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ABSTRACT

Natural Killer (NK) cells are involved in the host immune response against 
infections due to viral, bacterial and fungal pathogens, all of which are a significant 
cause of morbidity and mortality in immunocompromised patients. Since the recovery 
of the immune system has a major impact on the outcome of an infectious complication, 
there is major interest in strengthening the host response in immunocompromised 
patients, either by using cytokines or growth factors or by adoptive cellular therapies 
transfusing immune cells such as granulocytes or pathogen-specific T-cells. To date, 
relatively little is known about the potential of adoptively transferring NK cells in 
immunocompromised patients with infectious complications, although the anti-cancer 
property of NK cells is already being investigated in the clinical setting. This review 
will focus on the antimicrobial properties of NK cells and the current standing and 
future perspectives of generating and using NK cells as immunotherapy in patients 
with infectious complications, an approach which is promising and might have an 
important clinical impact in the future.
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INTRODUCTION

Immunocompromised patients, such as patients 
suffering from cancer or hematopoietic stem cell transplant 
(HSCT) recipients, are at a significantly increased risk for 
an infectious complication due to viral, bacterial or fungal 
pathogens [1–4]. In addition, in this patient population, 
infections often have a more severe clinical course and 
are an important cause of mortality [4]. Depending on 
the pathogen, different components of the host immune 
system play a role in the response to an infection. 
Lymphocytes are important in the combat against viruses, 
whereas granulocytes play a key role in bacterial and 
fungal infections, and proliferation and activation of these 
immune cells is regulated by cytokines and interferons. 
Over the last decades it became clear that also Natural 
Killer (NK) cells are involved in the host response against 
all of these pathogens. 

In the immunocompromised patient, the recovery of 
the immune system has a major impact on the outcome 
of an infectious complication [4, 5]. Therefore, there 
is major interest in strengthening the host response in 
immunocompromised patients, either by using cytokines 
or growth factors or by adoptive cellular therapies 
transfusing immune cells such as granulocytes or 
pathogen-specific T-cells [6–8]. To date, relatively little 
is known about the potential of adoptively transferred NK 
cells in patients with infectious complications, although 
the anti-cancer property of NK cells is intensively being 
investigated in the clinical setting. Notably, in addition to 
strengthen the host response against a pathogen, potential 
adverse effects have to be considered, such as excessive  
inflammation by pro-inflammatory cytokines resulting 
in tissue damage [9–11]. This review will focus on the 
antimicrobial properties of NK cells and the current 
standing and future perspectives of generating and using 
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NK cells as immunotherapy in patients with infectious 
complications, an approach which is promising and might 
have an important clinical impact in the future.

NK cell biology 

Human NK cells are cytolytic innate immune cells 
that are defined by the expression of CD56 and by the 
absence of the T cell marker CD3. NK cells originate from 
the bone marrow, home to secondary lymphoid tissues, 
and represent up to 15% of peripheral blood mononuclear 
cells. In respect to the surface expression density of CD56 
and CD16, two main subpopulations of NK cells can be 
distinguished, namely the cytotoxic CD56dimCD16bright and 
the immune regulatory CD56brightCD16dim subsets [12]. The 
activity of NK cells depends on the surface expression of 
several activating and inhibitory receptors that recognize 
MHC class-1 molecules [13–17]. Activating receptors 
include the natural cytotoxicity receptors NKp46, NKp44, 
or NKp30 and NKG2D which recognize ligands and 
are upregulated during cellular stress such as tumor 
transformation and viral infections [16, 18]. Among 
the inhibitory receptors, the killer-immunoglobulin-
like receptors (KIRs) play an important role in NK cell 
alloreactivity [19]. NK cells are able to kill their target 
directly by cytotoxic molecules such as perforin or 
granzyme B, and by death receptor mediated apoptosis 
[20, 21]. In addition to their cytotoxic function, NK cells 
are able to modify the immune response of the host by 
secreting different chemokines, like tumor-necrosis-

factor alpha (TNF-α), granulocyte-macrophage colony-
stimulating factor (GM-CSF) or CCL5 (RANTES) and 
interferon (IFN)-γ [22–24] (Figure 1). NK cells have 
recently been classified closely to group 1 innate lymphoid 
cells (ILCs), which are characterized by the ability to 
produce IFN-γ, but not type 2 cytokines [25]. 

Current research has shown that NK cell education 
and differentiation plays an important role in both the 
direct and antibody-dependent functionality of NK 
cells [26, 27]. In this respect, various models have been 
developed to explain the process of NK cell “education” 
[23, 28]. In general, the expression of self-recognizing 
inhibitory receptors (SRIR) guides NK cell development 
towards fully functional mature NK cells and has been 
termed “licensing” process [29]. The “disarming” model 
describes NK cells lacking SRIR that become anergic due 
to chronic activation [30], and the more dynamic “rheostat 
model” has been introduced to describe that stronger 
inhibitory signaling through more SRIR interactions 
leads to greater functional responsiveness of NK cells 
[31, 32]. It has been reported that SRIR deficient NK 
cells can be primed to a functional state upon cytokine 
stimulation [29]. Of note, also uneducated NK cells 
may play important roles in the combat against viral 
infections, since SRIR-deficient NK cells strongly respond 
toward murine CMV [33]. In conclusion, all these results 
underline the value of a highly diverse NK cell repertoire 
with unlicensed and licensed cell subsets that interact in 
the defense of infectious diseases [34]. Importantly, NK 
cells also have the ability to shape adaptive immunity such 

Figure 1: Antimicrobial activities of Natural Killer (NK) cells. NK cells not only detect and damage various viral, bacterial and 
fungal pathogens (right side), but also modulate proliferation and activation of a variety of cells of the innate and adaptive immune system 
(left side). IL interleukin; IFN interferon; TNF tumor-necrosis factor; GM-CSF granulocyte-macrophage colony-stimulating factor; HCV 
hepatitis C virus; HPV human papilloma virus; CMV cytomegalovirus; VZV Varicella-Zoster virus; HIV human immunodeficiency virus.
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as immunological memory [35–37], as both animal models 
and human studies indicate that NK cells can develop 
long-lasting antigen-specific memory cells [38]. These 
aspects of NK cell regulation are highly interesting as it 
demonstrates the high potential of NK cells for immuno-
prophylactic and/or immunotherapeutic strategies, which 
may be important not only in the field of cancer therapy 
but also for infectious diseases [23, 39].

Anti-cancer activity of NK cells 

It is well known that NK cells play a crucial role in 
the defense against cancer, and that low NK cell activity 
is associated with an increased risk for malignancy  
[40, 41]. The direct cytotoxicity of human expanded NK 
cells against several tumor cell lines could be demonstrated 
in various experimental settings, for example against 
human U87 glioblastoma cells [42], the neuroblastoma 
cell line UKF-NB-3 [43], and various Ewing sarcoma and 
rhabdomyosarcoma cell lines [44]. While cytotoxic NK 
cells directly eliminate tumor cells, regulatory NK cells 
also play an important role in the antitumor activity by 
orchestrating the complex interaction of other immune cells 
through secreted cytokines and chemokines [20, 45, 46].

Anti-cancer immunotherapy with NK cells – 
clinical aspects 

A number of clinical trials investigated the 
immunotherapeutic anti-cancer property of NK cells 
in various patient populations. For example, regional 
arterial administration of autologous cytokine-stimulated 
NK cells (lymphokine-activated killer cells; LAK) in 
combination with daily administration of low IL-2 doses 
to patients with metastatic renal cell carcinoma resulted 
in the regression of five out of 15 treated metastases 
and pain relief in six out of ten patients [47]. A similar 
approach was used in patients with recurrent glioblastoma 
[48]. Although the response rate of immunotherapy was 
33%, the survival of 18 months from diagnosis could 
not be improved. A phase I clinical trial using expanded 
autologous NK cells (approximately 4720-fold expansion) 
in patients with advanced digestive cancer demonstrated 
that the cells were well tolerated [49]. Despite the fact 
that the cells were highly lytic and a strong expression 
of functional markers such as NKG2D and CD16 was 
found, no clinical response could be observed. Safety and 
efficacy of multiple infusions of autologous activated and 
expanded NK cells in combination with anti-myeloma 
drugs were evaluated in a recent single-arm open-
label phase I clinical trial which included five patients 
with relapsed or refractory multiple myeloma who had 
received two to seven prior lines of therapy [50]. Four 
of the five patients showed disease stabilization prior to 
the end of treatment, and two showed a 50% reduction 
in bone marrow infiltration and a long-term response of 

more than one year. The use of allogeneic NK cells for 
immunotherapy is currently being evaluated in different 
settings, such as acute lymphoblastic or myeloid leukemia 
(ALL and AML, respectively), but also in high-risk solid 
tumors (reviewed in [19]). Most of the patients receive a 
combined treatment which includes haploidentical HSCT 
and the adoptive transfer of NK cells from the same 
haploidentical donor followed by IL-2 application, and 
the overall results suggest a decrease of the relapse rate. 
For example, in one trial, the adoptive transfer of human 
haploidentical NK cells in AML patients induced complete 
hematologic remission in five out of 19 poor-prognosis 
patients [39]. In contrast to the haploidentical transplant 
setting, the use of allogeneic NK cells in unrelated HSCT 
is less clear and a matter of controversy [19]. In a phase 
I clinical study which evaluated allogeneic NK cells from 
random healthy donors in 17 patients with malignant 
lymphoma or advanced or recurrent solid tumors, no 
serious adverse event occurred [51]. This corroborates the 
data of other studies that immunotherapy with NK cells is 
usually safe and well tolerated, and only temporary side 
effects such as fever, weight gain, or neurotoxicity are 
observed [52]. Notably, in a phase II study which enrolled 
20 patients with recurrent ovarian and breast cancer, one 
ovarian cancer patient developed tumor lysis syndrome 
within 6 h of the initial NK cell infusion. The timing of 
the event, together with the detection of NK cells in the 
necrotic liver specimen on autopsy, suggests that NK cells 
could have contributed to the tumor lysis [53].  

To this end, the use of NK cells as immunotherapy 
against cancer is promising, but further studies are 
warranted in order to identify patient populations which 
will significantly benefit from this strategy, and to tailor 
pharmacological and immunological therapies to the 
individual patients´ characteristics.

NK cells in the host response against infectious 
pathogens 

There is a growing body of evidence that NK cells 
play a major role in the host response against various 
pathogens. For example, a number of studies have 
demonstrated that genetic mutations may lead to reduced 
NK cell numbers or functional NK cell impairment 
such as mutations affecting genes IL2RG, JAK3, and 
ADA which cause severe combined immunodeficiency 
syndromes [54, 55] or a mutation in the ITGB2 gene 
associated with leukocyte adhesion deficiency [56]. 
These immunocompromised patients have an increased 
susceptibility to viral infections, such as infections with 
herpes simplex virus (HSV), Varicella Zoster virus 
(VZV), Cytomegalovirus (CMV), and with human 
papilloma virus [22, 41, 57]. However, as these patients 
display multiple defects of the immune system, the exact 
role of NK cells in the increases risk of viral infection 
remains unclear. An early report described a young girl 
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who experienced a series of recurrent and severe viral 
infections during childhood and adolescence, including 
infections by multiple herpes viruses, which was thought 
to be the result of non-functional NK cells [58]. Other 
studies reported on children with altered forms of the 
Fc receptor for IgG type IIIA (CD16) on their NK cells, 
who suffered from recurrent viral infections such as 
infections due to HSV, Epstein-Barr virus (EBV) and 
VZV, respectively [59, 60]. The clinical condition of 
these children significantly improved with acyclovir 
prophylaxis. Recently, it has been shown that decidua 
NK cells inhibit human immunodeficiency virus (HIV)-1 
infection in pregnancy [61]. Similar to the fight against 
cancer cells, NK cells limit viral burden not only by 
killing of infected cells [38], but also by modulating the 
cytokine milieu, which in turn influences other immune 
cells such as T cells. For example, NK cell derived 
IFN-γ is not only important for the direct non-cytopathic 
inhibition of the replication of the hepatitis C virus [62], 
but also regulates the immune responses of CD4+ and 
CD8+ T cells [63–65]. Importantly, recent data of animal 
and human studies indicate that NK can develop long-
lasting antigen specific memory cells [38]. Much work 
has been performed on the evaluation of the importance 
of NK cells in the host response against influenza virus. It 
has become clear that the severity of influenza disease is 
not uniform, with a severe clinical course being associated 
with transient T and NK cell deficiency [66] and with 
specific haplotypes of killer-immunoglobulin-like 
receptors (KIRs) [67]. In a mouse model, infection with 
a high dose of influenza virus led to the impairment of 
cytotoxicity and IFN-γ production by spleen NK cells and 
to decreased virus-specific killing mediated by cytotoxic 
T lymphocytes. Importantly, the latter could be reversed 
by the adoptive transfer of spleen NK cells harvested from 
low-dose-infected mice [68]. During influenza infection, 
NK cells are activated by different mechanisms, such 
as by influenza nucleoprotein (NP) and matrix 1 (M1) 
antibodies [69], and CD16 seems to play an important 
role in the early activation of NK cells after vaccination 
against influenza [70]. A recent study demonstrated that 
shortly after infection with influenza virus, licensed 
(“functional”) NK cells serve as early innate effectors 
as they produce IFN-γ in inflamed parenchymal tissues 
and further mediate direct antiviral responses [34]. 
In contrast, NK cells which lack self-specific MHC-I 
receptors (“unlicensed” NK cells) are localized in the 
draining lymph nodes and help to promote activation and 
expansion of dendritic cells, which ultimately results in 
a sustained antigen-specific CD8+ response. In addition 
to the killing of virus-infected cells, NK cells provide 
vital cytokines for tissue regeneration, such as IL-22 [71]. 
However, it is important to note that in mouse models, 
NK cells might mediate pathology as the depletion of NK 
cells in vivo reduced mortality from influenza infection, 
whereas the adoptive transfer of NK cells from influenza-

infected lung, but not from uninfected lung resulted in 
increased mortality in influenza-infected mice, probably 
due to a deleterious NK cell-dependent alteration of T cell 
responses [72]. 

Compared to the antiviral activity of NK cells, 
considerably less data are available for the interaction of 
NK cells with bacteria and fungi. NK cells exhibit direct 
activity against a variety of Gram-positive and Gram-
negative bacteria such as Mycobacterium tuberculosis, 
Bacillus anthracis, Escherichia coli or Salmonella 
typhi by the secretion of the soluble molecules perforin 
and granulysin [73–76]. In addition, NK cells have an 
antibacterial effect against intracellular bacterial pathogens 
by using death inducing receptor pathways such as Fas-
FasL and TNF-related apoptosis-inducing ligand (TRAIL) 
pathways [77, 78], which ultimately induce caspase-
dependent apoptosis of the target cell [21, 77, 79]. The 
important role of the antibacterial activity of NK cells in 
vivo is demonstrated by animal models which showed 
higher survival rates and lower bacterial titers during 
infection with Shigella flexneri in mice lacking B and T 
cells but having NK cells as compared to mice which lack 
all three cell types [80]. 

Similar to the antibacterial activity, NK cells 
exhibit in vitro antifungal activity against a number of 
pathogenic fungi such as Aspergillus fumigatus, Candida 
albicans, Cryptococcus neoformans, or different species 
of mucormycetes [81–86]. Cytotoxic molecules including 
NK cell derived perforin seem to be important in the 
antifungal activity. In addition, upon stimulation by fungi, 
NK cells release a number of cytokines, which modulate 
both innate and adaptive immune responses [87]. The 
in vitro data of the antifungal activity of NK cells are 
supported by observations made in animal studies. For 
example, it has been shown that NK cells proliferate in 
mice experimentally infected with Aspergillus niger, 
and this proliferation was associated with an inhibition 
of the fungal growth [88]. Antibody mediated depletion 
of NK cells in mice inoculated with C. neoformans [89] 
resulted in a significant higher fungal burden in the lungs 
as compared to untreated controls, corroborating studies 
in NK-depleted mice which revealed the pivotal role of 
NK cells in the host response against A. fumigatus, C. 
albicans, and Histoplasma capsulatum [90–95]. 

Although these data clearly demonstrate that NK 
cells exhibit important activities in the host immune 
response to different viral, bacterial and fungal pathogens, 
many questions have to be resolved. For example, 
further studies have to evaluate how and to which extent 
a pathogen may exert an immunosuppressive effect on 
NK cells as well as on other cells of the immune system, 
which has been shown for bacteria such as Pseudomonas 
aeruginosa and for fungi such as A. fumigatus. This 
knowledge may be important in the clinical setting for 
specifically strengthening the host response during 
infection.
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The strategy of adoptive immunotherapy in 
infectious complications 

Both severity and duration of a defect in the 
immune system are associated with risk and outcome 
of an infectious complication [4]. Therefore, since the 
1970s, there was great interest to improve the prognosis 
of persistently neutropenic patients suffering from severe 
infections with the administration of granulocytes, and 
the availability of recombinant hematopoietic growth 
factors such as granulocyte-colony stimulating factor 
(G-CSF) extended the use of this strategy even into the 
prophylactic setting (“adoptive immunotherapy”) [96].  
A prospective, non-randomized study evaluated 
transfusions of granulocytes in order to control acute 
life-threatening infections or to prevent recurrence 
of severe fungal infections during HSCT or intensive 
chemotherapy [6]. Granulocyte transfusions achieved 
control in 82% of acute life-threatening infections, and 
no single reactivation of a previous infection occurred 
with prophylactically administered granulocytes, 
whereas a recent randomized study failed to demonstrate 
a significant benefit of this strategy [97]. In patients 
suffering from invasive fungal infections, a recent review 
of available data did not find strong evidence of a benefit 
of granulocyte transfusions, but it is to hope that ongoing 
randomized controlled studies such as the GRANITE 
study (German Clinical Trials Register number 
DRKS00000218) will provide helpful results [98]. 
Notably, granulocyte transfusions are often associated 
with febrile transfusion reactions and pulmonary 
complications, including transfusion-related acute lung 
injury (TRALI), and a monocenter retrospective analysis 
of 128 patients with a hematological malignancy, 
prolonged neutropenia and invasive aspergillosis 
suggested that patients receiving granulocyte transfusions 
had a worse outcome [99]. Another approach which aims 
to reconstitute the long-lasting impairment of cellular 
immunity of allogeneic HSCT recipients became possible 
with the development of techniques to isolate and to 
generate pathogen-specific T cells. Infusion of CMV-
specific T cell clones largely prevented CMV reactivation 
and reduced CMV mortality [7, 100], and studies reported 
on a clinical benefit for adoptively transferred T cells 
specific against adenovirus [101] and Epstein-Barr-virus 
(EBV) [102], respectively. Similarly, a proof-of principle 
study showed that the adoptive transfer of pathogen-
specific Aspergillus CD4+ T cells resulted in a rapid 
decline of Aspergillus antigen in the blood, and more 
importantly, 9 of 10 patients cleared invasive aspergillosis 
[7]. In contrast to most studies which use donor-derived 
pathogen specific T cells, a recent trial reported on the 
successful use of “off the shelf” T cells generated from 
eligible third-party donors against a variety of viruses 
such as BK virus, human herpesvirus 6, adenovirus or 
EBV [103]. 

Although immunotherapy with adoptively 
transferred pathogen specific T cells seems to be a 
promising strategy, the use of T cells may be associated 
with the risk of graft-versus-host disease (GvHD) [104]. 

NK cells as potential immunotherapeutic agent 
in infectious complications 

As compared to studies investigating NK cells as 
immunotherapeutic tool in patients with an underlying 
malignancy, relatively little is known regarding the 
in vivo effect of adoptively transferred NK cells into 
a host suffering from an infectious complication. In 
Aspergillus infected mice, the depletion of NK cells 
resulted in a higher fungal load and lower survival, 
whereas the transfer of activated NK cells to these mice 
led to greater pathogen clearance from the lungs [93]. 
Similarly, cyclophosphamide pretreated mice suffering 
from cryptococcosis showed an enhanced clearance of 
the fungus when they had received an NK cell-enriched 
graft as compared to mice which had received an NK 
cell-depleted graft [105, 106]. Although these results 
suggest that adoptively transferred NK cells may 
be a potential tool in patients suffering from fungal 
infections, no study to date has proven this concept in 
the clinical setting. Importantly, there may be a major 
difference of the adoptive transfer of NK cells between 
immunocompromised and immunocompetent patients. 
Whereas safety data in immunocompromised patients 
with cancer are promising [107, 108], results on the 
adoptive transfer of NK cells into immunocompetent 
human individuals are lacking. However, it has been 
demonstrated that NK cells infused in mice with 
polymicrobial intra-abdominal bacterial infection 
contributed to an excessive induction of pro-
inflammatory cytokines which ultimately resulted in 
a lethal septic shock [10, 11, 109–111]. Another study 
in the murine model demonstrated that infection by 
Listeria monocytogenes resulted in excessive IFN-γ 
production by CD27+ NK cells, which in turn, impaired 
innate anti-bacterial host defenses by inducing down-
regulation of CXCR2 on granulocytes and thus 
inhibiting the recruitment of granulocytes at the site of 
infection [112]. However, the mice could be rescued 
by antibodies blocking CD27 signaling or by depleting 
IFN-γ. Therefore, further studies have to better define 
the preconditions in which the adoptive transfer of NK 
cells may be beneficial or harmful, such as the degree of 
the host´s immune impairment or the pathogen(s) causing 
an infection, as well as the optimal schedule and dosage 
of adoptively transferred NK cells in each setting. On 
the other hand, as compared to pathogen-specific T cells 
which have already been evaluated in the clinical setting, 
NK cells may be of advantage since they are active 
against a broad range of pathogens including viruses, 
bacteria, or fungi. 
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Generation of high numbers of functionally 
active NK cells for adoptive immunotherapy 

When employing NK cells to fight against a 
malignancy or to combat infectious complications, only 
functional active NK cells administered at a sufficient 
effector-to-target (E:T) ratio might result in a beneficial 
effect. Studies addressing both mouse and human NK cell 
immunity have shown that NK cells are a heterogeneous 
population consisting of not only phenotypically but also 
functionally distinct subsets, and cytokine-stimulation 
induces significant changes not only in proliferation, 
maturation status and finally in the subset composition 
of the ex vivo expanded NK cell product [45, 113]. 
Therefore, knowledge on mouse NK cells cannot directly 
be transferred to the human system, and expansion and 
activation studies are mainly performed on human NK cell 
preparations from peripheral blood or umbilical cord blood 
leading to first preclinical data evaluating the cytotoxic 
capacity of the final NK cell product in vitro and in vivo in 
xenograft NSG (NOD scid gamma) mouse models against 
various human tumors [114].

Most clinical trials with NK cells in the autologous 
or allogeneic setting administer ex vivo expanded NK 
cells [115, 116]. Of note, the expansion of NK cells 
usually needs several days to weeks, depending on the 
protocols used [114, 117]. In order to improve the rapid 
expansion of isolated NK cells, cytokines like IL-2 have 
been investigated, which can be added either alone or 
in combination with an anti-CD3 antibody or additional 
cytokines such as IL-15 and IL-21 [117–120]. Although 
the exact role of anti-CD3 antibodies is unclear, it has 
been suggested that OKT-3 leads to a profound outgrowth 
of NK cells, which is probably due to the activation of T 
cells [114]. Other studies suggest that co-culture of NK 
cells with stimulatory cells such as EBV-transformed 
lymphoblastoid cells or a Wilms tumor-derived cell line 
also enhances the proliferation of NK cells [121, 122]. 
In an elegant approach, HLA-negative K562 cells were 
genetically modified to express membrane-bound IL-15 
and 4-1 BB Ligand (4-1BBL), which specifically activate 
NK cells and promote their proliferation and survival, and 
this strategy resulted in a dramatic enhancement of NK 
cell expansion and activation [123, 124]. After further 
improvement, this method has been adapted to large-
scale Good Manufacturing Practices (GMP) conditions 
[121, 125]. In addition to autologous or allogeneic NK 
cells, it may be possible to differentiate NK cells in vitro 
from umbilical cord blood CD34+ cells, which is currently 
being tested in two clinical trials (NCT01619761 and 
NCT01729091) [126].

In addition to proliferation, cytokine stimulation 
may also improve the functional activity of NK cells. For 
example, when NK cells are resting, lytic granules are 
distributed randomly or diffuse, whereas after exposure to 
IL-2, granules congregate to the microtubule-organizing 

center [127]. Thus, IL-2 stimulation not only activates 
NK cells, but also accelerates their transition into NK 
cells which are ready to exhibit their cytotoxic function. 
Another study demonstrated that exposure of murine NK 
cells to IL-12, IL-15 and IL-18 resulted in a sustained 
effector function of NK cells in vivo [128]. Only IL-
12/15/18-preactivated NK cells, but not naïve, IL-15- nor 
IL-2-pretreated NK cells, respectively, reduced the growth 
of tumors when mice were concomitantly irradiated. 
Similarly, prestimulation with a cytokine cocktail 
including IL-12, IL-15, and IL-18 resulted in enhanced 
IFN-γ production of human NK cells after restimulation 
with K562 leukemia cells or with these cytokines [129]. 
Even if there are known differences in the biology of 
murine and human NK cells, this observation suggests 
that both murine and human NK cells receive functional 
memory-like properties after cytokine activation, which 
may provide a novel rationale for integrating cytokine 
preactivation into NK cell immunotherapeutic strategies. 
However, at the same time, the use of cytokines may alter 
the phenotype of the NK cell and result in a potential 
loss of responsiveness to some stimuli [130, 131]. For 
example, IL-2 stimulation of NK cells decreased CD16 
[132], and NK cell activation by intramuscular influenza 
vaccination and HIV-positive plasma induced a matrix 
metalloproteinase-mediated cleavage of cell surface 
CD16, whereas inhibition of CD16 shedding potentiated 
NK cell cytotoxic function [70, 133]. 

In addition to the exposure to various cytokines, 
improvement of NK cell activity can be achieved by 
the manipulation of NK cell receptors. For example, 
NK cell cytotoxicity against tumor targets could be 
improved by a retroviral transduction of a receptor 
termed NKG2D-DAP10-CD3ζ that is composed of 
NKG2D plus two signaling molecules, DAP10 and 
CD3ζ [134]. These modified NK cells exhibit higher 
killing activity against a number of ALL cell lines such 
as CEM-C7 or MOLT-4, and against solid tumor-derived 
cell lines such as the human prostate adenocarcinoma 
cell line LNCaP or the hepatocellular carcinoma cell 
line HepG2 [134]. Importantly, the increased activity 
of the modified cells could also be demonstrated in 
vivo, since in immunodeficient mice, NKG2D-DAP10-
CD3ζ-transduced NK cells killed osteosarcoma or 
hepatocellular carcinoma cells more effectively compared 
to mock-transduced NK cells [134, 135]. However, 
soluble NKG2D ligands (sNKG2DL) such as sMICA/B 
or sULBP2 are able to impair NK cell activity as it has 
been demonstrated in the setting of various tumors and 
of HIV [43, 136]. Naïve HIV-positive patients display 
increased plasma levels of sMICA and reduced NKD2D 
expression on NK cells, and sNKG2DLs impair NKG2D-
mediated cytotoxicity of NK cells [136]. Interestingly, 
highly active antiretroviral therapy (HAART) resulted 
in the drop of sNKD2DL and recovery of NKD2D 
expression. 
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Another interesting approach is the transduction 
of chimeric antigen receptors (CARs) into immune cells 
in order to improve their activity. CARs are engineered 
receptors with the ability to bind to specific antigens 
which are expressed on the surface of tumor cells or 
on the surface of a pathogen. The strategy of CARs in 
patients’ T cells has recently been reported, which resulted 
in impressive regression of B cell malignancies, and the 
promising results of first clinical studies on CAR-T cells 
have recently been reported [137–140]. Of note, CAR 
constructs expressed in the NK cell line NK92 [141], 
primary NK cells [137, 142] or cord blood derived 
NK cells [143] have demonstrated efficient  killing in 
preclinical settings [144]. Two clinical trials testing 
haploidentical donor-derived CAR NK cells for targeting 
of refractory CD19+ ALL with a second-generation anti-
CD19 CAR that incorporates the 4-1BB costimulatory 
domain are currently recruiting patients (NCT00995137 
from St. Jude and NCT01974479 from The National 
University Health System, Singapore) (for review see 
[145]). 

In contrast, studies on NK cells with modified 
receptors or CAR-NK cells against infections are lacking, 
and challenges of this strategy include the relatively long 
time to generate these cells and the complex antigenic 
properties of many pathogens, which is seen in particular 
in fungi [146]. 

The functional activity of NK cells can also be 
enhanced by the forced expression of the high-affinity 
CD16-158V (HA-CD16) Fc receptor, for which the 
minority of patients is homozygous [147, 148]. Several 
groups demonstrated that engraftment of HA-CD16 
on primary NK cells from donors which express a low-
affinity CD16-158F/F (LA-CD16) Fc receptor [149] or 
on the NK-92 cell line [150] significantly increases the 
antibody-dependent cell-mediated cytotoxicity (ADCC) 
against target cells coated with rituximab, an antibody 
directed against CD20, of which the Fc portion mediates 
both antibody-dependent cell-mediated and complement-
dependent cytotoxicity. Rituximab is used as therapeutic 
compound in many patients suffering from B cell non-
Hodgkin lymphoma. 

The genetic disruption of NK cell inhibitory 
receptors such as KIR or NKG2A via inhibiting antibodies 
or via shRNA silencing may also be used to overcome 
tumor evasion mechanisms related to MHC I expression. 
In this regard, in tumor bearing mice, NKG2A-silenced 
cells of the NKL cell line revealed enhanced killing 
activity of 721.221 HLA-E expressing EBV-LCL tumor 
cells [151–153]. Similarly, in the setting of an infection, 
blocking the interaction between NK cell inhibitory 
receptors [e.g., CD159a (NKG2A), CD158a (KIR2DL1), 
and 158b (KIR2DL2)] and MHC class I molecules (e.g., 
HLA-C and HLA-E) on HIV-infected autologous tumor 
cells resulted in a drastic increase in killing of anti-gp120-
coated HIV-infected cells by NK cells [154]. 

Immunotherapy in infectious complications 
using NK cells from a cell bank 

In particular in immunocompromised patients, 
infections often have a sudden onset with a rapid clinical 
course. Therefore, an immunotherapeutic tool in this 
setting has to be quickly available, which might be 
different to the setting of immunotherapy used against 
an underlying malignancy. In other words, the timely 
access to a suitable NK cell product is crucial when 
planning clinical studies evaluating NK cells in patients 
with viral, bacterial, or fungal infections (Figure 2). In 
this respect, NK cell products which are standardized, 
well characterized and cryopreserved would be ideal and 
open new perspectives in this emerging field. However, 
the long-term storage of NK cell products remains 
controversial. Whereas it has been demonstrated that NK 
cells maintain their cytotoxic activity against the leukemia 
cell line K562 after cryopreservation [126, 155], standard 
methods of cryopreservation seem to have a negative 
impact on cell expansion in vivo [156]. Interestingly, in one 
clinical trial NK cells were expanded upon medical need 
from aliquots of individual cryopreserved leukapharesis 
cryopreserved peripheral blood mononuclear cells [157].

NK cell lines as the source for NK cell 
immunotherapy 

Having identified the challenges in derivation, 
activation and expansion of NK cells directly from 
patients, NK cell lines may be considered as an ideal 
source for cell-based immunotherapy. Advantages using 
NK cell lines for immunotherapy would include 1) the 
possibility to establish a master cell bank, and 2) the fact 
that the cell source would be extremely well standardized 
and characterized. As one example, the permanent NK-
92 cell line is cryopreserved in GMP-compliant master 
cell bank, from which it can be easily and reproducibly 
expanded [158]. The cell line exhibits cytotoxicity against 
a broad spectrum of tumor targets in vitro such as various 
leukemia, lymphoma and myeloma cell lines as well as 
against primary leukemic blasts [159–162]. When used 
as immunotherapy against cancer, preliminary data 
demonstrated the safety and tolerability of NK-92 cells 
in the clinical setting [163, 164]. A number of groups are 
exploring the use of CAR-modification to enhance the 
antitumor activity of these cells in preclinical and clinical 
studies [165, 166] (for review see: [145, 167]).

However, to date, relatively little is known about 
the activity of the NK-92 cell line against infectious 
pathogens. NK-92 cells reveal in vitro activity against 
EBV-infected B lymphocytes and the supernatant collected 
from NK-92 cells inhibits HIV replication in PBMCs from 
HIV-infected subjects in a dose-dependent manner [168]. 
In contrast, hepatitis B virus (HBV) antigens HBsAg 
and HBeAg have a direct negative impact on NK-92 cell 
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activation, cytokine production and cytotoxic granule 
release [169]. In addition, the lack of toll-like receptor 
(TLR) 4 and CD16 (Fc receptors FcγRIIIa and FcγRIIIb) 
might be a relevant limitation of this cell line regarding 
the antimicrobial activity, since, for example, TLR4 is 
responsible for the detection of FimH, which is present 
of fimbria of some bacteria [170]. Other drawbacks in 
the clinical use of NK-92 cells include the fact that the 
NK-92 cell line is derived from an NK cell lymphoma 
and therefore has the potential risk for uncontrolled 
proliferation, in particular if cells are resistant or not 
fully hit by prior irradiation. In turn, irradiation, which is 
mandatory prior to infusion, severely limits the survival 
and function of the transferred cells. Since NK-92 cells 
are dependent on IL-2, the repeated IL-2 injections raise 
concerns regarding toxicity [171]. Whether this potential 
toxicity can be abrogated by genetic modification of 
the cells leading to constitutive expression of IL-2 and 
resulting in auto-activated and auto-proliferating cells 
is unclear to date [148, 149]. Of note, in a promising 
preclinical study, transduction of clinically applicable 
NK-92 cells with lentiviral vectors encoding human IL-
15 resulted in predominantly intracellular expression of 
the cytokine, proliferation and cytotoxicity of the producer 
cells in the absence of IL-2 [172].

Based on these experiences, further studies 
evaluating the activity of the NK-92 cell line against viral, 
bacterial, and fungal pathogens are urgently needed.

It is important to mention that in addition to the NK-
92 cell line, there are other cell lines which potentially 
could be used as adoptive NK cell-based immunotherapy, 
both in patients with cancer and in patients with infectious 
complications. For example, the KHYG-1 cell line derived 
from NK leukemia has superior cytotoxicity compared to 
NK-92 cells [173]. In addition, irradiation of these cells 
does not abrogate their cytotoxicity towards tumor targets. 
Similarly, the cell line NKL, which is biologically and 
functionally very similar to primary NK cells, exhibits 
enhanced cytotoxicity against certain tumor cells as 
compared to NK-92 [174]. Again, the antimicrobial 
activity of these cells lines is unclear and needs further 
evaluation. 

CONCLUSIONS AND FUTURE 
PERSPECTIVES

Whereas the anticancer effect of NK cells is 
currently investigated in multiple clinical trials, little is 
known about the potential of adoptively transferred NK 
cells in patients suffering from infectious complications. 
In vitro data clearly demonstrate that NK cells are 
active against viral, bacterial, and fungal pathogens, 
and animal studies suggest that NK cells could be a 
promising tool in the antimicrobial immunotherapy. 
Current investigation focuses on the optimal and rapid 
generation of high numbers of functionally active NK 

Figure 2: Potential strategies of generating Natural Killer (NK) cells as an immunotherapeutic tool for patients suffering 
from infectious complications. Both the infectious complication (e.g., pathogen, localization) and the patient´s characteristic influence 
the generation of the NK product (e.g., primary cells, NK cell line), which can be directly processed or be frozen and stored. CNS, central 
nervous system; HSCT, hematopoetic stem cell transplantation.
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cells and includes strategies such as genetic modification 
of the cell and its receptors and the use of NK cell lines 
for treatment of hemato-oncological diseases. However, 
before testing adoptively transferred NK cells in the 
clinical setting of infectious complications, a number of 
questions have to be resolved. For example, it is well 
known that activation of the host immune system (e.g., by 
the release of pro-inflammatory cytokines) is necessary 
in order to successfully fight the pathogen, but, at the 
same time, might cause severe complications, as it was 
documented in patients with pulmonary aspergillosis 
who received granulocyte transfusions [99]. Therefore, 
both the patient population (immunocompromised versus 
immunocompetent) and the optimal time point of the 
adoptive transfer of NK cells are unknown to date, or, 
in other words, it is unclear when and whom adoptively 
transferred NK cells will help to overcome an infectious 
complication or will ultimately harm. Based on the 
promising results in animal studies and due to the facts 
that HSCT recipients suffering from fungal infections lack 
a sufficient immune response and outcome of this patient 
population is extremely poor, first clinical trials might 
focus on invasive fungal disease in this patient population. 
Although it will be necessary to fully characterize the 
optimal patient population, the best time point of therapy 
as well as the best approach to generate NK cells for 
immunotherapy in infectious complication, this strategy 
might become important in this setting, in particular since 
antimicrobial compounds have limited activity and we 
witness emerging resistance of pathogens all over the 
world. 
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