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I. FLUX THROUGH AND AROUND THE TS 

The probability of the flux that goes from A to B via the TS or avoiding the TS can be 

considered using the following simple kinetic network: 

 
Figure S1. Kinetic scheme used to calculate the flux that flows through the TS (via kA, kA’, kB, 

and kB’) as compared to around the TS directly (kD and kD’). 

It is easy to show that the probability to reach B directly from A, without going through the TS 
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 for the kinetic scheme of Fig. S1. Once an optimal discretization with a 

TS is found with our approach, the probability is calculated by subsequently coarse-graining the 

optimal Markov matrix into 3 states based on the ordering of the states and using e.g., the 

Hummer and Szabo coarse grained rate matrix (HS method) [1]. 
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II. 3-STATE COARSE GRAINING 

 
To demonstrate that a coarse graining that includes at least one TS-like state is a feasible 

alternative to finding only metastable states, we considered the theoretical case, for a linear 

chain of microstates (e.g., Fig. 1A), to obtain a 3-state reduced rate matrix by minimizing the 

magnitude of the resulting ν2  second eigenvalue (with ν =1 0 ), or alternatively, maximizing the 

relaxation time ν=2 21/t . Note that we distinguish the eigenvalues of a rate matrix ( iν ) from 

the eigenvalues of the corresponding Markov transition probability matrix at lagtime τ  

(denoted by τνλ −= e i
i ). 

The nonzero second eigenvalue of the reduced matrix is given by 
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The magnitude of ν2can be minimized by minimizing all Kij rates (i.e., the first four terms in 

Eq. (1)) using appropriate boundaries in the full dimensional microstates, which corresponds to 

metastable states with slow interconversion between states (leading to solutions as e.g., in Fig. 

2c-e). Alternatively, one can also maximize the square root term, which corresponds to large 

21K  and 23K  rates (as e.g., in Fig. 2a-b). In this case, the relaxation rate can be approximated as: 
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This latter solution can thus provide an optimal choice that minimizes the magnitude of ν2 , 

leading to Eq. (9) in the main text. This solution for the minimization problem to obtain optimal 

boundary positions thus defines a 3-state coarse-grained system with two metastable states 1 

and 3, as well as a short-lived, TS-like state 2 with large out-going rates to both directions.  

 



III. 1D ANALYTICAL POTENTIAL 

We analyzed the 1D analytical potential (Fig. 1) of the form: 

(4)      ( ) ( )α π α π⎡ ⎤= ⋅ − + − ⋅ −⎣ ⎦( ) 2 sin (1 ) 2sin 2F x x x   

with ( )F x  in kcal/mol units, 0,5x π∈ ⎡ ⎤⎣ ⎦ . The free energy profile was discretized into 

150Nμ =  bins (unless otherwise stated). The kinetic rates of the full system correspond to 

nearest neighbor jumps between the discrete bins, as also described in the main text, with the 

rate matrix elements given by: 
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And all other rates are zero. The Arrhenius prefactor is A=10, Bk  is Boltzmann’s constant, and 

T is the absolute temperature with 1/ 0.596β = =Bk T  kcal/mol corresponding to T=300K.   

 

Analysis of the Optimal Two-State Coarse-Grained System  

The optimal boundary positions were calculated for an asymmetric two-state system, the 1D 

free energy profile corresponding to 0α =  (Fig. S2) as described above. Identical boundary 

positions were obtained for the optimal Markov matrices using long lagtimes ( 100τ ≥  ), or, 

equivalently, the HS discretization. Therefore, here we show the boundary positions for the 

optimal two- and three-state discretizations, calculated with the HS coarse-grained rates (Fig. 

S2A). Additionally, we also show how the second eigenvalue varies at different boundary 

positions for a two-state discretization (Fig. S2B). Note that the exact eigenvalue is 

approximated better and better at long lagtimes, and will match it at infinitely long lagtimes. 

To test how the optimal width of the TS changes with respect to various parameters, we 

performed several benchmarking calculations. We systematically changed the lagtime and 

determined the optimal three-state discretization using both the LE approximation at a wide 

range of lagtimes (0.01-1000), and also using the lagtime-independent HS discretization (Fig. 

S3). We found that the optimal width of the TS converged to a well-defined value at long 

lagtimes, which coincides exactly with the optimal TS obtained using the HS discretization. 



We also calculated the optimal TS using different extent of discretizations of the 1D profile by 

changing Nμ  (Fig. S4). We found that as long as the discretization is fine enough, the optimal 

width of the TS is invariant of the discretization level. 

The only parameters that does have a significant effect on the width of the TS is the temperature 

(Fig. 5S). As expected, as the temperature increases, the role of a barrier is less important in the 

dynamics of the system, and the optimal TS broadens. Therefore, our algorithm leads to an 

optimal coarse graining invariant of most of the parameters, except for the shape of the free 

energy profile in reduced units. 

 



 

 

Figure S2. Optimal discretization of an asymmetrical two-state system. A. The red lines and 
symbols indicate the locations of optimal boundaries for M = 2 and 3 states (from top to bottom) 
using the HS coarse-grained rates. B. Variation of the relaxation time t2 from the coarse-grained 
two-state systems (M = 2) as a function of the boundary position along x. The relaxation time 
was calculated from the second eigenvalues of the HS coarse rate matrix (green), or from the 

A 

B 



reduced Markov matrix using the LE method at various lagtimes ranging from 1 (blue) to 1000 
(red). The exact relaxation time of the full system is also shown as an upper bound (black line). 

 



Figure S3. Optimal discretization of an asymmetrical two-state system into three states. The 
optimal boundary locations were determined using the HS coarse grained rates (red lines and 
symbols), and the LE method (green lines and symbols) for various lagtimes (0.01, 0.1, 1, 10, 
100, 1000, and 10000, from top to bottom, respectively).   

 

 
Figure S4. Optimal discretization of an asymmetrical two-state system into three states. The red 

lines and symbols indicate the locations of optimal boundaries using the HS coarse grained rates 

with 100, 150, and 200 bins from top to bottom, respectively. 



 
Figure S5. Optimal discretization of an asymmetrical two-state system into three states. The red 

lines and symbols indicate the locations of optimal boundaries using the HS coarse grained rates 

at 200, 300, and 400 K temperature, from top to bottom, respectively. 

  

Optimal Three-State Coarse-Grained System  

We calculated the optimal boundary positions for 1, 2, and 3 boundaries for a three-state system 

corresponding to the free energy profile of 0.5α =  using the HS method (Fig. S6). 

Analogously, we obtain the same boundaries at 100τ ≥ . We can calculate the corresponding 

optimal Markov matrices at τ = 100  and identify a TS after introducing the third boundary for 

M = 4: 
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The red numbers in 4M  indicate the probability to exit the TS (state 2) to states 1, 2, 3, and 4, 

with about 50%-50% probability to be on the left or right hand side after τ = 100  time. We note 

that an appropriate choice for a lagtime varies, and it should be short enough not to reach full 

equilibrium, but long enough to result in the same consistent limit for optimal coarse states 

calculated with both the LE and HS kinetics. 

 
Figure S6. Optimal discretization of an asymmetrical three-state system into two, three, and 

four states (from top to bottom). The red lines and symbols indicate the locations of optimal 

boundaries using the HS coarse-grained rates. The free energy profile corresponds to 0.5α = . 



 

Optimal Coarse-Graining into Three States 

We calculated the optimal boundary positions using 2 boundaries for 5 different free energy 

profiles to illustrate the variations using different coarse grained dynamics. We set the α  

parameter given in eq. (4) to five different values equally spaced in the interval 0,1⎡ ⎤⎣ ⎦  (Figs. 

S7a to S7e), to monotonically tune the number of metastable states from 2 ( 0α = , Fig. S7a) to 

3 ( 1α = , Fig. S7e). Accordingly, the optimal coarse graining results in either three MSs (here 

the fourth state that is not shown is a TS, see Fig. S6), or in two MSs and one TS state. 

Depending on the lagtime used for determining the coarse-grained Markov matrix, the optimal 

solution is slightly different. At short lagtimes (grey symbols and lines) the two-state system is 

more optimal, and the width of the TS approaches zero (limit not shown, see Fig. S3). At longer 

lagtimes, the optimal LE boundaries coincide with the HS boundaries. 

 

Figure S7. Optimal boundary positions to discretize the 1D free energy 

profiles using 2 boundaries with the LE method at lagtimes τ = 10 (grey) and  



τ = 1000 (red), or using the HS reduced rate matrix (blue) [1]. Note that the 

optimal boundary positions for the HS method are defined such that they are 

shifted by 1 bin to allow these positions to be visually distinguished from the 

long lagtime boundaries and, at the same time, to illustrate the level of 

discretization for the profile. 
 

Comparison of the Optimal Coarse-Graining with the Committor Probability of 0.5 

In general, the committor probability of 0.5 does not necessarily coincide with the location of 

the TS for complex networks. As a simple model potential, we used the free energy profile of 

( ) ( )π π= − − − 2
( ) 2 sin 0.1 5 / 2F x x x  to demonstrate this in Fig. S8. 

 
Figure S8. Optimal boundaries (red) for a 4-state model corresponding to the kinetic 

network built for the free energy profile (left axis, blue) with 

( ) ( )π π= − − − 2
( ) 2 sin 0.1 5 / 2F x x x , using the HS reduced rates. The committor 

probability (right axis, green) of 0.5 corresponds to a metastable intermediate in this case, 

and not to a transition state, which is on the other hand, captured correctly between the first 

and second boundaries using our algorithm.  

  



IV. ALA5 ANALYSIS 

We analyzed MD trajectories of Ala5 with TIP3P [2] water molecules initialized from 4 initial 

conditions, of 250 ns length each, and performed at two different temperatures T1 = 300 K, T2 = 

350 K, for a total simulation time of 2 μs. The simulations were performed using GROMACS 

[3] with the Amber-GSS [4] force field, as described in detail in Ref. [5]. All five 

Ramachandran Ψ angles have been discretized, and MSMs were constructed for each angle 

(Fig. S9). For example, 3-state clustering of the backbone angle Ψ1 at 350 K (Fig. 5A) with 

Nμ=100 microstates leads to a slowest relaxation time of t2 = 212.45 ps, and the equilibrium 

probabilities are, π0(H) = 0.662, π1(TS) = 0.001, and π2(C) = 0.337. The macrostate boundaries 

are listed in Table S1, and the transition probabilities are T22 = 0.0984, T20 = 0.4756, T21 = 

0.4260.  
 

 



Figure S9. Free energies along the 5 backbone angles ψ of Ala5 calculated for 

200Nμ =  μ-states at 350 K and lagtime τ=10 ps (see also Fig. 2A). Resulting 

M-states (vertical boundary lines: b1, b2, b3) are shown for the 3 M-states 

considering also periodic boundaries. 

 

 
Figure S10. Relaxation times calculated using different number of bins to 

construct the initial full dimensional MSM along the 5 backbone angles ψ of 

Ala5 at 350 K.  



 
 

Figure S11. Relaxation times of the full dimensional MSM calculated at 

different lagtimes along the 5 backbone angles ψ of Ala5 at 350 K using 200 

bins.  

 

To ensure that our full dimensional Markov models are in the correct 

Markovian limit, we tested how the slowest relaxation time varies as a function 

of the number of bins (Fig. S10) and lagtimes (Fig. S11) used to construct the 

MSMs. The relaxation time levels off with increasing bin numbers up to ranges 

where enough statistics can be obtained in each bin, and our clustering with 

100 or 200 bins is in this Markovian limit already where the relaxation time has 

leveled off. 

 

Similarly the relaxation time levels off before increasing for the largest lagtime 

(5000 ps > t2), where numerical errors are already observed. This indicates that 

this lagtime is too large relative to the intrinsic relaxation time of the system, 

and for the data statistics to be meaningful. For Ψ5, which has the fastest 

relaxation time of the 5 angles, already the last three lagtimes show numerical 

errors in calculating t2. Our Markovian relaxation times considering each angle 



individually are in good agreement with the overall relaxation time (using all 5 

backbone angles) of ~1100 ps determined previously [5]. An even more 

faithful rendering of the dynamics could be achieved by using a transition-

based assignment of states [5] that uses core sets to filter out fast recrossings 

between the states. 

 

To demonstrate that our lagtime used for the coarse-graining (τ = 1 ps) is 

already in the Markovian limit with respect to the optimal boundary positions, 

we analyzed the optimal boundaries applying the HS coarse-graining method 

on the full dimensional MSMs (Fig. S12). Calculating the optimal clustering as 

shown in Fig. S12, it is observed that the boundary positions remain effectively 

constant when changing the lagtimes in the range of 1, 10, and 100 ps using 

200 bins. The same results are also obtained using 100 bins with the LE 

method (Table S1).  

 

Tables S2 and S3 provide details for the final coarse graining into Ω-states, 

considering all 5 angles at the same time. Ω1 consists predominantly of only 

one all-helical M-state  that has an equilibrium population of 

~40.84% at 350 K (Table S2). The 2nd most populated state, Ω2, consists of 

several macrostates that add up to 6.91% of the total equilibrium population, of 

which 00001 is predominant (~6.66%). Thus, unfolding at the last C-terminal 

residue of Ala5 is not sufficient to perturb the overall stability of helical 

conformations, and it maintains Ala5 in its folded ensemble. On the other hand, 

the unfolded ensemble appears to consist of 5 Ω states (Ω4 to Ω8) connected 

with noticeably slower rates than those within the folded states, and accounting 

for more than 52% of the total equilibrium population. The “unfolded” 

ensemble is separated from the helix-rich “folded” ensemble by a TS, Ω3, that 

consists of 10 M-states with a total population of only ~0.19%, of which the 

most populated M-states are [2000*], [0200*] and [0002*], where the “*” 

symbol means that at that position either 0 (H) or 1 (C) conformations are 

[ ]0 00000Σ =



observed. Interestingly, at 300 K the 4th residue is the only residue that 

significantly modulates the TS dynamics (Table S3). 
 

 
Figure S12. Free energy (blue symbols) along the first backbone angle 1ψ  of 
Ala5 calculated for 200Nμ =  μ-states at 350 K and lagtime τ=10 ps (see also 
Fig. 2A). Resulting optimal boundaries are shown for the 3 M-states at 3 
different lagtimes (black: 1 ps, red: 10 ps, green: 100 ps) considering periodic 
boundary conditions. 

  



Table S1. Optimal boundaries of all 5 Ψ RCs for Ala5 (in o) corresponding to Fig. 

3B in the main text, determined at T=350 K, lagtime τ = 1 ps, N=100. 

Ψ1 -150°    10°    31°   

Ψ2 -150°    10°    41°   

Ψ3 -150°    20°    41°   

Ψ4 -150°    20°    41°   

Ψ5 -150°    20°    51°   
 

 

 

Table S2. Optimal Ω coarse-grained states for Ala5 at 350 K (corresponding to Fig. 

3B in the main text). The corresponding total population of each Ω cluster and the 

corresponding number of macrostates included are shown, together with the largest 

population M-state and its value. 

 
 

 

  



Table S3. Optimal Ω coarse-grained states for Ala5 at 300 K (see main text). The 

corresponding total population of each Ω cluster and the corresponding number of 

macrostates included are shown, together with the largest population M-state and its 

value. 

 
 

 

  



 

 

Figure S13. Convergence of the corresponding slowest relaxation time, t2, at 

300 K (blue) and 350 K (red), calculated for increasing number of Ω coarse-

grained states (with the exception of the most r.h.s. points that show the values 

corresponding to the entire set of 149 macrostates). 
 

  



V. EGFR ANALYSIS 

 

The EGFR simulations by the Shaw group include the extracellular module, the transmembrane 

segment, the juxtamembrane segment, and the intracellular kinase domain separately [6]. We analyzed the 

positions of all protein atoms for the N-terminal transmembrane dimer helices, saved with a time step of 

∆t = 1 ns at 310 K. Clustering of the one-dimensional tICA trajectories is given in Figs. 7A and S15 using 

a symmetrized transition count matrix (an iteratively determined reversible transition matrix was also 

used with equivalent results, data not shown). The small equilibrium probabilities for each component 

indicate that the low-populated state is indeed TS-like for each tICA coordinate, which was also 

confirmed by the corresponding transition probabilities.  

We used the first four tICA components to obtain the corresponding global network of transitions 

between the optimal coarse-grained Ω-states (Figs. S14-15). The kinetically most important coordinate 

was the second component (Fig.7A), which had a slower relaxation time than the first one. The 4th 

component did not significantly alter the obtained global network as compared with using only the first 

three components (data not shown). The 5th component had an even faster relaxation time than the 4th 

(Table S4), and thus was not included in subsequent analysis. To test if the ordering along the second 

eigenvector is a good approximation, we performed an iterative algorithm where we considered moves of 

every individual M-state to any of the Ω states. While this procedure led to a minor improvement for the 

Ala5 data, it did not identify new optimal arrangements in this case. A representation of the Ω5 TS 

conformation is illustrated in Fig. 7B, colored according to the rms correlation between the CA atom 

coordinate and the second tICA component (color scheme blue to red corresponds to low to high). The 

overall network is illustrated in Fig. 7C and presented in more detail in Table S5. Four coarse grained 

states (Ω1 through Ω4) form one conformational basin separated by the TS-like state Ω5 (orange) from a 

second basin formed by Ω6.  

Interestingly, as shown in Table S5, the 2nd tICA component captures best the conformational dynamics 

between the TS state and neighboring conformations corresponding to conformational changes at the N 

terminus (Fig. 7B). We found significant differences when analyzing the non-symmetrized transition 

count matrix (data not shown). This together with the linear structure of the global network indicates that 

longer trajectories are likely needed for more converged results. Our analysis can thus identify key 

starting points for additional simulations from the TS configurations that could be aimed for additional 

sampling of the dynamics.  



 

Figure S14. Illustration of the first five tICA components used in our analysis. 

The colors correspond to the rms values of the tICA correlation matrix for the 

CA atoms (with blue to red for increasing magnitude).  
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Figure S15. Free energy profiles for tICA coordinates 1, 3, and 4 (A-C, respectively). See Fig. 

4A for the 2nd tICA coordinate. 200Nμ =  μ-states were used for each tICA component. 

Metastable state boundaries (solid black) and the optimal states including the first TS (dashed 

red) are illustrated as vertical lines. The TS was defined as having larger overall outgoing 

probabilities to two metastable states compared with the probability to remain in the state. 
 

 
  



Table S4. Clustering of the first five tICA components of the EGFR simulations into 2 to 11 M-

states, determined by the appearance of the first transition state. The slowest relaxation times 

(t2, in μs) of the coarse grained M-states are given corresponding to the increasing number of 

clustered states. The relaxation times of the full 200Nμ =  μ-state model (first row) are well 

approximated by the final macrostates. Note that the slowest relaxation time corresponds to the 

second tICA component, while the 3rd-5th tICA components have significantly faster relaxation 

times. The relaxations times of the optimal coarse-grained Ω-states are also given (μs). In this 

case, the initial product space was formed using the first four tICA components, and a total of 

245 states were sampled out of the 6*3*4*11=792 possible states. 

 TICA 1 TICA 2 TICA 3 TICA 4 TICA 5 Ω STATES  
ALL STATES  77.54 86.27 9.32 6.40 6.07 200.49 
M=2 27.26 45.65 5.00 2.73 3.17 58.96 
M=3 40.01 78.70 6.17 3.74 4.17 93.07 
M=4 51.48 6.77 4.41  113.25 
M=5 57.41 4.93  128.08 
M=6 60.52 5.28  148.88 
M=7 5.51   
M=8 5.72   
M=9 5.86   
M=10 5.95   
M=11 6.01   

 
 
 
 

 

  



 

Table S5. Optimal Ω coarse-grained states for EGFR at 310 K (see main text, Fig. 4C) using the 

first 4 tICA components. The TS was defined as having larger outgoing probabilities to at least 

two other metastable states, compared with the probability to remain in the state. The number 

of M-states along each tICA component were 6, 3, 4, 11, respectively (Table S4). The 

corresponding total population of each Ω cluster and the corresponding number of macrostates 

included are shown, together with the largest population M-state and its equilibrium 

probability. The M-states are labelled according to their location along each tICA component 

(e.g., the state “2-2-1-4” had projections in states numbered S2, S2, S1 and S4, along each 

tICA component, respectively). The 4th tICA component was not necessary to further 

distinguish the Ω clusters, accordingly, “*” indicates several different states of this 

corresponding tICA component. 

Ω-States Equilibrium 
Probability 

No. of M-
States 

M-State w. 
Largest Prob. 

Largest Prob. 
M-State 

Ω1 34.41% 104 "6 3 1 *" 12.79% 

Ω2 3.26% 34 "4 3 3 2" 0.43% 

Ω3 3.20% 9 "3 3 1 4" 0.75% 

Ω4 33.60% 32 "1 3 1 *" 8.19% 

Ω5 (TS) 0.78% 29 "2 2 1 *" 0.28% 

Ω6 24.75% 37 "3 1 1 *" 5.03% 

 

  



VI. MGA2 TRANSMEMBRANE HELIX ANALYSIS 

 
Figure S16. Mga2 dimer rotation relaxation times of the full dimensional 

MSM calculated for different discretizations of the two reaction coordinates 

using a lagtime of τ = 100 ns.  

 
Figure S17. Mga2 dimer rotation relaxation times calculated using different 

lagtimes to construct the full dimensional MSM with 17 bins for the 2D grid 

along each reaction coordinate, θ  and χ .  



 

REFERENCES 
 

1. Hummer, G. and A. Szabo, Optimal Dimensionality Reduction of Multistate Kinetic and Markov-State 
Models. The Journal of Physical Chemistry B, 2015. 119(29): p. 9029-9037. 

2. Jorgensen, W.L., et al., Comparison of simple potential functions for simulating liquid water. The Journal 
of Chemical Physics, 1983. 79(2): p. 926-935. 

3. Lindahl, E., B. Hess, and D. van der Spoel, GROMACS 3.0: A package for molecular simulation and 
trajectory analysis. Journal of Molecular Modeling, 2001. 7(8): p. 306-317. 

4. Nymeyer, H. and A.E. García, Simulation of the folding equilibrium of α-helical peptides: A comparison of 
the generalized Born approximation with explicit solvent. Proceedings of the National Academy of 
Sciences, 2003. 100(24): p. 13934-13939. 

5. Buchete, N.-V. and G. Hummer, Coarse master equations for peptide folding dynamics. The Journal of 
Physical Chemistry B, 2008. 112(19): p. 6057-6069. 

6. Shan, Y., et al., Oncogenic mutations counteract intrinsic disorder in the EGFR kinase and promote 
receptor dimerization. Cell, 2012. 149(4): p. 860-870. 

 


