A Partial Rehabilitation of Side-Effecting 1/O:
Non-Determinism in Non-Strict Functional Languages

Manfred Schmidt-Schauf}
Fachbereich Informatik
Johann Wolfgang Goethe-Universitat
Postfach 11 19 32, D-60054 Frankfurt, Germany
Tel: (49) 69 798 28597
E-mail: schauss@ki.informatik.uni-frankfurt.de

June 14, 1996

Abstract

We investigate the extension of non-strict functional languages like
Haskell or Clean by a non-deterministic interaction with the external
world. Using call-by-need and a natural semantics which describes the
reduction of graphs, this can be done such that the Church-Rosser Theo-
rems 1 and 2 hold. Our operational semantics is a base to recognise which
particular equivalencies are preserved by program transformations.

The amount of sequentialisation may be smaller than that enforced by
other approaches, and the programming style is closer to the common one
of side-effecting programming. However, not all program transformations
used by an optimising compiler for Haskell remain correct in all contexts.

Our result can be interpreted as a possibility to extend current I/0-
mechanism by non-deterministic memoryless function calls. For example,
this permits a call to a random number generator. Adding memoryless
function calls to monadic I/O is possible and has a potential to extend the
Haskell I/O-system.

1 Introduction

A useful implementation of I/O is an essential part of a lazy functional lan-
guage, since every application written in a functional language must perform
some I/O8. There are very sophisticated solutions to this problem which re-
tain referential transparency, for example monadic I/O [Wad90, PJW93], as
supported by the current release of Haskell 1.3 [HAB196], continuation based
I/0, synchronised stream I/O (see [Gor94, Ach96, JS91]), or the use of unique
typing [SBvEP93a, PvE93].

The programming style in a lazy functional language is heavily influenced by the
supported I/O-mechanism. Modifying the I/O-behaviour or debugging some
lazy functional program that uses I/O is a black art. It is interesting that novices
in lazy functional programming in general expect that there is some direct (side-
effecting) I/O using a function call. As mentioned in [Gor94], this side-effecting

I/0 is the most widely-used I/O-mechanism in eager functional languages, and
it was also used in an industrial implementation of a lazy functional language
[HNMH96].

In this paper we investigate side-effecting I/O using call-by-need. In Glasgow
Haskell, this method is permitted by marking it as “unsafe I/O”. There are
a several papers that denounce this method as non-referentially transparent
[HO89, HO90], and hence discard it as a serious method for implementing I/O in
non-strict functional languages. The implementation of Clean [NSvP91, PvE95]
uses the method of direct calls via the operating system with a static analysis
method to ensure safe use of this unsafe I/Os. The underlying method is a
unique type system. The direct call method was also used in the industrial lazy
functional programming language Natural EL [HNMH96, SS91] however, only
with minor precaution.

This paper investigates the foundations for non-deterministic lazy functional
languages, such that implementors of lazy functional languages, who are al-
ready using such non-deterministic calls, or who want to use them in the future,
shall have a criterion for recognising the correct program transformations thus
avoiding pitfalls and incorrect program transformations for compiler optimisa-
tions. There are several papers discussing a modelling of sharing in functional
languages and A-calculus [AFM™195, Lau93, PS92, Yos93, GH90]. A difference
to these works is that our approach is based on a calculus of supercombina-
tors. We model sharing using an environment like [Lau93], and reduction as
in the G-machine [PJ87, Aug84, Joh84]|. Our first main result concerns non-
deterministic I/O without memory, like a call to a random number generator, or
a simple interaction with a user using a pop-up window to ask for some input.
The basic notions that we use in this paper are:

1. Graph expressions, i.e., expressions that also reflect sharing properties

2. A non-deterministic choice primitive natchoice that yields some natural
number on reduction.

3. Sets of possible graph expressions that may result from the reduction of
some redex.

Based on this notions, the first result in 2.2 is that reduction of graphic ex-
pressions is confluent for sets of expressions. The consequences are that we can
say exactly, which program transformations are valid or not, and that such a
program can be parallelised. The valid program transformation can roughly be
described as the subset of the usual ones which do not disturb the sharing struc-
ture. Going a bit further, we investigate the explicit I/O-behaviour considering
the multi-set of question-answer pairs that characterise a certain reduction. It
will turn out, that using memoryless non-deterministic I/O, we have that for
every reduction sequence there is also one that uses normal order reduction, has
the same result, and uses a submultiset of the question-answer pairs. This shows
that memoryless non-deterministic interaction of a lazy functional program is
safe.

The next step is to consider I/O with external memory. Since arbitrary use
of I/O in connection with external memory is considered as unsafe, we define

the notion of I/O-correct functional programs, which roughly means that calls
that modify the world, are in the right sequence. For example, monadic pro-
gramming style yields I/O-correct programs. We can show that I/O-correctness
implies set-confluence. This again permits concurrent execution and gives a cri-
terion for the validity of program transformations. The power of I/O-correct
programs is much more useful and flexible, if it is possible to have programming
primitives that sequentialise certain reductions. We consider two possibility:
seq and >. The seqcombinator first evaluates its first argument and then
evaluates the second. The > is restricted to fix the normal order evaluation
strategy as the only permitted one for certain redexes. The combination of
both permits to write flexible programs and also to reason about the possible
program transformations in a natural way.

As a simple introductory example, consider the well-known “counterexamples”
to referential transparency for non-deterministic I/O [HO90], which shows that
there is a difference between call-by-name and call-by-need. Consider the two
supercombinators double and choice, with the defintion.

double x =z + =
choicez y =2
z may be x or y in a non-deterministic fashion.

Note that choice is not like McCarthy’s amb, which is in addition bottom-
avoiding. Then the usual argumentation is that the different reductions of
tdouble(choicel2) have different results:

1. double(choice 12) — doublel - 2
— double 2 — 4
2. double(choice 12) — (choicel 2)+ (choicel2) — 141 —
- 1+2 =
- 2+1 —
- 2+2 =

It is obvious, that the second reduction results in different values. Our argumen-
tation is that the printed (flat) representation of expressions is not appropriate
for reduction in a non-deterministic lazy functional language, since this may du-
plicate non-deterministic calls. An important ingredient of a correct solution is
to preserve the sharing properties. The example above under these restrictions
now behaves as follows:

1. double(choice 12) — doublel - 2
— double 2 — 4

2. double(choice 12) — (let z =choicel2) in z+ x)
— (letz=1inz+x) - 141
— (letzx=2inz+zx) - 242

Now the results are equivalent. In this paper we shall show that this is not an
accident, but that a rigorous treatment shows that this method of reduction
preserves equivalence of the possible outcomes. As an aside, current implemen-
tations of lazy functional languages always perform the reduction that preserves
sharing.

Instead of permitting choice as a primitive in the language, we assume that (un-
restricted) natural numbers are given as an algebraic data type, and that there is

=W W N

Ll

= N

a primitive function natchoice without arguments, which non-deterministically
delivers some natural number on every call. Then choice is implementable as

choice z y = if natchoice > 1 then x else y

The following table indicates the hierarchy of the languages that we will con-

sider:
available syntax non-deterministic syntax additions

FPy, | let(rec) x=... natchoice
caser r of alts
algebraic datatypes, selectors

FpP interface functions
FPy, | seq, >
FPy storage interface functions

FPq | full let(rec)
pattern match
list comprehensions

2 Non-Deterministic Choices: The Language F'F,

This section considers a functional core language extended by a non-
deterministic choice operator.

We use a functional core language F'Py. The syntax for expressions E and
super-combinator definitions scdef is as follows:

<E> = <constant>|(<E><E>)|(cases<E>of<alts>)
|(let<defs>in< E>|(letrec<defs>in<FE>)

<defs> u= (<var>=<E>)"

<alts> u= (<constant>— <E>)T

<scdef> u= <constant> <var>* = <E>

There are algebraic data types with constructors. Every algebraic data type
A has a fixed set of constructors, every constructor has a fixed arity. For
every algebraic data type A there is a case-constant case4. There are selectors
for every argument position of every constructor. The selector sel,; ; is the
selector that extracts the j» component from an expression starting with the
constructor ¢;, which belongs to algebraic type A. We assume that integers are
already defined as an algebraic data type.

The usual restrictions and conventions apply: in a supercombinator definition,
every free variable in the expression is also an argument in cases, the discrimi-
nating constant is a constructor and furthermore, for an algebraic data type A,
the case 4-expressions have an alternative for every constructor of A. Applica-
tions can be written without brackets, where we assume that (a b ¢) is the same
as (a(b ¢)). A program consists of a set of supercombinator definitions and an
expression to be evaluated.

A data object is an expression that is built from constructors only, and all appli-
cations are saturated, i.e. every constructor of arity n is applied to n arguments.
There is one non-deterministic primitive supercombinator natchoice without

arguments that delivers some arbitrary natural number, when evaluated. The
language can be polymorphically typed [Mil78] and we assume that all expres-
sions are well-typed. A term is in weak head normal form (WHNF), if it is
of the form (f ¢, ...t,), and f is a constructor, or a supercombinator of arity
greater than n. A WHNF is a constructor WHNF (CWHNF), if the constant
in front is a constructor, otherwise it is a partial application. A CWHNF is
saturated, if the term is (¢ t1...t,) where c is a constructor of arity n.

A remark on case, is necessary. Instead of permitting case, to be of the
form (case s of ¢1 T1... = S1;...56m ZTm,1 - - Tm(m) — Sm) we instead use
(casee of ¢; — let (z; = sel_ e;...)in ey;...), where sel is some selector.
Note that selectors are strict in their argument, i.e., they can only reduce, if
their argument is in WHNF.

2.1 Reduction

We define reduction in a natural (operational) semantics as in [Lau93], where
an environment-model is used to define the semantics of expressions and to
justify the reductions. A flat expression semantics is not compatible with non-
determinism. For simplicity we assume that all bound variables have a different
name, which can easily be achieved by using a common static scoping method
for renaming variables. Note that as usual, let and letrec differ in their scoping
rules.

An environment U is a finite set of pairs (x,e), where x is a variable name and
e is an expression. We assume that every variable occurs at most once on a
left hand side of such a pair in some environment. An environment models the
graph used in lazy graph reduction systems and is able to represent sharing and
also cycles generated by letrecs. Now we can define a graphic expression. It is
a pair (z,U), where z is a variable and U is an environment. This term (z,U)
directly corresponds to a letrec expression:

letrecz) =ey,...,Ty, = €y in z, where U = {(z1,€1),..., (n,en)}

Note that the z is in general one of the variables z;. In order to simplify the
treatment, we insist on the following convention: Every term on the right hand
side of a pair is either a variable or an application (z y), where x, y are variables,
or a case of the form (caser = of ¢; — z1;...). Every environment can be
brought into this form without changing the meaning by introducing new vari-
ables into the environment. A graphic expression is closed, if the corresponding
/ttletrec has no free variables.

Given an environment U, we let U(z) := e be the direct value of a variable in
U, if (x,e) € U, and otherwise U(z) := x. Let V;(U) be the set of variables
that occur as left hand sides in U. The value of a variable in V;(U) is defined
as an iterated application of U(.):

e if (z,e) € Uand e is not a variable
ev(z) =< evly) if (z,y) € Uand y is a variable
x if z ¢V (U)

There is a chance that this function does not terminate. In this case we define
the result as (2, representing non-termination. It is possible to effectively detect
non-termination, since the environment is finite. We also inductively define
ey (.) for expressions.

A further function is spine; (z) that computes the spine-term for x.

spiney (z) = spiney(e) if(z,e) eU
spiney(c) = ¢ if ¢ is a constant
spiney ((vy) = (spiney(s) y)

spine(t) = undefined, otherwise

If spine;;(t) does not terminate, then let spiney(t) = 2. Note, that it is
decidable, whether spine;(.) terminates, since U is finite. This may occur,
even if the initial program is well-typed, for example the expression (letrec 2 =
x in) gives the environment (z, {(z,z)}), and spine; (z) does not terminate.
We call the leftmost path from a node z to the constant the spine of a node. Now
we define the initial environment and the graphic expression that belongs to
every F Py-expression. This environment is the union of all 1let- and letrec-
defined variables together with their defining expressions, where we add let-
bindings such that the conventions are satisfied. I.e., for a term ¢ we define
Uio = {(z,t)}U{(y,e)|ly = e occurs in some definition of a let or letrec in ¢},
and then transform Uy g into U1 by adding variable definitions for nested terms.
The corresponding graphic expression is (z,U; ;). Note that we have assumed
that different bound variables have different names.

We define the active variables in a graphic expression (e,U) as follows: Let
x Ry y for variables z,y hold if (z,s) € U and y € V(s) and let Rj; be the
reflexive, transitive closure of Ry. Let (z,U) be a graphic expression, then the
ge-simplified form is: (z,U'), where U’ = {(y,s) € Ul|z R}, y}.

Now we can start the reduction with the initial expression as a graphic expres-
sion (e, U).

Definition 1. A redez in (e,U) is a right hand side s in U if one of the following
holds

e spiney(s) is of the form (... (f #1)...2,) and f is a supercombinator of
arity n.

e spiney(s) = (caseyq z of ¢; = z1;...;¢m — Tp,) if spiney(z) is a satu-
rated WHNF with a constructor belonging to A.

e spiney(s) = (sely x) if spiney(z) is a saturated WHNF with a con-
structor belonging to A.

e if spine;(s) = 2
It is decidable whether s is a redex, since the spine is effectively computable.

Definition 2. Reduction: The reduction of redexes in the graphic expression
(e,U) is as follows. The reductions operate either by replacing some right hand
side in U, or by leaving U unchanged, or by removing some pair from U.

e If s is a redex, and spiney(s) = (...(f y1)...yn), and f is a supercombi-
nator of arity n, and f # natchoice. (d-reduction). Then replace s by r/,
where f x1 ...z, = r is the definition of f with completely fresh variables,
where (r',U,) is the graphic expression corresponding to 7. Furthermore
add {(z;,y;)|li =1,...,n} and U, to U.

e If s is a redex, and s = natchoice, then replace s by an arbitrary natural
number 7.

o If spine;(s) = caseyq = of ¢; — Yi;...;Cm — Ym, and spiney(t) =
(i z1...2m())- Then replace s by y;.

o If s is a redex, and spiney(s) = (sela;; y) and spiney(y) =
(¢ #1...2m(1)). Then replace s by z;.

e If spiney;(z) = (2, then we have the reduction relation (e,U) — (e, U).

We assume that after every reduction step, the resulting graphic expressions
is ge-simplified. We can assume that there is no error situation, since we have
assumed that programs are well-typed. We assume This reduction relation is
extended to sets of graphic expressions as follows: {e} UA — E U A, where
{e} — E means that one redex is chosen in e, and E is the set of all possible
reducts. In the case of an natchoice-redex, the set F contains all possible
graphic expressions to which e can be reduced by different choices of a natural
number. In all other cases, the set F is a singleton.

Lemma3. A closed graphic expression can only be reduced to a closed graphic
ETPTESSLoN.

Ezample 1. 1. Let (x,U) be a graphic expression
with U = {(x,constr y 2),(y,u),(z,u), (u,1 +1)}. Reducing 1 + 1 to

2. Consider the example from [PJ87] showing that the G-machine requires
indirections, where we assume that * (times) is a built-in strict function.

ide =z
fy=(dy)xy
main = f (square 4)
square £ = x T

Instead of the pairs (z,c), we replace z by the constant in this example.
The initial environment is:

U ={(z,(f z1)), (21, (square 4))}
Reducing the topmost redex corresponding to z gives:

Ui =

{(z, (y1), (1, (* 92)), (y2, (1dy)), (y, 21), (1, (square 4))}
Reducing the redex corresponding to y» gives:

U2 =
{(]77 (yl y))a (yla (* y2))7 (y27 Z), (zay)a (yaxl)a (3717 (Square 4))}
The only redex is now (square 4).

Us ={(z, (y1 9)), (w1, (* 12)), (y2, 2), (2,9), (y, 21), (z1,16) }
Now the redex is (y; y), and we obtain:

Usg = {(33, 256)7 (yla (* y2))7 (y27z)7 (zay)a (yaxl)a (331, 16)}
Now garbage collection reduces this graphic expression to:

(z,{(z,256)})

2.2 Church-Rosser Property for Sets of Graphic Expressions

We shall show that the reduction as defined above preserves an equivalence
relation between sets of graphic expressions. This is done by showing confluence
for the set of possible reductions w.r.t. to this equivalence.

Definition 4. Two graphic expressions (e1,U;) and (eq, Us) are a-equal, if they
can be transformed into each other by consistently renaming variables. Two sets
of graphic expressions S and Sy are a-equal, if there are mappings 1 : S1 — So
and @9 : So — Sp, such that for every graphic expression e; € Si, ¢i(ey) is
a-equal to ey, and for every ey € So, pa(es) is a-equal to es

In order to have an adequate description of the non-deterministic reduction
process, we describe reduction in terms of sets of graphic expressions. The
reduction starts with a singleton set. If there is an evaluation of natchoice, then
the resulting set contains more than one graphic expression. These expressions
correspond exactly to the reduction possibilities of the initial expression.

In the following we shall show strong confluence for the reduction lifted to sets
of graphic expressions. Note that strong confluence is the property that if a — b
and a — ¢, then there is some d, such that b and ¢ can be reduced to d in at
most one step. Furthermore strong confluence implies confluence [Bar84]. The
reduction is lifted to sets of graphic expression as follows: {(e,U)}UR — SUR,
where S contains all possible graphic expressions that can result from reduction
of a single redex. In the case that natchoice is reduced, S is an infinite set, and
in the other cases, S is a singleton.

Theorem 5. Reduction is confluent on sets of graphic expressions, where we
compare sets using a-equality.

Proof. We show that strong confluence holds. It is sufficient to show this for a
reduction of a singleton set, since then strong confluence can be lifted to sets.
We assume that there is some graphic expression (zg, U) and that there are two
different redexes (z1,e1) and (z2,e3) in U. The corresponding reductions are
(Io,U) — (Io,Ul) and (ﬂ?U,U) — (H?[),Ug).

First we have to analyse the possible overlapping of redexes.

i.) First assume that the two redexes are equal. Then the only interesting
possibility is that the redex expression is natchoice. In this case the sets
of possible reducts are the same, hence we have strong confluence.

ii.)

iii.)

iv.)

vi.)

We show that the situation that z; becomes garbage after reduction of
zo and z9 becomes garbage after reduction of z; implies that z; and zo
are both garbage before the reduction. Suppose, this is false. Then there
is one relational path for R from the initial variable to say z1, which does
not use the variable z2. But then the reduction of z9 cannot change this
path, hence x; is not garbage.

Now we consider the case that e; and ey are different. The only case of
an overlap in the spines may be that spine;(e;) = 2 = spinej(ez2). In
this case, the reductions do not change the expression, hence the outcome
is the same.

In all other cases, there is no overlap of the spines of e; and es:
The variable xzo does not occur in the spine-computation of e; (and
vice versa), since the arities of supercombinators and sel,;; are fixed,
and e; and ey are different. Furthermore, one reduction does not
modify the redex and the corresponding spine computations of the
other redex. The only difference after one reduction may be that the
other redex becomes garbage. Now we have to consider the differ-
ent possibilities. We consider in depth the case of two d-reductions.
Let spinej(e;) = ((---((fi ¥i,1)¥i2)--)¥in@) for i« = 1,2, and let
fi zin ... Zip@y = i be the two supercombinator definitions, where we
assume that variables in the definitions are new. Then the two different
reductions are: U U {(z1,e1), (z2,e2)} — U U {(z1,7r1),(z2,e2)} UU,, U
{(z1,1,91,1), -5 (Z1,0(1), Y1,0(1)) }

— UU{(z1,e1), (z2,72)} UUr, U{(22,1,92,1)5 - - -, ((22,n(2)s Y2,n(2)) }

If there is no garbage collection, then we can reduce the other redex,
since there is no interference in computing the spine. This gives the envi-
ronment: U U {(z1,71), (x2,72)} UUr, U{(21,1,91,1);- -5 (Z1,0(1)> Y1,n(1))}
UUr, U{(22,1,92,1),- - -+ ((22,n(2) Y2,n(2)) }-

It is obvious, that any garbage collection that does not remove (z1,71)
and (z2,72) does not influence the strong confluence. If one redex, say
x2, becomes garbage after a reduction of z, but not vice versa, then the
computation shows, that the final expression can be obtained by garbage
collecting the final environment. Hence this proves strong confluence in
this case.

The other cases, where no natchoice-redex is involved, are treated anal-
ogously.

Now let one redex be natchoice. Since the argumentation above shows
that a redex is not modified after reduction of the other redex, we get
that the common successor is an (infinite) set, where all possibilities to
replace natchoice with a natural number are present.

If both redex are natchoice-redexes, then again there is no overlap, and
the common reduct is a set where the two redexes are replaced by all
possible pairs of numbers.

It is interesting to note, that it is not necessary to consider parallel reductions.
This is a hint that this complication in the common proof of confluence is an
artefact that has its roots in the common flat representation of expressions.
Our reduction on graphic expressions is close to graph rewriting systems and
term graph rewriting systems (see [PvE93, BvEG'87, KIMdVF93]. However,
since graph rewriting systems are not confluent in general, and Theorem 5 states
confluence for reduction of graphic expressions, there must be a difference. This
difference is in the used data-structure and in definition of reduction. We will
illustrate this by an example, which is used to show non-confluence of graph
rewriting systems.

Ezample 2. . Let there be two supercombinators, A, B with definitions A = =
z, B x = z. Consider reducing the expressions

(letrec x = A y;y = B« in (z,y))

As graph rewriting systems, there are two different reducts, corresponding to
(letrec x = y;y = B x in (z,y)) and (letrec z = A yy = z in (z,vy)),
which reduce only to themselves in the definition of graph rewriting systems
(see [PVE93], p. 165), hence confluence does not hold.

If we make the same reductions for graphic expressions, then the reductions are
as follows:

e (letrec x = A y;y = B = in (z,y)) — (letrec =z = z1;21 = yjy =
B z in (z,y)) — (letrec = z1;21 = y;y = 29;22 = x in (z,y)), which
has a cyclic variable reference.

o (letrec z = A y;y = B z in (z,y)) — (letrec z = A y;y = 29329 =
z in (z,y)) — (letrec = = 21521 = y;y = 22;20 = « in (x,y))

Hence there is a common reduct. The problem of graph rewrite systems appears
to be the compact representation of nodes, which does not work in the presence
of so-called black holes.

Now we argue that the second Church-Rosser Theorem also holds for WHNE’s,
i.e., that a normal order strategy will find a weak head normal form if one
exists at all. Therefore, we have to define the normal-order redex (n-o-redex)
of a graphic expression (e, U). First we need an algorithm to check a node for
weak head normal form:

Definition 6. Algorithm: is_whnfy(e,n). Let (x,U) be a graphic expression
and e be some variable that represents a node. The algorithm starts with
is_whnfy (e, 0).

is_whnfy(e,n) =

If e is a constructor then true
If e is a supercombinator and its arity is > n then true
otherwise false
If e is a variable then is_whnfy (s, n) for (e,s) € U
If e = (case...) then false
Ife = (e; e2) then is_whnfy (e, n + 1)

In the cases, where this does not terminate, we simply let the result be false.

10

The topmost redex of (e,U) can simply be found by the following algorithm
“unwind”, where we start with unwind(e).

Definition 7. The algorithm unwind: The algorithm unwind;(s) computes
the left-most, topmost redex for the expression s in the environment U: If
spiney(s) is a redex, then return s. Otherwise:

e if s is a constructor, then Fail.
o if s = ($1£E2)

— If spine;;(s) = {2, then return s.

Ifspine;(s) is a constructor application, then Fail.

If spine;(s) is an application to too few arguments, then Fail.

If spiney(s) is an application on too many arguments, compute
unwindy (z1).

e If s = (case z of ...) then: if is_whnfy (), then the result is s; otherwise,
compute unwindy ().

o If s = (sel z), where sel is a selector: if is_whnfy(z), then the result is
s, otherwise, compute unwindy (z).

e If s = z is a variable, then there is some (z,t) € U. If ey(x) = {2, the
return z else compute unwindy ()

The function unwindy; is terminating. The redexes, where either a cyclic vari-
able dependency or an infinite unrolling of a spine occurs (so-called black holes),
are treated as redexes that reduce the term, but leave it unchanged, which re-
sults in a non-terminating reduction for this term.

We call a reduction on the topmost redex an n-o-reduction. Furthermore, we
denote a one-step reduction relation that reduces the n-o-redex by —, Fur-
thermore, we use — and —» y for transitive closure of — and — y, respectively,

<1 <1 . . .
and = and =»y for denoting the relation generated by zero or one reduction
— or —y, respectively.

Lemma8. Let r,s,t be graphic expressions such that r — s -y t, and r — s
is not an n-o-reduction. Then there exists a graphic expression s’ such that

<1
r =y s =t

Proof. Let the reduction be r — s —x ¢t and r — s be no n-o-reduction. Let
r = (x,,U;),s = (zs5,Us),t = (x4,Uy), and let e, es be the redex in r and s,
respectively. This is only possible, if e is also an n-o-redex in 7. The arguments
in the proof of strong confluence in Theorem 5 and the fact that e; cannot be
garbage, show that it is possible to commute the reductions. Let s’ be such
that » —y s’ using redex ez, and in the case of a redex natchoice, choosing
the same number. Either s’ and ¢ have the same gc-simplified form, if the redex
er is garbage in s, or s’ can be reduced to ¢ using the redex e, and in the case

. . <1
of natchoice, selecting the same number. Hence we have r — s’ =5 ¢.

11

Theorem 9. Second Church-Rosser theorem.

Let (e,U) be a graphic expression. Then every reduction of (e,U) to a WHNF
can be rearranged, such that first there is a normal order reduction to some
WHNF, and afterwards a reduction to the final term.

Proof. Let (e,U) = (€e/,U’), where ¢’ is in WHNF. The last reduction before
reaching a WHNF must be a n-o-reduction, which can be shifted to the start
of the reduction. Using induction on the number of the reductions, we can
rearrange this reduction as claimed.

An interesting property is that the length of an n-o-reduction sequence is not
longer than an arbitrary one to a WHNF, and is hence the shortest one using
our definition of reduction.

There is a surprising application of the result to the confluence properties of
a constrained lambda-calculus [Man95]. This is a lambda-calculus, where con-
straints are permitted in the syntax. These can be seen as external functions
that either fail, if constraints are not solvable, or that may instantiate variables
in a non-deterministic way, if there is more than one solution. Our result is
then that reduction is confluent without prescribing a reduction strategy. How-
ever, there is a small gap to the full lambda-calculus with constraints, since we
consider a combinator reduction system without local definitions.

3 Computational Adequacy of the Natural Seman-
tics

In this section we show that the natural semantics is adequate for deterministic
expressions, i.e., expressions in the language F'Py without natchoice.

We define a reduction system on the flat expressions, which we assume to be
standardized, such that all bound variables have different names.

Definition 10. Reduction — f;,; In these reductions we use replacement of a
variable by an expression. In every case of a replacement, the bound variables
in the expression are renamed to avoid name-clashes.

L) (.. (f t1)...ty) = rlt1/z1, ..., tn/zy] if the definition is: f a1 ...z, =7

ii.) (caseq (...(¢it1)...tp) of c1 —> 815 ...Cp = Sp) —> S;.

)
;)
iii.) (let z = s; binds in #) — (let binds in t[s/z])
v)

)

iv.) (letrec x = s; binds in t) — (letrec x = s; binds in t[s/x])

cases (letrec binds in s) of ¢ — S15...¢, — Sy) —
letrec binds in (case s of ¢; — S1;...Cp —> Sp)

\%

(
(
(
(
(
(

These reductions can be performed for any subterm of some term, including
the terms on the right hand side of a let or a letrec.

12

In the following we intend to describe the correspondence between flat and
graphic expressions and between — f,; and —.

The notion “infinite printed representation” or infinite unravelling (in the ter-
minology of [PvE93]) and the equality shall be the base for the comparison
between reductions of flat and graphic representation of deterministic expres-
sions. The printed representation is a potentially infinite ground expression
(i.e. without let and letrec’s), which may also have the symbol L at leaf
nodes. In order to be able to compare different infinite print trees and to avoid
a non-terminating printing algorithm, we write the definition of the algorithm
such that it produces the print tree up to some given depth m.

Definition 11. Given a flat expression, its print-tree of depth m can be com-
puted as follows: This is a function [.] taking the expressions as argument,
with three further arguments: A set of variables to indicate cyclic references,
the depth, and an environment. The initial call is flat_tree (s) :=[s] 0 m 0

[e] Vmp = c
[z] Vmp = ifz €V then L
else [p(z)] VU{z} m p
[(st)] Vmp = if m =0 then Bot
else([s] 0 (m — 1) p) ([1] 0 (m —1) p)
[case sof ¢; = ;] Vmp = if m =0 then Bot

else (case ([s] O (m — 1) p) of

c1 = [s1] 0 (m—1) p;
en = [5a] 0 (m — 1) p
[let(rec) z=tins] Vmp = [s]V mpU{(z,t)}

Definition 12. The print tree for graphic expressions can be computed using
the function graph tree and [.] as above:

graph tree(z,U) m=[z] 0 m U

Definition 13. i.) Two print-trees are equivalent, if for all depths m, the
computed trees are identical.

ii.) Two expressions (flat or graphic) are pt-equivalent, iff the corresponding
print trees are equivalent

Lemma 14. Let-reductions do not influence the pt-equality of deterministic ex-
Pressions.

Proof. Tt is sufficient to argue that the print tree does not change after a
let (rec)-reduction: If the let-reduction replaces a variable with a non-variable
term, then the argumentation is easy. In case a variable is replaced by a vari-
able, then nothing changes, since this is either a l-variable or a non-bot node
in the tree.

Lemma1l5. Let g be a graphic expression and let e be a flat expression, such
that g and e are pt-equivalent.

13

i.) If g = ¢', then there is some ¢" and some €', such that e = €', and
d 5 q¢" and ¢ and ¢" are pt-equivalent.

ii.) If e — €', then there is some € and some ¢', such that ¢ = ¢', and
e 5 e and ¢’ and €' are pt-equivalent.

Proof. Tt is sufficient to consider d-reductions or case-reductions. Now, every
redex in the expressions maps to a (possibly infinite) set of redexes in the print
tree We can define the minimal set of the redexes in ¢ and e, such that the
corresponding sets of redexes in the original print tree are the same. Reducing
these redexes will give the same tree, where a path in the tree that shrinks from
an infinite one to a finite one will have Bot at a leaf node.

Theorem 16. Let e be an expression and g be the corresponding graphic ex-
pression. Then

i.) g and e are pt-equivalent i

ii.) g has a normal form iff e has a normal form. Furthermore, if both g and
e have normal forms, then these normal forms are identical.

4 Observational Properties of Functional Programs
(FP)

If we look at functional programs as black boxes that interact with the environ-
ment, or with the operating system via interface functions, then the question
of behavioural equivalence of programs must be expressed in terms of interac-
tion sequences with the environment. In this section we consider only interface
functions without memory, i.e., The set of possible values that an interface func-
tion can return is completely determined by the (fully evaluated) arguments.
Therefore, we have to extend the core language in order to make the interface
functions explicit and hence we will extend the syntax of sets of graphic ex-
pression, such that also the I/O-history can be compared. We do not use the
Unix-model of a standard-input and output stream, but a simple blocking call-
mechanism that transfers some data to the outside world, and then waits, until
some data comes back, which are then consumed by the functional program.

4.1 Church-Rosser Properties

Definition 17. We add a new class of supercombinators: interface supercom-
binators. These combinators have a fixed arity and a monomorphic type, the
arguments and the output are data objects, and they are hyperstrict, i.e., the
arguments must be in normal form, before the interface supercombinator can
be reduced. These interfaces have no defining body in the functional language.
It is assumed that the mapping from arguments to the result is done externally.
Furthermore the result may be non-deterministic, however, the functions have
no memory, i.e., the set of possible values is only determined by the input ar-
guments. The definition of redex and reduction is adapted to these interface
supercombinators.

14

We can simulate the interface supercombinators using the natchoice-function
as far as the resulting graphic expression is concerned. Thus we already can
inherit the properties like the Church-Rosser Theorems, if we are not interested
in the interaction with the operating system. L.e., we have:

Theorem 18. Reduction on Graph expression has the following properties.
i.) Reduction is confluent on sets of graphic expressions

ii.) Bvery reduction to a WHNF can be rearranged into a normal-order re-
duction that requires an equal number of less reductions steps than the
original reduction.

Proof. The behaviour of the interface functions can be simulated using
natchoice. This requires a potentially infinite number of cases in the definition
of the interface function, however, this does no obstacle. The argumentation
on the lengths of reduction steps can be inherited from section 2, if we do not
count the reductions that are necessary to simulates the interface.

Now we consider the input-output behaviour of functions.

Definition 19. A question-answer pair consists of: i) the question, i.e., the
interface function together with its arguments and ii) the result. A reduction red
from a to ¢, where a and c are graphic expressions is a sequence a —,, ... =, C,
where —,., contains all the information to execute the reduction.

We are interested in the question-answer pairs of a reduction. If we consider
them as a multiset, then we denote them by QAyg(red), and considered as a
list, we denote them by QAf(red).

n

Now we can prove an improvement of the second Church-Rosser Theorem that
takes into account the QA-multisets of the reduction.

Theorem 20. Let red = a —+, ... =, ¢ be a reduction, where c = f ¢1...¢cp
is a WHNF. Then there is a normal order reduction red,, = a — ... — d, such
that d is in WHNF and d = f di ...dy, and d; is reducible to c;. Moreover we

have QAprs(red) C QA s(redy,).

Proof. In a similar way as in the proof of the Church-Rosser Theorem 9 above,
we can commute reductions until a reduction in normal order is obtained. The
question-answer pairs are either permuted, or dropped, or shifted in the reduc-
tion after a WHNF has been reached.

This theorem states that for every reduction that is performed in an arbitrary
order, the interactions with the world can be divided into necessary ones and
redundant ones, where the necessary ones are exactly those that are required
in the corresponding normal order reduction. However, the sequence of the
questions may be permuted.

Note that the condition on hyperstrictness is only a pragmatical one, which may
be dropped without loosing any nice properties. However, if hyperstrictness

15

does not hold, then we have to specify exactly to which extent every interface
has to evaluate its arguments. This would complicate specification of interface
functions and reasoning about the language. In general, the hyperstrictness
restriction does not limit the expressiveness of the language, since functions that
behave like non-hyperstrict interface functions can in general be implemented
in the functional language using some hyperstrict interface functions.

4.2 Equivalence Relations on Programs

We shall define a notion of equivalent programs with memoryless interface func-
tions. We assume that programs have a type that corresponds to a data object.

Definition 21. Let A be an F'Pj-program. Let Ry (A) = {(QAr S(red), c)|red
is a normal order reduction terminating with a CWHNF starting with construc-
tor c}.

Let Rs(A) = {(QAL(red),c)|red is a normal order reduction terminating with
a CWHNF starting with constructor c}.

i.) Two programs A and B are called weakly behaviourally equivalent, iff
Rw (A) = Rw(B).

ii.) Two programs A and B are called strongly behaviourally equivalent, iff
Rg(A) = Rs(B).

The pairs for the non-terminating normal-order reductions: (QAS(red), L)
and (QAr(red), L) are not added to the definition. The intuition is that I/O
contributes to the computation of a value, not vice versa. If the emphasis of
the program is on side-effecting, then it might be necessary to modify these
equivalencies to include these pairs (see also the strictness transformation in
section 4.3). Unfortunately, it is hard to distinguish weakly equivalent programs
on the base of their I/O-behaviour. If we have two programs in two black boxes
that both use normal order reduction, where every call to an interface function
is observable, and if our task is to prove that the programs are different, then
we have a hard job. If both A and B yield the same result, and the multiset
of question-answer pairs is different for A and B, we do not know whether the
programs are different. Another situation, where we cannot conclude that A
and B are different, is that the multiset of question-answer pairs is equal, but
the result is different.

Ezxample 3. . This example demonstrates the problems of weak equivalence.
Let ask_int be an interface function that has no arguments and returns some
integer
i.) main = if (ask_int) > (ask_int) then 1 else ask_int
reduction 1: The input sequence is 1,2,1; the result is 1

reduction 2: The input sequence is 2,1; the result is 1.

16

ii.) main = if (ask_int) > (ask_int) then 1 else 2
reduction 1: The input sequence is 3,2, the result is 1

reduction 2: The input sequence is 2,3, the result is 2

Lemma 22. .

i.) Given a program P, the set Rs(A) can be viewed as a (partial) function
from lists of question-answer-pairs to results.

ii.) If for two programs A and B, Rg(A) contains a pair (L,c), and Rg(B)
contains a pair (L,d), where ¢ # d, then A is not strongly equivalent to

B.

This lemma means that strong equivalence of programs can be tested using
the black box model of programs. If the same list of question-answer pairs
yields different results for the two programs, then the programs are not strongly
equivalent.

However, nice as it may be, strong equivalence means more or less that sequen-
tial order of normal order reductions has to be respected by an implementation.
This prevents for example to exploit the information of a strictness analyser, it
also prevents parallelisation of functional programs.

I am of the opinion that it is more desirable to permit concurrent execution and
a lot of optimisations, and thus to use weak equivalence as a base for program
transformations.

4.3 Transformations on F'P;-Programs

Now we have criteria to judge the validity of program transformations w.r.t.
the defined equivalencies. Note that now all program transformations must be
seen as transformations on graphic expressions rather than flat expressions.
We will have a look at the transformations mentioned in [PJS94]

Transformation: §-reduction, case-reduction (partial evaluation)

The d-reduction and case-reduction preserve strong equivalence of programs,
as can be seen by inspecting the proof of the second Church-Rosser Theorem.
However, it is not permitted to evaluate interface functions. The question-
answer behaviour is not affected.

Transformation: interface reduction

This reduction does not preserve strong or weak equivalence, since after the
reduction one question-answer pair is missing.

Now we consider some simple (humble) program transformation [PJS94].

Transformation caseover casewith functions as globally defined.

case (case e of ¢; — 81,...,Cy —> 8p) Of di = t1,...,dp — t,, transforms to:

(let 1 =t1,...,%m = by, in (case e of ¢; — (case s 0f di = X1y.. sy dm = T);
o
cn — (case sp of di = Z1,...y..ydm — Tm))

17

where z; are new variables. This transformation preserves equivalence, since
the normal order reduction sequence is not affected.

Transformation: Using strictness information, evaluate an argument of a func-
tion before evaluating the body.

This transformation is not correct w.r.t. strong equivalence, since question-
answer pairs may occur in a different sequence after transformation. If it is
known, that an argument will be evaluated if the function application is evalu-
ated, then the evaluation of the argument can be done before evaluation of the
body. In the case, that the function application does not terminate, but the
argument is not evaluated, then the transformation is not correct.

Example 4. Consider the length function, then it is correct to evaluate the
spine of the list before evaluating length.

Ezample 5. Consider a variant of iterative length

itlength s s = case zs of nil — s;cons —
itlength (tail zs)(1 + s)

A strictness analyser will tell that this function is strict in both arguments.
Evaluating s before the itlength body is correct w.r.t. to weak equivalence,
however, this may have some strange effects for infinite lists: Let nat = [1..]
and seq be a function that first evaluates the first argument, then the second,
and results in the evaluated second argument. The expression

(itlength nat (seq(print “list has terminated”) 0))

prints nothing and runs into a loop before the transformation, but after the
transformation, it first prints “list has terminated” and then runs into a loop.

Transformation. Common subexpression elimination: Is in general incorrect,
since it destroys the sharing structure of the expression.

Transformation. function inlining

Is in general not correct w.r.t. the equivalencies. It is only correct, if the sharing
structure is not changed. This is the case, if for some function to be inlined,
the arguments occur at most once in the body.

Definition 23. Deterministic expressions.
This is an expression of a data object type, and there are no reductions of
interface redexes necessary to evaluate it to normal form.

Within these expressions, all program transformations as in deterministic lazy
functional languages can be used.

In the following we give some counter examples that demonstrate some pitfalls
in transforming programs, and also in transforming functions from lambda-
calculus into our language.

18

Example 6. Partial evaluation is in general not correct

Consider the following definition:

f zy=((ask-int) + z) x y

The evaluation of (map (f 1)[1,2]) in the permitted reduction sequence gives:
(map (f 1)[1,2]) = [(f11),(f 12)] = [(a+1)%1, (b+1)%2], where a and b are the
two different answers to the question (ask-int). Using partial evaluation gives:
(map(7 1)[1.2]) — (map(.((ask-int)+ 1) +p)[1,2)) > (map (\y-(a-+1)) [1,2]
— [(a+1) x 1, (a + 1) % 2], where a is the answer to the one question.

This is different from the first if interpreted as a set of results.

Ezample 7. . The example above also shows that the translation of the lambda-
calculus in the combinator calculus is not unique. Consider the expression

map((Az.\y.(ask_int + z) * y)1)[1, 2]

One possibility of translation is in the example above. The other one is to use
lambda-lifting:

map(Az.(Az.\y.(ask-int + z) x y) = 1)[1,2]

This translates into a supercombinator definition and a modifed expression:
Fzy=(ask_int 4+ 2) xy
map (Az.F z 1) [1,2]

A further translation gives:

Fzy=(ask.int 4+ 2) xy
map G [1,2]
Gz=Fzl

4.4 McCarthy’s amb

It is not possible to simulate McCarthy’s bottom-avoiding, non-deterministic
choice operator amb, which behaves as follows

ambzr L = =z
amb Ly = y
ambz y = choicez y

This would permit to have a parallel disjunction V, which is implementable
using amb:

zVpy=amb (zVy) (yVa)

However, it is not hard to see that the existence of V,, violates the second
Church-Rosser theorem, hence amb cannot be defined in our language.

It is possible to simulate choice using natchoice, however, the other direction
is not true, which can simply be seen as follows: natchoice can generate a
non-deterministic choice between a countable number of elements in on step.
However, choice must generate this set step by step, with at most duplicating
the set in every reduction. Infinity can only be reached at the cost of non-
termination.

19

Example 8. External store cannot be simulated using non-deterministic inter-
facing: As mentioned above, the natchoice functions permits us to simulate
(the internal effects of) external interfacing functions. For example, the NEL-
function ASK_INT [HNMH96] that prompts the user to input some integer can be
simulated by the natchoice functions. More complicated functions can also be
simulated. However, it is interesting to note, that it is not possible to simulate
an external modifiable global variable:

A sequential execution that first writes n in external store that later can be
retrieved can not be simulated by memoryless interface functions, since this
would contradict confluence:

Suppose the functionality is as follows: OUTPUT is a function that puts its ar-
gument in an external store, and returns T, and let INPUT be a function that
retrieves that store. Assume the value in the external store is 0 before evalua-
tion. Then consider the triple (OUTPUT1, OUTPUT2, INPUT).

It has set-reductions as follows:

1) (T,0UTPUT2, INPUT) — (T, OUTPUT2,1) — (T,T,1)

2) (OUTPUTL, T, INPUT) — (T,OUTPUT2,2) — (T, T, 2)

Since we can determine all reduction sequences, we see that reduction 1 pro-
duces a different resulting (unit-) multiset than reduction 2. Thus the function-
ality that permits external store enforces non-confluence, hence such a func-
tionality cannot be simulated in the language F'P;.

5 Enforcing Order of Evaluation: F'P,

The programming language F'P;, though at a low level, has sufficient expres-
siveness. However, in practice it may be helpful to have some sequentiality
restrictions for the reduction. For interfacing with the external world, the se-
quentialisation primitives are not necessary for ¥’ P;, but they are necessary for
the languages F'P3 that permits to interface external memory and files. Thus
this section can be seen as a preparation for the next section.

In this section we shall add two primitives to the language that are intended
to control evaluation. The seq is a combinator of two arguments that first
evaluates its first argument, then forgets the value and proceeds evaluating the
second. The > primitive indicates that for two (potential) redexes x and vy,
only the reduction sequences are permitted that first perform one reduction step
for z and then reduce y. From a programmers point of view, seq permits to
change the normal order sequence of programs, whereas > does not change the
normal order sequence, but enforces the compiler to take care that the normal
order sequence of reduction for two redexes holds for all executions.

e There is an extra function seq with the following behaviour:
(seq z y): first it evaluates z to WHNF, then the result is (the WHNF

of) y.
e let(rec) is extended, respectively modified as follows:

<E> = ...|let(rec)<defs><seq>* in <E>|...
<seq> u= <var> > <var>

20

Environments U have to be adapted to suit these sequentialisation pairs. We
simply add them as marked pairs to the environment, denoted by x > y. Note
that seq can be implemented using strict ([BW88]:

Let K2 £ y = y. Then seq = (strict K2)

The primitive > cannot be used without restriction. In order to formulate
these restrictions, we need some preparation. The sequentiality primitive > can
only be used in the body of super combinators, hence we will investigate this
situation. First we define the notion of a potential redex in a super combinator
body.

Definition 24. A potential redex in a body is
e a redex in the body
e a case-expression

e an expression (... (f x1)...)x,), where f is a strict super combinator like
seq or a selector, and the arity of f is n.

A body of a supercombinator can be represented as an environment with free
variables, where the free variables are the argument variables. Let U be the
environment corresponding to the body of a super combinator, and e be a non-
variable expressions, then let the set of aliasing variables AV (e) be the set of
all variables that directly or indirectly point to e: AVy(e) = {z|z R* e}. For
variables z, we define a similar notion: Ay (z) = {y|ly *R* z}, where *R* denotes
the symmetric, transitive and reflexive closure of R. Now we can formulate the
restrictions for >>:

e seq and > can only occur in the body of a supercombinator definition,

e For every supercombinator body U and variables x > y, the variables z
and y must be aliasing variables for potential redexes, and furthermore

z € Ap(y).

e For every supercombinator f of arity n with body U and variables z,y
with £ > y in U, no normal order evaluation of f ¢1...t, evaluates the
expression corresponding to y before x, where normal order evaluation is
meant ignoring the >>-pairs.

The usage of >-pairs is stronlgy restricted. The restrictions are sufficient for
programming purposes, such as to enforce evaluation of a condition before the
evaluation of an expression in some alternative. The first-order restriction on
potential redexes is not too severe a restriction. The restrictions are strong
enough to prevent >>-cycles. Furthermore, a proof of confluence is possible. It
is not hard to find simple static analysis methods that are sufficient to ensure
the constraints.

Definition 25. Redex and reduction.

21

e A FPj-redex is a non-variable right hand side e of a pair (z,e) in an
environment, Furthermore, for all y € Ay (z), there is no further variable
z with z > y. In addition, (seq u v) is a redex, if spine;;(u) is a WHNF.

e A reduction does not only replace the redex s by a term, but also removes
all pairs z > y, where z € AV (s).

The algorithm unwind now has to be adapted to the seq-redexes, but there is no
change for the >-pairs, since these pairs have no influence on the sequence of the
normal order reduction. The influence of the >>-pairs are the permitted program
transformations and the permitted concurrent executions. There is a difference
between seqand >>: The seqg-constructs sequentialises evaluation by enforcing
the normal order reduction to take a different path, whereas the > does not
influence the normal order reduction sequence, but is only an affirmation of the
normal order sequence. In effect, the > is only a special notation for preventing
certain transformations.

Ezample 9. The > is a method that is able to sequentialise the condition and
alternatives of a case:

f x=1f x > 0 then print “+” else print 7 —7.

First executing the prints, and then computing the comparison, then deciding
which alternative, is a valid execution sequence for this program. However, it
is an undesired one. Using seq does not really help:

fx= let x1 =z >0; xo =print “+7; x3 =print “—7; x4 = if 1 then zs elsexs
in (seq 71 x4).

This permits the same reduction sequences as before. Any execution according
to the semantics has no hints on the intended sequencing of the function. Us-
ing >, it is possible and easy to program the intended and correct reduction
sequence:

fx= let z;=2>0;20= print “+7; z3 = print " —”; x4 = if x; then x, else z3;
X1 > Ta; g > T3, Ty > T2
in 4

The only valid reduction sequence is to reduce xz; > 0, then the if, and finally
one of the print expressions.

Theorem 26. Reduction in F'P, is Church-Rosser.

Proof. Adding the segprimitive is no problem, hence we concentrate on the
>-pairs. We have to consider the case that there are two redexes (z1,e1) and
(x2,e2). The restrictions enforce that for all variables z in Ay (z1) and Ay (x3),
there is no variable y, such that ¥y > z. Reducing the redexes, we can find
a common reduct, such that strong confluence holds, provided the reductions
are possible in F'P,. If the reduction of e; is a d-reduction, then there can
be some new >>-pairs, but it is not possible, that x5 is constrained, since all

22

new variables point also to new potential redexes. It is also not possible, that
the reduction adds a variable to AVyr(eq), such that z, is sequentialised after
another reduction. The reason is that reduction in F'P; is defined, such after a
reduction of a redex corresponding to y, all pairs y > z are removed.

In summary, the reduction in F'P; is strongly confluent, and hence confluent.

Example 10. Consider the following function:

wrong z = lety=142z;2=24+2;y>2inseq 2y

This definition is not correct w.r.t. our restrictions, but it does not conflict
with the confluence theorem, since we have not used the restriction that > is
compatible with normal order. However, it is not possible to reach a WHNF of
(wrong 1) in a normal order reduction.

Using the restrictions, we can show the second Church-Rosser Theorem:

Theorem 27. In F P, for every term that has a WHNF, o« WHNF can be
reached using normal order reduction.

Proof. . Tt is easy to see that the Church-Rosser Theorem holds for F'P; + seq.
Hence we prove this for the addition of > to F'P; extended by seq. It is suffi-
cient to prove that every n-o-redex is also an n-o-F Py-redex. Since this holds
for the language F'P;+seq, we can assume there is a normal order reduction ig-
noring the >>-pairs. This normal order reduction will now sometimes introduce
>-pairs. However, the restrictions guarantee, that the >-pairs do not influ-
ence the normal order restriction, i.e., in the reduction, every used n-o-redex is
a redex that is not constrained by >>.

The unique typing method in Clean appears to rely on the normal order re-
duction [PvE95], which means that there is no solid base for distinguishing
valid from non-valid program transformations. The only criterion is that the
normal order reduction sequence should not be modified, if this influences the
unique objects. The method of adding >>-pairs could be a way to enhance the
exactness of the methods for sequentialising programs and recognise the valid
program transformations.

6 Access to Files and External Store - F' P;

The aim of this section is to demonstrate that using the interfacing to access
files and other external store can be done by side-effecting functions. Since we
are on a rather low language level, we shall give a rather simple but undecidable
criterion that retains the Church-Rosser property. In this paper we do not inves-
tigate analysis techniques to ensure this property. There are already techniques
either to enforce sequentiality and single-threadedness like monads [Wad90] or
the system of uniqueness types [PvE95, SBvEP93b], that are sufficient for this
condition.

Definition 28. Language extensions for F Ps:
F' Py extends the language F'P, as follows.

23

e There is a specific algebraic data type “external object”. The attributes
are:

— unique identifier (for example a name)
— lock-status (may be locked or unlocked)

— version number (some natural number)

This version number is used like a time stamp.

e External objects can be of a type copy / nocopy and deterministic / non-
deterministic.

This makes 4 different types. For example, if arrays are treated as external
objetcs, then they may have the attribute copy, whereas databases should
have the attribute nocopy. External objects like sensors may be candi-
dates for the non-deterministic kind of external object. But also files may
be viewed as non-deterministic, since they may answer with I/O-error on
a read-request instead of the expected sentence.

e There are the following classes of interface functions on external objects:

— read functions: locked external object as argument, no external ob-
ject out

— update functions: locked external argument in and out

— lock/unlock functions
lock: unlocked in and locked out
unlock: locked in and unlocked object out.

— copy: one copyable external object as input, a copy of the object as
output.

e There is an automatic run-time bookkeeping of version-numbers. For
every identifier of type external object, there is an entry in the book-
keeping table that keeps the actual version-number of the external objects
and their lock-status.

e There are the following restrictions on functions and expressions:

— The algebraic data type“external object” cannot be cased, i.e., there
is no case-constant for this type.

— there are interface-functions that may have external objects as a part
of the input argument or as part of the output. We assume, that the
input and the output, respectively, contain at most one such external
object.

— The object-id and the version-number determine the results of an
interface function (either deterministically or non-deterministically).
In the deterministic case, the result is always the same for the same
arguments and the same version-number. In the non-deterministic
case, the possible outcomes are in a set that is determined by the
external object and the version-number.

24

— Update, lock and unlock have as result always the same external
object with the version-number increased by 1.

Initially, all external objects are locked.

A copy function should have a new object-id in the output

update, read, copy and unlock can only operate on an external
object that is marked “locked” in the book keeping table. Lock can
only operate on an external object that is marked as not locked.

For the next definition we assume that graphic expressions are ge-simplified.

Definition 29. An F P,-program is I/O-correct iff for every possible reduction:

e every read, update, and unlock always uses the external object with the
actual version-number and the lock-status “locked”.

e every lock always uses the external object with the actual version-number
and the lock-status “unlocked”.

There is an alternative to this definition, requiring only for every normal order
reduction that there are no accesses to old versions of external stores. This,
however, has the disadvantage that it is not compatible with parallelisation and
several optimisations done by a compiler.

Lemma 30. If a program is I/O-correct , then for all possible reductions:

If there are two different redexes for the same external object, and the redexes
are interface-function applications, then these can only be read or copy functions
and furthermore the version-numbers must be identical for these redexes.

Proof. If there are two different redexes with interface applications, where one
is neither a read nor a copy, then the two possibilities of reducing the redex
show that at least one does not satisfy the I/O-correctness restriction.

This, however, is not a sufficient criterion for I/O-correct programs:

Ezample 11. Tt is not possible to use only criteria for overlapping redexes with-
out looking for the version number:

let e = update...¢;
(a,er) = update ¢y
in (read a e)

In this expression, there is only one redex, namely update . ..e. After evaluating
this redex, there are two redexes, that violate the criteria above.

Ezample 12. Without the >>-primitive it is not easy to write I/O-correct sensi-
ble functional programs without rearranging or reprogramming. Consider the
function w, where we assume that read is some read-function for files and write
writes something into the file.
w file a = if (p(read file a)) then write file 1
else write file 2

If the expression (w file a) is reduced, then the next expression is:

25

if (p(read file a)) then write file 1 else write file 2

which contains 3 redexes. Without >, there is always a wrong path for reduc-
tions: Without loss of generality assume that (p(read file a)) evaluates to
true. We write the local version number as an index to the file.

var = n)

vor =n + 1)
vor =n + 1)
vor =n + 1)

if (p(read file a)) then write file, 1 else write file, 2 (
— if (p(read file a)) then write file, 1 else file,; (
— if true then write file, 1 else file,; (
— write file, 1 (
There is a conflict: writing to an old version-nr of the same file.
The simple remedy using >>, is to write the program as follows:

wfilea= let 1z, = (read file a); zo = write file 1;
r3 =write file 2; x4 = if p x1 then x5 else 3; T4 > x9; T4 > T3
in 4

If the expression is (w file a), where a is some constant, then the program is
I/O-correct.

Lemma 31. I/O-correct programs are strongly confluent on sets of graphic ez-
Pressions.

Proof. . Consider two different redexes in the same graphic expression. The
only new case is that there are two interface functions on external objects
involved. If the external objects are different, we have no problem. If there are
two read- or copy -calls, there is no problem in commuting the calls, since we
have assumed that the version-numbers are identical in this situation. In the
case of other redexes, we have a contradiction to I/O-correctness since at least
one of the redexes must be an interface call that updates the version-number,
which would lead to inconsistency after this reduction.

Theorem 32. I/O-correct programs are confluent.
Proof. Follows from strong confluence.

Whether a program is I/O-correct is undecidable. However, there are several
mechanisms that ensure this property, like monadic programming, or unique

types.

Ezxample 13. Strictness transformations.
Consider the same variant of iterative length as in section 4.3:

itlength zs s = —case xs of nil — s8; cons —
itlength (tail zs) (1 + s)

This function is strict in both arguments. FEvaluating zs and s before the
itlength body is correct w.r.t. to weak equivalence. For nat = [l..] the
expression

26

(itlength nat (seq (write file “list has terminated”) 0))

does not write something before the transformation, but after the transforma-
tion, it first writes “list has terminated” into the file and then runs into a loop.
This appears to be a not intended effect of the strictness transformation.

Ezample 14. Correct version of Example 8.

Let OUTPUT a e — e be a function that puts its argument in an external store,
and let (INPUT e — a) be a function that retrieves that store. Assume the
value in the external store is 0 before evaluation. Then consider the following
program.

(let & = OUTPUT 1 e,y = OUTPUT 2 ey, z = INPUT y in z2)

This program is not I/O-correct, the redexes of (OUTPUT 1 eg) and (OUTPUT 2 ¢g)
are the critical ones. An I/O- correct program using data dependency is:

(let & = OUTPUT 1 e,y = OUTPUT 2 z,z = INPUT y in z)

which is I/O-consistent, and has as only result the integer 2.

Ezxample 15. If we extend the functional language to add more concurrency,
then this has its limits, if also the Church-Rosser Theorems should hold. We
consider the extensions, where lock is permitted to lock an (unlocked) external
object without looking at its version number. The intuition is that an unlocked
external object may be modified externally in an uncontrolled way. Then dead-
locks are possible, which may be interpreted as non-termination. We argue that
the Church-Rosser theorems are false. Consider the following example:

all zs = case s of nil — true;

y:ys — seqy (all ys)
all [(lock e), (unlock e), (lock e)]

The expression has a normal form evaluation to true, however there is a reduc-
tion that first reduces the two lock-expressions, which results in a deadlock,
hence confluence does not hold. A simple variation makes obvious, that the
second Church-Rosser theorem is also violated:

Consider the expression

all[(lock e),(lock e), (unlock e)]

for which the normal order evaluation runs into a deadlock, whereas there is a,
reduction that results in true.

7 Comments on Compiling a High-level Language
into F'P,
We do not intend to describe in full a high level non-deterministic functional

language. Nevertheless, a high level language F' Pg should have more expressive
power than the core language. It should have

27

a letrec that can also define functions,

Lambda-abstraction

polymorphic typing

pattern matching

list comprehensions
e Type classes

In order to define a semantics for F'Pg, there are always choices, since the
transformations into the core language define their semantics. The following
conventions are sensible ones.

e (letrec... f pat =t ... in...) always means that the body ¢ of the
function f should construct a new graph.

e (let(rec)...z =t...in...) means that z is a graph node.

e a function defined as f () = ¢ is a function with arity zero, no node will
be generated.

e The constant functions defined on top level are nodes in the graph, i.e.
they are treated as constants. This can be translated as placing them in a
let surrounding the expression to be evaluated rather than as a top-level
combinator in F'P;.

Functions defined using (letrec... f () =t in exp) can now be lambda-lifted
using the most simple form of extending f by variable arguments, and defining
fx1...xn = tlx1/y1,...,2Zn/yn]. Then shift f to top-level taking care that
it has a unique name, and replace f in the letrec expression and the right
hand sides by (f y1...yn), where yi,...,y, are the variables in t. We can use
the same simple form of lambda-lifting for lambda-abstraction, and for other
functions as defined in letrec$. Note that lambda-lifting using maximal free
expressions as done in [PJ87] is in general not correct in our non-determinisitc
setting, since our graph construction convention does not hold. It is only correct
for deterministic maximal free expressions.

In the presence of type classes as in Haskell, the compiler should not add dic-
tionary parameters to constants that are defined as graph nodes. However, this
should be no problem, since the type checker is able to detect this situation.

8 Related Work

There is a lot of research on adding non-determinism to functional languages
or to implement I/O facilities. We do not want to comment on strict functional
languages like Lisp , Scheme, or ML, where the reduction sequence is applicative
order and hence fixed, since the approaches are not comparable.

The proposal for non-determinism and I/O in Id using M-structures [BNA91]
is based on a non-strict, first-order functional language. The sequential barrier

28

introduced there is an interesting method that is able to synchronise concurrent
execution of commuting external update operations, it is comparable to our >,
though it puts a stronger condition on the execution. It may be interesting to
investigate the compatibility of the approaches.

In the rest of this section, we compare our approach only with proposals for
modern (higher order, polymorphic, non-strict, lazy) functional languages. The
single-threaded polymorphic lambda-calculus proposed in [GH90] is similar to
ours, it also uses sharing of nodes in the reduction, and it proves Church-
Rosser properties if the programs are well-typed w.r.t. to a single-threaded
polymorphic type system. They do not consider cyclic graphs nor memoryless
interfacing. Predetermining the sequence of external updates is the base of
many approaches, where the programming methodology may differ either using
monadic programming or continuation based programming [Wad90, HPW*92].
The monadic programming is the current standard in Haskell 1.3 [HABT96]. Tt
is easy to use, since it has an imperative look at the surface, it is functional and
safe, it proves I/O-correctness in our sense, and the Church-Rosser Theorems
hold. Its disadvantage is that the amount of sequentialisation may be too high.
This sequentialisation marks a trend away from declarativeness to procedural.
Another direction that follows the idea of analysing the program, whether the
I/O-operations will be executed in a safe sequence is proposed in [PvE93,
PvE95, SBvEP93a, GH90]. A so-called unique type system is implemented
for the functional language CLEAN [PvE95]. This method allows writing side-
effecting interfacing, so long as the type-system can verify that there is no
sharing of external references, and that the normal order sequence evaluates
reads before updates. The foundational work on this unique type system is in
[PvE95, SBvEP93a]. The reduction sequence in Clean appears to be fixed as
a normal order reduction, hence there may be a problem in recognising correct
program transformations if a strictness analyser and the unique type system
are in a conflict.

There is an approach using sets in a functional core language to express non-
determinism [HO90, HO89]. This approach is different from ours, since it can
express amb.

It is interesting that our approach only works, if sharing of expressions is treated
correctly. There are several recent papers that discuss a modellig of sharing in
the A-calculus [AFM 195, Lau93, PS92, Yos93, GH90]. A difference to these
works is that our approach is based on a calculus of supercombinators with
fixed arities. Furthermore, due to our algorithmic definition of reduction, we
have no problems in proving confluence also in the presence of cyclic reduction
graphs.

The use of linear types as proposed in [Wad90, WR91] is also a method to prove
that the execution of a functional program is safe in the presence of I/O’s, and
can be used to prove I/O-correctness.

29

9 Conclusion

The non-deterministic functional language F' Pg is able to perform interaction
with a user or a file-system without being forced to introduce to much unneces-
sary sequentialisation. The following interactions are possible without loosing
the important properties of pure functional languages:

Opening a filled window and getting back an answer in a synchronous
way, i.e., the execution waits, until the window contents are submitted.

Asking a random number generator (rnd) without sequentialising the pro-
gram.

Printing in an arbitrary sequence, if the result of the print is like a non-
deterministic function.

Updating and reading several external files. The necessary sequentialisa-
tion is not on the whole external world, but can be done independently
for every file. The read accesses have to be sequentialised

Using an array that can be updated in-place and also copied. In this case,
the array is viewed as an external object. This is not problematic for an
array of fully evaluated data objects. Our treatment does not directly
cover the case of an array where functions or closures are permitted as
entries.

A problem may be the discipline by the programmers. For example it is possible
to use an interface function to simulate an external store without informing the
compiler. This programming style is not justified by our treatment of the topic.

References

[Ach96] P. Achten. Interactive functional programs: models, methods

and implementation. PhD thesis, Computer Science Department,
University Nijmegen, 1996.

[AFM™95] Z.M. Ariola, M. Felleisen, J. Maraist, M. Odersky, and P. Wadler.

A call-by-need lambda calculus. In Principles of programming
languages, San Francisco, California, 1995. ACM Press.

[Aug84] Lennart Augustsson. A compiler for Lazy ML. In Proceedings

of the ACM Symposium on Lisp and Functional Programming,
pages 218-227, 1984.

[Bar84] H.P. Barendregt. The Lambda Calculus. Its Syntaz and Seman-

tics. North-Holland, Amsterdam, New York, 1984.

[BNA91] P.S. Barth, R.S. Nikhil, and Arvind. M-structures: Extending

a parallel non-strict functional language with state. In Proc.
Functional Programming Languages and Computer Architecture
1991, LNCS 523, pages 538-568, 1991.

30

[BVEGT87]

[BWSS]

[GH90]

[Gor94]

[HAB+96]

[HNMHY96]

[HO89)

[HO90]

[HPWT92]

[Joh84]

[7591]

H.P. Barendregt, M.C.J.D. van Eekelen, J.R.W. Glauert, J.R.
Kennaway, M.J. Plasmeijer, and M.R. Sleep. Term graph rewrit-
ing. In Proc. Parallel Architectures and Languages FEurope
(PARLE 87), LNCS 259 (2), pages 141-158, 1987.

Richard Bird and Philip Wadler. Introduction to Functional Pro-
gramming. Prentice-Hall International, London, 1988.

J.C. Guzman and P. Hudak. Single-threaded polymorphic
lambda-calculus. In Proc. of 5th IEEE Symposium on Logic in
Computer Science, pages 333-343, 1990.

A.D. Gordon. functional programming and Input/Output. Cam-
bridge University Press, 1994.

K. Hammond, L. Augustsson, B. Boutel, W. Burton, J. Fairbairn,
J. Fasel, A. Gordon, M. Guzman, J. Hughes, P. Hudak, T. Johns-
son, M. Jones, D. Kieburtz, R. Nikhil, W. Partain, J. Peterson,
S. Peyton Jones, and P Wadler. Report on the programming
language haskell 1.3. Technical report, Department of Computer
Science, University of Glasgow, 1996.

N.W.O. Hutchison, U. Neuhaus, Schmidt-Schau3 M., and C.V
Hall. Natural expert: A commercial functional programming
environment,. J. of Functional Programming, 1996. to appear.

J. Hughes and J. O’Donnell. Expressing and reasoning about
non-deterministic functional programs. In Glasgow workshop on
functional programming 1989, Workshops in Computing, pages
308-328. Springer-Verlag, 1989.

J. Hughes and J. ODonnell. Nondeterministic functional pro-
gramming with sets. In IV Higher Order Workshop, Workshops
in Computing, pages 11-31. Springer-Verlag, 1990.

Paul Hudak [ed.], Simon L. Peyton Jones [ed.], Philip Wadler
[ed.], Brian Boutel, Jon Fairbairn, Joseph Fasel, Maria M.
Guzmén, Kevin Hammond, John Hughes, Thomas Johnsson,
Dick Kieburtz, Rishiyur Nikhil, Will Partain, and John Peter-
son. Report on the programming language Haskell. A non-strict
purely functional language. version 1.2, 1992.

T. Johnsson. Efficient compilation of lazy evaluation. In Proceed-
ings of the ACM Conference on Compiler Construction, Mon-
treal, pages 58-69, 1984.

S.B. Jones and A.F. Sinclair. On input and output in functional
languages. In Esprit research reports, proj. 302 (1), Prospects for
functional programming in software engineering, pages 139-171.
Springer-Verlag, 1991.

31

[KJMdVF93] J.R. Kennaway, Klop J.W., Sleep M.R., and de Vries F.J. An

[Lau93]

[Man95]

[Mil78]

[NSvP91]

[PJ87]

[PJS94]

[PIW93]

[PS92]

[PvE93]

[PvE95]

[SBVEP93a]

infinitary church-rosser property for non-collapsing orthogonal
rewriting systems. In Sleep M.R. et. al., editor, Term Graph
Rewriting. John Wiley, 1993.

J Launchbury. A natural semantics for lazy evaluation. In Proc.
20th Principles of Programming Languages, 1993.

L. Mandel. Constrained Lambda Calculus. Verlag Shaker,
Aachen, Germany, 1995.

Robin Milner. A theory of type polymorphism in programming.
J.Comp.Sys.Sci, 17:348-375, 1978.

E. G. J. M. H. Nocker, J. E. W. Smetsers, M. C. J. D. van Eeke-
len, and M. J. Plasmeijer. Concurrent Clean. In Springer Ver-
lag, editor, Proc of Parallel Architecture and Languages FEurope
(PARLE’91), number 505 in Lecture Notes in Computer Science,
pages 202-219, 1991.

Simon L. Peyton Jones. The Implementation of Functional Pro-
gramming Languages. Prentice-Hall International, London, 1987.

Simon L. Peyton Jones and André Santos. Compilation by trans-
formation in the Glasgow Haskell Compiler. In Functional Pro-
gramming, Glasgow 1994, Workshops in Computing, pages 184—
204. Springer, 1994.

Simon L. Peyton Jones and Philip Wadler. Imperative functional
programming. In Proceedings 20th Symposium on Principles of
Programming Languages, Charleston, South Carolina,, pages 71—
84. ACM, 1993.

S. Purushothaman and J. Seaman. An adequate operational se-
mantics of sharing in lazy evaluation. In Proc. ESOP 92, LNCS
582, pages 435-450. Springer-Verlag, 1992.

Rinus Plasmeijer and Marko van Eekelen. Functional Program-
ming and Parallel Graph Rewriting. Addison-Wesley, Working-
ham, 1993.

R. Plasmeijer and M. van Eekelen. Concurrent clean: Version
1.0. Technical report, Dept. of Computer Science, University of
Nijmegen, 1995. draft.

Sjaak Smetsers, Erik Barendsen, Marko van Eekelen, and Rinus
Plasmeijer. Guaranteeing safe destructive updates through a type
system with uniqueness information for graphs. Technical Report
technical report 93-04, University of Nijmegen, Department of
Computer Science, 1993.

32

[SBVEP93b]

[SS91]

[Wad90]

[WRO1]

[Yos93]

Sjaak Smetsers, Erik Barendsen, Marko van Eekelen, and Rinus
Plasmeijer. Guaranteeing safe destructive updates through a type
system with uniqueness information for graphs. Technical report,
University of Nijmegen, Department of Computer Science, 1993.

M. Schmidt-Schaufl. External function calls in a functional lan-
guage. In Proc. of the 1991 Glasgow workshop on functional pro-
gramming, Workshops in Computing, pages 324-331. Springer-
Verlag, 1991.

P. Wadler. Comprehending monads. In Proceedings of Sympo-
stum on Lisp and Functional Programming, pages 61-78, Nice,
France, June 1990. ACM.

D. Wakeling and C. Runciman. Linearity and laziness,. In
Proc. functional programming languages and computer architec-
ture, LNCS 523, pages 215-240. Springer-Verlag, 1991.

N. Yoshida. Optimal reductions in weak-A-calculus with shared
environments. In Proc. functional programming languages and
computer architecture, pages 243-252. ACM press, 1993.

33

