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Notation

We use the following sets in their common designation in course of the thesis:

• N := {1, 2, . . .} is the set of natural numbers,

• N0 := {0, 1, 2, . . .} are the natural numbers with zero,

• Z := {. . . ,−1, 0,−1, 2, . . .} is the set of integers,

• Z− := {0,−1,−2, . . .} is the set of non-positive integers,

• R is the set of real numbers,

• C is the set of complex numbers.

For a complex number z ∈ C, we denote by <(z), =(z) and |z| its real part, imaginary part
and complex modulus, respectively. Moreover, z̄ denotes the complex conjugate of z ∈ C. For
a complex vector v ∈ Cq and i ∈ {1, . . . , q}, we denote by v(i) its ith component and by vt and
v∗ its transpose and conjugate transpose, respectively. Further let |v| denote its L1-norm. We
equip Cq with the standard inner product 〈·, ·〉, where 〈u, v〉 := u∗v.
For x ∈ Rd, we denote by ‖x‖ the standard Euclidean norm of x, and for B ∈ Rd×d, ‖B‖op

denotes the corresponding operator norm. For random variables X and p ≥ 1, we denote by
‖X‖p the Lp-norm of X.
We denote by IdCq or IdRq the q × q identity matrix. Furthermore, for a, b ∈ Z, a | b and
a - b are short for a divides (resp. does not divide) b.
The common probability distributions that arise in this thesis are the following:

• For x ∈ {1, . . . , q}, δx is the Dirac measure in x.

• For p ∈ (0, 1), Bern(p) denotes the Bernoulli distribution with success parameter p.

• For p ∈ (0, 1) and n ∈ N, let Bin(n, p) denote the Binomial distribution with parameters
n and p.

• unif[0, 1] denotes the uniform distribution on the interval [0, 1].

• N (µ, Σ) denotes the (multivariate) normal distribution with mean µ and covariance
matrix Σ, where Σ is a symmetric positive semi-definite matrix.

• Beta(α,β) denotes the beta distribution with parameters α,β > 0.

• For K ≥ 2, Dir(α1, . . . , αK) denotes the Dirichlet distribution with parameters α1, . . . , αK >
0.

Furthermore, for A ⊂ {1, . . . , q}, we set δA :=
∑
x∈A δx. By L(X), the distribution of a

random variable X is denoted. Finally, almost sure convergence, convergence in probability

and convergence in distribution are denoted as
a.s.−→,

P−→ and
L−→, respectively.
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We use Bachmann-Landau symbols in asymptotic statements. In particular, if (an)n≥0 and
(bn)n≥0 are two complex-valued sequences, then

an = O(bn) ⇐⇒ There exist n0 and C > 0 such that |an| ≤ C|bn| for all n ≥ n0,

an = o(bn) ⇐⇒ |bn| > 0 for all but finitely many n and
an

bn
→ 0, n→∞,

an ∼ bn ⇐⇒ |bn| > 0 for all but finitely many n and
an

bn
→ 1, n→∞.

Finally, Γ : C \ Z− → C,

Γ(z) :=
1

z

∞∏
n=1

(
1+ 1

n

)z
1+ z

n

denotes the complex Gamma function.
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Foreword

Urn models are simple examples for random growth processes that involve various competing
types. In the study of these schemes, one is generally interested in the impact of the specific
form of interaction on the allocation of elements to the types. Depending on their reciprocal
action, effects of cancellation and self-reinforcement become apparent in the long run of the
system. For some urn models, the influencing is of a smoothing nature and the asymptotic
allocation to the types is close to being a result of independent and identically distributed
growth events. On the contrary, for others, almost sure random tendencies or logarithmi-
cally periodic terms emerge in the second growth order. The present thesis is devoted to the
derivation of central limit theorems in the latter case. For urns of this kind, we use a “non-
classical” normalisation to derive asymptotic joint normality of the types. This normalisation
takes random tendencies and phases into account and consequently involves random centering
and, also, possibly random scaling. Following [34], the term central limit theorem analogue
is sometimes used to refer to this approach. In this foreword, we first motivate and state the
main results of the current thesis and then develop the basic idea of these results along the
lines of a simple example.

Introduction

By a generalised Pólya-Eggenberger urn scheme we understand the following model: Consider
the discrete-time evolution of a container (the urn) of infinite capacity that encloses balls from

q different types. At time 0, there are X
(j)
0 ∈ N0 balls of type j in the urn, for j ∈ {1, . . . , q}.

Immediately before time n ∈ N, a ball is drawn uniformly at random and independently of

the previous draws. If the ball drawn is of type i ∈ {1, . . . , q}, we add ∆
(j)
i ∈ Z balls of type

j for j ∈ {1, . . . , q} to the urn, if ∆
(j)
i ≥ 0, or remove ∆

(j)
i balls of colour j from the urn, if

∆
(j)
i < 0.

More generally, for each n ∈ N0 and j ∈ {1, . . . , q}, let X
(j)
n denote the number of balls of type

j in the urn after n draws. The vector

Xn =


X
(1)
n

X
(2)
n
...

X
(q)
n

 ∈ Nq0

is called the urn composition at time n. We assume X0 ∈ Nq0 to be deterministic, and one is
typically interested in the evolution of the urn composition Xn over time.
Furthermore, let R := (∆1, . . . , ∆q) ∈ Zq×q be the matrix with columns ∆1, . . . , ∆q. As

before, the jth component of the vector ∆i is given by the integer ∆
(j)
i . The increment vector
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∆i describes the change in the urn composition if a ball of colour i is drawn, and we assume
the vectors ∆1, . . . , ∆q ∈ Zq to be deterministic. R is called the generating matrix of the
process. Note that R is the matrix transpose of the so-called replacement matrix.
Thus, q, X0 and R are the parameters of the process, whose dynamics are fully described by R
and X0. Later on, we also refer to a type as a colour, which usually is an element of {1, . . . , q}.
Note that the urn composition evolves according to a discrete-time Markov process, whose
main feature is that the conditional transition probability, which contains the randomness of
the evolution of the process, is linear in the composition Xn.

Historical overview and applications

Generalised Pólya-Eggenberger urn schemes have been an object of ongoing research interest
for about 90 years. They owe their name to a study by Eggenberger and Pólya [20] from
1923, where the authors introduce the now well-known Pólya urn in order to model contagious
diseases. Starting from there, the original model has been generalised with regard to several
aspects and urns of a related kind can nowadays be found in many different contexts. The
following account of work on urn models does not claim to be complete; it rather serves as
a basis for the results presented in the current thesis. For a more detailed history of Pólya
urns, we refer the reader to the textbooks [55] and [46].
In the beginning, the generalisation of the original model was limited to other urn schemes
involving two colours. Friedman [26] studies characteristic functions of models with general
balanced and symmetric 2 × 2-matrices. The asymptotics of the numbers of balls of the
two types in his model are further examined in Freedman [25]. Bagchi and Pal [4] remove
the symmetry condition and deduce a Gaussian limit law for a large class of models whose
matrices have constant column sum. Their result on central limit theorems is generalised to
urns with an arbitrary number of colours in Smythe [74]. Smythe’s approach is similar to
the one in chapter 3, even though he assumes less general hypotheses. Gouet [28–30] derives
results on the strong asymptotics of proportions for a large class of multicolour models via non-
constructive martingale techniques that arise from the linearity in the transition mechanism.
He also deduces a functional limit theorem for the two-colour case. Pouyanne [67] develops
an operator approach for the determination of moments. This study was recently extended
in [45]. Of great importance are also the works of Athreya, Karlin and Ney [2,3] who establish
an embedding of urn processes into continuous-time multitype branching processes. Janson’s
seminal work [40] is based on this technique which makes it possible to study urns without
constant column sum. In [40], a functional limit theorem for multitype continuous time
Markov branching processes is derived that leads to strong limit results as well as central limit
theorems for generalised Pólya urns and even explicit formulas for the asymptotic variances
and covariances. Extended Pólya-Eggenberger urns with two and three types are also studied
via a purely analytic approach in [24]. Neininger and Knape [47] analyse the asymptotics
of urn models with an arbitrary number of types via an embedding of their evolution into
random rooted trees. This technique enables the study of urns by means of the contraction
method. Finally, this thesis draws on the central limit theorems and almost sure asymptotics
derived in [4, 40, 47, 67, 74] for urn models whose generating matrices have constant column
sum. The extension of the term “CLT” allows to relax assumptions on the spectrum of the
matrix R and to synthesise the cases of asymptotic normality and almost sure asymptotics
under a common viewpoint. Methodically, we use techniques from [34,47,67,74].

This listing gives an impression of the wide range of methods that have been employed to
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study Pólya urn models. To summarise, among these are methods from enumerative com-
binatorics [4] and analytic combinatorics [24], embedding into continuous time branching
processes [2, 40], martingale techniques [29,30] and the contraction method [47].

Applications. Even wider than the range of methods that have been adopted in the study of
urn models is their scope of applications, which ranges over a variety of areas such as biology,
ecology, statistics, computer science, random network theory and finance. Some examples of
their appearance in the literature are given below:
To begin with, urns can be found in biology-related contexts, as in the study of the spread
of epidemics [20]. There are famous urns in population genetics [9, 38] as well. Urns are
used as treatment allocation schemes in comparative clinical studies [78]. A statistical study
of wage disparity between men and women via urns for regression analysis is given in [52].
Furthermore, urns are closely related to growth mechanisms of various random trees. This
connection encompasses data structures asm-ary search trees or b-trees, see [1,4,11,13], scale-
free trees in the study of random networks [76] as well as stable trees [27]. Pólya urns have
also been used to study fringe structures in various random trees [1,36,37]. Aldous [1] derives
a result on the convergence of the empirical distributions of an adaptive process that simulates
quasi-stationary distributions of Markov chains by means of a correspondence with an urn
scheme. Moreover, urn models come up in problems with a background from finance [50].
Finally, they also arise in the analysis of reinforced random walks [64]. Further applications
of urn models can be found in [46,55].

Results

Much of the versatility of and lasting interest in urn models is owed to their flexibility. In line
of this, the exact formulation of further assumptions on the model, whose general form was
described in the introduction, varies widely and depends as well on the research interest as
on the methods used by the author. The main subject of this thesis is the growth behaviour
of the urn composition as n → ∞. We therefore assume that the number of balls contained
in the urn increases by a constant amount r at each step, and also, that the replacement
rules guarantee that the process is well-defined for all n ∈ N0. The exact formulation of all
assumptions is given in (A1) - (A5) in the beginning of section 1.2. In the following statement
of the results, we assume that (A1) - (A5) hold.
It is known since the 1960s [2], that the asymptotic behaviour of the urn composition is di-
rectly connected to the spectrum of the matrix R. For example, Gouet [30] shows that the
proportions Xn/(rn) of balls of the different types converge almost surely as the number of
draws tends to infinity. Their limit can be a random or a deterministic vector. Whether it is
random or deterministic depends on the multiplicity of the largest eigenvalue r of R (and on
the initial composition of the urn). Secondly and similarly, it is also by now common know-
ledge in the field of generalised Pólya-Eggenberger urns that the nature of the second order
asymptotics of the urn composition depends on the number of eigenvalues with real parts
greater than r/2, where r is as above (eigenvalues are counted according to their algebraic
multiplicity). More precisely, it has been successfully shown by various techniques, that if
this number is exactly one, the rescaled urn composition vector is asymptotically normally
distributed, see [40,67,74]. If, on the other hand, there is more than one eigenvalue with real
part greater than r/2, no central limit theorems for the sequence (Xn)n∈N0 are known.
The main contribution of the present thesis consists in the observation that it is always pos-
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sible to normalise the urn composition in a way that leads to distributional convergence, see
Theorem 1.2.5. The exact form of the central limit theorem analogue depends, as indicated, on
the number of eigenvalues whose real parts are greater than r/2. As previously mentioned, for
matrices with simple largest eigenvalue r > 0 and real parts of all other eigenvalues bounded
above by r/2, the correct normalisation is the classical one. This corresponds to known re-
sults. On the other hand, if r is simple and there are other eigenvalues with real parts greater
than r

2 , Theorem 1.2.5 states that the composition vector has to be centered by a random
vector and scaled by

√
n in order to obtain convergence to a normal distribution. Eventually,

if r is a multiple eigenvalue, we obtain weak convergence to a mixed normal distribution after
centering by a random vector and scaling by

√
n. Consequently, the relaxation of the term

“central limit theorem” leads to a unified perspective for the fluctuation of urn composition
vectors.
The probably most interesting aspect of this result is a central limit theorem for urn schemes
in which periodicities arise, as in the last example in the following section or chapter 2. The
proof is based on a spectral decomposition of the process and uses martingale techniques.
Additionally, an alternative proof strategy by means of the contraction method is developed
for an example, namely the cyclic urn. This strategy is of independent interest, as it does not
use underlying martingale structures, which makes it more flexible. Furthermore, the random
centering variables in the central limit theorems are typically only described implicitly as
martingale limits. In the case of the cyclic urn however, we can explicitly construct these
variables from a sequence of i.i.d. uniform variables via an embedding into the random binary
search tree (BST). What is more, a closer look at the construction reveals that the martingale
limits are functions of the Doob-Martin limit of the associated BST chain.

An easy introduction to the topic

In this section, a more descriptive approach is taken to motivate the results of this thesis.
The expert reader is advised to skip this section.
When asked about metaphors for chance, most people will think of devices from games, as
for example coins, dice, cards or spinners. These mechanisms are of value in games because
they provide a good way to generate “independent” outcomes each time they are used. Im-
plicitly, they come along with a certain notion of genuinely random choice. This idea of the
“behaviour” of chance prevails in many people’s perception: Random events are subject to
the rule “You win a few, you lose a few”.

However, in this work, we are confronted with a different action of chance which is more
like in the following line of thought: Many factors have an influence on our lives, and as most
of them are out of our reach, we can view them as random. First of all, there is the place
of our birth. If you are born into a wealthy nation, you are more likely to survive childhood
and to be sent to school. Second, the fact that you went to school highly increases your
chances to attend university and subsequently to get a job that earns you enough money to
meet your needs, and so on. Success or failure in life are not the result of a sequence of
independent events, but rather self-reinforcing. Plainly, everything is somehow random, but
highly sensitive to the direction taken in early life.

At this point, urn models come into play. They provide simple to describe, still classical
random experiments that additionally possess a certain kind of memory. This property gives
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rise to a more advanced correlation structure and long-term dependencies as illustrated in the
preceding paragraph. Of course, urn models are still too simple to describe real world phe-
nomena in an accurate way, but in order to capture features of randomly growing structures,
they have proved as useful mathematical models with applications in many areas. Further-
more, despite the simple way to describe them, they give rise to interesting phenomena.

SLLN, CLT and LIL

In order to put the characteristics that we study by means of urn models into a broader
perspective, let us briefly recall the “key limit trio” [34] for sequences of independent random
variables: the strong law of large numbers (SLLN), the central limit theorem (CLT) and
the law of the iterated logarithm (LIL). For independent variables, many aspects of their
asymptotic behaviour are well-understood.
Let X be a real-valued, integrable random variable and X1, X2, . . . a sequence of independent
and identically distributed (i.i.d.) copies of X. In this setting, the Kolmogorov strong law of
large numbers states that the empirical averages of the sequence converge to the theoretical
average E[X] almost surely, that is, ∑n

i=1 Xi

n

a.s.−→ E[X]

as n → ∞, where
a.s.−→ is used to denote almost sure convergence. This result is universal in

the sense that it does not depend on the actual distribution of the variable X that comprises
the system, but only on its mean. In particular, the almost sure limit is deterministic and
thus independent of the actual realisation of the sequence (Xn)n≥1 when performing the
experiment. Knowledge of the first, say, 100 variables, will not lead you to change your
predictions about the asymptotics of the empirical average, as individual contributions will
even out in the long run.
In a next step, both the CLT and the LIL can be regarded as rate results for the almost sure
convergence of the SLLN. To formulate both results, we assume that X and (Xn)n≥1 are as
above and furthermore that X has finite, positive variance Var(X). Let Sn :=

∑n
i=1 Xi. First

of all, already a simple application of Chebyshev’s inequality indicates that the “typical” size
of the deviation |Sn − E[X]n| of the sum from its first order approximation is rather O(

√
n)

than the original order O(n): A “square root cancellation” takes place. The central limit
theorem now makes this observation more precise by stating that if 0 < Var(X) <∞,√

n

Var(X)

(
Sn

n
− E[X]

)
L−→ N (0, 1)

as n→∞, where
L−→ is used to denote convergence in distribution and N (0, 1) is the normal

distribution with mean 0 and variance 1. This yields a “weak” rate result. Secondly, the law
of the iterated logarithm provides a “strong” rate result by saying that there is a first order
expansion

Sn

n
− E[X] = Zn

√
2Var(X) log log(n)

n
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for some sequence (Zn)n≥1, where lim supn→∞ Zn = 1 almost surely and lim infn→∞ Zn = −1
almost surely. As a consequence, the random variables

√
n
(
Sn
n − E[X]

)
neither converge in

probability nor almost surely; and the same is true for any subsequence.
In both results, again, we find universality, as the appearance of the normal distribution
does not depend on the actual distribution of the underlying experiment that, again, only
enters through its mean E[X] and variance Var(X). Thus, theoretical results about the normal
distribution are applicable to a broad class of situations, yielding the basis for its importance.
Again, knowledge of the first 100 variables will not lead you to change your predictions about
the long-term behaviour of the system.

This is the picture provided by SLLN, CLT and LIL in the setting of independent random
variables. In the following, we will be concerned with the guise of CLTs in the context of urn
models.

A first example

In urn models, the chances to draw a particular ball immediately before time n+1 depend on
the current composition of the urn. So, at a first glance, the sequence of added balls is far from
being independent. Still, our interest is in the derivation of results in the spirit of the SLLN
and the CLT. That is, an almost sure convergence result for the urn composition, followed by
a weak rate result. In order to illustrate similarities and differences to the independent case,
consider the following three varieties of an introductory example.

Our (slightly unrealistic) example is located at a poll site: Assume that an election takes
place, and that there are only two candidates to vote for. One voter arrives at the poll site at
a time, and each of them has five votes that he may distribute among the candidates. Now,
for some reason, the government wants to ensure that the current voter is confronted with his
choice for a final time, and upon his arrival, he is forced to watch a short speech of exactly one
of the candidates. The choice among the candidates is random, but such that each candidate
is chosen by the proportion of votes he has already received.
Suppose that both candidates are quite bad and that it is a torture to listen to any of them.
Correspondingly, the reaction of a voter to the speech shown is such that he instantly changes
his mind and puts four votes on the other candidate. In case that the candidate he did not
listen to is also bad, he reserves one vote for the candidate he just listened to. This can be
modelled by an urn process with black (votes for candidate 1) and white (votes for candidate
2) balls and matrix

R1 :=

(
1 4

4 1

)
.

Here, entry (i, j) indicates how many votes are given to candidate i if candidate j was in the
video.
Suppose that, in the beginning, it is equally likely to be shown a video of both candidates.
Reformulating, at time zero, there are one black and one white ball in the urn. We are
interested in the asymptotic proportion of votes for each candidate (SLLN). General results
on urn models as well as symmetry imply that asymptotically, both candidates will receive
50% of the votes. Consequently, in order to decide the winner of the election, the behaviour
of the second order term is important. Let Sn denote the number of black balls in the urn
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after n draws. For this urn model, general results imply that, as n→∞,

2
√
55

3

√
n

(
Sn

5n
−
1

2

)
L−→ N (0, 1) .

Again, the normal distribution arises, even though the asymptotic variance is smaller than if
the number of black balls in the urn were the result of the number of heads in a sequence of
fair coin tosses. The winner of the election is thus drawn according to a normal distribution,
and knowledge of the first draws is of no advantage in the prediction of the final outcome.

In a next step, consider a slight modification of our first example. Suppose that the model
is as described above, except that now, both candidates are good ones. The voters adapt
their behaviour by giving four votes to the candidate they just listened to, and one vote to
the other one, accounting to the fact that they have no impression of this person. This new
rule corresponds to an urn with matrix

R2 :=

(
4 1

1 4

)
.

Again, general results on urn models imply that asymptotically, both candidates will receive
50% of the votes. So far, there is no difference between the urns.
However, it turns out that

√
n
(
Sn
5n − 1

2

)
does not converge in distribution. Moreover, it even

tends to infinity almost surely. On the other hand, it is known that multiplication by a smaller
factor yields almost sure convergence

n2/5
(
Sn

5n
−
1

2

)
a.s.−→W

as n → ∞. Here, W is a non-degenerate random variable that depends on the initial confi-
guration of the urn. It follows that, in this example, there is a random almost sure drift that
dominates the second order term, and that the first draws have a significant influence on the
outcome of the election. Grübel [31] calls this effect “persisting randomness”.
Having found second order almost sure asymptotics, the line of action taken in the present
thesis is to also substract them from the first order approximation and ask about asymptotic
normality of

√
n

(
Sn

5n
−
1

2
− n−2/5W

)
.

The question whether a weak limit exists is answered in Theorem 1.2.5 in this thesis.
We conclude this mini sequence of examples with a third urn that illustrates yet another

form of almost sure asymptotics that may be hidden behind a first oder approximation. For
this case, we need three types of balls.
Again, consider our well-known voter scheme, but now with three good candidates and voters
that are only willing to give away one vote to one of the candidates whose videos they did
not watch. This yields an urn process with matrix

R3 :=

4 0 1

1 4 0

0 1 4

 ,
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where we assume that, at the beginning, there is one ball of each type in the urn. Here, too,
after the poll site has been open for a long time, the total number of votes will be roughly
evenly split among the three candidates. As in the previous example,

√
n
(
Sn
5n − 1

3

)
does not

converge but tends to infinity almost surely. However, a closer look at the votes for candidate
1 reveals that this is not only a result of too large scaling: In fact, there is no real α such that
nα
(
Sn
5n − 1

3

)
converges to a non-degenerate limit. Instead, the general theory of urn models

implies that there is a complex-valued, non-degenerate random variable V that depends on
the initial configuration such that

Sn

5n
−
1

3
− n−1/10<

(
ei
√
3
10

log(n)V
)

a.s.−→ 0

as n→∞, where <(z) denotes the real part of a complex number z. That is, n1/10
(
Sn
5n − 1

3

)
is asymptotically approximated by the logarithmically oscillating sequence <

(
ei
√
3
10

log(n)V
)

.

There exist analogous approximations for the other two types.
This is an example for the appearance of periodic phenomena in urn models, which also arise
in various other discrete structures that are related to algorithms. Here, the initial state does
not give a direction to the second order asymptotics that is in favour of one of the three
candidates. Instead, it defines the phase shift and the amplitude of the oscillations subject
to which the candidates take their lead. Based on the asymptotic expansion seen so far, we
are, once more, attracted by the following question: Is there a CLT for

√
n

(
Sn

5n
−
1

3
− n−1/10<

(
ei
√
3
10

log(n)V
))

?

Again, this question is answered in Theorem 1.2.5 in the current thesis.

Organisation of the thesis

Chapter 1 is devoted to the description of urn models. For a better understanding, the
presentation of the main result is split into two steps: First, it is explained and stated for
urns with two types only and a lot of examples are given. After the exposition of this
comparatively easy case, we elaborate on the general model, which includes the specification
of notation and assumptions as well as the precise statement of the main result.
Chapter 2 deals with the cyclic urn. This particular model is used to further illuminate
the result and also to propose a proof strategy that is is not used in the proof of the main
theorem, namely the contraction method. Here, a proof that is independent of the proof of
Theorem 1.2.5 is given, even though it also uses the spectral decomposition. Moreover, the
random variables that arise in the centering of the CLT are constructed from a sequence of
i.i.d. uniform random variables via a connection to the random binary search tree.
An explanation of the proof idea and the proof of Theorem 1.2.5 itself are provided in chapter
3. To this end, first of all, properties of the spectral decomposition of the urn process are
discussed. Afterwards, the proof of the main theorem is carried out in detail.
Finally, chapter 4 shall convey an idea of some applications of the theorem. However, as
calculations of eigenvectors can get quite involved, we do not carry out the computations. We
conclude the thesis with a discussion of some further open questions.
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1 Generalised Pólya-Eggenberger Urns

1.1 Urns with two types

Historically motivated, we start the study of urn processes with models that only involve two
types. To further ease the understanding of the topic, examples are given throughout the
text.

1.1.1 Introduction

The urns of this chapter contain two colours, called colour 1 and colour 2. Each time a ball
of colour 1 is drawn from the urn, it is put back to the urn together with a1,1 balls of colour
1 and a2,1 balls of colour 2. Similarly, each time a ball of colour 2 is drawn, it is put back to
the urn together with a1,2 balls of colour 1 and a2,2 balls of colour 2. If one of the integers
a1,1, a1,2, a2,1, a2,2 is negative, this number of balls is removed from the urn. Recall that the
replacement policy of a two-colour urn is concisely described by a 2× 2-generating matrix R
of the form

R :=

(
a1,1 a1,2
a2,1 a2,2

)
∈ Z2×2. (1.1)

Our focus is on the urn composition after a large number of draws. As in the foreword, we

denote the number of type 1 balls after n ∈ N draws from the urn as X
(1)
n and the number of

type 2 balls as X
(2)
n . Further let

Yn := Xn − E[Xn] (1.2)

denote the centered composition vector.

Example 1 (Pólya Urn). We have already mentioned the famous Pólya urn at various points.
It was introduced by the Hungarian mathematician George Pólya in [20] as a model of con-
tagion and is further studied in [65]. The model in its most basic form is an urn scheme with
two types and generating matrix

RPólya :=

(
1 0

0 1

)
.

Here, one can imagine a population with two kinds of diseases that uniformly comes into
contact with external elements to which their disease is transmitted. In this sense, the balls
pass on their disease, and a process of contagion unfolds. Dumas, Flajolet and Puyhaubert [24]
also call it the “purely autistic urn”, as there is no interaction between the two types.
Now, it is an interesting question how the initial proportions of diseases of both kinds evolve
over time. In Theorem 1.1.1, we will see that the urn composition at time n is highly sensitive
to what happened in the first draws and varies widely. In fact, the Pólya urn provides a simple
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model of a stochastic process in which initial imbalances do not even out, but rather magnify
over time. ♦

So far, the definition of the model is too general to exclude pathological behaviour and
does not even ensure that the process is well-defined at all times. Throughout this thesis, we
additionally work under the following set of assumptions (here formulated for urns with two
types):

(A1) R is diagonisable over C.

(A2) R has constant positive column sum a1,1 + a2,1 = a1,2 + a2,2 =: r ≥ 1.

(A3) a2,1, a1,2 ≥ 0. Whenever a1,1 < 0, a1,1 divides X
(1)
0 and a1,2. Whenever a2,2 < 0, a2,2

divides X
(2)
0 and a2,1.

(A4) a1,1 6= a2,1.
(A5) The initial composition of the urn is such that for j ∈ {1, 2}, there exists n ∈ N0 with

P
(
X
(j)
n > 0

)
> 0.

Assumption (A1) admits simpler proofs. Under assumption (A2), the total number of balls
grows at a linear rate of increase, independent of the particular history of draws. The number
r is also called the balance of the urn. It is necessary for the use of the particular martingale
methods used in the proofs of the present work, for example. Correspondingly, in this thesis,
we will only be concerned with balanced urns. (For a theory of non-balanced urns, see [40].
Kotz, Mahmoud and Robert [48] also study general urns with two types, non-negative integer
valued entries and deterministic replacement, but do not assume the generating matrix to be
balanced.) To continue, (A3) is needed to ensure that the process is well-defined for all n ∈ N
and does not have to stop because it is asked for an impossible removal of balls. Finally,
(A4) and (A5) serve the purpose to exclude a deterministic evolution of the urn. It has to be
mentioned that all matrices R that satisfy (A2) to (A4) are diagonisable. (A1) is only listed
here to prepare the general case.
Note however that the exact formulation of the setting is not unified in the literature on urn
models and that it has to be checked whether two models are comparable.

Example 2 (2-3 tree urn). 2-3 trees are data structures that were introduced in the beginning
of the 1970s by Rudolf Bayer and Edward M. McCreight [5, 6]. They are an example for the
so-called B-trees (see chapter 4), and a special feature of these search trees is that all their
leaves are at the same depth. The evolution of the external nodes of the two possible different
types can be studied via an urn process with generating matrix

R2−3 :=

(
−2 4

3 −3

)
.

Note that, after an admissible choice of initial configuration, this urn model fits into our
setting. Bagchi and Pal [4] apply their results to get asymptotics for the mean and the
variance of the number of type 1 balls after a large number of draws. By means of these
asymptotics, they derive upper and lower bounds for the number of internal nodes in the
tree. ♦
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Example 3 (Ehrenfest Urn). This model was introduced by mathematician Tatiana Ehren-
fest and physicist Paul Ehrenfest in 1907 in order to illustrate their answer to two objections
to Boltzmann’s H-Theorem. In [21], they consider N labelled particles which are distributed
among two chambers. At each time step, one of the labels is chosen uniformly at random
and the corresponding particle changes its chamber. If one is only interested in the number
of particles in each chamber, this migration process can be modelled by an urn with matrix

REhren :=

(
−1 1

1 −1

)
.

However, this example is not of the type considered in the current text, as it does not satisfy
(A2) and the number of particles does not increase with time, but stays constant. ♦

Let us now introduce a term that plays an important role in the study of urn models and
takes a particular simple form for two-colour urns. We call a two-colour urn irreducible,
if a1,2a2,1 > 0. Many important examples satisfy this assumption, which is made by the
majority of studies on urn models. On the other hand, two-colour urns with a1,2a2,1 = 0 are
called reducible or triangular.
It has been known for a long time that irreducible and reducible urns exhibit a different
behaviour and that reducible urns are somehow less accessible. For a thorough study of
triangular urns (that are not assumed to be balanced), see [42]. Note that in this thesis, there
is no assumption on irreducibility. In the current section, we will assume that all reducible
urns are of the form (

a1,1 0

a2,1 r

)
,

i.e., a1,2 = 0 and a2,1 ≥ 0. Dumas, Flajolet and Puyhaubert [24] provide a witty interpretation
of triangular urns as a model for evolving species: Imagine that there are two populations,
for example apes and humans, which reproduce and may give birth at each time n. The
individual that gives birth at time n is chosen uniformly among all individuals. Each time an
individual is chosen, it produces the same number of r offspring. However, humans can only
give birth to humans, while there might also be a2,1 humans among the offspring of apes as
a result of evolution. The authors make the concession that this might be a too optimistic
model of reality.

Variants of the model. In the literature on urn models, there are many variants of the
model presented here and also extensions in different directions. Of course, one always has to
provide assumptions to ensure tenability of the urn (except for the classical sampling urns)
and to exclude deterministic behaviour. Furthermore, in the majority of results, balancedness
is assumed and restrictions are put on the spectrum of the generating matrix. More precisely,
it is assumed that the largest eigenvalue is real and simple (this can be assured by allowing
only non-negative off-diagonal entries and assuming irreducibility and balance, for example)
and that the real parts of all other eigenvalues are at most half this largest eigenvalue.
However, some variants of the model include real-valued instead of integer-valued replacement
or negative off-diagonal entries under another sufficient tenability-condition. It is also possi-
ble to introduce a second instance of randomness by choosing the increments (a1,1, a2,1)

t and
(a1,2, a2,2)

t randomly, according to some fixed probability distributions µ and ν, respectively.
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Another recently studied model deals with multiple drawings rather than a single draw from
the urn (with or without replacement), see [49]. Note that in particular, the results do not
depend on the assumption that a1,1, a2,1, a1,2, a2,2 are integers. This convention only serves
the purpose to use a language involving balls. For a discussion of different hypotheses, we
refer the reader to [40].

1.1.2 Convergence of proportions

In the hold of (A1) - (A5), the convergence of the proportions X
(1)
n

rn+|X0|
and X

(2)
n

rn+|X0|
is well-

understood. There are basically two cases of a different character: The first is the Pólya urn,
while all other urns in the given setting can be summarised to a second category.

We start with the Pólya urn. The following results are a “classical part of the oral tradition”
[25], and can be found in [25], for example. Note that the model below is slightly generalised
in comparison to example 1.

Theorem 1.1.1 (Pólya urn). Consider a Pólya urn scheme with generating matrix(
r 0

0 r

)
and assume that X

(1)
0 , X

(2)
0 > 0. Then, as n→∞, X

(1)
n

rn+|X0|

X
(2)
n

rn+|X0|

 a.s.−→ (
Z

1− Z

)
, (1.3)

where L(Z) = Beta

(
X
(1)
0
r ,

X
(2)
0
r

)
. Furthermore, the tail σ-field of

((
X
(1)
n , X

(2)
n

))
n≥0

is equiv-

alent to the σ-field spanned by Z. Given this σ-field, the outcomes of the single draws from
the urn form an i.i.d. sequence, with each outcome being type 1 with probability Z, and type
2 with probability 1− Z.

Discussion. In particular, if both X
(1)
0 , X

(2)
0 > 0, the limit in the theorem is random and

depends on the particular sequence of draws. As there is no “smoothing” between the colours,
the dynamics of the urn are such that initial imbalances rather magnify over time than even

out: For example, if X
(1)
0 is much bigger than X

(2)
0 , it is more likely to draw a type 1 ball in

the first step and to further increase the number of type 1 balls. On the other hand, if X
(1)
0

and X
(2)
0 are roughly of the same size, but r is comparatively big, then the first few draws will

turn the proportion of balls in favour of one colour, which consequently is more likely to be
drawn in the following steps and to produce even more balls of its own kind. To summarise,
the fact that the urn’s asymptotics most notably depend on the initial configuration and the
first draw, slightly less on the second draw, even less on the third draw, and so on, leads to
instability, or, randomness, in the long-term behavior of the system.

We now turn to the second case. The result in the form stated is due to Gouet [28],
who derives strong asymptotics for the composition vector of two-colour urn models with
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max{a2,1, a1,2} > 0.

Theorem 1.1.2. For all Pólya-Eggenberger urn schemes with replacement matrix R such that
max{a2,1, a1,2} > 0 and (A1)-(A5) hold,

Xn

rn+ |X0|

a.s.−→ 1

a2,1 + a1,2

(
a1,2
a2,1

)
, n→∞. (1.4)

Note that in contrast to the asymptotics of the Pólya urn, the ball proportions in all
other models in our setting converge to deterministic limits. Furthermore, in triangular urn
schemes, the proportion of type 1 balls tends to zero almost surely, irrespective of the initial
configuration. This observation concludes the exposition of the two-type case.

1.1.3 Central limit theorem

In a next step, we turn to central limit theorems for two-colour urn models under assumptions
(A1) to (A5). As previously mentioned, it is well-known that the spectral properties of the
generating matrix R (or, equivalently, its transpose Rt, the so-called replacement matrix)
determine the urn’s probabilistic behaviour to a large extent. Therefore, we now define the
relevant quantities for two-colour urns, even though this will be repeated in a more general
setting later.
To begin with, the generating matrix R has two real eigenvalues, which are a1,1 + a1,2 = r

and a1,1 − a2,1 ≤ r. For all urns different from the Pólya urn, these are distinct. Flajolet et
al. [24] call a2,1 − a1,1 = −(a1,1 − a2,1) the dissimilarity index and introduce three categories:

(1) Altruistic urns correspond to a1,1−a2,1 < 0. Both colours get more reinforcement from
the other colour than from their own colour.

(2) Neutral urns correspond to a1,1 − a2,1 = 0. The composition of the urn at any instance
is completely determined and a linear function of time. (A4) excludes this case from
the present setting.

(3) Selfish Urns correspond to a1,1 − a2,1 > 0. Both colours get more reinforcement from
their own colour than from the other colour.

It turns out that their distinction between altruistic and selfish urns at a1,1 − a2,1 = 0 is not
the one at which the transition from asymptotic normality to almost sure drift occurs (which
is a1,1−a2,1 =

a1,1+a1,2
2 ), but it provides a vivid way to think about the underlying parameter.

The spectral decomposition of the urn process into projections onto its eigenspaces will
play a central role in this thesis. There are dual bases {ut1, u

t
2} and {v1, v2} of left, respectively

right, eigenvectors associated to the two eigenvalues. If max{a1,2, a2,1} > 0, we choose left and
right eigenvectors u1, u2 and v1, v2 corresponding to r and a1,1 − a2,1, respectively, as

u1 :=

(
1

1

)
, u2 :=

(
a2,1
−a1,2

)
, v1 :=

1

a1,2 + a2,1

(
a1,2
a2,1

)
, v2 :=

1

a1,2 + a2,1

(
1

−1

)
.

(1.5)

If a1,2 = a2,1 = 0, we choose

u1 := v1 =:

(
1

0

)
, u2 := v2 =:

(
0

1

)
.
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With this choice, each vector x = (x1, x2)
t ∈ R2 can be written as

x = (ut1x)v1 + (ut2x)v2.

Again, the Pólya urn with a1,2 = a2,1 = 0 has to be treated separately. But if we apply the
decomposition to an urn process (Xn)n≥0 with max{a1,2, a2,1} > 0, we see that for all n ≥ 0,
the first coefficient ut1Xn = rn+ |X0| is deterministic. Thus,

Xn − E[Xn] = ut2(Xn − E[Xn])v2

and all the randomness of the evolution is contained in the projection ut2Xn. This projection
measures the order of magnitude of the process along the direction of v2. According to
Theorem 1.1.2, it is smaller than linear. But how big is it?
It is this second order term which is of importance in the study of CLTs. It has been
known since the 1960s that the basic parameter in the derivation of CLTs for urn models is
the eigenvalue ratio a1,1−a2,1

r and that there is a qualitative difference between models with
a1,1−a2,1

r ≤ 1
2 and with a1,1−a2,1

r > 1
2 . Because the process is not deterministic, a1,1−a2,1r 6= 0,

and as a1,2, a2,1 ≥ 0, a1,1−a2,1r ≤ 1. On the other hand, unbounded negative values of a1,1−a2,1r

are possible. Returning to our question from the previous paragraph, it turns out that if
1
2 <

a1,1−a2,1
r < 1, ut2(Xn − E[Xn]) converges almost surely and in L2 as n → ∞ (see Lemma

3.1.2). We may thus define Ξ as the almost sure limit

Ξ := lim
n→∞

(
n−

a1,1−a2,1
r ut2 (Xn − E[Xn])

)
. (1.6)

For more information on Ξ, see [51, 57] or chapter 3. The proceeding in the formulation of a
CLT for two-colour urns is now exactly as described in the introduction: For a1,1−a2,1

r ≤ 1
2 ,

there is no almost sure limit Ξ and we are in the classical normalisation of a CLT. However,
if a1,1−a2,1r > 1

2 , a random centering has to be taken into account.
Before we formulate the CLT, let us make the formal introduction of the eigenvalue ratio in
the case a1,1 − a2,1 > 0 more plausible by the following simple trick. Write(

a1,1 a1,2
a2,1 a2,2

)
=

(
a2,1 a2,1
a1,2 a1,2

)
+

(
a1,1 − a2,1 0

0 a1,1 − a2,1

)
.

The first matrix in the decomposition can be interpreted as the invariable drift by which
the urn composition increases in each step, while the Pólya-like matrix accounts for the
balls that deviate from this drift in one of the possible two colours. In this matrix, the
amount is fixed, but the coordinate direction is random. We now see that the eigenvalue
ratio gives the asymptotic proportion of balls deviating from the deterministic direction: As
a1,2+a2,1 = (a1,1+a1,2)−(a1,1−a2,1), the total increase a1,2+a2,1 in the first part is greater
or equal than the increase a1,1 − a2,1 in the second part if and only if a1,1−a2,1

a1,1+a1,2
≤ 1

2 . If, on

the contrary, a1,1−a2,1a1,1+a1,2
> 1

2 , then asymptotically, more than half of the balls in the urn are a
product of the deviation, and it becomes self-reinforcing to a significant amount, leading to
an almost sure term.
We now state the CLT for two-colour urns, which is a special case of Theorem 1.2.5. To this
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end, for max{a1,2, a2,1} > 0, set

Σ2−col :=
a1,2a2,1r(a1,1 − a2,1)

2

|2(a1,1 − a2,1) − r|
v2v

t
2 =

a1,2a2,1r(a1,1 − a2,1)
2

(a1,2 + a2,1)2|2(a1,1 − a2,1) − r|

(
1 −1
−1 1

)
. (1.7)

Proposition 1.1.3. Let (Xn)n≥0 be a generalised Pólya-Eggenberger urn process with
matrix (1.1) that satisfies conditions (A1)-(A5).

(i) If a1,2 = a2,1 = 0, as n→∞,

1√
r2nZ(1− Z)

(
Xn − nr

(
Z

1− Z

))
L−→ N ((0

0

)
,

(
1 −1
−1 1

))
, (1.8)

where Z has Beta

(
X
(1)
0
r ,

X
(2)
0
r

)
-distribution and is as in (1.3).

(ii) If max{a1,2, a2,1} > 0 and 2(a1,1 − a2,1) > r, as n→∞,

1√
n

(
Xn − E[Xn] − n

a1,1−a2,1
r Ξ

1

a1,2 + a2,1

(
1

−1

))
L−→ N ((0

0

)
, Σ2−col

)
. (1.9)

(iii) If max{a1,2, a2,1} > 0 and 2(a1,1 − a2,1) = r, as n→∞,

1√
n log(n)

(Xn − E[Xn])
L−→ N ((0

0

)
,
a1,2a2,1(a1,1 − a2,1)

2

(a1,2 + a2,1)2

(
1 −1
−1 1

))
. (1.10)

(iv) If max{a1,2, a2,1} > 0 and 2(a1,1 − a2,1) < r, as n→∞,

1√
n
(Xn − E[Xn])

L−→ N ((0
0

)
, Σ2−col

)
. (1.11)

Remark 1 (A short note on what is known in Proposition 1.1.3). Part (i) is basically a result
of Hall and Heyde [34], p. 80. Parts (iii) and (iv) in Proposition 1.1.3 are well-known and
covered in [74] and [40], for example. Proofs of the almost sure or distributional convergence

of n−a1,1/a2,1X
(1)
n can be found in [8, 40]. However, the central limit theorems in Proposition

1.1.3 (ii) and in Proposition 1.1.4 appear to be new.

Remark 2. Note that only in case (i), where the asymptotic proportions of balls are random,
a random centering and scaling are necessary. In (ii), only the centering is random, as the
second largest eigenvalue is bigger than the critical value r

2 . In the multicolour case, we will
observe the same pattern.
Also note that in cases (ii)-(iv), the asymptotic probability to draw a ball of type 1 is

a2,1/(a1,2+a2,1) (say, for a2,1 > 0). However, the asymptotic variance is a1,2a2,1r(a1,1−a2,1)
2

(a1,2+a2,1)2|2(a1,1−a2,1)−r|

or a1,2a2,1(a1,1−a2,1)
2

(a1,2+a2,1)2
rather than a1,2a2,1/(a1,2 + a2,1)

2, and we see a difference between the
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urn and a coin-tossing game with success probability a2,1/(a1,2 + a2,1). This is also different
from the behaviour in (i), where the sequence of draws of type 1 balls can be regarded as a
sequence of coin tosses with success probability Z, conditionally on Z.

Note that the variance of the weak limit in Theorem 1.2.5 is zero for triangular urns, i.e. if
a1,2a2,1 = 0. In this case, the theorem yields a degenerate limit. This is due to the fact that

the
√
n-scaling is too strong, as Xn − E[Xn] is governed by the behaviour of X

(1)
n , which is

of sublinear size n
a1,1
a2,2 in this case. This is an observation that also holds in the multicolour

case: If R is reducible, the asymptotic covariance matrix Σ is typically more singular. The
following theorem gives the correct scaling for triangular two-colour urns. Its proof is given
in chapter 3.

Proposition 1.1.4. Let (Xn)n≥0 be a generalised Pólya-Eggenberger urn process with trian-
gular matrix (i.e. a1,2 = 0) that satisfies conditions (A1)-(A5) and additionally, a1,1 > 0.
Then as n→∞,

1√
n
a1,1
a2,2

(
Xn − E[Xn] − n

a1,1
a2,2 Ξv2

)
L−→ N

(0
0

)
,
a1,1X

(1)
0 Γ

(
|X0|
a2,2

)
Γ
(
|X0|+a1,1
a2,2

) (
1 −1
−1 1

) . (1.12)

Remark 3. The case a1,1 = 0 is excluded by (A4) and leads to a deterministic evolution of
the urn without fluctuation. Furthermore, the case a1,1 < 0 is also immediate, as the balls of
colour 1 die out almost surely.

1.1.4 Examples

Below, we consider two examples which both illustrate parts (ii)-(iv) of Proposition 1.1.3.
Each of the models is defined by a parameter, leading to a phase transition from (ii) to (iv).

Example 4 (Friedman urn). This urn model, which we have already met in the introduction,
is a natural generalisation of Pólya’s model. Flajolet et al. [24] describe it as a “simple matrix
with many hidden treasures”. In its most general form, the generating matrix of the model
is given by

RFriedman =

(
a1,1 a1,2
a1,2 a1,1

)
,

where a1,1, a1,2 ∈ Z, a1,2 ≥ 0, and a1,1 + a1,2 = r > 0. If a1,1 = 0 or a1,1 is much smaller
than a1,2, the Friedman urn can be viewed as a model of a propaganda campaign in which
candidates are so bad that the persons who listen to them are convinced to vote for the
opposite candidate (compare the examples in the introduction).
Even though the model includes the Pólya urn, its behaviour for a1,2 > 0 is very different.
Indeed, any large enough deviation of the urn’s composition from proportions (1/2, 1/2) tends
to correct itself and bring the system back to equilibrium, and accordingly, the composition
of the urn is concentrated around its mean value.
The eigenvalues of the symmetric matrix RFriedman are a1,1+a1,2 and a1,1−a1,2. For a1,2 = 0,
we get the original Pólya urn which yields the first case of Proposition 1.1.3. For a1,2 > 0,
a1,1+a1,2 is a simple eigenvalue and thus no random scaling arises in the limit theorem. Here,
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the eigenvectors in (1.5) take the particular form

u1 :=

(
1

1

)
, u2 :=

(
a1,2
−a1,2

)
, v1 :=

1

2

(
1

1

)
, v2 :=

1

2a1,2

(
1

−1

)
.

For a1,2 > 0, the behaviour of the urn ranges over the three cases (ii) to (iv) in Proposition
1.1.3: If a1,1 < 3a1,2, then a1,1−a1,2

a1,1+a1,2
< 1

2 , and we are in case (iv) of Proposition 1.1.3. This
yields

Xn − E[Xn]√
n

L−→ N ((0
0

)
,
(a1,1 + a1,2)(a1,1 − a1,2)

2

4(3a1,2 − a1,1)

(
1 −1
−1 1

))
as n→∞.
If a1,1 = 3a1,2, then a1,1−a1,2

a1,1+a1,2
= 1

2 , and case (iii) leads to

Xn − E[Xn]√
n log(n)

L−→ N ((0
0

)
,
(a1,1 − a1,2)

2

4

(
1 −1
−1 1

))
,

as n→∞. Here, we have recovered the results of example 3.27 in [40].
If a1,1 > 3a1,2, then a1,1−a1,2

a1,1+a1,2
> 1

2 , and so

Xn − E[Xn] − n
a1,1−a1,2
a1,1+a1,2 Ξv2√

n

L−→ N ((0
0

)
,
(a1,1 + a1,2)(a1,1 − a1,2)

2

4(a1,1 − 3a1,2)

(
1 −1
−1 1

))

as n→∞. As above, Ξ2 is the almost sure limit of

(
bn

−
a1,1−a1,2
a1,1+a1,2

(
Y
(1)
n − Y

(2)
n

))
n≥1

. ♦

Example 5 (Generalised Binomial Distribution). Drezner and Farnum [18] introduce the
following generalisation of the Binomial distribution as the number of successes in n indepen-
dent, identically distributed Bernoulli experiments: As usual, let 0 < p < 1 be a fixed success
probability in a Bernoulli experiment. Additionally, consider a fixed correlation parameter
0 ≤ ϑ < 1. We call (Bn)n≥1 an adaptive Bernoulli process with parameters p and ϑ, if L(B1) =
Bern(p) and for n ∈ N,

P(Bn+1 = 1|B1, . . . , Bn) = (1− ϑ)p+ ϑ
Sn

n
.

In the above, Sn :=
∑n
j=1 Bj is the relative frequency of successes among the first n experi-

ments. It is clear from this definition that the model is conceived such that a big number
of past successes (more precisely, Sn > np) leads to an increase of the probability of future
successes. The size of this bias is parametrised by ϑ. For example, for all n ∈ N, the Binomial
distribution with parameters n and p can be regained as the distribution of Bn with the
choice ϑ = 0.

In [18] it is shown that for all n ≥ 1, E[Sn] = np and

Var(Sn) ∼


np(1−p)
1−2ϑ , ϑ < 1

2 ,

p(1− p)n log(n), ϑ = 1
2 ,

n2ϑp(1−p)
(2ϑ−1)Γ(2ϑ) , ϑ > 1

2
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as n → ∞. This expansion of the variance strongly resembles the phase transitions in our
urn models.
Note that by Chebyshev’s inequality, Snn converges in probability to p as n→∞, irrespective

of the value of ϑ. Heyde [35] studies the rate of convergence of Sn
n to p via martingale

techniques and derives the following theorem:

Theorem 1.1.5 (Heyde). (i) If ϑ < 1
2 , then n−1/2(Sn−np)

L−→ N (0, p(1−p)1−2ϑ

)
as n→∞.

(ii) If ϑ = 1
2 , then (n log(n))−1/2(Sn − np)

L−→ N (0, p(1− p)) as n→∞.

(iii) If ϑ > 1
2 , then n−ϑ(Sn − np)

a.s.−→W as n→∞, where W is a non-degenerate, centered
random variable with

E
[
W2
]
=

p(1− p)

(2ϑ− 1)Γ(2ϑ)
.

Now, this result can be recovered and complemented by Proposition 1.1.3. Rarivoarimanana
[69] observes that the correlated Bernoulli process can, in fact, be translated into an urn model.
This urn is not integer-valued, but as noted before, this is of no importance.
Given an an adaptive Bernoulli process (Bn)n≥1, set X0 := (p, 1− p)t and for n ≥ 1,

Xn :=

(
n(1− ϑ)p+ ϑSn

n(1− ϑ)(1− p) + ϑ(n− Sn)

)
.

Then (Xn)n≥0 is a two-colour urn model with generating matrix

RGen.Bin. =

(
(1− ϑ)p+ ϑ (1− ϑ)p
(1− ϑ)(1− p) (1− ϑ)(1− p) + ϑ

)
.

Conversely, (Sn)n≥1 =
(
1
ϑ

(
X
(1)
n − n(1− ϑ)p

))
n≥1

.

RGen.Bin. has eigenvalues 1 and ϑ < 1. In this example,

u1 :=

(
1

1

)
, u2 := (1− ϑ)

(
p

−(1− p)

)
, v1 :=

(
1− p
p

)
, v2 :=

1

1− ϑ

(
1

−1

)
.

We only consider the case ϑ > 1
2 , which is the most interesting part from our point of view.

However, the other two cases follow analogously. Proposition 1.1.3 implies that for ϑ > 1
2 ,

Xn − E[Xn] − nϑΞv2√
n

L−→ N (0, ϑ2p(1− p)
2ϑ− 1

(
1 −1
−1 1

))
as n→∞. Here, Ξ is the almost sure limit of n−ϑut2(Xn−E[Xn]) = n−ϑ(1−ϑ)

(
X
(1)
n − E

[
X
(1)
n

])
.

In particular, ϑ(1− ϑ)Ξ =W.
This in turn implies for the correlated Bernoulli model that as n→∞,

Sn − np− n
ϑW√

n

L−→ N (0, p(1− p)
2ϑ− 1

)
.

Once more, note the symmetry of the cases (i) in Heyde’s theorem and the above. ♦
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1.2 Multicolour urn models

In this section, we turn our attention to urn models that involve more than two colours.
To this end, recall the definition of a generalised Pólya-Eggenberger urn scheme with q ≥ 2
colours from the beginning of the introduction. At this earlier point, we did not go into detail
about our assumptions and their implications. This omission has to be rectified in the present
section.

Note that the dynamics of the urn composition process (Xn)n≥0 are fully described by its
initial value X0 and the generating matrix R. Our basic assumptions on R and X0 are the
following:

(A1) R is diagonisable over C.

(A2) R has constant column sum r ≥ 1.

(A3) Ri,j ≥ 0 for i 6= j and if Ri,i < 0, then |Ri,i| divides X
(i)
0 and Ri,j for all 1 ≤ j ≤ q.

(A4) No two columns of R are identical.

(A5) The initial composition of the urn is such that for all colours j, there exists n ∈ N0 with

P
(
X
(j)
n > 0

)
> 0.

(A1) to (A5) are satisfied in most applications. As in the two-colour case, (A2) guarantees
a steady linear growth and (A3) ensures tenability of the urn, i.e., that the process does not
get stuck due to a lack of balls. (A4) and (A5) prevent an easy reduction to an urn model
with less colours.

1.2.1 The ordering of types

Before we go into detail about the spectral properties and the eigenvalues of R, let us first
introduce some consistency to the ordering of the colours. For more structural overview, we
write i→ j and say that colour i leads to colour j if, starting with one ball of colour i, we have

P
(
X
(j)
n > 0

)
> 0 for some n ∈ N0. Equivalently, (Rn)j,i > 0. We say that i and j communicate

and write i ↔ j if i → j and j → i. The equivalence relation ↔ partitions the set {1, . . . , q}

of colours into d equivalence classes C1, . . . , Cd. If d = 1, the process is called irreducible (this
generalises the definition for q = 2 in the last section). Otherwise, it is called reducible.
The case when the replacement matrix is irreducible is important and includes many appli-
cations. Limit theorems for the irreducible case have been given by many authors, see for
example [2], [3], [4] or [40] and the references therein. It has been known for a long time
that other phenomena arise in the reducible case. Here, we do not assume irreducibility. But
somehow, the picture given by Theorem 1.2.5 is too rough if applied to some reducible cases.

Example 6 (Triangular 3× 3 Urns). Consider a generating matrix of the form

RTriangular =

 a1,1 0 0

a2,1 a2,2 0

r− a1,1 − a2,1 r− a2,2 r

 ,
where a1,1a2,1a2,2 6= 0. It is easy to see that the corresponding urn model is reducible, as
there are three equivalence classes, each consisting of a single type. Similar to triangular
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two-colour urns, this urn can be regarded as a simple model for evolving species. However,
note that it is not diagonisable for a1,1 = a2,2. ♦

Furthermore, we write Ci → Cj and say that class Ci leads to class Cj if some (then all)
colours in Ci lead to some (then all) colours in Cj. We call a class dominant if it does not lead
to any other class except possibly itself.
With this, the classes C1, . . . , Cd decompose into three different categories. Class Ci is of
category 1 if it is dominant and there is no j 6= i with Cj → Ci. Any dominant class which
is not of category 1 is of category 2. All non dominant classes are of category 3. Note that
(A4) implies that in particular, we start with at least one ball from each class of category 1.
Subsequently, we may assume that the classes are ordered as follows: with a, b, c ≥ 0 and
a + b + c = d, classes C1, . . . , Ca are of category 1, classes Ca+1, . . . , Ca+c are of category 2,
and the remaining classes Ca+c+1, . . . , Cd are of the third category. Ca+c+1, . . . , Cd are ordered
such that Ci → Cj implies i ≤ j. Note that a+ c ≥ 1. Under this ordering of the colours, the
matrix R has the following lower triangular block structure:

R =



T1,1
. . .

Ta,a
P1,1

∗ . . .

∗ ∗ Pb,b
∗ ∗ ∗ Q1,1

∗ ∗ ∗ . . .

∗ ∗ ∗ Qc,c


.

Here, blocks T1,1, . . . , Ta,a correspond to category 1 classes C1, . . . , Ca, blocks Q1,1, . . . , Qc,c to
category 2 classes Ca+1, . . . , Ca+c and blocks P1,1, . . . , Pb,b to category 3 classes Ca+c+1, . . . , Cd.
The middle part corresponding to category 3 classes is a lower triangular block matrix in
which beneath each of the blocks P1,1, . . . , Pb,b, there is at least one positive entry. Similarly,
to the left of each block Q1,1, . . . , Qc,c, there is at least one positive entry. Otherwise, the
ordering would be a different one.

1.2.2 The spectrum of R

As the transitions of (Xn)n≥0 are governed by the matrix R and multiplication by R is just
multiplication by a scalar if restricted to each of its eigenspaces, the spectral decomposition
of (Xn)n≥0 with respect to the eigenspaces of R should give a good way of finding out about
components of different sizes in the asymptotics of the process. In this sense, the choice of a
convenient basis of Cq is crucial in the following.
Indeed, with respect to central limit theorems, it is well known that irreducible, balanced
and tenable Pólya urn processes undergo a phase transition that is caused by the spectral
properties of their generating matrix. This change can also be seen in the variance of the urn
composition vector. More precisely, their asymptotics depend on the relation of the real parts
of the largest and the second largest eigenvalue. Call these σ1 and σ2, respectively. When
σ2 < σ1/2 or σ2 = σ1/2, the urn often is called “strictly small” or “small” and there are
Gaussian fluctuations. On the other hand, if σ2 > σ1/2, the urn is called “large” and either
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has a second order convergent term (if the second largest eigenvalue is real) or an almost
sure oscillating behaviour (if the second largest eigenvalue is complex). This observation is
already made in [3]. Some simulations of this phenomenon in the context of B-urns can be
found in [11].
In this section, we will see that for large urns, the CLT in fact depends on all eigenvalues that
have real parts greater than σ1/2.

Matrices with non-negative off-diagonal entries are called Metzler-Leontief matrices. All
diagonal blocks in R are irreducible Metzler-Leontief matrices. In the following, we will use
certain spectral properties of irreducible Metzler-Leontief matrices, see [73] or [30]:

Theorem 1.2.1. Let B = (Bi,j) be an irreducible Metzler-Leontief matrix. Then, there exists
a dominant eigenvalue τ of B such that

(i) τ is real, has multiplicity 1 and the associated left and right eigenvectors are positive;

(ii) τ > <(λ) where λ 6= τ is any other eigenvalue of B;

(iii) minj
∑
i Bi,j ≤ τ ≤ maxj

∑
i Bi,j;

(iv) If there exist a non-negative vector x and a real number ρ such that Bx ≤ ρx, then
ρ ≥ τ; ρ = τ if and only if Bx = ρx;

(v)
∑
i Bi,j = 1 for all j implies τ = 1; and

(vi)
∑
i Bi,j ≤ 1 for all j with at least one strict inequality implies τ < 1.

Note that because R is diagonisable, so are all blocks on its diagonal. We say that an
eigenvalue λk belongs to class Cm if it is an eigenvalue of the restriction of R to Cm. These
properties imply the following: As the columns of T1,1, . . . , Ta,a, Q1,1, . . . , Qc,c sum to r, and in
each of P1,1, . . . , Pb,b, there is a column that sums to less than r, we can order the q eigenvalues
of R by r = λ1 = . . . = λa+c > <(λa+c+1) ≥ . . . ≥ <(λq). Non-dominant eigenvalues
with equal real parts are ordered by decreasing size of imaginary parts. If eigenvalue λ has
multiplicity m > 1, λ is repeated m times in this list.

Eigenvectors of the blocks can be extended to eigenvectors of R in the following way:

1. If λ is an eigenvalue with multiplicity m of Ti,i for some 1 ≤ i ≤ a, then there exist m
corresponding left (and right) eigenvectors which are zero on every colour outside Ti,i.

2. If λ is an eigenvalue with multiplicity m of Pi,i for some 1 ≤ i ≤ b, then there exist m
corresponding left eigenvectors which are zero on colours in category 1 and category 2
classes and m right eigenvectors which are zero on category 1 classes.

3. Similarly, if λ is an eigenvalue with multiplicity m of Qi,i for some 1 ≤ i ≤ c, then
there exist m corresponding left eigenvectors which are zero on all colours in category
1 blocks, in category 2 blocks Qj,j for j ∈ {1, . . . , c} \ {i} and in category 3 blocks Pj,j
that do not lead to Qi,i. There exist m corresponding right eigenvectors that are zero
on every colour outside Qi,i.

We choose dual bases {ut1, . . . , u
t
q} and {v1, . . . , vq} of left and right eigenvectors of R, respec-

tively, such that for each k ∈ {1, . . . q}, uk (vk) is a left (right) eigenvector to λk. These are
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chosen to satisfy the above and the following additional properties. Here, we use the conven-
tion that a row vector xt can be identified with the linear map it induces on Cq. It is easily

seen that R is irreducible if and only if v
(i)
1 > 0 for every i ∈ {1, . . . , q}.

Furthermore, we assume that if λ is a complex eigenvalue with left and right eigenvectors
uk, vk, then the eigenvectors corresponding to λ̄ are ūk, v̄k. If λ is a real eigenvalue, then
both uk, vk are chosen real. For A ⊆ {1, . . . , q} and v ∈ Cq, let vA be the q-dimensional

vector defined by v
(i)
A = v(i) · δA(i), i ∈ {1, . . . , q}. Let 1 denote the q-dimensional all ones

vector. We further assume that both left and right eigenvectors to r are real and are of the
following form: ui := 1Ci for i = 1, . . . , a. Further, we can choose the remaining eigenvectors
ua+1, . . . , ua+c orthogonal in such a way that ua+s = 1Ca+b+s + vs, where vs is only nonzero
on colour classes of category 3 leading to Ca+b+s.
If R is irreducible, we choose u1 = (1, . . . , 1)t = 1 to be the only eigenvector corresponding to
the eigenvalue r.

Having fixed the particular choice of eigenvectors, we turn to the spectral decomposition
of Cq relative to R. Let πk : Cq → C be the linear map defined by

πk(v) := u
t
kv. (1.13)

Then πk(v) is the coeffcient of the vector vk in the representation of v with respect to the
eigenvector basis {v1, . . . , vq}, i.e.

v =

q∑
k=1

πk(v)vk. (1.14)

In the following, we will apply this decomposition to (Yn)n≥0 and study its single components,
where

Yn := Xn − E[Xn], Fn := σ(X0, . . . , Xn). (1.15)

Let IdCq denote the q× q-identity matrix.

1.2.3 Convergence of proportions

Due to the balance condition (A2), there are rn+|X0| balls in the urn at time n ≥ 0, regardless
of the particular outcome of the first n draws. Accordingly, it is natural to consider the
proportions of balls of the various types. This subsection resumes observations on Xn

rn+|X0|
that

were already made in Section 1.1. We briefly recall the results of the preceding section: In
urn schemes with two types only that satisfy (A1)-(A5), the proportions of balls of colours 1
and 2 are almost surely convergent. Whether the almost sure limit is random or deterministic
depends on the multiplicity of the largest eigenvalue.
Now, there are very similar results in the multicolour case. We present them stepwise, starting
with urn models that admit a single greatest eigenvalue. Theorems 3.1 and 3.5 in [43] give
the desired result in this case.

Theorem 1.2.2 (Janson). Assume (A1)-(A5) and additionally that <(λ2) < λ1 = r. Then,
as n→∞

Xn

n
−→ r · v1
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almost surely and in L2. Furthermore

E[Xn] = r · nv1 + o(n),

and if the urn is strictly small, then E[Xn] = r · nv1 + o
(
n
1
2

)
, as n→∞.

So again, if the largest eigenvalue is simple, the proportions converge to deterministic
numbers. These limits are all positive if and only if the generating matrix is irreducible.
In a next step, we consider the case where r is allowed to be a multiple eigenvalue, but there
is only one class of category 2 (i.e., c = 1). This case is treated in Theorem 3.1 of [30].

Theorem 1.2.3 (Gouet). Suppose that (A1)-(A5) hold and that c = 1. Then, as n→∞,

Xn

rn+ |X0|
→ a∑

i=1

D(i)vi +D
(a+1)va+1 =: V

almost surely, where

L
((
D(1), . . . , D(a), D(a+1)

)t)
= Dir

 |(X0)C1 |

r
, . . . ,

|(X0)Ca |

r
,
|X0|

r
−

a∑
j=1

|(X0)Cj |

r

 .
For the same result without identification of the Dirichlet components, see Theorem 3.5

in [67]. Hence, the limit is random, if the algebraic (= geometric, in our case) multiplicity of
r is greater than one.

Finally, the case where c ≥ 2 is more involved, as components Ca+1, . . . , Ca+c are intercon-
nected via category 3 classes. However, Theorem 1.2.3 makes it plausible that as n→∞,

Xn

rn+ |X0|
→ a∑

i=1

D(i)vi +D
(a+1)(Γa+1va+1 + . . .+ Γa+cva+c) =: V

almost surely, where
(
D(1), . . . , D(a), D(a+1)

)t
is Dirichlet distributed with parameters as in

Theorem 1.2.3. Γa+1, . . . , Γa+c are random variables that sum to 1 almost surely and are in-
dependent of the Dirichlet random vector. Their distribution is an interesting question in its
own right, but not answered in this text, because they arise as martingale limits. A proof of
this result can easily be obtained along the lines of the proofs given in chapter 3, and we omit
the details. In particular, Theorem 3.1.1 states that Γa+1, . . . , Γa+c are non-deterministic.
In the following, the letter V is used to denote the random vector that arises as the almost
sure limit of the proportions Xn

rn+|X0|
. Note that it is zero in all category 3 components.

Interpretation. Theorem 1.2.3 and its extension yield an interpretation of the urn’s dyna-
mics as a superposition of the dynamics of a classical Pólya urn and several irreducible urns.
First, C1, . . . , Ca and Ca+1∪ . . .∪Cd are isolated and can thus, on a higher level, be regarded as
balls in a Pólya urn. Consequently, the asymptotic proportions among these supercolours are
Dirichlet distributed. On an intermediate level, the random variables Γa+1, . . . , Γa+c are the
asymptotic proportions of the non-isolated dominant classes inside supercolour Ca+1∪ . . .∪Cd.
Finally, on a local level, inside a particular dominant component, the asymptotic proportions
of balls are deterministic and given by the components of the right eigenvector corresponding
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to the class.

1.2.4 Central limit theorem

Before we state the main theorem, let us give a brief impression of known results on variances
and weak convergence in the case where r is a simple eigenvalue and <(λ2) < r/2. It was
mentioned at various points that the variance is of a different character depending on whether
<(λ2) < r/2, <(λ2) = r/2 or <(λ2) > r/2. To be more precise, Lemma 6.2 in [43] is essentially
the following.

Lemma 1.2.1 (Janson). For n ≥ 2,

Cov(Xn) =


O(n), <(λ2) <

r
2 ,

O(n log(n)), <(λ2) =
r
2 ,

O
(
n2

<(λ2)

r

)
, <(λ2) >

r
2 .

In particular, if <(λ2) < r, then

Cov(Xn) = o(n2).

It is also well-known that the distribution of the urn composition is asymptotically normal
for small Pólya-Eggenberger urns as in the present setting. Recall that an urn is called “small”
if the second largest real part of an eigenvalue is at most half the largest eigenvalue.
Janson [43] provides asymptotics for the mean and the covariance matrix of small urns. He
shows that after appropriate normalisation, the mean and covariance matrix converge to the
mean and variance of the limiting normal distribution, and also includes a result on non-
degeneracy of the limit. As his set of conditions is quite general, Theorems 3.2 and 3.3 in [43]
can be translated to the present setting.

Theorem 1.2.4 (Janson). Assume that (A1)-(A5) hold and that the urn is strictly small,
i.e. <(λ2) <

r
2 . Then as n→∞,

Var

(
Xn − E[Xn]√

n

)
−→ q∑

i=2

q∑
j=2

λiλj

1−
λi+λj
r

(
q∑
`=1

v
(`)
1 u

(`)
i u

(`)
j

)
viv

t
j .

The asymptotic covariance matrix is always singular.
If (A1)-(A5) hold and <(λ2) =

r
2 , then as n→∞,

Var

(
Xn − E[Xn]√
n log(n)

)
−→ ∑

i:<(λi)=
r
2

|λi|
2〈v1, |ui|2〉viv∗i .

Note that in the second case, the rank of the asymptotic covariance matrix is comparatively
low and equal to the number of eigenvalues with real part equal to r/2.

To formulate the main result of the thesis, set

M := (<(v1),−=(v1),<(v2),−=(v2), . . . ,<(vq),−=(vq)) ∈ Rq×2q.
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With this definition, the purpose of the current thesis is to prove and illustrate the following
result.

Theorem 1.2.5. In the setting above, suppose that (A1)-(A5) hold. Let p := max{k :
<(λk)/r > 1/2}.

1. Suppose that for all k ∈ {1, . . . , q}, <(λk) 6= r/2 for all λk that belong to a dominant class
and that in total, there are at least two dominant types. Then there exist complex-valued
mean zero random variables Ξ1, . . . , Ξp such that

1√
n

(
Yn −

p∑
k=1

n
λk
r Ξkvk

)
L−→ N (0,AV) (1.16)

as n → ∞. Here, N has a non-degenerate, centered multivariate Gaussian mixture
distribution with mixture components V(1), . . . , V(q) and covariance matrix

AV :=MΣVM
t,

where ΣV is defined in (3.7) to (3.9) below Theorem 3.2.1. Furthermore, (AV)i,i > 0 al-
most surely for dominant colours i, whereas (AV)i,i = 0 almost surely for non dominant
colours i.

2. Suppose that there is some k ∈ {1, . . . , q} such that <(λk) = r/2 and that λk belongs to a
dominant class. Then there exist complex-valued mean zero random variables Ξ1, . . . , Ξp
such that

1√
n log(n)

(
Yn −

p∑
k=1

n
λk
r Ξkvk

)
L−→ N (0,AV) (1.17)

as n → ∞. Here N has a non-degenerate, centered multivariate Gaussian mixture
distribution with with mixture components V(1), . . . , V(q) and covariance matrix

AV :=MΣVM
t,

where ΣV is defined in (3.10) and (3.11) below Theorem 3.2.1. (AV)i,i > 0 almost surely
for dominant colours i that belong to the irreducible classes of eigenvalues with real part
r/2, whereas (AV)i,i = 0 almost surely for all other colours.

Remark 4. Theorem 1.2.5 covers the probably most accessible case of urns with a simple
largest eigenvalue (or irreducible R, which has the same consequence). For these urns, typically
one of the following two kinds of results is derived: In the first kind, asymptotic normality
of the rescaled composition vector is proved (e.g., m−ary search tree for m ≤ 26). This is
the case where any eigenvalue λk different from r satisfies <(λk) ≤ r/2, which is well-known
and treated in [40] and [74]. In the second kind, one shows that the urn exhibits some almost
sure oscillating behaviour that is not caused by the normalisation (e.g., m−ary search tree for
m ≥ 27, see [13]). Theorem 1.2.5 states that in the latter case, a CLT can always be derived,
too, if the oscillating term is also used for the centering of the composition vector (possibly
together with some lower order oscillating terms as well). It also covers the classical case of
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the Pólya urn, where the almost sure limit is random.
Note that Theorem 1.2.5 says nothing particularly interesting about non-dominant colours.
As we have seen in Proposition 1.1.4 in the case of urns with two types, a different scaling
is necessary for these colours, as they are not drawn sufficiently often from the urn. This
question is not pursued in this thesis.

Remark 5. The work which inspired the above extended view on CLTs is [61], where a
CLT for the number of key comparisons in Quicksort under the random permutation model
is derived. An alternative proof of the result was later given in [33] and extended to a law of
the iterated logarithm in [75].

Remark 6. Special reducible multicolour urn models with three and four types are studied
by Bose, Dasgupta and Maulik in [8]. The authors analyse the asymptotic behaviour of linear
combinations of the types by an approach that is similar to the methods used in this thesis.
In particular, certain linear combinations of the balls of different colours are shown to have
limiting distributions which are variance mixtures of normal distributions.

We close this chapter with a brief summary of the results and the involved dynamics. Recall
that for urns with two colours, we had real eigenvalues r = λ1 ≥ λ2 and used this spectrum to
distinguish between the cases λ2 <

r
2 (strictly small urn), λ2 =

r
2 (small, but not strictly small

urn) and λ2 >
r
2 (large urn). In the first two cases, one can obtain asymptotic normality by

the “classical” scaling, with an additional log-factor in the asymptotic variance in the second
case. However, in the third case, an additional random term has to be substracted, and if
λ2 = λ1, also the scaling is random. In the triangular case, the eigenvalues are simply the
diagonal elements a1,1 and r. Subject to our balance condition, we only consider the case
where a1,1 < r for urns other than the Pólya urn, in which we have a similar behaviour to
the irreducible case. There are several differences when a1,1 > r, see [42].
For multicolour urns with irreducible replacement matrices, it is also well-known that the type
of asymptotics depends on the relation between the eigenvalues of the replacement matrix.
See [3] and [40]. Again, we have the distinction between small urns, in which case asymptotic
normality is known to hold, and large urns. In the latter case, there are almost sure limits
or oscillations for wich no simple description as in the normal case is known. Pouyanne [67]
proves a limit theorem for balanced and large urns, which contains this almost sure result as
well as convergence in Lp for any p ≥ 1, and thus convergence of all moments.
Another observation that we have already made in the case of irreducible small urns with two
types only is that the weak limit is independent of the initial state. Consequently, it is not
influenced by the outcomes of any finite fixed set of draws, but rather determined by the large
quantity of negligible draws in the late evolution of the process. These “smoothing” effects
lead to the emergence of the normal distribution. On the other hand, for large urns, there are
almost sure, non-degenerate limits. In this case, imbalances caused by the initial distribution
or the first draws create a drift that reinforces itself at a sufficient pace to have an impact on
the asymptotics of the urn composition. See [40] for a discussion of these effects.
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2 Cyclic Urns

Before Theorem 1.2.5 is proved in the general setting, let us exploit its statement for an as-
sessable example: the cyclic urn. This urn model can be defined for each number of colours
q ≥ 2, which makes it a decent example to illustrate various phenomena: On the one hand,
the cyclic urn is subject to a phase transition with respect to the number of colours q and thus
may be used to explain different types of limiting behaviour for urns within the same model.
On the other hand, it is simple enough to allow for explicit calculations. Furthermore, the
proof presented here is of its own interest. This is due to the fact that the proof given below
is based on the contraction method, while the proof of the main theorem relies on martingale
techniques. Finally a connection between the cyclic urn process and the random binary search
tree (BST) is used to construct the random variables Ξ1, . . . , Ξp in Theorem 1.2.5 explicitly
as functions of the BST chain’s limit in its Doob-Martin boundary.
The proceeding and techniques presented below are based on an approach from [61], where a
central limit theorem analogue is derived for the number of key comparisons of the Quicksort
algorithm. The adaption of these techniques for periodicities in urn models might also be of
use in the analysis of periodic phenomena in other discrete structures, where no martingale
structure is at hand. In particular, the oscillating behaviour often is formulated in a distribu-
tional sense only, and one is confronted with the question of the existence of an almost sure
periodic approximation in the first place.
The current chapter is joint work with Prof. Dr. Ralph Neininger; the results presented below
were announced in the extended abstract [59]. A preprint including proofs is available under
https://arxiv.org/abs/1612.08930, and large parts of this chapter are a close adaption
to the content of the mentioned work.

2.1 Introduction

Let q ≥ 2 be a fixed number of colours. In this chapter, we deviate from our former agreement
that a colour is an element of {1, . . . , q} and adjust the definition to the specific nature of the
cyclic urn. That is, we define the set of types to be {0, . . . , q−1} in the context of cyclic urns.
This way of speaking turns out to be much more convenient, but is of course extraneous to
the results.
A cyclic urn with q ≥ 2 colours is given by the following model: The evolution starts with
a deterministic initial configuration, say one ball of colour 0 at time 0. At each integer time
n ≥ 1, a ball is drawn from the urn uniformly at random and independently of the previous
draws. If its type is j, it is returned to the urn together with a new ball of type j+ 1 mod q.
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This replacement policy is visualised by the generating matrix

RCyc :=



0 0 0 · · 0 1

1 0 0 · · 0 0

0 1 0 · · · ·
· · · · · · ·
· · · · · 0 0

0 0 0 · · 1 0

 ∈ Rq×q, (2.1)

where (RCyc)i,j is the number of balls of type i− 1 that are added to the urn after drawing a
ball of colour j−1 for all i, j ∈ {1, . . . , q}. Note that RCyc is an irreducible matrix that satisfies
assumptions (A1)-(A4).
The cyclic urn can be seen as a generalisation of Friedman’s urn (example 4), which is ex-
haustively studied in [25]. We have noted several times that a nice way to think about this
type of urn is as a model of a propaganda campaign, in which all q candidates are so bad that
the persons who listen to them are immediately convinced to vote for the next candidate on
the list of candidates.
Recall that Xn ∈ Rq denotes the urn composition vector, whose ith coordinate is given by
the number of balls of type i − 1 after n draws from the urn. The asymptotic distributional
behaviour of the sequence (Xn)n≥0 up to second order expansions is identified in [39–41]
and [66, 67]; see also [25]. Cyclic urns appear in [39], example 6.3, as well; a curious emer-
gence of cyclic urns is observed in [41], where Janson uses the model to study congruence
classes of depths in random recursive trees.
We now introduce some notation that is needed to formulate the main results. Let e1, . . . , eq
be the standard unit vectors in Rq, such that X0 = e1. For fixed q ≥ 2, set ω := exp( 2πi

q ).

The eigenvalues of RCyc are the qth roots of unity ω0,ω, . . . ,ωq−1. This circular ordering of
the eigenvalues is probably most natural, but we follow the notation introduced in chapter 1
and order them by decreasing real parts instead:

λ1 = 1, λ2 = ω, λ3 = ω
−1, . . . , λq = ωd

q
2
e. (2.2)

Further, we set

σk := <(λk), µk := =(λk).

Dual bases of right and left eigenvectors v1, . . . , vq ∈ Rq, u1, . . . , uq ∈ Rq for λ1, . . . , λq,
respectively, are given by

vk :=
1

q

(
1, λ−1k , λ

−2
k , . . . , λ

−(q−1)
k

)t
∈ Cq, (2.3)

uk :=
(
1, λk, λ

2
k, . . . , λ

(q−1)
k

)t
∈ Cq, 1 ≤ k ≤ q. (2.4)

The asymptotic behaviour of (Xn)n≥0 is as follows. First, it is proved in [30, 40] (see also
Theorem 1.2.3), that for all q ≥ 2 and initial configurations with at least one ball in the urn
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Figure 2.1: Eigenvalues of the cyclic urn for q = 11

at time 0,

Xn

n+ |X0|

a.s.−→ v1,

as n → ∞. That is, the proportions of types in the urn are asymptotically spread evenly
among the colours, and v1 gives the direction of an almost sure drift.
In second order, cyclic urns leave more room for surprises. Let us have a look at the variance
of Xn. Note that as q increases, the eigenvalue with second largest real part and positive
imaginary part λ2 = ω approaches λ1 = 1 “from the left” (in terms of real parts) and gets
arbitrarily close to it. Lemma 1.2.1 now implies that the variance of Xn depends on whether

σ2 = cos
(
2π
q

)
> 1

2 , σ2 =
1
2 or σ2 <

1
2 . As σ2 is monotonously increasing in q, there is a phase

change in the model at q = 7, which is the first q with σ2 >
1
2 .

The same threshold marks the border for the validity of CLTs, as the variance of the Gaussian
limit also increases in q: General results from [40,67,74] imply that the normalised composi-
tion vector Xn converges in distribution to a multivariate normal distribution for 2 ≤ q ≤ 6.
For q ≥ 7 however, the situation changes, as the amplitude of the fluctuation becomes too
pronounced: no classically standardised version of Xn converges weakly to a non-degenerate
limit law. Instead, there exists a complex-valued random variable Ξ2, which depends on q
and X0, such that as n→∞,

Xn − E[Xn]
nσ2

− 2<
(
niµ2Ξ2v2

)
a.s.−→ 0. (2.5)

In other words, there are infinitely many subsequences
(
(Xnm − E[Xnm ])/n

σ2
m

)
m≥1 that con-

verge weakly to different limit laws, as m → ∞. The plane spanned by v2 and v3 in Cq
determines the subspace in which the almost sure periodic deviation from the drift is located.
The convergence in (2.5) has been analysed by means of different techniques. These include
an embedding into continuous time multitype branching processes, stochastic fixed point ar-
guments and martingale techniques, see [40, 47, 66]. The first two approaches yield a weak
formulation of (2.5), but provide information about the distribution of Ξ2.
Summarised in the table below, we have the following limit trichotomy for the cyclic urn
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model:

q approximation of Xn mode of approximation

2, . . . , 5 Xn = nv1 +
√
n · N in distribution

6 Xn = nv1 +
√
n log(n) · N in distribution

7, 8, . . . Xn = nv1 +<
(
nλ2

(
Ξ2 +

1
Γ(1+ω)

)
· v2
)
+ o(nσ2) almost surely

However, the question whether a rescaled version of Xn, centered by E[Xn] + 2< (nωΞ2v2),
obeys a central limit theorem, is not answered in the literature.

The formulation of Theorem 1.2.5 for cyclic urns depends on the number of eigenvalues
that have real parts greater than 1/2. There are 2bq−16 c of them, and we distinguish the cases
6 | q and 6 - q as follows.

Theorem 2.1.1. Let q ≥ 2 with 6 - q and set p := 2bq−16 c. Then, there exist complex-valued
random variables Ξ1, . . . , Ξp such that, as n→∞,

1√
n

(
Xn − E[Xn] −

p∑
k=1

nλkΞkvk

)
L−→ N (0, Σ(q)

)
.

The covariance matrix Σ(q) has rank q− 1 and is given by

Σ(q) :=

q∑
k=2

1

|2σk − 1|
vkv
∗
k.

Note that Σ(q) cannot have full rank q, as all row sums are r and the projection of Xn onto
the subspace spanned by v1 is deterministically (n+ 1)v1. There is no randomness along this
direction.
When 6 | q, the normalisation requires an additional

√
logn factor and the rank of the

covariance matrix is reduced to 2:

Theorem 2.1.2. Let q ≥ 2 with 6 | q and set p := 2bq−16 c. Then, there exist complex-valued
random variables Ξ1, . . . , Ξp such that, as n→∞,

1√
n logn

(
Xn − E[Xn] −

p∑
k=1

nλkΞkvk

)
L−→ N (0, Σ(q)

)
.

The covariance matrix Σ(q) has rank 2 and is given by

Σ(q) = vq/3v
∗
q/3 + vq/3+1v

∗
q/3+1.

The convergences in Theorems 2.1.1 and 2.1.2 also hold for all moments. For an expansion
of E[Xn], see (2.6).
Note that the sum

∑p
k=1 in Theorem 2.1.1 is empty for 2 ≤ q ≤ 5, as well as in Theorem

2.1.2 for q = 6. Hence, our theorems reduce to the central limit laws of Janson [39–41] for
2 ≤ q ≤ 6. The covariance matrices for q ≤ 6 are calculated explicitly in [41], according to
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the formulas in [39].
Theorems 2.1.1 and 2.1.2 imply that, in fact, there are ongoing phase changes in the cyclic urn
model. At each value 6k+ 1 for integer k, a new pair of complex conjugated eigenvalues with
real parts greater than the mark 1/2 emerges. This pair gives rise to almost sure periodicities
in the urn composition that are larger than

√
n. Consequently, two additional terms have

to be added to the centering of the urn composition vector to obtain asymptotic normality.
This random centering can be viewed as an asymptotic expansion of the random variables Xn.

2.1.1 Oscillations

Above, we claimed that the oscillations for q ≥ 7 are genuine and not a result of inappropriate
scaling. This can be seen along the lines of [41], Section 6, for example: (2.5) implies that,
along any subsequence such that µ2 log(nm) mod 2π→ γ as m→∞ for some γ ∈ [0, 2π],

X
(j)
n − n

q

nσ2
L−→ 2

q
<

(
eiγ−2π(j−1)/q

(
Ξ2 +

1

Γ(1+ω)

))
,

jointly in j = 1, . . . , q. Now assume that there is some normalisation that yields weak con-

vergence an(X
(1)
n −bn)

L−→ V, for some non-degenerate random variable V and real constants
an > 0 and bn. Janson shows, using convergence of the subsequences above, that this implies
that either

(i) Ξ2
L
= aW for some real random variable W and a complex constant a, or

(ii) E
[
Ξ32
]
= 0.

Now for all q, E
[
Ξ32
]
6= 0 (see Remark 6.3 in [41]). The first possibility can also be excluded,

as it is shown in [51], that Ξ2 has a Lebesgue density on C. It follows that there really are
oscillations, even with different normalisations.
However, this can also be seen by using the almost sure decomposition of the composition
vector into its spectral components, which are of different sizes for eigenvalues that are not
complex conjugated. This decomposition is explained in section 2.1.2.

We expect that results analogous to Theorems 2.1.1 and 2.1.2 hold for other random combi-
natorial structures in which periodicities have been observed. These structures include other
urn models with almost sure random periodic behavior, see Janson [40, Theorem 3.24], the
size of random m-ary search trees [15], the number of leaves in random d-dimensional (point)
quadtrees [14], secondary cost measures of quicksort with median-of-(2t+ 1) [16], the size of
random fragmentation trees [44] or the probability that there is a single winner in the leader
election algorithm [10].

2.1.2 Components of the process

In this subsection, we prepare the proof of Theorems 2.1.1 and 2.1.2 with some notation
and observations that are repeated in a more general setting in chapter 3. For cyclic urns,
the spectral decomposition (1.14) assumes a particularly simple form, as all eigenvalues are
distinct, v1 is deterministic and a multiple of (1, . . . , 1)t and the right eigenvectors form an
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orthonormal basis of Cq. The joint asymptotics of the projections are identified in Proposi-
tion 2.1.3. The proposition directly implies Theorems 2.1.1 and 2.1.2 and also explains the
occurrence of the random centering as a sum of terms of the form <(nλkΞkvk) as well as the
normal fluctuation in Theorems 2.1.1 and 2.1.2. All proofs and calculations are deferred to
Section 2.2.

Recall that q ≥ 2 is fixed and X0 = e1. An exact asymptotic expression for the mean value
of Xn is given in [47], Lemma 6.7. This expression implies the expansion, as n→∞,

E [Xn] = nv1 +

p∑
k=2

nλk
1

Γ(1+ λk)
vk +

{
o(
√
n), if 6 - q,

O(
√
n), if 6 | q.

(2.6)

The sum in the expansion of the mean already indicates that there are more oscillating terms
than (2.5) suggests at a first glance. Moreover, for q ≥ 7, Lemma 1.2.1 states that the
variances and covariances of Xn are of order n2σ2 . We will recover this result in section 2.2;
this also explains the normalisation n−σ2(Xn − nv1) in (2.5).

Using (1.13) and (1.14), we arrive at the spectral decomposition

Xn =

q∑
k=1

πk(Xn)vk

of Xn. Let (Fn)n≥0 denote the canonical filtration of the urn process as defined in (1.15).
The reason why (1.14) is a particularly good decomposition lies in the form of the conditional
expectation, which is

E [Xn+1 |Fn] =
q∑
k=1

X
(k)
n

n+ 1
(Xn + RCycek) =

(
IdCq +

RCyc

n+ 1

)
Xn, n ≥ 0. (2.7)

In other words, the conditional expectation is a linear function of the current state. This in
turn implies that each coefficient in the projections π1(Xn)v1, . . . , πq(Xn)vq can be rescaled
in order to yield a complex-valued martingale. In the following, we will study the projections
π1(Xn)v1, . . . , πq(Xn)vq separately via martingale techniques and then analyse their joint
behaviour by means of the contraction method. The eigenspace decomposition in combination
with martingale techniques is implicit in the work of Smythe [74] and more explicit in the
proof of Theorem 3.5 in [67] for certain projections. We adopt it for all eigenspace projections.

There are two types of projections: If σk >
1
2 (that is, k ≤ p), the corresponding projection

πk(·)vk is called large. Large components of Xn give, after scaling, rise to almost sure limits,
and their magnitudes are larger than

√
n. The emergence of these almost sure limits is the

reason why there is no direct central limit theorem for q > 6. However, when considered
individually, there is a CLT analogue for the fluctuation of each large martingale about its
limit, which we will use in the CLT analogue for (Xn)n≥0. In contrast, projections πk(·)vk
with σk ≤ 1

2 are often called small and yield non-convergent martingales.
Because each projection has a complex-conjugated counterpart, oscillations as in (2.5) arise.
In (2.5) only the largest oscillating term is considered. On the other hand, the small com-
ponents πk(Xn)vk oscillate, too, but their small oscillation is overcast by the general

√
n

noise.
Because the projections are typically complex-valued, we jointly consider their real and
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imaginary parts in the following. Note also that it is sufficient to consider projections whose
eigenvalues have non-negative imaginary parts; that is, we restrict to projections correspond-
ing to σ1, σ2, σ4, . . . , σbq

2
c.

Moreover, note that ut1(Xn) = X
(1)
n + . . . X

(q)
n is a particularly simple projection, as it counts

the number of balls in the urn at time n, which is deterministically n+ 1. Consequently, for
all n ≥ 0,

ut1(Xn − E[Xn]) = 0,

and the corresponding projection will not be considered in the following.
The behaviour of the small projections πk(Xn) is determined in [40,57]. If k ∈ N is such that
σ2k <

1
2 and σ2k 6= −1, the results in [40,57] imply that

Pn,k :=
1√
n

(
<(ut2k(Xn − E[Xn]))
=(ut2k(Xn − E[Xn]))

)
L−→ N (0, IdR2

1− 2σ2k

)
. (2.8)

If q is even, the imaginary part of the projection associated with σq = −1 is zero and

Pn,q/2 := n−1/2utq(Xn − E[Xn])
L−→ N (0, 1/3). For q = 2, the last mentioned result is also

proved in [25, Theorem 5.1].
If, on the other hand, 6 | q, there is a pair of eigenvalues with real parts σq/3 = σq/3+1 =

1
2 . In

this case the scaling requires an additional
√

logn factor, and, again, it follows with [40, 57],
that

Pn,k :=
1√

n logn

(
<(utq/3(Xn − E[Xn]))
=(utq/3(Rn − E[Xn]))

)
L−→ N (0, 1

2
IdR2

)
. (2.9)

In contrast, we set

Pn,k :=
1√
n

(
<
(
ut2k(Xn − E[Xn]) − nλ2kΞ2k

)
=
(
ut2k(Xn − E[Xn]) − nλ2kΞ2k

) ) (2.10)

for large projections πk(·)vk, k ∈ {1, . . . , q}. Here, the complex-valued random variable Ξ2k
is defined as a martingale limit in (2.13), Section 2.2.1. In this section, we also prove the
convergence of the variances and covariances of all Pn,k.

Now, the random two-dimensional vectors Pn,k are defined for all 1 ≤ k ≤ bq2 c. Note
that components (2.8) and (2.9) describe the normalised fluctuations of projections whose
associated martingales are not convergent. In contrast, in the case of projections that can be
rescaled to convergent martingales, components (2.10) describe their normalised fluctuations
about an almost sure approximation coming from the martingale limit. As a main contribution
to the known results on cyclic urns, we show that Pn,1, . . . , Pn,bq

2
c are jointly asymptotically

normal and even asymptotically independent. This is the content of the following proposition,
which directly implies Theorems 2.1.1 and 2.1.2 via an application of the Cramér-Wold device.

Proposition 2.1.3. Assume that 6 | q, and set Zn := (Pn,1, . . . , Pn,q/2) ∈ Rq−1 with compo-
nents as defined in (2.8)–(2.10). Then, as n→∞,

Zn
L−→ N (0,Mq) ,
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where

Mq :=
1

2
diag

(
IdR2

|2σ2 − 1|
, . . . ,

IdR2

|2σp−1 − 1|
, IdR2 ,

IdR2

|2σp+3 − 1|
, . . . ,

IdR2

|2σq−2 − 1|
,
2

3

)
. (2.11)

For general clarification purposes, we only give a complete proof of Proposition 2.1.3 for
6 | q. This case is more complex as there are two components with scaling

√
n log(n) instead

of
√
n. However, it is immediate from the derived asymptotics of the projections and the

proof technique, that the proposition holds for all q.

The proof of Proposition 2.1.3 is organised as follows: We first derive first and second
moments as well as mixed moments for all projections in Section 2.2.1. In Section 2.2.2, we
use an almost sure recurrence relation for the sequence (Xn)n≥0 as explained in [47] to derive
pointwise decompositions of the complex random variables Ξ1, . . . , Ξp. These decompositions
imply recurrences for the components of Zn, see equation (2.19) in Section 2.2.2. Starting
from the recurrence for Zn, we are then able to prove Proposition 2.1.3 by means of stochastic
fixed point arguments in the context of the contraction method within the Zolotarev metric
ζ3, see [62] for general reference. More specifically, we draw back to an approach to bound
the Zolotarev distance and some estimates from [61] where a related univariate problem was
discussed.

2.2 Proof of Theorems 2.1.1 and 2.1.2

We start with estimates for the covariance matrix of the sequence (Zn)n≥0.

2.2.1 Convergence of the covariance matrix

Recall that we study the centered process (Xn−E[Xn])n≥0 via its spectral decomposition with
respect to the orthogonal basis {vk : 1 ≤ k ≤ q} of the unitary vector space Cq, i.e.

Xn − E[Xn] =
q∑
k=1

πk (Xn − E[Xn]) vk =
q∑
k=1

utk (Xn − E[Xn]) vk

as in (1.13). The evolution (2.7) of the process implies that for each eigenspace coefficient
utk (Xn − E [Xn]), 1 ≤ k ≤ q, there is a complex normalisation

M
(k)
n :=

Γ(n+ 1)

Γ(n+ 1+ λk)
utk (Xn − E [Xn]) , n ≥ 1, (2.12)

that turns it into a centered martingale. We set M
(k)
0 := 0.

The asymptotic behaviour of these eigenspace-martingales is known to depend on λk, see
[40,41,66]: First, for all k ∈ {1, . . . , q} with σk > 1/2, there exists a complex-valued, centered
random variable Ξk such that, as n→∞,

M
(k)
n

a.s.−→ Ξk. (2.13)

The convergence also holds in Lp for every p ≥ 1. Note that the random variables Ξ1, . . . , Ξp
in (2.13) are identical with Ξ1, . . . , Ξp in (2.10) and in Theorems 2.1.1 and 2.1.2. On the other
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hand, if σk ≤ 1/2,
(
M

(k)
n

)
n≥0

is known to converge in distribution to a normal limit law,

after proper normalisation.
Our subsequent analysis requires asymptotics of the mean and covariance structure of

ut1(Xn), . . . , u
t
q(Xn). Exploiting the dynamics of the urn in (2.7), elementary calculations

imply the results presented in the following lemma.

Lemma 2.2.1. For k ∈ {1, . . . , q},

E
[
utk (Xn)

]
=

q∑
j=1

(λk)
j−1E

[
X
(j)
n

]
=

{
Γ(n+1+λk)

Γ(n+1)Γ(1+λk)
, λk 6= −1,

0, λk = −1.
(2.14)

For k, ` ∈ {1, . . . , q},

E
[
utk (Xn)u

t
` (Xn)

]
=

n∏
j=1

(
j+ λk + λ`

j

)
+

n∑
m=1

λkλ`
m

m−1∏
j=1

(
j+ λkλ`

j

) n∏
t=m+1

(
t+ λk + λ`

t

)
. (2.15)

Proof. (2.14) immediately follows from (2.7). For (2.15), let k, ` ∈ {1, . . . , q} and n ≥ 1 and
note that, almost surely,

E
[
utk(Xn)u

t
`(Xn)|Fn−1

]
=

(
1+

λk + λ`
n

)
utk(Xn−1)u

t
`(Xn−1) +

λkλ`
n

(uku`)
t(Xn−1).

Here, we use the abbreviation (uku`)
t(Xn−1) :=

∑q
j=1 (λkλ`)

j−1 X
(j)
n−1.

Remark 1. Equation (2.15) implies that for all k with σk < 1/2, E[|utk(Xn − E[Xn])|2] is of
linear order, for all k with σk = 1/2, E[|utk(Xn−E[Xn])|2] is of order n logn and for all k with
1/2 < σk < 1, E[|utk(Xn − E[Xn])|2] is of order n2σk . To make this more visible from (2.15),
consider the following case distinctions.

We first consider the real cases k = ` = 1 and k = ` = q for 2 | q:

E
[
|ut1(Xn − E[Xn])|2

]
= (n+ 1)2 − (n+ 1)2 = 0

and, if 2 | q,

E
[
|utq(Xn − E[Xn])|2

]
=
n+ 1

3
− 0 =

n+ 1

3
.

Now, λk + λ` = −1 only if 3 | q and {k, `} = {2q/3, 2q/3+ 1}. In this case,

E
[
|ut2q/3(Xn − E[Xn])|2

]
=
1

n

n∑
j=1

j−

∣∣∣∣ Γ(n+ 1+ λk)

Γ(n+ 1)Γ(1+ λk)

∣∣∣∣2 ∼ n+ 1

2
.

On the other hand, λkλ` = λk + λ` only if 6 | q and {k, `} = {q/3, q/3 + 1}. In this case,
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λk + λ` = 1 and

E
[
|utq/3(Xn − E[Xn])|2

]
= (n+ 1)

n+1∑
j=1

1

j
−

∣∣∣∣ Γ(n+ 1+ λk)

Γ(n+ 1)Γ(1+ λk)

∣∣∣∣2 ∼ n logn.

Thirdly, λk + λ` = 0 if and only if 2 | q and σk = −σ` and µk = −µ`. If {k, `} = {1, q}, it is
immediate that E

[
utk(Xn − E[Xn])ut`(Xn − E[Xn])

]
= 0. In all other cases,

E
[
utk(Xn − E[Xn])ut`(Xn − E[Xn])

]
∼

nλkλ`

Γ(1+ λkλ`)
−

1

Γ(1+ λk)Γ(1+ λ`)
.

Finally, λkλ` = −1 if σk = −σ` and µk = µ` and then,

E
[
utk(Xn − E[Xn])ut`(Xn − E[Xn])

]
=

(λk + λ`)Γ(n+ 1+ λk + λ`)

Γ(2+ λk + λ`)Γ(n+ 1)
−
Γ(n+ 1+ λk)Γ(n+ 1+ λ`)

Γ(n+ 1)2Γ(1+ λk)Γ(1+ λ`)

∼

(
λk + λ`

Γ(2+ λk + λ`)
−

1

Γ(1+ λk)Γ(1+ λ`)

)
nλk+λ` .

In all other cases,

E
[
utk(Xn − E[Xn])ut`(Xn − E[Xn])

]
=

1

λkλ` − λk − λ`

(
Γ(n+ 1+ λkλ`)

Γ(n+ 1)Γ(λkλ`)
−
Γ(n+ 1+ λk + λ`)

Γ(n+ 1)Γ(λk + λ`)

)
−
Γ(n+ 1+ λk)Γ(n+ 1+ λ`)

Γ(n+ 1)2Γ(1+ λk)Γ(1+ λ`)

∼
1

(λkλ` − λk − λ`)Γ(λkλ`)
nλkλ` −

(
1

(λkλ` − λk − λ`)Γ(λk + λ`)
+

1

Γ(1+ λk)Γ(1+ λ`)

)
nλk+λ` .

Remark 7. Mixed moments of the corresponding real and imaginary parts can be obtained
from (2.15) via the identities

E
[
<(utk(Xn))<(ut`(Xn))

]
=
1

2
<
(
E
[
utk(Xn)u

t
`(Xn)

]
+ E

[
utk(Xn)u

t
`(Xn)

])
,

E
[
=(utk(Xn))=(u

t
`(Xn))

]
=
1

2
<
(
E
[
utk(Xn)u

t
`(Xn)

]
− E

[
utk(Xn)u

t
`(Xn)

])
,

E
[
<(utk(Xn))=(u

t
`(Xn))

]
=
1

2
=
(
E
[
utk(Xn)u

t
`(Xn)

]
+ E

[
utk(Xn)u

t
`(Xn)

])
.

However, for martingales
(
M

(k)
n

)
n≥0

corresponding to eigenvalues with real parts σk >
1
2 ,

we need the L2-rate of convergence to the limit rather than their variance. This rate is
calculated in the following lemma.

Lemma 2.2.2. For k ≥ 1 such that 1/2 < σk < 1 and Ξk as in (2.13), as n→∞,

E
[∣∣∣M(k)

n − Ξk

∣∣∣2] ∼ 1

2σk − 1
n1−2σk
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and

E
[(
M

(k)
n − Ξk

)2]
∼

1

(1− 2λ−1k )Γ(2λk)
n−1.

In particular,

E
[
<
(
M

(k)
n − Ξk

)2]
∼
1

2

1

2σk − 1
n1−2σk ,

E
[
=
(
M

(k)
n − Ξk

)2]
∼
1

2

1

2σk − 1
n1−2σk ,

E
[
<
(
M

(k)
n − Ξk

)
=
(
M

(k)
n − Ξk

)]
∼
1

2
=

(
1

(1− 2λ−1k )Γ(2λk)

)
n−1.

Proof. We show the claim for E
[∣∣∣M(k)

n − Ξk

∣∣∣2] in an exemplary way. Here, we decompose

E
[∣∣∣M(k)

n − Ξk

∣∣∣2]
=

∞∑
m=n

E
[∣∣∣M(k)

m −M
(k)
m+1

∣∣∣2]

=

∞∑
m=n

∣∣∣∣ Γ(m+ 2)

Γ(m+ 2+ λk)

∣∣∣∣2 E
[∣∣∣∣utk(Xm+1 − Xm) −

λk
m+ 1

utk(Xm)

∣∣∣∣2
]

=

∞∑
m=n

∣∣∣∣ Γ(m+ 2)

Γ(m+ 2+ λk)

∣∣∣∣2(E [∣∣utk(Xm+1 − Xm)
∣∣2]− 1

(m+ 1)2
E
[∣∣utk(Xm)∣∣2])

=

∞∑
m=n

∣∣∣∣ Γ(m+ 2)

Γ(m+ 2+ λk)

∣∣∣∣2(1+ 1

1− 2σk

1

(m+ 1)2

(
Γ(m+ 1+ 2σk)

Γ(m+ 1)Γ(2σk)
− (m+ 1)

))

∼

∞∑
m=n

m−2σk ∼
1

2σk − 1
n1−2σk

as n→∞.

Taken together, the calculations of this subsection imply that as n → ∞, the covariance
matrix of Zn converges to Mq, which is defined in (2.11).

2.2.2 Decomposition and recursions

In this subsection, we derive a recurrence for the sequence (Zn)n≥0. The proceeding is the
following: First, we briefly explain how to derive an almost sure recurrence for the sequence
(Xn)n≥0 which then extends to the projections. These recursive representations yield almost
sure decompositions of the martingale limits Ξk and thus also of the components of Zn.

Recall that in the current chapter, we always start with one ball of type zero. However,
in the recursions below, it will be necessary to start the cyclic urn process with one ball of
an arbitrary type j ∈ {0, . . . , q− 1}. Denote the resulting sequence of composition vectors by
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(
X
[j]
n

)
n≥0

. Their distribution satisfies the relation

L
((
X
[j]
n

)
n≥0

)
= L

((
(RCyc)

j Xn

)
n≥0

)
, 0 ≤ j ≤ q− 1. (2.16)

Consequently, the martingales obtained from the processes
(
X
[j]
n

)
n≥0

, j ∈ {0, . . . , q − 1}, are

related via the distributional identity

L
((
M

(k),[j]
n

)
n≥0

)
= L

((
λ
j
kM

(k)
n

)
n≥0

)
,

where j ∈ {0, . . . , q− 1}.

We now use the following simple change of perspective to decompose (Xn)n≥0 =
(
X
[0]
n

)
n≥0

into two cyclic urn processes: In our original process, there is one ball of colour 0 in the urn
at time 0. This ball is drawn with probability one in the first step and put back to the urn,
together with a ball of colour 1. Now imagine that the original urn is split into two smaller
urns, and we put the ball of type 0 into the first urn and the ball of type 1 into the second
urn. Therefore, like in a matryoshka doll, we find two smaller urns within the original urn.
The evolution of the cyclic urn process continues as usual, with the only difference that we
add the new balls to the same urn as the drawn ball. This yields a natural decomposition of
all balls that are added to the urn after time 1 into balls that are descendants of the first type
0 ball and balls that are descendants of the first type 1 ball. (Note that this is just another
formulation of the tree-based approach in [47, Section 6.3], see also [12]. This approach is used
in section 2.3, where we also explain the BST algorithm, but in order to avoid an additional
load of notation, we use urn language in this place.)
In this subdivision of the original urn, let In denote the number of draws from the type 0 urn
after n ≥ 1 draws from the original urn. In particular, In gives the local time at the first of
the two smaller urns and thus, I1 = 0. It is easy to see that (In+1 + 1)n≥0 follows the same
dynamics as the number of balls of type 1 in the Pólya urn from example 1. Consequently,
at any time n ≥ 1, the number of descendants of the first ball is uniformly distributed on
{0, . . . , n− 1}. In particular, divided by n, it almost surely converges to a random variable U
with L(U) = unif(0, 1). Furthermore, conditionally on {U = u}, In is Bin(n−1, u)-distributed.
This implies, with Jn := n− 1− In (the local time in the second urn), the recurrence

X
[0]
n = X

[0],{1}
In

+ X
[1],{2}
Jn

= X
[0],{1}
In

+ RCycX
[0],{2}
Jn

, n ≥ 1. (2.17)

Here, the sequences (X
[0],{1}
n )n≥0 and (X

[1],{2}
n )n≥0 denote the composition vectors of the cyclic

urns given by the evolutions of the balls in the two smaller urns (upper indices [0] and [1]
denote the initial type, upper indices {1} and {2} distinguish between the first and the second

urn). They are independent of In. We have set (X
[0],{2}
n )n≥0 := (RtCycX

[1],{2}
n )n≥0, and note that

due to identity (2.16), (X
[0],{2}
n )n≥0 is a cyclic urn process started with one ball of type 0 at

time 0.
Now, applying the transformation and scaling (2.12) which turn Xn into M

(k)
n to the left

and right hand side of (2.17), letting n → ∞ and using the convergence in (2.13) yields the
following almost sure decomposition of the Ξk:
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Proposition 2.2.1. For all k ≥ 1 with σk >
1
2 there exist random variables Ξ

{1}
k , Ξ

{2}
k such

that

Ξk = U
λkΞ

{1}
k + λk(1−U)

λkΞ
{2}
k + gk(U). (2.18)

U,Ξ
{1}
k , Ξ

{2}
k are independent and Ξ

{1}
k and Ξ

{2}
k have the same distribution as Ξk. Here,

gk(u) :=
1

Γ(1+ λk)

(
uλk + λk(1− u)

λk − 1
)
.

Remark 8. In [41], it is noted that the distribution of Ξ2 is also determined by the distribu-
tional equations

L(Z) = L
(
Wω

(
Ξ2 +

1

Γ(1+ λ2)

))
,

L(Z) = L
(
Uω(Z+ωZ ′)

)
,

where L(Z) = L(Z ′), L(W) = Exp(1), L(U) = unif(0, 1), and W,Ξ2, U, Z, Z
′ are independent,

together with E[Z] = 1. Here, ω = exp
(
2πi
q

)
as before.

Finally, we use (2.17) and (2.18) to obtain a decomposition of (Zn)n≥0. After some calcu-
lations, we see that

Zn = ρ−1In ρnZ
{1}
In

+ ρ−1Jn ρnDZ
{2}
Jn

+ ρnFn, n ≥ 1, (2.19)

where ρ0 := ρ1 := IdRq−1 and ρk := 1√
k
diag

(
1, . . . , 1, 1√

log k
, 1√

log k
, 1, . . . , 1

)
for k ≥ 2. The

additional factor of
√

log k is needed for the real and imaginary part of eigenspace q/3 (recall
that σq/3 =

1
2). D is a (q− 1)× (q− 1) matrix, which is composed of rotation matrices

D =



cos
(
2π
q

)
− sin

(
2π
q

)
sin
(
2π
q

)
cos
(
2π
q

)
. . .

cos
(
2π(q/2−1)

q

)
− sin

(
2π(q/2−1)

q

)
sin
(
2π(q/2−1)

q

)
cos
(
2π(q/2−1)

q

)
−1


.

Lastly, the “error term” Fn is made up of three components: Setting

Gk,n(`) :=
Γ(`+ 1+ λk)

Γ(`+ 1)Γ(1+ λk)
+ λk

Γ((n− 1− `) + 1+ λk)

Γ((n− 1− `) + 1)Γ(1+ λk)
−

Γ(n+ 1+ λk)

Γ(n+ 1)Γ(1+ λk)
(2.20)
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for ` ∈ {0, . . . , n− 1}, we have Fn = F
{1}
n + F

{2}
n , where

F
{1}
n :=



< (G2,n(In))
= (G2,n(In))

...
< (Gp−1,n(In))
= (Gp−1,n(In))
< (Gp+1,n(In))
= (Gp+1,n(In))

...
0


−



<
(
nλ2g2(U)

)
=
(
nλ2g2(U)

)
...

<
(
nλp−1gp−1(U)

)
=
(
nλp−1gp−1(U)

)
0
...
0


,

and F
{2}
n is given by the sum

<
((
Iλ2n − (nU)λ2

)
Ξ
{1}
2 + λ2

(
Jλ2n − (n(1−U))λ2

)
Ξ
{2}
2

)
=
((
Iλ2n − (nU)λ2

)
Ξ
{1}
2 + λ2

(
Jλ2n − (n(1−U))λ2

)
Ξ
{2}
2

)
...

<
((
I
λp−1
n − (nU)λp−1

)
Ξ
{1}
p−1 + λp−1

(
J
λp−1
n − (n(1−U))λp−1

)
Ξ
{2}
p−1

)
=
((
I
λp−1
n − (nU)λp−1

)
Ξ
{1}
p−1 + λp−1

(
J
λp−1
n − (n(1−U))λp−1

)
Ξ
{2}
p−1

)
0
...
0


.

Note that DMqDt =Mq.

2.2.3 Contraction method

By decomposition (2.19), we prepared a proof of Proposition 2.1.3 that is based on the
contraction method. The contraction method is an approach for the derivation of weak con-
vergence that originates in the analysis of algorithms and data structures and that recently
has proved successful in the context of Pólya urn schemes as well, see [47]. In order to ap-
ply the method, in the first place, information about the asymptotics of moments is needed.
The basic proceeding then is the following: Starting from a distributional recurrence for a
normalised sequence (Vn)n≥0 of random variables under consideration, a distributional fixed
point equation for a potential limit is guessed. Then, the fixed point equation is used to
define a contractive (with respect to an appropriate probability metric) measure-valued map
that has a unique fixed point. Finally, using the recurrence and the fixed point equation,
convergence of the distributions (L(Vn))n≥0 with respect to the probability metric is shown,
and if this implies weak convergence, we are done.
Note that this approach yields a characterisation of the limit as a fixed point of measure-valued
maps in appropriate spaces. However, as in the derivation of limit theorems via martingale
arguments, the limit distribution usually is not given explicitly and it can be a hard task to
derive some of its properties.
The contraction method had its debut in algorithmic contexts in the analysis of the Quick-
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sort algorithm in Rösler [71]. Subsequently, it was independently developed by Rösler [72]
and Rachev and Rüschendorf [68]. Until 2001, most applications from computer science were
treated using the minimal L2-metric `2. Neininger and Rüschendorf [62,63] further developed
the contraction method for ideal metrics. The most prominent example for these metrics is
the Zolotarev metric, which will also be used in the present proof. Since its introduction, the
contraction method has been successfully applied to Quicksort, depths of nodes in random
binary search trees, the profile of random binary search trees, the Wiener index of random
binary search trees, size of random m-ary search trees, the size and path lengths of random
tries, mergesort, randomized game tree evaluation, maxima in right triangles, the size of criti-
cal Galton Watson trees and broadcast communication models, for example. For an overview
in German, see [60].

Problem Structure. The general setting in which the contraction method is usually applied,
is the following: Let (Ṽn)n∈N0 be a sequence of d−dimensional random variables and n0 ∈ N.
We assume that the first n0 variables Ṽ0, . . . , Ṽn0−1 are given initialising random vectors, and
that for n ≥ n0, the sequence satisfies a distributional recursion of the form

L
(
Ṽn

)
= L

 K∑
j=1

Ã
{j}
n Ṽ

{j}

I
(j)
n

+ b̃n

 , n ≥ n0.

In the above, K ≥ 1 is a number which typically is deterministic, Ã
{1}
n , . . . , Ã

{K}
n are random

d × d-matrices, b̃n is a random d−dimensional vector and In is a vector whose components

I
(j)
n are elements of {0, . . . , n} for j ∈ {1, . . . , K}. Furthermore, (Ṽ

{1}
n )n≥0, . . . , (Ṽ

{K}
n )n≥0 are

identically distributed as (Ṽn)n≥0 and (Ã
{1}
n , . . . , Ã

{K}
n , b̃n, In)n≥0, (Ṽ

{1}
n )n≥0, . . . , (Ṽ

{K}
n )n≥0 are

independent.
In a next step, the random sequence (Ṽn)n≥0 is normalised. That is, we define

Vn := C−1
n (Ṽn −Mn), n ≥ 0,

for vectors Mn ∈ Rd and symmetric, positive definite d × d-matrices Cn. These are usually
of the order of the expectation and the covariance matrix of Ṽn, if they exist. Accordingly,
there is a similar recursion for (Vn)n≥0,

L(Vn) = L

 K∑
j=1

A
{j}
n V

{j}

I
(j)
n

+ bn

 , n ≥ n0. (2.21)

Here, independence conditions and distributional relations are as in the original recursion,
and

A
{j}
n := C

−1/2
n Ã

{j}
n C

1/2

I
(j)
n

, bn := C
−1/2
n

b̃n −Mn +

K∑
j=1

Ã
{j}
nMI

(j)
n

 .
Limit equations. If, indeed, (Vn)n≥0 converges weakly to some random vector V and,

additionally, the coefficients in (2.21) converge in an appropriate sense, the right hand side
of (2.21) can be regarded as a transformation of a single probability measure on Rd. More
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precisely, if A
{j}
n → Aj, bn → b as n→∞ (in some sense), it is plausible from equation (2.21),

that the distribution of V satisfies a fixed point equality of the form

L(V) = L

 K∑
j=1

A{j}V {j} + b

 , (2.22)

where (A{1}, . . . , A{K}, b), V {1}, . . . , V {K} are independent and L(V {j}) = L(V) for j = 1, . . . , K.
In order to turn this observation into a proof strategy, letM denote the space of all probability
measures on Rd and let T be a map on probability distributions, defined by

T :M→M, µ 7→ L
 K∑
j=1

A{j}Z{j} + b

 , (2.23)

where, again, (A{1}, . . . , A{K}, b), Z{1}, . . . , Z{K} are independent and L(Z{j}) = µ for j = 1, . . . , K.
If there is a weak limit V of (Vn)n≥0 with property (2.22), its distribution should be a fixed
point of the map T . Moreover, asymptotically, L(Vn+1) should be close to T(L(Vn)).
It now stands to reason to think of the setting of Banach’s fixed point theorem, and this is
exactly what the contraction method formalises, as the name suggests. The first step in the
reasoning is to equip a suitable subspace M∗ ⊂ M with a complete metric δ, in such a way
that the restriction of T toM∗ is a contraction in the metric space (M∗, δ). In a second step,
convergence of L(Vn) to the distribution of the fixed point in δ is shown. If the metric implies
weak convergence, convergence in distribution follows.
Note that in particular, this proceeding yields a unique fixed point of T in M∗. Without
restricting T to an appropriate subspaceM∗ ⊂M, this usually is not true, as maps as (2.23)
often do not have unique fixed points in the space of all probability measures. However, the
fixed points that arise in the analysis of algorithms as limits are usually characterised by
additional moment conditions.

2.2.4 The Zolotarev metric

As briefly mentioned, in Proposition 2.1.3, we show weak convergence by means of the stronger
convergence within the Zolotarev metric. The Zolotarev metric has been studied systemati-
cally in the context of distributional recurrences in [62]. In this place, we restrict ourselves
to giving definitions of the relevant quantities and properties.
Let X and Y be two Rd-valued random variables. The Zolotarev distance ζ3(X, Y) of their
distributions is defined as

ζ3(X, Y) := ζ3 (L(X),L(Y)) := sup
f∈F3

|E[f(X) − f(Y)]|,

where

F3 :=
{
f ∈ C2(Rd,R) : ‖D2f(x) −D2f(y)‖op ≤ ‖x− y‖, x, y ∈ Rd

}
.

In words, F3 is the set of all twice continuously differentiable functions from Rd to R, whose
second derivative is 1-Hölder continuous.
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We call a pair (X, Y) ζ3-compatible if the expectation and the covariance matrix of X and
Y coincide and if both ‖X‖3, ‖Y‖3 < ∞. It is known that this implies the finiteness of the
Zolotarev distance, ζ3(X, Y) <∞. An important property of ζ3 is that it is (3,+)-ideal:

ζ3(X+ Z, Y + Z) ≤ ζ3(X, Y), ζ3(cX, cY) = c
3ζ3(X, Y)

for random vectors X, Y, Z, where Z is independent of X, Y and c > 0. For a linear transfor-
mation A of Rd, we further have

ζ3(AX,AY) ≤ ‖A‖3opζ3(X, Y). (2.24)

The use of the Zolotarev metric ζ3 for our purposes requires a slightly modified version of
recurrence (2.19), as we need to ensure its finiteness in the first place. Consequently, by the
above, we need to find a sequence of random vectors that is sufficiently close to (Zn)n≥0 and
has fixed covariance matrix Mq to guarantee the finiteness of the corresponding Zolotarev
distances ζ3.

As noted in section 2.2.1, the covariance matrices (Cov(Zn))n≥0 converge componentwise
to Mq, and their limit Mq is invertible. Thus, there exists n0 ∈ N such that for all n ≥ n0,
Cov(Zn) is invertible. If we set

Σn := 1{n<n0}IdRq−1 + 1{n≥n0}M
1/2
q Cov(Zn)

−1/2, (2.25)

Σn is invertible for all n ≥ 0 and we see that ΣnZn has covariance matrix Mq for all n ≥ n0.
Let

Nn := ΣnZn = A
{1}
n N

{1}
In

+A
{2}
n N

{2}
Jn

+ bn, (2.26)

where the right hand side is a recursive decomposition of Nn with coefficients

A
{1}
n := Σnρnρ

−1
In
Σ−1
In
, A

{2}
n := Σnρnρ

−1
Jn
DΣ−1

Jn
, bn := Σnρn

(
F
{1}
n + F

{2}
n

)
.

We conclude the current subsection with a lemma that will be used in the proof of Propo-
sition 2.1.3 and can be proved similarly to Lemma 2.1 in [61].

Lemma 2.2.3. Let V1, V2,W1,W2 be random variables in Rd such that (V1, V2) and (V1 +
W1, V2 +W2) are ζ3−compatible. Then, we have

ζ3(V1 +W1, V2 +W2) ≤ ζ3(V1, V2) +
2∑
i=1

(
‖Vi‖23‖Wi‖3 +

‖Vi‖3‖Wi‖23
2

+
‖Wi‖33
2

)
.

2.2.5 Preparatory lemmata

In this section, we collect some technical lemmata that are needed for the proof of Proposition
2.1.3 in the next section. These concern asymptotics for the coefficients that appear in
decompositions (2.19) and (2.26) of Zn and Nn, respectively. We first look at the asymptotics
of the coefficients arising in (2.26).
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Lemma 2.2.4. For all 1 ≤ s <∞, as n→∞,∥∥∥A{1}
n −

√
U · IdRq−1

∥∥∥
s
−→ 0 and

∥∥∥A{2}
n −

√
1−U · D

∥∥∥
s
−→ 0.

Proof. We first check almost sure convergence. Both
√
In/n,

√
(In log In)/(n logn) → √U

and
√
Jn/n,

√
(Jn log Jn)/(n logn) → √1−U a.s. as n →∞. Also, because In →∞ a.s. as

n → ∞, both Σn, Σ
−1
In
→ IdRq−1 . The claim now follows for all 1 ≤ s < ∞ by an application

of the dominated convergence theorem.

Lemma 2.2.5. Let k ∈ {1, . . . , p}, i.e. σk >
1
2 . As n→∞,∥∥∥∥∥

(
In

n

)λk
−Uλk

∥∥∥∥∥
3

= O
(
n−1/2

)
.

Proof. Let n ≥ 1 be arbitrary and recall that conditionally on {U = u}, In is binomially
Bin(n − 1, u)-distributed. Let Bn−1,u be a random variable with L(Bn−1,u) = Bin(n − 1, u).
Then ∥∥∥∥∥

(
In

n

)λk
−Uλk

∥∥∥∥∥
3

3

=

∫ 1
0

E

∣∣∣∣∣
(
Bn−1,u
n

)λk
− uλk

∣∣∣∣∣
3
du

=

∫ 1/n
0

E

∣∣∣∣∣
(
Bn−1,u
n

)λk
− uλk

∣∣∣∣∣
3
du+

∫ 1
1/n

E

∣∣∣∣∣
(
Bn−1,u
n

)λk
− uλk

∣∣∣∣∣
3
du

=: I(1)(n) + I(2)(n).

On
[
0, 1n

]
, the triangle inequality and |α+ β|s ≤ 2s−1(|α|s + |β|s) imply that

I(1)(n) ≤
∫ 1/n
0

E

[(∣∣∣∣(Bn−1,un

)σk∣∣∣∣+ |uσk |

)3]
du

≤ 4
∫ 1/n
0

E

[∣∣∣∣Bn−1,un

∣∣∣∣3σk
]
+ E

[
u3σk

]
du

≤ 4
(
n−3σk−1E

[
B3n−1,1/n

]3σk
+

1

3σk + 1
n−3σk−1

)
= O

(
n−3σk−1

)
as n→∞.
On

[
1
n , 1
]
, the triangle inequality and |α+ β|s ≤ 2s−1(|α|s + |β|s) imply that

I(2)(n)

≤ 4

∫ 1
1/n

E

[∣∣∣∣(Bn−1,un

)σk
− uσk

∣∣∣∣3
]
du (2.27)

+ 4|µk|
3

∫ 1
1/n

E

[∣∣∣∣(Bn−1,un

)σk
log

(
Bn−1,u
nu

)∣∣∣∣3
]
du

=: 4
(
J(1)(n) + |µk|

3 · J(2)(n)
)
. (2.28)
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For ε ∈ (0, 1), let En := {Bn−1,u > (1− ε)un}. We further split

J(1)(n) =

∫ 1
1/n

E

[∣∣∣∣(Bn−1,un

)σk
− uσk

∣∣∣∣3 1En

]
du+

∫ 1
1/n

E

[∣∣∣∣(Bn−1,un

)σk
− uσk

∣∣∣∣3 1Ecn

]
du

=: J(1,1)(n) + J(1,2)(n),

J(2)(n) =

∫ 1
1/n

E

[∣∣∣∣(Bn−1,un

)σk
log

(
Bn−1,u
nu

)∣∣∣∣3 1En

]
du

+

∫ 1
1/n

E

[∣∣∣∣(Bn−1,un

)σk
log

(
Bn−1,u
nu

)∣∣∣∣3 1Ecn

]
du

=: J(2,1)(n) + J(2,2)(n).

In order to show that J(1,2)(n) and J(2,2)(n) are sufficiently small, we can use the fact that
P(Ecn) is small. More precisely, Chernoff’s inequality implies that

P(Ecn) ≤ exp

(
ε2

2
nu

)
.

In a second preliminary note, we remark that for all α ≥ 1, there exists C > 0 such that

E [|Bn,u − nu|
α] ≤ C(nu)α/2 (2.29)

for u ≥ 1/n. Using Bernstein’s inequality, this follows from

E
[
|Bn,u − nu|

3
]
= α

∫∞
0

yα−1P (|Bn,u − nu| > y)dy

≤ 2α
∫∞
0

yα−1 exp

(
−

y2

2u(1− u)n+ 2y/3

)
dy

≤ 2α
(∫ 6nu

0

yα exp

(
−
y2

6nu

)
dy+

∫∞
6nu

yα−1 exp(−y)dy

)
≤ C1(nu)α/2 + C2
≤ C(nu)α/2

as nu ≥ 1.
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Now,

J(1,2)(n) =

∫ 1
1/n

E

[∣∣∣∣(Bn−1,un

)σk
− uσk

∣∣∣∣3 1Ecn

]
du

≤ n−3σk

∫ 1
1/n

E
[
|(Bn−1,u)

σk − (nu)σk |
6
]1/2

E
[
1Ecn

]1/2
du

≤ n−3σk

∫ 1
1/n

E
[
|Bn−1,u − nu|

6σk
]1/2

E
[
1Ecn

]1/2
du

(2.29)

≤
√
Cn−3σk/2

∫ 1
1/n

u3σk/2 exp

(
−
ε2

4
nu

)
du = O

(
n−3σk−1

)
.

For J(2,2)(n), let hσk : [0,∞)→ R be the function hσk(x) := x
σk | log(x)| (convention: 0·log 0 :=

0). Then supx∈[0,1] |hσk(x)| =
1
σke

< 2
e < 1. It follows that

J(2,2)(n) ≤
∫ 1
1/n

u3σkE

[∣∣∣∣hσk (Bn−1,unu

)∣∣∣∣3 1Ecn
]
du ≤

∫ 1
1/n

u3σk exp

(
−
ε2

2
nu

)
du

= O
(
n−3σk−1

)
.

We now turn to J(1,1)(n) and J(2,1)(n). Set ϕσk : (−1,∞)→ R, ϕσk(x) := (1+ x)σk . Then for
x ≥ −ε, |ϕ ′σk(x)| ≤ σk(1− ε)

σk−1.

J(1,1)(n) ≤
∫ 1
1
n

u3σkE

[∣∣∣∣ϕσk (Bn−1,u − nunu

)
− 1

∣∣∣∣3 1En
]
du

≤ σk(1− ε)σk−1n−3

∫ 1
1
n

u3σk−3E
[
|Bn−1,u − nu|

3
]
du

(2.29)

≤ Cn−3/2

∫ 1
1
n

u3σk−3/2du = O
(
n−3/2

)
.

Similarly, as Bn−1,u > (1− ε)nu on En,

J(2,1)(n) ≤
∫ 1
1/n

u3σkE

[∣∣∣∣hσk (Bn−1,unu

)
− hσk(1)

∣∣∣∣3 1En
]
du

≤ Cn−3/2

∫ 1
1
n

u3σk−3/2du = O
(
n−3/2

)
.

In total, we obtain that∥∥∥∥∥
(
In

n

)λk
−Uλk

∥∥∥∥∥
3

= O
(
n−σk−1/3

)
+ O

(
n−1/2

)
= O

(
n−1/2

)
as n→∞.
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Lemma 2.2.6. As n→∞,

‖bn‖3 −→ 0.

Proof. By the triangle inequality,

‖bn‖3 ≤ ‖Σn‖op

2∑
j=1

∥∥∥ρnF{j}n ∥∥∥
3
.

We have L
((
In, U, Ξ

{1}
k

))
= L

((
Jn, 1−U,Ξ

{2}
k

))
, where Ξ

{1}
k is independent of (In, U). The

triangle inequality implies

∥∥∥ρnF{2}n ∥∥∥
3
≤ 4√

n

p−1
2∑
k=1

nσ2k
∥∥∥Ξ{1}2k∥∥∥

3

∥∥∥∥∥
(
In

n

)λ2k
−Uλ2k

∥∥∥∥∥
3

=
4√
n

p−1
2∑
k=1

O
(
nσ2k−1/2

)
= o(1)

by Lemma (2.2.5). Also, for n→∞,

∥∥∥ρnF{1}n ∥∥∥
3
≤ 2√

n


p−1
2∑
k=1

∥∥∥G2k,n(In) − nλ2kg2k(U)∥∥∥
3

+
1√

log(n)
‖Gp+1,n(In)‖3 +

q/2−1∑
k=p+3

2

‖G2k,n(In)‖3


≤ 2√

n


p−1
2∑
k=1

2

Γ(1+ λ2k)
nσ2k

∥∥∥∥∥
(
In

n

)λ2k
−Uλ2k

∥∥∥∥∥
3

+
1√

log(n)
‖Gp+1,n(In)‖3 +

q/2−1∑
k=p+3

2

‖G2k,n(In)‖3

+ o(1) = o(1)

as before. Now, the sequence (‖Σn‖op)n≥0 is convergent and thus bounded, which implies the
claim.

Finally, we use recursion (2.26) for Nn to show that the sequence (‖Nn‖3)n≥0 is bounded.

Lemma 2.2.7. As n→∞,

‖Nn‖3 = O(1).

Proof. Recall that the composition vector Xn takes only finitely many values, the random
variables Ξk have finite absolute moments of arbitrary order, see (2.13), and ‖Σn‖op → 1.
Hence, we have ‖Nn‖3 <∞ for all n ≥ 0.

Recursion (2.26) implies that

‖Nn‖ ≤ Y {1} + Y {2} + ‖bn‖,
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where Y {1} :=
∥∥∥A{1}

n

∥∥∥
op

∥∥∥N{1}
In

∥∥∥, Y {2} :=
∥∥∥A{2}

n

∥∥∥
op

∥∥∥N{2}
Jn

∥∥∥. For all n ≥ 0,

E
[
‖Nn‖3

]
≤ E

[(
Y {1}

)3]
+ E

[(
Y {2}

)3]
+ E

[
‖bn‖3

]
+ 3E

[(
Y {1}

)2
Y {2}

]
+ 3E

[(
Y {2}

)2
Y {1}

]
+ 3E

[(
Y {1}

)2
‖bn‖

]
+ 3E

[
Y {1}‖bn‖2

]
+ 3E

[(
Y {2}

)2
‖bn‖

]
+ 3E

[
Y {2}‖bn‖2

]
+ 6E

[
Y {1}Y {2}‖bn‖

]
. (2.30)

Set

βn := 1∨ max
0≤k≤n

E
[
‖Nk‖3

]
.

By Lemma 2.2.6, E
[
‖bn‖3

]→ 0 as n→∞. Also,

E
[(
Y {j}
)3]

= E

[∥∥∥A{j}
n

∥∥∥3
op

n−1∑
k=0

1{In=k}E
[
‖Nk‖3

]]
≤ E

[∥∥∥A{j}
n

∥∥∥3
op

]
βn−1

for j = 1, 2.

To bound the summand E
[(
Y {1}

)2 Y {2}
]
, note that

∥∥∥A{1}
n

∥∥∥
op

and
∥∥∥A{2}

n

∥∥∥
op

are uniformly

bounded in n. This implies that after conditioning on In, there is a constant D > 0 such that

E
[(
Y {1}

)2
Y {2}

]
≤ DE

[
n−1∑
k=0

1{In=k}E
[
‖Nk‖2

]
E [‖Nn−1−k‖]

]

≤ D
(

max
0≤k≤n−1

‖Nk‖22
)(

max
0≤k≤n−1

‖Nk‖1
)
.

Now, by construction, Cov(Nn) = Mq for all n ≥ n0, so max0≤k≤n−1 ‖Nk‖22 < K for some

K > 0 and hence E
[(
Y {1}

)2 Y {2}
]
= O(1). The same applies to E

[(
Y {2}

)2 Y {1}
]
.

All other summands in (2.30) can be bounded using Hölder’s inequality. Combining all
these bounds leads to the estimate

E
[
‖Nn‖3

]
≤
(
E
[∥∥∥A{1}

n

∥∥∥3
op

+
∥∥∥A{2}

n

∥∥∥3
op

]
+ o(1)

)
βn−1 + O(1).

The asymptotics in Lemma 2.2.4 further imply

E
[
‖Nn‖3

]
≤
(
E
[
U3/2 + (1−U)3/2

]
+ o(1)

)
βn−1 + O(1) =

(
4

5
+ o(1)

)
βn−1 + O(1).

Now there exist J ∈ N and a constant 0 < E < ∞ such that for all n ≥ J, E
[
‖Nn‖3

]
≤

(9/10)βn−1 + E. Induction on n gives that for all n ≥ 0, E
[
‖Nn‖3

]
≤ max{βJ, 10E}.
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2.2.6 Proof of Proposition 2.1.3

Based on the asymptotics that were derived in the last two subsections, finally a proof of
Proposition 2.1.3 is given. Convergence of (Nn)n≥0 is shown with respect to the Zolotarev
metric, which implies convergence in distribution of (Zn)n≥0.

Proof of Proposition 2.1.3. Proposition 2.1.3 states that as n → ∞, Zn
L−→ N , where

L(N ) = N (0,Mq). In order to prove this, we show that

ζ3(Nn,N ) −→ 0 as n→∞,
as Zn does not have the correct covariance matrix. However, this is sufficient, as the difference
Zn −Nn tends to 0 in probability. Also note that here, convergence in the Zolotarev metric
implies weak convergence, and that N (0,Mq) is the unique solution to the distributional
recursion

L (N ) = L
(√
U ′N {1} +

√
1−U ′DN {2}

)
with the given mean and covariance matrix. Here, N {1},N {2} and U ′ are independent, L(U ′) =
unif(0, 1) and L

(
N {1}

)
= L

(
N {2}

)
= N (0,Mq).

First, we use decomposition (2.26) for Nn to define hybrid random variables (Qn)n≥0 that
link L(Nn) to N (0,Mq) as follows: Let N {1} and N {2} be defined on the same probability
space as (Xn)n≥0, independent with distributionN (0,Mq) and also independent of the process
(Xn)n≥0. We eliminate the error term in the given recursion and set

Qn := A
{1}
n

(
1{In<n0}N

{1}
In

+ 1{In≥n0}N
{1}
)
+A

{2}
n

(
1{Jn<n0}N

{2}
Jn

+ 1{Jn≥n0}N
{2}
)
.

Now, Qn does not need to have covariance matrix Mq like N {1} and N {2}. However, note that
In/n converges to the uniform random variable U almost surely. Together with (2.25), (2.26)
and ‖bn‖3 → 0 (Lemma 2.2.6), we obtain

Cov(Qn) −→Mq, as n→∞.
Again, in order to ensure finiteness of the Zolotarev metric, the covariance matrix of Qn has to
be adjusted. Due to the convergence above, Cov(Qn) has full rank for all n ≥ n1. Without loss
of generality, we assume that n1 ≥ n0. This implies that we can find a deterministic sequence
of matrices (Bn)n≥0 with Cov(BnQn) =Mq for all n ≥ n1 and Bn → IdRq−1 componentwise
and in operator norm as n → ∞. We write Bn = IdRq−1 + Kn with (Kn)n≥0 tending to 0
componentwise. Hence, with N as before and n ≥ n1, each pair of Nn, (IdRq−1 +Kn)Qn and
N is ζ3-compatible and the triangle inequality implies

ζ3(Nn,N ) ≤ ζ3(Nn, (IdRq−1 + Kn)Qn) + ζ3((IdRq−1 + Kn)Qn,N ). (2.31)

The right hand side is finite for all n ≥ n1.
First, we show that ζ3((IdRq−1 +Kn)Qn,N ) = o(1) via an upper bound for ζ3 given by the

minimal L3-metric `3. The minimal L3-metric `3 is given by

`3(X, Y) := `3(L(X),L(Y)) := inf{‖X ′ − Y ′‖3 : L(X) = L(X ′),L(Y) = L(Y ′)}, (2.32)
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for all random vectors X, Y with ‖X‖3, ‖Y‖3 < ∞. For a ζ3-compatible pair (X, Y), we have
the inequality, see [19, Lemma 5.7],

ζ3(X, Y) ≤
(
‖X‖23 + ‖Y‖23

)
`3(X, Y).

As supn≥0 ‖Qn‖3 <∞ by Lemma 2.2.4 and the properties of the Gaussian distribution, also
‖(IdRq−1 + Kn)Qn)‖3 is uniformly bounded in n. So there exists a finite constant C > 0 with

ζ3((IdRq−1 + Kn)Qn,N ) ≤ C`3((IdRq−1 + Kn)Qn,N )

for all n ≥ n1. In order to upper bound the latter `3-distance, note that the random vectors
N and

√
UN {1} +

√
1−UDN {2} are identically distributed. Thus

ζ3((IdRq−1 + Kn)Qn,N )

≤ C`3((IdRq−1 + Kn)Qn,N )

≤ C
∥∥∥((IdRq−1 + Kn)A

{1}
n −

√
UIdRq−1

)
N {1} +

(
(IdRq−1 + Kn)A

{2}
n −

√
1−UD

)
N {2}

∥∥∥
3

≤ C
(∥∥∥(IdRq−1 + Kn)A

{1}
n −

√
UIdRq−1

∥∥∥
3

∥∥∥N {1}
∥∥∥
3

+
∥∥∥(IdRq−1 + Kn)A

{2}
n −

√
1−UD

∥∥∥
3

∥∥∥N {2}
∥∥∥
3

)
−→ 0.

To bound the first summand in (2.31), we split Nn into two parts and consider the vector

Φn := A
{1}
n N

{1}
In

+A
{2}
n N

{2}
Jn
, n ≥ 1.

An application of Lemma 2.2.3 to the sums Nn = Φn+bn and (IdRq−1+Kn)Qn = Qn+KnQn
gives for n ≥ n1 that

ζ3(Nn, (IdRq−1 + Kn)Qn) ≤ ζ3(Φn, Qn) + ‖Φn‖23‖bn‖3 +
1

2
‖Φn‖3‖bn‖23 +

1

2
‖bn‖33(

‖Kn‖op +
1

2
‖Kn‖2op +

1

2
‖Kn‖3op

)
‖Qn‖33.

By construction, ‖Kn‖op → 0 and by Lemma 2.2.6, ‖bn‖3 → 0. Also, by Lemma 2.2.7,
supn≥1 ‖Φn‖3 <∞ and supn≥1 ‖Qn‖3 <∞. This yields

ζ3(Nn, (IdRq−1 + Kn)Qn) ≤ ζ3(Φn, Qn) + o(1).

The previous estimates and (2.31) imply for n ≥ n1

ζ3(Nn,N ) ≤ζ3
(
A

{1}
n N

{1}
In

+A
{2}
n N

{2}
Jn
,

A
{1}
n

(
1{In<n0}N

{1}
In

+ 1{In≥n0}N
{1}
)
+A

{2}
n

(
1{Jn<n0}N

{2}
Jn

+ 1{Jn≥n0}N
{2}
))

+ o(1).

(2.33)

Let ∆(n) := ζ3(Nn,N ), which is finite for n ≥ n0. The right hand side in (2.33) is finite for
all n ≥ 1. In the expectations defining the Zolotarev distance, we condition on the value of In.

To this end, let (N
[1]
0 , . . . , N

[1]
n−1),(N

[2]
0 , . . . , N

[2]
n−1) be i.i.d. with distribution L(N0, . . . , Nn−1).
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We then make use of independence and the fact that ζ3 is (3,+)-ideal and satisfies (2.24) to
get

ζ3

(
A

{1}
n N

{1}
In

+A
{2}
n N

{2}
Jn
, A

{1}
n

(
1{In<n0}N

{1}
In

+ 1{In≥n0}N
{1}
)
+A

{2}
n

(
1{Jn<n0}N

{2}
Jn

+ 1{Jn≥n0}N
{2}
))

≤ 1

n

n−1−n0∑
k=n0

ζ3

(
Σnρnρ

−1
k Σ

−1
k N

[1]
k + Σnρnρn−1−kDΣ−1

n−1−kN
[2]
n−1−k,

Σnρnρ
−1
k Σ

−1
k N

{1} + Σnρnρ
−1
n−1−kDΣ

−1
n−1−kN

{2}
)

+
1

n

n0−1∑
k=0

ζ3

(
Σnρnρn−1−kDΣ−1

n−1−kN
[2]
n−1−k, Σnρnρ

−1
n−1−kDΣ

−1
n−1−kN

{2}
)

+
1

n

n−1∑
k=n−n0

ζ3

(
Σnρnρ

−1
k Σ

−1
k N

[1]
k , Σnρnρ

−1
k Σ

−1
k N

{1}
)

≤ 1

n

n−1−n0∑
k=n0

(
‖ρnρ−1k ‖

3
op‖Σn‖3op‖Σ−1

k ‖
3
opζ3

(
N

[1]
k ,N

{1}
)

+‖ρnρ−1n−1−k‖
3
op‖Σn‖3op‖Σ−1

n−1−k‖
3
opζ3

(
N

[2]
n−1−k,N

{2}
))

+
1

n

n0−1∑
k=0

‖ρnρ−1n−1−k‖
3
op‖Σn‖3op‖Σ−1

n−1−k‖
3
opζ3

(
N

[2]
n−1−k,N

{2}
)

+
1

n

n−1∑
k=n−n0

‖ρnρ−1k ‖
3
op‖Σn‖3op‖Σ−1

k ‖
3
opζ3

(
N

[1]
k ,N

{1}
)

=
2

n

n−1∑
k=n0

‖ρnρ−1k ‖
3
op‖Σn‖3op‖Σ−1

k ‖
3
opζ3

(
N

[1]
k ,N

{1}
)
.

Note that ‖ρnρ−1In ‖
3
op =

(
In
n

)3/2
in both cases 6 | q and 6 - q. Hence, for 6 | q and n ≥ n1,

∆(n) ≤ 2E

[(
In

n

)3/2
‖Σn‖3op‖Σ−1

In
‖3op∆(In)1{In≥n0}

]
+ o(1).

A standard argument shows that ζ3(Nn,N )→ 0 as n→∞ (see [61], for example).

We can now prove Theorems 2.1.1 and 2.1.2:

Proof of Theorem 2.1.1. Note that 6 - q implies that there is no k ∈ {1, . . . , q} with σk = 1
2 .
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We obtain

1√
n

(
Xn − E[Xn] −

p∑
k=1

nλkΞkvk

)

=
1√
n

 p∑
k=1

[
uk(Xn − E[Xn]) − nλkΞk

]
vk +

q∑
k=p+1

uk(Xn − E[Xn])vk


= 2Z

(1)
n <(v2) − 2Z

(2)
n =(v2) + 2Z

(3)
n <(v4) − 2Z

(4)
n =(v4) · · ·+ 1{q even}Z

(q−1)
n vq

L−→ N (0, Σ(q)
)
,

by Proposition 2.1.3 and the continuous mapping theorem, where Σ(q) is as in the statement
of Theorem 2.1.1. Recall that Mq is a diagonal matrix with non-zero diagonal entries. As
<(v2), =(v2), . . . , vq (assuming 2 | q) are linearly independent, the rank of the covariance
matrix Σ(q) is q− 1.

Proof of Theorem 2.1.2. Note that 6 | q implies that there are two eigenvalues with real parts
σq/3 = σq/3+1 =

1
2 . Rearranging terms as in the proof of Theorem 2.1.1, we obtain

1√
n log(n)

(
Xn − E[Xn] −

p∑
k=1

nλkΞkvk

)

=
1√

log(n)

q/2−1∑
k=1,k 6=q/6

2
(
Z
(2k−1)
n <(v2k) − Z

(2k)
n =(v2k)

)
+ 2

(
Z
(q/3−1)
n <(vq/3) − Z

(q/3)
n =(vq/3)

)
+

1√
log(n)

Z
(q−1)
n vq

L−→ N (0, Σ(q)
)
,

by Proposition 2.1.3 and Slutsky’s Lemma, where Σ(q) is as in Theorem 2.1.2. Again, <(vq/3)
and =(vq/3) are linearly independent and (Mq)q/3−1,q/3−1, (Mq)q/3,q/3 > 0. As all other coef-

ficients tend to zero in probability, Σ(q) has rank 2.

2.3 Construction of limits

The current section is devoted to a closer study of the random variables Ξ1, . . . Ξp that arise
in the cyclic urn process. In the previous section, we claimed their existence by means of
martingale arguments. Using a relation between the cyclic urn dynamics and the random
binary search tree dynamics, we below extend this existence result and provide an explicit
construction of the random variables Ξ1, . . . , Ξp from a sequence of i.i.d. uniform random
variables (Un)n≥1. From this representation, the self-similarity relation (2.18) can be read off
as well. A related explicit construction of the Quicksort limit can be found in [7].
However, recent developments in the limit theory of combinatorial Markov chains shed a
different light on the above-mentioned constructions: It turns out that there is a deeper
connection between these representations and convergence of the random binary search tree
itself. The random binary search tree per se is a transient Markov chain; however, methods
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from discrete potential theory can be applied to yield a limit object that is a random variable
in the Markov chain’s Doob-Martin boundary. This approach is developed in [22] for the
general setting of so-called trickle down processes and more specifically for the random binary
search tree in [32]. The idea behind this construction is to provide a unifying perspective for
convergence of various functionals of combinatorial Markov chains. In our case, it turns out
that the representation of the martingale limits Ξ1, . . . , Ξp with respect to (Un)n≥1 is indeed
a deterministic function of the Doob-Martin limit of the random binary search tree.
The proceeding is as follows: First, a brief overview on the general construction of the Doob-
Martin compactification is given. Second, following [32], the construction is applied to the
random binary search tree sequence and some results about its limit are stated. Finally,
Ξ1, . . . , Ξp are constructed and their connection to the Doob-Martin limit as well as some
futher properties are established.

2.3.1 Doob-Martin compactification for discrete-time Markov chains

In order to put the following construction into perspective, we briefly explain the concept of
the Doob-Martin compactification for the class of Markov chains that is treated in [22]. We
therefore follow the display in [22]. For further information, see [17] or [79].
Assume that S is a countable set that is partially ordered by “≤”; and furthermore, that there
exists a unique minimal element e ∈ S. Let now X = (Xn)n∈N0 be a discrete-time transient
Markov chain with state space S and transition matrix P, that can reach any state from e with
positive probability. More precisely, for all states x ∈ S,

∑∞
n=0 P

n(e, x) <∞ (transience) and
there is n = nx ∈ N0 such that Pn(e, x) > 0 (x may be reached from e). In our case, S is the
set of all finite binary trees and e the tree that consists of the root node only. Indeed, in [22],
even a stronger form of transience is assumed, namely that the chain may only progress to
greater elements and P(x, y) = 0 unless x < y.
Now, the goal is to embed S into a compact space that provides a limit for X. The proceeding
is quite similar to the proceeding in the Stone-Čech compactification: The Green kernel
G : S× S→ R+ of P is defined as

G(x, y) :=

∞∑
n=0

Pn(x, y) = Px (Xn = y for some n ∈ N0) =: Px(X hits y)

for x, y ∈ S. The assumptions imply that 0 < G(e, y) <∞ for all y ∈ S.
Using the Green kernel, we further define an appropriate set F of functions on S in which
we will embed the space. A function f : S → R+ is termed non-negative superharmonic
(respectively, non-negative harmonic) if∑

y∈S
P(x, y)f(y) =: Pf(x) ≤ f(x)

for all x ∈ S (respectively, Pf(x) = f(x) for all x ∈ S). Let F be the set of all non-negative
superharmonic functions on S that take the value 1 at the minimal element e. It can be shown
that F is a compact convex metrisable subset of the locally convex topological vector space
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RS. The Martin kernel with reference state e is given by

K(x, y) :=
G(x, y)

G(e, y)
=

Px(X hits y)

Pe(X hits y)
, x, y ∈ S.

The functions K(·, y) are non-harmonic elements of F for all y ∈ S. More precisely, they are
exactly the non-harmonic extreme points of F. Set

ι : S→ F, ι(x) := K(·, x).

The Riesz decomposition theorem implies that the map ι is injective. This allows us to identify
the state space S with its image ι(S) ⊂ F. Furthermore, ι(S) is dense in its compact closure
ι(S) in F. The compact metrisable space ι(S), constructed from S via e and P is called the
Doob-Martin compactification of S. Its Doob-Martin boundary is given by

∂S := ι(S) \ ι(S).

We close this section by noting that a sequence (yn)n∈N in S converges to a point in the
Doob-Martin compactification ι(S) if and only if the sequence of real numbers (K(x, yn))n∈N
converges for all x ∈ S.

2.3.2 Doob-Martin boundary for the BST chain

The Doob-Martin compactification for the BST chain is also determined in [22]. We present
a more direct approach from [32] that uses an algorithmic construction. The latter approach
has the advantage that it leads to a description of the limit in terms of the input sequence of
the algorithm. Correspondingly, the account of the results in the present subsection proceeds
along the lines of [32].
Before we address ourselves to the binary search tree algorithm, we need to introduce some
notation. Binary trees are formally defined by means of a label set V, where

Vk := {0, 1}k, V := {0, 1}∗ :=

∞⋃
k=0

Vk, ∂V := {0, 1}∞. (2.34)

In the above, V0 = {∅}, and for k ∈ N, Vk is the set of words of length k in the alphabet {0, 1}.
Further, V is the set of all finite words in {0, 1} and ∂V the set of all infinite words in {0, 1}.
By interpreting each ϑ = (ϑ1, . . . , ϑk) ∈ V as an individual of the population V, we may use
a family-based language for relations between words. The father π(ϑ), the left child ϑ0 and
the right child ϑ1 of ϑ are defined as

π(ϑ) := (ϑ1, . . . , ϑk−1), if k ≥ 1, (2.35)

ϑ0 := (ϑ1, . . . , ϑk, 0), (2.36)

ϑ1 := (ϑ1, . . . , ϑk, 1), (2.37)

respectively. More generally, we write ϑ ≤ κ for ϑ = (ϑ1, . . . , ϑk) ∈ V , κ = (κ1, . . . , κ`) ∈ V,
if k ≤ ` and ϑj = κj for j = 1, . . . , k, that is, if ϑ is an ancestor of κ. Furthermore, for each
ϑ, κ ∈ V, there exists a unique last common ancestor ϑ∧ κ. This defines a partial order (the
prefix order) on V, and we denote by |ϑ| the index k of the set Vk that contains ϑ, or, in other
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words, the generation of ϑ ∈ V. The partial order and the concept of a last common ancestor
can easily be extended to κ ∈ ∂V and ϑ, κ ∈ V ∪ ∂V, respectively.
A binary tree is a subset t ⊂ V of the label set such that

(i) ∅ ∈ t.
(ii) For all ϑ ∈ t \ {∅}, π(ϑ) ∈ t.

The countable set of all finite binary trees is denoted by B, while Bn := {t ∈ B : #t = n}

denotes the trees that have exactly n elements. B is the state space of the BST Markov chain,
and its unique minimal element is {∅} in the prefix order. Binary trees can also be depicted
as directed graphs, whose nodes are the elements of t (∅ is the root node) and whose edges
are the pairs (π(ϑ), ϑ), for ϑ ∈ t \ {∅}.
Finally, the elements ϑ ∈ t are called internal nodes of t. On the contrary, elements of
∂t := {ϑ ∈ V : π(ϑ) ∈ t, ϑ /∈ t}, the set of children of leaf nodes in t, are called external nodes
of t.

BST chain. Binary search trees (BSTs) are fundamental data structures that gain addi-
tional importance from their connection to Quicksort, which is one of the most popular sorting
algorithms. We present a recursive construction of labelled BSTs for a given deterministic
sequence (xi)i∈N of pairwise distinct real numbers. This recursive construction is called the
binary search tree (BST) algorithm, and the elements x1, x2, . . . are the keys that are stored
in the binary tree.
The BST algorithm generates a sequence of growing labelled binary trees ((tn, `n))n∈N. Here,
tn ∈ Bn and `n is a function `n : tn → {x1, . . . , xn} that assigns an element of {x1, . . . , xn}

to each node in tn. Alternatively, `n(ϑ) is the key that is stored in the node ϑ. The binary
trees are successively grown from (xi)i∈N as follows: At time n = 1, t1 = {∅} and `1(∅) = x1.
If (tn, `n) is already constructed, the tree tn+1 is obtained by adding an element of ∂tn to
tn and by storing xn+1 in this element. The external node by which the tree is augmented
is determined by the following procedure: At time n + 1, the key xn+1 is “inserted” at the
root node of the tree tn. Starting from there, it traverses some of the internal nodes of tn.
The way of xn+1 through the tree is prescribed by the values `n(ϑ) of the internal nodes it
encounters: If it passes by a node ϑ holding a key `n(ϑ) greater than xn+1, it moves to its left
child, otherwise to its right child. The key stays with the first unoccupied node κ it visits,
which is an external node by definition. We then set tn+1 := tn ∪ {κ} and `n+1(κ) := xn+1,
`n+1(ϑ) := `n(ϑ) for all ϑ ∈ tn.
The random binary search tree is obtained by an application of this procedure to a sequence of
random keys. More precisely, let (Ui)i∈N be a sequence of independent, identically distributed
random variables with L(U1) = unif(0, 1) and let ((Tn, Ln))n∈N be the sequence of labelled
binary trees that are generated by this sequence. In particular, Tn is the random binary tree
associated with the first n uniform keys. For a more detailed description of random binary
search trees, see [54], for example.
In the following, we also make use of an alternative description of the growth dynamics of the
sequence (Tn)n∈N: Recall that for each n ≥ 1, Tn is generated by U1, . . . , Un. It is immediate
from the definition of the BST algorithm, that only the rank of Un+1 relative to U1, . . . , Un
is important for the choice of the next node. By only looking at Tn, we do not know the
exact values of U1, . . . Un. However, there are n+1 possible ranks for Un+1 among U1, . . . Un.
There are also n+1 possible external nodes. The crucial observation is that each rank of Un+1
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corresponds to exactly one external node, which can be seen by showing that the allocation
of possible ranks 1, . . . , n+ 1 to external nodes is injective.
As a consequence, each external node is chosen with equal probability 1

n+1 and then joined to
the tree. Thus, (Tn)n∈N is a Markov chain with state space B, start at T1 = {∅} and transition
probabilities {

P(t, t ∪ {ϑ}) = 1
1+#t , ϑ ∈ ∂t,

0, otherwise.
(2.38)

(Tn)n∈N is called the BST chain.
Denote by

0 =: U(n:0) < U(n:1) < · · · < U(n:n) < U(n:n+1) := 1

the augmented order statistics among U1, . . . , Un. These partition the unit interval into n+1
subintervals of lengths U(n:0), U(n:1) −U(n:0), . . . , 1−U(n:n), and given U1, . . . , Un, the proba-
bility that Un+1 falls into intervall (U(n:i), U(n:i+1)) is the interval length U(n:i+1) −U(n:i). We
now attach such an interval to each node ϑ ∈ Tn, whose length gives the probability that a
future node is a descendant of ϑ.
More precisely, denote by Vϑ the key among (Ui)i∈N that is inserted into node ϑ. We then
construct recursively splitting intervals in the following way: Set I∅ := [0, 1], whose length cor-
responds to the probability that a future node is a descendant of the root node. If Iϑ = [Lϑ, Rϑ]
is already defined for ϑ ∈ V, we set Iϑ0 = [Lϑ, Vϑ] and Iϑ1 := [Vϑ, Rϑ]. If ϑ is occupied by
Un+1 for some n ∈ N, Iϑ is the same as the interval [U(n:i), U(n:i+1)] that encloses Un+1, in the
notation above. Furthermore, the length of the interval Iϑ is denoted by |Iϑ|.

Doob-Martin compactification. One can view the Doob-Martin limit of the BST chain as
an extension of the above probabilities to infinite words.
More formally, the Doob-Martin compactification of the BST chain is given in [22]: Let [0, 1]V

be the product space endowed with the topology of pointwise convergence, which turns it into
a compact space. We define the size of the subtree of t rooted at ϑ as

τ(t, ϑ) := #{κ ∈ t : ϑ ≤ κ}. (2.39)

The space B can be embedded into [0, 1]V via the standardised subtree functional

ι : B→ [0, 1]V, ι(t) :=

(
ϑ 7→ τ(t, ϑ)

#t

)
for t ∈ B. Note also that τ(t,ϑ)

#t is roughly the probability that an external node of the
subtree rooted at ϑ is chosen for replacement in the BST algorithm. The Doob-Martin
compactification of the BST chain is given by the closure B̄ of the embedding ι of B into the
compact space [0, 1]V.
Now by construction, the previously transient BST chain (Tn)n≥1 converges almost surely
in the Doob-Martin compactification B̄. Let X∞ denote its limit, which takes values in the
Doob-Martin boundary ∂B. It can be seen that ∂B is homeomorphic to the set of probability
measures µ on (∂V,B(∂V)), where B(∂V) is the σ-field generated by the projections on the
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component spaces. Alternatively, B(∂V) is generated by the sets

Aϑ := {κ ∈ ∂V : κ ≥ ϑ}, ϑ ∈ V. (2.40)

It is straightforward to verify that these sets form a π-system that generates B(∂V). This in
turn implies that each measure µ on (∂V,B(∂V)) is completely determined by its values µ(Aϑ)
for ϑ ∈ V. On these sets, convergence of a sequence (tn)n∈N in B to µ in the Doob-Martin
topology requires that

µ(Aϑ) = lim
n→∞ τ(tn, ϑ)

#tn
for all ϑ ∈ V.

Similarly, if (µn)n∈N is a sequence of elements of ∂V instead, Doob-Martin convergence is
implied by µn(Aϑ)→ µ(Aϑ) for all ϑ ∈ V.
The general theory in [22] also implies that X∞ generates the tail σ-field

T :=

∞⋂
n=1

σ({Xm : m ≥ n})

associated with the sequence (Xn)n∈N. A description of L(X∞) is given in [22].
Grübel [32] obtains a more direct representation of X∞ in terms of the input sequence (Un)n∈N
by an alternative interpretation of weak convergence in the Doob-Martin topology. More
precisely, the partially ordered set V can be equipped with a metric dV, defined by

dV(ϑ, κ) := 2
−|ϑ∧κ| −

1

2

(
2−|ϑ| + 2−|κ|

)
, ϑ, κ ∈ V. (2.41)

This metric induces the discrete topology on V, and the completion of V with respect to dV
is given by V̄ := V ∪ ∂V. Now (V̄,B(V̄)) is a compact and separable metric space, and weak
convergence in the Doob-Martin topology is equivalent to weak convergence of probability
measures on (V̄,B(V̄)): The generating sets of B(∂V) find their counterparts in the sets

Āϑ := {κ ∈ V̄ : κ ≥ ϑ}, ϑ ∈ V.

These sets are open and closed; and B(V̄) is generated by the π-system {Āϑ : ϑ ∈ V}. A
combination of the uniqueness of extension theorem and the Portemanteau lemma implies
that a sequence (µn)n≥1 converges weakly to a probability measure µ on (V̄,B(V̄)) if and
only if

lim
n→∞µn(Āϑ) = µ(Āϑ) (2.42)

for all ϑ ∈ V.
Assume now that (Tn)n∈N is a sequence in B that converges to X∞ in the Doob-Martin
topology. For a subset M ⊂ V, let unif(M) denote the uniform distribution on the elements
of M, such that unif(M) is a probability measure on (V̄,B(V̄)). Then, as n→∞,

unif(Tn)(Āϑ) =
τ(Tn, ϑ)

n
−→ X∞(Aϑ) = X∞(Āϑ)
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as X∞(V) = 0. Conversely, if unif(Tn)(Āϑ)→ µ(Āϑ) for all ϑ ∈ V, the sequence (Tn)n∈N in B
converges in the Doob-Martin topology.
If we thus identify finite subsets M of V with the uniform distribution unif(M) on M, which
is an element of (V̄,B(V̄)), convergence of (Tn)n∈N in the Doob-Martin topology is equivalent
to weak convergence of the probability measures (unif(Tn))n≥1 on the metric space (V̄, dV).
For more details on this, we refer the reader to [32]. We now state Theorem 1 from [32], which
is the promised representation of the random measure X∞ in terms of the input sequence.

Theorem 2.3.1 (Grübel). Let (Un)n∈N be a sequence of independent and identically dis-
tributed random variables with L(U1) = unif(0, 1) and let (Tn)n∈N be the sequence of random
binary trees generated by the BST algorithm with input sequence (Un)n∈N.

(a) With probability 1, the sequence unif(Tn) converges weakly to a random probability mea-
sure X∞ on (∂V,B(∂V)) as n→∞.

(b) For each ϑ ∈ V,

X∞(Aϑ) = |Iϑ|. (2.43)

(c) The random variables

ξϑ :=
X∞(Aϑ0)

X∞(Aϑ)
, ϑ ∈ V, (2.44)

are independent with distribution L(ξϑ) = unif(0, 1) for all ϑ ∈ V.

Thus, the probability X∞(Aϑ) of Aϑ under X∞ is the length of the interval Iϑ associated
with ϑ.
Finally, note that part (c) of the theorem implies the following alternative representation of
X∞(Aϑ) as a product of independent uniform random variables: For ϑ = (ϑ1, . . . , ϑk) ∈ V,

X∞(Aϑ) =

k−1∏
j=0

ξ̃(ϑ1,...,ϑj), where (2.45)

ξ̃(ϑ1,...,ϑj) :=

{
ξ(ϑ1,...,ϑj), if ϑj+1 = 0,

1− ξ(ϑ1,...,ϑj), if ϑj+1 = 1.

Here, as usual, the empty sequence is identified with ∅.
In the next subsection, we will use a connection of the BST chain and the cyclic urn to show
that the limits Ξ1, . . . , Ξp can be written as functions of the tree limit X∞. More precisely, we
define functions of X∞ that then turn out to coincide with the martingale limits almost surely.
The distributional fixed point equations for Ξ1, . . . , Ξp can be read off from this representation
as well.

2.3.3 Embedding of the cyclic urn process

Let (Un)n∈N be a sequence of i.i.d. random variables with L(U1) = unif(0, 1). As in the
preceding subsection, we construct the random BST chain (Tn)n∈N from (Un)n∈N. One can
now observe that the dynamics of the random binary search tree algorithm give rise to a
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cyclic urn process (Xn)n≥0 within the tree. Note that as usual, we start the urn process with
one ball of colour 0 and omit this choice from the notation in the following.
The cyclic urn is embedded into the evolution of the random binary search tree by labelling
its external nodes by the types of the balls. Let us agree that the set of external nodes at
time 0 is given by the single element {∅}, which is turned into an internal node at time 1. This
initial external node is labelled 0. Whenever an external node of type j ∈ {0, . . . , q − 1} is
replaced by an internal node, its new left external node is labelled j and its new right external
node is labelled (j + 1) mod q. This is the embedding of [47, Section 6.3], see also [12]: In
the language of [47], the binary search tree on the nodes holding the keys U1, . . . , Un in the
rooted complete infinite binary tree is the 0-associated tree for a cyclic urn process at time
n.
Now the external nodes of the tree sequence (Tn)n∈N (together with the external node at
time 0) form a cyclic urn process in the following manner: At time 0, both the tree and the
urn consist of one external node respectively one ball of colour 0. In each following step, an
external node is chosen uniformly at random in the tree, according to the binary search tree
dynamics, and replaced by two external nodes, one of the same colour and one of the next
higher colour. This corresponds to drawing a ball from the cyclic urn and returning it to the

urn together with one ball of the following colour. Thus, if we denote by X
(1)
n , . . . , X

(q)
n the

numbers of external nodes having colours 0, . . . , q− 1 in the binary search tree on the nodes
holding the keys U1, . . . , Un , then the vector-valued process (Xn)n≥0 describes the evolution
of a cyclic urn’s composition vector.

We now adapt (2.17) as well as the derived decompositions to the present setting. The
self-similarity of the binary tree transfers to the constructed process in the following way:
Note that the complete binary tree decomposes into a left and a right subtree with root nodes
0 and 1, respectively. Let In denote the number of internal nodes in the left subtree of Tn.
Consequently, In is uniformly distributed on {0, . . . , n− 1} and conditionally on {U1 = u}, In
has distribution Bin(n−1, u). The size of the right subtree is denoted by Jn := n−1−In. For

the decomposition of the process, for each j ≥ 0, we denote by X
[0],{1}
j the vector of the numbers

of various types of external nodes in the left subtree at the first time the left subtree reaches

size j. Analogously, let X
[1],{2}
j be the vector of the numbers of various types of external nodes

in the right subtree at the first time the right subtree reaches size j. Again, upper indices [0]
and [1] denote the type of the external root vertex. Apparently, for n ≥ 1, the total number
of external nodes of a certain colour is given by the sum of the numbers of external nodes of
this colour in the two subtrees, so we have the identity

Xn = X
[0],{1}
In

+ X
[1],{1}
Jn

= X
[0],{1}
In

+ RCycX
[0],{2}
Jn

.

The sequences
(
X
[0],{1}
n

)
n≥0

and
(
X
[1],{2}
n

)
n≥0

denote the composition vectors of the cyclic urns

given by the evolutions of the left and right subtrees of the root of the binary search tree.

They are independent of In. We have set
(
X
[0],{1}
n

)
n≥0

:=
(
RtCycX

[1],{1}
n

)
n≥0

, and note that due

to identity (2.16),
(
X
[0],{1}
n

)
n≥0

is a cyclic urn process started with one ball of type 0 at time

0. This corresponds to shifting the labels in the right subtree by one to the left.

In a next step, for each k ∈ {1, . . . , p}, we define a sequence of random variables
(
N

(k)
n

)
n≥0
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that converges to Ξk. More precisely, we set N
(k)
0 := 0 and for n ≥ 1,

N
(k)
n := uk(Xn − E[Xn])/nλk ,

such that

N
(k)
n =

(
In

n

)λk
N

(k),{1}
In

+ λk

(
Jn

n

)λk
N

(k),{2}
Jn

+ n−λkGk,n(In).

HereN
(k),{1}
` := uk

(
X
[0],{1}
` − E

[
X
[0],{1}
`

])
/`λk , N

(k),{2}
` := uk

(
X
[0],{2}
` − E

[
X
[0],{2}
`

])
/`λk and Gk,n

is defined in (2.20). Note that
(
N

(k)
n

)
n≥0

is almost surely convergent with limit Ξk, as

N
(k)
n =

Γ(n+ 1+ λk)

Γ(n+ 1)nλk
M

(k)
n .

The recurrence for N
(k)
n implies that the martingale limits Ξ1, . . . , Ξp give rise to decomposi-

tions of the form

Ξk = U
λk
1 Ξ

{1}
k + λk(1−U1)

λkΞ
{2}
k + gk(U1). (2.46)

U1, Ξ
{1}
k , Ξ

{2}
k are independent and Ξ

{1}
k and Ξ

{2}
k have the same distribution as Ξk. This is

equation (2.18), but note that the uniform random variable is U1 here, the first random
variable in the sequence (Un)n∈N that generates the BST chain. Further recall that

gk : [0, 1]→ C, gk(u) =
1

Γ(1+ λk)

(
uλk + λk(1− u)

λk − 1
)
.

We now use the definitions of the current section to rewrite the random variables Ξ1, . . . , Ξp
via the sequence (Un)n∈N. To this end, we define a candidate

Ψk :=

∞∑
s=0

∑
|ϑ|=s

λ
∑s
i=1 ϑi

k X∞(Aϑ)
λkgk(ξϑ) (2.47)

for 1 ≤ k ≤ p, which is a function of X∞. Recall that Ξ1 = 0 almost surely, so we do not have
to worry about k = 1. We further define

Ψ
{1}
k :=

∞∑
s=0

∑
|ϑ|=s

U−λk
1 λ

∑s
i=1 ϑi

k X∞(A0ϑ)
λkgk(ξ0ϑ), (2.48)

Ψ
{2}
k :=

∞∑
s=0

∑
|ϑ|=s

(1−U1)
−λkλ

∑s
i=1 ϑi

k X∞(A1ϑ)
λkgk(ξ1ϑ). (2.49)

Theorem 2.3.2. (a) For all 2 ≤ k ≤ p, the limits Ψk, Ψ
{1}
k and Ψ

{2}
k exist almost surely and

in quadratic mean. Furthermore, Ψk, Ψ
{1}
k and Ψ

{2}
k are identically distributed.
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(b) For all 2 ≤ k ≤ p, we have

Ψk = U
λk
1 Ψ

{1}
k + λk(1−U1)

λkΨ
{2}
k + gk(U1) (2.50)

almost surely and U1, Ψ
{1}
k , Ψ

{2}
k are independent.

(c) For all 2 ≤ k ≤ p, as n→∞,

N
(k)
n

a.s.−→ Ψk. (2.51)

Hence, Ξk = Ψk almost surely.

Proof. The proof of (a) is similar to the proof of Theorem 6 in [32]: First recall from Theorem
2.3.1 that (ξϑ)ϑ∈V is a family of i.i.d. random variables with L(ξ∅) = unif(0, 1). We also noted
in (2.45) that for each ϑ ∈ V, the random variable X∞(Aϑ) is a function of the variables ξκ
with κ < ϑ. Taken together, these facts imply that for all ϑ ∈ V, X∞(Aϑ) and gk(ξϑ) are
independent.
For m ≥ 0, we now set Gm := σ({ξϑ : |ϑ| ≤ m}) as well as

Ψk,m :=

m∑
s=0

∑
|ϑ|=s

λ
∑s
i=1 ϑi

k X∞(Aϑ)
λkgk(ξϑ).

We aim to show that (Ψk,m)m≥0 is an almost surely convergent martingale with limit Ψk. To
this end, we compute the conditional expectation

E [Ψk,m+1|Gm] = Ψk,m +
∑

|ϑ|=m+1

λ
∑m+1
i=1 ϑi

k E[X∞(Aϑ)
λkgk(ξϑ)|Gm]

= Ψk,m +
∑

|ϑ|=m+1

λ
∑m+1
i=1 ϑi

k X∞(Aϑ)
λkE[gk(ξϑ)]

= Ψk,m,

where we have used the fact that E[gk(U ′)] = 0 for all 2 ≤ k ≤ p for L(U ′) = unif(0, 1).
Similarly,

E
[
|Ψk,m+1 − Ψk,m|

2
∣∣Gm] = E


∣∣∣∣∣∣
∑

|ϑ|=m+1

λ
∑m+1
i=1 ϑi

k X∞(Aϑ)
λkgk(ξϑ)

∣∣∣∣∣∣
2 ∣∣∣∣∣Gm


=
∑

|ϑ|=m+1

|X∞(Aϑ)
λk |2E

[
|gk(ξϑ)|

2
]

and thus with C := E
[
|gk(ξϑ)|

2
]
<∞,

E
[
|Ψk,m+1 − Ψk,m|

2
]
= C

(
2

1+ 2σk

)m+1

for all m ≥ 0. As σk >
1
2 , it follows that (Ψk,m,Gm)m≥0 is an L2-bounded martingale and
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almost surely convergent with limit Ψk, as we may see by considering real part and imaginary
part separately, for example. In particular, Ψk is well-defined and has finite second moment.

The claim for Ψ
{1}
k and Ψ

{2}
k can be shown analogously.

To show that Ψk and Ψ
{1}
k are identically distributed, note that Ψ

{1}
k may alternatively be

written as

Ψ
{1}
k =

∞∑
s=0

∑
|ϑ|=s

λ
∑s
i=1 ϑi

k

s−1∏
j=0

(ξ̃(0,ϑ1,··· ,ϑj))
λkgk(ξ0ϑ).

Now, the first summand (s = 0 in the outer sum) is just gk(ξ0). For s ≥ 1, every ϑ with |ϑ| = s,

the corresponding inner summand is a product of three terms: the first is just λ
∑s
i=1 ϑi

k as in
the definition of Ψk. The second is a product of s independent unif(0, 1) random variables to
the power of λk that are independent of the uniform ξ0ϑ, while the third is gk applied to the

independent ξ0ϑ. This representation makes it clear that Ψ
{1}
k is defined for the left subtree

in exactly the same way in which Ψk is defined for the whole tree, and they are identically
distributed due to the self-similarity of the tree.

It can be shown similarly that Ψk and Ψ
{2}
k are identically distributed.

Part (b): We decompose the series defining Ψk into the word ϑ = ∅, those words that start
with 0 and those that start with 1. This yields with ξ∅ = U1 that

Ψk = gk(ξ∅) +

∞∑
s=0

∑
|ϑ|=s

λ
0+

∑s
i=1 ϑi

k X∞(A0ϑ)
λkgk(ξ0ϑ) +

∞∑
s=0

∑
|ϑ|=s

λ
1+

∑s
i=1 ϑi

k X∞(A1ϑ)
λkgk(ξ1ϑ)

= gk(U1) +U
λk
1

∞∑
s=0

U−λk
1

∑
|ϑ|=s

λ
∑s
i=1 ϑi

k X∞(A0ϑ)
λkgk(ξ0ϑ)

+ λk(1−U1)
λk

∞∑
s=0

(1−U1)
−λk
∑
|ϑ|=s

λ
∑s
i=1 ϑi

k X∞(A1ϑ)
λkgk(ξ1ϑ)

= Uλk1 Ψ
{1}
k + λk(1−U1)

λkΨ
{2}
k + gk(U1).

Furthermore, U1, Ψ
{1}
k , Ψ

{2}
k are independent, as they are functions of disjoint sets of the ran-

dom variables (ξϑ)ϑ∈V.

Part (c): Note that
(
N

(k)
n

)
n≥0

converges to Ξk also in L2. Using the recursion for N
(k)
n and

part (b) of the current theorem, we will show that the L2-distance of N
(k)
n and Ψk tends to

zero as well, that is

an := E
[∣∣∣N(k)

n − Ψk

∣∣∣2] n→∞−→ 0.
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Here, a0 = E
[
|Ψk|

2
]
. We decompose

N
(k)
n − Ψk =

((
In

n

)λk
N

(k),{1}
In

−Uλk1 Ψ
{1}
k

)

+ λk

((
Jn

n

)λk
N

(k),{2}
Jn

− (1−U1)
λkΨ

{2}
k

)
+
(
n−λkGn,k(In) − gk(U1)

)
=:W1 + λk ·W2 +W3.

Conditionally on U1 and In, W1 and W2 are independent with expectation 0, and W3 is
constant. Because the random variables are centered, it follows that for n ≥ 1,

E
[∣∣∣N(k)

n − Ψk

∣∣∣2 ∣∣∣In, U1] = E
[
|W1|

2
∣∣∣In, U1]+ E

[
|W2|

2
∣∣∣In, U1]+ |W3|

2

almost surely. Taking the expectation on both sides gives

an = E
[
|W1|

2
]
+ E

[
|W2|

2
]
+ E

[
|W3|

2
]
,

n ≥ 1. We now analyse the three terms separately.

As for E
[
|W1|

2
]
: We further subdivide this term into

E
[
|W1|

2
]
= E

∣∣∣∣∣
(
In

n

)λk (
N

(k),{1}
In

− Ψ
{1}
k

)∣∣∣∣∣
2
+ E

∣∣∣Ψ{1}
k

∣∣∣2 ∣∣∣∣∣
(
In

n

)λk
−Uλk1

∣∣∣∣∣
2


+ 2<

(
E

[(
In

n

)λk
Ψ
{1}
k

(
N

(k),{1}
In

− Ψ
{1}
k

)((In
n

)λk
−Uλk1

)])
=:W1,1 +W1,2 +W1,3 ≤W1,1 +W1,2 + 2

√
W1,1W1,2.

Lemma 2.3.1. For n ≥ 1, we have

W1,1 =
1

n

n−1∑
j=0

(
j

n

)2σk
aj. (2.52)

Proof of Lemma 2.3.1. Since Ψ
{1}
k is independent of In, conditioning on In gives

W1,1 = E

n−1∑
j=0

1{In=j}

(
j

n

)2σk
E
[∣∣∣N(k),{1}

j − Ψ
{1}
k

∣∣∣2]
 =

1

n

n−1∑
j=0

(
j

n

)σk
aj.

Note that for all j ≥ 0, E
[∣∣∣N(k),{1}

j − Ψ
{1}
k

∣∣∣2] = E
[∣∣∣N(k)

j − Ψk

∣∣∣2]. This is due to the fact that((
N

(k),{1}
n

)
n≥0

, Ψ
{1}
k

)
and

((
N

(k)
n

)
n≥0

, Ψk

)
are identically distributed.

Finally, it is an immediate consequence of Lemma 2.2.5 that W1,2 = O
(
n−1

)
as n→∞.
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As for E
[
|W2|

2
]
: As we have done for E

[
|W1|

2
]
, we further subdivide in

E
[
|W2|

2
]
= E

∣∣∣∣∣
(
Jn

n

)λk (
N

(k),{2}
Jn

− Ψ
{2}
k

)∣∣∣∣∣
2
+ E

∣∣∣Ψ{2}
k

∣∣∣2 ∣∣∣∣∣
(
Jn

n

)λk
− (1−U1)

λk

∣∣∣∣∣
2


+ 2<

(
E

[(
Jn

n

)λk
Ψ
{2}
k

(
N

(k),{2}
Jn

− Ψ
{2}
k

)((Jn
n

)λk
− (1−U1)λk

)])
=:W2,1 +W2,2 +W2,3 ≤W2,1 +W2,2 + 2

√
W2,1W2,2.

Similar to the previous calculations, it can be shown that

W2,1 =
1

n

n−1∑
j=0

(
j

n

)2σk
aj. (2.53)

for n ≥ 1 and that W2,2 = O
(
n−1

)
as n→∞.

As for E
[
|W3|

2
]
:

Lemma 2.3.2. As n→∞,

E
[∣∣∣n−λkGn,k(In) − gk(U1)

∣∣∣2] = O
(
n−1

)
. (2.54)

Proof of Lemma 2.3.2. A combination of Lemma 2.2.5 and Stirling’s formula implies that

E
[
|W3|

2
]

= E

[∣∣∣∣Γ(In + 1+ λk)Γ(In + 1)nλk
−Uλk1 + λk

(
Γ(Jn + 1+ λk)

Γ(Jn + 1)nλk
− (1−U1)

λk

)
+
Γ(n+ 1+ λk)

Γ(n+ 1)nλk
− 1

∣∣∣∣2
]

·
∣∣∣∣ 1

Γ(1+ λk)

∣∣∣∣2
≤
∣∣∣∣ 2

Γ(1+ λk)

∣∣∣∣2
(
E

[∣∣∣∣Γ(In + 1+ λk)Γ(In + 1)nλk
−Uλk1

∣∣∣∣2
]
+ E

[∣∣∣∣Γ(Jn + 1+ λk)Γ(Jn + 1)nλk
− (1−U1)

λk

∣∣∣∣2
]

+

∣∣∣∣Γ(n+ 1+ λk)

Γ(n+ 1)nλk
− 1

∣∣∣∣2
)

= O
(
n−1

)
as n→∞.

Conclusion. The preceding calculations have shown that there exists some constant C > 0
such that for all n ≥ 1,

an ≤
2

n

n−1∑
j=0

(
j

n

)2σk
aj + Cn

−1 +
C√
n

√√√√ 2

n

n−1∑
j=0

(
j

n

)2σk
aj.
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Claim: As n→∞, for all α ∈ (0, 2σk − 1),

an = O
(
n−α

)
.

We prove the claim via induction on n ≥ n0.

an+1 ≤
2

n+ 1

n∑
j=0

(
j

n+ 1

)2σk
aj + C(n+ 1)−1 +

C√
n+ 1

√√√√ 2

n+ 1

n∑
j=0

(
j

n+ 1

)2σk
aj

I.H.
≤ 2D(n+ 1)−α

1

n+ 1

n∑
j=0

(
j

n+ 1

)2σk−α
+ C(n+ 1)−1

+
C√
n+ 1

√√√√2D(n+ 1)−α
1

n+ 1

n∑
j=0

(
j

n+ 1

)2σk−α

≤ 2D

2σk + 1− α
(n+ 1)−α + C(n+ 1)−1 +

C√
n+ 1

√
2D

2σk + 1− α
(n+ 1)−α

≤ D(n+ 1)−α

for some constant D > 0 and n sufficiently large. This implies

an −→ 0, n→∞,
and thus (c).
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3 General Case

This chapter serves the only purpose to prove Theorem 1.2.5 and to make the proof more
transparent. It closely follows the preprint [58].

3.1 Projections and martingales

The key to the proof of Theorem 1.2.5 is an understanding of the order of magnitude and the
asymptotic behaviour of certain components of Xn, namely the projection coefficients πk(Yn).
Most of the following facts are reformulations of known results and listed here to keep the
text as self-contained as possible.

We first note that for each n ∈ N0, the conditional expectation of the next state, given the
history of the urn process, takes the particular form

E[Xn+1|Fn] =
(

IdCq +
R

rn+ |X0|

)
Xn. (3.1)

This yields a vector-valued martingalen−1∏
j=N

(
IdCq +

R

rj+ |X0|

)−1

Xn


n≥N

for some N ∈ N0 sufficiently large such that the occurring matrix inverses exist. This obser-
vation can be found below Definition 2.1 in [67].
The particular form of E[Xn+1|Fn] leads to complex-valued martingales via projections on the
eigenspaces of R. This idea is implicit in the work of Smythe [74] and more explicit in the
proof of Theorem 3.5 in [67] for certain projections. We adopt it for all eigenspace projections.

Lemma 3.1.1 (Projection martingales). (i) Let k ∈ {1, . . . , q} be such that λk satisfies
λk + |X0| /∈ rZ− := {0,−r,−2r, . . .}. Define

γ
(k)
n :=

n−1∏
j=0

(
1+

λk
rj+ |X0|

)
,

which is different from zero for all n ≥ 0. Then

E[πk(Xn)] = γ
(k)
n πk(X0) =

Γ
(
|X0|
r

)
πk(X0)

Γ
(
|X0|+λk

r

) · n
λk
r +O

(
n
<
(
λk
r

)
−1
)
,
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as n→∞.
(
M

(k)
n

)
n≥0

, defined by

M
(k)
n :=

(
γ
(k)
n

)−1
· πk(Yn),

is a complex-valued martingale with mean zero.

(ii) Let k ∈ {1, . . . , q} be such that λk satisfies λk + |X0| ∈ rZ− = {0,−r,−2r, . . .}. Define

γ
(k)
n :=

n−1∏
j=−

λk+|X0|

r
+1

(
1+

λk
rj+ |X0|

)
,

which is different from zero for all n ≥ −λk+|X0|
r + 1. Then

E[πk(Xn)] = 0,

for all n ≥ −λk+|X0|
r + 1.

(
M

(k)
n

)
n≥−λk+|X0|

r
+1

, defined by

M
(k)
n :=

(
γ
(k)
n

)−1
· πk(Yn),

is a complex-valued martingale with mean zero.

Proof. Let k ∈ {1, . . . , q} and n ≥ 0. As a direct consequence of (3.1) for all n ≥ 0,

E[πk(Xn+1)|Fn] =
(
1+

λk
rn+ |X0|

)
πk(Xn)

almost surely and
(
M

(k)
n

)
n

is a martingale in each of the two cases. In particular,

E[πk(Xn)] =
n−1∏
j=0

(
1+

λk
rj+ |X0|

)
πk(X0),

which is zero for n ≥ −λk+|X0|
r + 1 in the second case. In the first case, by Stirling’s formula,

γ
(k)
n =

Γ
(
|X0|
r

)
Γ
(
|X0|+λk

r

) · Γ
(
n+ |X0|

r + λk
r

)
Γ
(
n+ |X0|

r

) =
Γ
(
|X0|
r

)
Γ
(
|X0|+λk

r

) · nλkr +O

(
n
<
(
λk
r

)
−1
)

as n→∞. This implies the claim.

The “effect” γ
(k)
n on the various projections resulting from the transition (3.1) is also studied

in [43], see in particular Lemmata 5.4 and 5.5.

The martingales of the preceding proposition can be divided into two classes: convergent
and non-convergent martingales. The corresponding eigenvalues are sometimes referred to as
“big” and “small”, respectively. The remainder of this section will be devoted to properties
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of the convergent martingales and their limits. In the context of m-ary search trees, Lemma
3 in [13] is precisely the following result.

Lemma 3.1.2 (Martingale limits). For each k ∈ {1, . . . , q} such that <(λk) > r/2, there
exists a complex-valued mean zero random variable Ξk such that

M
(k)
n → Γ(|X0|/r+ λk/r)

Γ(|X0|/r)
Ξk

almost surely and in L2 as n→∞.

Remark 9. The random variables Ξk in Theorem 1.2.5 and Lemma 3.1.2 are identical.

Proof. We apply the L2-martingale convergence theorem and show boundedness of second
moments.

E
[
|πk(Xn+1)|

2
∣∣Fn] = (1+ 2<(λk)

rn+ |X0|

)
|πk(Xn)|

2 +

q∑
j=1

X
(j)
n

rn+ |X0|
|πk(∆j)|

2.

Set Ck :=
∑q
j=1 |πk(∆j)|

2 =
∑q
j=1 |λk|

2
∣∣∣u(j)k ∣∣∣2, where ∆1, . . . , ∆q are the possible increments

that are defined in the introduction of the thesis. With this,

E
[
|πk(Xn+1)|

2
∣∣Fn] ≤ (1+ 2<(λk)

rn+ |X0|

)
|πk(Xn)|

2 + Ck

and thus

E
[
|πk(Xn)|

2
]

≤
n−1∏
j=0

(
1+

2<(λk)

rj+ |X0|

)
E[|πk(X0)|2] + Ck

n−1∏
j=1

(
1+

2<(λk)

rj+ |X0|

) n−1∑
m=0

m∏
j=1

(
1+

2<(λk)

rj+ |X0|

)−1

=

n−1∏
j=0

(
1+

2<(λk)

rj+ |X0|

)E[|πk(X0)|2] + Ck
(
1+

2<(λk)

|X0|

)−1 n−1∑
m=0

m∏
j=1

(
1+

2<(λk)

rj+ |X0|

)−1


= O
(
n2<(λk)/r

)
as n → ∞, because <(λk) > r/2. By Jensen’s inequality, |E[πk(Xn)]|2 = O

(
n2<(λk)/r

)
as

n→∞. Thus

E
[∣∣∣M(k)

n

∣∣∣2] = ∣∣∣γ(k)n ∣∣∣−2 (E [|πk(Xn)|2]− |E [πk(Xn)]|
2
)
= O(1)

as n→∞. By the L2-martingale convergence theorem, M
(k)
n converges almost surely and in

L2 to a complex-valued random variable.

Remark 10. Janson [43] offers an explanation of the difference between small and large urns
that is related to the calculation in the proof of Lemma 3.1.2: It is immediate from this proof
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that for all eigenvalues λk,

E
[
|πk(Xn)|

2
]
=

n−1∏
j=0

(
1+

2<(λk)

rj+ |X0|

)
|πk(X0)|

2

+

n−1∑
m=0

q∑
j=1

E

[
X
(j)
n−1−m

r(n− 1−m) + |X0|

]
|πk(∆j)|

2
n−1∏

`=n−m

(
1+

2<(λk)

r`+ |X0|

)
.

If we interpret the summand corresponding to index n−m− 1 in the sum on the right hand
side as the influence of the mth draw on the state at time n, this term is (very roughly) of

the order (n/m)2<(λk)/r.
Depending on convergence or non-convergence of the series

∑∞
m=1m

−2<(λk)/r, we apply a
different scaling. For large eigenvalues λk,

∑∞
m=1m

−2<(λk)/r is convergent and we consider

n−2<(λk)/r
(
E
[
|πk(Xn)|

2
]
− |E [πk(Xn)] |

2
)

= n−2<(λk)/r
n−1∑
m=0

q∑
j=1

E

[
X
(j)
n−1−m

r(n− 1−m) + |X0|

]
|πk(∆j)|

2
n−1∏

`=n−m

(
1+

2<(λk)

r`+ |X0|

)
+ O

(
n−1

)
.

In the above expression, n2<(λk)/r cancels. For a large eigenvalue λk, the terms in the sum∑n−1
m=1m

−2<(λk)/r decrease fast. In this case, the sum above is dominated by the overpropor-
tional influence of the first few draws. Almost sure limits which depend on the initial state
X0 arise as a consequence of this strong long-term dependency.
If λk is strictly small,

∑∞
m=1m

−2<(λk)/r is divergent and we consider

n−1
(
E
[
|πk(Xn)|

2
]
− |E[πk(Xn)]|2

)
= n−1

n−1∑
m=0

q∑
j=1

E

[
X
(j)
n−1−m

r(n− 1−m) + |X0|

]
|πk(∆j)|

2
n−1∏

`=n−m

(
1+

2<(λk)

r`+ |X0|

)
+ O

(
n−1

)
instead. This scaling leads to convergence of the right hand side, again. However, in contrast
to the rescaled sum for large eigenvalues, each single summand tends to zero as n→∞. More
precisely, for ε > 0 sufficiently small and n large, the total value of the right hand side does
not change by more than δ > 0, if we only consider contributions to the sum of draws after
time εn. This explains why the influences of the first draws and the initial state are negligible
in the long run for small projections.
Finally, if <(λk) = 1/2,

∑∞
m=1m

−2<(λk)/r is still divergent. In this case, we consider

(n log(n))−1
(
E
[
|πk(Xn)|

2
]
− |E[πk(Xn)]|2

)
= (n log(n))−1

n−1∑
m=0

q∑
j=1

E

[
X
(j)
n−1−m

r(n− 1−m) + |X0|

]
|πk(∆j)|

2
n−1∏

`=n−m

(
1+

2<(λk)

r`+ |X0|

)
+ O

(
n−1

)
.

Again, the right hand side is convergent under this scaling, and each single summand is neg-
ligible. However, the long-term dependency is more pronounced. For example, we cannot
make the contribution from the first εn summands arbitrarily small by choosing ε > 0 suffi-
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ciently small. In this case, we can only neglect a sublinear number nε of draws for some small
ε ∈ (0, 1) to obtain all but a small fraction of the sum at time n.

Remark 11. Recall the asymptotic proportions D(1), . . . , D(a+1)Γa+1, . . . , D
(a+1)Γa+c of the

a+ c dominant classes in Theorem 1.2.3 and below. For k ∈ {1, . . . , a}, we have the relation

Ξk
r

= D(k) −
πk(X0)

|X0|
. (3.2)

Analogously, for k ∈ {a+ 1, . . . , a+ c}, there is the relation

Ξk
r

= D(a+1)Γk −
πk(X0)

|X0|
.

The proportion vector V of Theorem 1.2.3 and below may thus alternatively be written as a
sum over the martingale limits of Lemma 3.1.2:

V =

a+c∑
k=1

(
Ξk
r

+
πk(X0)

|X0|

)
· vk. (3.3)

Further note that all (real) random variables D(1), . . . , D(a+1)Γa+1, . . . , D
(a+1)Γa+c are strictly

positive almost surely under (A1)-(A5): This is clear for D(1), . . . , D(a+1) as these are the
components of a Dirichlet vector. To see this for D(a+1)Γa+1, . . . , D

(a+1)Γa+c, we compare the
original urn process with a slightly modified process that only has (isolated) dominant classes.
More precisely, each time a ball of colour i in a category 3 class is drawn, instead of following
the original rules, give all its children outside the class of i colour i, too. In the modified urn,
the classes remain unchanged, but all category 3 classes become dominant. For example,

R =



5

5

1 1

2 −2
1 4

1 2 2 1

2 1 3 4

1 1 5


 



5

5

3 1

2 4

5

2 1

3 4

5


.

Recall that the random variable D(a+1)Γa+j gives the asymptotic proportion of balls in class
Ca+j in the original urn. One can now couple the two processes by drawing balls according
to the original process, looking at the counterpart of the drawn ball in the derived process,
and then follow the appropriate rules. Now, for the derived process, by standard results on
the Pólya urn, the proportion of balls in class Ca+j tends to a positive limit almost surely.
As there are at least as many balls of this class in the original urn as in the derived urn, the
class also has a positive proportion in the original urn.

Corollary 3.1.1 (Random limits). Under conditions (A1)-(A5), Ξ1, . . . , Ξa+c are almost
surely non-degenerate unless r is simple. In this case, Ξ1 = 0 almost surely. Furthermore,
Ξa+c+1, . . . , Ξp are almost surely non-degenerate.
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Proof. Note that for the limits Ξ1, . . . , Ξa that correspond to the proportions of the isolated
category 1 classes, the claim immediately follows from Theorem 1.2.3 and identity (3.2): For
k ∈ {1, . . . , a},

Var(Ξk) = r
2Var

(
D(k)

)
,

where Dirichlet vector D has parameters
|(X0)C1 |

r , . . . ,
|(X0)Ca |

r ,
|X0|
r −

∑a
j=1

|(X0)Ck |

r .
More generally and without reference to Theorem 1.2.3, we can use orthogonality of mar-

tingale increments to see that for k ∈ {1, . . . , p},

E
[
|Ξk|

2
]
= E

[∣∣∣Ξk −M(k)
0

∣∣∣2] = ∞∑
j=0

E
[∣∣∣M(k)

j+1 −M
(k)
j

∣∣∣2]

=

∞∑
j=0

∣∣∣γ(k)j+1∣∣∣−2 E
[∣∣∣∣πk(Xj+1 − Xj) − λk

rj+ |X0|
πk(Xj)

∣∣∣∣2
]
.

The requirement of zero variance completely determines the evolution of projection k in each
draw: The expression on the right hand side is only equal to zero if for all j ≥ 0,

πk(Xj+1 − Xj) =
λk

rj+ |X0|
πk(Xj) (3.4)

almost surely (note that λk 6= 0). This in particular means that the value of πk(Xj+1 − Xj) is
independent of the colour of the (j + 1)th ball drawn from the urn. We will see that this is
not possible under our assumptions.
First assume that there is an initial configuration X0 that is compatible with (A1)-(A5) and
has πk(X0) = 0. Under this initial configuration, πk(Xj) = 0 for all j ≥ 0 almost surely because
of (3.4), and with probability one,

0 = πk(Xj+1 − Xj) = λku
(Nj+1)
k

for all j ≥ 0. Here, Nj+1 denotes the colour obtained in the (j + 1)th draw. For each colour

f ∈ {1, . . . , q}, there is n ∈ N0 with P
(
X
(f)
n > 0

)
> 0, due to assumption (A5). The last

equation yields that u
(f)
k = 0. So uk = 0, which is a contradiction.

The last paragraph shows that there is no admissible choice of initial configuration such that
πk(X0) = 0. For πk(X0) 6= 0, πk(Xj+1−Xj) 6= 0 for all j almost surely because of (3.4). If there
is more than one dominant colour or if λk belongs to a category 3 class, it follows immediately
from our choice of left eigenvectors that πk(Xj+1−Xj) 6= 0 for all j almost surely is not possible:
According to the mechanism of the urn, once there is a ball of a dominant class in the urn,
there are balls of its class in the urn at all future times. So almost surely, there is a time
N at which there are balls of all dominant classes in the urn. From this point on, there is a
positive probability of drawing balls that lead to no change in the class under consideration.
Now assume that there is only one dominant class and that λk belongs to this class. As the
proportions of balls in this class converge to a positive limit with probability one, there is a
time N from which on there are balls of each colour of the dominant class in the urn. This
implies that u

(i)
k = u

(j)
k for all colours i, j in this class. So λk = r, and uk = (1, . . . , 1)t is the
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only projection that induces a deterministic limit.

Remark 12. In Theorem 3.6 in [43] the following related result is shown for strictly small,

irreducible, balanced and tenable urns: If u ∈ Rq, then utXn
L−→ N (0, σ2u) and σ2u = 0 if and

only if for every n ≥ 0, Var(utXn) = 0, i.e. if utXn is deterministic.

More precise results on distributional properties of the random variables Ξ1, . . . , Ξp can be
found in [51,57], for example. We conclude the current section with the following lemma.

Lemma 3.1.3 (Speed of convergence). Let k ∈ {1, . . . , p}. Then∥∥∥∥Γ(|X0|/r+ λk/r)Γ(|X0|/r)
Ξk −M

(k)
n

∥∥∥∥
2

= O
(
n1/2−<(λk)/r

)
, n→∞. (3.5)

Proof. We use the decomposition∥∥∥∥Γ(|X0|/r+ λk/r)Γ(|X0|/r)
Ξk −M

(k)
n

∥∥∥∥2
2

=

∞∑
j=n

E
[∣∣∣M(k)

j+1 −M
(k)
j

∣∣∣2]

=

∞∑
j=n

∣∣∣γ(k)j+1∣∣∣−2 E
[∣∣∣∣πk(Xj+1 − Xj) − λk

rj+ |X0|
πk(Xj)

∣∣∣∣2
]

=

∞∑
j=n

∣∣∣γ(k)j+1∣∣∣−2
(
E
[
|πk(Xj+1 − Xj)|

2
]
−

∣∣∣∣ λk
rj+ |X0|

∣∣∣∣2 E [|πk(Xj)|2]
)

≤
∞∑
j=n

∣∣∣γ(k)j+1∣∣∣−2 E [|πk(Xj+1 − Xj)|2]
≤ Cn1−2<(λk)/r

as |πk(Xj+1 − Xj)|
2 can only take q values, independently of j.

We finally prove Proposition 1.1.4.

Proof of Proposition 1.1.4. Recall that we consider a generating matrix of the form

R =

(
a1,1 0

a2,1 r

)
with a1,1 > 0 and a1,1 + a2,1 = r. If we set

Mn :=

n−1∏
j=0

(
1+

a1,1
rj+ |X0|

)−1 (
X
(1)
n − E

[
X
(1)
n

])
,
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(Mn)n≥0 is a martingale. A similar calculation as in Lemma 3.1.2 leads to

E
[(
X
(1)
n

)2]
=
Γ
(
|X0|
r

)
Γ
(
n+ 2a1,1+|X0|

r

)
Γ
(
n+ |X0|

r

) X
(1)
0

·

 X
(1)
0

Γ
(
|X0|+2a1,1

r

) +
a21,1

Γ
(
|X0|+a1,1

r

) n−1∑
m=0

Γ
(
m+ |X0|+a1,1

r

)
(rm+ 2a1,1 + |X0|) Γ

(
m+ |X0|+2a1,1

r

)
 .

This implies that (Mn)n≥0 is almost surely convergent with limit
Γ
(

|X0|+a1,1
r

)
Γ
(

|X0|

r

) Ξ. Note that it

does not matter whether a1,1/r < 1/2 or not in this case, as the size of X
(1)
n is sublinear. An

application of Corollary 3.5 from [34] further implies the convergence√√√√√a1,1Γ
(
|X0|+a1,1

r

)
X
(1)
0 Γ

(
|X0|
r

) n−
a1,1
2r

(
X
(1)
n − E

[
X
(1)
n

]
− n

a1,1
r Ξ
)
L−→ N (0, 1)

as n→∞. This in turn implies that as n→∞,

1√
n
a1,1
r

(
Xn − E[Xn] − n

a1,1
r Ξv2

)
L−→ N

(0
0

)
,
a1,1X

(1)
0 Γ

(
|X0|
r

)
Γ
(
|X0|+a1,1

r

) (
1 −1
−1 1

) . (3.6)

3.2 Proof of Theorem 1.2.5

For case 1 of Theorem 1.2.5, we set

Zn :=
1√
n



<(π1(Yn) − γ
(1)
n
Γ(|X0|/r+λ1/r)
Γ(|X0|/r)

Ξ1)

=(π1(Yn) − γ
(1)
n
Γ(|X0|/r+λ1/r)
Γ(|X0|/r)

Ξ1)

<(π2(Yn) − γ
(2)
n
Γ(|X0|/r+λ2/r)
Γ(|X0|/r)

Ξ2)

=(π2(Yn) − γ
(2)
n
Γ(|X0|/r+λ2/r)
Γ(|X0|/r)

Ξ2)
...

<(πp(Yn) − γ
(p)
n

Γ(|X0|/r+λp/r)
Γ(|X0|/r)

Ξp)

=(πp(Yn) − γ
(p)
n

Γ(|X0|/r+λp/r)
Γ(|X0|/r)

Ξp)

<(πp+1(Yn))
=(πp+1(Yn))

...
<(πq(Yn))
=(πq(Yn))



.
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If we are in case 2 on the contrary, we define

Zn :=
1√

n log(n)



<(π1(Yn) − γ
(1)
n
Γ(|X0|/r+λ1/r)
Γ(|X0|/r)

Ξ1)

=(π1(Yn) − γ
(1)
n
Γ(|X0|/r+λ1/r)
Γ(|X0|/r)

Ξ1)

<(π2(Yn) − γ
(2)
n
Γ(|X0|/r+λ2/r)
Γ(|X0|/r)

Ξ2)

=(π2(Yn) − γ
(2)
n
Γ(|X0|/r+λ2/r)
Γ(|X0|/r)

Ξ2)
...

<(πp(Yn) − γ
(p)
n

Γ(|X0|/r+λp/r)
Γ(|X0|/r)

Ξp)

=(πp(Yn) − γ
(p)
n

Γ(|X0|/r+λp/r)
Γ(|X0|/r)

Ξp)

<(πp+1(Yn))
=(πp+1(Yn))

...
<(πq(Yn))
=(πq(Yn))



.

In each case, the vectors Zn serve the purpose to study the joint fluctuations of all projections.
Note that some components of Zn may be equal or 0. For example, Zn in chapter 2 is a
trimmed version of Zn of the current chapter (that is, we deleted all zero or equal components).
The aim of the next section is to show convergence in distribution of Zn to a multivariate mixed
Gaussian distribution. More precisely, similar to Proposition 2.1.3, we prove the following
theorem.

Theorem 3.2.1. As n→∞,

Zn
L−→ N (0, ΣV),

where N (0, ΣV) is a mixed Gaussian random vector with mixture components V(1), . . . , V(q)

and covariance matrix ΣV defined in (3.7) to (3.9) and (3.10) to (3.11).

Before we give the formulas for the entries of the covariance matrix ΣV , consider again a
standard Pólya urn scheme with q ∈ N colours and replacement matrix

RPólya :=


r 0 0 · · · 0 0

0 r 0 · · · 0 0
...

. . .
...

0 r 0

0 · · · 0 r


for r ∈ N. It is well-known (see [23] or Theorem 1.2.3, for example) that

Xn

rn+ |X0|

a.s.−→ D, n→∞,
whereD is a (q×1)-Dirichlet distributed random vector with parameters

(
X
(1)
0 /r, . . . , X

(q)
0 /r

)
.

In this case, Theorem 1.2.5 takes the form
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√
1

r2n
(Xn − rD)

L−→ N
0,


D(1)(1−D(1)) −D(1)D(2) . . . −D(1)D(q)

−D(1)D(2) D(2)(1−D(2)) . . . −D(2)D(q)

...
. . .

...

−D(1)D(q−1) −D(2)D(q−1) −D(q−1)D(q)

−D(1)D(q) −D(2)D(q) . . . D(q)(1−D(q))




as n→∞.

The matrix ΣV : First case of Theorem 1.2.5. First of all, asymptotically, the com-
ponents of Zn decompose into three stochastically independent classes. These are

• components associated with eigenvalues λk such that λk = r,

• components associated with eigenvalues λk such that r
2 < <(λk) < r and

• components associated with eigenvalues λk such that <(λk) <
r
2 .

Consequently, (ΣV)k,` = 0 if k and ` belong to different classes, and we can give the definitions
of the components of ΣV for each of the three classes separately.
In order to describe the entries of ΣV , recall that we earlier denoted the geometric multiplicity

of the eigenvalue r by a + c. The first class consists of components Z
(1)
n , . . . , Z

(2(a+c))
n (even

though all even components are zero, as the projections are real) and for k, ` ∈ {1, . . . , a+ c},

(ΣV)2k−1,2`−1 :=

r
2
(
Ξk
r + πk(X0)

|X0|

)(
1−

(
Ξk
r + πk(X0)

|X0|

))
, k = `,

−r2
(
Ξk
r + πk(X0)

|X0|

)(
Ξ`
r + π`(X0)

|X0|

)
, k 6= `.

(3.7)

Note that this is exactly the asymptotic variance (respectively, covariance) of the different
types in a Pólya urn in the example above. This observation agrees with our interpretation of
the classes C1, . . . , Ca+c as supercolours. The additional factor r2 is due to a different scaling
in the theorems.
If k, ` ∈ {a + c + 1, . . . , p}, the asymptotic covariances between real parts, imaginary parts
and real and imaginary parts of components of this class are given by

(ΣV)2k−1,2`−1 :=

q∑
m=1

V(m)<


(
λ̄k+λ̄`
r − 1

)
λkλ`u

(m)
k u

(m)
`

2
∣∣∣λk+λ`r − 1

∣∣∣2 +

(
λ̄k+λ`
r − 1

)
λkλ̄`ū

(m)
k u

(m)
`

2
∣∣∣λk+λ̄`r − 1

∣∣∣2
 ,

(ΣV)2k,2` :=

q∑
m=1

V(m)<

−

(
λ̄k+λ̄`
r − 1

)
λkλ`u

(m)
k u

(m)
`

2
∣∣∣1− λk+λ`

r

∣∣∣2 +

(
λ̄k+λ`
r − 1

)
λkλ̄`u

(m)
k ū

(m)
`

2
∣∣∣1− λk+λ̄`

r

∣∣∣2
 and

(ΣV)2k−1,2` :=

q∑
m=1

V(m)=


(
λ̄k+λ̄`
r − 1

)
λkλ`u

(m)
k u

(m)
`

2
∣∣∣1− λk+λ`

r

∣∣∣2 +

(
λ̄k+λ`
r − 1

)
λkλ̄`u

(m)
k ū

(m)
`

2
∣∣∣1− λk+λ̄`

r

∣∣∣2
 ,

(3.8)
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respectively.
Similarly, if k, ` ∈ {p + 1, . . . , q}, the asymptotic covariances between real parts, imaginary
parts and real and imaginary parts of components of this class are given by

(ΣV)2k−1,2`−1 :=

q∑
m=1

V(m)<


(
1− λ̄k+λ̄`

r

)
λkλ`u

(m)
k u

(m)
`

2
∣∣∣λk+λ`r − 1

∣∣∣2 +

(
1− λ̄k+λ`

r

)
λkλ̄`ū

(m)
k u

(m)
`

2
∣∣∣λk+λ̄`r − 1

∣∣∣2
 ,

(ΣV)2k,2` :=

q∑
m=1

V(m)<

−

(
1− λ̄k+λ̄`

r

)
λkλ`u

(m)
k u

(m)
`

2
∣∣∣1− λk+λ`

r

∣∣∣2 +

(
1− λ̄k+λ`

r

)
λkλ̄`u

(m)
k ū

(m)
`

2
∣∣∣1− λk+λ̄`

r

∣∣∣2
 and

(ΣV)2k−1,2` :=

q∑
m=1

V(m)=


(
1− λ̄k+λ̄`

r

)
λkλ`u

(m)
k u

(m)
`

2
∣∣∣1− λk+λ`

r

∣∣∣2 +

(
1− λ̄k+λ`

r

)
λkλ̄`u

(m)
k ū

(m)
`

2
∣∣∣1− λk+λ̄`

r

∣∣∣2
 ,

(3.9)

respectively. Note the close analogy of formulas (3.8) and (3.9).

The matrix ΣV : Second case of Theorem 1.2.5. In this case, where there is at least
one dominant class that gives rise to an eigenvalue λ` with <(λ`)/r = 1/2, the matrix ΣV has
a lot more zero entries than in the previous case. This is due to the different scaling. The
only components of Zn that do not necessarily have zero variance in the limit are

• components associated with dominant eigenvalues λk such that <(λk) =
r
2 .

For these k, if =(λk) 6= 0,

(Σv)2k−1,2k−1 = (Σv)2k,2k =
|λk|

2

2

q∑
m=1

V(m)
∣∣∣u(m)
k

∣∣∣2 . (3.10)

If =(λk) = 0, (Σv)2k,2k = 0 and

(Σv)2k−1,2k−1 = λ
2
k

q∑
m=1

V(m)
(
u
(m)
k

)2
. (3.11)

Remark 13. The variances and covariances take a simpler form if one considers the complex
quantities instead. Note that the covariance structure in particular implies that

Z
(2k−1)
n + iZ

(2k)
n

L−→ N
0, q∑

m=1

V(m)
|λk|

2
∣∣∣u(m)
k

∣∣∣2∣∣∣ 2<(λk)
r − 1

∣∣∣
 , n→∞ (3.12)

and

E
[(
Z
(2k−1)
n + iZ

(2k)
n

)(
Z
(2`−1)
n − iZ

(2`)
n

)]
n→∞−→ q∑

m=1

V(m)

(
λ̄k+λ`
r − 1

)
λkλ̄`u

(m)
k ū

(m)
`∣∣∣ λ̄k+λ`r − 1

∣∣∣2 (3.13)
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for large eigenvalues λk, λ` and analogously for small eigenvalues.

Summary of covariance structure: First case.

1. The “supercolour” components Z
(1)
n , . . . , Z

(2(a+c))
n are asymptotically independent of all

other components.

2. Z
(i)
n and Z

(j)
n are asymptotically independent for i ∈ {1, . . . , 2p} and j ∈ {2p+ 1, . . . , 2q}.

3. If the eigenvalue λk belongs to a class of category 3, Z
(2k−1)
n and Z

(2k)
n tend to zero in

probability. That is, the fluctuations of projections corresponding to eigenvalues λk of
category 3 classes vanish in the

√
n scaling. This might be due to the fact that there are

too little draws from these classes compared to the other classes. So Theorem 3.2.1 says
nothing about the fluctuations within these classes (or, at least, nothing particularly
interesting), as the draws from the dominant colours dominate in the limit and there is
too little fluctuation among the remaining colours.

Summary of covariance structure: Second case.

1. The fluctuations of components Z
(2k−1)
n , Z

(2k)
n with <(λk) 6= r

2 are at most of order
√
n,

as in the first case. However, they tend to zero in probability due to the
√
n log(n)

scaling.

2. For each dominant λk with <(λk) =
r
2 , Z

(2k−1)
n and Z

(2k)
n are asymptotically independent.

Furthermore, for different dominant k, ` with <(λk) = <(λ`) =
r
2 , Z

(2k−1)
n , Z

(2k)
n , Z

(2`−1)
n

and Z
(2`)
n are asymptotically independent.

Finally, note the following structural difference between the components of Zn: The first
2p components of Zn describe the fluctuation of sums of the form (

∑∞
k=n Ik)n and hence the

way in which the convergent martingales converge to their limits. The following components
describe the fluctuation of sums of the form (

∑n
k=0 Ik)n. One way to deal with these different

types of fluctuation is to use classical theorems for triangular arrays. In the proof of Theorem
3.2.1, we will employ Corollary 3.1 from [34]:

Proposition 3.2.2. Let {Sn,j,Fn,j, 1 ≤ j ≤ kn, n ≥ 1} be a zero-mean, square-integrable
martingale array with increments In,j and let η2 be an a.s. finite random variable. Suppose
that for all ε > 0,

kn∑
j=1

E[I2n,j1{|In,j|>ε}|Fn,j−1]
P−→ 0, (3.14)

and

kn∑
j=1

E[I2n,j|Fn,j−1]
P−→ η2, (3.15)

and Fn,j ⊆ Fn+1,j for 1 ≤ j ≤ kn, n ≥ 1. Then

Sn,kn =

kn∑
j=1

In,j
L−→ Z,
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where the random variable Z has characteristic function

φ(t) = E
[
exp

(
−
1

2
η2t2

)]
.

Proof of Theorem 3.2.1. We will prove Theorem 3.2.1 via the Cramér-Wold device. Conse-
quently, we study weak convergence of all linear combinations of the components of Zn. Let
α1, . . . , α2q ∈ R. Our aim is to apply Proposition 3.2.2 to an appropriate martingale array.

To this end, in simple words, we decompose the sum α1Z
(1)
n + . . . + α2qZ

(2q)
n into a sum of

weighted martingale differences. We set Fn,i := σ (X0, . . . , Xi). This definition satisfies the
condition on the filtration in Proposition 3.2.2.
First consider the case where for all dominant eigenvalues, <(λk) 6= r/2.
We rewrite the given linear combination α1Z

(1)
n + . . . + α2qZ

(2q)
n as a sum of martingale dif-

ferences. We simultaneously consider real and imaginary part of each eigenspace coefficient.
For 1 ≤ k ≤ p, write

α2k−1Z
(2k−1)
n + α2kZ

(2k)
n

=
1√
n

∞∑
j=n

(
α2k−1<

(
γ
(k)
n

(
M

(k)
j −M

(k)
j+1

))
+ α2k=

(
γ
(k)
n

(
M

(k)
j −M

(k)
j+1

)))
=

1√
n

(
α2k−1<

(
γ
(k)
n

)
+ α2k=

(
γ
(k)
n

)) ∞∑
j=n

<
(
M

(k)
j −M

(k)
j+1

)
+

1√
n

(
α2k<

(
γ
(k)
n

)
− α2k−1=

(
γ
(k)
n

)) ∞∑
j=n

=
(
M

(k)
j −M

(k)
j+1

)
=: β2k−1(n)

∞∑
j=n

<
(
M

(k)
j −M

(k)
j+1

)
+ β2k(n)

∞∑
j=n

=
(
M

(k)
j −M

(k)
j+1

)
.

Set g := max
{
−λk+|X0|

r + 1 : 1 ≤ k ≤ q, λk + |X0| ∈ rZ−

}
. Then for p+ 1 ≤ k ≤ q,

α2k−1Z
(2k−1)
n + α2kZ

(2k)
n

=
1√
n

(
α2k−1<

(
γ
(k)
n

)
+ α2k=

(
γ
(k)
n

)) n−1∑
j=g

<
(
M

(k)
j+1 −M

(k)
j

)

+
1√
n

(
α2k<

(
γ
(k)
n

)
− α2k−1=

(
γ
(k)
n

)) n−1∑
j=g

=
(
M

(k)
j+1 −M

(k)
j

)
+

1√
n

(
α2k−1<

(
γ
(k)
n

)
+ α2k=

(
γ
(k)
n

))
<
(
M

(k)
g

)
+

1√
n

(
α2k<

(
γ
(k)
n

)
− α2k−1=

(
γ
(k)
n

))
=
(
M

(k)
g

)
=: β2k−1(n)

n−1∑
j=g

<
(
M

(k)
j+1 −M

(k)
j

)
+ β2k(n)

n−1∑
j=g

=
(
M

(k)
j+1 −M

(k)
j

)
+ rn(k).
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So setting rn :=
∑q
k=p+1 rn(k),

2q∑
k=1

αkZ
(k)
n =

p∑
k=1

β2k−1(n) ∞∑
j=n

<
(
M

(k)
j −M

(k)
j+1

)
+ β2k(n)

∞∑
j=n

=
(
M

(k)
j −M

(k)
j+1

)
+

q∑
k=p+1

β2k−1(n) n−1∑
j=g

<
(
M

(k)
j+1 −M

(k)
j

)
+ β2k(n)

n−1∑
j=g

=
(
M

(k)
j+1 −M

(k)
j

)+ rn.

For n fixed, this is an infinite martingale difference array plus error term rn which tends to 0
almost surely as n→∞. We now cut off the tail of the series to work with a finite martingale
difference array. More precisely, we choose a sequence (kn)n≥0 ↑ ∞ appropriately and write

2q∑
k=1

αkZ
(k)
n =

p∑
k=1

β2k−1(n) kn∑
j=n

<
(
M

(k)
j −M

(k)
j+1

)
+ β2k(n)

kn∑
j=n

=
(
M

(k)
j −M

(k)
j+1

)
+

q∑
k=p+1

β2k−1(n) n−1∑
j=g

<
(
M

(k)
j+1 −M

(k)
j

)
+ β2k(n)

n−1∑
j=g

=
(
M

(k)
j+1 −M

(k)
j

)+ εn

such that εn → 0 in L2. The following lemma shows that (kn)n≥0 = (n2)n≥0 is sufficient.

Lemma 3.2.1. Let

εn :=

p∑
k=1

β2k−1(n) ∞∑
j=n2+1

<
(
M

(k)
j −M

(k)
j+1

)
+ β2k(n)

∞∑
j=n2+1

=
(
M

(k)
j −M

(k)
j+1

)+ rn.

Then

εn
L2−→ 0, n→∞.

Proof. It is easy to see that rn tends to zero in L2 as <(λk) < r/2 for all summands in this
term. The remaining part follows immediately from Lemma 3.1.3.

For the proof of Theorem 3.2.1, it is thus sufficient to show weak convergence of the mar-
tingale difference array

p∑
k=1

β2k−1(n) n2∑
j=n

<
(
M

(k)
j −M

(k)
j+1

)
+ β2k(n)

n2∑
j=n

=
(
M

(k)
j −M

(k)
j+1

)
+

q∑
k=p+1

β2k−1(n) n−1∑
j=g

<
(
M

(k)
j+1 −M

(k)
j

)
+ β2k(n)

n−1∑
j=g

=
(
M

(k)
j+1 −M

(k)
j

)
which perfectly fits into the setting of Proposition 3.2.2. We now check the conditions.
Depending on the summation index j, there are two types of increments In,j. We use the
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shorthand

In,j :=


∑q
k=p+1

(
β2k−1(n)<

(
M

(k)
j+1 −M

(k)
j

)
+ β2k(n)=

(
M

(k)
j+1 −M

(k)
j

))
, j < n,∑p

k=1

(
β2k−1(n)<

(
M

(k)
j −M

(k)
j+1

)
+ β2k(n)=

(
M

(k)
j −M

(k)
j+1

))
, j ≥ n.

The absolute value of these increments is deterministically bounded: For j < n,

|In,j| ≤
q∑

k=p+1

|β2k−1(n)|
∣∣∣<(M(k)

j+1 −M
(k)
j

)∣∣∣+ |β2k(n)|
∣∣∣=(M(k)

j+1 −M
(k)
j

)∣∣∣
≤ C

q∑
k=p+1

n<(λk)/r−1/2
(∣∣∣<(M(k)

j+1 −M
(k)
j

)∣∣∣+ ∣∣∣=(M(k)
j+1 −M

(k)
j

)∣∣∣)

≤
√
2C

q∑
k=p+1

n<(λk)/r−1/2
∣∣∣M(k)

j+1 −M
(k)
j

∣∣∣
≤ D n−1/2

q∑
k=p+1

(
n

j

)<(λk)/r

= O
(
nmax{<(λp+1)/r,0}−1/2

)
for all j < n. Here, C,D > 0 are constants and the uniform bound tends to 0 as n → ∞.
Analogously, for n ≤ j ≤ n2,

|In,j| ≤ C n−1/2
p∑
k=1

(
n

j

)<(λk)/r

= O
(
n−1/2

)
for all n ≤ j ≤ n2 as n → ∞. Again, C > 0 is a constant and the uniform bound tends to 0
as n→∞.
Fix ε > 0. Then by the above, for N big enough, for all j = 1, . . . ,N2 we have |IN,j| < ε, so in
particular

n2∑
j=g

E[I2n,j1{|In,j|>ε}|Fn,j−1] = 0

for all n ≥ N. This implies condition (3.14).
We now turn to condition (3.15), which is computationally the hardest.
We rewrite the increments as

I2n,j =

(
ξtn,j(Xj+1 − Xj) − η

t
n,j

Xj

rj+ |X0|

)2
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where

ξn,j :=
∑
k∈K

1√
n

α2k−1<
 γ(k)n
γ
(k)
j+1

+ α2k=

 γ(k)n
γ
(k)
j+1

<(uk)

+

α2k<
 γ(k)n
γ
(k)
j+1

− α2k−1=

 γ(k)n
γ
(k)
j+1

 =(uk)


and

ηn,j :=
∑
k∈K

1√
n

α2k−1<
 γ(k)n
γ
(k)
j+1

+ α2k=

 γ(k)n
γ
(k)
j+1

<(λkuk)

+

α2k<
 γ(k)n
γ
(k)
j+1

− α2k−1=

 γ(k)n
γ
(k)
j+1

 =(λkuk)


and the set K is either equal to {1, . . . , p} or {p+ 1, . . . , q}, depending on j. With this,

n2∑
j=g

E[I2n,j|Fn,j] =
n2∑
j=g

E

[(
ξtn,j(Xj+1 − Xj) − η

t
n,j

Xj

rj+ |X0|

)2
|Fj

]

=

n2∑
j=g

q∑
m=1

X
(m)
j

rj+ |X0|

(
ξtn,j∆m − ηtn,j

Xj

rj+ |X0|

)2
. (3.16)

We show that (3.16) converges almost surely by looking at the different terms separately:
Recall that each of the ξn,j and ηn,j is a sum over different eigenspace components.
In the first part of the sum where j ≤ n−1, there are only λk with <(λk)/r < 1/2, so the pro-

duct of component k with component ` in the square
(
ξtn,j∆m − ηtn,j

Xj
rj+|X0|

)2
is asymptotically

equivalent to

1

n

n−1∑
j=g

q∑
m=1

X
(m)
j

rj+ |X0|

(
n

j

)<(λk+λ`)

r

·
((
α2k−1<

(
λk

(
u
(m)
k −

utkXj

rj+ |X0|

))
+ α2k=

(
λk

(
u
(m)
k −

utkXj

rj+ |X0|

)))
cos

(
=(λk)

r
log

(
n

j

))
+

(
α2k<

(
λk

(
u
(m)
k −

utkXj

rj+ |X0|

))
− α2k−1=

(
λk

(
u
(m)
k −

utkXj

rj+ |X0|

)))
sin

(
=(λk)

r
log

(
n

j

)))
·
((
α2`−1<

(
λ`

(
u
(m)
` −

ut`Xj

rj+ |X0|

))
+ α2`=

(
λ`

(
u
(m)
` −

ut`Xj

rj+ |X0|

)))
cos

(
=(λ`)

r
log

(
n

j

))
+

(
α2`<

(
λ`

(
u
(m)
` −

ut`Xj

rj+ |X0|

))
− α2`−1=

(
λ`

(
u
(m)
` −

ut`Xj

rj+ |X0|

)))
sin

(
=(λ`)

r
log

(
n

j

)))
.

Recall that the vector
Xj

rj+|X0|
converges to V almost surely. It follows that for λk 6= r,

utk
Xj

rj+|X0|
→ 0 almost surely. So the sum above is almost surely asymptotically equivalent
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to

1

2n

n−1∑
j=g

q∑
m=1

V(m)

(
n

j

)<(λk+λ`)

r

·
((

(α2k−1α2`−1 − α2kα2`)<
(
λkλ`u

(m)
k u

(m)
`

)
+ (α2k−1α2` + α2kα2`−1)=

(
λkλ`u

(m)
k u

(m)
`

))
· cos

(
=(λk + λ`)

r
log

(
n

j

))
+
(
(α2k−1α2`−1 + α2kα2`)<

(
λkλ̄`u

(m)
k ū

(m)
`

)
+(α2kα2`−1 − α2k−1α2`)=

(
λkλ̄`u

(m)
k ū

(m)
`

))
cos

(
=(λk − λ`)

r
log

(
n

j

))
+
(
(α2k−1α2` + α2kα2`−1)<

(
λkλ`u

(m)
k u

(m)
`

)
+ (α2kα2` − α2k−1α2`−1)=

(
λkλ`u

(m)
k u

(m)
`

))
· sin

(
=(λk + λ`)

r
log

(
n

j

))
+
(
(α2kα2`−1 − α2k−1α2`)<

(
λkλ̄`u

(m)
k ū

(m)
`

)
−(α2k−1α2`−1 + α2kα2`)=

(
λkλ̄`u

(m)
k ū

(m)
`

))
sin

(
=(λk − λ`)

r
log

(
n

j

)))
→ α2k−1α2`−1(ΣV)2k−1,2`−1 + α2kα2`(ΣV)2k,2` + α2k−1α2`(ΣV)2k−1,2` + α2kα2`−1(ΣV)2k,2`−1

as n→∞.
The same calculation shows convergence for summands k, ` with 1/2 < <(λk)/r,<(λ`)/r < 1.
Furthermore, there are no summands with <(λk)/r ≤ 1/2 and <(λ`)/r > 1/2. Let now
1/2 < <(λk)/r < 1 and λ` = r. Then the component k with component ` product converges
to

r2
q∑

m=1

V(m)

(
Ξ`
r

+
π`(X0)

|X0|
− u

(m)
`

)(
α2k−1α2`−1 ·<

(
u
(m)
k

)
+ α2kα2`−1=

(
u
(m)
k

))
= 0

= α2k−1α2`−1(ΣV)2k−1,2`−1α2k−1α2`(ΣV)2k−1,2`.

Finally, if λk = λ` = r, the product tends to

α2k−1α2`−1r
2

q∑
m=1

V(m)

(
u
(m)
k −

(
Ξk
r

+
πk(X0)

|X0|

))(
u
(m)
` −

(
Ξ`
r

+
π`(X0)

|X0|

))

=

−α2k−1α2`−1r
2
(
Ξk
r + πk(X0)

|X0|

)(
Ξ`
r + π`(X0)

|X0|

)
, k 6= `

α22k−1r
2
(
Ξk
r + πk(X0)

|X0|

)(
1−

(
Ξk
r + πk(X0)

|X0|

))
, k = `

=α2k−1α2`−1(ΣV)2k−1,2`−1.

In total, this implies that

n2∑
j=g

E[I2n,j|Fn,j]
a.s.−→ 2q∑

i,j=1

αiαj(ΣV)i,j = (α1, . . . , α2q)ΣV(α1, . . . , α2q)
t.

By Proposition 3.2.2, α1Z
(1)
n + . . . + α2qZ

(2q)
n converges weakly to a random variable with
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characteristic function ψ(t) = E[exp(−1/2
(
(α1, . . . , α2q)ΣV(α1, . . . , α2q)

t
)2
t2)]. Now the

Cramér-Wold device implies weak convergence of (Zn)n≥0 to a mixed multivariate normal
distribution with covariance matrix ΣV given V: If the almost sure limit V is deterministic,
then the asymptotic distribution of Zn is the normal distribution, as can be seen from the
characteristic function. If the almost sure limit V is not deterministic, then, conditionally on
V, Zn converges to some normal limit law, so the asymptotic distribution of Zn is a mixed
normal distribution.

We finally consider the case where there is some k such that <(λk)/r = 1/2. By very similar

calculations, there is also weak convergence of α1Z
(1)
n +. . .+α2qZ

(2q)
n to a random variable with

characteristic function E[exp(−1/2
(
(α1, . . . , α2q)ΣV(α1, . . . , α2q)

t
)2
t2)], where ΣV is defined

in equations (3.10) and (3.11). Due to the scaling, the matrix ΣV has a lot more zero entries
in this case. Again, the Cramér-Wold device implies Theorem 3.2.1 in this case.

Proof of Theorem 1.2.5. It remains to show that under our assumptions, in both cases of
Theorem 1.2.5, the covariance matrix AV given the proportions of the supercolours V is of
the stated form and almost surely has positive entries in the specified positions.
Because all complex conjugates of eigenvectors in our basis are also eigenvectors in the basis,
we have the almost sure asymptotic equivalence

1√
n`n

(
Yn −

p∑
k=1

n
λk
r Ξkvk

)
∼

q∑
k=1

(
Z
(2k−1)
n < (vk) − Z

(2k)
n =(vk)

)
=MZn,

where `n = 1 in case 1 of the theorem and `n = log(n) in case 2. This shows that AV =
MΣVM

t in both cases.
For a fixed colour j, the conditional variance of colour j is the conditional variance of

q∑
k=1

(
Z
(2k−1)
n <

(
v
(j)
k

)
− Z

(2k)
n =

(
v
(j)
k

))
. (3.17)

Now these are exactly linear combinations of the components of Zn as considered in the last
proof.

First case: Non-dominant colours. Let j be a non-dominant colour. By our choice of

right eigenvectors, for all dominant colours k, we have v
(j)
k = 0. So (3.17) reduces to a sum

over eigenvectors from category 3 classes. But all variances and covariances of category 3

projections Z
(2k−1)
n , Z

(2k)
n are zero in the limit and thus, (AV)j,j = 0.

Second case: Dominant colours. Suppose that j is a dominant colour in class Cm. Again, by
our choice of right eigenvectors, the sum (3.17) reduces to a sum over eigenvectors associated

with Cm, as v
(j)
k 6= 0 only if vk is an eigenvector associated with class Cm. If |Cm| = 1, then

(3.16) is equal to

(AV)j,j = r
2

(
Ξm

r
+
πk(X0)

|X0|

)(
1−

(
Ξm

r
+
πk(X0)

|X0|

))
,

which is positive almost surely by Remark 11, because there is at least one other dominant
class by our assumptions.
Let |Cm| > 1. In this case, we have to look at the different components of the variance of
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colour j coming from the projections associated with class Cm in more detail. Recall that the
sum (3.16) is an approximation of the conditional variance of (3.17), if the coefficients are
chosen appropriately. Now, each of the n2 + 1 − g summands in (3.16) is non-negative and
thus any sum over less terms yields a lower bound for the whole sum. Only considering part
of the sum has the advantage that the variances and covariances of the fluctuations in the
sum grow at a different speed in the beginning (respectively end) of the urn. For example,
for n large and ε ∈ (0, 1), we can either sum from g to εn or from ε−1n to n2 to get a lower
bound. In the first case, there are only summands with <(λk),<(λ`) ≤ r/2. A calculation
as in the proof of Theorem 3.2.1 shows that the contribution coming from the fluctuations
in projections πk, π` to the sum (3.16) cut off at εn is at most of order ε1−<(λk+λ`)/r (again,
with coefficients chosen appropriately). In the second case, there are only summands with
<(λk),<(λ`) > r/2. The contribution coming from the fluctuations in projections πk, π` to
the sum (3.16) without the first ε−1n summands with coefficients chosen appropriately is at
most of order ε<(λk+λ`)/r−1. In particular, the contribution to the variance of colour j from
projections with real part close to r/2 (and nonzero coefficients) is the greatest.
We now choose k∗ such that among all possible eigenvalues λk 6= 0 associated to Cm, the

distance |<(λk∗)/r − 1/2| is minimal and
∣∣∣v(j)k∗∣∣∣ > 0. Note that this is possible as the Perron-

Frobenius eigenvalue r associated with Cm satisfies these conditions, for example.
In case 1 of Theorem 1.2.5, there are only the cases <(λk∗)/r < 1/2 and <(λk∗)/r > 1/2.
Assume <(λk∗)/r < 1/2. If λk∗ ∈ R is real and a simple eigenvalue, there is only one dominant
term of order ε1−2<(λk∗ )/r, which has coefficient

|λk∗ |
2
∣∣∣v(j)k∗∣∣∣2

1− 2λk∗/r

q∑
m=1

V(m)
∣∣∣u(m)
k∗

∣∣∣2 .
This is positive almost surely. On the contrary, if λk∗ ∈ C\R is a simple eigenvalue, we choose
the eigenvalue λk∗ from the complex conjugated pair with equal real parts that has =(λk∗) > 0.
Furthermore, we choose ε small enough and such that 2=(λk∗)/r log(ε) is a negative multiple
of 2π and then cut off at εn (ε is chosen such that the sine-terms that arise from the cutting
off of the sum vanish, and the cosine terms are equal to one). With this choice, the dominant
term is of order ε1−2<(λk∗ )/r. It has coefficient

|λk∗ |
2
∣∣∣v(j)k∗∣∣∣2

2<(1− 2λk∗/r)

q∑
m=1

V(m)
∣∣∣u(m)
k∗

∣∣∣2
+

1

2|1− 2λk∗/r|2

q∑
m=1

V(m)<

(
(1− 2λ̄k∗/r)λ

2
k∗

(
u
(m)
k∗

)2 (
v̄
(j)
k∗

)2)
,

which is positive (recall
∣∣∣v(j)k∗∣∣∣ > 0 and <(λk∗), =(λk∗) > 0).

It remains to consider the case where λk∗ is a multiple eigenvalue. This case is more involved
as we have to ensure that the various terms of equal size do not cancel. We do this by the
following trick: The conditional variance of colour j is independent of the choice of bases
{u1, . . . , uq} and {v1, . . . , vq}. In particular, we may choose these bases in a certain way, for
each realisation of V:
Assume that λ ∈ {λ1, . . . , λq} is a multiple eigenvalue of submatrix Ti,i (or Qi,i) with =(λ) ≥ 0,
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such that its eigenspace has dimension s ≥ 2. We wish to choose the corresponding left
eigenvectors in a particular way. Let V ∈ Rq be the random vector defined in Theorem 1.2.3
and the paragraph below. Its entries are strictly positive on Ti,i (or Qi,i) with probability one
and zero on all classes of category 3. We may thus use V restricted to the components in
Ti,i (or Qi,i) to define a scalar product on R`, where ` is the number of types in Ti,i (or Qi,i).
Suppose that ũk, ũk+1, . . . , ũk+s−1 is a choice of basis of the eigenspace under consideration,
whose components are zero on all other dominant classes. Let A := {<(ũk+j) : 0 ≤ j ≤
s − 1,<(ũk+j) 6= 0} ∪ {=(ũk+j) : 0 ≤ j ≤ s − 1, =(ũk+j) 6= 0}. The elements of A are linearly
independent. By the standard theory, we may now choose left eigenvectors uk, . . . , uk+s−1 for
λ such that for all x 6= y,

〈<(ux),<(uy)〉V :=

q∑
m=1

V(m)<
(
u
(m)
x

)
<
(
u
(m)
y

)
= 0,

〈=(ux), =(uy)〉V :=

q∑
m=1

V(m)=
(
u
(m)
x

)
=
(
u
(m)
y

)
= 0,

〈<(ux), =(uy)〉V :=

q∑
m=1

V(m)<
(
u
(m)
x

)
=
(
u
(m)
y

)
= 0.

(Furthermore, because ux has non-zero components on exactly one dominant class (and maybe
on some non-dominant components), multiple eigenvalues from different dominant classes
are automatically “orthogonal” with respect to 〈·, ·〉V .) We additionally assume the other
properties of the dual bases from section 1.2.
Now, with this choice, the covariances of the associated components of Z are zero. Hence
each projection associated with this eigenvalue yields a lower bound on the variance.
If <(λk)/r > 1/2, we choose ε small enough, start the sum at ε−1n and proceed analogously.
The dominant term now is of order ε2<(λk)/r−1 and has non-zero coefficient.
If there are a big eigenvalue λk and a small eigenvalue λ` such that |<(λk)/r−1/2| = |<(λ`)/r−
1/2|, we can choose either.
In case 2 of Theorem 1.2.5, there are eigenvalues λk associated with class Cm such that
<(λk)/r = 1/2. This case is even simpler as everything that is not killed by the scaling is
independent. The asymptotic variance of colour j is then the weighted sum over all variances
of real and imaginary parts of the r/2-projections in the class, which are not identically zero,
because all different summands are asymptotically uncorrelated.
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4 Further Applications

Below, we consider three examples which illustrate the statement of Theorem 1.2.5 for both
small and large urns. Within each of the models, a phase transition takes place. Note however,
that the result for small urns is covered in [74] and [40].

4.1 m-ary search tree

The evolution of the vector of the number of nodes containing 0, 1, . . . ,m − 2 keys in an
m−ary search tree under the uniform permutation model can be encoded by the following
urn model: We have generating matrix

Rm =


−1 0 m

2 −2
3 −3

. . .

m− 1 −(m− 1)


and X0 = (1, 0, . . . , 0)t. It is well known, cf. [13], that

Xn

n+ 1

a.s.−→ 1

Hm − 1

(
1

2
,
1

3
, . . . ,

1

m

)t
as n→∞, where Hm denotes the mth Harmonic number. This limit is deterministic and all
its components are strictly positive, so we expect convergence in distribution to a non-mixed
Gaussian distribution. The eigenvalues of Rm are given by the solutions z of the equation

m! =

m−1∏
k=1

(z+ k).

If m ≤ 26, there are no eigenvalues with real part greater than 1/2. In this case, Theorem
1.2.5 confirms the well-known result that (Xn − E[Xn])/

√
n → N in distribution: Mahmoud

and Pittel [56] show that when m ≤ 15, the limiting distribution is normal. The result was
later extended to include m ≤ 26 by Lew and Mahmoud [53].
For m > 26, there is at least one eigenvalue with real part greater than 1/2 and it is known
that for all such m, there is no eigenvalue whose real part is equal to 1/2. Chern and
Hwang [15] prove that when m ≥ 27, the space requirement centered by its mean and scaled
by its standard deviation does not have a limiting distribution. Here, Theorem 1.2.5 can be
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applied to give the result

1√
n

(
Xn − E[Xn] −

p∑
k=1

nλkΞkvk

)
L−→ N (0,AV).

4.2 B-urns

A B-tree with integer-valued parameter m ≥ 2 is a search tree, where keys are stored in
internal nodes of the tree and its leaves (or gaps) represent future insertion possibilities.
See [11] for an exposition of B-trees, where the authors present two algorithms to construct
B-trees: the prudent algorithm and the optimistic algorithm. It turns out that the urn
process obtained from considering the optimistic algorithm has a generating matrix that is
more convenient. When constructed from the so-called optimistic algorithm (see [11]), there
are m − 1 different types of gaps. As explored in [11], the evolution of the gap process
(Xn)n≥0 under the random permutation model on the keys can be modelled as a Pólya urn
with generating matrix

RB =


−m 2m

m+ 1 −(m+ 1)
m+ 2

. . .

2m− 1 −(2m− 1)

 .

The eigenvalues of RB are given by the solutions of the equation

2m!

m!
=

2m−1∏
k=m

(z+ k).

Its complex roots are all simple, and 1 is the Perron-Frobenius eigenvalue. Furthermore,
two distinct eigenvalues that have the same real part are conjugated. The left and right
eigenvectors of RB are also explicitly calculated in [11].
If m ≤ 59, there are no eigenvalues with real part greater than 1/2. In this case, Theorem
1.2.5 confirms that

Xn − E[Xn]√
n

L−→ N (0,AV).

For m ≥ 60, Theorem 1.2.5 states that

1√
n

(
Xn − E[Xn] −

p∑
k=1

nλkΞkvk

)
L−→ N (0,AV).

In real life implementations, m is taken around 100 or more, and thus, the fluctuating term
is of significance in applications. See [11] for pictures of this behaviour.
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4.3 Congruence classes of depths in random BSTs

Janson [39] studies congruence classes of depths in three different random trees, among them
the random binary search tree (BST). For a definition of the random BST, see section 2.3.2.
Let (Un)n∈N be a sequence of i.i.d. random variables with L(U1) = unif(0, 1) and (Tn)n∈N
be the sequence of BSTs constructed from the uniform keys. Furthermore, for fixed q ∈ N,
q ≥ 2, and each n ≥ 1, let X̃n be the vector of the numbers of internal nodes at depth
0, . . . , q− 1 mod q of Tn. With eigenvalues and eigenvectors as in chapter 2, (2.2) and (2.3),
set

Σq =

q∑
j=2

1

|3− 4<(λj)|
vjv
∗
j .

Janson [39], Theorem 2.7, proves the following results about the asymptotic behaviour of
(X̃n)n∈N:

Theorem 4.3.1 (Janson). (i) If 2 ≤ q ≤ 8, then

n−1/2

(
X̃n −

n

q
1

)
L−→ N (0, Σq) as n→∞.

Furthermore, the moments of
(
n−1/2

(
X̃n −

n
q1
))

n≥1
converge to the moments of N (0, Σq).

(ii) If q ≥ 9, let α := 2 cos(2π/q) − 1 > 1/2 and β := 2 sin(2π/q). Then

n−1/2

(
X̃n −

n

q
1

)
−<(niβW̃)

a.s.−→ 0 as n→∞,
for some complex random vector W̃ = Wv2, where W is a complex-valued random
variable and v2 is defined in (2.3).

In particular, the variance of each component X̃
(j)
n is of order n for q ≤ 8, but larger for

q ≥ 9. The above asymptotics already strongly resemble the asymptotics of cyclic urns from
chapter 2. Indeed, Janson uses an urn model to derive the quoted results, which we will now
present.
First, it turns out to be more convenient to work with external rather than with internal
nodes, see section 2.3.2. Note that every internal vertex has two children, while every external

vertex has none. Furthermore, let
(
X
(j)
n

)∞
j=0

and
(
V
(j)
n

)∞
j=0

denote the profiles of the internal

and external nodes in Tn, respectively. That is, X
(j)
n (V

(j)
n ) denotes the number of internal

(external) nodes at depth j in Tn. The internal and external nodes are related in the following
way: As each internal node has exactly two children on the next level,

2X
(j−1)
n = X

(j)
n + V

(j)
n , j ≥ 1.

Furthermore, X
(0)
n + V

(0)
n = 1. For congruence classes modulo q, this means that for every j,

2X̃
(j−1)
n − X̃

(j)
n = Ṽ

(j)
n − δj,0. (4.1)
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Here, for q ≥ 2 fixed, we used Ṽn :=
(
Ṽ
(1)
n , . . . , Ṽ

(q)
n

)t
to denote the vector of external nodes

in the random BST at depths 0, 1, . . . , q− 1 mod q after the insertion of n keys.
Now, the evolution of the congruence classes of depths of the external nodes can be viewed
as the evolution of a generalised Pólya urn scheme. At each step, an external node is picked
uniformly at random for replacement and turned into an internal node with two new external
nodes at the next level attached. The growth of the external nodes can be thus be modelled
by an urn scheme with generating matrix

RBST :=



−1 0 0 · · 0 2

2 −1 0 · · 0 0

0 2 −1 · · · ·
· · · · · · ·
· · · · · 0 0

0 0 0 · · 2 −1

 ∈ Rq×q (4.2)

and Ṽ0 = e1. Note that RBST is also circulant like the cyclic urn matrix, and thus has the
same left and right eigenvectors as (2.3) and eigenvalues

λ ′1 := 1, λ
′
2 := 2ω− 1, λ ′3 := 2ω

−1 − 1, . . . , λ ′q := 2ωd
q
2
e − 1.

Hence, the condition <(λ2) < 1/2 becomes cos(2π/q) < 3/4, which holds for q ≤ 8, while
for q ≥ 9 we have cos(2π/q) > 3/4 and thus <(λ2) > 1/2. Also note that for all q ≥ 2 and
1 ≤ k ≤ q, cos(2πk/q) 6= 3/4, see [77]. Consequently, for all q ≥ 2, there are no eigenvalues
with real part equal to 1/2.

As we have seen, Janson [39] obtains normal convergence of
(
Ṽn

)
n≥0

when q ≤ 8, and the

covariance matrix of the limit is given by Aq. Here,

Aq =

q∑
j=2

|λ ′j |
2

|1− 2<(λ ′j)|
vjv
∗
j .

For q ≥ 9, there are oscillations. However, Theorem 1.2.5, case (i), implies that also

1√
n

(
Ṽn − E[Ṽn] −

p∑
k=1

nλkΞkvk

)
L−→ N (0,Aq).

Again, in this example, the covariance matrix is comparatively simple to compute.
Using relation (4.1), one arrives at

1√
n

(
X̃n − E[X̃n] −

p∑
k=1

nλkΞkvk

)
L−→ N (0, Σq).
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4.4 Open questions

The central limit theorem analogues of the current thesis contribute to a more thorough
understanding of the asymptotic properties of generalised Pólya-Eggenberger urn processes.
Some directions for future research along the direction taken in the present work are given
below.
To begin with, recall that the Gaussian limit in Theorem 1.2.5 is degenerate if the urn is re-
ducible and the largest eigenvalue is simple. The two-colour case (Proposition 1.1.4) suggests
that weak convergence to a (mixed) normal distribution still holds, if a different scaling is
applied. From this, the natural question arises as to the correct scaling in this case.
Secondly, it might be of interest to determine the distribution of the random variables
Γa+1, . . . , Γa+c introduced below Theorem 1.2.3, if there is a simple characterisation. Their
isolated counterparts D(1), . . . , D(a+1) constitute a Dirichlet distributed random vector, but
as category 2 classes of colours experience influencing from outside, the situation is more
involved in this case.
Thirdly, one could try to relax conditions (A1) and (A2). For example, it seems very plau-
sible that condition (A1) can be removed by considering generalised eigenspaces rather than
eigenspaces. The task of removing the balance condition (A2) is probably much harder, but
nevertheless very interesting.
Furthermore, a functional version of Theorem 1.2.5 would be of great interest. For two-colour
urns and small urns, results of this type are known and can be found in [29,40].
Finally, as mentioned in Chapter 2, various other combinatorial structures related to algo-
rithms exhibit periodic behaviour that resembles the oscillating nature of some urn models.
Now the question is, if similar central limit theorems can be derived for these structures. The
answer to this question is not immediate, as urn models possess some additional properties
that cannot be drawn on in other situations. This is work in progress.
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[65] G. Pólya. Sur quelques points de la théorie des probabilités. In Annales de l’institut
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[66] N. Pouyanne. Classification of large Pólya-Eggenberger urns with regard to their asymp-
totics. Discrete Mathematics and Theoretical Computer Science, pages 177–245, 2005.
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Appendix

The complex Gamma function

The asymptotic growth of the complex Gamma function is used several times without further
comment in the course of this thesis. Here, we collect some important properties, taken
from [70].
For big values of |z|, one often wishes to approximate Γ(z) via simpler functions, at least in
the slotted plane C− := C \ (−∞, 0]. Here, the restriction to C− has to be made, as the
Gamma function has poles in Z−. More precisely, for each δ ∈ (0, π], we set Wδ := {z =
|z|eiφ ∈ C \ {0} : |φ| ≤ π− δ}. An approximation of Γ(z) as well as the size of the “error term”
µ(z) are given in the following theorem.

Theorem 4.4.1 (Stirling’s formula).

Γ(z) =
√
2πzz−

1
2 e−zeµ(z), z ∈ C−,

|µ(z)| ≤ 1

8 cos2 12φ
· 1
|z|
, z = |z|eiφ ∈ C−,

|µ(z)| ≤ 1

8 sin2 12δ
· 1
|z|
, z ∈Wδ, 0 < δ ≤ π.

The strength of the theorem is in the bounds for µ(z). However, it is often sufficient to
know that in every Wδ, µ(z) tends to zero uniformly as 1/z, for |z| → ∞. From Stirling’s
formula, we have the asymptotic expansion

Γ(z+ 1) ∼
√
2πz

(z
e

)z
.

Here, ∼ means that the quotient of the left and the right hand side tends to one uniformly in
every space Wδ as z→∞. A consequence that we have used throughout this thesis is, that

Γ(z+ a) ∼ zaΓ(z), for a ∈ C \ Z− fixed.

One can further show that

|µ(z)| ≤ 1

12

1

<(z)
, <(z) > 0, and |µ(iy)| ≤ 1

6

1

|y|
, y ∈ R.

Moreover, in the language of this thesis, set

γ`,n(z) :=
∏
`≤k<n

(
1+

z

rn+ |X0|

)
=
Γ(n+ |X0|/r+ z/r)

Γ(n+ |X0|/r)

Γ(`+ |X0|/r)

Γ(`+ |X0|/r+ z/r)
.

Then Janson [43], Lemma 5.2, gives the following result.
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Lemma 4.4.1. Assume that r = 1.

(i) For every fixed `, as n→∞,

γ`,n(z) = n
z Γ(`+ |X0|)

Γ(`+ |X0|+ z)
(1+ o(1))

uniformly for z in any fixed compact set in the complex plane.

(ii) As `, n→∞ with ` ≤ n,

γ`,n(z) =
(n
`

)z
(1+ o(1))

uniformly for z in any fixed compact set in the complex plane.
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Zusammenfassung

Gegenstand der vorliegenden Arbeit ist die Herleitung eines verallgemeinerten Typs von zen-
tralem Grenzwertsatz für Urnenprozesse. Bei Urnen handelt es sich um einfache Modelle
für zufällige Wachstumsprozesse, die über die Interaktion von Elementen verschiedener Ty-
pen gesteuert sind. Ein naheliegendes Studienobjekt, das auch im Mittelpunkt dieser Arbeit
steht, ist die asymptotische Verteilung der Elemente auf die Typen. Diese hängt von der
konkreten Form der Interaktion ab und vor allem davon, inwieweit sich selbstverstärkende
oder nivellierende Effekte zwischen den Typen auf lange Sicht hin durchsetzen. Für manche
Modelle ist die gegenseitige Einflussnahme gering und führt zu einem asymptotischen Ver-
halten, das sich seiner Natur nach nur geringfügig von dem einer Summe unabhängiger und
identisch verteilter Zufallsvariablen unterscheidet. In anderen Modellen hingegen verstärken
sich anfängliche Ungleichheiten hin zu Tendenzen signifikanter Größe (auf der Skala eines zen-
tralen Grenzwertsatzes). Genauer gesagt, stabilisieren sich bestimmte Typenverhältnisse bei
einem zufälligen Wert oder es entstehen logarithmisch periodische Schwankungen zufälliger
Amplitude und Phase zwischen Typen. Der Schwerpunkt der vorliegenden Arbeit liegt auf
den letztgenannten Modellen. Für Urnen dieser Art wird ein zentraler Grenzwertsatz herge-
leitet, dessen Form sich durch die vorgenommene Normierung von der klassischen Situation
unterscheidet. Die Abweichung liegt darin begründet, dass im Fall fast sicherer Tendenzen
eine zufällige Zentrierung, sowie möglicherweise auch eine zufällige Skalierung, notwendig für
die Konvergenz sind. In der Arbeit werden die Resultate, die dieses Vorgehen liefert, auch als
Analoga zentraler Grenzwertsätze bezeichnet.

Urnenmodelle. Anschaulich gesprochen, handelt es sich bei einem Urnenmodell um ein ge-
dachtes Behältnis unendlicher Kapazität – die Urne –, in der sich Kugeln verschiedener Typen
befinden. Im Verlauf einer zeitlichen Entwicklung werden zufällig einzelne Kugeln aus der Ur-
ne gezogen und, in Abhängigkeit vom gezogenen Typ, andere entnommen oder hinzugefügt,
sodass sich die Zusammensetzung der Urne stets ändert.
Die Untersuchung sogenannter verallgemeinerter Pólya-Eggenbergerscher Urnenmodelle nahm
ihren Ausgangspunkt in der 1923 veröffentlichten Arbeit [20], die ein Zweitypen-Modell zur
Chancenvermehrung durch Erfolg der Typen im Lichte verschiedener möglicher Anwendungen
vorstellte. Seit der Arbeit von Pólya und Eggenberger wurde eine Vielzahl an Verallgemeine-
rungen und Varianten des ursprünglichen Modells untersucht, etwa Urnen mit mehr als zwei
Typen, Urnen, bei denen mehrere Bälle auf einmal gezogen werden, oder Urnen, bei denen
zusätzlich zu den zufälligen Zügen noch weitere Stufen von Randomisierung auftreten.
Das der vorliegenden Arbeit zugrunde liegende Modell ist das folgende: Gegeben seien eine
natürliche Zahl q ≥ 2, ein Spaltenvektor

X0 =
(
X
(1)
0 , . . . , X

(q)
0

)t
∈ Nq0

und eine q × q-Matrix R ∈ Zq×q mit ganzzahligen Einträgen. Wir interpretieren q als die
Anzahl verschiedener Typen, X0 als die anfängliche Zusammensetzung der Urne und R als
Schema für die Regeln, nach denen Kugeln zurückgelegt werden.
Aus den obigen Daten ergibt sich dann wie folgt der Urnenprozess (Xn)n∈N0 , wobei

Xn =
(
X
(1)
n , . . . , X

(q)
n

)t
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den Vektor der Kugelzahlen der verschiedenen Typen zur Zeit n ∈ N0 bezeichnet: Zur Zeit 0

befinden sich X
(i)
0 Kugeln des Typs i in der Urne, für i = 1, . . . , q. Unmittelbar vor Zeit n+ 1

wird uniform eine Kugel aus der Urne gezogen. Hat sie Typ i, so wird sie zurückgelegt und
es werden für jedes j ∈ {1, . . . , q} entweder Rj,i Kugeln des Typs j hinzugefügt (Rj,i ≥ 0) oder
Rj,i Kugeln des Typs j entfernt (Rj,i < 0). Bei dem hier untersuchten Pólya-Eggenbergerschen
Urnenmodell zu den Daten X0 und R handelt es sich also um einen Markov-Prozess (Xn)n∈N0
in diskreter Zeit, dessen mögliche Inkremente die Spalten von R sind. Die für R und X0
getroffenen Annahmen in der vorliegenden Arbeit sind:

(A1) R hat konstante Spaltensumme r ≥ 1.

(A2) Für alle i 6= j ist Ri,j ≥ 0 und falls Ri,i < 0, dann werden X
(i)
0 und Ri,j für alle 1 ≤ j ≤ q

von |Ri,i| geteilt.

(A3) R ist diagonalisierbar über C.

(A4) Keine zwei Spalten von R stimmen überein.

(A5) Die anfängliche Komposition der Urne ist so gewählt, dass es zu jedem Typ j ∈ {1, . . . , q}

ein n ∈ N0 mit P
(
X
(j)
n > 0

)
> 0 gibt.

Eigenschaft (A1) garantiert, dass die Gesamtanzahl an Kugeln in jedem Zeitschritt, un-
abhängig vom gezogenen Typ, um denselben positiven Betrag r zunimmt. Eigenschaft (A2)
hingegen stellt sicher, dass der Prozess zu jeder Zeit wohldefiniert ist und es nicht dazu kommt,
dass die Entfernung von Kugeln aus der Urne gefordert wird, die gar nicht darin enthalten
sind. Matrizen mit Eigenschaft (A2) werden auch Metzler-Leontief-Matrizen genannt. (A3)
erleichtert die Rechnungen. Um das Vorkommen gänzlich redundanter Typen auszuschließen,
nehmen wir zudem in (A4) an, dass keine zwei Zeilen von R übereinstimmen, und in (A5),
dass die Anfangszusammensetzung der Urne nicht von vornherein das Auftreten bestimmter
Typen verhindert.
Ein letzter Begriff zur Unterscheidung verschiedener Urnenmodelle ist der der Irreduzibilität:
Eine Urne wird als irreduzibel bezeichnet, wenn für jeden Typ i ∈ {1, . . . , q} gilt, dass bei
Start des Prozesses mit einer einzigen Kugel des Typs i auch jeder andere Typ j ∈ {1, . . . , q}

mit positiver Wahrscheinlichkeit mindestens einmal im Verlauf des Prozesses in der Urne er-
scheint. Bei den irreduziblen Modellen handelt es sich um eine wichtige und vieluntersuchte
Klasse von Urnen. In der vorliegenden Arbeit ist die Annahme der Irreduzibilität nicht ge-
troffen. Allerdings zerfällt jede reduzible Urne in verschiedene irreduzible Klassen, weswegen
wir den Begriff an dieser Stelle erläutern. Weiter nennen wir eine solche Klasse und ihre Ele-
mente dominant, falls eine Anfangskonfiguration der Urne aus Typen ausschließlich dieser
Klasse dazu führt, dass im Prozess niemals Typen anderer Klassen erscheinen. Anschaulich
gesprochen kann man sagen, dass diese Klassen keine

”
Masse“ an andere Klassen abgeben.

Für eine formale Definition verweisen wir hier auf den Haupttext, Kapitel 1.2.
Mithilfe dieser Definitionen und Annahmen lässt sich nun das asymptotische Verhalten der
Vektoren (Xn)n≥0 für n→∞ untersuchen und damit die Konvergenz von Anteilen, die Exis-
tenz von Oszillationen oder gar zentraler Grenzwertsätze nachweisen. Dabei ist seit den 1960er
Jahren aus [2] bekannt, dass die Asymptotik des Prozesses unmittelbar mit dem Spektrum der
Matrix R zusammenhängt. Die Annahmen (A1) und (A2) implizieren, dass die Spaltensum-
me r von R stets der Eigenwert mit dem größten Realteil ist. Dabei ist nicht ausgeschlossen,
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dass es sich bei r um einen mehrfachen Eigenwert handelt. Alle anderen Eigenwerte haben
einen strikt kleineren Realteil. Nun ist aus [30] ebenfalls bekannt, dass die Anteile fast sicher
konvergieren, es aber von der geometrischen Vielfachheit des Eigenwerts r abhängt, ob der
Grenzwert deterministisch oder zufällig ist. Allgemeiner haben wir die Konvergenz der Anteile

Xn

rn+ |X0|

f.s.−→ V, n→∞,
vgl. Satz 1.2.3 und die folgenden Bemerkungen. V ist hier ein zufälliger Vektor mit Werten
in Rq.
Ganz ähnlich weiß man im Falle sogenannter irreduzibler Urnen, dass die Existenz eines zen-
tralen Grenzwertsatzes davon abhängt, ob es Eigenwerte gibt, deren Realteile den Schwellen-
wert r/2 übersteigen. Urnen mit solchen

”
großen” Eigenwerten werden groß genannt. Andere

Urnen werden dementsprechend oft als klein bezeichnet. Im Falle irreduzibler strikt kleiner
Urnen (es gibt keine Eigenwerte, deren Realteil genau r/2 beträgt) ist wohlbekannt [40, 74],
dass es einen Vektor v1 ∈ Rq gibt, sodass

Xn − nv1√
n

L−→ N (0, Σ), n→∞,
für eine geeignete Kovarianzmatrix Σ. Genauso ist im Falle der Existenz von Eigenwerten mit
Realteilen der Größe r/2, aber keiner größeren, bei irreduziblen Matrizen bekannt, dass

Xn − nv1√
n log(n)

L−→ N (0, Σ), n→∞,
wobei Σ typischerweise niedrigeren Rang als im vorigen Ergebnis aufweist.
Für große irreduzible Urnenmodelle oder reduzible Modelle mit mehrfachem Eigenwert r hin-
gegen besitzt der Prozess eine sich selbst verstärkende Dynamik innerhalb bestimmter Farb-
kombinationen. Diese führt über die Zufälligkeit der ersten Züge zu nicht-deterministischen
Tendenzen von größerer Ordnung als

√
n, welche einer

”
klassischen” Normierung im Rahmen

eines zentralen Grenzwertsatzes entgegenstehen. Außer im Spezialfall der beispielhaften Pólya
Urne liegen bislang keine Aussagen zur Fluktuation um die fast sicheren Terme vor. Diese
Lücke wird in der vorliegenden Arbeit durch die Herleitung eines zentralen Grenzwertsatzes
für reduzible oder große irreduzible Urnenmodelle angegangen. Dabei ist in beiden Fällen eine
zufällige Zentrierung vonnöten, womit sich für reduzible Prozesse Konvergenz gegen eine ge-
mischte Gaußsche Verteilung ergibt. Zur Formulierung des Hauptresultats seien mit λ1, . . . , λq
die Eigenwerte von R bezeichnet, geordnet nach absteigendem Realteil und bei gleichem Re-
alteil nach absteigendem Imaginärteil. Unter den genannten Annahmen und nach geeigneter
Wahl rechter Eigenvektoren v1, . . . , vq wird in der Arbeit das folgende Ergebnis hergeleitet,
siehe auch Satz 1.2.5 im Haupttext:

1. Gibt es in keiner dominanten Klasse einen Eigenwert, dessen Realteil genau r/2 beträgt,
so existieren p ≥ 1 und komplex-wertige Zufallsvariablen Ξ1, . . . , Ξp mit Erwartung 0,
sodass

1√
n

(
Xn − E[Xn] −

p∑
k=1

n
λk
r Ξkvk

)
L−→ N (0,AV)
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für n → ∞, wobei N eine nichtdegenerierte, multivariate Gaußsche Mischverteilung
mit Mischkomponenten V(1), . . . , V(q) und Kovarianzmatrix AV bezeichnet. Zudem ist
(AV)i,i genau dann positiv, wenn i ein dominanter Typ ist.

2. Gibt es eine dominante Klasse, zu der ein Eigenwert λk mit <(λk) = r/2 gehört, so
existieren p ≥ 1 und komplex-wertige Zufallsvariablen Ξ1, . . . , Ξp mit Erwartung 0,
sodass

1√
n log(n)

(
Xn − E[Xn] −

p∑
k=1

n
λk
r Ξkvk

)
L−→ N (0,AV)

für n → ∞, wobei N eine nichtdegenerierte, multivariate Gaußsche Mischverteilung
mit Mischkomponenten V(1), . . . , V(q) und Kovarianzmatrix AV bezeichnet. Zudem ist
(AV)i,i genau dann positiv, wenn i ein dominanter Typ ist, die zu einer der dominanten
Klassen gehört, in denen es einen Eigenwert mit Realteil r/2 gibt.

Die genaue Gestalt der Kovarianzmatrix AV ist in Kapitel 3 angegeben. Im Falle einer re-
duziblen Matrix mit einfachem Eigenwert r ist die Matrix AV allerdings degeneriert und Satz
1.2.5 liefert ein triviales Ergebnis. Hier liegt es nahe, dass schwächer als

√
n skaliert werden

muss, da es nur einen dominanten Typ gibt und alle anderen Typen zu selten gezogen werden,
um signifikante Beiträge zur Fluktuation zu liefern. Ein Ergebnis für diesen speziellen Fall
herzuleiten, wurde in dieser Arbeit nicht versucht, mit Ausnahme der leichteren Zweitypen-
Situation in Proposition 1.1.4.

Der Beweis von Satz 1.2.5 beruht auf einer spektralen Zerlegung des Urnenprozesses und
Martingalmethoden. Ein weiteres Ergebnis der vorliegenden Arbeit ist die Ausarbeitung ei-
nes ergänzenden Zugangs zur Problemstellung, der Kontraktionsmethode. Dies geschieht in
Kapitel 2 anhand des Beispiels der zyklischen Urne. Wir gehen nun kurz auf dieses Beispiel
ein, das aus gemeinsamer Arbeit mit Herrn Prof. Dr. Neininger hervorgegangen ist.
Bei der zyklischen Urne handelt es sich um ein verallgemeinertes Pólya-Eggenbergersches
Urnenmodell mit irreduzibler, zirkulanter Matrix

R :=



0 0 0 · · 0 1

1 0 0 · · 0 0

0 1 0 · · · ·
· · · · · · ·
· · · · · 0 0

0 0 0 · · 1 0

 ∈ Rq×q.

Der Einfachheit halber wird in diesem Beispiel durchgehend angenommen, dass wir mit genau
einer Kugel des ersten Typs starten. Mit wachsender Anzahl an Typen unterliegt die zykli-
sche Urne einem Phasenübergang, anhand dessen sich die oben beschriebenen verschiedenen
Phänomene gut erläutern lassen. Zunächst ist wohlbekannt, dass für bis zu fünf Typen ein
klassischer zentraler Grenzwertsatz

Xn − nv1√
n

L−→ N (0, Σ), n→∞,
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mit explizit berechneter Kovarianzmatrix Σ vom Rang q−1 existiert, q ∈ {2, . . . , 5}. Für sechs
Typen gilt immerhin noch

Xn − nv1√
n log(n)

L−→ N (0, Σ), n→∞,
wobei Σ nur Rang zwei hat. Ab sieben Typen hingegen treten plötzlich fast sichere Oszilla-
tionen auf, die das Geschehen in zweiter Ordnung dominieren. Sei dazu ω := exp(2πi/q) =:
σ2 + iµ2 die q-te Einheitswurzel, zerlegt in Real- und Imaginärteil. Dann existieren für jedes
q ≥ 7 eine komplex-wertige Zufallsvariable Ξ2, die von q und der Anfangskomposition der
Urne abhängt, und determinstische Vektoren v1, v2 ∈ Rq, sodass für n→∞

Xn − nv1
nσ2

− 2<

(
niµ2

(
Ξ2 +

1

Γ(1+ω)

)
v2

)
f.s.−→ 0.

Insbesondere existieren für jedes q ≥ 7 unendlich viele Teilfolgen (nm)m≥1, sodass

Xnm − nmv1√
Var(Xnm)

mit m→∞ in Verteilung gegen verschiedene Grenzwerte konvergiert.
Es stellt sich heraus, dass bei der Formulierung eines zentralen Grenzwertsatzes für die zykli-
sche Urne zwischen zwei Fällen unterschieden werden muss, von denen die Zusammensetzung
des Spektrums von R abhängt. Dies sind die Fälle 6 | q und 6 - q. Damit erhalten wir folgende
konkreteren Resultate:

1. Ist q ≥ 2 und 6 - q, so setzen wir p := 2b(q− 1)/6c. In diesem Fall existieren komplex-
wertige Zufallsvariablen Ξ1, . . . , Ξp mit Erwartung 0, sodass für n→∞

1√
n

(
Xn − E[Xn] −

p∑
k=1

nλkΞkvk

)
L−→ N (0, Σ(q)

)
.

Die Kovarianzmatrix Σ(q) hat Rang q− 1 und ist gegeben durch

Σ(q) :=

q∑
k=2

1

|2σk − 1|
vkv
∗
k,

wobei die Eigenwerte λ1, . . . , λq und Eigenvektoren v1, . . . , vq wie in Kapitel 2 definiert
sind.

2. Für 6 | q erfordert die Normierung einen zusätzlichen
√

logn Faktor und der Rang der
Kovarianzmatrix wird auf 2 reduziert: Wir setzen wieder p := 2b(q−1)/6c. Es existieren
komplex-wertige Zufallsvariablen Ξ1, . . . , Ξp mit Erwartung 0, sodass für n→∞

1√
n logn

(
Xn − E[Xn] −

p∑
k=1

nλkΞkvk

)
L−→ N (0, Σ(q)

)
.
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Die Kovarianzmatrix ist gegeben durch

Σ(q) := vq/3v
∗
q/3 + vq/3+1v

∗
q/3+1.

Als ein weiteres Ergebnis von Abschnitt 2 ergibt sich eine explizite Konstruktion der zen-
trierenden Zufallsvariablen Ξ1, . . . , Ξp aus dem oben genannten Resultat über eine Folge un-
abhängiger, identisch uniform auf (0, 1) verteilter Zufallsvariablen (Ui)i≥1. Dazu wird eine
Einbettung der zyklischen Urne in den zufälligen Binärsuchbaum mit Eingabe (Ui)i≥1 vor-
genommen. Betrachtet man den Grenzwert des zufälligen Binärsuchbaums in seiner Doob-
Martin-Kompaktifizierung, so erhalten wir zudem, dass die konstruierten Zufallsvariablen
Ξ1, . . . , Ξp deterministische Funktionen des Doob-Martin-Grenzwertes sind.

Ausblick. Interessante Fragestellungen, die sich aus der vorliegenden Arbeit ergeben, sind
beispielsweise die folgenden: Welche Skalierung ist im Fall reduzibler Urnen mit einfachem
dominantem Eigenwert r anzuwenden, um einen zentralen Grenzwertsatz herzuleiten? Lässt
sich das Hauptresultat 1.2.5 zu einem funktionalen Grenzwertsatz erweitern? In der Arbeit
wurde ebenfalls erwähnt, dass sich ähnliche periodische Phänomene wie im Beispiel der zy-
klischen Urne auch in anderen diskreten, algorithmisch motivierten Familien wiederfinden, in
denen keine Martingalstrukturen bekannt sind. Die Herleitung analoger Resultate für einige
dieser Strukturen befindet sich derzeit in Arbeit.
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