Large scale analysis of amino acid substitutions in bacterial proteomics

Dmitry Ischenko ${ }^{1,2^{*}}$, Dmitry Alexeev ${ }^{1,2}$, Egor Shitikov ${ }^{1}$, Alexandra Kanygina ${ }^{1,2}$, Maja Malakhova ${ }^{1}$, Elena Kostryukova ${ }^{1}$, Andrey Larin ${ }^{1}$, Sergey Kovalchuk ${ }^{1}$, Olga Pobeguts ${ }^{1}$, Ivan Butenko ${ }^{1}$, Nikolay Anikanov ${ }^{1}$, Ilya Altukhov ${ }^{1,2}$, Elena llina ${ }^{1}$ and Vadim Govorun ${ }^{1}$

[^0]
Abstract

Background: Proteomics of bacterial pathogens is a developing field exploring microbial physiology, gene expression and the complex interactions between bacteria and their hosts. One of the complications in proteomic approach is micro- and macro-heterogeneity of bacterial species, which makes it impossible to build a comprehensive database of bacterial genomes for identification, while most of the existing algorithms rely largely on genomic data. Results: Here we present a large scale study of identification of single amino acid polymorphisms between bacterial strains. An ad hoc method was developed based on MS/MS spectra comparison without the support of a genomic database. Whole-genome sequencing was used to validate the accuracy of polymorphism detection. Several approaches presented earlier to the proteomics community as useful for polymorphism detection were tested on isolates of Helicobacter pylori, Neisseria gonorrhoeae and Escherichia coli. Conclusion: The developed method represents a perspective approach in the field of bacterial proteomics allowing to identify hundreds of peptides with novel SAPs from a single proteome.

Keywords: Spectral library; SAP

Contents

Abstract 1
1 Standard procedures 3
1.1 Protein database construction and spectra identification with Mascot 3
1.2 Sequence assignment and spectral library construction 3
1.3 Estimation of the number of polymorphisms based on genomic data 3
2 Algorithm 4
2.1 Vector representation of spectra and angle calculation 4
2.2 Detection of identical spectra 5
2.2.1 Transformation methods 5
2.2.2 Parameters estimation $(N, I, \cos \theta)$ 5
2.3 SAP detection algorithm 7
2.3.1 Choosing a set of possible SAPs 7
2.3.2 Peaks annotation (b-, y- and additional ion series) 8
2.3.3 Different methods of peaks shifting 9
2.3.4 Parameters estimation $(C, I, a l g, \cos \theta)$ 9
3 Algorithm exploration 12
3.1 NA exploration 12
3.2 Decoy database research 12
3.3 Comparison with other algorithms (Byonic, pMatch, SPIDER) 14
3.4 73 E.coli differentiation study 15
3.5 Detection of point mutations 17
4 SNP study 18
4.1 Angle dependence on the type of SAP 18
5 Software and data 19
5.1 Software and programming languages 19
5.2 Data and code availability 19
6 References 20

1 Standard procedures

1.1 Protein database construction and spectra identification with Mascot

Raw data files with WIFF and .D file format were converted to the Mascot generic format (MGF file format) using AB SCIEX MS Data Converter version 1.3 and Compass Data Analysis 4.2 (Build 383.1) respectively. Mascot 2.2.07 was used for the identification with the following parameters: MS1 tol: $10 \mathrm{ppm}, \mathrm{MS} 2$ tol: 0.5 Da, varibale modifications: Oxidation (M) and Carbomidomethylation(C), trypsin specificity with 1 missed cleavages allowed. Decoy searches were implemented by database construction with reversed proteins.

1.2 Sequence assignment and spectral library construction

The spectral libraries were constructed from Mascot identification results excluding those with predicted post-translational modifications. The threshold values were estimated for $F D R \leq 0.05$. Each spectral library represents a file in MGF format with an additional SEQ field, which contains an amino acid sequence of the peptide identified. The resulting library sizes for each strain are shown in Table S-2:

Table S-1 Spectral library sizes.

Strain	NCBI accession	Spectral library size
H. pylori A45	AMYU000000000	13657
H. pylori 26695	NC_018939	13306
H. pylori J99	NC_000921	13789
H. pylori E48	AYHQ00000000	12440
H. pylori H13-1	AYUH00000000	15194
N. gonorrhoeae i19.05	JFBA00000000	29462
N. gonorrhoeae n01.08	JIBZ00000000	32815
N. gonorrhoeae FA1090	NC_002946	10854

To construct a spectral library we used an MGF format file containing all the data of a proteomic experiment and Mascot result export file (described above). We used the speptide software to construct the library. The filtering according to peptide identification criteria was applied. The results of spectra identification using Mascot should be exported in CSV format file containing "Query title" and "Sequence" fields (pep_scan_title and pep_seq). After the spectral library was annotated, we match ion series to MS/MS peaks using the amino acid sequence of peptides identified by Mascot. Spectra for the known genome were identified with Mascot using the genome of known organism and further used as spectral library. MS/MS peaks in the spectral library are annotated and ion series are assigned.

1.3 Estimation of the number of polymorphisms based on genomic data

The number of SAPs in tryptic peptides between a pair of strains was estimated using blastp package. For each of the comparison pair of datasets the lists with all tryptic peptides were recieved with $a d$ hoc perl scripts (Fig. S-1). The database for blastp search was created from the list of peptides sequences from the first sample.

The list of sequences of the second sample were searched against created database. At the last step only peptides with the same length and differ only in one amino acid were involved in the estimation of the total number of possible SAPs identification.

Figure S-1 Estimation of the number of SAPs in peptides based on genomes information.

2 Algorithm

2.1 Vector representation of spectra and angle calculation

The comparison of the spectra is based on spectral angle calculation described earlier [1, 2]. A spectrum is represented by a vector in a space m with components corresponding to the intensities of the peaks of this spectrum. The estimation of similarity between two spectra is based on the calculation of the cosine similarity between the corresponding vectors.

Briefly, every spectrum is represented by two ordered sets $\{m\}$ and $\{i\}$, containing $\frac{m}{z}$ and intensities of peaks, correspondingly, and function $I_{s}:\{m\} \rightarrow\{i\}$, putting in accordance $\frac{m}{z}$ and its intensity. Further two symbols are used for brevity: first \in^{δ} ("belongs to with accuracy of δ "),

$$
x \in^{\delta}\{M\} \Leftrightarrow \exists m \in\{M\}:|x-m|<\delta
$$

Second: \cup^{δ} ("unity with accuracy of δ "),

$$
A \cup^{\delta} B=A^{\prime} \cup B, A^{\prime}=\{a\}: a \nexists^{\delta} B
$$

Comparison of the two spectra $S_{1}\left(\left\{m_{1}\right\},\left\{i_{1}\right\}, I_{s_{1}}\right)$ and $S_{2}\left(\left\{m_{2}\right\},\left\{i_{2}\right\}, I_{s_{2}}\right)$ is based on contruction of a set $\mathrm{M}=\left\{m_{1}\right\} \cup^{\delta}\left\{m_{2}\right\}$. For every spectrum in the set M, we define a function $I_{s}^{\delta}(x): M \rightarrow\{i\}$:

$$
I_{s_{n}}^{\delta}(x)= \begin{cases}I_{S_{n}}(m), & \text { if } \exists m \in\left\{m_{n}\right\}:|x-m|<\delta \\ 0, & \text { otherwise }\end{cases}
$$

Thus, we associate the spectra compared with intensity ordered sets (vectors) $I_{s_{1}}^{\delta}(M)$ and $I_{s_{2}}^{\delta}(M)$, and as measure of similarity for the two spectra, we use the
angle value between those two vectors $\cos \Theta=\cos \left(I_{s_{1}}^{\delta}(M), I_{s_{2}}^{\delta}(M)\right)$. The higher is the cosine of the angle value, the higher is the probability that the spectra correspond to similar sequences.

Figure S-2 Representation of spectrum as a vector.

$$
\cos \Theta=\frac{\overrightarrow{s_{1}} \cdot \overrightarrow{s_{2}}}{\left|\overrightarrow{s_{1} \mid}\right| \cdot\left|s_{2}\right|}
$$

2.2 Detection of identical spectra

For two spectral sets (SP and SL) with a given $\Delta_{M S 1}$ candidate pairs of spectra are defined as those with $\left|M S 1_{S P}-M S 1_{S L}\right| \leq \Delta_{M S 1}$. Each spectrum in a pair is represented by a vector, and the cosine similarity is calculated. Each spectrum from SP is assigned to a spectrum from SL corresponding to the minimal angle between two vectors.

2.2.1 Transformation methods

The initial spectra is not always useful for calculation of spectral angle. Several approaches exists to transform the initial spectra[3]. It is known that the transformation of intensity improves the results. It was also shown that limiting the number of peaks taken into comparison can improve the comparison. For convenience the spectral intensity is normalized so that the average intensity in the spectra equals 100. The following several intensity transformations are applied: $\sqrt{I}, \ln I$ and untransformed intensity value I.

2.2.2 Parameters estimation $(N, I, \cos \theta)$

We used spectral sets from three strains of H. pylori: A45, J99 and 26695 as a training set for the algorithm. Three pairwise comparisons are performed; in each of them, one sample is considered as a reference sample and the other as a query sample. A45 \rightarrow J99, J99 $\rightarrow 26695,26695 \rightarrow$ A45 (the second sample in each pair serving as reference). Different methods of intensity transformations are applied; the number of the peaks selected for further analysis is also varied. $\frac{m}{N}$ most intensive peaks are selected, where m is MS1 mass and N - is a parameter varying from 10 to 200 . The results for each strain are verified by comparison with Mascot identifications using the protein database built from the annotation of the
corresponding genome. For each parameter values areas under ROC curves are calculated, and the number of true positive identifications is estimated for $F D R$ not exceeding 0.05. (Table S-4).

Figure S-3 A. Probability density of $\cos \Theta$ between the spectra, corresponding to similar and different peptide sequences ($\ln I$ transformation, top $\frac{m}{100}$ peaks). B. ROC curves for different methods of intensity transformation. C. ROC curves for different values of N (top $\frac{m}{N}$ peaks).

The resulting parameter and threshold $\cos \Theta$ values are defined for 0.05 and 0.01 $F D R: \ln I$ transformation, $N=100$ (top $\frac{m}{N}$ peaks), $\cos \Theta>=0.31$ (0.47).

Table S-2 Number of identified peptides with $F D R \leq 0.05$ and area under ROC-curves for different parameters for algorithm of identical spectra identification.

Number of peptides Area under ROC-curve

$N\left(\right.$ top $\frac{m}{n}$ peaks)	\sqrt{I}	$\ln I$	I	\sqrt{I}	$\ln I$	I
10	4210	4210	4125	0.987	0.986	0.981
20	4210	4215	4122	0.988	0.986	0.981
30	4204	4210	4115	0.988	0.987	0.981
40	4197	4213	4113	0.988	0.988	0.981
50	4187	4206	4112	0.989	0.989	0.982
60	4186	4210	4116	0.989	0.990	0.983
70	4182	4214	4111	0.990	0.991	0.984
80	4179	4209	4097	0.991	0.992	0.985
90	4166	4199	4101	0.991	0.992	0.985
100	4158	4198	4095	0.991	0.992	0.986
110	4149	4196	4091	0.991	0.992	0.986
120	4140	4191	4086	0.990	0.991	0.986
130	4133	4179	4084	0.990	0.991	0.985
140	4132	4177	4078	0.989	0.991	0.985
150	4126	4171	4069	0.989	0.990	0.985
160	4110	4169	4054	0.988	0.989	0.984
170	4106	4158	4055	0.987	0.988	0.984
180	4092	4144	4047	0.986	0.987	0.983
190	4088	4137	4038	0.985	0.986	0.982
200	4082	4130	4031	0.984	0.985	0.981

The resulting parameter and threshold $\cos \Theta$ values are defined for 0.05 and 0.01 $F D R$.

2.3 SAP detection algorithm

For two spectral sets (SP and SL) with a given $\Delta_{M S 1}$ candidate pairs of spectra are defined as those with $\exists D_{\delta} \in\{D\}: D_{\delta}-\Delta_{M S 1} \leq M S 1_{S L}-M S 1_{S P} \leq D_{\delta}+\Delta_{M S 1}$, where $\{D\}$ is a set of mass differences for selected amino acid substitutions. A spectrum from SL is transformed according to the chosen method. Each spectrum in a pair is represented by a vector, and the cosine similarity is calculated. Each spectrum from SP is assigned to a spectrum from SL corresponding to the minimal angle between two vectors.

2.3.1 Choosing a set of possible SAPs

Only amino acid substitutions caused by a single nucleotide change in a codon were selected for the analysis; substitutions with $\Delta_{m} \leq 1 D a$ were excluded, resulting in total of 138 substitutions under consideration.

Table S-3 SAPs selected for the analysis (the absolute value of Δ_{m} is specified).

$\mathrm{K} \leftrightarrow \mathrm{M}$	2.9455	$\mathrm{~N} \leftrightarrow \mathrm{H}$	23.0160	$\mathrm{~L} \leftrightarrow \mathrm{R}$	43.0170
$\mathrm{P} \leftrightarrow \mathrm{T}$	3.9949	$\mathrm{~L} \leftrightarrow \mathrm{H}$	23.9748	$\mathrm{I} \leftrightarrow \mathrm{R}$	43.0170
$\mathrm{Q} \leftrightarrow \mathrm{H}$	9.0003	$\mathrm{M} \leftrightarrow \mathrm{R}$	25.0606	$\mathrm{~A} \leftrightarrow \mathrm{D}$	43.9898
$\mathrm{~S} \leftrightarrow \mathrm{P}$	10.0207	$\mathrm{H} \leftrightarrow \mathrm{Y}$	26.0044	$\mathrm{C} \leftrightarrow \mathrm{F}$	44.0592
$\mathrm{~T} \leftrightarrow \mathrm{I}$	12.0364	$\mathrm{~A} \leftrightarrow \mathrm{P}$	26.0157	$\mathrm{G} \leftrightarrow \mathrm{C}$	45.9877
$\mathrm{~T} \leftrightarrow \mathrm{~N}$	12.9952	$\mathrm{~S} \leftrightarrow \mathrm{~L}$	26.0520	$\mathrm{~V} \leftrightarrow \mathrm{~F}$	48.0000
$\mathrm{~V} \leftrightarrow \mathrm{I}$	14.0157	$\mathrm{~S} \leftrightarrow \mathrm{I}$	26.0520	$\mathrm{D} \leftrightarrow \mathrm{Y}$	48.0364
$\mathrm{~V} \leftrightarrow \mathrm{~L}$	14.0157	$\mathrm{~S} \leftrightarrow \mathrm{~N}$	27.0109	$\mathrm{~N} \leftrightarrow \mathrm{Y}$	49.0204
$\mathrm{D} \leftrightarrow \mathrm{E}$	14.0157	$\mathrm{~T} \leftrightarrow \mathrm{~K}$	27.0473	$\mathrm{C} \leftrightarrow \mathrm{R}$	53.0919
$\mathrm{G} \leftrightarrow \mathrm{A}$	14.0157	$\mathrm{~K} \leftrightarrow \mathrm{R}$	28.0061	$\mathrm{~T} \leftrightarrow \mathrm{R}$	55.0534
$\mathrm{~S} \leftrightarrow \mathrm{~T}$	14.0157	$\mathrm{~A} \leftrightarrow \mathrm{~V}$	28.0313	$\mathrm{~A} \leftrightarrow \mathrm{E}$	58.0055
$\mathrm{~N} \leftrightarrow \mathrm{~K}$	14.0520	$\mathrm{Q} \leftrightarrow \mathrm{R}$	28.0425	$\mathrm{G} \leftrightarrow \mathrm{D}$	58.0055
$\mathrm{~L} \leftrightarrow \mathrm{Q}$	14.9745	$\mathrm{~V} \leftrightarrow \mathrm{E}$	29.9742	$\mathrm{P} \leftrightarrow \mathrm{R}$	59.0483
$\mathrm{I} \leftrightarrow \mathrm{K}$	15.0109	$\mathrm{R} \leftrightarrow \mathrm{W}$	29.9782	$\mathrm{~S} \leftrightarrow \mathrm{~F}$	60.0364
$\mathrm{~V} \leftrightarrow \mathrm{D}$	15.9585	$\mathrm{~T} \leftrightarrow \mathrm{M}$	29.9928	$\mathrm{C} \leftrightarrow \mathrm{Y}$	60.0541
$\mathrm{~S} \leftrightarrow \mathrm{C}$	15.9772	$\mathrm{G} \leftrightarrow \mathrm{S}$	30.0106	$\mathrm{~S} \leftrightarrow \mathrm{R}$	69.0691
$\mathrm{~F} \leftrightarrow \mathrm{Y}$	15.9949	$\mathrm{~A} \leftrightarrow \mathrm{~T}$	30.0106	$\mathrm{G} \leftrightarrow \mathrm{E}$	72.0211
$\mathrm{~A} \leftrightarrow \mathrm{~S}$	15.9949	$\mathrm{P} \leftrightarrow \mathrm{Q}$	31.0058	$\mathrm{~L} \leftrightarrow \mathrm{~W}$	72.9952
$\mathrm{P} \leftrightarrow \mathrm{L}$	16.0313	$\mathrm{~V} \leftrightarrow \mathrm{M}$	31.9721	$\mathrm{~S} \leftrightarrow \mathrm{Y}$	76.0313
$\mathrm{~L} \leftrightarrow \mathrm{M}$	17.9564	$\mathrm{~L} \leftrightarrow \mathrm{~F}$	33.9844	$\mathrm{C} \leftrightarrow \mathrm{W}$	83.0701
$\mathrm{I} \leftrightarrow \mathrm{M}$	17.9564	$\mathrm{I} \leftrightarrow \mathrm{F}$	33.9844	$\mathrm{~S} \leftrightarrow \mathrm{~W}$	99.0473
$\mathrm{H} \leftrightarrow \mathrm{R}$	19.0422	$\mathrm{P} \leftrightarrow \mathrm{H}$	40.0061	$\mathrm{G} \leftrightarrow \mathrm{R}$	99.0796
$\mathrm{D} \leftrightarrow \mathrm{H}$	22.0320	$\mathrm{G} \leftrightarrow \mathrm{V}$	42.0470	$\mathrm{G} \leftrightarrow \mathrm{W}$	129.0578

2.3.2 Peaks annotation (b-, y- and additional ion series)

For SAP identification, peaks in a spectral library are annotated. Their intersection with theoretical peaks of peptide sequence with a given $\Delta(\Delta=0.5 D a$ in current study) is constructed. Different ion types were considered, $b-, y-, b-$ $\mathrm{H}_{2} \mathrm{O}-, b-\mathrm{NH}_{3}-, y-\mathrm{H}_{2} \mathrm{O}-, y-\mathrm{NH}_{3}-$ ions in particular. The best algorithm was selected after using different types of ions for training. After comparing the results of identifications using different approaches, only $b-, y-$ ions were selected for the analysis, while the others were considered as "unannotated".

Figure S-4 A. Fraction of all annotated peaks depending on the selected top intensity peaks for different ion series. B. Probability density of $\cos \Theta$ for true and false SAP identifications for different ion series. C. Distributions of \log intensities for different ion series.

2.3.3 Different methods of peaks shifting

Figure S-5 alg I. All annotated peaks containing the respective substitution are shifted, all unannotated peaks remain in place. First $\frac{m}{N}$ most intensive peaks from SP and SL spectra are used. alg II. All annotated peaks containing the respective substitution are shifted by, all unannotated peaks are also shifted. First $\frac{m}{N}$ most intensive peaks from SP and SL spectra are used. alg III. All annotated peaks containing the respective substitution are shifted, all unannotated peaks remain in place and additional set of peaks is added corresponding to shifted unannotated peaks. First $\frac{m}{N}$ most intensive peaks from SP and SL are used. alg IV. All annotated peaks containing the respective substitution are shifted by, all unannotated peaks are removed from SL spectra. All the annotated ions from SL are used, first $C \cdot S$ most intensive peaks from SP are used.

2.3.4 Parameters estimation ($C, I, a l g, \cos \theta$)

We used spectral sets from three strains of H. pylori: A45, J99 and 26695, as a training dataset for the algorithm. Three pairwise comparisons are performed; in each of them, one sample is considered as a reference sample and the other as a query sample. A45 \rightarrow J99, J99 $\rightarrow 26695,26695 \rightarrow$ A45 (the second sample in each pair serving as reference). Different methods of shifting of the peaks in the reference spectrum and intensity transformation are applied; the number of the peaks from reference and query spectra selected for further analysis is also varied. In the reference spectrum, $\frac{m}{N}$ most intensive peaks are selected, where m is MS1 mass and N - is a parameter varying from 10 to 200 . The selected peaks are then annotated and shifted according to one of the methods. In the query spectrum, $C \cdot S$ most intensive peaks are selected, where S is the number of peaks in the reference spectrum left after filtering and annotation and C is a parameter varying from 1 to
5. The results for each strain are verified by comparison with Mascot identifications using the protein database built from the annotation of the corresponding genome. For each parameter values areas under ROC curves are calculated, and the number of true positive identifications is estimated for $F D R$ not exceeding 0.05 (Table S-6).

The resulting parameter and threshold $\cos \Theta$ values are defined for 0.05 and 0.01 $F D R$: alg IV, $\ln I$ transformation, $C=3.2($ top $C \cdot S$ peaks $), \cos \Theta>=0.40(0.48)$
Table S-4 Number of identified peptides with $F D R \leq 0.05$ and areas under ROC-curves for different parameters for algorithm of SAP identification.

3 Algorithm exploration

3.1 NA exploration

Spectra identified with speptide but not identified with Mascot using genomederived database are called NA (information not available) spectra. Indirect verification of the identification results included search for homology between peptides in reference and query strains using blast and estimation of the number of SAPs in homologous peptides. Only those reference peptides were used for the alignment, for which SAPs in query peptides were identified but not confirmed with Mascot. In each search, a genome-derived blast database was constructed using makeblastdb tool and the reference peptides were then aligned with tblastn (60% identity) against this database. Hamming distance was employed to estimate the number of amino acid variations in homologous peptides. The results are shown in Fig. S-7.

Figure S-7 Analysis of NA identifications by aligning using tblastn reference peptides against own genomes. Colors encode different distance between the reference and query peptides (one SAP encoded by green color, $h d=1$).

3.2 Decoy database research

With a purpose to introduce an additional $F D R$ estimation we explored different ways of constructing decoy spectral librarires. We used well-known approaches: shift $\frac{m}{z}$ values for all MS1 peaks [4] $(+20 \mathrm{Th})$, shift $\frac{m}{z}$ values of all MS2 peaks in each spectrum $(+20 \mathrm{Th})[5]$. In addition, we have considered constructing decoy spectral library database from the spectra of different bacterial species, putting them under one of the following additional conditions: (1) equal number of peptides in the decoy and direct spectral libraries or (2) equal number of of spectrum-peptide pairs
(difference in MS1 m values falling into the set of amino acid deltas) for direct and decoy searches. The results are presented at Fig. S-8:

Figure S-8 X -axis shows the number of false peptides identifications of speptide in the search the spectra of H. pylori H13-1 against the spectral library created from H. pylori 26695 spectra. False identifications assigned by additional Mascot search spectra of H. pylori H13-1 against protein database constructed from the annotated genome of H. pylori H13-1. Y-axis shows the number of peptides identifications of H. pylori H13-1 spectra in different speptide decoy searches: (i) shift of all MS1 peaks at +20 Th , (ii) shift of all MS2 peaks at +20 Th , (iii) library constructed from N . gonorrhoeae FA1090 spectra, (iv) library constructed from N. gonorrhoeae n01.08 spectra. The number of decoy identifications is normalized in a way that the number of spectrum-peptide pairs is the same in direct and decoy searches. Figures \mathbf{A} and \mathbf{B} represent different axis ranges. A. Axis range: $[0 ; 1500]$. B. Axis range: $[0 ; 100]$ (FDR $\in[0 ; 0.1]$).

3.3 Comparison with other algorithms (Byonic, pMatch, SPIDER)

Speptide was compared with three packages: Byonic[7], pMatch[8] and SPIDER[9]. Two of them (Byonic and pMatch) are not designed for direct search of amino acid substitutions, so their results required some post-processing in order to choose only those identifications that could be a result of an amino acid substitution according to their $\Delta_{M S 1}$. H. pylori E48 spectra were used as a query sample. The triple H. pylori database (A45, J99, 26695) including all identified peptides was used as a peptide database for speptide. The results from all four algorithms were compared with H. pylori E48 spectra genome-based identification with Mascot. The running parameters are listed below:

Byonic v.2.5.6. Precursor tolerance: 10 ppm , Fragment tolerance: 0.5 Da , Cleavage site(s): RK, Digestion specificity: Fully specific, Wildcard search, Total common max: 1, Minimum mass: -130, Maximum mass: 130. pMatch v.1.5.0.1. Precursor Tolerance: 20, M/Z Tolerance: 0.5, Shift Threshold: 3.0, Theta: 0.2. PTM search + SPIDER (PeakStudio v7.0). Parent Mass Tolerance: 10 ppm, Maximum allowed PTM: 1, Fragment ion tolerance: 0.5 Da , De novo socore greater than: 50%, Peptide score less than: 15.

The results were filtered in order to fit $F D R \leq 0.05$.
Table S-5 Time usage for different algorithms (CPU $2.13 \mathrm{GHz}, 8 \mathrm{~Gb}$ RAM). H. pylori E48 ($64 \cdot 10^{3}$ spectra) vs H. pylori 3 strain database ($40 \cdot 10^{3}$ spectra, $11 \cdot 10^{3}$ peptides)

	Speptide	pMatch	Byonic	SPIDER
CPU time:	$\sim 10 \mathrm{~min}$	$\sim 5 \mathrm{~min}$	$\sim 3 \mathrm{hrs}$	$\sim 1 \mathrm{hr}$

3.4 73 E.coli differentiation study

Figure S-9 Multi-dimensional scaling of 73 E . coli isolates on the basis of \mathbf{A}. Identified SAPs B. UNID-proteomic[10]. Each dot represents a different isolate. Dots in green, black, red and blue represent isolates of sewage, cow, dog and pig, respectively.

Figure S-10 Heatmap for identified peptides with SAP in 73 E. coli strains. Color encodes one of three states of peptide in a sample: green - original peptide, red - peptide with SAP, gray - the absence of both variants in a sample.

3.5 Detection of point mutations

Figure S-11 Demonstration of identification possibility in QRDR region of gyrA gene of H. pylori. Above is the spectrum from spectral library with N in position 87 of a protein, below experimental spectrum with T in position 87 of a protein. Peaks that are used for identification are denoted as intersected, the b7 and b8 peaks containing the mass shifted ions with amino acid substitutions are identified.

4 SNP study

4.1 Angle dependence on the type of SAP

We calculated the angle dependence on the SAP type and further performed a t-test to identify statistically significant differences between the different amino acid substitutions. Only amino acid substitutions with at least 100 spectral pairs assigned were selected. Final p-values were adjusted with Benjamini-Hochberg correction.

Figure S-12 Heatmap with $-\log _{10}$ Benjamini-Hochberg corrected p-values from t-test for $\cos \Theta$ for each pair of SAPs.

5 Software and data

5.1 Software and programming languages

- AB SCIEX MS Data Converter version 1.3 and Compass Data Analysis 4.2 : spectra conversion.
- Newbler 2.6 : read assembly.
- Mascot 2.2.07 : spectra identification.
- Blast 2.2.30 : peptides homology search and estimation of possible number of SAPs detection.
- Artemis (Version 16) : ORF search in genomes.
- R 3.2.1 : ad hoc scripts for data analysis.
- perl : ad hoc scripts and utilites for batch analysis and MGF preparation.
- $\mathrm{C} / \mathrm{C}++$: speptide source code.
- Byonic 2.5.6, PeakStudio 7.0 and pMatch v.1.5.0.1: comparsion with speptide.

5.2 Data and code availability

The genomic data was deposited to NCBI either as WGS or as SRA submission. The proteomic data (including FASTA used for Mascot search) is available in PRIDE under accession: PXD001481 (Reviewer account details: Username: reviewer50451@ebi.ac.uk; Password: aR3585SN).
Algorithm was implemented as an ad hoc software program speptide written in $\mathrm{C} / \mathrm{C}++$ available with comprehensive manual and examples at: https://github. com/dimaischenko/speptide

6 References

Author details

${ }^{1}$ Research Institute of Physical Chemical Medicine, Malaya Pirogovskaya, 1a, 119435 Moscow, Russian Federation.
${ }^{2}$ Moscow Institute of Physics and Technology, Institutskiy pereulok, 9, 141700, Dolgoprudny, Russian Federation. ${ }^{3}$
Scientific Research Institute of Gastroenterology, Shosse Entuziastov, 86, 111123 Moscow, Russian Federation.

References

1. Frank, Ari M., et al. "Spectral archives: extending spectral libraries to analyze both identified and unidentified spectra." Nature methods 8.7 (2011): 587-591.
2. Wan, Katty X., Ilan Vidavsky, and Michael L. Gross. "Comparing similar spectra: from similarity index to spectral contrast angle." Journal of the American Society for Mass Spectrometry 13.1 (2002): 85-88.
3. Liu, Jian, et al. "Methods for peptide identification by spectral comparison." Proteome Science 5.1 (2007): 3.
4. Elias, Joshua E., and Steven P. Gygi. "Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry." Nature methods 4.3 (2007): 207-214.
5. Lam, Henry, Eric W. Deutsch, and Ruedi Aebersold. "Artificial decoy spectral libraries for false discovery rate estimation in spectral library searching in proteomics." Journal of proteome research 9.1 (2009): 605-610.
6. Gupta, Nitin, et al. "Whole proteome analysis of post-translational modifications: applications of mass-spectrometry for proteogenomic annotation." Genome research 17.9 (2007): 1362-1377.
7. Bern, Marshall, Yong J. Kil, and Christopher Becker. "Byonic: advanced peptide and protein identification software." Current Protocols in Bioinformatics (2012): 13-20.
8. Ye, Ding, et al. "Open MS/MS spectral library search to identify unanticipated post-translational modifications and increase spectral identification rate." Bioinformatics 26.12 (2010): i399-i406.
9. Yuen, Denis. "SPIDER: reconstructive protein homology search with de novo sequencing tags." (2011).
10. Shao, Wenguang, et al. "A peptide identification-free, genome sequence-independent shotgun proteomics workflow for strain-level bacterial differentiation." Scientific reports 5 (2015).

[^0]: * Correspondence:
 dmitry.ischenko@phystech.edu
 ${ }^{1}$ Research Institute of Physical
 Chemical Medicine, Malaya
 Pirogovskaya, 1a, 119435
 Moscow, Russian Federation Full list of author information is available at the end of the article

