
A Partial Rehabilitation of Side�E�ecting I�O�

Non�Determinism in Non�Strict Functional Languages

Manfred Schmidt�Schau�
Fachbereich Informatik

Johann Wolfgang Goethe�Universit�at
Postfach �� �� ��� D��		
� Frankfurt� Germany

Tel� 
��� �� ��� ��
��
E�mail� schauss�ki�informatik�uni�frankfurt�de

June ��� ����

Abstract

We investigate the extension of non�strict functional languages like
Haskell or Clean by a non�deterministic interaction with the external
world� Using call�by�need and a natural semantics which describes the
reduction of graphs� this can be done such that the Church�Rosser Theo�
rems � and � hold� Our operational semantics is a base to recognise which
particular equivalencies are preserved by program transformations�

The amount of sequentialisation may be smaller than that enforced by
other approaches� and the programming style is closer to the common one
of side�e�ecting programming� However� not all program transformations
used by an optimising compiler for Haskell remain correct in all contexts�

Our result can be interpreted as a possibility to extend current I�O�
mechanism by non�deterministic memoryless function calls� For example�
this permits a call to a random number generator� Adding memoryless
function calls to monadic I�O is possible and has a potential to extend the
Haskell I�O�system�

� Introduction

A useful implementation of I�O is an essential part of a lazy functional lan�
guage� since every application written in a functional language must perform
some I�O�s� There are very sophisticated solutions to this problem which re�
tain referential transparency� for example monadic I�O �Wad��� PJW��	� as
supported by the current release of Haskell 
�� �HAB���	� continuation based
I�O� synchronised stream I�O �see �Gor�
� Ach��� JS�
	�� or the use of unique
typing �SBvEP��a� PvE��	�
The programming style in a lazy functional language is heavily in�uenced by the
supported I�O�mechanism� Modifying the I�O�behaviour or debugging some
lazy functional program that uses I�O is a black art� It is interesting that novices
in lazy functional programming in general expect that there is some direct �side�
e�ecting� I�O using a function call� As mentioned in �Gor�
	� this side�e�ecting






I�O is the most widely�used I�O�mechanism in eager functional languages� and
it was also used in an industrial implementation of a lazy functional language
�HNMH��	�
In this paper we investigate side�e�ecting I�O using call�by�need� In Glasgow
Haskell� this method is permitted by marking it as �unsafe I�O�� There are
a several papers that denounce this method as non�referentially transparent
�HO��� HO��	� and hence discard it as a serious method for implementing I�O in
non�strict functional languages� The implementation of Clean �NSvP�
� PvE��	
uses the method of direct calls via the operating system with a static analysis
method to ensure safe use of this unsafe I�Os� The underlying method is a
unique type system� The direct call method was also used in the industrial lazy
functional programming language Natural EL �HNMH��� SS�
	 however� only
with minor precaution�
This paper investigates the foundations for non�deterministic lazy functional
languages� such that implementors of lazy functional languages� who are al�
ready using such non�deterministic calls� or who want to use them in the future�
shall have a criterion for recognising the correct program transformations thus
avoiding pitfalls and incorrect program transformations for compiler optimisa�
tions� There are several papers discussing a modelling of sharing in functional
languages and ��calculus �AFM���� Lau��� PS��� Yos��� GH��	� A di�erence
to these works is that our approach is based on a calculus of supercombina�
tors� We model sharing using an environment like �Lau��	� and reduction as
in the G�machine �PJ��� Aug�
� Joh�
	� Our �rst main result concerns non�
deterministic I�O without memory� like a call to a random number generator� or
a simple interaction with a user using a pop�up window to ask for some input�
The basic notions that we use in this paper are�


� Graph expressions� i�e�� expressions that also re�ect sharing properties

�� A non�deterministic choice primitive natchoice that yields some natural
number on reduction�

�� Sets of possible graph expressions that may result from the reduction of
some redex�

Based on this notions� the �rst result in ��� is that reduction of graphic ex�
pressions is con�uent for sets of expressions� The consequences are that we can
say exactly� which program transformations are valid or not� and that such a
program can be parallelised� The valid program transformation can roughly be
described as the subset of the usual ones which do not disturb the sharing struc�
ture� Going a bit further� we investigate the explicit I�O�behaviour considering
the multi�set of question�answer pairs that characterise a certain reduction� It
will turn out� that using memoryless non�deterministic I�O� we have that for
every reduction sequence there is also one that uses normal order reduction� has
the same result� and uses a submultiset of the question�answer pairs� This shows
that memoryless non�deterministic interaction of a lazy functional program is
safe�
The next step is to consider I�O with external memory� Since arbitrary use
of I�O in connection with external memory is considered as unsafe� we de�ne

�



the notion of I�O�correct functional programs� which roughly means that calls
that modify the world� are in the right sequence� For example� monadic pro�
gramming style yields I�O�correct programs� We can show that I�O�correctness
implies set�con�uence� This again permits concurrent execution and gives a cri�
terion for the validity of program transformations� The power of I�O�correct
programs is much more useful and �exible� if it is possible to have programming
primitives that sequentialise certain reductions� We consider two possibility�
seq and �� The seqcombinator �rst evaluates its �rst argument and then
evaluates the second� The � is restricted to �x the normal order evaluation
strategy as the only permitted one for certain redexes� The combination of
both permits to write �exible programs and also to reason about the possible
program transformations in a natural way�
As a simple introductory example� consider the well�known �counterexamples�
to referential transparency for non�deterministic I�O �HO��	� which shows that
there is a di�erence between call�by�name and call�by�need� Consider the two
supercombinators double and choice� with the de�ntion�

double x � x� x
choice x y � z
z may be x or y in a non�deterministic fashion�

Note that choice is not like McCarthy�s amb� which is in addition bottom�
avoiding� Then the usual argumentation is that the di�erent reductions of
tdouble�choice
�� have di�erent results�

� double�choice 
 �� � double 
 � �

� double � � 

�� double�choice 
 �� � �choice 
 �� � �choice 
 �� � 
 � 
 � �

� 
 � � � �
� � � 
 � �
� � � � � 


It is obvious� that the second reduction results in di�erent values� Our argumen�
tation is that the printed ��at� representation of expressions is not appropriate
for reduction in a non�deterministic lazy functional language� since this may du�
plicate non�deterministic calls� An important ingredient of a correct solution is
to preserve the sharing properties� The example above under these restrictions
now behaves as follows�

� double�choice 
 �� � double 
 � �

� double � � 

�� double�choice 
 �� � �let x � choice 
 �� in x� x�

� �let x � 
 in x� x� � 
 � 
 � �
� �let x � � in x� x� � � � � � 


Now the results are equivalent� In this paper we shall show that this is not an
accident� but that a rigorous treatment shows that this method of reduction
preserves equivalence of the possible outcomes� As an aside� current implemen�
tations of lazy functional languages always perform the reduction that preserves
sharing�
Instead of permitting choice as a primitive in the language� we assume that �un�
restricted� natural numbers are given as an algebraic data type� and that there is

�



a primitive function natchoice without arguments� which non�deterministically
delivers some natural number on every call� Then choice is implementable as

choice x y � if natchoice � 
 then x else y

The following table indicates the hierarchy of the languages that we will con�
sider�

available syntax non�deterministic syntax additions

FP� let�rec� x � � � � natchoice

caseT x of alts

algebraic datatypes� selectors
FP� interface functions
FP� seq� �
FP� storage interface functions
FPG full let�rec�

pattern match
list comprehensions

� Non�Deterministic Choices� The Language FP�

This section considers a functional core language extended by a non�
deterministic choice operator�
We use a functional core language FP�� The syntax for expressions E and
super�combinator de�nitions scdef is as follows�

�E� ��� �constant�j��E��E��j�caseA�E�of�alts��
j�let�defs�in�E�j�letrec�defs�in�E��

�defs� ��� ��var� � �E���

�alts� ��� ��constant�� �E���

�scdef� ��� �constant� �var�� � �E�

There are algebraic data types with constructors� Every algebraic data type
A has a �xed set of constructors� every constructor has a �xed arity� For
every algebraic data type A there is a case�constant caseA� There are selectors
for every argument position of every constructor� The selector selA�i�j is the
selector that extracts the jth component from an expression starting with the
constructor ci� which belongs to algebraic type A� We assume that integers are
already de�ned as an algebraic data type�
The usual restrictions and conventions apply� in a supercombinator de�nition�
every free variable in the expression is also an argument in cases� the discrimi�
nating constant is a constructor and furthermore� for an algebraic data type A�
the caseA�expressions have an alternative for every constructor of A� Applica�
tions can be written without brackets� where we assume that �a b c� is the same
as �a�b c��� A program consists of a set of supercombinator de�nitions and an
expression to be evaluated�
A data object is an expression that is built from constructors only� and all appli�
cations are saturated� i�e� every constructor of arity n is applied to n arguments�
There is one non�deterministic primitive supercombinator natchoice without






arguments that delivers some arbitrary natural number� when evaluated� The
language can be polymorphically typed �Mil��	 and we assume that all expres�
sions are well�typed� A term is in weak head normal form �WHNF�� if it is
of the form �f t� � � � tn�� and f is a constructor� or a supercombinator of arity
greater than n� A WHNF is a constructor WHNF �CWHNF�� if the constant
in front is a constructor� otherwise it is a partial application� A CWHNF is
saturated� if the term is �c t� � � � tn� where c is a constructor of arity n�
A remark on caseA is necessary� Instead of permitting caseA to be of the
form �case s of c� x� � � � � s�� � � � �cm xm�� � � � xm�n�m� � sm� we instead use
�casee of c� � let �x� � sel��� e� � � ��in e�� � � ��� where sel is some selector�
Note that selectors are strict in their argument� i�e�� they can only reduce� if
their argument is in WHNF�

��� Reduction

We de�ne reduction in a natural �operational� semantics as in �Lau��	� where
an environment�model is used to de�ne the semantics of expressions and to
justify the reductions� A �at expression semantics is not compatible with non�
determinism� For simplicity we assume that all bound variables have a di�erent
name� which can easily be achieved by using a common static scoping method
for renaming variables� Note that as usual� let and letrec di�er in their scoping
rules�
An environment U is a �nite set of pairs �x� e�� where x is a variable name and
e is an expression� We assume that every variable occurs at most once on a
left hand side of such a pair in some environment� An environment models the
graph used in lazy graph reduction systems and is able to represent sharing and
also cycles generated by letrecs� Now we can de�ne a graphic expression� It is
a pair �z� U�� where z is a variable and U is an environment� This term �z� U�
directly corresponds to a letrec expression�

letrec x� � e�� � � � � xn � en in z� where U � f�x�� e��� � � � � �xn� en�g

Note that the z is in general one of the variables xi� In order to simplify the
treatment� we insist on the following convention� Every term on the right hand
side of a pair is either a variable or an application �x y�� where x� y are variables�
or a case of the form �caseT x of c� � x�� � � ��� Every environment can be
brought into this form without changing the meaning by introducing new vari�
ables into the environment� A graphic expression is closed� if the corresponding
�ttletrec has no free variables�
Given an environment U � we let U�x� �� e be the direct value of a variable in
U � if �x� e� � U � and otherwise U�x� �� x� Let Vl�U� be the set of variables
that occur as left hand sides in U � The value of a variable in Vl�U� is de�ned
as an iterated application of U����

�U �x� �

���
��

e if �x� e� � Uand e is not a variable
�U �y� if �x� y� � Uand y is a variable
x if x �� Vl�U�

�



There is a chance that this function does not terminate� In this case we de�ne
the result as �� representing non�termination� It is possible to e�ectively detect
non�termination� since the environment is �nite� We also inductively de�ne
�U ��� for expressions�
A further function is spineU �x� that computes the spine�term for x�

spineU �x� � spineU �e� if�x� e� � U
spineU �c� � c if c is a constant
spineU ��xy�� � �spineU �x� y�
spineU �t� � unde�ned� otherwise

If spineU �t� does not terminate� then let spineU �t� � �� Note� that it is
decidable� whether spineU ��� terminates� since U is �nite� This may occur�
even if the initial program is well�typed� for example the expression �letrec x �
x in x� gives the environment �x� f�x� x�g�� and spineU �x� does not terminate�
We call the leftmost path from a node x to the constant the spine of a node� Now
we de�ne the initial environment and the graphic expression that belongs to
every FP��expression� This environment is the union of all let� and letrec�
de�ned variables together with their de�ning expressions� where we add let�
bindings such that the conventions are satis�ed� I�e�� for a term t we de�ne
Ut�� � f�x� t�g�f�y� e�jy � e occurs in some de�nition of a let or letrec in tg�
and then transform Ut�� into Ut�� by adding variable de�nitions for nested terms�
The corresponding graphic expression is �x�Ut���� Note that we have assumed
that di�erent bound variables have di�erent names�
We de�ne the active variables in a graphic expression �e� U� as follows� Let
x RU y for variables x� y hold if �x� s� � U and y � V �s� and let R�

U be the
re�exive� transitive closure of RU � Let �x�U� be a graphic expression� then the
gc�simpli�ed form is� �x�U ��� where U � � f�y� s� � U jx R�

U yg�
Now we can start the reduction with the initial expression as a graphic expres�
sion �e� U��

De�nition �� A redex in �e� U� is a right hand side s in U if one of the following
holds

� spineU �s� is of the form �� � � �f x�� � � � xn� and f is a supercombinator of
arity n�

� spineU �s� � �caseA x of c� � x�� � � � �cm � xm� if spineU �x� is a satu�
rated WHNF with a constructor belonging to A�

� spineU �s� � �selA x� if spineU �x� is a saturated WHNF with a con�
structor belonging to A�

� if spineU �s� � �

It is decidable whether s is a redex� since the spine is e�ectively computable�

De�nition �� Reduction� The reduction of redexes in the graphic expression
�e� U� is as follows� The reductions operate either by replacing some right hand
side in U � or by leaving U unchanged� or by removing some pair from U �

�



� If s is a redex� and spineU �s� � �� � � �f y�� � � � yn�� and f is a supercombi�
nator of arity n� and f �� natchoice� ���reduction�� Then replace s by r��
where f x� � � � xn � r is the de�nition of f with completely fresh variables�
where �r�� Ur� is the graphic expression corresponding to r� Furthermore
add f�xi� yi�ji � 
� � � � � ng and Ur to U �

� If s is a redex� and s � natchoice� then replace s by an arbitrary natural
number n�

� If spineU �s� � caseA x of c� � y�� � � � �cm � ym� and spineU�t� �
�ci z� � � � zm�i��� Then replace s by yi�

� If s is a redex� and spineU�s� � �selA�i�j y� and spineU �y� �
�ci z� � � � zm�i��� Then replace s by zj �

� If spineU �x� � �� then we have the reduction relation �e� U� � �e� U��

We assume that after every reduction step� the resulting graphic expressions
is gc�simpli�ed� We can assume that there is no error situation� since we have
assumed that programs are well�typed� We assume This reduction relation is
extended to sets of graphic expressions as follows� feg � A � E � A� where
feg � E means that one redex is chosen in e� and E is the set of all possible
reducts� In the case of an natchoice�redex� the set E contains all possible
graphic expressions to which e can be reduced by di�erent choices of a natural
number� In all other cases� the set E is a singleton�

Lemma�� A closed graphic expression can only be reduced to a closed graphic
expression�

Example �� 
� Let �x�U� be a graphic expression
with U � f�x� constr y z�� �y� u�� �z� u�� �u� 
 � 
�g� Reducing 
 � 
 to
� gives U � � f�x� constr y z�� �y� u�� �z� u�� �u� ��g

�� Consider the example from �PJ��	 showing that the G�machine requires
indirections� where we assume that � �times� is a built�in strict function�

idx � x
f y � �id y� � y
main � f �square 
�
square x � x � x

Instead of the pairs �x� c�� we replace x by the constant in this example�
The initial environment is�

U � f�x� �f x���� �x�� �square 
��g
Reducing the topmost redex corresponding to x gives�
U� �
f�x� �y� y��� �y�� �� y���� �y�� �idy��� �y� x��� �x�� �square 
��g
Reducing the redex corresponding to y� gives�

�



U� �
f�x� �y� y��� �y�� �� y���� �y�� z�� �z� y�� �y� x��� �x�� �square 
��g
The only redex is now �square 
��
U� � f�x� �y� y��� �y�� �� y���� �y�� z�� �z� y�� �y� x��� �x�� 
��g
Now the redex is �y� y�� and we obtain�
U� � f�x� ����� �y� � �� y���� �y�� z�� �z� y�� �y� x��� �x�� 
��g
Now garbage collection reduces this graphic expression to�
�x� f�x� ����g�

��� Church�Rosser Property for Sets of Graphic Expressions

We shall show that the reduction as de�ned above preserves an equivalence
relation between sets of graphic expressions� This is done by showing con�uence
for the set of possible reductions w�r�t� to this equivalence�

De�nition �� Two graphic expressions �e�� U�� and �e�� U�� are 	�equal� if they
can be transformed into each other by consistently renaming variables� Two sets
of graphic expressions S� and S� are 	�equal� if there are mappings 
� � S� � S�
and 
� � S� � S�� such that for every graphic expression e� � S�� 
��e�� is
	�equal to e�� and for every e� � S�� 
��e�� is 	�equal to e�

In order to have an adequate description of the non�deterministic reduction
process� we describe reduction in terms of sets of graphic expressions� The
reduction starts with a singleton set� If there is an evaluation of natchoice� then
the resulting set contains more than one graphic expression� These expressions
correspond exactly to the reduction possibilities of the initial expression�
In the following we shall show strong con�uence for the reduction lifted to sets
of graphic expressions� Note that strong con�uence is the property that if a� b
and a � c� then there is some d� such that b and c can be reduced to d in at
most one step� Furthermore strong con�uence implies con�uence �Bar�
	� The
reduction is lifted to sets of graphic expression as follows� f�e� U�g�R � S�R �
where S contains all possible graphic expressions that can result from reduction
of a single redex� In the case that natchoice is reduced� S is an in�nite set� and
in the other cases� S is a singleton�

Theorem�� Reduction is con�uent on sets of graphic expressions� where we
compare sets using 	�equality�

Proof� We show that strong con�uence holds� It is su�cient to show this for a
reduction of a singleton set� since then strong con�uence can be lifted to sets�
We assume that there is some graphic expression �x�� U� and that there are two
di�erent redexes �x�� e�� and �x�� e�� in U � The corresponding reductions are
�x�� U�� �x�� U�� and �x�� U�� �x�� U���
First we have to analyse the possible overlapping of redexes�

i�� First assume that the two redexes are equal� Then the only interesting
possibility is that the redex expression is natchoice� In this case the sets
of possible reducts are the same� hence we have strong con�uence�

�



ii�� We show that the situation that x� becomes garbage after reduction of
x� and x� becomes garbage after reduction of x� implies that x� and x�
are both garbage before the reduction� Suppose� this is false� Then there
is one relational path for R from the initial variable to say x�� which does
not use the variable x�� But then the reduction of x� cannot change this
path� hence x� is not garbage�

iii�� Now we consider the case that e� and e� are di�erent� The only case of
an overlap in the spines may be that spineU �e�� � � � spineU �e��� In
this case� the reductions do not change the expression� hence the outcome
is the same�

In all other cases� there is no overlap of the spines of e� and e��
The variable x� does not occur in the spine�computation of e� �and
vice versa�� since the arities of supercombinators and selA�i�j are �xed�
and e� and e� are di�erent� Furthermore� one reduction does not
modify the redex and the corresponding spine computations of the
other redex� The only di�erence after one reduction may be that the
other redex becomes garbage� Now we have to consider the di�er�
ent possibilities� We consider in depth the case of two ��reductions�
Let spineU �ei� � ��� � � ��fi yi���yi��� � � ��yi�n�i�� for i � 
� �� and let
fi zi�� � � � zi�n�i� � ri be the two supercombinator de�nitions� where we
assume that variables in the de�nitions are new� Then the two di�erent
reductions are� U � f�x�� e��� �x�� e��g � U � f�x�� r��� �x�� e��g � Ur� �
f�z���� y����� � � � � �z��n���� y��n����g
� U � f�x�� e��� �x�� r��g � Ur� � f�z���� y����� � � � � ��z��n���� y��n����g
If there is no garbage collection� then we can reduce the other redex�
since there is no interference in computing the spine� This gives the envi�
ronment� U � f�x�� r��� �x�� r��g � Ur� � f�z���� y����� � � � � �z��n���� y��n����g
�Ur� � f�z���� y����� � � � � ��z��n���� y��n����g�

It is obvious� that any garbage collection that does not remove �x�� r��
and �x�� r�� does not in�uence the strong con�uence� If one redex� say
x�� becomes garbage after a reduction of x�� but not vice versa� then the
computation shows� that the �nal expression can be obtained by garbage
collecting the �nal environment� Hence this proves strong con�uence in
this case�

iv�� The other cases� where no natchoice�redex is involved� are treated anal�
ogously�

v�� Now let one redex be natchoice� Since the argumentation above shows
that a redex is not modi�ed after reduction of the other redex� we get
that the common successor is an �in�nite� set� where all possibilities to
replace natchoice with a natural number are present�

vi�� If both redex are natchoice�redexes� then again there is no overlap� and
the common reduct is a set where the two redexes are replaced by all
possible pairs of numbers�

�



It is interesting to note� that it is not necessary to consider parallel reductions�
This is a hint that this complication in the common proof of con�uence is an
artefact that has its roots in the common �at representation of expressions�
Our reduction on graphic expressions is close to graph rewriting systems and
term graph rewriting systems �see �PvE��� BvEG���� KJMdVF��	� However�
since graph rewriting systems are not con�uent in general� and Theorem � states
con�uence for reduction of graphic expressions� there must be a di�erence� This
di�erence is in the used data�structure and in de�nition of reduction� We will
illustrate this by an example� which is used to show non�con�uence of graph
rewriting systems�

Example �� � Let there be two supercombinators� A�B with de�nitions A x �
x�B x � x� Consider reducing the expressions

�letrec x � A y�y � B x in �x� y��

As graph rewriting systems� there are two di�erent reducts� corresponding to
�letrec x � y�y � B x in �x� y�� and �letrec x � A y�y � x in �x� y���
which reduce only to themselves in the de�nition of graph rewriting systems
�see �PvE��	� p� 
���� hence con�uence does not hold�
If we make the same reductions for graphic expressions� then the reductions are
as follows�

� �letrec x � A y�y � B x in �x� y�� � �letrec x � z��z� � y�y �
B x in �x� y�� � �letrec x � z��z� � y�y � z��z� � x in �x� y��� which
has a cyclic variable reference�

� �letrec x � A y�y � B x in �x� y�� � �letrec x � A y�y � z��z� �
x in �x� y�� � �letrec x � z��z� � y�y � z��z� � x in �x� y��

Hence there is a common reduct� The problem of graph rewrite systems appears
to be the compact representation of nodes� which does not work in the presence
of so�called black holes�

Now we argue that the second Church�Rosser Theorem also holds for WHNF�s�
i�e�� that a normal order strategy will �nd a weak head normal form if one
exists at all� Therefore� we have to de�ne the normal�order redex �n�o�redex�
of a graphic expression �e� U�� First we need an algorithm to check a node for
weak head normal form�

De�nition �� Algorithm� is whnfU �e� n�� Let �x�U� be a graphic expression
and e be some variable that represents a node� The algorithm starts with
is whnfU �e� ���
is whnfU �e� n� �
If e is a constructor then true
If e is a supercombinator and its arity is � n then true

otherwise false
If e is a variable then is whnfU �s� n� for �e� s� � U
If e � �case � � �� then false
Ife � �e� e�� then is whnfU �e�� n� 
�

In the cases� where this does not terminate� we simply let the result be false�


�



The topmost redex of �e� U� can simply be found by the following algorithm
�unwind�� where we start with unwindU �e��

De�nition �� The algorithm unwind� The algorithm unwindU �s� computes
the left�most� topmost redex for the expression s in the environment U � If
spineU �s� is a redex� then return s� Otherwise�

� if s is a constructor� then Fail�

� if s � �x�x��

	 If spineU �s� � �� then return s�

	 IfspineU�s� is a constructor application� then Fail�

	 If spineU �s� is an application to too few arguments� then Fail�

	 If spineU �s� is an application on too many arguments� compute
unwindU �x���

� If s � �case x of � � �� then� if is whnfU �x�� then the result is s� otherwise�
compute unwindU �x��

� If s � �sel x�� where sel is a selector� if is whnfU �x�� then the result is
s� otherwise� compute unwindU �x��

� If s � x is a variable� then there is some �x� t� � U � If �U �x� � �� the
return x else compute unwindU �t�

The function unwindU is terminating� The redexes� where either a cyclic vari�
able dependency or an in�nite unrolling of a spine occurs �so�called black holes��
are treated as redexes that reduce the term� but leave it unchanged� which re�
sults in a non�terminating reduction for this term�
We call a reduction on the topmost redex an n�o�reduction� Furthermore� we
denote a one�step reduction relation that reduces the n�o�redex by �N � Fur�
thermore� we use

�
� and

�
�N for transitive closure of � and �N � respectively�

and
��
� and

��
�N for denoting the relation generated by zero or one reduction

� or �N � respectively�

Lemma
� Let r� s� t be graphic expressions such that r � s �N t� and r � s
is not an n�o�reduction� Then there exists a graphic expression s� such that

r �N s�
��
� t�

Proof� Let the reduction be r � s �N t and r � s be no n�o�reduction� Let
r � �xr� Ur�� s � �xs� Us�� t � �xt� Ut�� and let er� es be the redex in r and s�
respectively� This is only possible� if es is also an n�o�redex in r� The arguments
in the proof of strong con�uence in Theorem � and the fact that es cannot be
garbage� show that it is possible to commute the reductions� Let s� be such
that r �N s� using redex es� and in the case of a redex natchoice� choosing
the same number� Either s� and t have the same gc�simpli�ed form� if the redex
er is garbage in s�� or s� can be reduced to t using the redex er and in the case

of natchoice� selecting the same number� Hence we have r
n
� s�

��
� t�







Theorem�� Second Church�Rosser theorem�
Let �e� U� be a graphic expression� Then every reduction of �e� U� to a WHNF
can be rearranged� such that �rst there is a normal order reduction to some
WHNF� and afterwards a reduction to the �nal term�

Proof� Let �e� U�
�
� �e�� U ��� where e� is in WHNF� The last reduction before

reaching a WHNF must be a n�o�reduction� which can be shifted to the start
of the reduction� Using induction on the number of the reductions� we can
rearrange this reduction as claimed�

An interesting property is that the length of an n�o�reduction sequence is not
longer than an arbitrary one to a WHNF� and is hence the shortest one using
our de�nition of reduction�
There is a surprising application of the result to the con�uence properties of
a constrained lambda�calculus �Man��	� This is a lambda�calculus� where con�
straints are permitted in the syntax� These can be seen as external functions
that either fail� if constraints are not solvable� or that may instantiate variables
in a non�deterministic way� if there is more than one solution� Our result is
then that reduction is con�uent without prescribing a reduction strategy� How�
ever� there is a small gap to the full lambda�calculus with constraints� since we
consider a combinator reduction system without local de�nitions�

� Computational Adequacy of the Natural Seman�
tics

In this section we show that the natural semantics is adequate for deterministic
expressions� i�e�� expressions in the language FP� without natchoice�
We de�ne a reduction system on the �at expressions� which we assume to be
standardized� such that all bound variables have di�erent names�

De�nition ��� Reduction �flat In these reductions we use replacement of a
variable by an expression� In every case of a replacement� the bound variables
in the expression are renamed to avoid name�clashes�

i�� �� � � �f t�� � � � tn�� r�t��x�� � � � � tn�xn	 if the de�nition is� f x� � � � xn � r

ii�� �caseA �� � � �ci t�� � � � tn� of c� � s�� � � � cn � sn�� si�

iii�� �let x � s� binds in t�� �let binds in t�s�x	�

iv�� �letrec x � s� binds in t�� �letrec x � s� binds in t�s�x	�

v�� �caseA �letrec binds in s� of c� � s�� � � � cn � sn� �
�letrec binds in �case s of c� � s�� � � � cn � sn�

These reductions can be performed for any subterm of some term� including
the terms on the right hand side of a let or a letrec�


�



In the following we intend to describe the correspondence between �at and
graphic expressions and between �flat and ��
The notion �in�nite printed representation� or in�nite unravelling �in the ter�
minology of �PvE��	� and the equality shall be the base for the comparison
between reductions of �at and graphic representation of deterministic expres�
sions� The printed representation is a potentially in�nite ground expression
�i�e� without let and letrec�s�� which may also have the symbol � at leaf
nodes� In order to be able to compare di�erent in�nite print trees and to avoid
a non�terminating printing algorithm� we write the de�nition of the algorithm
such that it produces the print tree up to some given depth m�

De�nition ��� Given a �at expression� its print�tree of depth m can be com�
puted as follows� This is a function ���		 taking the expressions as argument�
with three further arguments� A set of variables to indicate cyclic references�
the depth� and an environment� The initial call is flat tree �s� �� ��s		 � m �

��c		 V m � � c
��x		 V m � � if x � V then �

else ����x�		 V � fxg m �
���st�		 V m � � if m � � then Bot

else���s		 � �m	 
� �� ���t		 � �m	 
� ��
��case s of ci � si		 V m � � if m � � then Bot

else �case ���s		 � �m	 
� �� of
c� � ��s�		 � �m	 
� ��
� � � �
cn � ��sn		 � �m	 
� �

��let�rec� x � t in s		 V m � � ��s		 V m � � f�x� t�g

De�nition ��� The print tree for graphic expressions can be computed using
the function graph tree and ���		 as above�

graph tree�x�U� m � ��x		 � m U

De�nition ��� i�� Two print�trees are equivalent� if for all depths m� the
computed trees are identical�

ii�� Two expressions ��at or graphic� are pt�equivalent� i� the corresponding
print trees are equivalent

Lemma��� Let�reductions do not in�uence the pt�equality of deterministic ex�
pressions�

Proof� It is su�cient to argue that the print tree does not change after a
let�rec��reduction� If the let�reduction replaces a variable with a non�variable
term� then the argumentation is easy� In case a variable is replaced by a vari�
able� then nothing changes� since this is either a ��variable or a non�bot node
in the tree�

Lemma��� Let g be a graphic expression and let e be a �at expression� such
that g and e are pt�equivalent�


�



i�� If g � g�� then there is some g�� and some e�� such that e
�
� e�� and

g�
�
� g�� and e� and g�� are pt�equivalent�

ii�� If e � e�� then there is some e�� and some g�� such that g
�
� g�� and

e�
�
� e�� and g� and e�� are pt�equivalent�

Proof� It is su�cient to consider ��reductions or case�reductions� Now� every
redex in the expressions maps to a �possibly in�nite� set of redexes in the print
tree We can de�ne the minimal set of the redexes in g and e� such that the
corresponding sets of redexes in the original print tree are the same� Reducing
these redexes will give the same tree� where a path in the tree that shrinks from
an in�nite one to a �nite one will have Bot at a leaf node�

Theorem��� Let e be an expression and g be the corresponding graphic ex�
pression� Then

i�� g and e are pt�equivalent i

ii�� g has a normal form i	 e has a normal form� Furthermore� if both g and
e have normal forms� then these normal forms are identical�

� Observational Properties of Functional Programs
�FP��

If we look at functional programs as black boxes that interact with the environ�
ment� or with the operating system via interface functions� then the question
of behavioural equivalence of programs must be expressed in terms of interac�
tion sequences with the environment� In this section we consider only interface
functions without memory� i�e�� The set of possible values that an interface func�
tion can return is completely determined by the �fully evaluated� arguments�
Therefore� we have to extend the core language in order to make the interface
functions explicit and hence we will extend the syntax of sets of graphic ex�
pression� such that also the I�O�history can be compared� We do not use the
Unix�model of a standard�input and output stream� but a simple blocking call�
mechanism that transfers some data to the outside world� and then waits� until
some data comes back� which are then consumed by the functional program�

��� Church�Rosser Properties

De�nition ��� We add a new class of supercombinators� interface supercom�
binators� These combinators have a �xed arity and a monomorphic type� the
arguments and the output are data objects� and they are hyperstrict� i�e�� the
arguments must be in normal form� before the interface supercombinator can
be reduced� These interfaces have no de�ning body in the functional language�
It is assumed that the mapping from arguments to the result is done externally�
Furthermore the result may be non�deterministic� however� the functions have
no memory� i�e�� the set of possible values is only determined by the input ar�
guments� The de�nition of redex and reduction is adapted to these interface
supercombinators�







We can simulate the interface supercombinators using the natchoice�function
as far as the resulting graphic expression is concerned� Thus we already can
inherit the properties like the Church�Rosser Theorems� if we are not interested
in the interaction with the operating system� I�e�� we have�

Theorem�
� Reduction on Graph expression has the following properties�

i�� Reduction is con�uent on sets of graphic expressions

ii�� Every reduction to a WHNF can be rearranged into a normal�order re�
duction that requires an equal number of less reductions steps than the
original reduction�

Proof� The behaviour of the interface functions can be simulated using
natchoice� This requires a potentially in�nite number of cases in the de�nition
of the interface function� however� this does no obstacle� The argumentation
on the lengths of reduction steps can be inherited from section �� if we do not
count the reductions that are necessary to simulates the interface�

Now we consider the input�output behaviour of functions�

De�nition ��� A question�answer pair consists of� i� the question� i�e�� the
interface function together with its arguments and ii� the result� A reduction red
from a to c� where a and c are graphic expressions is a sequence a�r� � � ��rn c�
where �ri contains all the information to execute the reduction�
We are interested in the question�answer pairs of a reduction� If we consider
them as a multiset� then we denote them by QAMS�red�� and considered as a
list� we denote them by QAL�red��

Now we can prove an improvement of the second Church�Rosser Theorem that
takes into account the QA�multisets of the reduction�

Theorem��� Let red � a �r� � � � �rk c be a reduction� where c � f c� � � � cn
is a WHNF� Then there is a normal order reduction redno � a� � � �� d� such
that d is in WHNF and d � f d� � � � dn� and di is reducible to ci� Moreover we
have QAMS�red� 
 QAMS�redno��

Proof� In a similar way as in the proof of the Church�Rosser Theorem � above�
we can commute reductions until a reduction in normal order is obtained� The
question�answer pairs are either permuted� or dropped� or shifted in the reduc�
tion after a WHNF has been reached�

This theorem states that for every reduction that is performed in an arbitrary
order� the interactions with the world can be divided into necessary ones and
redundant ones� where the necessary ones are exactly those that are required
in the corresponding normal order reduction� However� the sequence of the
questions may be permuted�
Note that the condition on hyperstrictness is only a pragmatical one� which may
be dropped without loosing any nice properties� However� if hyperstrictness


�



does not hold� then we have to specify exactly to which extent every interface
has to evaluate its arguments� This would complicate speci�cation of interface
functions and reasoning about the language� In general� the hyperstrictness
restriction does not limit the expressiveness of the language� since functions that
behave like non�hyperstrict interface functions can in general be implemented
in the functional language using some hyperstrict interface functions�

��� Equivalence Relations on Programs

We shall de�ne a notion of equivalent programs with memoryless interface func�
tions� We assume that programs have a type that corresponds to a data object�

De�nition ��� Let A be an FP��program� Let RW �A� � f�QAMS�red�� c�jred
is a normal order reduction terminating with a CWHNF starting with construc�
tor cg�
Let RS�A� � f�QAL�red�� c�jred is a normal order reduction terminating with
a CWHNF starting with constructor cg�

i�� Two programs A and B are called weakly behaviourally equivalent� i�
RW �A� � RW �B��

ii�� Two programs A and B are called strongly behaviourally equivalent� i�
RS�A� � RS�B��

The pairs for the non�terminating normal�order reductions� �QAMS�red����
and �QAL�red���� are not added to the de�nition� The intuition is that I�O
contributes to the computation of a value� not vice versa� If the emphasis of
the program is on side�e�ecting� then it might be necessary to modify these
equivalencies to include these pairs �see also the strictness transformation in
section 
���� Unfortunately� it is hard to distinguish weakly equivalent programs
on the base of their I�O�behaviour� If we have two programs in two black boxes
that both use normal order reduction� where every call to an interface function
is observable� and if our task is to prove that the programs are di�erent� then
we have a hard job� If both A and B yield the same result� and the multiset
of question�answer pairs is di�erent for A and B� we do not know whether the
programs are di�erent� Another situation� where we cannot conclude that A
and B are di�erent� is that the multiset of question�answer pairs is equal� but
the result is di�erent�

Example 
� � This example demonstrates the problems of weak equivalence�
Let ask int be an interface function that has no arguments and returns some
integer

i�� main � if �ask int� � �ask int� then 
 else ask int

reduction 
� The input sequence is 
���
� the result is 


reduction �� The input sequence is ��
� the result is 
�


�



ii�� main � if �ask int� � �ask int� then 
 else �

reduction 
� The input sequence is ���� the result is 


reduction �� The input sequence is ���� the result is �

Lemma��� �

i�� Given a program P � the set RS�A� can be viewed as a �partial� function
from lists of question�answer�pairs to results�

ii�� If for two programs A and B�RS�A� contains a pair �L� c�� and RS�B�
contains a pair �L� d�� where c �� d� then A is not strongly equivalent to
B�

This lemma means that strong equivalence of programs can be tested using
the black box model of programs� If the same list of question�answer pairs
yields di�erent results for the two programs� then the programs are not strongly
equivalent�
However� nice as it may be� strong equivalence means more or less that sequen�
tial order of normal order reductions has to be respected by an implementation�
This prevents for example to exploit the information of a strictness analyser� it
also prevents parallelisation of functional programs�
I am of the opinion that it is more desirable to permit concurrent execution and
a lot of optimisations� and thus to use weak equivalence as a base for program
transformations�

��� Transformations on FP��Programs

Now we have criteria to judge the validity of program transformations w�r�t�
the de�ned equivalencies� Note that now all program transformations must be
seen as transformations on graphic expressions rather than �at expressions�
We will have a look at the transformations mentioned in �PJS�
	

Transformation� ��reduction� case�reduction �partial evaluation�
The ��reduction and case�reduction preserve strong equivalence of programs�
as can be seen by inspecting the proof of the second Church�Rosser Theorem�
However� it is not permitted to evaluate interface functions� The question�
answer behaviour is not a�ected�

Transformation� interface reduction
This reduction does not preserve strong or weak equivalence� since after the
reduction one question�answer pair is missing�
Now we consider some simple �humble� program transformation �PJS�
	�

Transformation caseover casewith functions as globally de�ned�
case �case e of c� � s�� � � � � cn � sn� of d� � t�� � � � � dm � tm transforms to�

�let x� � t�� � � � � xm � tm in �case e of c� � �case s� of d� � x�� � � � � � � � � dm � xm��
� � � �
cn � �case sn of d� � x�� � � � � � � � � dm � xm��


�



where xi are new variables� This transformation preserves equivalence� since
the normal order reduction sequence is not a�ected�

Transformation� Using strictness information� evaluate an argument of a func�
tion before evaluating the body�
This transformation is not correct w�r�t� strong equivalence� since question�
answer pairs may occur in a di�erent sequence after transformation� If it is
known� that an argument will be evaluated if the function application is evalu�
ated� then the evaluation of the argument can be done before evaluation of the
body� In the case� that the function application does not terminate� but the
argument is not evaluated� then the transformation is not correct�

Example �� Consider the length function� then it is correct to evaluate the
spine of the list before evaluating length�

Example �� Consider a variant of iterative length

itlength xs s � case xs of nil � s�cons �
itlength �tail xs��
 � s�

A strictness analyser will tell that this function is strict in both arguments�
Evaluating s before the itlength body is correct w�r�t� to weak equivalence�
however� this may have some strange e�ects for in�nite lists� Let nat � �
��	
and seq be a function that �rst evaluates the �rst argument� then the second�
and results in the evaluated second argument� The expression

�itlength nat �seq�print �list has terminated�� � ��

prints nothing and runs into a loop before the transformation� but after the
transformation� it �rst prints �list has terminated� and then runs into a loop�

Transformation� Common subexpression elimination� Is in general incorrect�
since it destroys the sharing structure of the expression�

Transformation� function inlining
Is in general not correct w�r�t� the equivalencies� It is only correct� if the sharing
structure is not changed� This is the case� if for some function to be inlined�
the arguments occur at most once in the body�

De�nition ��� Deterministic expressions�
This is an expression of a data object type� and there are no reductions of
interface redexes necessary to evaluate it to normal form�

Within these expressions� all program transformations as in deterministic lazy
functional languages can be used�
In the following we give some counter examples that demonstrate some pitfalls
in transforming programs� and also in transforming functions from lambda�
calculus into our language�


�



Example 
� Partial evaluation is in general not correct
Consider the following de�nition�
f x y � ��ask int� � x� � y
The evaluation of �map �f 
��
� �	� in the permitted reduction sequence gives�
�map �f 
��
� �	� � ��f 
 
�� �f 
 ��	 � ��a�
��
� �b�
���	� where a and b are the
two di�erent answers to the question �ask int�� Using partial evaluation gives�
�map�f 
��
� �	� � �map��y���ask int��
��y��
� �	�� �map ��y��a�
��y� �
� �	
�
� ��a� 
� � 
� �a� 
� � �	� where a is the answer to the one question�
This is di�erent from the �rst if interpreted as a set of results�

Example �� � The example above also shows that the translation of the lambda�
calculus in the combinator calculus is not unique� Consider the expression

map���x��y��ask int� x� � y�
��
� �	

One possibility of translation is in the example above� The other one is to use
lambda�lifting�

map��x���z��y��ask int� z� � y� x 
��
� �	

This translates into a supercombinator de�nition and a modifed expression�

F z y � �ask int� z� � y

map ��x�F x 
� �
� �	

A further translation gives�

F z y � �ask int� z� � y
map G �
� �	
G x � F x 


��� McCarthy�s amb

�
It is not possible to simulate McCarthy�s bottom�avoiding� non�deterministic
choice operator amb� which behaves as follows

amb x � � x
amb � y � y
amb x y � choice x y

This would permit to have a parallel disjunction �p� which is implementable
using amb�

x �p y � amb �x � y� �y � x�

However� it is not hard to see that the existence of �p violates the second
Church�Rosser theorem� hence amb cannot be de�ned in our language�
It is possible to simulate choice using natchoice� however� the other direction
is not true� which can simply be seen as follows� natchoice can generate a
non�deterministic choice between a countable number of elements in on step�
However� choice must generate this set step by step� with at most duplicating
the set in every reduction� In�nity can only be reached at the cost of non�
termination�


�



Example �� External store cannot be simulated using non�deterministic inter�
facing� As mentioned above� the natchoice functions permits us to simulate
�the internal e�ects of� external interfacing functions� For example� the NEL�
function ASK INT �HNMH��	 that prompts the user to input some integer can be
simulated by the natchoice functions� More complicated functions can also be
simulated� However� it is interesting to note� that it is not possible to simulate
an external modi�able global variable�
A sequential execution that �rst writes n in external store that later can be
retrieved can not be simulated by memoryless interface functions� since this
would contradict con�uence�
Suppose the functionality is as follows� OUTPUT is a function that puts its ar�
gument in an external store� and returns T� and let INPUT be a function that
retrieves that store� Assume the value in the external store is � before evalua�
tion� Then consider the triple �OUTPUT
� OUTPUT�� INPUT��
It has set�reductions as follows�

� �T� OUTPUT�� INPUT�� �T� OUTPUT�� 
� � �T� T� 
�
�� �OUTPUT
� T� INPUT�� �T� OUTPUT�� �� � �T� T� ��
Since we can determine all reduction sequences� we see that reduction 
 pro�
duces a di�erent resulting �unit�� multiset than reduction �� Thus the function�
ality that permits external store enforces non�con�uence� hence such a func�
tionality cannot be simulated in the language FP��

� Enforcing Order of Evaluation� FP�

The programming language FP�� though at a low level� has su�cient expres�
siveness� However� in practice it may be helpful to have some sequentiality
restrictions for the reduction� For interfacing with the external world� the se�
quentialisation primitives are not necessary for FP�� but they are necessary for
the languages FP� that permits to interface external memory and �les� Thus
this section can be seen as a preparation for the next section�
In this section we shall add two primitives to the language that are intended
to control evaluation� The seq is a combinator of two arguments that �rst
evaluates its �rst argument� then forgets the value and proceeds evaluating the
second� The � primitive indicates that for two �potential� redexes x and y�
only the reduction sequences are permitted that �rst perform one reduction step
for x and then reduce y� From a programmers point of view� seq permits to
change the normal order sequence of programs� whereas � does not change the
normal order sequence� but enforces the compiler to take care that the normal
order sequence of reduction for two redexes holds for all executions�

� There is an extra function seq with the following behaviour�
�seq x y�� �rst it evaluates x to WHNF� then the result is �the WHNF
of� y�

� let�rec� is extended� respectively modi�ed as follows�

�E� ��� � � � jlet�rec��defs��seq�� in �E�j � � �
�seq� ��� �var�� �var�

��



Environments U have to be adapted to suit these sequentialisation pairs� We
simply add them as marked pairs to the environment� denoted by x� y� Note
that seq can be implemented using strict ��BW��	�
Let K� x y � y� Then seq � �strict K��
The primitive � cannot be used without restriction� In order to formulate
these restrictions� we need some preparation� The sequentiality primitive� can
only be used in the body of super combinators� hence we will investigate this
situation� First we de�ne the notion of a potential redex in a super combinator
body�

De�nition ��� A potential redex in a body is

� a redex in the body

� a case�expression

� an expression �� � � �f x�� � � ��xn�� where f is a strict super combinator like
seq or a selector� and the arity of f is n�

A body of a supercombinator can be represented as an environment with free
variables� where the free variables are the argument variables� Let U be the
environment corresponding to the body of a super combinator� and e be a non�
variable expressions� then let the set of aliasing variables AVU �e� be the set of
all variables that directly or indirectly point to e� AVU �e� � fxjx R� eg� For
variables x� we de�ne a similar notion� AU �x� � fyjy �R� xg� where �R� denotes
the symmetric� transitive and re�exive closure of R� Now we can formulate the
restrictions for ��

� seq and � can only occur in the body of a supercombinator de�nition�

� For every supercombinator body U and variables x � y� the variables x
and y must be aliasing variables for potential redexes� and furthermore
x � AU �y��

� For every supercombinator f of arity n with body U and variables x� y
with x � y in U � no normal order evaluation of f t� � � � tn evaluates the
expression corresponding to y before x� where normal order evaluation is
meant ignoring the ��pairs�

The usage of ��pairs is stronlgy restricted� The restrictions are su�cient for
programming purposes� such as to enforce evaluation of a condition before the
evaluation of an expression in some alternative� The �rst�order restriction on
potential redexes is not too severe a restriction� The restrictions are strong
enough to prevent ��cycles� Furthermore� a proof of con�uence is possible� It
is not hard to �nd simple static analysis methods that are su�cient to ensure
the constraints�

De�nition ��� Redex and reduction�

�




� A FP��redex is a non�variable right hand side e of a pair �x� e� in an
environment� Furthermore� for all y � AU �x�� there is no further variable
z with z � y� In addition� �seq u v� is a redex� if spineU�u� is a WHNF�

� A reduction does not only replace the redex s by a term� but also removes
all pairs x� y� where x � AVU �s��

The algorithm unwind now has to be adapted to the seq�redexes� but there is no
change for the��pairs� since these pairs have no in�uence on the sequence of the
normal order reduction� The in�uence of the��pairs are the permitted program
transformations and the permitted concurrent executions� There is a di�erence
between seqand �� The seq�constructs sequentialises evaluation by enforcing
the normal order reduction to take a di�erent path� whereas the � does not
in�uence the normal order reduction sequence� but is only an a�rmation of the
normal order sequence� In e�ect� the� is only a special notation for preventing
certain transformations�

Example �� The � is a method that is able to sequentialise the condition and
alternatives of a case�

f x � if x � � then print � � � else print �	 ��

First executing the prints� and then computing the comparison� then deciding
which alternative� is a valid execution sequence for this program� However� it
is an undesired one� Using seq does not really help�

f x � let x� � x � �� x� � print � � �� x� � print �	 �� x� � if x� then x� elsex�
in �seq x� x���

This permits the same reduction sequences as before� Any execution according
to the semantics has no hints on the intended sequencing of the function� Us�
ing �� it is possible and easy to program the intended and correct reduction
sequence�

f x � let x� � x � �� x� � print � � �� x� � print �	 �� x� � if x� then x� else x��
x� � x�� x� � x�� x� � x�
in x�

The only valid reduction sequence is to reduce x� � �� then the if� and �nally
one of the print expressions�

Theorem��� Reduction in FP� is Church�Rosser�

Proof� Adding the seqprimitive is no problem� hence we concentrate on the
��pairs� We have to consider the case that there are two redexes �x�� e�� and
�x�� e��� The restrictions enforce that for all variables z in AU �x�� and AU �x���
there is no variable y� such that y � z� Reducing the redexes� we can �nd
a common reduct� such that strong con�uence holds� provided the reductions
are possible in FP�� If the reduction of e� is a ��reduction� then there can
be some new ��pairs� but it is not possible� that x� is constrained� since all

��



new variables point also to new potential redexes� It is also not possible� that
the reduction adds a variable to AVU �e��� such that x� is sequentialised after
another reduction� The reason is that reduction in FP� is de�ned� such after a
reduction of a redex corresponding to y� all pairs y � z are removed�
In summary� the reduction in FP� is strongly con�uent� and hence con�uent�

Example ��� Consider the following function�
wrong x � let y � 
 � x� z � � � x� y � z in seq z y
This de�nition is not correct w�r�t� our restrictions� but it does not con�ict
with the con�uence theorem� since we have not used the restriction that � is
compatible with normal order� However� it is not possible to reach a WHNF of
�wrong 
� in a normal order reduction�

Using the restrictions� we can show the second Church�Rosser Theorem�

Theorem��� In FP�� for every term that has a WHNF� a WHNF can be
reached using normal order reduction�

Proof� � It is easy to see that the Church�Rosser Theorem holds for FP��seq�
Hence we prove this for the addition of � to FP� extended by seq� It is su��
cient to prove that every n�o�redex is also an n�o�FP��redex� Since this holds
for the language FP��seq� we can assume there is a normal order reduction ig�
noring the ��pairs� This normal order reduction will now sometimes introduce
��pairs� However� the restrictions guarantee� that the ��pairs do not in�u�
ence the normal order restriction� i�e�� in the reduction� every used n�o�redex is
a redex that is not constrained by ��

The unique typing method in Clean appears to rely on the normal order re�
duction �PvE��	� which means that there is no solid base for distinguishing
valid from non�valid program transformations� The only criterion is that the
normal order reduction sequence should not be modi�ed� if this in�uences the
unique objects� The method of adding ��pairs could be a way to enhance the
exactness of the methods for sequentialising programs and recognise the valid
program transformations�

	 Access to Files and External Store � FP�

The aim of this section is to demonstrate that using the interfacing to access
�les and other external store can be done by side�e�ecting functions� Since we
are on a rather low language level� we shall give a rather simple but undecidable
criterion that retains the Church�Rosser property� In this paper we do not inves�
tigate analysis techniques to ensure this property� There are already techniques
either to enforce sequentiality and single�threadedness like monads �Wad��	 or
the system of uniqueness types �PvE��� SBvEP��b	� that are su�cient for this
condition�

De�nition �
� Language extensions for FP��
FP� extends the language FP� as follows�

��



� There is a speci�c algebraic data type �external object�� The attributes
are�

	 unique identi�er �for example a name�

	 lock�status �may be locked or unlocked�

	 version number �some natural number�

This version number is used like a time stamp�

� External objects can be of a type copy � nocopy and deterministic � non�
deterministic�

This makes 
 di�erent types� For example� if arrays are treated as external
objetcs� then they may have the attribute copy� whereas databases should
have the attribute nocopy� External objects like sensors may be candi�
dates for the non�deterministic kind of external object� But also �les may
be viewed as non�deterministic� since they may answer with I�O�error on
a read�request instead of the expected sentence�

� There are the following classes of interface functions on external objects�

	 read functions� locked external object as argument� no external ob�
ject out

	 update functions� locked external argument in and out

	 lock�unlock functions
lock� unlocked in and locked out
unlock� locked in and unlocked object out�

	 copy� one copyable external object as input� a copy of the object as
output�

� There is an automatic run�time bookkeeping of version�numbers� For
every identi�er of type external object� there is an entry in the book�
keeping table that keeps the actual version�number of the external objects
and their lock�status�

� There are the following restrictions on functions and expressions�

	 The algebraic data type�external object� cannot be cased� i�e�� there
is no case�constant for this type�

	 there are interface�functions that may have external objects as a part
of the input argument or as part of the output� We assume� that the
input and the output� respectively� contain at most one such external
object�

	 The object�id and the version�number determine the results of an
interface function �either deterministically or non�deterministically��
In the deterministic case� the result is always the same for the same
arguments and the same version�number� In the non�deterministic
case� the possible outcomes are in a set that is determined by the
external object and the version�number�

�




	 Update� lock and unlock have as result always the same external
object with the version�number increased by 
�

	 Initially� all external objects are locked�

	 A copy function should have a new object�id in the output

	 update� read� copy and unlock can only operate on an external
object that is marked �locked� in the book keeping table� Lock can
only operate on an external object that is marked as not locked�

For the next de�nition we assume that graphic expressions are gc�simpli�ed�

De�nition ��� An FP��program is I�O�correct i� for every possible reduction�

� every read� update� and unlock always uses the external object with the
actual version�number and the lock�status �locked��

� every lock always uses the external object with the actual version�number
and the lock�status �unlocked��

There is an alternative to this de�nition� requiring only for every normal order
reduction that there are no accesses to old versions of external stores� This�
however� has the disadvantage that it is not compatible with parallelisation and
several optimisations done by a compiler�

Lemma��� If a program is I�O�correct � then for all possible reductions�
If there are two di	erent redexes for the same external object� and the redexes
are interface�function applications� then these can only be read or copy functions
and furthermore the version�numbers must be identical for these redexes�

Proof� If there are two di�erent redexes with interface applications� where one
is neither a read nor a copy� then the two possibilities of reducing the redex
show that at least one does not satisfy the I�O�correctness restriction�

This� however� is not a su�cient criterion for I�O�correct programs�

Example ��� It is not possible to use only criteria for overlapping redexes with�
out looking for the version number�

let e� � update � � � e�
�a� e�� � update e�
in �read a e��

In this expression� there is only one redex� namely update � � � e� After evaluating
this redex� there are two redexes� that violate the criteria above�

Example ��� Without the ��primitive it is not easy to write I�O�correct sensi�
ble functional programs without rearranging or reprogramming� Consider the
function w� where we assume that read is some read�function for �les and write

writes something into the �le�

w file a � if �p�read file a�� then write file 

else write file �

If the expression �w file a� is reduced� then the next expression is�

��



if �p�read file a�� then write file 
 else write file �

which contains � redexes� Without �� there is always a wrong path for reduc�
tions� Without loss of generality assume that �p�read file a�� evaluates to
true� We write the local version number as an index to the �le�

if �p�read file a�� then write filen 
 else write filen � �vnr � n�
� if �p�read file a�� then write filen 
 else filen�� �vnr � n� 
�
� if true then write filen 
 else filen�� �vnr � n� 
�
� write filen 
 �vnr � n� 
�

There is a con�ict� writing to an old version�nr of the same �le�
The simple remedy using �� is to write the program as follows�

w file a � let x� � �read file a�� x� � write file 
�
x� � write file �� x� � if p x� then x� else x�� x� � x�� x� � x�

in x�

If the expression is �w file a�� where a is some constant� then the program is
I�O�correct�

Lemma��� I�O�correct programs are strongly con�uent on sets of graphic ex�
pressions�

Proof� � Consider two di�erent redexes in the same graphic expression� The
only new case is that there are two interface functions on external objects
involved� If the external objects are di�erent� we have no problem� If there are
two read� or copy �calls� there is no problem in commuting the calls� since we
have assumed that the version�numbers are identical in this situation� In the
case of other redexes� we have a contradiction to I�O�correctness since at least
one of the redexes must be an interface call that updates the version�number�
which would lead to inconsistency after this reduction�

Theorem��� I�O�correct programs are con�uent�

Proof� Follows from strong con�uence�

Whether a program is I�O�correct is undecidable� However� there are several
mechanisms that ensure this property� like monadic programming� or unique
types�

Example �
� Strictness transformations�
Consider the same variant of iterative length as in section 
���

itlength xs s � case xs of nil � s� cons �
itlength �tail xs� �
 � s�

This function is strict in both arguments� Evaluating xs and s before the
itlength body is correct w�r�t� to weak equivalence� For nat � �
��	 the
expression

��



�itlength nat �seq �write file �list has terminated�� � ��

does not write something before the transformation� but after the transforma�
tion� it �rst writes �list has terminated� into the �le and then runs into a loop�
This appears to be a not intended e�ect of the strictness transformation�

Example ��� Correct version of Example ��
Let OUTPUT a e� e be a function that puts its argument in an external store�
and let �INPUT e � a� be a function that retrieves that store� Assume the
value in the external store is � before evaluation� Then consider the following
program�

�let x � OUTPUT 
 e�� y � OUTPUT � e�� z � INPUT y in z�

This program is not I�O�correct� the redexes of �OUTPUT 
 e�� and �OUTPUT � e��
are the critical ones� An I�O� correct program using data dependency is�

�let x � OUTPUT 
 e�� y � OUTPUT � x� z � INPUT y in z�

which is I�O�consistent� and has as only result the integer ��

Example ��� If we extend the functional language to add more concurrency�
then this has its limits� if also the Church�Rosser Theorems should hold� We
consider the extensions� where lock is permitted to lock an �unlocked� external
object without looking at its version number� The intuition is that an unlocked
external object may be modi�ed externally in an uncontrolled way� Then dead�
locks are possible� which may be interpreted as non�termination� We argue that
the Church�Rosser theorems are false� Consider the following example�

all xs � case xs of nil� true�
y � ys� seq y �all ys�

all ��lock e�� �unlock e�� �lock e�	

The expression has a normal form evaluation to true� however there is a reduc�
tion that �rst reduces the two lock�expressions� which results in a deadlock�
hence con�uence does not hold� A simple variation makes obvious� that the
second Church�Rosser theorem is also violated�
Consider the expression

all��lock e�� �lock e�� �unlock e�	

for which the normal order evaluation runs into a deadlock� whereas there is a
reduction that results in true�


 Comments on Compiling a High�level Language
into FPi

We do not intend to describe in full a high level non�deterministic functional
language� Nevertheless� a high level language FPG should have more expressive
power than the core language� It should have

��



� a letrec that can also de�ne functions�

� Lambda�abstraction

� polymorphic typing

� pattern matching

� list comprehensions

� Type classes

In order to de�ne a semantics for FPG� there are always choices� since the
transformations into the core language de�ne their semantics� The following
conventions are sensible ones�

� �letrec � � � f pat � t � � � in � � �� always means that the body t of the
function f should construct a new graph�

� �let�rec� � � � x � t � � � in � � �� means that x is a graph node�

� a function de�ned as f �� � t is a function with arity zero� no node will
be generated�

� The constant functions de�ned on top level are nodes in the graph� i�e�
they are treated as constants� This can be translated as placing them in a
let surrounding the expression to be evaluated rather than as a top�level
combinator in FPi�

Functions de�ned using �letrec � � � f �� � t in exp� can now be lambda�lifted
using the most simple form of extending f by variable arguments� and de�ning
f x� � � � xn � t�x��y�� � � � � xn�yn	� Then shift f to top�level taking care that
it has a unique name� and replace f in the letrec expression and the right
hand sides by �f y� � � � yn�� where y�� � � � � yn are the variables in t� We can use
the same simple form of lambda�lifting for lambda�abstraction� and for other
functions as de�ned in letrec�s� Note that lambda�lifting using maximal free
expressions as done in �PJ��	 is in general not correct in our non�determinisitc
setting� since our graph construction convention does not hold� It is only correct
for deterministic maximal free expressions�
In the presence of type classes as in Haskell� the compiler should not add dic�
tionary parameters to constants that are de�ned as graph nodes� However� this
should be no problem� since the type checker is able to detect this situation�

� Related Work

There is a lot of research on adding non�determinism to functional languages
or to implement I�O facilities� We do not want to comment on strict functional
languages like Lisp � Scheme� or ML� where the reduction sequence is applicative
order and hence �xed� since the approaches are not comparable�
The proposal for non�determinism and I�O in Id using M�structures �BNA�
	
is based on a non�strict� �rst�order functional language� The sequential barrier

��



introduced there is an interesting method that is able to synchronise concurrent
execution of commuting external update operations� it is comparable to our��
though it puts a stronger condition on the execution� It may be interesting to
investigate the compatibility of the approaches�
In the rest of this section� we compare our approach only with proposals for
modern �higher order� polymorphic� non�strict� lazy� functional languages� The
single�threaded polymorphic lambda�calculus proposed in �GH��	 is similar to
ours� it also uses sharing of nodes in the reduction� and it proves Church�
Rosser properties if the programs are well�typed w�r�t� to a single�threaded
polymorphic type system� They do not consider cyclic graphs nor memoryless
interfacing� Predetermining the sequence of external updates is the base of
many approaches� where the programming methodology may di�er either using
monadic programming or continuation based programming �Wad��� HPW���	�
The monadic programming is the current standard in Haskell 
�� �HAB���	� It
is easy to use� since it has an imperative look at the surface� it is functional and
safe� it proves I�O�correctness in our sense� and the Church�Rosser Theorems
hold� Its disadvantage is that the amount of sequentialisation may be too high�
This sequentialisation marks a trend away from declarativeness to procedural�
Another direction that follows the idea of analysing the program� whether the
I�O�operations will be executed in a safe sequence is proposed in �PvE���
PvE��� SBvEP��a� GH��	� A so�called unique type system is implemented
for the functional language CLEAN �PvE��	� This method allows writing side�
e�ecting interfacing� so long as the type�system can verify that there is no
sharing of external references� and that the normal order sequence evaluates
reads before updates� The foundational work on this unique type system is in
�PvE��� SBvEP��a	� The reduction sequence in Clean appears to be �xed as
a normal order reduction� hence there may be a problem in recognising correct
program transformations if a strictness analyser and the unique type system
are in a con�ict�
There is an approach using sets in a functional core language to express non�
determinism �HO��� HO��	� This approach is di�erent from ours� since it can
express amb�
It is interesting that our approach only works� if sharing of expressions is treated
correctly� There are several recent papers that discuss a modellig of sharing in
the ��calculus �AFM���� Lau��� PS��� Yos��� GH��	� A di�erence to these
works is that our approach is based on a calculus of supercombinators with
�xed arities� Furthermore� due to our algorithmic de�nition of reduction� we
have no problems in proving con�uence also in the presence of cyclic reduction
graphs�
The use of linear types as proposed in �Wad��� WR�
	 is also a method to prove
that the execution of a functional program is safe in the presence of I�O�s� and
can be used to prove I�O�correctness�

��



� Conclusion

The non�deterministic functional language FPG is able to perform interaction
with a user or a �le�system without being forced to introduce to much unneces�
sary sequentialisation� The following interactions are possible without loosing
the important properties of pure functional languages�

� Opening a �lled window and getting back an answer in a synchronous
way� i�e�� the execution waits� until the window contents are submitted�

� Asking a random number generator �rnd� without sequentialising the pro�
gram�

� Printing in an arbitrary sequence� if the result of the print is like a non�
deterministic function�

� Updating and reading several external �les� The necessary sequentialisa�
tion is not on the whole external world� but can be done independently
for every �le� The read accesses have to be sequentialised

� Using an array that can be updated in�place and also copied� In this case�
the array is viewed as an external object� This is not problematic for an
array of fully evaluated data objects� Our treatment does not directly
cover the case of an array where functions or closures are permitted as
entries�

A problem may be the discipline by the programmers� For example it is possible
to use an interface function to simulate an external store without informing the
compiler� This programming style is not justi�ed by our treatment of the topic�

References

�Ach��	 P� Achten� Interactive functional programs� models� methods
and implementation� PhD thesis� Computer Science Department�
University Nijmegen� 
����

�AFM���	 Z�M� Ariola� M� Felleisen� J� Maraist� M� Odersky� and P� Wadler�
A call�by�need lambda calculus� In Principles of programming
languages� San Francisco� California� 
���� ACM Press�

�Aug�
	 Lennart Augustsson� A compiler for Lazy ML� In Proceedings
of the ACM Symposium on Lisp and Functional Programming�
pages �
������ 
��
�

�Bar�
	 H�P� Barendregt� The Lambda Calculus� Its Syntax and Seman�
tics� North�Holland� Amsterdam� New York� 
��
�

�BNA�
	 P�S� Barth� R�S� Nikhil� and Arvind� M�structures� Extending
a parallel non�strict functional language with state� In Proc�
Functional Programming Languages and Computer Architecture
����� LNCS ���� pages �������� 
��
�

��



�BvEG���	 H�P� Barendregt� M�C�J�D� van Eekelen� J�R�W� Glauert� J�R�
Kennaway� M�J� Plasmeijer� and M�R� Sleep� Term graph rewrit�
ing� In Proc� Parallel Architectures and Languages Europe
�PARLE ���� LNCS ��� ���� pages 


�
��� 
����

�BW��	 Richard Bird and Philip Wadler� Introduction to Functional Pro�
gramming� Prentice�Hall International� London� 
����

�GH��	 J�C� Guzman and P� Hudak� Single�threaded polymorphic
lambda�calculus� In Proc� of �th IEEE Symposium on Logic in
Computer Science� pages �����
�� 
����

�Gor�
	 A�D� Gordon� functional programming and Input�Output� Cam�
bridge University Press� 
��
�

�HAB���	 K� Hammond� L� Augustsson� B� Boutel� W� Burton� J� Fairbairn�
J� Fasel� A� Gordon� M� Guzm�an� J� Hughes� P� Hudak� T� Johns�
son� M� Jones� D� Kieburtz� R� Nikhil� W� Partain� J� Peterson�
S� Peyton Jones� and P Wadler� Report on the programming
language haskell 
��� Technical report� Department of Computer
Science� University of Glasgow� 
����

�HNMH��	 N�W�O� Hutchison� U� Neuhaus� Schmidt�Schau M�� and C�V
Hall� Natural expert� A commercial functional programming
environment�� J� of Functional Programming� 
���� to appear�

�HO��	 J� Hughes and J� O�Donnell� Expressing and reasoning about
non�deterministic functional programs� In Glasgow workshop on
functional programming ����� Workshops in Computing� pages
�������� Springer�Verlag� 
����

�HO��	 J� Hughes and J� O�Donnell� Nondeterministic functional pro�
gramming with sets� In IV Higher Order Workshop� Workshops
in Computing� pages 

��
� Springer�Verlag� 
����

�HPW���	 Paul Hudak �ed�	� Simon L� Peyton Jones �ed�	� Philip Wadler
�ed�	� Brian Boutel� Jon Fairbairn� Joseph Fasel� Mar�ia M�
Guzm�an� Kevin Hammond� John Hughes� Thomas Johnsson�
Dick Kieburtz� Rishiyur Nikhil� Will Partain� and John Peter�
son� Report on the programming language Haskell� A non�strict
purely functional language� version 
��� 
����

�Joh�
	 T� Johnsson� E�cient compilation of lazy evaluation� In Proceed�
ings of the ACM Conference on Compiler Construction� Mon�
treal� pages ������ 
��
�

�JS�
	 S�B� Jones and A�F� Sinclair� On input and output in functional
languages� In Esprit research reports� proj� 
�� ���� Prospects for
functional programming in software engineering� pages 
���
�
�
Springer�Verlag� 
��
�

�




�KJMdVF��	 J�R� Kennaway� Klop J�W�� Sleep M�R�� and de Vries F�J� An
in�nitary church�rosser property for non�collapsing orthogonal
rewriting systems� In Sleep M�R� et� al�� editor� Term Graph
Rewriting� John Wiley� 
����

�Lau��	 J Launchbury� A natural semantics for lazy evaluation� In Proc�
��th Principles of Programming Languages� 
����

�Man��	 L� Mandel� Constrained Lambda Calculus� Verlag Shaker�
Aachen� Germany� 
����

�Mil��	 Robin Milner� A theory of type polymorphism in programming�
J�Comp�Sys�Sci� 
���
������ 
����

�NSvP�
	 E� G� J� M� H� N!ocker� J� E� W� Smetsers� M� C� J� D� van Eeke�
len� and M� J� Plasmeijer� Concurrent Clean� In Springer Ver�
lag� editor� Proc of Parallel Architecture and Languages Europe
�PARLE����� number ��� in Lecture Notes in Computer Science�
pages �����
�� 
��
�

�PJ��	 Simon L� Peyton Jones� The Implementation of Functional Pro�
gramming Languages� Prentice�Hall International� London� 
����

�PJS�
	 Simon L� Peyton Jones and Andr�e Santos� Compilation by trans�
formation in the Glasgow Haskell Compiler� In Functional Pro�
gramming� Glasgow ����� Workshops in Computing� pages 
�
�
��
� Springer� 
��
�

�PJW��	 Simon L� Peyton Jones and Philip Wadler� Imperative functional
programming� In Proceedings ��th Symposium on Principles of
Programming Languages� Charleston� South Carolina�� pages �
�
�
� ACM� 
����

�PS��	 S� Purushothaman and J� Seaman� An adequate operational se�
mantics of sharing in lazy evaluation� In Proc� ESOP ��� LNCS
���� pages 
���
��� Springer�Verlag� 
����

�PvE��	 Rinus Plasmeijer and Marko van Eekelen� Functional Program�
ming and Parallel Graph Rewriting� Addison�Wesley� Working�
ham� 
����

�PvE��	 R� Plasmeijer and M� van Eekelen� Concurrent clean� Version

��� Technical report� Dept� of Computer Science� University of
Nijmegen� 
���� draft�

�SBvEP��a	 Sjaak Smetsers� Erik Barendsen� Marko van Eekelen� and Rinus
Plasmeijer� Guaranteeing safe destructive updates through a type
system with uniqueness information for graphs� Technical Report
technical report ����
� University of Nijmegen� Department of
Computer Science� 
����

��



�SBvEP��b	 Sjaak Smetsers� Erik Barendsen� Marko van Eekelen� and Rinus
Plasmeijer� Guaranteeing safe destructive updates through a type
system with uniqueness information for graphs� Technical report�
University of Nijmegen� Department of Computer Science� 
����

�SS�
	 M� Schmidt�Schau � External function calls in a functional lan�
guage� In Proc� of the ���� Glasgow workshop on functional pro�
gramming� Workshops in Computing� pages ��
���
� Springer�
Verlag� 
��
�

�Wad��	 P� Wadler� Comprehending monads� In Proceedings of Sympo�
sium on Lisp and Functional Programming� pages �
���� Nice�
France� June 
���� ACM�

�WR�
	 D� Wakeling and C� Runciman� Linearity and laziness�� In
Proc� functional programming languages and computer architec�
ture� LNCS ���� pages �
���
�� Springer�Verlag� 
��
�

�Yos��	 N� Yoshida� Optimal reductions in weak���calculus with shared
environments� In Proc� functional programming languages and
computer architecture� pages �
������ ACM press� 
����

��


