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We present a method that enables the identification and analysis of conformational Markovian transition
states from atomistic or coarse-grained molecular dynamics (MD) trajectories. Our algorithm is presented
by using both analytical models and examples from MD simulations of the benchmark system
helix-forming peptide Ala5, and of larger, biomedically important systems: the 15-lipoxygenase-2 enzyme
(15-LOX-2), the epidermal growth factor receptor (EGFR) protein, and the Mga2 fungal transcription
factor. The analysis of 15-LOX-2 uses data generated exclusively from biased umbrella sampling
simulations carried out at the hybrid ab initio density functional theory (DFT) quantum mechanics/
molecular mechanics (QM/MM) level of theory. In all cases, our method automatically identifies the
corresponding transition states and metastable conformations in a variationally optimal way, with the input
of a set of relevant coordinates, by accurately reproducing the intrinsic slowest relaxation rate of each
system. Our approach offers a general yet easy-to-implement analysis method that provides unique insight
into the molecular mechanism and the rare but crucial (i.e., rate-limiting) transition states occurring along
conformational transition paths in complex dynamical systems such as molecular trajectories.
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I. INTRODUCTION

Recent advances in both parallelizable computational
software and the development of highly efficient super-
computers have extended the time scale accessible to
atomistic molecular dynamics (MD) of biomolecules with
explicit solvent representations to simulations up to the
order of milliseconds [1–3]. While this enables state-of-the-
art computational modeling of complex molecular proc-
esses, such as folding and binding [4], the vast amount
of complex, high-dimensional data obtained from these
simulations requires novel analysis methods, on the one
hand, to make use of all the available information and,
on the other hand, to extract comprehensible and relevant
information. Several statistical analysis methods focusing
on transition paths and probability distributions have been
successfully applied, including transition paths sampling
(TPS) [5–8], milestoning [9], Markov state models
(MSMs) [10–12], and other methods using the commitment
probability distribution [13]. Geometry-optimization-
based algorithms such as discrete path sampling also
produce kinetic transition networks, identifying key rate-

determining transition states in a systematic, automated
fashion [14,15].
Here, we focus on the use of MSMs, which make it

possible to directly extract thermodynamic and kinetic
information from MD trajectories, such as free energy
profiles, equilibrium probabilities, and transition rates.
MSMs have also proven to be useful tools to analyze data
from both experiments and simulations [16–20]. Avariety of
MSM-based methods have been proposed that aggregate the
conformational state space, projecting along certain reaction
coordinates (RCs) of interest into macrostates, using
approaches that can be implemented automatically [21–24].
However, while some of themost successful andwidely used
clustering algorithms such as PCCAþ [25] and its advances
[26,27] or alternatives [28] are designed to identify meta-
stable states (e.g., in protein folding terms: the folded, the
unfolded, and long-lived intermediate states), none is aimed
specifically at the automatic, reliable identification and
characterization of the rate-determining transition states
(TS), which are crucial for the thorough understanding of
the underlying molecular mechanisms and which control the
overall kinetics of the system. Existing methods to identify
the TS in networks define optimal cuts through the network,
which carry maximum flux [29–31]. In TPS, the TS is
defined as a regionwith½ commitment probability, using the
committor as the optimal one-dimensional reaction coordi-
nate [32–34] that defines the probability to reach the reactant
state before reaching the product state. However, in complex
processes, determining the committor probability for
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multiple stable states is not straightforward. It is not clear
how many metastable states (MSs) are important to describe
the overall slowdynamics orwhere thekey kinetic bottleneck
is located. To clearly identify the TS as an ensemble, and not
only as a zero-measure separating surface between MSs, we
aim to define the TS ensemble as a node of a variationally
optimalminimal required network consisting both ofMSand
the TS Markov states.
Here, we propose a method for the automatic identi-

fication and analysis of both MS and TS conformational
regions, by aiming to optimally construct MSMs via the
slowest relaxation time using a set of discretized RCs. The
use of key RCs has long been a successful approach in
many of the major enhanced sampling methods [35–38],
also as a basis for a more intuitive understanding of the data
[39]. Our algorithm enumerates all possible clusters that
could be formed along an ordered set of states for each RC,
and it selects the optimal clustering that maximizes the
slowest relaxation time of the coarse network. This is both a
physically and mathematically meaningful variational opti-
mization process [40,41], as the fully discretized system’s
relaxation time provides an upper bound to the slowest
relaxation time, and the better the coarse graining, the
closer our variational objective function will be to this ideal
value. Importantly, by increasing the number of coarse-
grained states used to model the system, we systematically
identify key MSs, until we exhaust the number of relevant
MSs, and the first optimal TS is identified. This approach
also enables users to find and analyze the minimal required
number of MSs relevant to the kinetics of the underlying
dynamic process.

II. TIME-SCALE OPTIMIZATION CLUSTERING

The slowest relaxation times have been widely used to
measure the discretization error in most MSM applications
[10–12,40], to validate the convergence of the model, and
to extract the true Markovian time scales for the system.
The slowest relaxation time is therefore a mathematically
and physically meaningful optimization function that can
be used to determine coarse-grained kinetic networks
[25,42]. This is justified mathematically because any
lumping of states into coarse-grained states decreases the
measured relaxation times of the intrinsic dynamics of the
model. A formal proof can be given via a variational
theorem for correlation functions [41,43]. Considering our
main aim of most accurately estimating the slowest
relaxation process, we target our proposed clustering
method towards the maximization of the slowest extracted
relaxation time [25,42].

A. One-dimensional clustering

Complex, multidimensional trajectories are often ana-
lyzed using their projection on simpler 1D RCs. Here, we
start by assuming that a set of RCs is available, which

accounts for the slow dynamics of the system. Any
continuous 1D RC can be divided into adequately small
discrete bins or “microstates” (denoted here as s1;…; sNμ

,
where Nμ is their total number), which capture the same
intrinsic dynamics as the continuous RC. In practice, a 1D
RC, xðtÞ, is often binned in equidistant microstate intervals
over RC windows of length Δxμ, such that, for a trajectory
that samples the interval ½xmin; xmax�, we have Nμ ¼
ðxmax − xminÞ=Δxμ. This discretization has an intrinsic
ordering inherited from the continuous RC.
Traditionally, MSMs have been constructed to derive a

more accurate equilibrium distribution from multiple short
trajectories and also to obtain kinetic information about the
system [10–12,21,22,40,44,45]. These advances led to
successful use in a number of academic and commercial
drug discovery projects and studies of protein folding, etc.
These traditional MSMs, however, are implemented using
clustering (e.g., k-means, k-medoids, k-centers, etc. [22,46])
into metastable states only, thus lacking the resolution
required for identifying TSs.We have been using discretized
continuous RCs [47,48], corresponding to our MSM
built from microstates termed here. These make it possible
to construct MSMs with sufficiently fine resolution to be
able to capture TSs and to integrate biased molecular
simulation data.
Definition of cluster boundaries for ordered sets of

microstates.—To reduce the dimensionality, the typically
large number Nμ of microstates, we cluster them into
coarse-grained “macrostates” (M-states). Throughout the
paper, we refer to microstates as states, which correspond to
our full-dimensional MSM, and M-states as the optimally
coarse-grained network, obtained by lumping together
microstates, where we aim to identify key MS and TS
states.
Given the projection of a trajectory on a 1D RC, xðtÞ, for

clustering it into M sorted M states over a finite domain
(i.e., with no periodic boundaries), bi cluster boundaries
(i ∈ f1; 2;…;M − 1g) are needed. Discretizing xðtÞ into
M macrostates in the interval ½xmin; xmax� requires M − 1
boundaries, such that the M macrostates (denoted by Si)
cover the following intervals: S1 ¼ ½xmin; xmin þ b1ΔxμÞ,
S2 ¼ ½xmin þ b1Δxμ; xmin þ b2ΔxμÞ, …;SM−1 ¼ ½xminþ
bM−2Δxμ; xminþbM−1ΔxμÞ, SM ¼ ½xmin þ bM−1Δxμ; xmax�.
Here, we identify all possible boundary positions
(b1;…; bM−1, where bi−1<bi<biþ1∈f1;…;Nμ−1g),
and thus all possible coarse-grained models with M states.
For example, the first boundary can be placed at Nμ − 1

positions, separating all microstates into two coarse-

grainedM states. For three states, we consider ðNμ − 1
2

Þ ¼
ðNμ − 1ÞðNμ − 2Þ=2 possibilities to place the two boun-
daries required for identifying a three-state coarse-grained

system. In general, there are
�Nμ − 1
M − 1

�
≈ OðNμ

M−1Þ
possibilities to place the boundaries between M states,
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leading to a polynomial scaling algorithm in Nμ. Next, for
each possible boundary position, we define a coarse-
grained Markov or transition probability matrix MredðτÞ,
with Mred

kl ðτÞ representing the probability that the system
starting from microstate kwill be in microstate l after time τ
and use as our objective function the variational slowest
relaxation time (t2 ¼ τ= ln λ2, with the lag time τ) corre-
sponding to the second largest eigenvalue (λ2, with λ1 ¼ 1).
Thus, we maximize t2 to identify the optimal coarse
graining (maxft2jb1;…; bM−1g) based on the variational
principle discussed above. The M-state coarse-grained
system will generally not be fully Markovian; therefore,
we need to make some further assumptions regarding its
kinetics, as described below.
Definition of the coarse-grained dynamics.—To define a

Markovian dynamics of the coarse-grained system, besides
the basic requirements regarding equilibrium, we are also
able to impose some additional constraints. We describe the
original dynamics with an Nμ-dimensional rate matrix K,
where Kkl corresponds to the rate from k to l, or alter-
natively, we can also use a full-dimensional Markov matrix
MfullðτÞ ¼ eK

fullτ at lag time τ. In general, we want to
ensure that the equilibrium populations are exactly main-
tained in the reduced system’s dynamics. Thus, all coarse-
grained states Si, i ∈ f1;…;Mg have to preserve the total
equilibrium population of the corresponding microstates
with indices in the range of [bi−1 þ 1;…; bi]:

Peq
i ¼

Xbi
k¼bi−1þ1

peq
k ; ð1Þ

where b0 ¼ 0 and bM ¼ Nμ, P
eq
i is the equilibrium pop-

ulation of the coarse-grained state Si obtained from the
normalized first left eigenvector ofKfull, or the correspond-
ing Markov matrixMfullðτÞ at lag time τ, and peq

k is the kth
component of the normalized first left eigenvector corre-
sponding to eigenvalue 0 of Kfull [or 1 of MfullðτÞ].
In addition to projecting the correct equilibrium

populations, we can consider two alternative methods to
build the kinetics of the coarse-grained system: (i) a local
equilibrium (LE) lag-time-dependent method, or (ii) the
Hummer-Szabo definition (HS) for a lag-time-independent
coarse-rate matrix [42]. In both cases, the main criteria for
setting the kinetics of the reduced system are defined via
correlation functions that allow us to count the number of
transitions between different states. The number correla-
tion function CijðtÞ is the probability that the system is in
coarse-grained state Si at time 0 and in coarse-grained
state Sj at time t, as would be seen in a long-equilibrium
run. It can be written in terms of the rate matrix
exponential propagating a conditional equilibrium in Si
and collecting the probability in Sj, written using a bra-ket
notation as

Cred;LE
ij ðτÞ ¼ hejj expðKfull;TτÞjπeq

i i
¼ hejjMfull;TðτÞjπeq

i i; ð2Þ

where the projection (i.e., coarse-graining) vector
heij ¼ ð0;…; 0; 1;…; 1; 0;…; 0Þ is an Nμ-dimensional
column vector, having nonzero elements only for indices
in the range [bi−1 þ 1;…; bi] (with b0 ¼ 0 and
bM ¼ Nμ), that corresponds to coarse-grained state Si.
Analogously, the renormalized equilibrium distribution
for the components of coarse state Si is column vector
πeq
i ¼ð0;…;0;peq

bi−1þ1;…;peq
bi
;0;…;0ÞT=Peq

i , with p
eq being

the first normalized left eigenvector, as before. Here,Kfull;T

and Mfull;T are the transposed full rate and Markov
matrices, respectively. Therefore, Cred;LE

ij ðτÞ represents
the probability that starting from state Si, the system will
be in state Sj after lag time τ, corresponding to Kronecker
delta limτ→0C

red;LE
ij ðτÞ¼δij and limτ→∞C

red;LE
ij ðτÞ¼Peq

j .
The LE approximation sets the coarse-grained transition

probability matrix elements Mred;LE
ij ðτÞ (i.e., defined as the

transition probability to be at state Sj after lag time τ,
starting from Si) equal to the correlation function at the
chosen lag time τ:

Mred;LE
ij ðτÞ≡ Cred;LE

ij ðτÞ

¼
Xbi

k¼bi−1þ1

Xbj
l¼bj−1þ1

πeqk C
full
kl ðτÞ

¼ 1

Peq
i

Xbi
k¼bi−1þ1

Xbj
l¼bj−1þ1

peq
k C

full
kl ðτÞ. ð3Þ

This ensures that the coarse-grained dynamics reproduces
exactly the average number of transition counts
from the full microstate dynamics [Peq

i M
red;LE
ij ðτÞ ¼

Peq
i C

red;LE
ij ðτÞ ¼ Pbi

k¼bi−1þ1

Pbj
l¼bj−1þ1 p

eq
k C

full
kl ðτÞ] between

the corresponding coarse-grained M states at lag time
τ, with respect to the full Nμ-dimensional correlation
function Cfull

kl ðτÞ for microstates k, l ∈ f1;…; Nμg. This
equation can be intuitively interpreted as simply calcu-
lating the reduced matrix elements by (equilibrium)
averaging over the elements of the full matrix, which
are being clustered. Note that, in this work, we do not
discuss the zero lag-time limit within the LE case. This
would correspond to a reduced rate matrix (infinitesimal
generator matrix), instead of a Markov transition prob-
ability matrix, calculated via the well-known local equi-
librium approximation.
Using molecular simulation data, we can calculate the

transition count matrix TðτÞ, with elements TijðτÞ corre-
sponding to the number of transitions observed from Si to
Sj [or sk to sl microstates, for estimatingMfull

kl ðτÞ] along the
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trajectory between any two data points separated by time τ.
Subsequently, the corresponding transition probability or
Markov matrix (both the full-dimensional and the coarse-
grained ones, depending on whether microstates or macro-
states are used to count the transitions, respectively) can be
numerically estimated with the normalized elements
defined as MijðτÞ ≈ TijðτÞ=

P
M
k¼1 TikðτÞ. To ensure

detailed, balance MijðτÞpi ¼ MjiðτÞpj, we can also use
a reversible estimator via an iterative approach, or for
transition counts from long equilibrium simulations, we
can simply symmetrize the count matrix: TsymmðτÞ ≔
(TðτÞ þ TTðτÞ)=2 [44,45,49,50].
To avoid the arbitrary choice in the lag time and seek

approximate kinetics that considers a range of lag times, we
also used the HS method to define a coarse-grained rate
matrix Kred;HS [42] and the corresponding correlation
matrices Cred;HSðτÞ ¼ Mred;HSðτÞ ¼ expðKred;HSτÞ. Rather
than enforcing the correlation functions to be equal at a
given lag time (as in the LE case seen previously), here we
enforce that the integral over all possible lag times of the
correlation functions [51–54] be equal and thus define a
lag-time-independent reduced rate matrix via

Z∞

0

dτðCred;HS
ij ðτÞ − Peq

j Þ

¼
Z∞

0

dτð½expðKred;HSτÞ�ij − Peq
j Þ

¼
Z∞

0

dτ
Xbi

k¼bi−1þ1

Xbj
l¼bj−1þ1

ðπeqk Cfull
kl ðτÞ − peq

l Þ. ð4Þ

The rate matrix Kred;HS can be further expressed via
Eq. (8) in Ref. [42]:

ðPeq1TM − ðKred;HSÞTÞ−1ji Peq
i

¼
Xbi

k¼bi−1þ1

Xbj
l¼bj−1þ1

ðpeq1TNμ
−Kfull;TÞ−1lk peq

k ð5Þ

which leads to the explicit working equation via Eq. (12) in
Ref. [42]:

ðKred;HSÞT ¼Peq1TM−DMðATðpeq1TNμ
−Kfull;TÞ−1DNμ

AÞ−1;
ð6Þ

where Aki ¼
n
1 if k ∈ Si
0 otherwise

defines the partitioning, and

D’s are diagonal matrices containing the equilibrium
populations for microstates k, l ∈ f1;…; Nμg: ðDNμ

Þ
kl
¼

peq
k δkl or M states i, j ∈ f1;…;Mg: ðDMÞij ¼ Peq

i δij.

The HS coarse dynamics is preferred, as no lag time
is required, and for our analytical examples below,
we compare it to the LE coarse graining. The reduced
M-dimensional rate matrix for each choice of a set of state
boundaries bi can thus be obtained using the lag-time-
independent HS expressions. We chose the LE method
for analyzing numerical simulation data because this
corresponds to the standard MSM approaches using a lag-
time-dependent estimator count matrix for the transition
probability matrix. Approximate reduced Markov matrices
can also be built using alternative methods; see, for
example, Fačkovec et al. [19].
We also demonstrate that both the LE and the HS coarse

graining lead to a variational maximum of t2, and all our
analytical examples show that this maximum is limited by
the exact second eigenvalue of the full-dimensional system
(see, e.g., Fig. S2B). Analytically, the exact relaxation
times are obtained at infinitely long lag times (τ → ∞) for
the LE matrices [in practice, however, the matrices become
degenerate with Mred

ij ð∞Þ ¼ Peq
j , and numerically, the

diagonalization cannot be carried out at very long lag
times]. While there is no previous formal proof that the HS
matrices also correspond to a variational maximum for the
t2 relaxation times as a function of boundaries between
coarse-grained states (Fig. S2B), this is justified by the fact
that the integral on the right-hand side of Eq. (4) can be
rewritten by introducing the LE correlation matrices at
different lag times using Eq. (3) to obtain the following
relationship:

Z∞

0

dτðCred;HS
ij ðτÞ − Peq

j Þ ¼
Z∞

0

dτðCred;LE
ij ðτÞ − Peq

j Þ: ð7Þ

Therefore, the HS eigenvalue is also bound, as each of
the LE eigenvalues is bound by the exact t2. This is
demonstrated by the slightly lower t2 HS relaxation time
as compared with the LE eigenvalues at very long lag times
(Fig. S2B), and the exact eigenvalue is obtained only for the
full-dimensional matrix.
Exhaustive cluster boundary search.—The optimal

boundary positions will be determined via the slowest
relaxation time obtained by solving the eigenvalue problem
of the Markov matricesMred;LEðτÞ using the LE method, or
rate matricesKred;HS using the HS method for each possible
set of boundaries (Fig. 1). The optimal M-state clustering
corresponds to the bestM − 1 boundary positions, forwhich
the slowest relaxation time t2 ismaximum, and the boundary
positions have been exhaustively searched at all possible
positions. Our algorithm therefore does not require higher-
order eigenvectors and eigenvalues besides the second
eigenvalue (unlike, e.g., PCCAþ as used in Ref. [42]).
Previous information from the optimalM − 1-state cluster-
ing is therefore not needed either to determine the optimal
M-state clustering. However, for large M, OðNM−1

μ Þ
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polynomial scaling of the computation time may prove
problematic, and here, we also implement an iterative
algorithm by taking into account the previous optimal
boundary positions. In this approximation, we only change
two boundaries at a time, and we iteratively update all
neighboring pairs of boundaries, until there is no further
improvement in the second eigenvalue. We find that this
algorithm arrives at the same optimum as the full exhaustive
search in the applications we discuss in more detail in
Sec. III.
Importantly, by increasing the number ofM states one by

one, we first obtain all the key MSs, corresponding to
diagonally dominated reduced transition probability matri-
ces with elements Mred

ij ðτÞ. Our algorithm automatically
evaluates the transition probabilities to neighboring states
[Mred

ij ðτÞ with all j ≠ i], and these are compared with the

probability to remain in the same state [Mred
ii ðτÞ], for

appropriate lag times (see Ref. [55], Sec. III).
Definition of the TS.—In this work, we define a TS as an

unstable, optimally coarse-grained state Si from which the
outgoing probabilities to at least two other states (e.g., Sm
and Sn) are greater than the probability to stay in the same
state [i.e., ∃m, n ≠ i∶ Mred

im ðτÞ > Mred
ii ðτÞ & Mred

in ðτÞ >
Mred

ii ðτÞ]. This is an operational definition that requires
an appropriate choice of lag time. We can verify the nature
of our TS by checking that the largest fraction of the
reactant flux goes through this state (see Ref. [55], Sec. I,
Fig. S1) rather than around it, in accordance with the
maximum flux criterion of Huo and Straub [56].
First and foremost, our TS is one of the states obtained

from an optimal coarse graining. This distinguishes saddles
from maxima because the maxima will not be important to
contribute to the overall relaxation time of the system.
Importantly, the TS will be the first nonmetastable state that
will appear as one of the optimal states from our coarse
graining that maximizes the overall relaxation time. Our TS
is therefore an ensemble of unstable states that can be
optimally separated from the metastable states to best
describe the variational slowest relaxation time in the
coarse-grained system.
This new TS definition, together with the exhaustive

variational optimization of the states, is different from
previously used TS definitions. Common definitions con-
sidered TSs with low-equilibrium populations and/or with
committor probability values close to 0.5 [32–34]. We note
here that the 0.5 value of the commitment probability alone
cannot, in general, be used to define TSs in complex
systems with more than two MSs (see the example
illustrated in Fig. S8). Alternatively, more elaborate defi-
nitions required the evaluation of (free) energy gradients
and/or of second derivatives, as done, e.g., in discrete path
sampling methods [14,15]. Our definition is also different
from TSs identified in the context of MSMs, where the
initial starting point is a clustering aimed at identifying
MSs. At our starting point, the microstates have a reso-
lution higher than the TS itself, which is not the case in
MSM-based methods. In that context, high-energy inter-
mediates can be identified that are closest to TSs [57];
however, they represent local minima, which do not, in
general, fulfil our TS definition. This method is also
different from the hierarchical coarse-graining approach
presented in Ref. [42], as we do not search for additional
MSs and TS by maintaining previous MS boundaries but
rather by exhaustively searching for new optimal additional
boundaries that may change several of the previously
identified MSs.
Thus, in our analysis, as we identify new M states, we

test for the TS property as defined above, and in the
process, we find all the minimally required MSs before a
TS is found. In our algorithm (illustrated in the flowchart of
Fig. 1), we may stop the search when a TS is found, or we

FIG. 1. Flowchart illustrating our 1D coarse-graining algorithm
for the initial Nμ states, defined along a 1D reaction coordinate,
into an optimal set of M states.
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can continue identifying additional coarse-grained states
for an even more accurate representation, but with
increased complexity. Noe et al. [58,59] noticed that as
additional Markov states are introduced in the TS region,
the accuracy of the underlying Markov discretization
increases. In our approach of coarse graining the initial
microstates, the observed characteristic qualitative change
in the transition probabilities of the last M-state system, as
we add new boundaries, allows us to identify both the TS
and the minimal number of key MSs that have to be
accounted for in the description of the process along each
1D RC and, more generally, in higher dimensions.

B. Multidimensional clustering

To generalize our approach for the analysis of a
trajectory projected onto a Z-dimensional (Z-D) state space
(i.e., described by Z 1D RCs), one has to deal with an
exponentially large number of microstates, Nμ ¼ Nμ;1D

Z

(assuming Nμ;1D bins for each coordinate). However, this
finer-grained representation is expected to render the actual
dynamics more faithfully (see examples in Secs. III B and
III C). However, in this multidimensional case, there is no
obvious intrinsic ordering of the microstates, and the
number of all possible different coarse grainings is expo-
nentially large, MNμ=M!, which is unfeasible to sample
systematically. To overcome the additional computational
costs, we use here two approximations that may be applied
independently: (i) an ordering of the microstates and (ii) a
hierarchical coarse graining.
To reduce the number of possible ways the microstates

can be grouped into coarse-grained states, we introduce an
ordering of the microstates, such that only dividing
boundaries would need to be identified. This will signifi-
cantly reduce the cost of the exhaustive microstate-
grouping search from exponential scaling to polynomial
scaling, as shown for the 1D case. The ordering could be
ideally defined via the commitment probability values of
the microstates, as an ideal reaction coordinate [32–34]. To
estimate the commitment probability automatically
for multiple states, we use the right eigenvector of the
full-dimensional (with MNμ states) rate matrix or Markov
transition probability matrix (with an appropriate lag time
τ), corresponding to the second λ2 eigenvalue [25,42,60],
analogously to the algorithm introduced by Szabo and co-
workers [42,60]. The components of the second eigenvec-
tor define the ordering of the states, and we subsequently
search all possible boundary positions that separate the
coarse-grained states as discussed in the 1D case.
The ordering according to the second right eigenvector is

not optimal in all cases because a better coarse-grained
system may be obtained, for which the corresponding t2
relaxation time is longer, but the elements of these optimal
coarse-grained states are not adjacent within the ordering
along the second eigenvector. Unfortunately, the number
of possibilities to test all potential clusterings into

coarse-grained states is exponentially large and thus unfea-
sible to evaluate. Alternative orderings, based on kinetic
distances, e.g., diffusion maps [61,62] or the Nystrom
kinetic lumping method [28], may be useful to obtain better
ordering for optimal coarse graining. However, we verify,
in all examples presented here, that single-state variations
do not significantly affect the obtained clustering results.
We also note that by using an ordering along the second
right eigenvector, the continuity of the states is no longer
ensured, and therefore, kinetically disconnected states
might be directly adjacent to one another and grouped
into the same coarse-grained state. This problem may also
be overcome by using alternative approaches to identify an
ordering that also takes into account the “kinetic vicinity”
of the states (for example, diffusion maps [61,62] or the
Nystrom kinetic lumping method [28]).
Here, we use an algorithm where the data are first

clustered independently into M macrostates for each
reaction coordinate, as described for 1D in Sec. II A. We
assume, for simplicity, that the optimal number of M states
is the same, M, for each dimension (an assumption that is
relaxed later, with no loss of generality). Taking into
account Z RCs, a discretized trajectory data withMZ states
is obtained. We can thus define MZ unique states of the
form of a direct product space, e.g., Σ1¼½S1;S1;S1;S1;S1�,
Σ2 ¼ ½S1; S1; S1; S1; S2�;…; ΣMZ ¼ ½SM; SM; SM; SM; SM�
when the system along the trajectory is in theM state S1 in
all Z ¼ 5 RCs. The resulting MZ macrostates are relabeled
from Σ1 to ΣMZ , and they define our first-level coarse-
grained trajectory.
To perform a second-level coarse graining, the M states

Σ1;…;ΣMZ are first ordered along the second right eigen-
vector components for a computationally feasible algorithm,
as is also done in Ref. [42]. The resulting, sorted M-state
trajectory is then analyzed one more time according to the
1D clustering procedure, to find a smaller optimal clustering
coarse grained intoL larger “Ω states” (i.e., with amaximum
corresponding slowest relaxation time t2). The resulting
second-level coarse graining into L Ω states (i.e., with
2 < L < MZ) is denoted here byΩ1;…;ΩL.We then place a
singleM state out of its ordered position and try to group it
with each of the differentΩ states to find the optimal position
that maximizes the relaxation time. We perform this pro-
cedure for every individual M state and repeat it until no
further improvement is possible.
This final coarse-graining procedure considers all the

RCs at the same time, globally. However, importantly, for
complex systems with a large number of RCs, it may be
necessary to perform the final clustering by hierarchically
approximating the coarse graining of the M states into the
Ω states Ω1;…;ΩL by clustering theM states S1;…; SM of
only a few (e.g., two) RCs at a time in a stepwise manner
and including additional RCs sequentially. This avoids the
clustering of an unfeasibly large number of M states
Σ1;…;ΣMZ at the same time.
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C. Three-state division via a transition state

Having at least three states can lead to an optimal coarse
graining that presents a TS, with significantly different
properties than MSs. Considering any three-state coarse
graining of a 1D problem leads to a reduced 3 × 3 rate
matrix of a linear chain:

K ¼

2
64
−K12 K12 0

K21 −ðK21 þ K23Þ K23

0 K32 −K32

3
75; ð8Þ

with elements Kij (defining the rate from i to j), depending
on the coarse-graining boundaries. Optimal boundaries are
obtained by minimizing the magnitude of the resulting
second eigenvalue ν2 ¼ −1=t2 of K (with ν1 ¼ 0), which
generally corresponds to a separation into MSs. However,
for two-state-like systems, the solution of the eigenvalue
optimization problem will lead to boundaries that identify a
TS. Thus, when the second state has a TS-like character,
this corresponds to reduced rates that approximate ν2 (see
also Ref. [55], Sec. II) as

−ν2 ¼ K32K21 þ K12K23

K21 þ K23

: ð9Þ

Analogously, it has also been shown previously that
adding states at the transition region reduces the discreti-
zation error in constructing Markov models [58,59]. Here,
we use this variational approach to identify and characterize
optimal TS and MSs.

III. APPLICATIONS

We present six applications here ordered by increasing
data complexity. First, we evaluate the optimal three-state
coarse graining on a set of analytical potentials in one
dimension. Second, we analyze MC trajectories generated
on a 2D analytical model potential, where we use an
ordering of the states defined on a 2D grid based on the
second eigenvector. We also apply our clustering algorithm
to the analysis of MD trajectories obtained for four different
systems: (i) umbrella-sampling biased QM/MM simula-
tions for the first rate-limiting step of a lipoxygenase
enzyme catalytic reaction, (ii) a system previously used
for benchmarkingmolecular kinetics [57], the helix-forming
peptide Ala5, and transmembrane helix dimers of (iii) the
epidermal growth factor receptor (EGFR) protein, and of
(iv) the Mga2 fungal transcription factor. EGFR is impli-
cated in various cancers, and it is a validated FDA-approved
drug target, for which an MD trajectory of over 120 μs is
available for its transmembrane segment [63]. We discuss
this application in Ref. [55]. Mga2 is a sensor for lipid
packing in the ER membrane, for which over 3.6 ms of MD
trajectories of its transmembrane helix dimer are available
using the MARTINI force field [64].

A. Analytical 1D model potential

We first tested our clustering method using Markov
state models created for a set of analytical free-energy
profiles that vary continuously and monotonically between
two-state-like and three-state-like dynamics. To define the
kineticmodel underlying the analytical free-energy function
FðxÞ, we construct an Nμ-state Markov chain. The corre-
sponding full rate matrix K is given by

Ki;iþ1 ¼ A exp

�
FðxiÞ − Fðxiþ1Þ

2kBT

�
; ð10aÞ

Ki;i ¼ −XNμ

j¼1
j≠i

Ki;j: ð10bÞ

Here, A is the Arrhenius prefactor, kB is Boltzmann’s
constant, and T is the absolute temperature. Note that the
optimal clustering is invariant with respect to the value of the
prefactorA (which only scales the time), and it only depends
on the shape of the free-energy profile in reduced units;
therefore, it is also independent of the temperature or free
energy alone, as long as the ratio corresponds to the same
profile (see Ref. [55], Sec. IV, for more detail).
Our general aim is to obtain a clustering of the underlying

Markov chain into M-state aggregates: S1;…; SM, defined
by optimal cluster boundaries b1;…; bM−1 that correspond
to the slowest (maximum) relaxation time. Application of
our method to a multitude of free-energy profiles (Fig. 2; see
also Ref. [55], Sec. IV) revealed that the slowest time-scale
optimization clustering successfully identifies all metastable
states in the system. Once we exhausted the number of
available important MSs, the next optimal M state is
qualitatively different from the metastable macrostates
obtained before, and it represents a TS with large proba-
bilities of jumping to the neighboring M states [Figs. 2(a)
and 2(b)], with most of the flux going through the TS.
We also found that the HS coarse-grained rate matrices

and the LE coarse-grained Markov matrices at longer lag
times (close to the relaxation times) identify practically
the same optimal boundary positions (Fig. 2, as well as
Figs. S2b, and S3–S7 in Ref. [55]), whereas shorter lag
times identify TSs preferably over MSs (Ref. [55], Sec. IV).
Our numerical examples demonstrate that the optimal
coarse-grained states are invariant to the details of the
implementation at the appropriate limit (discretization of
the profile, prefactor, coarse-graining method, etc.), and
only depend on the shape of the free-energy profile in
reduced units.

B. Three-state system on a 2D model potential

We constructed an analytical 2D-model free-energy
potential Fðx; yÞ (in kcal/mol, x, y ∈ ½−3; 3�) using the
following functional form:
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Fðx; yÞ ¼ −0.7 ln½e−ðxþ2Þ2−ðyþ2Þ2 þ e−ðx−2Þ2−ðy−1Þ2

þ e−ðxþ3Þ2−5ðy−2Þ2 � þ c: ð11Þ

The constant c was chosen to give a potential of zero
at the minimum on the 2D surface. We carried out
Monte Carlo (MC) simulations on this free-energy surface
by using a uniformly distributed 22-by-22 grid in the range

of [−2.7, 2.7] to initialize trajectories. Each trajectory was
run for 4000MC steps at 300 K using random displacement
MC steps with a radius of ρ ¼ 0.3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 lnð1=rÞp

, where r is a
uniformly distributed random number between 0 and 1. The
trajectory was analyzed using a lag time of 1000, and the
corresponding Markov model was discretized into coarse-
grained M states using a uniform grid of 15 states for each
coordinate (x and y). A three-statemodel correctly identified
the three stableminima (Fig. 3, right panel), andwe obtained
an optimal four-state network with the TS indicated as black
stars on the reconstructed 2D profile (Fig. 3, left panel).

C. Umbrella sampling QM/MM free energy
calculations of the 15-lipoxygenase-2 enzyme

Biased QM/MM calculations were performed previously
[65] using an umbrella sampling protocol with harmonic
biasing potential along a 1D reaction coordinate with 20
windows. We defined the reaction coordinate as the differ-
ence, r1 − r2, between the two relevant bond-breaking and
forming distances. The simulation was unbiased using
DHAM [48] on microstates defined via a 2D grid with 35
bins for both r1 and r2 (Fig. 4, symbols). The resulting free-
energy surface is shown in the inset of Fig. 4, together with
the TS state identified from the three-state coarse graining.
We used a lag time of 109 fs for the coarse graining by
propagating the original Markov matrix of lag time ¼ 1 fs
that was calculated with DHAM [48]. In the optimal coarse-
grained system at this discretization, the probability to jump
from the TS to state 1 (RS) is 0.024, to state 2 (TS) is very
small (7.54e-14), and to state 3 (PS) is 0.976.

D. Conformational dynamics of Ala5
We used our algorithm to study the dynamics of alanine

pentapeptide (Ala5)—a commonly used test system for
evaluating the intrinsic conformational kinetics—using

FIG. 3. The transition probability matrix and 2D free-energy surface were calculated for the direct product of 15 uniformly distributed
M states at both x and y coordinates, using a lag time τ ¼ 1000, and by obtaining a relaxation time of 8532.7 (arbitrary units). The final
coarse graining results in 4 M states (a), which are displayed as symbols (grey circle, black star, red square, and blue triangle), with a
relaxation time of 8513.0. The TS ensemble corresponds to state 2 (black stars), with transition probabilities of 0.35, 0.64, and 0.01 to
states 1, 3, and 4, respectively. A coarse graining to 3 M states results in the state assignment shown on the right panel (b), with a
relaxation time of 8499.9.

FIG. 2. Illustration of automatic optimal clustering into M ¼ 3
macrostates for a set of 1D analytical potentials [panels (a) to (e);
see Ref. [55], Sec. III) in which the intrinsic kinetics is tuned
continuously as a function of a control parameter from being two-
state-like (a) to three-state-like (e). The middle region (yellow)
between the two boundaries identified by the algorithm (vertical
lines) is either a TS, in (a) and (b), or it becomes the third MS in
(c)—(e). Vertical lines correspond to the optimal clustering
boundaries that maximize the second eigenvalue of the HS
coarse-grained rate matrices (blue, Ref. [42]) and the LE
transition probability matrices at τ ¼ 1000 (red).
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atomistic MD trajectories [57,66]. The Ala5 system (Fig. 5)
has the advantage of being sufficiently small for generating
converged MD sampling, even with an explicit representa-
tion of water, using relatively modest computational
resources. At the same time, it can form a helical turn,
enabling the study of secondary structure formation in both
theoretical [57,67–70] and experimental [71,72] studies.
We analyzed MD trajectories of Ala5 as described in detail
in Ref. [57].
To cluster the MD trajectory of the Ala5 peptide, the five

RamachandranΨ angles have been chosen as RCs (Fig. S9)
because the free-energy barriers along the Φ angles are
much smaller and thus contribute less to the slowest
relaxation modes [57]. The clustering result for the 1D
profile for Ψ1 is demonstrated in Fig. 5(a), with cluster
boundaries along the free-energy profile calculated from
Nμ ¼ 200 Markov microstates at 350 K and lag time
τ ¼ 1 ps. For all 5 Ψ angles, the two-state assignment
successfully identified the two metastable states corre-
sponding to the two free-energy basins, and the slowest
relaxation time is in good accordance with the full 200-state
model. We also tested a range of bins (Fig. S10) and lag
times (Fig. S11) to determine the Markovian limit of our
full-dimensional model (see discussion in Ref. [55],
Sec. IV). As demonstrated in Fig. 5(a), three-state cluster-
ing for meaningful lag times up to the magnitude of the
relaxation time (τ∼500 ps) leads to the detection of the
small TS state. We also compared the optimal boundary
positions using the HS clustering to obtain the initial M
states (Fig. S12), and these are fully consistent with the
ones obtained using the LE coarse-graining method. All TS
states are characterized by a small equilibrium population
and survival probability, and similar transition probabilities
to either the H or C states.

The second-level clustering was performed by consider-
ing the threeM states of all fiveΨ RCs together (35 states in
total, with M-state boundaries given in Table S1). For
convenience, we have labeled the Si M states with 0 if they
are inahelical (H) regionofΨ, 1 if theyare ina coil (C) region
ofΨ, and2 if theyare in aTS regionofΨ. Thus, the all-helical
macrostate ofAla5 is denoted as [00000],while, for example,
[02221] will denote an M state with the N-terminal residue
helical, the C-terminal residue coil, and the middle residues
in their respective TS regions of their Ψ angles.
We obtained 8 Ω macrostates at 350 K using lag times

τ ¼ 10 ps as depicted in Fig. 6 and presented in Table S2
(including the corresponding Ω-state populations and the

FIG. 4. 2D discretization and coarse graining of the kinetics of
the hydride transfer in the 15-LOX-2 enzyme. QM/MM umbrella
sampling simulations [65] were unbiased using DHAM [48] and
projected on a 2D space of the bond-breaking (r1) and forming
(r2) distances. Colored symbols indicate the three states identified
from coarse graining (red for reactants, green for TS, black for
product states). The free-energy surface with the TS ensemble is
also shown in the inset (color bar in kcal/mol).

FIG. 5. (a) Free energy for the backbone angle Ψ1 of Ala5
calculated for Nμ ¼ 200 microstates at 350 K and lag time
τ ¼ 1 ps. ResultingM states (vertical boundary lines: b1, b2, b3)
are shown for three-state clustering with periodic boundaries
[(b1, b2) being identical for two-state clustering]. (b) All-helical,
00000, and all-coil, 22222, conformations of Ala5. The five Ψ
backbone dihedral angles (yellow) are used as RCs. (c) For N-D
clustering (N ¼ 5), microstate clustering first identifiesM ¼ 3M
states along each RC (H in red, C in blue, and TS in yellow),
which constitute a product space (with 35 states) using all five
RCs for the final coarse-graining to Ω states.
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equilibrium probabilities of their most-populatedM states).
During the second-level clustering, for up to 3 Ω states, the
boundaries were all varied at the same time exhaustively.
To identify the optimal Ω states for four or more states, we
first placed a new boundary while keeping the previous
ones fixed, and we subsequently optimized every two
adjacent boundaries exhaustively, iterating over all pairs
while keeping all other boundaries fixed. Iterations were
repeated until there were no more changes for any boun-
dary pairs, and the corresponding solution was verified to
be the optimal one by also exhaustively searching all
the boundary positions at the same time for up to 7 Ω
states. This iterative boundary sampling algorithm was
also used in the subsequent examples below for four or
more states.
The macrostates Ω1 and Ω2 have the largest population

and form the “folded” ensemble characterized by the
[00000] and [00001] configurations, respectively. As

illustrated in Fig. 6(b), the “unfolded ensemble,” states
Ω4 to Ω8, presents, at 350 K, (i) a specific connectivity that
depends on how many residues can change their state
cooperatively and (ii) transition rates that are lower than in
the folded ensemble.
The range of transitions near the TS is largely dominated

by conformational dynamics at the first, second, and
fourth residues of Ala5. We estimated that the TS carries
about 35%–45% of the overall flux when calculated using
kDðkA þ kBÞ=ðkDkA þ kDkB þ kA0kBÞ (see Ref. [55],
Sec. I). These observations, enabled by our method, agree
well with previous studies ofAla5 [57]while offering amore
detailed, automatic analysis, also identifying TS states.

E. Dynamics of the EGF receptor

We also applied our algorithm to analyze the dynamics
of the EGFR transmembrane helices. The MD data were
obtained using the Anton supercomputer [1] and were first
presented in Ref. [63] by the Shaw group. We analyze in
detail a 124.51 μs-long trajectory of the N-terminal trans-
membrane dimer and used the time-lagged independent
component analysis (tICA) to generate RCs [Figs. 7(a) and
S14 of Ref. [55]] [45,50]. Our analysis (discussed in detail
in Ref. [55], Sec. V) has identified six coarse-grained states
[Fig. 7(c)]. The TS (stateΩ5) contributes less than 1% to the
total equilibrium population, yet it carries about 90% of the
overall flux, with transition probabilities to Ω4 and Ω6

nearly identical, 49.22% [Fig. 7(b)]. Our analysis can thus
identify an overall coarse-grained kinetic network based of
the current simulation data [Fig. 7(c)] and suggests key
starting points for additional simulations from the TS
configurations that could be aimed at efficient sampling
of the dynamics.

F. Dynamic clustering of the Mga2 transmembrane
helix conformational space

Mga2 is a fungal transcription factor forming homo-
dimers in the ER and sensing the state of lipid membranes
via rotational conformational changes of the transmem-
brane helices [64]. We have coarse grained the conforma-
tional dynamics of the Mga2 transmembrane helix dimer,
focusing on the rotational orientations of the helices, using
as a proxy, the relative position of W1042, a key residue
involved in the sensing mechanism [64]. The coarse
graining identified five MSs and two TSs (three MSs
and one TS, considering the symmetry of the dimers).
The two TS separate MS3 from MS1 and MS2, and from
MS4 and MS5 (respectively), using the ordering of states
given in Fig. 8. We used the following two coordinates:
θ ¼ ϕþ π=2 and χ ¼ Ψ − ϕþ π=2, where ϕ and Ψ are
angles that correspond to the relative orientation of the two
helices in the dimer (Fig. 8, right). Note that θ and χ bring
all the relevant clusters in the range [0, 2π]. Since the two
helices have identical sequence and adopt similar struc-
tures, the representation by θ and χ exhibits mirror

FIG. 6. (a) Transitions in the TS region are dominated
by conformational dynamics at the fourth alanine residue
of Ala5. Representative conformations are shown for helical
[00000] (yellow) and TS states [00020] (blue), and [00021]
(grey). (b) Kinetic network for the optimal coarse-grained Ω
states for the Ala5 (350 K, Tables S1–S3, Fig. S13). Macro-
states Ω1 and Ω2 (blue) form the folded ensemble, and five
Ω-states (labeled 4–8, red) form the unfolded ensemble. The
numbers near each arrow indicate the corresponding transition
rates (ns−1).
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symmetry about the line θ þ χ ¼ 2π. Accordingly, we
symmetrized the data, counting each transition for also
its symmetric counterpart ðθ0; χ0Þ ¼ ð2π − χ; 2π − θÞ. Our
full-dimensional system consisted of 17 bins for each
reaction coordinate θ and χ, which are in the Markovian
limit for the full-dimensional MSM (Fig. S16). Our choice
of τ ¼ 100 ns lag time is also in the Markovian limit and
allows a meaningful coarse graining (Fig. S17). We
obtained relaxation rates of 644.4 ns for the full 288-
microstate system, and 609.2 ns for the seven-state system
with the two TSs. The population of each TS state is about
4.32%, with a probability of about 0.1 to stay in the TS after
the τ ¼ 100 ns lag time.

IV. CONCLUSIONS

We present a new approach to automatically identify
relevant metastable and transition states along the available
reaction coordinates describing a molecular process. An
analytical model for three-state clustering shows two
families of solutions to the optimization problem. One
type leads to the identification of three metastable states,
while the second type of solution yields two metastable
states and one short-lived state. The short-lived state is an
optimally constructed transition state, revealed automati-
cally by our algorithm applied to analytical Markov models
for arbitrary free-energy functions.
The TS identification algorithm is presented and studied

by using both 1D and 2D analytical model potentials and
several examples for the analysis of classical atomistic MD
and QM/MM trajectories. We demonstrated the algorithm
on coarse-graining QM/MM-biased umbrella sampling
calculations for a catalytic reaction of the 15-LOX-2
enzyme. We also analyzed the classical-benchmark-system
helix-forming peptide Ala5 and two larger systems con-
sisting of transmembrane helix dimers (the EGFR protein
and the Mga2 lipid sensing transcription factor). In all
cases, our method automatically identifies the transition
states and the metastable conformations in an optimal way,
with minimal input, by accurately capturing the intrinsic
slowest relaxation times. We show that our new approach to
identify and define transition states provides a general and
easy-to-implement analysis method that provides useful
insight into the underlying molecular mechanism and
enables a quantitative and systematic characterization of
the rare but crucial rate-limiting conformational pathways
occurring in complex dynamical systems such as molecular
trajectories.

FIG. 8. 2D discretization and coarse graining of the conforma-
tional dynamics of a Mga2 transmembrane helix (TMH) dimer,
using θ and χ angles (right panel) as reaction coordinates. Circles
indicate the two helices in projection (bottom right of the figure).
The horizontal line connects the two centers of the helices. The
blue arrows point from the helix centers to the W1042 residues in
each TMH. The free-energy surface is also shown with a color bar
on the right in kcal/mol.

FIG. 7. (a) Free energy along the second tICA component of the
EGFR transmembrane dimer calculated using an initial 200-state
MSM. Results are shown for theM ¼ 3-state system (boundaries
b1 and b2) clustering for a lag time of τ ¼ 1 μs. The TS region
(yellow) separates the S1 macrostate from S2. (b) Configurations
of the transmembrane module of the EGF receptor that are
representative of the Ω4, Ω5 (TS), and Ω6 states at the N-terminal
end of the dimer. The structures are colored according to their rms
correlation with the second tICA component (blue to red: low to
high). (c) Global kinetic network (Ω1 to Ω6) illustrated using four
tICA components at lag time ¼ 1 μs. Kinetic rates are shown in
1=100 μs−1.
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In contrast to most other available clustering methods
and their applications that capture metastable states or high-
energy intermediates, our approach provides an automatic
identification of all metastable states as well as of the
significantly less populated (and thus experimentally elu-
sive) transition states that control the slowest relaxation
process in the system. This systematic method of identi-
fication of transition states and metastable states allows us
to determine the underlying molecular mechanism with its
key conformational ensembles. It could also lead to entirely
new approaches to more efficiently simulate and analyze
molecular processes, which is a central current challenge in
a broad variety of biomolecular research and drug design
problems. Our approach is fully general (i.e., does not rely
on any system-specific molecular properties, provided that
satisfactory reaction coordinates exist) in the analysis of
time-dependent trajectories; therefore, it can also be appli-
cable to time series generated for a broad range of complex
systems, beyond multiscale molecular modeling studies, to
identify rate-limiting events.
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