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Abstract� Context uni�cation is a variant of second order uni�cation
It can also be seen as a generalization of string uni�cation to tree uni�ca�
tion Currently it is not known whether context uni�cation is decidable
A specialization of context uni�cation is strati�ed context uni�cation�
which is decidable However� the previous algorithm has a very bad worst
case complexity Recently it turned out that strati�ed context uni�cation
is equivalent to satis�ability of one�step rewrite constraints
This paper contains an optimized algorithm for strati�ed context uni�
�cation exploiting sharing and power expressions We prove that the
complexity is determined mainly by the maximal depth of SO�cycles
Two observations are used� i For every ambiguous SO�cycle� there is a
context variable that can be instantiated with a ground context of main
depth O�c � d�� where c is the number of context variables� and d is the
depth of the SO�cycle ii the exponent of periodicity is O��n�� which
means it has an O�n� sized representation
From a practical point of view� these observations allow us to conclude
that the uni�cation algorithm is well�behaved� if the maximal depth of
SO�cycles does not grow too large

� Introduction

Context uni�cation is a variant of second order uni�cation and also a generaliza�
tion of string uni�cation� There are uni�cation procedures for the more general
problem of higher�order uni�cation �see e�g� �Pie���Hue�	�SG
��Wol���Pre�	��
It is well�known that general higher�order uni�cation and second�order uni�ca�
tion are undecidable �Gol
��Far���LV��� and that string uni�cation is decidable
�Mak���� Recent upper complexity estimations for string uni�cation are NEXP�
TIME �Pla��a� and PSPACE �Pla��b��

Context uni�cation problems are restricted second�order uni�cation prob�
lems� context variables represent terms with exactly one hole in contrast to a
term with an arbitrary number of �equally named holes in the general case�
The name contexts was coined in �Com���� Currently� it is not known whether
general context uni�cation is decidable� There are some decidable fragments�



If the number of occurrences of every �rst order variable and context variable
is at most two �Lev���� or if there are at most two context variables� but an
arbitrary number of �rst order variables �SSS���� or if the context uni�cation
problems are strati�ed �SS��b�� Satis�ability in a logical theory of context uni�
�cation is undecidable �NPR���Vor�
�� A decidable restriction of second order
uni�cation similar in spirit to context uni�cation is bounded second order uni�
�cation �SS��a�� where second order variables represent terms with a number of
holes that is bounded by some preselected number�

Applications of context uni�cation are for example in computational lin�
guistics �NPR��� and of �strati�ed context uni�cation in equational uni�cation
�SS�
�� Recently it was noticed that satis�ability of one�step rewrite constraints
and strati�ed context uni�cation can be interreduced �NTT����

This paper presents an algorithm for strati�ed context uni�cation that im�
proves the run time and space usage of the decision algorithm given in �SS��b��
Based on the methods in �SS��b� a proof of an estimation of the complexity of
SCUA is given�

Theorem� Strati�ed context uni�cation can be performed in time poly�
nomial in the size of the input and the depth of SO�cycles�

It follows from �NTT��� that the algorithm can be traslated and hence the
complexity estimation holds also for satis�ability of one�step rewrite constraints�

The construction of the algorithm SCUA and the upper bounds have con�
sequences for implementations� It demonstrates that the exploitation of sharing
and the compression of iterated contexts is useful� Unfortunately� we were not
able to give an upper bound on the depth of SO�cycles� On the other hand�
we have found no example that has SO�cycles during the transformation algo�
rithm of more than linear depth� This supports the conjecture that the depth of
SO�cycles is small �perhaps polynomial�

� Preliminaries

Let � be a signature� where we assume that the signature contains at least one
non�constant function symbol� in particular we allow also that the signature may
be in�nite or monadic� With ar�f we denote the arity of the function symbol
f � Let V� be the set of �rst order variables x� y� z� � � �� V� be the set of context
variables X�Y� Z� � � �� and V �� V� � V�� Terms are formed like �rst order terms�
where context variables are unary and may occur in the position of function
symbols� First order terms are terms without occurrences of holes and context
variables� If we mean a �rst order context variable� we write X � Contexts are
�rst order terms with a single occurrence of the special constant �� the hole� We
denote contexts as C���� The path from the root to the hole of C is called main
path� denoted mp�C� the length is called main depth and denoted as mdt�C�
With Id we denote the empty �or trivial context� A pre�x of a context C is a
context C�� such that C�C� � C for some context C��
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Substitutions � replace �rst order variables by �rst order terms and context
variables by contexts� We also use multi�contexts C���� � � � � �n�� which are �rst
order terms with occurrences of the holes ��� � � � � �n� where every hole occurs
exactly once� As is standard� positions in terms and contexts are words of positive
integers� and tjp denotes the subterm �subcontext of t at position p�

In the following we sometimes use the notation C���n� where C��� is a context
and n is an integer� This is de�ned as C���� �� C����C���n�� �� C�C���n�� If we use
this notation in a term� it is meant as a meta�notation of a term� not as explicit
syntax� For integers we use i mod� n� which is the unique number j � ����n� with
i � j�mod n�
An equation system is a set of equations s

�
� t� also called uni�cation problem�

A ground substitution � has exponent of periodicity n ��Mak���SSS�
�� i� i
for every X � if there are ground contexts A�B�C with B nontrivial� such that
��X  � ABmC� then m � n� ii there is some X � such that ��X  � ABnC� for
appropriate ground contexts A�B�C where B is nontrivial�

The following lemma is a generalization of �KP����

Lemma ���� ��SSS���� There is a constant c� such that for every uni�able
context uni�cation problem � its exponent of periodicity is at most �c�d� where
d is the size of � �

De�nition ���� We de�ne SO�pre�xes as words in V�� � An SO	pre�x of a posi	
tion p in a term t is the word consisting of the context variables in head positions
that are met going from the root to the position p�

In an equation system � � an SO�pre�x of a variable or context variable X
is a word in V�� � that either belongs to an equation s

�
� t� and a position of X

in t or s
 or it belongs to a path x�
�
� t�� � � � � xn

�
� tn and is constructed as

w �� w� � � �wn� where wi is the SO	pre�x of some position of xi�� in ti for
� � i � n and wn is the SO	pre�x of some position of X in tn� An SO	pre�x is
maximal� if it either belongs to an occurrence in s

�
� t� and s� t are not variables�

or to a path x�
�
� t�� � � � � xn

�
� tn and every occurrence of x� has an empty

SO	pre�x�
Let the following hold�

�� for every variable and context variable X � there exists a �nite unique maximal
SO	pre�x p�X � and

� for every equation C�X �
�
� D�Y� � � the following holds� let the SO	pre�xes

of X �Y in the terms C�X �� C�Y� be pX � pY � Then pX � pY implies that the
maximal SO	pre�xes in � of X � and Y are equal�

Then � is called strati�ed�

This de�nition is consistent with the de�nitions in �SS���SS��b�Lev���� but
it is adapted to systems of equations that permit equations like x � y�X�x �
z� i�e�� that variables may have di�erent SO�pre�x in the terms that occur in
equations� It is consistent with this de�nition to consider equations as labeled
with an SO�pre�x� and then use the label of the equation and the SO�pre�x of
positions in terms to compute the SO�pre�x in � �

�



For example� X�x
�
� x is not permitted� since there is no �nite SO�pre�x of

x� X�x
�
� Y �x is not strati�ed� but X�x

�
� Y �y� x

�
� f�z is strati�ed�

� The algorithm SCUA

The initial input is a set of equations� The intermediate data structure is more
involved� Let a skeleton context B be a context of the formB� � � �Bm� where Bi is
of the form f�x�� � � � � xji��� �� xji��� � � � � xn� With jBj we denote the main depth
of B� Let a power expression be pow�B� n� where n � �� and B is a skeleton
context� Let the terms be x j f�t�� � � � � tn j X�t j P �t where x is a variable�
f a function symbol of arity n� X a context variable� t� ti are terms� and P is a
power expression� pow�B� n�x is a syntactically compressed form of Bn�C�x�
where n � n� � jBj� n� with n� � �� � � n� � jBj and C is a pre�x of B with
mdt�C � n��

Let head�� be de�ned as� head�x �� x� head�f�� � � �� f � head�Y �y �� Y �
head�pow�f�� � � � � �Bm� n�s �� f if n � ��
shift�B� � � �Bn�m is de�ned as� shift�B� � � �Bn� � �� B� � � �Bn and
shift�B� � � �Bn�m �� shift�B� � � �BnB��m� ��
Let expand�pow�B� � � �Bm� n be de�ned as follows�
expand�pow�B� � � �Bm� � �� Id� and
expand�pow�B� � � �Bm� n �� B��expand�pow�B� � � �BmB�� n� ��
This is also used for terms� expand�pow�B� n�x �� expand�pow�B� n�x�

If we say a variable occurs in pow�B� n� then we mean the occurrences in
expand�pow�B� n�

A strati�ed context uni�cation problem �SCUP is a strati�ed system of con�
text equations � � where equations are denoted as s

�
� t plus a set of disequations

of the form X �� Id� A substitution � that maps �rst order variables to ground
terms and context variables to ground contexts is a uni�er �or a solution of
the SCUP � i� after applying � and expand� the left and right hand sides of
equations are syntactically equal� and for �X �� Id � � � ��X �� Id�

The algorithm SCUA has an initial input �I� Let DI be the size of �I� let EI

be the upper bound on the exponent of periodicity given by the bound in �SSS�
�
for �I � let DA �� maxf�� ar�fg� where f are the function symbols occurring in
the initial input� and let ��CV  be the number of context variables in �I �

The main technical advantages of SCUA over the algorithms in �SS��b� is
the use of sharing by �attening equations� and the compressed representation of
iterated contexts by power expressions� This forces to adapt the algorithm and
to use new rules that operate on the new syntax�

��� Flattening

Initially� and after a replacement of context variables� a �attening may be re�
quired�

De�nition ���� Rule �Flatten�

�



�
fs

�
� tg � �

fs
�
� x� x

�
� tg � �

if neither s nor t is a variable�

�
ff�s�� � � � � sn

�
� tg � �

ff�x�� � � � � xn
�
� t� x�

�
� s�� � � �xn

�
� sng � �

if some si is not a variable�

�
fX�s

�
� tg � �

fX�x
�
� t� x

�
� sg � �

if s is not a variable�

�
fpow�B� n�s

�
� tg � �

fpow�B� n�x
�
� t� x

�
� sg � �

if s is not a variable�

Here the introduced variables are alway fresh ones�

If the �attening rules are not applicable� then � is called �attened� In this
case� only terms of the form x j f�x�� � � � � xn j X�x j pow�B� n�x where x� xi
are variables� are permitted�

De�nition ���� Rule �Normalizing Power Expressions�
A power expression pow�B� n�x is replaced by pow�C� � � �Ck� n �m�x � if
B � C� � � �CkC� � � �Ck � � �C� � � �Ck� �z �

m times

In the following we assume that SCUPs are �attened and that power expres�
sions are normalized�

��� Decomposition Rules

De�nition ���� �decomposition rules

�� �variable replacement��
fx

�
� yg � �

� �y�x�
�

� �decomposition�
fx

�
� f�x�� � � � � xn� x

�
� f�y�� � � � � yng � �

fx
�
� f�x�� � � � � xn� x�

�
� y�� � � � � xn

�
� yng � �

�� �clash�
fx

�
� f�x�� � � � � xn� x

�
� g�y�� � � � � ymg � �

Fail
� if f �� g�

�� �occurs	check� Fail� if there is a chain of equations x�
�
� t�� � � � � xn

�
� tn� and

xi�� mod� n occurs in ti� and at least one ti has a function symbol as head�

�� �remove	fo�
fx

�
� xg � �

�
�

�� Remove disequations X �� Id� if X does not occur in the rest of � �

��
fx

�
� tg � �

�
if x does not occur in t nor � �

�� �Remove	cv� For a context variable X� if �X �� Id �� � � then select one of
the following possibilities�
�a� Add the disequation X �� Id�
�b� Replace X by Id everywhere in � �

For every equation system � � the decomposition rules are performed with
high priority� If no decomposition rule is applicable� then we say � is decomposed�
If for every context variable in � � there is a disequation X �� Id� then we say it
is disequation	complete�

	



��� SO�cycles and SO�clusters

De�nition ���� A set of equations s�
�
� t�� � � � � sn

�
� tn is called an SO�cycle�

if the following holds� si is of the form xi �or Xi�yi�� and xi �or Xi� occurs in
ti�� mod� n� but not below a context variable� and at least one such occurrence is
not at the top� and there is no context variable that occurs twice in the SO	cycle�
The length of an SO	cycle is the number of context variables at the top positions�
An SO	cycle is called ambiguous� i� one of the following holds�

� There is an i� such that si is a �rst order variable� and has more than one
occurrence in ti�� mod� n�

� For some i� the term si is a �rst order variable� and the sequence of equations
to the next context variable is si

�
� ti� � � � � sj

�
� tj� tj contains the context

variable X� and the sequence can be replaced by a di�erent subsequence start	
ing with si

�
� s�i� ending with s�k

�
� t�k� the only term in the new subsequence

that contains a context variable is t�k� and this context variable is X� Let the
term �si result from instantiating the variables using si

�
� ti� � � � � sj

�
� tj� and

�s�i resulting from instantiating the variables using si
�
� t�i� � � � � s

�
k

�
� t�k� and

let the positions of the X in the terms �si and �s�i be di�erent�

The SO	cycle that results from such a replacement of one subsequence by athe
other is called an ambiguous variant�

If the SO	cycle is not ambiguous� then it is called path�unique� The depth
of an SO	cycle is the sum of the depths of Xi �or xi� in ti�� mod� n� The amb�
depth of an ambiguous SO	cycle is the maximum of the two smallest depths of
two ambiguous variants of the SO	cycle�

Given the initial input �I � let DZ be the maximum of the depth of all SO�
cycles that remains a maximum for all transformations�

De�nition ���� Let � be an SCUP� Let 	 be the equivalence relation on V
generated by X� 	 X�� X� 	 x�� or x� 	 y� if there is an equation X��z�

�
�

X��z�� X��z�
�
� x�� or x�

�
� y�� respectively in � �

Let 
 be the relation on V generated by x 
 y if x� y have empty SO	pre�x
and there is an equation x

�
� t � � � t �� x and x occurs in t� I�e� t � f�� � � � y� � � ��

or t is of the form pow�B� n�z� Let �
	 be the quasi	ordering generated by the

transitive and re�exive closure of 
 � 	� If there are variables x� y with x 
 y
and y �

	 x� then we say �
	 �or � � has cycles� otherwise� it is called cycle�free�

If �
	 is cycle	free� then an equivalence class K of 	 is called an SO�cluster�

An SO	cluster K is called a top�SO�cluster� i� the variables in K have empty
SO	pre�x and are maximal w�r�t� �

	 � The set of equations in � � where the
variables from an SO	cluster K occur at top	level� is denoted as EQ�K� Let
KC be the subset of context variables in K� A top	SO	cluster K is called �at� i�
it is also �

	 	minimal�

Note that a non��at top�SO�cluster may consist of �rst order variables only�
In a decomposed SCUP� a top�SO�cluster always contains a context variable�

�



��� Ambiguous SO�cycles

De�nition ��	� �Eliminate ambiguous SO	cycles�
If there is an ambiguous SO	cycle with involved SO	variables X�� � � � � Xn� and
amb	depth d� then select some k � f�� � � � � ng and a skeleton context B of depth
� �� ���CV  � � � d and replace Xk by B�

This rule allows to get rid of all ambiguous SO�cycles and also eliminates a
context variable from � after every application�

��� Expanding Small Powers

If in an expression pow�B� n� the number n does not exceed � � DZ � then we
will expand it with high priority�

De�nition ��
� �expand	small	powers�
fx

�
� pow�B� n�yg � �

fx
�
� tg � �

if n � � �DZ � where t � expand�pow�B� n�y

��	 Path�unique SO�cycles

By decomposition and expansion and By decomposition and expansion of small
powers� we can assume� we can assume that a path�unique SO�cycle has no terms
of the form pow�B� n�x and no equations of the form x

�
� y�

A path�unique SO�cycle is usually written as s�
�
� C��t��� � � � � sn

�
� Cn�tn�

where the top�variable of si occurs in ti�� mod� n� A plateau P is every sequence
of equations sj

�
� Cj�tj�� � � � � sj�

�
� Cj��tj��� such that for i � j� j � �� � � � � j� �

�� mod� n� Ci � Id� but Cj� �� Id� and Cj�� mod� n �� Id�
The intuition of this rule is that an instantiation along the cycle is guessed�

where the number of rounds is the exponent of periodicity� One distinction is
that either some context variable is exhausted� or there is some deviation of a
main path from the cycle�

De�nition ���� Given a path	unique SO	cycle with a minimal number of in	
volved context variables� s�

�
� C��t��� � � � � sn

�
� Cn�tn�� First select a plateau in

the SO	cycle � For simplicity we assume that the SO	cycle is then renumbered
such that it starts with index �� Now we can use a di�erent method of indexing�
Let the SO	cycle be s�

�
� t�� � � �sj�

�
� Cj� �tj��� � � � sjn

�
� Cjn �tjn�� where Cji is the

last context in the ith plateau� Denote the top context variables in plateau i as
Xi�j�

Select an integer DZ � e � EI � DZ � and then select one of the following
possibilities�

�� Let B be a skeleton context with jBj � DZ and instantiate some Xi�j with
B�

� � for i � �� Replace Xi�h by pow�CjiCji�� � � �Cji�n mod� n
� e� i� ��X�

i�h

�



� for i � �� For every h replace X��h either by pow�Cj�Cj� � � �Cjn � e�X
�
��h

or by pow�Cj�Cj� � � �Cjn � e�Id� where the last case should be selected at
least once�

�� Fail� if the SO	cycle has length ��
� for i � �� Replace Xi�h by pow�CjiCji�� � � �Cji�n mod� n

� e� i� ��X�
i�h

� for i � �� Let Cj� � f�xj���� � � � � C
�
j���z�
k�

� � � � � xj��m� For ev	

ery h select an index � � kh � m and replace X��h �
pow�Cj�Cj� � � �Cjn � ef�yh��� � � � � X

�
��h��z�
kh

� � � � � yh�m� There should be at

least one kh that is di�erent from k�� After the replacement� a �attening
is performed�

We assume that the new introduced variables are fresh ones�

��
 Flat SO�Clusters

The assumption is that � is �attened� decomposed� disequation�complete and
there are no SO�cycles� Note that every �at top�SO�cluster contains a context
variable�

De�nition ���� Let there be a �at top SO	cluster K with KC � fX�� � � � � Xhg
of minimal size in � with set of equations EQ�K� Fail� if h � � or the maximal
arity of function symbols in � is � ��
Let F be a new function symbol with � � ar�F  � jKj�
For every context variable Xi � K� select an index � � ki � ar�F  and replace
Xi�� by F �xi��� � � � � X

�
i��� �z �
ki

� � � � � xi�ar�F �� where xi�j� X
�
i are new� There should be

di�erent indices ki�
Then decompose the equations that result from instantiating and �attening

the equations in EQ�K�

Note that the symbol F disappears after decomposition� and that the only
possible exit from the iterated application is to remove a context variable�

��� Non�Flat SO�clusters

This subsection treats the harder case of non��at SO�clusters�
The assumption is that � is �attened� decomposed� disequation�complete� and
there are no �at top�SO�clusters nor SO�cycles�

De�nition ���� Let BDEC�B�� B� be the following algorithm applied to two
skeleton contexts B�� B�� It signals either Fail� or returns a set of equations
between variables�
BDEC�B�� B� returns Fail if jB�j �� jB�j� BDEC�Id� Id � ��
BDEC�f�x�� � � � � xj���� �� xj���� � � � � xnB

�
�� g�y�� � � � � yj���� �� yj���� � � � � ymB

�
�

results in� if j� �� j� or f �� g� then Fail� else fxi
�
� yi j i �� j�g�BDEC�B�

�� B
�
��






Note that the output ofBDEC is always a set of equations between variables�
and thus the addition of the equations always makes the SCUP smaller after
application of decomposition rules�

De�nition ����� �power	decomp�� This rule is only used after an application
of the rule �non	�at	SO	Cluster�� and only for the equations in EQ�K of the
non	�at top	SO	cluster after instantiations�

There are four cases for a decomposition of terms starting with a power
expression� We assume that after each rule� a �attening is performed if necessary�

��
fx

�
� pow�B�� n��x�� x

�
� pow�B�� n��x�g � �

fx
�
� pow�B�� n��x�� x

�
� pow�B�� n��x�g �BDEC�C�� C� � �

If ni � � � DZ � i � �� � and B� �� B�� where Ci � expand�pow�Bi� � �
DZ� i � �� ��

�
fx

�
� pow�B�� n��z� x

�
� f�x�� � � � � xng � �

fxi
�
� yi j i �� kg � fpow�B�

�� n� � ��z
�
� xkg � fx

�
� f�x�� � � � � xng � �

where B� �� shift�B� � �� and f�y�� � � � � yk��� �� yk��� � � � � yn is the �rst
atomic context of B��

��
fx

�
� pow�B�� n��z� x

�
� f�x�� � � � � xng � �

Fail
if f �� head�pow�B�� n��z�

��
fx

�
� pow�B� n��x�� x

�
� pow�B� n��x�g � �

fx
�
� pow�B� n��x�� x�

�
� pow�B� n� � n��x�g � �

if n� � n��

In order to give some intuition of the cases in the rule for non��at SO�cluster�
the distinction for the context variables fX�� � � � � Xhg in an SO�cluster is made
on the basis of the relative position and depth of the holes of the instances of Xi�
In the case where every non�variable equation in EQ�K has a power expression
at the top� there are the cases i that some ��Xi has a small main depth� ii that
some ��Xi is a pre�x of all others and also covered by the power expressions�
or iii that the common pre�x of the ��Xi is long� such that we can decompose�
or iv that the common pre�x is long enough� but the bases are already equal�
but there is a forking of the instances of Xi�

De�nition ����� Rule �non	�at	SO	Cluster�
This rule is only applicable if there are no SO	cycles� no �at top	SO	clusters�
but a non	�at top	SO	cluster�
Let K � fX�� � � � � Xhg be the context variables in a non	�at top	SO	cluster�
where h is minimal�
Then select one of the following two possibilities�

�� If there is an equation s
�
� f�t�� � � � � tn � EQ�K� Then�

� If there is a further equation x
�
� t � EQ�K� and t is not of the form

Y �y and head�t � g �� f � then Fail�
� For every i � �� � � � � h� select an index ki and replace every Xi � K by
f�xi��� � � � � X

�
i��� �z �
ki

� � � � � xi�n where xi�j� X�
i are new variables�

�



� If there is no equation s
�
� f�t�� � � � � tn � EQ�K� but there are at least

two equations x�
�
� pow�B�� n��y�� x�

�
� pow�B�� n��y� in EQ�K for

di�erent B�� B�� Let �n be the minimum of the numbers ni for all equations
x
�
� pow�Bi� ni�xi in EQ�K� Note that we can assume that �n � � �DZ �

Then select one of the following�
� Select some m with � � m � � � DZ and replace every Xi by
pow�B��m�X�

i or by pow�B��m�Id where the last case should be se	
lected at least once�

� Select a number � � n � � � DZ � �� Let C� � shift�B�� n� f ��
head�C� and the hole of C� in direction k�� Fail if ar�f � �� For
every � � i � h select an index � � ki � ar�f� Replace every Xi

by pow�B�� n�f�xi��� � � � � X
�
i��z�

ki

� � � � � xi�ar�f�� where for at least one in	

dex j� k� �� kj � For a �xed equation x�
�
� pow�B�� n��y� � EQ�K

and every other equation x�
�
� pow�B�� n��y� � EQ�K perform

BDEC�pow�B�� n� pow�B�� n and add the resulting equations to � �
� For a �xed equation x�

�
� pow�B�� n��y� � EQ�K and every other

equation x�
�
� pow�B�� n��y� � EQ�K perform BDEC�pow�B�� � �

DZ� pow�B�� � �DZ and add the resulting equations to � �
�� If there is no equation s

�
� f�t�� � � � � tn � EQ�K� and for every pair of

equations x�
�
� pow�B�� n��y�� x�

�
� pow�B�� n��y� it is B� � B�� Let

B �� B�

Let �n be the minimum of the numbers ni for all equations x
�
� pow�B� ni�xi

in EQ�K� Note that we can assume that �n � � �DZ � Then select a number
� � n � �n and select one of the following�
� Replace every Xi by pow�B� n�X�

i or by pow�B� n�Id� where the last
case should be selected at least once�

� Replace every Xi by pow�B� �n�X�
i�

� Fail if n � �n� Let C� �� shift�B� � n� head�C� � f and the
hole of C� in direction k�� Fail if ar�f � �� For every � �
i � h select an index � � ki � ar�f� Replace every Xi by
pow�B� n�f�xi��� � � � � X

�
i��z�

ki

� � � � � xi�ar�f�� where at least one index ki

must be di�erent from k��

After every replacement� �atten� decompose and power	decompose the resulting
equations�

Note that the number DZ is used as a known upper bound for the length of
bases after normalization� If the n in the power expressions pow�B� n is larger
than �DZ � then we are sure that there are at least � periods�

��� How the rules work together� SCUA

The algorithm SCUA has as input a strati�ed context uni�cation problem
� consisting only of equations between terms� The following steps are performed�

��



First� the system is �attened in order to exploit sharing�
Then the following rules are applied until the system is empty� or a Fail
is signalled� where between rule applications� decomposition rules� power�
decomposition rules� �attening and normalization of power expressions is done
with high priority�

�� If there is an ambiguous SO�cycle� then apply the instantiation in ����

�� If there is no ambiguous SO�cycle� but a path�unique SO�cycle� then apply
the rule in ��� to � �

�� If there are no SO�cycles� and a �at top�SO�cluster� then apply the rule ���
for �at top�SO clusters to a minimal one�

�� If there are no SO�cycles� no �at top�SO�clusters� then apply the rule ����
to a non��at top�SO�cluster�

��� Upper Bounds on the Depth of Instances of Ambiguous

SO�Cycles

Theorem ����� Let � be a strati�ed context uni�cation problem� Let � � be
reached by transformations from � � such that � � is solvable by �� Let there
be an ambiguous SO	cycle that can be represented as the un�attened se	
quence of equations� X���

�
� C��X����� � � � � Xm����

�
� Cm���Xm���� Xm��

�
�

Cm�X���� X����� Let d be the sum of mdt�Ci for i � �� � � � �m plus the maximum
of the depths of the two holes in C���� ���

Then there is some context variable Xi� such that ��Xi has main depth less
than �� �m � � � d�

The proof is given in the appendix�

� Correctness and Complexity of SCUA

Given the methods in �SS��b�� it is a straightforward to adapt the soundness
and completeness proofs though it is tedious� The following holds for SCUA� the
strati�edness property is not destroyed by the rules� Furthermore� the number
of occurrences of context variables is not increased�

A fact concerning periods in words is used for the completeness of decom�
posing powers and also for the completeness of solving no��at top�SO�clusters�

Lemma ���� Let wi� w
�
i be words over an alphabet� If wn

�w
�
� � wm

� w
�
�� and

n�m � �� and w�i is a pre�x of wi� then wi � wni
� � i � �� � for some ni and

w��

Lemma ���� Let ��pow�B�� n��x� � ��pow�B�� n��x� and ni � � � jBj j
for i� j � �� �� Then ��pow�B�� n� is a pre�x of ��pow�B�� n� or vice versa�

��



Proof� Using similar methods as in �SS��b� it is easy to see that if the paths
deviate at a position of depth � max��jB�j� �jB�j� then there is an occur�
check failure� Then the fact on overlapping periods shows that the two power
expressions are both powers of the same skeleton context� hence they have the
same main path� and cannot deviate at larger depths� ut

Another easy to establish fact is that a solvable context uni�cation prob�
lem has a solution� where the maximal arity of function symbols is DA ��
max��� ar�f� where f is a symbol in �I�

Now we estimate the complexity of the algorithm�

Lemma ���� SCUA can be performed in time polynomial in the size and the
maximal depths of SO	cycles�

Proof� We only argue on the complexity of the critical operations� and assume
that the arity of function symbols is O�n� This covers the case of an in�nite
signature�

First we estimate the number of applications and the size increase by the
essential rules�

� The maximal number of applications of eliminating ambiguous SO�cycles is
�CV �

� The maximal number of applications of eliminating SO�cycles is �CV �� The
length of an SO�cycle is at most �CV � and in every application� either the
SO�cycle gets shorter� or a context variable is removed�

Now we explore the space increase�
The decomposition rules do not increase space usage� The same holds for the
rules for top�SO�clusters� if the subsequent high priority rule applications are
taken into account� Every SO�cycle�rule application may add power expressions�
but at most �CV � Every power expression may generate � �DZ occurrences of
function symbols� Since the number of applications is O�n�� the size� and hence
the number of function symbols is at most DI ��CV � � � �DA �DZ � which is
of order O�D�

I �DZ�
The number of introduced power expressions is polynomial in DI � since only

solving cycles can introduce new ones� The rules for �at clusters may copy
some power expressions� however these are removed again after decomposition�
power�decomposition� and normalization� For simplicity� the resource require�
ment for expansions of power expressions are counted as contribution of the
cycle�elimination rules�
Third we estimate the number of applications of the SO�cluster rules�

� The maximal number of applications of eliminating a �at top�SO�cluster is
�CV �� Every application strictly reduces the number of context variables
in a �at top�SO�cluster� or removes a context variable�

� The maximal number of applications of eliminating a non��at top�SO�cluster
is harder to establish� The tuple �number of context variables� number of
context variables in the top�SO�cluster� number of variables not in any top�
SO�cluster� number of occurrences of function symbols on top level strictly

��



decreases lexicographically after every application of the rule for eliminating
non��at top�SO�clusters �including subsequent high priority rules� The last
parameter is of order O�D�

I �DZ� the same for the number of variables� The
worst case corresponds to multiplication� i�e� the number of applications is
smaller than p�DI  �D

�
Z � where p is some polynomial�

It remains to estimate the contribution of every single rule application to�
gether with the following �attening� decomposition etc� It is easy to see that
�attening� decomposition� and normalization require time polynomial in the size�

� Instantiating an ambiguous SO�cycle� Is of order p�DI �DZ � where p is some
polynomial�

� Solving path�unique SO�cycles is of order p�DI �DZ � where p is some poly�
nomial�

� SO�cluster elimination� Eliminating a �at SO�cluster requires comparably
less resources�
If it is a non��at SO�cluster� then the overall usage of time is p�DI  �D

�
Z �

Corollary ���� The time required to perform a non	deterministic run of SCUA
is polynomial in the initial size DI and the maximal depth DZ of an SO	cycle�

� Future Work

The complexity of strati�ed context uni�cation remains an issue� Among oth�
ers� the paper shows that an upper bound on the depth of SO�cycles implies a
complexity estimate of strati�ed context uni�cation� Proving better complexity
estimations of strati�ed context uni�cation or proving an upper bound for the
depth of SO�cycles is left for future work�

The decision algorithm for bounded second order uni�cation �SS��a� is very
similar to the decision algorithm for strati�ed context uni�cation� The methods
developed in this paper may be used in an estimation of its complexity�

Perhaps the tools in this paper help in computing an upper bound for the
complexity of D�uni�cation �SS�
�� however� this would require a careful inspec�
tion of the algorithm since context uni�cation is not used as a module�
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Appendix

A Proof of Theorem ����

The main purpose of this section is to show that in an ambiguous SO�cycle there
exists at least one context variable that has an instance of a main depth O�n�d�
where n is the number of context variables in the cycle and d is the amb�depth
of the SO�cycle�

In this section we only compute in instantiated terms and contexts� Hence
in this section the variables X�Y denote contexts� so we can speak of their main
depth and their size�

An SO�cycle is a chain of equalities Xi�si � ri� i���� � � �n� such that Xi is
contained in ri�� mod� n� and such that at least one occurrence in ri is not at the
top� The length of the SO�cycle is n� i�e�� the number equations� The depth of
the SO�cycle is the maximal sum of the depths of Xi in ri�� mod� n�

In the following proof� the argument term t in X�t does not really matter�
so we use the notation X 	 Y as abbreviation of an equality X�s � Y �t�
Analogously� we use X 	 C�Y � for X�s 	 C�Y �t�� and X 	 C�Y� Z� for X�s 	
C�Y �t��� Y �t��� where C is a multicontext�

Lemma A��� Let the following chain of equations be given� X� 	 � � � 	 Xn 	
C�X�� � � � � X�� and let C have at least n � � holes and let d be the maximum of
the depths of the holes in C�

Then for some i � mdt�Xi � d�

Proof� We can assume that mdt�Xi � d for all i�
The proof is by induction on n� If n � �� then the lemma holds� Otherwise

consider the cases for Xn�

� Xn has all the holes of C in its side area� then the derived chain is X� 	
� � � 	 Xn�� 	 C��X�� � � � � X��� where the depths of the holes are the same as
in C� and we can use induction on n�

� Wlog� Xn � C�X�
n� X��� � � � � X���� Then the obtained chain is X� 	 � � � 	

Xn�� 	 C�X�
n� X�� � � � � X��� and we can use induction�

ut

Lemma A��� Let the following equations be given�

X� 	 X� 	 � � � 	 Xn 	 C�X��n�� X��n���� � � � � X�����

where � � ����n�� ����n� is monotone� Assume the depth of the holes correspond	
ing to X��j�� j � �� � � � � n in C is at most �n � j � h � d� Then for some i�
mdt�Xi � �n � i � h � d

�	



Proof� We can assume that the main depths are larger than given in the lemma�
If n � �� then the lemma holds� since there are two occurrences of X� and the
depth is at most h � d�

Now let n � �� We can assume that mdt�Xi � �n� i � h � d�
Consider the possibilities for Xn�

� If ��n � ��n�� � n� then there are two occurrences ofXn andmdt�Xn �
h � d�

� If ��n � n � ��n � �� then only Xn � C�X�
n� X��n����� � � � � X������ is

possible� and the new equation chain is

X� 	 X� 	 � � � 	 Xn�� 	 C�X�
n� X��n���� � � � � X�����

We can ignore X�
n� since ��n � � � n � � and then apply induction on n

using n� �� n� � and h� �� h� ��
� If ��n � n� there are two possibilities for Xn�

 Xn has all the holes of C in its side�area� then� X� 	 X� 	 � � � 	 Xn�� 	
C��X��n�� X��n���� � � � � X������ and the holes in C� are at the same depth
as in C� We can use induction on n� using n� �� n� �� h� �� h� ���j ��
��j � ��

 Xn � C�� � � � X�
n��z�
j

� � � ��� Then the new chain is� X� 	 X� 	 � � � 	 Xn�� 	

C��X��n�� � � � � X
�
n��z�
j

� � � � � � � � � X�����

The chain is shortened if the jth hole is ignored� and we can use induction
on n using n� �� n�� and h� �� h��� and ���i � ��i or ���i � ��i���
Then d�X���i� � d�X��i�i��� � n � i � h � n� � i � h�� The result is
mdt�Xi � �n� � i � h� � d � �n� i� h � d�

ut

Lemma A��� Let m� k� n�N be numbers with m�n � �� n� � � k� N � m� n�
and let the following equations be given�

X� 	 � � � 	 Xn 	 D�X��k�� � � � � X����� Yh�
Y� 	 � � � 	 Ym 	 C�Y�� X��

where � � ����k�� ����n� is monotone� the depths of the holes of X��j� in D
is � �k � j � � � d� the depth of Yh is � k � d� and the depth of Y�� X� in C is
� d�

Then one of the following holds�

� for some Xi� mdt�Xi � �N � i� � � d or
� for some Yi with i � h � mdt�Yi � ��N � k � � � d or
� for some Yi with i � h � mdt�Yi � ��N � k � d�

Proof� If n� � � k� then we can use Lemma A��� which shows that for some i�
mdt�Xi � n � i � �� Hence in the following we can assume that n � k�
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The proof is by induction on the following parameters� the number m� then
m� h� then n� k�

Base case� m � �� Then Y� 	 C�Y�� X�� implies that Y� has X� in its side area at
least N �k times� where the depths are� d� � � � � �N �k�d� Using an appropriate
�� Lemma A�� implies that some mdt�Xi � �N � i� � � d�

Induction�
case h � m� We distinguish the cases for Ym in the equation Ym 	 C�Y�� X���
There are three cases�

� Ym has the holes of C in its side area� i�e� X�� Y� are in the side area� Then

X� 	 � � � 	 Xn 	 D�X��k�� � � � � X����� Yh�
Y� 	 � � � 	 Ym�� 	 C��Y�� X��

where the depths in C� are the same� We can use induction on m�

� Ym � C�Y �
m� X���� Then

X� 	 � � � 	 Xn 	 D�X��k�� � � � � X����� Yh�
Y �
m 	 Y� 	 � � � 	 Ym�� 	 C�Y �

m� X��

and by induction on the distance of m�h� we get the upper bounds for md�
We have to check only Ym� If mdt�Y

�
m � ��N � k � d� then mdt�Ym �

��N � k � � � d�

� Ym � C�Y��� Y
�
m�� Then

Y �
m 	 X� 	 � � � 	 Xn 	 D�X��k�� � � � � X����� Yh�
Y� 	 � � � 	 Ym�� 	 C�Y�� Y �

m�

We use induction on m� We have to check only Ym� If mdt�Y
�
m � N � then

mdt�Ym � ��N � k � � � d� since n � k�

case h � m�

The equations are of the form�

X� 	 � � � 	 Xn 	 D�X��k�� � � � � X����� Ym�
Y� 	 � � � 	 Ym 	 C�Y�� X��

A case analysis for Ym using the equations Ym 	 C�Y�� X�� gives three cases

� Ym has the holes of C in its side area� i�e�� X�� Y� are in the side area� Then

X� 	 � � � 	 Xn 	 D�X��k�� � � � � X����� C
��Y�� X���

Y� 	 � � � 	 Ym�� 	 C��Y�� X��

We use induction on m� Note that N � � N � �� k� � k � �� hence N � k �
N � � k��

��



� Ym � C�Y �
m� X���� Then

X� 	 � � � 	 Xn 	 D�X��k�� � � � � X����� C�Y
�
m� X���

Y �
m 	 Y� 	 � � � 	 Ym�� 	 C�Y �

m� X��

We use induction on m�h� It is k� � k��� N � � N�m� � m� The conditions
for Xi is the same� We have to check that from the induction hypothesis we
can prove the estimations for Yi� The estimation ismdt�Yi � ��N�k����d
and mdt�Y �

m � ��N � k� � � � d� This implies mdt�Yi � ��N � k � d for
i � m and mdt�Y �

m � ��N � k � d� hence mdt�Ym � ��N � k � � � d�
� Ym � C�Y��� Y �

m�� Then

Y �
m 	 X� 	 � � � 	 Xn 	 D�X��k�� � � � � X����� C�Y�� Y

�
m��

Y� 	 � � � 	 Ym�� 	 C�Y�� Y
�
m�

We use induction on m� If mdt�Y �
m � N � then also mdt�Ym � N � k� It is

k� � k � �� which implies the estimation of Yi as given in the lemma�
ut

Lemma A��� Let

X� 	 � � � 	 Xj 	 � � � 	 Xn 	 C�Y�� X��
Y� 	 � � � 	 Ym 	 Xj

and the depth of the holes in C is less than d� Let N � n�m�
Then there is some Xi such that mdt�Xi � ��N �d for j � i or mdt�Xi �

��N � � � d for i � j or some Yi with mdt�Yi � � �N � d

Proof� If j � n� then there are three cases� In every case we can use lemma A��
and get a bound of �Nd�

In the case j �� n� we use induction on n�m and then on n� j�
Case analysis for Xn�

� Xn may have the holes of C in its side area� then we can use induction on
n�

� Xn � C�X �
n� X���� then the new chains of equations are X� 	 � � � 	 Xj 	

� � � 	 Xn�� 	 C�X �
n� X�� and X�

n 	 Y� 	 � � � Ym 	 Xj � Induction on n � j
shows the claim�

� Xn � C�Y��� X
�
n�� then the new chains of equations are X �

n 	 X� 	 � � � 	
Xj 	 � � � 	 Xn�� 	 C�Y��� X

�
n� and Y� 	 � � �Ym 	 Xj � We can use induc�

tion on n� j�
ut

Lemma A��� Let X� 	 � � � 	 Xj 	 � � � 	 Xn 	 C�Xj� X�� and the depth of the
holes in C is less than d�

Then there is some Xi such that mdt�Xi � ��N �d for j � i or mdt�Xi �
��N � � � d for i � j�

Proof� Follows easily by considering the possibilities for Xn in the same way as
already demonstrated using induction and Lemma A�� ut

�




Proposition A�	� Let X� 	 � � � 	 Xn 	 C�X�� X��� and the depth of the holes
in C is less than d� Then there is some Xi of with mdt�Xi � �� � n� � � d

Proof� Follows from Lemma A�	 ut

Lemma A�
� Let an ambiguous SO	cycle X� 	 C��X�� 	 � � � 	 Xn 	
Cn�X�� X�� be given� let dj � mdt�Cj� j � �� � � � � n � �
 dn be the maximum
of the depths of Cn and d �

Pn

i�j di�

Let ei � d�
Pi

k�� dk� Then there is some Xi with mdt�Xi � ��n���ei�d

Proof� Using induction on the torque
Pn��

i�� i � di� If all di � � for all i � n� then
Proposition A�� shows the claim�

Let j be the �rst index such that Cj is not trivial� We can assume that
j � n� Consider the possibilities for Xj for j � � If Xj contains the hole of Cj in
the side area� then Xj�� 	 C�

j�Xj��� where mdt�C
�
j � mdt�Cj and induction

shows the claim�
If Xj � Cj�X

�
j �� then the part of the chain is modi�ed to� � � � � Xj�� 	

Cj��Cj�X
�
j �� X

�
j 	 Xj��� � � �� Since in the torque �j � � � dj�� � j � dj is re�

placed by �j � � � �dj�� � dj� we can use induction�
In the cases where j � �� the torque is also decreased� however� Cn is in�

creased� ut

Theorem A��� In an ambiguous SO	cycle X� 	 C��X��� X� 	
C��X��� � � � � � �Xn 	 Cn�X�� X��� let d be the sum of the depths of Xi�� in Ci

for i � �� � � � � n� � plus the maximal depths of the holes in Cn�
Then there is some Xi of main depth less than �� � n � � � d

Proof� This is a special case of Lemma A��� ut

Example A��� Consider the equation chain X 	 Y 	 f�X�X� t� where we omit
the arguments of context variables� Then either Y � f�X�X� Y �� hence X 	
f�X�X� Y �� X � Id� If Y � f�Y �� X� t� then Y � 	 X 	 f�Y �� X� t� and
X � f�Y �� f�Y �� X �� t� t� Then Y � 	 f�Y �� f�Y �� X�� t� t� hence Y � � Id� This
gives a bound of � in contrast to � as given by Theorem A�
�

��


