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I. FLUX THROUGH AND AROUND THE TS

The probability of the flux that goes from A to B via the TS or avoiding the TS can be

considered using the following simple kinetic network:
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D

Figure S1. Kinetic scheme used to calculate the flux that flows through the TS (via ka, ka-, kg,
and kp-) as compared to around the TS directly (kp and kp-).

It is easy to show that the probability to reach B directly from A, without going through the TS
kD (kA + kB )
kpk, +kpky+k k,

for the kinetic scheme of Fig. S1. Once an optimal discretization with a

TS is found with our approach, the probability is calculated by subsequently coarse-graining the
optimal Markov matrix into 3 states based on the ordering of the states and using e.g., the

Hummer and Szabo coarse grained rate matrix (HS method) [1].



II. 3-STATE COARSE GRAINING

To demonstrate that a coarse graining that includes at least one TS-like state is a feasible
alternative to finding only metastable states, we considered the theoretical case, for a linear

chain of microstates (e.g., Fig. 1A), to obtain a 3-state reduced rate matrix by minimizing the
magnitude of the resulting v, second eigenvalue (with v, = 0), or alternatively, maximizing the
relaxation time t, =1/ |V2|. Note that we distinguish the eigenvalues of a rate matrix (v;) from
the eigenvalues of the corresponding Markov transition probability matrix at lagtime 7
(denoted by 4 =e™™).

The nonzero second eigenvalue of the reduced matrix is given by

1 2
(1) V2= E|:K12 +K21 +K23 +K32 _\/(Kn +K21 _K23 _K32) +4K21K23} :

The magnitude of v,can be minimized by minimizing all Kj rates (i.e., the first four terms in

Eq. (1)) using appropriate boundaries in the full dimensional microstates, which corresponds to
metastable states with slow interconversion between states (leading to solutions as e.g., in Fig.

2c-e). Alternatively, one can also maximize the square root term, which corresponds to large

K,, and K,; rates (as e.g., in Fig. 2a-b). In this case, the relaxation rate can be approximated as:

1| (Kyy — Ko ) (Kpp Koy
Q) v, = | Ky + Ky + Ky + Ky = (Kyy +Ky)| 1+

’ - (Ky + Ky )2
(3) -V, = l K12 + K32 _ (K21 B K23>(K12 - K32>

2| (Kyy +Ky3)

This latter solution can thus provide an optimal choice that minimizes the magnitude of v,,

leading to Eq. (9) in the main text. This solution for the minimization problem to obtain optimal
boundary positions thus defines a 3-state coarse-grained system with two metastable states 1

and 3, as well as a short-lived, TS-like state 2 with large out-going rates to both directions.



III. 1D ANALYTICAL POTENTIAL

We analyzed the 1D analytical potential (Fig. 1) of the form:

4  F(x)=a-2sin(x-z)+(1-a)-2sin|(x - 7)/2]

with F(x) in kcal/mol units, X e [0, 57[]. The free energy profile was discretized into
N, =150 bins (unless otherwise stated). The kinetic rates of the full system correspond to

nearest neighbor jumps between the discrete bins, as also described in the main text, with the

rate matrix elements given by:

F(xi)—F(xm)}

6 K .. =Aex
( a’) i,i+1 p|: 2kBT

(5b) K, =YK,
Ja

And all other rates are zero. The Arrhenius prefactor is 4=10, k, is Boltzmann’s constant, and

T is the absolute temperature with 1/ S =k,T =0.596 kcal/mol corresponding to T=300K.

Analysis of the Optimal Two-State Coarse-Grained System

The optimal boundary positions were calculated for an asymmetric two-state system, the 1D
free energy profile corresponding to o =0 (Fig. S2) as described above. Identical boundary
positions were obtained for the optimal Markov matrices using long lagtimes (7 =100 ), or,
equivalently, the HS discretization. Therefore, here we show the boundary positions for the
optimal two- and three-state discretizations, calculated with the HS coarse-grained rates (Fig.
S2A). Additionally, we also show how the second eigenvalue varies at different boundary
positions for a two-state discretization (Fig. S2B). Note that the exact eigenvalue is
approximated better and better at long lagtimes, and will match it at infinitely long lagtimes.

To test how the optimal width of the TS changes with respect to various parameters, we
performed several benchmarking calculations. We systematically changed the lagtime and
determined the optimal three-state discretization using both the LE approximation at a wide
range of lagtimes (0.01-1000), and also using the lagtime-independent HS discretization (Fig.
S3). We found that the optimal width of the TS converged to a well-defined value at long

lagtimes, which coincides exactly with the optimal TS obtained using the HS discretization.



We also calculated the optimal TS using different extent of discretizations of the 1D profile by

changing N, (Fig. S4). We found that as long as the discretization is fine enough, the optimal

width of the TS is invariant of the discretization level.

The only parameters that does have a significant effect on the width of the TS is the temperature
(Fig. 5S). As expected, as the temperature increases, the role of a barrier is less important in the
dynamics of the system, and the optimal TS broadens. Therefore, our algorithm leads to an
optimal coarse graining invariant of most of the parameters, except for the shape of the free

energy profile in reduced units.
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Figure S2. Optimal discretization of an asymmetrical two-state system. A. The red lines and
symbols indicate the locations of optimal boundaries for M = 2 and 3 states (from top to bottom)
using the HS coarse-grained rates. B. Variation of the relaxation time #, from the coarse-grained
two-state systems (M = 2) as a function of the boundary position along x. The relaxation time
was calculated from the second eigenvalues of the HS coarse rate matrix (green), or from the



reduced Markov matrix using the LE method at various lagtimes ranging from 1 (blue) to 1000
(red). The exact relaxation time of the full system is also shown as an upper bound (black line).
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Figure S3. Optimal discretization of an asymmetrical two-state system into three states. The
optimal boundary locations were determined using the HS coarse grained rates (red lines and
symbols), and the LE method (green lines and symbols) for various lagtimes (0.01, 0.1, 1, 10,

100, 1000, and 10000, from top to bottom, respectively).
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Figure S4. Optimal discretization of an asymmetrical two-state system into three states. The red

lines and symbols indicate the locations of optimal boundaries using the HS coarse grained rates

with 100, 150, and 200 bins from top to bottom, respectively.
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Figure S5. Optimal discretization of an asymmetrical two-state system into three states. The red
lines and symbols indicate the locations of optimal boundaries using the HS coarse grained rates

at 200, 300, and 400 K temperature, from top to bottom, respectively.

Optimal Three-State Coarse-Grained System
We calculated the optimal boundary positions for 1, 2, and 3 boundaries for a three-state system
corresponding to the free energy profile of a =0.5 using the HS method (Fig. S6).
Analogously, we obtain the same boundaries at 7 >100. We can calculate the corresponding
optimal Markov matrices at 7 =100 and identify a TS after introducing the third boundary for
M=4:
0.9922 0.0078
2{0.0064 0.9936}
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The red numbers in M, indicate the probability to exit the TS (state 2) to states 1, 2, 3, and 4,

with about 50%-50% probability to be on the left or right hand side after 7 =100 time. We note

that an appropriate choice for a lagtime varies, and it should be short enough not to reach full

equilibrium, but long enough to result in the same consistent limit for optimal coarse states

calculated with both the LE and HS kinetics.
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Figure S6. Optimal discretization of an asymmetrical three-state system into two, three, and

four states (from top to bottom). The red lines and symbols indicate the locations of optimal

boundaries using the HS coarse-grained rates. The free energy profile corresponds to & = 0.5.



Optimal Coarse-Graining into Three States
We calculated the optimal boundary positions using 2 boundaries for 5 different free energy

profiles to illustrate the variations using different coarse grained dynamics. We set the o

parameter given in eq. (4) to five different values equally spaced in the interval [0,1] (Figs.

S7a to S7e), to monotonically tune the number of metastable states from 2 (¢ =0, Fig. S7a) to
3 (ax =1, Fig. S7e). Accordingly, the optimal coarse graining results in either three MSs (here
the fourth state that is not shown is a TS, see Fig. S6), or in two MSs and one TS state.
Depending on the lagtime used for determining the coarse-grained Markov matrix, the optimal
solution is slightly different. At short lagtimes (grey symbols and lines) the two-state system is
more optimal, and the width of the TS approaches zero (limit not shown, see Fig. S3). At longer

lagtimes, the optimal LE boundaries coincide with the HS boundaries.
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Figure S7. Optimal boundary positions to discretize the 1D free energy

profiles using 2 boundaries with the LE method at lagtimes T= 10 (grey) and



T = 1000 (red), or using the HS reduced rate matrix (blue) [1]. Note that the
optimal boundary positions for the HS method are defined such that they are
shifted by 1 bin to allow these positions to be visually distinguished from the
long lagtime boundaries and, at the same time, to illustrate the level of

discretization for the profile.

Comparison of the Optimal Coarse-Graining with the Committor Probability of 0.5
In general, the committor probability of 0.5 does not necessarily coincide with the location of

the TS for complex networks. As a simple model potential, we used the free energy profile of

F(x)=2sin(x —z)—0.1(x -5z / 2)2 to demonstrate this in Fig. S8.
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Figure S8. Optimal boundaries (red) for a 4-state model corresponding to the kinetic

network  built for the free energy profile (left axis, blue) with
F(x):25in(x—7r)—0.1(x—57r/2)2, using the HS reduced rates. The committor

probability (right axis, green) of 0.5 corresponds to a metastable intermediate in this case,
and not to a transition state, which is on the other hand, captured correctly between the first

and second boundaries using our algorithm.



IV. ALAS ANALYSIS

We analyzed MD trajectories of Alas with TIP3P [2] water molecules initialized from 4 initial
conditions, of 250 ns length each, and performed at two different temperatures T, =300 K, T, =
350 K, for a total simulation time of 2 ps. The simulations were performed using GROMACS
[3] with the Amber-GSS [4] force field, as described in detail in Ref. [5]. All five
Ramachandran ¥ angles have been discretized, and MSMs were constructed for each angle
(Fig. S9). For example, 3-state clustering of the backbone angle ¥; at 350 K (Fig. 5A) with
N,=100 microstates leads to a slowest relaxation time of t, = 212.45 ps, and the equilibrium
probabilities are, mo(H) = 0.662, m;(TS) = 0.001, and m,(C) = 0.337. The macrostate boundaries
are listed in Table S1, and the transition probabilities are T2, = 0.0984, Tyo = 0.4756, Ty, =
0.4260.
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Figure S9. Free energies along the 5 backbone angles y of Alas calculated for

N, =200 p-states at 350 K and lagtime 1=10 ps (see also Fig. 2A). Resulting

M-states (vertical boundary lines: bl, b2, b3) are shown for the 3 M-states

considering also periodic boundaries.
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Figure S10. Relaxation times calculated using different number of bins to
construct the initial full dimensional MSM along the 5 backbone angles y of

Alas at 350 K.
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Figure S11. Relaxation times of the full dimensional MSM calculated at
different lagtimes along the 5 backbone angles y of Alas at 350 K using 200

bins.

To ensure that our full dimensional Markov models are in the correct
Markovian limit, we tested how the slowest relaxation time varies as a function
of the number of bins (Fig. S10) and lagtimes (Fig. S11) used to construct the
MSMs. The relaxation time levels off with increasing bin numbers up to ranges
where enough statistics can be obtained in each bin, and our clustering with
100 or 200 bins is in this Markovian limit already where the relaxation time has

leveled off.

Similarly the relaxation time levels off before increasing for the largest lagtime
(5000 ps > t,), where numerical errors are already observed. This indicates that
this lagtime is too large relative to the intrinsic relaxation time of the system,
and for the data statistics to be meaningful. For ¥s, which has the fastest
relaxation time of the 5 angles, already the last three lagtimes show numerical

errors in calculating #,. Our Markovian relaxation times considering each angle



individually are in good agreement with the overall relaxation time (using all 5
backbone angles) of ~1100 ps determined previously [5]. An even more
faithful rendering of the dynamics could be achieved by using a transition-
based assignment of states [5] that uses core sets to filter out fast recrossings

between the states.

To demonstrate that our lagtime used for the coarse-graining (t = 1 ps) is
already in the Markovian limit with respect to the optimal boundary positions,
we analyzed the optimal boundaries applying the HS coarse-graining method
on the full dimensional MSMs (Fig. S12). Calculating the optimal clustering as
shown in Fig. S12, it is observed that the boundary positions remain effectively
constant when changing the lagtimes in the range of 1, 10, and 100 ps using
200 bins. The same results are also obtained using 100 bins with the LE
method (Table S1).

Tables S2 and S3 provide details for the final coarse graining into €2-states,
considering all 5 angles at the same time. €; consists predominantly of only

one all-helical M-state X,=[00000] that has an equilibrium population of

~40.84% at 350 K (Table S2). The 2™ most populated state, €2, consists of
several macrostates that add up to 6.91% of the total equilibrium population, of
which 00001 is predominant (~6.66%). Thus, unfolding at the last C-terminal
residue of Alas is not sufficient to perturb the overall stability of helical
conformations, and it maintains Alas in its folded ensemble. On the other hand,
the unfolded ensemble appears to consist of 5 € states (24 to €2g) connected
with noticeably slower rates than those within the folded states, and accounting
for more than 52% of the total equilibrium population. The “unfolded”
ensemble is separated from the helix-rich “folded” ensemble by a TS, €23, that
consists of 10 M-states with a total population of only ~0.19%, of which the
most populated M-states are [2000*], [0200*] and [0002*], where the “*”

symbol means that at that position either 0 (H) or 1 (C) conformations are



residue that

observed. Interestingly, at 300 K the 4™ residue is the only

significantly modulates the TS dynamics (Table S3).
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Figure S12. Free energy (blue symbols) along the first backbone angle ¥, of
Alas calculated for N, =200 p-states at 350 K and lagtime 1=10 ps (see also

Fig. 2A). Resulting optimal boundaries are shown for the 3 M-states at 3
different lagtimes (black: 1 ps, red: 10 ps, green: 100 ps) considering periodic

boundary conditions.



Table S1. Optimal boundaries of all 5 ¥ RCs for Ala5 (in °) corresponding to Fig.
3B in the main text, determined at 7=350 K, lagtime T = 1 ps, N=100.

¥, -150° 10° 31°
Y, -150° 10° 41°
Y; -150° 20° 41°
Y, -150° 20° 41°
b & -150° 20° 51°

Table S2. Optimal Q coarse-grained states for Ala5 at 350 K (corresponding to Fig.
3B in the main text). The corresponding total population of each Q cluster and the
corresponding number of macrostates included are shown, together with the largest

population M-state and its value.

Q-States Prob. No. of M-  M-State w. Largest Prob.
(at 350 K) States largest Prob. M-State
Q1 40.84% 2 "00000" 40.84%
Q2 6.91% 2 "00001" 6.66%
£23(T5) 0.19% 10 "20000" 0.05%
Q4 12.59% 7 "10000" 9.26%
Q5 5.16% 19 "10001" 2.28%
Q6 12.58% 36 "11001" 1.91%
Q7 14.94% 49 0144 2.10%

Q8 6.79% 24 b Ll B 2.44%



Table S3. Optimal Q coarse-grained states for Ala5 at 300 K (see main text). The
corresponding total population of each Q cluster and the corresponding number of

macrostates included are shown, together with the largest population M-state and its

value.
Q) -States Prob. No.of M-  M-State w. Largest Prob.
(at 300 K) States largest Prob. M-State
Q1 56.51% 1 "00000" 56.51%
Q2 5.48% 3 "00002" 4.88%
Q3 (TS) 0.13% 9 "goo1* 0.08%
Q4 11.52% 8 "20000" 9.60%
Q5 2.30% 8 "20002" 1.34%
Q6 0.39% 13 "02002" 0.30%
Q7 3.83% 14 "22000" 1.83%
Q8 2.63% 18 "22002" 0.95%
9 9.13% 39 "22022" 1.91%

Q10 8.07% 36 "22222" 2.33%
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Figure S13. Convergence of the corresponding slowest relaxation time, t,, at
300 K (blue) and 350 K (red), calculated for increasing number of € coarse-
grained states (with the exception of the most r.h.s. points that show the values

corresponding to the entire set of 149 macrostates).



V. EGFR ANALYSIS

The EGFR simulations by the Shaw group include the extracellular module, the transmembrane
segment, the juxtamembrane segment, and the intracellular kinase domain separately [6]. We analyzed the
positions of all protein atoms for the N-terminal transmembrane dimer helices, saved with a time step of
At=1 ns at 310 K. Clustering of the one-dimensional tICA trajectories is given in Figs. 7A and S15 using
a symmetrized transition count matrix (an iteratively determined reversible transition matrix was also
used with equivalent results, data not shown). The small equilibrium probabilities for each component
indicate that the low-populated state is indeed TS-like for each tICA coordinate, which was also
confirmed by the corresponding transition probabilities.

We used the first four tICA components to obtain the corresponding global network of transitions
between the optimal coarse-grained Q-states (Figs. S14-15). The kinetically most important coordinate
was the second component (Fig.7A), which had a slower relaxation time than the first one. The 4™
component did not significantly alter the obtained global network as compared with using only the first
three components (data not shown). The 5™ component had an even faster relaxation time than the 4™
(Table S4), and thus was not included in subsequent analysis. To test if the ordering along the second
eigenvector is a good approximation, we performed an iterative algorithm where we considered moves of
every individual M-state to any of the € states. While this procedure led to a minor improvement for the
Ala5 data, it did not identify new optimal arrangements in this case. A representation of the Qs TS
conformation is illustrated in Fig. 7B, colored according to the rms correlation between the CA atom
coordinate and the second tICA component (color scheme blue to red corresponds to low to high). The
overall network is illustrated in Fig. 7C and presented in more detail in Table S5. Four coarse grained
states (€2; through €2;) form one conformational basin separated by the TS-like state €25 (orange) from a
second basin formed by €.

Interestingly, as shown in Table S5, the 2™ tICA component captures best the conformational dynamics
between the TS state and neighboring conformations corresponding to conformational changes at the N
terminus (Fig. 7B). We found significant differences when analyzing the non-symmetrized transition
count matrix (data not shown). This together with the linear structure of the global network indicates that
longer trajectories are likely needed for more converged results. Our analysis can thus identify key
starting points for additional simulations from the TS configurations that could be aimed for additional

sampling of the dynamics.



Figure S14. Illustration of the first five tICA components used in our analysis.
The colors correspond to the rms values of the tICA correlation matrix for the

CA atoms (with blue to red for increasing magnitude).
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Figure S15. Free energy profiles for tICA coordinates 1, 3, and 4 (A-C, respectively). See Fig.
4A for the 2™ tICA coordinate. N, =200 p-states were used for each tICA component.

Metastable state boundaries (solid black) and the optimal states including the first TS (dashed
red) are illustrated as vertical lines. The TS was defined as having larger overall outgoing

probabilities to two metastable states compared with the probability to remain in the state.



Table S4. Clustering of the first five tICA components of the EGFR simulations into 2 to 11 M-
states, determined by the appearance of the first transition state. The slowest relaxation times
(t2, in us) of the coarse grained M-states are given corresponding to the increasing number of

clustered states. The relaxation times of the full N, =200 p-state model (first row) are well

approximated by the final macrostates. Note that the slowest relaxation time corresponds to the
second tICA component, while the 3"-5" tICA components have significantly faster relaxation
times. The relaxations times of the optimal coarse-grained Q-states are also given (us). In this
case, the initial product space was formed using the first four tICA components, and a total of

245 states were sampled out of the 6*3*4*11=792 possible states.

TICA1 TICA2 TICA3 TICA4 TICA5 QSTATES

ALL STATES | 77.54 86.27 9.32 6.40 6.07 200.49
M=2 27.26 45.65 5.00 2.73 3.17 58.96
M=3 40.01 78.70 6.17 3.74 4.17 93.07
M=4 51.48 6.77 441 113.25
M=3 57.41 4.93 128.08
M=6 60.52 5.28 148.88
M=7 5.51

M=8 5.72

M=9 5.86

M=10 5.95

M=11 6.01




Table SS. Optimal Q coarse-grained states for EGFR at 310 K (see main text, Fig. 4C) using the
first 4 tICA components. The TS was defined as having larger outgoing probabilities to at least
two other metastable states, compared with the probability to remain in the state. The number
of M-states along each tICA component were 6, 3, 4, 11, respectively (Table S4). The
corresponding total population of each €2 cluster and the corresponding number of macrostates
included are shown, together with the largest population M-state and its equilibrium
probability. The M-states are labelled according to their location along each tICA component
(e.g., the state “2-2-1-4” had projections in states numbered S2, S2, S1 and S4, along each
tICA component, respectively). The 4™ {ICA component was not necessary to further
distinguish the € clusters, accordingly, “*” indicates several different states of this

corresponding tICA component.

Q-States Equilibrium No. of M- M-State w. Largest Prob.
Probability States Largest Prob. M-State

Ql 34.41% 104 "63 1 *" 12.79%

Q2 3.26% 34 "4332" 0.43%

Q3 3.20% 9 "3314" 0.75%

Q4 33.60% 32 "131*" 8.19%

Q5 (TS) 0.78% 29 "221*" 0.28%

Q6 24.75% 37 "31 1" 5.03%



VI. MGA2 TRANSMEMBRANE HELIX ANALYSIS
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Figure S16. Mga2 dimer rotation relaxation times of the full dimensional
MSM calculated for different discretizations of the two reaction coordinates

using a lagtime of t = 100 ns.
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Figure S17. Mga2 dimer rotation relaxation times calculated using different
lagtimes to construct the full dimensional MSM with 17 bins for the 2D grid

along each reaction coordinate, ¢ and y .
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