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Abstract. Context unification is a variant of second order unification.
It can also be seen as a generalization of string unification to tree unifica-
tion. Currently it is not known whether context unification is decidable.
A specialization of context unification is stratified context unification,
which is decidable. However, the previous algorithm has a very bad worst
case complexity. Recently it turned out that stratified context unification
is equivalent to satisfiability of one-step rewrite constraints.

This paper contains an optimized algorithm for stratified context uni-
fication exploiting sharing and power expressions. We prove that the
complexity is determined mainly by the maximal depth of SO-cycles.
Two observations are used: i. For every ambiguous SO-cycle, there is a
context variable that can be instantiated with a ground context of main
depth O(c * d), where ¢ is the number of context variables, and d is the
depth of the SO-cycle. ii. the exponent of periodicity is O(2"), which
means it has an O(n) sized representation.

From a practical point of view, these observations allow us to conclude
that the unification algorithm is well-behaved, if the maximal depth of
SO-cycles does not grow too large.

1 Introduction

Context unification is a variant of second order unification and also a generaliza-
tion of string unification. There are unification procedures for the more general
problem of higher-order unification (see e.g. [Pie73,Hue75,SG89,Wol93,Pre95]).
It is well-known that general higher-order unification and second-order unifica-
tion are undecidable [Gol81,Far91, LV99] and that string unification is decidable
[Mak77]. Recent upper complexity estimations for string unification are NEXP-
TIME [Pla99a] and PSPACE [Pla99b].

Context unification problems are restricted second-order unification prob-
lems: context variables represent terms with exactly one hole in contrast to a
term with an arbitrary number of (equally named) holes in the general case.
The name contexts was coined in [Com93]. Currently, it is not known whether
general context unification is decidable. There are some decidable fragments:



If the number of occurrences of every first order variable and context variable
is at most two [Lev96], or if there are at most two context variables, but an
arbitrary number of first order variables [SSS99], or if the context unification
problems are stratified [SS99b]. Satisfiability in a logical theory of context uni-
fication is undecidable [NPR97,Vor98]. A decidable restriction of second order
unification similar in spirit to context unification is bounded second order uni-
fication [SS99a], where second order variables represent terms with a number of
holes that is bounded by some preselected number.

Applications of context unification are for example in computational lin-
guistics [NPRI7] and of (stratified) context unification in equational unification
[SS98]. Recently it was noticed that satisfiability of one-step rewrite constraints
and stratified context unification can be interreduced [NTT99].

This paper presents an algorithm for stratified context unification that im-
proves the run time and space usage of the decision algorithm given in [SS99b].
Based on the methods in [SS99b] a proof of an estimation of the complexity of
SCUA is given:

Theorem: Stratified context unification can be performed in time poly-
nomial in the size of the input and the depth of SO-cycles.

It follows from [NTT99] that the algorithm can be traslated and hence the
complexity estimation holds also for satisfiability of one-step rewrite constraints.

The construction of the algorithm SCUA and the upper bounds have con-
sequences for implementations. It demonstrates that the exploitation of sharing
and the compression of iterated contexts is useful. Unfortunately, we were not
able to give an upper bound on the depth of SO-cycles. On the other hand,
we have found no example that has SO-cycles during the transformation algo-
rithm of more than linear depth. This supports the conjecture that the depth of
SO-cycles is small (perhaps polynomial).

2 Preliminaries

Let X be a signature, where we assume that the signature contains at least one
non-constant function symbol, in particular we allow also that the signature may
be infinite or monadic. With ar(f) we denote the arity of the function symbol
f. Let V1 be the set of first order variables z,y, z,..., Vs be the set of context
variables X, Y, Z, ... and V := V; U V5. Terms are formed like first order terms,
where context variables are unary and may occur in the position of function
symbols. First order terms are terms without occurrences of holes and context
variables. If we mean a first order context variable, we write A'. Contexts are
first order terms with a single occurrence of the special constant -, the hole. We
denote contexts as C[-]. The path from the root to the hole of C is called main
path, denoted mp(C); the length is called main depth and denoted as mdt(C).
With Id we denote the empty (or trivial) context. A prefiz of a context C'is a
context C'1, such that CyCy = C for some context Cl.



Substitutions o replace first order variables by first order terms and context
variables by contexts. We also use multi-contexts C[,..., ], which are first
order terms with occurrences of the holes 1,...,-,, where every hole occurs
exactly once. As is standard, positions in terms and contexts are words of positive
integers, and t|, denotes the subterm (subcontext) of ¢ at position p.

In the following we sometimes use the notation C[-]?, where C[] is a context
and n is an integer. This is defined as C[-]! := C[-], C[]**! := C[C[]"]. If we use
this notation in a term, it is meant as a meta-notation of a term, not as explicit
syntax. For integers we use ¢ modx n, which is the unique number j € [1..n] with
i = j(mod n).

An equation system is a set of equations s = ¢, also called unification problem.

A ground substitution o has exponent of periodicity n ([Mak77,55598)]), iff i)
for every X, if there are ground contexts A, B, C' with B nontrivial, such that
o(X) = AB™C, then m < n; ii) there is some X', such that o(X) = AB"C, for
appropriate ground contexts A, B, C' where B is nontrivial.

The following lemma is a generalization of [KP96].

Lemma 2.1.  ([55598]) There is a constant ¢, such that for every unifiable
context unification problem I its exponent of periodicity is at most 2°*¢, where
d is the size of I'.

Definition 2.2. We define SO-prefixes as words in V5. An SO-prefir of a posi-
tion p wn a term t 1s the word consisting of the context variables in head positions
that are met going from the root to the position p.

In an equation system I', an SO-prefix of a variable or context variable X
is a word in V5, that either belongs to an equation s = t, and a position of X
m t or s; or it belongs to a path 1 = t1,..., 2, = t, and is constructed as
W = Wi ... Wy, where w; s the SO-prefiz of some position of ;41 n t; for
1 <i < n and w, is the SO-prefiz of some position of X in t,. An SO-prefix is
maximal, if it either belongs to an occurrence in s = t, and s,t are not variables,
or to a path ©1 = t1,...,x, = t, and every occurrence of x1 has an empty
SO-prefiz.

Let the following hold:

1. for every variable and context variable X, there exists a finite unique maximal
SO-prefix p(X), and

2. for every equation C[X] = D[Y] € I the following holds: let the SO-prefizes
of X, Y in the terms C[X],C[Y] be px,py. Then pxy = py implies that the
mazimal SO-prefizes in I' of X', and Y are equal.

Then I' is called stratified.

This definition is consistent with the definitions in [SS94,5599b Lev96], but
it is adapted to systems of equations that permit equations like z = y, X (z) =
z. 1.e., that variables may have different SO-prefix in the terms that occur in
equations. It is consistent with this definition to consider equations as labeled
with an SO-prefix, and then use the label of the equation and the SO-prefix of
positions in terms to compute the SO-prefix in I".



For example, X (z) = x is not permitted, since there is no finite SO-prefix of
z; X(x) = Y (x) is not stratified, but X (2) = Y(y), » = f(z) is stratified.

3 The algorithm SCUA

The initial input 1s a set of equations. The intermediate data structure is more
involved: Let a skeleton context B be a context of the form By ... B,,, where B; is
of the form f(z1,..., 25,21, 5,41, ..., %n). With |B| we denote the main depth
of B. Let a power expression be pow(B,n), where n > 0, and B is a skeleton
context. Let the terms be @ | f(t1,...,tn) | X(t) | P(t) where z is a variable,
f a function symbol of arity n, X a context variable, t,¢; are terms, and P is a
power expression. pow(B,n)(x) is a syntactically compressed form of B"C(z),
where n = ny * |B| + ne with ny > 0,0 < ny < |B| and C' is a prefix of B with
mdt(C) = ns.

Let head(-) be defined as: head(x) := , head(f(...)) := f, head(Y(y)) := Y,
head(pow(f(...)...Bm,n)(s)) := fifn > 1.
shift(By ...By,m) is defined as: shift(B;...B,,0) = B;...B, and
shift(By ...Bn,m) :=shift(By...ByBi,m—1).

Let ezpand(pow(B; ... Bm,n)) be defined as follows:

expand(pow(By . ..Bm,0)) := Id, and

expand(pow(By . .. Bm,n)) := By(expand(pow (B2 . ..BnBi,n—1))).

This is also used for terms: expand(pow(B,n)(x)) := expand(pow (B, n))(z).

If we say a variable occurs in pow(B,n), then we mean the occurrences in
expand(pow(B,n)).

A stratified context unification problem (SCUP) is a stratified system of con-
text equations I, where equations are denoted as s = ¢ plus a set of disequations
of the form X # Id. A substitution ¢ that maps first order variables to ground
terms and context variables to ground contexts is a unifier (or a solution) of
the SCUP I iff after applying ¢ and expand, the left and right hand sides of
equations are syntactically equal, and for (X # Id) € I': 6(X) # Id.

The algorithm SCUA has an initial input 7. Let Dy be the size of Iy, let Ey
be the upper bound on the exponent of periodicity given by the bound in [SSS98]
for I'r, let Dy := max{2,ar(f)}, where f are the function symbols occurring in
the initial input, and let #(CV) be the number of context variables in I'7.

The main technical advantages of SCUA over the algorithms in [SS99b] is
the use of sharing by flattening equations, and the compressed representation of
iterated contexts by power expressions. This forces to adapt the algorithm and
to use new rules that operate on the new syntax.

3.1 Flattening

Initially, and after a replacement of context variables, a flattening may be re-
quired:

Definition 3.1. Rule (Flatten)



{s=t}ur
S {s=azz=t}UT
{f(s1,...,8p) =t}uU T

B ; ; is not able.
{f(g;l,,..,xn)it,$1i51a~~~l’nisn}UF if some s; is not a variable
X(s)=ttur
. {X({ )(é)t }U} — if's is not a variable.
r)=1,r =S5
B =ttur
_ {pow( ,n)(s) }U if s 15 not a variable.
{pow(B,n)(x) = t,e = s}UT

of neither s nort is a variable.

Here the introduced variables are alway fresh ones.

If the flattening rules are not applicable, then I 1s called flattened. In this
case, only terms of the form z | f(x1,...,2,) | X(2) | pow(B,n)(x) where z, z;
are variables, are permitted.

Definition 3.2. Rule (Normalizing Power Erpressions)
A power expression pow(B,n)(x) is replaced by pow(Cy...Cx,n+m)(x) , if
B=C,...CxC1...Cy...C1...Cy

m times

In the following we assume that SCUPs are flattened and that power expres-
sions are normalized.

3.2 Decomposition Rules
Definition 3.3.  (decomposition rules)

fe=ypur
Ily/«]
{$:f(x1aaxn)a$:f(y1aayn)}up
{l’if(l‘1a~~~al‘n),l‘1iyla~~~al‘niyn}UF

3. (clash) {J::'f(xl,...,xn),xi.g(yl,...,ym)}uf’ S+

1. (variable replacement):

2. (decomposition)

4. (occurs-check) Fail, if there is};aéham of equations x1 =t1,...,x, = tn, and
Zit1 moax n occurs in t;, and at least one t; has a function symbol as head.

5. (remove-fo) M

6. Rempve disequations X # Id, if X does not occur in the rest of I'.

7. w of & does not occur int nor I'.

8. (Remove-cv) For a context variable X, if (X # Id) ¢ I', then select one of

the following possibilities:
(a) Add the disequation X # Id.
(b) Replace X by Id everywhere in I

For every equation system [I', the decomposition rules are performed with
high priority. If no decomposition rule is applicable, then we say I" is decomposed.
If for every context variable in [, there is a disequation X # Id, then we say it
is disequation-complete.



3.3 SO-cycles and SO-clusters

Definition 3.4. A set of equations s; = t1,...,8, = t, is called an SO-cycle,
if the following holds: s; is of the form x; (or X;(y;) ), and x; (or X;) occurs in
ti_1 mods n, but not below a context variable, and at least one such occurrence is
not at the top, and there s no context variable that occurs twice in the SO-cycle.
The length of an SO-cycle is the number of context variables at the top positions.
An SO-cycle 1s called ambiguous, iff one of the following holds:

— There 1s an 1, such that s; is a first order variable, and has more than one
oceurrence i t;_1 mods n-

— For some 1, the term s; 1s a first order variable, and the sequence of equations
to the next contert variable 1s s; = t;,...,5; = t;, t; contains the contert
variable X, and the sequence can be replaced by a different subsequence start-
ing with s; = s}, ending with s}, =t the only term in the new subsequence
that contains a context variable is t),, and this context variable is X. Let the
term 5; result from instantiating the variables using s; =1;,...,s; =t;, and
s'; resulting from instantiating the variables using s; = t},..., s, = 1}, and
let the positions of the X in the terms 5; and s'; be different.

The SO-cycle that results from such a replacement of one subsequence by athe
other 1s called an ambiguous variant.

If the 50-cycle 1s not ambiguous, then it is called path-unique. The depth
of an SO-cycle is the sum of the depths of X; (or x;) in t;_1 noax n. The amb-
depth of an ambiguous SO-cycle is the mazimum of the two smallest depths of
two ambiguous variants of the SO-cycle.

Given the initial input I7, let Dz be the maximum of the depth of all SO-
cycles that remains a maximum for all transformations.

Definition 3.5. Let I' be an SCUP. Let ~ be the equivalence relation on V
generated by X1 ~ Xa, X1 ~ x1, or x1 ~ y1 if there is an equation X1(z1) =
Xo(z2), X1(z3) = x1, or x1 = yy1, respectively in I

Let = be the relation on V generated by x = y if x,y have empty SO-prefix
and there is an equation x =t € I',t Z x and x occurs int. Le.t = f(...,y,...),
ort is of the form pow(B,n)(z). Let 2 be the quasi-ordering generated by the
transitive and reflerive closure of = U ~. If there are variables x,y with z = y
and y 2 x, then we say 2 (or I') has cycles, otherwise, it is called cycle-free.

If 2 s cycle-free, then an equivalence class K of ~ is called an SO-cluster.
An S5O0-cluster K 1is called a top-SO-cluster, ff the variables in K have empty
SO-prefiz and are mazimal w.r.t. 2 . The set of equations in I', where the
variables from an SO-cluster K occur at top-level, is denoted as EQ(K). Let
K¢ be the subset of context variables in K. A top-SO-cluster K s called flat, iff
it 1s also 2 -minimal.

Note that a non-flat top-SO-cluster may consist of first order variables only.
In a decomposed SCUP, a top-SO-cluster always contains a context variable.



3.4 Ambiguous SO-cycles

Definition 3.6.  (Eliminate ambiguous SO-cycles)

If there s an ambiguous SO-cycle with involved SO-variables Xy, ..., X, and
amb-depth d, then select some k € {1,... n} and a skeleton context B of depth
< (3% #(CV)+ 1) *d and replace Xy, by B.

This rule allows to get rid of all ambiguous SO-cycles and also eliminates a
context variable from I after every application.
3.5 Expanding Small Powers

If in an expression pow(B,n), the number n does not exceed 3 x Dz, then we
will expand it with high priority:

Definition 3.7.  (ezpand-small-powers)
{x = pow(B,n)(y)}u Tl
{le=t}ur

if n < 3% Dy, where t = expand(pow(B, n)(y))

3.6 Path-unique SO-cycles

By decomposition and expansion and By decomposition and expansion of small
powers, we can assume, we can assume that a path-unique SO-cycle has no terms
of the form pow(B, n)(z) and no equations of the form z = y.

A path-unique SO-cycle is usually written as s1 = Ci[t1],..., 5, = Chlts]
where the top-variable of s; occurs in t;_1 noas n. A plateau P is every sequence
of equations s; = Cj[t;],...,s;; = Cj/t;/], such that for ¢ = j,j+1,...,5 —
1( modx n), C; = Id, but Cj # Id, and Cj_1 neax n # Id.

The intuition of this rule is that an instantiation along the cycle is guessed,
where the number of rounds is the exponent of periodicity. One distinction is
that either some context variable is exhausted, or there is some deviation of a
main path from the cycle.

Definition 3.8. Given a path-unique SO-cycle with a minimal number of in-
volved context variables, s1 = Ci[t1],. .., 80 = Cp[tn]. First select a plateau in
the SO-cycle . For simplicity we assume that the SO-cycle is then renumbered
such that it starts with index 1. Now we can use a different method of indexing:
Let the SO-cycle be s1 = t1,...s5, = Cj,[t;5,], .. .55, = Cj,[t;.], where C}, is the
last context in the it* plateau. Denote the top context variables in plateau i as
Xiyj.

Select an integer Dy < e < Ef x Dz, and then select one of the following
possibilities:

1. Let B be a skeleton context with |B| < Dz and instantiate some X; ; with
B.

2. — fori>1: Replace Xip by pow(Cj,Cjyy - Cliyy e nr€ — 1+ D(X] )

i+l



— fori=1: For every h replace X1 j, either by pow(C;,C;, ... C;,, e)(X] )
or by pow(C;,Cj, ... Cy,., e)(Id), where the last case should be selected at
least once.

3. Fail, +f the SO-cycle has length 1.
— fori>1: Replace X; pn by pow(C5,C5.,, - Chipn sore w2 € — 1+ 1)(X£7h)

—for i = 1. Let C; = f(l‘jl,1,~~~,C}I,~~~,l‘j1,m)~ For ev-

ko
ery h select an indexr 1 < kp < m and replace X1, —

pow(Cy,Cy, ... Ci ) f(yna, -, X1 -y Ynm). There should be at
———

kn
least one ky that s different from ko. After the replacement, a flattening
15 performed.

We assume that the new introduced variables are fresh ones.

3.7 Flat SO-Clusters

The assumption is that [ is flattened, decomposed, disequation-complete and
there are no SO-cycles. Note that every flat top-SO-cluster contains a context
variable.

Definition 3.9. Let there be a flat top SO-cluster K with K¢ = {X1,..., X5}
of minimal size in I' with set of equations EQ(K). Fail, if h = 1 or the mazimal
arity of function symbols in X 1s < 1.

Let F' be a new function symbol with 2 < ar(F) < |K
For every context variable X; € K, select an index 1 < k; < ar(F') and replace
Xi(+) by Fziq,.. .,&/(;)/, o T ar(Fy), where x; ;, X[ are new. There should be

ki
different indices k;.
Then decompose the equations that result from instantiating and flattening

the equations in EQ(K).

Note that the symbol F' disappears after decomposition, and that the only
possible exit from the 1terated application is to remove a context variable.

3.8 Non-Flat SO-clusters

This subsection treats the harder case of non-flat SO-clusters.
The assumption is that [ is flattened, decomposed, disequation-complete, and
there are no flat top-SO-clusters nor SO-cycles.

Definition 3.10. Let BDEC(By, Ba) be the following algorithm applied to two

skeleton contexrts By, By: It signals either Fail, or returns a set of equations

between variables:

BDEC(By, Bs) returns Fail if |Biy| # |Bz|. BDEC(Id,Id) =

BDEC(f(x1, .. %ji—1, Tj141, - n)BL, g(W1, - - Yjam1y 5 Yjutl, - - -, Um)B
B

0.
)
results in: if j1 # ja or f # g, then Fail, else {x; = y; | 1 # j1 }UBDEC (B, BY).

IREATES



Note that the output of BDEC' is always a set of equations between variables,
and thus the addition of the equations always makes the SCUP smaller after
application of decomposition rules.

Definition 3.11.  (power-decomp). This rule is only used after an application
of the rule (non-flat-SO-Cluster), and only for the equations in EQ(K) of the
non-flat top-SO-cluster after instantiations.

There are four cases for a decomposition of terms starting with a power
expression. We assume that after each rule, a flattening is performed if necessary.

{x = pow(By,n1)(x1), ® = pow(Ba,na2)(x2) U T

1. - -
{x = pow(By,n1)(x1), # = pow(Ba, na)(x2)} UBDEC(Cy,Co) U T
If ny > 3% Dg,i = 1,2 and By # Ba, where C; = expand(pow(B;,2 *
Dz)),i=1,2.
9 {r = pow(By,n1)(z), 2 = fle1,...,2n)}UT
Az yi | i £ kU {pow(Bi,ng —1)(z) =z} U{x = fz,..., ) UT
where By := shift(By,1), and f(y1,. .. Ys—1,", Ybt1,-- -, Yn) is the first
atomic context of By.
g {r = pow(By,n1)(z), 2 = fle1,...,2n)}UT
' Fazil
if £ # head(pow(By1,n1)(z)).
y {x = pow(B,n1)(z1),x = pow(B,na)(x2) } U T T

e = pow(B,ny)(x1), 21 = pow(B,ny —ny)(x2)} U T

In order to give some intuition of the cases in the rule for non-flat SO-cluster,
the distinction for the context variables {X,..., Xp} in an SO-cluster is made
on the basis of the relative position and depth of the holes of the instances of X;.
In the case where every non-variable equation in FQ(K) has a power expression
at the top, there are the cases i) that some o(X;) has a small main depth, ii) that
some o(X;) is a prefix of all others and also covered by the power expressions,
or iii) that the common prefix of the ¢(X;) is long, such that we can decompose,
or iv) that the common prefix is long enough, but the bases are already equal,
but there is a forking of the instances of X;.

Definition 3.12. Rule (non-flat-SO-Cluster)

This rule 1s only applicable if there are no SO-cycles, no flat top-SO-clusters,
but a non-flat top-SO-cluster.

Let K = {X1,...,Xn} be the context variables in a non-flat top-SO-cluster,
where h 1s minimal.

Then select one of the following two possibilities:

1. If there is an equation s = f(t1,...,t,) € FQ(K). Then:
— If there is a further equation ¥ =t € EQ(K), and t is not of the form
Y(y) and head(t) = g # f, then Fail.
— For everyi = 1,...,h, select an index k; and replace every X; € K by
fl@in, .., XI(), ..., xin) where z; j, X] are new variables.
——

ki



2. If there is no equation s = f(t1,...,t,) € EQ(K), but there are at least
two equations x1 = pow(By,n1)(y1), 22 = pow(Ba,na)(y2) in EQ(K) for
different By, Bs. Let n be the minimum of the numbers n; for all equations
z = pow(B;,n;)(x;) in EQ(K). Note that we can assume that i > 3 x Dyz.
Then select one of the following:

— Select some m with 1 < m < 3 % Dy and replace every X; by
pow(By, m)(X]) or by pow(By, m)(Id) where the last case should be se-
lected at least once.

— Select a number 0 < n < 2+ Dz — 1. Let Cy = shift(By,n), [ =
head(Ch) and the hole of Cy in direction ko. Fail if ar(f) < 1. For
every 1 < i < h select an inder 1 < k; < ar(f). Replace every X;
by pow(Bi,n)(f(wia,..., X{ .. - Tiar(f))), where for at least one in-

\k/-/
dex j: ko # kj. For a fized equation xy = pow(By,no)(yo) € EQ(K)
and every other equation x1 = pow(Bi,n1)(y1) € EQ(K) perform
BDEC (pow(Bg, n), pow(By1,n)) and add the resulting equations to I'.

— For a fired equation xg = pow(Bg,ng)(yo) € EQ(K) and every other
equation 1 = pow(By1,n1)(y1) € FQ(K) perform BDEC (pow(By, 2 *
Dyz),pow(By,2 * Dz)) and add the resulting equations to I'.

3. If there is no equation s = f(t1,...,t,) € EQ(K), and for every pair of
equations x1 = pow(B1,n1)(y1), 2 = pow(Ba,na)(ya2) it is By = Ba. Let
B = Bl
Let n be the minimum of the numbers n; for all equations ¥ = pow(B, n;)(x;)
in FQ(K). Note that we can assume that n > 3« Dz. Then select a number
1 < n <n and select one of the following:

— Replace every X; by pow(B,n)(X]) or by pow(B,n)(Id), where the last
case should be selected at least once.

— Replace every X; by pow(B,n)(X]).

— Fail if n = n. Let Cy = shift(By,n), head(Cy) = [ and the
hole of Cy in direction ko. Fail if ar(f) < 1. For every 1 <
i < h select an index 1 < k; < ar(f). Replace every X; by
pow(B,n)(f(xi1,..., X] ... Ziar(s))), where at least one index k;

\k/-/
must be different from ky.

After every replacement, flatten, decompose and power-decompose the resulting
equations.

Note that the number Dy is used as a known upper bound for the length of
bases after normalization. If the n in the power expressions pow(B, n) is larger
than 2Dz, then we are sure that there are at least 2 periods.

3.9 How the rules work together: SCUA

The algorithm SCUA has as input a stratified context unification problem
I consisting only of equations between terms. The following steps are performed.

10



First, the system is flattened in order to exploit sharing.

Then the following rules are applied until the system is empty, or a Fail
is signalled, where between rule applications: decomposition rules, power-
decomposition rules, flattening and normalization of power expressions is done
with high priority.

1. If there 1s an ambiguous SO-cycle, then apply the instantiation in 3.4.

2. If there is no ambiguous SO-cycle, but a path-unique SO-cycle, then apply
the rule in 3.6 to I'.

3. If there are no SO-cycles, and a flat top-SO-cluster, then apply the rule 3.9
for flat top-SO clusters to a minimal one.

4. If there are no SO-cycles, no flat top-SO-clusters, then apply the rule 3.12
to a non-flat top-SO-cluster.

3.10 Upper Bounds on the Depth of Instances of Ambiguous
SO-Cycles

Theorem 3.13. Let I' be a stratified context unification problem. Let I be
reached by transformations from I', such that I is solvable by o. Let there
be an ambiguous SO-cycle that can be represented as the unflattened se-
quence of equations: X1(-) = C1[X2()], -, Xm-1(") = Coc1[Xm ()], X (4) =
C[X1(1), X1(°)]. Let d be the sum of mdt(Cy) fori=1,... m plus the mazrimum
of the depths of the two holes in Cy[-, -]

Then there is some context variable X;, such that o(X;) has main depth less

than (3xm+1) xd,

The proof is given in the appendix.

4 Correctness and Complexity of SCUA

Given the methods in [SS99b], it is a straightforward to adapt the soundness
and completeness proofs though it is tedious. The following holds for SCUA: the
stratifiedness property is not destroyed by the rules. Furthermore, the number
of occurrences of context variables is not increased.

A fact concerning periods in words is used for the completeness of decom-
posing powers and also for the completeness of solving no-flat top-SO-clusters:

Lemma 4.1. Let w;, w, be words over an alphabet. If wyw] = wiw)h, and
n,m > 2, and w} is a prefiv of w;, then w; = wy*,i = 1,2 for some n; and
ws.

Lemma 4.2. Let o(pow(B1,n1)(21)) = o(pow(By, ns)(x2)) and n; > 3 % | B;|
fori,j =1,2. Then o(pow(By1,n1)) is a prefir of o(pow(Ba,na)) or vice versa.
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Proof. Using similar methods as in [SS99b] it is easy to see that if the paths
deviate at a position of depth < maxz(2|By|,2|B2|), then there is an occur-
check failure. Then the fact on overlapping periods shows that the two power
expressions are both powers of the same skeleton context, hence they have the
same main path, and cannot deviate at larger depths. a

Another easy to establish fact is that a solvable context unification prob-
lem has a solution, where the maximal arity of function symbols is D4 =
maxz (2, ar(f)), where f is a symbol in I7.

Now we estimate the complexity of the algorithm:

Lemma 4.3. SCUA can be performed in time polynomial in the size and the
mazximal depths of SO-cycles.

Proof. We only argue on the complexity of the critical operations, and assume
that the arity of function symbols is O(n). This covers the case of an infinite
signature.

First we estimate the number of applications and the size increase by the
essential rules:

— The maximal number of applications of eliminating ambiguous SO-cycles is
#CV.

— The maximal number of applications of eliminating SO-cycles is #CV?: The
length of an SO-cycle is at most #£C'V, and in every application, either the
SO-cycle gets shorter, or a context variable is removed.

Now we explore the space increase:

The decomposition rules do not increase space usage. The same holds for the
rules for top-SO-clusters, if the subsequent high priority rule applications are
taken into account. Every SO-cycle-rule application may add power expressions,
but at most #CV. Every power expression may generate 3 * Dz occurrences of
function symbols. Since the number of applications is O(n?), the size, and hence
the number of function symbols is at most Dy + #CV? % 3« D4 * Dz, which is
of order O(D3 * Dyz).

The number of introduced power expressions is polynomial in Dy, since only
solving cycles can introduce new ones. The rules for flat clusters may copy
some power expressions, however these are removed again after decomposition,
power-decomposition, and normalization. For simplicity, the resource require-
ment for expansions of power expressions are counted as contribution of the
cycle-elimination rules.

Third we estimate the number of applications of the SO-cluster rules:

— The maximal number of applications of eliminating a flat top-SO-cluster is
#CV?: Every application strictly reduces the number of context variables
in a flat top-SO-cluster, or removes a context variable.

— The maximal number of applications of eliminating a non-flat top-SO-cluster
is harder to establish. The tuple (number of context variables, number of
context variables in the top-SO-cluster, number of variables not in any top-
SO-cluster, number of occurrences of function symbols on top level) strictly

12



decreases lexicographically after every application of the rule for eliminating
non-flat top-SO-clusters (including subsequent high priority rules). The last
parameter is of order O(D? % Dz), the same for the number of variables. The
worst case corresponds to multiplication, i.e. the number of applications is
smaller than p(Dy) x D%, where p is some polynomial.

It remains to estimate the contribution of every single rule application to-
gether with the following flattening, decomposition etc. It is easy to see that
flattening, decomposition, and normalization require time polynomial in the size.

— Instantiating an ambiguous SO-cycle: Is of order p(Dy)* Dz, where p is some
polynomial.

— Solving path-unique SO-cycles is of order p(Dy) x Dz, where p is some poly-
nomial.

— SO-cluster elimination: Eliminating a flat SO-cluster requires comparably
less resources.
If it is a non-flat SO-cluster, then the overall usage of time is p(Dy) * D%.

Corollary 4.4. The time required to perform a non-deterministic run of SCUA
s polynomial wn the initial size Dy and the mazimal depth Dz of an SO-cycle.

5 Future Work

The complexity of stratified context unification remains an issue. Among oth-
ers, the paper shows that an upper bound on the depth of SO-cycles implies a
complexity estimate of stratified context unification. Proving better complexity
estimations of stratified context unification or proving an upper bound for the
depth of SO-cycles is left for future work.

The decision algorithm for bounded second order unification [SS99a] is very
similar to the decision algorithm for stratified context unification. The methods
developed in this paper may be used in an estimation of its complexity.

Perhaps the tools in this paper help in computing an upper bound for the
complexity of D-unification [SS98], however, this would require a careful inspec-
tion of the algorithm since context unification is not used as a module.
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Appendix

A Proof of Theorem 3.13

The main purpose of this section is to show that in an ambiguous SO-cycle there
exists at least one context variable that has an instance of a main depth O(nxd),
where n is the number of context variables in the cycle and d is the amb-depth
of the SO-cycle.

In this section we only compute in instantiated terms and contexts: Hence
in this section the variables X, Y denote contexts, so we can speak of their main
depth and their size.

An SO-cycle is a chain of equalities X;(s;) = r;, i=1,...,n, such that X; is
contained 1n 7;_1 moqs n, and such that at least one occurrence in r; 1s not at the
top. The length of the SO-cycle is n, 1.e., the number equations. The depth of
the SO-cycle is the maximal sum of the depths of X; in 7;_1 noas n-

In the following proof, the argument term ¢ in X (¢) does not really matter,
so we use the notation X ~ Y as abbreviation of an equality X (s) = Y (¢).
Analogously, we use X ~ C[Y] for X(s) ~ C[Y[t]] and X ~ C[Y, Z] for X(s) ~
C[Y[t1], Y[t2]] where C is a multicontext.

Lemma A.1. Let the following chain of equations be given, X1 ~ ...~ X, ~
C[Xy,...,X1] and let C have at least n + 1 holes and let d be the mazimum of
the depths of the holes in C'.

Then for some i : mdt(X;) < d.

Proof. We can assume that mdt(X;) > d for all i.
The proof is by induction on n: If n = 1, then the lemma holds. Otherwise
consider the cases for X,,.

— X, has all the holes of ' in its side area, then the derived chain is X; ~
oo~ Xpoy ~ C'[Xy, ..., X1], where the depths of the holes are the same as
in C', and we can use induction on n.
— Wlog. X, = C[X},, X1(), ..., X1()]. Then the obtained chain is X; ~ ... ~
Xpo1 ~ C[X], Xy,...,X1], and we can use induction.

Lemma A.2. Let the following equations be given:
Xi~ Xo~ e Xy e O )y X 1) - s X))
where ¢ : [0..n] = [1..n] is monotone. Assume the depth of the holes correspond-

ing to Xy(5),J = 1,...,n i C is at most (n — j + h) x d. Then for some i:
mdt(X;) < (n—i+h)*xd
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Proof. We can assume that the main depths are larger than given in the lemma.
If n = 1, then the lemma holds, since there are two occurrences of X; and the
depth is at most A * d.

Now let n > 1. We can assume that mdt(X;) > (n — i+ h) x d.

Consider the possibilities for X, .

— If ¢(n) = ¢(n—1) = n, then there are two occurrences of X,, and mdt(X,,) <
hxd.

— If p(n) = n > @(n — 1), then only X,, = C[X},, Xpm-1)(), .-, Xp(0)()] is
possible, and the new equation chain is

X1~ Xo oo~ X1~ CLX, X1y - Xo(o)]

We can ignore X/ | since ¢(n — 1) < n — 1 and then apply induction on n
using n’ :=n—1and /.= h+1.

— If ¢(n) > n, there are two possibilities for X,.

e X, has all the holes of C'in its side-area, then: X1 ~ Xo ~ ...~ X1 ~
C'[Xon), Xpn=1), - - -» Xp(0)], and the holes in C” are at the same depth
as in C'. We can use induction on n, using n’ :=n— 1A' := h,¢'(j) :=
p(i+1).

o X, =C[..., X/ ,..]: Then the new chain is: X1 ~ Xg ~ ...~ X, | ~

—

n

J
C'N X oinyy ooy Xy X
[Xen) ’ 2 (0)]
J
The chain is shortened if the j'* hole is ignored, and we can use induction
onnusingn’ :=n—1and A’ := h+1,and ¢’ (i) = ¢(i) or ¢’ (i) = p(i+1).
Then d(X,iy) = d(Xp@vigr) <n—i+h =n"—i4 A’ The result is
mdt(X;) < (W' —i+h)yxd=(n—i+h)xd.
O

Lemma A.3. Let m,k,n, N be numbers withm,n>1, n+1>k, N =m+n,
and let the following equations be given:

Xy~ oo~ Xy~ DXy, o, Xo1), Yal
Vi~ o~ Yy ~ OV, X

where ¢ : [1..k] — [1..n] is monotone, the depths of the holes of X,y in D
is < (k—j+1)*d, the depth of Y3 is < k x d, and the depth of Y1, X1 in C is
<d.

Then one of the following holds:

— for some X;: mdt(X;) < (N —i+1)*d or
— for some Y; withi > h:mdt(Y;) < (2N —k+1)xd or
— for some Y; with i < h: mdt(Y;) < (2N — k) = d.

Proof. If n 4+ 1 = k, then we can use Lemma A.2, which shows that for some i:
mdt(X;) <n —i+ 1. Hence in the following we can assume that n > k.
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The proof 1s by induction on the following parameters: the number m, then
m — h, then n — k.
Base case: m = 1. Then Y} ~ C[Y7, X1] implies that Y7 has X in its side area at
least N — k times, where the depths are: d,..., (N — k) *d. Using an appropriate
¢, Lemma A.2 implies that some mdt(X;) < (N —i+ 1) x d.
Induction:
case h < m: We distinguish the cases for V,, in the equation Y, ~ C[Y1, Xi].
There are three cases:

— Y., has the holes of C' in its side area, i.e. X1,Y] are in the side area. Then

Xy~ Xy~ D[Xgw), - Xp1), Yal
Y1 [ A T Il C/[Yl,Xl]

where the depths in C’ are the same. We can use induction on m.

— Yo = CY),, X1()]. Then

XlNNXn ND[X(p(k)a~"aXLp(1)’Yh]
YT:’I NYl ~ ..~ Yyl C[Yr:le]

and by induction on the distance of m — h, we get the upper bounds for md.
We have to check only Yy,: If mdt(Y,)) < (2N — k) x d, then mdt(Vy,) <
(2N — k4 1) xd.

— Yo = CY1(),Y,L]: Then

Vi~ X1~ Xy~ D[X iy - X1, Vi)
Vi~ Yo ~C, Y

We use induction on m. We have to check only Yy,: If mdt(Y,,) < N, then
mdt(YVim) < (2N —k+ 1) xd, since n > k.

case h = m:
The equations are of the form:

Xy~ oo Xy~ DXy, -3 X1y, Yol
Vi~ o~ Yy ~ OV, X

A case analysis for Y}, using the equations Y;,, ~ C[Y1, Xi] gives three cases
— Y, has the holes of C' in its side area, i.e., X1, Y] are in the side area. Then

Xi~ o Xp ~ DXy, X1y, C'[V1, X1]]
Y1 ~ L.~ Ymel C/[Yl,Xl]

We use induction on m. Note that N' = N — 1,k =k + 1, hence N — k =
N'— k.
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— Yo = CY),, X1()]. Then

Xy~ ~X, ~ D[Xy(h)s s X1y, C[Y s X1]]
Y/ ~ Y1~ o~ Yooy ~ CIY], X1

We use induction on m—h: It is ¥ = k+1: N' = N, m’ = m. The conditions
for X; 1s the same. We have to check that from the induction hypothesis we
can prove the estimations for ;. The estimation is mdt(Y;) < 2N —k'+1)xd
and mdt(Y}) < (2N — k' 4+ 1) x d. This implies mdt(Y;) < (2N — k) x d for
i <mand mdt(Y,),) < (2N — k) xd, hence mdt(V,) < (2N —k+ 1) % d.

— Yo = CY1(),Y,L]: Then

Vi~ X1~ o~ Xy~ DXy s Xo), Y1, Y]]
Vi~ om Yo ~CYL,Y!]

We use induction on m. If mdt(Y,,) < N, then also mdt(Vy,) < N — k. Tt is
k' = k + 1, which implies the estimation of Y; as given in the lemma.
|

Lemma A.4. Let

Xy~ Xj~ .o~ X,y ~ CIY1, X
Vi~ Y~ X;

and the depth of the holes in C' 1s less than d. Let N = n+ m.
Then there is some X; such that mdt(X;) < (2N)*d for j < i or mdt(X;) <
(2N + 1) *d for i < j or some Y; with mdt(Y;) <2 N xd

Proof. If j = n, then there are three cases. In every case we can use lemma A.3
and get a bound of 2Nd.

In the case j # n, we use induction on n + m and then on n — j.

Case analysis for X,,:

— X, may have the holes of C in its side area, then we can use induction on
n.

— X, = C[X],, X1()], then the new chains of equations are X; ~ ... ~ X; ~

o~ Xpo1 ~ CIX,, Xq] and X], ~ Y7 ~ ... Y, ~ X;. Induction on n — j
shows the claim.

— X, = C[Y1(), X]], then the new chains of equations are X, ~ X; ~ ... ~
Xi~.o~Xpoy ~CY1(), X,] and Y1 ~ ...Y,, ~ X;. We can use induc-
tion on n — j.

|

Lemma A.5. Let Xi ~ ...~ X; ~ ...~ X, ~C[X;, X1] and the depth of the
holes in C' 1s less than d.

Then there is some X; such that mdt(X;) < (2N)*d for j < i or mdt(X;) <
(2N +1)*d fori<j.

Proof. Follows easily by considering the possibilities for X, in the same way as
already demonstrated using induction and Lemma A.4 a
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Proposition A.6. Let X; ~ ...~ X, ~ C[X1, X1], and the depth of the holes
in C is less than d. Then there is some X; of with mdt(X;) < (2*xn+1)xd

Proof. Follows from Lemma A.5 a

Lemma A.7. Let an ambiguous SO-cycle X1 ~ Ci[Xs] ~ ... ~ X, ~
Chl X1, X be given, let d; = mdt(C;),j = 1,...,n =1, d, be the mazimum
of the depths of C, and d = Z?:j d;.

Lete; = d_ZZ:l di. Then there is some X; with mdt(X;) < (3n+1—¢;)*d

Proof. Using induction on the torque Z?:_ll t* d;. If all d; = 0 for all ¢ < n, then
Proposition A.6 shows the claim.

Let j be the first index such that C; is not trivial. We can assume that
J < n. Consider the possibilities for X; for j > 1 If X; contains the hole of C; in
the side area, then X;_1 ~ C}[X;41] where mdt(C}) = mdt(C;) and induction
shows the claim.

If X; = Cj[X}], then the part of the chain is modified to: ..., X;_1 ~
C1Ci[XG], X ~ Xjq1,.... Since in the torque (j — 1) x dj_1 + j * d; is re-
placed by (j — 1) * (d;j_1 + d;), we can use induction.

In the cases where j = 1, the torque is also decreased, however, C), is in-
creased. a

Theorem A.8. In an ambiguous SO-cycle X; ~ C1[X2], X» ~
Co[X3],. ... X, ~ Cu[X1,X4], let d be the sum of the depths of X;y1 in C;
fore=1,...,n =1 plus the mazimal depths of the holes in C,.

Then there is some X; of main depth less than (3xn+ 1) xd

Proof. This is a special case of Lemma A.7. a

Ezample A.9. Consider the equation chain X ~Y ~ f(X, X,t), where we omit
the arguments of context variables. Then either Y = f(X, X,Y”), hence X ~
FX,Y), X = Id. BY = f(Y',X,t), then Y/ ~ X ~ f(Y’,X,t), and
X = fY, f(Y, X' t),t). Then Y/ ~ f(Y', f(Y', X',1),1), hence Y' = Id. This

gives a bound of 1 in contrast to 7 as given by Theorem A.8.
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