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Abstract

Urn models are a classical tool to visualise problems in the field of discrete probability. They do
not only serve to realise basic discrete distributions but also are used to model dynamically
evolving systems. Pólya urn models are among the most popular and flexible of such urn
schemes and therefore have a variety of applications in such as epidemiology, bioscience, and
computer science.

Pólya urn models serve to describe stochastic processes that evolve in discrete time. Whenever
a process evolves in time, it is a classical question to enquire about its long-term behaviour,
concerning qualitative and quantitative aspects.

This thesis deals with balanced, irreducible Pólya urn schemes with two colours, say black
and white. For this class of Pólya urn schemes limit theorems for the number of black balls
after n steps are known, whereas there is a lack of rates of convergence. This thesis focusses
upon upper bounds for the rate of convergence in these limit theorems.

It is known that depending on the ratio of the eigenvalues of the replacement matrix, two
regimes of limit laws occur: almost sure convergence to a non-degenerate random variable
whose distribution depends on the initial composition of the urn and that is known to be not
normally distributed and weak convergence to the normal distribution. In this thesis upper
bounds on the rates of convergence in both the non-normal limit case and the normal limit
case are given. Parts of the results confirm a conjecture of Svante Janson.
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Notation and Preliminary Remarks

In general the notation from Knape and Neininger [27] has been adopted as well as notation
common in the field of the contraction method.

For a random variable X defined on a probability space (Ω,A,P) distributed according to ν,
which will be abbreviated by X ∼ ν, its distribution is denoted by L (X) := ν. Moreover,
E [X] :=

∫
x dν (x) signifies its mean and Var (X) := E

[
(X − E [X])2

]
its variance. The fact

L (X) = L (Y ) for two random variables X and Y is abbreviated by X d=Y . Convergence in
distribution is denoted by d−→.

N
(
µ, σ2) signifies the normal distribution with mean µ ∈ R and variance σ2, σ > 0. Bin (n, p)

denotes the binomial distribution with success probability p ∈ [0, 1] and n trials and Ber (p)
signifies the Bernoulli distribution with success probability p ∈ [0, 1]. For any subset A ⊂ Ω
of a set of events Ω its complement is denoted by Ac. The abbreviation a.s. means almost
sure convergence.

Big O notation is used to describe limiting behaviour: Let (an)n∈N and (bn)n∈N be two
sequences in R. We write, as n→∞,

• an = O (bn) :⇔ ∃C > 0, n0 ∈ N ∀n ≥ n0 : |an| ≤ C |bn|;

• an = Θ (bn) :⇔ an = O (bn) and bn = O (an);

• an = o (bn) :⇔ limn→∞
an
bn

= 0.

The Gamma function is denoted by Γ (x) :=
∫∞

0 yx−1eydy, x > 0.

Twice, a proof will be interrupted; this will be indicated by �. If a proof for a result is only
sketched, this will be indicated by � instead of � at the end.

To ease the flow of reading the narrative perspective varies between passive voice and first-
person view using the first person plural noun “we”.

In proofs, remarks and explanations regarding individual steps are usually ensued thereafter.
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1. Introduction

In probability theory, urn models figure prominently when the question arises how to visualise
a problem subject to randomness. An urn usually contains balls of different colours and the
problem at hand somehow can be brought in line with drawings from this urn. Most naturally,
the imagination of repeated drawings from an urn leads to the desire to capture a stochastic
process by means of an urn model.
Pólya urn models are among the most popular and flexible of such urn models. They have a
variety of applications and therefore are of great interest in probability theory.

A Pólya urn scheme serves to describe a stochastic process evolving in discrete time steps.
At any time, the urn contains balls of different colours. One step of this process is defined
as follows: One ball is drawn from the urn uniformly at random and then returned to the
urn together with new balls. The rules on how to add new balls to the urn are given by the
replacement matrix whose rows correspond to the colour of the drawn ball and whose columns
indicate how many balls of which colour to add. Negative entries of the replacement matrix
lead to the removal of balls from the urn. So, the replacement matrix (Rij)1≤i,j≤q, for a total
of q colours, carries the information to add (or remove) Rij balls of colour j on drawing a ball
of colour i. The steps are iterated independently.

What is known today as Pólya urn scheme seems to be first mentioned in 1906 by Markov in
his seminal paper [38] as well as in [37]. Markov introduces the nowadays so-called classical
Pólya urn with replacement matrix ( 1 0

0 1 ) as an example for a Markov chain. However, it is
named after the the work of Pólya and Eggenberger [14] from 1923; Pólya and Eggenberger
generalise Markov’s urn such that a total of s balls of the same colour as the drawn ball is added
to the urn. Pólya and Eggenberger use this urn model to describe series of interlinked events
modelling an effect known as “the rich get richer” (their slogan in [14] is “Chancenvermehrung
durch Erfolg”). Their motivation to design such a framework was the common assumption of
independent events, which they did not approve of when modelling real life events. In their
original paper they used it as a model for contagion processes.

Bernstein [5] and Friedman [18] extend the urn model such that additionally t ≥ 1 balls of the
opposite colour than the drawn ball are added in every step, hence the scheme is balanced, i.e.,
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1. Introduction

in every step the same number of balls is added, and the replacement matrix is still symmetric.
Bagchi and Pal [3] break the symmetry and coin the notion of tenable urn models, that is, the
scheme is balanced (with possibly negative entries in the replacement matrix) and designed
in such a way that the process cannot get stuck.

Since the introduction of Pólya urns in the beginning of the last century, Pólya urn models
have been generalised, comprehensively studied and referred to as the generalised Pólya-
Eggenberger urn scheme, or, more conveniently, Pólya urns. Johnson and Kotz [25] provide a
general overview of urn models together with historical information where Chapter 4 covers
Pólya urn schemes; a more recent work is Mahmoud’s monograph on Pólya urns [34] where a lot
of applications, especially in computer science with respect to data structures and bioscience,
are discussed; Pemantle [46] gives a survey on random processes with reinforcement where
Pólya urns serve as a starting point. In addition, an extensive overview of the literature on
Pólya urns can be found in Janson [22], Flajolet et al. [16], Pouyanne [47] as well as Kuba
and Sulzbach [28]. As already indicated, Pólya urns cover a broad range of applications; they
are prototypical for any process underlying some sort of enrichment dynamics: Populations,
epidemics, data storage, reinforcement processes.

Of course, such a Pólya urn scheme can be rather general: The matrix does not necessarily
exhibit any sort of structure, there can be an arbitrary number of colours, an arbitrary initial
composition of the urn, and replacements could be random. Hence, in order to get a grip on
the evolution of the urn process, there are two natural conditions that are usually required to
be satisfied by a Pólya urn scheme:

1. Balancedness: In every step of the urn the same number of balls is added. This number
is called the balance.

2. Irreducibility: Regardless of the initial composition of the urn a ball of any colour can
be observed in the evolution of the urn with positive probability.

Balanced, irreducible Pólya urn schemes mostly find applications in computer science within
the scope of data storage.

Naturally, the asymptotic behaviour of Pólya urn models has been of great interest and
therefore has been studied comprehensively: With these restrictions on the structure of the
Pólya urn scheme, the long-term behaviour of this process in terms of the number of balls of
a specific colour is fully understood with respect to limit theorems, see for example Bernstein
[5] and Savkevich [54], Bernstein [4], Freedman [17], Blackwell and Kendall [7], Athreya and
Karlin [2], Athreya [1], Bagchi and Pal [3], and Smythe [55]. A comprehensive study of limit
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theorems (also covering the results on limit theorems of all beforehand mentioned works) is
Janson [22].

Depending on the “shape” of the replacement matrix different limit laws arise. However, so
far almost completely unanswered is the question of the speed or rate of convergence in those
limit theorems. The aim of this thesis is to thoroughly address this question with respect to
the class of balanced, irreducible Pólya urn schemes with two colours, say black and white, by
providing upper bounds on the rate of convergence.

There are two settings that this thesis encompasses:

Balanced Irreducible Two-Colour Pólya Urns

R =

 a b

c d

with a, d ∈ N0 ∪{−1} and b, c ∈ N,

such that a+ b = c+ d =: K − 1 ≥ 1 (balancedness)

and bc > 0 (irreducibility).

(Det R)

The first row indicates how to add balls to the urn when a black ball is drawn and the second
row is evoked when a white ball is drawn: Hence, in setting Det R a black balls and b white
balls are added to the urn if a black ball is drawn; otherwise c black and d white balls are
added. Drawn balls can be removed, but the removal of other balls than the drawn one is not
allowed. Moreover, note that the assumption of irreducibility reduces to the condition bc > 0
in the case of two-colour Pólya urns. The assumption of irreducibility cannot be omitted;
the asymptotic behaviour of two-colour Pólya urns that are not irreducible (but triangular)
is fundamentally different, cf. Janson [23]. The assumption of balancedness is important for
the recursive approach from Knape and Neininger [27] that is displayed in Chapter 3. In the
course of this thesis we refer to this setting asDet R as the replacement itself is deterministic;
in contrast to the next setting studied where the replacement does not only depend on the
colour of the drawn ball but also is subject to randomness.

Randomised Play-the-Winner Rule

R̄ =

 Cα 1− Cα

1− Cβ Cβ

with Cα ∼ Ber (α) , Cβ ∼ Ber (β) ,

α, β ∈ (0, 1) .

(Rand R)

3



1. Introduction

In setting Rand R the replacement matrix is random. This urn comes with two coins, the
coin Cα that is tossed if a black ball is drawn from the urn and the coin Cβ that rules the
replacement if a white ball is drawn. A successful coin toss results in putting the drawn ball
back into the urn together with a new ball of the same colour; otherwise the drawn ball is
returned to the urn and a new ball of the other colour is added. It is associated with the
design of clinical trials where two treatments are tested against each other and referred to
as the “randomised play-the-winner rule”, cf. Wei and Durham [59] and Wei [58]. The two
treatments are represented by the colours and the coin acts as the outcome of the treatment
(beneficial or not). The motivation behind this scheme is an ethical one: The desire to assign
the better treatment to more test persons during the course of the trial.
Obviously, the balance is one and the scheme is irreducible as long as both α and β are strictly
greater than zero and strictly less than one.

In the entire thesis, we refer to these two urns as Det R and Rand R. The quantity of
interest is the number of black balls after n steps, denoted by Bn.

Asymptotic Behaviour of the Number of Black Balls

The asymptotic behaviour of the normalised number of black balls—of both urns Det R
and Rand R—is closely related to the replacement matrix: In setting Det R, it depends
on the ratio of smallest to largest eigenvalue of the replacement matrix R which is given by
λ = a−c

a+b . In setting Rand R, the ratio of smallest to largest eigenvalue of the matrix that
contains the expectations of the entries of R̄ determines the asymptotic behaviour; it is given
by λ = α+ β − 1.

There are two regimes of limit laws: If λ > 1
2 , let the normalised number of black balls be given

by Xn := Bn−E[Bn]
nλ

for n ≥ 1. Then Xn converges almost surely two a non-degenerate random
variable whose distribution depends on the replacement matrix and the initial composition of
the urn. Note that it is not normally distributed; on the other hand, if λ ≤ 1

2 (and λ 6= 0
in setting Det R), let the normalised number of black balls be given by X̂n := Bn−E[Bn]√

Var(Bn)
for

n ≥ 2 (note that Var (B1) = 0 in setting Det R for monochromatic initial compositions).
Then X̂n converges in distribution to the standard normal distribution N (0, 1). The first
ones to observe this dichotomy are Bernstein [5] and Savkevich [54] in the case of symmetric,
balanced, irreducible two-colour Pólya urn schemes. This was followed by Freedman [17],
Athreya and Karlin [2], Bagchi and Pal [3], Gouet [20] for setting Det R, and Smythe and
Rosenberger [56] for setting Rand R, and Janson [22, Theorems 3.22, 3.23, 3.24] covering
both settings. For properties of the non-normal limit law, see Chauvin et al. [9] and Kuba
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and Sulzbach [28]. These two regimes are referred to as the non-normal limit case and the
normal limit case. 1

Remark (Intuition: Two regimes of limit laws). This remark serves to develop a sense for
the two regimes of limit laws: In setting Det R the ratio of smallest to largest eigenvalue is
given by λ = a−c

a+b . The parameter λ lies in the interval
[
−K+1
K−1 ,

K−3
K−1

]
, where K − 1 := a+ b.

Hence, “small” values of λ are close to −1 and “large” ones close to 1.

Now, consider Friedman’s urn and the classical Pólya urn: Friedman’s urn is ruled by the
replacement matrix ( 0 1

1 0 ). The classical Pólya urn is ruled by the replacement matrix ( 1 0
0 1 ).

In Friedman’s urn, the ratio of the eigenvalues is −1. In the classical Pólya urn this ratio is 1.

These two urns serve to make us understand the phase transition from weak (normal) limits
for λ ≤ 1

2 to almost sure (non-normal) limits for λ > 1
2 .

In Friedman’s urn, in every step the drawn ball is returned to the urn together with a new
ball of the opposite colour. Therefore, the proportions of the two colours even out: Whenever
one colour is dominating, it is more likely to add balls of the other colour. This finally leads
to a normal limit law for the normalised number of black balls, cf. Freedman [17].

In Pólya’s urn, life is not that fair. In every step a ball of the same colour as the drawn ball
is added. Hence, the proportion of the drawn colour is reinforced. As soon as one colour
dominates, this colour is likely to dominate forever, it will grow stronger and stronger. The
beginning of the process is critical to its long-term evolution. All in all, these dynamics lead
to an almost sure limit depending on the initial composition of the urn, cf. Athreya [1].

Results

The upper bounds on the distance between the normalised number of black balls and its
respective limits that are presented in this thesis are completely novel: The results are derived
by bringing the problem into the sphere of the contraction method. To this end, the evolution
of the urn process is captured recursively. Due to the approach via the contraction method,
the rates are derived in different metrics depending on whether the non-normal limit case or
the normal limit case is studied.

To state our main result, let `p denote the Wasserstein metric, % the Kolmogorov-Smirnov
distance, and ζ3 the Zolotarev metric. Formal definitions of these metrics are provided later
in Chapter 2.

1Note that the non-normal limit case is also referred to as large or large-index urn whereas the normal limit
case is also referred to as small or small-index urn in the literature, cf. Chauvin et al. [9] as well as Kuba
and Sulzbach [28].

5



1. Introduction

Given a balanced, irreducible, two-colour Pólya urn scheme with replacement matrix
R =

(
a b
c d

)
where the integer entries satisfy a, d ≥ −1 and b, c > 0, i.e., a Pólya urn

scheme in setting Det R. Let λ := a−c
a+b . Consider the following normalisations of the

number of black balls Bn

Xn := Bn − E [Bn]
nλ

, n ≥ 1, in the non-normal limit case λ > 1
2;

X̂n := Bn − E [Bn]√
Var (Bn)

, n ≥ 2, in the normal limit case λ ≤ 1
2 .

LetX0
R denote the almost sure limit ofXn andN (0, 1) the standard normal distribution

and let ε > 0.
Then, as n→∞,

in the non-normal limit case where λ > 1
2 ,

`p
(
Xn, X

0
R

)
= O

(
n−λ+ 1

2 +ε
)
,

%
(
Xn, X

0
R

)
= O

(
n−λ+ 1

2 +ε
)

;

in the normal limit case where λ ≤ 1
2 ,

ζ3
(
X̂n,N (0, 1)

)
=


O
(
(ln (n))−

3
2
)
, λ = 1

2 ,

O
(
n3(λ− 1

2 )) , 1
3 < λ < 1

2 ,

O
(
n−

1
2 +ε

)
, λ ≤ 1

3 , λ 6= 0.

Figures 1.1, 1.2 and 1.4 as well as additional simulations in Appendix B illustrate these
rates of convergence. Analogous statements with λ = α+ β− 1 hold for the number of
black balls in setting Rand R.

These results summarise the statements of Theorem 7.4 that covers the non-normal limit case
and Theorem 7.6 that covers the normal limit case.

A weaker statement of the results was previously published in the 2017 Proceedings of the
FourteenthWorkshop on Analytic Algorithmics and Combinatorics (ANALCO), see Kuntschik
and Neininger [30]; note that since then the rate in the case λ = 1

2 could be improved from
(ln (n))−

1
2 to (ln (n))−

3
2 .

The rate n3(λ− 1
2 ) for λ ∈

(
1
3 ,

1
2

)
confirms a conjecture of Svante Janson stated in [22, Remark

4.7]. Janson did not mention in what metric he expects this rate to hold. Moreover, he begins
his remark with the note that his methods give no information on the rate of convergence.
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Figure 1.1.: The behaviour of the exponents of the rates stated above is shown.

0
1

2
1�1

1

3

�

1

4

�

1

2

The negative exponent denoted by γ is shown (hence, n−γ yields the order of the upper bound
for the respective value of λ). The dashed lines indicate that the exponent also depends on ε
and therefore is below the depicted line (but gets arbitrarily close to this line).
The maroon coloured line gives the exponent in the non-normal limit case. The teal coloured
line covers the normal limit case. Moreover, for λ = 1

2 there is no polynomial bound for the
rate. This is indicated by a teal coloured circle at (1/2, 0). Note that for λ = 0 in setting Det
R the evolution of the urn process is deterministic and in setting Rand R degenerates to
the situation of the classical Central Limit Theorem; this is highlighted by another circle at
(0, 1/2).

Methods to Study Pólya Urns

Athreya and Karlin [2] are motivated by the fact that Pólya urn schemes can be represented
by Markov chains and study the asymptotic behaviour of Pólya urn schemes via embedding
the urn process into continuous time Markov branching processes (and lay the foundation
thereof); this approach is a popular tool for analysing urn processes since the resulting con-
tinuous time process is better to handle than the discrete time process. The question of
asymptotic normality was first tackled by Bernstein [5] and by Bagchi and Pal [3] using the
method of moments. Moreover, discrete time martingale techniques were applied to derive
limit theorems, see for example Gouet [20]. Janson [22] perfects the approach from Athreya
and Karlin. It seems (and Janson declares so in [22] concerning the method of embedding
into a continuous time branching process) that these methods do not allow to derive rates of
convergence in the respective limit theorems easily. Flajolet et al. [16] present an analytic ap-
proach that produces rates of convergence for a subclass, namely urns with subtraction. Until
the work of Knape and Neininger [27], the methods the asymptotic behaviour of Pólya urn
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Figure 1.2.: Simulation of 104 steps on the basis of 105 samples of a Pólya urn with replacement
matrix ( 1 4

3 2 ), hence λ = −2
5 , with one initial black ball.

Figure 1.2a shows the empirical distribution function of the normalised number of black
balls (turquoise) compared to the distribution function of the standard normal distribution
(magenta).
Figure 1.2b shows the uniform distance between the empirical distribution function and the
distribution function of the standard normal distribution (turquoise), i.e., a simulation of the
Kolmogorov-Smirnov distance between the normalised number of black balls and the standard
normal distribution, compared to a rate of order n− 1

2 (magenta).

schemes was studied with did not seem to easily permit the derivation of rates of convergence
in general settings.

A method that is able to yield both limit theorems and rates of convergence is the contraction
method. Knape and Neininger [27] introduced a recursive approach to capture the evolution
of the urn process that makes Pólya urns accessible to the contraction method. We exploit
this approach in order to derive upper bounds on the rate of convergence in the respective
limit theorems. In the non-normal limit case our procedure is inspired by Fill and Janson
[15], where rates of convergence for the search algorithm Quicksort are derived. Neininger
and Rüschendorf [42] study the contraction method with degenerate limit equations and serve
as a model in the normal limit case. We extend both methods to systems of distributional
recursions as to the derivation of rates of convergence for Pólya urns.
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Figure 1.3.: Log log plot, belonging to the simulation of Figure 1.2.

The figure shows the logarithm of the simulated rate (turquoise) and the logarithm of the
rate n− 1

2 (magenta). Hence, the magenta coloured line is a line with slope −1
2 .

Rates of Convergence for Pólya Urns

For Pólya urn schemes governed by certain replacement matrices, not necessarily fitting our
setting, rates of convergence for limit theorems are already known: Hwang [21] shows rates
of convergence through a refined method of moments in the Kolmogorov-Smirnov distance
for the asymptotic normality of the space requirement of m-ary search trees that are re-
lated to Pólya urn schemes. The analytic approach on asymptotic normality for urns with
subtraction in Flajolet et al. [16] provides rates of convergence in the Kolmogorov-Smirnov
distance as a by-product. Goldstein and Reinert [19] derive a bound on the rate of conver-
gence in the Wasserstein distance for the classical Pólya urn, i.e., two colours and balanced
diagonal replacement matrix, by applying Stein’s method to a characterising equation for
the Beta distribution. Likewise, in Peköz et al. [45] rates of convergence of optimal order in
the Kolmogorov-Smirnov distance for a class of time inhomogeneous Pólya urn schemes are
derived that cover a balanced, triangular (and therefore not irreducible) two-colour Pólya urn
scheme.

It seems that these methods are not easily applicable to the class of balanced, irreducible
Pólya urns that are treated in this thesis. Note that there are no results concerning rates of
convergence in the non-normal limit case of balanced, irreducible Pólya urn schemes. So far

9



1. Introduction
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(b) Rate of Convergence

Figure 1.4.: Simulation of 104 steps on the basis of 105 samples of a Pólya urn with replacement
matrix ( 20 10

9 21 ), hence λ = 11
30 , with one initial black ball.

Figure 1.4a shows the empirical distribution function of the normalised number of black balls
(turquoise) compared to the distribution function of the standard normal distribution (ma-
genta).
Figure 1.4b shows the uniform distance between the empirical distribution function and
the distribution function of the normal distribution (turquoise), i.e., a simulation of the
Kolmogorov-Smirnov distance between the normalised number of black balls and the standard
normal distribution, compared to a rate of order n3(λ− 1

2 ) (magenta) and to a rate of order
nλ−

1
2 (royal blue).

there has been no general result on rates of convergence for the class of balanced, irreducible
Pólya urn schemes with two colours.

Outline

Chapter 2 summarises all technical information needed in the proofs of this thesis.

The core of the proofs is the recursive approach to the evolution of the urn process that was first
introduced by Knape and Neininger [27]. Chapter 3 recalls this approach and adds information
on the behaviour of the therein occurring quantities with regard to rates of convergence.

The recursive approach enables us to state a system of distributional recursions for the number
of black balls when the urn initially contains a single ball. This system of distributional

10
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Figure 1.5.: Log log plot, belonging to the simulation of Figure 1.4.

The figure shows the logarithm of the simulated rate (turquoise) and the logarithm of the
rate n3(λ− 1

2 ) (magenta) and the logarithm of the rate nλ− 1
2 (royal blue). Hence, the magenta

coloured line is a line with slope 3
(
λ− 1

2

)
and the royal blue coloured line is a line with slope

λ− 1
2 .

recursions describing the two base cases links Pólya urns to the contraction method.

In Chapter 4, the contraction method that originates in Rösler’s treatment of the sorting
algorithm Quicksort [50] is introduced and the general setting of systems of distributional
recursions with respect to rates of convergence is explained.

Subsequently, upper bounds for rates of convergence are derived in Chapters 5 and 6 as well
as in Chapter 7: Firstly, rates of convergence are derived for the two base cases, i.e., urns
that initially contain a single ball—black or white. Chapter 5 treats setting Det R, whereas
Chapter 6 studies setting Rand R and is to be understood complementary to Chapter 5.
For that reason, Chapter 6 should be read in parallel to Chapter 5. Chapter 5 is the key
to the reasoning performed in Chapter 6 and Chapter 7: Therefore, proofs in Chapter 5 are
performed in full detail, whereas Chapter 6 serves to highlight the differences of the two urn
settings considered. In Chapter 7 upper bounds for rates of convergence are derived for urns
with an arbitrary initial composition of the urn on the basis of the results for the base cases
of Chapter 5 (and Chapter 6).

11



1. Introduction

Finally, a discussion of methods and results together with concluding remarks is given in
Chapter 8.

In the appendix some technical lemmata are stated that are needed in the course of this thesis.
Moreover, mean and variance for the number of black balls are given. Furthermore, the R
code underlying the simulations is given together with additional simulations.

12



2. Technical Preliminaries and Metrics

This chapter provides all information on the spaces and metrics needed to derive rates of
convergence in the context of the contraction method. At first, the spaces of probability
measures that will be of interest are introduced. Subsequently, the metrics and some of their
properties are outlined. The Wasserstein metrics make the start; they are needed in the case
of non-normal limits. They are followed by the Kolmogorov-Smirnov distance. The Zolotarev
metrics form the end; they are used in the case of normal limits. The stated properties are
accompanied by remarks on where they are of use.

LetM denote the space of probability measures on the real line R with respect to the Borel
σ-algebra. The subspaces with p-th moment, fixed mean, and fixed variance, respectively, are
denoted by

Mp := {L (X) ∈M : E [|Xp|] <∞} , p ≥ 1,

Mp (µ) := {L (X) ∈Mp : E [X] = µ} , p ≥ 1, µ ∈ R,

Mp

(
µ, σ2

)
:=
{
L (X) ∈Mp (µ) : Var (X) = σ2

}
, p ≥ 2, µ ∈ R, σ > 0.

Besides that, for d ∈ N, let

M×d :=M× . . .×M︸ ︷︷ ︸
d times

, and analogously, (Mp (µ))×d ,
(
Mp

(
µ, σ2

))×d
denote the d-fold Cartesian product ofM,Mp (µ),Mp

(
µ, σ2), respectively.

The Wasserstein Distance

Let p ≥ 1 and ν, ρ ∈Mp. The Wasserstein distance `p between ν and ρ is defined by

`p (ν, ρ) := inf
{
‖V −W‖p

∣∣L (V ) = ν,L (W ) = ρ
}

where ‖V −W‖p := (E [|V −W |p])
1
p denotes the p-norm. A pair of random variables (V ′,W ′)

with L (V ′) = ν and L (W ′) = ρ is called a coupling of ν and ρ. A coupling (V ′,W ′) of ν
and ρ is called an optimal `p-coupling of ν and ρ if `p (ν, ρ) = ‖V ′ −W ′‖p. Note that for

13



2. Technical Preliminaries and Metrics

probability measures on the real line the coupling does not depend on p. Hence, such a pair
of random variables will simply be referred to as an optimal coupling.

For probability measures on the real line optimal couplings can easily be constructed with the
help of the inverse of the distribution functions and a random variable U uniformly distributed
on [0, 1]: Let F and G denote the (right-continuous) distribution functions of ν and ρ. Let
F−1(x) := inf

{
y
∣∣F (y) ≥ x

}
for x ∈ [0, 1] (where we set inf ∅ = ∞) be the (left-continuous)

inverse of the distribution function F , and let G−1, analogously defined, be the inverse of G.
Then, `p (ν, ρ) = ‖V ? −W ?‖p with V ? := F−1 (U) andW ? := G−1 (U), i.e., the pair (V ?,W ?)
is an optimal coupling of ν and ρ, see Major [36].

The Wasserstein metric `p is also referred to as minimal Lp metric mirroring the idea of
extracting a simple metric from the Lp-distances, i.e., a metric whose value is determined
only by the marginals of the random variables inserted.

Convergence in the Wasserstein metric `p implies weak convergence (more precisely, it is
equivalent to weak convergence plus convergence of the absolute p-th moment), see Bickel
and Freedman [6, Lemma 8.3].

The Wasserstein distance measures the Lp-distance of a pair of random variables with given
marginal distributions whose joint distribution minimises the Lp-distance. Note that the Lp-
distance of any pair of random variables with the respective marginal distributions gives an
upper bound for the Wasserstein distance `p of these distributions.

To estimate Lp-distances, the Marcinkiewicz-Zygmund inequality as stated in Chow, Teicher
[10] will be of use:

Theorem 2.1 (Marcinkiewicz-Zygmund inequality). If Xn, n ≥ 1, are independent random
variables with mean 0, then for every p ≥ 1 there exist positive constants Ap, Bp depending
only on p for which

Ap

∥∥∥∥∥∥∥
 n∑
j=1

X2
j

 1
2
∥∥∥∥∥∥∥
p

≤

∥∥∥∥∥∥
n∑
j=1

Xj

∥∥∥∥∥∥
p

≤ Bp

∥∥∥∥∥∥∥
 n∑
j=1

X2
j

 1
2
∥∥∥∥∥∥∥
p

.

The proof can be found in Chow, Teicher [10, Section 10.3, Theorem 2, p. 386].

Remark 2.2 (Remark on optimal couplings). To understand the impact of optimal couplings
consider the following choices of couplings of the uniform distribution on [0, 1] and the uniform
distribution on

{
j
n

∣∣0 ≤ j ≤ n− 1
}
: Let ν be uniformly distributed on the unit interval [0, 1]

and νn uniformly distributed on the set
{
j
n

∣∣0 ≤ j ≤ n− 1
}
, n ≥ 1. Let U be a random variable

14



distributed according to ν. Now, consider three possible constructions of a coupling of ν and
νn:

U (1)
n := bnUc

n
, U (2)

n := Bin (n− 1, U)
n

, U (3)
n := bn (1− U)c

n
,

where Bin (n− 1, U) denotes a binomially distributed random variable whose success prob-
ability is to be determined by the random variable U . It is easy to check that L

(
U

(1)
n

)
=

L
(
U

(3)
n

)
= νn. For U (2)

n , it holds, with k ∈ {0, . . . , n− 1}, with use of relationship between
Gamma function and Beta function given by

∫ 1
0 t

x−1 (1− t)y−1 dt = Γ(x)Γ(y)
Γ(x+y) with x, y > 0 ,

P (Bin (n,U) = k) =
1∫

0

(
n− 1
k

)
uk (1− u)n−1−k du

=
(
n− 1
k

)
Γ (k + 1) Γ (n− 1− k + 1)

Γ (n+ 1) = 1
n
.

Let p ≥ 1. In Lemma 3.7 we will see that∥∥∥U (1)
n − U

∥∥∥
p

= Θ
( 1
n

)
.

Applying the Marcinkiewicz-Zygmund inequality, Theorem 2.1, we obtain

∥∥∥U (2)
n − U

∥∥∥
p

= 1
n− 1

 1∫
0

E [|Bin (n− 1, u)− (n− 1)u|p]du


1
p

= Θ
( 1√

n

)
.

Finally, we have∥∥∥U (3)
n − U

∥∥∥
p

= Θ (1)

due to
1∫

0

∣∣∣∣bn (1− u)c
n

− u
∣∣∣∣p du

= 1
np

1∫
0

|bn (1− u)c − n (1− u) + n (1− u)− nu|pdu = Θ (1) ,

since |bn (1− u)c − n (1− u)| ∈ [0, 1] and |n (1− u)− nu| = Θ (n).

It is easy to check via the way explained above on how to construct optimal couplings that
the pairs

(
U

(1)
n , U

)
for n ∈ N are optimal couplings of ν and νn. Hence, for the Wasserstein
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2. Technical Preliminaries and Metrics

distance between ν and νn it holds

`p (νn, ν) = Θ
( 1
n

)
.

Depending on the choice of the coupling, we observe two different rates of convergence and
one case where convergence does not even occur. Hence, the knowledge of the existence of
optimal couplings can be essential.

The following lemma is a summary of Major [36, Theorem (8.1)] and Bickel and Freedman
[6, Lemma 8.2]:

Lemma 2.3. Let p ≥ 1. For any family P ⊂ Mp there exist random variables Vν defined
on the same probability space with L (Vν) = ν for ν ∈ P such that for any ν, ρ ∈ P the pair
(Vν , Vρ) is an optimal coupling of ν and ρ.

Lemma 2.4 (Monotonicity of the Wasserstein metrics). Let 1 ≤ q ≤ p <∞ as well as L (X)
and L (Y ) ∈Mp. Then,

`q (X,Y ) ≤ `p (X,Y ) .

Proof. Let 1 ≤ q < p <∞ and set r := p
q as well as s := p

p−q . Obviously, we have 1
r + 1

s = 1
and Hölder’s inequality yields for a random variable Z with E [|Z|p] <∞

‖Z‖qq = ‖|Z|q‖1 ≤ ‖|Z|
q‖r ‖1‖s = ‖Z‖qp and therefore ‖Z‖q ≤ ‖Z‖p .

Let X? d=X and Y ? d=Y such that the pair (X?, Y ?) is an optimal coupling of L (X) and
L (Y ). Then, we have

`q (X,Y ) = ‖X? − Y ?‖q ≤ ‖X
? − Y ?‖p = `p (X,Y ) .

For ν = (ν1, . . . , νd) , ρ = (ρ1, . . . , ρd) ∈ (Mp)×d, the Wasserstein metric is extended to
(Mp)×d via the maximal Wasserstein metric

`∨p (ν, ρ) := max
1≤j≤d

`p (νj , ρj) .

We sloppily write `p (V,W ) := `p (L (V ) ,L (W )) for random variables V and W as well as
`∨p ((V1, . . . , Vd) , (W1, . . . ,Wd)) := `∨p ((L (V1) , . . . ,L (Vd)) , (L (W1) , . . . ,L (Wd))).

Later on, when applying the reasoning of the contraction method, completeness of the metric
spaces at hand will be of use.
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Lemma 2.5. Let 1 ≤ p < ∞, µ ∈ R and d ∈ N. The pairs (Mp, `p), (Mp (µ) , `p) and(
(Mp (µ))×d , `∨p

)
are complete metric spaces.

Proof. From Bickel and Freedman [6, Lemma 8.1] we have that (Mp, `p) is a metric space;
hence, (Mp (µ) , `p) is a metric space, too. Identity of indiscernibles, symmetry and the trian-
gle inequality for `∨p follow directly from these properties of `p yielding that

(
(Mp (µ))×d , `∨p

)
is a metric space.

Completeness: Consider a Cauchy sequence (νn)n∈N in (Mp, `p). Due to Lemma 2.3 there
is a sequence of random variables (Vn)n∈N, defined on the same probability space (Ω,A,P)
such that the pair (Vn, Vm) is an optimal coupling of νn and νm, for all m,n ≥ 1. Due to
‖Vn − Vm‖p = `p (νn, νm), (Vn)n∈N is a Cauchy sequence in (Lp (Ω,A,P)). The Riesz-Fischer
Theorem yields the existence of a limit V ∈ Lp (Ω,A,P) with ‖Vn − V ‖p → 0 as n → ∞.
Denoting ν := L (V ), we observe `p (νn, ν) ≤ ‖Vn − V ‖p → 0. Therefore, the completeness of
(Mp, `p) follows.

For Mp (µ) is a closed subset of Mp, (Mp (µ) , `p) is a complete metric space as well. The
completeness of

(
(Mp (µ))×d , `∨p

)
directly follows.

These and other information that goes beyond what is needed here on the Wasserstein metrics
can be found in Cambanis et al. [8], Major [36], Bickel and Freedman [6], and Rachev [49].

The first appearance of what is now called contraction method in Rösler [50] and [51] relies
on the Wasserstein metric `2. Our proofs for upper bounds on rates of convergence in the
non-normal limit case rely on the Wasserstein metric `2, as well, and then are transferred to
the Wasserstein metrics `p. In that context, we make use of the existence of optimal couplings.
Additionally, in setting Rand R we make use of optimal couplings when it comes to capturing
the asymptotic behaviour of the subtree sizes, see Section 3.2.

The Kolmogorov-Smirnov Distance

The Kolmogorov-Smirnov distance, also known as uniform distance, of two probability mea-
sures µ, ν ∈M with distribution functions Fµ and Fν , respectively, is given by

% (µ, ν) = sup
x∈R
|Fµ (x)− Fν (x)| .

The Kolmogorov-Smirnov distance measures the maximal pointwise distance between the
distribution functions of the given distributions and therefore gives a vivid impression of
what it means when two distributions are close to each other. It is not surprising that this
distance is of the greatest interest not only when it comes to applications.
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2. Technical Preliminaries and Metrics

Recall the following correlation between the Wasserstein distances and the Kolmogorov-
Smirnov distance from Fill and Janson [15]:

Lemma 2.6 ([15, Lemma 5]). Assume, µ, ν ∈M such that µ is absolutely continuous with a
bounded density function f . Let M := supx∈R |f (x)| and 1 ≤ p <∞. Then,

% (µ, ν) ≤ (p+ 1)
1
p+1 (M`p (µ, ν))

p
p+1 .

In the case of non-normal limits, this lemma will serve to convey the rates obtained in the
maximal Wasserstein metrics `∨p to the maximal Kolmogorov-Smirnov distance %∨ defined
via

%∨ (µ, ν) := max
1≤j≤d

% (µj , νj) ,

where µ = (µ1, . . . , µd) , ν = (ν1, . . . , νd) ∈M×d with d ∈ N.

As before, whenever we plug in a random variable (a random vector) into the (maximal)
Kolmogorov-Smirnov distance it is to be understood on the level of distributions.

The Zolotarev Metric

The Zolotarev metric ζs for s > 0 is defined by

ζs (X,Y ) := ζs (L (X) ,L (Y )) := sup
f∈Fs

|E [f (X)− f (Y )]|

for random variables X and Y and where

s = m+ α, with m ∈ N0 and 0 < α ≤ 1, and

Fs :=
{
f ∈ Cm (R) :

∣∣∣f (m)(x)− f (m)(y)
∣∣∣ ≤ |x− y|α}

with Cm (R) denoting the set of all m-times differentiable functions.

One could think of the Zolotarev metric ζs as the worst amount of cost you have to pay going
from distribution L (X) to distribution L (Y ) where s = m + α tells you what sort of costs
to take into account: The costs are given by the set of m-times continuously differentiable
functions such that the m-th derivative is α-Hölder continuous.

The Zolotarev metric was introduced by Zolotarev in [60] and [61]. A comprehensive pre-
sentation of properties of the Zolotarev metric can be found in Rachev [49]. The following
properties are crucial for our reasoning: With s = m+ α > 0,
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1. If random variables X and Y satisfy E
[
Xj
]

= E
[
Y j
]
for j = 1, . . . ,m and E [|X|s],

E [|Y |s] <∞, then we have ζs (X,Y ) <∞.

2. The Zolotarev metric ζs is (s,+)-ideal, that is ζs (X + Z, Y + Z) ≤ ζs (X,Y ) for random
variables X,Y satisfying the first property and for a random variable Z independent
of (X,Y ), and it holds ζs (cX, cY ) = |c|s ζs (X,Y ) for c ∈ R \ {0}. This implies for
X1, . . . , Xn independent and Y1, . . . , Yn independent, such that Xj and Yj satisfy the
conditions of the first property for j = 1, . . . , n,

ζs

 n∑
j=1

Xj ,
n∑
j=1

Yj

 ≤ n∑
j=1

ζs (Xj , Yj) .

From Drmota et al. [13, Theorem 5.1], we have

3. Convergence in ζs implies weak convergence.

4. For 1 < s ≤ 2, the pair (Ms (µ) , ζs) with µ ∈ R is a complete metric space, for
2 < s ≤ 3, the pair

(
Ms

(
µ, σ2) , ζs) with µ ∈ R and σ > 0 is a complete metric space.

The Wasserstein metric and the Zolotarev metric connect in the following way, from Drmota
et al. [13]:

Lemma 2.7 ([13, Lemma 5.7]). Let 1 < s ≤ 3.

If 1 < s ≤ 2, let L (X) ,L (Y ) ∈Ms (µ) for some µ ∈ R.

If 2 < s ≤ 3, let L (X) ,L (Y ) ∈Ms
(
µ, σ2) for some µ ∈ R, σ > 0.

Then,

ζs (X,Y ) ≤
(
(E [|X|s])1− 1

s + (E [|Y |s])1− 1
s

)
`s (X,Y ) .

On the product spaces (Ms (µ))×d, if 1 < s ≤ 2 and
(
Ms

(
µ, σ2))×d, if 2 < s ≤ 3, we work

with the maximal Zolotarev metric ζ∨s defined by

ζ∨s ((X1, . . . , Xd) , (Y1, . . . , Yd)) := max
1≤j≤d

ζs (Xj , Yj)

where (L (X1, ) , . . . ,L (Xd)), (L (Y1, ) , . . . ,L (Yd)) ∈ (Ms (µ))×d, for 1 < s ≤ 2, and (L (X1) ,
. . . ,L (Xd)), (L (Y1, ) , . . . ,L (Yd)) ∈

(
Ms

(
µ, σ2))×d, for 2 < s ≤ 3. Due to the fourth prop-

erty, the pairs
(
(Ms (µ))×d , ζ∨s

)
for 1 < s ≤ 2 and

((
Ms

(
µ, σ2))×d , ζ∨s ) for 2 < s ≤ 3 are

complete metric spaces.

19



2. Technical Preliminaries and Metrics

As already indicated in the definition of the Zolotarev metric and done so in this paragraph,
out of convenience, we do not hesitate to plug in random variables however keeping in mind
that they only represent their respective distributions.

More information on the Zolotarev metric can be found in Zolotarev [60] and [61], Rachev
[49]. Rösler and Rüschendorf [53], Rachev and Rüschendorf [48], and especially Neininger and
Rüschendorf [41] as well as [42] present the role of the Zolotarev metric in the context of the
contraction method.

The Zolotarev metric comes into play when we deal with the normal-limit cases. We work
with ζ∨3 as it seems to be the most convenient choice in order to derive rates of convergence.
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3. Recursive Approach: Pólya Urns and Trees

This chapter is dedicated to the recursive understanding of the evolution of the urn process:

At first, the recursive approach of Knape and Neininger [27, Section 2] is recalled. It relies on
a combinatorial discrete-time embedding of the evolution of the urn process into a random
rooted tree growing simultaneously with the urn. Decomposing this tree at the root leads to
a system of distributional recursions for the number of black balls after n steps when starting
with a single ball, i.e., the base cases Bb

n and Bw
n . These distributional recursions make the

evolution of the urn process accessible to the contraction method. Therefore, the recursive
approach of Knape and Neininger [27] is indispensable for us.

The growth of the subtrees of the root will turn out to be crucial. It is related to another
Pólya urn scheme. In order to study the growth of the subtrees, this Pólya urn scheme will
be studied as parenthesis. Then, the growth of the subtrees is studied with respect to bounds
for the rate of convergence as needed later on.

3.1. The Hidden Tree-Structure of the Evolution of the Urn
Process

For it is our goal to apply the reasoning of the contraction method to Pólya urns, a recur-
sive description of the evolution of the urn process is needed. The recursive approach that
is recalled here (through the example of setting Det R) was first introduced by Knape and
Neininger [27] and shortly thereafter by Chauvin et al. [9] in 2013. It is based on the observa-
tion of a hidden tree-structure within the evolution of the urn; every step of the urn process
will be encoded by a tree whose leaves represent the balls in the urn. This tree structure
reveals a self-similarity that is used to describe the number of black balls recursively.

Initially, there is one ball in the urn. This starting point is encoded by a tree that consists
of one node only that obviously is a leaf. In the first step, this ball is drawn and returned to
the urn together with K − 1 ≥ 1 new balls. In terms of the tree, a new level is opened up,
consisting of a copy of the root node and K − 1 new nodes. All of these K nodes are children
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3. Recursive Approach: Pólya Urns and Trees

of the root node and, hence, are the leaves of the tree. After the first step, the tree consists
of K + 1 nodes, of which K are leaves and represent the balls in the urn.

In order to make the leaves of the tree correspond to the balls in the urn, the nodes of the
tree are assigned the colours of the balls they represent: The root node is assigned the same
colour as the initial ball and passes its colour on to its copy emerging from the first step. The
K − 1 new leaves must be coloured according to the replacement matrix, i.e., a black and b
white leaves will arise if the root is black and c black and d white leaves if the root is white.

Figure 3.1.: Evolution of a Pólya urn with black and white balls together with its associated
tree:

Two (possible) steps of a Pólya urn governed by the replacement matrix ( 1 4
3 2 ) and containing

a single black ball in the beginning are depicted. Below the urn the respective associated tree
is shown. The arrows indicate which ball is drawn and from which leaf the subtree emerges,
respectively. The leaves of the associated tree correspond to the balls in the urn. For the sake
of clarity, those nodes that do not represent balls in the urn wear faded colours.

From now on, this procedure is iterated and the tree evolves simultaneously with the urn,
see Figures 3.1 and 3.2. It is called the associated tree. Obviously, we deal with two kinds
of associated trees: One tree emerging from a black root, another emerging from a white
root. To distinguish between these two, we call the former b-associated tree and the latter
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3.1. The Hidden Tree-Structure of the Evolution of the Urn Process

w-associated tree.

In general, drawing a ball from the urn is identified with picking the corresponding leaf from
the tree. Returning this ball together with K − 1 new balls according to the replacement
matrix is represented by the emergence of a subtree rooted at the picked leaf, consisting of a
copy of it and K − 1 new leaves that are assigned colours as prescribed by the replacement
matrix, too.

Every associated tree can be decomposed at the root into K subtrees. A b-associated tree
gives rise to a + 1 subtrees rooted in black and b subtrees rooted in white; analogously, a
w-associated tree consists of c subtrees rooted in black and d + 1 subtrees rooted in white.
For that reason the number of black balls can be captured recursively: The number of black
balls in the urn and the number of black leaves of the associated tree coincide and can be
described as the sum of black leaves of the subtrees of the root.

As we deal with balanced urn schemes, every picked leaf spawns K subtrees regardless of its
colour. By I(n) :=

(
I

(n)
1 , . . . , I

(n)
K

)
we denote a random vector whose components I(n)

r describe
how often a leaf from the r-th subtree of the root was picked within the first n steps. The
first step serves to give rise to the K subtrees, hence, I(1) = 0 and I(2) is vector with all
components equal to zero except for one component that equals 1. Exactly n− 1 draws will
occur among the subtrees, i.e., ∑K

r=1 I
(n)
r = n − 1, and the distribution of the marginals of

I(n) is given by, for j ∈ {0, . . . , n− 1} (where we set ∏−1
i=0 xi := 1),

P
(
I(n)
r = j

)
=
(
n− 1
j

)(∏j−1
i=0 (1 + (K − 1) i)

) (∏n−2−j
i=0 (K − 1 + (K − 1) i)

)
∏n−2
i=0 (K + (K − 1) i)

.

Moreover, I(n) provides information on the growth of the subtrees: The r-th subtree has
I

(n)
r (K − 1) + 1 leaves. Therefore, we refer to I(n)

r as the size of the r-th subtree and to I(n)

as the vector of the subtree sizes.

At last, we observe that the K subtrees of the root conditioned on I(n) behave independently
and their distribution equals that of b- and w-associated trees, respectively, possessing the
respective numbers of leaves.

With these observations at hand we are able to state a recursion for the number of black balls
in the two base cases, that is when the urn initially contains one ball. Let the number of
black balls after n steps when starting with a black ball be denoted by Bb

n. It is denoted by
Bw
n when the initial ball is white.

Thus, in setting Det R, we obtain the following distributional recursion for the number of
black balls after n steps subject to the colour of the initial ball with Bb

0 := 1 and Bw
0 := 0

23



3. Recursive Approach: Pólya Urns and Trees

and for n ≥ 1:

Bb
n

d=
a+1∑
r=1

B
b,(r)
I

(n)
r

+
K∑

r=a+2
B

w,(r)
I

(n)
r

,

Bw
n

d=
c∑

r=1
B

b,(r)
I

(n)
r

+
K∑

r=c+1
B

w,(r)
I

(n)
r

(3.1)

with Bb,(r)
j

d=Bb
j , B

w,(r)
j

d=Bw
j for r = 1, . . . ,K and 0 ≤ j ≤ n such that

(
B

b,(1)
j

)
0≤j≤n

, . . .,(
B

b,(K)
j

)
0≤j≤n

,
(
B

w,(1)
j

)
0≤j≤n

, . . .,
(
B

b,(K)
j

)
0≤j≤n

, I(n) are independent.

Figure 3.2.: A realisation of the Pólya urn from Figure 3.1 after eight draws together with its
associated tree.

According to the situation of Figure 3.1 the urn contains black and white balls. Initially, it
contained one black ball and the replacement matrix is given by ( 1 4

3 2 ).

In setting Rand R we obtain with Bb
0 := 1 and Bw

0 := 0 and In := I
(n)
1 , Jn := I

(n)
2 =

n− 1− In,

Bb
n

d= B
b,(1)
In

+ CαB
b,(2)
Jn

+ (1− Cα)Bw
Jn ,

Bw
n

d= B
w,(1)
In

+ (1− Cβ)Bb
Jn + CβB

w,(2)
Jn

(3.2)
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3.2. The Behaviour of the Subtree Sizes

with corresponding conditions on distributions and independence as in (3.1).

These recursions lay the foundations for determining rates of convergence via an induction.
From systems (3.1) and (3.2) we can infer that the growth of the subtrees plays a key role
when working with the recursive approach. Due to balancedness the vector of subtree sizes
I(n) captures the growth of the subtrees. Hence, the next section will be dedicated to studying
the subtrees.

Remark 3.1 (Remark on Tenable Urn Models). Tenable urn schemes, in the notion of Bagchi
and Pal [3], are balanced, irreducible two-colour Pólya urn schemes that allow the removal
of balls other than the drawn one under certain divisibility conditions on the entries of the
replacement matrix. If we remove balls other than the drawn one from the urn, then the
subtrees of the associated tree are no longer independent conditioned on their sizes. Though,
the independent behaviour of the subtrees given their sizes is crucial for our distributional
recursions. As long as only the drawn ball is removed, one step of the urn happens in exactly
one of the K subtrees of the root of the associated tree and does not interfere with any of the
other subtrees and the trees behave independently given their sizes. Hence, in this thesis we
concentrate on schemes where only the drawn ball may be removed.

3.2. The Behaviour of the Subtree Sizes

For the purpose of determining rates of convergence for the normalised numbers of black balls
in setting Det R and Rand R, respectively, the behaviour of the random vector I(n) =(
I

(n)
1 , . . . , I

(n)
K

)
of subtree sizes that arises in the recursive approach in systems (3.1) and

(3.2) has to be examined.

First it is observed that the vector of subtree sizes is connected to another well-known
Pólya urn scheme with a diagonal replacement matrix:

We assign another label j ∈ {1, . . . ,K} to all the leaves of the associated tree specifying the
subtree they have emerged from; i.e., a leaf which belongs to the j-th subtree is assigned label
j, see Figure 3.3.

Obviously, whenever we draw a leaf of the j-th subtree, K − 1 new leaves belonging to the
same subtree will appear. Hence, after the first step of the original urn, the behaviour of the
number of draws from one subtree is governed by a Pólya urn with K colours that initially
contains one ball of each colour where a drawn ball is returned to the urn together with K−1
new balls of the same colour. The number of draws from one subtree corresponds to how
often balls of one colour were drawn in the new urn.
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3. Recursive Approach: Pólya Urns and Trees

Figure 3.3.: Studying the growth of the subtrees via another Pólya urn scheme.
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Given the associated tree as depicted in Figure 3.2, every leaf is assigned the number of the
subtree it belongs to.

The following parenthesis will answer the question of how fast this quantity approaches its
limit. Thereby, the long-term behaviour of the vector of rescaled subtree sizes is studied.
Finally, a way to couple this vector and its limit is found that enables us to estimate the
Lp-distance between both of them.

Parenthesis: Rate of Convergence in the Case of a Diagonal Replacement
Matrix

Remark. This parenthesis is a standalone paragraph of this thesis. Herein, we will derive a
rate of convergence for Pólya urn schemes with diagonal replacement matrices. To obtain the
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3.2. The Behaviour of the Subtree Sizes

desired rates of convergence for the urn schemes posed in Det R and Rand R, we will make
use of the results of this parenthesis.

By C ≥ 2 we denote a fixed number of colours and consider a Pólya urn that initially contains
one ball of each colour 1, . . . , C and where one step of the urn process is defined as follows:
One ball is drawn uniformly at random and is returned to the urn together with r ≥ 1 new
balls of the same colour.

Let Sn :=
(
S

(1)
n , . . . , S

(C)
n

)
be a vector with entries S(j)

n that denote how often a ball of colour
j was drawn within the first n steps of the urn, j ∈ {1, . . . , C}. Let Xn :=

(
X

(1)
n , . . . , X

(C)
n

)
,

n ≥ 0, be the composition of the urn after n steps, i.e., the urn contains X(j)
n balls of colour

j after n steps, where X0 = (1, . . . , 1). Let Yn :=
(
Y

(1)
n , . . . , Y

(C)
n

)
, n ≥ 1, be the outcome

of the n-th draw, i.e., Y (j)
n = 1 and Y (i)

n = 0, for all i 6= j, if a ball of colour j was drawn, i
and j ∈ {1, . . . , C}. Obviously, the quantity S(j)

n for j ∈ {1, . . . , C} can be written in terms of
Y

(j)
i : S(j)

n = ∑n
i=1 Y

(j)
i . And likewise X(j)

n can be written in terms of S(j)
n : X(j)

n = 1 + rS
(j)
n

for n ∈ N and j ∈ {1, . . . , C} .

In Athreya [1] the limit of 1
nSn :=

(
S

(1)
n
n , . . . , S

(C)
n
n

)
is implicitly determined. We state

Lemma 3.2. The sequence 1
nSn converges almost surely to a Dirichlet-distributed random

vector D := (D1, . . . , DC) with all C parameters equal to 1
r .

Proof. From Athreya [1, Theorem 1 and Corollary 1] it is known that a random vector D
exists such that Xn

C+nr → D (a.s.), n → ∞, where the distribution of the random vector
D = (D1, . . . , DC) is given by the Dirichlet distribution with all parameters equal to 1

r .
Furthermore, for j ∈ {1, . . . , C},

∣∣∣∣ 1nS(j)
n −

1
C + rn

X(j)
n

∣∣∣∣ =
∣∣∣∣∣ CS

(j)
n − n

n (C + rn)

∣∣∣∣∣ ≤ C + 1
C + rn

→ 0 a.s. (n→∞) .

It follows
1
n
Sn → D a.s. (n→∞) .

At the end of this paragraph, more information on the Dirichlet distribution will be given.

Since we are interested in rates of convergence, knowing the limiting behaviour is not enough:
We want to know how fast this limit is approached. Therefore, we will check that de Finetti’s
Theorem can be applied to the sequence (Yn)n, yielding that Yn conditioned appropriately
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3. Recursive Approach: Pólya Urns and Trees

exhibits a “Bernoulli-like” behaviour which transfers to Sn as a “multinomial-like” behaviour.
Finally, we apply the Marcinkiewicz-Zygmund inequality to this result.

Theorem 3.3. Let p ≥ 1 and let D := (D1, . . . , DC) denote the almost sure limit of 1
nSn from

Lemma 3.2. Then there exist random vectors S̄n :=
(
S̄

(1)
n , . . . , S̄

(C)
n

)
with L

(
S̄n
)

= L (Sn)
and D̄ :=

(
D̄1, . . . , D̄C

)
with L

(
D̄
)

= L (D) such that, as n→∞,

max
j=1,...,C

∥∥∥∥ 1
n
S̄(j)
n − D̄j

∥∥∥∥
p

= O
(
n−

1
2
)
.(3.3)

Proof. First of all, we check that the sequence (Yn)n≥1 is exchangeable in order to subsequently
apply de Finetti’s Theorem. Therefore, let 1i be the i-th unit vector, for i ∈ {1, . . . , C}.

Then, we have

P (Yn = 1i |Y1, . . . , Yn−1 ) =
1 + S

(i)
n−1r

C + (n− 1) r .

Hence, with y1, . . . , yn ∈ {1, . . . , C} and s(j)
k := ∑k

i=1 1
(j)
yi :

P

(
n⋂
i=1
{Yi = 1yi}

)

=P
(
Yn = 1yn

∣∣Y1 = 1y1 , . . . , Yn−1 = 1yn−1

)
P

(
n−1⋂
i=1
{Yi = 1yi}

)

=
1 + s

(yn)
n−1r

C + (n− 1) rP
(
n−1⋂
i=1
{Yi = 1yi}

)
= . . . =

1 + s
(yn)
n−1r

C + (n− 1) r ·
1 + s

(yn−1)
n−2 r

C + (n− 2) r · . . . ·
1
C

=
n−1∏
j=0

1
C + jr

·
C∏
i=1

s
(i)
n −1∏
j=0

(1 + jr) .(3.4)

For an integer n ∈ N and a, b ∈ R we denote by n!ab := ∏n
j=0 (a+ jb) the shifted multifactorial.

Now, we can rewrite (3.4) as

P

(
n⋂
i=1
{Yi = 1yi}

)
=

C∏
i=1

(
s

(i)
n − 1

)
!1r

(n− 1)!Cr
.

Observing that the probability does not depend on any ordering of the outcomes, we obtain
that (Yn)n∈N is an exchangeable sequence of random variables.

De Finetti’s Theorem, cf. Klenke [26, Theorem 12.26], yields that there exists a random
probability measure Ξ on the vertices of the unit simplex {11, . . . ,1C} such that conditioned
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3.2. The Behaviour of the Subtree Sizes

on Ξ the sequence of random variables (Yn)n∈N is independent and identically distributed
with L

(
Yi
∣∣Ξ) = Ξ almost surely.

In particular, we know that P
(
Y1 = 1j

∣∣Ξ) = Ξ ({1j}) almost surely for j ∈ {1, . . . , C}, and,
secondly, we have that S(j)

n given Ξ has the binomial distribution with parameters n and
Ξ ({1j}) . Furthermore, we can think of Ξ as a random vector (Ξ (11) , . . . ,Ξ (1C)), since Ξ is
uniquely determined by its point masses assigned to the C vertices of the unit (C − 1)-simplex.
This random vector (Ξ (11) , . . . ,Ξ (1C)) can be identified as the limit D of 1

nSn:

Conditioned on {Ξ = ξ}, the random variables Y1, Y2, . . . are identically and independently
distributed according to the probability measure ξ = (ξ (11) , . . . , ξ (1C)) on the vertices of
the standard (C − 1)-simplex. Hence, conditioned on {Ξ = ξ}, we have 1

nSn = 1
n

∑n
i=1 Yi

n→∞−→
(ξ (11) , . . . , ξ (1C)) almost surely by the strong law of large numbers. Unconditioned, we
obtain 1

nSn = 1
n

∑n
i=1 Yi

a.s.−→ (Ξ (11) , . . . ,Ξ (1C)) as n → ∞. Therefore, we conclude with
Lemma 3.2 that the limit D and the random measure Ξ arising from de Finetti’s Theorem
coincide.

Hence, we have that Y1 conditioned on Ξ behaves as follows:

Y1 =



11, with probability Ξ ({11}) ,

12, with probability Ξ ({12}) ,
...

...

1C , with probability Ξ ({1C}) .

By that, we obtain that the random vector
(
S

(1)
n , . . . , S

(C)
n

)
conditioned on D has the multi-

nomial distribution with parameters n and (Ξ ({11}) , . . . ,Ξ ({1C})).

Finally, we determine the order of the distance between 1
nSn and its limit Ξ via the Marcin-

kiewicz-Zygmund inequality:

Conditioned on Ξ, the quantity S(j)
n − nΞ ({1j}) = ∑n

i=1

(
Y

(j)
i − Ξ ({1j})

)
coincides with a

sum of n independent identically distributed random variables, which evaluate to 1−Ξ ({1j})
with probability Ξ ({1j}) and to −Ξ ({1j}) with probability 1 − Ξ ({1j}), hence, with mean
0. Obviously, every squared summand is bounded by 1.

Via conditioning on Ξ, we can fit the distance we are interested in into the setting of the
Marcinkiewicz-Zygmund inequality, Theorem 2.1, and apply the right hand-side thereof, yield-
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ing: Let j ∈ {1, . . . , C}. Then,

∥∥∥∥ 1
n
S(j)
n − Ξ ({1j})

∥∥∥∥
p

= 1
n

(
E
[∣∣∣S(j)

n − nΞ ({1j})
∣∣∣p]) 1

p

= 1
n

(∫
E

[∣∣∣S(j)
n − nΞ ({1j})

∣∣∣p ∣∣∣∣Ξ ({1j}) = x

]
dPΞ({1j}) (x)

) 1
p

≤ 1
n

(∫
(Bp)p n

p
2 dPΞ({1j}) (x)

) 1
p

= 1
n

(
(Bp)p n

p
2
) 1
p = Bp

1√
n

with a suitable constant Bp > 0. This completes the proof.

The Dirichlet Distribution

For general information on Dirichlet distributions see, for example, Johnson and Kotz [25,
Section 2.7.6]. For our purpose, we only deal with the Dirichlet distribution of order N with
all parameters equal to 1

s with s ≥ 1. Its density function f in x = (x1, . . . , xN ) is given by

f (x) =



(
Γ
(

1
s

))N
Γ
(
N
s

) N∏
i=1

x
1
s
−1

i , x ∈ U ,

0, elsewhere,

with U :=
{

(x1, . . . , xN ) ∈ (0, 1)N : ∑N
i=1 xi = 1

}
denoting the standard (N − 1)-simplex.

Then, the marginals are Beta-distributed with parameters
(

1
s ,

N−1
s

)
with density function

g (x) =


Γ
(
N
s

)
Γ
(

1
s

)
Γ
(
N−1
s

)x 1
s
−1 (1− x)

N−1
s
−1 , x ∈ (0, 1) ,

0, elsewhere.

For general information on Beta distributions see, for example, Johnson and Kotz [25, Section
2.2.4].

Let D = (D1, . . . , DN ) be Dirichlet-distributed of order N with all parameters equal to 1
s .

Note that

(3.5)
N∑
r=1

Dr = 1 almost surely,
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and, as Dr > 0, we have

(3.6)
K∑
r=1

E
[
Dψ
r

]
< 1⇔ ψ > 1,

which will be needed in the course of the calculations in order to identify contractive behaviour
(see (4.13)) in the proofs of Chapters 5, 6 and 7.

Back to the Subtree Sizes

The recursions at hand, (3.1) and (3.2), are on the level of distributions. Therefore, we take
the liberty to choose the random vector of subtree sizes suitably coupled to the almost sure
limit of the rescaled subtree sizes. Note that this procedure, i.e., choosing the vector that
represents the size of the subgroups, here subtrees, of the recursion such that it yields an
appropriate coupling together with the limit of the rescaled subgroup sizes, is one of the key
elements in the context of the contraction method.

Observing that the vector of subtree sizes I(n) and the vector Sn from the parenthesis are
connected via L

(
I(n)

)
= L (Sn−1) for C = K and r = K − 1 we choose I(n) according to

Theorem 3.3 such that the Lp-distance between I(n)

n−1 and the limit D satisfies (3.3).

Lemma 3.4. The vector of the rescaled subtree sizes I(n)

n :=
(
I

(n)
1
n , . . . ,

I
(n)
K
n

)
converges almost

surely to a Dirichlet-distributed random vector with all parameters equal to 1
K−1 denoted by

D = (D1, . . . , DK), as n→∞. Furthermore, let I(n) and D be coupled according to Theorem
3.3 and p ≥ 1. Then, for all r = 1, . . . ,K, as n→∞,∥∥∥∥∥I

(n)
r

n
−Dr

∥∥∥∥∥
p

= O
(
n−

1
2
)
.

Proof. As
∣∣∣∣ I(n)
r
n −

I
(n)
r
n−1

∣∣∣∣ < 1
n , this is an immediate consequence of Lemma 3.2 and Theorem

3.3.

Corollary 3.5. Let p ≥ 2 and ψ ∈ (0, 1). Then, for r = 1, . . . ,K, as n→∞,∥∥∥∥∥∥
(
I

(n)
r

n

)ψ
−Dψ

r

∥∥∥∥∥∥
p

= O
(
n−

ψ
2
)
.
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Proof. In the following calculation, the first inequality is due to (A.1) as a consequence of
Lemma A.1 and the second inequality follows by Jensen’s inequality

∥∥∥∥∥∥
(
I

(n)
r

n

)ψ
−Dψ

r

∥∥∥∥∥∥
p

=

E
∣∣∣∣∣∣
(
I

(n)
r

n

)ψ
−Dψ

r

∣∣∣∣∣∣
p

1
p

≤

E
∣∣∣∣∣I

(n)
r

n
−Dr

∣∣∣∣∣
pψ


1
p

≤

E
∣∣∣∣∣I

(n)
r

n
−Dr

∣∣∣∣∣
p


ψ
p

=
∥∥∥∥∥I

(n)
r

n
−Dr

∥∥∥∥∥
ψ

p

≤
(
Ap√
n

)ψ
≤ max {Ap, 1}n−

ψ
2 .

with Lemma 3.4 and a suitable constant Ap>0.

Remark 3.6. Janson showed that the correct rate for the quantities in Lemma 3.4 in all
Wasserstein distances is of order 1

n . So far, these results were not published.

When there are only two subtrees, i.e., K = 2, as in the setting Rand R, we write In := I
(n)
1

and Jn := I
(n)
2 . Then, both In and Jn are uniformly distributed on {0, . . . , n− 1}. According

to Lemma 3.4, the limit is Dirichlet-distributed with both parameters equal to 1, which
means (

In
n
,
Jn
n

)
→ (U, 1− U) , n→∞, a.s. and in Lp, p ≥ 1,

with U uniformly distributed on [0, 1]. Moreover, we are able to couple the subtree sizes to
the limit explicitly: We pick In such that the pair (In, U) is an optimal coupling; hence, we
set In := bnUc (and therefore have Jn = n− 1− bnUc), see Remark 2.2.

Lemma 3.7 (Twin of Lemma 3.4). Let p ≥ 1, U be uniformly distributed on [0, 1] and set
In := bnUc. Then,

∥∥∥∥Inn − U
∥∥∥∥
p

=
( 1
p+ 1

) 1
p 1
n

=
∥∥∥∥Jnn − (1− U)

∥∥∥∥
p
.

Proof. We have

∥∥∥∥Inn − U
∥∥∥∥p
p

=
1∫

0

∣∣∣∣bnucn − u
∣∣∣∣p du =

n−1∑
j=0

j+1
n∫
j
n

∣∣∣∣ jn − u
∣∣∣∣p du =

n−1∑
j=0

j+1
n∫
j
n

(
u− j

n

)p
du

=
n−1∑
j=0

[
1

p+ 1

(
u− j

n

)p+1
] j+1

n

j
n

=
n−1∑
j=0

1
p+ 1

( 1
n

)p+1
= 1
p+ 1

( 1
n

)p
.
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For symmetry reasons, the same approach applies to
∥∥∥Jnn − (1− U)

∥∥∥p
p
. The assertion follows.

Lemma 3.8 (Twin of Corollary 3.5). Let p ≥ 1, ψ ∈ (0, 1), U be uniformly distributed on
[0, 1] and set In := bnUc. Then, for n ≥ 2,

∥∥∥∥∥
(
In
n

)ψ
− Uψ

∥∥∥∥∥
p

,

∥∥∥∥∥
(
Jn
n

)ψ
− (1− U)ψ

∥∥∥∥∥
p

≤



(
2 + 1

p (ψ − 1) + 1

) 1
p

n−1, ψ >
p− 1
p

,

(3 ln (n))
1
p

n
, ψ = p− 1

p
,

(
1 + p (ψ − 1)

p (ψ − 1) + 1

) 1
p

n
−
(
ψ+ 1

p

)
, ψ <

p− 1
p

.

Proof. We start with

E

[∣∣∣∣∣
(
In
n

)ψ
− Uψ

∣∣∣∣∣
p]

=E
[∣∣∣∣∣
(bnUc

n

)ψ
− Uψ

∣∣∣∣∣
p]

=
1∫

0

∣∣∣∣∣
(bnuc

n

)ψ
− uψ

∣∣∣∣∣
p

du(3.7)

=
n−1∑
j=0

j+1
n∫
j
n

∣∣∣∣∣
(
j

n

)ψ
− uψ

∣∣∣∣∣
p

du

=

1
n∫

0

upψdu+
n−1∑
j=1

j+1
n∫
j
n

∣∣∣∣∣
(
j

n

)ψ
− uψ

∣∣∣∣∣
p

du.

Obviously,
1
n∫

0

upψdu = 1
pψ + 1n

−(pψ+1) ≤ n−(pψ+1).(3.8)

To simplify the second part, we first study
∣∣∣∣( jn)ψ − uψ∣∣∣∣: Observe that the first derivative

x 7→ ψxψ−1 of x 7→ xψ is strictly decreasing. According to the Mean value Theorem, for
u ∈

[
j
n ,

j+1
n

]
there is ξ ∈

(
j
n ,

j+1
n

)
such that∣∣∣∣∣

(
j

n

)ψ
− uψ

∣∣∣∣∣ =
∣∣∣∣ψξψ−1

(
j

n
− u

)∣∣∣∣ ≤
∣∣∣∣∣ψ
(
j

n

)ψ−1 1
n

∣∣∣∣∣ ≤ ψjψ−1n−ψ.
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Therefore, we have

n−1∑
j=1

j+1
n∫
j
n

∣∣∣∣∣
(
j

n

)ψ
− uψ

∣∣∣∣∣
p

du ≤
n−1∑
j=1

j+1
n∫
j
n

∣∣∣ψjψ−1n−ψ
∣∣∣p du

=ψpn−pψ
n−1∑
j=1

j+1
n∫
j
n

jp(ψ−1)du = ψpn−pψ−1
n−1∑
j=1

jp(ψ−1).(3.9)

Now, the behaviour of ∑n−1
j=1 j

p(ψ−1) is to be determined:

In the case p (ψ − 1) 6= −1, that is ψ 6= p−1
p , the sum can be estimated by the integral

n−1∑
j=1

jp(ψ−1) = 1 +
n−1∑
j=2

jp(ψ−1) ≤1 +
n∫

1

xp(ψ−1)dx(3.10)

=1 + 1
p (ψ − 1) + 1

(
np(ψ−1)+1 − 1

)
.

In the subcase p (ψ − 1) > −1, that is ψ > p−1
p , combining (3.9) and (3.10) yields

n−1∑
j=1

j+1
n∫
j
n

∣∣∣∣∣
(
j

n

)ψ
− uψ

∣∣∣∣∣
p

du ≤ ψpn−pψ−1
(

1 + 1
p (ψ − 1) + 1n

p(ψ−1)+1
)
.

Adding (3.8) to the above expression, we have

E

[∣∣∣∣∣
(
In
n

)ψ
− Uψ

∣∣∣∣∣
p]
≤ n−(pψ+1) + ψpn−pψ−1

(
1 + 1

p (ψ − 1) + 1n
p(ψ−1)+1

)
≤ 2n−pψ−1 + 1

p (ψ − 1) + 1n
−p

≤
(

2 + 1
p (ψ − 1) + 1

)
n−p.(3.11)

In the other subcase p (ψ − 1) < −1, that is ψ < p−1
p , (3.9) and (3.10) lead to

n−1∑
j=1

j+1
n∫
j
n

∣∣∣∣∣
(
j

n

)ψ
− uψ

∣∣∣∣∣
p

du ≤ p (ψ − 1)
p (ψ − 1) + 1n

−pψ−1.

Hence, with (3.8), we have

E

[∣∣∣∣∣
(
In
n

)ψ
− Uψ

∣∣∣∣∣
p]
≤ n−(pψ+1) + p (ψ − 1)

p (ψ − 1) + 1n
−pψ−1
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=
(

1 + p (ψ − 1)
p (ψ − 1) + 1

)
n−(pψ+1).(3.12)

Finally, in the other case p (ψ − 1) = −1, that is ψ = p−1
p , logarithmic terms enter the

calculation:

n−1∑
j=1

jp(ψ−1) =
n−1∑
j=1

j−1 ≤ 1 +
n−1∑
j=2

j∫
j−1

1
x
dx = 1 + ln (n− 1) ,

yielding together with (3.7), (3.8) and (3.9)

E

[∣∣∣∣∣
(
In
n

) p−1
p

− U
p−1
p

∣∣∣∣∣
]
≤ n−p +

(
p− 1
p

)p
n−p (ln (n− 1) + 1) ≤ 3ln (n)

np
.(3.13)

Combining each of (3.11), (3.12), (3.13), we have

E

[∣∣∣∣∣
(
In
n

)ψ
− Uψ

∣∣∣∣∣
p]
≤



(
2 + 1

p(ψ−1)+1

)
n−p, ψ > p−1

p ,

3 ln(n)
np , ψ = p−1

p ,(
1 + p(ψ−1)

p(ψ−1)+1

)
n−(pψ+1), ψ < p−1

p .

Dealing with
∥∥∥∥(Jnn )ψ − (1− U)ψ

∥∥∥∥ accordingly, the assertion follows.

Remark 3.9. As already stated in Remark 2.2, Lemma 3.7 implies, for p ≥ 1,

`p

(
In
n
,U

)
=
( 1
p+ 1

) 1
p 1
n
.

The choice of In := bnUc enabled us to compute the distances of interest in Lemma 3.7 and
Lemma 3.8, respectively, significantly better than in the corresponding situation of Lemma
3.4 and Corollary 3.5—yielding the same rate as Janson’s, noted in Remark 3.6.
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This chapter serves to display the reasoning of the contraction method as applied in this
thesis. A full account on capabilities and applications of the contraction method is by no
means given. However, the reader is referred to the respective literature.

The contraction method is usually applied to derive limit theorems for quantities that can
be described by a distributional recursive equation. It makes use of probability metrics and
thereby entails the possibility of determining rates of convergence.

As this thesis deals with systems of distributional recursions the following paragraph is tailored
to this setting after a rather general recap.

Application of the contraction method in this context involves the derivation of a system of
fixed-point equations. Theorems on existence and uniqueness of solutions thereof are recalled
from Knape and Neininger [27]. Finally, the basic idea of how rates of convergence are derived
in this thesis is sketched.

4.1. A System of Distributional Recursions: Existence and
Uniqueness of a Fixed-Point

Now that we captured the number of black balls recursively, see systems (3.1) and (3.2),
the contraction method comes into play. The contraction method dates back to Rösler’s
treatment of Quicksort in [50] and seminal work [51], where the contraction method in the
context of the Wasserstein metric `2 is developed. Since then the contraction method has been
widely studied and extensively developed: In Rachev and Rüschendorf [48] and Rösler and
Rüschendorf [53] the Zolotarev metric was introduced to the contraction method. Thereby, the
range of problems to be studied via the contraction method opened up significantly due to the
fact that certain sorts of distributional recursions cannot be tackled with Wasserstein metrics,
cf. Neininger and Rüschendorf [41] as well as Neininger and Rüschendorf [42]. The contraction
method became a powerful tool in the analysis of recursive algorithms and recursive structures
in general, cf. Cramer and Rüschendorf [11], Rösler [52], Neininger [39], Janson and Neininger

37



4. The Contraction Method

[24], Drmota et al. [13] as well as Neininger and Sulzbach [43]. In Knape and Neininger [27]
the range of problems to be treated with the contraction method was extended to Pólya urn
schemes.

In general when working with the contraction method one deals with a quantity that can be
described recursively on the level of distributions and the following steps are carried out:

1. At first, the quantity of interest has to be normalised appropriately. Usually, it is centred
around its mean and scaled by (the order of) the reciprocal of the standard deviation.
Hence, the first two moments are to be studied beforehand.

2. The recurrence for the quantity of interest leads to a recurrence for the normalised
quantity.

3. From the shape of the recurrence for the normalised quantity a fixed-point equation as
limiting equation can be guessed. Then, this fixed-point equation can be considered a
self-map of the space of probability measures.

4. Next, one aims to prove existence and uniqueness of a solution of the fixed-point equation
via the Banach fixed-point Theorem applied to the associated self-map. Therefore,
metric and subspace need to be reasonably chosen in order to deal with a complete
metric space.

5. Finally, convergence in distribution of the sequence of the normalised quantity to the
fixed-point is established via studying the distance between sequence and limit in the
chosen metric.

The goal is to obtain a limit theorem for the normalised quantity from these five steps.
Therefore, the metric is to be chosen such that convergence in this metric implies weak
convergence.

In the setting of Pólya urns, we work with a system of recurrences and consequently obtain
a system of fixed-point equations. The operator associated with this system of fixed-point
equations is a self-map of the Cartesian product of the space of probability measures with
itself.

At this point, the reasoning for the fourth step of the contraction method in the case of a
system of recursions is briefly sketched in general, i.e., how to choose the subspace and metric
appropriately in order to obtain existence and uniqueness of a fixed-point for a system of
distributional recursions.
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Consider T (real-valued) random variables Y [1]
n , . . . , Y

[T]
n such that the corresponding nor-

malised quantities X [1]
n , . . . , X

[T]
n satisfy a system of distributional recursions where the nor-

malised quantities are defined as follows: Let s[k] : N → R+, j 7→ s[k] (j) such that s[k] (j) =

Θ
(√

Var
(
Y

[k]
j

))
and e[k] : N→ R, j 7→ E

[
Y

[k]
j

]
for k = 1, . . . ,T. Then, Y [k]

n is to be centred
around its mean and scaled by (a term of the order of) its standard deviation, hence

X [k]
n :=

Y
[k]
n − E

[
Y

[k]
n

]
s[k] (n)

for n ≥ n0 for some large enough n0. We call X [k]
j a quantity of type k of size j, where

k ∈ {1, . . . ,T} and j ∈ N0. The fact that the normalised quantities are to satisfy a system
of distributional recursions manifests as follows: Any quantity X [k]

n of type k and size n can
be decomposed (in distribution) into B contributions coming from the normalised quantities
where each of them belongs to one of the T types and are of a (random) size strictly smaller
than n. We denote by J (n) :=

(
J

(n)
1 , . . . , J

(n)
B

)
the vector containing these sizes.

For example, in both settings of Pólya urn schemes that we study, the types are given by
the number of colours, so T = 2. In setting Det R, the number of black balls at time n
is determined by K contributions coming from the K subtrees of the associated tree, i.e.,
B = K. In setting Rand R, the contributions come from two subtrees, so B = 2, even if the
type of one of the two subtrees is random.

By π := (π (k, r)), 1 ≤ k ≤ T, 1 ≤ r ≤ B, we denote a T × B-matrix with all entries
π (k, r) ∈ {1, . . . ,T}. The matrix π carries the information on the type of these contributions;
the rows of π indicate to which type each of the B contributions belongs. Then, the system
of distributional recursions looks as follows:

X [1]
n

d=
B∑
r=1

A(n),[π(1,r)]
r X

[π(1,r)],(r)
J

(n)
r

+ t
(n)
[1] ,

...

X [T]
n

d=
B∑
r=1

A(n),[π(T,r)]
r X

[π(T,r)],(r)
J

(n)
r

+ t
(n)
[T] ,

(4.1)

where for k = 1, . . . ,T and r = 1, . . . ,B

A(n),[π(k,r)]
r :=

s[π(k,r)]
(
J

(n)
r

)
s[k] (n) ,

t
(n)
[k] := 1

s[k] (n)

(
−e[k] (n) +

B∑
r=1

e[π(k,r)]
(
J (n)
r

))
,
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where X [k],(r)
j is an independent copy of X [k]

j , 0 ≤ j ≤ n− 1, 1 ≤ k ≤ T such that the families(
X

[k],(r)
j

)
0≤j≤n−1

for k = 1, . . . ,T, r = 1, . . . ,B are independent and also independent of
J (n).

Given that the coefficients and the components of J (n) grow with n → ∞ and A
(n),[k]
r as

well as the toll terms t(n)
[k] converge in a reasonable sense to some A[k] and t[k], respectively,

the recursions of the above system suggest that a limit
(
X [1], . . . , X [T]

)
of
(
X

[1]
n , . . . , X

[T]
n

)
satisfies the following system of fixed-point equations:

X [1] d=
B∑
r=1

A[π(1,r)]X [π(1,r)],(r) + t[1],

...

X [T] d=
B∑
r=1

A[π(T,r)]X [π(T,r)],(r) + t[T]

(4.2)

with similar conditions on distributions and independence as in system (4.1).

The system of fixed-point equations (4.2) translates into a selfmap T of the Cartesian product
of the space of probability measures. Let A := (Akr) be a T×B-matrix of real-valued random
variables and t := (t1, . . . , tT) be a vector of real-valued random variables. Then, system (4.2)
is associated to the following mapping T , with suitable A and t:

T : (M)×T → (M)×T

(µ1, . . . , µT) 7→ (T1 (µ1, . . . , µT) , . . . , TT (µ1, . . . , µT)) , where for 1, . . . ,T

Tk (µ1, . . . , µT) := L
(

B∑
r=1

AkrZkr + tk

)(4.3)

with (Ak1, . . . , AkB, tk) , Zk1, . . . , ZkB independent and L (Zkr) = µπ(k,r) for k = 1, . . . ,T and
r = 1, . . . ,B. We write Tk (µ) := Tk (µ1, . . . , µT), k = 1, . . . ,T, and T µ := (T1 (µ) , . . . , TT (µ)).
The equation T µ = µ summarises (4.2).

The following two theorems state how to choose a subspace of (M)×T in order to obtain a
unique fixed-point of (4.3). The proofs will be carried out in the metric that later will serve to
derive rates of convergence. Of course, to prove only existence and uniqueness of a fixed-point
other choices of the metrics could do as well.

Both theorems are borrowed from Knape and Neininger [27]. Their proofs in [27] are per-
formed with the use of the Zolotarev metric. We will re-proof Theorem 4.1 in the “classical”
way with the maximal Wasserstein distance `∨2 and give a proof of Theorem 4.2 as in [27].
Both proofs later serve to understand why we use different metrics depending on whether we
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are in the non-normal limit case or in the normal limit case of our urns Det R and Rand
R.

Theorem 4.1 (Theorem 5.1 in [27]). Let Akr and tk of (4.3) be L2-integrable with

(4.4) max
1≤k≤T

E

[
B∑
r=1

(Akr)2
]
< 1 and E [tk] = 0

for all k = 1, . . . ,T and r = 1, . . . ,B. Then, the restriction of T to (M2 (0))×T has a unique
fixed-point.

Proof. First of all, µ ∈ (M2 (0))×T ⇒ T µ ∈ (M2 (0))×T: By the independence conditions of
(4.3) and due to L2-integrability of all occurring quantities, we have T µ ∈ (M2)×T. Using
E [tk] = 0, it follows T µ ∈ (M2 (0))×T.

Now, it is shown that T restricted to (M2 (0))×T is a contraction with respect to the maximal
Wasserstein metric `∨2 . As

(
(M2 (0))×T , `∨2

)
is a complete metric space, the existence and

uniqueness of the fixed-point follows with the Banach fixed-point Theorem.

Let µ, ν ∈ (M2 (0))×T. We choose random variables Yk1, . . . , YkB and Zk1, . . . , ZkB such that
for k = 1, . . . ,T, r = 1, . . . ,B,

• L (Ykr) = µπ(k,r) and L (Zkr) = νπ(k,r);

• the pair (Ykr, Zkr) is an optimal coupling of the laws µπ(k,r) and νπ(k,r);

• Ykr and Zks are independent for r 6= s;

• (Ak1, . . . , AkB, tk) , Yk1, . . . , YkB are independent, and

• (Ak1, . . . , AkB, tk) , Zk1, . . . , ZkB are independent.

Then, we have, for all k = 1, . . . ,T,

L
(

B∑
r=1

AkrYkr + tk

)
= Tk (µ) , L

(
B∑
r=1

AkrZkr + tk

)
= Tk (ν)

and further

(`2 (Tk (µ) , Tk (ν)))2

≤
∥∥∥∥∥

B∑
r=1

Akr (Ykr − Zkr)
∥∥∥∥∥

2

2
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=
B∑
r=1

E
[
(Akr)2 (Ykr − Zkr)2

]
+
∑
r 6=s

E [Akr (Ykr − Zkr)Aks (Yks − Zks)](4.5)

=
B∑
r=1

E
[
(Akr)2

]
‖Ykr − Zkr‖22 =

B∑
r=1

E
[
(Akr)2

] (
`2
(
µπ(k,r), νπ(k,r)

))2
(4.6)

≤
B∑
r=1

E
[
(Akr)2

] (
`∨2 (µ, ν)

)2 ≤ max
1≤k≤T

B∑
r=1

E
[
(Akr)2

] (
`∨2 (µ, ν)

)2
.

In (4.5) we have ∑r 6=sE [Akr (Ykr − Zkr)Aks (Yks − Zks)] = 0 due to independence and the
fact E [Ykr] = E [Zkr] = 0. Line (4.6) follows with independence and the condition on
(Ykr, Zkr) being an optimal coupling of µπ(k,r) and νπ(k,r). This leads to

`∨2 (T µ, T ν) ≤

√√√√ max
1≤k≤T

B∑
r=1

E
[
(Akr)2

]
`∨2 (µ, ν) .

As
√

max1≤k≤T
∑B
r=1E

[
(Akr)2

]
< 1 due to (4.4), it follows that the mapping T restricted to

(M2 (0))×T is a contraction with respect to `∨2 and the assertion follows.

Note that the result of Theorem 4.1 can also be derived with the help of the maximal Zolotarev
distance ζ∨2 (as in [27, Theorem 5.1]). We decided to work with the maximal Wasserstein
distance `∨2 for it is possible to deduce rates in other metrics on that base. Moreover, due to
Lemma 2.7, upper bounds in `∨2 for the rate of convergence imply upper bounds in ζ∨2 .

Theorem 4.2 (Theorem 5.2 in [27]). Given the situation of (4.3), let Akr be L2+ε-integrable
and tk = 0 for k = 1, . . . ,T and r = 1, . . . ,B with

B∑
r=1

(Akr)2 = 1 almost surely, for all k = 1, . . . ,T, and(4.7)

min
1≤k≤T

P

(
max

1≤r≤B
|Akr| < 1

)
> 0.(4.8)

Then, for all σ2 > 0 the unique fixed-point of T restricted to
(
M2+ε

(
0, σ2))×T is given by(

N
(
0, σ2) , . . . ,N (0, σ2)).

Proof. The proof is based on the proofs of Theorems 5.1 and 5.2 in [27]. Fix ε > 0 and
σ2 > 0. Let µ ∈

(
M2+ε

(
0, σ2))×T, then Tµ ∈ (M2+ε

(
0, σ2))×T: All occurring quantities are

L2+ε-integrable, hence, Tµ is, too. Due to independence from (4.3), condition (4.7) and as
tk = 0, it follows Tµ ∈

(
M2+ε

(
0, σ2))×T.

We now show that the restriction of T to
(
M2+ε

(
0, σ2))×T is a contraction with respect

to ζ∨2+ε: Let ε ∈ (0, 1] such that all occurring Zolotarev distances are finite. Let µ, ν ∈
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(
M2+ε

(
0, σ2))×T. Choose random variables Ykr and Zkr such that for k = 1, . . . ,T, r =

1, . . . ,B

• L (Ykr) = µπ(k,r) and L (Zkr) = νπ(k,r);

• Yk1, . . . , YkB, (Ak1, . . . , AkB) are independent, and

• Zk1, . . . , ZkB, (Ak1, . . . , AkB) are independent;

Then, for k = 1, . . . ,T,

L
(

B∑
r=1

AkrYkr

)
= Tk (µ) as well as L

(
B∑
r=1

AkrZkr

)
= Tk (ν) .

By υ we denote the distribution of (Ak1, . . . , AkB) and obtain via conditioning on it and with
the independence conditions stated above

ζ2+ε (Tk (µ) , Tk (ν)) = sup
f∈F2+ε

∣∣∣∣∣E
[
f

(
B∑
r=1

AkrYkr

)
− f

(
B∑
r=1

AkrZkr

)]∣∣∣∣∣
= sup
f∈F2+ε

∣∣∣∣∣
∫
E

[
f

(
B∑
r=1

αrYkr

)
− f

(
B∑
r=1

αrZkr

)]
dυ (α1, . . . , αB)

∣∣∣∣∣
≤
∫

sup
f∈F2+ε

∣∣∣∣∣E
[
f

(
B∑
r=1

αrYkr

)
− f

(
B∑
r=1

αrZkr

)]∣∣∣∣∣ dυ (α1, . . . , αB)(4.9)

=
∫
ζ2+ε

(
B∑
r=1

αrYkr,
B∑
r=1

αrZkr

)
dυ (α1, . . . , αB)

≤
∫ B∑

r=1
|αr|2+ε ζ2+ε (Ykr, Zkr) dυ (α1, . . . , αB)(4.10)

≤
B∑
r=1

E
[
|Akr|2+ε

]
ζ∨2+ε (µ, ν) ≤ max

1≤k≤T

B∑
r=1

E
[
|Akr|2+ε

]
ζ∨2+ε (µ, ν) ,

where (4.9) follows with monotonicity and Jensen’s inequality and in (4.10) it was used that
ζ2+ε is (2 + ε,+)-ideal. This yields

ζ∨2+ε (T µ, T ν) ≤ max
1≤k≤T

B∑
r=1

E
[
|Akr|2+ε

]
ζ∨2+ε (µ, ν) .

From (4.7) and (4.8), we have ∑B
r=1E

[
|Akr|2+ε

]
< 1 for all k = 1, . . . ,T and therefore,

existence and uniqueness of a fixed-point of T restricted to
(
M2+ε

(
0, σ2))×T follows with the

Banach fixed-point Theorem, since this space endowed with the Zolotarev metric ζ∨2+ε is a
complete metric space.
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4. The Contraction Method

It is left to understand that this fixed-point is given by the normal distribution: We study the
characteristic function of Tk (µ?) with µ? :=

(
N
(
0, σ2) , . . . ,N (0, σ2)), for k = 1, . . . ,T. Let

X1, . . . , XB ∼ N
(
0, σ2) be independent and independent of (Ak1, . . . , AkB). Then, for t ∈ R,

we know that the characteristic function of N
(
0, σ2) is given by

E [exp (itX1)] = exp
(
− t

2σ2

2

)
.

For the characteristic function of Tk (µ?) we obtain due to independence and with property
(4.7)

E

[
exp

(
it

B∑
r=1

AkrXr

)]
=
∫
E

[
exp

(
it

B∑
r=1

αrXr

)]
dυ (α1, . . . , αB)

=
∫ B∏

r=1
E [exp (itαrXr)]dυ (α1, . . . , αB)

=
∫ B∏

r=1
exp

(
− t

2α2
rσ

2

2

)
dυ (α1, . . . , αB)

=
∫

exp
(
− t

2σ2

2

B∑
r=1

α2
r

)
dυ (α1, . . . , αB)

=E
[
exp

(
− t

2σ2

2

B∑
r=1

(Akr)2
)]

=E
[
exp

(
− t

2σ2

2

)]
.

It follows that Tk (µ?) = N
(
0, σ2) and T µ? = µ?.

Whenever we derive rates of convergence in the normal limit cases, we work with the maximal
Zolotarev metric ζ∨3 . This choice seems to fit our reasoning better, see Remark 8.3.

Moreover, in the next paragraph a short discussion of the capabilities of Wasserstein and
Zolotarev metrics in the context of the contraction method with respect to our situation
follows.

In Chapter 5, we shall see that the behaviour of the variance of the number of black balls
will determine whether we are in the situation of Theorem 4.1 or of Theorem 4.2. That is
because the scaling factor used for normalising is given by the standard deviation and this
scaling factor forms the shape of the coefficients of the limiting equation. Hence, the variance
is crucial for us. However, the behaviour of the variances is closely related to the ratio of the
eigenvalues of the replacement matrix. Thus, the regimes of non-normal and normal limiting
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4.1. A System of Distributional Recursions: Existence and Uniqueness of a Fixed-Point

behaviour of the normalised number of black balls are divided up according to the ranges of
the ratio of the eigenvalues.

A Note on the Metrics

As already mentioned, the shape of the coefficients of the limiting equation is crucial. This
paragraph serves to clarify the choices of different metrics in Theorems 4.1 and 4.2.

The origin of the contraction method makes use of Wasserstein distances, most notably `2.
However, it turned out that there are distributional fixed-point equations that do not fit into
the contraction setting when choosing `2: Let X and Y be independent random variables with
X

d=Y and consider the distributional fixed-point equation

X
d= 1√

2
X + 1√

2
Y.

We try to apply Theorem 4.1 and observe that the squared coefficients sum up to one and,
thus, Theorem 4.1 cannot be applied. Even worse, it is easy to check that by the convolution
property of the normal distribution any normal distribution N

(
0, σ2) with σ > 0 solves this

distributional fixed-point equation. Therefore, there is no unique fixed-point in M2 (0) (or
Mp (0)). Whenever the normal distribution appears as solution of such a fixed-point equation,
the same problem arises. Hence, there is no way to choose a metric such that a modified
version of Theorem 4.1 could yield a unique fixed-point inM2 (0) (orMp (0)) endowed with
the respective Wasserstein metric.

Thus, the subspace has to be shrunk such that there is a unique fixed-point and a metric
has to be chosen such that the coefficients turn the associated mapping into a contraction:
That is where the Zolotarev metric appeared as knight in shining armour. Working with
the metric spaces

(
M2+ε

(
0, σ2) , ζ2+ε

)
analogously to Theorem 4.2 extended the contraction

method to such fixed-point equations. The benefit of the Zolotarev distances ζs is that they
are (s,+)-ideal forcing the coefficients to sum up to a number less than one when equipped
with exponent s ≥ 2. Unfortunately, this flexibility comes at a price: The higher s of ζs is
chosen, the more knowledge is needed about the moments of the quantities in play.

There are further restrictions to the Wasserstein setting that are not discussed here as they
do not contribute to the reasoning in this thesis. These problems and more details about the
benefits of when to choose which metric can be found in Rachev and Rüschendorf [48], Rösler
and Rüschendorf [53], Neininger and Rüschendorf [41] as well as Neininger and Rüschendorf
[42].
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4. The Contraction Method

In the non-normal limit case, the Wasserstein distance `2 works out and opens the door to
transferring the obtained rates not only to `p but also to the Kolmogorov-Smirnov distance
%. Hence, we stick to the original approach. In the normal limit case, Wasserstein metrics do
not pave the road to success and therefore we use the Zolotarev metric ζ3.

4.2. Rates of Convergence via the Contraction Method

The fifth step of the contraction method, establishing convergence to the fixed-point, grants
access to the opportunity of performing explicit estimates such that establishing weak conver-
gence goes together with (upper bounds of) rates of convergence in the metric that is chosen
in the forth step.

Naturally, exploiting the fifth step of the contraction method for the sake of rates already
has found its place in literature: Cramer [12] and Cramer and Rüschendorf [11] did so in the
context of the analysis of recursive algorithms. Rates of convergence for Quicksort were derived
by Neininger and Rüschendorf [40] in the Zolotarev metric ζ3 as well as by Fill and Janson [15]
in the Wasserstein metrics and the Kolmogorov-Smirnov distance (based on the “big bang”
of the contraction method in Rösler’s study of Quicksort in [50]). Also in Mahmoud and
Neininger [35] for distances in random binary search trees and in Neininger and Rüschendorf
[42] in the case of degenerate limit equations, rates of convergence in the Zolotarev metric ζ3

were stated.

Before going into details in settings Det R and Rand R, the idea all proofs have in common
is sketched:

By D we denote some metric on the space of probability measures, by D∨ the corresponding
maximal metric on the Cartesian product of that space. We plug in random variables but
keep in mind that only their distributions matter. We assume that convergence in D implies
weak convergence and that steps 1 to 4 of the contraction method already lie behind us.

We denote by Xn :=
(
X

[1]
n , . . . , X

[T]
n

)
the sequence with distributional recursions (4.1) and

its limit by X :=
(
X [1], . . . , X [T]

)
(that is unique in an appropriately chosen subspace).

The distance between the j-th member of the sequence to its limit is abbreviated by d (j) :=
D∨ (Xj ,X) := max1≤k≤TD

(
X

[k]
j , X [k]

)
.

Our aim is to determine the law that governs the decrease of d (n) = D∨ (Xn,X) in terms of
some positive decreasing function r : N→ R+

0 with r (n) n→∞−→ 0:

d (n) = O (r (n)) .
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4.2. Rates of Convergence via the Contraction Method

So, the function r (n) captures the behaviour of the rate (for example, think of r (n) = nγ

with some negative exponent γ).

The first step in order to prove this is to bound the distance between X [k]
n to its limit X [k],

for k = 1, . . . ,T, in the following way:

D
(
X [k]
n , X [k]

)
≤ E

[
B∑
r=1

(
A(n),[π(k,r)]
r

)s
d
(
J (n)
r

)]
+ e[k]

n(4.11)

where s ≥ 1 is some exponent that stems from the metric D and e
[k]
n is some error term

converging to zero.

If we can do so, we can bound d (n) in terms of the coefficients occurring in the system of
distributional recurrences (4.1) and the distances d (j) with j ∈ {0, . . . , n− 1} plus an error
term max1≤k≤T e

[k]
n .

Describing the distance d (n) with the help of the distances of the sub-sizes J (n) enables us to
derive rates of convergence via induction: As induction hypothesis we set

(4.12) d (j) ≤ Cr (j) for j = n∗, . . . , n− 1

with some constant C > 0 to be determined later and with some large enough n∗ ∈ N.

Next, we firstly aim to confirm that the error term tends to zero “fast” enough, i.e., for all
k = 1, . . . ,T it holds e

[k]
n ≤ Br (n) with some constant B > 0 independent of C from (4.12).

Secondly, we plug the induction hypothesis (4.12) into (4.11) and want to exploit the fact that
the mapping (4.3) associated to the system of fixed-point equations (4.2) is a contraction. We
expect the coefficients of system (4.1) to “contract”, too. That manifests in confirming

(4.13) lim sup
n→∞

E

 B∑
r=1

A(n),[π(k,r)]
r

r
(
J

(n)
r

)
r(n)

 < 1.

This property will be referred to as contractive behaviour of the coefficients from now on.

If done so, this yields that there is δ ∈ (0, 1) such that for n sufficiently large we have

D
(
X [k]
n , X [k]

)
≤ (1− δ) Cr (n) + Br (n) , k = 1, . . . ,T.

Hence, we are able to choose C such that

D∨ (Xn,X) ≤ Cr (n) ,
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4. The Contraction Method

and thereby confirm that the distances between sequence and limit decrease with a rate of
order r (n). This reasoning yields a limit theorem for Xn together with an upper bound for
the rate of convergence.

One important aspect, that is hidden in the above notation, is the role of the variance: In
the first step of the contraction method, the quantity of interest is centred around its mean
and usually scaled by (a term of the order of) its standard deviation. Hence, the coefficients
A

(n),[π(k,r)]
r occurring in the distributional recursion for the normalised quantity usually are

closely related to the standard deviation. Therefore, in order to prove that the distance
between sequence and limit converges to zero in the chosen metric, it usually is necessary to
know the behaviour of the variance. When it comes to determining rates of convergence, it is
necessary to be able to know the shape of the variance in detail.
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5. Rates of Convergence for a Two-Colour
Pólya Urn with Deterministic Replacement

In this chapter, upper bounds for rates of convergence in setting Det R for the base cases are
determined, i.e., the number of black balls after n steps when starting with a single ball.

At first, the details of settingDet R are stated and some general information on the quantities
of interest as well as some enlightening insights are given. This introductory part is followed by
the treatment of the non-normal limit case. The normal limit case concludes this chapter.

Recall the situation of setting Det R.

Balanced Irreducible Two-Colour Pólya Urns

R =

 a b

c d

with a, d ∈ N0 ∪{−1} and b, c ∈ N,

such that a+ b = c+ d =: K − 1 ≥ 1 (balancedness)

and bc > 0 (irreducibility).

(Det R)

The ratio of smallest to largest eigenvalue is given by λ := a−c
a+b and determines whether the

normalised number of black balls admits a normal or a non-normal limiting behaviour; first,
the non-normal limit case, where λ > 1

2 , is studied, then the normal limit case, where λ ≤ 1
2 .

According to the observations from Chapter 4, in the non-normal limit case, the Wasserstein
metrics and the Kolmogorov-Smirnov distance serve to measure the distance between the
sequence and its limit, whereas the normal limit case is treated with the Zolotarev distance
ζ3.

By means of the recursive approach exhibited in Chapter 3, the following distributional re-
cursions hold for the number of black balls, recall (3.1), with Bb

0 := 1 and Bw
0 := 0 and for

n ≥ 1:
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5. Rates of Convergence for a Two-Colour Pólya Urn with Deterministic Replacement

Bb
n

d=
a+1∑
r=1

B
b,(r)
I

(n)
r

+
K∑

r=a+2
B

w,(r)
I

(n)
r

,

Bw
n

d=
c∑

r=1
B

b,(r)
I

(n)
r

+
K∑

r=c+1
B

w,(r)
I

(n)
r

(5.1)

with Bb,(r)
j

d=Bb
j , B

w,(r)
j

d=Bw
j for r = 1, . . . ,K and 0 ≤ j ≤ n − 1 such that

(
B

b,(1)
j

)
0≤j≤n

,

. . .,
(
B

b,(K)
j

)
0≤j≤n

,
(
B

w,(1)
j

)
0≤j≤n

, . . .,
(
B

b,(K)
j

)
0≤j≤n

, I(n) are independent.

To normalise these quantities, we are going to need the mean and the variance of the number
of black balls. They will be derived in the following two lemmata.

Lemma 5.1. For the means of the number of black balls E
[
Bb
n

]
and E [Bw

n ], depending on λ
it holds, as n→∞:

i) λ > 0:

E
[
Bb
n

]
= c (a+ b)

b+ c
n+

bΓ
(

1
a+b

)
(b+ c) Γ

(
1+a−c
a+b

) nλ +O (1) ,

E [Bw
n ] = c (a+ b)

b+ c
n−

cΓ
(

1
a+b

)
(b+ c) Γ

(
1+a−c
a+b

) nλ +O (1) .

ii) λ < 0:

E
[
Bb
n

]
= c (a+ b)

b+ c
n+O (1) ,

E [Bw
n ] = c (a+ b)

b+ c
n+O (1) .

Proof. The exact expectations were derived in the proof of Bagchi and Pal [3, Lemma 1]. For
the above stated asymptotic expansions, see Appendix A.2.

Lemma 5.2. For the variances of the number of black balls Var
(
Bb
n

)
and Var (Bw

n ), depending
on λ it holds, as n→∞:

i) λ = 1
2 :

Var
(
Bb
n

)
= bc n ln (n) +O (n) ,

Var (Bw
n ) = bc n ln (n) +O (n) .
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ii) 0 < λ < 1
2 :

Var
(
Bb
n

)
= (a+ b) (a− c)2 bc

(a+ b− 2 (a− c)) (b+ c)2 n+O
(
n2λ

)
,

Var (Bw
n ) = (a+ b) (a− c)2 bc

(a+ b− 2 (a− c)) (b+ c)2 n+O
(
n2λ

)
.

iii) λ < 0:

Var
(
Bb
n

)
= (a+ b) (a− c)2 bc

(a+ b− 2 (a− c)) (b+ c)2 n+O (1) ,

Var (Bw
n ) = (a+ b) (a− c)2 bc

(a+ b− 2 (a− c)) (b+ c)2 n+O (1) .

Proof. For the exact computation, see the proof of Bagchi and Pal [3, Lemma 2]. To derive
the asymptotic expansions, compare Appendix A.2.

For λ > 1
2 the variance is of the order n2λ. This can be seen either from the calculations in

Appendix A.2 or from the asymptotic expansion of Bn stated in Remark 5.5.

Notation 5.3. Henceforth, we abbreviate

cb := c (a+ b)
b+ c

, db :=
bΓ
(

1
a+b

)
(b+ c) Γ

(
1+a−c
a+b

) , dw := −
cΓ
(

1
a+b

)
(b+ c) Γ

(
1+a−c
a+b

) ,
fb := (a+ b) (a− c)2 bc

(a+ b− 2 (a− c)) (b+ c)2 .

Remark 5.4. The mean of the j-th quantities Bb
j and Bw

j is abbreviated by µb (j) and µw (j),
respectively, as well as their standard deviations by σb (j) and σw (j), and their variances by
σ2

b (j) and σ2
w (j), respectively. On studying rates of convergence in the setting Det R,

we may use these abbreviations with random argument I(n)
r . However, when e.g. µb

(
I

(n)
r

)
appears, it does not equal E

[
Bb
I

(n)
r

]
. The quantity µb

(
I

(n)
r

)
is a random variable mapping

I
(n)
r to the mean of the randomly chosen I(n)

r -th quantity, i.e., we pick one of the n quantities
µb (j), j = 0, . . . , n − 1, according to the law of I(n)

r . In contrast, the quantity E
[
Bb
I

(n)
r

]
is not subjected to randomness anymore, it is a number. Of course, this applies to all the
abbreviations defined here.

Remark 5.5 (Phase transition at λ = 1
2). The following representation of the number of

black balls after n steps for λ > 1
2 together with the shape of the variance from Lemma 5.2
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5. Rates of Convergence for a Two-Colour Pólya Urn with Deterministic Replacement

helps to understand why the transition from weak normal to almost sure non-normal limits
happens at λ = 1

2 .

The results of Janson [22] and Pouyanne [47] imply the following decomposition of the number
of black balls after n steps when λ is strictly greater than 1

2 , with a suitable random variable
B related to the almost sure limit of the normalised number of black balls, see Chauvin et
al. [9]:

Bn = c(a+b)
b+c n + a+b

b+cn
λB + o

(
nλ
)
, (n→∞) a.s. and in Lp.

Obviously, the behaviour of Bn is ruled by a linear drift accompanied by random fluctuations
of order nλ that capture the impact of the beginning of the urn process. The last term, i.e.,
o
(
nλ
)
, hides the “normal” noise of randomness that contributes of order

√
n. As long as

λ > 1
2 , the impact of the beginning of the urn process rules out the “normal” randomness.

When λ hits 1
2 , this impact is no longer strong enough to do so and the “normal” randomness

is rampant, resulting in the normal distribution as weak limit.
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5.1. Non-Normal Limit Case: λ > 1
2

5.1. Non-Normal Limit Case: λ > 1
2

The aim of this section is to derive an upper bound for the rate of convergence in the maxi-
mal Kolmogorov-Smirnov distance. On that account, at first a rate in the maximal Wasser-
stein distance `∨2 is established via induction. After that, this rate is transferred to maximal
Wasserstein distances `∨p , p ≥ 1, via another induction, using the previously derived `∨2 -rate as
induction base. Finally, we will make use of Lemma 2.6 and convey this rate to the maximal
Kolmogorov-Smirnov distance.

In the non-normal limit case, it is sufficient to scale the centred quantity by the order of
the standard deviation as will be clear when the recursions for the normalised quantity are
established and are considered in the light of Theorem 4.1. If λ > 1

2 , the variance is of order
n2λ, see Chapter A.2 of the appendix.

Let X0 := 0 =: Y0 and for n ≥ 1

Xn :=
Bb
n − E

[
Bb
n

]
nλ

, Yn := Bw
n − E [Bw

n ]
nλ

.(5.2)

The distributional recursions from system (5.1) are transferred to the normalised number of
black balls after n steps, for n ≥ 1:

Xn
d=
a+1∑
r=1

(
I

(n)
r

n

)λ
X

(r)
I

(n)
r

+
K∑

r=a+2

(
I

(n)
r

n

)λ
Y

(r)
I

(n)
r

+ bb
(
I(n)

)
,

Yn
d=

c∑
r=1

(
I

(n)
r

n

)λ
X

(r)
I

(n)
r

+
K∑

r=c+1

(
I

(n)
r

n

)λ
Y

(r)
I

(n)
r

+ bw
(
I(n)

)(5.3)

with toll terms bb
(
I(n)

)
and bw

(
I(n)

)
, which expand via Lemma 5.1.i) and Notation 5.3,

bb
(
I(n)

)
:= n−λ

(
a+1∑
r=1

µb
(
I(n)
r

)
+

K∑
r=a+2

µw
(
I(n)
r

)
− µb (n)

)

= db

−1 +
a+1∑
r=1

(
I

(n)
r

n

)λ+ dw

K∑
r=a+2

(
I

(n)
r

n

)λ
+O

(
n−λ

)
,

bw
(
I(n)

)
:= n−λ

(
c∑

r=1
µb
(
I(n)
r

)
+

K∑
r=c+1

µw
(
I(n)
r

)
− µb (n)

)

= db

c∑
r=1

(
I

(n)
r

n

)λ
+ dw

−1 +
K∑

r=c+1

(
I

(n)
r

n

)λ+O
(
n−λ

)
,

(5.4)
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where X
(r)
j

d= Xj , Y
(r)
j

d= Yj for r = 1, . . . ,K and 0 ≤ j ≤ n − 1 and
(
X

(1)
j

)
0≤j≤n−1

,. . .,(
X

(K)
j

)
0≤j≤n−1

,
(
Y

(1)
j

)
0≤j≤n−1

,. . .,
(
Y

(K)
j

)
0≤j≤n−1

, I(n) are independent.

Based on the system of recurrences (5.3) and the asymptotic behaviour of the rescaled subtree
sizes I

(n)
r
n studied in Lemma 3.4, we expect the following recursions to hold for a possible limit

(X ,Y ) of (Xn,Yn)n∈N, formally letting n→∞:

X
d=
a+1∑
r=1

Dλ
rX

(r) +
K∑

r=a+2
Dλ
rY

(r) + bb,

Y
d=

c∑
r=1

Dλ
rX

(r) +
K∑

r=c+1
Dλ
rY

(r) + bw

(5.5)

with toll terms

bb := db

(
−1 +

a+1∑
r=1

Dλ
r

)
+ dw

K∑
r=a+2

Dλ
r ,

bw := db

c∑
r=1

Dλ
r + dw

(
−1 +

K∑
r=c+1

Dλ
r

)(5.6)

with independent copies X (r) of X , Y (r) of Y , r = 1, . . . ,K, and a Dirichlet-distributed
random vector (D1, . . . , DK) with all parameters equal to 1

K−1 such that X (1), . . . ,X (K),
Y (1), . . . ,Y (K), and (D1, . . . , DK) are independent.

Moreover, we choose I(n) =
(
I

(n)
1 , . . . , I

(n)
K

)
and D = (D1, . . . , Dk) to be coupled in such a

way that Lemma 3.4 holds.

The system of distributional fixed-point equations given by (5.5) can be considered a self-map
ofM×M as explained in Chapter 4. We easily see that it fits the situation stated in Theorem
4.1 (we have ∑K

r=1E
[
D2λ
r

]
< 1 by (3.6) and E [bb] = E [bw] = 0 by construction). Thus, we

know that there is a unique solution of the system (5.5) in the Cartesian product of the space
of centred probability measures with finite second momentM2 (0)×M2 (0). We will denote
this solution by (L (Λb) ,L (Λw)).

The following theorem summarises the results of this section and gives upper bounds for
the rates of convergence for the normalised number of black balls in setting Det R in the
non-normal limit case.

Theorem 5.6. Given a Pólya urn scheme characterised by Det R with λ := a−c
a+b >

1
2 and

normalised numbers of black balls Xn and Yn defined in (5.2), let p ≥ 1 and ε > 0. Then, as
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2

n→∞,

`∨p ((Xn,Yn) , (Λb,Λw)) = O
(
n−λ+ 1

2 +ε
)
,

%∨ ((Xn,Yn) , (Λb,Λw)) = O
(
n−λ+ 1

2 +ε
)
,

where (L (Λb) ,L (Λw)) denotes the unique fixed-point of the system (5.5) inM2 (0)×M2 (0).

The proof of Theorem 5.6 consists of three steps: At first, a rate in the maximal Wasserstein
distance `∨2 is derived in Proposition 5.8. Then, we proceed to extend the rates to the maximal
Wasserstein distances `p, p ≥ 1, in Proposition 5.13. And finally, the rate is transferred to
the maximal Kolmogorov-Smirnov distance %∨ in Proposition 5.14.

In order to derive rates of convergence in the Wasserstein distances, we make use of the
existence of optimal couplings. Since this is a central assumption to our proofs it is prepended
as the following remark.

Remark 5.7 (Optimal couplings). A main ingredient brought about by using Wasserstein
distances is the question of optimal couplings: In order to switch from ‖·‖2 to the Wasserstein
distance `2 (and later from ‖·‖p to Wasserstein distances `p, p ≥ 2), we choose, according to
Lemma 2.3, the random variables X0, . . . ,Xn,Λb to form a set of optimal couplings of the
distributions L (X0) , . . . ,L (Xn) ,L (Λb) and likewise the random variables Y0, . . . ,Yn,Λw to
form a set of optimal couplings of the distributions L (Y0) , . . . ,L (Yn) ,L (Λw). Furthermore,
we pick K independent copies of these random variables, where the r-th copy of Xj is denoted
by X

(r)
j , of Yj by Y

(r)
j , j = 0, . . . , n and, finally, the r-th copy of Λb by X (r) just as the r-th

copy of Λw by Y (r), r = 1, . . . ,K. Moreover, we choose all of these random variables to be
independent of

(
I(n), D

)
. Hence, this implies that

X
(r)
j and X (r) as well as Y

(r)
j and Y (r) are optimal couplings of the respective(5.7)

laws for r = 1, . . . ,K and 0 ≤ j ≤ n,(
I(n), D

)
,
(
X

(r)
j

)
0≤j≤n

,
(
Y

(r)
j

)
0≤j≤n

, r = 1, . . . ,K are independent and(5.8) (
I(n), D

)
,X (r),Y (r), r = 1, . . . ,K, are independent.(5.9)

Note that

Λb
d=
a+1∑
r=1

Dλ
rX

(r) +
K∑

r=a+2
Dλ
rY

(r) + bb,

Λw
d=

c∑
r=1

Dλ
rX

(r) +
K∑

r=c+1
Dλ
rY

(r) + bw

(5.10)

with toll terms bb and bw defined in (5.6).
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Establishing a Rate in the Wasserstein Distance `∨2

As a first step towards Theorem 5.6, an upper bound for the rate in the Wasserstein distance
`∨2 is established:

Proposition 5.8 (Rate of Convergence in `∨2 ). Consider a Pólya urn scheme characterised
by Det R where λ = a−c

a+b >
1
2 . Let Xn and Yn as in (5.2). Furthermore, let (L (Λb) ,L (Λw))

denote the unique solution of system (5.5) inM2 (0)×M2 (0) and let ε > 0. Then, as n→∞,

`∨2 ((Xn,Yn) , (Λb,Λw)) = O
(
n−λ+ 1

2 +ε
)
.

To prove Proposition 5.8, we describe the distance `∨2 ((Xn,Yn) , (Λb,Λw)) recursively in terms
of the distances `∨2 ((Xj ,Yj) , (Λb,Λw)) with j = 0, . . . , n − 1. Then, we give estimates for
the occurring terms of this recursive description, that do not contribute to the contractive
behaviour. Finally, we confirm the rate given in Proposition 5.8 via induction.

Remark 5.9. In the course of this paragraph we will abbreviate the j-th distance and the
squared j-th distance by

∆ (j) := `∨2 ((Xj ,Yj) , (Λb,Λw)) , ∆2 (j) :=
(
`∨2 ((Xj ,Yj) , (Λb,Λw))

)2
.

Furthermore, both will appear with random argument I(n)
r ∈ {0, . . . , n− 1}, which means

that we pick one of the n distances ∆ (j), j = 0, . . . , n − 1 according to the law of I(n)
r . As

to avoid confusion, it is emphasised that ∆
(
I

(n)
r

)
(that is still a random variable) does not

equal `∨2
((

X
I

(n)
r
,Y

I
(n)
r

)
, (Λb,Λw)

)
(that is a number and does not appear in any calculation

of this thesis).

We deal with the distances of the two single components accordingly and abbreviate

∆b (j) := `2 (Xn,Λb) , ∆2
b (j) := (`2 (Xn,Λb))2 ,

∆w (j) := `2 (Yn,Λw) , ∆2
w (j) := (`2 (Yn,Λw))2 .

Lemma 5.10 (Recursive description of ∆2 (n)). In the situation of Proposition 5.8 with
assumptions as in Remark 5.7, it holds, for n ∈ N,

∆2 (n) ≤
K∑
r=1

E
(I(n)

r

n

)2λ

∆2
(
I(n)
r

)+ L2

∥∥∥∥∥∥
(
I

(n)
r

n

)λ
−Dλ

r

∥∥∥∥∥∥
2

2

+ 2LE

∣∣∣∣∣∣
(
I

(n)
r

n

)λ(I(n)
r

n

)λ
−Dλ

r

∣∣∣∣∣∣∆
(
I(n)
r

)

56



5.1. Non-Normal Limit Case: λ > 1
2

+ max
{∥∥∥bb

(
I(n)

)
− bb

∥∥∥2

2
,
∥∥∥bw

(
I(n)

)
− bw

∥∥∥2

2

}

with L := max {‖Λb‖2 , ‖Λw‖2}.

Proof. Without loss of generality, all calculations will be carried out for the first components
Xn and Λb, respectively. They work out completely analogously for the second components
Yn and Λw. In the first step, we make use of (5.10),

∆2
b (n) = (`2 (Xn,Λb))2

≤ E

∣∣∣∣∣∣
a+1∑
r=1

(I(n)
r

n

)λ
X

(r)
I

(n)
r

−Dλ
rX

(r)

+
K∑

r=a+2

(I(n)
r

n

)λ
Y

(r)
I

(n)
r

−Dλ
rY

(r)


+ bb

(
I(n)

)
− bb

∣∣∣2


= E


∣∣∣∣∣∣
a+1∑
r=1

(I(n)
r

n

)λ
X

(r)
I

(n)
r

−Dλ
rX

(r)

+
K∑

r=a+2

(I(n)
r

n

)λ
Y

(r)
I

(n)
r

−Dλ
rY

(r)

∣∣∣∣∣∣
2

+E
[∣∣∣bb

(
I(n)

)
− bb

∣∣∣2]

+ 2E

a+1∑
r=1

(I(n)
r

n

)λ
X

(r)
I

(n)
r

−Dλ
rX

(r)

+
K∑

r=a+2

(I(n)
r

n

)λ
Y

(r)
I

(n)
r

−Dλ
rY

(r)

(5.11)

·
(
bb
(
I(n)

)
− bb

)
= E


∣∣∣∣∣∣
a+1∑
r=1

(
I

(n)
r

n

)λ
X

(r)
I

(n)
r

−Dλ
rX

(r)

∣∣∣∣∣∣
2+E


∣∣∣∣∣∣

K∑
r=a+2

(
I

(n)
r

n

)λ
Y

(r)
I

(n)
r

−Dλ
rY

(r)

∣∣∣∣∣∣
2

+ 2E

a+1∑
r=1

K∑
s=a+2

(I(n)
r

n

)λ
X

(r)
I

(n)
r

−Dλ
rX

(r)

(I(n)
s

n

)λ
Y

(s)
I

(n)
s

−Dλ
sY

(s)

(5.12)

+
∥∥∥bb

(
I(n)

)
− bb

∥∥∥2

2

=
a+1∑
r=1

E


∣∣∣∣∣∣
(
I

(n)
r

n

)λ
X

(r)
I

(n)
r

−Dλ
rX

(r)

∣∣∣∣∣∣
2

+
a+1∑

r,s=1, r 6=s
E

(I(n)
r

n

)λ
X

(r)
I

(n)
r

−Dλ
rX

(r)

(I(n)
s

n

)λ
X

(s)
I

(n)
s

−Dλ
sX

(s)

(5.13)
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+
K∑

r=a+2
E


∣∣∣∣∣∣
(
I

(n)
r

n

)λ
Y

(r)
I

(n)
r

−Dλ
rY

(r)

∣∣∣∣∣∣
2

+
K∑

r,s=a+2, r 6=s
E

(I(n)
r

n

)λ
Y

(r)
I

(n)
r

−Dλ
rY

(r)

(I(n)
s

n

)λ
Y

(s)
I

(n)
s

−Dλ
sY

(s)

(5.14)

+
∥∥∥bb

(
I(n)

)
− bb

∥∥∥2

2

=
a+1∑
r=1

∥∥∥∥∥∥
(
I

(n)
r

n

)λ
X

(r)
I

(n)
r

−Dλ
rX

(r)

∥∥∥∥∥∥
2

2

+
K∑

r=a+2

∥∥∥∥∥∥
(
I

(n)
r

n

)λ
Y

(r)
I

(n)
r

−Dλ
rY

(r)

∥∥∥∥∥∥
2

2

(5.15)

+
∥∥∥bb

(
I(n)

)
− bb

∥∥∥2

2
.

The terms in (5.11), (5.12), (5.13) and (5.14) evaluate to 0 due to independence conditioned on(
I(n), D

)
, as stated in (5.8) and (5.9), and E

[
X

(r)
j

]
= E

[
Y

(r)
j

]
= E

[
X (r)

]
= E

[
Y (r)

]
= 0.

We proceed by inserting a copy of the limit multiplied by the rescaled subtree size into the
first part of (5.15):

∥∥∥∥∥∥
(
I

(n)
r

n

)λ
X

(r)
I

(n)
r

−Dλ
rX

(r)

∥∥∥∥∥∥
2

2

(5.16)

=

∥∥∥∥∥∥
(
I

(n)
r

n

)λ
X

(r)
I

(n)
r

−
(
I

(n)
r

n

)λ
X (r) +

(
I

(n)
r

n

)λ
X (r) −Dλ

rX
(r)

∥∥∥∥∥∥
2

2

=

∥∥∥∥∥∥
(
I

(n)
r

n

)λ (
X

(r)
I

(n)
r

−X (r)
)

+ X (r)

(I(n)
r

n

)λ
−Dλ

r

∥∥∥∥∥∥
2

2

= E


∣∣∣∣∣∣
(
I

(n)
r

n

)λ (
X

(r)
I

(n)
r

−X (r)
)∣∣∣∣∣∣

2+ E


∣∣∣∣∣∣X (r)

(I(n)
r

n

)λ
−Dλ

r

∣∣∣∣∣∣
2

+2E

(I(n)
r

n

)λ (
X

(r)
I

(n)
r

−X (r)
)

X (r)

(I(n)
r

n

)λ
−Dλ

r

 .
We treat the three summands separately: The first one yields

E


∣∣∣∣∣∣
(
I

(n)
r

n

)λ (
X

(r)
I

(n)
r

−X (r)
)∣∣∣∣∣∣

2
= E

E

∣∣∣∣∣∣
(
I

(n)
r

n

)λ (
X

(r)
I

(n)
r

−X (r)
)∣∣∣∣∣∣

2∣∣∣∣∣∣∣ I(n)
r
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2

=
n−1∑
j=0

P
(
I(n)
r = j

)
E

[(
j

n

)2λ ∣∣∣X (r)
j −X (r)

∣∣∣2∣∣∣∣∣ I(n)
r = j

]

=
n−1∑
j=0

P
(
I(n)
r = j

)( j
n

)2λ
E

[∣∣∣X (r)
j −X (r)

∣∣∣2](5.17)

=
n−1∑
j=0

P
(
I(n)
r = j

)( j
n

)2λ
∆2

b (j)(5.18)

= E

(I(n)
r

n

)2λ

∆2
b

(
I(n)
r

) ,
where (5.17) holds due to our independence assumptions in (5.8) and (5.9) and (5.18) holds
due to our assumption on optimal couplings in (5.7).

For the second summand, we have because of the independence condition in (5.9)

E


∣∣∣∣∣∣X (r)

(I(n)
r

n

)λ
−Dλ

r

∣∣∣∣∣∣
2 = ‖Λb‖22

∥∥∥∥∥∥
(
I

(n)
r

n

)λ
−Dλ

r

∥∥∥∥∥∥
2

2

.

Finally, for the third summand

E

(I(n)
r

n

)λ (
X

(r)
I

(n)
r

−X (r)
)

X (r)

(I(n)
r

n

)λ
−Dλ

r


≤ E

∣∣∣∣∣I
(n)
r

n

∣∣∣∣∣
λ ∣∣∣∣X (r)

I
(n)
r

−X (r)
∣∣∣∣ ∣∣∣X (r)

∣∣∣
∣∣∣∣∣∣
(
I

(n)
r

n

)λ
−Dλ

r

∣∣∣∣∣∣


=
n−1∑
j=0

P
(
I(n)
r = j

)
E

[∣∣∣∣∣
(
j

n

)λ(( j
n

)λ
−Dλ

r

)∣∣∣∣∣ ∣∣∣X (r)
∣∣∣ ∣∣∣X (r)

j −X (r)
∣∣∣ ∣∣∣∣∣ I(n)

r = j

]

=
n−1∑
j=0

P
(
I(n)
r = j

)( j
n

)λ
E

[∣∣∣∣∣
(
j

n

)λ
−Dλ

r

∣∣∣∣∣
∣∣∣∣∣ I(n)
r = j

]
E
[∣∣∣X (r)

∣∣∣ ∣∣∣X (r)
j −X (r)

∣∣∣]

≤
n−1∑
j=0

P
(
I(n)
r = j

)( j
n

)λ
E

[∣∣∣∣∣
(
j

n

)λ
−Dλ

r

∣∣∣∣∣
∣∣∣∣∣ I(n)
r = j

]
‖Λb‖2

∥∥∥X (r)
j −X (r)

∥∥∥
2

(5.19)

= ‖Λb‖2
n−1∑
j=0

P
(
I(n)
r = j

)( j
n

)λ
E

[∣∣∣∣∣
(
j

n

)λ
−Dλ

r

∣∣∣∣∣
∣∣∣∣∣ I(n)
r = j

]
∆b (j)(5.20)

= ‖Λb‖2E

(I(n)
r

n

)λ
∆b

(
I(n)
r

) ∣∣∣∣∣∣
(
I

(n)
r

n

)λ
−Dλ

r

∣∣∣∣∣∣


using the Cauchy-Schwarz inequality at (5.19), observing that ∆b
(
I

(n)
r

)
is σ

(
I

(n)
r

)
-measurable

in the last step and with the condition on optimal couplings of (5.7) in (5.20).
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Hence, we estimate for (5.16):

∥∥∥∥∥∥
(
I

(n)
r

n

)λ
X

(r)
I

(n)
r

−Dλ
rX

(r)

∥∥∥∥∥∥
2

2

(5.21)

≤ E

(I(n)
r

n

)2λ

∆2
b

(
I(n)
r

)+ ‖Λb‖22

∥∥∥∥∥∥
(
I

(n)
r

n

)λ
−Dλ

r

∥∥∥∥∥∥
2

2

+2 ‖Λb‖2E

(I(n)
r

n

)λ
∆b

(
I(n)
r

) ∣∣∣∣∣∣
(
I

(n)
r

n

)λ
−Dλ

r

∣∣∣∣∣∣
 .

The term
∥∥∥∥∥
(
I

(n)
r
n

)λ
Y

(r)
I

(n)
r

−Dλ
rY

(r)
∥∥∥∥∥

2

2
occurring in (5.15) can be treated analogously. This

observation together with the estimate stated in (5.21) and letting L := max {‖Λb‖2 , ‖Λw‖2}
leads to the following estimate for ∆2

b (n), according to (5.15),

∆2
b (n) ≤

K∑
r=1

E
(I(n)

r

n

)2λ

∆2
(
I(n)
r

)+ L2

∥∥∥∥∥∥
(
I

(n)
r

n

)λ
−Dλ

r

∥∥∥∥∥∥
2

2

+ 2LE
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(
I

(n)
r

n

)λ(I(n)
r

n

)λ
−Dλ

r

∣∣∣∣∣∣∆
(
I(n)
r

)+
∥∥∥bb

(
I(n)

)
− bb

∥∥∥2

2
.

Pursuing the same steps, we obtain the same recursive description as an estimate for ∆2
w (n)

and the assertion follows.

Glancing at Lemma 5.10, we see that the behaviour of the sizes of the subtrees of the associated
tree, in the form of I(n)

r , plays an important role. Hence, we will make use of the results of
Section 3.2. For the first time, we will do so in the following corollary dealing with the
behaviour of the toll terms.

Lemma 5.11. For the toll terms bb
(
I(n)

)
and bw

(
I(n)

)
defined in (5.4) compared to bb and

bw defined in (5.6), we have, as n→∞,

max
{∥∥∥bb

(
I(n)

)
− bb

∥∥∥
2
,
∥∥∥bw

(
I(n)

)
− bw

∥∥∥
2

}
= O

(
n−

λ
2
)
.

Proof. Recalling Corollary 3.5 with p = 2 and ψ = λ in the penultimate step, we obtain
∥∥∥bb

(
I(n)

)
− bb

∥∥∥
2
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2

=

∥∥∥∥∥∥db

a+1∑
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r

n
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r

+ dw

K∑
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r
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−Dλ

r

+O
(
n−λ
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K∑
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r
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2

+O
(
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λ
2 +O

(
n−λ

)
= O

(
n−

λ
2
)

and likewise for
∥∥∥bw

(
I(n)

)
− bw

∥∥∥
2
.

We finally confirm Proposition 5.8 via induction.

Proof of Proposition 5.8. Let ε > 0 and set as induction hypothesis:

(5.22) ∃C > 0 ∀j ∈ {1, . . . , n− 1} : ∆ (j) ≤ Cj−λ+ 1
2 +ε.

Note that ∆ (0) <∞ does not contribute as it is multiplied by 0, whenever it appears in the
computation. We will have a closer look at the terms occurring in the recursive description
of Lemma 5.10, given by

∆2 (n) ≤
K∑
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E
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(5.23)
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.

Firstly, we have
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}
(5.24)

=O
(
n−λ

)
by Corollary 3.5, with p = 2, ψ = λ, and Lemma 5.11.
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Secondly, we estimate, plugging in the induction hypothesis (5.22),
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r

) 1
2 +ε

∥∥∥∥
2

(5.26)

≤ C An−λ n−
λ
2 n

1
2 +ε = C n−2λ+1+2εAn−

1
2−ε+

λ
2(5.27)

≤ C n−2λ+1+2εAn−ε(5.28)

with the Cauchy-Schwarz inequality in (5.26), Corollary 3.5 (p = 2, ψ = λ) and a suitable
constant A > 0 in (5.27) and λ

2 −
1
2 < 0 in (5.28).

Plugging (5.24) and (5.28) in (5.23) and using the induction hypothesis (5.22) we obtain with
a suitable constant B > 0

∆2 (n) ≤
K∑
r=1

E

(I(n)
r

n

)2λ

∆2
(
I(n)
r

)+ Cn−2λ+1+2εAn−ε +Bn−λ

≤ C2n−2λ
K∑
r=1

E

[(
I(n)
r

)2λ−2λ+1+2ε
]

+ Cn−2λ+1+2εAn−ε +Bn−λ

≤ C2n−2λ+1+2ε
K∑
r=1

E

(I(n)
r

n

)1+2ε+ Cn−2λ+1+2εAn−ε +Bn−λ

≤ (1− δ)C2n−2λ+1+2ε + Cn−2λ+1+2εAn−ε +Bn−λ(5.29)

≤
(
1−

(
δ − δ′

))
C2n−2λ+1+2ε +Bn−1+λ−2ε

0 n−2λ+1+2ε.(5.30)

To establish (5.29) we use Lemma 3.4 combined with property (3.6) and conclude that

K∑
r=1

E

(I(n)
r

n

)1+2ε→ ξ < 1, n→∞.

Hence, there is 0 < δ < 1 such that

K∑
r=1

E

(I(n)
r

n

)1+2ε ≤ 1− δ
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2

for n large enough. For (5.30), we choose 0 < δ′ < δ such that for n large enough it holds

An−ε < Cδ′.

Furthermore, we fix n0 ∈ N such that all estimates hold for n ≥ n0.

Hence, the steps in (5.29) and (5.30) constitute the contractive behaviour, compare (4.13),
that we need to conduct the induction, as they enable us to choose C such that

C2 ≥ ∆2 (0) ∨max
{

∆2 (j) j2λ−1−2ε∣∣j = 1, . . . , n0
}
∨ Bn

−1+λ−2ε
0
δ − δ′

.

By this, we obtain

∆2 (n) ≤ C2n−2λ+1+2ε,

concluding the proof of Proposition 5.8.

Rates of Convergence in the Wasserstein Distances `∨p , p ≥ 1

This paragraph serves to transfer the rate of Proposition 5.8 to Wasserstein distances `∨p with
p ≥ 1. The transfer will be based upon the following lemma which is an easy extension of Fill
and Janson [15, Lemma 3.2] that allows us to conduct an induction on p for deriving rates in
`∨p .

Lemma 5.12. Let Z1, . . . , ZK+1, K ≥ 2 be independent random variables and p ≥ 2 be
integer. Then,

E

∣∣∣∣∣
K+1∑
i=1

Zi

∣∣∣∣∣
p
 ≤ K∑

i=1
E [|Zi|p] +

(
K∑
i=1
‖Zi‖p−1 + ‖ZK+1‖p

)p
.

Proof. Expansion of the product yields, due to the Multinomial Theorem,

E

∣∣∣∣∣
K+1∑
i=1

Zi

∣∣∣∣∣
p
 ≤ E

(K+1∑
i=1
|Zi|

)p
= E

 ∑
x1+...+xK+1=p

(
p

x1, . . . , xK+1

)
K+1∏
i=1
|Zi|xi


=

∑
x1+···+xK+1=p

(
p

x1, . . . , xK+1

)
K+1∏
i=1

E [|Zi|xi ](5.31)
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≤
K∑
i=1
E [|Zi|p] +

∑
x1+...+xK+1=p
x1,...,xK≤p−1

(
p

x1, . . . , xK+1

)
K∏
i=1
‖Zi‖xip−1 ‖ZK+1‖xK+1

p(5.32)

≤
K∑
i=1
E [|Zi|p] +

∑
x1+...+xK+1=p

(
p

x1, . . . , xK+1

)
K∏
i=1
‖Zi‖xip−1 ‖ZK+1‖xK+1

p

=
K∑
i=1
E [|Zi|p] +

(
K∑
i=1
‖Zi‖p−1 + ‖ZK+1‖p

)p

using independence in (5.31), and E [|Zi|xi ] = ‖Zi‖xixi ≤ ‖Zi‖
xi
p−1 for i ∈ {1, . . . ,K} and xi ≤ p

as well as E [|ZK+1|xK+1 ] = ‖ZK+1‖xK+1
xK+1

≤ ‖ZK+1‖xK+1
p in (5.32).

Now, we extend the statement of Proposition 5.8 providing a rate in all maximal Wasserstein
distances `∨p , p ≥ 1:

Proposition 5.13. Consider a Pólya urn scheme characterised by Det R where λ = a−c
a+b >

1
2 .

Let Xn and Yn be as in (5.2). Furthermore, let (L (Λb) ,L (Λw)) denote the unique fixed-point
of system (5.5) inM2 (0)×M2 (0). Let p ≥ 1 and ε > 0, then, as n→∞,

`∨p ((Xn,Yn) , (Λb,Λw)) = O
(
n−λ+ 1

2 +ε
)
.

Proof. Lemma 5.12 enables us to estimate `∨p ((Xn,Yn) , (Λb,Λw)) recursively in terms of both
n and p. To prove this proposition we first conduct an induction on p. Hence, p is integer in
our calculations. We use Proposition 5.8 as base case, i.e., p = 2. Then, the proof is concluded
by another induction on n in every step p → p + 1. Due to monotonicity of the Wasserstein
distances (i.e., `q ≤ `p for q ≤ p, see Lemma 2.4), we subsequently conclude that the result
holds for any p ≥ 1.

Still, we set conditions on independence and optimal couplings as in Remark 5.7. According
to Remark 5.9 we abbreviate

∆q (j) := `∨q ((Xj ,Yj) , (Λb,Λw))

and it is to be understood in the same way as in Remark 5.9 when we write ∆q

(
I

(n)
r

)
with

random argument I(n)
r .

We decompose the distance `p ((Xn,Yn) , (Λb,Λw)) into K + 1 summands in order to apply
Lemma 5.12. Again, all calculations will be executed for the first component Xn since calcu-
lations for the second component Yn work out analogously. We set as induction hypothesis

∆q (j) ≤ Cqj−λ+ 1
2 +ε for q = 2, . . . , p− 1, j = 1, . . . , n− 1,
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2

(again, note that ∆q (0) does not contribute) and, keeping (5.10) in mind, begin with

`p (Xn,Λb)

≤

∥∥∥∥∥∥

a+1∑
r=1

(
I

(n)
r

n

)λ
X

(r)
I

(n)
r

−Dλ
rX

(r)

+


K∑

r=a+2

(
I

(n)
r

n

)λ
Y

(r)
I

(n)
r

−Dλ
rY

(r)

+bb
(
I(n)

)
− bb

∥∥∥∥∥∥
p

=:
∥∥∥∥∥
a+1∑
r=1

Vr +
K∑

r=a+2
Vr + VK+1

∥∥∥∥∥
p

.

The summands V1, . . . , VK+1 are independent conditioned on the random vector
(
D, I(n)

)
;

hence, conditioned on
(
D, I(n)

)
we can apply Lemma 5.12.

For the sake of transparency, we write Z(r) =


X (r), r = 1, . . . , a+ 1,

Y (r), r = a+ 2, . . . ,K,
and we deal

analogously with Z(r)
I

(n)
r

(representing X
(r)
I

(n)
r

and Y
(r)
I

(n)
r

accordingly). Furthermore, note that we
have from Kuba and Sulzbach [28, Theorem 2] that Λb and Λw are Subgaussian and therefore
Mp := max

{
‖Λb‖p , ‖Λw‖p

}
<∞, p ≥ 2 (note that this also yields ∆p (0) <∞).

We abbreviate x := (x1, . . . , xK) and i = (i1, . . . , iK) and condition on
(
D, I(n)

)
. Let bb

denote the constant version of bb that arises by conditioning on
(
D, I(n)

)
. Then, we have,

applying Lemma 5.12 in the final step,

∥∥∥∥∥
a+1∑
r=1

Vr +
K∑

r=a+2
Vr + VK+1

∥∥∥∥∥
p

p

= E

∣∣∣∣∣
a+1∑
r=1

Vr +
K∑

r=a+2
Vr + VK+1

∣∣∣∣∣
p


= E

∣∣∣∣∣∣


K∑
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(
I

(n)
r

n

)λ
Z

(r)
I

(n)
r

−Dλ
rZ

(r)

+
(
bb
(
I(n)

)
− bb

)∣∣∣∣∣∣
p

= E

E
∣∣∣∣∣∣


K∑
r=1

(
I

(n)
r

n

)λ
Z

(r)
I

(n)
r

−Dλ
rZ

(r)

+
(
bb
(
I(n)

)
− bb

)∣∣∣∣∣∣
p ∣∣∣∣∣∣

(
D, I(n)

)
=

∫
E

∣∣∣∣∣
{

K∑
r=1

(
ir
n

)λ
Z

(r)
ir
− xλrZ(r)

}
+
(
bb (i)− bb

)∣∣∣∣∣
p
dP(D,I(n)) (x, i)(5.33)

≤
∫ { K∑

r=1
E

[∣∣∣∣∣
(
ir
n

)λ
Z

(r)
ir
− xλrZ(r)

∣∣∣∣∣
p]

+

 K∑
r=1

∥∥∥∥∥
(
ir
n

)λ
Z

(r)
ir
− xλrZ(r)

∥∥∥∥∥
p−1

+
∥∥bb (i)− bb

∥∥
p

p dP(D,I(n)) (x, i)
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where in (5.33) the equality holds since Z(r)
1 , . . . , Z

(r)
n−1, Z

(r), r = 1, . . . ,K and
(
D, I(n)

)
are

independent.

Let q ≥ 2, we continue with∥∥∥∥∥
(
ir
n

)λ
Z

(r)
ir
− xλrZ(r)

∥∥∥∥∥
q

=
∥∥∥∥∥
(
ir
n

)λ
Z

(r)
ir
−
(
ir
n

)λ
Z(r) +

(
ir
n

)λ
Z(r) − xλrZ(r)

∥∥∥∥∥
q

=
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(
ir
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)λ (
Z

(r)
ir
− Z(r)

)
+ Z(r)

((
ir
n

)λ
− xλr

)∥∥∥∥∥
q

≤
(
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)λ ∥∥∥Z(r)
ir
− Z(r)

∥∥∥
q

+
∣∣∣∣∣
(
ir
n

)λ
− xλr

∣∣∣∣∣ ∥∥∥Z(r)
∥∥∥
q

≤
(
ir
n

)λ
∆q (ir) +

∣∣∣∣∣
(
ir
n

)λ
− xλr

∣∣∣∣∣Mq

using assumption (5.7) in the last step.

We note that

∥∥bb (i)− bb
∥∥
p

=
∣∣∣∣∣db

a+1∑
r=1

((
ir
n

)λ
− xλr

)
+ dw

K∑
r=a+1

((
ir
n
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− xλr

)
+O

(
n−λ
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≤ A1
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r=1

∣∣∣∣∣
(
ir
n

)λ
− xλr

∣∣∣∣∣+O
(
n−λ

)

with a suitable constant A1 > 0.

Hence, we have with the induction hypothesis in the last step

(`p (Xn,Λb))p

≤
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E
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(
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2

≤
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Finally, we set as induction hypothesis for the induction on n

∆p (j) ≤ Cpj−λ+ 1
2 +ε, j = 1, . . . , n− 1

and proceed
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p(5.34)
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For the first part of (5.34), we have a closer look on the p-th root of the summands:
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≤
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) 1
2 +ε
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+MpA2

n−λ+ 1
2 +ε(5.36)

with Corollary 3.5 and a suitable constant A2 > 0 in (5.35), and since 1
2 < λ < 1 yields

−λ+ 1
2 + ε > −λ

2 in (5.36).

Adding up, we obtain for the first part of (5.34):
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For the second part of (5.34), we have, again with Corollary 3.5, used twice, and another
suitable constant A3 > 0∥∥∥∥∥∥
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Inserting these estimates for (5.34), we have
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Finally, we want to know if there is Cp such that
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∥∥∥∥∥∥∥
(
I

(n)
r

n

) 1
2 +ε

∥∥∥∥∥∥∥
p

p

+ Cp−1
p (MpA2)p−1

p−1∑
j=0

(
p

j

)
(5.38)

≤Cpp

∥∥∥∥∥∥∥
(
I

(n)
r

n

) 1
2 +ε

∥∥∥∥∥∥∥
p

p

+ Cp−1
p (MpA2)p−1 2p

with sufficiently large Cp and A2 in (5.38). Hence, we estimate further

K∑
r=1

Cp
∥∥∥∥∥∥∥
(
I

(n)
r

n

) 1
2 +ε

∥∥∥∥∥∥∥
p

+MpA2


p

+(KCp−1 +A3)p
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≤
K∑
r=1

Cpp
∥∥∥∥∥∥∥
(
I

(n)
r

n

) 1
2 +ε

∥∥∥∥∥∥∥
p

p

+ Cp−1
p (MpA2)p−1 2p

+(KCp−1 +A3)p

≤Cpp
K∑
r=1

∥∥∥∥∥∥∥
(
I

(n)
r

n

) 1
2 +ε

∥∥∥∥∥∥∥
p

p

+A4 ≤ (1− δ)Cpp +A4(5.39)

with A4 > KCp−1
p (MpA2)p−1 2p + (KCp−1 +A3)p. Observing that we have, as n→∞,

K∑
r=1

∥∥∥∥∥∥∥
(
I

(n)
r

n

) 1
2 +ε

∥∥∥∥∥∥∥
p

p

=
K∑
r=1

E


∣∣∣∣∣∣∣
(
I

(n)
r

n

) 1
2 +ε

∣∣∣∣∣∣∣
p =

K∑
r=1

E

(I(n)
r

n

)p( 1
2 +ε)

→ ξ < 1(5.40)

due to Lemma 3.4 and property (3.6), with p
(

1
2 + ε

)
> 1 since p ≥ 2. This yields that there

is 0 < δ < 1 such that for all n large enough we have ∑K
r=1

∥∥∥∥∥
(
I

(n)
r
n

) 1
2 +ε

∥∥∥∥∥
p

p

≤ 1− δ.

We now fix n0 ∈ N such that all estimates hold for n ≥ n0. Hence, choosing

Cp ≥ ∆p (0) ∨max
{

∆p (j) jλ−
1
2−ε

∣∣j = 1, . . . , n0
}
∨ p

√
A4
δ

we finally obtain

`p (Xn,Λb) ≤ Cpn−λ+ 1
2 +ε.

Obviously, the same reasoning remains valid for `p (Yn,Λw). Hence, Proposition 5.13 follows.

Transferring the Rate of Convergence to the Kolmogorov-Smirnov Distance

As final step, the rate obtained in Wasserstein distances in Proposition 5.13 is transferred to
the Kolmogorov-Smirnov distance.

Proposition 5.14. Consider a Pólya urn scheme characterised by Det R where λ = a−c
a+b >

1
2 .

Let Xn and Yn as in (5.2). Furthermore, let (L (Λb) ,L (Λw)) denote the unique solution of
system (5.5) inM2 (0)×M2 (0) and let ε > 0, Then, as n→∞,

%∨ ((Xn,Yn) , (Λb,Λw)) = O
(
n−λ+ 1

2 +ε
)
.

Proof. The rates obtained in the previous section in the Wasserstein metrics `∨p are transferred
to the Kolmogorov-Smirnov distance via Lemma 2.6. From Kuba and Sulzbach [28, Theorem
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2

2] we have that both Λb and Λw admit a bounded density fΛb , fΛw , respectively, on (−∞,∞).
Now, Lemma 2.6 serves to bound the Kolmogorov-Smirnov distance with the help of the
Wasserstein metric `p: Let 0 < ε′ < ε. Due to Proposition 5.13, for p ≥ 1 there is Cp > 0
such that

% (Xn,Λb) ≤ (p+ 1)
1
p+1

(
sup
x∈R
|fΛb (x)| `p (Xn,Λb)

) p
p+1

≤ (p+ 1)
1
p+1

(
sup
x∈R
|fΛb (x)|Cpn−λ+ 1

2 +ε′
) p
p+1

≤ (p+ 1)
1
p+1

(
sup
x∈R
|fΛb (x)|Cp

) p
p+1

n(−λ+ 1
2 +ε′) p

p+1

= (p+ 1)
1
p+1

(
sup
x∈R
|fΛb (x)|Cp

) p
p+1

n
−λ+ 1

2 +ε′+ 1
p+1 (λ− 1

2−ε
′).

We now choose p large enough such that

ε′ + 1
p+ 1

(
λ− 1

2 − ε
′
)
< ε⇔ p >

λ− 1
2 − ε

ε− ε′
.

As (p+ 1)
1
p+1 → 1, (p→∞) there exists a constant CKS > 0 such that

% (Xn,Λb) ≤ CKSn
−λ+ 1

2 +ε.

The same reasoning applies to % (Yn,Λw) and the assertion follows.
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5.2. Normal Limit Case: λ ≤ 1
2

In the normal limit case, upper bounds for rates of convergence for the normalised number
of black balls are derived in the Zolotarev metric ζ3. This is due to the fact that our proofs
are based on the contraction method, and Wasserstein distances are not able to detect a
contraction when the normal distribution appears as limit. Recall the situation of p. 49 et
seq., Notation 5.3 and Remark 5.4.

In order to obtain the standard normal distribution as limit of the normalised quantities, the
reciprocal of the standard deviation of the number of black balls serves as scaling factor. We
consider the normalised numbers of black balls given by X̂0 := 0 =: Ŷ0, X̂1 := 0 =: Ŷ1 (note
that Var

(
Bb

1

)
= Var (Bw

1 ) = 0) and, for n ≥ 2,

X̂n :=
Bb
n − E

[
Bb
n

]
√

Var (Bb
n)

, Ŷn := Bw
n − E [Bw

n ]√
Var (Bw

n )
.(5.41)

Due to the recursive description of the number of black balls from (5.1) we have the following
system of distributional recursions for the normalised quantities for n ≥ 2:

X̂n
d=
a+1∑
r=1

σb
(
I

(n)
r

)
σb (n) X̂

(r)
I

(n)
r

+
K∑

r=a+2

σw
(
I

(n)
r

)
σb (n) Ŷ

(r)
I

(n)
r

+ tb
(
I(n)

)
,

Ŷn
d=

c∑
r=1

σb
(
I

(n)
r

)
σw (n) X̂

(r)
I

(n)
r

+
K∑

r=c+1

σw
(
I

(n)
r

)
σw (n) Ŷ

(r)
I

(n)
r

+ tw
(
I(n)

)(5.42)

with

tb
(
I(n)

)
:= 1

σb (n)

(
a+1∑
r=1

µb
(
I(n)
r

)
+

K∑
r=a+2

µw
(
I(n)
r

)
− µb (n)

)
,

tw
(
I(n)

)
:= 1
σw (n)

(
c∑

r=1
µb
(
I(n)
r

)
+

K∑
r=c+1

µw
(
I(n)
r

)
− µw (n)

)
,

where X̂
(r)
j

d= X̂j , Ŷ
(r)
j

d= Ŷj for r = 1, . . . ,K and 0 ≤ j ≤ n such that
(
X̂

(1)
j

)
0≤j≤n

, . . .,(
X̂

(K)
j

)
0≤j≤n

,
(
Ŷ

(1)
j

)
0≤j≤n

, . . .,
(
Ŷ

(K)
j

)
0≤j≤n

, I(n) are independent.

Letting formally n → ∞ in (5.42) we obtain, with the asymptotic behaviour of the rescaled
subtree sizes I

(n)
r
n , that are hidden in the ratio of the standard deviations, the following system

72
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2

of fixed-point equations that a limit
(
X̂ , Ŷ

)
of
(
X̂n, Ŷn

)
n∈N

should satisfy:

X̂
d=
a+1∑
r=1

√
DrX̂

(r) +
K∑

r=a+2

√
DrŶ

(r),

Ŷ
d=

c∑
r=1

√
DrX̂

(r) +
K∑

r=c+1

√
DrŶ

(r)

(5.43)

with independent copies X̂ (r) of X̂ and independent copies Ŷ (r) of Ŷ , r = 1, . . . ,K and
a Dirichlet-distributed random vector D = (D1, . . . , DK) with all parameters equal to 1

K−1
such that X̂ (1), . . . , X̂ (K), Ŷ (1), . . . , Ŷ (K), and D are independent.

Obviously, regarding the system of distributional fixed-point equations given by (5.43) as self-
map of M×M puts us in the situation of Theorem 4.2 (we have ∑K

r=1
(√
Dr
)2 = 1 almost

surely, compare (3.5)). Since we scaled by the reciprocal of the exact standard deviation, the
unique solution of system (5.43) inM3 (0, 1)×M3 (0, 1) is given by (N (0, 1) ,N (0, 1)).

Theorem 5.15. Given a Pólya urn scheme characterised by Det R with λ = a−c
a+b ≤

1
2 , let

X̂n and Ŷn as in (5.41), respectively, and ε > 0. Then, as n→∞,

ζ∨3

((
X̂n, Ŷn

)
, (N (0, 1) ,N (0, 1))

)
=

O
(
(ln (n))−

3
2
)
, λ = 1

2 ,

O
(
n3(λ− 1

2 )∨(− 1
2 +ε)) , λ < 1

2 , λ 6= 0.

Remark 5.16. This result confirms a conjecture of Svante Janson stated in [22, Remark 4.7]
for λ ∈

(
1
3 ,

1
2

)
. For λ ≤ 1

3 Janson expects the rate to be of order n− 1
2 . Unfortunately, it seems

that our methods do not enable us to prove the conjectured rate for λ ≤ 1
3 ; this is caused by

the need to attain the contractive behaviour of the coefficients, see Remark 8.1.

Proof of Theorem 5.15. The distance of
(
X̂n, Ŷn

)
to its limit (N (0, 1) ,N (0, 1)) is mea-

sured in the maximal Zolotarev distance. We conduct all reasoning for the first component
ζ3
(
X̂n,N (0, 1)

)
. Calculations for the second component ζ3

(
Ŷn,N (0, 1)

)
pass off analo-

gously.

To prove Theorem 5.15, we first introduce accompanying sequences Qb
n and Qw

n that combine
the recursive descriptions of X̂n and Ŷn with their limiting distribution, the standard normal
distribution. Let, for n ≥ 2,

Qb
n :=

a+1∑
r=1

σb
(
I

(n)
r

)
σb (n) Nr +

K∑
r=a+2

σw
(
I

(n)
r

)
σb (n) Nr + tb

(
I(n)

)
,(5.44)

Qw
n :=

c∑
r=1

σb
(
I

(n)
r

)
σw (n) Nr +

K∑
r=c+1

σw
(
I

(n)
r

)
σw (n) Nr + tw

(
I(n)

)
(5.45)
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with N1, . . . , NK , I
(n) independent and N1, . . . , NK standard normally distributed. Due to

E
[
X̂n

]
= E

[
Qb
n

]
= E

[
Ŷn
]

= E [Qw
n ] = 0, Var

(
X̂n

)
= Var

(
Qb
n

)
= Var

(
Ŷn
)

= Var (Qw
n ) =

1 and E
[∣∣∣X̂n

∣∣∣3] < ∞, E
[∣∣∣Qb

n

∣∣∣3] < ∞, E
[∣∣∣Ŷn∣∣∣3] < ∞, E

[
|Qw

n |
3
]
< ∞ for n ≥ 2, both

distances ζ3
(
X̂n,Qb

n

)
and ζ3

(
Qb
n,N (0, 1)

)
, as well as ζ3

(
Ŷn,Qw

n

)
and ζ3 (Qw

n ,N (0, 1)) are
finite for all n ≥ 2.

We then bound the distance between X̂n and the normal distribution by the distances of both
to the accompanying sequence:

ζ3
(
X̂n,N (0, 1)

)
≤ ζ3

(
X̂n,Q

b
n

)
+ ζ3

(
Qb
n,N (0, 1)

)
.(5.46)

The proof consists of three consecutive phases:

Step 1 First of all, the distance from the sequence to the accompanying sequence at stage n
will be dealt with by giving a recursive estimate that describes ζ3

(
X̂n,Qb

n

)
in terms

of the distances between the sequence and its limit up to time n− 1. Therefore, the
j-th distance of the sequence to its limit will be denoted by

∆̂ (j) := ζ∨3

((
X̂j , Ŷj

)
, (N (0, 1) ,N (0, 1))

)
.

It will also appear with random argument I(n)
r , which means that one of the n dis-

tances ∆̂ (0), . . . , ∆̂ (n− 1) is picked randomly according to the law of I(n)
r (see

Remark 5.9).

Step 2 The distance between accompanying sequence and limit, ζ3
(
Qb
n,N (0, 1)

)
, will be

treated with fundamentally different methods and the structure of the Zolotarev
distance will be crucial.

Step 3 Finally, we will assemble these pieces and derive an upper bound for the rate of
convergence via induction. Thereto, the latter distance of the right-hand side of
(5.46) will feed us with information on how fast a rate could possibly be, whereas the
former one will serve to adjust the speed and decide for the induction hypothesis.

We shall see that the variance, more precisely, the asymptotic expansion of the variance, is
crucial. Lemma 5.2 yields the occurrence of three different kinds of behaviour depending on
λ. It is necessary to have a tight upper bound for the second order term of the variance in
order to derive rates of convergence.

As the treatment of the three steps, Step 1, Step 2 and Step 3, is rather lengthy, every
step is taken in the shape of interim results. These finally lead to the proof of this theorem.
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5.2. Normal Limit Case: λ ≤ 1
2

Still, the proof should be easy to follow, hence, the order of these interim results is kept as if
it was to be read as one single proof.

We interrupt the Proof of Theorem 5.15 and treat the three steps separately, leading to interim
results that finally constitute the proof. �

Ad Step 1: Recursive Description of ζ3
(
X̂n,Qb

n

)
and ζ3

(
Ŷn,Qw

n

)
Proposition 5.17. In the situation of Theorem 5.15 with Qb

n and Qw
n defined in (5.44) and

(5.45), respectively, it holds, for all n ≥ 2,

ζ3
(
X̂n,Q

b
n

)
≤ E

a+1∑
r=1

σb
(
I

(n)
r

)
σb (n)

3

∆̂
(
I(n)
r

)
+

K∑
r=a+2

σw
(
I

(n)
r

)
σb (n)

3

∆̂
(
I(n)
r

)
as well as

ζ3
(
Ŷn,Q

w
n

)
≤ E

 c∑
r=1

σb
(
I

(n)
r

)
σw (n)

3

∆̂
(
I(n)
r

)
+

K∑
r=c+1

σw
(
I

(n)
r

)
σw (n)

3

∆̂
(
I(n)
r

).

Proof. Given I(n), all occurring random variables are independent. Denoting the distribution
of I(n) by υ and conditioning on the random vector I(n) (we abbreviate i = (i1, . . . , iK)), we
have:

ζ3
(
X̂n,Q

b
n

)
= ζ3

a+1∑
r=1

σb
(
I

(n)
r

)
σb (n) X̂

(r)
I

(n)
r

+
K∑

r=a+2

σw
(
I

(n)
r

)
σb (n) Ŷ

(r)
I

(n)
r

+ tb
(
I(n)

)
,

a+1∑
r=1

σb
(
I

(n)
r

)
σb (n) Nr +

K∑
r=a+2

σw
(
I

(n)
r

)
σb (n) Nr + tb

(
I(n)

)
= sup

f∈F3

∣∣∣∣∣∣E
f
a+1∑
r=1

σb
(
I

(n)
r

)
σb (n) X̂

(r)
I

(n)
r

+
K∑

r=a+2

σw
(
I

(n)
r

)
σb (n) Ŷ

(r)
I

(n)
r

+ tb
(
I(n)

)
−f

a+1∑
r=1

σb
(
I

(n)
r

)
σb (n) Nr +

K∑
r=a+2

σw
(
I

(n)
r

)
σb (n) Nr + tb

(
I(n)

)∣∣∣∣∣∣
= sup

f∈F3

∣∣∣∣∣
∫

E
[
f

(
a+1∑
r=1

σb (ir)
σb (n) X̂

(r)
ir

+
K∑

r=a+2

σw (ir)
σb (n) Ŷ

(r)
ir

+ tb (i)
)

−f
(
a+1∑
r=1

σb (ir)
σb (n)Nr +

K∑
r=a+2

σw (ir)
σb (n) Nr + tb (i)

)]
dυ (i)

∣∣∣∣∣
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≤
∫

sup
f∈F3

∣∣∣∣∣E
[
f

(
a+1∑
r=1

σb (ir)
σb (n) X̂

(r)
ir

+
K∑

r=a+2

σw (ir)
σb (n) Ŷ

(r)
ir

+ tb (i)
)

−f
(
a+1∑
r=1

σb (ir)
σb (n)Nr +

K∑
r=a+2

σw (ir)
σb (n) Nr + tb (i)

)]∣∣∣∣∣ dυ (i)

=
∫
ζ3

(
a+1∑
r=1

σb (ir)
σb (n) X̂

(r)
ir

+
K∑

r=a+2

σw (ir)
σb (n) Ŷ

(r)
ir

+ tb (i) ,

a+1∑
r=1

σb (ir)
σb (n)Nr +

K∑
r=a+2

σw (ir)
σb (n) Nr + tb (i)

)
dυ (i)

≤
∫ a+1∑

r=1

(
σb (ir)
σb (n)

)3
ζ3
(
X̂

(r)
ir
, Nr

)
+

K∑
r=a+2

(
σw (ir)
σb (n)

)3
ζ3
(
Ŷ

(r)
ir

, Nr

)
dυ (i)(5.47)

≤
∫ a+1∑

r=1

(
σb (ir)
σb (n)

)3
∆̂ (ir) +

K∑
r=a+2

(
σw (ir)
σb (n)

)3
∆̂ (ir)dυ (i)

= E

a+1∑
r=1

σb
(
I

(n)
r

)
σb (n)

3

∆̂
(
I(n)
r

)
+

K∑
r=a+2

σw
(
I

(n)
r

)
σb (n)

3

∆̂
(
I(n)
r

) ,
where we used that ζ3 is (3,+)-ideal in (5.47).

For ζ3
(
Ŷn,Qw

n

)
the same procedure leads to the recursive estimate claimed above.

Later on in Step 3, when we proceed with this recursive estimate of ζ3
(
X̂n,Qb

n

)
, the handling

of the ratios (σb(j)/σb(n))3 and (σw(j)/σb(n))3 will turn out to be crucial. There, the asymptotic
expansions of the variance given in Lemma 5.2 will come into play. Beforehand in the next
paragraph, we study ζ3

(
Qb
n,N (0, 1)

)
, the distance between accompanying sequence and the

normal distribution.

Ad Step 2: How fast can we get?

There are at least two reasonable ways how to study the quantity ζ3
(
Qb
n,N (0, 1)

)
. The first

way is to bound the Zolotarev distance ζ3 by the Wasserstein distance `3 as in Lemma 2.7. This
seems to be the most common approach for estimating the distance between accompanying
sequence and limit when working with the contraction method in terms of the Zolotarev
metrics; e.g., Knape and Neininger did so in their proofs of [27, Theorems 6.1, 6.2, 6.4 and
6.6] in the Pólya urn setting. It was also used by Neininger and Rüschendorf to determine
rates of convergence for Quicksort in [40] and by Mahmoud and Neininger to derive rates of
convergence for the distribution of distances in random binary search trees in [35]. Hence, it
seemed reasonable to give it a try: With the approach suggested by Lemma 2.7, we obtained
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2

a rate of order O
(
n(λ− 1

2 )∨(− 1
4 )), λ < 1

2 , λ 6= 0, for ζ3
(
Qb
n,N (0, 1)

)
, leading to the same

upper bound for ζ3
(
X̂n,N (0, 1)

)
, cf. Remark 6.16.

This rate obtained via Lemma 2.7 did not look reasonable in any way. There was no reason
to expect that the rate would abide at n− 1

4 with λ decreasing from 1
4 . Moreover, it was not

consistent with rates obtained in the setting of urns with subtraction by Flajolet et al. [16] and
rates in the context of m-ary search trees, that are related to Pólya urn schemes, in Hwang
[21], that both serve as a basis for Janson’s conjecture [22, Remark 4.7].

From today’s perspective, one problem is that the rate obtained in Lemma 3.4 is not optimal,
and as a consequence the rate in Corollary 3.5 is not either. We now know from Janson, see
Remark 3.6, that the correct rate for the quantities in Lemma 3.4 (in Wasserstein distances)
is of order n−1. With his result and the approach suggested by Lemma 2.7, we would obtain
a rate of order O

(
n(λ− 1

2 )∨(− 1
2 +ε)) for ζ3

(
X̂n,N (0, 1)

)
. Except for the ε that we seem to

lose in the exponent due to our methods, this looks better than the rate before, because it
seems reasonable that the rate should abide at n− 1

2 since this is the order of the reciprocal of
the standard deviation. In addition, it agrees with the results from Flajolet et al. [16]. But
still, it does not match the results of Hwang [21] and Janson’s conjecture.

To illustrate the approach suggested by Lemma 2.7, it will be elaborated in the context
of setting Rand R, since Lemmata 3.7 and 3.8 yield better estimates for the growth of the
rescaled subtrees than Lemma 3.4 and Corollary 3.5. In Remark 6.16 we explain the problems
arising in more detail. Additionally, the simulations presented in Chapter 1 and in Appendix
B serve to compare the rates available via Lemma 2.7 and the rates stated in Theorem 5.15.

Hence, we tried another approach to estimate ζ3
(
Qb
n,N (0, 1)

)
inspired by the treatment

of degenerate limit equations by Neininger and Rüschendorf [42, Proof of Theorem 2.1]: It
mainly relies on the convolution property of the normal distribution and on applying Taylor’s
Theorem to the test functions of the Zolotarev distance leading to the following result:

Proposition 5.18. In the situation of Theorem 5.15 with Qb
n and Qw

n as in (5.44) and (5.45),
it holds, as n→∞,

ζ3
(
Qb
n,N (0, 1)

)
= O


∥∥∥∥∥∥
a+1∑
r=1

σ2
b

(
I

(n)
r

)
σ2

b (n) +
K∑

r=a+2

σ2
w

(
I

(n)
r

)
σ2

b (n) − 1

∥∥∥∥∥∥
3
2

3
2

+
∥∥∥tb (I(n)

)∥∥∥3

3

,

ζ3 (Qw
n ,N (0, 1)) = O


∥∥∥∥∥∥

c∑
r=1

σ2
b

(
I

(n)
r

)
σ2

w (n) +
K∑

r=c+1

σ2
w

(
I

(n)
r

)
σ2

w (n) − 1

∥∥∥∥∥∥
3
2

3
2

+
∥∥∥tw (I(n)

)∥∥∥3

3

.
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Proof. First, we recall the convolution property of the normal distribution: For independent
random variables V and W with L (V ) = N

(
v, w2) and L (W ) = N

(
x, y2) where v, x ∈

R, w, y ∈ R+ it holds L (W + V ) = N
(
v + x,w2 + y2). If v = x = 0 this yields V +

W
d=
√
w2 + y2N with standard normally distributed N .

Due to the convolution property of the normal distribution, the accompanying sequences Qb
n

and Qw
n of (5.44) and (5.45) can be rewritten in a distributional sense as

Qb
n

d=

a+1∑
r=1

σ2
b

(
I

(n)
r

)
σ2

b (n) +
K∑

r=a+2

σ2
w

(
I

(n)
r

)
σ2

b (n)


1
2

N + tb
(
I(n)

)
,

Qw
n

d=

 c∑
r=1

σ2
b

(
I

(n)
r

)
σ2

w (n) +
K∑

r=c+1

σ2
w

(
I

(n)
r

)
σ2

w (n)


1
2

N + tw
(
I(n)

)

with standard normally distributed N independent of I(n).

Abbreviating the coefficients of the normal distribution as

Gb
n :=

a+1∑
r=1

σ2
b

(
I

(n)
r

)
σ2

b (n) +
K∑

r=a+2

σ2
w

(
I

(n)
r

)
σ2

b (n)


1
2

and

Gw
n :=

 c∑
r=1

σ2
b

(
I

(n)
r

)
σ2

w (n) +
K∑

r=c+1

σ2
w

(
I

(n)
r

)
σ2

w (n)


1
2

,

we use the distributional rewritings from above to split the coefficients Gb
n and Gw

n using the
convolution property of the normal distribution again with the help of

Ab :=
{
Gb
n ≥ 1

}
, ∆b

n :=
√∣∣∣(Gb

n)2 − 1
∣∣∣,

Aw := {Gw
n ≥ 1} , ∆w

n :=
√∣∣∣(Gw

n )2 − 1
∣∣∣.

Thereby, we have with standard normally distributed N ′ independent of N and I(n)

Qb
n

d=1Ab

(
N + ∆b

nN
′ + tb

(
I(n)

))
+ 1(Ab)c

(
Gb
nN + tb

(
I(n)

))
=: Q̌b

n,(5.48)

Qw
n

d=1Aw

(
N + ∆w

nN
′ + tw

(
I(n)

))
+ 1(Aw)c

(
Gw
nN + tw

(
I(n)

))
=: Q̌w

n .

We will now dive into calculations making explicit use of the test functions of the Zolotarev
distance. All calculations will be conducted for ζ3

(
Qb
n,N (0, 1)

)
(and the above defined

quantities related to Qb
n). However, the same reasoning holds for ζ3 (Qw

n ,N (0, 1)).
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2

Inspired by (5.48), we decompose the normal distribution as follows:

N
d= 1AbN + 1(Ab)c

(
Gb
nN + ∆b

nN
′
)

=: Ň ,(5.49)

N
d= 1AwN + 1(Aw)c

(
Gw
nN + ∆w

nN
′) ,

where the latter decomposition refers to the calculations to be conducted when estimating
ζ3 (Qw

n ,N (0, 1)).

Obviously, the quantities Ab, Aw and Ň also depend on n, and the latter should carry a “b”.
For the sake of readability in the course of the following calculations, those sub-/superscripts
were omitted.

The Zolotarev distance is a simple metric; hence, we have ζ3
(
Qb
n,N (0, 1)

)
= ζ3

(
Q̌b
n, Ň

)
and

by definition that is

ζ3
(
Q̌b
n, Ň

)
= sup

f∈F3

∣∣∣E [f (Q̌b
n

)
− f

(
Ň
)]∣∣∣ .

We will study this quantity by having a closer look at the test functions given by F3. Therefore,
we investigate their Taylor series expansions.

Firstly, let f ∈ F3 and let V andW be random variables with E [V ] = E [W ], E
[
V 2] = E

[
W 2]

and E
[
V 3] ,E [W 3] < ∞. Then, we observe that g with g (x) := f (x) − x2

2 f
′′ (0) is twice

continuous differentiable and Hölder continuous with Hölder constant 1. To put it in another
way, we have that g ∈ F3, and E [f (V )− f (W )] = E [g (V )− g (W )]. Hence, w.l.o.g., we
can assume f ′′ (0) = 0. Taylor’s Theorem accompanied by the Peano Form of the Remainder
applied to f yields at a ∈ R

f (x) = f (a) + f ′ (a) (x− a) + f ′′ (a)
2 (x− a)2 + f ′′ (ξ)− f ′′ (a)

2 (x− a)2

for some ξ between a and x. Writing R (x, a) := f ′′(ξ)−f ′′(a)
2 (x− a)2 for the remainder, we

have, expanding f at N ,

f
(
Q̌b
n

)
− f

(
Ň
)

(5.50)

= f ′(N)
(
Q̌b
n−Ň

)
+ f ′′(N)

2

((
Q̌b
n−N

)2
−
(
Ň−N

)2
)

+R
(
Q̌b
n, N

)
−R

(
Ň ,N

)
.

The above equation (5.50) is the key to the analysis of the distance ζ3
(
Qb
n,N (0, 1)

)
. In the

following calculations, the three terms of the right-hand side of (5.50) will be studied sepa-
rately. We will see that the first of them does not contribute at all and that the second term
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will be dominated by the estimates of the remainders—especially the remainder comprising
the modified accompanying sequence Q̌b

n will be crucial.

Plugging in (5.48) and (5.49), we obtain for the first term of the right-hand side of (5.50)

f ′ (N)
(
Q̌b
n − Ň

)
= f ′ (N)

[
1Ab

(
N + ∆b

nN
′ + tb

(
I(n)

))
+ 1(Ab)c

(
Gb
nN + tb

(
I(n)

))
−1AbN − 1(Ab)c

(
Gb
nN + ∆b

nN
′
)]

= f ′ (N)
[
1Ab

(
∆b
nN
′ + tb

(
I(n)

))
+ 1(Ab)c

(
tb
(
I(n)

)
−∆b

nN
′
)]

= f ′ (N)
(
tb
(
I(n)

)
+ ∆b

nN
′
(
1Ab − 1(Ab)c

))
,

yielding

E
[
f ′ (N)

(
Q̌b
n − Ň

)]
(5.51)

= E
[
f ′ (N)

] (
E
[
tb
(
I(n)

)]
+ E

[
∆b
n

(
1Ab − 1(Ab)c

)]
E
[
N ′
])

= 0,

where we used that N ′ is standard normally distributed, hence E [N ′] = 0, as well as
E
[
tb
(
I(n)

)]
= 0 due to E

[
X̂n

]
= 0.

For the second term of the right-hand side of (5.50), we obtain with (5.48) and (5.49)

(
Q̌b
n −N

)2
−
(
Ň −N

)2

=
[
1Ab

(
N + ∆b

nN
′ + tb

(
I(n)

))
+ 1(Ab)c

(
Gb
nN + tb

(
I(n)

))
−N

]2
−
[
1AbN + 1(Ab)c

(
Gb
nN + ∆b

nN
′
)
−N

]2
=

[
1Ab

(
∆b
nN
′ + tb

(
I(n)

))
+ 1(Ab)c

(
N
(
Gb
n − 1

)
+ tb

(
I(n)

))]2
−
[
1(Ab)c

(
N
(
Gb
n − 1

)
+ ∆b

nN
′
)]2

= 1Ab

(
∆b
nN
′ + tb

(
I(n)

))2
+ 1(Ab)c

(
N
(
Gb
n − 1

)
+ tb

(
I(n)

))2
(5.52)

−1(Ab)c
(
N
(
Gb
n − 1

)
+ ∆b

nN
′
)2

= 1Ab

((
∆b
nN
′
)2

+ 2∆b
nN
′tb
(
I(n)

)
+
(
tb
(
I(n)

))2
)

+ 1(Ab)c
(
N2

(
Gb
n − 1

)2
+ 2N

(
Gb
n − 1

)
tb
(
I(n)

)
+
(
tb
(
I(n)

))2
)

− 1(Ab)c
(
N2

(
Gb
n − 1

)2
+ 2N

(
Gb
n − 1

)
∆b
nN
′ +

(
∆b
nN
′
)2
)

=
(
tb
(
I(n)

))2
+
(
∆b
nN
′
)2 (

1Ab − 1(Ab)c
)
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2

+1Ab2∆b
nN
′tb
(
I(n)

)
+ 1(Ab)c2N

(
Gb
n − 1

) (
tb
(
I(n)

)
−∆b

nN
′
)

using in (5.52) that mixed terms do not contribute because the product of the indicators make
them vanish.

For the moment, we have for the second term of the right-hand side of (5.50)

E

[
f ′′ (N)

2

((
Q̌b
n −N

)2
−
(
Ň −N

)2
)]

= E

[
f ′′ (N)

2

((
tb
(
I(n)

))2
+ 1(Ab)c2N

(
Gb
n − 1

) (
tb
(
I(n)

)
−∆b

nN
′
))]

+E
[
f ′′ (N)

2
(
∆b
n

)2 (
1Ab − 1(Ab)c

)]
E
[(
N ′
)2]

+E
[
f ′′ (N)1Ab∆b

ntb
(
I(n)

)]
E
[
N ′
]

= E

[
f ′′ (N)

2

((
tb
(
I(n)

))2
+
(
∆b
n

)2 (
1Ab − 1(Ab)c

))]
+E

[
f ′′ (N)1(Ab)cN

(
Gb
n − 1

)
tb
(
I(n)

)]
−E

[
f ′′ (N)1(Ab)cN

(
Gb
n − 1

)
∆b
n

]
E
[
N ′
]

= E

[
f ′′ (N)

2

((
tb
(
I(n)

))2
+
(
∆b
n

)2 (
1Ab − 1(Ab)c

))]
+E

[
f ′′ (N)1(Ab)cN

(
Gb
n − 1

)
tb
(
I(n)

)]
using E

[
(N ′)2

]
= 1 and E [N ′] = 0.

Now, we observe

1.
(
∆b
n

)2 (
1Ab − 1(Ab)c

)
=
∣∣∣∣(Gb

n

)2
− 1

∣∣∣∣ (1{Gb
n≥1} − 1{Gb

n<1}

)
=
(
Gb
n

)2
− 1,

2. E
[(
Gb
n

)2
+
(
tb
(
I(n)

))2
]

= 1, since

1 = Var
(
Qb
n

)
= E

a+1∑
r=1

σ2
b

(
I

(n)
r

)
σ2

b (n) +
K∑

r=a+2

σ2
w

(
I

(n)
r

)
σ2

b (n) +
(
tb
(
I(n)

))2


due to the independence of N (1),. . ., N (K) and I(n) and E
[
N (r)

]
= 0 as well as

Var
(
N (r)

)
= 1 for r = 1, . . . ,K.

Hence, we have

E

[
f ′′ (N)

2

((
tb
(
I(n)

))2
+
(
∆b
n

)2 (
1Ab − 1(Ab)c

))]
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= E

[
f ′′ (N)

2

]
E

[(
tb
(
I(n)

))2
+
(
Gb
n

)2
− 1

]
= 0

and obtain for the second term of the right-hand side of (5.50)

E

[
f ′′ (N)

2

((
Q̌b
n−N

)2
−
(
Ň−N

)2
)]

=E
[
f ′′(N)N

]
E
[
1(Ab)c

(
Gb
n−1

)
tb
(
I(n)

)]
.

With Lemma A.2, we have
∣∣∣∣E [f ′′ (N)

2

((
Q̌b
n −N

)2
−
(
Ň −N

)2
)]∣∣∣∣

≤
∣∣∣E [1(Ab)c

(
Gb
n − 1

)
tb
(
I(n)

)]∣∣∣
≤ E

[∣∣∣Gb
n − 1

∣∣∣ ∣∣∣tb (I(n)
)∣∣∣]

≤
∥∥∥Gb

n − 1
∥∥∥ 3

2

∥∥∥tb (I(n)
)∥∥∥

3
(5.53)

with Hölder’s inequality.

Finally, we have to turn our attention to the third and fourth term of (5.50): We have to find
estimates for the remainders. As f ∈ F3, we have |f ′′(x)− f ′′(y)| ≤ |x− y| and estimate∣∣∣∣f ′′ (ξ)− f ′′ (a)

2 (x− a)2
∣∣∣∣ ≤ |ξ − a|2 (x− a)2 ≤ |x− a|

3

2 .

We start with the remainder comprising N and the modified accompanying sequence Q̌b
n:∣∣∣R (Q̌b

n, N
)∣∣∣

≤ 1
2
∣∣∣Q̌b

n −N
∣∣∣3

= 1
2
∣∣∣1Ab
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N + ∆b
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∆b
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(∣∣∣N (
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∣∣∣∆b
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∣∣∣∆b
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)∣∣∣2+
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)∣∣∣3)
+1(Ab)c

(∣∣∣N (
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)∣∣∣3 + 3
∣∣∣N (
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)∣∣∣

+3
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(∣∣∣∆b
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2

where we used in the last step
∣∣∣Gb

n − 1
∣∣∣ =

∣∣∣∣√(Gb
n)2 −

√
1
∣∣∣∣ ≤ √∣∣∣(Gb

n)2 − 1
∣∣∣ = ∆b

n, as∣∣√x−√y∣∣ ≤ √|x− y|, for x, y ≥ 0, see (A.1).

This yields

E
[∣∣∣R (Q̌b

n, N
)∣∣∣]

≤ ‖N‖33
∥∥∥∆b

n
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3
+
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)∥∥∥3

3

+3E
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n

∣∣∣2 ∣∣∣tb (I(n)
)∣∣∣ (∣∣N ′∣∣2 + |N |2

)]
+ 3E
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n

∣∣∣ ∣∣∣tb (I(n)
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∥∥∥∆b
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∥∥∥3

3
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)∥∥∥3

3

+6
∥∥∥∥(∆b

n

)2
∥∥∥∥ 3

2

∥∥∥tb (I(n)
)∥∥∥

3
+ 6E [|N |]

∥∥∥∆b
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∥∥∥
3

∥∥∥∥(tb (I(n)
))2

∥∥∥∥ 3
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∥∥∥∆b
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3

+6
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(5.54)

≤ ‖N‖33
∥∥∥∆b
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∥∥∥3

3
+
∥∥∥tb (I(n)

)∥∥∥3

3
+ 12
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n

∥∥∥3
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)
= O
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n

∥∥∥3

3
+
∥∥∥tb (I(n)

)∥∥∥3

3

)
(5.55)

with E [|N |] < 1 due to 0 < Var (|N |) = E
[
N2] − E [|N |]2 in (5.54). For the remainder

comprising the decomposed normal distribution Ň and N , we have∣∣∣R (Ň ,N)∣∣∣ ≤1
2
∣∣∣Ň −N ∣∣∣3 = 1

2
∣∣∣1AbN + 1(Ab)c

(
Gb
nN + ∆b

nN
′
)
−N

∣∣∣3
=1

2
∣∣∣1(Ab)c

(
N
(
Gb
n − 1

)
+ ∆b

nN
′
)∣∣∣3

≤1
2
∣∣∣1(Ab)c

(
|N |

∣∣∣Gb
n − 1

∣∣∣+ ∣∣∣∆b
n

∣∣∣ ∣∣N ′∣∣)∣∣∣3
≤1

2

∣∣∣∣1(Ab)c
(
|N |

∣∣∣∣(Gb
n

)2
− 1

∣∣∣∣+ ∣∣∣∆b
n

∣∣∣ ∣∣N ′∣∣)∣∣∣∣3(5.56)

≤1
2
(∣∣∣N∆b

n

∣∣∣+ ∣∣∣N ′∆b
n

∣∣∣) ≤ ∣∣∣∆b
n

∣∣∣3 (|N |+ ∣∣N ′∣∣)3 .
The following observation leads to (5.56): |a− 1| ≤

∣∣a2 − 1
∣∣ for a ≥ 0, since

1. for a = 0, a = 1 it is obvious,

2. for a > 1, we have 0 < a− 1 ≤ a2 − 1, and

3. for 0 < a < 1, it holds |a− 1| = 1− a ≤ 1− a2 =
∣∣a2 − 1

∣∣.
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Hence, we obtain

E
[∣∣∣R (Ň ,N)∣∣∣] ≤ E [(|N |+ ∣∣N ′∣∣)3] ∥∥∥∆b

n

∥∥∥3

3
= O

(∥∥∥∆b
n

∥∥∥3

3

)
.(5.57)

Plugging in the definition of ∆b
n, we have:

∥∥∥∆b
n

∥∥∥
3

=
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E
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n

)2
− 1

∣∣∣∣ 3
2
]) 1

3

=
∥∥∥∥(Gb

n

)2
− 1

∥∥∥∥ 1
2

3
2

(5.58)

=

∥∥∥∥∥∥
a+1∑
r=1

σ2
b

(
I

(n)
r

)
σ2

b (n) +
K∑

r=a+2

σ2
w

(
I

(n)
r

)
σ2

b (n) − 1

∥∥∥∥∥∥
1
2

3
2

.

Reassembling (5.51), (5.53), (5.55), (5.57), and (5.58) to estimate (5.50), we obtain

ζ3
(
Qb
n,N (0, 1)

)
= ζ3

(
Q̌b
n, Ň

)
≤ sup

f∈F3

∣∣∣∣E [f ′ (N)
(
Q̌b
n − Ň

)
+ f ′′ (N)

2

((
Q̌b
n −N

)2
−
(
Ň −N

)2
)

+R
(
Q̌b
n, N

)
−R

(
Ň ,N

)]∣∣∣
≤

∥∥∥Gb
n − 1

∥∥∥ 3
2

∥∥∥tb (I(n)
)∥∥∥

3
+O

(∥∥∥∆b
n

∥∥∥3

3
+
∥∥∥tb (I(n)

)∥∥∥3

3

)

≤
∥∥∥∥(Gb

n

)2
− 1

∥∥∥∥ 3
2

∥∥∥tb (I(n)
)∥∥∥

3
+O

(∥∥∥∥(Gb
n

)2
− 1

∥∥∥∥ 3
2

3
2

+
∥∥∥tb (I(n)

)∥∥∥3

3

)

= O

(∥∥∥∥(Gb
n

)2
− 1

∥∥∥∥ 3
2

3
2

+
∥∥∥tb (I(n)

)∥∥∥3

3

)
(5.59)

= O


∥∥∥∥∥∥
a+1∑
r=1

σ2
b

(
I

(n)
r

)
σ2

b (n) +
K∑

r=a+2

σ2
w

(
I

(n)
r

)
σ2

b (n) − 1

∥∥∥∥∥∥
3
2

3
2

+
∥∥∥tb (I(n)

)∥∥∥3

3

 ,

where in (5.59) the following observation was applied to the null sequences
∥∥∥∥(Gb

n

)2
− 1

∥∥∥∥ 3
2

and∥∥∥tb (I(n)
)∥∥∥

3
: Let (an)n∈N and (bn)n∈N both be positive sequences with an, bn → 0 as n→∞.

Then, it holds
anbn ≤ a

3
2
n + b3n

for all n large enough (such that an, bn ∈ (0, 1)), because:

1. If an ≥ bn, then anbn ≤ a2
n ≤ a

3
2
n .

2. If an < bn, two subcases occur:
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5.2. Normal Limit Case: λ ≤ 1
2

a) If b2n < an < bn, then anbn ≤ ana
1
2
n = a

3
2
n .

b) If an ≤ b2n, then anbn ≤ b2nbn = b3n.

Hence, we have∥∥∥∥(Gb
n

)2
− 1

∥∥∥∥ 3
2

∥∥∥tb (I(n)
)∥∥∥

3
≤ O

(∥∥∥∥(Gb
n

)2
− 1

∥∥∥∥ 3
2

3
2

+
∥∥∥tb (I(n)

)∥∥∥3

3

)
.

All calculations for the distance ζ3 (Qw
n ,N (0, 1)) pass off analogously. Finally, the assertion

of Proposition 5.18 follows.

In a next step, we have to deal with the toll terms tb
(
I(n)

)
and tw

(
I(n)

)
as well as the

behaviour of the ratios of the variances that both arise from normalising in (5.42) in order to
apply Proposition 5.18. For both, we will make use of the asymptotic expansions in Lemma
5.1 and Lemma 5.2.

We start with the toll terms of our recursion tb
(
I(n)

)
and tw

(
I(n)

)
.

Lemma 5.19. For the toll terms tb
(
I(n)

)
and tw

(
I(n)

)
, defined via (5.42), we have, as

n→∞,

max
{∥∥∥tb (I(n)

)∥∥∥
3
,
∥∥∥tw (I(n)

)∥∥∥
3

}
=


O
(
(ln (n))−

1
2
)
, if λ = 1

2 ,

O
(
nλ−

1
2
)
, if 0 < λ < 1

2 ,

O
(
n−

1
2
)
, if λ < 0.

Proof. All calculations will be conducted for tb
(
I(n)

)
as calculations for tw

(
I(n)

)
run ac-

cordingly. We recall tb
(
I(n)

)
= 1

σb(n)

(∑a+1
r=1 µb

(
I

(n)
r

)
+∑K

r=a+2 µw
(
I

(n)
r

)
− µb (n)

)
. Hence,

both Lemma 5.1 and Lemma 5.2 come into play. Therefore, we have to distinguish between
the three cases λ = 1

2 , 0 < λ < 1
2 and λ < 0.

Case λ = 1
2 :

From Lemma 5.1.i) with Notation 5.3, we have µb (j) = cbn + dbn
1
2 + O (1). We know from

Lemma 5.2.i) that the standard deviation is of order
√
n ln (n). We easily see that the linear

terms cancel out up to a constant in tb
(
I(n)

)
. The second order terms of the expectation

contribute of order n 1
2 :

tb
(
I(n)

)
= 1
σb (n)

(
a+1∑
r=1

db
(
I(n)
r

) 1
2 +

K∑
r=a+2

dw
(
I(n)
r

) 1
2 − dbn

1
2 +O (1)

)
.
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Plugging in the asymptotic expansion for the standard deviation, we finally obtain, making
use of 0 ≤ I

(n)
r
n ≤ 1,

∥∥∥tb (I(n)
)∥∥∥

3
≤ n

1
2

σb (n)

a+1∑
r=1
|db|

∥∥∥∥∥∥∥
(
I

(n)
r

n

) 1
2

∥∥∥∥∥∥∥
3

+
K∑

r=a+1
|dw|

∥∥∥∥∥∥∥
(
I

(n)
r

n

) 1
2

∥∥∥∥∥∥∥
3

+ |db|


+O

(
1√

n ln (n)

)
= O

(
(ln (n))−

1
2
)
.

Case 0 < λ < 1
2 :

Again from Lemma 5.1.i) with Notation 5.3, we have µb (j) = cbn + dbn
λ + O (1). From

Lemma 5.2.ii), we have that the standard deviation is of order
√
n. As in the previous case,

linear terms of the expectations cancel out up to a constant, we are left with terms of order
nλ from the second order term of the expectations and obtain

tb
(
I(n)

)
= 1
σb (n)

(
a+1∑
r=1

db
(
I(n)
r

)λ
+

K∑
r=a+2

dw
(
I(n)
r

)λ
− dbn

λ +O (1)
)

and therefore, with 0 ≤ I
(n)
r
n ≤ 1,

∥∥∥tb (I(n)
)∥∥∥

3

≤ nλ

σb (n)

a+1∑
r=1
|db|
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(
I

(n)
r

n

)λ∥∥∥∥∥∥
3

+
K∑

r=a+2
|dw|

∥∥∥∥∥∥
(
I

(n)
r

n

)λ∥∥∥∥∥∥
3

+ |db|

+O
(
n−

1
2
)

= O
(
nλ−

1
2
)
.

Case λ < 0:
Finally, we have, from Lemma 5.1.ii), µb (j) = cbj+O (1). From Lemma 5.2.iii) we know that
the standard deviation is of order

√
n. As before, linear terms of the expectations cancel out

and only terms of constant order remain. It immediately follows∥∥∥tb (I(n)
)∥∥∥

3
= O

(
n−

1
2
)
.
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2

Lemma 5.20. In the situation of Theorem 5.15, we have for the quantities appearing in the
estimates for ζ∨3

((
Qb
n,Q

w
n

)
, (N (0, 1) ,N (0, 1))

)
of Proposition 5.18, as n→∞,

∥∥∥∥∥∥
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2 ,

O
(
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Proof. By plugging in the asymptotic expansions for the variance given in Lemma 5.2, we
observe that the ratio of the variances σ2

b

(
I

(n)
r

)
/σ2

b(n) comes out to be roughly the proportion
of leaves belonging to the r-th subtree to all leaves of the associated tree. The limit of these
quantities also appears hidden in 1 = ∑K

r=1Dr. Hence, the undistorted subtree sizes that
satisfy ∑K

r=1 I
(n)
r = n− 1 are brought into play:
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≤ 1
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σ2

b

(
I
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)
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+
K∑

r=a+2

∥∥∥∥∥∥
σ2

w

(
I

(n)
r

)
σ2

b (n) − I
(n)
r

n

∥∥∥∥∥∥ 3
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.

Comparing the ratios of the variances to the rescaled subtree sizes, we again have three cases
to deal with due to the different behaviours of the variance depending on the range of λ. Note
that σb (j) = σw (j) = 0 for j = 1, 2. Hence, when plugging in the asymptotic expansions of
Lemma 5.2 we add an indicator for the event

{
I

(n)
r ≥ 2

}
.
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Case λ = 1
2 :

Using Lemma 5.2.i) for the variances, we estimate
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}∥∥∥∥∥∥ 3
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+O

( 1
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)

= O

( 1
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)
,

where we used that |x ln (x)| ≤ 1
e for x ∈ [0, 1] with 0 ln (0) := 0 as continuous extension of

x 7→ x ln (x) for x ≥ 0. We obtain∥∥∥∥∥∥
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)
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)
.

Case 0 < λ < 1
2 :

With Lemma 5.2.ii) for the variances, we estimate
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)
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2

We obtain∥∥∥∥∥∥
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= O
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Case λ < 0:
With Lemma 5.2.iii), we finally can estimate
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≤
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+O

( 1
n

)
= O
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,

yielding for negative λ∥∥∥∥∥∥
a+1∑
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σ2
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= O
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Obviously, calculations for∥∥∥∥∥∥
c∑
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σ2
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(
I
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r

)
σ2

w (n) +
K∑

r=c+1

σ2
w

(
I

(n)
r

)
σ2

w (n) − 1
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2

work in exactly the same way and lead to the same bounds. Thus, the assertion follows.

We plug the results of Lemma 5.19 and Lemma 5.20 into Proposition 5.18 and obtain an
upper bound for the distance between accompanying sequence and limit:

Corollary 5.21. In the situation of Theorem 5.15 and Proposition 5.18, it holds, as n→∞,

ζ∨3

((
Qb
n,Q

w
n

)
, (N (0, 1) ,N (0, 1))

)
=


O
(
(ln (n))−

3
2
)
, λ = 1

2 ,

O
(
n3(λ− 1

2 )) , 0 < λ < 1
2 ,

O
(
n−

3
2
)
, λ < 0.
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Ad Step 3: Merging Previous Results

Now, we want to reap the fruits of the former labour, Step 1 and Step 2, and prove an upper
bound for ζ∨3

((
X̂n, Ŷn

)
, (N (0, 1) ,N (0, 1))

)
. This will be accomplished via induction on the

basis of Proposition 5.17 together with Proposition 5.18 and Corollary 5.21, respectively.

In Proposition 5.17 that describes ζ3
(
X̂n,N (0, 1)

)
recursively in terms of the distances

ζ3
(
X̂j ,N (0, 1)

)
= ∆̂ (j) with j ∈ 0, . . . , n − 1 and therefore is the core to derive a rate

inductively, the ratios (σb(j)/σb(n))3 and (σw(j)/σb(n))3 are crucial. So, again, the asymptotic
expansions for the variance in Lemma 5.2 play an important role and depending on the range
of λ three different cases for the induction will arise. The ratios (σb(j)/σb(n))3 and (σw(j)/σb(n))3

are treated with the help of Lemma A.3 of the appendix. Moreover, note that ∆̂ (0) and ∆̂ (1)
do not contribute in any of the following calculations as they are accompanied by the factors
σb (j) = 0 or σw (j) = 0 with j = 0, 1, respectively.

The following corollaries present the rates for the cases λ = 1
2 , 0 < λ < 1

2 , and λ < 0
concluding the proof of Theorem 5.15.

The constants A,A′, A′′, B,C,D > 0, and δ, δ′, ξ ∈ (0, 1) as well as n0 ∈ N occur several
times in Corollaries 5.22, 5.23 and 5.24 with potentially different meanings but during one
and the same induction their meaning does not change—they are to be thought of as “local
variables”. Whenever they appear they are positive and chosen such that the estimates hold
for sufficiently large n, i.e., n ≥ n0.

Corollary 5.22. In the situation of Theorem 5.15, if λ = 1
2 , it holds, as n→∞,

ζ∨3

((
X̂n, Ŷn

)
, (N (0, 1) ,N (0, 1))

)
= O

(
(ln (n))−

3
2
)
.

Proof. We start with the ratios (σb(j)/σb(n))3 and (σw(j)/σb(n))3: From Lemma 5.2.i), we have
σ2

b (j) , σ2
w (j) ≤ bc j ln (j) + Aj for j ≥ 2 with a suitable constant A > 0. Applying Lemma

A.3 as done in the appendix in (A.2), we obtain, with constants A′, A′′ > 0,

(
σb (j)
σb (n)

)3
=
(

bcj ln (j) +Aj

bcn ln (n) +O (n)

) 3
2

=
(

j ln (j) +A′j

n ln (n) +O (n)

) 3
2

≤ (j ln (j))
3
2 +A′′j

3
2 (ln (j))

1
2

(n ln (n) +O (n))
3
2

.

Obviously, we handle the ratio (σw(j)/σb(n))3 the same way.

Corollary 5.21 suggests a rate of order (ln (n))−
3
2 . Hence, we set the induction hypothesis as

∆̂ (j) ≤ C (ln (j))−
3
2 , j = 2, . . . , n− 1.
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2

Finally, the induction is performed: The distance ζ3
(
X̂n,N (0, 1)

)
is estimated with the

help of Proposition 5.17 and Corollary 5.21. The induction hypothesis does not cover the
distances ∆̂ (0) and ∆̂ (1). Hence, the contributions of the event

{
I

(n)
r < 2

}
have to be treated

separately. Luckily, we observe that σb (j) = σw (j) = 0 for j = 0, 1. Thus, ∆̂ (j) with j = 0, 1
do not contribute. Therefore, the indicator for

{
I

(n)
r ≥ 2

}
can be added. Thus, it holds, with

a suitable constant B > 0,
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}(5.60)

+B (ln (n))−
3
2

≤ (1− δ)C (ln (n))−
3
2 + C (ln (n))−

3
2 D (ln (n))−1 +B (ln (n))−

3
2(5.61)

≤
(
1−

(
δ − δ′

))
C (ln (n))−

3
2 +B (ln (n))−

3
2(5.62)

with the following observations:
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In (5.60) we observed

E

 K∑
r=1

(
I(n)
r

) 3
2
(
ln
(
I(n)
r

))−1
1{

I
(n)
r ≥2

}
= E

 K∑
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⌉
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⌊
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(
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r
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) 3
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︸ ︷︷ ︸

≤1

= O

(
n

3
2

ln (n)

)
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Hence, the constant D is chosen such that it satisfies for n large enough

(1 + o (1))A′′n−
3
2E

 K∑
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(
I(n)
r

) 3
2
(
ln
(
I(n)
r

))−1
1{

I
(n)
r ≥2

} ≤ D (ln (n))−1 .

Equations (5.61) and (5.62) constitute the contractive behaviour, compare (4.13): Due to
Lemma 3.4 combined with property (3.6), we know that

0 < E

 K∑
r=1

(
I

(n)
r

n

) 3
2

→ ξ < 1, n→∞.

Hence, there is 0 < δ < 1 such that we have in (5.61)

(1 + o (1))E

 K∑
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(
I

(n)
r

n

) 3
2

 ≤ 1− δ

for n sufficiently large.

In addition to that, to obtain (5.61) we choose n large enough such that

D (ln (n))−1 ≤ δ′ < δ.

We now fix n0 ∈ N such that all these estimates hold for n ≥ n0 and choose

C ≥ max
{

∆̂ (j) (ln (j))
3
2
∣∣j = 2, . . . , n0 − 1

}
∨ B

δ − δ′
.
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2

Then, we obtain

ζ3
(
X̂n,N (0, 1)

)
≤ C (ln (n))−

3
2 for n ≥ 2.

Treating the distance ζ3
(
Ŷn,N (0, 1)

)
accordingly, the assertion follows.

For λ ∈
(
0, 1

2

)
, Corollary 5.21 makes us expect two “sorts” of rates: In Corollary 5.21, we

see that the term ζ3
(
Qb
n,N (0, 1)

)
presents an accelerating rate whose exponent is linearly

decreasing when λ decreases from 1
2 to 0 and then abides with further decreasing λ. Moreover,

for λ < 1
3 this rate is faster than the order of the reciprocal of the standard deviation of the

number of black balls (i.e., faster than n−
1
2 ). Hence, we expect that λ will appear in the

exponent of the upper bound for ζ3
(
X̂n,N (0, 1)

)
until λ hits 1

3 coming from 1
2 . Then, for

λ ≤ 1
3 , it is reasonable to expect the rate to stay constant and not to be faster than the

reciprocal of the standard deviation of the number of black balls that is of order n− 1
2 .

Unfortunately, we are not able to transfer a rate of order n− 1
2 to ζ3

(
X̂n,N (0, 1)

)
for λ ≤

1
3 due to the fact that the induction with this rate does not yield the desired contractive
behaviour, see Remark 8.1. Therefore, we have to diminish the rate to n− 1

2 +ε with arbitrarily
small ε > 0.

Due to the slightly different behaviour of the variance for negative λ this case is treated later
in Corollary 5.24; however, Corollary 5.23 and Corollary 5.24 could have been combined.

Corollary 5.23. Let ε > 0. In the situation of Theorem 5.15, if 0 < λ < 1
2 , it holds, as

n→∞,

ζ∨3

((
X̂n, Ŷn

)
, (N (0, 1) ,N (0, 1))

)
=

O
(
n3(λ− 1

2 )) , 1
3 < λ < 1

2 ,

O
(
n−

1
2 +ε

)
, 0 < λ ≤ 1

3 .

Proof. From Lemma 5.2.ii), we have σ2
b (j) , σ2

w (j) ≤ (a+b)bc(a−c)2

(a+b−2(a−c))(b+c)2 j+Aj2λ for j ≥ 0 with
a suitable constant A > 0. Applying Lemma A.3 as done in the appendix in (A.3) leads to

(
σb (j)
σb (n)

)3
≤
(

fbj +Aj2λ

fbn+O (n2λ)

) 3
2

=
(

j +A′j2λ

n+O (n2λ)

) 3
2

≤ j
3
2 +A′′j2λ+ 1

2

(n+O (n2λ))
3
2

with suitable constants A′, A′′ > 0.

The cases 1
3 < λ < 1

2 and 0 < λ < 1
3 are treated separately:
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We start with 1
3 < λ < 1

2 and set as induction hypothesis

∆̂ (j) ≤ C j3(λ− 1
2 ), j = 2, . . . , n− 1.

Evoking Proposition 5.17 and Corollary 5.21, we have with a suitable constant B > 0,
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2 )(5.63)

≤
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(
δ − δ′

))
Cn3(λ− 1

2 ) +Bn3(λ− 1
2 )(5.64)

with the following observations:
In (5.63) we argue (as in (5.61)): With Lemma 3.4 and property (3.6), observing 3λ > 1, we
have

0 < E

 K∑
r=1

(
I

(n)
r

n

)3λ→ ξ < 1, n→∞,

so we can find 0 < δ < 1 such that

(1 + o (1))E
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for n large enough. The constant D is chosen such that

D ≥ (1 + o (1))A′′E

 K∑
r=1

(
I

(n)
r

n

)5λ−1

because E
[∑K

r=1

(
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)5λ−1
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≤ K due to 5λ− 1 > 2

3 and I
(n)
r
n ≤ 1.

In (5.64), we choose 0 < δ′ < δ and n large enough such that

0 < Dn2(λ− 1
2 ) < δ′ < δ.

In a nutshell: In (5.63) and (5.64) we exploit the contractive behaviour enabling us to complete
the induction. We fix n0 ∈ N such that all previous estimates hold for n ≥ n0 and choose

C ≥ max
{

∆̂ (j) j3( 1
2−λ)∣∣j = 2, . . . , n0 − 1

}
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We now turn to 0 < λ ≤ 1
3 . Let ε > 0 and set as induction hypothesis

∆̂ (j) ≤ C j−
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2 +ε, j = 2, . . . , n− 1.

As before, Proposition 5.17 and Corollary 5.21 yield, with suitable B > 0
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≤ (1 + o (1))n−
1
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0 n−
1
2 +ε.(5.66)

In (5.65), as before, we use Lemma 3.4 and property (3.6) and have

0 < E
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(
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)1+ε→ ξ < 1, n→∞,

and infer that there is 0 < δ < 1 such that
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for sufficiently large n. We denote by D a constant that satisfies
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for sufficiently large n (note that E
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(n)
r
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≤ K due to 2λ+ ε > 0 and I

(n)
r
n ≤ 1).

Then, in (5.66), we take 0 < δ′ < δ such that for n large enough

0 < Dn2(λ− 1
2 ) < δ′ < δ

and we choose n0 ∈ N such that all preceding estimates hold for n ≥ n0.

We finally choose

C ≥ max
{

∆̂ (j) j
1
2−ε

∣∣j = 2, . . . , n0 − 1
}
∨ Bn

3λ−1−ε
0
δ − δ′

leading to

ζ3
(
X̂n,N (0, 1)

)
≤ C n−

1
2 +ε for n ≥ 2.

Treating ζ3
(
Ŷn,N (0, 1)

)
likewise yields the assertion.
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For negative λ, Corollary 5.21 yields a rate for ζ3
(
Qb
n,N (0, 1)

)
that is faster than the recipro-

cal of the standard deviation of the number of black balls. Hence, we do not expect to be able
to transfer this rate to ζ3

(
X̂n,N (0, 1)

)
. We expect the correct rate for ζ3

(
X̂n,N (0, 1)

)
to be of the order of the reciprocal of the standard deviation, i.e., n− 1

2 , but, as before for
0 < λ ≤ 1

3 , the best we can get (with our methods) is n− 1
2 +ε.

Corollary 5.24. Let ε > 0. In the situation of Theorem 5.15, if λ < 0, it holds, as n→∞,
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X̂n, Ŷn

)
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)
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)
.

Proof. For the variances, we have with Lemma 5.2.iii) σ2
b (j) , σ2

w (j) ≤ fbj +A for j ≥ 0 with
a suitable constant A > 0. Hence, for the ratios σb(j)

σb(n) and σw(j)
σb(n) occurring in Proposition 5.17,

we estimate with Lemma A.3 applied as in (A.4) with suitable constants A′, A′′ > 0

(
σb (j)
σb (n)

)3
≤
(

fbj +A

fbn+O (1)

) 3
2

=
(

j +A′

n+O (1)

) 3
2
≤ j

3
2 +A′′j

1
2

(n+O (1))
3
2
.

We set as induction hypothesis with an arbitrary ε > 0

∆̂ (j) ≤ C j−
1
2 +ε, j = 2, . . . , n− 1.

The induction in this case passes off analogously to the induction in the case 0 < λ ≤ 1
3 with

slight variations due to the estimate for the variances. Plugging that into Proposition 5.17
and making use of Corollary 5.21, we obtain, with a suitable constant B > 0,

ζ3
(
X̂n,N (0, 1)

)
≤ ζ3

(
X̂n,Q

b
n

)
+ ζ3

(
Qb
n,N (0, 1)

)
≤ E

a+1∑
r=1

σb
(
I

(n)
r

)
σb (n)

3

∆̂
(
I(n)
r

)
+

K∑
r=a+2

σw
(
I

(n)
r

)
σb (n)

3

∆̂
(
I(n)
r

)
+ ζ3

(
Qb
n,N (0, 1)

)
≤ E

 K∑
r=1

(
I

(n)
r

n+O (1)

) 3
2

∆̂
(
I(n)
r

)
1{

I
(n)
r ≥2

}
(5.67)

+E

 K∑
r=1

A′′
(
I

(n)
r

) 1
2

(n+O (1))
3
2

∆̂
(
I(n)
r

)
1{

I
(n)
r ≥2

}


+Bn−
3
2

≤ 1 + o (1)
n

3
2

CE

[
K∑
r=1

((
I(n)
r

) 3
2 +

(
I(n)
r

) 1
2
)

∆̂
(
I(n)
r

)]
+Bn−

3
2

97



5. Rates of Convergence for a Two-Colour Pólya Urn with Deterministic Replacement

= (1 + o (1))n−
1
2 +εCE
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≤
(
1−

(
δ − δ′
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1
2 +ε +Bn

−(1+ε)
0 n−

1
2 +ε.(5.69)

In (5.68), the reasoning is exactly the same as for (5.65) yielding that there is 0 < δ < 1 such
that

(1 + o (1))E

 K∑
r=1

(
I

(n)
r

n

)1+ε ≤ 1− δ

for n sufficiently large. Furthermore, we used a constant D satisfying

D ≥ (1 + o (1))A′′E

 K∑
r=1

(
I

(n)
r

n

)ε
for sufficiently large n, noting E

[∑K
r=1

(
I

(n)
r
n

)ε]
≤ K due to ε > 0 and I

(n)
r
n ≤ 1.

In (5.69), we choose 0 < δ′ < δ such that for n large enough

0 < Dn−1 < δ′ < δ

and fix n0 ∈ N such that all estimates hold for n ≥ n0. Finally, we choose

C ≥ max
{

∆̂ (j) j
1
2−ε

∣∣j = 2, . . . , n0 − 1
}
∨ B

n1+ε
0 (δ − δ′)

and therefore obtain, for n ≥ 2,

ζ3
(
X̂n,N (0, 1)

)
≤ C n−

1
2 +ε.

The same reasoning applies to ζ3
(
Ŷn,N (0, 1)

)
, completing the proof.

Resumption of the Proof of Theorem 5.15. We bounded the distance ζ3
(
X̂n,N (0, 1)

)
via the

triangle inequality by ζ3
(
X̂n,Qb

n

)
and ζ3

(
Qb
n,N (0, 1)

)
and studied these distances in order

to derive rates for ζ3
(
X̂n,N (0, 1)

)
via

Step 1 that yields a recursive description of ζ3
(
X̂n,Qb

n

)
and ζ3

(
Ŷn,N (0, 1)

)
in Proposition

5.17;
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Step 2 where we derive upper bounds for ζ3
(
Qb
n,N (0, 1)

)
and ζ3 (Qw

n ,N (0, 1)), respec-
tively, in Corollary 5.21 on the basis of Proposition 5.18; and finally,

Step 3 that combines the results of Step 1 and Step 2 in an induction deriving upper
bounds for the rate of ζ∨3

((
X̂n, Ŷn

)
,N (0, 1)

)
in Corollaries 5.22, 5.23 and 5.24.

This concludes the proof of Theorem 5.15.
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6. Rates of Convergence for a Two-Colour
Pólya Urn with Random Replacement

In this chapter, the Pólya urn characterised by setting Rand R is studied with respect to
rates of convergence. This chapter should be read in parallel with Chapter 5 since the same
reasoning as before is conducted.

In Chapter 5, determining upper bounds for rates of convergence could mostly be broken
down to a thorough treatment of the coefficients of the distributional recursions (5.3) and
(5.42) for the normalised numbers of black balls. The coefficients are indeed closely related to
the subtree sizes that enter our reasoning via the recursive approach detailed in Chapter 3. In
setting Det R, the behaviour of the subtree sizes had not been captured in the best possible
way, cf. Remark 3.6; whereas in setting Rand R, the rescaled subtree sizes and their limit
can easily be coupled optimally. Hence, this is done and we want to outline the differences.

Note that setting Rand R is the simplest example of a balanced and irreducible two-colour
Pólya urn scheme where the balance equals one—therefore, we study the setting Rand R in
order to understand the problems of setting Det R.

At first, the details of setting Rand R are stated. Subsequently, the non-normal limit case
is sketched. The treatment of the normal limit case follows.

Recall setting Rand R from the introduction:

Randomised Play-the-Winner Rule

R̄ =

 Cα 1− Cα

1− Cβ Cβ

with Cα ∼ Ber (α) , Cβ ∼ Ber (β) ,

α, β ∈ (0, 1) .

(Rand R)

This urn comes with two coins, a “black” and a “white” coin. In every step, one ball is drawn
uniformly at random from the urn. The colour of the drawn ball determines which coin is
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tossed. Then, the outcome of the coin toss determines the colour of the ball that is added to
the urn when the drawn ball is returned to the urn.

Let R̃ :=
(

α 1−α
1−β β

)
be the matrix that contains the means of the entries of the replacement

matrix R̄. Then, the crucial parameter determining the regime of asymptotic behaviour
of the normalised number of black balls is given by the ratio of the eigenvalues of R̃, i.e.,
λ := α + β − 1. As in Chapter 5, the non-normal limit case, i.e., λ > 1

2 , is studied first,
followed by the normal limit case, i.e., λ ≤ 1

2 .

The parameter λ takes values in the interval (−1, 1), where the case λ = 0 is special: Unlike
the situation in setting Det R, the behaviour of the number of black balls is not deterministic.
When λ = 0 the two coins our urn comes with have the same success probability, so there is
only one coin, and, therefore, the number of black balls is the number of initial black balls
plus a sum of independent (Ber (α)-distributed) random variables, leading to the setting of
the classical Central Limit Theorem. The case λ = 0 is treated in Remark 6.23.

In terms of the recursive approach displayed in Chapter 3, we decompose the number of black
balls at time n recursively into the contributions of black leaves of the two subtrees of the
root of the associated tree. For the second subtree, the coin toss in the first step of the urn
decides whether it is a b-associated or a w-associated tree. By In we denote the number of
draws from the first subtree which belongs to the original root node of the associated tree (the
initial ball of the urn) and by Jn the number of draws from the second subtree that belongs
to the ball added in the first step.

Then, the recursive approach from Section 3.2 yields the following distributional recursions,
recall (3.2), for the number of black balls after n steps, beginning with a black or a white ball,
respectively, with Bb

0 := 1 and Bw
0 := 0:

Bb
n

d= B
b,(1)
In

+ CαB
b,(2)
Jn

+ (1− Cα)Bw
Jn ,

Bw
n

d= B
w,(1)
In

+ (1− Cβ)Bb
Jn + CβB

w,(2)
Jn

,
(6.1)

where Bb,(r)
j

d=Bb
j and Bw,(r)

j
d=Bw

j for r = 1, 2 and j = 0, . . . , n − 1, such that
(
B

b,(r)
j

)
j≥1

,(
B

w,(r)
j

)
j≥1

,
(
Bb
j

)
j≥1

,
(
Bw
j

)
j≥1

, Cα, Cβ, and I(n) = (In, Jn) are independent.

Note that In and Jn are uniformly distributed on {0, . . . , n− 1} with In + Jn = n− 1. From
Lemma 3.4 we know the behaviour of the rescaled subtree sizes:(

In
n
,
Jn
n

)
→ (U, 1− U) , n→∞, a.s. and in Lp, p ≥ 1,
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with U uniformly distributed on [0, 1]. As all our recurrences take place on the level of
distributions we take the liberty to choose

In := bnUc , and accordingly, Jn = n− 1− bnUc .(6.2)

Therefore, we have Lemma 3.7 and Lemma 3.8 at hand when it comes to handling the be-
haviour of the rescaled subtree sizes compared to their limits.

Lemma 6.1. Depending on λ, the following holds for the means of the number of black balls
E
[
Bb
n

]
and E [Bw

n ], as n→∞:

i) λ > 0:

E
[
Bb
n

]
= 1− β

1− λn+ 1− α
1− λ

1
Γ (λ+ 1)n

λ +O (1) ,

E [Bw
n ] = 1− β

1− λn−
1− β
1− λ

1
Γ (λ+ 1)n

λ +O (1) .

ii) λ < 0:

E
[
Bb
n

]
= 1− β

1− λn+O (1) ,

E [Bw
n ] = 1− β

1− λn+O (1) .

Proof. See Chapter A.2 of the appendix.

Lemma 6.2. Depending on λ, for the variances of the number of black balls Var
(
Bb
n

)
and

Var (Bw
n ), it holds, as n→∞:

i) λ = 1
2 :

Var
(
Bb
n

)
= 4 (1− α) (1− β)n ln (n) +O (n) ,

Var (Bw
n ) = 4 (1− α) (1− β)n ln (n) +O (n) .

ii) 0 < λ < 1
2 :

Var
(
Bb
n

)
= (1− α) (1− β)

(1− 2λ) (1− λ)2n+O
(
n2λ

)
,

Var (Bw
n ) = (1− α) (1− β)

(1− 2λ) (1− λ)2n+O
(
n2λ

)
.
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6. Rates of Convergence for a Two-Colour Pólya Urn with Random Replacement

iii) λ < 0:

Var
(
Bb
n

)
= (1− α) (1− β)

(1− 2λ) (1− λ)2n+O (1) ,

Var (Bw
n ) = (1− α) (1− β)

(1− 2λ) (1− λ)2n+O (1) .

Proof. See Chapter A.2 of the appendix.

Notation 6.3. We use the following abbreviations

c̃b = 1− β
1− λ, d̃b = 1− α

1− λ
1

Γ (λ+ 1) , d̃w = −1− β
1− λ

1
Γ (λ+ 1) .

Furthermore, the mean of the j-th quantities Bb
j and Bw

j is abbreviated by µ̃b (j) and µ̃w (j),
respectively, as well as their standard deviations by σ̃b (j) and σ̃w (j), and their variances by
σ̃2

b (j) and σ̃2
w (j), respectively. As before, we use these abbreviations with random arguments

In and Jn. Compare Remark 5.4.

104



6.1. Non-Normal Limit Case: λ > 1
2

6.1. Non-Normal Limit Case: λ > 1
2

In this section, all results are analogous to the results of Section 5.1. Their proofs are very
briefly sketched, since the choice (6.2) for the subtree sizes does not influence the results; the
tighter estimates for the asymptotic behaviour of the rescaled subtree sizes do not yield any
improvement compared to the non-normal limit case in setting Det R. The details of the
proofs were already checked in [29].

As before in the non-normal limit case of setting Det R, the number of black balls after n
steps is centred around the expectation and scaled by the order of the standard deviation.
Let X0 := 0 =: Y0 and, for n ≥ 1,

Xn :=
Bb
n − E

[
Bb
n

]
nλ

,

Yn :=Bw
n − E [Bw

n ]
nλ

.

(6.3)

The distributional recursions of (6.1) lead to, n ≥ 1,

Xn
d=
(
In
n

)λ
X (1)
In

+ Cα

(
Jn
n

)λ
X (2)
Jn

+ (1− Cα)
(
Jn
n

)λ
YJn + b̃b (In) ,

Yn
d=
(
In
n

)λ
Y(1)
In

+ Cβ

(
Jn
n

)λ
Y(2)
Jn

+ (1− Cβ)
(
Jn
n

)λ
XJn + b̃w (In)

(6.4)

with toll terms (and with Lemma 6.1.i))

b̃b (In) := 1
nλ

(µ̃b (In) + Cαµ̃b (Jn) + (1− Cα) µ̃w (Jn)− µ̃b (n))

= d̃b

((
In
n

)λ
+ Cα

(
Jn
n

)λ
− 1

)
+ d̃w (1− Cα)

(
Jn
n

)λ
+O

(
n−λ

)
,

b̃w (In) := 1
nλ

(µ̃w (In) + (1− Cβ) µ̃b (Jn) + Cβµ̃w (Jn)− µ̃w (n))

= d̃w

((
In
n

)λ
+ Cβ

(
Jn
n

)λ
− 1

)
+ d̃b (1− Cβ)

(
Jn
n

)λ
+O

(
n−λ

)
,

(6.5)

where X (1)
j

d=Xj
d=X (2)

j and Y(1)
j

d=Yj
d=Y(2)

j for j = 0, . . . , n − 1, such that (Xj)0≤j≤n−1,(
X (1)
j

)
0≤j≤n−1

,
(
X (2)
j

)
0≤j≤n−1

, (Yj)0≤j≤n−1,
(
Y(1)
j

)
0≤j≤n−1

,
(
Y(2)
j

)
0≤j≤n−1

, In, Cα, and Cβ
are independent.

Formally letting n→∞, we expect the following system of distributional fixed-point equations
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6. Rates of Convergence for a Two-Colour Pólya Urn with Random Replacement

to hold for a limit (X ,Y) of (Xn,Yn)n∈N:

(6.6)
X d= UλX (1) + Cα (1− U)λX (2) + (1− Cα) (1− U)λ Y + b̃b,

Y d= UλY(1) + Cβ (1− U)λ Y(2) + (1− Cβ) (1− U)λX + b̃w

with toll terms

(6.7)
b̃b := d̃b

(
Uλ + Cα (1− U)λ − 1

)
+ d̃w (1− Cα) (1− U)λ ,

b̃w := d̃w
(
Uλ + Cβ (1− U)λ − 1

)
+ d̃b (1− Cβ) (1− U)λ ,

where X (1) d=X d=X (1) and Y(1) d=Y d=Y(1) as well as X , X (1), X (2), Y, Y(1), Y(2), U , Cα, and
Cβ are independent.

Theorem 4.1 applies to the system of fixed-point equations given by (6.6). Hence, there is
a unique solution of system (6.6) in the Cartesian product of the space of centred prob-
ability measures with finite second moment M2 (0) × M2 (0) and it will be denoted by(
L
(
Λ̃b
)
,L
(
Λ̃w
))

.

As before in the non-normal limit case of setting Det R, we bound the rate of convergence
in all Wasserstein distances and in the Kolmogorov-Smirnov distance:

Theorem 6.4 (Twin of Theorem 5.6). Given a Pólya urn scheme characterised by Rand R
with λ := α + β − 1 > 1

2 , let Xn and Yn be defined as in (6.3) and let
(
L
(
Λ̃b
)
,L
(
Λ̃w
))

denote the unique solution of system (6.6) in M2 (0) ×M2 (0). Let p ≥ 1 and ε > 0. Then,
as n→∞,

`∨p

(
(Xn,Yn) ,

(
Λ̃b, Λ̃w

))
= O

(
n−λ+ 1

2 +ε
)
,

%∨
(
(Xn,Yn) ,

(
Λ̃b, Λ̃w

))
= O

(
n−λ+ 1

2 +ε
)
.

Theorem 6.4 follows from Proposition 6.9 and Proposition 6.10.

Remark 6.5. In the same manner as Remark 5.7 we make use of optimal couplings. We
assume conditions (5.7), (5.8) and (5.9)— stated in the setting Det R—to hold analogously
for the respective quantities of setting Rand R.

As in the proof of Theorem 5.6, we will state certain interim results that will constitute the
proof of Theorem 6.4. The reasoning to prove these interim results and thereby Theorem 6.4
remains the same as for Theorem 5.6. Hence, the proofs are not repeated in detail.
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6.1. Non-Normal Limit Case: λ > 1
2

Proposition 6.6 (Twin of Proposition 5.8). Consider a Pólya urn scheme characterised by
Rand R where λ := α+β−1 > 1

2 . Let Xn and Yn be defined as in (6.3), let
(
L
(
Λ̂b
)
,L
(
Λ̂w
))

denote the unique solution of system (6.6) inM2 (0)×M2 (0) and ε > 0. Then, as n→∞,

`∨2

(
(Xn,Yn) ,

(
Λ̃b, Λ̃w

))
= O

(
n−λ+ 1

2 +ε
)
.

As Proposition 5.8, Proposition 6.6 is proven via induction. The following three lemmata
constitute the proof of Proposition 6.6: Lemma 6.7 figures as backdrop for the induction.
Lemma 3.8 with p = 2 and ψ = λ (hence, ψ > p−1

p ) as well as Lemma 6.8 serve as preparatory
tools in order to finally complete the induction.

Let D (j) := `∨2

(
(Xj ,Yj) ,

(
Λ̃b, Λ̃w

))
as well as D2 (j) :=

(
`∨2

(
(Xj ,Yj) ,

(
Λ̃b, Λ̃w

)))2
, j ∈ N.

The quantities D (j) and D2 (j) are treated according to Remark 5.9.

Lemma 6.7 (Twin of Lemma 5.10). In the situation of Proposition 6.6, it holds, for n ≥ 1,

D2 (n) ≤ 2E
[(

In
n

)2λ
D2 (In)

]
+ 2L̃2

∥∥∥∥∥
(
In
n

)λ
− Uλ

∥∥∥∥∥
2

2

+ 4L̃E
[(

In
n

)λ ∣∣∣∣∣
(
In
n

)λ
− Uλ

∣∣∣∣∣D (In)
]

+ max
{∥∥∥b̃b (In)− b̃b

∥∥∥2

2
,
∥∥∥b̃w (In)− b̃w

∥∥∥2

2

}

with L̃ := max
{∥∥∥Λ̃b

∥∥∥
2
,
∥∥∥Λ̃w

∥∥∥
2

}
.

Sketch of Proof. The estimates go through exactly as in the proof of Lemma 5.10. �

Lemma 6.8 (Twin of Lemma 5.11). For the toll terms b̃b (In) and b̃w (In) defined in (6.5)
compared to b̃b and b̃w defined in (6.7), it holds, as n→∞,

max
{∥∥∥b̃b (In)− b̃b

∥∥∥
p
,
∥∥∥b̃w (In)− b̃w

∥∥∥
p

}
= O

(
n−λ

)
.

Sketch of Proof. Due to Lemma 3.8, we can find a tighter estimate (tighter than the estimate
obtained in Lemma 5.11) for the behaviour of the toll terms, by comparing with the proof of
Lemma 5.11 and inserting the result of Lemma 3.8 with p = 2 and ψ = λ (hence, ψ > p−1

p )
in the right places. Note that in this case due to Lemma 3.8 the exponent of the rate is twice
the exponent of the rate in the situation of Lemma 5.11. �

Using Proposition 6.6 as base case, we derive rates of convergence in all Wasserstein distances
via induction on p (and n, again).
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6. Rates of Convergence for a Two-Colour Pólya Urn with Random Replacement

Proposition 6.9 (Twin of Proposition 5.13). Given a Pólya urn scheme characterised by
Rand R where λ := α + β − 1 > 1

2 , let Xn and Yn be defined as in (6.3). Furthermore, let(
L
(
Λ̃b
)
,L
(
Λ̃w
))

denote the unique solution of system (6.6) inM2 (0)×M2 (0). Let p ≥ 1
and ε > 0. Then, as n→∞,

`∨p

(
(Xn,Yn) ,

(
Λ̃b, Λ̃w

))
= O

(
n−λ+ 1

2 +ε
)
.

Sketch of Proof. Rewriting `p
(
Xn, Λ̃b

)
by means of Lemma 5.12 we proceed analogously to

the proof of Proposition 5.13. �

Finally, we transfer the rates obtained in Wasserstein distances to the Kolmogorov-Smirnov
distance:

Proposition 6.10 (Twin of Proposition 5.14). Consider a Pólya urn scheme characterised
by Rand R where λ := α + β − 1 > 1

2 and let Xn and Yn be defined as in (6.3). Let(
L
(
Λ̃b
)
,L
(
Λ̃w
))

denote the unique solution of system (6.6) in M2 (0) × M2 (0) and let
ε > 0. Then, as n→∞,

%∨
(
(Xn,Yn) ,

(
Λ̃b, Λ̃w

))
= O

(
n−λ+ 1

2 +ε
)
.

Sketch of Proof. As in the proof of Proposition 5.14, we take advantage of Lemma 2.7. The
boundedness of the densities of Λ̃b and Λ̃w is proven in Leckey [33, Theorem 3.4]. All further
steps of the proof are analogous to the proof of Proposition 5.14. �
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6.2. Normal Limit Case: λ ≤ 1
2

6.2. Normal Limit Case: λ ≤ 1
2

In the normal limit case, the tighter estimates available in Lemma 3.7 and Lemma 3.8 make
a difference in the approach suggested by Lemma 2.7 for estimating the distance between
accompanying sequence and limit, compare introductory part of Step 2, p. 76 et seq. in
Chapter 5. Recall the situation of p. 101 as well as Notation 6.3.

Therefore, the approach via Lemma 2.7 will be displayed in detail, whereas the approach
based on Proposition 5.18 will be sketched briefly.

In order to obtain the standard normal distribution as unique fixed-point of the limiting
equation for the normalised number of black balls, it is centred around its mean and scaled
by the standard deviation. Let X̂0 := 0 =: Ŷ0 and, for n ≥ 1,

X̂n :=
Bb
n − E

[
Bb
n

]
√

Var (Bb
n)

, Ŷn := Bw
n − E [Bw

n ]√
Var (Bw

n )
.(6.8)

This transfers to the distributional recurrence obtained in (6.1) as

X̂n
d= σ̃b (In)
σ̃b (n) X̂

(1)
In

+ Cα
σ̃b (Jn)
σ̃b (n) X̂

(2)
Jn

+ (1− Cα) σ̃w (Jn)
σ̃b (n) ŶJn + t̂b (In) ,

Ŷn
d= σ̃w (In)
σ̃w (n) Ŷ

(1)
In

+ Cβ
σ̃w (Jn)
σ̃w (n) Ŷ

(2)
Jn

+ (1− Cβ) σ̃b (Jn)
σ̃w (n) X̂Jn + t̂w (In)

(6.9)

with

t̂b (In) := 1
σ̃b (n) (µ̃b (In) + Cαµ̃b (Jn) + (1− Cα) µ̃w (Jn)− µ̃b (n)) ,

t̂w (In) := 1
σ̃w (n) (µ̃w (In) + Cβµ̃w (Jn) + (1− Cβ) µ̃b (Jn)− µ̃w (n))

(6.10)

with similar conditions on distributions and independence as in (6.1). We keep the choice
In := bnUc of (6.2) with U uniformly distributed on [0, 1]. Formally letting n → ∞, we
expect a limit

(
L
(
X̂
)
,L
(
Ŷ
))

of
(
L
(
X̂n
)
,L
(
Ŷn
))

n∈N
due to Lemma 3.4 to satisfy the

following distributional fixed-point equation

X̂ d=
√
U X̂ (1) + Cα

√
1− U X̂ (2) + (1− Cα)

√
1− U Ŷ,

Ŷ d=
√
U Ŷ(1) + Cβ

√
1− U Ŷ(2) + (1− Cβ)

√
1− U X̂ ,

(6.11)

where U is uniformly distributed on [0, 1] and X̂ (1) d= X̂ d= X̂ (2) as well as Ŷ(1) d= Ŷ d= Ŷ(2) such
that X̂ , X̂ (1), X̂ (2), Ŷ, Ŷ(1), Ŷ(2), Cα, Cβ, and U are independent.
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6. Rates of Convergence for a Two-Colour Pólya Urn with Random Replacement

Associating the system (6.11) with a self-map as in Chapter 4 puts us in the situation of
Theorem 4.2. Hence, we know that the unique solution of system (6.11) inM3 (0, 1)×M3 (0, 1)
is given by (N (0, 1) ,N (0, 1)).

Theorem 6.11 (Twin of Theorem 5.15). Given a Pólya urn scheme characterised by Rand
R with λ := α+ β − 1 ≤ 1

2 , let X̂n and Ŷn be as in (6.8) and let ε > 0. Then, as n→∞,

ζ∨3

((
X̂n, Ŷn

)
, (N (0, 1) ,N (0, 1))

)
=



O
(
(ln (n))−

3
2
)
, if λ = 1

2 ,

O
(
n3(λ− 1

2 )) , if 1
3 < λ < 1

2 ,

O
(
n−

1
2 +ε

)
, if − 1 < λ ≤ 1

3 .

As before, in settingDet R, we measure the distance of X̂n to its limitN (0, 1) in the Zolotarev
distance by comparing both with a suitable accompanying sequence. The comparison of the
limit N (0, 1) and the accompanying sequence is crucial and determines the “best” rate that
could be obtained, when finally proving a rate for ζ3

(
X̂n,N (0, 1)

)
.

In the introductory part of Step 2, p. 76 et seq., it was explained that there are at least two
ways of estimating the Zolotarev distance between the accompanying sequence and the stan-
dard normal distribution: Firstly, Lemma 2.7 that finds an upper bound in the `3-Wasserstein
metric; secondly, the approach introduced in Proposition 5.18.

The approach via Lemma 2.7 can be considered the more common way, hence it served
as first choice in tackling the distance between accompanying sequence and limit. The most
unsatisfactory part in bounding via `3 was that Corollary 3.5 was not strong enough to deliver
reasonable estimates in setting Det R. Now, we are better off: We are able to couple the
rescaled subtree sizes to their limits explicitly, see (6.2). This enables us to give more precise
estimates in the study of the behaviour of the rescaled subtree sizes, see Lemmata 3.7 and 3.8,
than displayed in Lemma 3.4 and Corollary 3.5. Thus, we will demonstrate both approaches
to highlight the differences to setting Det R.

For the rates stated in Theorem 6.11 in the cases with positive λ, i.e., λ = 1
2 and 0 < λ < 1

2 ,
the approach of Proposition 5.18 for the distance between accompanying sequence and limit is
needed. For negative λ, both approaches, i.e., the approach via Lemma 2.7 and the analogue of
Proposition 5.18, yield the rate of Theorem 6.11. Note that in setting Det R the `3-estimates
tracing back to Lemma 2.7 were not even satisfactory for negative λ.

Proof of Theorem 6.11. The itinerary of our proof will be as in the proof of Theorem 5.15:
We want to find estimates for ζ∨3

((
X̂n, Ŷn

)
, (N (0, 1) ,N (0, 1))

)
. At first, we will squeeze in
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2

the accompanying sequences Q̂b
n and Q̂w

n that act as linkage between the sequences X̂n and
Ŷn and their limit N (0, 1). Let the accompanying sequences be given by

Q̂b
n := σ̃b (In)

σ̃b (n) N1 + Cα
σ̃b (Jn)
σ̃b (n) N2 + (1− Cα) σ̃w (Jn)

σ̃b (n) N3 + t̂b (In) , n ≥ 1,(6.12)

Q̂w
n := σ̃w (In)

σ̃w (n) N1 + Cβ
σ̃w (Jn)
σ̃w (n) N2 + (1− Cβ) σ̃b (Jn)

σ̃w (n) N3 + t̂w (In) , n ≥ 1,(6.13)

with N1, N2, N3 ∼ N (0, 1) independent. Note that for n ≥ 1, E
[
X̂n
]

= E
[
Ŷn
]

= E
[
Q̂b
n

]
=

E
[
Q̂w
n

]
= 0 and Var

(
X̂n
)

= Var
(
Ŷn
)

= Var
(
Q̂b
n

)
= Var

(
Q̂w
n

)
= 1 as well as

∥∥∥X̂n∥∥∥3
,
∥∥∥Ŷn∥∥∥3

,∥∥∥Q̂b
n

∥∥∥
3
,
∥∥∥Q̂w

n

∥∥∥
3
< ∞. Therefore, both distances ζ3

(
X̂n, Q̂b

n

)
and ζ3

(
Q̂b
n,N (0, 1)

)
as well as

ζ3
(
Ŷn, Q̂w

n

)
and ζ3

(
Q̂w
n ,N (0, 1)

)
are finite.

We perform all reasoning for the first component X̂n as proofs work out analogously for the
second component Ŷn. Hence, we will derive an estimate for ζ3

(
X̂n,N (0, 1)

)
. The proof of

Theorem 6.11 breaks down to three steps (as in the proof of Theorem 5.15):

Step 1* Denoting by D̂ (j) := ζ∨3

((
X̂j , Ŷj

)
, (N (0, 1) ,N (0, 1))

)
the maximal Zolotarev dis-

tance between the j-th member of the sequence and its limit, we derive a recursive
estimate of ζ3

(
X̂n, Q̂b

n

)
in terms of D̂ (j) with j = 0, . . . , n − 1 (when we write

D̂ (In) we mean the distance of the randomly chosen In-th quantity to the limit, it
does not equal ζ∨3

((
X̂In , ŶIn

)
, (N (0, 1) ,N (0, 1))

)
, see Remark 5.9). Step 1* is

analogous to Step 1 in setting Det R.

Step 2* Next, we want to appoint a candidate for the rate of convergence by studying
ζ3
(
Q̂b
n,N (0, 1)

)
. Before we sketch the analogue of Proposition 5.18, we demon-

strate how to bound ζ3
(
Q̂b
n,N (0, 1)

)
in `3 in order to illustrate the problem arising

from Corollary 3.5 in setting Det R.

Step 3* Finally, we will put all these estimates together and proof a rate of convergence via
induction.

Firstly, by the triangle inequality the distance of interest is bounded by

(6.14) ζ3
(
X̂n,N (0, 1)

)
≤ ζ3

(
X̂n, Q̂b

n

)
+ ζ3

(
Q̂b
n,N (0, 1)

)
.

As in the proof of Theorem 5.15 in setting Det R, we treat the three steps Step 1*, Step
2* and Step 3* separately. We sever the proof of Theorem 6.11 and engage with the three
steps that will finally conclude this proof. �
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6. Rates of Convergence for a Two-Colour Pólya Urn with Random Replacement

Ad Step 1*: Recursive Description of ζ3
(
X̂n, Q̂b

n

)
and ζ3

(
Ŷn, Q̂w

n

)
Proposition 6.12 (Twin of Proposition 5.17). In the situation of Theorem 6.11 with Q̂b

n and
Q̂w
n defined as in (6.12) and (6.13), it holds, for n ∈ N,

ζ3
(
X̂n, Q̂b

n

)
≤ E

[(
σ̃b (In)
σ̃b (n)

)3
D̂ (In) +

(
α

(
σ̃b (Jn)
σ̃b (n)

)3
+ (1− α)

(
σ̃w (Jn)
σ̃b (n)

)3)
D̂ (Jn)

]
,

ζ3
(
Ŷn, Q̂w

n

)
≤ E

[(
σ̃w (In)
σ̃w (n)

)3
D̂ (In) +

(
(1− β)

(
σ̃b (Jn)
σ̃w (n)

)3
+ β

(
σ̃w (Jn)
σ̃w (n)

)3)
D̂ (Jn)

]
.

Proof. Keep in mind that In is uniformly distributed on {0, . . . , n− 1} and In + Jn = n− 1.
We condition on In and obtain due to independence

ζ3
(
X̂n, Q̂b

n

)
= sup

f∈F3

∣∣∣E [f (X̂n)− f (Q̂b
n

)]∣∣∣
= sup

f∈F3

∣∣∣E [E [f (X̂n)− f (Q̂b
n

) ∣∣In]]∣∣∣
= sup

f∈F3

∣∣∣∣∣∣
n−1∑
j=0

1
n
E
[
f
(
X̂n
)
− f

(
Q̂b
n

) ∣∣In = j
]∣∣∣∣∣∣

≤
n−1∑
j=0

1
n

sup
f∈F3

∣∣∣E [f (X̂n)− f (Q̂b
n

) ∣∣In = j
]∣∣∣

=
n−1∑
j=0

1
n
ζ3

(
σ̃b (j)
σ̃b (n) X̂

(1)
j + Cα

σ̃b (n− 1− j)
σ̃b (n) X̂ (2)

n−1−j

+ (1− Cα) σ̃w (n− 1− j)
σ̃b (n) Ŷn−1−j + t̂b (j) ,

σ̃b (j)
σ̃b (n)N1 + Cα

σ̃b (n− 1− j)
σ̃b (n) N2

+ (1− Cα) σ̃w (n− 1− j)
σ̃b (n) N3 + t̂b (j)

)

≤
n−1∑
j=0

1
n

[
ζ3

(
σ̃b (j)
σ̃b (n) X̂

(1)
j ,

σ̃b (j)
σ̃b (n)N1

)
(6.15)

+ ζ3

(
Cα

σ̃b (n− 1− j)
σ̃b (n) X̂ (2)

n−1−j , Cα
σ̃b (n− 1− j)

σ̃b (n) N2

)
+ ζ3

(
(1− Cα) σ̃w (n− 1− j)

σ̃b (n) Ŷn−1−j , (1− Cα) σ̃w (n− 1− j)
σ̃b (n) N3

)
+ 0

]
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2

≤
n−1∑
j=0

1
n

[(
σ̃b (j)
σ̃b (n)

)3
ζ3
(
X̂ (1)
j , N1

)
+
(
σ̃b (n− 1− j)

σ̃b (n)

)3
ζ3
(
CαX̂ (2)

n−1−j , CαN2
)

(6.16)

+
(
σ̃w (n− 1− j)

σ̃b (n)

)3
ζ3
(
(1− Cα) Ŷn−1−j , (1− Cα)N3

)]

=
n−1∑
j=0

1
n

[(
σ̃b (j)
σ̃b (n)

)3
ζ3
(
X̂ (1)
j , N1

)
+ α

(
σ̃b (n− 1− j)

σ̃b (n)

)3
ζ3
(
X̂ (2)
n−1−j , N2

)
(6.17)

+ (1− α)
(
σ̃w (n− 1− j)

σ̃b (n)

)3
ζ3
(
Ŷn−1−j , N3

)]

≤ E

[(
σ̃b (In)
σ̃b (n)

)3
D̂ (In) + α

(
σ̃b (Jn)
σ̃b (n)

)3
D̂ (Jn) + (1− α)

(
σ̃w (Jn)
σ̃b (n)

)3
D̂ (Jn)

]
,

where we used that ζ3 is (3,+)-ideal in (6.15) and (6.16). In (6.17) we conditioned on the
events {Cα = 1} and {Cα = 0}.

Ad Step 2*: Determining a Candidate for the Rate of Convergence

For studying the Zolotarev distance between accompanying sequence and limit, we first illus-
trate the approach suggested by Lemma 2.7 (“option 1”). Afterwards we sketch the analogue
of Proposition 5.18 as “option 2”.

Option 1: Bounding by the `3-Wasserstein distance

To begin with, we will give estimates obtained via Lemma 2.7 in distinction from Step 2 in
Chapter 5 in setting Det R.

Proposition 6.13. In the situation of Theorem 6.11 with Q̂b
n and Q̂w

n as in (6.12) and (6.13),
it holds, as n→∞,

ζ∨3

((
Q̂b
n, Q̂w

n

)
, (N (0, 1) ,N (0, 1))

)
=



O
(
(ln (n))−

1
2
)
, λ = 1

2 ,

O
(
nλ−

1
2
)
, 0 < λ < 1

2 ,

O
(
n−

1
2
)
, −1 < λ < 0.

Proof. To get hold of the latter distance of the right-hand side of (6.14) we use the link
between Zolotarev and Wasserstein distance, Lemma 2.7:

ζ3
(
Q̂b
n,N (0, 1)

)
≤
(
E

[∣∣∣Q̂b
n

∣∣∣3] 2
3

+ E
[
|N |

2
3
])

`3
(
Q̂b
n,N (0, 1)

)
,
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where N :=
√
UN1 + Cα

√
1− UN2 + (1− Cα)

√
1− UN3 is standard normally distributed

with N1, N2, N3 standard normally distributed, independent of all other quantities.

With (subsequent) Lemma 6.14, the quantity E
[∣∣∣Q̂b

n

∣∣∣3] 2
3
is uniformly bounded in n:

∥∥∥Q̂b
n

∥∥∥
3

≤
∥∥∥∥ σ̃b (In)
σ̃b (n) N1

∥∥∥∥
3

+
∥∥∥∥Cα σ̃b (Jn)

σ̃b (n) N2

∥∥∥∥
3

+
∥∥∥∥(1− Cα) σ̃w (Jn)

σ̃b (n) N3

∥∥∥∥
3

+
∥∥∥t̂b (In)

∥∥∥
3

≤ 3 ‖N1‖3 + o (1) .

Hence, the expression E
[∣∣∣Q̂b

n

∣∣∣3] 2
3

+ E
[
|N |

2
3
]
is uniformly bounded in n and we can proceed

to `3
(
Q̂b
n,N (0, 1)

)
:

`3
(
Q̂b
n,N (0, 1)

)
≤
∥∥∥Q̂b

n −N
∥∥∥

3

=
∥∥∥∥ σ̃b (In)
σ̃b (n) N1 + Cα

σ̃b (Jn)
σ̃b (n) N2 + (1− Cα) σ̃w (Jn)

σ̃b (n) N3 + t̂b (In)

−
√
UN1 − Cα

√
1− UN2 − (1− Cα)

√
1− UN3

∥∥∥
3

≤ ‖N1‖3
∥∥∥∥ σ̃b (In)
σ̃b (n) −

√
U

∥∥∥∥
3

+ ‖N2‖3 α
1
3

∥∥∥∥ σ̃b (Jn)
σ̃b (n) −

√
1− U

∥∥∥∥
3

+ ‖N3‖3 (1− α)
1
3

∥∥∥∥ σ̃w (Jn)
σ̃b (n) −

√
1− U

∥∥∥∥
3

+
∥∥∥t̂b (In)

∥∥∥
3
.

The behaviour of
∥∥∥t̂b (In)

∥∥∥
3
is studied in Lemma 6.14. Estimates for the terms

∥∥∥ σ̃b(In)
σ̃b(n) −

√
U
∥∥∥

3
,∥∥∥ σ̃b(Jn)

σ̃b(n) −
√

1− U
∥∥∥

3
and

∥∥∥ σ̃w(Jn)
σ̃b(n) −

√
1− U

∥∥∥
3
are given in Lemma 6.15. Lemmata 6.14 and

6.15 yield, for symmetry reasons,

`3
(
Q̂b
n,N (0, 1)

)
≤ ‖N1‖3

∥∥∥∥ σ̃b (In)
σ̃b (n) −

√
U

∥∥∥∥
3

+ ‖N2‖3 α
1
3

∥∥∥∥ σ̃b (Jn)
σ̃b (n) −

√
1− U

∥∥∥∥
3

+ ‖N3‖3 (1− α)
1
3

∥∥∥∥ σ̃w (Jn)
σ̃b (n) −

√
1− U

∥∥∥∥
3

+
∥∥∥t̂b (In)

∥∥∥
3

=



O
(
(ln (n))−

1
2
)
, λ = 1

2 ,

O
(
nλ−

1
2
)
, 0 < λ < 1

2 ,

O
(
n−

1
2
)
, −1 < λ < 0.

The assertion follows.
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2

Lemma 6.14 (Twin of Lemma 5.19). For the toll terms t̂b (In) and t̂w (In) defined in (6.10),
it holds, as n→∞,

max
{∥∥∥t̂b (In)

∥∥∥
3
,
∥∥∥t̂w (In)

∥∥∥
3

}
=



O
(
(ln (n))−

1
2
)
, λ = 1

2 ,

O
(
nλ−

1
2
)
, 0 < λ < 1

2 ,

O
(
n−

1
2
)
, −1 < λ < 0.

Proof. The proof is analogous to the proof of Lemma 5.19. For the sake of completeness and
readability, the full proof is given below. Due to the different behaviours depending on the
range of λ, we consider the three cases λ = 1

2 , 0 < λ < 1
2 and λ < 0 separately.

Case λ = 1
2 :

Making use of Lemma 6.1.i) and Lemma 6.2.i) for asymptotic expansions of expectations and
standard deviations, respectively, we obtain

t̂b (In)

= µ̃b (In) + Cαµ̃b (Jn) + (1− Cα) µ̃w (Jn)− µ̃b (n)
σ̃b (n)

= 2 (1− β) In + Cα2 (1− β) Jn + (1− Cα) 2 (1− β) Jn − 2 (1− β)n
σ̃b (n)(6.18)

+ 2
Γ
(

3
2

) (1− α) I
1
2
n + Cα (1− α) J

1
2
n − (1− Cα) (1− β) J

1
2
n − (1− α)n 1

2

σ̃b (n)(6.19)

+ 1
σ̃b (n)O (1) ,

where the linear terms in the nominator of (6.18) cancel out and a term of constant order
(remembering In +Jn = n− 1) is left. We obtain, with In

n ,
Jn
n < 1 in (6.19), and the fact that

the standard deviation is of order
√
n ln (n),

∥∥∥t̂b (In)
∥∥∥

3

≤ 2n 1
2

Γ
(

3
2

)
σ̃b (n)

(∥∥∥∥∥
(
In
n

) 1
2
∥∥∥∥∥

3
+ 2

∥∥∥∥∥
(
Jn
n

) 1
2
∥∥∥∥∥

3
+ 1

)
+O

(
(n ln (n))−

1
2
)

= O
(
(ln (n))−

1
2
)
.

Case 0 < λ < 1
2 :

We use the asymptotic expansions from Lemma 6.1.i) for the expectations together with
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abbreviations of Notation 6.3 and from Lemma 6.2.ii) for the standard deviation. Then,

t̂b (In) = µ̃b (In) + Cαµ̃b (Jn) + (1− Cα) µ̃w (Jn)− µ̃b (n)
σ̃b (n)

= c̃bIn + Cαc̃bJn + (1− Cα) c̃bJn − c̃bn

σ̃b (n)

+ d̃bI
λ
n + Cαd̃bJ

λ
n − (1− Cα) d̃wJ

λ
n − d̃bn

λ

σ̃b (n)

+ 1
σ̃b (n)O (1) .

The standard deviation is of order
√
n. Hence, we estimate according to the previous case:

∥∥∥t̂b (In)
∥∥∥

3

≤ nλ

(1− λ) Γ (1 + λ) σ̃b (n)

(∥∥∥∥∥
(
In
n

)λ∥∥∥∥∥
3

+ 2
∥∥∥∥∥
(
Jn
n

)λ∥∥∥∥∥
3

+ 1
)

+O
(
n−

1
2
)

= O
(
nλ−

1
2
)
.

Case −1 < λ < 0:
Finally, we use Lemma 6.1.ii) and Lemma 6.2.iii) and obtain, similarly as above,

t̂b (In) = µ̃b (In) + Cαµ̃b (Jn) + (1− Cα) µ̃w (Jn)− µ̃b (n)
σ̃b (n)

= c̃bIn + Cαc̃bJn + (1− Cα) c̃bJn − c̃bn+O (1)
σ̃b (n)

= 1
σ̃b (n)O (1) = O

(
n−

1
2
)
,

yielding∥∥∥t̂b (In)
∥∥∥

3
= O

(
n−

1
2
)
.

Likewise treatment of
∥∥∥t̂w (In)

∥∥∥
3
yields the assertion.

Lemma 6.15. In the situation of Theorem 6.11 with In and U as in (6.2), it holds, as n→∞,

max
{∥∥∥∥ σ̃b (In)

σ̃b (n) −
√
U

∥∥∥∥
3
,

∥∥∥∥ σ̃w (In)
σ̃b (n) −

√
U

∥∥∥∥
3

}
=



O
(
(ln (n))−

1
2
)
, λ = 1

2 ,

O
(
nλ−

1
2
)
, 0 < λ < 1

2 ,

O
(
n−

1
2
)
, −1 < λ < 0.
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2

Proof. In order to handle
∥∥∥ σ̃b(In)
σ̃b(n) −

√
U
∥∥∥

3
, we squeeze in the square root of the rescaled subtree

sizes:

(6.20)
∥∥∥∥ σ̃b (In)
σ̃b (n) −

√
U

∥∥∥∥
3
≤

∥∥∥∥∥∥
√
In
n
−
√
U

∥∥∥∥∥∥
3

+

∥∥∥∥∥∥ σ̃b (In)
σ̃b (n) −

√
In
n

∥∥∥∥∥∥
3

.

Obviously, the L3-distance between the square root of the rescaled subtree sizes and the square
root of its limit is central.

For the first part, we have according to Lemma 3.8 with ψ = 1
2 and p = 3 (hence, ψ < p−1

p )∥∥∥∥∥∥
√
In
n
−
√
U

∥∥∥∥∥∥
3

= O
(
n−

5
6
)
.(6.21)

For the second part of the right-hand side of (6.20), we have three cases depending on the
ranges of λ caused by the different asymptotic expansions in the variance, see Lemma 6.2.

For λ = 1
2 , we use the asymptotic expansion of the variance from Lemma 6.2.i). Note that

σ̃b (0) = σ̃w (0) = 0 as well as σ̃b (1) =
√
α (1− α) and σ̃w (1) =

√
β (1− β). Hence, “small”

j = 0, 1 are not covered by the asymptotic expansions given in Lemma 6.2.i). Therefore, we
insert the asymptotic expansions together with a suitable indicator and “hide” the “small” j
in O

(
n−

1
2
)
. We obtain

∥∥∥∥∥∥ σ̃b (In)
σ̃b (n) −

√
In
n

∥∥∥∥∥∥
3

≤

∥∥∥∥∥∥1{In≥1}

√
In ln (In) +O (n)
n ln (n) +O (n) −

√
In
n

∥∥∥∥∥∥
3

+O
(
n−

1
2
)

≤

∥∥∥∥∥∥∥1{In≥1}

√√√√∣∣∣nIn ln
(
In
n

)
+O (n2)

∣∣∣
n (n ln (n) +O (n))

∥∥∥∥∥∥∥
3

+O
(
n−

1
2
)

≤ 1√
n2 ln (n)

∥∥∥∥∥1{In≥1}

√
n2
∣∣∣∣Inn ln

(
In
n

)∣∣∣∣
∥∥∥∥∥

3
+O

(
(ln (n))−

1
2
)

≤ 1
e
√

ln (n)
+O

(
(ln (n))−

1
2
)

= O
(
(ln (n))−

1
2
)

(6.22)

using that the function x → |x ln (x)|, continuously extended by 0 ln (0) := 0, is bounded by
1
e for x ∈ [0, 1] in (6.22).

In the case 0 < λ < 1
2 , the expansion of the variance in Lemma 6.2.ii) yields

∥∥∥∥∥∥ σ̃b (In)
σ̃b (n) −

√
In
n

∥∥∥∥∥∥
3

=

∥∥∥∥∥∥
√
In +O (n2λ)
n+O (n2λ) −

√
In
n

∥∥∥∥∥∥
3
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=

∥∥∥∥∥∥
√
n (In +O (n2λ))−

√
In (n+O (n2λ))√

n (n+O (n2λ))

∥∥∥∥∥∥
3

≤

∥∥∥∥∥∥
√
n (In +O (n2λ))− In (n+O (n2λ))√

n (n+O (n2λ))

∥∥∥∥∥∥
3

≤
√

O (n2λ+1)
n (n+O (n2λ)) = O

(
nλ−

1
2
)
.

Finally, when λ < 0, we have from Lemma 6.2.iii)∥∥∥∥∥∥ σ̃b (In)
σ̃b (n) −

√
In
n

∥∥∥∥∥∥
3

=

∥∥∥∥∥∥
√
In +O (1)
n+O (1) −

√
In
n

∥∥∥∥∥∥
3

= O
(
n−

1
2
)
.

Combining these three estimates together with (6.21) in (6.20), the assertion follows.

Remark 6.16. Using Lemma 2.7 in setting Det R leads to estimates corresponding to those
of Proposition 6.13, Lemma 6.14 as well as Lemma 6.15. As Det R-version of Proposition
6.13 we would obtain the following result for the distance of the accompanying sequences Qb

n

and Qw
n to the normal distribution that looks amiss:

ζ∨3

((
Qb
n,Q

w
n

)
, (N (0, 1) ,N (0, 1))

)
=



O
(
(ln (n))−1

)
, λ = 1

2 ,

O
(
nλ−

1
2
)
, 1

4 ≤ λ <
1
2 ,

O
(
n−

1
4
)
, λ < 1

4 , λ 6= 0.

The exponent of the rate stops changing with λ at λ = 1
4 . The “fastest” rate we would obtain

is n− 1
4 for λ ≤ 1

4 , λ 6= 0. In the situation of Proposition 6.13, the exponent of the rate is a
linear decreasing function of λ for λ ∈

(
0, 1

2

)
and abides at the order of the reciprocal of the

standard deviation of the number of black balls for negative λ.

The vital difference here is the treatment of (6.20) in the proof of Lemma 6.15: We are able
to analyse

∥∥∥∥√ In
n −
√
U

∥∥∥∥
3
more precisely due to the explicit connection of the rescaled subtree

sizes and its limit via In = bnUc. We have done so in Lemma 3.8. In setting Det R, we
have to retreat to Corollary 3.5 that is a consequence of Lemma 3.4. But already in Lemma
3.4, we were not able to couple the rescaled subtree sizes and its Dirichlet-distributed limit
accordingly. Hence, our estimates are rather blunt.

Nevertheless, we need to consider the approach of Proposition 5.18 for Step 2* to accelerate
the rate for 0 < λ ≤ 1

2 .
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2

Option 2: Analogue of Proposition 5.18

Using the same methods as in the proof of Proposition 5.18, we obtain the following

Proposition 6.17 (Twin of Proposition 5.18). In the situation of Theorem 6.11 with Q̂b
n and

Q̂w
n defined in (6.12) and (6.13), it holds, as n→∞,

ζ3
(
Q̂b
n,N (0, 1)

)
=O

∥∥∥∥∥ σ̃2
b (In)
σ̃2

b (n) + Cα
σ̃2

b (Jn)
σ̃2

b (n) + (1− Cα) σ̃
2
w (Jn)
σ̃2

b (n) − 1
∥∥∥∥∥

3
2

3
2

+
∥∥∥t̂b (n)

∥∥∥3

3


as well as

ζ3
(
Q̂w
n ,N (0, 1)

)
=O

∥∥∥∥∥ σ̃2
w (In)
σ̃2

w (n) + (1− Cβ) σ̃
2
b (Jn)
σ̃2

w (n) + Cβ
σ̃2

w (Jn)
σ̃2

w (n) − 1
∥∥∥∥∥

3
2

3
2

+
∥∥∥t̂w (n)

∥∥∥3

3

.
Sketch of Proof. The reasoning that is to be conducted in order to prove Proposition 6.17 is
the same as in the proof of Proposition 5.18. Hence, the calculations thereof are not repeated
but only the quantities in use that need to be adjusted are given. Plugging in the quantities
defined here in the calculations of the proof of Proposition 5.18 leads to the assertion of
Proposition 6.17.

Making use of the convolution property of the normal distribution, we have

Q̂b
n

d=
(
σ̃2

b (In)
σ̃2

b (n) + Cα
σ̃2

b (Jn)
σ̃2

b (n) + (1− Cα) σ̃
2
w (Jn)
σ̃2

b (n)

) 1
2

N + t̂b (In)

d=1Ãcb
(
G̃b
nN + t̂b (In)

)
+ 1Ãb

(
N + ∆̃b

nN
′ + t̂b (In)

)
=: Q̄b

n

with

G̃b
n :=

(
σ̃2

b (In)
σ̃2

b (n) + Cα
σ̃2

b (Jn)
σ̃2

b (n) + (1− Cα) σ̃
2
w (Jn)
σ̃2

b (n)

) 1
2

,

Ãb :=
{
G̃b
n ≥ 1

}
,

∆̃b
n :=

√∣∣∣(G̃b
n

)
− 1

∣∣∣
and

Q̂w
n

d=
(
σ̃2

w (In)
σ̃2

w (n) + (1− Cβ) σ̃
2
b (Jn)
σ̃2

w (n) + Cβ
σ̃2

w (Jn)
σ̃2

w (n)

) 1
2

N + t̂w (In)

d=1Ãcb
(
G̃b
nN + t̂b (In)

)
+ 1Ãb

(
N + ∆̃b

nN
′ + t̂b (In)

)
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=: Q̄w
n

with

G̃w
n :=

(
σ̃2

w (In)
σ̃2

w (n) + (1− Cβ) σ̃
2
b (Jn)
σ̃2

w (n) + Cβ
σ̃2

w (Jn)
σ̃2

w (n)

) 1
2

,

Ãw :=
{
G̃w
n ≥ 1

}
,

∆̃w
n :=

√∣∣∣(G̃w
n

)
− 1

∣∣∣.
The modified accompanying sequences Q̄b

n and Q̄w
n are then compared, in terms of the Zolo-

tarev distance ζ3, with

N̄b := 1AbN + 1Acb
(
G̃b
n + ∆̃b

nN
′
) d=N (0, 1) and

N̄w := 1AwN + 1Acw
(
G̃w
n + ∆̃w

nN
′
) d=N (0, 1) ,

respectively.

The difference f
(
Q̄b
n

)
−f

(
N̄b
)
, that arises in the Zolotarev distance ζ3

(
Q̄b
n, N̄

b
)
with f ∈ F3,

is treated with Taylor expansion at N in completely the same way as in pp. 79–85 of the proof
of Proposition 5.18. This yields

ζ3
(
Q̄b
n, N̄

b
)
≤ O

(∥∥∥∥(G̃b
n

)2
− 1

∥∥∥∥ 3
2

3
2

+
∥∥∥t̂b (n)

∥∥∥3

3

)
as well as

ζ3
(
Q̄w
n , N̄

w
)
≤ O

(∥∥∥∥(G̃w
n

)2
− 1

∥∥∥∥ 3
2

3
2

+
∥∥∥t̂w (n)

∥∥∥3

3

)
,

leading to the claim of Proposition 6.17. �
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2

Lemma 6.18 (Twin of Lemma 5.20). In the situation of Theorem 6.11, we have for the
quantities appearing in the estimates for ζ∨3

((
Q̂b
n, Q̂w

n

)
, (N (0, 1) ,N (0, 1))

)
of Proposition

6.17, as n→∞,

∥∥∥∥∥ σ̃2
b (In)
σ̃2

b (n) + Cα
σ̃2

b (Jn)
σ̃2

b (n) + (1− Cα) σ̃
2
w (Jn)
σ̃2

b (n) − 1
∥∥∥∥∥ 3

2

=



O
(
(ln (n))−1

)
, λ = 1

2 ,

O
(
n2(λ− 1

2 )) , 0 < λ < 1
2 ,

O
(
n−1) , λ < 0,

as well as

∥∥∥∥∥ σ̃2
w (In)
σ̃2

w (n) + (1− Cβ) σ̃
2
b (Jn)
σ̃2

w (n) + Cβ
σ̃2

w (Jn)
σ̃2

w (n) − 1
∥∥∥∥∥ 3

2

=



O
(
(ln (n))−1

)
, λ = 1

2 ,

O
(
n2(λ− 1

2 )) , 0 < λ < 1
2 ,

O
(
n−1) , λ < 0.

Proof. The situation is analogous to the situation of Lemma 5.20: We add the undistorted
rescaled subtree sizes In

n and Jn
n and subtract n−1

n . Then,∥∥∥∥∥ σ̃2
b (In)
σ̃2

b (n) + Cα
σ̃2

b (Jn)
σ̃2

b (n) + (1− Cα) σ̃
2
w (Jn)
σ̃2

b (n) − 1
∥∥∥∥∥ 3

2

=
∥∥∥∥∥ σ̃2

b (In)
σ̃2

b (n) −
In
n

+ Cα

(
σ̃2

b (Jn)
σ̃2

b (n) −
Jn
n

)
+ (1− Cα)

(
σ̃2

w (Jn)
σ̃2

b (n) −
Jn
n

)
+ n− 1

n
− 1

∥∥∥∥∥ 3
2

≤
∥∥∥∥∥ σ̃2

b (In)
σ̃2

b (n) −
In
n

∥∥∥∥∥ 3
2

+
∥∥∥∥∥ σ̃2

b (Jn)
σ̃2

b (n) −
Jn
n

∥∥∥∥∥ 3
2

+
∥∥∥∥∥ σ̃2

w (Jn)
σ̃2

b (n) −
Jn
n

∥∥∥∥∥ 3
2

+ 1
n
.

Obviously, for
∥∥∥∥ σ̃2

b(In)
σ̃2

b(n) −
In
n

∥∥∥∥ 3
2

we have to go into the three cases λ = 1
2 , 0 < λ < 1

2 and λ < 0

in consequence of the different behaviour of the variances, see Lemma 6.2: The treatment
of this term differs from the situation of Lemma 5.20 only in the constants that arise in the
asymptotic expansions of the variances. Hence, with the reasoning of Lemma 5.20 in the three
subcases, we have:

λ = 1
2 :

∥∥∥∥∥ σ̃2
b (In)
σ̃2

b (n) −
In
n

∥∥∥∥∥ 3
2

= O
(
(ln (n))−1

)
,

0 < λ <
1
2 :

∥∥∥∥∥ σ̃2
b (In)
σ̃2

b (n) −
In
n

∥∥∥∥∥ 3
2

= O
(
n2(λ− 1

2 )) ,
λ < 0 :

∥∥∥∥∥ σ̃2
b (In)
σ̃2

b (n) −
In
n

∥∥∥∥∥ 3
2

= O
(
n−1

)
.
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The same reasoning applies to
∥∥∥∥ σ̃2

b(Jn)
σ̃2

b(n) −
Jn
n

∥∥∥∥ 3
2

and
∥∥∥∥ σ̃2

w(Jn)
σ̃2

b(n) −
Jn
n

∥∥∥∥ 3
2

. Hence, we obtain

∥∥∥∥∥ σ̃2
b (In)
σ̃2

b (n) + Cα
σ̃2

b (Jn)
σ̃2

b (n) + (1− Cα) σ̃
2
w (Jn)
σ̃2

b (n) − 1
∥∥∥∥∥ 3

2

=



O
(
(ln (n))−1

)
, λ = 1

2 ,

O
(
n2(λ− 1

2 )) , 0 < λ < 1
2 ,

O
(
n−1) , λ < 0.

Treating
∥∥∥∥ σ̃2

w(In)
σ̃2

w(n) + (1− Cβ) σ̃
2
b(Jn)
σ̃2

w(n) + Cβ
σ̃2

w(Jn)
σ̃2

w(n) − 1
∥∥∥∥ 3

2

accordingly, the assertion follows.

Corollary 6.19 (Twin of Corollary 5.21). In the situation of Theorem 6.11 and Proposition
6.17, it holds, as n→∞,

ζ∨3

((
Q̂b
n, Q̂w

n

)
, (N (0, 1) ,N (0, 1))

)
=



O
(
(ln (n))−

3
2
)
, λ = 1

2 ,

O
(
n3(λ− 1

2 )) , 0 < λ < 1
2 ,

O
(
n−

3
2
)
, λ < 0.

Proof. It follows immediately from Proposition 6.17 together with Lemma 6.14 and Lemma
6.18.

Remark 6.20. In Corollary 6.19, the exponents of all the rates are accelerated by a factor 3
in contrast to the rates obtained in Proposition 6.13.

Ad Step 3*: Link of Interim Stages— Induction

An upper bound for the rate of convergence on the basis of Proposition 6.12 together with
Proposition 6.13 and Corollary 6.19, respectively, is derived via induction—analogously to
Step 3 in setting Det R.

The following Corollaries 6.21 and 6.22 are analogues of Corollaries 5.22, 5.23 and 5.24.
Hence, some of the estimates are not carried out in full detail. Still, crucial or short parts of
the calculations are written in such a manner that there is no need to consult the calculations
of Corollaries 5.22, 5.23 and 5.24.

In Corollaries 6.21 and 6.22 the constants A,B,C,D > 0, and ξ, δ, δ′ ∈ (0, 1) as well as an
integer called n0 ∈ N occur several times with potentially different meanings but during one
and the same induction their meaning does not change. There are three inductions; one for
each of the cases: λ = 1

2 ,
1
3 < λ < 1

2 , and λ ≤
1
3 .
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2

Corollary 6.21 (Twin of Corollary 5.22). In the situation of Theorem 6.11, if λ = 1
2 , it

holds, as n→∞,

ζ∨3

((
X̂n, Ŷn

)
, (N (0, 1) ,N (0, 1))

)
= O

(
(ln (n))−

3
2
)
.

Proof. From Lemma 6.2.i) and Lemma A.3 applied as in (A.2), we have with a suitable
constant A > 0(

σ̃b (j)
σ̃b (n)

)3
,

(
σ̃w (j)
σ̃b (n)

)3
≤ (j ln (j))

3
2 +Aj

3
2 (ln (j))

1
2

(n ln (n) +O (n))
3
2

.

Proposition 6.13 suggests a rate of order (ln (n))−
1
2 , whereas Corollary 6.19 suggests a rate

of order (ln (n))−
3
2 . Of course, we try to transfer the faster of the two rates to the distances

ζ3
(
X̂n,N (0, 1)

)
and set as induction hypothesis

D̂ (j) ≤ C (ln (j))−
3
2 for j = 2, . . . , n− 1.

On plugging in the induction hypothesis, we have to treat the contributions on the events
{In < 2} and {Jn < 2} separately. Therefore, we add indicators and hide the contributions
not covered by these indicators in O

(
1
n

)
. Evoking Proposition 6.12 and Corollary 6.19 and

plugging in the induction hypothesis in (6.23), we have with a suitable constant B > 0

ζ3
(
X̂n,N (0, 1)

)
≤ ζ3

(
X̂n, Q̂b

n

)
+ ζ3

(
Q̂b
n,N (0, 1)

)
≤E

[(
σ̃b (In)
σ̃b (n)

)3
D̂ (In) +

(
α

(
σ̃b (Jn)
σ̃b (n)

)3
+ (1− α)

(
σ̃w (Jn)
σ̃b (n)

)3)
D̂ (Jn)

]
+ ζ3

(
Q̂b
n,N (0, 1)

)
≤E

( In ln (In)
n ln (n) +O (n)

) 3
2
D̂ (In)1{In≥2} +

(
Jn ln (Jn)

n ln (n) +O (n)

) 3
2
D̂ (Jn)1{Jn≥2}


+ E

 AI
3
2
n (ln (In))

1
2

(n ln (n) +O (n))
3
2
D̂ (In)1{In≥2} + AJ

3
2
n (ln (Jn))

1
2

(n ln (n) +O (n))
3
2
D̂ (Jn)1{Jn≥2}


+ ζ3

(
Q̂b
n,N (0, 1)

)
+O

( 1
n

)

≤ 1 + o (1)
(n ln (n))

3
2

CE [I 3
2
n + J

3
2
n

]
+ACE

 I
3
2
n

ln (In)1{In≥2} + J
3
2
n

ln (Jn)1{Jn≥2}

(6.23)

+B (ln (n))−
3
2

≤ (1 + o (1))C (ln (n))−
3
2 E

[(
In
n

) 3
2

+
(
Jn
n

) 3
2
]
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+ C
1 + o (1)

(n ln (n))
3
2
A · 2

n−1∑
j=2

1
n

j
3
2

ln (j) +B (ln (n))−
3
2

≤ (1− δ)C (ln (n))−
3
2 + Cn−

5
2 (ln (n))−

3
2 D

n
5
2

ln (n) +B (ln (n))−
3
2(6.24)

= (1− δ)C (ln (n))−
3
2 + C (ln (n))−

3
2 D (ln (n))−1 +B (ln (n))−

3
2

≤
(
1−

(
δ − δ′

))
C (ln (n))−

3
2 +B (ln (n))−

3
2 .(6.25)

In (6.24) we used that by Corollary 3.5 and property (3.6) it holds

E

[(
In
n

) 3
2

+
(
Jn
n

) 3
2
]
→ ξ < 1, n→∞.

So, there is 0 < δ < 1 such that for n sufficiently large

E

[(
In
n

) 3
2

+
(
Jn
n

) 3
2
]
< 1− δ.

Furthermore, we used in (6.24) the following estimate for the sum ∑n−1
j=2

j
3
2

ln(j) :

n−1∑
j=2

j
3
2

ln (j) ≤

⌊
n

ln(n)

⌋∑
j=2

j
3
2

ln (j) +
n−1∑

j=
⌈

n
ln(n)

⌉ j
3
2

ln (j)

≤ E

ln (2)

⌊
n

ln (n)

⌋ 5
2

+ F

ln
(⌈

n
ln(n)

⌉)n 5
2

≤ E′
(

n

ln (n)

) 5
2

+ F (1 + o (1)) n
5
2

ln (n) = O

(
n

5
2

ln (n)

)

with suitable constants E,E′, F > 0. Hence, we can choose a constant D such that

D
n

5
2

ln (n) ≥ 2A (1 + o (1))
n−1∑
j=2

j
3
2

ln (j)

for n large enough.

In (6.25), we chose 0 < δ′ < δ such that for n large enough

D (ln (n))−1 < δ′.

Finally, let n0 ∈ N be fixed such that above esimates hold for n ≥ n0 and choose

C ≤ D̂ (1) ∨max
{
D̂ (j) (ln (j))

3
2
∣∣j = 2, . . . , n0 − 1

}
∨ B

δ − δ′
.
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2

Then, we have

ζ3
(
X̂n,N (0, 1)

)
≤ C (ln (n))−

3
2 for n ≥ 2.

The same reasoning applied to ζ3
(
Ŷn,N (0, 1)

)
yields the assertion.

For 0 < λ < 1
2 , Corollary 6.19 suggests a rate of order n3(λ− 1

2 ). Supposing this rate, the
contractive behaviour (see Remark 8.1) needed to conduct the induction, is satisfied for 1

3 <

λ < 1
2 . For λ ≤ 1

3 we expect the rate to be of the order n− 1
2 , the reciprocal of the standard

deviation, but can only prove a rate of order n− 1
2 +ε for arbitrary ε > 0. Note that for

negative λ the less elaborate estimates leading to Proposition 6.13 are sufficient, in contrary
to the estimates we are able to find in the setting Det R (sketched in Remark 6.16).

In Corollaries 5.23 and 5.24, estimates for the cases 0 < λ ≤ 1
2 and λ < 0 only differ in the

second order term of the variance. The necessary steps are nearly identical. Thus, in the
following corollary we do not distinguish between these two regimes.

Corollary 6.22 (Twin of Corollaries 5.23 and 5.24). In the situation of Theorem 6.11, if
λ < 1

2 , λ 6= 0, let ε > 0. Then, as n→∞,

ζ∨3

((
X̂n, Ŷn

)
, (N (0, 1) ,N (0, 1))

)
=


O
(
n3(λ− 1

2 )) , 1
3 < λ < 1

2 ,

O
(
n−

1
2 +ε

)
, λ ≤ 1

3 , λ 6= 0.

Proof. The ratios
(
σ̃b(j)
σ̃b(n)

)3
and

(
σ̃w(j)
σ̃b(n)

)3
occurring in Proposition 6.12 can be estimated for

both 0 < λ < 1
2 and λ < 0 with the help of Lemma 6.2.ii), iii) and Lemma A.3 applied as in

(A.3) by, with a suitable constant A > 0,
(
σ̃b (j)
σ̃b (n)

)3
,

(
σ̃w (j)
σ̃b (n)

)3
≤ j

3
2 +Aj2λ+ 1

2

n+O (n2λ) .(6.26)

This estimate seems to be a little rough for negative λ. However, it does not influence the
order of an upper bound for the rate of convergence. Of course, it should be refined when
determining constants for the rates.

We begin with the case 1
3 < λ < 1

2 :
We set as induction hypothesis

D̂ (j) ≤ Cj3(λ− 1
2 ), j = 1, . . . , n− 1.
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Again, note that D̂ (0) does not contribute. With Proposition 6.12, Corollary 6.19, the esti-
mates above and the induction hypothesis, we have with a suitable constant B > 0

ζ3
(
X̂n,N (0, 1)

)
≤ ζ3

(
X̂n, Q̂b

n

)
+ ζ3

(
Q̂b
n,N (0, 1)

)
≤ ζ3

(
X̂n, Q̂b

n

)
+Bn3(λ− 1

2 )

≤E
[(

σ̃b (In)
σ̃b (n)

)3
D̂ (In) +

(
α

(
σ̃b (Jn)
σ̃b (n)

)3
+ (1− α)

(
σ̃w (Jn)
σ̃b (n)

)3)
D̂ (Jn)

]
+Bn3(λ− 1

2 )

≤E
[(

In
n+O (n2λ)

) 3
2
D̂ (In) +

(
Jn

n+O (n2λ)

) 3
2
D̂ (Jn)

]

+AE

 I
2λ+ 1

2
n

(n+O (n2λ))
3
2
D̂ (In) + J

2λ+ 1
2

n

(n+O (n2λ))
3
2
D̂ (Jn)

+Bn3(λ− 1
2 )

≤(1 + o (1))C
n

3
2

E
[
I3λ
n + J3λ

n

]
+ (1 + o (1))AC

n
3
2

E
[
I5λ−1
n + J5λ−1

n

]
+Bn3(λ− 1

2 )

= (1 + o (1))Cn3(λ− 1
2 )E

[(
In
n

)3λ
+
(
Jn
n

)3λ
]

(6.27)

+ (1 + o (1))ACn5(λ− 1
2 )E

[(
In
n

)5λ−1
+
(
Jn
n

)5λ−1
]

+Bn3(λ− 1
2 )

≤ (1− δ)Cn3(λ− 1
2 ) + Cn3(λ− 1

2 )Dn2(λ− 1
2 ) +Bn3(λ− 1

2 )(6.28)

≤
(
1−

(
δ − δ′

))
Cn3(λ− 1

2 ) +Bn3(λ− 1
2 ).(6.29)

In (6.28): From Corollary 3.5 together with property (3.6) and 3λ > 1 we know that

E

[(
In
n

)3λ
+
(
Jn
n

)3λ
]
→ ξ < 1, n→∞.

Hence, there is 0 < δ < 1 such that

(1 + o (1))E
[(

In
n

)3λ
+
(
Jn
n

)3λ
]
≤ 1− δ

for n sufficiently large. Additionally, we chose a constant D such that

D ≥ (1 + o (1))AE
[(

In
n

)5λ−1
+
(
Jn
n

)5λ−1
]

for n sufficiently large (observe that E
[(

In
n

)5λ−1
+
(
Jn
n

)5λ−1
]
≤ 2 due to 5λ − 1 > 2

3 and
In
n ,

Jn
n ≤ 1). In (6.29), we choose 0 < δ′ < δ such that for n large enough

Dn2(λ− 1
2 ) < δ′.
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2

Now, we fix n0 ∈ N such that all of the above estimates hold for n ≥ n0 and choose

C ≥ max
{
D̂ (j) j3( 1

2−λ)∣∣j = 1, . . . , n0 − 1
}
∨ B

δ − δ′
.

Then, we have

ζ3
(
X̂n,N (0, 1)

)
≤ C n3(λ− 1

2 ) for n ≥ 1.

The same holds for ζ3
(
Ŷn,N (0, 1)

)
(with readjusted C).

We now devote our attention to the case λ ≤ 1
3 , λ 6= 0:

Let ε > 0 and set as induction hypothesis

D̂ (j) ≤ Cj−
1
2 +ε, j = 1, . . . , n− 1.

As before, D̂ (0) does not contribute in the following computation. As the rates suggested by
Corollary 6.19 are too fast to be transferred we can now treat the distance ζ3

(
Q̂b
n,N (0, 1)

)
crudely and choose to estimate it by n− 1

2 . In the following calculation, w.l.o.g., we assume
λ > 0. However, the calculations serve, with suitably chosen constants, as upper bound for
the case with negative λ. With Proposition 6.12, as before, and a suitable constant B > 0 we
have

ζ3
(
X̂n,N (0, 1)

)
≤E

[(
In

n+O (n2λ)

) 3
2
D̂ (In) +

(
Jn

n+O (n2λ)

) 3
2
D̂ (Jn)

]

+AE

 I
2λ+ 1

2
n

(n+O (n2λ))
3
2
D̂ (In) + J

2λ+ 1
2

n

(n+O (n2λ))
3
2
D̂ (Jn)

+Bn−
1
2

≤(1 + o (1))C
n

3
2

E
[
I1+ε
n + J1+ε

n

]
+ (1 + o (1))AC

n
3
2

E
[
I2λ+ε
n + J2λ+ε

n

]
+Bn−

1
2

= (1 + o (1))Cn−
1
2 +εE

[(
In
n

)1+ε
+
(
Jn
n

)1+ε
]

+ (1 + o (1))ACn−
3
2 +2λ+εE

[(
In
n

)2λ+ε
+
(
Jn
n

)2λ+ε
]

+Bn−
1
2

≤ (1− δ)Cn−
1
2 +ε + Cn−

1
2 +εDn−1+2λ +Bn−

1
2(6.30)

≤
(
1−

(
δ − δ′

))
Cn−

1
2 +ε +Bn−

1
2 .(6.31)

In (6.30) we use Corollary 3.5 together with property (3.6) and 1 + ε > 1 and have

E

[(
In
n

)1+ε
+
(
Jn
n

)1+ε
]
→ ξ < 1, n→∞.
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Hence, there is 0 < δ < 1 such that

(1 + o (1))E
[(

In
n

)1+ε
+
(
Jn
n

)1+ε
]
≤ 1− δ

for n sufficiently large. Additionally, we choose a constant D such that

D ≥ (1 + o (1))AE
[(

In
n

)2λ+ε
+
(
Jn
n

)2λ+ε
]

for n sufficiently large (observe that E
[(

In
n

)2λ+ε
+
(
Jn
n

)2λ+ε
]
≤ 2 due to 2λ + ε > 0 and

In
n ,

Jn
n ≤ 1). In (6.31), we choose 0 < δ′ < δ such that for n large enough

Dn−1+2λ < δ′.

Then, fix n0 ∈ N such that all previous estimates hold for n ≥ n0 and choose

C ≥ max
{
D̂ (j) j

1
2 +ε∣∣j = 1, . . . , n0 − 1

}
∨ B

δ − δ′
.

Finally, we have

ζ3
(
X̂n,N (0, 1)

)
≤ Cn−

1
2 +ε for n ≥ 1.

The same reasoning holds for ζ3
(
Ŷn,N (0, 1)

)
and therefore the assertion of Corollary 6.22

follows.

Resumption of the Proof of Theorem 6.11. Finally, we want to condense the results of the
three steps:

Step 1* yields a recursive estimate for ζ3
(
X̂n, Q̂b

n

)
stated in Proposition 6.12;

Step 2* gives candidates for the rates by identifying upper bounds for ζ3
(
Q̂b
n,N (0, 1)

)
in

Proposition 6.13 and Corollary 6.19, respectively; Finally, in

Step 3* we merge the results of Step 1* and Step 2* into rates for ζ3
(
X̂n,N (0, 1)

)
≤

ζ3
(
X̂n, Q̂b

n

)
+ ζ3

(
Q̂b
n,N (0, 1)

)
in Corollary 6.21 and Corollary 6.22.

Hence, we obtain

ζ∨3

((
X̂n, Ŷn

)
, (N (0, 1) ,N (0, 1))

)
=



O
(
(ln (n))−

3
2
)
, λ = 1

2 ,

O
(
n3(λ− 1

2 )) , 1
3 < λ < 1

2 ,

O
(
n−

1
2 +ε

)
, λ < 1

3 , λ 6= 0.
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2

Finally, this is the assertion of Theorem 6.11.

Remark 6.23 (The Case λ = 0). As mentioned in the beginning of this chapter, when λ = 0,
the number of black balls is not driven by the draws from the urn. The “black” and the “white”
coin are the same. Therefore, the number of black balls is a sum of independent Ber (α)-
distributed random variables plus initial number of black balls. Studying the asymptotic
behaviour of the normalised number of black balls reduces to the situation of the classical
Central Limit Theorem:

In every step of the urn, a black ball is added with probability α and a white ball with
probability 1−α. Hence, let (Cj)j∈N be a sequence of independent Ber (α)-distributed random
variables. Then, for n ≥ 1,

Bb
n

d= 1 +
n∑
j=1

Cj , Bw
n

d= 0 +
n∑
j=1

Cj ,

and

X̂n = Bb
n − (1− nα)√
nα (1− α)

, Ŷn = Bw
n − nα√
nα (1− α)

.

Now, let N ∼ N (0, 1), Ni ∼ N (0, α (1− α)), i = 1, . . . , n, and let these random variables be
independent of Ci, i = 1, . . . , n. Then, we have

ζ3
(
X̂n,N (0, 1)

)
=ζ3

(∑n
i=1Ci − nα√
nα (1− α)

,N (0, 1)
)

≤ (nα (1− α))−
3
2 ζ3

(
n∑
i=1

Ci − nα,
√
nα (1− α)N

)

= (nα (1− α))−
3
2 ζ3

(
n∑
i=1

(Ci − α) ,
n∑
i=1

Ni

)

≤ (nα (1− α))−
3
2

n∑
i=1

ζ3 (Ci − α,Ni)

= (nα (1− α))−
3
2 n ζ3 (C1 − α,N1)︸ ︷︷ ︸

<∞

=O
(
n−

1
2
)
,

where we used that
√
nα (1− α)N ∼ N (0, nα (1− α)) with

√
nα (1− α)N d=∑n

i=1Ni, due
to the convolution property of the normal distribution. Note that all Zolotarev distances
are finite, as first and second moments of the involved random variables coincide and third
moments obviously exist.
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7. Rates of Convergence: Arbitrary Initial
Composition of the Urn

In this chapter, the rates obtained in Chapter 5 are proven to also hold for a Pólya urn
characterised by setting Det R with an arbitrary initial composition. Therefore, the recursive
approach of Chapter 3 is extended such that the number of black balls is described by a forest
of associated trees. Thereby, the number of black balls after n steps when starting with an
arbitrary initial composition can be characterised in distribution by a combination of the base
cases. In doing so, the results on upper bounds for rates of convergence stated in Chapter 5
for the base cases are transferred to the number of black balls when starting with an arbitrary
initial composition of the urn.

Firstly, details of setting Det R are recalled and stated. Then, the recursive approach of
Chapter 3 is extended. It serves to determine a distributional characterisation for the number
of black balls in terms of the number of black balls when starting with a single ball Bb

n and
Bw
n . Then, divided into the non-normal and the normal limit case, rates of convergence on

the basis of Theorem 5.6 and Theorem 5.15 are derived. The non-normal limit case is studied
first and the normal limit case concludes this chapter. In both cases, the distance between
the number of black balls and its limit can be combined via the distances of the base cases to
their limits, with respect to the Wasserstein distances in the non-normal limit case and with
respect to the Zolotarev distance in the normal limit case.

Balanced Irreducible Two-Colour Pólya Urns

R =

 a b

c d

with a, d ∈ N0 ∪{−1} and b, c ∈ N,

such that a+ b = c+ d =: K − 1 ≥ 1 (balancedness)

and bc > 0 (irreducibility).

(Det R)

Recall that the ratio of the eigenvalues of the replacement matrix that determines the asymp-
totic behaviour is given by λ := a−c

a+b .
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7. Rates of Convergence: Arbitrary Initial Composition of the Urn

The number of black balls after n steps in a Pólya urn scheme driven by setting Det R with
initial composition I := (b0, w0), i.e., in the beginning the urn contains b0 black and w0 white
balls, is denoted by Bn.

In order to normalise, information on mean and variance of the number of black balls Bn is
needed:

Lemma 7.1 (Mean and Variance of the Number of Black Balls).

1. For the mean of Bn, it holds, as n→∞,

a) For λ > 0:

E [Bn] = c (a+ b)
b+ c

n+
(
b0 −

c

b+ c
(b0 + w0)

) Γ
(
b0+w0
a+b

)
Γ
(
b0+w0+a−c

a+b

)nλ +O (1) .

b) For λ < 0:

E [Bn] = c (a+ b)
b+ c

n+O (1) .

2. For the variance of Bn, it holds, as n→∞,

a) For λ = 1
2 :

Var (Bn) = bc n ln (n) +O (n) .

b) For 0 < λ < 1
2 :

Var (Bn) = bc (a− c)2

(a+ b− 2 (a− c)) (b+ c)2n+O
(
n2λ

)
.

c) For λ < 0:

Var (Bn) = bc (a− c)2

(a+ b− 2 (a− c)) (b+ c)2n+O (1) .

We abbreviate d′ :=
(
b0 − c

b+c (b0 + w0)
) Γ

(
b0+w0
a+b

)
Γ
(
b0+w0+a−c

a+b

) as well as mean and variance of the

j-th quantity by µI (j) := E [Bj ] and σ2
I (j) := Var (Bj) (for the standard deviation σI (j),

analogously ) and use both with random argument as explained before in Remark 5.4.

Proof. See Appendix A.2.
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7.1. A Forest of Associated Trees

7.1. A Forest of Associated Trees

Following the recursive approach of Knape and Neininger [27] that was recalled in Chapter
3, the evolution of this urn process can be captured by a forest of associated trees, see also
Chauvin et al. [9, Section 3.1]:

Figure 7.1.: A realisation of a forest of associated trees.

Consider a Pólya urn with black and white balls governed by the replacement matrix ( 1 4
3 2 )

that initially contains one black ball and two white balls.
On the left the urn at time zero and the urn after one draw are depicted. Both are accompanied
by the corresponding forest of associated trees at the respective stage.
Every initial ball gives rise to an associated tree of its colour. In the beginning, all the
associated trees consist of the root node of the respective colour only.
After the first step, all but one of the associated trees still consist of a root node only. The
other associated tree belongs to the ball that was drawn from the urn. It grows according to
the procedure explained in detail in Chapter 3, Section 3.1.

Any initial ball is assigned a b- or w-associated tree depending on its colour. The number of
black balls after n steps is written in terms of the contributions among these b0 + w0 trees.
This yields the following distributional representation of the number of black balls after n
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7. Rates of Convergence: Arbitrary Initial Composition of the Urn

steps:

Let I(n)
` denote the number of draws from the `-th associated tree with ` = 1, . . . , b0 + w0,

note that ∑b0+w0
`=1 I(n)

` = n and the marginals are distributed according to

P
(
I(n)
` = j

)
=
(
n

j

)(∏j−1
i=0 (1 + (K − 1) i)

) (∏n−1−j
i=0 (b0 + w0 − 1 + (K − 1) i)

)
∏n−1
i=0 (b0 + w0 + (K − 1) i)

for j ∈ {0, . . . , n} ( and we set ∏−1
i=0 xi := 1). The number of black balls after n steps can be

characterised via L
(
Bb
n

)
and L (Bw

n ), with B0 = b0 and for n ≥ 1, as follows:

Bn
d=

b0∑
`=1

B
b,(`)
I(n)
`

+
b0+w0∑
`=b0+1

B
w,(`)
I(n)
`

(7.1)

with B
b,(`)
j

d=Bb
j , B

w,(`)
j

d=Bw
j for j = 0, . . . , n and ` = 1, . . . , w0 + b0 such that the fami-

lies
(
B

b,(`)
j

)
0≤j≤n

,
(
B

w,(`)
j

)
0≤j≤n

, and I(n) :=
(
I(n)

1 , . . . , I(n)
b0+w0

)
are independent for ` =

1, . . . , b0 + w0.

Figure 7.2.: Evolution of the forest of associated trees: In continuation of the example given
in Figure 7.1, the associated trees grow conditioned on their size independently
in the passage of time.

The associated trees that correspond to the initial balls in the urn grow analogously to the
subtrees of the recursive approach in Chapter 3. Therefore, the results of the parenthesis in
Chapter 3, with C = b0 + w0 and r = K − 1 can be applied to this situation as well: The
limit of I(n)

n is given by a Dirichlet-distributed random vector D := (D1, . . . ,Db0+w0) with
all b0 + w0 parameters equal to 1

K−1 , compare Section 3.2. Since characterisation (7.1) is
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7.1. A Forest of Associated Trees

on the level of distributions, as before, we take the liberty to choose the random vector I(n)

suitably coupled to its limit: According to Theorem 3.3, we choose I(n) and its limit D such
that the Lp-distance between

I(n)
`
n and D` satisfies (3.3). Hence, the growth of the trees of the

associated forest can be captured analogously to Lemma 3.4 and Corollary 3.5 which served
to describe the behaviour of the rescaled subtree sizes:

Lemma 7.2 (Cousin of Lemma 3.4). The random vector I(n)

n :=
(
I(n)

1
n , . . . ,

I(n)
b0+w0
n

)
con-

verges almost surely to a Dirichlet-distributed random vector D := (D1, . . . ,Db0+w0) with all
parameters equal to 1

K−1 , as n → ∞. Furthermore, let I(n) and D be coupled according to
Theorem 3.3 and p ≥ 1. Then, for all ` = 1, . . . , b0 + w0, as n→∞,∥∥∥∥∥I

(n)
`

n
−D`

∥∥∥∥∥
p

= O
(
n−

1
2
)
.

Proof. This follows immediately from Lemma 3.2 and Theorem 3.3. See also the proof of
Lemma 3.4.

Corollary 7.3 (Cousin of Corollary 3.5). Let p ≥ 2 and ψ ∈ (0, 1). Then, for ` = 1, . . . , b0 +
w0, we have, as n→∞,∥∥∥∥∥∥

(
I(n)
`

n

)ψ
−Dψ`

∥∥∥∥∥∥
p

= O
(
n−

ψ
2
)
.

Proof. Compare the proof of Corollary 3.5.
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7.2. Non-Normal Limit Case: λ > 1
2

In this section, an upper bound for the rate of convergence in the non-normal limit case for
the number of black balls when starting the urn process with an arbitrary initial composition
is derived. Representation (7.1) is transferred to the normalised quantities. From the distri-
butional representation of the normalised quantities a distributional characterisation for the
limiting distribution is deduced.

Since the distribution of the number of black balls is characterised by a convolution of the
distributions of the base cases plus a toll term, it is not surprising that also the limit of the
normalised number of black balls can be represented in distribution with respect to the limits
in the base cases.

With these observations, rates of convergence in the non-normal limit case are derived on the
basis of Theorem 5.6. The first step is to derive an upper bound in the Wasserstein distances
`p with p ≥ 1. As in Chapter 5, the rate can then be transferred to the Kolmogorov-Smirnov
distance.

Recall from Section 5.1 the normalised quantities of the base cases Bb
n and Bw

n , see (5.2),
defined via X0 := 0 =: Y0 and, for n ≥ 1,

Xn :=
Bb
n − E

[
Bb
n

]
nλ

, Yn := Bw
n − E [Bw

n ]
nλ

.

Accordingly, the normalised number of black balls is defined by X0 := 0 and, for n ≥ 1,

(7.2) Xn := Bn − E [Bn]
nλ

.

The distributional representation of Bn in (7.1) leads to

(7.3) Xn
d=

b0∑
`=1

(
I(n)
`

n

)λ
X

b,(`)
I(n)
`

+
b0+w0∑
`=b0+1

(
I(n)
`

n

)λ
X

w,(`)
I(n)
`

+ bI
(
I(n)

)
, n ≥ 1,

where the toll term expands via Lemma 5.1, Lemma 7.1 and Notation 5.3 to

bI
(
I(n)

)
:= 1

nλ

 b0∑
`=1

µb
(
I(n)
`

)
+

b0+w0∑
`=b0+1

µw
(
I(n)
`

)
− µI (n)


= db

b0∑
`=1

(
I(n)
`

n

)λ
+ dw

b0+w0∑
`=b0+1

(
I(n)
`

n

)λ
− d′ +O

(
n−λ

)
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7.2. Non-Normal Limit Case: λ > 1
2

with Xb,(`)
j

d= Xj , Xw,(`)
j

d= Yj for j = 0, . . . , n and ` = 1, . . . , b0 +w0 such that
(
X

b,(`)
j

)
0≤j≤n

,(
X

w,(`)
j

)
0≤j≤n

, ` = 1, . . . , b0 + w0, and I(n) are independent.

As in Chapter 5, we denote the limits of Xn and Yn by Λb and Λw that are characterised by
system (5.5).

The number of black balls Bn converges in distribution (and almost surely) to a random vari-
able ΛI whose distribution depends on the initial composition of the urn and the replacement
matrix, see Janson [22], Chauvin et al. [9]. The distributional representation in (7.3) suggests
that this limit satisfies the following distributional equation

ΛI
d=

b0∑
`=1
Dλ` Λ(`)

b +
b0+w0∑
`=b0+1

Dλ` Λ(`)
w + bI ,(7.4)

where

bI := db

b0∑
`=1
Dλ` + dw

b0+w0∑
`=b0+1

Dλ` − d′

with independent copies Λ(`)
b of Λb and Λ(`)

w of Λw for ` = 1, . . . , b0 + w0.

The following theorem extends the results of Theorem 5.6 to Pólya urns with an arbitrary
initial composition in the non-normal limit case:

Theorem 7.4. Let Xn denote the normalised number of black balls of a Pólya urn scheme
characterised by Det R with arbitrary initial composition I = (b0, w0) as defined in (7.2)
and λ := a−c

a+b >
1
2 . Furthermore, let L (ΛI ) be characterised by (7.4) and ε > 0 as well as

p ≥ 1. Then, as n→∞,

`p (Xn,ΛI ) = O
(
n−λ+ 1

2 +ε
)
,

% (Xn,ΛI ) = O
(
n−λ+ 1

2 +ε
)
.

Proof. Let ε > 0. We choose the quantities arising in (7.3) and (7.4) such that the pairs(
X

b,(`)
j ,Λ(`)

b

)
and

(
X

w,(`)
j ,Λ(`)

w
)

are optimal couplings of the respective distributions and
furthermore Λ(`)

b and Λ(`)
w are independent of I(n) for ` = 1, . . . , b0 + w0.

We begin with the Wasserstein distances `p: Let p ≥ 1 and Mp := max
{
‖Λb‖p , ‖Λw‖p

}
<∞

(due to Kuba and Sulzbach [28, Theorem 2]). From Theorem 5.6 we know of the existence of
a constant Cp > 0 such that

(7.5) ∆p (j) := `∨p ((Xj ,Yj) , (Λb,Λw)) ≤ Cpj−λ+ 1
2 +ε for j ≥ 1,
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and note that ∆p (0) does not contribute in the following computation. With distributional
representations (7.3) and (7.4), we have

`p (Xn,ΛI ) ≤

∥∥∥∥∥∥
b0∑
`=1

(
I(n)
`

n

)λ (
X

b,(`)
I(n)
`

− Λ(`)
b

)
+

b0+w0∑
`=b0+1

(
I(n)
`

n

)λ (
X

w,(`)
I(n)
`

− Λ(`)
w

)

+
b0∑
`=1

(I(n)
`

n

)λ
−Dλ`

Λ(`)
b +

b0+w0∑
`=b0+1

(I(n)
`

n

)λ
−Dλ`

Λ(`)
w

+bI
(
I(n)

)
− bI

∥∥∥∥∥∥
p

≤
b0∑
`=1

∥∥∥∥∥∥
(
I(n)
`

n

)λ(
X

b,(`)
I(n)
`

− Λ(`)
b

)∥∥∥∥∥∥
p

+
b0+w0∑
`=b0+1

∥∥∥∥∥∥
(
I(n)
`

n

)λ(
X

w,(`)
I(n)
`

− Λ(`)
w

)∥∥∥∥∥∥
p

(7.6)

+
b0+w0∑
`=1

Mp

∥∥∥∥∥∥
(
I(n)
`

n

)λ
−Dλ`

∥∥∥∥∥∥
p

+
∥∥∥bI (I(n)

)
− bI

∥∥∥
p
.

Via conditioning on I(n) and due to independence conditioned on I(n), we observe
∥∥∥∥∥∥
(
I(n)
`

n

)λ (
X

b,(`)
I(n)
`

− Λ(`)
b

)∥∥∥∥∥∥
p

p

=
n−1∑
j=0

P
(
I(n)
` = j

)( j
n

)pλ
E
[∣∣∣Xb,(`)

j − Λ(`)
b

∣∣∣p]

≤
n−1∑
j=0

P
(
I(n)
` = j

)( j
n

)pλ
(∆p (j))p

=

∥∥∥∥∥∥
(
I(n)
`

n

)λ
∆p

(
I(n)
`

)∥∥∥∥∥∥
p

p

,

where we make use of the fact that the pair
(
X

b,(`)
j ,Λ(`)

b

)
is an optimal coupling. Hence, we

have for ` = 1, . . . , b0 + w0,

(7.7)

∥∥∥∥∥∥
(
I(n)
`

n

)λ (
X

b,(`)
I(n)
`

− Λ(`)
b

)∥∥∥∥∥∥
p

,

∥∥∥∥∥∥
(
I(n)
`

n

)λ (
X

w,(`)
I(n)
`

− Λ(`)
w

)∥∥∥∥∥∥
p

≤

∥∥∥∥∥∥
(
I(n)
`

n

)λ
∆p

(
I(n)
`

)∥∥∥∥∥∥
p

.

From Corollary 7.3, we have

(7.8)
b0+w0∑
`=1

Mp

∥∥∥∥∥∥
(
I(n)
`

n

)λ
−Dλ`

∥∥∥∥∥∥
p

= O
(
n−

λ
2
)
.

Moreover, repeating the proof of Lemma 5.11 with Corollary 7.3 instead of Corollary 3.5 we
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2

obtain

(7.9)
∥∥∥bI (I(n)

`

)
− bI

∥∥∥
2

= O
(
n−

λ
2
)
.

Therefore, (7.6) combined with (7.7), (7.8) and (7.9) yields

`p (Xn,ΛI ) ≤
b0+w0∑
`=1

∥∥∥∥∥∥
(
I(n)
`

n

)λ
∆p

(
I(n)
`

)∥∥∥∥∥∥
p

+O
(
n−

λ
2
)

≤
b0+w0∑
`=1

Cpn
λ− 1

2 +ε

∥∥∥∥∥∥∥
(
I(n)
`

n

) 1
2 +ε

∥∥∥∥∥∥∥
p

+O
(
n−

λ
2
)

(7.10)

≤ (b0 + w0)Cpnλ−
1
2 +ε +O

(
n−

λ
2
)
,(7.11)

where we used (7.5) in (7.10) as well as
∥∥∥∥∥
(
I(n)
`
n

) 1
2 +ε

∥∥∥∥∥
p

≤ 1 in (7.11). Hence, we have

(7.12) `p (Xn,ΛI ) = O
(
nλ−

1
2 +ε

)
.

Finally, we can transfer the rate to the Kolmogorov-Smirnov distance: Based on (7.12), the
final step consists of performing the same considerations as in the proof of Proposition 5.14;
from Kuba and Sulzbach [28, Theorem 2] we know that the density of ΛI is bounded. Hence,
Lemma 2.6 can be applied yielding, as n→∞,

%
(
X̂n,ΛI

)
= O

(
n−λ+ 1

2 +ε
)
.

Finally, the assertion follows.

The proof of Theorem 7.4, keeping representation (7.4) in mind, shows that the limiting dis-
tribution L (ΛI ) is a convolution of the “base cases” L (Λb) and L (Λw), where both appear
with the respective number of initial balls, plus a toll term that also takes the initial compo-
sition of the urn into account. In a slightly different situation, an analogous observation was
already made in Chauvin et al. [9].

Remark 7.5. The proof of Theorem 7.4 shows that the analogous result holds for the number
of black balls in setting Rand R.
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7.3. Normal Limit Case: λ ≤ 1
2

This section deals with upper bounds for rates of convergence in the normal limit case for the
number of black balls when starting with an arbitrary initial composition. Representation
(7.1) leads to a distributional characterisation of the normalised number of black balls in
terms of the base cases.

Theorem 5.15 serves as basis for the results stated in this section. The proof is performed
with the help of an accompanying sequence that links the sequence and its limit.

Recall from Section 5.2 the normalised number of black balls for the base cases Bb
n and Bw

n ,
see (5.41): X̂0 := 0 =: Ŷ0, X̂1 := 0 =: Ŷ1 and, for n ≥ 2,

X̂n :=
Bb
n − E

[
Bb
n

]
√

Var (Bb
n)

, Ŷn := Bw
n − E [Bw

n ]√
Var (Bw

n )
.

Furthermore, recall the situation of p. 101 et seq. as well as the notation given in Lemma
7.1.

According to the situation of Section 5.2, in order to normalise the number of black balls Bn
the exact scaling is used. Let for n ≥ 2 (note that for monochromatic initial compositions the
first step is deterministic and therefore Var (B1) = 0),

(7.13) X̂n := Bn − E [Bn]√
Var (Bn)

.

The distributional representation of Bn in (7.1) transfers to the normalised quantity as

(7.14) X̂n
d=

b0∑
`=1

σb
(
I(n)
`

)
σI (n) X̂

b,(`)
I(n)
`

+
b0+w0∑
`=b0+1

σw
(
I(n)
`

)
σI (n) X̂

w,(`)
I(n)
`

+ tI
(
I(n)
`

)
, n ≥ 2,

where

tI
(
I(n)
`

)
:= 1

σI (n)

 b0∑
`=1

µb
(
I(n)
`

)
+

b0+w0∑
`=b0+1

µw
(
I(n)
`

)
− µI (n)


with X̂b,(`)

j
d= X̂j , X̂w,(`)

j
d= Ŷj for j = 0, . . . , n and ` = 1, . . . , b0 +w0 such that

(
X̂

b,(`)
j

)
0≤j≤n

,(
X̂

w,(`)
j

)
0≤j≤n

, ` = 1, . . . , b0 + w0, and I(n) are independent.

The normalised quantity X̂n converges in distribution to the standard normal distribution,
cf. Janson [22].
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7.3. Normal Limit Case: λ ≤ 1
2

The normal distribution is rewritten inspired by (7.14) as

N (0, 1) d=
b0∑
`=1

√
D`N` +

b0+w0∑
`=b0+1

√
D`N`

with independent and standard normally distributed N`, ` = 1, . . . , b0 + w0.

Theorem 7.6. Let X̂n denote the normalised number of black balls of a Pólya urn scheme
characterised by Det R as defined in (7.13) with λ := a−c

a+b ≤
1
2 and let ε > 0. Then, as

n→∞,

ζ3
(
X̂n,N (0, 1)

)
=



O
(
(ln (n))−

3
2
)
, λ = 1

2 ,

O
(
n3(λ− 1

2 )) , 1
3 < λ < 1

2 ,

O
(
n−

1
2 +ε

)
, λ ≤ 1

3 , λ 6= 0.

Proof. The steps of this proof are very similar to the steps performed in the proof of Theorem
5.15. Therefore, not every step is carried out in detail but the reader is rather referred to the
respective part of the proof of Theorem 5.15.

As in the proof of Theorem 5.15, at first the accompanying sequence is introduced. Let Qn
denote the accompanying sequence, defined by

Qn :=
b0∑
`=1

σb
(
I(n)
`

)
σI (n) N` +

b0+w0∑
`=b0+1

σw
(
I(n)
`

)
σI (n) N` + tI

(
I(n)

)
, n ≥ 2,

with independent standard normally distributed N`, ` = 1, . . . , b0 + w0, also independent of
all quantities occurring in (7.14).

With the triangle inequality, we have

ζ3
(
X̂n,N (0, 1)

)
≤ ζ3

(
X̂n, Qn

)
+ ζ3 (Qn,N (0, 1)) .

Note that both distances ζ3
(
X̂n, Qn

)
and ζ3 (Qn,N (0, 1)) are finite for n ≥ 2 since E

[
X̂n

]
=

E [Qn] = 0, Var
(
X̂n

)
= Var (Qn) = 1 and

∥∥∥X̂n

∥∥∥
3
< ∞ due to

∥∥∥Xb
j

∥∥∥
3
,
∥∥∥Xw

j

∥∥∥
3
< ∞ for j ∈ N

as well as ‖Qn‖3 <∞ due to ‖N`‖3 <∞, ` = 1, . . . , b0 + w0 and the boundedness of the toll
term; of course, for N ∼ N (0, 1) the same conditions on mean, variance and third moment
are satisfied.

Then, the distances ζ3
(
X̂n, Qn

)
and ζ3 (Qn,N (0, 1)) are studied separately.
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7. Rates of Convergence: Arbitrary Initial Composition of the Urn

As in Chapter 5, let ∆̂ (j) := ζ∨3

((
X̂j , Ŷj

)
, (N (0, 1) ,N (0, 1))

)
. Let ε > 0, then there is a

constant C > 0 such that ∆̂ (j) ≤ Crλ (j) for j ≥ 2 where we set rλ (n) := 0 for n = 0, 1 and

rλ (n) :=



(ln (n))−
3
2 , λ = 1

2 ,

n3(λ− 1
2 ), 1

3 < λ < 1
2 ,

n−
1
2 +ε, λ ≤ 1

3 , λ 6= 0.

Note that ∆̂ (0) and ∆̂ (1) do not contribute.

Performing the same steps as in Proposition 5.17, one obtains

ζ3
(
X̂n, Qn

)
(7.15)

≤ E

 b0∑
`=1

σb
(
I(n)
`

)
σI (n)

3

∆̂
(
I(n)
`

)
+

b0+w0∑
`=b0+1

σw
(
I(n)
`

)
σI (n)

3

∆̂
(
I(n)
`

) .
Due to Lemma 7.1, the same estimates for the ratios of the standard deviations hold as in
Corollaries 5.22, 5.23 and 5.24.

The other distance ζ3 (Qn,N (0, 1)) fits in the setting of Proposition 5.18 with the following
observations: With N ∼ N (0, 1) independent of I(n), it holds

Qn
d=

 b0∑
`=1

σ2
b

(
I(n)
`

)
σ2

I (n) +
b0+w0∑
`=b0+1

σ2
w

(
I(n)
`

)
σ2

I (n)


1
2

N + tI
(
I(n)

)
.

Let

Gn :=

 b0∑
`=1

σ2
b

(
I(n)
`

)
σ2

I (n) +
b0+w0∑
`=b0+1

σ2
w

(
I(n)
`

)
σ2

I (n)


1
2

and

An := {Gn ≥ 1} as well as ∆n :=
√
|G2

n − 1|.

Then, we define

Q̌n := 1An

(
N + ∆nN

′ + tI
(
I(n)

))
+ 1Acn

(
GnN + tI

(
I(n)

)) d=Qn, and

Ňn := 1AnN + 1Acn
(
Gn + ∆nN

′) d=N.
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7.3. Normal Limit Case: λ ≤ 1
2

Inserting Q̌n and Ňn for Q̂b
n and N̂ in the proof of Proposition 5.18 yields

ζ3 (Qn,N (0, 1)) = O


∥∥∥∥∥∥
b0∑
`=1

σ2
b

(
I(n)
`

)
σ2

I (n) +
b0+w0∑
`=b0+1

σ2
w

(
I(n)
`

)
σ2

I (n) − 1

∥∥∥∥∥∥
3
2

3
2

+
∥∥∥tI (I(n)

)∥∥∥3

3

 .
Observe that (almost) the same estimates as done in Lemmata 5.19 and 5.20 hold for

∥∥∥tI (I(n)
)∥∥∥

3
and

∥∥∥∥∥∥
b0∑
`=1

σ2
b

(
I(n)
`

)
σ2

I (n) +
b0+w0∑
`=b0+1

σ2
w

(
I(n)
`

)
σ2

I (n) − 1

∥∥∥∥∥∥ 3
2

,

respectively.

Hence, we have

ζ3 (Qn,N (0, 1)) =



O
(
(ln (n))−

3
2
)
, λ = 1

2 ,

O
(
n3(λ− 1

2 )) , 0 < λ < 1
2 ,

O
(
n−

3
2
)
, λ < 0.

(7.16)

Combining (7.15) and (7.16) yields, for n ≥ 2,

ζ3
(
X̂n,N (0, 1)

)
≤ E

 b0∑
`=1

σb
(
I(n)
`

)
σI (n)

3

∆̂
(
I(n)
`

)
+

b0+w0∑
`=b0+1

σw
(
I(n)
`

)
σI (n)

3

∆̂
(
I(n)
`

)
+ζ3 (Qn,N (0, 1))

≤ Crλ (n)E

 b0∑
`=1

σb
(
I(n)
`

)
σI (n)

3
rλ
(
I(n)
`

)
rλ (n) +

b0+w0∑
`=b0+1

σw
(
I(n)
`

)
σI (n)

3
rλ
(
I(n)
`

)
rλ (n)


+Brλ (n)

with a suitable constant B > 0.

Similar to considerations (5.61) and (5.62) for λ = 1
2 , (5.63) and (5.64) for 1

3 < λ < 1
2 , (5.65)

and (5.66) for 0 < λ ≤ 1
3 and, finally, (5.68) and (5.69) for λ < 0, it holds

E

 b0∑
`=1

σb
(
I(n)
`

)
σI (n)

3
rλ
(
I(n)
`

)
rλ (n) +

b0+w0∑
`=b0+1

σw
(
I(n)
`

)
σI (n)

3
rλ
(
I(n)
`

)
rλ (n)

 = O (1) .

143



7. Rates of Convergence: Arbitrary Initial Composition of the Urn

This yields for n ≥ 2

ζ3
(
X̂n,N (0, 1)

)
= O (rλ (n)) .

Remark 7.7. The proof of Theorem 7.6 shows that the analogous result holds for the number
of black balls in setting Rand R.
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8. Concluding Remarks and Future Work

In this thesis, for the first time comprehensive results on upper bounds for rates of convergence
covering the class of balanced, irreducible two-colour Pólya urn schemes are presented.
As conclusion of this thesis, the following chapter serves to discuss the results and the methods
leading to them. To enhance structure and readability, some parts are captured as remark
whenever they were referred to earlier in this thesis. Moreover, questions for future research
are raised.

The proofs of Chapters 5 and 6 and the reasoning of Chapter 7 suggest that the results of
Theorem 7.4 and Theorem 7.6 can be extended to a Pólya urn scheme ruled by a replacement
matrix R that combines the properties of R from setting Det R and R̄ from setting Rand
R, i.e.,

R :=

 R11 R12

R21 R22


with random integer entries R11, R12, R21, and R22 such that Rjj takes values in N0 ∪{−1}
for j = 1, 2 and Rij takes values in N for i 6= j (yielding R12R21 > 0) with R11 + R12 =
R21 + R22 := K − 1 almost surely.

Furthermore, it is left for future research to extend the results stated in Theorem 5.6 and
Theorem 7.4 as well as Theorem 5.15 and Theorem 7.6 to balanced, irreducible Pólya urns
with more than two colours and to the class of tenable Pólya urns.

Moreover, the proofs of Chapters 5 and 6 suggest that the results on upper bounds for rates
of convergence can be extended to systems of distributional recursions in general. Recall
the general setting of Chapter 4, especially the quantities of (4.1) and (4.2). The proofs of
Theorems 5.6 and 5.15 suggest theorems of the following form:

Upper Bound for a Rate of Convergence for a System of Distributional Recursions in the
Non-Normal Limit Setting from Theorem 4.1
Given that the normalised quantity Xn :=

((
X

[1]
n , . . . , X

[T]
n

))
as in (4.1) and its limit X =
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8. Concluding Remarks and Future Work

((
X [1], . . . , X [T]

))
as in (4.2) satisfy Theorem 4.1, let r : N → R+

0 be a decreasing sequence
with r (n)→ 0. If the following conditions are satisfied

lim sup
n→∞

E

 B∑
r=1

(
A(n),[π(k,r)]
r

)2
r

(
J

(n)
r

)
r(n)

2 < 1,

`2
(
A(n),[π(k,r)]
r , A[π(k,r)]r

)
= O (r (n)) , k = 1, . . . ,T, r = 1, . . . ,B,

`2
(
t[k] (n) , t[k]

)
= O (r (n)) , k = 1, . . . ,T, r = 1, . . . ,B,

then,

`∨2 (Xn,X) = O (r (n)) .

Upper Bounds for a Rate of Convergence for a System of Distributional Recursions in the
Normal Limit Setting from Theorem 4.2
Given that the normalised quantity Xn :=

((
X

[1]
n , . . . , X

[T]
n

))
as in (4.1), where the scaling is

the exact standard deviation, and its limit X =
((
X [1], . . . , X [T]

))
as in (4.2) satisfy Theorem

4.2, let r : N → R+
0 be a decreasing sequence with r (n) → 0. If the following conditions are

satisfied

lim sup
n→∞

E

 B∑
r=1

(
A(n),[π(k,r)]
r

)3
r

(
J

(n)
r

)
r(n)

 < 1,

(
` 3

2

((
A(n),[π(k,r)]
r

)2
,
(
A[π(k,r)]r

)2
)) 3

2
= O (r (n)), k = 1, . . . ,T, r = 1, . . . ,B,(

`3
(
t[k] (n) , t[k]

))3
= O (r (n)) , k = 1, . . . ,T, r = 1, . . . ,B,

then,

ζ∨3 (Xn, (N (0, 1) , . . . ,N (0, 1))) = O (r (n)) .

In contrast to other methods Pólya urns were treated with, the possibility to determine rates
of convergence is immanent in the contraction method. It seems that this is a very big
advantage of the contraction method. Moreover, note that especially in the non-normal limit
case—where the limit distribution is not fully known so far—not much knowledge of the
properties of the limit is needed.

The following remark is dedicated to explain how the ε enters the upper bounds for the rates
stated in Theorem 5.6 and Theorem 5.15, and likewise in Theorems 6.4 and 6.11.

Remark 8.1 (Contractive Behaviour). For performing the inductions, the contractive be-
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haviour of the coefficients as explained in Section 4.2 is crucial. In some cases, the rate that
we expect to hold had to be slowed down artificially in order to work properly as induction
hypothesis: For our approach it is vital that the exponents, called θ for the moment, of the
ratios I

(n)
r
n , r = 1, . . . ,K in setting Det R (in (5.29) & (5.30), (5.40), (5.63) & (5.64), (5.65)

& (5.66) and (5.68) & (5.69)) as well as In
n and Jn

n in setting Rand R (in (6.28) & (6.29) and
(6.30) & (6.31)) are strictly greater than 1. Then, we know from Corollary 3.5 together with
property (3.6) that the sum of these ratios in the respective settings converges to a number
ξ ∈ (0, 1):

E

 K∑
r=1

(
I

(n)
r

n

)θ→ ξ, n→∞.

This contractive behaviour guarantees that we have enough “space” left, in terms of a number
δ ∈ (0, 1), to hide all the other terms arising—given they behave appropriately, i.e., their
rate is “fast enough”:

E

 K∑
r=1

(
I

(n)
r

n

)θ ≤ 1− δ.

This is the reason why we have to add an ε > 0 to the exponents of the rates for λ > 1
2 and

λ ≤ 1
3 : In these cases the rate without ε in the exponent would yield θ = 1 implying that the

coefficients converge to 1 and not to a number strictly less than 1.

Hence, an interesting question that arises as a consequence of our results is whether the ε
appearing in our rates can be dropped or not.

In the next remark, we explain which upper bound for the rate of convergence is derived in
the non-normal limit case when working with the Zolotarev distance ζ2 instead of Wasserstein
distances.

Remark 8.2 (Remark on the Non-Normal Limit Case). When transferring the rate from
Wasserstein to Kolmogorov-Smirnov distance with the help of Lemma 2.6, we “lose” ε in the
exponent of the rate in any case. Here again the question arises whether the ε can be dropped.

As mentioned below Theorem 4.1, instead of `∨2 , the Zolotarev metric ζ∨2 could be used to
derive a rate. Of course, the rate with respect to ζ∨2 is bounded by the rate with respect to
`∨2 due to Lemma 2.7.

Treating the distance ζ∨2 ((Xn,Yn) , (Λb,Λw)) as done in Knape and Neininger [27, Proof of
Theorem 6.1], we observe that we are able to conduct the induction choosing as induction
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8. Concluding Remarks and Future Work

hypothesis the rate that we expect to be correct. Hence, as n→∞,

ζ∨2 ((Xn,Yn) , (Λb,Λw)) = O
(
n−λ+ 1

2
)
.

We give a sketch, compare [27, Section 6.1]: Abbreviating ∆ζ (j) := ζ∨2 ((Xj ,Yj) , (Λb,Λw))
and setting as induction hypothesis

∆ζ (j) ≤ Cj−λ+ 1
2 , 1 ≤ j ≤ n− 1,

we obtain with the help of Lemma 2.7 along the lines of the proofs of [27, Proof of Theorem
6.1]

ζ2 (Xn,Λb) ≤ E

 K∑
r=1

(
I

(n)
r

n

)2λ

∆ζ
(
I(n)
r

)
+O

 K∑
r=1

∥∥∥∥∥∥
(
I

(n)
r

n

)λ
− (Dr)λ

∥∥∥∥∥∥
2


+O

(
max

{∥∥∥bb
(
I(n)

)
− bb

∥∥∥
2
,
∥∥∥bw

(
I(n)

)
− bw

∥∥∥
2

})
.

With Corollary 3.5 and Lemma 5.11, we obtain with a suitable constant A > 0,

ζ2 (Xn,Λb) ≤ E

 K∑
r=1

(
I

(n)
r

n

)2λ

∆ζ
(
I(n)
r

)+An−
λ
2

≤ Cn−λ+ 1
2E

 K∑
r=1

(
I

(n)
r

n

)2λ(
I

(n)
r

n

)−λ+ 1
2

+An−
λ
2

≤ Cn−λ+ 1
2E

 K∑
r=1

(
I

(n)
r

n

)λ+ 1
2

+An−
λ
2 .

Now, we observe that λ+ 1
2 > 1 and therefore we have with Corollary 3.5 and property (3.6)

that there is δ > 0 such that for sufficiently large n, it holds

E

 K∑
r=1

(
I

(n)
r

n

)λ+ 1
2

 ≤ 1− δ.

Finally, we are able to choose C such that

ζ2 (Xn,Λb) ≤ Cn−λ+ 1
2 .
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Obviously, the same can be performed for the distance ζ2 (Yn,Λw).

We see that we are able to prove the rate that we expect to be correct in the Zolotarev metric
ζ∨2 . However, we are not able to deduce a rate in the Kolmogorov-Smirnov distance from that
basis.

A natural question to ask is what meaning a rate of convergence in the Zolotarev distance
bears, especially in comparison to the Kolmogorov-Smirnov distance:

When dealing with convergence in distribution and rates thereof, it is reasonable to ask for
rates of convergence in the Kolmogorov-Smirnov distance. The Kolmogorov-Smirnov distance
seems to capture the distance between two distributions in the most natural way and there-
fore is most commonly used in applications. In the non-normal limit case we give rates of
convergence in this distance. When it comes to the normal limit case we are not able to do
so. It still remains an open question what behaviour rates of convergence in the Zolotarev
distance, here ζ3, suggest for rates of convergence in the Kolmogorov-Smirnov distance.

In Cramer and Rüschendorf [11] several examples concerning the complexity of recursive
algorithms can be found, where the Zolotarev distance ζ3 yields the same order for an upper
bound as the Kolmorogov-Smirnov distance. In the case of Quicksort, Fill and Janson derive
both upper and lower bounds for the rate of convergence in both Wasserstein distances and
the Kolmogorov-Smirnov distance in [15]. On the other hand, Neininger and Rüschendorf [40]
determine the correct rate in the Zolotarev distance ζ3, i.e., order of upper and lower bound
coincide. Fill and Janson mention that they expect the rate derived in the Zolotarev distance
also to be the correct rate in the Kolmogorov-Smirnov distance.

Mahmoud and Neininger derive the correct rate of convergence for the distribution of distances
in random binary search trees in the Zolotarev metric ζ3 in [35] that was confirmed to be the
same rate in the Kolmogorov-Smirnov metric by Panholzer [44].

When it comes to Pólya urns, the knowledge of rates of convergence is still very sparse. Flajolet
et al. [16] derive a rate for urns with subtraction in the Kolmogorov-Smirnov distance. These
urns are not fully covered by our approach as they allow for the removal of other balls than
the drawn one. However, they belong to the regime of normal limit laws (as the ratio of the
eigenvalues λ is negative). They give a rate of order n− 1

2 , that we would expect to be the
correct rate for negative λ, as well. Even more confirming are the rates of convergence in
the Kolmogorov-Smirnov distance of Hwang [21] in the context of m-ary search trees that are
exactly mirrored by the rates we give (except for the ε) in the normal limit case. Hence, it
seems reasonable to expect the rates of Theorem 5.15 to hold also in the Kolmogorov-Smirnov
distance.
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A question that directly follows is what happens if the Zolotarev distance ζ2+ε is used instead
of ζ3:

Remark 8.3. As a consequence of Theorem 4.2 it is natural to ask if the rates of convergence
derived in Theorem 5.15 also hold in the Zolotarev metric ζ2+ε. There seem to be two
problems: First of all, it is not clear how to find suitable estimates in the proof of Proposition
5.18 such that a corresponding result holds in ζ2+ε. Secondly, the inductions performed in
Corollaries 5.22, 5.23, and 5.24 in Step 3 of Section 5.2 do not seem to allow a transfer of
the rates stated in Theorem 5.15 but seem to demand for a reduction of speed.

Our results do not give information on lower bounds and therefore we cannot make a statement
on the optimality of the bounds. Hwang [21] argues that the order of his rates is optimal and
so do Goldstein and Reinert [19]. Flajolet et al. [16] do not discuss the optimality of their
rate but point out that their rate is already implied by results from Gouet [20]; however it
seems that Gouet’s results only imply upper bounds. Peköz et al. [45] give lower and upper
bounds that are of the same order and therefore provide optimal rates; the Pólya urns they
studied do not belong to the class of balanced and irreducible urns studied in this thesis.

In the light of the recursional distributions (3.1) or (3.2) it might look as if a bivariate
approach was to be favoured rather than working with systems of distributional recursions
as it is done in this thesis. Knape and Neininger dedicate a section to weighing the pros
and cons of a bivariate approach, see [27, Section 7]; they find that the approach via systems
of distributional recursions where the quantities Bb

n and Bw
n are not coupled but only their

distributions matter is to be preferred. Note that in fact they introduce the notion of a system
of distributional recursions in the setting of the contraction method in [27]. Also, Leckey et
al. [32] and Leckey et al. [31] prefer to work with systems of distributional recursions.
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A. Appendix

A.1. Technical Lemmata

Lemma A.1. Let f : R+
0 → R+

0 be twice differentiable with f (0) = 0, f ′ > 0, f ′′ < 0 and
x, y > 0. Then,

|f (x)− f (y)| ≤ f (|x− y|) .

Proof. W.l.o.g. let x > y > 0.
Case 1: x− y ≤ y.
According to the Mean value Theorem, there is some ξ ∈ (y, x) such that f (x) − f (y) =
f ′ (ξ) (x− y) and some ζ ∈ (0, x− y) such that f (x− y) − f (0) = f ′ (ζ) (x− y − 0). As
f ′′ < 0, f ′ is strictly decreasing and, therefore, f ′ (ζ) > f ′ (ξ). This yields

f (x)− f (y) = f ′ (ξ) (x− y) ≤ f ′ (ζ) (x− y) = f (x− y) .

Case 2: y < x− y.
Again, by the Mean value Theorem, we obtain the existence of some ξ ∈ (x− y, x) such that
f (x) − f (x− y) = f ′ (ξ) y as well as some ζ ∈ (0, y) such that f (y) − f (0) = f ′ (ζ) y. As
above, we have f ′ (ζ) > f ′ (ξ) yielding

f (x)− f (x− y) = f ′ (ξ) y ≤ f ′ (ζ) y = f (y)⇒ f (x)− f (y) ≤ f (x− y) .

The assertion follows.

Let ψ ∈ (0, 1), then we have with Lemma A.1∣∣∣xψ − yψ∣∣∣ ≤ |x− y|ψ with x, y ≥ 0.(A.1)

Lemma A.2. Let X be standard normally distributed and ϕ : R → R be continuous with
ϕ (0) = 0 and |ϕ (x)− ϕ (y)| ≤ |x− y|. Then,

|E [ϕ (X)X]| ≤ 1.
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Proof.

|E [ϕ (X)X]| ≤ E [|ϕ (X)− ϕ (0)| |X|] ≤ E [|X − 0| |X|] = E
[
X2
]

= 1.

Lemma A.3. Let ε > 0 and ϕ : R+
0 → R+

0 with ϕ (x) ≤ c · x, where c > 0 is a suitable
constant. Then,

(x+ ϕ (x))1+ε ≤ x1+ε + (1 + ε) (1 + c)ε xεϕ (x) .

Proof. Let f (y) = y1+ε and, then it holds, with the Mean value Theorem and since f ′(y) =
(1 + ε) yε is monotonously increasing, for 0 < z < y

f (y)− f (z) = f ′ (ξ) (y − z)⇔ f (y) =f (z) + f ′ (ξ) (y − z)

≤f (z) + f ′ (y) (y − z)

for some ξ ∈ (z, y).

Setting y = x+ ϕ (x) and z = x, this yields

(x+ ϕ (x))1+ε ≤x1+ε + (1 + ε) (x+ ϕ (x))ε ϕ (x)

≤x1+ε + (1 + ε) (1 + c)ε xεϕ (x) .

Lemma A.3 is essential for estimating the ratios of the standard deviations in the recursive
estimate of Proposition 5.17 (and Proposition 6.12). Therefore, the lemma has to be applied
in Corollaries 5.22, 5.23 and 5.24 (and in the analogous situations in Corollaries 6.21 and 6.22)
with ε = 1

2 as follows

(j ln (j) + c1j)
3
2 ≤ (j ln (j))

3
2 + c′1j

3
2 (ln (j))

1
2 ,(A.2) (

j + c2j
2λ
) 3

2 ≤ j
3
2 + c′2j

2λ+ 1
2 ,(A.3)

(j + c3)
3
2 ≤ j

3
2 + c′3j

1
2 ,(A.4)

for j ∈ N and suitable constants c1, c2, c3 > 0.
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A.2. Mean and Variance of the Number of Black Balls

Calculations concerning mean and variance of the number of black balls after n steps are
sketched. For a deterministic replacement matrix, Savkevich [54] derived explicit formulas.
On the way to showing asymptotic normality for such urns when the ratio of the eigenvalues
is less or equal to 1

2 , Bagchi and Pal [3] study mean and variance as well. Their way seems to
fit best to derive asymptotic expansions of mean and variance as needed for our proofs.

Throughout this chapter, Bn denotes the number of black balls in the urn after n steps and,
to keep calculations readable, tn denotes the total number of balls in the urn after n steps,
n ≥ 0.

As before, Bb
n will denote the number of black balls after n steps when starting with a black

ball (hence, Bb
0 = 1), and Bw

n (here, Bw
0 = 0) when starting with a white ball.

The calculations that are to follow constitute the proofs of Lemma 5.1, Lemma 5.2, Lemma
6.1, Lemma 6.2 as well as Lemma 7.1.

To derive asymptotic expansions for both expectations and variances, the following fact about
the ratio of Gamma functions is used, see Tricomi and Erdélyi [57]: For θ, ψ ∈ R, it holds, as
n→∞,

Γ (n+ θ)
Γ (n+ ψ) = nθ−ψ

(
1 +O

( 1
n

))
, (n→∞) .(A.5)

Furthermore, we make use of

(A.6)
n∑
j=1

1
j

= ln (n) +O (1) , as n→∞.

Deterministic Replacement Matrix

Setting Det R, i.e., a Pólya urn scheme with two colours, balanced and irreducible, deter-
ministic replacement matrix, makes the beginning. Note that in this case tn = t0 + (a+ b)n,
n ≥ 0. The ratio of the eigenvalues is denoted by λ := a−c

a+b . We recollect some of the
calculations performed by Bagchi and Pal in [3].

Mean
Bagchi and Pal conduct the following calculations in the proof of [3, Lemma 1] that lead to
an exact formula for the mean:

E
[
Bn+1

∣∣Bn] =
(

1 + a− c
tn

)
Bn + c, n ≥ 0.
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Substituting Dn := Bn − c
b+c tn, n ≥ 0, we have

E [Dn+1] =
(

1 + a− c
tn

)
E [Dn] , n ≥ 0,

yielding

(A.7) E [Dn] =
n−1∏
j=0

(
1 + a− c

tj

)
D0 =

Γ
(
t0
a+b

)
Γ
(
a−c+t0
a+b

) Γ
(
n+ a−c+t0

a+b

)
Γ
(
n+ t0

a+b

) D0.

Plugging in λ = a−c
a+b , we obtain, for n ≥ 1,

E [Bn] =
Γ
(
t0
a+b

)
Γ
(
λ+ t0

a+b

) Γ
(
n+ λ+ t0

a+b

)
Γ
(
n+ t0

a+b

) (
B0 −

c

b+ c
t0

)
+ c

b+ c
tn

= c (a+ b)
b+ c

n+
(
B0 −

c

b+ c
t0

) Γ
(
t0
a+b

)
Γ
(
λ+ t0

a+b

) Γ
(
n+ λ+ t0

a+b

)
Γ
(
n+ t0

a+b

) + ct0
b+ c

.

This yields for Bb
n and Bw

n , n ≥ 1:

E
[
Bb
n

]
= c (a+ b)

b+ c
n+

bΓ
(

1
a+b

)
(b+ c) Γ

(
λ+ 1

a+b

) Γ
(
n+ λ+ 1

a+b

)
Γ
(
n+ 1

a+b

) + c

b+ c
and

E [Bw
n ] = c (a+ b)

b+ c
n−

cΓ
(

1
a+b

)
(b+ c) Γ

(
λ+ 1

a+b

) Γ
(
n+ λ+ 1

a+b

)
Γ
(
n+ 1

a+b

) + c

b+ c
.

The asymptotic expansions stated in Lemma 5.1 and Lemma 7.1 follow with (A.5).

Variance
We recall the proof of [3, Lemma 2.i)] and derive a formula for the variance of Bn. First,
Bagchi and Pal observe

(A.8) Var (Bn) = Var (Dn) = E
[
D2
n

]
− E [Dn]2

and, hence, derive E
[
D2
n

]
:

E
[
D2
n+1

∣∣Dn

]
=

(
Dn + a− c (a+ b)

b+ c

)2 ( c

b+ c
+ Dn

tn

)
+
(
Dn + c− c (a+ b)

b+ c

)2 ( b

b+ c
− Dn

tn

)
, n ≥ 0,
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leading to the following recurrence

(A.9) E
[
D2
n+1

]
=
(

1 + 2 (a− c)
tn

)
E
[
D2
n

]
+ b− c
b+ c

(a− c)2

tn
E [Dn] + bc (a− c)2

(b+ c)2 , n ≥ 0.

In the case λ < 1
2 , the homogeneous equation

E
[
D2
n+1

]
−
(

1 + 2 (a− c)
tn

)
E
[
D2
n

]
= 0

has a solution of the form

H (0) = 1,

H (n) =
n−1∏
j=0

(
1 + 2 (a− c)

tj

)
=

Γ
(
t0
a+b

)
Γ
(

2(a−c)+t0
a+b

) Γ
(
n+ 2(a−c)+t0

a+b

)
Γ
(
n+ t0

a+b

) , n ≥ 1.

Bagchi and Pal find as particular solution

P (n) = bc

a+ b− 2 (a− c)

(
a− c
b+ c

)2
tn −

b− c
b+ c

(a− c)E [Dn] , n ≥ 0.

Hence, the complete solution of the above recurrence is given by

E
[
D2
n

]
= kH (n) + P (n)

with k determined by the initial condition D2
0 =

(
B0 − c

b+c t0
)2
. Hence,

Var (Bn) = kH (n) + P (n)− (E [Dn])2 ,

where H (n) contributes terms of order O
(
n

2(a−c)
a+b

)
, P (n) contributes terms of linear order

in the shape of tn and of order n
a−c
a+b in the form of E [Dn], see (A.7), and, finally, (E [Dn])2

contributes terms of the same order as H (n) (that do not cancel out). Note that tn =
t0 + n (a+ b); therefore, the initial number of balls only contributes in the form of O (1) to
the variance and does not influence the constant that accompanies the linear order. Plugging
in λ = a−c

a+b , this yields with (A.5), as n→∞,

0 < λ < 1
2 : Var (Bn) = bc

a+ b− 2 (a− c)

(
a− c
b+ c

)2
n+O

(
n2λ

)
,(A.10)

λ < 0 : Var (Bn) = bc

a+ b− 2 (a− c)

(
a− c
b+ c

)2
n+O (1) .(A.11)
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If λ = 1
2 , we follow the proof of [3, Lemma 2.ii)]. Things look a bit different here, logarithmic

terms enter: The recurrence (A.9) becomes

E
[
D2
n+1

]
= tn+1

tn
E
[
D2
n

]
+ b2 − c2

tn
E [Dn] + bc,

since 2 (a− c) = a+ b⇔ a− c = b+ c.

The homogeneous equation

E
[
D2
n+1

]
− tn+1

tn
E [Dn] = 0

has a solution

Ĥ (n) = tn, n ≥ 0,

and Bagchi and Pal find as particular solution via substitution with d̂ = D2
0+(b−c)D0

t0

P̂ (n) = (c− b)E [Dn] + d̂tn + tnbc
n∑
j=1

1
tj
, n ≥ 1.

Thus, a complete solution is given by

E
[
D2
n

]
= k̂Ĥ (n) + P̂ (n) , n ≥ 1,

with k̂ given by initial conditions k̂ = E[D2
1]+P̂ (1)
Ĥ(1) . Hence, the variance of the number of black

balls is given by

Var (Bn) = k̂Ĥ (n) + P̂ (n)− (E [Dn])2 ,

where P̂ (n) contributes terms of order n ln (n) as well as linear and logarithmic terms, Ĥ(n)
and (E [Dn])2 contribute a linear term. The leading order is n ln (n) and the initial number of
balls t0 hidden in tn contributes solely to terms of lower order. Therefore, it holds with (A.6)
and (A.5), as n→∞,

(A.12) λ = 1
2 : Var (Bn) = bc n ln (n) +O (n) .

(A.10), (A.11) and (A.12) lead to the statements of Lemma 5.2 and Lemma 7.1.

Randomised Play-the-Winner-Rule

To derive mean and variance for the Pólya urn scheme characterised by setting Rand R, we
borrow the reasoning of Bagchi and Pal [3] displayed above and adapt it to this Pólya urn
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scheme. Note that now tn = t0 +n and the ratio of the eigenvalues is given by λ := α+β− 1.
We stick to the notation of the last paragraph.

Mean
We have

E
[
Bn+1

∣∣Bn] =
(

1 + α+ β − 1
tn

)
Bn + (1− β) .

We now substitute

Dn := Bn −
1− β

2− α− β tn, n ≥ 0,

and have

E [Dn+1] =
(

1 + α+ β − 1
tn

)
E [Dn]

yielding

E [Dn] =
n−1∏
j=0

(
1 + α+ β − 1

tj

)
D0(A.13)

= Γ (t0)
Γ (t0 + α+ β − 1)

Γ (n+ α+ β − 1 + t0)
Γ (n+ t0) D0.

Plugging in λ = α+ β − 1, it holds, n ≥ 1,

E [Bn] = Γ (t0)
Γ (t0 + λ)

Γ (n+ λ+ t0)
Γ (n+ t0)

(
B0 −

1− β
1− λt0

)
+ 1− β

1− λtn

= 1− β
1− λn+ Γ (t0)

Γ (t0 + λ)
Γ (n+ λ+ t0)

Γ (n+ t0)

(
B0 −

1− β
1− λt0

)
+ 1− β

1− λt0.

This yields for Bb
n and Bw

n , n ≥ 1:

E
[
Bb
n

]
= 1− β

1− λn+ 1− α
1− λ

1
Γ (λ+ 1)

Γ (n+ 1 + λ)
Γ (n+ 1) + 1− β

1− λ and

E [Bw
n ] = 1− β

1− λn−
1− β
1− λ

1
Γ (λ+ 1)

Γ (n+ 1 + λ)
Γ (n+ 1) + 1− β

1− λ.

The asymptotic expansions stated in Lemma 6.1 follow with (A.5).
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Variance
For the variance it holds

(A.14) Var (Bn) = Var (Dn) = E
[
D2
n

]
− (E [Dn])2 .

We obtain

E
[
D2
n+1

∣∣Dn

]
=

(
Dn + 1− α

2− α− β

)2 (
(α+ β − 1) Dn

tn
+ 1− β

2− α− β

)
+
(
Dn −

1− β
2− α− β

)2 (
− (α+ β − 1) Dn

tn
+ 1− α

2− α− β

)

yielding the recurrence, with λ = α+ β − 1,

(A.15) E
[
D2
n+1

]
=
(

1 + 2λ
tn

)
E
[
D2
n

]
+ λ (β − α)

(1− λ) tn
E [Dn] + (1− α) (1− β)

(1− λ)2 .

In the case λ < 1
2 , we proceed with the homogeneous equation

E
[
D2
n+1

]
−
(

1 + 2 (α+ β − 1)
tn

)
E
[
D2
n

]
= 0

that has a solution

H̃ (0) := 1,

H̃ (n) :=
n−1∏
j=0

(
1 + 2 (α+ β − 1)

tj

)
= Γ (t0)

Γ (2λ+ t0)
Γ (n+ 2λ+ t0)

Γ (n+ t0) , n ≥ 1.

A particular solution is given by

P̃ (n) := (1− α) (1− β)
1− 2 (α+ β − 1)

tn

(2− α− β)2 −
β − α

2− α− βE [Dn] , n ≥ 0.

Hence,

(A.16) E
[
D2
n

]
= k̃H̃ (n) + P̃ (n) , n ≥ 1.

Therefore, the variance of Bn is given by

Var (Bn) = k̃H̃ (n) + P̃ (n)− (E [Dn])2 ,

where P̃ (n) contributes terms of linear order in the shape of tn as well as of order nλ in the
shape of E [Dn] and H̃ (n) and (E [Dn])2 contribute a term of order n2λ. The initial number
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of balls t0 only contributes of constant order. Therefore, it holds with (A.5), as n→∞,

0 < λ <
1
2 : Var (Bn) = (1− α) (1− β)

(1− 2λ) (1− λ)2n+O
(
n2λ

)
,(A.17)

λ < 0 : Var (Bn) = (1− α) (1− β)
(1− 2λ) (1− λ)2n+O (1) .(A.18)

When λ = 1
2 , again the recurrence (A.15) simplifies to:

(A.19) E
[
D2
n+1

]
=
(

1 + 1
tn

)
E
[
D2
n

]
+ β − α

tn
E [Dn] + 4 (1− α) (1− β) .

The corresponding homogeneous equation

E
[
D2
n+1

]
−
(

1 + 1
tn

)
E
[
D2
n

]
= 0

has a solution of the form

H̄ (n) = tn, n ≥ 0.

In order to derive a particular solution we try, in accordance with the approach of Bagchi and
Pal as in [3, Lemma 2.ii)], the substitution

P̄ (n) = tnḡ (n) + 2 (α− β)E [Dn] , n ≥ 0,

and obtain from (A.19) the recurrence

ḡ (n+ 1) = ḡ (n) + 4 (1− α) (1− β)
tn+1

= ḡ (0) + 4 (1− α) (1− β)
n+1∑
j=1

1
tj

with ḡ (0) = D2
0−2(α−β)D0

t0
. Hence, we obtain for n ≥ 1

E
[
D2
n

]
= k̄H̄ (n) + P̄ (n)(A.20)

= k̄tn + tn

ḡ (0) + 4 (1− α) (1− β)
n∑
j=1

 2 (α− β)E [Dn]

= k̄tn + ḡ (0) tn + 4 (1− α) (1− β) tn
n∑
j=1

1
tj

+ 2 (α− β)E [Dn] ,

where k̄ is to be determined by the initial condition. With

Var (Bn) = E
[
D2
n

]
− (E [Dn])2
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the variance is composed as follows: With (A.20) the leading term is of order n ln (n) followed
by linear terms (from (A.20) and (E [Dn])2). The initial number of balls t0 only contributes
of constant order. Hence, it holds with (A.6) and (A.5), as n→∞,

Var (Bn) = 4 (1− α) (1− β)n ln (n) +O (n) .(A.21)

(A.17), (A.18) and (A.21) lead to the statement of Lemma 6.2.
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B.1. Code

1

2 # #########################################################

3 ### Simulation of Kolmogorov - Smirnov distance between

normalised number of black balls and standard normal

distribution

4 # #########################################################

5

6 # #########################################################

7 polyaurn <- function (ibl , iwh , a,b,c,d, n, m){

8 # ibl: initial number of black balls

9 # iwh: initial number of white balls

10 # a, b: 1st row of replacement matrix

11 # c, d: 2nd row of replacement matrix

12 # n: number of steps considered

13 # m: number of samples /urns

14

15 lambda <- (a-c)/(a+b)

16 if ( lambda > 0.5){

17 print ("This Polya urn does not belong to the normal limit

case. Lambda follows :")

18 return ( lambda )

19 }

20 if ( lambda ==0){

21 print (" Deterministic evolution , no rate to observe . Lambda

follows ")

22 return ( lambda )

23 }

24 if (a+b != c+d){
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25 print ("Not a balanced scheme . Row sums follow :")

26 return (c(a+b,c+d))

27 }

28

29 time <- seq (1,n)

30 null <- rep (0,n)

31

32 blb <- rep(ibl , m) # number of black balls

33 total <- ibl + iwh #total number of balls in the urn

34 meanbl <- ibl # mean of number of black balls

35 meantemp <- ibl - ((c/(b+c)) * total) # quantity for

establishing recursion for mean

36

37 weight <- blb/ total # vector of length m carrying proportion

of black balls

38

39 kolmo <- rep (0,n) # carries Kolmogorov - Smirnov distance at

times 1 to n

40

41 z <- seq (-2,2, by =0.01)

42 temp2 <- pnorm(z) # distribution function of standard normal

distribution evaluated at z

43

44 for (i in 1:n){

45 # #########################################################

46 # generating blb

47 # #########################################################

48 meantemp <- ( 1 + ((a-c)/total) ) * meantemp

49

50 temp <- runif(m) # m samples of uniform distribution on

[0 ,1]

51 result <- temp < weight

52 for (j in 1:m){

53 if ( result [j]){# black ball was drawn

54 blb[j] <- blb[j] + a # number of black balls increases by a

55 }

56 else{# white ball was drawn

57 blb[j] <- blb[j] + c # number of black balls increases by c
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58 }

59 }

60

61 # #########################################################

62 # mean and standard deviation according to formulas derived

in thesis

63 # #########################################################

64

65 # mean of number of black balls

66 meanbl <- meantemp + ((c/(b+c)) * total) #mean of number of

black balls

67 # #########################################################

68

69 # (rough) standard deviation of the number of black balls

70 if ( lambda == 0.5) {

71 if (i==1){

72 devblack <- c(1)

73 }

74 if (i > 1){

75 devblack <- sqrt ((b * c * i * log(i)) )

76 }

77 }

78 if ( lambda < 0.5) {

79 devblack <- sqrt( ((a+b)*(a-c)^2* b * c /((a+b-2*(a-c))*(b+

c)^2)) * i) # + i^ lambda

80 }

81

82 # #########################################################

83 # normalising

84 # #########################################################

85 normblb <- (blb - meanbl )/ devblack # ( roughly ) normalised

number of black balls

86

87 # #########################################################

88 # empirical distribution function

89 # #########################################################

90 tempecdf <- ecdf( normblb ) # empricial distribution function

of normalised number of black balls
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91 temp1 <- tempecdf (z) # tempecdf evaluated at z

92

93 # Kolmogorov - Smirnov distance

94 diff <- abs(temp1 - temp2)

95 kolmo[i] <- max(diff)

96

97 # #########################################################

98 # update total and weight

99 # #########################################################

100 total <- total + a + b

101 weight <- blb/ total

102 }

103

104 # #########################################################

105 # plot rate and compare with theoretical rate from thesis ,

106 # determination of the constant on the basis of the sampled

data

107 # #########################################################

108 # ideal: rate expected as consequence of Zolotarev distance

109 # gamma: negative exponent of the rate as consequence of

Zolotarev distance

110 # ideal2 : another plausible rate , serves to compare

simulated exponent

111 # gamma2 : exponent of rate used for comparison

112 # constant : contains ratio of rate observed in sample to

expected rate

113 # choice : constant chosen for plotting

114

115 if ( lambda == 0.5){

116 gamma <- 1.5

117 gamma2 <- 0.5

118 time1 <- seq (2,n)

119 ideal <- (log(time1))^(- gamma )

120 ideal2 <- (log(time1))^(- gamma2 )

121 ideal <- c(1, ideal)

122 ideal2 <- c(1, ideal2 )

123 }

124 else {
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125 if ( (1/3) < lambda && lambda < 0.5 ){

126 gamma <- -(3 * ( lambda - 0.5))

127 ideal <- time ^(- gamma )

128 gamma2 <- 0.5 - lambda

129 ideal2 <- time ^(- gamma )

130 }

131 if ( lambda <= (1/3)){

132 gamma <- 0.5

133 ideal <- 1/sqrt(time)

134 }

135 }

136

137 constant <- kolmo /ideal

138 minconst <- min( constant )

139 maxconst <- max( constant )

140 # #########################################################

141 ## different choices for constant of ideal rate

142 # #########################################################

143 # choice <- round(max( constant ))+1

144 # choice <- mean( constant )

145 # choice <- median ( constant )

146 # choice <- max( constant [n -100:n])

147 # choice <- mean( constant [n -100:n])

148 choice <- (1+0.2) * median ( constant [n -100:n])

149

150 rate <- choice * ideal

151

152 # #########################################################

153 ##plot of the empirical distribution function of the

normalised number of black balls in comparison the the

distribution function of the standard normal distribution

154

155 quartz ("( Empirical ) Distribution Function ")

156 plot(z, temp1

157 , type = "l", lty = 1, lwd = 3

158 , col=" mediumturquoise "

159 , xlab = "x", ylab = " Empirical distribution function "

160 #, cex.lab =0.75 , cex.axis =0.75
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161 )

162 lines (z,temp2 ,col=" mediumvioletred ", lwd = 3)

163 # #########################################################

164

165 # #########################################################

166 ##plot displaying the rate observed in sample in comparison

to expected rate

167

168 quartz ("Rate Compared to Theoretical Bounds ")

169 plot(time , kolmo

170 , type = "l", lty = 1, lwd = 3

171 , col=" mediumturquoise "

172 , ylim = c( -0.02 ,0.2) , ylab="Kolmogorov - Smirnov distance "

173 , xlab="Steps"

174 #, cex.lab =0.75 , cex.axis =0.75

175 )

176 lines (time ,rate ,col=" mediumvioletred ", lty = 4, lwd = 3)

177 lines (time ,null ,col="grey")

178

179 if ( lambda > 0 && lambda <= 0.5

180 # lambda == 0.5

181 ){

182 constant2 <- kolmo / ideal2

183 minconst2 <- min( constant2 )

184 maxconst2 <- max( constant2 )

185 # choice2 <- mean(kolmo/ ideal2 )

186 # choice2 <- median ( constant2 [n -100:n])

187 choice2 <- (1+0.2) * median ( constant2 )

188

189 rate2 <- choice2 * ideal2

190 lines (time ,rate2 ,col=" royalblue ", lty = 3, lwd = 3)

191 }

192

193 # #########################################################

194

195 # #########################################################

196 ## log log plot of constant

197

166



B.1. Code

198 if ( lambda == 0.5){

199 quartz ("Log Log Plot")

200 plot(log(time) ,(log(kolmo)-log ((2 * choice / (1+0.2) )) -2)

201 , type = "l"

202 , lty = 1

203 , lwd = 3

204 , xlab = " logarithmic time scale", ylab = "log of rates"

205 , col=" mediumturquoise "

206 #, cex.lab =0.75 , cex.axis =0.75

207 )

208 }

209 else{

210 quartz ("Log Log Plot")

211 plot(log(time) ,(log(kolmo)-log (( choice / (1+0.2) )))

212 , type = "l", lty = 1, lwd = 3

213 , xlab = " logarithmic time scale", ylab = "log of rates"

214 , col=" mediumturquoise "

215 #, cex.lab =0.75 , cex.axis =0.75

216 )

217 lines (log(time),log(time ^(- gamma )), col=" mediumvioletred ",

lwd = 3)

218 if ( lambda >0 && lambda < 0.5){

219 lines (log(time), log(time ^(- gamma2 )), col=" royalblue ", lwd

= 3)

220 }

221 }

222

223 # #########################################################

224

225 # #########################################################

226 return (c(lambda ,gamma , min(kolmo), max(kolmo [100:n])))

227 # #########################################################

228 }
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B.2. Input for Simulations in Chapter 1

1 > polyaurn (1 ,0 ,1 ,4 ,3 ,2 ,10000 ,100000)

2 [1] -0.40000000 0.50000000 0.01375639 0.16611372

1 > polyaurn (1 ,0 ,20 ,10 ,9 ,21 ,10000 ,100000)

2 [1] 0.3666667 0.4000000 0.0162350 0.1052983
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B.3. Additional Simulations

In the following, results of further simulations are displayed.

At first, two simulations for an urn with logarithmic rate are given. Of course, these are to be
treated with utmost caution since logarithmic rates are not easily simulated due to the “very
slow” decay.

Afterwards, two more simulations follow that are similar to the simulations presented in the
Introduction, Chapter 1, but with interchanged values for steps and samples.
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B. R Code for Simulations

Additional simulation of a Pólya urn that leads to logarithmic rates. The simulation performs
104 steps on the basis of 105 samples.

1 > polyaurn (1 ,0 ,5 ,1 ,2 ,4 ,10000 ,100000)
2 [1] 0.50000000 1.50000000 0.02609695 0.11507863
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(b) Rate of Convergence

Figure B.1.: Simulation of 104 steps on the basis of 105 samples of a Pólya urn with replace-
ment matrix ( 5 1

2 4 ), hence λ = 1
2 , with one initial black ball.

Figure B.1a shows the empirical distribution function of the normalised number of black
balls (turquoise) compared to the distribution function of the standard normal distribution
(magenta).
Figure B.1b shows the uniform distance between the empirical distribution function and the
distribution function of the standard normal distribution (turquoise), i.e., a simulation of the
Kolmogorov-Smirnov distance between the normalised number of black balls and the standard
normal distribution, compared to a rate of order (ln (n))−

3
2 (magenta) and to a rate of order

(ln (n))−
1
2 (royal blue).
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Additional simulation of a Pólya urn that leads to logarithmic rates. The simulation performs
105 steps on the basis of 104 samples.

1 > polyaurn (1 ,0 ,5 ,1 ,2 ,4 ,100000 ,10000)
2 [1] 0.50000000 1.50000000 0.01835207 0.11501863
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(b) Rate of Convergence

Figure B.2.: Simulation of 105 steps on the basis of 104 samples of a Pólya urn with replace-
ment matrix ( 5 1

2 4 ), hence λ = 1
2 , with one initial black ball.

For explanations, see Figure B.1.
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B. R Code for Simulations

Additional simulation, similar to simulation for Figure 1.2 and 1.3, but 105 steps on the basis
of 104 samples. See Figures 1.2 and 1.3 for explanations.

1 > polyaurn (1 ,0 ,1 ,4 ,3 ,2 ,100000 ,10000)
2 [1] -0.400000000 0.500000000 0.007982308

0.175223716
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Figure B.3.: Simulation of 105 steps on the basis of 104 samples of a Pólya urn with replace-
ment matrix ( 1 4

3 2 ), hence λ = −2
5 , with one initial black ball.

172
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Additional simulation, similar to simulation for Figure 1.4 and 1.5, but 105 steps on the basis
of 104 samples. See Figures 1.4 and 1.5 for explanations.

1 > polyaurn (1 ,0 ,20 ,10 ,9 ,21 ,100000 ,10000)
2 [1] 0.36666667 0.40000000 0.01032573 0.10382357
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Figure B.4.: Simulation of 105 steps on the basis of 104 samples of a Pólya urn with replace-
ment matrix ( 20 10

9 21 ), hence λ = 11
30 , with one initial black ball.
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Deutsche Zusammenfassung

Urnenmodelle im Allgemeinen und Pólya-Urnen-Modelle im Speziellen bilden ein wichtiges
Mittel in der diskreten Wahrscheinlichkeitstheorie zur Veranschaulichung und Modellierung
diskreter Verteilungen. Darüber hinausgehend dienen Urnenmodelle auch zur Modellierung
von sich mit dem Verlauf der Zeit entwickelnden Prozessen. Pólya-Urnenmodelle erfreuen sich
besonderer Beliebtheit und finden Anwendung u.a. in der Biologie, z.B. Populationsgenetik
und Epidemiologie, Sozialwissenschaften und Informatik, etwa im Bereich der Datenstruk-
turen.

Aufgrund ihrer Bedeutung ist die Untersuchung des Langzeitverhaltens bestimmter Kenngrö-
ßen von Pólya-Urnen von großem Interesse und somit ein zentrales Thema in der Stochastik.
Wann immer ein Konvergenzverhalten zu beobachten ist, drängt sich die Frage nach Konver-
genzraten auf, welche beschreiben, auf welche Art sich der Abstand zwischen Kenngröße und
Grenzwert in Abhängigkeit von der Zeit verringert.

In der vorliegenden Doktorarbeit werden im Rahmen von bereits bekannten Grenzwertsätzen
obere Schranken der zugehörigen Konvergenzraten hergeleitet.

Im Folgenden werden zunächst die untersuchte Klasse von Pólya-Urnen sowie bekannte Eigen-
schaften dazu vorgestellt und dann die Resultate formuliert. Im Anschluss daran wird ein
rekursiver Zugang zur Entwicklung des Urnenprozesses erläutert, welcher für die Ermittlung
von Konvergenzraten mittels der Kontraktionsmethode unerlässlich ist. Darauffolgend wird
die Beweisführung skizziert. Die Zusammenfassung wird durch einige Anmerkungen zu den
Beweisen und Resultaten abgeschlossen.

Rahmen

Eine Pólya-Urne beschreibt einen stochastischen Prozess, der sich in diskreten Zeitschrit-
ten entwickelt. Zu jedem Zeitpunkt befinden sich Kugeln verschiedener Farben in der Urne.
Ein Schritt besteht daraus, eine Kugel aus der Urne zu ziehen und zusammen mit neuen
Kugeln, deren Anzahl und Zusammensetzung von der Farbe der gezogenen Kugel abhängt,
zurück in die Urne zu legen. Üblicherweise werden die Regeln, die das Hinzufügen neuer
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Kugeln beschreiben, in einer sogenannten Rücklegematrix zusammengefasst. Die Rücklege-
matrix zusammen mit der Anfangsbelegung der Urne beschreibt diesen Prozess vollständig.

In der vorliegenden Arbeit werden balancierte, irreduzible Pólya-Urnen mit zwei Farben,
schwarz und weiß, betrachtet. Balanciertheit äußert sich darin, dass in jedem Schritt der
Urne dieselbe Anzahl von Kugeln hinzugefügt wird. Irreduzibilität bedeutet, dass unabhängig
von der Anfangsbelegung der Urne Kugeln aller Farben mit positiver Wahrscheinlichkeit zu
beobachten sind.

Es werden zwei Pólya-Urnenmodelle studiert: Zunächst das folgende Urnenmodell, bei dem
die Rücklegematrix gegeben ist durch

R =

 a b

c d

mit a, d ∈ N0 ∪{−1} und b, c ∈ N,(1)

sodass a + b = c + d =: K − 1 ≥ 1 (Balanciertheit), sowie bc > 0 (Irreduzibilität) gilt. Wird
also in einem Schritt eine schwarze Kugel aus der Urne gezogen, so wird diese mit a schwarzen
und b weißen Kugeln zusammen in die Urne zurückgelegt. Andernfalls, wenn eine weiße Kugel
in einem Schritt aus der Urne gezogen wird, wird diese mit c schwarzen und d weißen Kugeln
in die Urne zurückgelegt.

Des weiteren wird ein Urnenmodell untersucht, bei dem die Einträge der Rücklegematrix
zufällig sind. Dieses wird im Anschluss an die Zusammenfassung im Abschnitt „Anmerkun-
gen“ genannt. Für dieses Urnenmodell ergeben sich dieselben Resultate wie für das erste. Im
weiteren Verlauf der Zusammenfassung beziehen sich alle Aussagen auf das zuerst genannte
Urnenmodell.

Es sei Bn die Anzahl schwarzer Kugeln nach n Schritten. Das Konvergenzverhalten dieser
Größe ist bereits umfassend im Rahmen von Grenzwertsätzen untersucht worden. Es be-
zeichne λ das Verhältnis zwischen größtem und kleinstem Eigenwert der Rücklegematrix, d.h.
λ := a−c

a+b . Es ist bekannt, dass die Anzahl schwarzer Kugeln nach n Schritten, passend nor-
malisiert, in Abhängigkeit von λ verschiedene Grenzverhalten zutage bringt: Gilt λ > 1

2 , so
konvergiert die passend normalisierte Anzahl schwarzer Kugeln nach n Schritten fast sicher
gegen eine nicht-triviale Zufallsvariable, deren Verteilung von Anfangsbelegung und Rücklege-
matrix abhängt. Andernfalls, wenn also λ ≤ 1

2 erfüllt ist, konvergiert die passend normalisierte
Anzahl schwarzer Kugeln nach n Schritten in Verteilung gegen die Normalverteilung, siehe
beispielsweise [22].

In der vorliegenden Arbeit werden obere Schranken für die Konvergenzraten in verschiedenen
Wahrscheinlichkeitsmetriken im Rahmen der bekannten Grenzwertsätze hergeleitet. Dazu
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wird die Entwicklung des Urnenprozesses rekursiv aufgefasst und dementsprechend mithilfe
eines Baumes kodiert. Diese Kodierung eröffnet Zugang zu einer Selbstähnlichkeit, welche im
Urnenprozess versteckt ist. Mithilfe dieser rekursiven Auffassung des Urnenprozesses kann
die Untersuchung der Anzahl schwarzer Kugeln in den Rahmen der Kontraktionsmethode ge-
bracht werden, welche die Verwendung verschiedener Wahrscheinlichkeitsmetriken begründet.
Die Kontraktionsmethode weiß die zugrunde liegende Selbstähnlichkeit auszunutzen und ist
nicht nur dazu in der Lage, die bisher bekannten Grenzwertsätze herzuleiten, vgl. Knape und
Neininger [27], sondern ermöglicht es auch, das Konvergenzverhalten quantitativ zu erfassen
und somit obere Schranken für die Konvergenzraten zu ermitteln.

Ergebnisse

Die folgenden drei Metriken werden in den Beweisen verwendet:

Die Wasserstein-Metrik `p ist gegeben durch

`p (V,W ) := `p (L (V ) ,L (W )) := inf
{∥∥V ′ −W ′∥∥p ∣∣L (V ′) = L (V ) ,L

(
W ′
)

= L (W )
}

für alle 1 ≤ p <∞ und Zufallsvariablen V und W mit ‖V ‖p , ‖W‖p <∞.

Weiter bezeichne FV die Verteilungsfunktion einer Zufallsvariablen V . Dann ist der Kolmo-
gorov-Smirnov-Abstand gegeben durch

% (V,W ) := sup
x∈R
|FV (x)− FW (x)| .

Schließlich ist die Zolotarev-Metrik ζs mit s = 3 gegeben durch

ζ3 (V,W ) := sup
f∈F3

|E [f (V )− f (W )]| ,

wobei F3 wie folgt definiert ist: F3 :=
{
f ∈ C2 (R,R) : |f ′′ (x)− f ′′ (y)| ≤ |x− y|

}
.

Wie bereits erwähnt, hängt das asymptotische Verhalten der (passend normalisierten) Anzahl
schwarzer Kugeln nach n Schritten von dem Verhältnis der Eigenwerte der Rücklegematrix λ
ab. Der Parameter λ bewegt sich im Intervall

[
−K+1
K−1 ,

K−3
K−1

]
.

Wenn λ > 1
2 erfüllt ist, so existiert eine nicht-triviale, nicht-normalverteilte Zufallsvariable

X0
R, deren Verteilung von der Anfangsbelegung der Urne und der Rücklegematrix abhängt,

sodass für n→∞ gilt:

Xn := Bn − E [Bn]
nλ

−→ X0
R fast sicher.
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Wenn jedoch λ ≤ 1
2 erfüllt ist, so konvergiert die standardisierte Anzahl schwarzer Kugeln in

Verteilung gegen die Standard-Normalverteilung, d.h. für n→∞ gilt

X̂n := Bn − E [Bn]√
Var (Bn)

d−→ N (0, 1) .

Es folgen die Ergebnisse in beiden Fällen, die für beliebige Anfangsbelegungen der Urne
gelten:

Theorem 1. Es sei ε > 0 und 1 ≤ p <∞. Im Falle λ > 1
2 gilt, für n→∞,

`p
(
Xn, X

0
R

)
= O

(
n−λ+ 1

2 +ε
)
,

sowie
%
(
Xn, X

0
R

)
= O

(
n−λ+ 1

2 +ε
)
.

Theorem 2. Es sei ε > 0. Im Falle λ ≤ 1
2 gilt, für n→∞,

ζ3
(
X̂n,N (0, 1)

)
=


O
(
(ln (n))−

3
2
)
, λ = 1

2 ,

O
(
n3(λ− 1

2 )) , 1
3 < λ < 1

2 ,

O
(
n−

1
2 +ε

)
, λ ≤ 1

3 , λ 6= 0.

Rekursive Beschreibung der Entwicklung der Urne

Die Beweise beruhen auf einem rekursiven Ansatz, welcher im Jahre 2013 von Knape und
Neininger [27] entworfen und vorgestellt wurde. Zu jedem Zeitpunkt wird die Urne durch
einen Baum kodiert, dessen Blätter den Kugeln in der Urne entsprechen. Dieser Baum wird
als assoziierter Baum bezeichnet. Auf Grundlage dieser Beobachtung lässt sich für die An-
zahl schwarzer Kugeln nach n Schritten eine Verteilungsrekursion entwickeln, welche dann
mithilfe der Kontraktionsmethode untersucht werden kann. Knape und Neininger haben dies
in [27] bereits im Rahmen von Grenzwertsätzen ausgearbeitet; hier wird nun dieser Ansatz
fortgeführt und im Hinblick auf Konvergenzraten ausgenutzt.

Im assoziierten Baum wird ein Schritt der Urne wie folgt realisiert: Das Ziehen einer Kugel aus
der Urne entspicht dem zufälligen Auswählen eines Blatts des Baums. Wurde eine schwarze
Kugel gezogen, so wird diese mit a schwarzen und b weißen Kugeln zurück in die Urne gelegt.
Im Baum wird das gezogene Blatt zu einem inneren Knoten und es erhält K Kinder, von
denen a+ 1 schwarz und b weiß gefärbt sind. Analog wird im Falle des Ziehens einer weißen
Kugel das entsprechende weiße Blatt im Baum Vorfahr von c schwarzen Blättern und d + 1
weißen Blättern und selbst zu einem inneren Knoten.

184



Die Graphik veranschaulicht das Verhalten des negativen Exponenten, welcher hier mit γ be-
zeichnet wird, in den oben angegebenen oberen Schranken der Konvergenzraten in Theoremen
1 und 2.

0
1

2
1�1

1

3

�

1

4

�

1

2

Die gestrichelte Linie soll andeuten, dass sich der Exponent nur bis auf ein beliebiges ε > 0 der
Linie nähert; der „wahre“ Exponent liegt also (beliebig nah) unterhalb der gestrichelten Linie.
Die dunkelviolette Linie stellt den negativen Exponenten im Falle von nicht-normalverteilten
Grenzwerten dar, die blaugrüne Linie im Falle des normalverteilten Grenzwerts. Für λ = 1/2
ist die Ordnung der Rate nicht polynomiell, sondern logarithmisch; dies wird durch einen
Kreis bei (1/2, 0) angedeutet. Für λ = 0 ist das Verhalten der Urne deterministisch; darauf
weist ein weiterer Kreis bei (0, 1/2) hin.

Der Baum entwickelt sich also simultan zur Urne. Je nach Farbe der Kugel, die zu Beginn
in der Urne liegt, bzw. der Farbe der Wurzel gibt es zwei Typen solcher Bäume: Ist die
erste Kugel bzw. die Wurzel schwarz, so wird von einem b-assoziierten Baum gesprochen
(wegen black). Andernfalls wird der Baum als w-assoziierter Baum bezeichnet (wegen white).
Befindet sich zu Beginn mehr als eine Kugel in der Urne, so wird die Entwicklung der Urne
durch einen Wald von assoziierten Bäumen erfasst, von denen jeder zu einer der Startkugeln
gehört. Nach Konstruktion stimmen die Anzahl der schwarzen Kugeln in der Urne und die
Anzahl der schwarzen Blätter im Baum (bzw. in den Bäumen des Waldes) überein.

Zunächst wird davon ausgegangen, dass sich zu Beginn nur eine Kugel in der Urne befindet und
die Entwicklung der Urne somit durch einen Baum, keinen Wald, erfasst wird. Es bezeichne
I(n) :=

(
I

(n)
1 , . . . , I

(n)
K

)
den Zufallsvektor, dessen r-ter Eintrag die Anzahl der Züge im r-ten

Teilbaum der Wurzel innerhalb der ersten n Schritte beschreibt. Es gilt ∑K
r=1 I

(n)
r = n − 1,

da der erste Zug aus der Urne zum Erzeugen der Teilbäume dient und die darauffolgenden
n− 1 Züge dann in den Teilbäumen der Wurzel stattfinden. Aufgrund der Balanciertheit der
Urne besitzt der r-te Teilbaum der Wurzel nach n Schritten genau 1 + I

(n)
r (K − 1) Blätter

und der Vektor I(n) beschreibt somit die Größe der Teilbäume.

Schließlich ist festzustellen, dass die Teilbäume der Wurzel bedingt auf den Vektor ihrer
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Realisierung einer Urne zusammen mit ihrem assoziierten Baum:

Das Bild zeigt die ersten zwei Schritte einer Urne mit schwarzen und weißen Kugeln, die zu
Beginn eine schwarze Kugel enthält und deren Dynamik der Rücklegematrix ( 1 4

3 2 ) folgt. Je
Schritt ist der jeweilige assoziierte Baum darunter abgebildet. Die Pfeile sind auf die Kugeln
in der Urne bzw. Blätter des Baums gerichtet, die im jeweiligen Schritt gezogen werden. In
jedem Schritt entsprechen die Blätter des Baumes den Kugeln in der Urne; zur Klarheit
sind Knoten im Baum, die nicht mehr einer Kugel entsprechenden, in verblassender Farbe
dargestellt.

Größen I(n) unabhängig sind und verteilt sind wie b- bzw. w-assoziierte Bäume mit der jew-
eiligen Anzahl an Blättern.

Mithilfe dieser Eigenschaften und Beobachtungen lässt sich nun die Anzahl schwarzer Kugeln
nach n Schritten rekursiv auffassen. Dazu wird der Baum an der Wurzel zerlegt und die
Anzahl der schwarzen Kugeln über die Summe der Anzahl schwarzer Blätter je Teilbaum
ermittelt. Es bezeichne Bb

n die Anzahl schwarzer Kugeln nach n Schritten, wenn die Urne zu
Beginn eine schwarze Kugel enthält, und Bw

n die Anzahl schwarzer Kugeln nach n Schritten,
wenn die Urne zu Beginn eine weiße Kugel enthält. Mit Bb

0 = 1 und Bw
0 = 0 ergeben sich die

folgenden Verteilungsrekursionen für n ≥ 1

Bb
n

d=
a+1∑
r=1

B
b,(r)
I

(n)
r

+
K∑

r=a+2
B

w,(r)
I

(n)
r

,

Bw
n

d=
c∑

r=1
B

b,(r)
I

(n)
r

+
K∑

r=c+1
B

w,(r)
I

(n)
r

(2)
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mitBb,(r)
j

d=Bb
j , B

w,(r)
j

d=Bw
j für r = 1, . . . ,K und 0 ≤ j ≤ n, sodass die Größen

(
B

b,(1)
j

)
0≤j≤n

,

. . .,
(
B

b,(K)
j

)
0≤j≤n

,
(
B

w,(1)
j

)
0≤j≤n

, . . .,
(
B

b,(K)
j

)
0≤j≤n

, I(n) unabhängig sind.

Das Bild zeigt eine Realisierung der Urne mit schwarzen und weißen Kugeln, die zu Beginn
eine schwarze Kugel enthält und deren Dynamik der Rücklegematrix ( 1 4

3 2 ) folgt, nach acht
Zügen aus der Urne.

Neben der Urne ist der assoziierte Baum zu sehen, dessen Blätter den Kugeln in der Urne
entsprechen. Wie zuvor sind Knoten des Baums, die nicht mehr einem Blatt entsprechen, in
verblassender Farbe dargestellt.

Die Normalisierung der Anzahl schwarzer Kugeln im Rahmen des Systems von Verteilungsre-
kursionen gegeben in (2) führt zu einem System von Verteilungsrekursionen für die normali-
sierten Größen. Diese Verteilungsrekursionen für die normalisierten Größen bilden dann den
Ausgangspunkt für die Kontraktionsmethode. Aus (2) ist bereits ersichtlich, dass das Ver-
halten der Teilbaumgrößen beschrieben durch den Zufallsvektor I(n) eine große Rolle spielt.
Es lässt sich zeigen, dass der Vektor der relativen Teilbaumgrößen fast sicher gegen einen
Dirichlet-verteilten Vektor konvergiert.

Zunächst werden basierend auf diesen Verteilungsrekursionen Konvergenzraten für entspre-
chende Pólya-Urnen, welche zu Beginn nur eine Kugel enthalten, hergeleitet. Schließlich
werden diese Ergebnisse auf Urnen mit einer beliebigen Anfangsbelegung erweitert und führen
so zu den bereits genannten Hauptresultaten.
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Beweisführung

Zunächst werden Raten für die Basisfälle, in denen die Urne mit einer einzigen Kugel gestartet
wird, hergeleitet. Schließlich lassen sich die Raten für Urnen mit einer beliebigen Anfangsbele-
gung daraus „zusammensetzen“. Aufgrund der verschiedenen Normalisierungen im Falle eines
nicht-normalverteilten Grenzwerts und im Falle des normalverteilten Grenzwerts führt das
System gegeben in (2) zu zwei Systemen von Rekursionen, welche im Rahmen der Kontrak-
tionsmethode mit unterschiedlichen Metriken studiert werden müssen. Im Falle eines nicht-
normalveteilten Grenzwerts ist es in diesem Rahmen möglich, Raten mit den Wasserstein-
Metriken zu bestimmen, aus denen dann eine Rate in der Kolmogorov-Smirnov-Metrik gefol-
gert werden kann. Im Falle des normalverteilten Grenzwerts liefern die Wasserstein-Metriken
keine Kontraktionseigenschaft für die auftretende Fixpunktgleichung, sodass die Zolotarev-
Metrik, welche in dieser Hinsicht mehr Spielraum eröffnet, zur Anwendung kommt. Es wer-
den die folgenden Bezeichnungen verwendet: µb (n) := E

[
Bb
n

]
, µw (n) := E [Bw

n ] , σ2
b (n) :=

Var
(
Bb
n

)
sowie σ2

w (n) := Var (Bw
n ); die jeweilige Standardabweichung wird dann mit σb (n)

bzw. σw (n) bezeichnet.

Der nicht-normalverteilte Fall: λ > 1
2 :

Die Anzahl schwarzer Kugeln wird zentriert und mit der Größenordnung der Standardabwei-
chung skaliert: X0 := 0 =: Y0 und für n ≥ 1

Xn :=
Bb
n − E

[
Bb
n

]
nλ

, Yn := Bw
n − E [Bw

n ]
nλ

.

Dann ergibt sich das folgende System von Verteilungsrekursionen für die normalisierten Grö-
ßen:

Xn
d=
a+1∑
r=1

(
I

(n)
r

n

)λ
X

(r)
I

(n)
r

+
K∑

r=a+2

(
I

(n)
r

n

)λ
Y

(r)
I

(n)
r

+ bb
(
I(n)

)
,

Yn
d=

c∑
r=1

(
I

(n)
r

n

)λ
X

(r)
I

(n)
r

+
K∑

r=c+1

(
I

(n)
r

n

)λ
Y

(r)
I

(n)
r

+ bw
(
I(n)

)
mit

bb
(
I(n)

)
:= n−λ

(
a+1∑
r=1

µb
(
I(n)
r

)
+

K∑
r=a+2

µw
(
I(n)
r

)
− µb (n)

)
,

bw
(
I(n)

)
:= n−λ

(
c∑

r=1
µb
(
I(n)
r

)
+

K∑
r=c+1

µw
(
I(n)
r

)
− µb (n)

)
,

wobei analoge Bedingungen an Verteilung und (bedingte) Unabhängigkeit erfüllt sein sollen
wie in (2).
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Im Rahmen der Kontraktionsmethode lässt sich der Grenzwert dieser Größen mithilfe des
folgenden Systems von Verteilungsrekursionen charakterisieren:

X
d=
a+1∑
r=1

Dλ
rX

(r) +
K∑

r=a+2
Dλ
rY

(r) + bb,

Y
d=

c∑
r=1

Dλ
rX

(r) +
K∑

r=c+1
Dλ
rY

(r) + bw

(3)

mit

bb := db

(
−1 +

a+1∑
r=1

Dλ
r

)
+ dw

K∑
r=a+2

Dλ
r ,

bw := db

c∑
r=1

Dλ
r + dw

(
−1 +

K∑
r=c+1

Dλ
r

)

mit unabhängigen Kopien X (r) von X , Y (r) von Y , r = 1, . . . ,K, einem Dirichlet-verteilten
Zufallsvektor (D1, . . . , DK), dessen Parameter alle gleich 1

K−1 sind, sodass X (1), . . . ,X (K),
Y (1), . . . ,Y (K) und (D1, . . . , DK) unabhängig sind.

Unter allen Paaren von zentrierten Verteilungen mit zweitemMoment gibt es einen eindeutigen
Fixpunkt, welcher das System gegeben durch (3) löst, der von nun an mit (L (Λb) ,L (Λw))
bezeichnet wird und die Grenzverteilung von (Xn)n≥1 und (Yn)n≥1 liefert, vgl. [27].

Hierfür lässt sich zeigen, dass für alle ε > 0 und 1 ≤ p <∞ folgendes gilt:

max {`p (Xn,Λb) , `p (Yn,Λw)} = O
(
n−λ+ 1

2 +ε
)
,(4)

max {% (Xn,Λb) , % (Yn,Λw)} = O
(
n−λ+ 1

2 +ε
)
.(5)

Der erste Schritt des Beweises besteht daraus, per Induktion über n eine obere Schranke
für den Abstand `2 (Xn,Λb) herzuleiten. Dazu wird dieser Abstand rekursiv mithilfe der
Abstände `2 (Xj ,Λb) und `2 (Yj ,Λw) mit j ∈ {0, . . . , n− 1} abgeschätzt. Mit der passend
gewählten Induktionsvoraussetzung für max {`2 (Xj ,Λb) , `2 (Yj ,Λw)} lässt sich die in (4)
genannte Rate per Induktion beweisen. Ebenso lässt sich der Abstand `2 (Yn,Λw) behan-
deln, sodass man (4) mit p = 2 erhält.

Darauf aufbauend wird mit einer Induktion über p und n die in (4) genannte obere Schranke
für beliebiges p hergeleitet: Dazu wird der Abstand `p (Xn,Λb) in Abhängigkeit von den
Abständen mit kleiner Indizes, d.h. max {`q (Xj ,Λb) , `q (Yj ,Λw)} mit q ≤ p und j ≤ n − 1,
abgeschätzt; gleichermaßen kann mit `p (Yn,Λw) verfahren werden.
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Mithilfe von (4) und Wissen über Existenz und Eigenschaften der Dichten der Grenzverteilun-
gen L (Λb) und L (Λw) lässt sich schließlich eine obere Schranke in der Kolmogorov-Smirnov-
Metrik herleiten, welche in (5) formuliert ist.

Um nun Theorem 1 zu erhalten, setzt man die Anzahl schwarzer Kugeln nach n Schritten bei
einer Startbelegung mit mehr als einer Kugel mithilfe der Beiträge der einzelnen assoziierten
Bäume des Waldes zusammen. Je assoziiertem Baum ist eine obere Schranke für den Abfall der
Rate bekannt. Das Vorgehen ist ähnlich zum Vorgehen in den beiden Basisfällen, jedoch ist es
nicht möglich, auf eine Verteilungsrekursion für die Anzahl schwarzer Kugeln zurückzugreifen:
Man beginnt auch hier mit einer Rate in der Wasserstein-Metrik `2, verallgemeinert diese auf
`p mit 1 ≤ p <∞ und überträgt diese Rate schließlich auf die Kolmogorov-Smirnov-Metrik.

Der normalverteilte Fall: λ ≤ 1
2

Die Anzahl schwarzer Kugeln nach n Schritten wird zentriert und mit der Standardabweichung
zentriert: X̂0 := 0 =: Ŷ0, X̂1 := 0 =: Ŷ1 und für n ≥ 2,

X̂n :=
Bb
n − E

[
Bb
n

]
√

Var (Bb
n)

, Ŷn := Bw
n − E [Bw

n ]√
Var (Bw

n )
.(6)

Es ergibt sich das folgende System von Verteilungsrekursionen für die normalisierte Anzahl
schwarzer Kugeln

X̂n
d=
a+1∑
r=1

σb
(
I

(n)
r

)
σb (n) X̂

(r)
I

(n)
r

+
K∑

r=a+2

σw
(
I

(n)
r

)
σb (n) Ŷ

(r)
I

(n)
r

+ tb
(
I(n)

)
,

Ŷn
d=

c∑
r=1

σb
(
I

(n)
r

)
σw (n) X̂

(r)
I

(n)
r

+
K∑

r=c+1

σw
(
I

(n)
r

)
σw (n) Ŷ

(r)
I

(n)
r

+ tw
(
I(n)

)(7)

mit

tb
(
I(n)

)
:= 1

σb (n)

(
a+1∑
r=1

µb
(
I(n)
r

)
+

K∑
r=a+2

µw
(
I(n)
r

)
− µb (n)

)
,

tw
(
I(n)

)
:= 1
σw (n)

(
c∑

r=1
µb
(
I(n)
r

)
+

K∑
r=c+1

µw
(
I(n)
r

)
− µw (n)

)
,

wobei analoge Bedingungen an Verteilung und (bedingte) Unabhängigkeit erfüllt sein sollen
wie in (2).

Im Geiste der Kontraktionsmethode führt dies zum folgenden System von Fixpunktgleichun-
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gen für die Grenzverteilungen:

X̂
d=
a+1∑
r=1

√
DrX̂

(r) +
K∑

r=a+2

√
DrŶ

(r),

Ŷ
d=

c∑
r=1

√
DrX̂

(r) +
K∑

r=c+1

√
DrŶ

(r)

(8)

mit unabhängigen Kopien X̂ (r) von X̂ und Ŷ (r) von Ŷ , r = 1, . . . ,K und einem Dirichlet-
verteilten Zufallsvektor (D1, . . . , DK), dessen Parameter alle gleich 1

K−1 sind, sodass die
Größen X̂ (1), . . . , X̂ (K), Ŷ (1), . . . , Ŷ (K) und (D1, . . . , DK) unabhängig sind.

Im Raum aller Paare von zentrierten Verteilungen mit Varianz 1 und drittem Moment ist der
eindeutige Fixpunkt zum System (8) gegeben durch (N (0, 1) ,N (0, 1)).

Nun lässt sich folgendes zeigen: Für ε > 0 gilt

(9) max
{
ζ3
(
X̂n,N (0, 1)

)
, ζ3

(
Ŷn,N (0, 1)

)}
=


O
(
(ln (n))−

3
2
)
, λ = 1

2 ,

O
(
n3(λ− 1

2 )) , 1
3 < λ < 1

2 ,

O
(
n−

1
2 +ε

)
, λ ≤ 1

3 , λ 6= 0.

Auch der Beweis von (9) wird je Bereich von λ in drei Schritten vollzogen. Diese sind jedoch
einer völlig anderen Natur als im Fall eines nicht-normalverteilten Grenzwerts.

Wie üblich in der Kontraktionsmethode bei der Verwendung der Zolotarev-Metrik wird eine
Folge eingeschoben, die als Bindeglied zwischen ursprünglicher Folge und Grenzwert dient:
Für n ≥ 2 sei

Qb
n :=

a+1∑
r=1

σb
(
I

(n)
r

)
σb (n) Nr +

K∑
r=a+2

σw
(
I

(n)
r

)
σb (n) Nr + tb

(
I(n)

)
,

Qw
n :=

c∑
r=1

σb
(
I

(n)
r

)
σw (n) Nr +

K∑
r=c+1

σw
(
I

(n)
r

)
σw (n) Nr + tw

(
I(n)

)

mit Standard-normalverteilten N1, . . . , NK , sodass N1, . . . , NK , I
(n) unabhängig sind.

Im ersten Schritt wird ζ3
(
X̂n,Qb

n

)
rekursiv abgeschätzt. Dazu wird dieser Abstand in Ab-

hängigkeit von max
{
ζ3
(
X̂j ,N (0, 1)

)
, ζ3

(
Ŷj ,N (0, 1)

)}
mit j ∈ {0, . . . , n− 1} unter Ver-

wendung der (3,+)-Idealität der Zolotarev-Metrik ζ3 dargestellt. Als zweites werden die
Abstände ζ3

(
Qb
n,N (0, 1)

)
und ζ3 (Qw

n ,N (0, 1)) abgeschätzt. Dazu werden die Faltungs-
eigenschaft der Normalverteilung und Symmetrieeigenschaften dieser ausgenutzt, sowie die
Struktur der Zolotarev-Metrik genauer untersucht, indem die Testfunktionen aus F3 mit einer
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Taylor-Entwicklung studiert werden. Schließlich dienen die Zwischenergebnisse der ersten bei-
den Schritte als Abschätzung für den Abstand ζ3

(
X̂n,N (0, 1)

)
und eine Induktion über nmit

passenden Induktionsvoraussetzungen für max
{
ζ3
(
X̂j ,N (0, 1)

)
, ζ3

(
Ŷj ,N (0, 1)

)}
mit j ∈

{0, . . . , n− 1} je Bereich von λ liefert die Rate aus (9). Der zweite Abstand ζ3
(
Ŷn,N (0, 1)

)
kann auf die gleiche Weise studiert werden, sodass schließlich die Aussage in (9) folgt.

Für die Anzahl schwarzer Kugeln nach n Schritten bei einer beliebigen Anfangsbelegung mit
mehr als einer Kugel wird diese wieder mithilfe der Beiträge der einzelnen assoziierten Bäume
erfasst und somit Theorem 2 aus der Kenntnis des Verhaltens der Basisfälle ermittelt.

Anmerkungen

Mit derselben Strategie wird auch eine weitere Urne untersucht, deren Rücklegematrix R̄

zufällig ist:

R̄ =

 Cα 1− Cα

1− Cβ Cβ

mit Cα ∼ Ber (α) , Cβ ∼ Ber (β) , α, β ∈ (0, 1) .

Dieses Urnenmodell findet seinen Ursprung in der Entwicklung von klinischen Studien im
Rahmen von adaptiven Designs und wird in diesem Kontext als „Randomised Play-the-
Winner Rule“ bezeichnet. Anschaulich gesprochen gehören zu der Urne zwei Münzen – eine
„schwarze“ und eine „weiße“ Münze. Wird eine Kugel aus der Urne gezogen, so wird sie zusam-
men mit einer weiteren Kugel in die Urne zurückgelegt, deren Farbe durch einen Münzwurf
entschieden wird: Wird eine schwarze Kugel gezogen, so wird die schwarze Münze geworfen
und mit Wahrscheinlichkeit α wird eine schwarze Kugel hinzugefügt, mit Wahrscheinlichkeit
1−α eine weiße. Wird eine weiße Kugel gezogen, so entscheidet der Ausgang des Münzwurfs
mit der weißen Münze über die Farbe der neuen Kugel und es wird mit Wahrscheinlichkeit β
eine weitere weiße, mit Wahrscheinlichkeit 1− β eine schwarze Kugel hinzugefügt.

Auch für diese Urne wurden die in Theorem 1 und Theorem 2 genannten Ergebnisse herge-
leitet, wobei der Parameter, der über nicht-normalverteilte und normalverteilte Grenzwerte
entscheidet, nun gegeben ist durch λ = α+ β − 1.

Eine entscheidende Rolle in den oben vorgestellten Beweisstrategien spielt das Verhalten der
Varianz der Anzahl schwarzer Kugeln nach n Schritten. In der Skalierung geht sie in der
Form der Standardabweichung bzw. deren Größenordnung in die Rekursionen und somit in
die Rechnungen ein. Für die oben vorgestellten Beweisstrategien ist es unumgänglich, den
führenden Ordnungsterm der Varianz mit exakter Konstante und eine groß O-Abschätzung
für den zweiten Ordnungsterm zu kennen.
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Über die Optimalität der hier erzielten Raten kann keine Aussage gemacht werden, da keine
unteren Schranken bekannt sind.

Die Dissertation wird durch Simulationen im Falle von normalverteilten Grenzwerten ergänzt.

Theorem 2 bestätigt zum Teil eine Vermutung von Svante Janson in [22]. Er vermutet, dass
die Rate von der Größenordnung O

(
n3(λ− 1

2 )∨(− 1
2 )) ist. Es bleibt offen, ob das ε in Theorem

2 (und auch in Theorem 1) nötig ist.
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