compute these integrals. The inclusion of dynamical quarks is a delicate
task during this process, so that even at modern times unphysically heavy light quarks
are used for simulations. The continuous theory is then recovered by sending the lat-
tice spacing a Ñ 0 while keeping the box size L3 ˆ T finite. As a consequence of the
heavy quarks employed throughout computations, also the limit mq Ñ mphys.

q has to be
studied.

Hadron spectroscopy is a modern branch of lattice QCD studies. Hadrons are bound
states of QCD, composed of quarks and gluons. They are colorless objects and can be
divided in two sub-categories, baryons and mesons. In the conventional quark model
the former states are composed of three valence quarks or antiquarks, each with differ-
ent color, while the latter are composed of a valence quark antiquark pair1. Studying
hadronic spectra from first principles by lattice QCD is a vital tool for modern physics.
The computation of experimentally well established particles is an important benchmark

1Emphasize on valence quarks is given to implicitly include gluons as well.

1



2 Introduction

test to the theory of QCD. Reproducing experimentally measured spectra by lattice cal-
culations is one of the strongest indications that QCD is the correct theory to describe
nature at this scale we have. Even though pions appear as unphysically heavy particles,
a lot of computational power can be invested to perform a chiral extrapolation or to
provide a qualitative analysis of the respective spectra [2, 3, 4, 5, 6, 7]. In these studies
lattice spectroscopy also occasionally advances to predict new states that have not been
observed in experiments or finds significant deviations from those, possibly indicating
physics beyond the conventional quark model.

In addition to the just mentioned hadronic content (εabcqaqbqc and qaq̄a) there are
also other configurations that may apply to nature [8, 9]. For instance, there are in
principle no limitations to the number of quarks inside a hadron, as long as a color
neutral state is preserved. Such exotics experienced a lot of attention in recent years
fueled by experimental evidence. A prominent example is the discovery of the Zcp3900q,
which was simultaneously measured by Belle and BESIII [10, 11] in e`e´ Ñ π`π´J{ψ.
A significant peak in the π˘J{ψ mass spectrum, that couples to charmonium and has
electric charge, was seen. This suggests a state containing more quarks than just a
charm and anticharm, and is widely believed to be a tetraquark state. The first ob-
servation of a pentaquark was reported by the LHCb collaboration at CERN [12]. In
Λ0
b Ñ J{ψ K´ p the decay of the Λ0

b was measured to sometimes go through inter-
mediate states (P`c p4380q and P`c p4450q) instead of decaying directly into mesons and
baryons.

Hadron spectroscopy in the framework of lattice QCD can provide important insights
to understand such exotic structures. By defining well-suited creation operators the
eigenstates of the QCD Hamiltonian can be studied by Euclidean correlation functions.
They contain contributions from all hadronic excitations with quantum numbers of
the operators involved. Extracting the leading and sub-leading exponentials does then
allow to resolve the spectrum of interest. For example in the absence of quarks, in a
pure SUp3q gauge theory, the spectrum of glueballs below 4GeV has been extrapolated
to the continuum [13]. For heavy quarks the Born-Oppenheimer approximation can be
utilized to study the binding of two dynamical quarks, which suggests a udb̄b̄ tetraquark
in the scalar channel [14, 15]. However, such investigations with fully dynamical quarks
unfold to be far more complicated.

While stable hadrons well below decay thresholds are in general save to study on the
lattice, excited and exotic hadrons as well as resonances pose a more sophisticated issue.
It was indicated above, that signals for excited mesons are only found in sub-leading
contributions to the Euclidean correlator. To obtain insights on these states one requires
a large set of operators that yield high angular momenta, allow spin identification and
still provide stable results. Resonances are not eigenstates of the Hamiltonian and need
to be extracted indirectly. This turns out to be a tremendous task that requires large
sets of operators and several lattice volumes to work as intended [16, 17]. Furthermore
is this procedure highly sensible to thresholds, and analyses may change entirely with
decreasing pion masses. Exotic mesons are to be found somewhere in between. Heavy
tetraquark states (commonly referred to as XYZ-states) with experimental evidence,
like the Zcp3900q, are exciting candidates to study on the lattice. However, their masses
exceed typical lattice scales and, more importantly, they lie above several two-particle
thresholds. Thus, their investigation also relies on extensive operator sets, aimed to
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resolve several compact two-particle states in addition to the identification of a possibly
exotic state. Although experimentally confirmed, first studies on the Zcp3900q neglecting
coupled-channels find no candidate [18, 19, 20], surely motivating more work into this
direction.

The topic of this thesis is the investigation of scalar tetraquark candidates from
lattice QCD. It is motivated by a previous study [21, 22, 23], originating in the twisted
mass collaboration and continues the project [24, 25, 26, 27, 28]. The initial tetraquark
candidate of choice is the a0p980q, an isovector in the nonet of light scalars (JP “ 0`).
This channel is still poorly understood. It displays an inverted mass hierarchy to what
is expected from the conventional quark model and the a0p980q and f0p980q feature a
surprising mass degeneracy, cf. Figure 1.1. For this reasons the a0p980q is a long assumed
tetraquark candidate in the literature [29, 30, 31, 32].

We follow a methodological approach by studying the sensitivity of the scalar spec-
trum with fully dynamical quarks to a large basis of two-quark and four-quark creation
operators. Ultimately, the candidate has to be identified in the direct vicinity of two
two-particles states, which is understandably inevitable for a tetraquark candidate. To
succeed in this difficult task two-meson creation operators are essential to employ in
this channel. By localized four-quark operators we intend to probe the Hamiltonian on
eigenstates with a closely bound four-quark structure.

The thesis is structured as follows. In Chapter 2 we introduce the basic principles
of the lattice regularization of QCD. We follow a didactic approach by introducing a
naïve discretization first and eventually ending up with Wilsons formulation. Improved
and alternative actions are presented and the stochastic solution to path integrals is
motivated. Although not performed in this work, the continuum limit is discussed at the
end of this chapter. Chapter 3 focuses on the relevant theoretical aspects of this thesis.
On the example of the a0p980q we elaborate the employed interpolator basis of choice
and provide a detailed introduction to estimators for quark propagators. In Chapter 4
technical aspects of this study are presented. We summarize the numerical details of our
lattice simulation and tune a charmed quark mass to prepare for a qualitative analysis of
the D˚s0p2317q. Furthermore, we study various combinations of techniques to determine
the most efficient strategy of computation for every element of our matrix. Chapter 5 is
the last chapter of this thesis and presents the results of our studies on both tetraquark
candidates by analyzing multiple sub-problems. The thesis is concluded by summarizing
the obtained results and a brief outlook.
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FIG. 1.1: Nonet of light mesons for several JPC . Data taken from [29], extended boxes
indicate uncertainties. Mass ordering of states are generally in agreement with expec-
tations from the quark model. Obvious exceptions are the pions π as pseudo Goldstone
bosons from the breakdown of the chiral-flavor symmetry, a mechanism we understand
very well, and the a0 in the 0` nonet.



2
QCD on the lattice

In this chapter we review the basic principles of a lattice formulation of QCD that are
essential to study hadronic quantities. Section 2.1 presents the continuous version of
a Euclidean quantum field theory briefly and motivates the transition to a discretized
spacetime in order to regulate the theory. In Section 2.2 and 2.3 we describe the con-
struction of a naïve lattice gauge and fermion action, respectively. Both allow for im-
provement in terms of discretization errors, but the latter can not be constructed to be
local, doubler-free, chirally invariant and with the correct continuum limit. We proceed
with the numerical computation of path integrals on the lattice in Section 2.4. After
we have elaborated how we plan to compute hadronic quantities in this discrete world
Section 2.6 presents the extrapolations necessary to relate the results to the physical,
continuous world. In Section 2.7 we discuss how to set the scale for the dimensionless
results of our simulations in order to relate them to any experimental result.

This introduction is based on the approach many standard text books [33, 34, 35, 36]
follow and the reader is encouraged to consult those for a more detailed discussion.
Alternatively, public lectures provide an excellent introduction into the topic [37, 38, 39],
as well. In this section we closely follow the discussion in [35].

2.1 The classical theory

The continuous action of QCD in a 4-dimensional Euclidean space is conveniently sep-
arated into its fermionic and purely gluonic part

SQCDrψ, ψ̄, As “ SFrψ, ψ̄, As ` SGrAs,

with SFrψ, ψ̄, As “

Nf
ÿ

f“1

ż

d4x ψ̄pfqpxq
´

γµDµ `m
pfq

¯

ψpfqpxq,

SGrAs “
1

2g2

ż

d4x tr rFµνpxqFµνpxqs .

(2.1)

Quark fields are described by Dirac spinors ψpfqa,αpxq at every point x in spacetime, and
indices a “ 1, 2, 3 and α “ 1, 2, 3, 4 label color and spin, respectively. Each field ψpfqpxq
thus has 12 independent components. The fields ψ and ψ̄ are related by ψ̄ “ ψ:γ0. Like
the mass matrix mpfq, quark fields come in Nf different flavors.

The covariant derivative Dµ “ Bµ ` ıAµpxq and the field strength tensor

Fµνpxq “ BµAνpxq ´ BνAµpxq ` ı rAµpxq, Aνpxqs (2.2)

5



6 QCD on the lattice

contain the gauge fields Aabµ pxq, representing the gluon fields. At every point x in
spacetime they carry a Lorentz index µ “ 1, 2, 3, 4 and color indices a, b “ 1, 2, 3, so
that for a given x and µ, the field Aµpxq is a traceless, hermitian 3ˆ3 matrix. They are
defined such that the QCD action is invariant under local SUp3q gauge transformations.
The field strength is not linear in the non-abelian gauge fields Aµ, but mixes the different
color components of the gluon fields. This gives rise to nonlinear self interactions of the
gluons and, eventually, leading to confinement, making QCD highly nontrivial. g denotes
the bare coupling constant, which alternatively can be placed in the covariant derivative
after rescaling the gauge fields, to make the coupling between quarks and gluons more
obvious.

In order to compute an observable from a quantum field theory, an ultraviolet regu-
lator is required to make expressions finite. While regulators in continuum perturbation
theory are introduced by e.g. dimensional regularization or the Pauli-Villars regulariza-
tion, a different approach is chosen here.

We replace the continuous Euclidean spacetime by a finite hypercubic lattice of points
x, separated by a lattice spacing a

`

x0, x1, x2, x3

˘

P R4 Ñ
`

x0, x1, x2, x3

˘

P
 

0, 1, ..., N ´ 1
(4
. (2.3)

The lattice itself serves as a regulator of the theory, as the shortest distance a defines
an ultraviolet momentum cutoff π{a. Furthermore, path integrals (cf. (2.28)) become
mathematically well defined due to the finite number of lattice sites. Hence, lattice
QCD provides a non-perturbative definition of QCD. Physical results are recovered in
the continuum limit a Ñ 0, while requiring the finite volume of the lattice to remain
large enough V Ñ8 to contain the scales we are interested in.

In a naïve discretization, however, local gauge invariance will be lost. This becomes
clear after the continuum derivative in (2.1) is replaced by a non-local discrete derivative

Bµψpxq Ñ
1

2a
pψpx` µ̂q ´ ψpx´ µ̂qq, (2.4)

where ˘µ̂ labels the neighboring site in µ-direction, i.e. µ̂ “ a eµ. As a result terms
of the form ψ̄pxqψpx ` µ̂q occur, which are not gauge invariant as the fields transform
according to

ψpxq Ñ ψ1pxq “ Ωpxqψpxq and ψ̄pxq Ñ ψ̄1pxq “ ψ̄pxqΩpxq:, (2.5)

where Ωpxq is an SUp3q matrix. To preserve local gauge invariance on the lattice new
fields Uµpxq P SUpNcq are required to connect adjacent lattice sites x and x` µ̂. These
so-called link variables are the analogue of the continuum gauge-transporters and are
related to the gauge fields to first order a by

Upx, x` µ̂q “ Uµpxq “ expp ı aAµpxq q. (2.6)

Under a local gauge transformation Ωpxq the link variables transform according to

Uµpxq Ñ U 1µpxq “ ΩpxqUµpxqΩpx` µ̂q
: (2.7)
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such that gauge invariance is obtained for neighboring fields by, e.g. ψ̄pxqUµpxqψpx`µ̂q.
The simplest possibility to construct a gauge invariant quantity on the lattice is the trace
over the plaquette Uµνpxq, a closed loop of four link variables

Uµνpxq “ UµpxqUνpx` µ̂qU´µpx` µ̂` ν̂qU´νpx` ν̂q, (2.8)

with Uµ “ U´µpx ` µ̂q:. From here we recognize that the quark fields ψ, ψ̄ live on
the lattice sites and link variables, corresponding to the gauge fields, live on the links
between the sites. Figure 2.1 presents a simple illustration of this concept.

aNt “ T

aNs “ L
a

ψ

Uµ

Uµν

ψ̄Uν

ψ

FIG. 2.1: Example of a 4ˆ 8 lattice with periodic boundary conditions. Spatial coordi-
nates of fermion fields ψ, ψ̄ and gauge links U are omitted. Objects like a plaquette Uµν
and a pair of fermion fields connected by a link are shown.

2.2 Lattice gauge action

After introducing the conceptual idea of lattice regularization, this section briefly ad-
dresses examples for discrete actions. These will turn into the continuum theory (2.1)
for a Ñ 0, but not without certain issues. We mainly follow the pioneering work of
Kenneth Wilson [1], adding further remarks when relevant for the upcoming chapters.

A simple construction of a lattice gauge action can be identified by using the pla-
quette,

SGrU s “
2

g2

ÿ

x

ÿ

µăν

Re tr r1´ Uµνpxqs , (2.9)

counting each loop on the lattice only once. The factor 2{g2 is included to match the
continuum formulation and is often replaced by the inverse coupling

β “
2Nc

g2
. (2.10)

To see that the continuum theory is indeed recovered ( limaÑ0 SGrU s “ SGrAs ) it is
important to point out the relation between the link variables and the field strength
tensor, i.e.

Uµνpxq “ exppı a2 Fµνpxq `Opa3qq, (2.11)
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which is derived from(2.6) by applying the Baker-Campbell-Hausdorff formula. Eventu-
ally, we find

SGrU s »
2

g2

ÿ

x

ÿ

µăν

Re tr
“

1´ exppı a2Fµνpxqq
‰

»
2

g2

ÿ

x

ÿ

µăν

Re tr

„

1´ 1` ı a2Fµνpxq `
1

2
a4FµνpxqFµνpxq



“
a4

2g2

ÿ

x

ÿ

µ,ν

tr rFµνpxqFµνpxqs `Opa2q.

(2.12)

The continuous and discrete version of the gauge action thus agree up to Opa2q dis-
cretization effects, originating from the expansion of the gauge fields in the plaquette.

Infinitely many more terms do exist but are suppressed by increasing powers of the
lattice spacing. Similarly, one may add any terms that vanish in the continuum limit
without changing continuum physics. As a consequence, the lattice action is not unique,
only the classical limit is. This is utilized in the construction of improved lattice actions,
which attempt to further reduce discretization effects.

One example for an improved action is the Lüscher-Weisz gauge action [40, 41]. In
addition to the plaquette also rectangular planar loops U1ˆ2

µν pxq are included in such a
way that leading order discretization errors are subtracted

Simprov.
G rU s “

β

3

ÿ

x

˜

p1´ 8c1q
ÿ

µăν

tr
“

1´ U1ˆ1
µν pxq

‰

` c1

ÿ

µ‰ν

tr
“

1´ U1ˆ2
µν pxq

‰

¸

.

(2.13)
The coefficient c1 takes different values for various choices of the improved actions. For
an approach based on the renormalization group transformations, the Iwasaki gauge
action [42, 43] requires c1 “ ´0.331, for a tree-level improved action, the Symanzik
framework [40] requires c1 “ ´1{12. Wilsons standard formulation (2.9) is restored at
c1 “ 0. Computations throughout this thesis will employ the Iwasaki gauge action.

2.3 Wilson fermions

For the fermionic part of the action, the most prominent discretization is the Wilson
fermion action. It appears in Wilson’s first lattice formulation and deals with an issue
that the naïve lattice formulation faces. By introducing an additional term to the action
it gets rid of the so-called fermion doubling. This expression labels the appearance of
additional 2d ´ 1 fermionic particles when fermion fields are naïvely placed on a d-
dimensional lattice.

They correspond to additional poles of the inverse lattice Dirac operator in momen-
tum space. The naïve Dirac operator on the lattice is given by

´

D
pfq
naïve

¯

a,α;b,β
px; yq “

1

2a

˘4
ÿ

µ“˘1

pγµqαβ Uµpxqab δpx` µ̂, yq ` mpfq δαβ δab δpx, yq, (2.14)
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where we define the convenient notation γ´µ “ ´γµ. In the free theory (Uµ ” 1) with
massless fermions we can obtain analytical expressions for the Dirac operator and its
inverse, the quark propagator. In momentum space they read

D̃naïveppq
ˇ

ˇ

ˇ

m“0
“
ı

a

4
ÿ

µ“1

γµ sinppµaq, (2.15)

D̃´1
naïveppq

ˇ

ˇ

ˇ

m“0
“
´ı a´1

ř

µ γµ sinppµaq

a´2
ř

µ sinppµaq2
aÑ0
ÝÑ

´ı
ř

µ γµpµ

p2
. (2.16)

Although the momentum space propagator has just a single pole in the continuum, the
situation is different on the lattice. Whenever all components of pµ are either 0 or π{a,
a pole is met, cf. Figure 2.2. These additional fermions cannot be ignored and will
eventually contribute with incalculable effects to our finite volume measurements.

pµ

´π
a `π

a

1
a

pµ

sinppµaq
a

FIG. 2.2: Plot of pµ (red) and sinppµaq{a (blue) as functions of pµ P p´π{a, π{as in the
Brillouin zone. Zeroes of the sine function at the corners of the Brillouin zone give rise
to lattice artifacts.

Introducing the so-called Wilson term to the naïve momentum space Dirac operator
resolves the issue smoothly

D̃ppq “
ı

a

4
ÿ

µ“1

γµ sinppµaq ` 1
1

a

4
ÿ

µ“1

p1´ cosppµaqq `m1. (2.17)

It simply vanishes for the physical pole at p “ p0, 0, 0, 0q and every unphysical pole
obtains an additional mass term „ 1{a so that they decouple from the theory if we send
aÑ 0. Finally we arrive at the Wilson fermion action

SWilson
F rψ, ψ̄, U s “

Nf
ÿ

f“1

a4
ÿ

x,y

ψ̄pfqpxqDpfqpx; yqψpfqpyq, (2.18)

with a Wilson Dirac operator of the form

D
pfq
a,α;b,βpx; yq “ ´

1

2a

˘4
ÿ

µ˘1

p1´ γµqαβ Uµpxqab δpx` µ̂, yq `

ˆ

mpfq `
4

a

˙

δαβ δab δpx, yq.

(2.19)
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An important symmetry of this Dirac operator later on is the γ5-hermiticity

D: “ γ5Dγ5. (2.20)

This symmetry is passed on to its inverse, the quark propagator, which allows us to
drastically simplify the calculations of correlation functions later on. Furthermore, the
eigenvalues of the Dirac operator are, as a consequence, either real, or come in complex
conjugate pairs. This implies a real fermion determinant, a feature crucial for Monte
Carlo simulations of lattice QCD.

A major disadvantage of the Wilson action is that it breaks chiral symmetry explic-
itly, even for massless quarks. This is caused by the additional mass term introduced
to remove the doublers, cf. (2.19). The loss of chiral symmetry and the requirement to
remove doublers are two circumstances that are closely connected to each other. As it
is stated in the Nielsen-Ninomiya theorem [44, 45] any discrete Dirac operator cannot
have the following properties simultaneously:

1. Locality:
Dpx; yq is local, i.e. bound by e´γ|x´y| with γ P R`

2. Correct low momentum limit:
For p ! π{a: D̃ppq “ ıγµpµ `Opa2p2q

3. No doublers:
D̃ppq invertible for p ‰ 0

4. Chiral:
tD, γ5u “ 0

While the Wilson action knowingly sacrifices chrial symmetry, other discretizations like
staggered fermions [46, 47] choose to hold on to it. By distributing the four components
of the Dirac spinor to different lattice sites and distinguishing between “tastes” the
doublers are controlled. Very subtle effects, like the spontaneous breaking of chiral
symmetry, can then be investigated on the lattice.

A possible solution to recover the chiral limit without doublers is proposed by the
Ginsparg-Wilson equation [48]. It replaces the continuum relation by the weaker condi-
tion

tD, γ5u “ aDγ5D, (2.21)

such that chiral symmetry is restored in the continuum. Approaches like overlap [49, 50]
and domain wall fermions [51, 52] solve this condition precisely, but are extremely
demanding in the required computational power. Approximate solutions for (2.21) are
achieved by e.g. chirally improved fermions [53, 54].

We stick to the Wilson fermion action, but, similar to the gauge action, want to
improve it by an additional term. Following the Symanzik improvement scheme [55],
this is achieved by adding the clover term to the Wilson fermion action

SSW
F “ SWilson

F ` cSW a5
ÿ

x,µăν

ψ̄pxq
1

2
σµνF

SW
µν pxqψpxq. (2.22)
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The coefficient cSW has to be tuned in such a way that Opaq effects vanish for on-
shell quantities. To achieve this non-perturbatively, suitable improvement conditions
[56, 57, 58] need to be imposed. Note that the coefficient also affects the renormalization
of the bare quark mass and bare coupling. The realization of the lattice field strength
tensor by four plaquettes sharing the same lattice site takes the shape of a clover leaf,
and gives this term its name:

F SW
µν pxq “

´ı

8a2
pQµνpxq ´Qνµpxqq ,

Qµνpxq ” Uµ,ν ` Uν,´µ ` U´µ,´ν ` U´ν,µ.
(2.23)

For small couplings the coefficient can also be computed perturbatively [59].
Another realization of an improved Wilson fermion action is the Wilson twisted mass

[60, 61, 62] formulation. The additional term to the actions corresponds there to a chiral
rotation in flavour space under the requirement of pairs of degenerate flavors. It can be
shown that this action provides an automatic Opaq improvement if the chiral rotation
is at maximal twist.

Finally, we want to expand the Dirac operator in its inverse quark mass. This
procedure is the so-called hopping-parameter expansion and is considerably convenient
for numerical simulations. After defining the hopping parameter κ and rescaling the
fermion fields

κ “
1

2pam` 4q
, ψ Ñ

c

m`
4

a
ψ, ψ̄ Ñ

c

m`
4

a
ψ̄, (2.24)

one can rewrite the single flavor Dirac operator in its matrix representation by

Dpx; yq “ 1´ κHpx; yq. (2.25)

The hopping matrix Hpx; yq connects the nearest neighboring sites, cf. (2.19)

Hpx; yqa,α;b,β “

˘4
ÿ

µ˘1

p1´ γµqαβ Uµpxqab δpx` µ̂, yq, (2.26)

and the quark propagator can be expanded in powers of κ

D´1 “ p1´ κHq´1 “

8
ÿ

n“0

κnHn. (2.27)

Each power of H hence adds another layer of separations between two points through
various series of link variables. They correspond to the shortest paths between the
points and due to the earlier defined notation of γ´µ “ ´γµ and p1´ γµqp1´ γ´µq “ 0
back-tracking paths are excluded. Thus, the full quark propagator at px; yq is the sum
of all fermion lines connecting x and y. The fermion determinant can be rewritten in a
similar manner.
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2.4 Path integrals from the lattice

Expectation values of observables are determined by the path integral over all possible
field configurations

ş

Drψ, ψ̄, U s, weighted by a Boltzmann factor containing the action.
For two field operators Oi at times t and 0 the vacuum expectation value is defined as

@

0
ˇ

ˇO1ptqO2p0q
ˇ

ˇ0
D

“
@

O1ptqO2p0q
D

“
1

Z

ż

Drψ, ψ̄, U sO1rψ, ψ̄, U sO2rψ, ψ̄, U s e
´SQCD ,

with Z “

ż

Drψ, ψ̄, U s e´SQCD ,

(2.28)
and will later be used to compute the mass of meson groundstates. The partition function
Z denotes the chosen normalization. The path integral quantization translates the field
operators Oiptq, acting in Hilbert space, into functionals of field variables Oirψ, ψ̄, U s.
They depend on the fields with the corresponding time argument.

Separating the QCD action into its fermionic and gluonic part we write the path
integrals conveniently in angled brackets with a suited index

@

O1O2

D

“
1

Z

ż

DU e´SGrUs
ˆ
ż

Drψ, ψ̄s e´SF rψ,ψ̄,UsO1O2

˙

”
@@

O1O2

D

F

D

U
, (2.29)

and consider in a first step the integration over the fermion fields. This integration is
often referred to as fermion contraction.

2.4.1 Fermion contraction

The quark fields ψpfq, ψ̄pfq are represented by anti-commuting Grassmann variables to
respect Fermi statistics. They are treated as independent fields when integrating and
the definition of the integration of Grassmann valued fields can be found in e.g. [35].
The integration in (2.29) can be performed analytically and one obtains for the Gaussian
integral with Grassmann valued fields

@

O1O2

D

F
“

ź

f

detDpfqrU sO12rpD
pfqq´1, U s. (2.30)

O12 is a functional of quark propagators and link variables. Its spin, color and spacetime
structure is given by the operators on the left hand side. Quark propagators appear as
a result of contracting every occurring expectation value of a fermion and anti-fermion
field, for all flavors and all possible permutations of expectation values. A product
of fermion determinants detpDpfqq with the respective quark flavors is a consequence
of the transformation properties of the measure in the Grassmann integration. Each
determinant can be interpreted as the collective creation and annihilation of quark pairs
from the vacuum. They are eventually included as a distribution weight in the partition
function

Z “

ż

DrU s e´SGrUs
ź

f

detDpfqrU s “

ż

DrU s e´pSGrUs´
ř

f lnpdetpDpfqqq, (2.31)
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which will become more relevant later on when the path integral is described by stochas-
tic methods, and a probability distribution of the gauge fields needs to be determined.
In the second step of (2.31) we defined an effective action Seff as distribution weight.
To indicate a performed integration over fermionic fields we write

@@

O1O2

D

F

D

U

Drψ,ψ̄s
ÝÑ

@

O12rpD
pfqq´1, U s

D

U
“

1

Z

ż

DU e´SeffrUsO12rpD
pfqq´1, U s, (2.32)

and imply the presence of fermionic contributions to the gauge integration. The fermionic
expectation value of a fermion and anti-fermion field, i.e. a two-point function of fermions,
is written in the employed short hand notation as

@

ψpfqa,αpxqψ̄
pfq
b,β pyq

D

F
“ a´4

`

Dpfq
˘´1

a,α;b,β
px; yq. (2.33)

Quark propagators
`

Dpfq
˘´1 are the major components of the functionals on the right

hand side of (2.30) and thus are essential for the computation of hadronic observables.
The full quark propagator, which connects all sites of the lattice with each other, is
however a huge quantity and it is not feasible to compute it explicitly. Storing such a
matrix on a typical lattice with a size of 323ˆ64 sites, turns out to be equally undesirable:

`

3ˆ 4ˆ p323 ˆ 64q
˘2
ˆ 2ˆ 8 bytes « 10 petabytes. (2.34)

Moreover, such propagators are required for multiple realizations of the gauge field,
every quark mass and ultimately, is one quark propagator per gauge field per mass not
sufficient to study modern problems.

Instead we are going to compute estimations of the full quark propagator by the use
of quark sources. In the simplest realization one could think of computing only a single
spatial column of the full propagator. This column will then describe the propagation
from one fixed lattice site to all lattice sites and hence reduces the numerical effort
drastically. Due to spatial translational invariance of QCD this might be sufficient for
the problem at hand. To obtain such a column φ a linear system of the form

Dpfq φpfq “ ξ, (2.35)

has to be solved, involving the Dirac matrix D and a suited source term ξ. The system-
atic construction of quark propagators will play a major role in the later parts of this
work. How this linear system is solved and which other strategies are utilized at this
point are discussed in Chapter 3.

What remains is the integration over all gauge field configurations in (2.32). Even
though the degrees of freedom are finite on the lattice, their total number remains too
large to be solved explicitly. Monte Carlo techniques to solve such high dimensional
integrals are discussed in the following section.

2.4.2 Gauge field Configurations

To solve integrals of the form (2.32) it is not required to know the whole space of all
possible gauge field configurations. If SeffrU s is positive definite, each gauge field is
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weighted by a factor expp´SeffrU sq so that only a small subset of configurations, those
which are close to minimizing the action, will have a crucial impact to the integral.
Contributions from the vast majority of configuration space are suppressed exponentially.

From a numerical point of view we are only interested in sampling this small subset
of vital contributions. To obtain them from the large configuration space an impor-
tance sampling is employed. Configurations are subsequently sampled according to
a path which follows a probability distribution only dependent on the current state
P pUiq9 exp p´SeffrUisq, the so-called Markov chain. Within a Markov chain conditions
to the transition probabilities PiÑj , from one to another state, are set so that every
state within the configuration space can be reached within a finite number of steps, i.e.

ÿ

j

PiÑj “ 1, (2.36)

where PiÑj P r0, 1s labels the transition probability to go from Ui Ñ Uj . The equilib-
rium distribution of states within the Markov chain is then equivalent to the desired
distribution exp p´SeffrUisq. The number of steps taken until an equilibrium is reached
is called thermalization. Only within the region of thermalized configurations can we
expect to measure physical observables. By construction this region will be reached
eventually so that also detailed balance

P pUiqPiÑj “ P pUjqPjÑi, (2.37)

is employed as a additional condition to the transition probabilities in order to guarantee
the reversibility of the equilibrated system.

Probably the most well-known algorithm to generate gauge field configurations along
the Markov chain is theMetropolis algorithm. Here one differentiates between a Metropo-
lis step, which is the update of a single link variable, and a Metropolis sweep, which is
the update of all link variables on the lattice. An update of the link variable Uµpxq is of
the form

U 1µpxq “ X Uµpxq, (2.38)

where the random X P SUpNcq are chosen carefully to provide an appropriate change
within the configuration space. Both X too close and too far away from unity will slow
down the convergence of the Markov chain drastically.

The Metropolis algorithm starts from an arbitrary configuration. Every step that re-
sults in an effective action which is smaller compared to the current situation is accepted
and replaces the current action. A larger action is only accepted with a probability tak-
ing into account the anticipated loss in the action, if a step is rejected the current state
will be kept

P accept
iÑj “ min p 1 , expp´pSeffrUjs ´ SeffrUisqq q . (2.39)

This selection process fulfills the detailed balance condition (2.37) and as stated above
allows for multiple states along the equilibrium distribution of the Markov chain.

Eventually one ends up with a set of Nconf configurations distributed to minimize
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the present effective action, so that the integral (2.32) can be computed as

xO12rpD
pfqq´1, U syU “ lim

NÑ8

1

N

N
ÿ

i“1

e´SeffrUis O12rpD
pfqq´1, Uis

«
1

Nconf

Nconf
ÿ

Un with
probability
9 e´SeffrUns

O12rpD
pfqq´1, Uns.

(2.40)

A set of Nconf gauge field configurations with little to no correlation, generated from the
same configuration space, is referred to as gauge field ensemble.

An order of thousands of Metropolis sweeps might be necessary to reach the ther-
malized region. On top of that several sweeps between thermalized configurations are
discarded as well, as they are not statistically independent. Hence it becomes evident
that the numerical effort to generate a gauge field ensemble of reasonable extent is a
tremendous computational task.

Important to mention is the crucial role of the fermion determinants throughout this
process. In (2.31) we constructed an effective action with a product over all fermion
determinants as a probability weight for the gauge field integration. If we want to
interpret it as such this product has to be real and nonnegative. There are indeed
scenarios, e.g. when introducing a chemical potential, where the fermion determinants
are complex and standard Monte Carlo methods are not anymore applicable (the so
called sign problem, see e.g. [63] and references therein).

A pair of mass degenerate quark flavors with a γ5-hermitian Dirac operator (2.20)
meet the conditions

detrDsdetrDs “ detrDsdetrD:s “ detrDD:s ě 0. (2.41)

Even after fulfilling the conditions to serve as a probability weight, the inclusion of
fermion determinants to the gauge field integration poses a considerable numerical effort.
Not only is their computation highly non-trivial, c.f. (2.25), they are also connecting all
link variables on the lattice with each other, making them highly non-local objects. A
change in a single link variable during a Monte Carlo step will hence affect the whole
determinant and require a new computation for every small change. This effort increases
for larger lattices or smaller quark masses.

Local gauge link updates (2.38) are obviously not efficient enough to handle such
non-local quantities. Instead different methods are used in modern simulations where
global updates of the gauge field allow simulations with dynamical fermions. The Hybrid
Monte Carlo algorithm [64], for example, applies a molecular dynamics evolution by
introducing conjugate momenta to the gauge links. The evolution of the system along
directions determined by the action is then combined with a Metropolis accept/reject
step to yield the desired probability distribution.

An alternative, numerically less demanding approach is realized with the so-called
quenched approximation. Fermion determinants are set to a constant such that the
integration in (2.31) is only governed by the gauge action. Updates of link variables do
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then become local operations and the computation of the difference in the respective
actions reduces to the six plaquettes directly affected by the update. In terms of the
earlier given interpretation, such an approximation neglects the creation and annihilation
of quarks from the vacuum.

2.5 Correlation functions

To compute observables from the lattice the correlation function plays a central role.
First encountered in (2.28) it is shown within this chapter that the computation of such
a two-point function is well within the range of our numerical capabilities. Eventually
a correlation function can be computed on the lattice applying (2.40), i.e. as a mean of
quark propagators and gauge links over a given set of gauge field configurations.

Defined as the functional average of two interpolating field operators, a correlation
function can be interpreted as the amplitude of a propagating particle. Complementary
to its formulation as a path integral it is equally important to consider the two operators
O1ptq and O2p0q in Hilbert space. Exploiting the periodicity on the torus these are
conveniently placed at times t and 0, respectively. They create and annihilate states
of certain quantum numbers. The temporal evolution is then conveniently extracted
through the Hamiltonian H of the system and the correlation function becomes

@

O1ptqO2p0q
:
D

T
“

1

ZT
tr
”

e´pT´tqHO1 e
´tHO:2

ı

. (2.42)

ZT “ tr
“

e´TH
‰

is the partition function, which turns into a sum over the exponentials
of all energy eigenvalues, eventually. Index T indicates the finite temporal lattice ex-
tent. Rewriting the trace by eigenstates of the Hamiltonian and inserting a complete
orthonormal basis, i.e.

H|ny “ En|ny, trrOs “
ÿ

n

xn|O|ny, 1 “
ÿ

n

|ny xn|, (2.43)

we find
@

O1ptqO2p0q
:
D

T
“

1

ZT

ÿ

m,n

xm|e´pT´tqHO1 |ny xn|e
´tHO:2|my. (2.44)

For the limit T Ñ 8, where we are far away from any boundary, only the vacuum
energy Em “ E0, or vacuum contributions |my “ |0y remain. By pulling out a factor of
e´E0 T both in the numerator and denominator we obtain energy differences relative to
the energy of the vacuum ∆En “ En ´ E0. Finally, one ends up with one of the most
prominent identities of lattice hadron spectroscopy

lim
TÑ8

@

O1ptqO2p0q
:
D

T
“

ÿ

n

x0|O1|ny xn|O
:
2|0y e

´∆En t. (2.45)

For practical reasons energy differences to the vacuum are simply denoted by En here-
after. This effectively normalizes the energy of the vacuum to zero, with E0 being the
lowest possible excitation, i.e. the groundstate.
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We find that the correlation function is a sum of products of amplitudes and expo-
nential functions governed by the respective energy levels. The quantum numbers of the
O:i |0y determine the spectrum of states. While the sum in (2.45) runs over all possible
states |ny only those that have a nonvanishing overlap with the trial states O:i |0y will
contribute. Simply put, energy spectra of particles are then analyzed by computing the
path integral (2.40) of xO1ptqO2p0qy and comparing it to the right hand side of (2.45).

2.6 Towards the continuum

Although the continuum limit of presented results will not be studied, a brief outline
of the procedure is given in this section. With every lattice simulation performed at
certain dimensionless values for the lattice extent, spacing and bare quark masses it is
necessary to set the scale in order to provide a physical interpretation of these values
(see Section 2.7: “Setting the scale”). Once observables can be associated with physical
values one wants to leave the discrete world behind and send a Ñ 0. Doing so, the
physical volume of the box 9a4 must not shrink to zero. Additionally, bare quark
masses commonly do not relate to physical quark masses as well, leaving us effectively
with three distinct limits to study.

2.6.1 Infinite volume limit

With the goal to send aÑ 0 one would also have to send the number of lattice sites to
infinity in order to preserve the physical volume, also known as the thermodynamic limit.
As this is not feasible from a numerical point of view, the discussion quickly revolves
around whether lattices are large enough. More precisely, this criterion concerns whether
computations are affected by finite size effects. Indeed exponential corrections to hadron
masses occur due to interactions around the spatial torus [16]. These are governed in
leading order by the mass of the lightest hadron, i.e. the pion 9 expp´mπLq. It is
usually assumed that such corrections are small for mπL ą 4. The spatial lattice extent
gains additional relevance in modern studies of multi-particle systems. Similar to the
just mentioned corrections do two particles interact with each other in both directions
around the torus. Not only does this affect possible multi-particle states, but also a
correspondence between the scattering phase shift and the spatial volume as been found
by M. Lüscher [17]. Commonly known as Lüscher’s method it has gained increased
attention in the study of resonances within recent years.

2.6.2 Continuum limit

Observables computed on the lattice contain undesired contributions due to the finite
resolution of spacetime. The mass of a particle measured on the lattice then differs from
its continuous version by

mpaq “ mphys p1`Opaαqq . (2.46)

The factor α strongly depends on the choice of the (fermion) action, as well as on the
particle under investigation. To reach the continuous version of the obtained result
usually three to four values in a are considered, where a Ñ 0. In the context of gauge
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field configurations this is equivalent to increasing β Ñ 8. As it has been pointed
out above, a “ 0 does not depict a valid option so an extrapolation remains mandatory.
These extrapolations are made on lines of constant physics, i.e. ideally under a preserved
physical volume, quark masses, etc. As this is not always realized in practice it is then
to ensure that finite size effects on observables are under control.

2.6.3 Chiral limit

Up to this point towards the continuum, the observables of interest suffer only from
negligible finite size effects and are studied for several a Ñ 0. What still remains are
the unphysically heavy quark masses of the simulation. Although they can not be
measured directly they are tuned by the bare quark mass parameter of the simulation.
Eventually one would like to reach the point where the light quark masses generate a
physical pion of roughly 140MeV. The physical pion is hence used as a synonym for
physical (light) quark masses. However, we have seen throughout this chapter that the
pion mass is substantial for a multitude of processes and effects. Lattice computations
aimed at physical values become tremendously expensive as the number of lattice sites
has to increase drastically to control finite size effects. Furthermore, eigenvalues of
the Dirac operator are smaller for lighter quark masses which increases the numerical
effort as well. In hadron spectroscopy, physical pions will progressively decrease energy
thresholds, possibly altering the picture entirely.

As a consequence, modern lattice QCD calculations still bear pion masses higher
than observed in nature, often also with a degeneracy of the u and d quark. Similar to
the continuum limit, an extrapolation to physical values remains necessary. Typically
chiral perturbation theory is utilized for such extrapolations in the quark mass. The low
energy effective theory provides expansion series of hadronic quantities in low energy
quantities, like the quark mass. These have to be fixed by either experiment or lattice
data and hence allow the exploration of physical values. However, with an increasing
progress in the development of more powerful hardware, computations very near to the
physical values are well within reach, e.g. [65]. Simple extrapolations from lattice data
are then in principle enough to obtain the quantities of interest at the physical point.

For an example, the authors of [7] essentially compute their observables of interest
on three lattice spacings, with three different pion masses ranging between 230 - 470
MeV on two discretizations. They employ the Wilson twisted mass fermion action and
thus expect improved discretization errors 9a2 for their results. Finite volume effects
are studied for two spatial extents and found to be negligible, further the typical linear
behavior of masses in m2

π is assumed (usually the leading order in chiral perturbation
theory). Their most general fitting function for the combined chiral and continuum limit
is then

mpa,mπq “ m` c a2 ` α
`

m2
π ´m

2
π exp

˘

, (2.47)

wherem is shared between the discretizations, c.f. (2.46). Eventually, a total of 18 lattice
QCD masses m˘pa,mπq is identified by five fitting parameters m, c˘, α˘ (˘ indicating
the two discretizations). Overall very solid results are obtained, especially for the heavier
charmonium states. Plots depicting the combined chiral and continuum extrapolation of
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states inm2
π demonstrate nicely the lines of constant physics, which have been mentioned

above.

2.7 Setting the scale

It is important to note that the lattice spacing a is not a parameter of any lattice QCD
simulation. The lattice action does not explicitly depend on a. It occurs in the action
solely to provide the correct dimensionality and can be absorbed in the fields. Instead
it emerges from the inverse coupling β (2.10), i.e. a „ β´1 and appears together with
the quark masses to form dimensionless quantities amq.

In order to relate the results of a lattice calculation to physical units it is therefore
necessary to determine the physical length of the lattice spacing a. This is done by
computing an observable to high precision with lattice methods, which is also well mea-
sured by experimental results. While there are many possible choices for said observable
we focus on a prominent one, which was also used to set the scale for the gauge field
configurations used in this work. Other possibilities are mentioned to give a broader
view.

To determine the lattice scale for “Nf “ 2 ` 1 Lattice QCD simulations toward
the physical point” [65] the Sommer parameter r0 [66] is used. This approach is linked
to phenomenology where sufficiently heavy quark-antiquark bound states are described
by an effective nonrelativistic Schrödinger equation. Given the static quark-antiquark
potential

V prq “ V0 `
α

r
` σr, (2.48)

the force between two static quarks F prq can be calculated on the lattice and then
compared to experimental results. For the heavy spectra this gives rise to a value of

F pr0q r
2
0 “

dV prq

dr

ˇ

ˇ

ˇ

ˇ

r“r0

r2
0 “ 1.65 with r0 » 0.5 fm. (2.49)

The Sommer parameter r0 can then be calculated from the numerical data of V prq

r0, lat. “

c

1.65` α

σ a2
“
r0

a
, (2.50)

which can be extracted by linear fits to the logarithm of Wilson loops1 W pr, tq “
Cprq expp´V prqtq, i.e. the effective potential Veffpr, tq “ lnrW pr, tq{W pr, t ` aqs. Note
that r0, lat. does not depend on a as a V prq is calculated on the lattice, leaving σ a2 as a
fitting parameter.

In [65] also hadronic observables are taken into account, providing an extrapolated
result for the Sommer parameter at the physical point of r0, lat. “ 5.427p51qp`81qp´2q,
which is r0 “ 0.4921p64qp`74qp´2q fm in physical units with the use of

a “ 0.0907p13q fm ô a´1 “ 2.176p31qGeV. (2.51)
1Cprq denotes the ground state overlap
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The first error in the Sommer parameter is statistical and the latter two are systematic
uncertainties, originating from different choices of tmin and rmin in the respective fitting
procedures. Since the exact value of r0 is not determined precisely by experiment it
varies throughout different groups in the lattice community. Choices usually vary from
0.48, 0.49 to 0.50 fm [67, 68] when fixing the scale directly from the quark-antiquark
potential, chiral and/or continuum extrapolations vary the parameter slightly.

Similarly, alternative approaches which do not utilize the quark-antiquark potential
often obtain an extrapolated Sommer parameter. The relevant condition is still that
the observable of choice allows precise computation on the lattice and measurement in
experiment. Fulfilling the criteria of a low quark mass dependence the Ω baryon is a
prominent choice for a hadronic observable [69, 70] with a good signal to noise ratio for
a non pseudoscalar observable and no need for a renormalization constant for mΩ. In
[69] r0mΩ is extrapolated to the physical point and a value for the Sommer parameter of
r0 “ 0.471p14qp10q fm is found. The nucleon is used in [71, 72] and r0 “ 0.465p6qp15q fm
and r0 “ 0.501p10qp11q fm are found as the corresponding extrapolations at the physical
point, respectively. Pseudoscalar observables like decay constants fπ, fK [73, 74, 75]
provide an excellent signal to noise ratio. Applying chiral perturbation theory formulae
to their fitting methodology of observables with physical mπ and fπ as input, e.g. [73]
obtains r0 “ 0.454p7q fm.



3
Meson spectroscopy

In this chapter we discuss how to obtain the mass spectrum of mesonic states from the
lattice approach. In particular, the motivation to investigate possible tetraquark candi-
dates will be of central relevance. Given the requirement that a well-suited gauge field
ensemble is at hand, the measurement of ground state energies is in general a straightfor-
ward task. In Section 3.1 we illustrate on the example of the a0p980q that the situation
becomes much more delicate for exotic mesons. These are to be found in the vicinity
of two-particle states and thus require the resolution of the full two-particle spectrum.
To extract a whole spectrum of states we use the variational approach, introduced in
Section 3.2. In Section 3.3 we motivate the interpolator set that is employed to model
the expected particles in the spectrum. Among these also trial states are designed to in-
vestigate a possibly existing four-quark structure of bound states, i.e. mesonic molecules
or of diquark-antidiquark type. The various resulting correlation functions have a non-
trivial spacetime structure and are no longer straightforward to compute. We proceed
in Section 3.4 with the technical aspects to estimate quark propagators on the lattice
and describe in great detail how to employ several standard and advanced techniques.
Throughout this study we work with spatially extended quark operators. These improve
the overlap to the expected physical states. Section 3.5 closes this chapter and presents
the employed smearing techniques.

3.1 Multi-particle correlators

Although we briefly introduced correlation functions and pointed out their role in com-
puting hadronic quantities in Section 2.5, we continue the discussion here. More pre-
cisely, we want to expand on issues that arise while investigating possible tetraquark
candidates. We know from equation (2.45)

Cptq “
ÿ

n

|x0|O|ny|2 e´En t,

that the correlation function at separation t is a sum over all states |ny with quantum
numbers that have nonvanishing overlap with O:|0y. If excitations or multiparticle
states are well separated from the groundstate they are suppressed exponentially. A
simple exponential fit at large separations is then often sufficient to extract the energy
of the groundstate from the correlator. To reveal for which separations in t only a single

21
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exponential contributes so-called effective masses are utilized. Defined as

ameffptq “ ln

ˆ

Cptq

Cpt` aq

˙

, (3.1)

the values of the effective mass are typically below the ultraviolet cutoff of the lattice and
convenient to study, i.e. ameffptq P r0, 1s. At temporal separations, where the correlator
is governed by a single exponential, this value approaches a plateau in t. Stable plateau
values with little statistical fluctuations between tmin{a and tmax{a are then well suited
to locate a suitable fitting range for the respective energy.

The situation becomes increasingly difficult for studies of tetraquark candidates. As
these states are presumably made of four quarks |ψ̄pf1qψpf2qψ̄pf3qψpf4qy their energies
are expected to lie around the two two-particle levels |ψ̄pf1qψpf2qy ` |ψ̄pf3qψpf4qy and
|ψ̄pf1qψpf4qy ` |ψ̄pf3qψpf2qy. Heavier tetraquarks are even more difficult to investigate.
For some tetraquark candidates several lighter two-particle states might fit below the
energy thresholds. All of those need to be resolved in addition to the actual tetraquark
candidate, including systems with non-zero relative momentum.

Moving to a practical example, consider one of the tetraquark candidates under inves-
tigation in this thesis, the scalar a0p980q. It has quantum numbers IGpJPCq “ 1´p0``q
and is described in the conventional quark antiquark interpretation by two light quarks.
On the lattice however, the trial state |d̄uy does not simply correspond to an a0 meson,
but rather excites all states of the Hamiltonian with the same quantum numbers as the
a0. These states consist of single mesons or meson pairs, involving u, d and s quarks

|d̄uy » A|a0p980qy `B|a0p1450qy ` Ci|πηy `Di|πη
1y ` Ei|KK̄y ` . . . , (3.2)

where we assume the a0p980q as bound state. Eventually a single correlator receives
contributions from numerous states

Cptq “
ÿ

n

|xd̄u|ny|2 e´En t

» |xd̄u|a0p980qy|2 e´ma0p980q t `
ÿ

k

|xd̄u|πηyk|
2 e´Epπpkq,ηp´kqq t ` . . . ,

(3.3)

which also appear in various lattice momenta k “ 2π j{L, e.g.

Epπpkq, ηp´kqq “

d

m2
π `

ˆ

2π j

L

˙2

`

d

m2
η `

ˆ

2π j

L

˙2

(3.4)

for integer j.
The impact of the particular contributions is a priori not obvious, but any assign-

ment of the observed signal from such a single correlator to a physical particle will be
meaningless. The physical rest masses [29] of the relevant particles above are

ma0p980q « 980MeV,

ma0p1450q « 1474MeV,

mπ `mη « 140MeV` 547MeV “ 687MeV,
mπ `mη1 « 140MeV` 957MeV “ 1097MeV,
mK `mK « 2ˆ 494MeV “ 988MeV.

(3.5)
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A method to overcome this situation and to disentangle the states that contribute to
the spectrum is presented in the following section.

Additionally we want to take into account effects caused by the finiteness of our peri-
odic lattice. These were ignored earlier by assuming to be far away from any boundary,
i.e. T Ñ 8. Given a finite lattice, two-particle states are not only described by the
two particles moving together around the torus, but also by the two particles moving in
opposite directions.

Not assuming an infinite lattice as in (2.44), but instead emphasizing its periodicity
we include backwards propagating contributions ttØ T ´ tu to the correlator and write

Cptq “
ÿ

m,n

xm|O|ny xn|O|my
´

e´Em pT´tq e´En t ` e´Em t e´En pT´tq
¯

. (3.6)

Again, at large temporal separations t " 0, we ideally find a correlator dominated by only
one single groundstate E. Since this groundstate is now composed of two independent
particles, we find for the correlator

Cptq » |x0|O|p1p2y|
2
´

e´E t ` e´E pT´tq
¯

`

|xp1|O|p2y|
2
´

e´m1 te´m2 pT´tq ` e´m1 pT´tqe´m2 t
¯

,
(3.7)

where |p1y and |p2y denote the single particle states, with E » m1`m2 at zero relative
momentum. The first term describes the joint propagation of the two particles forward
and backward around the torus and the second term corresponds to one particle traveling
forward in time, while the other particle travels backwards in time, and vice versa.

Two particles traveling in opposite directions around the lattice either contribute by
a constant or a t-dependent value to the correlation function, depending on whether they
are of equal mass or not. This finite size effect is suppressed by the temporal extent of
the lattice by a factor of « eminpm1,m2qT . For the situation of the a0p980q the potential
candidates for such two particles are of considerably low masses. We hence expect
contaminating contributions from such finite size effects at large temporal separations
through an artificially light signal, i.e. « e´|m1´m2| t.

3.2 The variational method

To extract energies from our spectrum of interest we use the variational method. Pro-
posed by M. Lüscher and U. Wolff [76, 77, 78] it is probably the most prominent ap-
proach to calculate hadron masses from an operator set and is applied in various projects
[79, 19, 80, 7, 81]. The strategy is to use an operator set of different mesonic interpo-
lators Oi, i “ 0, . . . , N ´ 1, with the quantum numbers of the states of interest, and to
compute the correlation matrix Cptq

Cijptq “ xOipt2qO
:

jpt1qy,

“
ÿ

n

xΩ|Oi|ny xn|O
:

j |Ωy e
´En t.

(3.8)
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The set of N operators is a projection of the infinite dimensional Hilbert space to a
small subspace. As such the choice of interpolators is essential for the success of the
variational method and is further discussed in Section 3.3. Eigenvalues λpkq of the
generalized eigenvalue problem (GEP)

Cptqupkqpt, trq “ λpkqpt, trqCptrqu
pkqpt, trq, (3.9)

do then behave as

λpkqpt, trq 9 e´Ekpt´trq
´

1`Ope´∆Ekpt´trq
¯

, (3.10)

where Ek is the energy of the k-th state and ∆Ek is the difference to the lowest state
which is not captured by the set. Normalizing the problem at an early reference time
tr suppresses contributions from higher states and so improves the signals for small
temporal separations. Zero temporal separation is not a valid option for the reference
time, as the correlator is practically investigated right at the boundary, where no clear
conclusions about contributing states can be made. The usual expansion is not possible
at this point, which thus will be omitted from all analyses. Often this point is referred
to as contact term. We set tr “ a for all calculations.

After diagonalizing the matrix at each time t the eigenvalues must be ordered cor-
rectly. For states well separated in their energies one usually chooses an ordering by their
magnitude. The situation might become more difficult for states close to one another.
If statistical fluctuations do not allow for a clear separation of eigenvalues we take the
eigenvector components into account as well. These are ideally time independent and an
ordering according to the smallest possible change between two timeslices is performed.

Up to N states can be extracted from the exponential decays of the eigenvalues.
Similar to the previous situation of only single-operator correlation functions (3.1) we
utilize effective masses obtained directly from the eigenvalues, i.e.

am
pkq
eff ptq “ ln

˜

λpkqpt, trq

λpkqpt` a, trq

¸

, (3.11)

to determine plateau like regions in t, which correspond to suitable fitting ranges for
single exponentials. Alternatively a more precise result is obtained by solving the equa-
tion

λpkqpt, trq

λpkqpt` a, trq
“

cosh
´

am
pkq
eff ptq pt´ T {2q

¯

cosh
´

am
pkq
eff ptq pt` a´ T {2q

¯ , (3.12)

for ampkqeff ptq. Here the symmetry of the correlator is taken into account as well, cf. (3.7),
which leads to an improved behavior towards the center of the lattice, cf. Figure 3.1.

The eigenvector components upkql can then be associated with the overlap of the
k-th state to the l-th operator of the correlation matrix. This allows for a physical
interpretation of the observed states. Rewriting the generalized eigenvalue problem as
a regular eigenvalue problem

Cptrq
´ 1

2 CptqCptrq
´ 1

2 vpkqpt, trq “ λpkqpt, trqv
pkqpt, trq, (3.13)
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FIG. 3.1: Correlation function (left) and its associated effective mass (right) for three
pseudoscalar mesons. In the right plot the gray points indicate an effective mass obtained
via (3.11), while the colored points are obtained by its symmetrized alternative (3.12).

yields the same eigenvalues λpkq but is expected to provide a smoother diagonalization
process. Furthermore, form the corresponding eigenvectors vpkq “ Cptrq

1
2 upkq of the

symmetrical problem an orthogonal basis similar to the physical states, while upkq are
orthogonal only in Cptrq. Plotted eigenvectors in this thesis are thus always to be
associated with vpkq.

This method allows for any number of interpolators as long as every element of the
matrix (3.8) is calculable. While one might think that a larger operator set will always
improve the analysis, realistic calculations show that this is not the case. The method
is governed by its worst element and eventually a certain interpolator combination will
contribute more in noise than in signal. Instead it is much better to choose an operator
set that has reasonable overlap with the physical states of interest.

An alternative to solving the GEP is the Athens Model Independent Analysis Scheme
(AMIAS) [82, 83, 84, 28]. This method is similar to a multi-exponential fitting tool
with the major difference that the parameter space of amplitudes Apnqi ” xΩ|Oi|ny and
energies En is explored following a probability distribution function

P pEn, A
pnq
i q “

1

Z
e´χ

2{2, (3.14)

with appropriate normalization Z and the well-known χ2 minimizing fits. The proba-
bility for a parameter Ai to be inside ra, bs is

ΠpAi P ra, bsq “
şb
a dAi

ş`8

´8

ś

j‰i dAj e´χ
2{2

ş`8

´8

ś

j dAj e´χ
2{2

, (3.15)

regardless if it is an amplitude or an energy level, This multi-dimensional integral can be
computed with standard Monte Carlo methods. The main advantage over the standard
GEP analysis is that AMIAS does not necessarily require all elements of the correlation
matrix to find the energy levels of the set, i.e. in particular problematic elements can be
omitted.
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3.3 Interpolating operators

To compute a certain mesonic state on the lattice we need a well-suited interpolator
set for our variational approach (3.8). The interpolators are bilinear in the quark fields
ψpfq and excite quantum numbers determined by monomials of Dirac matrices Γ. To
create states of definite spatial momenta p a Fourier transformation is applied on all
spatial components x of the quark fields. The conventional mesonic quark-antiquark
interpolator can then be written as

OM “
1
?
Vs

ÿ

x

e´ı apx ψ̄pf1qa,α pxqΓαβ ψ
pf2q
a,β pxq. (3.16)

Note that we do only consider a projection to zero momentum for all interpolators
throughout this work and hence will often simply refer to a summation over all spatial
indices for this operation. Indices f1, f2 denote the flavors of the quark fields pu, d, s, . . .q,
lower case roman letters and lower case greek letters label color and spin, respectively.
For every spatial summation we do consider a normalization with the spatial volume Vs.

State JPC Γ Particles
scalar 0`` 1, γ0 f0, a0, . . .
pseudoscalar 0´` γ5, γ0γ5 π˘, π0, η,K˘,K0, . . .
vector 1´´ γi, γ0γi ρ˘, ρ0, ω, . . .
axial vector 1`` γiγ5, γ0γiγ5 a1, f1, . . .

TAB. 3.1: Quantum numbers of the most commonly used quark-antiquark meson inter-
polators (3.16) and prominent particle examples. In the vector cases the sum over all
polarizations i “ 1, 2, 3 is taken.

Contracting the fermion fields of two such interpolators gives rise to quark propa-
gators, which we are able to estimate on the lattice. These are then used to calculate
the correlation functions. The possibilities for contractions of the quark fields differ
noticeable according to the flavor of the fields. Of course, only creating and annihilating
Grassmann variables with equal flavor can be contracted with each other

xOMOM:y “
1

Vs

ÿ

x,y

A´

ψ̄
pf1q
a,A pxqΓAB ψ

pf2q
a,B pxq

¯´

ψ̄
pf2q
a1,A1px

1q pΓ:qA1B1 ψ
pf1q
a1,B1px

1q

¯E

F,U
.

(3.17)

For non-degenerate flavors pf1 ‰ f2q, e.g. an operator of the form Oπ
`

“ d̄γ5u, this
leads to one possible combination, i.e. the solid lines in (3.17). Degenerate flavors pf “
f1 “ f2q within the interpolators lead to an additional possible permutation of the
quark fields, which is absent in the non-degenerate case, indicated by the dashed lines.
Consequently, the propagator structure of the correlator is different after contracting
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the quark fields

xOMOM:y “
1

Vs

ÿ

x,x1

A

´ΓAB pΓ
:qA1B1 xψ

pf1q
a1,B1px

1q ψ̄
pf1q
a,A pxq yF xψ

pf2q
a,B pxq ψ̄

pf2q
a1,A1px

1q yF

`ΓAB pΓ
:qA1B1 xψ

pfq
a,Bpxq ψ̄

pfq
a,Apxq yF xψ

pfq
a1,B1px

1q ψ̄
pfq
a1,A1px

1q yF

E

U

“
1

Vs

ÿ

x,x1

B

´ tr

„

Γ:γ5

´

pDpf1qq´1px;x1q
¯:

γ5ΓpDpf2qq´1px;x1q



` tr
”

ΓpDpfqq´1px;xq
ı

tr
”

Γ:pDpfqq´1px1;x1q
ıE

U
,

(3.18)
where we made use of the γ5-hermiticity of the propagator pDpf1,2qq´1 in the last line.
This is a common practice to get rid of the backwards propagation and thus makes it
sufficient to calculate only one set of propagators. Again with the note of caution that
the latter terms on both right hand sides in (3.18) only occur for the flavor degenerate
scenario.

Such correlators can be translated into diagrams where propagators are resembled
by arrows pointing in the direction of propagation, cf. Figure 3.2. Here it becomes
evident why these distinct contributions to a conventional quark-antiquark correlator
are commonly referred to as connected and disconnected contributions.

x

x1

t2

t1

x

x1

t2

t1

FIG. 3.2: Connected (left) and disconnected (right) contributions to a conventional
quark-antiquark meson correlator. Quark propagators are represented by arrows without
reference to the present color or spin structure of the diagrams, cf. (3.18).

The propagation with a starting and endpoint on a single timeslice requires an ex-
ceptional numerical effort to compute and higher statistics than their connected coun-
terparts. For this reason such contributions were frequently neglected by many studies
[85, 86, 21, 87] in the past. We will learn that the propagation within a single timeslice
must not be omitted in the study of multi-particle states and in particular in the study
of tetraquark candidates.

3.3.1 Four-quark interpolators

To study the a0p980q as possible tetraquark candidate, we have seen in (3.2) that a
single interpolator Od̄u of the form (3.16) will ultimately not be enough to resolve the
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particle spectrum of interest. Instead, we rely on an interpolator set Oi, i “ 1, . . . , N´1,
with quantum numbers IpJP q “ 1p0`q. Each interpolator has to provide a good overlap
with the eigenstates of the Hamiltonian that we expect in the energy regime of interest.
From the resulting correlation matrix (3.8) we are able to extract the particles of interest
utilizing the variational method introduced in Section 3.2.

With a proposed quark flavor content of td̄ , u , s̄ , su for a tetraquark a0p980q we
find a variety of possible candidates for the interpolator set. This is due to the fact that
several Dirac structures of four-quark operators lead to the same set of relevant quantum
numbers, e.g. pd̄Γuqps̄Γ sq, with Γ “ γ5, γµ, γµγ5,1, . . . . However, in the following we
focus on a pseudoscalar structure of quark fields within four-quark operators, i.e. a
spin structure of Γ “ γ5. Such interpolators create the lightest mesons in a given flavor
sector and are well-established from previous studies [21, 88], where also additional Dirac
structures were considered.

For our studies of scalar tetraquark candidates with flavor content td̄ , u , s̄ , su we
consider the following operators which create states with quantum numbers IpJP q “ 1p0`q,
when applied to the vacuum:

O1 “ Oqq̄ “
1
?
Vs

ÿ

x

´

d̄pxqupxq
¯

O2 “ OKK̄, point “
1
?
Vs

ÿ

x

´

s̄pxqγ5upxq
¯´

d̄pxqγ5spxq
¯

O3 “ Oηsπ, point “
1
?
Vs

ÿ

x

´

s̄pxqγ5spxq
¯´

d̄pxqγ5upxq
¯

O4 “ OQQ̄ “
1
?
Vs

ÿ

x

εabc

´

s̄bpxqpCγ5qd̄
T
c pxq

¯

εade

´

uTd pxqpCγ5qsepxq
¯

O5 “ OKK̄, 2part “
1

Vs

ÿ

x,y

´

s̄pxqγ5upxq
¯´

d̄pyqγ5spyq
¯

O6 “ Oηsπ, 2part “
1

Vs

ÿ

x,y

´

s̄pxqγ5spxq
¯´

d̄pyqγ5upyq
¯

(3.19)
The different structures of the interpolators provide a reasonable overlap with the ex-
pected physical content of the spectrum. Oqq̄ generates a quark-antiquark pair, the
light two-quark configuration that is expected from the a0p980q as a conventional me-
son. All other operators in (3.19) generate two quarks and two antiquarks. OKK̄, point

and Oηsπ, point are of mesonic molecule type, i.e. resemble a KK̄ pair and a ηsπ pair lo-
cated around the same spatial point x. The ηs excites a meson-like structure composed of
a pseudoscalar ss̄-pair, which is expected to have significant overlap to the two physical
states, η and η1. OQQ̄ combines two quarks and two antiquarks to a diquark-antidiquark
pair. Due to the antisymmetric flavor combination such operators are considered to be
good diquarks, which are lighter than their bad counterparts [9]. Together with a Dirac
structure of Cγ5 the parity positive scalar diquark is the lightest in the spectrum [9, 89].
We also consider a diquark type operator with γ5 replaced by 1. These four-quark op-
erators are candidates to model the structure of a possibly existing bound four-quark
state, i.e. of a tetraquark.
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The remaining two operators OKK̄, 2part and Oηsπ, 2part are nevertheless equally es-
sential for the study. Similar to the previous two operators they generate meson pairs
(KK̄ and ηsπ), but this time at independent spatial points x and y. They are expected
to have a large overlap with the low-lying two-particle states within the IpJP q “ 1p0`q
sector. Only by resolving the two two-particle states we will be able to reliably identify
a third low-lying state, i.e. the possible tetraquark candidate.

We emphasize the presentation of correlation matrix elements in the form of di-
agrams. In their spatial representation quark propagators are represented as arrows
connecting lattice sites. Diagrams without a connection of the two timeslices of the in-
terpolators do not emerge, due to the constant presence of two mass degeneratemu “ md

light quark flavors. Nevertheless, we obtain diagrams with propagators with a starting
and endpoint on a single timeslice. The computation of these propagators remains nu-
merically challenging and we thus want to distinguish between the two possible contribu-
tions to the correlator as 4ˆconnected and 2ˆconnected. Note that certain elements of
the correlation matrix share their spatial diagrammatic representation. Their structures
in color and spin space differ from each other, but these diagrams are determined by
how the interpolators distribute quarks throughout space. The correlation matrix from
(3.19) represented by a spatial distribution of quark propagators is shown in Figure 3.3.

Complementary to the spatial representation of matrix elements, Figure 3.4 shows
their representation in spin space. The continuous structure of the traces in spin space
is illustrated by continuous dashed lines connecting the different quark spinors. Each
construct of dashed lines corresponds to a single spin trace within the diagram. The
specific internal spin structure in terms of Dirac matrices Γ of the operators is not
illustrated, but is certainly relevant and to be inserted between the respective spinors.
Together with the spatial diagrams a large amount of correlators can now be derived by
“reading off” the structure from the two representations. Only the diquark-antidiquark
structure remains somewhat more abstract through non-diagonal color indices. More
details regarding the derivation of the matrix in spin space as well as the construction
of correlators by diagrams are given in Appendix B.1.
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3.4 Techniques for propagator computation

To compute a correlation function (3.8) from lattice QCD we have to determine quark
propagators pDpfqq´1 “ Gpfq. In equation (3.18) the general structure of the correlation
of two quark-antiquark interpolators is derived, which directly translates into

xO1O1:y “
1

Vs

ÿ

x,x1

B

´ tr

„

γ5

´

Gdpx;x1q
¯:

γ5G
upx;x1q

F

U

, (3.20)

for interpolator O1 from the operator set (3.19). The Dirac structure simplifies to
Γ “ 1 and disconnected contributions do not occur. The trace is taken over color and
spin indices and the γ5-hermiticity of the quark propagator Gpfqpx; yq “ γ5G

pfqpy;xq:γ5

is utilized to get rid of the backwards running propagation. This computational trick
enables us to explicitly sum over all sites at only one of the two timeslices. This timeslice
will be referred to as the sink (timeslice) of the correlator, in contrast to its other end, the
source (timeslice). Technically it becomes obsolete to distinguish between the starting
and end points of propagators, as these are interchangeable. Nevertheless, we denote
x as the end point and y as the starting point of a propagator Gpfqpx; yq to ease the
discussion and keep in mind that we can flip the direction if needed.

In this section we discuss strategies to estimate the quark propagator, i.e. the inverse
of the lattice Dirac operator (2.19). We rely on estimates as a complete inversion amounts
to solving 12ˆ L3 ˆ T equations of the form

D
pfq
a,A;b,Bpy;xqG

pfq
b,B;c,Cpx; zq “ δa,c δA,C δpy, zq, (3.21)

to obtain the true all-to-all propagator for a particular flavor f . Here lower case roman
letters label color indices a, b, c “ 1, 2, 3 and uppercase roman letters label spin indices
A,B,C “ 1, 2, 3, 4. Such a computation of Gpfqpx; yq is numerically not practical at all,
as its entries are expected to be highly correlated on a particular gauge field configuration
and the required computer memory would be unreasonable, as shown in Section 2.4.1.
Instead, it is much more practical to compute estimates of the full quark propagator,
as mentioned above. These may project a certain column out of the full propagator (cf.
point-to-all propagators) or attempt to estimate the full propagator under the drawback
of additional stochastic noise (cf. stochastic techniques). All these estimations share the
requirement to find solutions φ to systems of linear equations of the form

D
pfq
a,A;b,Bpy;xqφ

pfq
b,Bpxq “ ξa,Apyq. (3.22)

This numerical procedure is often referred to as an “inversion”1. Once the source term
ξ is constructed solutions are determined by iterative methods. These methods are
typically so-called Krylov subspace methods. Its archetype is the conjugate gradient
(CG) method [90], which solves (3.22) for matrices that are Hermitian positive definite.
For our studies we initially employed the biconjugate gradient stabilized (BiCGSTAB)

1Although a solution for φ is determined with certain numerical precision, D´1 is not known explic-
itly.
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method [91]. However, the speed of convergence for such iterative methods can be
estimated by the condition number

κpDpfqq “

ˇ

ˇ

ˇ

ˇ

λmax

λmin

ˇ

ˇ

ˇ

ˇ

, (3.23)

where λmax/min denotes the largest and smallest eigenvalue of the matrix Dpfq, respec-
tively. As the quark mass approaches zero the Dirac operator becomes singular, i.e.
Repλmin Ñ 0q, causing Krylov subspace solvers to slow down drastically. For this rea-
son, among other issues, simulations at physical pion masses have only become feasible
recently [65]. We then pursued to utilize an adaptive multigrid (MG) solver [92, 93]
to solve (3.22), which further improved the computation time of our calculations by a
factor of « 4. Problematic eigenmodes of the matrix are here projected onto coarser
grids, which preserves the near null space of the matrix and eventually nearly removes
the critical slowing down as the quark mass is taken to zero.

In the following subsections several standard techniques for propagator computation
from the literature are discussed: point-to-all propagators, stochastic propagators and
the one-end trick. Sequential propagators are introduced as an important procedure
for the spectroscopy of multi-particle systems. To illustrate the application of these
techniques correlation function (3.20) will serve as an example.

3.4.1 Point-to-all propagators

Due to spatial translational invariance of QCD it is often sufficient to compute quark
propagators from a fixed spacetime point to any other point. Considering also the
degrees of freedom for color and spin it requires 12 solutions of the linear system

D
pfq
a,A;b,Bpy;xqφ

pfq
b,Bpxqrc, C, zs “ ξa,Apyqrc, C, zs , ξa,Apyqrc, C, zs “ δa,c δA,C δpy, zq,

(3.24)
to obtain a column in position space of the full propagator. Each of the 12 point sources
ξa,Apyqrc, C, zs projects out a different color-spin index, labeled in cornered brackets
rc, C, zs. Here with color index c, spin index C and z for the fixed spacetime point. These
projections are then stored in the 12 solutions φpfqb,Bpxqrc, C, zs, whereas the brackets refer
to the used point source. A point-to-all propagator is then

φ
pfq
b,Bpxqra,A, ys “ G

pfq
b,B;a,Apx; yq. (3.25)

The example correlation function (3.20) expressed by point-to-all propagators be-
comes

Cptq “ ´
ÿ

x

A

tr
´

pγ5qA;B

´

φdpx, t2qra,B,x
1, t1s

: γ5 φ
upx, t2qra,A,x

1, t1s
¯E

U
. (3.26)

Exploiting translational invariance allows for each correlation function to replace a single
spatial sum

ř

y by a factor of Vs and fixing y to an arbitrary point. Thus, correlation
functions where all propagators start at the same spacetime point can be expressed
exclusively in terms of point-to-all propagators. For multi-particle systems this is, how-
ever, not the case for a majority of the relevant correlation functions so that additional
methods are required, cf. Figure 3.3.
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x

y

t2

t1

FIG. 3.5: A point-to-all propagator from a fixed point (box at y0 “ t1) to every site on
the lattice (circle at x0 “ t2). Both ends are “open” in color and spin.

3.4.2 Stochastic timeslice-to-all propagators

While the exact computation of the full propagator remains inaccessible, stochastic tech-
niques allow to estimate it numerically. Widely used are so-called stochastic timeslice-
to-all propagators, i.e. stochastically estimated propagators from any spatial point to
any other spacetime point. Defining N stochastic timeslice-sources

ξa,Apxqrt0, ns “ δpx0, t0qΞa,Apxqrns, (3.27)

where Ξa,Apxqrns are uniformly chosen random numbers satisfying

1

N

N
ÿ

n“1

Ξa,Apxqrns
˚ Ξb,Bpyqrns “ δa,b δA,B δpx,yq ` unbiased noise. (3.28)

A common choice is Ξa,Apxqrns P Zp2qˆZp2q which results in an unbiased noise propor-
tional to O

`

1{
?
N
˘

. As usual, since the noise average and the average over the gauge
field commute, in practice one can take a fairly small number N of noise sources per
gauge configuration, but not smaller than the number of propagators in the diagram.
The linear system (3.22) takes the form

D
pfq
a,A;b,Bpy;xqφ

pfq
b,Bpxqrt0, ns “ ξa,Apyqrt0, ns, (3.29)

allowing an estimation of the propagator as

1

N

N
ÿ

n“1

φ
pfq
b,Bpxqrt0, ns

`

ξc,Cpyqrt0, ns
˘:

“ G
pfq
b,B;a,Apx; zq

1

N

N
ÿ

n“1

ξa,Apzqrt0, ns
`

ξc,Cpyqrt0, ns
˘:

“ G
pfq
b,B;c,Cpx; yq `

ÿ

b,B,z

G
pfq
b,B;a,Apx; zq ˆ OpN´αq

looomooon

off-diagonal noise

,

(3.30)
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where we applied (3.28) and expect an α „ 1{2 for the applied distribution of
Ξa,Apxqrns P tp˘1 ˘ iq{

?
2u. The example correlation function (3.20) expressed by

stochastic timeslice-to-all propagators becomes

Cptq “ ´
1

NpN ´ 1q

ÿ

n‰n1

1

Vs

C

´

ÿ

x

φdpx, t2qrt1, n
1s: γ5 φ

upx, t2qrt1, ns
¯

´

ÿ

x1

ξpx1, t1qrt1, ns
: γ5 ξpx

1, t1qrt1, n
1s

¯

G

U

. (3.31)

Note that each propagator needs to be estimated by different stochastic sources ξrns
and the corresponding solutions φrns (guaranteed by

ř

n‰n1).

x

y

t2

t1

Ξa,A

FIG. 3.6: Stochastic timeslice-to-all propagator from a fixed timeslice (circle at y0 “ t1;
including stochastic noise) to any point on the lattice (circle at x0 “ t2). Both ends are
“open” in color and spin.

Similar to point-to-all propagators stochastic propagators are described by both
source and solution. In the former case the point sources do not explicitly appear
in the construction of the propagator (3.25), but are implicitly taken into account by
considering the color-spin structure of the correlation function, cf. (3.26). The latter
propagators are explicitly build by the solutions of the linear systems in combination
with their corresponding stochastic sources, cf. (3.30). Hence, point-to-all propagators
and stochastic propagators provide great flexibility for all possible color-spin structures
at source and sink of the correlator.

A severe drawback of stochastic propagators is that they introduce additional stochas-
tic noise. The number of off-diagonal noise terms is « V 2M

s multiplied with the number
of signal terms, where M is the number of the stochastic timeslice-to-all propagators
used. While using a single stochastic propagator, i.e. M “ 1, typically leads to accept-
able signal-to-noise ratios, the noise grows quite rapidly with the number of stochastic
propagators. Already for M ą 2, the signal can easily be lost in stochastic noise if these
techniques are applied naïvely. We therefore avoid applying stochastic propagators as an
estimate, whenever another technique presented in this section can be applied instead.

Nevertheless, this particular technique is crucial to our studies. Through the operator
set (3.19) we inevitably require propagators with a starting and endpoint on a single
timeslice, and, more precisely, create and annihilate quarks on all sites, i.e. small loops
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Gspx;xq at every x. In general such a propagator can be estimated for a single site
by a point-to-all propagator, truncated to propagate only to its origin. The situation
becomes a lot more complicated if for any reason one can not omit the spatial sum

ř

x

related to the arguments of the propagator, i.e. if x0 happens to be the sink-timeslice,
cf. Appendix B.2. In all these scenarios we estimate the fermion loops by truncating
stochastic timeslice-to-all propagators to their source timeslices. These timeslice-to-
timeslice propagators are then computed on N∆t consecutive timeslices to allow the
measurement of the correlation function for in total N∆t temporal separations.

3.4.3 The one-end trick

The one-end trick is a technique to estimate the product of two propagators stochasti-
cally. While this might seem as an disadvantage at first glance, the one-end trick turns
out to excel in efficiency to the prior introduced techniques. The product is of the form

ÿ

y

Gpf1qpx;y, tqΓGpf2qpy, t; zq, (3.32)

i.e. the propagators are connected at every spacetime point py, tq, but no further propa-
gators start or end at py, tq. With this condition the one-end trick is particularly suited
to compute correlation functions where at least one interpolating operator is either a
conventional meson or a two-meson creation operator, i.e. ψ̄pf1qψpf2q or
`

ψ̄pf1qψpf2q
˘

x

`

ψ̄pf3qψpf4q
˘

y
.

The linear systems to be solved take the form

D
pf1q
a,A;b,Bpy;xqφ

pf1q
b,B pxqrt0, ns “ ξa,Apyqrt0, ns, (3.33)

D
pf2q
a,A;b,Bpy;xq φ̃

pf2q
b,B pxqrt0,Γ, ns “ pγ5 Γ: ξqa,Apyqrt0, ns, (3.34)

where ξ is a stochastic timeslice source defined in (3.27). The resulting φ and φ̃ estimate
the product of propagators as

ÿ

y

Gpf1qpx;y, tqΓGpf2qpy, t; zq “
1

N

N
ÿ

n“1

φpf1qpxqrt, ns φ̃pf2qpzqrt,Γ, ns:γ5` unbiased noise.

(3.35)
Both γ5 in (3.34) and (3.35) arise as a consequence of utilizing γ5-hermiticity on one of
the two propagators in (3.32). Applying the one-end trick to the example correlation
function (3.20) yields

Cptq “ ´
1

N

N
ÿ

n“1

1

Vs

C

ÿ

x

φ̃dpx, t2qrt1,1, ns
: γ5 φ

upx, t2qrt1, ns

G

U

. (3.36)

The advantage of the one-end trick in comparison to naïve stochastic propagators comes
with the shared stochastic source terms. The stochastic noise introduced by the signal
terms is only accompanied by a single noise term, introduced by this source setup. For
the example at hand (3.20) we count two signal terms with a single source term for
the one-end trick (3.36) and two source terms for stochastic timeslice-to-all propagators
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(3.31). Effectively leaving us with 9V 3
s compared to 9V 4

s stochastic noise terms for the
two methods, respectively.

The main disadvantage of the one-end trick is introduced by the shared source terms
as well. Emphasized by the Γ in (3.34) we find that the spin structure is fixed at the
source. While this might not be an issue for relatively small interpolator bases, it will
become impractical for larger ones. To circumvent this situation spin indices at the
source can be installed explicitly by spin dilution. The introduced procedure remains
the same, but stochastic sources are modified according to

ξa,Apyqrt0, ns ÝÑ ξa,Apyqrt0, B, ns “ δpy0, t0q δA,B Ξa,Bpyqrns. (3.37)

The inversion for a particular Γ is afterwards redundant, but the total amount required
inversions becomes four, one for each spin index. The solutions of the linear system are
then applied similar to point-to-all propagators, i.e.

Cptq “ ´
1

N

N
ÿ

n“1

1

Vs

C

ÿ

x

pγ5qA;B

´

φdpx, t2qrt1, B, ns
: γ5 φ

upx, t2qrt1, A, ns
¯

G

U

. (3.38)

Spin dilution does not further improve the signal-to-noise ratio of the calculated two-
point function. Determining factor is still the total number of inversions performed, i.e.
4N with or N without dilution.

x y
t2

t1

FIG. 3.7: The one-end trick applied to a product of quark propagators, resulting in two
signal terms φpxq, φ̃pyq to all lattice sites. These are inseparably connected at t1 to a
fixed color and spin structure, hence the missing symbol.

3.4.4 Sequential propagators

In contrast to the previous subsections sequential propagators do not label a technique
to efficiently estimate a quark propagator, or a product of such. Instead, sequential
propagators label a procedure to solve linear systems successive, in order to allow the
estimation of a propagator product as a single propagator. The only condition for the
procedure itself is identical to the one for the one-end trick (3.32)

ÿ

y

Gpf1qpx;y, y0qΓGpf2qpy, y0; zq “ Gpf1;f2qpx, zqrΓs, (3.39)
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i.e. no other propagator shares spacetime point y. Any other constraints come from
whatever technique is applied to estimate Gpf1;f2qrΓs, e.g. breaking of translational sym-
metry for sequential point-to-all propagators, or the presence of a suited third propagator
Gpf3qpz, wq to combine sequential propagation with the one-end trick. As the techniques
for propagator estimation were discussed in the previous subsections, we focus on the
procedure of solving linear systems to estimate Gpf1;f2qrΓs below. This procedure may
then replace the respective linear system of the technique, as soon as the structure (3.39)
is identified. While there are in principle no limitations to the timeslices x0, y0 and z0,
we will focus on two cases.

For x0 ‰ y0 “ z0 flavor pf2q in (3.39) will propagate within timeslice z0, i.e. the
timeslice of the source term ξ. The linear system taking the shape

D
pf2q
a,A;b,Bpx; yqφ

pf2q
b,B pyqrz0, ¨ s “ ξa,Apxqrz0, ¨ s, (3.40)

where the open indices r ¨ s reflect the freedom to apply any of the prior discussed tech-
niques. Note, that this also implies the particular features of the techniques, e.g. color
and spin dilution ra,As for point-to-all propagators. In a subsequent linear system the
just obtained solution φpf2q serves as a source term

D
pf1q
a,A;b,Bpy;xqψ

pf1;f2q
b,B pxqrz0,Γ; ¨ s “ pΓφq

pf2q
a,A pyqrz0, ¨ s δpy0, z0q. (3.41)

Notice the timeslice dilution of φpf2q to ensure the propagation only within y0 “ z0, as
well as the need to insert the spin structure Γ at this joint element. Then

˜

ÿ

y

Gpf1qpx;y, y0qΓGpf2qpy, y0; zq

¸

a,A;b,B

“

´

Gpf1;f2qpx, zqrΓs,
¯

a,A;b,B

“ ψ
pf1;f2q
a,A pxqrz0,Γ; ¨ s.

(3.42)

For x0 “ y0 ‰ z0 flavor pf1q will propagate within timeslice x0 and the steps are
essentially analogous to the previous situation, except for the limitation of propagation
within timeslices. pΓφqpf2q is diluted with δpy0, z0q, as before, and additionally is the
solution of the second linear system modified according to

ψpf1;f2qpxqrz0,Γ; ¨ s Ñ ψpf1;f2qpxqrz0,Γ; ¨ s δpx0, y0q. (3.43)

In order to achieve an appropriate temporal separation for the correlation function Cp∆tq
(here ∆t “ |x0´ z0| ) it is thus required to repeat the procedure N∆t times, i.e. for N∆t

consecutive timeslices x0 “ y0 to a fixed source timeslice z0. Appendix B.3 provides a
simple example for the application of sequential propagators in the practical context of
matrix element C15.

It can be quickly understood that the procedure is more efficient if the timeslice
propagation is placed into the source timeslice, both due to fewer required inversions
and by to covering the whole temporal lattice extent. In the end, however, it is necessary
to implement both, in order to compute the full correlation matrix.
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y0 “ z0

x0

y0 “ z0

x0

x0 “ y0

z0

x0 “ y0

z0

FIG. 3.8: Procedure to estimate sequential quark propagators with propagation within
source (upper row) and sink (lower row) timeslices. The white dots mark one end
of the joint propagator Gpf1;f2qrΓs on the source timeslice. Red crosses represent the
requirement for δ-functions to limit the propagation after solving the first (left column)
and second (right column) stage of linear systems. Neighboring timeslices to the sink
are shown to emphasize the gain by placing the timeslice propagation into the source
timeslice, as well as the importance of limiting the propagation for the sink scenario.
Notice how the lower procedure only yields a single temporal separation ∆t “ |x0´ z0|.

3.5 Smearing Techniques

To obtain the best possible signal-to-noise ratio for the measured correlators, the op-
erator set is required to have a large overlap with the expected physical states. The
operators introduced in (3.19) are designed to model the quark, color and spin struc-
ture but they are also local, i.e. all quark pairs share the same lattice site. To improve
the overlap to the physical states we hence consider smeared gauge and fermion fields
for our operators. By replacing the fields through local averages we create spatially
extended trial states that provide a significantly improved overlap to the present low
energy eigenstates.

3.5.1 Gauge link smearing

To smear out the fermion fields in the spatial directions of the lattice we require link
variables to preserve gauge invariance. Similarly to the fermion fields we also smear
the link variables involved. The signal of the correlator is then further enhanced by
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smoothening short distance fluctuations of the gauge field. We employ APE smeared
[94, 95] spatial link variables U pNAPEq

i by iteratively replacing the links according to

Ũ
pnq
i pxq “ U

pn´1q
i pxq ` α

ÿ

i‰j

Π
pn´1q
ij pxq, (3.44)

where U p0q are the unsmeared links and Π are the four perpendicular forward and back-
ward staples

Π
pnq
ij pxq “ U

pnq
j pxqU

pnq
i px` ĵqU

pnq
j px` îq:

` U
pnq
j px´ ĵq: U

pnq
i px´ ĵqU

pnq
j px` î´ ĵq.

(3.45)

The averages of link variables Ũ pnq are, however, not group elements of SUp3q and hence
usually projected back to a SUp3qmatrix. This is realized by maximizing Re tr

”

Xpnq Ũ
pnq
i

:
ı

for an X P SUp3q. The so determined group element can then serve as the next iteration
of link variables, i.e.

U
pnq
i pxq “ PSU(3)

´

Ũ
pnq
i pxq

¯

. (3.46)

For the present calculations we employed a weighting of αAPE “ 0.45 and performed
NAPE “ 20 iteration steps. APE smeared gauge fields are only used to smear sources
and solutions of the linear systems (3.22) of each technique. For the linear systems
themselves the unsmeared gauge field is applied to preserve fluctuations as well as the
coupling strength.

3.5.2 Smeared quark sources and sinks

Fermion fields of local operators are spatially extended by Gaussian smearing [96, 97].
Such smeared fields are a common practice in lattice QCD as they minimize contributions
of excited states to the ground state. The smeared fermion field ψpNGaussq is obtained
after iteratively distributing the field to neighboring sites, i.e.

ψpnqpxq “
1

1` 6κGauss

˜

ψpn´1qpxq ` κGauss
ÿ

˘i

U
pNAPEq
i pxqψpn´1qpx` îq

¸

, (3.47)

where ψp0q is the unsmeared quark operator and U pNAPEq labels the gauge field with APE
smeared spatial links, cf. the previous subsection. The free parameters κGauss and NGauss
are chosen to adjust the width of the quark field to an approximately Gaussian shape.
For our calculations we used κGauss “ 0.5 and NGauss “ 50. The width of the smeared
quark fields can then be estimated [98] by σ «

a

2κGaussNGauss{p1` 6κGaussq a « 0.3 fm.
Implementing extended operators in principle implies that every linear system considered
to estimate a quark propagation (introduced in Section 3.4) needs to be surrounded by
operations that smear the source terms ξ beforehand and the solutions φ afterwards.
This applies also for the procedure of sequential propagation. After the first solution
(3.40) is obtained it needs to be smeared twice as it is both solution and source to a
linear system. For stochastic timeslice-to-all propagators, cf. Section 3.4.2, the sources
are explicitly in use. Hence, it is advisable to smear both, source and sink, after solving
the corresponding linear system.



4
Technical aspects

Before we analyze the results of our lattice computations, we discuss the technical as-
pects of our study in this chapter. Although a lot of the information has been already
given throughout this thesis, Section 4.1 summarizes the simulation details in a compact
style, providing a quick overview of the input parameters to our calculations. Since we
aim to study a tetraquark candidate of a flavor that is not contained in the gauge field
simulations we need to fix a valence charm quark mass so that states on the lattice co-
incide with physical states. Section 4.2 is the central piece of this chapter and discusses
various methods to compute every diagram of the correlation matrix in the most effi-
cient way. As the diagram structures become more sophisticated it is no longer obvious
which techniques or combination of techniques yield the smallest relative error at com-
parable computational costs. The efficiency is not sensitive to the spin structure of the
interpolators and hence results shown are of great value for various projects involving
multi-quark operators. Results presented in this section are also to be found in [27]. In
Section 4.3 the 2ˆconnected diagrams occurring in four-quark flavor structures of the
form tψ̄pf1qψpf2qψ̄pf3qψpf3qu are examined in more detail. We are especially interested in
the impact of these diagrams to the overall studies and will show that their contribution
is essential.

4.1 Simulation details

All numerical investigations presented in this thesis are based on gauge link configura-
tions generated by the PACS-CS collaboration [65]. The gluonic action is the Iwasaki
gauge action [42, 43] and the quark action for Nf “ 2 ` 1 is a non-perturbatively
Opaq-improved Wilson-clover fermion action [55, 56].

We consider a single ensemble with gauge coupling β “ 1.9, corresponding to a
lattice spacing of a « 0.091 fm and a pion mass of mπ « 300 MeV. Further details of
the gauge field ensemble are listed in table 4.1.

β pL{aq3 ˆ T {a κu,d κs cSW a [fm] mπ [MeV] Nconf

1.90 323 ˆ 64 0.1377 0.1364 1.715 0.091 300 500

TAB. 4.1: PACS-CS gauge link ensemble in use (cf. also [65]).

41
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To enhance the groundstate overlap of trial states Oi|0y generated by our interpo-
lating field operators 3.19 we apply standard smearing techniques, cf. Section 3.5. For
the quark field operators ψpfq, ψ̄pfq we use Gaussian smearing with APE smeared spatial
links, with parameters NGauss “ 50, κGauss “ 0.5, NAPE “ 20 and αAPE “ 0.45.

For every measurement the source timeslices is chosen randomly. Every point-to-all
propagator is computed on a single set of 12 inversions, corresponding to a set of 12
point sources at the same randomly chosen point in space. Each stochastic timeslice-
to-all propagator is estimated by 15 independently chosen stochastic source terms, i.e.
Nsto ” N “ 15 in (3.30). Each one-end trick, which provides a much better signal
to noise ratio than simple stochastic propagators, is computed for three independently
chosen stochastic sources, i.e. None ” N “ 3 in (3.35). Moreover, whenever the appli-
cation of a method is restricted to a single temporal separation we perform N∆t “ 15
inversions for consecutive sink timeslices. This results in a range of 0 ď t{a ď 14 for
the 2ˆconnected pieces of the respective correlation functions, which are typical tem-
poral separations where a signal is expected. Whenever possible we average correlation
functions in positive and negative time direction and determine the errors by a standard
jackknife procedure.

In total we discuss two simulation runs. One for a td̄ , u , s̄ , su flavor setup to in-
vestigate the properties of the light tetraquark candidate a0p980q and a second run for
the flavors setup tc̄ , s , ū , uu to investigate the heavy tetraquark candidate D˚s0p2317q.
The simulation parameters do not change between the two runs, but they differ in the
number of total measurements taken into account. For the light tetraquark candidate
we perform seven independent measurements on each gauge configuration, while only
four independent measurements are computed on each gauge configuration for the in-
vestigation of the heavy candidate.

4.1.1 Fixing a charm quark mass

We consider a partially quenched setup to obtain quantitative insights on the tetraquark
candidate D˚s0p2317q. The charm quark mass is determined by tuning the hopping
parameter κ to coincide with pseudoscalar open-charm mesons. In particular the D and
Ds states are of great relevance, as they will determine the neighboring infinite volume
two-particle levels. The results for several independent simulation runs are shown in
Figure 4.1. Colorized straight lines indicate pseudoscalar energy levels in MeV [29] that
we aim to reproduce on the lattice. With respect to the unphysically heavy light quark
mass of our ensemble we determine

mlat.
D pκu,d, κcq « mphys.

D and mlat.
Ds pκs, κcq « mphys.

Ds
, (4.1)

which is given for a κc “ 0.1237. At this value pseudoscalar states from the lattice
coincide with the physical D and Ds mesons, as it can be seen on the right of Figure 4.1.
Due to relatively heavy light quark the ηc meson is tuned to a lighter mass than in
nature, but is of no further concern for our studies with a valence charm quark.
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FIG. 4.1: Partially quenched two-step tuning of a quark mass to a charm quark. Pseudo-
scalar mesonic states as function of 1{2κ. A first simulation run with in κ (left) and a
second run with a narrow range (right) are shown. Vertical gray lines emphasize relevant
κ values. Closed symbols refer to states from quarks existing in the ensemble, open
symbols contain a tuned quark mass. Circle, triangle and square symbols contain at least
one light, strange and tuned quark, respectively. Straight horizontal lines correspond to
the energies of charmed mesons in MeV [29].

4.2 Computation of the correlation matrix

The techniques introduced in Chapter 3 allow the computation of the whole correlation
matrix (3.8) resulting from the selected operator set (3.19), cf. Figure 3.3. It is impor-
tant to note that one relies on all of the introduced techniques, as several diagrams are
inaccessible for one technique alone. In this section we discuss and compare promising
strategies to compute two-point correlation functions of two- and four-quark interpolat-
ing operators of different structures. An efficient method satisfies the following three
criteria,

(A) requires only a small number of inversions

(B) averages the diagram over space

(C) introduces no or only a moderate number of stochastic noise terms

In practice ideal methods do not exist. In particular the criteria (B) and (C) exclude
each other. Stochastic noise is only avoided by fixed point sources, which in return
do not average the correlation function over space on one of the two timeslices. In the
following subsections every diagram type appearing in the correlation matrix is analyzed
with respect to its efficiency. To compare two methods in a quantitative way we employ
a quality ratio

Rpaq,pbqptq “
∆Cpaqptq ¨

?
τ paq

∆Cpbqptq ¨
?
τ pbq

, (4.2)
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where ∆Cpxqptq denotes the statistical error of the correlation function at temporal sep-
aration t and τ pxq is the required computing time to obtain every propagator for method
pxq, respectively. A ratio Rpaq,pbqptq ă 1 hence indicates that method pbq is inferior
to method paq, i.e. that the obtained statistical error of paq is smaller at comparable
computational cost. In the following the investigated methods are labeled alphabet-
ically and arranged according to decreasing efficiency. Hence paq is superior to pbq,
etc. By comparing all methods exclusively to paq it is convenient to use the notation
Rpbqptq ” Rpaq,pbqptq.

The computational effort estimated by τ pxq is determined by the number of inversions
required to realize method pxq. Throughout each evaluation of a single gauge field
configuration we employed the same set of input parameters for the inversions to be
performed, cf. Section 4.1. The resulting quality ratios Rpxq are by its construction only
weakly dependent on the number of stochastic source terms. Improvements in terms
of smaller statistical errors ∆Cpxq are compensated with an increase in the associated
computational effort τ pxq.

Results shown in the following subsections belong to a computation of the flavor
setup td̄ , u , s̄ , su. For this scenario a large number of inversions is always performed
on the relatively heavy strange quark mass, which again leaves the quality ratios Rpxq

weakly dependent on variations of the computed temporal range. In the flavor setup
tc̄ , s , ū , uu this large number of inversions is required for the light quark mass. The
majority of results shown are qualitatively in agreement for both flavor setups. At the
end of this section we discuss the similarities and differences between the two flavor
setups by selected examples. If not stated otherwise results shown refer to computations
of the flavor setup td̄ , u , s̄ , su.

For every method we discuss the spatial appearance of the diagram type is printed
once. Quark propagators are again represented by arrows and color differently for each
method, to indicate different combinations of techniques used to compute the overall
diagram. Point-to-all propagators are colored in blue, stochastic timeslice-to-all propa-
gators in red and two propagators estimated by the one-end trick are colored in green,
cf. Section 3.4. Sequential propagators were introduced rather as a procedure than as an
independent technique and, hence, are not emphasized by a distinct color code. They
are applied whenever a propagator is restricted to a single timeslice connecting two inde-
pendent spatial sites (not to be confused with loops). Sequential propagators are colored
according to the technique they are applied to. Fixed point sources are represented by
black boxes, while stochastic timeslice sources and the solutions of the linear systems are
represented by black circles. Spatial sums that are calculated explicitly or implicitly are
further emphasized by a sum and a double headed arrow pΣ ÐÑq, colorized in black or
gray, respectively. Implicit summations occur while either employing the one-end trick
or sequential propagators, cf. Figure 4.2. The sink-timeslice is either characterized by
at least one explicit summation, and/or the timeslice which has at least two arrowheads
pointing towards it.
In addition to the colored diagrams Appendix B.4 presents a table for each diagram type
studied. Therein the minimal amount of required inversions to realize the respective
methods is given for each quark flavor. In combination with the colored diagrams this
provides a detailed exposure of the computation of every matrix element.

We do not compare all possible methods, but focus on the ones that are promising
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Explicit summation at the sink timeslice

Solution φ̃ of the one-end trick with sequential propagation

Solution φ of the one-end trick

Point-to-all propagator loop at fixed site x

Label of the method

z

x

Σ

Σ

Σ

paq

t2

t1

FIG. 4.2: Color scheme illustrated by the example of one method for the diagrammatic
representation of Cp2ˆconnectedq56 .

a priori. In particular, we do not consider methods making excessive use of stochastic
timeslice-to-all propagators. These are in principle applicable at every instance, but
introduce a large number of stochastic noise terms. The maximum number of stochastic
techniques we want to employ is either a stochastic timeslice-to-all propagator in combi-
nation with the one-end trick, or twice the one-end trick. Moreover, whenever possible,
techniques for propagator computation are combined in such a way that multiple inver-
sions for consecutive sink timeslices are not necessary. Especially sequential point-to-all
propagators which involve a propagation within the sink timeslice are incredibly inef-
ficient, due to the large amount of necessary inversions of the various color and spin
configurations.

4.2.1 Two-quark – two-quark

The numerical implementation of this diagram type has been extensively discussed in
Section 3.4. Here, we consider two methods as promising. The one-end trick, which
averages the diagram over space at both timeslices t1 and t2, but introduces stochas-
tic noise terms, and point-to-all propagators, which fix one side of the correlator, but
introduce no additional stochastic noise.
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FIG. 4.3: Efficiency of different methods for C11.
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A numerical comparison for our lattice setup [65] shows the clear superiority of the
one-end trick at early and late times at comparable numerical effort. An average quality
ratio R̄pbq » 0.35 is taken in a range of 5 ď t{a ď 14, which corresponds to a typical
region to extract energy levels.

4.2.2 Two-quark – four-quark

This particular correlation is represented by only a single diagram type, which however
applies for three matrix elements in Figure 3.3. The quality ratios shown in Figure 4.4
for all three diagrams C12, C13 and C14 show that method paq, which does not introduce
any stochastic noise terms, is clearly more efficient.

Σ
y

x

paq

t2

t1 Σ

Σ

x

pbq

t2

t1 Σ

y

x

pcq

t2

t1

t/a
0 5 10 15 20 25

(x
)

R

0

0.2

0.4

0.6

0.8

1

1.2  0.55)=~ 
(b)

R  (
(b)

R

 0.45)=~ 
(c)

R  (
(c)

R

12C

t/a
0 5 10 15 20 25

(x
)

R

0

0.2

0.4

0.6

0.8

1

1.2  0.64)=~ 
(b)

R  (
(b)

R

 0.35)=~ 
(c)

R  (
(c)

R

 13C

t/a
0 5 10 15 20 25

(x
)

R

0

0.2

0.4

0.6

0.8

1

1.2  0.51)=~ 
(b)

R  (
(b)

R

 0.42)=~ 
(c)

R  (
(c)

R

 14C

FIG. 4.4: Efficiency of different methods for C12, C13 and C14.
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What does not become evident from the quality ratios is, that method paq also
provides temporal separations for the whole lattice extent T , while method pbq and pcq
are restricted to a predefined range. More severe statistical fluctuations are observed for
the C13 element. This is caused by the loop propagator, which in this scenario is found in
an isolated trace with respect to the rest of the correlator, cf. Figure 3.4. Consequently,
we try omit methods that involve such traces of lone quark loops if possible.

4.2.3 Two-quark – two-meson

Correlators in this section of the matrix are the spatially extended variants of the pre-
viously discussed diagram type. Depending on the operator structure the 2ˆconnected
diagram takes the shape of a triangle or becomes truly “disconnected”.

C15 (1 ” qq̄; 5 ” KK̄, 2part)
With a propagation of one quark flavor only within one of the two timeslices, C15 can
be computed efficiently using sequential propagators in the source timeslice. Here, the
relative difference in computational effort between the two techniques is comparable to
matrix element C11, and, similarly, is the one-end trick also here the method of choice,
cf. Figure 4.5.
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FIG. 4.5: Efficiency of different methods for C15.
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C16 (1 ” qq̄; 6 ” ηsπ, 2part)
C16 becomes a product of two disconnected pieces. The quark loop can either be com-
puted using a point-to-all propagator, truncated to a propagation to its origin, or a
stochastic timeslice-to-all propagator, truncated to its source timeslice. With this re-
mark on stochastic timeslice-to-all propagators and the experience from C13 we safely
exclude diagrams with stochastic loops in their sink timeslice and consider the following
methods as promising.
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FIG. 4.6: Efficiency of different methods for C16.

Certainly do method paq and pcq suffer from stochastic noise similarly as C13 does. For
these two methods, however, the noise generated by the stochastic loop is located only
on the source timeslice, affecting each temporal separation of the correlator equally.
With a stochastic loop in the sink timeslice, as it was the case for C13, each temporal
separation is affected by an always different stochastic noise for the loop. Consequently,
do we obtain a much smoother signal for the diagram by this approach, reflected in a
smooth behavior of the quality ratios.

Although method paq introduces a rather large number of stochastic noise terms in
comparison to pbq and pcq, it averages the diagram over space at both timeslices and
eventually proves itself to be the most efficient choice.
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4.2.4 Four-quark – four-quark

C22, C23, C24, C33, C34, C44 4ˆ& 2ˆconnected (2 ” KK̄, point; 3 ” ηsπ, point; 4 ” QQ̄)

The cross-correlators of the three four-quark interpolators have different color and spin
structures, but are identical with respect to spacetime, cf. Figure 3.3 where the sub 3ˆ3
matrix is emphasized by thick lines. Therefore, it is reasonable to discuss these diagram
types together. Due to their compact structure where all four quarks are located at the
same point in space, both at t1 and t2, there is only a single possibility to compute these
types of diagrams efficiently.

t2

t1

y
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Σ

paq

y

x

Σ

paq
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t1

4.2.5 Four-quark – two-meson

C25, C26, C35, C36, C45, C46 4ˆconnected (2 ” KK̄, point; 3 ” ηsπ, point; 4 ” QQ̄;

5 ” KK̄, 2part; 6 ” ηsπ, 2part)
The spatial representation of the 4ˆconnected cross-correlators between all two-meson
and all four-quark interpolators is identical and only differs in their color and spin struc-
ture. As before, these diagrams are computed with the same methods, independently of
where they appear in the matrix.
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Method pbq splits into two possible realizations pb1q and pb2q for all diagrams that include
operator Oηsπ, 2part. For these correlators each technique can be assigned to a single
quark flavor, i.e. point-to-all propagators for the emerging ηs meson and the one-end
trick for the Pion (method pb1q), or vice-versa (method pb2q).
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Figure 4.7 shows the numerical comparison of these methods for all six scenarios.
The conclusions are in agreement with the tendencies seen in nearly all prior diagram
types. The one-end trick is an excellent choice and estimating both propagator products
with this technique results in the most efficient method to compute this element for
all six cases. To some extent surprising is the fact that method pbq without transla-
tional invariance but with stochastic noise surpasses method pcq, which only sacrifices
translational invariance.
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FIG. 4.7: Efficiency of different methods for C25, C26, C35, C36, C45, C46 4ˆconnected.
Methods pbq splits into two versions in the right column due to the possibility to assign
one technique solely to one quark flavor.

It appears that omitting a sum over space where only two quark lines end (cf. method
pbq) is more efficient than omitting a sum over space where four quark lines end (cf.
method pcq).
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The findings that method pb1q is superior to method pb2q is consistent with our ex-
pectation. One reason is that the 12 inversions needed for the point-to-all propagators
require less computing time for the heavier s quark than for the lighter u{d quarks. Sec-
ondly has the one-end trick been found to be more efficient in comparison to point-to-all
propagators with decreasing quark masses [99].

C25, C35, C45 2ˆconnected p2 ” KK̄, point; 3 ” ηsπ, point; 4 ” QQ̄; 5 ” KK̄, 2partq

Similar to C15 is the procedure of sequential propagation required to compute the tri-
angular part of the diagram. In addition, there is now also a loop propagator at the end
points of the propagators connecting the timeslices, which is estimated in both scenarios
by a stochastic timeslice-to-all propagator.
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For C35 the quark loop is again disconnected in spin space, which leads to more
severe statistical fluctuations, shown in Figure 4.8. Especially for larger temporal sepa-
rations of the correlator, cf. Section 4.2.2.

C26, C36, C46 2ˆconnected p2 ” KK̄, point; 3 ” ηsπ, point; 4 ” QQ̄; 6 ” ηsπ, 2partq

With quark loops at both timeslices of the correlator, at least one of them needs to be
computed using a stochastic timeslice-to-all propagator. The candidate methods are
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FIG. 4.8: Efficiency of different methods for C25, C35, C45 2ˆconnected.
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FIG. 4.9: Efficiency of different methods for C26, C36, C46 2ˆconnected.
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Figure 4.9 shows the numerical comparison of these methods. It is interesting to
note that for the first time a method is significantly influenced by the color and spin
structure of a diagram. Method paq remains to be be superior for C26 and C36, while
this is no longer the case for C46.

4.2.6 Two-meson – two-meson

C55, C66 4ˆconnected p5 ” KK̄, 2part; 6 ” ηsπ, 2partq
Each of the two disconnected pieces of these diagrams corresponds to a C11-like correlator
and thus the methods discussed in section 4.2.1 are applied to both parts.
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Again, method pbq splits into two possible realizations for C66, due to the flavor
structure of the creating operator Oηsπ, 2part. pb1q is where the light quarks are esti-
mated with the one-end trick and strange quarks with point-to-all propagators, and pb2q
describes the opposite scenario.
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FIG. 4.10: Efficiency of different methods for C55, C66 4ˆconnected.

The results of comparing these methods are essentially the same as in Section 4.2.5
for the 4ˆconnected diagrams. Only difference here is that the inner products of the
solutions of the linear systems are summed at two independent space-points (y and z)
at the sink timeslice. The consistent application of the one-end trick proves to be more
efficient as its estimates the full dynamics of the system at both timeslices. Method
pb1q is superior to method pb2q, due to a reduced numerical effort but also due to the
increased efficiency of the one-end trick if applied to light quarks [99].
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C55, C66 2ˆconnected p5 ” KK̄, 2part; 6 ” ηsπ, 2partq
The 2ˆconnected pieces of both diagonal two-meson–two-meson elements are each com-
puted efficiently by only a single method.
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OKK̄, 2part (left diagram) connects the quark fields to a box-like diagram, so that se-
quential source and sink propagators become mandatory. This diagram can be computed
efficiently with the one-end trick, as prior discussed diagram types strongly suggest.

Oηsπ, 2part (right diagram) introduces spatially separated loop propagators, which
splits the correlator into three disconnected pieces. The loop at the sink needs to be
estimated by a stochastic timeslice-to-all loop, inevitably resulting in large stochastic
noise contributions to the correlator.

C56 4ˆconnected p5 ” KK̄, 2part; 6 ” ηsπ, 2partq
Similar to its diagonal partners C55, C66 4ˆconnected, there are two promising methods.
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To maximize efficiency it is advisable to let Oηsπ, 2part act as the creating operator
on the source timeslice. Doing so reduces the amount of inversions necessary for each
quark flavor as degenerate quark masses share their source terms. One can think of
method pbq with inverted propagator directions and interchanged source/sink timeslices
as method pcq. This method would correspond to OKK̄, 2part as source operator and
require twice the computational effort compared to method pbq. Results of the numerical
comparison shown in Figure 4.11 are in agreement with the rest of the study. Effects
from the application of the one-end trick on different quark masses are observed to be
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absent. The reason for this is that the inner products of solutions consist of mixtures of
propagator techniques and are averaged independently.
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FIG. 4.11: Efficiency of different methods for C56 4ˆconnected.

C56 2ˆconnected p5 ” KK̄, 2part; 6 ” ηsπ, 2partq

The last diagram type we discuss is again of triangular shape, but in contrast to C25,C35

and C45, with a truly disconnected quark loop. We utilize sequential propagation in
combination with a point-to-point or a stochastic timeslice-to-timeslice loop.
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A numerical comparison of the methods is shown in Figure 4.12. Method paq and pbq
perform on a similar level. This is in relation to the results for C16 not too surprising.
There, methods which placed the loop on the source timeslice were considered to be
the most efficient. From the perspective of computational costs this might be evident,
but also the signal obtained from these methods was superior compared to methods
which place the loop on the sink timeslice (results which are not presented here). This
observation basically remains true for element C56 2ˆconnected. An additional method
which considers a stochastic timeslice-to-timeslice loop instead of a point-to-point loop
in method paq was not considered. It can be expected that this option further increases
the efficiency of the computation of this diagram type by « 20´ 30%.
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FIG. 4.12: Efficiency of different methods for C56 2ˆconnected.

4.2.7 Efficiency for different flavor setups

In addition to the flavor setup td̄ , u , s̄ , su we employ to study the a0p980q we also
consider the flavor setup tc̄ , s , ū , uu, in order to investigate the D˚s0p2317q. Since color
and spin structure of the respective diagrams remain unchanged and only quark flavors
of propagators have to be rearranged, it is interesting to see, whether the efficiency of
different methods is affected by these changes.

The most obvious change is that for the heavy flavor setup the light quark will have
starting and endpoints on a single timeslice. As mentioned several times such diagrams
are more expensive to compute, but also provide a much worse signal-to-noise ratio com-
pared to diagrams without such propagators, cf. Section 3.4. However, for our compu-
tations we utilize an adaptive multigrid solver, rather than a conventional iterative pro-
cedure like BiCGSTAB. Consequently, inversions of light quark masses are much faster
compared to regular setups, which leaves us with relatively small

?
τ plightq{

?
τ pheavyq in

the quality ratios (4.2). Numerical setups which do not treat light quark masses in a
refined way are hence expected to be affected even more severely by the wrong choice
of methods than presented in the following.

Diagrams whose expenses are dominated by a quark loop are expectedly sensitive to
the change of the flavor setup.
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FIG. 4.13: Efficiency of different methods for C12 in two flavor setups: td̄ , u , s̄ , su
(left) and tc̄ , s , ū , uu (right) .
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The choice of techniques becomes more important seen in e.g. element C12 plot-
ted in Figure 4.13. Method pbq and pcq are dominated by a stochastic timeslice-to-all
propagator. Hence their efficiency can be expected to decrease even further in the ab-
sence of sound solver procedures that allow an accelerated computation of light quark
propagators.

The transition to another flavor setup leaves the efficiency ratings of all 4ˆconnected
diagrams qualitatively unchanged, shown by the example of C4ˆconnected

26 in Figure 4.14.
These diagram types are barely sensitive to the flavor content at all, as they are simply
computed by mere timeslice-to-all techniques.
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FIG. 4.14: Efficiency of different methods for C26 4ˆconnected in two flavor setups:
td̄ , u , s̄ , su (left) and tc̄ , s , ū , uu (right). Efficiencies remain qualitatively unchanged
due to the sole presence of source-sink propagators.

The most drastic changes in quality ratios are observed for four-quark–two-meson
2ˆconnected diagrams. Yet the magnitudes of the changes are still too small to speak of
any significant alteration. Altogether do the diagrams C25, C35, C45, C26 and C36 show
an increased tendency for a balanced quality ratio between the two respective methods,
cf. Figure 4.15, where C2ˆconnected

26 is plotted as an example. C46 2ˆconnected remains
to favor method pbq over method paq.
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FIG. 4.15: Efficiency of different methods for C26 2ˆconnected in two flavor setups:
td̄ , u , s̄ , su (left) and tc̄ , s , ū , uu (right). Similar to the other four-quark–two-meson
2ˆconnected diagrams become the quality ratios balanced for the heavy flavor setup.
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4.3 Relevance of 2ˆconnected contributions

After the most efficient methods are determined for every diagram we restrict ourselves
to utilize only these particular methods. We have already seen that 2ˆconnected con-
tributions to correlators with four quarks pose an exceptional effort to compute. Yet
to this point it remains unclear how large the statistical errors on these contributions
actually are and, more interestingly, how large they are in comparison to the statisti-
cal errors of the 4ˆconnected contributions. Since, ultimately, the larger of the two
errors will dominate the error of the matrix element. To compare the statistical er-
rors of both contributions we use again the quality ratio defined in (4.2), but instead
of different methods we plug in the two different contributions to the correlator, i.e.
R2ˆconptq ” R4ˆcon,2ˆconptq.

In the top row of Figure 4.16 the quality ratios are shown for all six correlation
matrix elements with four quarks on the same site from the td̄ , u , s̄ , su flavor setup,
i.e. Cij with i, j P r2, 3, 4s. They decrease rapidly and already at a temporal separation
of t{a Á 6 they are below 0.1, or even significantly smaller. Consequently, the statistical
error of the correlation matrix elements will be governed by the 2ˆconnected diagrams.
Determining the optimal method of computation for the 2ˆconnected is thus much more
important than for the 4ˆconnected diagrams.
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FIG. 4.16: Comparison of 4ˆ and 2ˆconnected contributions for Cij with i, j P r2, 3, 4s
for the td̄ , u , s̄ , su flavor setup.

In the bottom row of Figure 4.16 we plot a related quantity to investigate the drastic
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difference in the statistical errors in more detail. Assuming an exponential behavior
R2ˆconptq 9 e´αt the plotted quantity logp. . .q extracts the exponent α. For all six cases
shown the mean of logp. . .q fluctuates around the same constant value, i.e. α « 0.4,
which indeed shows that the statistical error of the 2ˆconnected diagrams increases
exponentially in comparison to the 4ˆconnected diagrams, i.e. proportionally to eαt.
The remaining elements of the correlation matrix consisting of 4ˆ and 2ˆconnected
contributions exhibit the same feature and are presented in [27].

To understand this behavior we want to consider squared diagrams, which are propor-
tional to the squared statistical error of a diagram. From the resulting quantum numbers
we can then derive the respective decay of the correlation function. The squared dia-
grams of correlation functions from three point-interpolators Cij with i, j P r2, 3, 4s are
shown in Figure 4.17.

x y
Σ Σt2

t1

x y
Σ Σt2

t1

FIG. 4.17: Squared diagrams, which are proportional to the squared statistical errors
of the 4ˆconnected diagram (left) and the 2ˆconnected diagram (right) of Cij with
i, j P r2, 3, 4s.

Such a structure corresponds to a correlation function of two eight-quark operators
with appropriately chosen color, spin and spacetime structure, e.g.
´

∆C4ˆconnected
22 ptq

¯2
9

A

O2partrsp1q, sp2q, sp3q, sp4qspt2qO
pointrsp1q, sp2q, sp3q, sp4qs:pt1q

E

,

(4.3)
´

∆C2ˆconnected
22 ptq

¯2
9

A

O2partrsp1q, sp1q, sp2q, sp2qspt2qO
pointrsp3q, sp3q, sp4q, sp4qs:pt1q

E

,

(4.4)

with operator structures

O2part “

˜

ÿ

x

´

s̄1pxq γ5 upxq
¯´

d̄pxq γ5 s2pxq
¯

¸˜

ÿ

y

´

s̄3pyq γ5 upyq
¯´

d̄pyq γ5 s4pyq
¯

¸

,

Opoint “
ÿ

x

´

s̄1pxq γ5 upxq
¯´

d̄pxq γ5 s2pxq
¯´

s̄3pxq γ5 upxq
¯´

d̄pxq γ5 s4pxq
¯

,

(4.5)
where different degenerate strange quarks spiq are introduced to ensure that the cor-
relation functions (4.3) and (4.4) reproduce exactly the squared diagrams shown in
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Figure 4.17. Both O2part and Opoint with flavor structure tsp1q, sp2q, sp3q, sp4qu generate
quantum numbers IpJP q “ 2p0`q and strangeness Sp1,3q “ `1 and Sp2,4q “ ´1 for
the four strange flavors, corresponding to an asymptotic decay according to e´4mKt.
Similarly, in (4.4) the quantum numbers will again be IpJP q “ 2p0`q, but strangeness
Sp1q “ Sp2q “ Sp3q “ Sp4q “ 0 for all four strange flavors. Hence, the correlation func-
tion will decay asymptotically according to e´2mπt. Consequently we obtain a ratio of
relative errors of the two diagrams of

∆C4ˆconnectedptq

∆C2ˆconnectedptq

ˇ

ˇ

ˇ

ˇ

d̄us̄s

9 e´p2mK´mπq t. (4.6)

Inserting the mass values for our lattice setup (cf. Figure 5.2) yield an αd̄us̄s « 0.41,
which is in agreement with the numerical findings from Figure 4.16. Similarly, for the
tc̄ , s , ū , uu flavor setup we find a ratio of

∆C4ˆconnectedptq

∆C2ˆconnectedptq

ˇ

ˇ

ˇ

ˇ

c̄sūu

9 e´pmK`mD´mDs q t. (4.7)

Mass values of our setup (cf. Figure 5.16) yield this time a much milder αc̄sūu « 0.224,
which is also in agreement to analogous findings for this flavor setup, shown in Fig-
ure 4.18.
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FIG. 4.18: Comparison of 4ˆ and 2ˆconnected contributions for Cij with i, j P r2, 3, 4s
for the tc̄ , s , ū , uu flavor setup.

In conclusion is the relative exponential increase of the statistical errors of the
2ˆconnected diagrams not to be associated with the employed method of computation,
but much rather an intrinsic property of these diagrams.

After identifying 2ˆconnected diagrams of correlators as numerically expensive and
inherently affected by large statistical fluctuations it is eventually interesting to consider
their impact on the total correlation matrix. Rather obvious is their importance in regard
to connecting the conventional two-quark operator analysis with a four-quark operator
analysis. It becomes evident in Figure 3.3 that correlation functions on the off-diagonal
to the quark-antiquark operator O1 are solely composed of 2ˆconnected diagrams and
connect these otherwise separated bases. Hence, their omission in any computation
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makes a complete analysis of even conventional mesonic states in the neighborhood of
multi-particle states impossible.

On the other hand it might possibly be that these elements, in our case C1i with
i P r2, . . . , 7s, of the matrix are negligible nevertheless. This would lead to a scenario
similar to their omission, where any n ˆ n study would effectively break down into an
approximate 1 ˆ 1 ` pn ´ 1q ˆ pn ´ 1q study. In return, one could not undoubtedly
claim having studied a tower of states, but possibly rather two independent sectors. In
Figure 4.19 we plot off-diagonal correlation functions of the quark-antiquark operators
scaled to their related diagonal correlation functions for both flavor setups. From ratios
" 0 we anticipate non-negligible interactions between the two-quark states and the
respective multi-quark states. In Figure 4.19 it can be seen that this is the case for both
correlation matrices.
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FIG. 4.19: Off-diagonal elements C1i normalized to their related diagonal elements
for the flavor setups td̄ , u , s̄ , su (left) and tc̄ , s , ū , uu (right). Effects in the light
tetraquark study for t{a Á 8 are caused by finite size effects, which are addressed later
on.

For the light and heavy tetraquark candidate studied in this thesis, the conventional
quark-antiquark interpolating field operators are of the form O1

ˇ

ˇ

d̄us̄s
» pd̄uq and

O1
ˇ

ˇ

c̄sūu
» pc̄sq, respectively, while O7 refers to a heavier diquark-antidiquark structure

than O4, cf. Section 3.3.1.
The most striking difference is the much more drastic error on the results from the

light setup. This is not alone an effect of the intrinsically worse 2ˆconnected diagrams
within this setup, but mainly caused due to finite size effects. Such effects are anticipated
in (3.7) and the detailed discussion is postponed to Chapter 5.1.

However, for t{a ă 8 operator O1
ˇ

ˇ

d̄us̄s
» pd̄uq is evidently integrated to the rest of

the matrix and in both setups we observe a strong relation to the diquark-antidiquark
operators. In the study of the D˚s0p2317q we observe a weak coupling of the quark-
antiquark operator to a majority of the multi-quark operators, except for the diquark-
antidiquark structures.

Another important aspect of 2ˆconnected diagrams concerns their relevance to the
total correlator. Since they are numerically expensive and still characterized by usually
poor signal-to-noise ratios is their computation often omitted in earlier studies [21, 100].
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To demonstrate their impact to the total correlator we plot in Figure 4.20 the absolute
value of selected 2ˆconnected diagrams divided by the sum of the absolute values of both
diagram types. For the example correlation functions we show the diagonal elements
of the matrices in the light and heavy flavor setup. Again the note of caution, that
obvious changes in the behavior of some correlators in the light flavor setup for t{a Á 8
are caused by finite size effects. For reliable results we thus focus on values of the
correlators for t{a ă 8. One striking exception in both scenarios is C55. In both
flavor setups is the box contribution to the correlator two orders of magnitudes smaller
than the diagram with four propagators connecting the two timeslices. The addition of
2ˆconnected diagrams is hence affecting the total correlator only by a few percent. It
can be expected that the large spatial separation of the strange-antistrange quark pair
is the reason for this large suppression.

In the heavy flavor setup finite size effects to the 2ˆconnected diagrams are not
nearly as severe as in the light setup. Instead we observe a very smooth behavior of
these diagrams, where the total correlators are not drastically affected by 2ˆconnected
diagrams, but rather receive an increase of statistical errors.

Mutual agreement between both analysis is found in regard to the relevance of
2ˆconnected contributions to correlators deriving from a diquark-antidiquark opera-
tor structure. In Figure 4.20 this corresponds to C44 and C77 in both setups. Although
the light setup provides reliable evidence only at small temporal separations are these
correlators evidently dependent on these diagrams. This extends also to the respective
off-diagonal elements. In conclusion it is expected that the computation of all contribut-
ing pieces to this correlator structure is vital to correctly model a diquark-antidiquark
structure and, hence, to introduce any chance of observing a bound four-quark state of
this structure.



Technical aspects 63

0

0.2

0.4

0.6

0.8

1

1.2

1.4

2 4 6 8 10 12 14

|C
ij2

x
| 
/ 

(|
C

ij4
x
|+

|C
ij2

x
|)

 

t/a

Flavor setup d us s

22

33

44

55

66

77

0

0.2

0.4

0.6

0.8

1

1.2

1.4

2 4 6 8 10 12 14

|C
ij2

x
| 
/ 

(|
C

ij4
x
|+

|C
ij2

x
|)

 

t/a

Flavor setup c su u

22

33

44

55

66

77

FIG. 4.20: Relevance of 2ˆconnected contributions to the total correlator, shown for
all diagonal elements of both flavor setups. Relative signs between the two contributing
diagrams are not taken into account. In the study of the light flavor setup the increasing
relevance of 2ˆconnected contributions t{a Á 8 is caused by finite size effects. In
both scenarios the diquark-antidiquark correlator receives large contributions from the
2ˆconnected diagrams.





5
Investigation of scalar tetraquark candidates

In this chapter we present our results for the investigation of the light scalar tetraquark
candidate a0p980q and the heavy scalar tetraquark candidate D˚s0p2317q. Our analyses
are based on a variational approach - introduced in Section 3.2 - allowing us an extensive
study of the particles of interest by employing several operator sets with well-suited
quark structures (3.19). The presentation of both candidates follows the same scheme.
In a first step we compute the pseudoscalar single particle levels within our lattice setup
to calculate the infinite volume two particle levels. These levels differ from physical
observations [29], but provide an energy range where the possible candidate is expected
to be found within computations.

For the analysis of four-quark states we omit in a first step 2ˆconnected contributions
to correlators. These diagrams are inherently worse in their signal and, as we will see,
are also be affected by finite volume effects. As they are excluded for a first study the
employed operator set decouples, i.e. two-quark and four-quark operators are studied
separately. Eventually, we include all diagrams to our analysis and check for a possible
third low-lying state close to the two-particle levels.

5.1 The light candidate: a0p980q

The a0p980q is an isovector in the poorly understood nonet of light scalars (JP “ 0`).
The other scalars are the σ ” f0p600q and f0p980q with isospin 0, and the κ ” Kp800q
with isospin 1{2. In contrast to expectations from the naïve quark model is the observed
mass hierarchy of these scalars inverted. The a0p980q is measured around „ 1GeV and
features a surprising mass degeneracy with the f0p980q.

Based on the conventional quark-antiquark interpretation isospin I “ 1 can only be
realized with two light quarks, whereas for I “ 0 either two light or two strange quarks
are possible. Hence the conventional flavor structure of these scalars in an SUp3q flavor
nonet reads

I “ 0 Ñ σ “
1
?

2
puū` dd̄q , f0 “ ss̄,

I “ 1{2 Ñ κ` “ us̄ , κ0 “ ds̄ , κ̄0 “ sd̄ , κ´ “ sū,

I “ 1 Ñ a`0 “ ud̄ , a0
0 “

1
?

2
puū´ dd̄q , a´0 “ dū.

(5.1)

65
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Alternatively could one assume a four-quark structure with quark content

I “ 0 Ñ σ “ udūd̄ , f0 “
1
?

2
pusūs̄` dsd̄s̄q,

I “ 1{2 Ñ κ` “ udd̄s̄ , κ0 “ udūs̄ , κ̄0 “ usūd̄ , κ´ “ dsūd̄,

I “ 1 Ñ a`0 “ usd̄s̄ , a0
0 “

1
?

2
pusūs̄´ dsd̄s̄q , a´0 “ dsūs̄.

(5.2)

Within the interpretation as tetraquark states [29, 30, 31, 32] both the mass degeneracy
of f0p980q and a0p980q, and the mass ordering of the whole nonet, resolve rather nat-
urally, cf. Figure 5.1. Furthermore are the larger widths of σ and κ easier to explain,
since the decay channels to π ` π and K ` π, respectively, are OZI allowed. Last to
mention is experimentally known that a0p980q couples well to KK̄, since its decay chan-
nel is sizeable although most of the phase space for a0 Ñ KK̄ is closed. The tetraquark
structure allows a cheap decay into KK̄, while ud̄Ñ KK̄ is suppressed by the creation
of a ss̄ pair.
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FIG. 5.1: Flavor structure and mass hierarchy for the spectrum of light scalar mesons
(JP “ 0`). Experimental observations (left), expectation based to the conventional qq̄
model (center), interpretation as tetraquark states, i.e. qqq̄q̄ (right).

Several lattice QCD studies on light scalar mesons have been published in the last
couple of years and the a0p980q has turned out to be a challenging task. Early quenched
studies revolve around the differentiation whether the observed lattice state extrapolates
to a0p980q or to its excitation a0p1400q [101, 102, 103]. Once the state on the lattice
was mutually identified with an energy „ 1 GeV (cf. [104] and references therein), its
content still remained unclear. The near presence of two scattering states with similar
energies complicates a clear extraction drastically. In contrast to the conventional quark-
antiquark content stands a possible tetraquark interpretation. This quark setup also
involves loop contributions that have to be taken into account, i.e. quark propagators
with a starting and end point on a single timeslice. In absence of such contributions no
indications of a tetraquark structure for the a0 have been seen in [21, 100]. Altogether is



Investigation of scalar tetraquark candidates 67

the identification of the internal structure of the a0 difficult, but more recent results tend
to a non-tetraquark structure [26, 28, 105]. It is important to mention the particular
reference [106]. Therein the a0 is investigated as a coupled channel scattering state for
a first time, which we will comment on at the end of the thesis.

Results presented in this section are the continuation of the project [21, 22, 23], where
Wilson twisted mass fermions are employed. The continuous progress of this work is
documented in [24, 25, 26, 27, 28].

To set the stage for the analysis of a tetraquark candidate we need to identify the infi-
nite volume two-particle levels first. They differ from the finite volume two-particle levels
by finite size interactions [16, 17]. Following the standard procedure (3.18) we compute
single diagonal correlators from operator structures O » pψ̄pf1qγ5ψ

pf2qq to obtain the
pseudoscalar mesons π, K, and ηs within our lattice setup. To fit the pseudoscalar mass
of the unphysical ηs state we neglect fully disconnected pieces of the correlator. Their
involvement reduces the possible range for a fit to the effective mass to only a few noisy
points, which are within errors in agreement to the connected-only signal. Figure 5.2
shows the results for the pseudoscalar masses in lattice units and the corresponding
GeV. The infinite volume two-particle levels are calculated at amηs`π “ 0.502p1q and
amK`K̄ “ 0.548p4q, and are represented by dashed lines. This corresponds to an energy
range of « 1.1-1.2 GeV for the anticipated a0p980q candidate within our setup with
mπ « 300 MeV.
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FIG. 5.2: Identification of pseudoscalar mesons π, K and ηs within our lattice setup.
Infinite volume two-particle levels ηs ` π and K ` K̄ are calculated from single particle
results.

The following two sections aim to observe an a0p980q candidate in our setup by
application of various two-quark and four-quark creation operator sets (3.19). We split
the discussion of results into two scenarios: At first we neglect all diagrams that involve
quark propagators with a starting and end point on a single timeslice. This effectively
breaks our 6 ˆ 6 correlation matrix, cf. Figure 3.3 and 3.4, into two independent 1 ˆ 1
and 5 ˆ 5 problems. Afterwards we consider all contributing diagrams and study the
resulting matrix and submatrices anew.
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5.1.1 Omitting quark loop contributions

The 1ˆ 1 problem
Studying the single diagonal correlator C11 with O1 “ Oqq̄ » pd̄uq corresponds naïvely
to a simple 1 ˆ 1 problem. However, the extraction of scalar states by qq̄ operators
remains a challenge to lattice computations. The major problem is that these states are
usually scattering states of two pseudoscalar mesons and that a naïve quark-antiquark
interpretation might not be well suited to describe the channel. This problematic single
scalar channel motivated the transition from an initial setup with twisted mass fermions
[21, 22, 23] and an explicitly broken parity symmetry, to the now employed clover im-
proved Wilson fermion action. Figure 5.3 shows the result for this channel, obtained
by identical methods and the same set of statistics as the just presented pseudoscalar
mesons, cf. Figure 5.2.
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FIG. 5.3: Correlation function C11 (left) with O1 » pd̄uq and the corresponding effective
mass (right), extracted by assuming contributions from a single exponential.

The signal of the correlation function is drastically worse compared to the pseu-
doscalar states and shows an apparent change in the slope around t{a “ 8. This is
emphasized by two independent single exponential fits 9Apnq expp´mpnq tq at different
temporal separations.

At small temporal separations a plateau amp1q “ 0.587p9q above both two-particle
levels is found. In this region higher energy eigenstates contribute to the correlator,
such that a larger energy is expected. Thereafter the signal fails to converge to a clear
ground state in the two-particle region, but further decreases for increasing temporal
separations. At larger temporal separations a satisfying fit becomes impossible, due to
drastically increasing noise. Depending on the range of the fit one can estimate a slope
of the correlation function around amp2q “ 0.30p1q.

It is important to note that what appears to be a lower energy level does not cor-
respond to an energy eigenstate. The reason for this behavior are two particles created
by the operator at t1 that are propagating in opposite directions around the torus to t2.
This particular contribution is suppressed by the finite temporal extent of the lattice,



Investigation of scalar tetraquark candidates 69

but also leads to the impression of another light state. In the following we refer to these
effects of particles propagating in opposite directions as artificially light signals, as they
are governed by the mass difference of the two particles, cf. (3.7). Although artificially
light signals are treated like energy contributions to the correlator, they are not energy
eigenstates, but finite size effects. In Figure 5.4 different signals to a correlation function
of two particles are illustrated.

Opt1q

Opt2q

9 e´pm1`m2q t

9 e´pm1`m2q pT´tq

Opt1q

Opt2q

9 e´minpm1,m2qT e´|m1´m2| t

FIG. 5.4: Two particle propagation around the torus with t “ t2 ´ t1 and t2 ą t1. Joint
propagation analogous to a single particle (left) and propagation in opposite directions
(right). Two scenarios of particles propagating in opposite directions are distinguished
by solid and dashed lines. To consider all three contributions to a correlation function
(red, green, blue) effective masses have to be extracted accordingly.

A simple log-fitting scheme to a correlator is strictly speaking only valid far from
any boundary of the lattice. To account for the finite temporal extent of the lattice,
more sophisticated strategies are required.

The issue is certainly relevant for the a0 due to the neighboring ηsπ and KK̄
states. What we expect are time dependent contributions from an artificially light
signal ampηs´πqart “ 0.226p1q and constant contaminations from the KK̄ channel, due to
particles of equal mass. To obtain an estimate of the leading artificial signal we fit a
sum of two exponentials 9Ap1q expp´mp1q tq `Ap2q expp´m

p2q
art tq to the correlator C11.

Fitting both contributions simultaneously increases the splitting of the signals to-
wards am1 “ 0.65p1q [previously: am1 “ 0.587p9q] and am2

art “ 0.23p1q [previously:
am2 “ 0.30p1q]. This shows that in the presence of sizeable finite volume effects energy
contributions at small temporal separations are underestimated in the naïve log fitting
scheme. Furthermore is an artificial signal around 0.23p1q inverse lattice units a sound
indication for the finite size effect of an ηsπ signal propagating in opposite directions,
where ampηs´πqart “ 0.226p1q.

It is clear that from this correlator alone an extraction of any possible a0 candidate
is problematic. One might assume a plateau at small temporal separations, yet without
resolution of neighboring states this is a questionable assumption.
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The 5ˆ 5 problem

In the following we want to study the 5 ˆ 5 correlation matrix Cij “ xOiOjy with
i, j P r2, . . . , 6s, referring to the notation of (3.19). For now we neglect 2ˆconnected
contributions to all correlators, which corresponds to prohibiting quark loop contribu-
tions. We hence expect states around and above the two-particle thresholds as lighter
states are inaccessible. In particular we are interested in whether the molecule-like inter-
polators O2 “ OKK̄, point and O3 “ Oηsπ, point or the diquark-antidiquark interpolator
O4 “ OQQ̄ succeed in observing a candidate for the a0p980q, i.e. resolve a third low-lying
state near the expected two-particle levels.

At first we analyze the 2 ˆ 2 and 4 ˆ 4 submatrices corresponding to the ηsπ, KK̄
point and point`two-particle operator sets, i.e. rOKK̄, point, Oηsπ, points and
rOKK̄, point, Oηsπ, point,, OKK̄, 2part, Oηsπ, 2parts, respectively. Results obtained from solv-
ing the GEP are shown in Figure 5.5.
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FIG. 5.5: GEP analysis of the correlation matrix omitting quark loop contributions.
Analysis of the 2ˆ2 problem with rO2, O3s (top left) compared to the 4ˆ4 problem with
rO2, O3, O5, O6s (top right). Squared eigenvector components corresponding to E1 and
E2 of the 4ˆ 4 analysis are given on the (bottom left) and (bottom right), respectively.
Dashed lines refer to the infinite volume two-particle levels. Gray and colored points
refer to different fitting schemes.

It can be seen that the molecule-like operators alone provide a certain overlap with
the two-particle levels, cf. Figure 5.5 top left. In comparison with the two-particle
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operators this overlap is, however, largely composed of excited state contributions. The
signals converge only slowly towards the infinite volume two-particle levels and do not
reach a plateau. The two-particle operators excel in regard of resolving the two-particle
energies, cf. Figure 5.5 top right, which is why such operators are very important to
compute for studies of possible tetraquark candidates. They reach a plateau, but at
large temporal separations decrease to what appears to be lower energies.

In the top row of Figure 5.5 gray points indicate an effective mass extracted from
the eigenvalues by a simple logp. . .q, while colored points take the periodicity of the
lattice into account and energies are extracted by a coshp. . .q. Both strategies show a
distinct behavior towards the center of the lattice that do not coincide with the infinite
volume two-particle levels. It is thus clear that additional effects must contribute to the
correlators. Similar to the case of C11 with O1 “ Oqq̄, we expect particles propagating
in opposite directions around the torus.

Contrary to the 1ˆ 1 study of O1 “ Oqq̄ we observe contaminating finite size effects
only at large temporal separations t{a Á 20. Previously, these effects were already
observed at small temporal separations t{a Á 8. Since the correlators cover the whole
temporal extent of the lattice and show only small statistical errors, we are able to
analyze the artificially light contributions precisely. We modify our fitting procedure
(3.12) to not only account for the periodicity of the lattice, but also to include finite
volume effects of two-particle states propagating in opposite directions. Therefore, we
assume contributions to correlators following (3.7)

Cptq » A
´

e´E t ` e´E pT´tq
¯

`B
´

e´m1 te´m2 pT´tq ` e´m1 pT´tqe´m2 t
¯

,

» Ae´E T {2
´

e´Ept`T {2q ` e´Ept´T {2q
¯

`B e´pm1`m2qT {2
´

epm1´m2qT {2e´pm1´m2q t ` epm2´m1qT {2e´pm2´m1q t
¯

,

» Ae´E T {2 2 cosh p´Ept´ T {2qq `B e´E T {2 2 cosh ppm1 ´m2q pt´ T {2qq ,
(5.3)

where E “ m1 `m2 and underlined contributions are colored to match with the illus-
tration in Figure 5.4. Consequently, after solving the generalized eigenvalue problem,
effective masses mpkqeff can be extracted from subsequent eigenvalues λpkq according to

λpkqpt, trq ´ C cosh
´

am
pkq
art pt´ T {2q

¯

λpkqpt` a, trq ´ C cosh
´

am
pkq
art pt` a´ T {2q

¯ “

cosh
´

am
pkq
eff ptq pt´ T {2q

¯

cosh
´

am
pkq
eff ptq pt` a´ T {2q

¯ ,

(5.4)
where mpkqart is the leading artificial signal contributing to the pkq-th eigenvalue and C is
a constant proportional to 9 e´T .

The single leading finite size effect to each eigenvalue is difficult to determine pre-
cisely. By guessing contributions corresponding to the respective two particles of the
channel, we observe restored behaviors for the effective masses. In particular, these arti-
ficial signalsmpkqart correspond in theKK̄ and ηsπ channel tomKK̄

art andmηsπ
art , respectively.

Inserting signals following amKK̄
art Ñ am

pK´K̄q
art « 0 and amηsπ

art Ñ am
pηs´πq
art « 0.226

both groundstates coincide with the infinite volume two-particle levels, cf. Figure 5.6.
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Figure 5.6 shows three different effective masses for the two-particle signals, obtained
by applying different fitting procedures. Again, colors emphasize which contributions of
two particles on the torus are considered, referring to Figure 5.4. Based on the same two-
particle correlation functions (represented by circles and squares) only a fitting scheme
following (5.4) provides an effective mass close to the infinite volume two-particle levels.
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FIG. 5.6: Effective masses extracted from different fitting schemes to the eigenvalues. A
simple exponential λ9 logp. . .q [red], including the periodicity of the lattice λ9 coshp. . .q
[green] and considering the periodicity + finite volume effects λ9 coshp. . .q ` fve [blue].
Squares and circles correspond to ηsπ and KK̄ states, respectively.

Thus we confidently confirm two particles propagating around the lattice in opposite
directions as leading, artificially light, contribution to the correlators.

Above the groundstate two-particle levels we observe additional states in the top right
of Figure 5.5. These states are found around « 0.65 - 0.67 inverse lattice units, which
coincides with the expected first momentum excitations of the two-particle energies, i.e.

aEηsp1q ` aEπp´1q “

b

am2
ηs ` p2π{Lq

2
`

b

am2
π ` p2π{Lq

2
« 0.65,

aEKp1q ` aEK̄p´1q “

b

am2
K ` p2π{Lq

2
« 0.67.

Note that the upper two dashed lines in Figure 5.5 correspond to the infinite volume
two particle levels with a momentum excitation. Both these states are dominated by a
mixture of the two point operators O2 “ OKK̄, point and O3 “ Oηsπ, point. Hence, we do
not observe a third low-lying state of a possible molecule-like structure from investigating
this set of four operators.

Eventually, after including also diquark-antidiquark operators, we analyze the com-
plete set of operators. Figure 5.7 shows the observed states from this set. The inclusion
of diquark-antidiquark interpolating field operators does not resolve a third low lying
state around the two particle thresholds either. Instead, additional excited states are
indicated.



Investigation of scalar tetraquark candidates 73

0

0.2

0.4

0.6

0.8

1

1.2

1.4

 0  5  10  15  20  25  30
 0

 0.5

 1

 1.5

 2

 2.5

 3

KK
ηs π

E
ff

e
c
ti
v
e

 m
a

s
s
 −

 a
m

E
n

e
rg

ie
s
 −

 E
[G

e
V

]

t/a

6x6 − [2,3,4,5,6,7]

E6=1.175(19)

E5=0.903(13)

E4=0.697(3)

E3=0.659(3)

E2=0.549(1)

E1=0.499(1)

FIG. 5.7: GEP analysis for the full correlation matrix, neglecting quark loop contribu-
tions. The two low-lying states correspond to the expected two particle levels, followed
by first momentum excitations. Diquark-antidiquark structures without loop contribu-
tions do not resolve a third low-lying state.

This conclusion is in agreement with previous studies [21, 100], where no additional
state has been seen which could be interpreted as an a0 candidate, by using four-quark
interpolators with absent loop contributions. The following section will include these
contributions to the correlators of the matrix and study the effects of these changes on
several GEP analyses with varying operator sets.

5.1.2 Including quark loop contributions

The upcoming analysis including 2ˆconnected diagrams is restricted to a maximum
amount of N∆t “ 15 temporal separations. From the analysis of a matrix consisting
only of 4ˆconnected diagrams we expect that finite size contributions will affect our
channels for t{a Á 20, making this a well-suited temporal range.

Although the study of a matrix composed of only 4ˆconnected diagrams is con-
taminated at large temporal separations its analysis is very well feasible. The inclusion
of 2ˆconnected diagrams drastically worsens the circumstances. This can already be
seen by looking at and comparing the diagonal elements of both matrices, plotted in
Figure 5.8.

On the left side the diagonal correlation functions of the 4ˆconnected-only matrix
split up at small separations, due to different excited state contributions. They continue
to decay approximately in parallel, implying their ability to resolve one particular energy
range, i.e. the range of interest „ 1.1 - 1.2 GeV. As discussed earlier, this range is
around 0.55a´1, the approximate energy of an a0p980q candidate within our lattice
setup. Plotted by black squares is the O1 “ Oqq̄ correlator C11, which shows a distinct
behavior and loses its ability to resolve the energy range of interest due to finite size
effects for t{a Á 8.
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FIG. 5.8: Diagonal elements of correlation matrices omitting 2ˆconnected diagrams
(left) and including 2ˆconnected diagrams (right). Off-diagonal elements are not con-
sidered. Black squares on both sides refer to C11. On the left side only C11 is noticeably
affected by finite size effects. On the right every element appears to be affected to a
certain extent by the same effect.

On the right side the diagonal correlation functions of the full analysis is shown, i.e.
considering both 4ˆ and 2ˆconnected contributions, but omitting off-diagonal matrix
elements. The contaminated C11 correlation function is again plotted with black squares.
What has previously been an exceptional bad behavior of a single channel is now observed
in nearly every on-diagonal element of the full correlation matrix. Similar behaviors are
observed in the off-diagonal elements as well.

An exception is the C55 correlation function with O5 “ OKK̄, 2part plotted by blue
triangles. There the 2ˆconnected diagram contributes only little to the total correlator,
leaving the impact of the 4ˆconnected contribution nearly unchanged, cf. Figure 4.20.
An explanation for this behavior can be found in the physical implications of this par-
ticular diagram type. There the antistrange and strange quark of a dynamical K-K̄ pair
annihilate. One would expect that this process is largely suppressed, due to the spatial
separation of the two mesons.

With diagonal correlators following the trend of C11 one expects that these are
also affected by sizeable contributions from finite size effects. Figure 5.9 presents for
an example on the left the plain 4ˆ and 2ˆconnected correlation functions, that added
together make the full C22 element. On the right a comparison between the 2ˆconnected
correlation function of C22 with C11 is shown.

On the left a double exponential fit through the 2ˆconnected correlator emphasizes
contributions from an artificially light signal. Far from the boundary of the lattice this
fit corresponds to

Cptq » Ae´mt `B e´mart t, (5.5)

wherem is an energy eigenstate andmart a light signal from particles propagating around
the torus. B is much smaller than A, as it is suppressed by the finite temporal extent
of the lattice, i.e. 9 e´T .

On the right it can be seen that the trend of this particular 2ˆconnected diagram
follows very much the behavior of the C11 element, for which we observe evidence for
contributions from particles propagating around the torus. Such a kink in the correlator
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of the 2ˆconnected diagram of C22 with C11 (right). Fits on the left correspond to
single and double exponentials to emphasize distinct characteristics. The vertical bar at
t{a “ 8 suggests the end of trustworthy analyses.

is visible also for other elements of the matrix, after including quark loop contributions,
which implies sizeable finite size effects for all these elements as well.

However, the number of temporal separations N∆t of the 2ˆconnected diagrams is
not large enough and statistical fluctuations are to large to obtain precise insights on
all these contributions in particular. Thus we are not able to identify the characteristic
finite size contributions of every 2ˆconnected diagram. To do so one would need to com-
pute much more temporal separations, possibly include multiple contaminating states
to the fitting procedures and increase the overall statistics of measurements to guaran-
tee reliable precision of the data. Only then a precise identification of contaminating
finite size contributions becomes possible, allowing an extraction of energy eigenstates
at larger temporal separations.

We have seen that finite size contributions from two particles propagating around the
torus in opposite directions are contaminating the 2ˆconnected correlation functions.
Consequently our analysis of an a0 candidate will be limited to small temporal separa-
tions. In the following we pursue with the analysis of energy eigenstates from solving
the generalized eigenvalue problem.
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We analyze the full matrix analogous to the previous 4ˆconnected-only matrix, cf.
Figure 5.5. In Figure 5.10 we present the GEP results of the 2ˆ2 and 4 ˆ 4 submatrices
corresponding to the ηsπ,KK̄ point and point+two-particle sets, i.e. rOKK̄, point, Oηsπ, points
and rOKK̄, point, Oηsπ, point,, OKK̄, 2part, Oηsπ, 2parts respectively.

Dashed lines correspond to the two particle levels calculated from correlation func-
tions of pseudoscalar meson creation operators and do not include quark loop contribu-
tions. Their purpose is again to guide the eye and to set a range of where we expect
to find an a0 candidate. In the following, dashed horizontal lines will always refer to
two-particle infinite volume levels.

It can be seen in the top left of Figure 5.10 that an analysis exclusively on the
full molecule-like operators bears no information at all. Both signals decrease without
regard of expected nearby energy levels towards what we identify to be the energy of
an artificial signal around ampηs´πqart « 0.226 inverse lattice units, cf. Figure 5.3. Just as
before we find that the two-particle operators are essential to extract two-particle energy
eigenstates from the GEP.
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FIG. 5.10: GEP analysis of the full correlation matrix including all diagrams. Analysis
of the 2 ˆ 2 problem with rO2, O3s (top left) compared to the 4 ˆ 4 problem with
rO2, O3, O5, O6s (top right). Squared eigenvector components corresponding to E1 and
E2 of the 4ˆ 4 analysis are given on the (bottom left) and (bottom right) respectively.
Dashed lines refer to the infinite volume two-particle thresholds, calculated from single
diagonal pseudoscalars without fully disconnected contributions.
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A GEP analysis considering also the two-particle operators is shown in the top
right of Figure 5.10. The characteristic disconnected strange quark loops associated to
Oηsπ, 2part contribute large noise fluctuations, as it can be seen by the effective mass
plotted by red squares. Additionally, the channel shows an increased sensitivity towards
an artificially light signal mpηs´πqart . Hence, we can expect that the true ηsπ state is of
higher energy than seen, since effective masses of Figure 5.10 are obtained by assuming
a simple logp. . .q to the eigenvalues. This fitting procedure does not account for sizeable
finite size effects, pulling the analysis to lower energies at small temporal separations.
This observation has been made previously, while investigating the single C11 correlator,
cf. Figure 5.3.

With only little contributions from quark loops provides OKK̄, 2part a reasonable
overlap to a KK̄ groundstate. The corresponding effective mass is plotted by green
circles and shows only small statistical fluctuations. This characteristic can be observed
throughout our studies and makes it relatively easy to identify the respective energy
level.

Excited states are created by the two point interpolators O2 “ OKK̄, point and
O3 “ Oηsπ, point and remain to show contributions from finite size effects, already at
small temporal separations. This leads to the observation of eigenvalues falling through
energy levels down into the energy range of the expected finite volume effects, cf. the
blue triangles on the top right of Figure 5.10. Although the signal coincides with nearby
energy levels at some temporal separations it is no indication of an additionally energy
level to those already resolved.

These contributions from finite size effects to the signals of the operators OKK̄, point

and Oηsπ, point, reduce the signal from first momentum excitations of ηsπ and KK̄
largely. We are hence forced to extract the respective momentum levels from relatively
short plateaus, indicating possible states in the best case. However, the splitting between
the two resting two-particles and their first momentum excitation is relatively large for
this particularly light tetraquark candidate. A possibly third low-lying state might hence
still be very well distinguishable from these levels.

To check for an additional state close to the two-particle levels we include the remain-
ing operators of diquark-antidiquark structure O4 “ OQQ̄ and quark-antiquark structure
O1 “ Oqq̄. In a first step we want to do this by including them separately after one
another to the already analyzed set r2, 3, 5, 6s, corresponding to
rOKK̄, point, Oηsπ, point,, OKK̄, 2part, Oηsπ, 2parts. The results1 of the GEP analyses are
shown in Figure 5.11.

1Colors of different effective masses do not imply an overlap to certain states.
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FIG. 5.11: GEP analyses of the full correlation matrix for the sets r2, 3, 4, 5, 6s (left
column) and r1, 2, 3, 5, 6s (right column). In the top row effective masses are shown,
followed by squared eigenvector components of the lowest three energy states.
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In the left column energy levels of the operator set r2, 3, 4, 5, 6s and eigenvector
components of the three lowest energies are shown. Qualitatively we observe in this
column only minor alterations to the previously studied set r2, 3, 5, 6s, which does not
include a diquark-antidiquark operator. The signal of the lowest energy E1, plotted
by red squares, has improved through contributions from the additional operator. E2,
plotted by green circles, is still dominated by OKK̄, 2part, which is seen in the respective
eigenvector, but also in a plateau that is seemingly unaffected by finite size effects.

Excited states still fall through the relevant energy range into an artificially light
energy range around « 0.22 a´1 or are quickly lost in statistical noise. It can be seen
that O4 “ OQQ̄ plays a dominant role in resolving the first momentum excitation.
This is due to the fact that the overlap to this state with relative momentum is still
sizeable and that explicit operators for momentum excitations are not included in our
set of operators. While falling through the energy range of interest into the artificially
light range, O4 appears to indicate a third energy level in this region at two temporal
separations. It is important to note that this is not to be understood as an indication
for a possible tetraquark state at the respective energy. The signal merely indicates
nearby energy levels, not excluding those which are already resolved. We include fits
to the eigenvalues in appropriate ranges, which for the first momentum excitation often
corresponds to just two points.

In the right column we plot energy levels of the set r1, 2, 3, 5, 6s and eigenvector
components of the three lowest energies. In contrast to previous analyses without O1 “

Oqq̄ we observe for a first time an additional third low-lying states between the two two-
particle levels. This additional state E2 is plotted by green circles and in the respective
fitting range it is squeezed just below the KK̄ state E3, pushing it to a higher energy
than previously observed. It is worth mentioning that this energy is still significantly
below the first momentum excitation and should not be interpreted as such. For t{a Á 7
the effective mass corresponding to state E2 drops towards the range of artificially light
signals, allowing E3 to reach smaller energies again.

Table 5.1 collects the results of the fits to the eigenvalues of the GEP leading to
the identification of two and three energy eigenstates. It can be seen that the energies
corresponding to the two-particle levels are in agreement between the two operator sets,
while only the inclusion of a qq̄ structure leads to the observation of a third low-lying
state.

r2, 3, 4, 5, 6s r1, 2, 3, 5, 6s

rtmin{a : tmax{as r3 : 8s

aEKK̄ 0.577p3q 0.583p8q
aEa0 0.556p8q
aEηsπ 0.470p9q 0.486p12q

TAB. 5.1: Energy eigenstates in the region of interest extracted after solving the gen-
eralized eigenvalue problem for two different operator sets. States are obtained from
the eigenvalues within the same frame of temporal separations. Agreement between the
states corresponding to the two-particle levels is seen in addition to a third low-lying
state of qq̄ structure.
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Comparing the eigenvectors of the lowest states with each other it can be seen that
the composition evidently changes. In the left column of Figure 5.11 the lowest two
energy levels are dominated by O6 “ Oηsπ, 2part and O5 “ OKK̄, 2part, respectively.
On the right the dominant contributions of these operators are seen in the eigenvectors
corresponding to the states E1 and E3. In the range of temporal separations where E2

is extracted its signal is governed by the operators of the two neighboring energy levels,
O5 “ OKK̄, 2part and O6 “ Oηsπ, 2part, as well as the conventional quark-antiquark
operator O1 “ Oqq̄.

The overlap to the KK̄ operator can be understood through the close proximity of
the two states, where the third low-lying state is pushing the KK̄ signal towards higher
energies. The strong connection to the ηsπ operator can be motivated through similar
finite size contributions, i.e. ηs´π. In preceding studies we have seen that both O1 “ Oqq̄

and O6 “ Oηsπ, 2part show sizeable contributions from this artificial signal. Moreover, we
also find sizeable contributions of O1 in the eigenvectors of the two two-particle states.
It can be assumed that with higher statistics the mixture of these states will reduce,
providing a much better indication of the actual quark structures of the states.

Most importantly is the strong condition of a quark-antiquark operator in the oper-
ator set to resolve this third low-lying state. This condition is interpreted as a sound
implication for a conventional quark-antiquark structure of this state and not a four-
quark structure, although a sizeable overlap to the two-particle operators is seen in its
eigenvector. For an increased statistics it can be expected that the diagonalization of
GEP will further improve, allowing a clearer identification of the additional state as qq̄.

It is further important to note, that due to finite size contributions to the signal of
the quark-antiquark operator the energy level of the third state is in the naïve logp. . .q
underestimated as well. Similar to the ηsπ signal one would thus expect the qq̄ state at
higher energies than seen in Figure 5.1. Hence, it becomes difficult to predict this state
below or above the KK̄ level for future analyses with lighter pion masses.

Due to the strong condition of a present quark-antiquark structure in the operator
set is the identification of the third low-lying plateau as an energy eigenstate only valid
if O1 is connected with the rest of the matrix. If this would not be the case, one would
effectively study two independent problems, i.e. a 1ˆ 1 problem and a 5ˆ 5 problem of
the remaining operator set. We have seen in Section 4.3 that the off-diagonal elements
associated to the O1 interpolator are indeed non-negligible.

To support the results of the generalized eigenvalue problem that indicate a third low-
lying state, we also conduct an analysis utilizing the AMIAS method1, cf. Section 3.2.
By defining probability distribution functions (3.14) for the fit parameters, AMIAS ap-
plies Monte Carlo techniques to deal with a rather large number of fitting parameters,
i.e. energies ∆En and amplitudes cjn. An advantage to to the GEP plateau regions or
temporal fitting ranges are not necessary to define. Figure 5.12 shows at the top the
probability distribution functions for energies ∆Ei based on analysis of the 4 ˆ 4 corre-
lation matrix r2, 3, 5, 6s without quark loops and on the bottom r1, 2, 3, 4, 5, 6s including
quark loops.

1Analyses utilizing the AMIAS method have kindly been provided by Theodoros Leontiou, i.e. results
shown in Figure 5.12 and Figure 5.13.
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FIG. 5.12: AMIAS analyses of the operator set r2, 3, 5, 6s without considering quark loop
contributions (top) and the operator set r1, 2, 3, 4, 5, 6s considering quark loop contribu-
tions (bottom).

Results shown in Figure 5.12 are in agreement with the findings of the GEP analyses,
presented in the first row and second column of Figure 5.5 and Figure 5.11. Here it can
be seen in the bottom plot, that the third additional state ∆E3 is found above the KK̄
state. A strong advantage of this method compared to the generalized eigenvalue is the
freedom to omit particular matrix elements from the analysis. Hence, we can probe a
system without element C11 to see whether the observed additional third low-lying state
is in fact just a remnant of a weekly coupled O1 operator. The observed probability
distributions of energy states are shown in Figure 5.13.

0.5 0.6 0.7 0.8

aE

full contribution
off-diagonal contribution
no contribution

FIG. 5.13: Energy states obtained from correlation matrices including quark loops.
The energies shown correspond to the full 6ˆ 6 problem (black line), the 5ˆ 5 problem
omitting qq̄ contributions (red line) and a problem with only off-diagonal qq̄ contributions
(blue line).
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The agreement of the probability densities given in black and blue describing the
present energy eigenstates of the full 6ˆ 6 analysis supports the conclusion of an addi-
tional low-lying state. Similar to the analysis with the GEP all three low-lying states
are resolved below the first momentum excitations of the two-particle states. Note that
in Figure 5.12 infinite volume two-particle levels are indicated by vertical dashed lines.
The blue line demonstrates that the state is not obtained from the C11 element alone.

To conclude the analysis of the a0p980q candidate, we perform multiple GEP analyses
of varying operator sets. The main objective is to confirm the existence of an additional
state between the two-particle levels and to identify the major operators contributing to
this state. In Figure 5.14 various energy levels from different operator sets are presented.
Symbols and colors of energies are chosen to emphasize certain characteristics that in-
dicate the structure of the states, derived from the eigenvectors of the states presented
in Figure 5.15.

The lowest energy level found throughout our studies is presented by red squares and
corresponds to an ηsπ state. After considering quark loop contributions to the matrix
its energy is observed lower with regard to the infinite volume two-particle level. As
we have seen before, this observation is linked to a finite size effect of two particles
wrapping around the torus in opposite directions. This effect has sizeable contributions
to the correlator similar to an artificially lighter state, contaminating the two-particle
signal at small temporal separations. We are not able to include these contributions
explicitly to our analysis and are forced to extract masses at relatively short temporal
separations. Extracting the effective mass assuming a simple exponential behavior is
hence underestimating the true energy of the two-particle signal, causing the shift from
the infinite volume two-particle level, which is seen in Figure 5.14.

Plotted by green circles is the heavier two-particle level of the spectrum, a state
corresponding to KK̄. These states are throughout all studies dominated by the respec-
tive two-particle operator and have an exceptionally good signal. Contributions from
2ˆconnected diagrams to the correlator are almost negligible, so that finite size effects
have no impact to the plateau at relevant temporal separations. In Figure 5.14 the
states occur higher with regard to the infinite volume two-particle level. This is due to
the fact that the shown mass plateaus are always extracted at relatively small temporal
separations. The signal generally reaches also into larger temporal separations. To keep
consistency with the lower ηsπ state we extract the energy within the same range of
temporal separations. At such small separations we inevitably include also excited state
contributions to the correlator when extracting the energy.

In blue triangles (pointing upwards) we plot the lowest energy level of a state close
to the first momentum excitation of the two-particle states. Explicit momenta are not
included in our operator set and therefore first momentum excitations are created by
mixtures of operators with sizeable overlap to these state. These correlators are affected
by artificially light signals and as a consequence fall into an energy range of artificially
light signals around « 0.22 inverse lattice units. At best, the extracted levels are an
indication of the first momentum states. In the case of the light tetraquark candidate of
interest the first momentum excitations are, however, well separated from the ground-
state levels and do not threaten the analysis of the relevant energy range.
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Plotted by violet triangles (pointing downwards) is a third low-lying state. We
observe this state exclusively by including operator O1 “ Oqq̄ to the set of operators,
shown in the last four columns of Figure 5.14. It appears close to the KK̄ level, with
contributions from the two two-particle operators and the conventional quark-antiquark
operator. Similar to the ηsπ state a signal is found only for a few small temporal
separations before it drops towards a lower artificial signal.
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FIG. 5.14: Multiple energy levels from various GEP analyses. The title of each column
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absence of quark loop contributions from the analysis. Red and green symbols refer
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FIG. 5.15: Constants fitted to squared eigenvector components of the two and three
lowest eigenvalues. The extracted effective masses from these eigenvalues are shown in
Figure 5.14, matching colors refer to associated eigenvalues and eigenvectors. Operator
sets are paired vertically, labels on the x-axis refer to the particular operator contribution
to the eigenvalue.
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In Figure 5.15 we show the squared eigenvector components of the two and three
lowest states presented in Figure 5.14. Values are obtained by assuming constant con-
tributions throughout the relevant temporal separations. The colors of eigenvectors are
chosen to match between both figures. Errors to the fits are not provided as the purpose
of this presentation is only to emphasize the characteristic operator composition of each
state.

In this section we have seen that although the quality of the signals reduces drastically
after quark loop contributions are included, the low energy range of light scalars can
still be resolved at relatively small temporal separations. The two two-particle levels
are shifted from their infinite volume levels due to finite volume effects and early
plateau extractions, respectively. The addition of a quark-antiquark structure to the
set of operators leads to a third state above the ηsπ level, close to theKK̄ state. Finite
size contributions to the signal complicate a localization of the state with respect to
the KK̄ level. This additional state couples to both two-particle operators, as well as
the conventional qq̄ creation operator. It can be assumed, given improved statistics,
that the diagonalization of operators becomes much better, allowing a more distinct
identification as a conventional qq̄ state.

5.2 The heavy candidate: D˚
s0p2317q

The heavy strange-charmed meson D˚s0p2317q with JP “ 0` was expected by quark
models above the DK threshold. However, experimental results [29] find a narrow
state well below this threshold. These results in combination with a mass difference in
D˚s0p2317q´D˚0 p2400q, which is too small to account for the s-u{d quark mass difference,
have led to many possible interpretations. Hence, its internal structure is still under
debate and ranges from conventional c̄s states [107, 108] to four-quark states [109, 110,
111, 112].

In [113] the D˚s0p2317q and Ds1p2460q (JP “ 1`) are referred to as “charmed cousins
of the light scalar nonet”. There the coupling of the scalar c̄s to the DK threshold is
suggested as a mechanism for a lighter mass as the physical state, in strong analogy
to the light scalar nonet, i.e. the a0p980q just below the KK̄ threshold, with a strong
coupling to nearby channels .

Previous lattice studies [7, 81, 114, 115] calculate the mass of the D˚s0p2317q using
only quark-antiquark operators. The found energy levels have all been considerably
above the DK threshold and interpretations do not include a definitive resolution of
neighboring two-particle levels. Continuum extrapolations of these results show a size-
able difference in the energy in comparison to experimental results, possibly indicating
a quark structure different from qq̄.

In [116, 117] also DK and D˚K interpolating fields are employed in addition to c̄s.
The authors extract the phase shifts on two ensembles by an effective range approxima-
tion and obtain negative scattering lengths, supporting shallow bound states.

In our investigation of a D˚s0p2317q candidate we utilize the same contraction code
as in the previous study of the a0p980q but perform a change of the quark flavor basis
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of interest according to
td̄ , u , s̄ , su ÝÑ tc̄ , s , ū , uu.

Consequently, the relevant two-particle levels of our investigation become

ηsπ ÝÑ Dsπ and KK̄ ÝÑ DK̄.

Although the flavor content differs with regard to the previous section we continue
referring to the quark-antiquark and diquark-antidiquark operator as Oqq̄ and OQQ̄,
respectively. Consecutive numbering of operators is also kept in analogy to (3.19), i.e.
O1 “ Oqq̄, O2 “ ODK̄, point, O3 “ ODsπ, point, O4 “ OQQ̄, O5 “ ODK̄, 2part and
O6 “ ODsπ, 2part.

We conduct the investigation of this flavor setup in the same style as for the a0p980q
candidate. First we calculate the infinite volume two-particle levels by computing cor-
relation functions of pseudoscalar meson creation operators, with operator structures
O » pψ̄pf1qγ5ψ

pf2qq. Afterwards we analyze the variational approach of the four-quark
operator set, excluding and including quark loop contributions, respectively.

It is worth mentioning that in a flavor setup of tc̄ , s , ū , uu with degenerate light
quarks a scenario with no light-antilight annihilation refers to an explicit flavor setup
of tc̄ , s , d̄ , uu. Hence, excluding 2ˆconnected contributions will correspond to the
physical circumstances of decay channels with π “ π˘, instead of π “ π0.

Effective masses of the relevant pseudoscalar mesons D and Ds result as a conse-
quence of fixing the hopping parameter κ, such that the observed states on the lattice
correspond to physical energies. This has been done in Section 4.1.1 by computing var-
ious pseudoscalars with a tuned quark mass. Since we employ unphysical pion masses
of mπ « 300 MeV this value of the charm quark mass is underestimated.
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FIG. 5.16: Identification of pseudoscalar mesons D, Ds and ηc within our lattice setup
(left). Infinite volume two-particle levels Ds ` π and D ` K̄ are calculated from single
particle results. Effective masses extracted by assuming a simple one exponential be-
havior to the correlator, including fully disconnected diagrams (right). Stochastic noise
increases drastically with increasing quark masses.

In Figure 5.16 we plot the effective masses of pseudoscalar quark-antiquark creation
operators with all flavor combinations of this flavor setup. The three lightest states refer
to π, K and ηs, and are not given explicitly, but can be found in Figure 5.2. Once
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again we extract the pseudoscalar masses by omitting fully disconnected pieces of the
correlator. The infinite volume two-particle levels are calculated at amDs`π “ 1.03p1q
and amD`K̄ “ 1.121p8q. This corresponds to an energy range of « 2.25 - 2.45 GeV for
the anticipated D˚s0p2317q candidate within our lattice setup with mπ « 300 MeV.

On the right of Figure 5.16 we show the change of plateaus after including fully
disconnected diagrams. We observe that the increase of stochastic noise of fully discon-
nected pieces is proportional to the quark mass. This gives an estimate of how severe the
impact of 2ˆconnected contributions to the tc̄ , s , ū , uu noise in the correlation matrix
is.

5.2.1 Omitting quark loop contributions

The 1ˆ 1 problem

The computation of a single diagonal correlator C11 with O1 “ Oqq̄ » pc̄sq yields an
effective mass with typical excited state contributions at small temporal separations.
In Figure 5.17 we plot the correlation function and the corresponding effective mass.
Although a plateau is reached at t{a Á 7, it is relatively short. Large statistical fluc-
tuations occur for t{a ą 12, preventing an identification of possible finite size effects
contributing to the signal.

It also has to be mentioned that the state is above the ultraviolet cutoff and we
hence expect additional contaminations to the correlator at large temporal separations.
As before, this analysis does not include operators that resolve the neighboring two-
particle levels, which thus have an implicit effect on the observed effective mass as well.
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FIG. 5.17: Correlation function C11 (left) with O1 » pc̄sq and the corresponding effective
mass (right), extracted by assuming contributions from a single exponential.

The 5ˆ 5 problem

We proceed to analyze the four-quark interpolator set Cij “ xOiOjy with i, j P r2, . . . , 7s,
excluding 2ˆconnected contributions to correlators, which corresponds to a flavor setup
of tc̄ , s , d̄ , uu. Based on the experience of the previous study we do not expect
the occurrence of a third low-lying state from analyzing this set of operators, but
rather a resolution of the two-particle energy levels. At first we analyze the 2 ˆ 2 and
4 ˆ 4 submatrices corresponding to the Dsπ, DK̄ point and point+two-particle sets,
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i.e. rODK̄, point, ODsπ, points and rODK̄, point, ODsπ, point,, ODK̄, 2part, ODsπ, 2parts, respec-
tively. Results obtained from solving the GEP are shown in Figure 5.18.

Results shown are qualitatively in strong agreement to the previous analysis, cf.
Figure 5.5. An analysis of only molecule-like operators is shown in the top left of
Figure 5.18. They provide only a small overlap with the groundstate two-particle levels.
Excited state contributions from various momenta slow the convergence to the ground
states two-particle levels drastically. At temporal separations where the extracted signals
reach the two-particle levels finite size effects within the correlator are sizeable and
artificially light signals become the leading contribution. Both of these signals are not
sufficient to identify plateau values and hence require an identification of the finite size
effects to the correlator.
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FIG. 5.18: GEP analysis of the correlation matrix omitting quark loop contributions.
Analysis of the 2ˆ2 problem with rO2, O3s (top left) compared to the 4ˆ4 problem with
rO2, O3, O5, O6s (top right). Squared eigenvector components corresponding to E1 and
E2 of the 4ˆ 4 analysis are given on the (bottom left) and (bottom right) respectively.
The lowest two dashed lines refer to the infinite volume two-particle levels.

In contrast to the point-like operators the two-particle operators excel at resolving
the low energy two-particle spectrum shown in the top right of Figure 5.18. A plateau
value is reached long before artificially light contributions dominate the signal, allowing
a clear energy extraction. Instead of identifying a third low-lying state the molecule-like
operators indicate first momentum excitations.

Compared with the analysis of the light tetraquark candidate are the first momen-
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tum excitations of this flavor setup considerably close to the two-particle ground state
energies. From the infinite volume levels, cf. Figure 5.2 and Figure 5.16, we calculate
the energies of first momentum excitations in lattice units, i.e.

aEDsp0q ` aEπp0q « 1.03,

aEDp0q ` aEK̄p0q « 1.12,

aEDsp1q ` aEπp´1q “
b

am2
Ds
` p2π{Lq2 `

b

am2
π ` p2π{Lq

2
« 1.16,

aEDp1q ` aEK̄p´1q “

b

am2
D ` p2π{Lq

2
`

b

am2
K̄
` p2π{Lq2 « 1.21.

Evidently is the higher two-particle groundstate only « 0.04 inverse lattice units sepa-
rated from the lowest first momentum excitation.

This is troublesome for the analysis of a possible third low-lying state. As we have
seen in the analysis of the a0p980q candidate, an additional signal might be squeezed
in between the two-particle states. If an additional states occurs below the signal for a
DK̄ state it might happen that it will be pushed to higher energies, making it possibly
difficult to distinguish between groundstates and first momentum excitations. It will
thus be necessary for future computations to include definite momentum operators to
the operator set as well.

Contrary to the two-particle energies of ηsπ andKK̄ we do not succeed in identifying
the finite size contributions to the signals of Dsπ and DK̄ states at large temporal
separations. We expect contaminations with leading artificially light signals of

am
pDs´πq
art « 0.896´ 0.138 “ 0.758 and am

pD´K̄q
art « 0.846´ 0.274 “ 0.572,

to the two signals, respectively. However, altering the fitting procedure to (5.4) and
inserting the expected artificial signals does not recover effective masses close to the
infinite volume two-particle levels.

The reason for this issue is likely associated to the fact that the energies of states
surpass the ultraviolet cutoff of our lattice. In this region correlation functions are
affected by their own mirror image, an effect that becomes increasingly worse the further
we exceed the cutoff. These additional contaminations prevent a clear identification of
states wrapping around the lattice.

We will however come to realize that artificially light signals are not nearly as much an
issue as it was the case for the previous investigation. Limiting the extraction of energies
to temporal separations below tmax{a ă 20 will suffice for the upcoming analyses.

Eventually, we include also diquark-antidiquark operators to our analysis of a tc̄ , s , d̄ , uu
flavor setup and analyze the complete set of operators. Figure 5.19 shows the observed
states from this analysis. The signal for the sixth energy level is dominated by noise and
not shown in the plot. The inclusion of diquark-antidiquark interpolating field operators
does not resolve a third low-lying state around the infinite volume two-particle levels.
Instead, an additional excited state is indicated.
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FIG. 5.19: GEP analysis for the full correlation matrix for the flavor setup tc̄ , s , d̄ , uu.
The two low-lying states correspond to the expected two particle levels, followed by first
momentum excitations. Diquark-antidiquark structures without loop contributions do
not resolve a third low-lying state.

5.2.2 Including quark loop contributions

Like for the analysis of the light tetraquark candidate a0p980q we restrict the computa-
tion of 2ˆconnected diagrams to a maximum amount of N∆t “ 15 temporal separations.
Consequently are observables in the following limited to temporal separations t{a ď 14.

In the study of the previous flavor setup the inclusion of 2ˆconnected diagrams to
the correlation matrix drastically complicated the analysis. Correlators were severely
affected by finite size effects, contributing artificially light signals from particles prop-
agating around the torus in opposite directions. Masses were extracted from relatively
short plateaus at temporal separations t{a ă 10.

This is not the case for the flavor setup tc̄ , s , ū , uu. Correlation functions of
2ˆconnected diagrams are not as much affected by finite volume effects as it is the
case in the previous study, cf. Figure 5.9. Taking 2ˆconnected diagrams into account,
the relative error of matrix elements is increased by several percent, but the particular
exponential decays are not severely affected. Exceptions are the diquark-antidiquark
correlators, which are largely composed of contributions from these particular diagrams,
cf. Figure 4.20. A relatively mild stochastic noise on light quark propagators with start-
ing and end points on single timeslices is expected after computing and comparing fully
disconnected diagrams for all flavors in Figure 5.16. Moreover, we have seen in (4.7) that
the relative exponential increase of the statistical errors of the 2ˆconnected diagrams is
much better than for the light tetraquark candidate.

In Figure 5.20 we once again have a look at the diagonal elements of our correlation
matrix before and after including 2ˆconnected diagrams. Due to increased energies of
states the slopes of correlation functions are much steeper than before. To be able to
get an impression of how severe the changes are, we zoom in on the final seven temporal
separations of our computation. C11 is plotted by black squares.
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FIG. 5.20: Diagonal elements of correlation matrices omitting 2ˆconnected diagrams
(left) and including 2ˆconnected diagrams (right). Off-diagonal elements are not con-
sidered. Black squares on both sides refer to C11. Effects from including generally
problematic diagrams are still well under control.

We repeat the analysis of the 2ˆ2 and 4ˆ4 submatrices including quark loops, corre-
sponding to the Dsπ, DK̄ point and point+two-particle sets, i.e. rODK̄, point, ODsπ, points
and rODK̄, point, ODsπ, point,, ODK̄, 2part, ODsπ, 2parts, respectively. Results obtained from
solving the GEP are shown in Figure 5.21. As expected it can be seen in the top left
of Figure 5.21 that the point-like operators alone are unable to resolve the two-particle
states. With the addition of 2ˆconnected diagrams to the matrix only the two-particle
operators provide a reasonable overlap with the states of interest.

Results from including the two-particle operators to the set is shown in the top
right of Figure 5.21. The lowest state is plotted by red squares and dominated by
O6 “ ODsπ, 2part. It shows large stochastic noise fluctuations, coming from the fully
disconnected diagram of the respective two-particle operator correlation function. Nev-
ertheless, in comparison to the previous ηsπ state the absence of dominating finite size
effects allows for a plateau extraction on almost all temporal separations.

The quality of signal of the second lowest state plotted by green squares is comparable
to the KK̄ signal in Figure 5.18. The box diagram contributing to the two-particle
correlator C55 with O5 “ ODK̄, 2part has a nearly negligible impact and thus allows a
clear identification of the corresponding energy state.

However, states with higher momenta close to the two-particles levels are no longer
resolved and can only be identified on a qualitative level. While a clear signal of these
states is desirable we will see that the DK̄ signal (green) is indeed sufficient as an upper
threshold for our investigations. This once again emphasizes that future computations
are obliged to include explicit momentum operators to the computation.

We proceed to extend our set of operators by including also the remaining operators
to the variational approach, i.e. the diquark-antidiquark operators O4,7 “ OQQ̄ and the
conventional quark-antiquark operator O1 “ Oqq̄. As before, we add these separately
one after another to the correlation matrix of point and two-particle operators and study
possible differences.
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FIG. 5.21: GEP analysis of the full correlation matrix including all diagrams. Analysis
of the 2 ˆ 2 problem with rO2, O3s (top left) compared to the 4 ˆ 4 problem with
rO2, O3, O5, O6s (top right). Squared eigenvector components corresponding to E1 and
E2 of the 4ˆ 4 analysis are given on the (bottom left) and (bottom right) respectively.
Dashed lines refer to the infinite volume two-particle thresholds, calculated from single
diagonal pseudoscalars without fully disconnected contributions.

In Figure 5.22 we show results of the solved GEPs of three different operator sets,
in three rows i.e. r2, 3, 4, 5, 6s, r1, 2, 3, 5, 6s and r2, 3, 5, 6, 7s. We present the effective
masses together with the squared eigenvector components corresponding to the second
and third lowest energy eigenstate. The eigenvectors to the lowest energy eigenstates
(plotted by red squares) are not shown, as they are in all analyses largely dominated by
O6, with only little statistical fluctuations.

In several aspects are the three spectra that emerge from the different operator sets
in agreement with Figure 5.21. We observe a lowest energy state plotted by red squares
that is very noisy through 2ˆconnected diagrams, but allows a plateau extraction just
below the expected Dsπ infinite volume level. The point operators O2 “ ODK̄, point

and O3 “ ODsπ, point show only little overlap to first momentum excitations and fail to
resolve excited momenta states in a range that is of interest for our study.

However, the crucial difference of the three analyses evolves around the resolution
of energy states close to the DK̄ infinite volume level. The outcome of the first two
analyses corresponding to the first two rows is in qualitative agreement to the previous
investigation of the a0p980q candidate of our setup.
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In the top row, for r2, 3, 4, 5, 6s, O4 provides a reasonable overlap with an energy
state E3 that coincides with the first momentum excitation of Dsπ. This has also been
seen in the bottom left of Figure 5.10 for the relevant energy. We emphasize again, that
this alone is not an indication towards a possible tetraquark structure at the respective
energy. O5 dominates the signal of E2, which is just on top of the anticipated DK̄
infinite volume level.

The GEP analysis including the quark-antiquark operator to the set is shown in the
center row and leads to the appearance of third low-lying energy state. This state E1 is
plotted by green circles and is found just below the DK̄ level and pushes the respective
two-particle energy level E3, plotted by blue triangles, slightly upwards. From the
eigenvector of E3 we see that this state is clearly dominated by O5 “ ODK̄, 2part and
still below the first momentum excitation of Dsπ, making an identification with a DK̄
state reasonable.

The appearing third state is largely dominated by O1, but its eigenvector compo-
nents at t{a “ 6 and t{a “ 7 show huge statistical errors. At this point the respective
eigenvalues become nearly degenerate making them difficult to distinguish, which leads
to unstable solutions of the generalized eigenvalue problem. To not confuse the signals,
eigenvectors are required to show a continuous behavior through all temporal separa-
tions. Statistical subsamples are in this process possibly mixed up, which eventually
leads to the drastic increase of errors. However, since the effective masses show a clear
behavior throughout all separations it is impossible that eigenvalues might have been
mistakenly ordered in this particular analysis.

The third row of Figure 5.22 is where things become interesting. In the absence of a
quark-antiquark operator we resolve a third low-lying state just below the DK̄ level in a
similar appearing style as before with the present O1 interpolator. In strong analogy to
the center row is the DK̄ signal E3, plotted in the bottom row by blue triangles, again
pushed upwards slightly as the additional state appears. The eigenvector compositions
of these two states of interest, E2 and E3, are also drastically different to what we have
previously seen. Both O5 and O7 show a sizeable overlap to both states. However, at
increasing temporal separations it appears that O5 “ ODK̄, 2part dominates the state
that coincides with the DK̄ level and O7 “ OQQ̄ dominates the additional low-lying
state, respectively. As already argued for E3 of the center row is also E3 of the bottom
row of Figure 5.22 noticeably below the first momentum excitation of a Dsπ state. We
hence identify the three lowest states as bound groundstates, obtained from a set of
operators exclusively of four-quark interpolating field operators.

r2, 3, 4, 5, 6s r1, 2, 3, 5, 6s r2, 3, 5, 6, 7s

rtmin{a : tmax{as r4 : 12s

aEDK̄ 1.124p2q 1.134p1q 1.131p1q

aED
˚
s0 1.103p1q 1.105p2q

aEDsπ 1.013p8q 1.011p9q 1.015p9q

TAB. 5.2: Energy eigenstates in the region of interest extracted after solving the gener-
alized eigenvalue problem for three different operator sets. States are obtained from the
eigenvalues with slightly less temporal separations for the third lowest state.
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FIG. 5.22: Three GEP analyses of the full correlation matrix to the sets r2, 3, 4, 5, 6s
(first row), r1, 2, 3, 5, 6s (second row) and r2, 3, 5, 6, 7s (third row). Effective masses En
are shown on the left and on the right the eigenvector components squared |vpnqj |2 of the
second and third lowest state are shown. In the analysis of r2, 3, 5, 6, 7s a third low-lying
state emerges in the absence of qq̄ interpolating field operators.
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It is important to note that this observation has not been made in the previous anal-
ysis of the very same heavy tetraquark candidate, i.e. for a flavor setup of tc̄ , s , d̄ , uu,
cf. Figure 5.19.

In Figure 5.23 we present the extracted energy levels resulting from GEP analyses of
various operator sets. In the relevant range of temporal separations the corresponding
squared eigenvector components are fitted to constant values and shown in Figure 5.24.
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FIG. 5.23: Multiple energy levels from various GEP analyses. The title of each column
refers to the operator set of each GEP. The asterisk on the first column indicates the
absence of quark loop contributions from the analysis. Red and green symbols refer
to states dominated by two-particle operators O6 and O5 respectively. Blue symbols
represent the first state well-separated from the groundstate levels. Violet and yellow
symbols are additional low-lying states between the two-particle levels.
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FIG. 5.24: Constants fitted to squared eigenvector components of the two and three
lowest eigenvalues. The extracted effective masses from these eigenvalues are shown in
Figure 5.23, matching colors refer to associated eigenvalues and eigenvectors. Bases are
paired vertically, labels on the x-axis refer to the particular operator contribution to the
respective eigenvalue.
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The color of eigenvectors is chosen to emphasize characteristic operator composi-
tions of each state. The same color is then accordingly applied to the energy states
in Figure 5.23. Red and green emphasize states that are completely governed by
O6 “ ODsπ, 2part and O5 “ ODK̄, 2part, respectively. Strictly speaking is thus the green
color of the third state in r2, 3, 5, 6, 7s and r2, 3, 4, 5, 6, 7s not entirely correct. However,
these two states show a dominant contribution of O5 at increasing temporal separations.
Since the range of the fit to the eigenvector components is determined by the range in
which effective masses were read-off, the presented values tend to understate the actual
operator contribution at large temporal separations.

Yellow and violet states emphasize a third low-lying state between the two-particle
levels, which is found at the same energy value throughout our various operator sets.
While only four-quark operators were utilized to obtain the states represented by yellow
diamonds, the same state was found employing a quark-antiquark operator. Whenever
O1 “ Oqq̄ is included to the set of operators a third low-lying state emerges. If addition-
ally an operator with a heavy diquark-antidiquark structure O7 “ OQQ̄ is considered it
also shows a sizeable overlap to the observed third low-lying state.

In this section we employ a tuned valence charm quark mass to study the heavy
tetraquark candidate D˚s0p2317q. In contrast to the previous section the inclusion of
quark loop contributions to the correlation matrix does not drastically contaminate
our analysis. Stochastic errors increase, but still allow a study at larger temporal
separations. We identify both two-particle levels Dsπ and DK̄. Quark loop contri-
butions are sizeable in the former state, resulting in an increased stochastic error of
the signal. The addition of a quark-antiquark structure to the set of two-particle
operators leads to a third state, which is found between the two-particle levels just
below the DK̄ state. The same state is also found in the absence of a conventional
quark-antiquark structure by including a heavy diquark-antidiquark structure to the
set of operators. In this case the appearing state and the DK̄ state show large overlap
to two-particle structures. For larger temporal separations the third low-lying state is
dominated by a diquark-antidiquark structure and DK̄ by its respective two-particle
operator. In the presence of both quark-antiquark and diquark-antidiquark structures
in the operator set the third low-lying state is governed by the former structure with
sizeable contributions from the latter. These findings are interpreted as a possible
implication for a state beyond the conventional quark-antiquark structure.
The analyzed states surpass the ultraviolet cutoff of our lattice and hence, are in fact
not accessible with our lattice setup. The fact that the emerging picture is quite
consistent between the tetraquark candidates might indicate that effects from this
violation are small, yet results should be taken with caution.
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In this thesis we study two scalar tetraquark candidates on the lattice, the light scalar
a0p980q and the heavy scalar D˚s0p2317q. To investigate these states we use the vari-
ational method. By constructing two- and various four-quark creation operators we
resolve the energy region of interest and provide different quark structures for the
tetraquark candidate. We aim to find a state with a sizeable overlap to such a four-quark
structure as an indication for a possibly exotic quark structure.

Such a study relies on an extensive computation of quark propagators, which are con-
tracted differently in many correlation functions. Since we plan to solve a generalized
eigenvalue problem it is vital for our analysis to ensure that every element is calculated
as precisely as possible. Hence, we explore various methods to compute correlation
functions of two- and four-quark operators of different structures. These investigations
have been performed on both quark flavor structures, of the light and heavy candidate.
Results agree for both candidates and we expect them to hold at least qualitatively also
for other tetraquark candidates and four-quark systems. For changing quark masses,
quark flavor compositions or when studying different lattice QCD quark actions, we ex-
pect deviations. Investigations reported in Chapter 4 provide a comprehensive overview
of existing methods and helpful guidelines, which methods to choose for which kind of
diagram type.

We find that methods, which average a diagram over space, are more efficient than
methods, which do not. We emphasize especially the utilization of the one-end trick
over standard stochastic timeslice-to-all propagators, as in this case fewer stochastic
noise terms are introduced. Moreover, we see that the dynamics of two independent
particles on a single timeslice is in favor for an improved signal. Omitting spatial sums
over only two-quark field operators seems to result in much smaller statistical errors
than omitting a sum over four-quark field operators. Sequential propagators are an
indispensable procedure for the computation of propagators which connect two different
spatial points x and y on the same timeslice. Diagrams involving such propagators
are generated by operators of the form pψ̄pf1qΓ1ψ

pf3qqxpψ̄
pf3qΓ2ψ

pf2qqy, which are an
integral part of every tetraquark study. We also find that stochastic methods are more
efficient for lighter quarks and less efficient for heavy quarks. This can be seen clearly
throughout Section 4.2, whenever two realizations of method pbq are shown. Later on,
increased statistical fluctuations are further identified on fully disconnected pieces of
heavy pseudoscalar qq̄ correlation functions, which origin from rather strong fluctuations
of the gauge links. Overall we identify what we call the 2ˆconnected pieces of four-quark
correlation functions as problematic, but still feasible. Since the error of these pieces
will eventually dominate the correlator it is utterly relevant to determine a well-suited
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method to compute these diagrams, in order to obtain a reliable signal. Especially
correlation functions with a diquark-antidiquark content are largely composed of these
contributions.

In the last chapter of this thesis we present our analyses of the two tetraquark
candidates a0p980q and D˚s0p2317q. We split both discussions in two parts, where we
first omit quark loop contributions to correlation functions and later include them for
a complete analysis. Without quark loop contributions the analyses of both tetraquark
candidates is reduced to a study of four-quark operators. Here the respective two-particle
energy spectra are resolved, as well as their first momentum excitations. In the energy
regions of interest no indications for additional bound states are found.

Including quark loop contributions to the analysis of the light tetraquark candidate
a0p980q drastically worsens the circumstances of our analysis. These diagrams are not
only affected by drastically increased stochastic noise but also display sizeable contri-
butions from finite size effects. We identify these effects as artificially light signals from
two particles propagating around the torus in opposing directions. Due to the large
stochastic noise and a relatively small number of temporal separations it is impossible
to identify these finite size contributions to every element precisely. We thus cannot
include these effects to our analysis and instead, are forced to extract plateau values at
relatively small temporal separations.

At relatively small temporal separations we find a third low-lying state only by
including a conventional qq̄ structure to the respective set of meson creation operators.
Due to the high overlap of this state with the quark-antiquark operator we identify this
state as the candidate for the a0p980q within our lattice setup. It is located close to the
two Kaon threshold and displays an overlap to the neighboring two particle levels. We
attribute this behavior to the shared artificially light state contributions with the ηsπ
signal and the close proximity to the KK̄ level. Given an improved statistics it can be
assumed that the diagonalization of operators becomes much better, allowing a more
distinct identification of the third low-lying state as conventional qq̄ state.

To study the D˚s0p2317q with our lattice ensemble we tune a value for the quark mass
to coincide with the physical energies of light pseudoscalar open-charm states. Hence, it
is important to note that on our Nf “ 2` 1 ensemble calculations involving this charm
quark mass correspond to a partially quenched setup, i.e. no charm-anticharm creation
and annihilation from the vacuum is included. Moreover, we find the two-particle energy
levels of this analysis above the ultraviolet cutoff of our lattice. Strictly speaking, these
energies are not accessible for our ensemble, but a consistent picture with regard to
the light tetraquark candidate might indicate that effects from exceeding the cutoff are
small.

In contrast to the study of the light tetraquark candidate a0p980q the inclusion of
quark loop contributions to the correlation matrix is only a minor problem. The overall
statistical error on all matrix elements is increased, but no sizeable contributions from
finite size effects are observed. Furthermore, have we identified a much more moderate
exponential increase in the relative statistical error of 2ˆconnected diagrams with respect
to the 4ˆconnected diagrams, compared to the light tetraquark study. This was done
by considering the asymptotic exponential decay of squared correlation functions. The
exponential increase was found to be implicitly given by the mass difference of a two-
particle state to a single-particle state.
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Solving the generalized eigenvalue problem for various operator sets we find a third
low-lying state between the two two-particle levels. However, contrary to the analysis
of the light tetraquark candidate, we also find an indication for this third low-lying
state by employing only four-quark structures. The fact that this state was not found
omitting quark loop contributions further emphasizes their relevance for the study of
tetraquark candidates and, in particular, for diquark-antidiquark matrix elements. The
same low-lying state is also seen in the case that diquark-antidiquark operators are
absent, with a strong overlap to a quark-antiquark structure. In the analysis of the full
operator set the state shows a strong overlap to a quark-antiquark structure, but also
of sizeable magnitude to a diquark-antidiquark structure. We interpret this behavior,
in combination with the fact that the state emerges also by employing only four-quark
operators, as an indication for a quark structure beyond a conventional quark-antiquark
pair.

Investigating possibly bound states of four-quarks in full QCD is still a very challeng-
ing task on the lattice. As it is pointed out several times these states are very difficult
to determine due to the proximity of two-particle thresholds. To further complicate the
matter such states are not necessarily exotic mesons, but possibly resonances, which are
not bound states of QCD. This is among other possibilities another realistic scenario
for the case of the a0p980q. The study of these short-lived particles on the lattice has
only become possible in recent years. Resonance properties can be extracted by con-
ducting extensive studies of multi-particle operator sets on various lattice volumes. The
dependence of the two-particle energy levels as a function of the finite lattice volume
can then be associated with various scattering amplitudes. However, calculations of
coupled-channel meson-meson scattering are still at the very start of their lifetime. In
[106] an extensive study of this kind is presented for a first time. The authors report on
various results for the irreducible representations of moving frame analyses and employ
a so-called K-matrix approach to interpolate between their lattice volumes. From this
incredible amount of data they eventually obtain the S-wave scattering amplitude for
their setup of mπ « 400 MeV.

Altogether the consistency between the results of both scalar tetraquark candidates
that were studied in this thesis is very encouraging. To obtain more quantitative results
one would require both a larger temporal extent of the lattice but also finer lattice
spacing. The former is desirable in the case of the a0p980q, as it will reduce the effects
from particles traveling in opposite directions. The latter is required to increase the
ultraviolet cutoff of the lattice to higher energies and thus to allow for a safer analysis
of two-particle states with an open-charm meson. From what we have seen in this
thesis especially the investigation of heavier tetraquark candidates might be a promising
endeavour. Here, one needs to expand the operator set and include operators that excite
states with explicit relative momenta. As the masses of tetraquark candidates become
larger, the separations to momentum excitations become smaller. We have seen by the
example of our D˚s0p2317q studies, that it will eventually become difficult to identify
states precisely. Extending the Dirac structure of the set of operators would allow the
simultaneous calculation of the axial vector partner of the D˚s0p2317q, the Ds1p2460q,
with reasonable effort. Given that the lattice extent is well-suited to study the candidates
in question a solid foundation is provided by this thesis. For heavier excited candidates,
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however, the operator set needs to be extended even further. As multiple two-particle
thresholds will fit below the ground state energies of excited heavy tetraquarks, it has
to be ensured that all of these states are resolved precisely.



Appendix A Notations and conventions

In this work we use natural units ~ “ c “ 1, which leads to an energy-length conversion
of

~ c “ 197.327MeV fm “ 1. (A.1)

All results of this work are obtained from calculations performed in Euclidean spacetime.
The transition from a quantum field theory in Minkowski space to a Euclidean spacetime
is a crucial step to allow a treatment of the path integral similar to quantum statistical
mechanics. The otherwise oscillating action in the Minkowski path integral does so take
over the role of an exponential weight, which eventually enables a stochastic evaluation
of the path integral. Hence, Euclidean quantities are not further emphasized.

A.1 Gamma matrices

In the chiral representation the Dirac matrices are defined by

γ0 “

¨

˚

˚

˝

0 0 `1 0
0 0 0 `1
`1 0 0 0
0 `1 0 0

˛

‹

‹

‚

, γ1 “

¨

˚

˚

˝

0 0 0 `ı
0 0 `ı 0
0 ´ı 0 0
´ı 0 0 0

˛

‹

‹

‚

,

γ2 “

¨

˚

˚

˝

0 0 0 `1
0 0 ´1 0
0 ´1 0 0
`1 0 0 0

˛

‹

‹

‚

, γ3 “

¨

˚

˚

˝

0 0 `ı 0
0 0 0 ´ı
´ı 0 0 0
0 `ı 0 0

˛

‹

‹

‚

,

(A.2)

where we employ a notation for γµ analogue to Minkowski space µ “ 0 . . . 3, where µ “ 0
refers to time. They are hermitian and satisfy the anticommutation relation, i.e.

γµ “ γ:µ “ γ´1
µ , tγµ, γνu “ 2 δµν 1 (A.3)

In addition, we define the product of the four gamma matrices

γ5 “ γ0γ1γ2γ3 “

¨

˚

˚

˝

`1 0 0 0
0 `1 0 0
0 0 ´1 0
0 0 0 ´1

˛

‹

‹

‚

, (A.4)

which is also hermitian and anticommutes with all Dirac matrices.
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Together with the antisymmetric

σµν “
1

2ı
rγµ, γνs , (A.5)

a complete basis of complex 4ˆ 4 matrices over C is given by the set of 16 matrices

Γ P t1, γµ, σµν , γ5γµ, γ5u, (A.6)

the elements of the Clifford algebra.

A.2 Parity transformation

A parity transformation P reflects spatial coordinates and acts on the lattice fields as:

ψpx, x0q
P
Ñ ψpx, x0q

P “ γ0 ψp´x, x0q,

ψ̄px, x0q
P
Ñ ψ̄px, x0q

P “ ψ̄p´x, x0qγ0,

Uipx, x0q
P
Ñ Uipx, x0q

P “ Uip´x´ î, x0q
:,

U0px, x0q
P
Ñ U0px, x0q

P “ U0p´x, x0q.

(A.7)

A.3 Charge conjugation

A charge transformation C transforms a particle into an antiparticle and vice versa and
acts on the lattice fields as

ψpxq
C
Ñ ψpxqC “ C´1 ψ̄pxqT ,

ψ̄pxq
C
Ñ ψ̄pxqC “ ´ψpxqT C,

Uµpxq
C
Ñ Uµpxq

C “ Uµpxq
˚.

(A.8)

The charge conjugation matrix C is defined by the relation

C γµC
´1 “ ´γTµ , (A.9)

which is given in chiral representation by

C “ ı γ2 γ0. (A.10)
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B.1 Spin diagrams

The different spin diagrams are a simple graphical guide for reordering the Grassmann
valued quark spinors within the fermionic expectation value, in order to contract equal
flavors. As such not only the respective sign for the correlator, which emerges from
shifting the Grassmann variables, but also the structure of the trace in spin space can
be read off. If necessary, the spatial representation might aid to set the endpoints of the
propagators. The spin diagram of C12 is given by

d̄ u

ū s s̄ d

which reads as a single trace in spin space. The sign from shifting the Grassmann
variables is negative for an odd number of line intersections and positive for an even
number of line intersections. Constructs with zero intersections count also as a negative
contribution. This is caused due to the possibility to interchange two quark pairs within
an operator without the need for a sign change. Quark pairs in Figure 3.4 are ordered
to provide a clear representation of the spin structure.

The ordering of the different quark propagators after contracting the spinors reads
off to be

C12 » ´

A

trspin

”

GpdqGpuq γ5G
psq γ5

ıE

U
. (B.1)

Invariance of the trace under cyclic permutations is encoded in the diagrams by con-
tinuous dashed lines, making a starting position irrelevant. Different Dirac structures
between the spinors have to be inserted by hand, i.e. 1 between d̄ and u and a γ5 between
each of the two quark pairs at the bottom, cf. (3.19). Due to diagonal color indices of
the operators the traces in color and spin conveniently merge. For the specific choice
of O2 the four quarks at the bottom share their spatial coordinates, so that we end up
with

C12ptq “ ´
1

Vs

ÿ

x,y

A

tr
”

Gpdqpx, t1; y, t2qG
puqpy, t2;x, t1q γ5G

psqpx, t1;x, t1q γ5

ıE

U
. (B.2)
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The spin structure remains the same for O5 as indicated in Figure 3.4, but the bottom
quark pairs are distributed to different spatial coordinates.

In an equal manner does the spin diagram of C13

d̄ u

ū d s̄ s

lead to

C13ptq “ `
1

Vs

ÿ

x,y

A

tr
”

Gpdqpx, t1; y, t2qG
puqpy, t2;x, t1q γ5

ı

tr
”

Gpsqpx, t1;x, t1q γ5

ıE

U
,

(B.3)
where the two separate spin structures with one and zero line intersections induce an
overall positive sign.

Spin diagrams involving the diquark-antidiquark operatorO4 pose a distinct scenario.
These interpolators are not only no longer diagonal in color, but also transposed quark
spinors occur. To contract this operator with the others certain quark pairs might need
to be transposed. For each transposed spinor pair another sign change takes place.

ψ̄TAψ
T
B “ pψ̄Aq

T pψBq
T “ ψ̄AψB “ ´ψBψ̄A “ ´pψψ̄qBA “ ´ppψψ̄qABq

T (B.4)

Such sign changes from initial operations are taken into account for the diagrammatic
spin representation in Figure 3.4, cf. e.g. Cp4ˆconnectedq2,5;4 . Hence, any further sign change
from transposed spinor pairs occur only during the fermion contraction. The spin dia-
gram for C14

d̄ u

ū s̄T sT d

implies an ordering of quark propagators according to

C14 » `

B

trspin

”

GpdqGpuq pCγ5q
:
´

Gpsq
¯T
pCγ5q

:
ı

F

U

, (B.5)

including a change in the overall sign of the correlator with respect to the spin diagram
due to the contraction of two transposed spinors. The spatial coordinates of the prop-
agators remain the same as in the previous two examples and a permutation of color
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indices needs to be added, cf. (3.19), resulting in

C14ptq “ `
1

Vs

ÿ

x,y

εabcεade

A

trspin

”

G
pdq
cf px, t1;y, t2qG

puq
fd py, t2;x, t1q pCγ5q

˚

´

G
psq
be px, t1;x, t1q

¯T
pCγ5q

˚
ıE

U
.

(B.6)

To summarize the above mentioned properties of spin diagrams:

• Continuous dashed lines represent spin traces.

• 0 and an odd number of line intersections implies a negative sign, an even number
of line intersections implies a positive sign.

• The overall sign is a product of all constituent contributions.

• Sign changes from initial operations are taken into account.

• Contracting pairs of transposed quark spinors results in another sign change, cf.
(B.4).

B.2 Application of techniques

Especially throughout Section 4.2 we utilize color schemes on spatial representations of
correlators to indicate which techniques we employ to estimate the particular propaga-
tors. Those techniques are point-to-all propagators, stochastic timeslice-to-all propaga-
tors and the one-end trick and were introduced in Section 3.4. While both diagrammatic
representations intend to simplify the derivation of the correlator structure, the color
scheme applied to the spatial diagrams reveals the final computational implementation
of techniques in a convenient way.

Although the color and spin structure of the various correlators differ, they can be
computed by the same combination of techniques, as long as they share their spatial
representation, cf. Figure 3.3. This is the case for the in Appendix B.1 discussed two-
quark – four-quark correlators C12, C13 and C14. The candidate methods are illustrated
by the following diagrams:

Σ
y

x

paq

t2

t1 Σ

Σ

x

pbq

t2

t1 Σ

y

x

pcq

t2

t1
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After the mathematical expression for a correlator is derived, suited propagator tech-
niques can be applied to compute the correlation function at many temporal separations.
We present the implementation of three methods for C12, which were derived in (B.2):

• Method paq:

C12ptq “ ´

Bˆ

ÿ

y

φpnt
pdqpy, t2qra,A,x, t1s

: γ5 φpnt
puqpy, t2qrb, B,x, t1s

˙

pγ5qB;C φpnt
psq
b,Cpx, t1qra,A,x, t1s

F

U

.

(B.7)

• Method pbq:

C12ptq “ ´
1

None

None
ÿ

n“1

1

Nsto

Nsto
ÿ

n1“1

1

Vs

B

ÿ

x

´

φ̃one
puqpx, t1qrt2,1, ns

: γ5 φsto
psqpx, t1qrt1, n

1s

¯

´

ξstopx, t1qrt1, n
1s: φone

pdqpx, t1qrt2, ns
¯

F

U

.

(B.8)

• Method pcq:

C12ptq “ ´
1

Nsto

Nsto
ÿ

n“1

B

pγ5qB;A

ÿ

x

´

φpnt
puqpx, t1qra,A,y, t2s

: φsto
psqpx, t1qrt1, ns

¯

´

ξstopx, t1qrt1, ns
: γ5 φpnt

pdqpx, t1qrb, B,y, t2s
¯

F

U

.

(B.9)

φpnt, φsto, ξsto, φone and φ̃one refer to the sources and solutions of the linear systems
(Dpfqφpfq “ ξ) for the techniques of point-to-all propagators, stochastic timeslice-to-
all propagators and the one-end trick, respectively. Essentially in the same way the
techniques can also be applied to C13 (B.3) and C14 (B.6).

B.3 Application of sequential propagation

We utilize sequential propagation whenever quark spinors are embedded in a mutual spin
structure, but are distributed over different spatial coordinates on the same timeslice.
One example for this practice can be found in C15. Its spin structure (left) is identical
to C12 but in terms of its spatial representation (right) the K and K̄ meson are created
at different points in space, i.e. x1 and y1.
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d̄ u

ū s s̄ d

t2

t1

x

x1 y1

The mathematical expression for C15 can be derived from its diagrams

C15ptq “ ´
1

V
3{2
s

ÿ

x,x1,y1

A

tr
”

Gpdqpy1, t1;x, t2qG
puqpx, t2;x1, t1q γ5G

psqpx1, t1;y1, t1q γ5

ıE

U
,

(B.10)
where we identify a sequential propagation of the form

Gpu;sqpx, t2;y1, t1qrγ5s ”
ÿ

x1

Gpuqpx, t2;x1, t1q γ5G
psqpx1, t1;y1, t1q , (B.11)

and hence are able to calculate the diagram via the technique of e.g. the one-end trick

C15ptq “ ´
1

V
3{2
s

ÿ

x,y1

A

tr

„

´

Gpdqpx, t2;y1, t1q
¯:

γ5G
pu;sqpx, t2;y1, t1qrγ5s



E

U

ÝÑ
1

N

N
ÿ

n“1

´
1

V
3{2
s

ÿ

x

A´

φ̃one
pdqpx, t2qrt1, ns

: γ5 ψone
pu;sqpx, t2qrt1, γ5; t1, ns

¯E

U
.

(B.12)
With a shared origin of the propagators at y1 this realization corresponds to a sequential
propagation within the source timeslice. The procedure to obtain solutions ψ follows
the instructions from Section 3.4.4, i.e.

ÿ

y

D
psq
a,A;b,Bpx; yqφ

psq
b,Bpyqrt1, ns “ ξa,Apxqrt1, ns,

ÿ

y

D
puq
a,A;b,Bpx; yqψ

pu;sq
b,B pyqrt1, γ5; t1, ns “ pγ5φqa,Apx, x0qrt1, ns δpx0; t1q.

(B.13)

Sequential propagators within the sink timeslice or with other propagator techniques are
obtained in a similar manner.

B.4 Propagator content of methods

In the following we present the minimal number of inversions required to construct the
methods presented in Section 4.2. Details given are dependent on the Dirac and flavor
structure of the operators in use, for which we restrict ourself to the Dirac structure cf.
(3.19), and flavor structure tψ̄pf1q, ψpf2q, ψ̄pf3q, ψpf3qu relevant throughout this thesis.
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Solutions to linear system Dφ “ ξ are labeled by φ, if its source is a fixed point or a
stochastic source and ψ, if its source is a solution to a linear system itself, referring to
the notation of Section 3.4.

Each technique features a distinctive minimal number of inversions to be performed,
i.e. 12ˆ the number of independently chosen spacetime points for point-to-all propaga-
tors or the number of independently chosen stochastic sources for stochastic propagators.
Multiples of these are not explicitly given below. Consequently, each row has to be mul-
tiplied with its respective amount of repeated inversions, i.e. e.g. ˆ12 per independent
spacetime point for point-to-all propagators, orˆNsto for stochastic timeslice-to-all prop-
agators. Different Dirac structures at the source of the one-end trick are distinguished
by φpf1q, φ̃pf2q ” φpf1q, φ̃pf2qr1s , cf. Section 3.4.3.

paq pbq

one-end
trick φpf1q, φ̃pf2q

point-to-all
propagators φpf1q, φpf2q

TAB. B.3: Number of solutions required for the different methods of C11.

For the simplest diagram of the correlation matrix we find a minimum of two solutions
for the one-end trick and 12ˆ two solutions for point-to-all propagators. This refers to
a single stochastic source and a single spacetime point, respectively. Note that for the
first half of our investigation the flavor basis of interest is td̄, u, s̄, su, i.e. the flavor basis
of an a0p980q tetraquark candidate. Considering the Nf “ 2 ` 1 ensemble in use, the
first and second flavor thus become mass degenerate, i.e. φpf1q “ φpf2q “ φpu{dq. This
effectively reduces the number of required inversions for the application of point-to-all
propagators by a factor of two. Multiple solutions of the same technique that only differ
in their flavor are not further emphasized below, but become redundant in the case of
mass degenerate flavors.

paq pbq pcq

one-end
trick φpf1q, φ̃pf2q

point-to-all
propagators φpf1q, φpf2q, φpf3q φpf1q, φpf2q

stochastic time-
slice-to-all N∆t φ

pf3q N∆t φ
pf3q

TAB. B.4: Number of solutions required for the different methods of C12, C13 and C14.

Stochastic timeslice-to-all propagators with a starting and endpoint on a single times-
lices require independent solutions on N∆t subsequent timeslices. This will eventually
lead to a maximum number of N∆t temporal separations and has to be considered in
comparison to method paq, which covers the whole temporal lattice extent with little
effort.
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paq pbq

one-end
trick ψpf1;f3q, φpf2q, φpf3q

point-to-all
propagators ψpf1;f3q, φpf2q, φpf3q

TAB. B.5: Number of solutions required for the different methods of C15.

The Dirac structure at the source of C15 is Γ “ γ5, so that the φ’s of the one-end
trick are based on the same source vector and do not need to be distinguished in Ta-
ble B.5 . Although φpf3q is not explicitly required for the contraction of the correlation
function, it is shown in the table as it is required as a source vector for the sequen-
tial propagator procedure, i.e. ψpf1;f3q is the solution of a linear system of the form
Dpf1q ψpf1;f3q “ γ5 φ

pf3q. For a scenario with no mass degeneracy between the first and
second flavor the sequential propagator procedure can be applied to either of them.

paq pbq pcq

one-end
trick φpf1q, φpf2q φpf1q, φpf2q

point-to-all
propagators φpf3q φpf1q, φpf2q

stochastic time-
slice-to-all φpf3q φpf3q

TAB. B.6: Number of solutions required for the different methods of C16.

paq pbq pcq

one-end
trick φpf1q, φpf3q, χpf2q, χpf3q φpf2q, φpf3q

point-to-all
propagators φpf1q, φpf3q φpf1q, φpf2q, φpf3q

paq pb1q pb2q pcq

one-end
trick φpf1q, φpf2q, χpf3q φpf1q, φpf2q φpf3q

point-to-all
propagators φpf3q φpf1q, φpf2q φpf1q, φpf2q, φpf3q

TAB. B.7: Number of solutions required for the different methods of C25, C35, C45

4ˆconnected (top) and C26, C36, C46 4ˆconnected (bottom).

The χ’s, occurring for a first time in Table B.7, are ordinary solutions to the linear
system with a source term different to the one of the φ’s, i.e. e.g. φpf3q ” φpf3qrns and
χpf3q ” φpf3qrn1s with n ‰ n1.



110 Appendix B Computation of matrix elements

paq pbq

one-end
trick ψpf1;f3q, φpf2q, φpf3q

point-to-all
propagators ψpf1;f3q, φpf2q, φpf3q

stochastic time-
slice-to-all N∆t φ

pf3q N∆t φ
pf3q

TAB. B.8: Number of solutions required for the different methods of C25, C35, C45

2ˆconnected.

paq pbq

one-end
trick φpf1q, φpf2q

point-to-all
propagators φpf1q, φpf2q, φpf3q

stochastic time-
slice-to-all N∆t φ

pf3q N∆t φ
pf3q

TAB. B.9: Number of solutions required for the different methods of C26, C36, C46

2ˆconnected.

paq pbq

one-end
trick φpf1q, φpf3q, χpf2q, χpf3q φpf2q, φpf3q

point-to-all
propagators φpf1q, φpf3q

paq pb1q pb2q

one-end
trick φpf1q, φpf2q, χpf3q φpf1q, φpf2q φpf3q

point-to-all
propagators φpf3q φpf1q, φpf2q

TAB. B.10: Number of solutions required for the different methods of C55 4ˆconnected
(top) and C66 4ˆconnected (bottom).

paq pb1q pb2q

one-end
trick φpf1q, φpf3q, χpf2q, χpf3q φpf1q, φpf2q φpf3q

point-to-all
propagators φpf3q φpf1q, φpf2q

TAB. B.11: Number of solutions required for the different methods of C56 4ˆconnected.
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paq pbq pcq

one-end
trick N∆t ψ

pf3;f1q, φpf1q, φpf2q ψpf1;f3q, φpf3q, φpf2q

point-to-all
propagators φpf3q ψpf1;f3q, φpf3q, φpf2q

stochastic time-
slice-to-all N∆t φ

pf3q N∆t φ
pf3q

TAB. B.12: Number of solutions required for the different methods of C56 2ˆconnected.
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