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Disturbed homeostasis as a result of tissue stress can provoke leukocyte responses 
enabling recovery. Since mild hypothermia displays specific clinically relevant tissue- 
protective properties and interleukin (IL)-22 promotes healing at host/environment inter-
faces, effects of lowered ambient temperature on IL-22 were studied. We demonstrate 
that a 5-h exposure of endotoxemic mice to 4°C reduces body temperature by 5.0° 
and enhances splenic and colonic il22 gene expression. In contrast, tumor necrosis 
factor-α and IL-17A were not increased. In vivo data on IL-22 were corroborated using 
murine splenocytes and human peripheral blood mononuclear cells (PBMC) cultured 
upon 33°C and polyclonal T cell activation. Upregulation by mild hypothermia of largely 
T-cell-derived IL-22 in PBMC required monocytes and associated with enhanced 
nuclear T-cell nuclear factor of activated T cells (NFAT)-c2. Notably, NFAT antagonism 
by cyclosporin A or FK506 impaired IL-22 upregulation at normothermia and entirely 
prevented its enhanced expression upon hypothermic culture conditions. Data suggest 
that intact NFAT signaling is required for efficient IL-22 induction upon normothermic 
and hypothermic conditions. Hypothermia furthermore boosted early signal transducer 
and activator of transcription 3 activation by IL-22 and shaped downstream gene 
expression in epithelial-like cells. Altogether, data indicate that hypothermia supports 
and fine-tunes IL-22 production/action, which may contribute to regulatory properties 
of low ambient temperature.

Keywords: interleukin-22, signal transducer and activator of transcription 3, endotoxemia, hypothermia, peripheral 
blood mononuclear cells

inTrODUcTiOn

Interleukin (IL)-22 is a member of the IL-10 cytokine family that, predominantly by engaging signal 
transducer and activator of transcription (STAT)-3 signaling, modulates gene expression foremost 
in epithelial (-like) cells (1). A hallmark of IL-22 activity is pro-proliferative and anti-apoptotic 
action that combines with antimicrobial properties (2–4). IL-22 is, due to restricted expression of 
the IL-22 receptor chain-1, generally unable to target leukocytes (5). Since IL-22 fails to efficiently 
activate nuclear factor-κB (6), this cytokine displays a unique tissue-protective quality in absence of 
a direct effect on immunoactivation, neither in proinflammatory nor in immunosuppressive sense. 
Those favorable properties concur with protection by IL-22 as detected in rodent models of infec-
tion- and/or tissue damage-driven diseases at host/environment interfaces (4), which include intes-
tinal Citrobacter rodentium (7) as well as lung Klebsiella pneumonia (8) and influenza infections (9), 
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ventilator-induced lung injury (10), experimental colitis (11, 12), 
and acute liver injury (13, 14). In addition, by strengthening the 
crucial parameter of intestinal barrier integrity (15), local IL-22 
is supposed to prevent translocation of pathogenic bacteria that 
otherwise pose a risk for sepsis development (16). This function 
is also supported by superior intestinal wound healing under the 
influence of IL-22 (12).

Most relevant sources of IL-22 are lymphoid cells, in parti-
cular group 3 innate lymphoid cells, NKT  cells, γδT  cells as 
well as differentiated Th1, Th17, and Th22 cells (2). Research 
aiming at characterizing molecular mechanisms driving IL22 
transcription has primarily focused on transcription factors 
that relate to lymphoid cell differentiation. For instance, STAT3, 
B-cell-activating transcription (Batf), retinoid orphan receptor 
γτ, and ligand-activated aryl hydrocarbon receptor all connect 
to Th17 differentiation, can bind the IL22 promoter, and accord-
ingly promote IL-22 production (17). Notably, information on 
transcription factors enabling instant IL22 gene expression after 
T cell receptor activation is scarce. It is noteworthy that binding 
of NFATc2 to the IL22 promoter has been linked to rapid (within 
1 h) cyclosporin A (CsA)-sensitive induction of IL-22 mRNA in 
activated human Jurkat T cells (18).

Therapeutic hypothermia, frequently associated with dimi ni-
shed inflammation, is employed or recommended for selected 
clinical conditions, among others, cardiac surgery and traumatic 
brain injury (19, 20). Interestingly, upregulation of tissue-
protective IL-22 has been observed in experimental traumatic 
brain injury and in patients undergoing cardiac surgery (21, 
22). Basic science revealed that, in similarity to IL-22 (10), 
hypothermia ameliorates tissue injury in rat ventilator-induced 
lung injury (23). Moreover, exposure of mice to low ambient 
temperature, like IL-22 (13, 14), reduces acute liver injury (24). 
Interestingly, upregulation of IL-22-related anti-inflammatory 
IL-10 (25) asso ciates with hypothermia in the context of experi-
mental ventilator-induced lung injury (26, 27), severe trauma by 
fracture and hemorrhage (28), cardiac surgery (29), and systemic 
inflammatory response syndrome/endotoxemia (30–35). Given 
the tissue-protective properties of IL-22 (4), it is an important 
topic of current research to understand and develop strategies 
that aim at controlled upregulation of IL-22, especially during 
acute injury. To assess a potential link between hypothermia, 
tissue-protective responses, and IL-22 during inflammation/
immunoactivation, we set out to investigate IL-22 in the context 
of lowered ambient temperature.

MaTerials anD MeThODs

reagents
Endotoxin (lipopolysaccharide, LPS, O55:B5) and brefeldin  
A were from Sigma-Aldrich (Taufkirchen, Germany). 12-O- 
tetradecanoylphorbol-13-acetate (TPA) was from Enzo Life 
Sciences (LÖrrach, Germany) and A23187 from AppliChem 
(Karlsruhe, Germany). Cyclosporin A (CsA) and FK506 were pur-
chased from Calbiochem-Novabiochem (Bad Soden, Germany). 
Human IL-22 and interferon (IFN)γ were obtained from 
Peprotech Inc. (Frankfurt, Germany). Murine (αCD3-#17A2, 

αCD28-#37.51) and human (αCD3-#OKT3, αCD28-#28.2)  
agonistic anti-CD3 and anti-CD28 antibodies were from Bio-
Legend (San Diego, CA, USA).

In Vivo Mouse experiments
All animal procedures were approved by local authorities 
(“Regierungspräsidium Darmstadt”) and are in accordance with 
National Institutes of Health guidelines. For experiments, 10- to 
12-week-old C57Bl/6 male mice (MFD-Diagnostics GmbH, 
Wendelsheim, Germany) were transferred individually into 
cages early morning. The body weight and core temperature was 
determined using laboratory scales and a TH-5 + RET-3 mouse 
thermometer with rectal probes (Physitemp Instruments Inc., 
Clifton, NJ, USA). Mice were injected i.p. with LPS (1 µg/g body 
weight) or PBS and kept at either standard room temperature 
(RT, 23°C) or at 4°C with access to water only (36). After 5 h, 
mice underwent short isoflurane (Abbott, Wiesbaden, Germany) 
anesthesia and were sacrificed. Liver, lungs, spleen, colon, cecum, 
and blood plasma were snap frozen in liquid nitrogen and stored 
at −80°C.

isolation of human Peripheral Blood 
Mononuclear cells (PBMc), cD3+ T-cells, 
and Monocyte-Depleted PBMc
For isolation of PBMC, heparinized blood was taken from healthy 
donors. This procedure and the respective consent documents 
were approved by the “Ethik Kommission” of the University 
Hospital Goethe-University Frankfurt. PBMC were isolated 
from peripheral blood using Histopaque-1077 (Sigma-Aldrich) 
according to the manufacturer’s instructions. Untouched CD3+ 
T-cell were isolated from PBMC using the Pan-T-cell isolation kit 
according to the manufacturer’s instructions (Miltenyi, Bergisch 
Gladbach, Germany). Mean purity was 96.0 ± 0.7% (n = 37) deter-
mined by FACS analysis using anti-CD3-PerCP/Cy5.5-#UCHT1 
(BioLegend). Monocyte-depleted PBMC were generated using 
anti-CD14 beads (Miltenyi) with a mean depletion efficiency 
of 98.1  ±  0.7% (n  =  7) as assessed by FACS analysis using an 
anti-CD14eFluor450-#61D3 antibody (eBioscience, Frankfurt, 
Germany). Cells were resuspended in RPMI 1640 supplemented 
with 10 mM HEPES, 100 U/ml penicillin, 100 µg/ml streptomycin, 
and 1% human serum (Life Technologies, Darmstadt, Germany) 
and seeded at 3 × 106 cells/ml in round-bottom polypropylene 
tubes (Greiner, Frickenhausen, Germany).

isolation of Murine splenocytes
Spleens obtained from 8- to 12-week-old male C57Bl/6 mice 
(MFD-Diagnostics GmbH) were excised and transferred to 5 ml 
ice-cold RPMI 1640 medium without FCS. Tissue was destroyed 
over a nylon cell strainer (70  µm; BD Biosciences, Heidelberg, 
Germany). Cell suspensions were centrifuged at 500 g for 5 min 
at 4°C and resuspended in 2 ml 0.83% NH4Cl for 2 min at RT. 
Red blood cell lysis was stopped by adding 10 ml cold RPMI 1640 
medium without FCS. Splenocytes were collected by centrifuga-
tion, washed once with RPMI and resuspended in RPMI 1640, 
supplemented with 10% heat-inactivated FCS and 100  U/ml 
penicillin, 100 µg/ml streptomycin. Cells were seeded on 24 well 
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polystyrene plates (Greiner) with 0.5 ml media in a concentration 
6 × 106 cells/ml.

cultivation of human Jurkat T cells, DlD1 
and caco2 colon carcinoma cells, and 
hepg2 hepatoma cells
Jurkat T  cells (ATCC-TIB-152) were obtained from the 
American Type Culture Collection (Manassas, VA, USA) and 
cultured in RPMI 1640 (Life Technologies) supplemented with 
100  U/ml penicillin, 100  µg/ml streptomycin, and 10% heat-
inactivated FCS (Life Technologies). For experiments, cells 
were seeded on 6-well polystyrene plates (Greiner) at a density 
of 2.5  ×  106  cells/ml. DLD1 colon epithelial/carcinoma cells 
(Center of Applied Microbiology and Research, Salisbury, UK), 
Caco2 colon epithelial/carcinoma cells, and HepG2 hepatoma 
cells (German Collection of Microorganisms and Cell Cultures, 
Braunschweig, Germany) were maintained in DMEM supple-
mented with 100 U/ml penicillin, 100 µg/ml streptomycin, and 
10% heat-inactivated FCS (Life Technologies). For experiments, 
cells were plated on 6-well polystyrene plates (Greiner) and used 
in subconfluent condition.

According to the protocols indicated in the figure legends, 
cells (PBMC, epithelial-like cell lines) were cultivated in parallel 
at 30, 33, or 37°C incubator temperature. Incubators used for 
different temperatures were switched occasionally in order to 
exclude incubator effects on cell behavior different from incuba-
tor temperature.

cytokine analysis by enzyme-linked 
immunosorbent assay (elisa)
Murine and human IL-22 (R&D-Systems, Wiesbaden, Germany) 
and human IL-8 (BD Biosciences) secretion were determined by 
ELISA according to the manufacturer’s instructions.

intracellular cytokine staining and Flow 
cytometry
Peripheral blood mononuclear cells were kept as unstimu-
lated control or stimulated for 7  h with agonistic anti-CD3  
(0.2  µg/ml)/-CD28 (0.02  µg/ml) antibodies at 37 or 33°C. 
Thereafter, brefeldin A (2  µg/ml) was added for another 4  h, 
followed by intracellular staining and flow cytometry. After har-
vesting, PBMC were reconstituted in FACS buffer (1 × PBS + 1% 
FCS) and stained with surface marker antibody (anti-CD4-PE-
Cy7-#SK3, eBioscience) for 30  min on ice. Thereafter, PBMC 
were fixed and permeabilized [BD Cytofix/Cytoperm Kit (BD 
Biosciences)], followed by resuspension in FACS buffer, and 
intracellular staining (2  h on ice) using IL-22-PE-#22URTI or 
IFNγ-FITC-B27 (both eBioscience) and flow cytometry with 
gates set to exclude cell debris.

analysis of mrna expression by real-
time Polymerase chain reaction (Pcr)
Total RNA was extracted from homogenized mouse tissue or 
cultured cells using Tri-Reagent according to the manufacturer’s 
instructions (Sigma-Aldrich). Tissues were homogenized using 

OMNI TIP Homogenizing KIT (Kennesaw, GA, USA). 0.5 µg RNA 
was transcribed using random hexameric primers and Moloney 
Murine Leukemia Virus Reverse Transcriptase (Thermo Scientific, 
Darmstadt, Germany) according to the manufacturer’s instruc-
tions. cDNA was amplified using assay-on-demand kits (Taqman 
probes/assay kit from Thermo Scientific) and an AbiPrism 7500 
Fast Sequence Detector (Thermo Scientific). During real-time 
PCR, changes in fluorescence are caused by the Taq polymerase 
degrading a probe containing a fluorescent dye [glyceraldehyde 
3-phosphate dehydrogenase (GAPDH): VIC; all others: FAM]. 
Two initial steps at 50°C for 2 min and 95°C for 20 s were followed 
by 40 cycles at 95°C for 3 s and 60°C for 30 s. Target mRNA was 
normalized to that of GAPDH and quantified by the 2–ΔCT method 
(raw data, Figures  1, 2, 4 and 5) or the 2–ΔΔCT method (fold-
induction, Figure 6). The following probes were used: hs-GAPDH 
(4310884E), hs-IL-22 (Hs01574152_g1), hs-IL-10 (Hs99999035_
m1), hs-IFNγ (Hs00174143_m1), α1ACT (Hs00153674_m1), 
hs-IL-8 (Hs00174103_m1), hs-IL-2 (Hs00174114_m1), mm-
GAPDH (4352339E), mm-IL-22 (Mm00444241_m1), mm-MIP2 
(Mm00436450_m1), mm-IL-10 (Mm00439614_m1), mm-TNF-α 
(Mm00443285_m1), mm-IFNγ (Mm01168134_m1), and mm-
IL17A (Mm00439618_m1). Primers and probe for IL-18BPa were 
designed using Primer Express (Applied Biosystems) according 
to AF110798: forward, 5′-ACCTCCCAGGCCGACTG-3′; rev-
erse, 5′-CCTTGCACAGCTGCGTACC-3′; probe 5′-CACCAG 
CCGGGAACGTGGGA-3′. GAPDH was not a target of regula-
tion by hypothermia under all conditions investigated (data not 
shown).

immunoblot analysis
Immunoblot analysis for cellular STAT1/3 in DLD1, Caco2, and 
HepG2 cells was performed as previously described (37) using 
total cell lysis buffer [150 mM NaCl, 1 mM CaCl2, 25 mM Tris–Cl 
(pH 7.4), 1% Triton X-100] supplemented with protease inhibi-
tor cocktail (Roche Diagnostics, Mannheim, Germany), DTT, 
Na3VO4, PMSF (each 1 mM), and NaF (20 mM). Antibodies: total 
STAT3-#124H6 (mouse monoclonal antibody); total STAT1, 
pSTAT1-Y701-#D4A7 (both rabbit polyclonal antibodies); 
pSTAT3-Y705-#D3A7 (rabbit monoclonal antibody); all from 
Cell Signaling, Frankfurt, Germany. For detection of total STAT1 
or total STAT3 blots were stripped and reprobed.

Isolation of nuclei (38) for immunoblot analysis of nuclear 
NFAT-c2 in human T-cells was performed by lysis using nuclear 
extraction buffer A (10  mM HEPES at pH 7.9, 10  mM KCL, 
0.1  mM EDTA, 0.1  mM EGTA) supplemented with protease 
inhibitor cocktail (Roche Diagnostics). After 10 min on ice and 
addition of Triton X-100, nuclei were collected by centrifugation 
at 12,000 g for 1 min at 4°C. Pellets containing nuclei were resus-
pended in nucleic-lysis buffer C (20 mM HEPES at pH 7.9, 0.4 M 
NaCl, 1 mM EDTA, 1 mM EGTA, 25% glycerin) supplemented 
with protease inhibitor cocktail (Roche Diagnostics). Antibodies: 
NFAT-c2-#4G6-G5, mouse monoclonal antibody (Santa Cruz 
Biotechnology, Heidelberg, Germany); β-actin-#AC15, mouse 
monoclonal antibody (Sigma-Aldrich). For detection of NFAT-c2 
and β-actin on the same blot, the blot was cut. Data quantifica-
tions were performed by Quantity-One analysis software (Bio-
Rad, Munich, Germany).
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statistical analysis
Data are shown as group median, means ± SD, or means ± SEM 
and presented as [raw data], [fold-induction], [percent], [pg/
ml], [ng/ml], and [Adj.Vol. INT*mm2]. The D’Agostino–Pearson 
normality test was used to assess data distribution. Statistical 
analysis was performed on raw data as indicated in the legends by 
one-way ANOVA with post hoc Bonferroni correction, unpaired 
Student’s t-test, or Mann–Whitney U-test. Differences were 
considered significant in case of P values below 0.05 (Prism 5.0, 
GraphPad, La Jolla, CA, USA).

resUlTs

cold stress and hypothermia Promote  
il22 gene expression as Detected in 
endotoxemic Mice and cultured 
splenocytes
Experimental endotoxemia is regarded a standard model for the 
hyper-inflammatory phase of sepsis. Both, rodent endotoxemia 
(39) and sepsis (40) associate with enhanced IL-22 production. To 
investigate il22 gene expression under the influence of cold stress, 
PBS-treated control mice and mice undergoing endotoxemia 
were exposed to either an ambient temperature of 4°C or to RT 
(23°C) for 5 h. Notably, a low endotoxin dosage of 1 µg/g, by itself 
unable to induce hypothermia, was administered for induction 
of systemic inflammation. Analysis of rectal temperature after 
5 h at 4°C revealed that only endotoxemic mice (n = 9) but not 
PBS-treated control mice (n  =  8) developed mild-to-moderate 
hypothermia with a significant drop from 35.9± 0.3°C to a core 
temperature of 30.9 ± 0.9°C (P < 0.001, Student’s t-test). Under 
conditions of RT, core body temperature of PBS-treated control 
(n  =  8) or endotoxemic mice (n  =  9) was indistinguishable at 
35.8  ±  0.4 or 35.5  ±  0.4°C, respectively. In accord with previ-
ous in  vivo data on IL-10 and anti-inflammatory properties of 
hypothermia (26–35), enhanced splenic il10 gene expression 
was observed in endotoxemic mice exposed to 4°C (Figure 1A). 
To verify the hypothesis that IL-22 is affected by hypothermia, 
these same specimens were analyzed for expression of this 
cytokine. As shown in Figure  1B, splenic il22 gene expression 
was significantly upregulated in endotoxemic mice exposed 
to 4°C ambient temperature. On the contrary, in endotoxemic 
mice, upregulation of splenic IL-17A mRNA [0.40 × 10–4 versus 
0.42  ×  10–4 (median of target gene expression normalized to 
GAPDH) for RT versus 4°C ambient temperature (n =  9), not 
significantly different by Mann–Whitney U-test; IL-17A mRNA, 
undetectable in PBS-treated control mice—irrespective of ambi-
ent temperature] and tumor necrosis factor (TNF)-α mRNA 
[6.7 ± 0.9- versus 6.4 ± 1.7-fold-induction for RT (n = 8) versus 
4°C ambient temperature (n = 9)] was unaffected by changes in 
ambient temperature. Since local IL-22 is crucial for maintenance 
of intestinal barrier function (41) and sepsis pathogenesis (16), 
colonic IL-22 expression was determined and found likewise 
upregulated upon cold stress (Figure 1C). Induction of colonic 
TNF-α mRNA by endotoxemia was, in accord with observations 
in spleen, not further increased by changes in ambient tempera-
ture (data not shown). Notably, as compared to RT, an ambient 

temperature of 4°C without endotoxemia failed to significantly 
affect splenic and colonic il22 expression. Specifically, using the 
current protocol, IL-22 mRNA was neither detectable in total 
colonic RNA obtained from PBS-treated control mice exposed 
to RT (n = 6) nor in splenic specimens irrespective of the tested 
ambient temperature (n =  8). In colonic tissues obtained from 
PBS-treated control mice exposed to 4°C, il22 expression was very 
low and barely detectable with a median of 0.01 × 10–5 (n = 6) for 
IL-22 mRNA normalized to that of GAPDH. Notably, very low 
il22 gene expression in colonic tissue of healthy untreated mice 
concurs with previous observations (42).

Exposure of mice to cold stress engages a complex sys-
temic response that involves, among others, activation of the 
β-adrenergic/cAMP-axis (20) with its documented potential 
for immunomodulation (43), possibly by upregulation of IL-10 
(43, 44). In order to evaluate whether hypothermia is able to 
directly upregulate il22 expression on the level of cultured 
murine leukocytes, freshly isolated splenocytes were stimulated 
using agonistic anti-CD3/-CD28 antibodies in the context of an 
ambient temperature of either 37 or 33°C—the latter condition 
resembling mild hypothermia. Figure 1D demonstrates that mild 
hypothermia amplifies IL-22 mRNA expression by activated sple-
nocytes. Moreover, we also verified the potential of hypothermia 
to upregulate IL-22 protein release (Figure  1E). Whereas the 
murine functional IL-8 homolog and stress-responsive param-
eter macrophage inflammatory protein (MIP)-2 displayed similar 
upregulation by hypothermia (Figure  1F), expression of IFNγ 
mRNA was retarded under these same conditions (Figure 1G). In 
light of the proinflammatory pathological functions of IFNγ (45), 
this latter observation agrees with immunosuppressive properties 
of hypothermia (46). Taken together, data suggest that cold stress 
and hypothermia can serve as a cofactor enhancing murine il22 
gene expression. Since stimulatory effects of hypothermia on IL-22 
are detectable on cell culture level (Figures 1D,E), upregulation 
of the cytokine in vivo may also be independent from activation 
of the β-adrenergic/cAMP-axis.

hypothermia enhances il-22 expression 
and release by human PBMc
To broaden aforementioned murine in vitro and in vivo data, 
experiments were performed using human PBMC. We con-
firm previous observations (47) on IL-22 secretion by PBMC 
in response to stimulatory anti-CD3/-CD28 antibodies at 
physiological 37°C. Herein, we demonstrate that cultivation of 
PBMC at 33°C significantly amplifies IL-22 protein secretion 
(Figure 2A). Enhanced expression of IL-22 under the influence 
of mild hypothermia and anti-CD3/-CD28-stimulation was 
likewise detectable on mRNA level (Figure 2B). Upregulation 
of IL-22 by hypothermia was even more pronounced by further 
reducing the cultivation temperature to 30°C (Figure 2C) indi-
cating a concurrent response upon more severe hypothermic 
culture conditions. IL2 gene expression was, like IL22, enhanced 
upon cultivation at 33°C (Figure 2D). Notably, regulation by 
mild hypothermia displayed specificity since neither expression 
of IFNG (Figure 2E) nor that of IL10 (Figure 2F) was affected 
by cultivation of anti-CD3/-CD28-stimulated PBMC at 33°C. 
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FigUre 1 | Cold stress and hypothermia promote interleukin (IL)-22 expression as detected in endotoxemic mice and cultured murine splenocytes. (a–c) Mice 
received i.p. either PBS or lipopolysaccharide (LPS, 1 µg/g) under conditions of room temperature (RT) [LPS-RT, n = 9 for (a,B) and n = 8 for (c)] or at 4°C 
[LPS-4°C, n = 9 for (a,B) and n = 8 for (c)]. After 5 h, splenic IL-10 (a) and IL-22 (B) as well as colonic (c) IL-22 mRNA expression were determined by 
real-time polymerase chain reaction (PCR) using GAPDH for normalization. Depicted are raw data for each tissue sample together with the group median. 
Expression of IL-22 mRNA in PBS-treated control mice (spleen: RT or 4°C, n = 8; colon: RT or 4°C, n = 6) was undetectable (spleen) or below 0.07 × 10–5 
(colon) (raw data, IL-22 normalized to GAPDH). (a–c) *P < 0.05, **P < 0.01, ***P < 0.001; statistical analysis, Mann–Whitney U-test. (D,F,g) Ex vivo cultured 
murine splenocytes were either kept as unstimulated control or stimulated with agonistic anti-CD3 (0.2 µg/ml)/-CD28 (0.02 µg/ml) antibodies at 37 or 33°C. 
After 8 h, mRNA expression of IL-22 (n = 10) (D), macrophage inflammatory protein (MIP)-2 (n = 5) (F), and interferon (IFN)γ (n = 10) (g) was determined by 
real-time PCR using GAPDH for normalization. Depicted are raw data (means ± SEM). (e) Murine splenocytes were either kept as unstimulated control or 
stimulated with agonistic anti-CD3 (5 µg/ml)/-CD28 (0.5 µg/ml) antibodies at either 37 or 33°C. After 72 h, IL-22 secretion was determined by enzyme-linked 
immunosorbent assay. Data are shown as means ± SEM (unstimulated control at either temperature, n = 4; anti-CD3/-CD28 at either temperature, n = 5). 
(D–g) **P < 0.01, ***P < 0.001 compared to unstimulated control; #P < 0.05, ##P < 0.01; statistical analysis, one-way ANOVA with post hoc Bonferroni 
correction.
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Unresponsiveness of IL-10 concerning hypothermia in  vitro 
contrasts with robust IL-10 upregulation in vivo [(28–35) and 
Figure 1A]. IL-10 production in vivo is, however, induced by 
the β-adrenergic/cAMP-axis (44), which is activated by acute 
hypothermia (20). This likely explains the observed differences 
compared to in vitro cultured PBMC. In contrast to IFNγ and 
IL-10, mRNA expression (Figure 2G) and release (Figure 2H) 
of IL-8 was increased by mild hypothermia. This latter obser-
vation concurs with the notion that IL8 is a stress-responsive 
gene (48).

Stimulation of human PBMC by treatment with anti-CD3/-
CD28 antibodies and associated IL-22 secretion has been linked 
to the CD4+ memory T-cell compartment being the chief IL-22 
PBMC-source under conditions of polyclonal activation (47). 
Herein, intracellular cytokine staining demonstrated that upregula-
tion of IL-22+ cells by anti-CD3/-CD28 in total PBMC (Figure 3A) 
and the CD4+ PBMC fraction (Figure 3B) is further amplified by 
mild hypothermia. In contrast, exposure to 33°C did not signifi-
cantly affect numbers of IFNγ+ cells in total PBMC (Figure 3C) 
thus confirming aforementioned mRNA data (Figure 2E).
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FigUre 2 | Hypothermia enhances interleukin (IL)-22 expression and release by human peripheral blood mononuclear cells (PBMC). (a–h) PBMC were kept as 
unstimulated control or stimulated with agonistic anti-CD3 (0.2 µg/ml)/-CD28 (0.02 µg/ml) antibodies at 37 or 33°C (a–h) or 30°C (c). (a) After 48 h, IL-22 
secretion was determined by enzyme-linked immunosorbent assay. Data are shown as means ± SEM (n = 6). *P < 0.05, ***P < 0.001 compared to unstimulated 
control at the respective temperature; #P < 0.05; statistical analysis, one-way ANOVA with post hoc Bonferroni correction. (B) After 8 h (n = 13), 16 h (unstimulated 
control at either temperature, n = 8; anti-CD3/-CD28 at either temperature, n = 14), or 24 h (unstimulated control at either temperature, n = 9; anti-CD3/-CD28 at 
either temperature, n = 14), IL-22 mRNA expression was determined by real-time polymerase chain reaction (PCR) using GAPDH for normalization. Depicted are 
raw data (means ± SEM). *P < 0.05, ***P < 0.001 compared to unstimulated control at the respective temperature and time point; ##P < 0.01; statistical analysis for 
individual time points, one-way ANOVA with post hoc Bonferroni correction. (c) After 16 h [unstimulated at all temperatures, n = 8; anti-CD3/-CD28 at 37°C 
(n = 14), at 33°C (n = 14), or at 30°C (n = 10)], IL-22 mRNA expression was determined by real-time PCR using GAPDH for normalization. Depicted are raw data 
(means ± SEM). ***P < 0.001 compared to unstimulated control at the respective temperature; ###P < 0.001; statistical analysis, one-way ANOVA with post hoc 
Bonferroni correction. (D–g) After 8 h, IL-2 [(D), n = 12], interferon (IFN)γ [(e), n = 12], IL-10 [(F), n = 14], and IL-8 [(g), n = 14] mRNA expression was determined 
by real-time PCR using GAPDH for normalization. Depicted are raw data (means ± SEM). **P < 0.01, ***P < 0.001 compared to unstimulated control at the 
respective temperature; #P < 0.05, ##P < 0.01. (h) After 48 h, IL-8 secretion was determined by enzyme-linked immunosorbent assay. Data are shown as 
means ± SEM (n = 6). **P < 0.01, ***P < 0.001 compared to unstimulated control at the respective temperature; ###P < 0.001. (D–h) Statistical analysis, one-way 
ANOVA with post hoc Bonferroni correction.
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hypothermia amplifying IL22 expression 
in PBMc Demands the Presence  
of Monocytes
Monocytes have previously been identified as crucial cellular 
component supporting T-cell-derived IL-22 production by 
PBMC in response to diverse stimuli (49, 50). To specify their role 
in mild hypothermia enhancing IL-22 production, PBMC were 
depleted from monocytes. As shown in Figure 4A, depletion of 
monocytes entirely prevented upregulation of IL22 expression 
under the influence of hypothermia. To further investigate this 
matter, whole T-cells were isolated from PBMC and cultivated 
thereafter at either 37 or 33°C. Analysis after stimulation of iso-
lated T-cells by anti-CD3/-CD28 antibodies actually revealed no 
significant difference in IL22 expression between both ambient 
temperatures (Figure 4B, left panel). Notably, whole PBMC from 

these same donors simultaneously cultivated displayed amplified 
IL-22 mRNA expression at 33°C (Figure 4B, right panel). Human 
leukemic Jurkat T-cells activate IL22 gene expression in response 
to polyclonal stimulation (18). In accord with aforementioned 
data on isolated primary T-cells, mild hypothermia left IL22 
expression by TPA/A23187-stimulated Jurkat T-cells unaffected 
(Figure 4C). Taken together, observations indicate that upregula-
tion of IL-22 by mild hypothermia is not a T-cell autonomous 
process but requires interactions between T cells and additional 
PBMC subsets, especially monocytes.

hypothermia Promotes nFaT-c2 in  
human PBMc
The calcineurin/NFAT inhibitors cyclosporin A (CsA) and 
FK506 (tacrolimus) (51) potently suppress IL22 expression by 
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FigUre 3 | Hypothermia increases interleukin (IL)-22+ cells in total peripheral blood mononuclear cells (PBMC). (a) PBMC were kept as unstimulated control or 
stimulated for 7 h with agonistic anti-CD3 (0.2 µg/ml)/-CD28 (0.02 µg/ml) antibodies at 37 or 33°C. Thereafter, brefeldin A (2 µg/ml) was added for another 4 h, 
followed by intracellular staining and flow cytometry for IL-22 (a,B) and interferon (IFN)γ (c) detection. Left panel (a–c): depicted are percentages of IL-22+ cells 
in total PBMC (n = 6) (a) and the CD4+ PBMC fraction (n = 7) (B) as well as IFNγ+ cells in total PBMC (n = 6) (c). Data are shown as means ± SEM. **P < 0.01, 
***P < 0.001 compared to unstimulated control at the respective temperature; ##P < 0.01, ###P < 0.001; statistical analysis, one-way ANOVA with post hoc 
Bonferroni correction. Right panel: depicted are representative dot blots displaying IL-22+ cells in total PBMC (a) and the CD4+ PBMC fraction (B) as well as 
IFNγ+ cells in total PBMC (c).
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activated human Jurkat T-cells, primary T-cells, and PBMC  
(18, 52). This observation concurs with inhibition of T-cell-
derived IL-22 in psoriatic skin of tacrolimus-treated mice (53) 
and downregulation of IL-22 in patients undergoing CsA therapy 
(54, 55). Moreover, NFAT-c2 (51) binding to a specific site 
within the human IL22 promoter contributes to gene activation  
(18), conceivably by cooperation with an adjacent binding site 
for ATF2-jun heterodimers (56). Since aforementioned data 
sug gested IL-22 as NFAT-inducible cytokine, CsA was tested in 
the current experimental protocol. In fact, coincubation with 
CsA not only impaired IL22 expression by activated PBMC 
upon normothermia but entirely prevented potentiation of gene 
induction at 33°C (Figure 5A). In contrast, CsA failed to suppress 
anti-CD3/-CD28-induced IL-8, a monocyte-derived inflamma-
tory chemokine that was determined to control for unspecific 
inhibitory effects of the agent on PBMC cytokine expression. 
Interestingly, CsA actually amplified IL8 expression upon 
hypothermia (Figure  5B), which corresponds to observations 

on human smooth muscle cells where stimulation of activator 
protein-1 by CsA enforces IL-8 (57). Notably, the alternate NFAT 
antagonist FK506 (tacrolimus) displayed very similar inhibitory 
action on IL-22 (Figure 5C). As expected, we confirm previous 
observations (58) on potent suppression of IFNγ production by 
PBMC under the influence of CsA (Figure S1 in Supplementary 
Material).

In order to more directly investigate the role of NFAT-c2 in 
this context, immunoblot analysis was performed using T-cells 
isolated instantly after stimulation of PBMC at 33 or 37°C. 
Herein, we demonstrate that hypothermia increases nuclear 
NFAT-c2 accumulation, thus transcription factor activation, in 
primary human T-cells after activation by anti-CD3/-CD28 (as 
part of whole PBMC). Notably, results obtained from five differ-
ent donors indicated the most prominent effect of low ambient 
temperature at 5–7 h after onset of polyclonal T-cell stimulation 
(Figure 5D). Densitometric quantification of these experiments 
is shown in Figure 5E. Data altogether suggest that exposure of 
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FigUre 4 | Upregulation of interleukin (IL)-22 expression by hypothermia demands monocyte presence. (a) Peripheral blood mononuclear cells (PBMC) were used 
in parallel as whole population (total) or depleted for monocytes (ΔMon). Total and monocyte-depleted PBMC were kept as unstimulated control or stimulated with 
anti-CD3 (0.2 µg/ml)/-CD28 (0.02 µg/ml) antibodies at 37 or 33°C. After 8 h, IL-22 mRNA expression was determined by real-time polymerase chain reaction (PCR) 
using GAPDH for normalization. Data are shown as means ± SEM (n = 7). (B) PBMC were used in parallel as whole population or as starting point for isolation of 
CD3+ T-cells. CD3+ T-cells (left panel) or total PBMC (right panel) were kept as unstimulated control or stimulated with anti-CD3 (0.2 µg/ml)/-CD28 (0.02 µg/ml) 
antibodies at 37 or 33°C. After 8 h, IL-22 mRNA expression was determined by real-time PCR using GAPDH for normalization. Data are shown as means ± SEM 
(n = 9). (c) Jurkat T cells were kept as unstimulated control or stimulated with TPA (20 ng/ml) plus A23187 (2 µM) at 37 or 33°C. After 6 h, IL-22 mRNA expression 
was assessed by real-time PCR using GAPDH for normalization. Data are shown as means ± SD (n = 5). (a–c), *P < 0.05, **P < 0.01, ***P < 0.001 compared to 
unstimulated control at the respective temperature; ###P < 0.001; statistical analysis, one-way ANOVA with post hoc Bonferroni correction.
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PBMC to mild hypothermia in CsA/FK506-sensitive manner 
supports IL22 expression, which associates with and is likely 
mediated by enhanced nuclear NFAT-c2.

hypothermia supports activation of 
epithelial-like cells by il-22
To investigate effects of hypothermia on IL-22 biological activ-
ity, IL-22-responsive epithelial-like human Caco2 and DLD1 
colon carcinoma cells (59) as well as HepG2 hepatoma cells 
(13) were adjusted for 6 h to an ambient temperature of either 
30 or 37°C followed by stimulation with IL-22. As detected by 
analysis of pSTAT3 after 1  h, early IL-22 signal transduction 
was significantly enhanced upon hypothermia in all three cell 
types investigated. Notably, this effect vanished at the later 3-h 
time point. Figure  6 displays densitometric quantification of 
results (three independently performed experiments per cell 
line) obtained from DLD1 (Figure 6A), Caco2 (Figure 6B), and 
HepG2 cells (Figure 6C). Representative immunoblots for each 
cell line are shown in Figure 6D. To determine consequences of 
temperature-sensitive STAT3 activation for downstream gene 
regulation, prototypic IL-22-inducible α1-antichymotrypsin 
(α1ACT) (1, 14) was investigated in DLD1 cells. Time course 
analysis revealed enhanced expression of α1ACT mRNA at 
30°C, a phenomenon that started at 4 h and persisted thereafter 
(Figure 6E). The specificity of hypothermia supporting STAT3 
was assessed by analysis of IFNγ-mediated activation of STAT1 
using the same experimental protocol. As shown by immunoblot 

analysis (Figure 6F) and respective densitometric quantification 
of three independently performed experiments (Figure  6G), 
STAT1 activation was, in stark contrast to STAT3, not enhanced 
but moderately inhibited by exposure of DLD1 cells to hypother-
mia. Moreover, expression of prototypic STAT1-dependent IL-18 
binding protein (IL-18BP) mRNA expression (60, 61) was curbed 
by cultivation at 30°C (Figure 6H).

DiscUssiOn

Herein, we identify in  vitro and in  vivo hypothermia as novel 
parameter augmenting IL-22 expression in the context of immu-
noactivation. Hypothermia as single stimulus, however, failed to 
significantly upregulate IL-22 under all conditions investigated. 
Fine-tuning by hypothermia of largely T-cell-derived IL-22 in acti-
vated PBMC was dependent on monocytes, sensitive to inhibition 
by CsA or FK506, and associated with increased nuclear NFAT-c2. 
The notion of enhanced NFAT-c2 function under the influence of 
hypothermia is furthermore supported by the current observation 
of similarly regulated IL-2 expression, a well-defined prototypic 
NFAT-c2-inducible gene (62). Notably, early data already indi-
cated the capability of monocytes to amplify Ca2+-signaling, thus 
NFAT function, in adjacent T-cells (63). Since NFAT in T-cells 
can be engaged by T-cell receptor-independent mechanisms con-
necting to innate immunity (64, 65), enhanced NFAT-c2 may also 
contribute to the current observation of hypothermia-associated 
IL-22 upregulation during murine endotoxemia.
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FigUre 5 | Nuclear factor of activated T cells (NFAT) signaling in peripheral blood mononuclear cells (PBMC) is mandatory for interleukin (IL)-22 upregulation by 
anti-CD3/-CD28 upon normothermic or hypothermic culture conditions. (a–c) Where indicated, PBMC were pretreated for 30 min with CsA (a,B) or with FK506  
(c) at the specified concentrations. Cells were further kept as unstimulated control or stimulated with anti-CD3 (0.2 µg/ml)/-CD28 (0.02 µg/ml) antibodies at 37 or 
33°C. All cultures were adjusted to a final concentration of 0.002% (a,B) or 0.008% DMSO (c) (vehicle for CsA and FK506). After 8 h, IL-22 [(a), n = 10; (c), n = 6] 
or IL-8 [(B), n = 10] mRNA expression was assessed by real-time polymerase chain reaction using GAPDH for normalization. Data are shown as means ± SEM. 
*P < 0.05, **P < 0.01, ***P < 0.001 compared to unstimulated control; ##P < 0.01, ###P < 0.001; statistical analysis for either 37 or 33°C, one-way ANOVA with 
post hoc Bonferroni correction. (D) PBMC from five different donors were kept unstimulated or stimulated with anti-CD3 (0.2 µg/ml)/-CD28 (0.02 µg/ml) antibodies 
at 37 or 33°C for the indicated time periods. Thereafter, CD3+ T-cell isolation was performed followed by immunoblot analysis for detection of nucleic NFAT-c2.  
(e) Densitometric quantification of experiments shown in Figure 5D. Data are expressed as means ± SEM. *P < 0.05, **P < 0.01; statistical analysis, unpaired 
Student’s t-test.
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Hypothermia may support NFAT function by action on 
T  cell receptor/Ca2+-signaling and calcineurin activation or by 
inducing a state of NFAT hypophosphorylation via suppression 
of deactivating kinases. Interestingly, inhibition of glycogen 
synthase kinase-3β, regarded key to NFAT inactivation (51), 
has been associated with hypothermia in rat lung injury (66). In 

light of increased nuclear NFAT-c2 and enhanced IL-2 as well as 
IL-22 expression, lack of IFNγ upregulation, likewise an NFAT 
target (67), indicates complexity of hypothermia-regulated 
cytokine production. Hypothermia may thus be able to inhibit 
additional signals that are required for IFNγ production but 
leave IL-22 unaffected. Whereas inhibition of IFNγ agrees with 

FigUre 6 | Continued
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FigUre 6 | Continued  
Effects of hypothermic preconditioning on interleukin (IL)-22 bioactivity. Epithelial (-like) IL-22-responsive human DLD1 (a) and Caco2 colon (B) carcinoma cells as well 
as HepG2 hepatoma cells (c) were preincubated for 6 h without additional stimulation at 30 or 37°C. Thereafter, cells maintained under the respective ambient 
temperatures were further kept as unstimulated control or stimulated with IL-22 (20 ng/ml). After 1 or 3 h, cells were harvested and IL-22-induced signal transducer 
and activator of transcription (STAT)-3 activation was determined by immunoblot analysis for pSTAT3. (a–c) Densitometric quantification of experiments (n = 3) is 
depicted as raw data (means ± SD). **P < 0.01, ***P < 0.001 compared to unstimulated control at the respective temperature and time point; #P < 0.05, ##P < 0.01, 
###P < 0.001; statistical analysis for individual time points, one-way ANOVA with post hoc Bonferroni correction. (D) One representative of the three independently 
performed experiments (for each cell type) is shown. (e–h) DLD1 cells were preincubated for 6 h without additional stimulation at 30 or 37°C. (e) Thereafter, cells were 
further kept under the respective ambient temperatures as unstimulated control or were stimulated with IL-22 (20 ng/ml). After the indicated time periods, α1ACT 
mRNA expression was determined by real-time polymerase chain reaction (PCR) using GAPDH for normalization. Data are shown as means ± SD [1 h, n = 5 (30 and 
37°C); 4 h, n = 8 (30°C) and n = 7 (37°C); 12 h, n = 8 (30 and 37°C); 24 h, n = 6 (30°C), and n = 4 (37°C)]; *P < 0.05, **P < 0.01; statistical analysis on fold-induction 
at each time point, unpaired Student’s t-test. AUC, area under the curve. (F) Thereafter, cells were further kept under the respective ambient temperatures as 
unstimulated control or stimulated with interferon (IFN)γ (20 ng/ml). After 1 or 3 h, cells were harvested and IFNγ-induced STAT1 activation was determined by 
immunoblot analysis for pSTAT1. One representative of three independently performed experiments is shown. Densitometric quantification of these experiments (n = 3) 
is depicted in (g) as raw data (means ± SD). **P < 0.01, ***P < 0.001 compared to unstimulated control at the respective temperature and time point; ##P < 0.01; 
statistical analysis for individual time points, one-way ANOVA with post hoc Bonferroni correction. (h) Thereafter, cells were further kept under the respective ambient 
temperatures as unstimulated control or stimulated with IFNγ (20 ng/ml). After 4 or 12 h, IL-18 binding protein (IL-18BP) mRNA expression was determined by 
real-time PCR using GAPDH for normalization. Data are shown as means ± SD (4 h, n = 4; 12 h, n = 5); *P < 0.05, **P < 0.01 compared to unstimulated control of 
the respective temperature and time point; #P < 0.05; statistical analysis on raw data for individual time points, one-way ANOVA with post hoc Bonferroni correction.
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tissue-protective properties of hypothermia, future studies need 
to shed light on mechanisms of differential regulation of IFNγ 
and IL-22 by low ambient temperature.

In order to relate effects of lowered ambient temperature to 
IL-22 biological activity, STAT3 activation was investigated. 
Previous reports indicated that activation of hepatic STAT3 is 
enforced by hypothermia during piglet cardiac surgery (29) and 
murine liver regeneration (68). Both studies connect hypother-
mia and hepatic STAT3 activation to liver protection, though 
upregulation of either IL-10 (29) or IL-6 (68) was associated with 
those observations—leaving open the possibility that hypother-
mia directly affects signal transduction. Herein, we report that 
cultivation of human DLD1 and Caco2 colon carcinoma as well 
as HepG2 hepatoma cells under the influence of hypothermia 
amplifies initial IL-22 signal transduction. Data concur with 
increased STAT3 activation in murine brain endothelial cells 
exposed to hypothermia (69). Notably, tissue-protective IL-22/
STAT3 (4) but decisively not IFNγ/STAT1 signaling, the latter 
known to support pathological inflammation (45), was enhanced 
by hypothermia in the current study.

Tissue stress unbalancing homeostasis interconnects in a 
regulatory network with a fine-tuned inflammatory program, 
recently coined para-inflammation, which has the potential 
to enable adaptation and possibly protective preconditioning  
(70, 71). In that broader context, upregulation of IL-22 by hypo-
thermia in endotoxemic mice suggests this cytokine to be part 
of a protective agenda not only directly serving preservation of 
stressed/injured tissues. By its capability to enforce insulin action 
(72, 73), enhanced IL-22 biological activity may, moreover, sup-
port insulin-dependent glucose uptake by brown fat and muscle 
tissue, which likely contributes to or supports heat generation of 
the hypothermic organism (74–76). Notably, when studied indi-
vidually, endotoxemia and hypothermia are generally associated 
with reduced insulin function (77–80).

Rodent models of severe systemic inflammation/sepsis display 
endogenous hypothermia (81, 82) that can serve defined pro-
tective functions (19, 30–35). Current data suggest upregulation 
of IL-10 (30–35) and IL-22 as part of a hypothermia-associated 

cytokine profile counteracting overt pathological inflammation 
and strengthening biological barriers during severe systemic 
inflammation and infection. Observations presented likewise 
imply that IL-22 may contribute to specific tissue-protective 
properties of elective hypothermia.
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