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Chapter 1

Introduction and outline

1.1 Motivation

Time series of events play an important role in neuroscience and are often described by point
processes on the real line. A first and far-reaching example is information processing in the
brain. By integration of input from adjoining cells or from sensory organs such as the ears and
eyes, nerve cells (also called neurons) transmit electric signals – so-called spikes – to adjacent
cells so that information is processed. In precise terms, spikes are short periods (of length
1-2ms) of a typical increase in the neuron’s membrane potential. As the duration and the
height of this increase do not differ remarkably, it is commonly assumed that the information
content of neuronal activity is mainly coded by the temporal sequence of spiking the so-called
neuronal spike train. For the understanding of the nervous system, it is therefore crucial to
develop a deep insight into neural firing activity. A detailed explanation of the role of neurons
and the whole nervous system can be found in, e.g., the textbooks of Kandel et al. (2000) and
Berg et al. (2007).

Formally, a spike train is given by the sequence (t1, t2, . . . , tn) of spike times in a recording
interval [0,T ] (with 0 < t1 < t2 < . . . < tn < T <∞). The intervals between consecutive spike
times are called inter-spike intervals or life times. Spike trains with usually hundreds of events
are a well studied object in computational neuroscience, where statistical models based on
point processes like renewal processes are used frequently (Johnson, 1996; Dayan and Abbott,
2005; Kass et al., 2005; Nawrot et al., 2008; Grün and Rotter, 2010).

Often stationarity of the process parameters like rate or variance of the life times is required
for further analyses such as coordination between parallel point processes (e.g., Grün and
Rotter, 2010). Change points in the rate may cause misinterpretations of serial correlations
when assuming a constant rate (Farkhooi et al., 2009). The impact of neglecting non-constant
parameters on techniques assuming stationarity is further discussed in, e.g., Brody (1999);
Grün et al. (2003). Hence, it is crucial to capture potential change points, and non-stationary
spike trains are in a preprocessing step often split up into sections with approximately constant
parameters (Schneider, 2008; Staude et al., 2010; Quiroga-Lombard et al., 2013). To detect
changes in the rate, considerable research has been conducted, e.g., by Fryzlewicz (2014);
Messer et al. (2014); Eichinger and Kirch (2018), compare also the reviews of Khodadadi and
Asgharian (2008); Aue and Horváth (2013); Jandhyala et al. (2013). Little is known about the
detection of variance change points, especially with rate change points being present. To the
best of our knowledge, the only theoretical work dealing with variance changes in presence of

1



1. Introduction and outline

a non constant mean is Dette et al. (2015). An example of a spike train with both – rate and
variance changes – is given in Figure 1.1. The occurrence times of the spikes are symbolized
by the vertical bars.

Figure 1.1: A point process with a non-stationary rate and variance profile.

Detected changes of the rate or the variance not only improve statistical analysis by separating
stationary periods but might also contain important information themselves. Different firing
patterns as described, e.g., in Bingmer et al. (2011) are connected to changes in variability.
For instance, in dopamine neurons the firing patterns often switch between a low-rate regular
or irregular single spike background pattern and short so-called ”bursty” periods with a large
number of spikes. These bursty periods represent a possible change in variance and have been
shown to be coupled to an increase in dopamine release (e.g., Gonon, 1988; Schiemann et al.,
2012).

A second example showing the application of time series of events in neuroscience are response
patterns to behavioral experiments like ambiguous stimuli. The perception of ambiguous
stimuli changes spontaneously in an unpredictable and subjective manner. Traditional examples
of ambiguous stimuli are the Necker cube (Necker, 1832) or Rubin’s vase (Rubin, 1915), see
Figure 1.2. In these examples, there are two possible perceptions such that we also speak of
bistable perception.

Figure 1.2: Necker Cube (A) and Rubin’s vase (B). In the Necker Cube either the
upper-right or the lower-left square can be interpreted as front side. Rubin’s vase may be
perceived as vase or as two faces looking at each other. The graph is slightly modified from
https://commons.wikimedia.org/wiki/File:Multistability.svg (Public Domain license).

Recently, also rotating spheres with switching perceived rotation direction were used in
bistable perception experiments, e.g., Schmack et al. (2013, 2015). The increasing sequence of
perceptual reversal points (t1, t2, . . . , tn) in a recording interval [0, T ] is called response pattern,
and the periods of constant perception are called dominance times. Examples for continuous
and intermittent presentation (i.e., with short blank displays between the presentation phases
of the stimulus) are shown in Figure 1.3.
We observe an increase in variability from continuous (green) to intermittent presentation
(blue) in Figure 1.3 compared to the respective mean dominance times. During continuous

2
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1. Introduction and outline

presentation the dominance times appear to be unimodal distributed, whereas during in-
termittent stimulation phases of rapidly changing perception interchange with long stable
phases (reported also by Brascamp et al., 2009). Modeling these different types of response
patterns as well as linking them to possible underlying neuronal mechanisms in a model with
only a few interpretable parameters such that also possible differences between groups can be
explained is a challenging task. Current approaches often use detailed assumptions and large
parameter sets, which complicate parameter estimation.
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Figure 1.3: Examples of response patterns to a bistable stimulus. Response pat-
terns to continuous (green, A,B) and intermittent (blue, C-F) presentation from
the data set reported in Schmack et al. (2015). Each of the six response patterns shows
the responses of one individual to continuous presentation (recording time 240s, green) or
intermittent presentation (recording time 1200s, blue) of the bistable stimulus. While the
distribution of dominance times tends to be unimodal in the continuous case, stable and
unstable phases seem to interchange in intermittent stimulation. In addition, response patterns
can be highly variable across subjects.

Main goals of the thesis

The overall goal of the thesis is to describe and detect different kinds of variability changes in
point processes on the real line analyzed in neuroscience as introduced above. The thesis is
divided into two parts. In the first part, we focus on the detection of non-stationarities in the
rate and variance (of the life times) of point processes like neuronal spike trains. The main
goal is to extend the multiple filter method proposed by Messer et al. (2014) to detect changes
in the variance in multiple time scales in presence of rate change points where we assume the
rate to be a step function. The method uses a non-parametric approach that is applicable to
a wide range of inter spike (or life time) distributions if there are enough events.
The subject of inquiry in the second part are the aforementioned response patterns to bistable
stimuli, where in particular data of Schmack et al. (2013, 2015) are used. The main goal
of this part is to develop a model that builds a bridge between empirical data analysis
and mechanistic modeling and that captures the change in variability from continuous to
intermittent presentation. Thus, the model should be able to describe both the response
patterns to continuous presentation (with a one-peaked distribution of dominance times) and
the response patterns to intermittent presentation where the distribution of dominance times is

3



1. Introduction and outline

rather bimodal (compare Figure 1.3). Moreover, the model should be fittable to typically short
experimental data such that statistical investigation of differences between clinical groups is
possible, and the model should allow for neuronal correlates.

In summary, variability changes in point processes should be described in both parts of the
thesis, where in the first part a broadly applicable method for change point detection in the
rate and the variance is presented, and in the second part we focus on a direct modeling
approach with a model enabling links to neuronal processes and describing the variability
change in response patterns from continuous to intermittent presentation of a bistable stimulus.

1.2 Outline of the thesis

1.2.1 Outline of Part I

Part I deals with the detection of non-stationarities in point processes like neuronal spike
trains. The multiple filter test and algorithm (MFT and MFA) developed by Messer et al.
(2014) in order to detect changes in the rate of a wide class of point processes with a certain
variability in the variance of life times are explained. The key idea of the MFT is to use the
filtered derivative approach (e.g., Bertrand, 2000), i.e., to compare the estimated rate in two
adjacent windows, to slide these windows over the process and to use multiple window sizes
such that small as well as fast changes can be detected. We extend this idea in Chapter 3 to
detect changes also in the variance in the potential presence of rate change points by regarding
the scaled difference

Gh,t :=
σ̂2

ri − σ̂2
le√

V̂ar(σ̂2
ri − σ̂2

le)
,

where σ̂2
ri and σ̂2

le are estimators of the variances in two adjacent windows of size h incorporating
potential rate change points. Two limit results for the derivation of the rejection threshold
identify under the null hypothesis of variance homogeneity Gaussian limit processes of (Gh,t)t
for the case of constant rate and one rate change point (Theorems 3.4 and 3.6). The limit
process L̃ in the case of one rate change point depends on unknown point process parameters
but is closely related to the limit process L emerging in the rate homogeneous case and being
independent of process parameters. Both are centered Gaussian processes with unit variance
where only the covariance structures slightly differ in the neighborhood of the rate change
point (Figure 5.4). In case of more than one rate change point the limit process is similar to L̃.
Thus, in practice L can be used which is also supported by simulation results. Detailed proofs
using a Functional Central Limit Theorem (FCLT), continuous mapping and the consistency
of the estimator in the denominator of Gh,t are given in Section 4. The procedure can also be
extended to higher order moments assuming constant lower order moments (Corollary 3.5).

In case of rate change points we propose to estimate these change points first (by an application
of the MFA that combines the change points detected by different window sizes preferring
change points detected by smaller windows) and then include them in the analysis of variances
(Section 5.2.1). The empirical properties of this asymptotic procedure are evaluated in Chapter
5 showing that for the smallest window containing at least about 150 events the asymptotic
significance level is kept also in case of an inhomogeneous rate (Figure 5.1). Moreover, the
detection probability of variance change points is considerably large (Figure 5.5) and is hardly
effected by the necessity to estimate potential rate change points. Finally, the two-step
procedure to detect rate and variance change points is applied to a data set of neuronal spike

4



1. Introduction and outline

trains reported in (Schiemann et al., 2012) to underline the practical applicability of the
method (Chapter 6). In the majority of spike trains, rate and/or variance change points were
detected.

Part I is published most widely in Albert et al. (2017a) and partly builds on Albert (2014).
The R-code of the MFT for the variances is part of the MFT package available on CRAN
(https://CRAN.R-project.org/package=MFT, Messer et al. (2017)).

1.2.2 Outline of Part II

In the second part of the thesis, two models to describe response patterns to bistable stimulation
(as, e.g., recorded by Schmack et al. (2013, 2015)) are developed. We start in Chapter 9 by
applying for the first time a simple Hidden Markov Model (HMM) to the response patterns,
whereby there is one state for the response patterns to continuous presentation, and two
states for the intermittent case. The transition between the hidden states is modeled by a
hidden Markov chain and the observable emissions depend on the state. During intermittent
presentation one state describes the short dominance times during periods of perception
changing rapidly, and the other state models the long stable dominance times. The parameter
estimation is described in Chapters 9.3 and 9.4 for the assumptions of Gamma and inverse
Gaussian distributed life times (Wilson, 2007; Gigante et al., 2009; Gershman et al., 2012;
Cao et al., 2016). Basically, maximum likelihood estimation is used, where in the case of
the two-state HMM an expectation maximization algorithm is applied for iterative likelihood
maximization. Theoretical results (like first passage times, number of perceptual changes or
stationarity properties) for the resulting point process of perceptual reversals are derived in
Chapter 10. The estimation precision and the fitting to the data set of Schmack et al. (2015)
are quite good (chapters 9.6 and 14.1). However, the HMM is a descriptive approach that
lacks connections to possible underlying neuronal processes.
That is why we introduce a hierarchical Brownian model (HBM) in Chapter 11, which allows
us to connect the descriptive analysis of response patterns with potential underlying neuronal
processes. The key idea of the model is to describe the activity difference Pt between conflicting
neuronal populations as Brownian motion with drift ν0 fluctuating between two borders ± b
as follows

dPt = Stν0dt+ dWt, where P0 = −b,

with St describing the sign of the drift and Wt as standard Brownian motion. Each first
passage time leads to a change in perception and in the sign of the drift St (Chapter 11.1).
In addition to this perception process, a background process is modeled during intermittent
presentation that is responsible for the type of state, stable or unstable, by modeling the
drift and border of the perception process (Chapter 11.2). The parameters of the HBM for
continuous presentation are estimated via maximum likelihood (ML) exploiting the inverse
Gaussian distribution of first hitting times by a Brownian motion with drift (Chapter 12.1).
The likelihood in the case of intermittent presentation is expressed using forward variables and
maximized as described in detail in Chapter 12.2. Using the Viterbi algorithm, the hidden
state of each dominance time can be estimated (Chapter 12.5). Moreover, theoretical results
concerning the resulting point processes are derived (Chapter 13). Especially the relative time
spent by the hidden process Ỹ in the stable state is of interest. Finally, the model is applied
to the data set Schmack et al. (2013, 2015) showing good model fit and yielding potential
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1. Introduction and outline

explanations for observed behavioral differences between a group of controls and a group of
patients with schizophrenia (Chapter 14.2).

A condensed version of Part II (including the most important content of chapters 9, 11, 12, 14
and 15) has been published by Albert et al. (2017b).

The computations have been performed using the statistical software RStudio basing on the
programming language R. We mainly used a Mac Pro with a 2.7 GHz 12-Core Intel Xeon
E5 processor and 32 GB working memory. Operating system was OS X El Capitan, Version
10.11.6.
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Part I

Multi-scale detection of variance
changes in renewal processes in the

presence of rate change points
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Chapter 2

Introduction

Motivation

Non-stationarity of the rate or variance of events is a well-known problem in the description
and analysis of time series of events. For example, neuronal spike trains are often analyzed
with point process models (Dayan and Abbott, 2005; Kass et al., 2005; Grün and Rotter,
2010). As such analyses can be affected by changes in process parameters, it is often necessary
to use preprocessing steps that divide the processes into sections with approximately constant
parameters (Grün et al., 2002; Schneider, 2008; Staude et al., 2010; Quiroga-Lombard et al.,
2013). These preprocessing steps use models with step functions for the parameters and aim
at detecting the points in time when the parameters change, i.e., the change points.

For the detection of change points in the rate (or equivalently change points in the mean of
sequences of random variables), several techniques have been developed, e.g., moving sums
(MOSUM, using parts of the data in moving windows, Eichinger and Kirch, 2018), which
are also called filtered derivative (Bertrand, 2000; Bertrand et al., 2011), cumulative sums
(CUSUM, similar to likelihood ratios and referring to the entire data, Horváth et al., 2008) or
penalized least squares (minimizing the quadratic deviations from the mean values and using
the number of change points as penalty, Lavielle and Moulines, 2000). Interesting multi scale
methods have been proposed by Fryzlewicz (2014); Matteson and James (2014); Messer et al.
(2014); Frick et al. (2014) using wild binary segmentation (basing on CUSUM statistics on
randomly chosen intervals), E-Divisive (comparing the time series using a distance function on
all adjacent intervals), filtered derivative and likelihood-ratio statistics. For a general survey
about change point methods we refer to the books Basseville and Nikiforov (1993); Brodsky
and Darkhovsky (1993); Csörgö and Horváth (1997); Brodsky (2017) or the review articles of
Aue and Horváth (2013); Jandhyala et al. (2013).

Some of these techniques can also be applied to the detection of variance change points
(by studying the quadratic deviations from the mean). Other approaches to the analysis
of variance homogeneity use CUSUM (Hsu, 1977; Inclan and Tiao, 1994; Whitcher et al.,
2000), Bayesian ideas (Inclan, 1993), binary segmentation (Chen and Gupta, 1997), penalized
likelihoods (Killick et al., 2010), ratio tests of cumulative sums (Zhao et al., 2010), likelihood
methods (Noorossana and Heydari, 2012), wavelet based methods (wavelets are oscillating
functions with some desirable properties, Killick et al., 2013; Nam et al., 2015) and wild binary
segmentation (Korkas and Fryzlewicz, 2017).

However, most available methods use specific assumptions on the underlying distribution,
e.g., Gaussian sequences (Inclan, 1993; Chen and Gupta, 1997; Whitcher et al., 2000; Killick
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2. Introduction

et al., 2010; Noorossana and Heydari, 2012), or aim at detecting at most one change point like
Hsu (1977); Chen and Gupta (1997); Zhao et al. (2010). In addition, they usually assume
the rate to be constant (sometimes even a known rate is claimed). Few applied approaches
simultaneously deal with potential rate and variance changes (Hawkins and Zamba, 2005;
Rodionov, 2005) using control charts or sequential F -tests. Recently, Dette et al. (2015)
proposed a CUSUM based test for the null hypothesis of constant variance in the presence of
a smoothly varying mean. However, we are not aware of a method that can detect multiple
rate and variance changes occurring on different time scales in point processes with a wide
variety of life time distributions.

Main goals

The goal of this first part of the thesis is the (further) development of a technique to detect
both rate and variance change points (see Figure 2.1) that may occur in multiple time scales.
The structure of the underlying point process is unknown and can be highly diverse including
weak and strong changes of the rate and/or the variance as well as changes occurring slowly
or fast. The procedure should be applicable to renewal processes with a wide range of life
time distributions, i.e., we use a non-parametric approach.

Figure 2.1: A point process with a non-stationary rate and variance profile.

To that end, we propose a two-step procedure that first tests the null hypothesis of rate
homogeneity allowing for an inhomogeneous variance and that estimates change points in
the rate if the null hypothesis is rejected. In the second step, we test the null hypothesis of
variance homogeneity and estimate variance change points. As this step requires estimation of
the underlying rate, we propose to plug in the estimated rate change points derived in the
first step. In our setting we are not restricted to the alternative of at most one change-point
and allow for change points in the rate such that the rate is given by a step function.

The multiple filter test (MFT)

The procedure builds on the multiple filter test (MFT) (Messer et al., 2014) and a corresponding
algorithm (MFA). These were originally designed for the detection of change points in the rate
on different time scales in a wide class of point processes which allows for a certain variability
in the variance of the life times and are thus considered suitable candidates for the first step of
rate change detection here. They will be modified in the second step to allow for the detection
of variance changes. The filtered derivative idea used in the MFT works as follows. Assume
that each life time ξi of a point process on (0, T ] depends on a parameter ϑi of which change
points are to be detected. For a window of size h and each time t in the analysis region
τh := [h, T − h], compare the information about ϑ in the left and right window denoted here
by Jle := J(t− h, t] and Jri := J(t, t+ h], using a scaled process G := (Gh,t)t with

Gh,t :=
Jri − Jle

ŝt
, (2.1)

where ŝ is an appropriate estimator for the standard deviation of the numerator under the
null hypothesis of no change point in ϑ. Figure 2.2 visualizes the idea.

10



2. Introduction

For example, Messer et al. (2014) use the numbers of events in the left and right window in
order to detect change points in the mean of the life times. Under mild assumptions (especially
fulfilled by renewal processes), the process G converges weakly under the null hypothesis to a
process L := (Lh,t)t given by

Lh,t :=
(Wt+h −Wt)− (Wt −Wt−h)√

2h
, (2.2)

for a standard Brownian motion (W )t≥0, if the window size h grows linearly with the total
time T . Note that the process L does not depend on the parameters of the point process.

... ...

Jle Jri( ]( ]

0 t−h t t+h T

Ξ

A

0 h T−h T

−4

−2

0

2

Gh,t

τh

B

Figure 2.2: Schematic representation of the derivation of Gh,t (A) and an exem-
plary (Gh,t)t∈τh-process (B). (A) At each time t ∈ τh the information Jle about ϑ in the
left window is compared to the information Jri about ϑ in the right window. Gh,t is the scaled
difference of Jle and Jri. The double window slides along the process visualized by the blue
arrows such that the process (Gh,t)t∈τh is obtained. (B) An example of a process (Gh,t)t∈τh
with T = 2500 and h = 200 which is derived using the number of events in the left and the
right window as information from a stationary Poisson process Ξ on (0, T ] with independent
exponential(2) distributed lifetimes. The figure is based on Figure 3.3 in Messer (2014).

While under the null hypothesis G fluctuates around zero, a change in ϑ at time t should cause
systematic deviations from zero. Therefore, a large temporal maximum Mh := maxt |Gh,t| indi-
cates a change point in ϑ. Using a finite set of multiple windows H = {h1, . . . , hk} ⊂ (0, T/2]
simultaneously, the MFT allows for the detection of change points on different time scales.
The global maximum M of all processes (Gh,t)h∈H serves as a test statistic whose distribution
can be approximated from the corresponding limit processes (Lh,t)h∈H , i.e.,

M := max
h∈H

Mh = max
h∈H

max
t∈[h,T−h]

|Gh,t| ∼ max
h∈H

max
t∈[h,T−h]

|Lh,t|.

By simulating these limit processes (Lh,t)h∈H as functionals of the same underlying Brownian
motion, the rejection threshold Q of the MFT can be obtained. We stress that the derivation
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2. Introduction

of the quantile Q works in two steps: First, we use that the maximum of all processes (Gh,t)t
over all windows h converges to the maximum of the limit processes (Lh,t)t over all windows
h, the latter being a functional of a standard Brownian motion and particularly independent
from parameters of the input spike train. Then, in a second step, we simulate Q as a quantile
of the limit law. (To the best of our knowledge, there is no closed formula expression for the
limit law where we could directly read Q from.) The main reason for this two step approach
is that it allows for the simultaneous application of multiple windows, which helps to improve
the detection of change points that appear on different time scales: small windows are more
sensitive to frequent change points, while larger windows have higher power and thus improve
the detection of parameter changes of smaller magnitude.

The MFT for variance changes – outline of Part I

In order to perform the second step of change point detection in the variance, we extend the
MFT here, where now the relevant information J in the process G from (2.1) is an estimator
of σ2 (Section 3.1),

Gh,t :=
σ̂2

ri − σ̂2
le

ŝt
, (2.3)

where ŝt denotes an estimator of the standard deviation of the numerator. Assuming first rate
homogeneity with independent identically distributed (i.i.d.) life times, we show that under
the null hypothesis of constant variance, G converges weakly in Skorokhod topology to the
same limit process L (eq. (2.2)) (Section 3.2). This enables to test for and estimate change
points in the variance analogously to rate change points, applying the modified process G
from equation (2.3). This procedure can also be extended to higher order moments assuming
constant lower order moments (Section 3.3). We then deal with processes that contain rate and
variance changes by investigating the impact of one rate change point on the limit behavior
of G in Section 3.4. Under the null of constant variance, the limit process is a continuous,
2h-dependent zero-mean, unit-variance Gaussian process L̃ similar to L (Theorem 3.6), with
slight changes in the covariance structure in the neighborhood of a rate change point. The
proofs are outsourced to Chapter 4 using a Functional Central Limit Theorem, continuous
mapping and the consistency of the estimator ŝt. As the process L̃ depends on unknown point
process parameters, we suggest to use L to derive the rejection threshold of the test. This is
supported by our theoretical and simulation results.
The practical performance of the MFT and the corresponding MFA (Messer et al., 2014)
for the detection of variance change points is presented in Chapter 5. As the MFT is an
asymptotic method, we study the empirical significance level. Our simulations suggest that in
case of about 150 events in the smallest window of H the significance level of the MFT for
variance changes is kept for a wide range of parameter settings also in cases with multiple
unknown rate changes (Chapters 5.1 and 5.2). Further, the detection probability of variance
change points is considerable and barely affected by the necessity to estimate rate change
points. The detection probability depends on the magnitude of the variance change as well
as on the regularity of the process (Chapter 5.3). We present an example for the MFA on
rate and variance change point detection and illustrate the importance of including existing
rate change points in the estimation of variance change points. Finally, we use the MFA in
Chapter 6 to estimate rate and variance change points in spike train recordings obtained in the
substantia nigra of anesthetized mice as reported partly in Schiemann et al. (2012). In about
50% of the cases both null hypotheses of constant rate and constant variance are rejected and
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2. Introduction

different change points are detected by different window sizes. In Chapter 7 we summarize
and discuss the results of Part I of this thesis.

Notation

We state basic notation used in this first part of the thesis. For p ∈ (0,∞) we call a real-valued
random variable X p-times integrable if E[|X|p] :=

∫
R |x|

pdPX(x) <∞. L p is the set of all
p-times integrable random variables. If X is integrable, we denote the expectation of X by
E[X] and in case of X being twice integrable Var(X):= E[X2]− E[X]2 is the variance of X.
The m-th moment of a random variable X ∈ L p is given by E[Xm], for all m = 1, 2, . . . , p.
We use −−→

d
to denote weak convergence and −−→

P
to abbreviate convergence in probability.

almost surely is abbreviated by a.s.
For τ > 0 we denote the set of all càdlàg functions on [0, τ ] by D[0, τ ]. d||·|| serves as
abbreviation for the metric induced by the supremum norm. The Skorokhod metric on
D[0, τ ] is abbreviated by dSK . We use D[0,∞) with the Skorokhod metric. Note the fact
that convergence in (D[0,∞), d||·||) implies convergence in (D[0,∞), dSK). For details on the
Skorokhod metric we refer to Billingsley (1968). Furthermore, for an a.s. constant stochastic
process in D[0, τ ] with value c we abbreviate the process (c)t∈[0,τ ] with c. Note that uniform a.s.
convergence interchanges with sums in general and with products if the limits are constant.

In both parts of the thesis, we use the well-known Gamma distribution. It is, for example,
discussed in Lehmann and Casella (1998). Note that, in this thesis, we use a non-standard
parametrization of the Gamma distribution (Remark 2.3).

Definition 2.1. Gamma and Exponential distribution
The Gamma distribution Γ(p, θ) for the two parameters p > 0, θ > 0 is given by the probability
density function

f(x) =
θp

Γ(p)
xp−1e−θx,if x > 0,

and f(x) = 0 else.
Γ(p) is the value of the Gamma function at p:

Γ(p) :=

∫ ∞
0

tp−1e−tdt

A Gamma distribution with parameter p = 1 is also called Exponential distribution.

Proposition 2.2. Moments of the Gamma distribution
Let X be a Gamma-distributed random variable with parameters p and θ. Then, we have

E[X] =
p

θ
, Var(X) =

p

θ2
.

Remark 2.3. Reparametrization of the Gamma distribution
In this thesis, we will speak of a Gamma distribution with mean µ > 0 and standard deviation
σ > 0 (and density fΓ

µ,σ) to simplify interpretation. Using the parameter transformations
p = µ2/σ2 and θ = µ/σ2, one obtains the notation of Definition 2.1.
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2. Introduction

Point and renewal processes Point and renewal processes are crucial for this thesis.
Therefore, we briefly state corresponding notation.
Instead of giving the detailed and technical definition of (general) point processes we restrict
us to the following Notation 2.4 and refer for details to Daley and Vere-Jones (1988).

Notation 2.4. Description of point processes on the line
Two equivalent ways to describe a point process Ξ on R are

1. Sequence of occurrences {Ti : i ∈ Z}.

2. First occurrence time T1 together with the sequence of intervals (life times)
ξi = Ti+1 − Ti,∀i ∈ Z: {ξi : i ∈ Z} ∪ {T1}.

Moreover, we require the famous concept of a renewal process (e.g., Ross, 1996).

Definition 2.5. Renewal process
Let Ξ be a point process on the positive line with i.i.d., positive life times (ξi)i=1,2,... with mean
µ > 0. Further, let S0 := 0 and Sn :=

∑n
i=1 ξi be the time of the n-th event. The corresponding

counting process

Nt := max{n ≥ 0 : Sn ≤ t}, t ≥ 0,

is called a renewal process.
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Chapter 3

The MFT for testing variance
homogeneity

Here, we derive the limit distribution of the filtered derivative process G when testing for
variance homogeneity. The rejection threshold of the statistical test can be obtained as
described in the introduction by simulation of the respective functional of the limit process.
We first define the model assumptions. Section 3.1 then elaborates on the explicit structure of
G when testing for variance homogeneity. Limit results for G under constant rate and under
one change point in the rate are given in Sections 3.2 and 3.4, respectively. An extension to
the detection of changes in higher order moments assuming constant lower order moments is
presented in Section 3.3.
First we define a class R of renewal processes on the positive line with ξi ∈ L 4 (Definition
3.1). The models with change points in the mean and/or variance considered here are then
given as piecewise elements of R (Definition 3.3).

Definition 3.1. The class R
The class of point processes with i.i.d., a.s. positive life times (ξi)i≥1 with ξ1 ∈ L 4 is called R.

A process Ξ ∈ R whose life times have mean µ and variance σ2 and ν2:= Var((ξ1 − µ)2) is
therefore denoted by Ξ(µ, σ2) := Ξ(µ, σ2, ν2). The inverse of the mean, µ−1, is termed the
rate of Ξ.

Remark 3.2. Explicit expression for ν2

Using the assumption of finite fourth moments, the parameter ν2 of a renewal process
Ξ(µ, σ2, ν2) can be derived as follows

ν2 = Var((ξi − µ)2) = E[(ξi − µ)4]− (E[(ξi − µ)2])2

= E[ξi
4]− 4µE[ξi

3] + 6µ2E[ξi
2]− 4µ3E[ξi] + µ4 − σ4

= E[ξi
4]− 4µE[ξi

3] + 3µ4 + 6µ2σ2 − σ4.

As an example assume a Gamma distribution with expectation µ and standard deviation σ.
Then, we obtain

ν2 =
σ6

µ2

(
2
µ2

σ2
+ 6

)
,

where the exact derivation can be found in Albert (2014).
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3. The MFT for testing variance homogeneity

A class of processes that are piecewise elements of R is used in order to introduce rate and/or
variance changes.

Definition 3.3. Renewal process with change points in the mean or variance
For T > 0 let C := {c1, . . . , ck} be a set of change points with 0 < c1 < . . . < ck < T . At time
t = 0 start k + 1 independent elements of R

Ξ1

(
µ1, σ

2
1

)
, . . . ,Ξk+1

(
µk+1, σ

2
k+1

)
,

with (µi, σ
2
i ) 6= (µi+1, σ

2
i+1). Let c0 := 0, ck+1 := T and define

Ξ :=
k+1⋃
j=1

Ξj |(cj−1,cj ],

where Ξj |(cj−1,cj ] denotes the restriction of Ξj to the interval (cj−1, cj ].

The family of processes which derive according to Definition 3.3 is called M (see Figure 3.1
for an example). For Ξ ∈M , at each change point ci the rate and/or the variance changes,
such that the rate and variance constitute step functions.
Thus, we test the null hypothesis

H0 : σ2
1 = . . . = σ2

k+1

against the alternative
HA : ∃i, j : σ2

i 6= σ2
j ,

where we allow for an unknown number of potential additional change points in the rate that
may or may not occur simultaneously with rate changes. Note that we require the mean in
order to estimate the variances (σ̂2

ri, σ̂
2
le) and to derive the test statistic G. We therefore first

formulate the theory without explicit assumptions on the mean, letting µ(i) denote the mean
of each individual life time ξi. Later on we distinguish between the case with constant mean
and the case where the mean follows a step function, and we investigate the behavior under
estimation of µ(i).

0 c1 T

Ξ1(µ1, σ1
2)

Ξ2(µ2, σ2
2)

Ξ
lifetime
mean

std.dev.

ξ1 ξ2 ξ3 ...
µ(1)µ(2)µ(3) ...
σ(1)σ(2)σ(3) ...

Figure 3.1: A realization of a process Ξ according to Definition 3.3. Ξ originates
from two processes Ξ1(µ1, σ

2
1) and Ξ2(µ2, σ

2
2) ∈ R. Each life time ξi has mean µ(i) and

standard deviation σ(i). Before the change point c1 the mean of the life times is µ1 and the
standard deviation is σ1, and afterwards mean and standard deviation change to µ2 and σ2,
respectively.
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3. The MFT for testing variance homogeneity

3.1 Filtered derivative approach for the variances

As explained in the introduction, we test the null hypothesis using a window size h > 0 and
the filtered derivative process from (2.3) for t ∈ τh defined as

Gh,t :=
σ̂2

ri − σ̂2
le

ŝt

if ŝt > 0 and Gh,t := 0 otherwise. The numerator is given by the standard variance estimators
(eq. (3.3)), and ŝt is a local estimator of the standard deviation of the numerator (eq. (3.4)).
We use the notation

Vi := (ξi − µ(i))2 (3.1)

with µ(i) := E[ξi], (σ(i))2 := E[Vi] = Var(ξi) and (ν(i))2 := Var(Vi) (Figure 3.1). Now we
include estimated rates, using an estimator µ̂(i) of µ(i) and define the estimator of Vi as

V̂i := (ξi − µ̂(i))2. (3.2)

As estimator µ̂(i) we later use a global estimator derived as the mean of all life times (Theo-
rem 3.4) or a local estimator derived between estimated change points (Theorem 3.6).
If Île and Îri denote the sets of life times in (t− h, t] and (t, t+ h] which do not overlap a rate
change point, the standard variance estimators are given by

σ̂2
le :=

1

|Île|

∑
i∈Île

V̂i and σ̂2
ri :=

1

|Îri|

∑
i∈Îri

V̂i (3.3)

if |Îri|, |Île| > 0 and zero otherwise. The estimator ŝ2
t of Var(σ̂2

ri − σ̂2
le) in the denominator of

G is defined as

ŝ2
t :=

ν̂2
ri

h/µ̂ri
+

ν̂2
le

h/µ̂le
, (3.4)

where µ̂ri and µ̂le are the means of the life times in Îri and Île and the numerators are estimated
as

ν̂2
le :=

1

|Île|

∑
i∈Île

(V̂i − σ̂2
le)

2 and ν̂2
ri :=

1

|Îri|

∑
i∈Îri

(V̂i − σ̂2
ri)

2 (3.5)

for |Île| > 0 and |Îri| > 0 and zero otherwise. This is motivated by the Central Limit Theorem√
t/µ(σ̂2

t − σ2)
d−→ N(0, ν2) as t→∞, where σ̂2

t denotes the empirical variance of all life
times up to time t.

3.2 Limit behavior of G under a constant rate

If the mean of the life times is constant µ, one can show the following Theorem 3.4, which
allows application of the multiple filter approach. We use the extended filtered derivative

process G(n) := (G
(n)
h,t )t := (Gnh,nt)t from (2.3) where the window size and the time grow

linearly in n (compare Figure 3.2).
Furthermore, we use the globally estimated mean µ̂ := µ̂nT := (1/NnT )

∑NnT
i=1 ξi as estimator

for each µ(i), where Nt denotes the number of events up to time t.
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3. The MFT for testing variance homogeneity

Ξ
0

n=1

n=2

general n

tt−h t+h
( ]

2t2(t−h) 2(t+h)
( ]

ntn(t−h) n(t+h)
( ]

Figure 3.2: Asymptotic setting for the derivation of the limit processes. The time
and the window size grow linearly in n. Thus, an increase in n shifts the windows to the right
and simultaneously increases their size. The figure is based on Figure 3.4 in Messer (2014).

Theorem 3.4. Constant rate: Convergence of G
Let T > 0 and h ∈ (0, T/2] be a window size. If Ξ ∈ M with constant µ and σ2 using the
globally estimated mean µ̂ we have in (D[h, T − h], dSK) for n→∞

G(n) d−−→ L,

with L as defined in (2.2).

Sketch of proof : Here, the proof is sketched briefly. For the detailed proof we refer to Section
4.1.
We show weak convergence of the filtered derivative process

G
(n)
t := G

(n)
h,t =

1

ŝ
(n)
t

 1

Nn(t+h) −Nnt − 1

Nn(t+h)∑
i=Nnt+2

V̂i −
1

Nnt −Nn(t−h) − 1

Nnt∑
i=Nn(t−h)+2

V̂i

 .

In step 1, we assume a known mean µ and a known s
(n)
t = 2ν2µ/(nh) and thus use an auxiliary

process Γ(n) := Γ
(n)
t defined as follows

Γ
(n)
t := Γ

(n)
ri,t − Γ

(n)
le,t =

1

s
(n)
t

 1

Nn(t+h) −Nnt − 1

Nn(t+h)∑
i=Nnt+2

Vi −
1

Nnt −Nn(t−h) − 1

Nnt∑
i=Nn(t−h)+2

Vi

 .

(3.6)

Applying the Anscombe-Donsker-Theorem and continuous mapping, we show that in
(D[h, T − h]×D[h, T − h], dSK ⊗ dSK) it holds as n→∞((

Γ
(n)
ri,t

)
t∈τh

,
(

Γ
(n)
le,t

)
t∈τh

)
d−→

((
Wt+h −Wt√

2h

)
t∈τh

,

(
Wt −Wt−h√

2h

)
t∈τh

)
, (3.7)

which yields Γ(n) d−→ L.
In step 2, the true mean µ occurring in the left side of (3.7) is replaced by the globally

estimated mean µ̂ and s is replaced by ŝ thereby showing that G(n) d−→ L holds true.
This assertion holds particularly for a constant and known mean, i.e., if µ̂(i) = µ1 ∀i ≥ 1.
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3. The MFT for testing variance homogeneity

3.3 Changes in the k-th moments

Extending the results of the latter section, we can also test the null hypothesis of homogeneity
of the k-th order moments mk := E[ξk1 ] of the life times (ξi)i≥1 for every fixed k under the
assumption that all lower order moments are constant. In this case, the scaled process G from
(2.1) uses the standard estimators of the k-th order moments m̂k in the two windows in the
numerator

m̂k,le :=
1

|Île|

∑
i∈Île

ξki and m̂k,ri :=
1

|Îri|

∑
i∈Îri

ξki .

In detail, we get

Gh,t :=
m̂k,ri − m̂k,le

ŝ
, with ŝ2 :=

V̂ar
(
ξk1
)

ri

h/µ̂ri
+

V̂ar
(
ξk1
)

le

h/µ̂le
, (3.8)

where the numerators in ŝ2 are the standard variance estimators

V̂ar
(
ξk1

)
le

:=
1

|Île|

∑
i∈Île

(ξki − m̂k,le)
2 and V̂ar

(
ξk1

)
ri

:=
1

|Îri|

∑
i∈Îri

(ξki − m̂k,ri)
2.

Under the null hypothesis of constant k-th order moment we find convergence of (Gh,t) to the
same limit process L.

Corollary 3.5. Changes in the k-th moments: Convergence of G
Let T > 0, h ∈ (0, T/2] be a window size. For k ∈ N let Ξ ∈ R (Def. 3.1) with ξ1 ∈ L 2k. Let
G(n) := Gnh,nt be as in (3.8). Then it holds in (D[h, T − h], dSK) as n→∞

G(n) d−−→ L.

Proof: By replacing Vi by ξki and using the known

s2 :=
Var

(
ξk1
)

ri

h/µri
+

Var
(
ξk1
)

le

h/µle

the first step of the proof is analogous to the first step of the proof of Theorem 3.4. In the
second step, s is again substituted by ŝ, where the consistency of ŝ is proven analogously to
Corollary 4.4 and applying the same techniques as for the consistencies of (µ̂)t and (σ̂2)t in
Messer et al. (2014, Lemma A.15 and A.16).
In commonly used distributions, however, for example, the change in third moments when
leaving the first and second moment constant in general is very small and very difficult to
detect in practice. The same holds for higher moments. Therefore, Corollary 3.5 is primarily
of theoretical interest.

3.4 Limit behavior of G with one rate change point

In this section, we extend Theorem 3.4 allowing for one rate change point, while testing the
null hypothesis of variance homogeneity. Assuming a process with at most one rate change
point, the process G can be shown to converge against a limit process L̃ (Theorem 3.6), which
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3. The MFT for testing variance homogeneity

is, like L, a zero-mean 2h-dependent Gaussian process with unit variance (Corollary 3.7). It
differs from L only in the covariance in the 3h-neighborhood of a change point c (see Section
5.2 and Fig. 5.4 C,D).

Theorem 3.6. One rate change point: Convergence of G
Let Ξ(n) ∈M (Def. 3.3) with at most one rate change and no variance change, as follows. Let
Ξ1(µ1, σ

2
1, ν1

2),Ξ2(µ2, σ
2
2, ν2

2) ∈ R with µ1 6= µ2, σ2
1 = σ2

2. For c ∈ (0, T ] and n = 1, 2, . . . let

Ξ(n) := Ξ1|[0,nc] + Ξ2|(nc,nT ], (3.9)

meaning that Ξ(n) fulfills H0. Assume a consistent estimator ĉ of c with

|ĉ− c| = oP(1/
√
n) (3.10)

where oP(·) is the small o-notation with respect to convergence in probability. Let G(n) be the
filtered derivative process associated with Ξ(n) using the empirical means µ̂ĉ1, µ̂ĉ2 estimated in

the intervals [0, ĉ) and [ĉ, T ]. Then with L̃ from (3.11), as n→∞, we have

G(n) d−−→ L̃,

where
d−→ denotes weak convergence in the Skorokhod topology. The marginals L̃h,t of the

limit process L̃ equal L outside the h-neighborhood of c and are given by

L̃h,t =


Lh,t, |t− c| > h,√

(µriν2)2/(µ2h2)(Wt+h−Wc)+
√

(µriν1)2/(µ1h2)(Wc−Wt)−
√
µ1ν12/h2(Wt−Wt−h)

s
(1)
t

, t ∈ [c− h, c],
√
µ2ν22/h2(Wt+h−Wt)−

√
(µleν2)2/(µ2h2)(Wt−Wc)−

√
(µleν1)2/(µ1h2)(Wc−Wt−h)

s
(1)
t

, t ∈ (c, c+ h],

(3.11)
for a standard Brownian motion (Wt)t≥0. The functions µri := µri,h,t, µle := µle,h,t are the
limits of the empirical means µ̂ri, µ̂le and are given by µri,h,t := µ1 for t ≤ c− h, µri,h,t := µ2

for t > c and

µri,h,t :=
h

(c− t)/µ1 + (t+ h− c)/µ2
, (3.12)

for t ∈ (c − h, c] and analogously for µle. The true order of scaling
(

(s
(n)
t )2

)
t∈τh

is defined

by 2ν12

nh/µ1
for t < c − h, by 2ν22

nh/µ2
for t > c + h and for |t − c| ≤ h by the following linear

interpolation

(s
(n)
t )2 := (s

(n)
h,t )

2 :=


1
n

(
µ1ν12

h + (c−t)
h2µ1

(µriν1)2 + (t+h−c)
h2µ2

(µriν2)2
)
, if c− h ≤ t ≤ c,

1
n

(
(c−(t−h))
h2µ1

(µleν1)2 + (t−c)
h2µ2

(µleν2)2 + µ2ν22

h

)
, if c < t ≤ c+ h.

(3.13)

Sketch of proof : Again, we sketch the proof and refer for the detailed proof version to Section
4.2.

The key ingredients are the Anscombe-Donsker-Theorem and continuous mapping. In addition
to the proof of Theorem 3.4, a change point in the rate requires separate considerations for

20



3. The MFT for testing variance homogeneity

different intervals in the neighborhood of a change point. Like in the proof of Theorem 3.4 we
first assume known process parameters and use the modified filtered derivative process Γ

Γ
(n)
t = Γ

(n)
ri,t − Γ

(n)
le,t, (3.14)

which is comparable to the process Γ
(n)
t defined in equation (3.6). The detailed definitions

are given in Section 4.2. Moreover, we decompose the limit process L̃ ∼ L̃ri − L̃le, where ∼
denotes equality in distribution and refer again for detailed definitions to Section 4.2. The
first step of the proof will be to show convergence of the processes

Γ̃
(n)
ri :=

(
Nn(t+h) −Nnt − 1

nh/µri

)
t

· Γ(n)
ri

and Γ̃le against
(
L̃ri, L̃le

)
using the Donsker-Ascombe-Theorem and continuous mapping.

With Lemma 4.5, we can then conclude(
Γ

(n)
ri ,Γ

(n)
le

)
d−−→
(
L̃ri, L̃le

)
,

and using continuous mapping again yields for t ∈ τh

Γ(n) = Γ
(n)
ri − Γ

(n)
le

d−−→ L̃ri − L̃le ∼ L̃.

In step two of the proof, we first replace the true means µ1, µ2 in the numerator by their
estimators to define the process Γ̂(n) and show

Γ̂(n) − Γ(n) P−−→ (0)t. (3.15)

Then, we use Lemma 4.6 to substitute the scaling s
(1)
t used in Γ̂ by the estimator ŝ

(n)
t to prove

the assertion.

We show that L̃ is a Gaussian process with zero mean and unit variance.

Corollary 3.7. Marginal distribution of L̃
Let L̃ be defined as in (3.11). For all t ∈ τh it holds L̃h,t ∼ N(0, 1).

Proof : As the increments of a standard Brownian motion (Wt)t≥0 are independent and Gaussian

distributed, L̃ is Gaussian distributed. Moreover, the increments have zero expectation and
thus the zero mean follows by the linearity of expectation. To show the unit variance, we
analyse three cases. We use the independence of increments and the property that for
0 ≤ s ≤ t : Var(Wt −Ws) = t− s. For |t− c| > h the assertion follows directly. Now, let
t ∈ [c− h, c]. We obtain

Var(L̃h,t) =

µ2riν
2
2

µ2h2
(t+ h− c) +

µ2riν
2
1

µ1h2
(c− t) +

µ1ν21
h2

h

µ1ν12

h + (µriν1)2

h2µ1
(c− t) + (µriν2)2

h2µ2
(t+ h− c)

= 1.

The case t ∈ (c, c+ h] is shown analogously.

Note that analogous results to Theorem 3.6 hold if there are several rate change points with
pairwise distances each larger than 2h as shown in Figure 3.3 for two rate change points.
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3. The MFT for testing variance homogeneity

In the h-neighborhood of each rate change point the marginals of the corresponding limit
process are similar to the marginals of L̃ around c and in between the marginals are identical
to the marginals of L. In case of rate change points with distance smaller than or equal to
2h, the structure of the limit process becomes more complicated but is still comparable to
the structure of L̃. Furthermore, note that the proof of Theorem 3.6 is based on a Functional
Central Limit Theorem and a consistent estimator of st. Therefore the result can be shown not
only for renewal processes but also for a subclass of renewal processes with varying variance
(RPVV) as introduced in Messer et al. (2014).

c1 c1 + hc1 − h c2c2 + hc2 − h

L
~

L
~

L L L
marginals of limit process similar to

Figure 3.3: Limit process in the case of two rate cps with distance larger than
2h. The marginals of the limit process resemble in the h-neighborhoods of the two rate change
points c1, c2 the marginals of the process L̃ around its rate change point, and outside they are
identical to the marginals of L.

As the marginals of L and L̃ differ only in the h-neighborhood of c and both processes are
2h-dependent, their covariance structures differ in the 3h-neighborhood of the rate change
point c, which is illustrated in Figure 3.4. Our simulations in Section 5.2 suggest that the
differences between L and L̃ are typically small with respect to the 95%-quantile of their
absolute maxima. We therefore suggest to use the parameter independent limit process L also
in the situation of potential rate change points for the derivation of the rejection threshold in
the statistical test. The simulations in Section 5 show that the MFT using L instead of L̃
keeps the asymptotic significance level for most combinations of µ and σ even for the case of
multiple unknown rate change points.

c c + hc − h c + 3hc − 3h

impact of
L
~

c−h L
~

c+h

Figure 3.4: Impact of a rate change point on the covariance of L̃. The processes L
and L̃ are 2h-dependent as visualized by orange arrows in the graph. As the marginals of L
and L̃ differ in the h-neighborhood of the rate change point c (colored orange), the covariance
of L̃ differs in a 3h-neighborhood of the rate change point from the covariance of L.
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Chapter 4

Proofs of Theorems 3.4 and 3.6

In this section, we prove the key theoretical results of the first part of this thesis in detail. The
proof of Theorem 3.4 in Section 4.1 uses the Anscombe-Donsker-Theorem, continuous mapping
and the consistency of the estimator ŝ2. In Section 4.2, we prove Theorem 3.6 basically using
the same ideas as for the proof of Theorem 3.4.

We specify the sets of indices

Île := {Nn(t−h) + 2, Nn(t−h) + 3, . . . , Nnt} and Îri := {Nnt + 2, Nnt + 3, . . . , Nn(t+h)}.

The Anscombe-Donsker invariance principle is of central importance for the proofs. We state
it here following Gut (2009, Theorem 2.1, p.158).

Theorem 4.1. Anscombe-Donsker-Theorem
Let (ξk)k≥1 be i.i.d. random variables with zero mean and variance σ2 <∞, (Ñ(t))t≥0 be a
nondecreasing, right-continuous family of positive, integer valued random variables and set

Zn(t) :=
1

σ
√
n

Ñnt∑
k=1

ξk.

Suppose that

Ñ(t)

t

a.s.−−−→
t→∞

κ (0 < κ <∞).

Then we have in (D[0,∞), dsk)

Zn√
κ

d−−−→
t→∞

W,

with W as standard Brownian motion.

Proof : Compare, e.g., Gut (2009).
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4. Proofs of Theorems 3.4 and 3.6

4.1 Proof of Theorem 3.4

Recall the sketch of proof directly following the statement of Theorem 3.4. The processes Γ
(n)
le

and Γ
(n)
ri in equation (3.6) are in detail defined as

Γ
(n)
ri,t :=

1

s
(n)
t

 1

Nn(t+h) −Nnt − 1

Nn(t+h)∑
i=Nnt+2

Vi − E[V1]

 ,

Γ
(n)
le,t :=

1

s
(n)
t

 1

Nnt −Nn(t−h) − 1

Nnt∑
i=Nn(t−h)+2

Vi − E[V1]

 .

Step 1: weak process convergence for known parameters
Recall Vi = (ξi − µ)2 for the life times (ξi)i≥1 of a point process Ξ with a known mean µ. We
apply the Anscombe-Donsker-Theorem to the process defined by

Y
(n)
t :=

1

ν
√
n

Nnt∑
i=1

(Vi − E[V1]).

Since Nt/t→ 1/µ a.s. as n→∞, it follows that in (D[0,∞), dSK) it holds (
√
µY

(n)
t )t

d−→ (Wt)t.
Here, W denotes a standard Brownian motion.
Let ϕ : (D[0,∞), dSK)→ (D[h, T − h]×D[h, T − h], dSK ⊗ dSK) be defined by

(f(t))t≥0
ϕ7−→

((
(f(t+ h)− f(t))√

2h

)
t∈τh

,

(
(f(t)− f(t− h))√

2h

)
t∈τh

)
.

This function is continuous. Mapping
√
µY (n) via ϕ, the first component is given by√ µ

2nhν2

 Nn(t+h)∑
i=Nnt+1

Vi

− (Nn(t+h) −Nnt)E[V1]


t∈τh

d−→
(
Wt+h −Wt√

2h

)
t∈τh

.

By Slutsky’s theorem this also implies√ µ

2nhν2

 Nn(t+h)∑
i=Nnt+1

Vi

− (Nn(t+h) −Nnt − 1)E[V1]


t∈τh

d−→
(
Wt+h −Wt√

2h

)
t∈τh

.

Now in (D[h, T −h], dSK) it holds almost surely that (Nn(t+h)−Nnt−1)t ∼ (nh/µ)t as n→∞,
see Lemma A.3.2 in Messer et al. (2014). Thus by Slutsky’s theorem,

(Γ
(n)
ri,t)t∈τh

d−−→
(
Wt+h −Wt√

2h

)
t∈τh

(here, we also omitted one summand i = Nnt + 1, i.e., a term of order oa.s.(1)). By exchanging

t with t− h and t+ h with t, we obtain the convergence for Γ
(n)
le , which refers to the second

component of ϕ(
√
µY (n)). Thus, we obtain (3.7). This implies Γ(n) d−→ L in (D[h, T −h], dSK)

as n→∞ by continuous mapping which is the assertion for a known mean µ.
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4. Proofs of Theorems 3.4 and 3.6

Note that the expectation E[V1] vanishes, since it appears in both summands.

Step 2: replacement of parameters by their estimators
In a second step we use the estimated mean µ̂nT . We show that for

Ŷ
(n)
t :=

1

ν
√
n

Nnt∑
i=1

(V̂i − E[V1])

in (D[0,∞), dSK) we also obtain

(
√
µŶ

(n)
t )t∈[0,T ]

d−−→ (Wt)t∈[0,T ]. (4.1)

Thus, the same arguments as in step 1 can be applied to show the assertion G(n) −→ L.
Additionally, by Slutsky’s theorem and Corollary 4.4 (given below), we can exchange the
factor (nh/2µν2)1/2 with the estimator 1/ŝ(nt, nh) with the convergence holding true.

To show (4.1), we rewrite Ŷ
(n)
t = Y

(n)
t +R

(n)
t , with R given by

R
(n)
t :=

Nnt

ν
√
n

[
(µ̂nT − µ̂nt)2 − (µ̂nt − µ)2

]
.

This decomposition holds true since

Nnt∑
i=1

V̂i =

Nnt∑
i=1

(ξi − µ̂nT )2 =

Nnt∑
i=1

ξ2
i − 2µ̂nT

Nnt∑
i=1

ξi +Nntµ̂
2
nT

=

Nnt∑
i=1

(ξi − µ)2 + 2(µ− µ̂nT )

Nnt∑
i=1

ξi +Nnt(µ̂
2
nT − µ2)

=

Nnt∑
i=1

Vi +Nnt

[
(µ̂nT − µ̂nt)2 − (µ̂nt − µ)2

]
.

We now show that in (D[0, T ], d||·||) the remainder R→ 0 in probability as n→∞. Then, the
convergence in (4.1) follows by Slutsky’s theorem.

It suffices to show that supt∈[0,T ]R
(n)
t vanishes in probability. Recall σ2 = Var(ξ1) and set

Z
(n)
t :=

√
µ

σ
√
n

Nnt∑
i=1

(ξi − E[ξi]) =

√
µNnt

σ
√
n

(µ̂nt − µ).

Then, by the Anscombe-Donsker-Theorem we find in (D[0, T ], dSK) that

(Z
(n)
t )t∈[0,T ] → (Wt)t∈[0,T ] weakly as n → ∞, such that supt∈[0,T ] Z

(n)
t → supt∈[0,T ]Wt

weakly. Applying the reflection principle, it is known that the distribution of supt∈[0,T ]Wt

directly derives from the normal distribution (e.g., Billingsley, 1968). Now, we first focus on

the second summand of R
(n)
t and show that its square root vanishes

sup
t∈[0,T ]

[(
Nnt

ν
√
n

)1/2

(µ̂nt − µ)

]
= sup

t∈[0,T ]

[(
nσ4

(µνNnt)2

)1/4

Z
(n)
t

]
P−→ 0,
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4. Proofs of Theorems 3.4 and 3.6

as n→∞. This holds true since in (D[0, T ], dSK) it holds almost surely that (Nnt)t ∼ (nt/µ)t
as n→∞, compare, e.g., Lemma A.3.2 in Messer et al. (2014). Thus, the first factor within
the supreme itself vanishes such that the entire expression tends to zero. By continuous
mapping theorem, this holds true for the squared expression, such that the second summand

in R
(n)
t uniformly tends to zero in probability. For the first summand in R

(n)
t , we decompose

(µ̂nT − µ̂nt) = (µ̂nT −µ)− (µ̂nt−µ) and apply the same argument as before to both summands.
As a result R uniformly vanishes in probability.

Now, we state the consistency of the variance estimator ŝ in Corollary 4.4. Therefore, we need
the consistency of the local estimators for µ and ν as stated in the following lemmata.

Lemma 4.2. Let Ξ be an element of R with mean µ. Let T > 0, h ∈ (0, T/2] and µ̂le and µ̂ri
be defined as the empirical means of the life times in the left and the right window, respectively.
Then it holds in (D[h, T − h], d||·||)) almost surely as n→∞ that

(µ̂le)t∈τh −→ (µ)t∈τh and (µ̂ri)t∈τh −→ (µ)t∈τh .

Proof : This is a weaker version of Lemma A.15 in Messer et al. (2014).

Lemma 4.3. Let Ξ be an element of R with ν2 = Var((ξ1 − µ)2). Let T > 0, h ∈ (0, T/2]
and ν̂2

le and ν̂2
ri be defined as in (3.5) using the estimated global mean

µ̂(i) = µ̂nT = (1/NnT )
∑NnT

i=1 ξi ∀i ≥ 1. Then it holds in (D[h, T − h], d||·||)) almost surely as
n→∞ that

(ν̂2
le)t∈τh −→ (ν2)t∈τh and (ν̂2

ri)t∈τh −→ (ν2)t∈τh . (4.2)

Proof: For a known mean µ, i.e., Vi instead of V̂i convergences (4.2) are shown using the same
techniques as for the consistencies of (µ̂)t and (σ̂2)t in Messer et al. (2014). A complete proof
can be found in Albert (2014). To extend the result to the estimated global mean µ̂nT we
derive

ν̂2
ri =

1

Nn(t+h) −Nnt − 1

Nn(t+h)∑
i=Nnt+2

((ξi − µ̂nT )2 − σ̂2
ri)

2

=
1

Nn(t+h) −Nnt − 1

Nn(t+h)∑
i=Nnt+2

(ξ2
i − 2ξiµ̂nT + µ̂2

nT − σ̂2
ri)

2

=

Nn(t+h)∑
i=Nnt+2

(ξ4
i − 4ξ3

i µ̂nT + 6ξ2
i µ̂

2
nT − 2ξ2

i σ̂
2
ri − 4ξiµ̂

3
nT + 4ξiµ̂nT σ̂

2
ri + µ̂4

nT − 2µ̂2
nT σ̂

2
ri + σ̂4

ri)

Nn(t+h) −Nnt − 1
.

(4.3)

Using the summand with ξ3
i µ̂nT as an example, we explain that the difference between the

summands with the estimators for µ and σ in the latter display and with the known values
vanishes a.s. asymptotically for n→∞. It holds

1

Nn(t+h) −Nnt − 1

Nn(t+h)∑
i=Nnt+2

ξ3
i µ̂nT −

1

Nn(t+h) −Nnt − 1

Nn(t+h)∑
i=Nnt+2

ξ3
i µ

=
1

Nn(t+h) −Nnt − 1

Nn(t+h)∑
i=Nnt+2

ξ3
i (µ̂nT − µ). (4.4)
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4. Proofs of Theorems 3.4 and 3.6

The strong consistency (µ̂nT )t∈τh → (µ)t∈τh a.s. as n → ∞ follows directly by Lemma 4.2
(note that in our situation regarding the fixed point in time T is sufficient) and thus it follows
that (µ̂nT − µ)t∈τh vanishes a.s. Moreover, with ξi ∈ L 4 and the exact same techniques as in
the consistency proof of σ̂ri (Lemma A.16 in Messer et al., 2014) it can be shown that almost
surely as n→∞

 1

Nn(t+h) −Nnt − 1

Nn(t+h)∑
i=Nnt+2

ξ3
i


t∈τh

−→ (c)t∈τh

for some constant c > 0. This implies that the expression in (4.4) vanishes a.s. in
(D[h, T − h], d||·||)).

Similar arguments using also the strong consistency of σ̂ri (where the replacement of the
estimator µ̂ri by the estimator µ̂nT neither changes the correctness of Lemma A.16 in Messer
et al. (2014) nor the arguments in its proof) hold for all other summands in equation (4.3).
Consequently, the assertion follows by standard application of Slutsky’s theorem.

Lemma 4.3 directly implies the consistency of the variance estimator ŝ2.

Corollary 4.4. Let Ξ ∈ R with ν2 = Var((ξ1 − µ)2). Let T > 0, h ∈ (0, T/2] and ŝ2(t, h) be
defined as in (3.4). Then it holds in (D[τh], d||·||) almost surely as n→∞ that

(
n ŝ2(nt, nh)

)
t∈τh
−→

(
2ν2

h/µ

)
t∈τh

.

Proof: Recall equation (3.4)

ŝ2
t :=

ν̂2
ri

h/µ̂ri
+

ν̂2
le

h/µ̂le
.

The assertion follows from the consistency of µ̂ri, µ̂le (Lemma 4.2) and ν̂2
ri, ν̂

2
le (Lemma 4.3) by

application of Slutsky’s theorem.

4.2 Proof of Theorem 3.6

The proof was already sketched on page 20 directly following the statement of Theorem 3.6.
In addition to the previous proof, a change point in the rate requires separate considerations
for different intervals in the neighborhood of a change point. These are different for the right
and left window and therefore, we define auxiliary processes that correspond to the right and
left window, respectively.

We recall the modified filtered derivative process Γ from (3.14)

Γ
(n)
t = Γ

(n)
ri,t − Γ

(n)
le,t.
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The latter terms are given by Γ
(n)
ri =

1
Nn(t+h)−Nnt−1

Nn(t+h)∑
i=Nnt+2

(ξi−µ1)2

−σ2

s
(n)
t

, if t < c− h,

1
Nn(t+h)−Nnt−1

 Nnc∑
i=Nnt+2

(ξi−µ1)2+

Nn(t+h)∑
i=Nnc+2

(ξi−µ2)2

−σ2

s
(n)
t

, if c− h ≤ t < c,

1
Nn(t+h)−Nnt−1

Nn(t+h)∑
i=Nnt+2

(ξi−µ2)2

−σ2

s
(n)
t

, if t ≥ c,

and analogously for Γ
(n)
le . Analogously, we decompose the limit process L̃ri− L̃le ∼ L̃, where ∼

denotes equality in distribution. With (W1,t)t≥0 and (W2,t)t≥0 independent standard Brownian

motions the latter terms are given by L̃ri := L̃ri,h,t =

(W1,t+h−W1,t)√
2h

, if t < c− h,√
µ2ri,tν

2
2/(h

2µ2)(W2,t+h−W2,c)+
√
µ2ri,tν

2
1/(h

2µ1)(W1,c−W1,t)

s
(1)
t

, if c− h ≤ t < c,
√
µ2ν22/h

2(W2,t+h−W2,t)

s
(1)
t

, if t ≥ c,

and analogously for L̃le.

The proof now follows the steps outlined on page 21.

Step 1: Proof of (
Γ̃

(n)
ri , Γ̃

(n)
le

)
d−−→
(
L̃ri, L̃le

)
. (4.5)

Let (ξ1,i)i≥1, (ξ2,i)i≥1 and (ξi)i≥1 denote the sequences of life times that correspond to Ξ1, Ξ2

and to the compound process Ξ, respectively. Analogously, let (N1,t)t≥0, (N2,t)t≥0 and (Nt)t≥0

denote the counting processes that correspond to Ξ1, Ξ2 and to Ξ. We use the abbreviated
notation

Vj,i := (ξj,i − µj)2

for the individual processes Ξj , j = 1, 2. According to the Anscombe-Donsker-Theorem we
observe in (D[0,∞), dSK) as n→∞

(
Z

(n)
j,t

)
t≥0

:=

 1

νj
√

n
µj

Nj,nt∑
i=1

(Vj,i − E[Vj,i])


t≥0

d−−→ (Wj,t)t≥0.

Using a different scaling it holds in (D[0,∞), dSK) as n→∞

(
Z̃

(n)
j,t

)
t≥0

:=

√ ν2
j

nh2µj

1

s
(n)
t

Z
(n)
j,t


t≥0

d−−→

√ ν2
j

h2µj

1

s
(1)
t

Wj,t


t≥0

(4.6)
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because (
√
ν2
j /(nh

2µj)/s
(n)
t ))t is continuous in t and does not depend on n. As Ξ1 and Ξ2 are

independent, we also obtain joint convergence in (D[0,∞)×D[0,∞), dSK ⊗ dSK) as n→∞

((
Z̃

(n)
1,t

)
t≥0

,
(
Z̃

(n)
2,t

)
t≥0

)
d−−→

√ ν2
1

h2µ1

1

s
(1)
t

W1,t


t≥0

,

√ ν2
2

h2µ2

1

s
(1)
t

W2,t


t≥0

 . (4.7)

For µri(t) = µri,t, µle(t) = µle,t (as in eq. (3.12)), we use the map
ϕ : (D[0,∞)×D[0,∞), dSK ⊗ dSK) −→ (D[τh]×D[τh], dSK ⊗ dSK) given by

((f(t))t≥0, (g(t))t≥0)
ϕ7−→

 (f(t+ h)− f(t))µri(t)1[h,c−h)(t)

+(g(t+ h)− g(c)) + (f(c)− f(t))µri(t)1[c−h,c)(t)

+(g(t+ h)− g(t))µri(t)1[c,T−h)(t)


t

,

 (f(t)− f(t− h))µle(t)1[h,c)(t)

+(g(t)− g(c)) + (f(c)− f(t− h))µle(t)1[c,c+h)(t)

+(g(t)− g(t− h))µle(t)1[c+h,T−h](t)


t

 .

As both component functions are compositions of continuous functions, ϕ is also continuous.
The Continuous-Mapping-Theorem explains why convergence (4.7) holds with map ϕ applied

to both sides. ϕ applied to the right hand side of (4.7) equals
(
L̃ri(t), L̃le(t)

)
in distribution,

which is shown in the following for the first coordinate.
For t ∈ [h, c− h) we obtain

ϕ


√

ν21
h2µ1

s
(1)
t

W1,t


t≥0

,


√

ν22
h2µ2

s
(1)
t

W2,t


t≥0

∣∣∣∣∣
1,t

=
(W1,t+h −W1,t)√

2h
.

In the case t ∈ [c− h, c) we obtain

ϕ


√

ν2
1

h2µ1

s
(1)
t

W1,t


t≥0

,


√

ν2
2

h2µ2

s
(1)
t

W2,t


t≥0

∣∣∣∣∣
1,t

=

√
µ2
ri,tν

2
2/(h

2µ2)(W2,t+h −W2,c) +
√
µ2
ri,tν

2
1/(h

2µ1)(W1,c −W1,t)

s
(1)
t

.

For t ∈ [c, T − h], it holds that

ϕ


√

ν21
h2µ1

s
(1)
t

W1,t


t≥0

,


√

ν22
h2µ2

s
(1)
t

W2,t


t≥0

∣∣∣∣∣
1,t

=

√
µ2ν2

2/h
2(W2,t+h −W2,t)

s
(1)
t

.

For the left hand side of (4.7), we show

ϕ

((
Z̃

(n)
1,t

)
t≥0

,
(
Z̃

(n)
2,t

)
t≥0

)
=

((
Γ̃

(n)
ri,t

)
t∈τh

,
(

Γ̃
(n)
le,t

)
t∈τh

)
. (4.8)

We make the first coordinate explicit. There, we again distinguish between the three cases
t ∈ [h, c− h), t ∈ [c− h, c) and t ∈ [c, T − h]. For t < c− h, the first coordinate of the right
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hand side in equation (4.8) is given by

1

nh/µri

N1,n(t+h)∑
i=N1,nt+2

(V1,i − E[V1,i])
1

s
(n)
t

=

 1

nh/µri

Nn(t+h)∑
i=Nnt+2

Vi −
Nn(t+h) −Nnt − 1

nh/µri
E[Vi]

 1

s
(n)
t

.

Exchanging subscripts yields analogous results for t ≥ c. For t ∈ [c− h, c) we obtain the first
coordinate as

1

nh/µri

 N1,nc∑
i=N1,nt+2

V1,i − E[V1,i] +

N2,n(t+h)∑
i=N2,nc+2

V2,i − E[V2,i]

 1

s
(n)
t

=

 1

nh/µri

 Nnc∑
i=Nnt+2

Vi +

Nn(t+h)∑
i=Nnc+2

Vi

− Nn(t+h) −Nnt − 1

nh/µri
E[Vi]

 1

s
(n)
t

.

In the latter displays we omitted the summands i = N1,nt + 1 and i = N2,nc + 1, i.e., terms of
order oa.s.(1). Note that the life time ξNnc+1 is not considered in the variance estimation as
its distribution is a mixture of two distributions.
Thus, using the above arguments (Lemma 4.5, Slutsky’s theorem and continuous mapping),
we can conclude

Γ(n) = Γ
(n)
ri − Γ

(n)
le

d−−→ L̃ri − L̃le ∼ L̃,

as also the subscripts one and two of the Brownian motions (W1,t)t≥0 and (W2,t)t≥0 can be
omitted without changing the distribution while preserving the continuity of sample paths.
This is due to the fact that L̃ri − L̃le is defined as a function of increments of disjoint intervals
of the standard Brownian motions (W1,t)t≥0 and (W2,t)t≥0 and has continuous sample paths.
It only remains to be shown that the true means µ1, µ2 and the true scaling s can be replaced
by their estimators.

Step 2: replacement of parameters by their estimators

First, we show equation (3.15), i.e., Γ̂(n) − Γ(n) P−−→ (0)t. To obtain Γ̂(n), we replace the true
means by their estimators in the numerator of Γ̃(n) and the true rate change point c by ĉ. Our
aim is to show √

n

Nn(t+h) −Nnt − 1

 Nn(t+h)∑
i=Nnt+2

(ξi − µ(i))2 −
Nn(t+h)∑
i=Nnt+2

(ξi − µ̂(i))2


t

P−−→ (0)t (4.9)

for the right window with analogous arguments for the left window.
To simplify notation we now restrict to (D(c − h, c], d||·||) and show that (4.9) holds. The
corresponding convergences in (D(0, c − h], d||·||) and (D(c, T − h], d||·||) can be shown with
similar arguments. For our notation we assume (nt, nt+ nh] 3 nĉ where analogous arguments
can be applied for the case (nt, nt+ nh] 63 nĉ. Moreover, we neglect for simplification that the
summands with indices i = Nnc + 1 and i = Nnĉ + 1 (i.e., terms of order oa.s.(1)) are omitted
in the exact expressions for Γ(n) and Γ̂(n), respectively. We first use the local estimators

µ̂1,loc,t := (Nnc −Nnt − 1)−1
Nnc∑

i=Nnt+2

ξi and µ̂ĉ1,loc,t := (Nnĉ −Nnt − 1)−1
Nnĉ∑

i=Nnt+2

ξi
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and analogously for µ̂2,loc,t, µ̂
ĉ
2,loc,t.

The terms inside the inner brackets of (4.9) write as

−2((Nnc −Nnt − 1)µ1µ̂1,loc,t + (Nn(t+h) −Nnc − 1)µ2µ̂2,loc,t)

+ 2
(

(Nnĉ −Nnt − 1)(µ̂ĉ1,loc,t)
2 + (Nn(t+h) −Nnĉ − 1)(µ̂ĉ2,loc,t)

2
)

+ (Nnc −Nnt − 1)µ2
1 + (Nn(t+h) −Nnc − 1)µ2

2 − (Nnĉ −Nnt − 1)(µ̂ĉ1,loc,t)
2

− (Nn(t+h) −Nnĉ − 1)(µ̂ĉ2,loc,t)
2

= (Nnc −Nnt − 1)µ2
1 + (Nn(t+h) −Nnc − 1)µ2

2

− 2((Nnc −Nnt − 1)µ1µ̂1,loc,t + (Nn(t+h) −Nnc − 1)µ2µ̂2,loc,t)

+ ((Nnĉ −Nnt − 1)(µ̂ĉ1,loc,t)
2 + (Nn(t+h) −Nnĉ − 1)(µ̂ĉ2,loc,t)

2.

Applying the same arguments as for the second summand of R
(n)
t in the proof of Theorem 3.4,

we conclude that in (D(c− h, c], d||·||)( √
n

Nn(t+h) −Nnt − 1
((Nnc −Nnt − 1)(µ1 − µ̂1,loc,t)

2 + (Nn(t+h) −Nnc − 1)(µ2 − µ̂2,loc,t)
2)

)
t

P−−→ (0)t. (4.10)

Thus, we have to prove that the difference of (4.10) and (4.9) vanishes, i.e.,( √
n

Nn(t+h) −Nnt − 1

)
t

×
(

((Nnĉ −Nnt)
(
µ̂ĉ1,loc,t

)2
− (Nnc −Nnt)µ̂

2
1,loc,t

+(Nn(t+h) −Nnĉ)
(
µ̂ĉ2,loc,t

)2
− (Nn(t+h) −Nnc)µ̂

2
2,loc,t)

)
t

P−−→ (0)t. (4.11)

We skipped the terms with −1 as they are of order oP(1). Now, we concentrate on the
first two terms with the argumentation for the other terms being similar and note that the
corresponding terms in the previous line are the same as

√
n

Nn(t+h) −Nnt − 1

(
(Nnĉ −Nnc)

(
µ̂ĉ1,loc,t

)2
− (Nnc −Nnt)

(
µ̂2

1,loc,t −
(
µ̂ĉ1,loc,t

)2
))

. (4.12)

Due to assumption (3.10) we derive |
∑Nnc

i=Nnĉ+1 ξi| ≤ |n(c− ĉ)| = oP(
√
n). Moreover, we have

for the number of summands

Nnĉ −Nnc = oP(
√
n) (4.13)

which results from using assumption (3.10) together with the Elementary Renewal Theorem
(e.g., Ross, 1996) and Markov’s inequality. (4.13) does not depend on t and consequently, it can
be shown that the first summand in (4.12) vanishes using also the consistency of µ̂ĉ1,loc,t (which

follows from (4.14) below and the consistency of µ̂1,loc,t). Defining d
(n)
t := (µ̂1,loc,t − µ̂ĉ1,loc,t)

we now show that
(
|
√
n(µ̂2

1,loc,t − (µ̂ĉ1,loc,t)
2
)|
)
t

=

(
|2
√
nµ̂ĉ1,loc,td

(n)
t +

√
n(d

(n)
t )

2
|
)
t

converges
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in probability in (D(c− h, c], d||·||) to zero and thus (4.11) holds. W.l.o.g. we assume ĉ < c
and observe

√
nd

(n)
t =

√
n(Nnc −Nnt − 1)−1

(Nnĉ −Nnc) (Nnĉ −Nnt − 1)−1
Nnĉ∑

i=Nnt+2

ξi +

Nnc∑
i=Nnĉ+1

ξi

 .

(4.14)
One can show that ((

∑Nnĉ
i=Nnt+2 ξi)(Nnĉ − Nnt − 1)−1)t → (µ1)t holds in (D[c − h, c], d||·||)

(using equation (4.13) and the a.s. consistency of the rate estimator in the rate constant case).
Furthermore, using Lemma 4.5 and equation (4.13), we conclude that
((
√
n(Nnĉ−Nnc)(Nnc− Nnt−1)−1))t vanishes in probability in (D[c−h, c], d||·||). Together, this

shows that the first summand in (4.14) vanishes. Together with assumption (3.10) explaining

why the second summand of (4.14) converges to zero we can prove that (
√
nd

(n)
t )t vanishes in

(D(c− h, c], d||·||). Moreover, (
√
n(d

(n)
t )

2
)t = (

√
nd

(n)
t (µ̂1,loc,t − µ̂ĉ1,loc,t))t vanishes as also the

second factor in the latter display converges to zero which can be easily seen using equation
(4.13).

Thus, applying Slutsky’s theorem we have shown (3.15), i.e. Γ̂(n)−Γ(n) P−−→ (0)t, for the locally
estimated means µ̂ĉ1,loc,t, µ̂

ĉ
2,loc,t. The substitution of these locally estimated means by the

global means µ̂ĉ1 := N−1
nĉ

∑Nnĉ
i=1 ξi, µ̂

ĉ
2 := (NnT −Nnĉ − 1)−1

∑NnT
i=Nnĉ+2 ξi can be done with a

decomposition argument similiar to the one in the proof of Theorem 3.4 as we show next for
µ̂ĉ1. We derive

Nnĉ∑
i=Nnt+2

(ξi − µ̂ĉ1)2 =

Nnĉ∑
i=Nnt+2

ξ2
i − 2µ̂ĉ1

Nnĉ∑
i=Nnt+2

ξi + (Nnĉ −Nnt − 1)µ̂ĉ1
2

=

Nnĉ∑
i=Nnt+2

(ξi − µ̂ĉ1,loc,t)
2 + 2(µ̂ĉ1,loc,t − µ̂ĉ1)

Nnĉ∑
i=Nnt+2

ξi

+ (Nnĉ −Nnt − 1)(µ̂ĉ1
2 − µ̂ĉ1,loc,t

2
)

=

Nnĉ∑
i=Nnt+2

(ξi − µ̂ĉ1,loc,t)
2 + (Nnĉ −Nnt − 1)(µĉ1 − µ̂ĉ1,loc,t)

2.

Using the further decomposition (µĉ1− µ̂ĉ1,loc,t) = (µĉ1−µ1)− (µ̂ĉ1,loc,t−µ1) identical arguments

as for R
(n)
t on page 25 together with assumption (3.10) show that(

(Nnĉ −Nnt − 1)/
√
n(µĉ1 − µ̂ĉ1,loc,t)

2
)
t

uniformly vanishes in probability as n→∞. Recalling

the summands in (3.15) we observe

1

(Nn(t+h) −Nnt − 1)s
(n)
t

(
Nnĉ∑

i=Nnt+2

(ξi − µĉ1)2

)

=
1

(Nn(t+h) −Nnt − 1)s
(n)
t

(
Nnĉ∑

i=Nnt+2

(ξi − µ̂ĉ1,loc,t)
2

)
+

(Nnĉ −Nnt − 1)(µĉ1 − µ̂ĉ1,loc,t)
2

(Nn(t+h) −Nnt − 1)s
(n)
t

where s
(n)
t is asymptotically of order Θ(1/

√
n) (recall eq. (3.13)) and thus the last term

uniformly vanishes in probability as n → ∞ as explained above. Hence, an application of
Slutsky’s theorem allows us to finally show (3.15).
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In the last part of the proof we substitute the interpolated variance (s
(n)
t )2 by the estimated

variance ŝ2
nh,nt. With Lemma 4.6 below and weak convergence of Γ̂ −→ L̃, the assertion

follows.

Next, we show two technical lemmata. Using µle and µri we obtain a convergence result for
the scaled counting process (Nt)t≥0.

Lemma 4.5. Let Ξ be a renewal process like in Theorem 3.6 with mean functions µle,h,t, µri,h,t
as in (3.12). Let T > 0, h ∈ (0, T/2]. Then we have in (D[τh], d||·||) as n→∞ almost surely(

Nn(t+h) −Nnt

nh/µri,h,t

)
t∈τh
−−→ (1)t∈τh and

(
Nnt −Nn(t−h)

nh/µle,h,t

)
t∈τh
−−→ (1)t∈τh .

Proof : This is Lemma 4.1 in Messer and Schneider (2017).

The next result shows the convergence of the denominator of G. For a known rate the estimator
ν̂2

le (3.5) may be written as

ν̂2
le :=

1

Nnt −Nn(t−h) − 1

 Nnc∑
i=Nn(t−h)+2

((ξi − µ1)2 − σ̂2
le)

2 +

Nnt∑
i=Nnc+2

((ξi − µ2)2 − σ̂2
le)

2


(4.15)

and analogous for ν̂2
ri where c denotes the rate change point. Note that the life time ξNnc+1 is

not considered in the terms above as its distribution is a mixture of two distributions.

Lemma 4.6. Let Ξ1(µ1, σ
2) and Ξ2(µ2, σ

2) be independent elements of R with µ1 6= µ2. Let
c ∈ (0, T ] be a rate change point, so that the sequence Ξ(n) results from Ξ1 and Ξ2 according

to model (3.9). Let ŝnh,nt and s
(n)
t be defined as in (3.4) and (3.13) and ĉ be an estimator of c

fulfilling assumption (3.10). Then it holds in (D[τh], d||·||) for n→∞ in probability

(ŝnh,nt)t∈τh −−→
(
s

(1)
t

)
t∈τh

.

Proof : We show that the limit behavior of ŝnh,nt is given by

ν2
ri

h/µri
+

ν2
le

h/µle
∀t ∈ τh,

where µri and µle are the window means defined in (3.12).
ν2

ri := ν2
ri(h, t) is given by ν1

2 for t ≤ c− h, by ν2
2 for t > c and by

ν2
ri(h, t) :=

(c− t)/µ1 · ν1
2 + (t+ h− c)/µ2 · ν2

2

h/µri
(4.16)

otherwise. ν2
le is defined analogously.

The uniform a.s. convergence of the estimators µ̂ri and µ̂le to µri and µle is shown in Lemma
4.2 in Messer and Schneider (2017). The uniform convergence in probability of the estimators
ν̂2

ri and ν̂2
ri (as in (3.5)) to ν2

ri and ν2
le (defined in (4.16)) can be shown using the consistency
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result for ν2 (Lemma 4.3). We show this for ν̂2
le with the argumentation for ν̂2

ri being similar
and assume first a known mean profile. By Lemma 4.3 it holds for n→∞ that

Nnc∑
i=Nn(t−h)+2

((ξi − µ1)2 − σ̂2
le)

2

Nnc −Nn(t−h) − 1


t∈τh

a.s.−−→ (ν2
1)t∈τh .

Lemma 4.5 and Slutsky’s theorem imply for the first summand of (4.15)
Nnc∑

i=Nn(t−h)+2

((ξi − µ1)2 − σ̂2
le)

2

Nnt −Nn(t−h) − 1


t∈τh

a.s.−−→
(

(c− (t− h))/µ1

h/µri
ν2

1

)
t∈τh

.

Similar calculations for the second summand yield
Nnt∑

i=Nnc+2

((ξi − µ2)2 − σ̂2
le)

2

Nnt −Nn(t−h) − 1


t∈τh

a.s.−−→
(

(t− c)/µ2

h/µri
ν2

2

)
t∈τh

.

The exchange of the true means by their estimators results from Slutsky’s theorem using
assumption (3.10) of consistency (in probability) of the change point estimator, which yields
(ν̂2

le)t∈τh −−→ (ν2
le)t∈τh in probability. As all four functions (µri)t∈τh , (µle)t∈τh , (ν

2
ri)t∈τh and

(ν2
le)t∈τh are continuous, ŝ −→ s(1) holds in probability for n→∞ by the form of the estimator

ŝ in (3.4).

Note that Theorem 3.6 holds not only for renewal processes but for all point processes for
which (4.6) holds and st is consistently estimated, for example also for a subclass of renewal
processes with varying variance (RPVVs, see Messer et al. (2014)).
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Chapter 5

Change point detection and
evaluation in simulations

In this chapter, we investigate the practical applicability of the MFT. First, we briefly discuss
the window choice. Then, we investigate the empirical significance level of the MFT – which
is an asymptotic method – in simulations. Section 5.1 assumes a constant rate, and Section
5.2 investigates the behavior for an unknown number of unknown change points in the rate
thereby also explaining the multiple filter algorithm. In Section 5.3, we evaluate the detection
probability of variance change points in different simulation settings thereby showing the
importance of including estimated rate change points and the dependence of the detection
probability on the magnitude of changes and on the regularity of processes.

We have already outlined in the introduction that the MFT uses multiple windows to combine
the advantages of small and large windows and to avoid the problem of choosing the most
appropriate single window. As discussed in Messer et al. (2014), adding more windows in the
window set H only slightly increases the rejection threshold Q. Therefore, we recommend
the following guidelines for choosing the window set H. The smallest window h1 should be
chosen such that the asymptotic significance level is kept. T/2 limits the choice of the largest
window hmax. A narrow grid between the smallest and largest window facilitates change-point
detection in various time scales but increases Q (thereby reducing the probability to detect
change points) and the computational effort.

5.1 Global rate

Figure 5.1 A shows the empirical significance level of the MFT applied to processes with
independent and Gamma-distributed life times with mean µ and standard deviation σ. The
global empirical mean of the life times is used as an estimator for µ. As discussed in Messer
et al. (2014), the minimal window should be large enough such that a sufficiently high
number of events can be observed. For change points in the rate, the minimal window
should contain at least about 100-150 events (see Messer et al., 2014). For variance change
points, the minimal window should be slightly larger. We use here the window set H =
{150, 250, 500, 750, 1000, 1250} · µ, where the minimal window size increases linearly with the
mean life time. As indicated in the figure, the test keeps the asymptotic significance level of
5% for a wide range of parameter combinations if σ < 4µ (roughly), i.e., if the process is not
too irregular.
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5. Change point detection and evaluation in simulations
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Figure 5.1: Simulated rejection probability of the MFT for processes with
i.i.d. Gamma-distributed life times (T = 2000, H = {150, 250, 500, 750, 1000, 1250} · µ,
5000 simulations). (A) Constant unknown mean estimated by the global empirical mean.
(B) The rate profile is given by a random change point model. For each simulation, a new
rate profile is realized as exemplarily depicted in (C). The means and all change points are
estimated using the MFA from Messer et al. (2014). (C) Process Ξ used in the simulations in
(B) is a piecewise composition of four renewal processes Ξ1, . . . ,Ξ4 with Gamma-distributed
life times with parameters (µ1, µ2, µ3, µ4) = (µ, 0.8µ, 1.2µ, 1.6µ). Waiting times between rate
change points are uniformly distributed on [0, 800]. At odd valued change points Ξ jumps from
Ξ1 to a randomly drawn other process, jumping back at even valued change points.
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In the following section, the significance level of the MFT is investigated for a set of multiple
unknown rate change points, implying also an unknown rate profile.

5.2 Inhomogeneous rate

For the investigation of the significance level of the MFT in the case of multiple unknown rate
change points, we first need to estimate the number and location of the rate change points. To
this end, we apply here the multiple filter algorithm (MFA) for the rate proposed in Messer
et al. (2014). After estimation of the rate change points, we include the estimated rates into
the variance estimation in order to test the null hypothesis of variance homogeneity. When
this null hypothesis is rejected, the MFA procedure can be extended to estimate the variance
change points. In Section 5.2.1, we summarize the idea of the MFA and its two-step application
for the detection of rate and variance change points. Section 5.2.2 will be concerned with
investigating its significance level in simulations with multiple change points in the rate.

5.2.1 The two-step MFA for the detection of rate and variance change
points

In a nutshell, the MFA works as follows. In case of rejection of the null hypothesis, change
points are detected using the individual windows (compare Figure 5.2 A). For each window,
we check whether the maximum of its |Gh,t|-process exceeds the rejection threshold Q and if
so, its argument ĉh,1 is a change point candidate. As this maximum affects it h-neighborhood,
we delete this h-neighborhood from the observation region τh and continue searching for the
next maximizer. We repeat this procedure as long as the remaining process has points above
Q. Thus, for each window h ∈ H we obtain a set of change point candidates (diamonds in
Figure 5.2 B, where we have two candidates for the smallest and largest window, respectively,
and one candidat for the second window).

The second step of the MFA combines the change point candidates into the final set of
estimates Ĉ by preferring change points detected by smaller windows (as change points being
close together might affect the estimation precision of larger windows). First, all change points
candidates of the smallest window h1 are included in Ĉ (two blue triangles in Figure 5.2 B).
Then, only those change points detected by the second smallest window h2 are included in Ĉ
whose h2-neighborhood does not contain an already accepted change point. The procedure
is continued successively for all larger windows. In Figure 5.2 B the change point estimated
by h3 is added to Ĉ (magenta triangle). Then, the quantity of interest (i.e., the rate or the
variance) is estimated between the change points or – if the null hypothesis was not rejected –
in the interval [h, T − h]. For more details on the MFA compare Messer et al. (2014).

We suggest to apply the MFA first for the estimation of rate change points. Second, we
include the estimated rates into the variance estimation (eq. (3.3)). This sequential MFA
is illustrated in the following line, where ĉR and ĉV denote the estimated sets of rate and
variance change points, respectively, and µ̂t and σ̂2

t are the estimated means and variances at
time t ∈ [h, T − h], respectively.

MFT

Rate

Rej.−−→
H0?

{
Yes: MFA : ĉR = (ĉR1 , ...), µ̂t

No: ĉR = {}, µ̂t
ĉR−−→̂
µt

MFT

Variance

Rej.−−→
H0?

{
Yes: MFA : ĉV = (ĉV1 , ...), σ̂

2
t

No: ĉV = {}, σ̂2
t
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Figure 5.2: Visualization of the MFA for a window set H = {h1, h2, h3}. (A)
Exemplary |Gh,t|-processes. (B) Change point candidates detected by single windows are shown

as diamonds and their h-neighborhoods as horizontal lines. Ĉ contains all finally accepted
change points. The MFA for rate and variance change points work identically. The figure is
adopted from Figure 3 in Messer et al. (2018).

The functions MFT.rate() and MFT.variance() in the R-package MFT (Messer et al., 2017)
perform the MFT and the MFA for the rates and the variances, respectively.
Figure 5.3 shows the application of the sequential MFA to a simulated point process with two
rate and two variance change points. In panels B and D-H the estimated variance fits well if
the inhomogeneous rates are included in the estimation. Panels A and C also indicate that
neglecting the rate change points and thus estimating a constant rate results in erroneous
estimation of the rate and the variance profile. This is because the applied test statistic uses
the wrong global mean (eq. (3.2)).
Note that this procedure requires consistency of the estimated rate (Theorem 3.6). Although
this has not been shown for the MFA, our simulation results suggest good performance (see
Section 5.2.2). In addition, note that in the second step of the sequential procedure, i.e., the
detection of variance changes, the limit process L̃ required to set the rejection threshold Q
differs from L. However, as L̃ depends on unknown process parameters, we argue here that
one can replace L̃ by L because the mean and variance of the two Gaussian processes are
identical. Differences occur only in the covariance function Σh

u,v := Cov(Lh,u, Lh,u+v) in the
3h-neighborhood of a change point and are typically small (Figure 5.4 A, C), particularly for
small σ/µ and small rate changes. For higher changes in the mean and higher σ/µ, larger
differences can be observed between L and L̃ (panel B, D), but their 95%-quantiles Q and Q̃
remain close together. Also in larger simulation studies with different rate changes up to a
factor of six, Q ranged between the 94.5%- and the 95.1%-quantile of maxh,t |L̃h,t| (data not
shown).
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Figure 5.3: Application of the sequential MFA for estimation of rate and variance
change points in a simulated point process. The analyzed interval is (0, 2000] with rate
change points c1 = 430, c3 = 1060 and variance change points c2 = 630, c4 = 1490. All
life times were Gamma-distributed with (µ, σ2) equalling (0.25, 0.03) in (0, c1],(0.35, 0.03) in
(c1, c2], (0.35, 0.0216) in (c2, c3], (0.45, 0.0216) in (c3, c4] and (0.45, 0.0357) in (c4, 2000]. (A,
C) Neglecting rate inhomogeneity in the variance estimation yields erroneous results. Estimated
rate (blue) and variance (red), and true profiles (darkblue, darkred). (B, D) The rate change
points are estimated and included in the variance estimation. (E, F) Rate MFA. (G, H)
Variance MFA. Colored curves show the (|Gh,t|)-processes colored by window size indicated on
the right. Dashed line indicates simulated threshold Q, estimated change points are marked by
diamonds. Dashed blue and red lines show the estimated rate and variance profiles, solid lines
indicate the true parameter values.
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Figure 5.4: Comparison of the processes L and L̃. The processes are compared in the
neighborhood of a rate change point at c = T/2 (T = 2000) where processes with small σ/µ
and small rate change (A,C) and larger σ/µ and larger rate change (B,D) are used. (A, B)
Realizations of |L| (red) and |L̃| (blue), derived from the same Brownian motion. Outside the
h-neighborhood of the change point, the marginals coincide. The 95%-quantiles Q and Q̃ of the
absolute maxima of L and L̃ (estimated in 10000 simulations) are indicated by dashed and dotted
lines. (C, D) The estimated empirical covariance functions Σ̂h

c,v of L (red) and L̃ (blue) at the
change point c for one window size h = 100 estimated in 10000 simulations for the parameters
given in A, B, respectively. Parameters for A, C: µ = µ1 = 0.1, µ2 = 0.15, σ = σ1 = σ2 = 0.1.
Parameters for B, D: µ = µ1 = 0.1, µ2 = 0.5, σ = σ1 = σ2 = 0.5.
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5.2.2 Significance level under rate inhomogeneity

In order to investigate the empirical significance level of the MFT for variance changes under
an unknown set of unknown change points estimated with the rate MFA, we use a random rate
change point model with rate changes of different height and at different time scales (Figure
5.1 C). The empirical significance level of the resulting MFT derived in 5000 simulations is
plotted in Figure 5.1 B as a function of the mean µ1 of the process Ξ1 and the standard
deviation σ.
Compared to the situation with constant rate (Figure 5.1 A), a higher type I error is observed
as the rate MFA can usually not correctly estimate all rate change points, which affects the
MFT for variance changes (Figure 5.3 C). The parameter region with empirical significance
level > 5% is larger than under rate homogeneity, including also parameter combinations with
high mean and small variance. This suggests that if the average variance is not too large or
too small compared to the mean, the smallest window in the MFT for variance changes should
contain at least about 150 events.

5.3 Detection probability of variance change points

In this section, we investigate the empirical detection probability of variance change points
in simulations, considering cases with homogeneous and with inhomogeneous rate. First, we
recommend to always perform the two-step procedure of estimating rate change points first
and then using these for the analysis of variance homogeneity and estimation of variance
change points. This is because in practice, information about rate homogeneity is usually
not given, and falsely assuming rate homogeneity can largely affect the analysis of variance
homogeneity. As shown in Figure 5.5 B, rate change points can be falsely identified as variance
changes points, while the detection probability of true variance change points can dramatically
decrease.
Using this two-step procedure raises the question of whether the rate-MFT in the first step is
applicable in the presence of variance change points. Indeed, one can show that the impact
of variance change points on the performance of the rate-MFT is practically negligible (for
details see Messer and Schneider, 2017, Corollary 3.4). The reason is that if only the variance
changes but not the rate, the associated filtered derivative process for the rate still converges
to a zero-mean unit-variance 2h-dependent Gaussian process, and the change in the variance
affects only the local covariance structure of the limit process.
Second, the MFT for variance changes shows a considerably high detection probability
(Figure 5.5 D). In accordance with common neurophysiological models, we simulated Gamma-
distributed life times and call processes with life time distributions with a coefficient of
variation (CV =

√
Var(ξ)/E(ξ)) of up to 0.5 regular, while processes with CV= 1 (e.g., a

Poisson process) are called irregular, and processes with CV> 1 very irregular. In regular
and mildly irregular cases, a variance change factor of only 1.5 already had a considerable
detection probability of 50% in the worst case, increasing quickly to detection probabilities
close to 100% for a change factor of 2 (compare. e.g., Eckley et al., 2010; Killick et al., 2010).
Only for extremely irregular cases, detection probability increased more slowly, reaching a
detection probability of about 75% at a change factor of 3.
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Figure 5.5: Detection probability of variance change points. In all cases T = 2000,
α = 5% and H = {150, 250, 500, 750, 1000, 1250} · µ were used. (A): Rate and variance
profile of the Gamma processes used in B and C. (B): Locations of estimated variance change
points when the rate is assumed constant and estimated globally. For illustration, estimated
change points closer to the (falsely detected) rate change point are colored in red, change point
estimates closer to the variance change point are colored in green. (C): Locations of estimated
variance change points when the MFA for rate change detection is included as a first step.
Colors as in B. (D): Test power of the MFT for variance homogeneity for Gamma processes
with constant mean µ = 0.4 and one variance change point at c = 1000 where the variance
changes from σ2

1 ∈ {0.22, 0.42, 0.62} (compare colors) to σ2
2. (E): Relative frequency of correctly

detected variance change points in a random change point model for known inhomogeneous
rates (light blue) and estimated inhomogeneous rates (dark blue). Rate and variance changes
occur randomly with distances uniformly distributed on [90, 770]. At odd valued change points,
the rate, the variance or both parameters change, each with probability one third. The variance
changes uniformly from σ2 to one of (3σ2, 4σ2, 5σ2), and the rate changes uniformly to one of
(0.4µ, 0.8µ, 1.2µ, 1.6µ), switching back to the original parameters (µ, σ2) at even valued change
points. 5000 simulations per data point.
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Finally the proposed two-step procedure showed high performance in random change point
models with multiple rate and variance changes. Figure 5.5 E shows the percentage of correctly
detected variance change points for different parameter combinations, where a change point is
called correctly detected if it is contained in a neighborhood of at most 15 time units of an
estimated change point. Figure 5.5 E also shows that the detection probability of variance
change points was not strongly affected by the necessity to estimate inhomogeneous rate
profiles if estimated rate change points were included in the procedure. The percentage of
correctly detected change points in simulations with unknown (dark blue) and known (light
blue) inhomogeneous rate profiles were highly comparable. This is because rate changes that
fail to be detected are typically too small to considerably affect the second step of estimating
variance change points. All simulations were based on i.i.d. Gamma-distributed life times, and
similar results were also obtained with lognormally distributed life times (Table 5.1).

Lognormal Gamma

µ/σ 0.05 0.2 0.05 0.2

0.2 88.9% 9.0% 92.0% 33.3%
0.4 90.2% 32.2% 92.6% 51.6%
0.6 87.6% 45.4% 88.5% 61.5%

Table 5.1: Detection probability of variance change points with various life time
distributions. 5000 simulations with the random change point model explained in the figure
caption of Figure 5.5 E were performed assuming unknown rates. In the first two columns
lognormally distributed life times were used and in the last two columns Gamma-distributed
life times were used (for the Gamma case numbers are visualized by the dark blue points in
Figure 5.5 E).

In summary, our simulations suggest good performance and practical applicability of the
proposed two-step procedure of first detecting rate changes and then incorporating these
estimates in the detection of variance change points. The significance level was kept for typical
parameter constellations, and the detection probability of variance change points was high
even in the presence of multiple rate changes, as often observed in empirical data sets. This
allows the analysis of empirical point processes with multiple rate and variance changes as
illustrated in Section 6.
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Chapter 6

Application to spike train
recordings

To illustrate practical application of the proposed method, we analyze 72 empirical spike train
recordings of durations between 540 and 900 seconds which were reported partly in Schiemann
et al. (2012) and analyzed for rate homogeneity in Messer et al. (2014). As the mean firing
rate was about 6 Hz, the window set HR := {25, 50, 75, 100, 125, 150} was used there, and
rate change points were estimated with the MFA. Here, we use these estimates of rate change
points to analyze changes in the variance of inter spike intervals. In order to ensure about
150 events in the smallest window (see Section 5.2), we chose a window set HV = HR. The
significance level was set to α = 5%.
In 36 out of all 72 spike trains the null hypothesis of variance homogeneity was rejected, and
in 22 spike trains more than one variance change point was detected. In 11 cases, different
change points were detected by different window sizes. In the mean over all spike trains 0.1
variance change points per minute were detected. To measure the strength of a detected
variance change we used the absolute difference of the estimated variances |σ̂2

1 − σ̂2
2| normed

with their mean 0.5(σ̂2
1 + σ̂2

2). This strength ranged between 0.02−1.96. The detected variance
ratios of changes ranged between 1.02− 94, where 53.6% were below 2 and even 82.9% below
3. Thus, a majority of detected variance changes showed variance ratios smaller than 3 or
even 2, which indicates a high sensitivity of the proposed method also to comparably small
variance changes.
Combined with the results of the rate change point detection, both null hypotheses of rate
and variance homogeneity were rejected in about 50% of all spike trains (35 out of 72). For 27
spike trains, only rate homogeneity was rejected, in one spike train only variance homogeneity
was rejected, and for 9 spike trains, neither null hypothesis was rejected.
Figure 6.1 illustrates two spike train analyses with multiple rate and variance change points in
which visual impression corresponds closely with the rate and variance profiles estimated by
the algorithm. In the first example the rate only changes slightly while the variance shows
six strong changes. In the second example, estimated rate and variance change points occur
interestingly close to each other.
These findings stress that spike trains can show highly variable firing patterns, including a
number of changes not only in the firing rate but also in the variability of inter spike intervals.
Therefore, their detection prior to further analysis is strongly recommended when statistical
analyses are sensitive to parameter changes.
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Figure 6.1: Application of the rate and variance MFT to two spike train record-
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46



Chapter 7

Summary and Discussion

This part of the thesis was concerned with our first main goal: the detection of non-stationarities
in the rate and the variance of point processes like neuronal spike trains. Therefore, we have
extended a multiple filter test (MFT) that has been proposed in Messer et al. (2014) and that
aims at testing the null hypothesis of rate stationarity in renewal processes and to detect rate
change points on multiple time scales. The rejection threshold of the test is derived from
a Gaussian process L, which emerges as the limit of the filtered derivative process G under
stationarity and is independent of the point process parameters.
By replacing the number of events in G by the variance of life times, homogeneity of the
variance of the life times can be analyzed. When the rate is constant, the MFT extends
directly to the null hypothesis of constant variance. In the presence of rate change points, the
process G deviates from zero in expectation in the neighborhood of the rate change point if
G is not adjusted for the rate change. This may lead to false interpretation of a rate change
point as a variance change point. Therefore, we propose an adaptation of the process G that
corrects for this deviation by taking into account the rate change. The resulting limit process
L̃ of G vanishes in expectation in the neighborhood of a change point, but its covariance
shows slightly different properties from L, and these differences depend on unknown process
parameters. The test can be extended to the null hypothesis of constant k-th order moments
under the assumption of homogeneity of lower order moments.
In practice, we propose to estimate the rate change points first by procedures that allow
for potential variance changes (e.g., the MFT for renewal processes with varying variance,
Messer et al., 2014). One can then incorporate these estimates in the statistical test for
variance homogeneity. This is important in order to prevent false detection of rate change
points as variance change points. As L̃ depends on unknown process parameters, we use the
process L instead to compute asymptotic rejection thresholds. Our simulations suggest that
the deviations between the limit processes tend to be small for a wide range of parameter
values and that the use of L does in these cases not considerably change the properties of
the statistical test. In simulations of point processes with constant variance and random rate
change points the asymptotic significance level was kept if the smallest window was chosen
sufficiently large. In addition, the simulations suggest that the detection of simulated variance
change points – for which the multiple filter algorithm (MFA, Messer et al., 2014) is applied
– is hardly affected by the necessity to estimate potential rate change points. For practical
applicability, the R-package MFT (Messer et al. (2017)) contains the procedure for the rates as
well as for the variances.
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7. Summary and Discussion

Interestingly, it is conceivable to modify the MFT such that changes in the variances in
sequences of independent random variables can be detected. In this case a moving sum type
statistic (MOSUM) should compare the scaled variances in two adjacent windows. Under
the assumption of constant expectation we suppose the corresponding limit process to be
L again (as it has recently been shown for the extension of the rate MFT to the detection
of changes in the expectation in sequences of random variables that the limit process is L
(Messer et al., 2018), and as variances can be interpreted as means of quadratic deviations
from the expectation). Future work may study how the limit process is influenced by change
points in the expectation.
Another possible issue for future work is the extension of the multiple filter framework to point
process models that capture gradual changes of the rate and/or the variance. In its current
form only step functions are estimated by the MFA. Moreover, consistency results for the
number and the location of estimated change points would be desirable. Note, however, that
proving consistency of argmax type estimators is a challenging task where not many results
are known.

In summary, we have extended a statistical test for the null hypothesis of rate homogeneity
to the analysis of variance homogeneity in renewal processes with a wide range of life time
distributions where the rate is allowed to follow a step function. In addition, an algorithm is
described that aims at detecting an unknown number of rate and variance change points that
may occur at multiple time scales. When applying the procedure to empirical spike trains,
both null hypotheses of constant rate and constant variance were rejected in the majority of
cases, and multiple rate and variance change points were estimated. This suggests that the
proposed method can be helpful for change point estimation and segmentation of empirical
processes such as neuronal spike trains. It can thus be used as a means for signal detection or
as a preprocessing step to statistical analyses that are sensitive to rate or variance changes.

As outlined in the introduction, the following second part of the thesis deals with another kind
of variability changes arising in point processes in neuroscience. The variability in response
patterns to stimulation by an ambiguous stimulus in general and the variability change between
response patterns to continuous and intermittent presentation in particular shall be described
in one model framework. Therefore, an appropriate model is developed that is fittable to
typically short experimental data and that also allows for neuronal correlates.
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Part II

A hierarchical stochastic model for
bistable perception
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Chapter 8

Introduction

Motivation

The phenomenon of bistable perception has fascinated researchers for a long time (Necker, 1832;
von Helmholtz, 1866; Levelt, 1965). Recently, the description of response patterns to bistable
stimuli such as the Necker Cube, Rubin’s vase or rotating spheres with switching rotation
direction gained increasing interest in computational neuroscience (Leopold and Logothetis,
1999; Hohwy et al., 2008; Sterzer et al., 2009; Braun and Mattia, 2010; Weilnhammer et al.,
2017). By modeling dynamic changes of perception during viewing of one and the same
stimulus, one aims at providing potential explanations for neuronal mechanisms underlying
perception and perceptual changes and to identify related brain areas as well as potential
dysfunctions, e.g. in schizophrenia (Schmack et al., 2013, 2015).

Interestingly, the response patterns to continuously shown bistable stimuli often share common
properties (Braun and Mattia, 2010; Brascamp et al., 2015). Typically, the distribution of
intervals of constant perception (termed dominance times) is unimodal and right-skewed, and
extremely short dominance times, i.e., rapidly fluctuating precepts, are rare (Levelt, 1967;
Moreno-Bote et al., 2007; Brascamp et al., 2009). The dominance times under continuous
stimulation are therefore often modeled as Gamma-distributed (Leopold et al., 2002; Murata
et al., 2003; Wilson, 2007; Gigante et al., 2009; Gershman et al., 2012; Pastukhov et al., 2013).
The mean of dominance times can be highly variable across subjects (Brascamp et al., 2009;
Pastukhov et al., 2013), whereas the coefficient of variation (CV) is often comparable (Cao
et al., 2016). Very long dominance times of more than 100 seconds are rare in this situation.
The great majority of dominance times is shorter than half a minute.

In comparison to a continuous presentation, intermittent presentation of a bistable stimulus,
i.e., by repetitive interruption of stimulation for short time periods, has been observed to
stabilize the percept if the interruption period is long enough, typically longer than 0.7 seconds
(Orbach et al., 1963; Leopold et al., 2002; Maier et al., 2003; Kornmeier and Bach, 2004;
Gigante et al., 2009; Pastukhov and Braun, 2013). In this case, dominance times get longer
and can also show a certain degree of periodicity (Brascamp et al., 2009). In addition, such
stable phases with long dominance times during intermittent presentation can also interchange
with unstable phases of rapid percept changes. Figure 8.1 shows examples of response patterns
to continuous and intermittent presentation of a bistable stimulus from the data set reported
in Schmack et al. (2015).

Modeling studies with elaborated mathematical models have been proposed that can explain
a number of properties of bistable perception like the distribution of dominance times under
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Figure 8.1: Examples of response patterns to a bistable stimulus. Response pat-
terns to continuous (green, A,B) and intermittent (blue, C-F) presentation from
the data set reported in Schmack et al. (2015). While the distribution of dominance
times tends to be unimodal in the continuous case, stable and unstable phases seem to inter-
change in intermittent stimulation. In addition, response patterns can be highly variable across
subjects. This is a reprint of Figure 1.3.

continuous stimulation (Wilson, 2007; Gershman et al., 2012; Pastukhov et al., 2013; Cao
et al., 2014, 2016; Weilnhammer et al., 2017) or cyclic behavior and the impact of the duration
of the stimulus presentation on the dominance times in intermittent stimulation (Brascamp
et al., 2009; Gigante et al., 2009). One key ingredient of these models of bistable perception is
typically a competition between neuronal populations that correspond to the different percepts
(Laing and Chow, 2002; Wilson, 2007; Brascamp et al., 2009; Gigante et al., 2009; Pastukhov
et al., 2013). In order to account for stabilized perception in intermittent viewing, the use
of multiple timescales for memory traces of past perception has been proposed by Brascamp
et al. (2009) and Gigante et al. (2009).

Many such models require a high number of parameters in order to describe the variety
of response patterns. As a consequence, they can often hardly be fitted to experimental
data, in particular in the typical cases when only a few dozen dominance times are observed.
In addition, the majority of models focus either on continuous or on intermittent viewing.
Interesting models that are applicable to both cases have been proposed by Wilson (2007);
Brascamp et al. (2009); Gigante et al. (2009).

The relevance of a joint description of continuous and intermittent viewing is illustrated
here on a data set including responses of patients with schizophrenia and of healthy controls
to continuous and intermittent presentation of a rotating sphere with ambiguous perceived
rotation direction reported earlier in Schmack et al. (2013, 2015). In Schmack et al. (2015),
an enhanced alternation rate for the group of patients with schizophrenia during intermittent
presentation was reported. Interestingly, when we analyzed data recorded in the same
participants during continuous presentation, the opposite could be observed (Figure 8.2). Due
to the differences in patterns and time scales between continuous and intermittent presentation,
the potential neuronal mechanisms underlying the transitions between the different response
properties remain unclear.
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Figure 8.2: Alternation rates in control subjects and subjects with schizophrenia.
During continuous presentation healthy controls (C) in Schmack et al. (2015) showed higher
alternation rates compared to patients with schizophrenia (S) (left), while the opposite could
be observed for intermittent presentation (right). Each gray dot indicates the perceptual
alternation rate from one individual participant, colored diamonds and lines indicate group
medians with 25%/75% quantiles. Two-sided Wilcoxon tests yielded p < .1 for both continuous
and intermittent stimulation.

Note that strictly speaking, the term ”dominance time” refers to slightly different objects in
continuous and intermittent viewing. While during continuous presentation, switches occur
from a dominant to a suppressed percept (percept-switch), dominance times during intermittent
presentation consist of multiple continuous presentation periods, and switches typically occur
because of different perceptual choices at the onset of the presentation (percept-choice, Noest
et al., 2007). In the present model, the observed sequences of dominance times are treated
as conceptually similar. This simplification allows for a parsimonious model description in
both continuous and intermittent viewing but may not fully capture the relation between the
perceptual processes in the two regimes.

Main goals of Part II

We propose in Part II a new model for the description of response patterns to bistable
perception. The main goals of this model and the second part of the thesis are: First, the
model should be able to describe the high variety of the response patterns to both continuous
and intermittent stimulation within one model framework thereby grasping the change in
variability between the presentation types. Second, the observed behavior in continuous and
intermittent stimulation should be linked to potential underlying neuronal processes. Third, a
minimal number of parameters should be used in order to allow parameter estimation and
model fitting to the typically short experimental data. This can then allow the statistical
investigation of differences between clinical groups. Especially the increased alternation rate
of the control group during continuous presentation in contrast to the schizophrenia group
having more perceptual reversals during intermittent presentation should be analyzed (Figure
8.2).
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Outline of Part II and mathematical motivation

Part II is organized as follows. In the next section 8.1 the experiment conducted by Schmack
et al. (2013, 2015) is illustrated briefly; Section 8.2 then lays out the basic definitions and
propositions relevant for this part. To describe the data, we first use a simple Hidden Markov
Model (HMM) that describes the observed perceptual processes with a few parameters (Chapter
9) and assumes Gamma or inverse Gaussian (IG) distributed emissions. For continuous
presentation, one state produces independent and identically distributed dominance times with
a two-parametric distribution (mean µ and standard deviation σ). Parameters can be estimated,
for example, via maximum likelihood (Section 9.3). As an original result in this work we derive
the exact sampling distribution for small sample sizes of the ML estimator σ̂ of the inverse
Gaussian distribution (Proposition 9.5). For intermittent presentation, switching between
stable and unstable phases requires two hidden states with short and long dominance times,
respectively. The two-state HMM allows straightforward model fitting by the Baum-Welch
algorithm (BWA) (Section 9.4) and data description with a minimal number of parameters
(Section 14.1). A Hidden Markov Model with inverse Gaussian distributed emissions has
not been described in literature yet. Thus, a mathematical aim of this part is to derive the
estimators of the parameters of the inverse Gaussian distribution in the framework of the
BWA. The precision of parameter estimates is evaluated in Section 9.6. Theoretical properties
of the point process of perceptual reversals generated by the HMM are discussed in Chapter
10 with a focus on the continuous case in Section 10.1 and on the intermittent case in Section
10.2. We investigate the number of changes, first passage times and stationarity properties. In
particular, we are interested in the asymptotic probability that the hidden process Ỹ is in
the stable state limt→∞ P(Ỹt = S) (which corresponds to the relative time spent in the stable
state). A drawback of the HMM is that it remains descriptive and lacks relations to potential
underlying mechanisms. Moreover, the empirically observed property that stable dominance
times before a state change to the unstable state are shorter than other stable dominance
times cannot be explained within the HMM framework (Figure 14.11). Therefore, in Section
11, we link the HMM to a hypothetical underlying stochastic model. This model is termed
here Hierarchical Brownian Model (HBM) and intends to describe aggregated underlying
neuronal activity, producing the observed behavioral responses.
The HBM is based on two main ideas: First, it assumes that switching between percepts
results from two conflicting neuronal populations (compare.,e.g., Gigante et al., 2009). In
order to minimize the number of parameters, this process is reduced to a simple Brownian
motion P with drift ν0 that fluctuates between two thresholds ±b, where the first passage
times indicate perceptual changes (similar to Cao et al., 2016). With a standard Brownian
motion W and the sign of drift St the process P can be defined as follows

dPt = Stν0dt+ dWt, where P0 = −b.

For continuous presentation, one therefore requires only two parameters, i.e., the drift of the
Brownian motion and the threshold (Chapter 11.1). The distribution of the resulting first
passage times – i.e., dominance times – is then the same as in the HMM with IG distributed
emissions, with a simple relation between the two HBM and the two HMM parameters.
Second, in order to describe intermittent presentation in the same model framework, we
use a hierarchical model (Chapter 11.2). The idea is to describe the switching between
stable and unstable phases that is typical for intermittent presentation by using an analogous
threshold crossing mechanism of conflicting neuronal populations. Specifically, we assume a
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second pair of neuronal populations whose corresponding Brownian motion modulates the
drift and threshold of the first population pair and thus causes switching between stable and
unstable phases. We give a set of model assumptions under which the HBM parameters
are comparable to HMM parameters, thus allowing both model fitting to experimental data
sets and potential relation to underlying mechanisms. The transition probabilities between
the hidden states depend as intended on the length of the current dominance time, which
we investigate mathematically in Section 11.2. As shown in Sections 12.1 and 12.2, the
parameter estimation is for the dominance times d1, . . . , dn straightforward using maximum
likelihood. For continuous presentation we derive the exact sampling distributions of the
estimators as original result (Section 12.1.1). For the intermittent presentation the likelihood
L is approximately given by L(d1, . . . , dn) ≈ αS(n) + αU (n), with the forward variable αj(i)
denoting the probability of observing (d1, . . . , di) and being in state j at time i. The estimation
procedure is evaluated in Section 12.4. Another mathematically interesting point is analyzed
in Section 12.5: we prove that the well-known Viterbi algorithm (Viterbi, 1967) can be used for
classification of dominance times as stable or unstable given the parameter estimates. Again,
we investigate theoretical properties of the resulting point process like the number of changes,
steady-state distributions or marginal distributions of the involved processes (Chapter 13.1 for
the continuous presentation and Chapter 13.2 for the intermittent presentation). Therefore,
we are also interested in linking the processes (Yi)i and (Ỹt)t (state of the i-th dominance time
and state at time t, respectively) to other stochastic processes like semi-Markov processes.
As shown in Chapter 14.2, the HBM can reproduce both, the unimodal distribution in the
continuous presentation and the bimodal distribution of dominance times in the intermittent
presentation, including also various different response patterns. Moreover, it allows the
identification of specific differences between the clinical groups in Schmack et al. (2015) and
relates these to the hypothesized underlying processes. An outlook about possible model
adjustments with a conclusion of Part II is given in Chapter 15.

8.1 Experimental setup

The experimental protocol is presented in detail in Schmack et al. (2013), Schmack et al.
(2015), where both studies essentially used the same stimuli. In Schmack et al. (2015) a
group of 29 patients with schizophrenia and a group of 32 controls took part and in Schmack
et al. (2013) 105 healthy subjects participated in an experiment examinating the perceptual
inference of a continuously and intermittently presented ambiguous stimulus.
The stimulus was programed using Matlab (MathWorks Inc.) and the Cogent2000 toolbox
(http://www.vislab.ucl.ac.uk/cogent.php) and then shown on a CRT monitor (1024 × 768
pixels resolution, 60 Hz frame rate). 450 yellow square dots moving coherently on a black
background formed the ambiguous stimulus (Figure 8.3), where additionally a white frame
square and a central white fixation cross were shown. The structure-from-motion phenomenon
causes us to perceive the stimulus as a sphere rotating in depth around a vertical axis (diameter
4.1◦ of visual angle, rotation speed 1/6 revolutions/s). As the rotation direction is ambiguous,
the perception changes every few seconds spontaneously between a left rotating sphere and a
right rotating sphere.
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During a training session of four minutes, the stimulus was presented continuously (mainly to
make participants familiar with the experimental conditions), and each time their perception
changed the subjects should indicate that by pressing the button according to their perceived
perception (”Left” or ”Right”). The data of Schmack et al. (2013) contain for each subject
two sessions of continuous presentation.

Figure 8.3: Continuous presentation used in Schmack et al. (2013, 2015). The
stimulus was presented continuously, and the subjects should indicate perceptual changes by
pressing the corresponding button on a computer keyboard. This figure is taken from Schmack
et al. (2015), Figure 1A (Creative Commons license).

The main experimental session with a duration of about 20 minutes consisted of an intermittent
presentation of the ambiguous sphere. The stimulus only was shown for short intervals of 0.6
seconds interleaved by blank screens of 0.8 seconds duration (Figure 8.4). In each presentation
phase the participants should indicate their perceived rotation direction by presses on a
computer keyboard.

Figure 8.4: Intermittent presentation used in Schmack et al. (2013, 2015). The
stimulus was shown for periods of 0.6s followed by blank displays with a length of 0.8s. In each
presentation period the subjects should press the button on a computer keyboard corresponding
to their current perception. This figure is taken from Schmack et al. (2015), Figure 1A
(Creative Commons License).

An important issue one has to consider before analyzing the data are the so-called missings
during intermittent presentation: At some stimulus reappearances subjects may not be sure
about their perception or may just have missed to press the button. Here, we propose to
substitute the missing response by the previous response (compare Schmack et al. (2015))
which is justified by the vast majority of trials where the perceived stimulus configuration
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survived from one trial to the next trial. Moreover, it happened that subjects pressed two
different buttons during the stimulus reappearance. We treated these cases as additional
missing data and substituted them as explained above. The effects of including these responses
and not treating them as missing responses are negligible.

8.2 Key concepts and results used throughout Part II

The following section should serve as a ”reference work” for Part II of the thesis. We introduce
(or recall) different definitions and results which are of major importance in Part II. As many
of these definitions and results are used throughout the whole part, we state these concepts
in this own section at the beginning of Part II and not as usual before the first occurrence
of the corresponding term. We do not claim originality for the results. In Section 8.2.1,
we focus on the Brownian motion with drift and related probability distributions thereby
also summarizing properties and relations of these distributions. In Section 8.2.2, we discuss
properties of point and renewal processes and introduce in Section 8.2.3 alternating renewal
processes, regenerative processes and semi-Markov processes which all are related to processes
occurring in this work.
First, we recall the convolution of two (probability density) functions f and g which is defined
as

(f ∗ g)(x) :=

∞∫
−∞

f(y)g(x− y)dy,

and understand for k > 0 the k-th convolution of a function f with itself as
f∗(k) := (f ∗ f ∗ . . . ∗ f) with k convolution symbols ∗. Moreover, f∗(0) := f . Using a sum
instead of an integral, the convolution of two discrete probability distributions is defined
analogously.
Second, we recall vocabulary about estimators. Given a random sample X = (X1, . . . , Xn)
depending on a parameter θ and an estimator θ̂ of θ the bias of the estimator is defined as
Bias(θ̂) := E[θ̂]− θ. The estimator θ is called unbiased if its bias is zero. The estimator θ̂ is
called consistent if

∀ε > 0 : P(|θ̂ − θ| > ε) −−−→
n→∞

0.

A sufficient condition for θ̂ to be consistent is that both the bias and the variance of θ̂ vanish
asymptotically for n→∞ (e.g., Theorem 2.1.5 in Lehmann, 1999).
Next, we define the Geometric distribution (to clarify which of its parametrizations is used in
this work). Assuming an experiment with independent trials each with success probability p,
this distribution describes here the probability that the first success occurs in the k-th trial.

Definition 8.1. Geometric distribution
For p ∈ (0, 1) and k ∈ {1, 2, 3, . . .}, the Geometric distribution is defined by the probability
weights (1− p)k−1p.
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8.2.1 Brownian motion and some related probability distributions

A key ingredient of the Hierarchical Brownian Model is a Brownian motion with drift.

Definition 8.2. Brownian motion with drift
A real-valued stochastic process W = (Wt)t∈[0,∞) is called Brownian motion with drift ν ∈ R if
it holds

• W0 = 0,

• W has independent, stationary increments,

• W has Gaussian increments Wt+u −Wt ∼ N(ν · u, u) and

• W has continuous sample paths: t→Wt is continuous almost surely.

W is a standard Brownian motion if ν = 0.

The first passage time distribution of a positive border by a Brownian motion with positive
drift has been studied since more than 100 years – it was first reported by Schrödinger
(1915) – and been given the name inverse Gaussian distribution due to its similarity to
the Gaussian distribution (Tweedie, 1945). For a historical survey about research related to
this distribution, we refer to Chapter 1 in Seshadri (1993) and for a broad overview about
application areas to Part II in Seshadri (1999). Here, we first state the definition of the inverse
Gaussian distribution and recall results about the first moments. As assumed distribution of
dominance times this distribution will be of major importance for the Hidden Markov as well
as for the Hierarchical Brownian Model.

Definition 8.3. Inverse Gaussian distribution
The inverse Gaussian (IG) distribution is for the mean parameter µ > 0 and the shape
parameter λ > 0 given by the density

f(x) =

{(
λ

2πx3

)1/2
exp

(
−λ(x−µ)2

2µ2x

)
, if x > 0,

0, else.

Proposition 8.4. Moments of the IG distribution
Let X be IG distributed with parameters µ, λ > 0. Then it holds

E[X] = µ, Var(X) = µ3/λ.

Proof : These results are, for example, given by Seshadri (1993).

Remark 8.5. Reparametrization of the IG distribution used in this thesis
To get a direct overview of the moments of the IG distribution, we use the standard deviation
σ =

√
µ3/λ instead of λ as second parameter when parametrizing the IG distribution in the

rest of the thesis: we denote an IG distribution with mean µ and standard deviation σ by
IG(µ, σ) with the density f IGµ,σ.
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Figure 8.5 gives an impression of the behavior of the inverse Gaussian distribution for different
values of µ and σ. With µ increasing the peak of the distribution naturally shifts to the right
and the density curve gets more and more bell shaped as the variance can be distributed
around both sides of µ and not only to the right side as for small µ. This fact also explains
why for a large σ the width of the distribution increases with µ.
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Now we state the relation of the inverse Gaussian distribution to the Brownian motion.

Proposition 8.6. Relation of the IG distribution to the Brownian motion
Let a > 0 be a fixed level and W := (Wt)t≥0 be a Brownian motion with drift ν > 0. Then, the
first passage time of a by W is distributed according to an inverse Gaussian random variable
Ta:

Ta := inf{t > 0 : Xt = a} ∼ IG(a/ν,
√
a/ν3).

Proof : Compare, e.g., Seshadri (1993) or Mörters and Peres (2010).

Further, the inverse Gaussian distribution can be expressed as a member of the exponential
family, which we will need to state results about asymptotic normality of estimators later on.
Note that the density of members of the exponential family with parameters Θ can be written
as

f(x|Θ) = h(x) exp (η(Θ)t(x)−A(Θ)) , (8.1)

where h(x), t(x), η(Θ) and A(Θ) are known functions (e.g., Lehmann and Casella, 1998).

Corollary 8.7. IG distribution as member of the exponential family
The IG(µ, σ) distribution is a representative of the exponential family with Θ = (µ, σ) and

h(x) =
1√

2πx3
, A(Θ) = −1

2
log

(
µ3

σ2

)
− µ2

σ2
,

t(x) =

(
x,

1

x

)T
, η(Θ) =

(
− µ

2σ2
,− µ3

2σ2

)
.

Proof : Follows by rearranging the density of the inverse Gaussian distribution.

Connection of the IG distribution to the Gamma distribution As we use both – the
Gamma and the IG distribution – to model dominance times, we are interested in properties
these two probability distributions share. The IG and the Gamma distribution are both special
cases of the generalized inverse Gaussian distribution (Johnson et al., 1994) which cannot
be converted into each other. However, in particular for a small CV= σ/µ the densities of
the Gamma and the IG distributions are difficult to distinguish per eye (panels A and D in
Figure 8.6). With an increasing CV the differences between the two densities tend to be more
obvious, where the behavior for a small and large µ is comparable (compare A-C with D-F).
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Reciprocal inverse Gaussian distribution To derive results about the exact and asymp-
totic distribution of estimators of parameters of the IG distribution, we require the reciprocal of
the IG distribution. If X is IG(µ, σ) distributed, the distribution of 1/X is called reciprocal
inverse Gaussian (RIG) with parameters µ and σ (Seshadri, 1993). We state its density
and expectation in the next proposition. These are given in Proposition 2.18 and Table 2.4 of
Seshadri (1993), respectively.

Proposition 8.8. Density and expectation of the RIG distribution
Let X be IG(µ, σ)-distributed. The density of 1/X is given by

f(x) = f IG1/µ,µ/σ2 ∗ fΓ
µ3/(4σ2),µ6/(8σ4)(x), if x > 0,

and 0 otherwise. The sign ∗ denotes the convolution of the inverse Gaussian and the Gamma
density. The expected value of 1/X is

E
[

1

X

]
=

1

µ
+
σ2

µ3
.

Normal-inverse Gaussian distribution In the context of the HBM, the position of a
Brownian motion with drift at a point in time determined by a normal distributed random
variable is important to derive transition probabilities between hidden states. The distribution
of this position is given by the normal-inverse Gaussian distribution (NIG) as is stated in
Corollary 8.10. First, we introduce this distribution, which is a special case of the generalized
hyperbolic distributions (Barndorff-Nielsen, 1978). The NIG distribution has four parameters
and is fittable to a wide range of data including fat tails and skewness. Its application area
mainly is in finance, e.g., for stochastic volatility modeling (Barndorff-Nielsen, 1997). Second,
Corollary 8.10 is shown.

Definition 8.9. Normal-inverse Gaussian distribution

Let Y be an IG

(
δ√

α2−β2
,

√
δ

(α2−β2)3/4

)
-distributed random variable. A random variable X

follows the normal-inverse Gaussian (NIG) distribution with parameters ξ, α, β, δ if

X|Y = y ∼ N(ξ + βy, y),

where the parameters satisfy the conditions α ≥ |β| and δ ≥ 0.
The density of a NIG(ξ, α, β, δ)-distributed random variable is given by

f(x) =
αδ

π
exp

(
δ
√
α2 − β2 + β(x− ξ)

) K1

(
α
√
δ2 + (x− ξ)2

)
√
δ2 + (x− ξ)2

,

with K1(x):= 1
2

∞∫
0

exp
(
−1

2x
(
t+ t−1

))
dt as the modified Bessel function of the third kind and

order 1 (e.g., Watson, 1995). We term the density in this thesis as Ψξ,α,β,δ(x).
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Corollary 8.10. Relation of the NIG distribution to the Brownian motion
Let (Yt)t≥0 be a Brownian motion with drift νY > 0 and starting position Y0 = 0. Moreover,
bY > 0 is a border. Let (Xt)t≥0 be another Brownian motion independent of (Yt)t≥0 with drift
νX > 0 and X0 = 0. Define T := inf{t ≥ 0 : Yt = bY }. It holds

XT ∼ NIG(0,
√
ν2
X + ν2

Y , νX , bY ).

Proof: Due to Proposition 8.6, T is IG distributed with parameters bY /νY and
√
bY /ν3

Y .

Reparameterizing this in terms of ξ, α, β, δ of Definition 8.9 yields the following equations
(I) δ/(α2 − β2)1/2 = bY /νY ,

(II) δ/(α2 − β2)3/2 = bY /ν
3
Y ,

(III) β = νX .
As X starts in 0, it holds ξ = 0. By (III) we directly have β = νX . Dividing (I) by (II) yields
ν2
Y = α2 − β2 (IV). Plugging this in (I) we obtain δ = bY . Plugging (III) in (IV) we moreover

obtain α =
√
ν2
X + ν2

Y .

In the thesis the normal-inverse Gaussian distribution generally emerges from its relation to
the Brownian motion. Hence, the parameter ξ vanishes, and for simplification we term for
each x ∈ R: Ψα,β,δ(x):= Ψ0,α,β,δ(x) unless stated otherwise.

8.2.2 More about point/renewal processes

The times of perceptual reversals (t1, t2, . . . , tn) may be interpreted as a sequence of occurrence
times of events being recorded over a finite interval [0, T ], T ∈ (0,∞) and not happening at
the same time. Therefore, a response pattern can be described by a realization of a point
process on the real line and in certain cases also as renewal process. This allows, for example,
the derivation of the expected relative time spent in the stable state which is very important
when analyzing group differences. Note that we term the life times in this second part of the
thesis Di (or di for their realizations) instead of ξi due to the interpretation as dominance
time. As we analyze residual times as well as stationarity properties in Chapters 10 and 13,
we state the corresponding definitions and properties in the following.
Ross (1996) gives the following important results (Prop. 3.4.5, 3.4.6) for renewal processes
(recall Definition 2.5).

Definition 8.11. Age and residual time of a renewal process
The age At of a renewal process at time t > 0 is defined as At := t− SNt and the remaining
or residual time Rt at t > 0 as Rt := SNt+1 − t.
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Proposition 8.12. Asymptotic distribution of At and Rt
For a renewal process with non-lattice distribution F of the life times D
(i.e., @m :

∑∞
n=0 P(D = nm) = 1) with mean µ <∞, the distribution of the random variable

HD
∞ describing the asymptotic distribution of At and Rt is given by

P(HD
∞ < x) := lim

t→∞
P(At ≤ x) = lim

t→∞
P(Rt ≤ x) =

1

µ

t∫
0

(1− F (y))dy.

For the density it follows

fHD
∞

(x) =
1

µ
(1− F (x)).

Moreover, if E[D2] <∞,

E[HD
∞] = lim

t→∞
E[At] = lim

t→∞
E[Rt] =

E[D2]

2µ
.

In this thesis, we let R ∼ HD
∞ be the random variable describing the asymptotic residual time

for the random variable D. Note that we skip the index t for convenience.
Now, we define renewal equations, which describe many quantities of interest when studying
renewal processes (as, e.g., in Chapters 10 and 13). For the following compare, e.g, Serfozo
(2009).

Definition 8.13. Renewal equation
The renewal equation for a real-valued function h(t) on R, which is bounded on finite intervals
and equals 0 for t < 0, and a distribution function F is given by

H(t) = h(t) +

∫
[0,t]

H(t− s)dF (s), t ≥ 0,

with H(t) as real-valued function. In short, H = h+F ∗H. A function H(t) is a solution of
this equation if it is bounded on finite intervals, equals 0 for t < 0 and satisfies the equation.

Renewal equations have a unique solution albeit this solution is only in special cases simple
enough for computations.

We state the definition of a weaker form of stationarity (Daley and Vere-Jones, 1988) which is
used to describe stationarity properties of the process of perceptual changes.

Definition 8.14. Crude stationarity
A point process Ξ is crudely stationary when

P(number of events of Ξ in (t,t+h) = k), h > 0, k = 0, 1, . . .

depends only on the length h and not the location t ∈ R.

8.2.3 Three types of stochastic processes

As we aim to embed different processes evolving in this work into the world of stochastic
processes, we introduce here three important examples of stochastic processes without defining
them in detail.
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8.2.3.1 Alternating renewal process

Alternating renewal processes typically model systems which alternate between two states A
and B, e.g., working and failure times of technical components (e.g., Medhi, 2009). Another
interpretation is that the system switches between the ON and the OFF state. Mathematically,
we assume DA := (DA,1, DA,2, . . .) as the random variables describing the successive durations
of state A and DB := (DB,1, DB,2, . . .) as the (random) successive lengths of time the system
is in state B. Thus starting in A, the system remains there for a duration of DA,1 followed by
a period of state B with length DB,1, followed by a period of state A with length DA,2 and so
on. The key assumption is that DA and DB are two independent sequences of i.i.d. random
variables. Then, ((DA,1, DB,1), (DA,2, DB,2), . . .) is called alternating renewal process (e.g.,
Beichelt and Fatti, 2001). Figure 8.7 illustrates an alternating renewal process where state A
produces long intervals (light blue) and state B produces short intervals (blue). The return
times to state A can be interpreted as a renewal process with life times DA,i +DB,i for i ≥ 1.

DA,1 DA,2 DA,3 DA,4DB,1 DB,2 DB,3 DB,4

Figure 8.7: Illustration of the intervals (DA,i, DB,i)i≥1 of an alternating renewal
process. Long intervals of state A (light blue) interchange with short intervals of state B
(blue). Given the state the intervals are independent and identically distributed.

8.2.3.2 Regenerative process

Alternating renewal processes are an example of regenerative processes. A stochastic process
(Xt)t≥0 with a discrete state space is called regenerative if there exist points in time where
the process probabilistically starts anew with the same probability distribution (compare,
e.g., Chapter 3.7 in Ross, 1996). Thus, there exist times T̃1, T̃2, . . . where the continuation
of the process beyond these points is a probabilistic replication of the whole process started
at 0. The sequence (T̃i)i≥1 then describes a renewal process with life times (D̃i)i≥1. In an
alternating renewal process the (T̃i)i≥1 are simply the points in time where a new interval of
state A is drawn.
For any state j of a regenerative process it can be shown (Theorem 3.7.1 in Ross, 1996) that

lim
t→∞

P(Xt = j) =
E[amount of time in state j during D̃1]

E[D̃1]
. (8.2)

Moreover, Ross (1996) shows in Theorem 3.7.2 that it holds almost surely

lim
t→∞

amount of time in state j during (0, t)

t
=

E[amount of time in state j during D̃1]

E[D̃1]
.

(8.3)

As can be seen directly from equations (8.2) and (8.3), the asymptotic probability that the
process is in state j equals almost surely the long term relative time spent in this state.
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8.2.3.3 Semi-Markov process

A stochastic process with discrete state space where state changes are caused by a Markov
chain (i.e., depend only on the current state) and the time interval between two successive
transitions is a random variable with an arbitrary distribution which may depend on the
state before as well as on the state after the transition is called semi-Markov process (Lévy,
1954; Smith, 1955). In case of exponentially distributed inter transition times the process is a
Markov process. The tuple of state and transition time is known as Markov renewal process
(Pyke, 1961). Our formal definition of a Markov renewal process and a semi-Markov process
follows Medhi (2009).

Definition 8.15. Markov renewal process and semi-Markov process
Let 0 = t1 < t2 < t3 < . . . denote the transition times of a stochastic process with discrete
state space (where transitions between the same state are allowed) and Zi be the i-th state. If

P(Zi+1 = k, ti+1 − ti ≤ t|Zi = zi, . . . , Z1 = z1, ti, . . . , t1) = P(Zi+1 = k, ti+1 − ti ≤ t|Zi = zi),

for all states k and all i ≥ 1, then the tuple (Zi, ti)i≥1 constitutes a Markov renewal process.
In case of time homogeneity the semi-Markov kernel of the Markov renewal process is the
matrix Q(t) = (Qjk(t)) where

Qjk(t) := P(Zi+1 = k, ti+1 − ti ≤ t|Zi = j).

for the states j and k and t ≥ 0.
The continuous parameter process

(Z̃t)t≥0 = Zi on ti ≤ t < ti+1

is called semi-Markov process with the embedded Markov chain (Zi)i≥1. The conditional
sojourn time in state j given the next transition is to state k has the distribution function

Sjk(t) := P(ti+1 − ti ≤ t|Zi+1 = k, Zi = j).
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Chapter 9

A Hidden Markov Model

In the introduction (Chapter 8), we explained that a key characteristic of the dominance times
resulting from continuous presentation of the ambiguous stimulus is the unimodal distribution,
whereas dominance times in response to intermittent presentation are often better described
by a bimodal distribution (with long stable and short unstable dominance times). In Figure
9.1 we present again six examples. Figure 9.2 shows the corresponding dominance time
histograms pointing out the uni- or bimodality of the distributions, depending on the mode of
stimulus presentation. All response patterns recorded in Schmack et al. (2015) can be found
in Appendix A showing a high inter-individual variability. Our first main goal in this part
is to develop one model for both – continuous and intermittent presentation – that captures
these observations. Recall also that another main goal of Part II is that the model should only
have a small number of parameters such that it is fittable to short pieces of data allowing, e.g.,
to refine the group differences between the patients and control group (Figure 8.2). Therefore,
a simple descriptive approach to model the dominance time data is a Hidden Markov Model
(HMM) with one state for the continuous presentation and two states (stable and unstable)
for intermittent presentation of the stimulus. This is the first time that a HMM is applied to
describe dominance times resulting from bistable perception experiments.

In the following we first establish fundamentals about Markov Chains (Section 9.1), then
introduce Hidden Markov Models (Section 9.2) before focusing on the parameter estimation.
We discuss two different distributions widely used in literature to describe the dominance times
during bistable perception: the Gamma distribution (Fox and Herman, 1967; Levelt, 1967;
Murata et al., 2003; Brascamp et al., 2005; Gershman et al., 2012) and the inverse Gaussian
distribution (Cao et al., 2016). For both, we discuss the fitting for the data of continuous
presentation (Section 9.3), where we examine extensively properties of the maximum likelihood
(ML) estimators for the IG distribution and also present newly derived UMVU estimators
(uniformly minimum-variance unbiased estimators, Section 9.3.1). To fit the HMM to the
data recorded during intermittent presentation we explain the Baum-Welch algorithm (BWA)
focusing in particular on its fitting to the inverse Gaussian and the Gamma distribution
(Section 9.4). The estimated HMM parameters of the six example response patterns from
Figure 9.1 are given in Section 9.5. A section about empirical results concerning the estimation
precision of our ML estimators completes the chapter (Section 9.6).
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Figure 9.1: Examples of response patterns to a bistable stimulus. Response pat-
terns to continuous (green, A,B) and intermittent (blue, C-F) presentation from
the data set reported in Schmack et al. (2015). While the distribution of dominance
times tends to be unimodal in the continuous case, stable and unstable phases seem to inter-
change in intermittent stimulation. In addition, response patterns can be highly variable across
subjects. This is reprint of Figure 1.3.
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Figure 9.2: Histograms of dominance times during continuous (green, A,B) and
intermittent (blue, C-F) presentation from the data set reported in Schmack et al.
(2015). The corresponding response patterns are printed above in Figure 9.1. The number of
long dominance times in panels C, D and F is small compared to the number of short dominance
times such that the long dominance times are difficult to identify in these histograms.
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9.1 Fundamentals: Markov chains

Here, we give a rough overview about the theory of Markov chains focusing on the properties
that are essential for the construction of the Hidden Markov Models used in this thesis. For a
detailed description of Markov chains see, e.g., Norris (1998); Grimmett and Stirzaker (2001).
Assume a (discrete) state space S and a (discrete-time) stochastic process Y taking values in
this space. The process Y is called Markov chain if given the current state of the process Yi ,
the future Yi+1 is independent of the past Yi−1, Yi−2, . . . Y1. This so-called Markov property
is for a sequence of observations y1, y2, . . . , yn formalized as follows: for all i ∈ {1, 2, . . .} it
holds

P(Yi+1 = yi+1|Yi = yi, Yi−1 = yi−1, . . . , Y1 = y1) = P(Yi+1 = yi+1|Yi = yi). (9.1)

An important class of Markov chains are the homogeneous Markov chains with time-independent
stationary transition probabilities pjk := P(Yi+1 = k|Yi = j)∀j, k ∈ S. In case of a homo-
geneous K-state Markov chain the transition probabilities are summarized in the K × K
transition probability matrix P with

P :=


p11 . . . . . . p1K
...

. . .
...

...
. . .

...
pK1 . . . . . . pKK


and

K∑
k=1

pjk = 1 for all j ∈ {1, . . . ,K}.

The long-term behavior of a homogeneous Markov chain is determined by the m-step transition
probabilities pjk(m) := P(Yi+m = k|Yi = j) (in contrast to the one-step transition probabilities
given by P ). The matrix P (m) which contains the m-step transition probabilities can be
calculated as the m-th power of P (e.g., Grimmett and Stirzaker, 2001).
πstart describes the probability distribution of the initial state. Using this initial distribution,
the distribution of the state at time m may be computed as

(P(Ym = 1),P(Ym = 2), . . . ,P(Ym = K)) = πstartP
m−1.

πstartP
m−1 converges to a fixed vector (which we term π) if the Markov chain is homogeneous

and irreducible, i.e., all states are accessible from each other state (e.g., Norris, 1998). This
so-called stationary distribution π can be determined by solving

π = πP subject to π1T = 1.

A proof can be found in Seneta (1981).

9.2 The model

In this section, we give a brief introduction to HMMs and their basic properties. In a HMM
the hidden state of an underlying Markov chain determines the distribution that generates an
observation. This framework provides flexible models for univariate and multivariate time
series such as discrete or continuous valued series or categorical series. Hidden Markov Models
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are widely used, e.g, for temporal pattern recognition such as speech, gesture or handwriting
recognition (e.g., Rabiner, 1989; Wilson and Bobick, 1999). Other fields of application involve
computational linguistics (Och and Ney, 2003), bioinformatics (Yoon, 2009), finance (Rydén
et al., 1998) or robotics (Fox et al., 2005). For further reading, see, e.g., Elliott et al. (1995);
MacDonald and Zucchini (1997) or Ephraim and Merhav (2002). In the following, we also
discuss parameter interpretation.

9.2.1 Definition

We define the HMM formally. The sequence of observations is denoted by d := (di)i∈{1,2,...,n}
modeled as realizations of random variablesD := (Di)i∈{1,2,...,n}. Furthermore, y := (yi)i∈{1,2,...,n}
describes the realization of a Markov chain Y := (Yi)i∈{1,2,...,n} on the state space {1, . . . ,K}
with initial distribution πstart = (πstart,1, πstart,2, . . . , πstart,K). To ease notation, we write
di1i0 := {di0 , . . . , di1} where i0 < i1 and similarly for Di1

i0
, yi1i0 , Y

i1
i0

.

Definition 9.1. Hidden Markov Model
Let Y be an underlying discrete-time hidden process fulfilling the Markov property (9.1) and
D be a state-dependent observation process for which the conditional independence property

P(Di = di|Di−1
1 = di−1

1 , Y i
1 = yi1) = P(Di = di|Yi = yi) (9.2)

holds for all 1 ≤ i ≤ n.
The pair of stochastic processes (Yi, Di)1≤i≤n is called Hidden Markov Model.

Equation (9.2) means that, if Yi is known, Di depends only on this current state and not on
any previous states or observations. The probabilities for the state Yi+1 depend only on the
previous state Yi. A visualization of a HMM is given in Figure 9.3.

Y1

D1

Y2

D2

Y3

D3

Y4

D4

observations

Markov chain (unobserved)

Figure 9.3: Basic structure of a Hidden Markov Model. The unobserved/hidden
Markov chain Y determines the density of the visible observation Di at time i ∈ N.
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Here, we intend to model response data from bistable perception experiments. We reduce
data analysis to the dominance times (di)i∈1,2,...,n, i.e., the times between reported changes
of a percept. In the unimodal continuous case, we assume the di to be the realizations of
i.i.d. distributed random variables (Di)i∈1,2,...,n(Figure 9.4 A), where the Gamma or the inverse
Gaussian distribution are suitable two-parametric distributions (Wilson, 2007; Gigante et al.,
2009; Gershman et al., 2012; Cao et al., 2016). This framework may also be interpreted as
one-state HMM. For the intermittent case, the observed dominance times are modeled as
the outcomes of a two-state Hidden Markov Model with a Markov chain Y on {S,U} and
continuous observations. In the stable state S long dominance times are emitted, and in the
unstable state U perception changes quickly. To describe the dominance time distribution in
S, we use an inverse Gaussian or a Gamma distribution which allows us to fit the mean µS of
the dominance duration as well as its standard deviation σS . The unstable states are modeled
either by another inverse Gaussian distribution with mean µU and standard deviation σU or
– in the case of Gamma-distributed dominance times in S – by an Exponential distribution
with parameter 1/µU . Furthermore, we denote the transition probabilities between S and U
by pSU = 1− pSS and between U and S by pUS = 1− pUU , respectively (see Figure 9.4). We
assume that not both of pSS and pUU equal one.

continuous
presentation

fµ, σ
IG

A

● ●

intermittent
presentation

U S
1−pUU

1−pSS

pSSpUU

fµS, σS

IG

fµU, σU

IGB

Figure 9.4: A simple HMM for bistable perception producing inverse Gaussian
distributed dominance times. (A) One state describes a unimodal distribution of dom-
inance times under continuous presentation. (B) Two states (stable, S, and unstable, U)
produce long and short dominance times under intermittent presentation.

Note that independence of dominance times is assumed here in continuous presentation. This
assumption enables straightforward parameter estimation (Section 9.3) and is in agreement
with the observation that serial correlations of dominance times are typically not reported
(e.g., Walker, 1975; Lehky, 1995). However, weak long-term dependencies of dominance times
reported under continuous presentation (Pastukhov and Braun, 2011) cannot be reproduced
in the HMM. As such long-term dependence was not observed in the majority of cases in
the present data set, also showing no group differences (Section 14), we use here the simple
assumption of independence.

9.2.2 Discussion of model parameters

We discuss how the different parameters of the HMM influence the visible response pattern.
The interpretations are trivial for the one-state HMM describing the response patterns to
continuous presentation: A larger mean µ increases stability, and a larger standard deviation
σ increases irregularity.
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We turn to the two-state HMM for intermittent stimulation. It is obvious that increasing
µS increases the length of stable dominance times and increasing σS increases the variance
of stable dominance times. Similar arguments hold for increasing µU , σU . Increasing the
probabilities pSS or pUU implies that a state transition gets less likely. In case of a rather
small difference between µS and µU or a large variance of at least one of the two distributions
the stable and unstable distributions of dominance times are not separated clearly. This is
visualized in Figure 9.5.
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Figure 9.5: Comparison of densities in the stable (light blue) and the unstable
(blue) state. The parameters are indicated in the graph. In panel A the stable and unstable
distribution are strictly separated, whereas in B a small µS and in C a large σS and large σU
cause a stronger mixing of the distributions.

Visually one may use criteria like regularity (Are the lengths of stable dominance times
widespread?) and stability (Which types of dominance times occur? Long and/or short ones?)
to distinguish between different response patterns. In the HMM the parameters pSS and µS
answer the question how stable the response pattern is. pSS = 1 (together with πstart,S = 1)
indicates that only stable dominance times occur. In contrast, a small pSS or a small mean of
stable dominance times µS are an indicator of a response pattern with rather short dominance
times. The regularity is judged by the coefficient of variation CVS = σS/µS of the stable
dominance times. A large CVS implies irregular distributed stable dominance times (which
are mainly responsible for the visual impression of regularity), whereas a small CVS is typical
for more regular response patterns.
Figure 9.6 illustrates the impact of different two-state HMM parameters on the response
patterns. In panel E a stable response pattern with pSS = 1 is shown. In contrast, panel B
presents a rather unstable HMM with a small µS . The CV of the stable dominance times
in panel D is large (CVS = 1) leading to an irregular response pattern. Panel C shows the
impact of increasing µU , and in panel F an example of a HMM with a large pUU is printed.
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Figure 9.6: Impact of the two-state HMM parameter values on the response
patterns. Examples of simulated response patterns are shown for different values of the HMM
parameters. In panel A we use µS = 180, σS = 30, µU = 7, σU = 6, pSS = 0.67, pUU = 0.95.
In panels B-F one of these parameters is changed as follows where all others remain unchanged
to panel A: µS = 60 (B), µU = 10 (C), σS = 180 (D), pSS = 1 (E) and pUU = 0.98 (F).
Changing σU does not have clearly visible effects.

9.3 Parameter estimation: Continuous presentation

To estimate the parameters of the HMM for continuous presentation, we distinguish between
the inverse Gaussian and the Gamma distribution (Sections 9.3.1 and 9.3.2, respectively). For
both distributions, we present maximum likelihood and moment estimators, where for the IG
distribution we additionally derive UMVU estimators. In case the reader is just interested in
a brief description of the parameter estimation used in practice (e.g., when analyzing the data
set Schmack et al. (2015)), we suggest reading only the first paragraph of Subsection 9.3.1.1
and then jumping ahead to Section 9.4.

9.3.1 Inverse Gaussian distribution

First we derive ML estimators, followed by UMVU and moment estimators. In the last part
the estimators are compared.

9.3.1.1 Maximum likelihood estimation

We first state the ML estimators of µ, σ. Then we discuss how to include the censored last
dominance time in the ML estimation. The largest part of this subsection deals with the exact
sampling distributions of the ML estimators.

Assuming inverse Gaussian distributed random variables Di the log-likelihood-function `
derives for the data d and the parameters µ, σ as

`(d|µ, σ) =
1

2

n∑
i=1

(
log

(
µ3

2πσ2d3
i

)
− µ

2σ2

(di − µ)2

di

)
.
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Derivating partially and setting the derivatives to zero yields the following ML estimators
(Seshadri, 1993)

µ̂ := µ̂ML :=
1

n

n∑
i=1

di and σ̂ := σ̂ML :=

√√√√ µ̂3

n

n∑
i=1

(
1

di
− 1

µ̂

)
. (9.3)

Censored dominance times

Until now we have only incorporated the complete dominance times, i.e., the dominance
times whose beginning and end is marked by a button press of the subject, in the estimation.
However, there also exists a last dominance time that is the difference dn+1 between the last
button press and the end of the experiment. Thus, we only know that the dominance time is
at least dn+1 and not its exact value. In such a situation one speaks of censored data (e.g.,
Cox and Oakes, 1984). The log-likelihood of the data dcens = (d1, d2, . . . , dn, dn+1) is then
given by

`(dcens|µ, σ) =
1

2

n∑
i=1

(
log

(
µ3

2πσ2d3
i

)
− µ

2σ2

(di − µ)2

di

)
+ log(1− F IG

µ,σ(dn+1)),

where F IG
µ,σ denotes the distribution function of the IG(µ, σ)-distribution. Analytical approaches

for the derivation of ML estimators in this situation are challenging (Cohen and Whitten,
1988). Therefore, we propose a numerical maximization of `(dcens|µ, σ) that can be performed
by the R-routine nlm() using the moment estimates of µ and σ (based only on the not-censored
dominance times, see page 83) as initial values.

Sampling distribution of the ML estimators µ̂ and σ̂

Here, we focus on the exact sampling distributions of µ̂ and σ̂. The result for σ̂ is derived
for the first time. For four different sample sizes, we compare in Figure 9.7 the simulated
empirical distribution of σ̂ with the exact theoretical distribution of σ̂ given in Proposition 9.5
and the asymptotic normal distribution derived later in Section 9.3.3.1. For n = 5, n = 10 and
n = 20 there is a remarkable difference between the asymptotic and the exact distribution
that describes the empirical distribution very well. As comparable sample sizes occur also
in the data, this underlines the importance of deriving the exact sampling distributions (for,
e.g., computing confidence intervals in a following study). For the large n = 100, all three
distributions closely resemble each other.
The exact sampling distributions of the sample mean µ̂ = d̄ and of the ML estimator λ̂ = µ̂3/σ̂2

(compare the original parametrization of the IG distribution given in Definition 8.3) of a
random sample of IG(µ, σ)-distributed random variables are well known in the literature and
given in the next proposition.
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Figure 9.7: Comparison of exact (light red) and asymptotic (dark red) distri-
bution of σ̂. The histograms show the empirical distribution of σ̂ in 10000 simulations
with IG(8.5, 6.5)-distributed random variables for the four sample sizes n ∈ {5, 10, 20, 100}
(corresponding to the panels A-D). The true value σ is indicated by a dashed line.

Proposition 9.2. Sampling distributions of µ̂ and λ̂
Let n ≥ 2 and d = (d1, d2, . . . , dn) be the realization of a random sample of IG(µ, σ)-distributed
random variables. The sample mean µ̂ = d̄ is IG distributed with parameters µ and σ/

√
n.

Moreover,

1

n

n∑
i=1

1

di
− 1

d̄

is the ML estimator 1/λ̂ of 1/λ = σ2/µ3, and it holds

nλ

λ̂
∼ χ2

n−1.

nλ
λ̂

and d̄ are independent.

Proof : Compare Proposition 1.1 and 1.2 in Seshadri (1999).

It follows directly that µ̂ as the sample mean is a consistent estimator. Moreover, we observe
due to the expectation of a chi-squared distributed random variable E[1/λ̂] = (n− 1)/n · 1/λ
such that 1/λ̂ is asymptotically unbiased. Moreover, with the variance 2n of a χ2

n distributed
random variable, we have Var(1/λ̂) = (2n− 2)/n2 · 1/λ2, i.e., the variance tends to zero as
n→∞. Together, this implies the consistency of 1/λ̂.

Now, we derive the sampling distribution of the ML estimator for the standard deviation σ̂
given in equation (9.3). Moreover, the expectation E[σ̂] and thereby the bias E[σ̂] − σ are
derived, and the consistency of σ̂ is shown. Therefore, we require the χ-distribution. Its
definition and expectation are given by, e.g., Forbes et al. (2011, page 73).
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Definition 9.3. χ-distribution
A random variable X is χk distributed (with k > 0 as the degrees of freedom) if X2 is
χ2
k-distributed. The density of X is given by

fχk (x) =
21−k/2xk−1 exp(−x2/2)

Γ(k/2)
, if x ≥ 0

and fχk (x) = 0 else.

Proposition 9.4. Expectation of the χ-distribution
The expectation of a χk-distributed random variable X derives as

E[X] =
√

2
Γ((k + 1)/2)

Γ(k/2)
.

Proposition 9.5. Sampling distribution and expectation of σ̂
Let σ̂ be the ML estimator of the standard deviation σ derived using the realizations of a
random sample of n ≥ 2 IG(µ, σ)-distributed random variables. The density of σ̂ is given by

f(x) =

√
µ3n

σ

∞∫
0

2x

3y5/3
f IGµ,σ/

√
n

(
y1/3

)
fχ

2

n−1

(
x2µ3n

yσ2

)
dy

for x > 0 and 0 otherwise, where fχ
2

n−1(x) is the chi-square density with n − 1 degrees of
freedom. The expectation of σ̂ is

E [σ̂] =
2µ√
π

Γ(n/2)

Γ((n− 1)/2)
exp

(
nµ2

σ2

)
K1

(
nµ2

σ2

)
with K1(x) as the modified Bessel function of the third kind and order 1 (e.g., Watson, 1995).
The estimator σ̂ is asymptotically unbiased, i.e., limn→∞ E[σ̂] = σ and consistent.

Proof : To derive the density we first use the random variable X̃ := σ̂
√
nµ3/σ and derive the

density of X̃. Then, we use this density to conclude the density of σ̂.

We decompose σ̂
√
nµ3/σ as follows σ̂

√
nµ3σ = µ̂3/2

√
nλ/λ̂ with λ = µ3/σ2 and λ̂ as its ML

estimator (using the original parametrization of the IG distribution given in Definition 8.3).
Letting Y := µ̂3 and Z := nλ/λ̂, we derive the density of the product X̃ =

√
Y Z. The density

of Y depends as follows on the IG distribution

fY (y) =
1

3y2/3
f IGµ,σ/

√
n(y1/3)

as the variable Y 1/3 is IG(µ, σ)-distributed. Z is chi-square distributed with n− 1 degrees of
freedom (Proposition 9.2).
Now, we use the variable transformation T (y, z) = (

√
yz, y) = (x, y) with the inverse

T−1(x, y) = (y, x2/y) = (y, z). The determinant of the corresponding Jacobian matrix
derives as 2x/y. Thus, the density of X̃ =

√
Y Z is fX̃(x) =

∫∞
−∞ fY (y)fZ(x2/y)2x/|y|dy (e.g.,

Grimmett and Stirzaker, 2001) yielding

fX̃(x) =

∞∫
0

1

3y2/3
f IG
µ,σ/
√
n(y1/3)fχ

2

n−1

(
x2

y

)
2x

y
dy
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for x > 0 and 0 otherwise. To obtain the density f of the estimator σ̂ = g(X̃) itself with
g(x) = (σ/

√
µ3n)x, note that due to the chain rule and g(x) strictly increasing on [0,∞) we

use the method of transformations (e.g., Klenke, 2008) as follows

f(x) = F ′(x) =
d

dx
(FX̃(g−1(x))) = fX̃(g−1(x))

d

dx
g−1(x).

With g−1(x) = (
√
µ3n/σ)x it follows

f(x) =

∞∫
0

√
µ3n

σ

2x

3y5/3
f IG
µ,σ/
√
n(y1/3)fχ

2

n−1

(
x2µ3n

yσ2

)
dy

for x > 0 and 0 otherwise. This is the assertion.
Next, we derive the expected value. Therefore, the independence of µ̂ and λ̂ (Proposition 9.2)
is used as follows

E[σ̂
√
nλ] = E

[
µ̂3/2

√
nλ

λ̂

]
= E

[
µ̂3/2

]
E

[√
nλ

λ̂

]
.

By Proposition 9.2 we know that
√
Z =

√
nλ
λ̂

is χn−1 distributed. Hence, its expectation is

given by E[
√
Z] =

√
2 Γ(n/2)

Γ((n−1)/2) (Proposition 9.4). The expected value of
√
Y = µ̂3/2 is more

difficult to derive. We need the following Sublemma 9.6, which is proven later.

Sublemma 9.6. Let X be IG(µ, σ)-distributed. Then, the expected value of X3/2 is given by

E
[
X3/2

]
=

√
2µ

π

µ2

σ
exp

(
µ2

σ2

)
K1

(
µ2

σ2

)
.

As we know that µ̂ is IG(µ, σ/
√
n) distributed (Proposition 9.2), we use Sublemma 9.6 to

derive

E[
√
Y ] = E[µ̂3/2] =

√
2µ

π

√
nµ2

σ
exp

(
nµ2

σ2

)
K1

(
nµ2

σ2

)
.

Multiplying E[
√
Y ] with E[

√
Z] and dividing by

√
nλ =

√
nµ3/σ2 yields the assertion.

We obtain for the bias of the ML estimator σ̂

Bias (σ̂) = E[σ̂]− σ =
2µ√
π

Γ(n/2)

Γ((n− 1)/2)
exp

(
nµ2

σ2

)
K1

(
nµ2

σ2

)
− σ. (9.4)

To show the asymptotic bias of zero of σ̂ we apply formulas 6.1.39 and 9.7.2 from Abramowitz
and Stegun (1972) leading to

Γ(n/2)

Γ(n/2− 1/2)
∝
√
n

2
and K1

(
nµ2

σ2

)
∝ exp

(
−nµ

2

σ2

)√
σ2π

2nµ2
,
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where ∝ indicates ”proportional to” for n→∞. Thus,

Bias (σ̂) =
2µ√
π

Γ(n/2)

Γ((n− 1)/2)
exp

(
nµ2

σ2

)
K1

(
nµ2

σ2

)
− σ ∝ 2µ√

π

√
n

2

σ

µ

√
π

2n
− σ,

and the bias vanishes asymptotically for n→∞, i.e., σ̂ is a asymptotically unbiased.

Using Remark 8.5, it follows σ̂ =

√
µ̂3/λ̂. We know by the explanations following Proposition

9.2 that µ̂ and 1/λ̂ are consistent, i.e., converge in probability toward µ and 1/λ, respectively.

Thus, by continuous mapping also
√
µ̂3 and 1/

√
λ̂ are consistent such that the consistency of

σ̂ follows directly by Slutsky’s theorem.

Proof of Sublemma 9.6: To derive the expected value several identities about hyperbolic
functions are required. We therefore always refer to Section 4.5 in Abramowitz and Stegun
(1972) (via 4.5.x for equation 4.5.x therein) and use λ = µ3/σ2 for the sake of simplicity.

E
[
X3/2

]
=

∞∫
0

√
λ

2π
exp

(
−λ(x− µ)2

2µ2x

)
dx

=

√
λ

2π

∞∫
0

exp

(
−λ
2µ2

[√
x− µ√

x

]2
)
dx

eθ:=
√

x
µ

=

√
λ

2π

∞∫
−∞

exp

(
−2λ

µ

[
1

2
exp(θ)− exp(−θ)

]2
)

2µ exp(2θ)dθ

4.5.1
=

√
2λ

π
µ

∞∫
−∞

exp

(
−2λ

µ
sinh(θ)2

)
exp(2θ)dθ

4.5.16
4.5.32

=

√
2λ

π
µ

∞∫
−∞

exp

(
−2λ

µ

cosh(2θ)− 1

2

)
(sinh(2θ) + cosh(2θ)dθ

ω:=θ/2
=

√
2λ

π

µ

2
exp

(
λ

µ

) ∞∫
−∞

exp

(
−λ
µ

cosh(ω)

)
(sinh(ω) + cosh(ω))dω

4.5.21
4.5.22

=

√
2λ

π
µ exp

(
λ

µ

) ∞∫
0

exp

(
−λ
µ

cosh(ω)

)
(cosh(ω))dω

= −
√

2λ

π
µ exp

(
λ

µ

)
∂

∂z

∞∫
0

exp (−z cosh(ω)) dω

∣∣∣∣
z=λ/µ

∗
= −

√
2λ

π
µ exp

(
λ

µ

)
K
′
0

(
λ

µ

)
∗∗
=

√
2λ

π
µ exp

(
λ

µ

)
K1

(
λ

µ

)
=

√
2µ

π

µ2

σ
exp

(
µ2

σ2

)
K1

(
µ2

σ2

)
,
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where in ∗ and ∗∗ we made use of an integral representation of the modified Bessel function
of the third kind and order a: Ka(x) =

∫∞
0 exp(−x cosh(t)) cosh(at)dt (p.181 in Watson,

1995).

Figure 9.8 shows the relative bias (defined as Bias(σ̂)/σ) of the ML estimator σ̂ for different
values of µ and σ = 6.5. Interestingly, the (absolute) relative bias of the ML estimator σ̂
shown in Figure 9.8 decreases with an increasing CV=σ/µ. In all three cases a sample size
n ≥ 8 implies a relative bias smaller than ten percent.

µ = 4.25
µ = 8.5

µ = 17

re
l. 

bi
as

 o
f σ̂

n
0 50 100

−0.25

−0.10

0.00

Figure 9.8: Relative bias of the ML estimator σ̂ for σ = 6.5 and µ ∈ {4.25, 8.5, 17} as
indicated by the different colors. The bias is given by (9.4).

In the next subsection, we introduce an unbiased estimator of σ.

9.3.1.2 UMVU estimators

As we have shown in Proposition 9.5, the ML estimator of σ is biased. One idea to handle
the bias of the ML estimator for σ is the derivation of the so-called UMVU estimator
(uniformly minimum-variance unbiased estimator), which is the goal of this subsection. As its
name indicates, an UMVU estimator is unbiased and moreover has the smallest variance for all
possible values of the parameter in the set of all other unbiased estimators (e.g., Lehmann and
Casella, 1998). Note, however, that the UMVU estimator is not always the ”best” solution to
a specific estimation problem. An important result for the derivation of UMVU estimators
is the Lehmann-Scheffé-Theorem. Recall that for random data X a statistic S(X) is called
sufficient for an underlying parameter θ if the conditioned distribution of X given S(X) does
not depend on θ. The statistic S(X) is complete if for any measurable function g we have

Eθ[g(S(X))] = 0 for all θ ⇒ Pθ(g(S(X)) = 0) = 1 for all θ.

For more details about sufficiency and completeness we refer to, e.g., Young and Smith (2005),
Chapter 6.

Proposition 9.7. Lehmann-Scheffé-Theorem
Let X := (X1, X2, . . . , Xn) be random variables with distribution depending on a parameter
θ. Let further S = h(X1, . . . , Xn) be a complete and sufficient statistic for θ. If f(S) is an
unbiased estimate of θ, then f(S) has the minimum variance among all unbiased estimates of
θ, i.e., f(S) is the UMVU estimator of θ.
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Proof: Can be found in, e.g., Casella and Berger (2002).

In the context of UMVU estimators for the inverse Gaussian distribution, the statistic (d̄, v)
using the sample mean d̄ and

v :=
n∑
i=1

(
1

di
− 1

d̄

)
(9.5)

is minimal sufficient (i.e., can be represented as a function of any other sufficient statistic)
and complete (Prop. 6.1 in Seshadri, 1993).
Iwase and Seto (1983) showed the following Lemma 9.9 enabling us to derive UMVU estimators
for different parametrizations of the inverse Gaussian distribution based on the quantities d̄
and v. An important ingredient of these UMVU estimators is the hypergeometric function,
which we define following Abramowitz and Stegun (1972). Note that several other identities
exist.

Definition 9.8. Hypergeometric function
The hypergeometric function F (a, b; c; z) is for a, b ∈ R, c > 0 and z ∈ R with |z| < 1 defined
as

F (a, b; c; z) :=

∞∑
n=0

(a)n(b)n
(c)n

zn

n!

with (a)n = Γ(a+ n)/Γ(a) as the Pochhammer symbol and (b)n, (c)n analogously. For |z| ≥ 1
an integral representation is given by

F (a, b; c; z) :=
Γ(c)

Γ(b)Γ(c− b)

1∫
0

tb−1(1− t)c−b−1(1− tz)−adt.

Lemma 9.9. Unbiased estimation of the parameters of the IG distribution
Let d = (d1, d2, . . . , dn) be the realization of a random sample of size n ≥ 2 from the IG(µ, σ)-
distribution and α, β and τ be real numbers with (n − 1)/2 + τ > 0. Then, with v as in
(9.5),

E
[
d̄α+β+1/2vτF

(
α, β;

n− 1

2
+ τ ;− d̄v

n

)]
=

Γ(n/2− 1/2 + τ)

Γ(n/2− 1/2)
µα+β+1/2

(
2σ2

µ3

)τ (
2nµ2

σ2π

)1/2

exp

(
nµ2

σ2

)
Kα−β

(
nµ2

σ2

)
, (9.6)

where F () is the hypergeometric function (Definition 9.8) and
Kα(x) :=

∫∞
0 exp(−x cosh t) cosh(αt)dt the modified Bessel function of the third kind of order

α (e.g., Watson, 1995).

Proof : See Iwase and Seto (1983).

The following result about the UMVU estimators of of µ and σ is also given in Table 6.1 of
Seshadri (1993). To understand the application of Lemma 9.9, we show the proof.
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Corollary 9.10. UMVU estimators of µ and σ
Let d = (d1, d2, . . . , dn) be the realization of a random sample of n ≥ 2 IG(µ, σ)-distributed
random variables. The UMVU estimator of µ is the sample mean d̄, and the UMVU estimator
of σ is given by

σ̂UMVU =
Γ(n− 1)/2√

2Γ(n/2)
(d̄3v)1/2 × F

(
1

4
,
3

4
;
n

2
;− d̄v

n

)
.

Proof : The assertion for µ follows by setting α = 0, β = 1
2 and τ = 0 in Lemma 9.9. For σ we

set α = 1
4 , β = 3

4 and τ = 1
2 in the same Lemma. In both cases, we multiply in equation (9.6)

with the reciprocal of the terms involving the Gamma function and exploit the relationship(
2nµ2

σ2π

)1/2
exp

(
nµ2

σ2

)
K1/2

(
nµ2

σ2

)
= 1 (Iwase and Seto, 1983) as well as Kα(x) = K−α(x) for

x ∈ R and α ∈ R. The UMVU property follows by the Lehmann-Scheffé-Theorem (Proposition
9.7) as the only random inputs of both estimators are d̄ and v being a complete and sufficient
statistic for (µ, σ).

9.3.1.3 Moment estimators

The fitting of moment estimators to the inverse Gaussian distribution with parameters µ
and σ is straightforward by regarding the sample mean µ̂mom := d̄ = 1/n

∑n
i=1 di and sample

standard deviation σ̂mom :=
√

1/n
∑n

i=1 (di − µ̂mom)2, where d = (d1, d2, . . . , dn) denotes a
realization of IG distributed random variables (n ≥ 2).

9.3.1.4 Comparison of different estimators

Figure 9.9 compares for random samples of inverse Gaussian distributions with different
parameter combinations (µ, σ) the ML, the moment and the UMVU estimator of σ dependent
on the sample size n. Recall that the estimator of µ is identical for all three estimation
techniques.
Figure 9.9 A depicts the bias of the ML and moment estimator for σ clearly. For all three
values of σ the (simulated) bias of the ML estimator is almost always smaller than the bias of
the moment estimator. The relative bias of the ML estimator is in all cases for n ≥ 8 smaller
than ten percent of the true σ, which justifies to use the ML estimators if the sample is large
enough. The UMVU estimator is per construction unbiased. The median absolute relative
error (RE(σ̂) = |σ̂ − σ|/σ) of the estimators is shown for different values of σ in panels B-D.
We note that the relative error (RE) of the UMVU estimator is in most of the cases slightly
smaller than the RE of the ML estimator. The RE of the moment estimator is larger than the
relative error of the two other estimators. We therefore conclude that moment estimators are
not recommendable to estimate σ. Comparing the mean squared error yields similar results
(data not shown). Note that using a denominator n− 1 instead of n in the moment estimator
yields only slightly better results (as we estimate the standard deviation and not the variance).
Hence, if one aims at using moment estimators, research about unbiased transformations of
moment estimators for the IG distribution would be interesting.
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Figure 9.9: IG distribution: Comparison of different estimators for σ. (A) Simu-
lated mean σ̂xM := (1/m)

∑m
j=1 σ̂

x in m = 10000 simulations of the ML (x = ML), the moment
(x = mom) and the UMVU (x = UMVU) estimator of σ for a sample of n ∈ {2, . . . , 100}
random variables (estimators visualized in different green tones). The mean parameter of the
IG distribution is µ = 8.5, and three different values of σ were used σ ∈ {3.25, 6.5, 13}. The
true values are indicated by dashed lines. (B-D) log (median) of the absolute relative error
(RE= |σ̂x − σ|/σ) of the estimator σ̂x with x ∈ {ML,mom,UMVU} where the colors printed
in panel A are used (10000 simulations were used). The true σ differs from B-D and is printed
at the top.
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In addition to the ML, moment and UMVU approaches, Bayesian inference for the inverse
Gaussian distribution is possible. The literature lists several results for different parametriza-
tions (reviews can be found in Seshadri (1993, 1999), no results are known for the (µ, σ)-
parametrization). However, the methods highly depend on numerical integration routines and
Markov-Chain-Monte-Carlo methods as well as their performance is comparable to UMVU
estimators (Pandey and Bandyopadhyay, 2012) such that we do not investigate them further
in this thesis.

9.3.2 Gamma distribution

The Gamma distribution offers a second possibility to describe the dominance times resulting
from bistable stimulation. We introduce ML and moment estimators for the mean µ and the
standard deviation σ of the Gamma distribution. In the last part of the subsection the two
estimators are compared in simulations.

9.3.2.1 Maximum likelihood estimators

To derive the ML estimators, we first focus on the traditional parametrization p = µ2/σ2,
θ = µ/σ2 (Remark 2.3) and then use the invariance property of ML estimators. The log-
likelihood ` of n data d = (d1, d2, . . . , dn) realized from a Gamma distribution with parameters
p and θ is given by

`(d|p, θ) = (p− 1)

n∑
i=1

log di − n log Γ(p)− np log(1/θ)− θ
n∑
i=1

di

= n(p− 1)log d− n log Γ(p)− np log(1/θ)− nθd (9.7)

with log d = 1/n
∑n

i=1 log di and d = 1/n
∑n

i=1 di. The ML estimate for θ can be directly

derived as θ̂ML := p/d. Plugging this estimate in (9.7) yields

`(D|p, θ) = n(p− 1)log d− n log Γ(p)− np log d+ np log p− np.

Note that maximization of the latter display w.r.t. p is analytically not possible (due to the
Gamma function in the density). Hence, we refer to an algorithm applying the ”generalized
Newton” principle introduced by Minka (2002) to maximize the latter equation. We choose a
starting value p̂ as follows

p̂ =
1

2(log d− log d)

and update then the estimator p̂new iteratively

1

p̂new
=

1

p̂
+

log d− log d+ log p̂− ψ(p̂)

p̂2(1/p̂− ψ′(p̂))
; p̂ = p̂new

until a desired level of convergence has been reached. ψ(x) and ψ
′
(x) denote the values of the

diGamma and the triGamma function evaluated at x. The diGamma function is known as
the logarithmic derivative of the Gamma function ψ(x) = d

dx log(Γ(x)), and the triGamma
function is the derivative of the diGamma function (e.g., Lawless, 1982).
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The ML estimators for µ and σ are then due to Proposition 2.2 and the invariance property of
ML estimators

µ̂ := µ̂ML = p̂ML/θ̂ML = d̄ and σ̂ := σ̂ML =
√
p̂ML/θ̂ML.

Note especially that the ML estimator of µ is the sample mean. Be aware that the ML
estimator for σ is biased (Figure 9.10 A). As during continuous presentation there are mostly
more than ten dominance times, the effect of the bias is small. Moreover, we are mainly
interested in the inverse Gaussian distribution to describe the dominance times. Therefore, we
do not derive an UMVU estimator for σ in the case of the Gamma distribution.

Censored dominance times

As with the IG distribution, censored dominance times may be included using a numerical
maximization procedure of the log-likelihood

`(dcens|µ, σ) = n(µ2/σ2 − 1)log d− n log Γ(µ2/σ2)− nµ2 log(σ2/µ)/σ2 − nµd̄/σ2

+ log(1− FΓ
µ,σ(dn+1)),

where FΓ
µ,σ denotes the distribution function of the Gamma distribution with mean µ and

standard deviation σ. The nlm()-approach using the moment estimates of µ and σ (derived
only from the complete dominance times, see below) is a simple way to perform that in R.

9.3.2.2 Moment estimators

The fitting of moment estimators to the Gamma distribution is straightforward by regarding
the sample mean µ̂mom := d̄ = 1/n

∑n
i=1 di and sample standard deviation

σ̂mom :=
√

1/n
∑n

i=1 (di − µ̂mom)2.

9.3.2.3 Comparison of different estimators

Figure 9.10 contrasts for random samples of Gamma distributions with different parameter
combinations (µ, σ) the ML and the moment estimator of σ dependent on the sample size n.
Recall that the estimator of µ is identical using the two estimation methods.
Figure 9.10 A depicts the (simulated) bias of the ML and moment estimator for σ clearly.
For all three values of σ the bias of the ML estimator is always smaller than the bias of the
moment estimator. The median absolute relative error (RE(σ̂) = |σ̂ − σ|/σ) of the estimators
is printed depending on σ in panels B-D. We note that the RE of the moment estimator is
larger than the relative error of the ML estimator. We therefore recommend not to estimate σ
via moment estimators. Results for the mean squared error are comparable (data not shown).
Again, using a denominator n− 1 instead of n in the moment estimator yields only slightly
better results (data not shown).
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Figure 9.10: Gamma distribution: Comparison of the ML and the moment esti-
mator for σ. (A) Simulated mean σ̂xM := (1/m)

∑m
j=1 σ̂

x in m = 10000 simulations of the
ML (x = ML) and the moment (x = mom) estimator of σ for n ∈ {2, . . . , 100} (estimators
visualized in different green tones). The mean parameter of the Gamma distribution is µ = 8.5,
and three different values of σ were used σ ∈ {3.25, 6.5, 13}. The true values are indicated by
dashed lines. (B-D) log (median) of the absolute relative error (RE= |σ̂x−σ|/σ) of the estima-
tor σ̂x with x ∈ {ML,mom} where the colors printed in panel A are used (10000 simulations
were used). The true σ differs from B-D and is printed at the top.
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9.3.3 ML estimators: Asymptotic distribution

Next, we derive additionally the asymptotic distributions of the ML estimators for the
parameters of the IG and the Gamma distribution (as the exact distributions are complicated
or unknown). We can make use of the intensively investigated nature of the ML estimators
and derive for a sample D of random variables with density fΘ(d) depending on the parameter
set Θ the Fisher-information matrix I(Θ) with entries

[I (Θ)]i,j := E
[(

∂

∂Θi
log fΘ(D)

)(
∂

∂Θj
log fΘ(D)

)∣∣∣∣Θ] ,
which is directly connected to the precision of parameter estimates (Lehmann and Casella,
1998). For members of the exponential family (recall equation (8.1)) with open parameter
space, injective and continuously differentiable η (with nonsingular derivatives) as well as a
nonsingular covariance matrix of t(D) (i.e., with nonzero determinant), it holds

√
n(Θ̂ML −Θ) ∼ N

(
0, I(Θ)−1

)
(9.8)

as is shown in Theorem 4.6. of van der Vaart (1998). Moreover, if the parameter space is open
and the first and second partial derivatives of fΘ(d) exist, are finite and continuous (such that
integration and differentiation can be interchanged by the Leibniz integral rule (e.g., Lang,
1997)) the Fisher-information matrix can be rewritten (Lemma 5.3 (p. 116) in Lehmann and
Casella, 1998) as

[I (Θ)]i,j = −E
[

∂2

∂Θi ∂Θj
log fΘ(D)

∣∣∣∣Θ] . (9.9)

The conditions required for equation (9.9) are fulfilled by the inverse Gaussian and the Gamma
distribution as can be checked easily. In the next paragraphs, we use (9.9) to derive the Fisher
information and thereby the asymptotic variances of the ML estimators for the IG and the
Gamma distribution using equation (9.8). These variances can be used to derive asymptotic
confidence intervals.

9.3.3.1 Inverse Gaussian distribution

Recall that the inverse Gaussian distribution with parameters Θ = (µ, σ) belongs to the
exponential family (Corollary 8.7) with t(D) = (D, 1/D)T , η(Θ) = (−µ,−µ3)/(2σ2). One can
check easily that for µ > 0, σ > 0 η is injective and continuously differentiable with nonsingular
derivatives. The determinant of the covariance matrix of t(D) is given by

Var(D)Var(1/D)− Cov(D, 1/D)2

= σ2(E[1/D2]− E[1/D]2)− 1 + 2E[D]E[1/D]− E[D]2E[1/D]2

= σ2

(
1

µ2
+ 3

σ4

µ6
+ 3

σ2

µ4
− 1

µ2
− 2

σ2

µ4
− σ4

µ6

)
− 1 + 2 + 2

µ2

σ2
− µ2

(
1

µ2
+ 2

σ2

µ4
+
σ4

µ6

)
= 2

σ6

µ6
6= 0,

where we used the expected values of 1/D and 1/D2 as given in Proposition 8.8 and Seshadri
(1993), Table 2.3.
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Hence, the regularity conditions for the derivation of the asymptotic variance by the Fisher
information are fulfilled (eq. (9.8)). Using equation (9.9), we derive for an IG(µ, σ)-distributed
random variable D

I(µ, σ) := −E

[
∂2

∂µ2
log f IG

µ,σ(D) ∂2

∂µ∂σ log f IG
µ,σ(D)

∂2

∂σ∂µ log f IG
µ,σ(D) ∂2

∂σ2 log f IG
µ,σ(D)

]

= −E

[
2−3µ/D

σ2 − 3
2µ2

3µ2−4µD+D2

σ3D
3µ2−4µD+D2

σ3D
1
σ2 − 3µ(D−µ)2

σ4D

]

=

[
9
2

1
µ2

+ 1
σ2 − 3

µσ

− 3
µσ

2
σ2

]
,

where we used for the last equal sign that E[1/D] = 1/µ+ σ2/µ3 (Proposition 8.8).

By using equation (9.8), inverting I(µ, σ) and dividing by n, we obtain for the asymptotic
variances of the asymptotic normal distributions with means µ and σ, respectively,

Var
(
µ̂ML

)
≈ I−1

11 (µ, σ)

n
=

2

nσ2(2/σ4)
=
σ2

n

Var
(
σ̂ML

)
≈ I−1

22 (µ, σ)

n
=

1/σ2 + 9/2 · 1/µ2

2n/σ4
=
σ2

2n
+

9

4n

σ4

µ2
=

1

2n
σ2 +

9

4n
σ2CV2.

Note that as µ̂ML is the sample mean even its exact variance is given by σ2/n.

9.3.3.2 Gamma distribution

We aim to derive the asymptotic variance of the estimators µ̂ and σ̂ of the Gamma distribu-
tion. Therefore, we need the density of a Gamma-distributed random variable D with the
corresponding parametrization

log fΓ
µ,σ(d) = (µ2/σ2 − 1) log d− log Γ(µ2/σ2)− µ2 log(σ2/µ)/σ2 − µd/σ2.

Recall that the Gamma distribution is a representative of the exponential family (e.g., Lehmann
and Casella, 1998). For Θ = (µ, σ) the existence and continuity of the derivatives of
η(Θ) = (−µ/σ2, µ2/σ2 − 1) and its injectivity follow easily as well as the nonsingularity of the
covariance matrix of t(D) = (D, log(D)) (not shown here). Moreover, the parameter space is
open. Thus, the regularity conditions for equation (9.8) to hold are fulfilled, and we derive

I(µ, σ) = −E

[
∂2

∂µ2
log fΓ

µ,σ(D) ∂2

∂µ∂σ log fΓ
µ,σ(D)

∂2

∂σ∂µ log fΓ
µ,σ(D) ∂2

∂σ2 log fΓ
µ,σ(D)

]
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as also the regularity conditions required for equation (9.9) are fulfilled. For notational reasons
we write the entries of the matrix I := I(µ, σ) separately

I11 = −E
[

1

σ2

(
−2 log(σ2/µ)− 2ψ(µ2/σ2) + 2 log(D) + 3− 4µ2ψ

′
(µ2/σ2)/σ2

)]
=

1

σ2

(
2 log(σ2/µ) + 2ψ(µ2/σ2) + 2ψ(µ2/σ2)− 2 log(µ/σ2)− 3 + 4µ2ψ

′
(µ2/σ2)/σ2

)
I12 = I21 = −E

[
1

σ3

(
4µ3ψ

′
(µ2/σ2)/σ2 + 4µψ(µ2/σ2)− 4µ log(D) + 4µ log(σ2/µ)− 6µ+ 2D

)]
=

1

σ3

(
−4µ3ψ

′
(µ2/σ2)/σ2 − 4µ log(µ/σ2)− 4µ log(σ2/µ) + 4µ

)
I22 = −E

[
1

σ4

(
6µ2 log(D)− 6µ2 log(σ2/µ) + 10µ2 − 6µ2ψ(µ2/σ2)− 4µ4ψ

′
(µ2/σ2)/σ2 − 6µD

)]
=

1

σ4
×
(
−6µ2(ψ(µ2/σ2)− log(µ/σ2)) + 6µ2 log(σ2/µ)− 10µ2

+6µ2ψ(µ2/σ2) + 4µ4ψ
′
(µ2/σ2)/σ2 + 6µ2

)
.

We plugged in E[log(D)] = ψ(µ2/σ2) − log(µ/σ2), which can be obtained via elementary
integral calculations.

We invert the Fisher-information matrix and divide by n to obtain for the asymptotic variances
of the asymptotic normal distributions of the estimators µ̂ML and σ̂ML the values

Var
(
µ̂ML

)
≈ I−1

11 (µ, σ)

n
=

1

n

I22(µ, σ2)

I11(µ, σ2)I22(µ, σ2)− I12(µ, σ2)2
=
σ2

n
,

where we do not show the last equal sign in detail and

Var
(
σ̂ML

)
≈ I−1

22 (µ, σ)

n
=

1

n

I11(µ, σ2)

I11(µ, σ2)I22(µ, σ2)− I12(µ, σ2)2
.

Note that as µ̂ML is the sample mean even its exact variance is given by σ2/n.

9.4 Parameter estimation: Intermittent presentation

The parameters of Hidden Markov Models are typically estimated via maximum likelihood.
Prominent approaches carried out are the expectation maximization (EM) algorithm (Baum
et al., 1970; Dempster et al., 1977) and direct numerical maximization (MacDonald and
Zucchini, 1997). In this study, we focus on the EM algorithm, which is in the case of HMMs
called Baum-Welch algorithm (BWA). In Section 9.4.1 we discuss the BWA and refer for more
details to Baum et al. (1970); Dempster et al. (1977); Rabiner (1989); Bilmes (1998). Section
9.4.2 contains a short introduction to the direct numerical maximization idea.

9.4.1 Baum-Welch algorithm

For the HMM with inverse Gaussian dominance times we aim at estimating the parameter set
ΘHMM:= (µS , σS , µU , σU , pSS , pUU , πstart,S) and for the HMM with Gamma distributions the
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parameter set ΘHMM := (µS , σS , µU , pSS , pUU , πstart,S) should be estimated. In both cases the
likelihood L(d|ΘHMM) given by

L(d|ΘHMM) = P (Dn
1 = dn1 |ΘHMM) = πstartE(d1)PE(d2)P . . . PE(dn)(1, 1)T (9.10)

is maximized with P as the transition matrix of the hidden Markov chain with diagonal entries
pSS and pUU and E(di) as diagonal matrices with the conditional densities fµS ,σS (di), fµU ,σU (di)
on the diagonal (compare, e.g., Bulla (2006)).
The parameter set is estimated with the Baum-Welch algorithm (Baum et al., 1970) which is
an iteratively working instance of the EM-Algorithm maximizing the model likelihood locally.
Here, we explain its most important steps (for details see, e.g., Rabiner, 1989) and distinguish
between IG and Gamma distributions when updating the emission parameters. A graphical
summary of the algorithm can be found in Figure 9.11. In order to avoid computational
problems when using very small numbers, we additionally present a scaling technique for
the BWA. Moreover, we discuss starting values as well as constraints necessary to obtain
reasonable estimates also for subjects with less clear distinction between stable and unstable
dominance times.
In the first step of the BWA one applies the so-called forward- and backward-Algorithm.
The forward-variable αj(i) := αj(i|ΘHMM) := P(Di

1 = di1, Yi = j|ΘHMM) is defined as the
probability of being in state j at time i and observing the sequence d1, d2, . . . , di given the model
parameters. The backward-variable βj(i):= βj(i|ΘHMM) := P(Dn

i+1 = dni+1|Yi = j,ΘHMM)
denotes the probability of observing the ending partial sequence di+1, di+2, . . . , dn given state
j at time i. Both variables can be derived iteratively as follows (Lemma 9.12 a) + b))

αj(1) = πstart,jfµj ,σj (d1) and αj(i+ 1) = fµj ,σj (di+1)
∑

k∈{S,U}

αk(i)pkj for i = 1, . . . , n− 1

βj(n) = 1 and βj(i) =
∑

k∈{S,U}

pjkfµk,σk(di+1)βk(i+ 1) for i = n− 1, . . . , 1,

where pSU = 1 − pSS , pUS = 1 − pUU , and fµ,σ(x) denotes the density of the IG or the
Gamma distribution with expectation µ and standard deviation σ evaluated at x. Note that
we suppress the dependence of αj(i) and βj(i) on the parameter set ΘHMM for convenience.
The forward and backward variables are used to derive the probability
γj(i):= γj(i|ΘHMM) := P(Yi = j|Dn

1 = dn1 ,ΘHMM) of being in state j at time i, given the
whole sequence d := (d1, . . . , dn) and the parameters ΘHMM (Lemma 9.12 c))

γj(i|ΘHMM) =
αj(i)βj(i)

αS(i)βS(i) + αU (i)βU (i)
.

Moreover, we need the probability
ξj,k(i):= ξj,k(i|ΘHMM) := P(Yi = j, Yi+1 = k|Dn

1 = dn1 ,ΘHMM) of being in state j at time i
and in state k at time i+ 1, given the whole data d and the parameters ΘHMM,

ξj,k(i|ΘHMM) =
αj(i)pjkβk(i+ 1)f IG

µk,σk
(di+1)∑

j

∑
k αj(i)pjkβk(i+ 1)f IG

µk,σk
(di+1)

which is proven in Lemma 9.12 d).
To iteratively derive the parameter estimates, the BWA applies expectation maximization as

follows. Let Θ
(m)
HMM denote the parameter estimates after the m-th iteration step, and let Y
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denote the set of all possible state sequences of the hidden Markov chain. Let Y = (Y1, . . . , Yn)
denote a Y-valued random variable and y = (y1, . . . , yn) a realization of Y . In the E-step
(Figure 9.11) the Q-function (e.g., Ephraim and Merhav, 2002) over Y ,

Q := Q(ΘHMM|Θ(m)
HMM) := E

[
logL (d, y|ΘHMM) |D = d,Θ

(m)
HMM

]
=
∑
y∈Y

logL(d, y|ΘHMM)P(Y = y|d,Θ(m)
HMM),

i.e., the expectation of the complete-data log-likelihood L across all possible paths y ∈ Y is

derived. In the M-step the updated parameter set Θ
(m+1)
HMM is chosen such that it maximizes Q.

These iterative steps are repeated until a desired level of convergence is reached. Here, we stop
the algorithm if the improvement in the log-likelihood from the last iteration to the present
one is smaller than δstop = 0.005 or if 1000 iterations were computed (compare also page 98).

●●

Choose Θ(0)

E−step

Derive the Q−Function using

the current parameter estimate Θ(m)

M−step

Compute parameter estimate 

Θ(m+1) maximizing Q

m:=m+1
converged?

Yes

No

Final estimate Θ(m)

Figure 9.11: The Baum-Welch algorithm as Expectation-Maximization-
Algorithm. The steps are explained in detail in the main text. Note that we set Θ := ΘHMM

in the graph.

The following Lemma 9.11 – which shows that maximizing the Q-function is equivalent
to maximizing the likelihood-function – is essential for the correctness of the Baum-Welch
algorithm.

92



9. A Hidden Markov Model

Lemma 9.11. Maximization of the Q-function

It holds Q
(

ΘHMM|Θ(m)
HMM

)
≥ Q

(
Θ

(m)
HMM|Θ

(m)
HMM

)
⇒ L (Dn

1 = dn1 |ΘHMM) ≥ L
(
Dn

1 = dn1 |Θ
(m)
HMM

)
.

Moreover,

Q
(

ΘHMM|Θ(m)
HMM

)
= Q

(
Θ

(m)
HMM|Θ

(m)
HMM

)
⇔ L

(
Dn

1 = dn1 |Θ
(m)
HMM

)
= L (Dn

1 = dn1 |ΘHMM) .

Proof : See Ephraim and Merhav (2002).

Next, we show in detail how to update the parameters in the m+ 1-st step. For a fixed state
sequence y = (y1, . . . , yn) the log-likelihood of the data is

logL(d, y|ΘHMM) = log πstart,y1 + log fµy1σy1
(d1) +

n∑
i=2

(
log(pyi−1yi) + log(fµyi ,σyi

(di))
)
.

Insertion into Q yields (e.g., Ephraim and Merhav, 2002)

Q
(

ΘHMM|Θ(m)
HMM

)
=

∑
y1∈{S,U}

log πstart,y1P(Y1 = y1|d,Θ(m)
HMM)

+
n∑
i=2

∑
yi−1∈{S,U}

∑
yi∈{S,U}

log pyi−1yiP(Yi−1 = yi−1, Yi = yi|d,Θ(m)
HMM)

+
n∑
i=1

∑
yi∈{S,U}

log fµyi ,σyi (di)P(Yi = yi|d,Θ(m
HMM). (9.11)

Note that the first line depends only on the initial distribution πstart, the second line depends
on the transition probabilities and the third line depends on the parameters of the IG or
the Gamma distributions. Therefore, iterative parameter estimation separately maximizes

these terms. Note further that we can rewrite P(Yi = yi|d,Θ(m)
HMM) = γyi(i|Θ

(m)
HMM) and

P(Yi−1 = yi−1, Yi = yi|d,Θ(m)
HMM) = ξyi−1yi(i− 1|Θ(m)

HMM), which yields the following estimates
in the m+ 1-st iteration step.
Using the Lagrangian multiplier Γ with the constraint

∑
j πstart,j = 1 and setting the derivative

with respect to πstart,j to zero, we obtain

P(Y1 = j|d,Θ(m)
HMM)

πstart,j
+ Γ = 0.

Multiplying with πstart,j , summing over j to get Γ and solving for πstart,j we arrive at

π̂
(m+1)
start,j = P(Y1 = j|d,Θ(m)

HMM) = γj(1).

Alternatively to this procedure and in order to reduce the number of parameters we assume that
the HMM starts in its stationary distribution (πS , 1−πS) = (pUU −1, pSS−1)/(pSS +pUU −2)
(Corollary 10.8). Under this assumption the initial distribution for the stable state is updated
in the m+ 1-th step of the BWA by

π̂
(m+1)
start,S =

p̂
(m+1)
UU − 1

p̂
(m+1)
SS + p̂

(m+1)
UU − 2

(9.12)
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and for the unstable state we obtain π̂
(m+1)
start,U = 1− π̂(m+1)

start,S .

For the entries of the transition matrix, Lagrange maximization of the second line of

Q
(

ΘHMM|Θ(m)
HMM

)
under the constraints pSS + pSU = pUU + pUS = 1 yields the estimate

p̂
(m+1)
jk =

∑n
i=2 P(Yi−1 = j, Yi = k|d,Θ(m)

HMM)∑n
i=2 P(Yi−1 = j|d,Θ(m)

HMM)
=

∑n−1
i=1 ξj,k(i|Θ

(m)
HMM)∑n−1

i=1 γj(i|Θ
(m)
HMM)

,

in the (m+ 1)-st step of the BWA (e.g., Rabiner, 1989).

Now, we investigate the term in the last line (9.11) of the Q-function (which we term

Q∗(ΘHMM|Θ(m)
HMM)) and distinguish between the assumption of inverse Gaussian and Gamma-

distributed dominance times.

Parameter estimation for IG distributions

In the case of inverse Gaussian distributed observations we obtain

Q∗
(

ΘHMM|Θ(m)
HMM

)
=

n∑
i=1

P(Yi = S|d,Θ(m)
HMM)

1

2
log

(
µ3
S

2σ2
Sπd

3
i

)

−
n∑
i=1

P(Yi = S|d,Θ(m)
HMM)

µS
2σ2

S

(di − µS)2

di

+

n∑
i=1

P(Yi = U |d,Θ(m)
HMM)

1

2
log

(
µ3
U

2σ2
Uπd

3
i

)

−
n∑
i=1

P(Yi = U |d,Θ(m)
HMM)

µU
2σ2

U

(di − µU )2

di
.

We maximize the first and the second line (for the third and fourth line all calculations can be
done similarly). Derivating partially gives

∂Q∗

∂µS
=

3

2µS

n∑
i=1

P(Yi = S|d,Θ(m)
HMM)− 1

2σ2
S

n∑
i=1

P(Yi = S|d,Θ(m)
HMM)

(di − µS)2

di

+
µS
σ2
S

n∑
i=1

P(Yi = S|d,Θ(m)
HMM)−

µ2
S

σ2
S

n∑
i=1

P(Yi = S|d,Θ(m)
HMM)

1

di
(9.13)

and

∂Q∗

∂σS
=− 1

σS

n∑
i=1

P(Yi = S|d,Θ(m)
HMM) +

µS
σ3
S

n∑
i=1

P(Yi = S|d,Θ(m)
HMM)

(di − µS)2

di
.

Setting ∂Q∗

∂σS
= 0 and solving for σS we obtain

σS =

√√√√ µS∑n
i=1 P(Yi = S|d,Θ(m)

HMM)

n∑
i=1

P(Yi = S|d,Θ(m)
HMM)

(di − µS)2

di
. (9.14)
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Plugging this in (9.13) and setting to zero yields

0 =
1

µS

n∑
i=1

P(Yi = S|d,Θ(m)
HMM) +

(
n∑
i=1

P(Yi = S|d,Θ(m)
HMM)

)2

n∑
i=1

P(Yi = S|d,Θ(m)
HMM)(di − µS)2/di

−
µS

n∑
i=1

P(Yi = S|d,Θ(m)
HMM)

n∑
i=1

P(Yi = S|d,Θ(m)
HMM) 1

di

n∑
i=1

P(Yi = S|d,Θ(m)
HMM)(di − µS)2/di

⇒ 0 =
n∑
i=1

P(Yi = S|d,Θ(m)
HMM)(di − µS)2/di + µS

n∑
i=1

P(Yi = S|d,Θ(m)
HMM)

− µ2
S

n∑
i=1

P(Yi = S|d,Θ(m)
HMM)

1

di

⇒
n∑
i=1

P(Yi = S|di,Θ(m)
HMM)di = µS

n∑
i=1

P(Yi = S|d,Θ(m)
HMM)

⇒ µ̂
(m+1)
S =

n∑
i=1

P(Yi = S|d,Θ(m)
HMM)di

n∑
i=1

P(Yi = S|d,Θ(m)
HMM)

=

n∑
i=1

γS(i|Θ(m)
HMM)di

n∑
i=1

γS(i|Θ(m)
HMM)

.

We plug this estimator in (9.14)

σ̂
(m+1)
S =

√√√√√ µ̂
(m+1)
S

3∑n
i=1 P(Yi = S|d,Θ(m)

HMM)

n∑
i=1

P(Yi = S|d,Θ(m)
HMM)

(di − µ̂(m+1)
S )

2

µ̂
(m+1)
S

2
di

=

√√√√ µ̂
(m+1)
S

3∑n
i=1 P(Yi = S|d,Θ(m)

HMM)

n∑
i=1

P(Yi = S|d,Θ(m)
HMM)

(
1

di
− 1

µ̂
(m+1)
S

)

=

√√√√ µ̂
(m+1)
S

3∑n
i=1 γS(i,Θ

(m)
HMM)

n∑
i=1

γS(i|Θ(m)
HMM)

(
1

di
− 1

µ̂
(m+1)
S

)
. (9.15)

For the unstable dominance times we obtain similar results

µ̂
(m+1)
U =

n∑
i=1

γU (i|Θ(m)
HMM)di

n∑
i=1

γU (i|Θ(m)
HMM)

σ̂
(m+1)
U =

√√√√ µ̂3
U∑n

i=1 γU (i|Θ(m)
HMM)

n∑
i=1

γU (i|Θ(m)
HMM)

(
1

di
− 1

µ̂U

)
. (9.16)
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Parameter estimation for Gamma distributions

Assuming Gamma-distributed stable dominance times and exponentially distributed dominance
times in the unstable state and substituting pS = µ2

S/σ
2
S , θS = µS/σ

2
S (compare Remark 2.3)

equation (9.11) becomes

Q∗
(

ΘHMM|Θ(m)
HMM

)
= (pS − 1)

n∑
i=1

P(Yi = S|d,Θ(m)
HMM) log di − log(Γ(pS))

n∑
i=1

P(Yi = S|d,Θ(m)
HMM)

− pS log

(
1

θS

) n∑
i=1

P(Yi = S|d,Θ(m)
HMM)− θS

n∑
i=1

P(Yi = S|d,Θ(m)
HMM)di

− 1

µU

n∑
i=1

P(Yi = U |d,Θ(m)
HMM)di + log

(
1

µU

) n∑
i=1

P(Yi = U |Di = di,Θ
(m)
HMM)

= (pS − 1)

n∑
i=1

P(Yi = S|d,Θ(m)
HMM)log dwS − log(Γ(pS))

n∑
i=1

P(Yi = S|d,Θ(m)
HMM)

− pS log

(
1

θS

) n∑
i=1

P(Yi = S|d,Θ(m)
HMM)− θS

n∑
i=1

P(Yi = S|d,Θ(m)
HMM)dwS

− 1

µU

n∑
i=1

P(Yi = U |d,Θ(m)
HMM)di + log

(
1

µU

) n∑
i=1

P(Yi = U |d,Θ(m)
HMM).

In the latter display we made use of the weighted means

dwS :=

n∑
i=1

P(Yi = S|d,Θ(m)
HMM)di

n∑
i=1

P(Yi = S|d,Θ(m)
HMM)

and log dwS :=

n∑
i=1

P(Yi = S|d,Θ(m)
HMM) log di

n∑
i=1

P(Yi = S|d,Θ(m)
HMM)

.

Derivating Q∗(ΘHMM|Θ(m)
HMM) partially with respect to µU and setting the derivative to zero

yields the well-known ML estimator for the Exponential distribution

µ̂
(m+1)
U =

n∑
i=1

P(Yi = U |d,Θ(m)
HMM)di

n∑
i=1

P(Yi = U |d,Θ(m)
HMM)

=

n∑
i=1

γU (i|Θ(m)
HMM)di

n∑
i=1

γU (i|Θ(m)
HMM)

.

Partially derivating Q∗(ΘHMM|Θ(m)
HMM) with respect to θS and setting the derivative to zero

gives

θ̂S = pS/dwS .

Finding an approximate ML estimate of pS is more tricky. Again following Minka (2002)
(compare Section 9.3.2) and applying a ”generalized Newton” principle, we update p̂Snew

iteratively

1

p̂Snew

=
1

p̂S
+

log dwS − log dwS + log p̂S − ψ(p̂S)

p̂2
S (1/p̂S − ψ′(p̂S))

; p̂S = p̂Snew
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until the change in pS gets sufficiently small. As starting value

p̂S =
1

2(log dwS − log dwS )

is used (Minka, 2002).

The ML estimators for µS and σS are obtained by reparametrization

µ̂
(m+1)
S =

p̂S

θ̂S
= dwS

σ̂
(m+1)
S =

p̂S

θ̂2
S

.

The next lemma states that the derivations of the forward and backward variables as well as
of γj(i) and ξjk(i) are correct (recall page 91).

Lemma 9.12. Correctness of the BWA
It holds for j ∈ {S,U}

a)

αj(1) = πstart,jfµj ,σj (d1) and

αj(i+ 1) = fµj ,σj (di+1)
∑

k∈{S,U}

αk(i)pkj for i = 1, . . . , n− 1,

b) βj(n) = 1 and βj(i) =
∑

k∈{S,U} pjkfµk,σk(di+1)βk(i+ 1) for i = n− 1, . . . , 1,

c) γj(i) =
αj(i)βj(i)

αS(i)βS(i)+αU (i)βU (i) ,

d) ξj,k(i) =
αj(i)pjkβk(di+1)fk(di+1)∑

j∈{S,U}
∑
k∈{S,U} αj(i)pjkβj(di+1)fk(di+1) .

Proof : a) The claim is shown inductively with the case i = 1 being trivial. For i→ i+ 1 it
holds

αj(i+ 1) = P(Di+1
1 = di+1

1 , Yi+1 = j|ΘHMM)

= P(Di+1 = di+1|Di
1 = di1, Yi+1 = j,ΘHMM)P(Di

1 = di1, Yi+1 = j|ΘHMM)

= fµj ,σj (di+1)
∑

k∈{S,U}

P(Di
1 = di1, Yi = k|ΘHMM)P(Yi+1 = j|Yi = k,ΘHMM)

= fµj ,σj (di+1)
∑

k∈{S,U}

αk(i)pkj ,

where in the third line the conditional independence and Markov property have been applied.
In the fourth line, the definitions of αk(i) and pjk have been plugged in.

b), c) and d) follow by similar elementary calculations using the Markov and independence
properties of the HMM.
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Computational issues of the BWA: Scaling

Note that αj(i) essentially is the sum of terms each being a product(
i−1∏
k=1

pyk,yk+1

i−1∏
k=1

fµyk ,σyk (dk)

)
.

All terms with p are smaller than one and are often even close to zero. Moreover, the terms
with f are typically close to zero. Thus, with increasing i the forward variable αj(i) heads
to zero which leads to computational problems. Similar problems are observable for the
backward variable βj(i). Scaling offers a solution here. We need to find a scaling coefficient
c(i) depending only on i (and not on j) that is multiplied with αj(i) and βj(i) in each step
and cancels out at the end of computation.
We follow the ideas of Rabiner (1989); Turner (2008) and set c(i) := αS(i) + αU (i) and divide
the unscaled values of αj(i) and βj(i) in each step of the forward- and backward-algorithm by
c(i) to obtain normalized values α̃j(i), β̃j(i). Formally,

α∗j (1) := πstart,jfµj ,σj (d1), c(i) := α∗S(i) + α∗U (i), α̃j(i) := α∗j (i)/c(i),

α∗j (i) := fµj ,σj (di)
∑

k∈{S,U}

α̃k(i− 1)p̃kj for i = 2, . . . , n,

β̃j(n) = 1/cn and β̃j(i) =
∑

k∈{S,U}

pjkfµk,σk(di+1)β̃k(i+ 1)/c(i) for i = n− 1, . . . , 1.

To derive γj(i) and ξj,k(i) and consequently to update parameters, we always use the normalized
values α̃j(i), β̃j(i) in the practical implementation (instead of αj(i), βj(i)). Note, however,
that – as it was intended – the scaling cancels out in the derivation of γj(i) and ξj,k(i), and
therefore the resulting estimates in each iteration step are identical for the unscaled and the
scaled version of the BWA. We show this for γj(i) and refer for more details to Rabiner (1989).
It holds

γj(i) =
α̃j(i)β̃j(i)

α̃S(i)β̃S(i) + α̃U (i)β̃U (i)

=

∏i
k=1 (1/ck)αj(i)

∏n
k=i+1 (1/ck)βj(i)∏i

k=1 (1/ck)αS(i)
∏n
k=i+1 (1/ck)βS(i) +

∏i
k=1 (1/ck)αU (i)

∏n
k=i+1 (1/ck)βU (i)

=
(
∏n
k=1 (1/ck))αj(i)βj(i)

(
∏n
k=1 (1/ck)) (αS(i)βS(i) + αU (i)βU (i))

=
αj(i)βj(i)

αS(i)βS(i) + αU (i)βU (i)
.

The likelihood then derives as (Turner, 2008)

L(d|ΘHMM) = αS(n) + αU (n) =
n∏
i=1

c(i)(α̃S(n) + α̃U (n)) =
n∏
i=1

c(i),

yielding

`(d|ΘHMM) = logL(d|ΘHMM) =
n∑
i=1

log(c(i)).

Recall that the stopping rule for the BWA we use here is defined as: Stop the BWA if the
improvement in the log-likelihood from the last iteration to the present one is smaller than
δstop = 0.005 or if 1000 iterations were computed.
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Starting values and constraints

As starting values µ
(s)
S , σ

(s)
S , µ

(s)
U , σ

(s)
U , p

(s)
SS , p

(s)
UU for the Baum-Welch algorithm we chose, in

correspondence with the data set, p
(s)
SS = p

(s)
UU = 0.5; µ

(s)
U = 4; σ

(s)
U = 5 (assuming

inverse Gaussian distributed dominance times). In order to reduce the probability that
the Baum-Welch algorithm will be captured in a local extremum, we chose ten equidistant

values for µ
(s)
S ranging between 60 and 0.95 maxi di, and for each value of µ

(s)
S we choose ten

equidistant values for σ
(s)
S between 10 and 1.1µ

(s)
S . Very irregular stable distributions with

a CV larger than 1.1 are not reasonable as consequently the stable and unstable dominance
times are not separated clearly. Moreover, a mean of stable dominance times larger than the
maximum length of dominance times is not reasonable. Out of the resulting one hundred sets
of parameter estimates we chose the parameter set with the highest log-likelihood (satisfying
also the constraints A)-C) below).

If the response pattern shows only dominance times larger than 30 seconds we reduce the
model to the stable phase. The parameters µS and σS are derived by ML as described in
Section 9.3.1.1, and we set pSS := 1. If the dominance time are only smaller than 30 seconds,
we only estimate µU and σU by ML and use pUU := 1.

For subjects with relatively clear distinction between long and short dominance times this
procedure yields reasonable estimates. For subjects with less clear distinction, we added the
following constraints based on the idea that short dominance times should not affect estimation
of the stable parameters and long dominance times should not affect estimation of unstable
parameters. Note that in continuous presentation where only one state exists, about 90% of
the dominance times are shorter than 15 seconds, while only about two percent are larger
than 30 seconds. Therefore, we require the following conditions

A) σ̂S > 1 B) µ̂S ≥ 0.98µ̂15 C) µ̂S < 1.02µ̂75

with µ̂k := (1/
∑n

i=1 1di>k)
∑n

i=1 di1di>k if any dominance time is larger than k seconds and
µ̂k = k else. A) prevents that not just the largest dominance time is estimated as stable
and all others are categorized as unstable (which may increase the likelihood). B) prevents
dominance times smaller than 15 seconds to be considered for the estimation of µS . Third, we
require C) such that rather stable dominance times longer than 75 seconds are not classified
as unstable.

Instead of rejecting the result of the BWA for a given set of starting values when the conditions
A)-C) are not fulfilled one may also stop the updating procedure immediately when parameters
not satisfying the constraints are estimated and then take the last parameters that are not
outside the parameter range as result of the BWA. This is slightly less robust but leads for
the great majority of cases to the same results and has also comparable estimation precision
properties.

For the HMM with Gamma-distributed dominance times, we use as starting value for the

Exponential distribution µ
(s)
U = 5. All other starting values and the constraints are identical

to the inverse Gaussian-HMM.

To derive confidence intervals for the HMM parameters (block) bootstrap approaches are
thinkable (e.g., Efron and Tibshirani, 1994; Scholz, 2007).
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IG distribution: UMVU inspired estimators

As explained in Section 9.3.1, the ML estimator of σ for the IG distribution is biased. Hence,
the BWA estimates of the standard deviations in the stable and the unstable state are also
biased as they are based on the ML principle. Applying UMVU estimators would lead to
unbiased estimators of σS and σU . However, note that the corresponding ML estimators are a
kind of weighted means (equations (9.15) and (9.16)) as

σ̂
(m+1)
j =

√√√√ µ̂3
j∑n

i=1 γj(i)

n∑
i=1

γj(i)

(
1

di
− 1

µ̂j

)

for j ∈ {S,U} and with γj(i) as the probability of being in state j at time i given the
estimated parameters and all observations (resulting from the BWA). The derivation of UMVU
estimators for σ̂S and σ̂U being weighted means is an open question. Here, we give a first idea
how UMVU inspired estimators may be included in the BWA without claiming theoretical
correctness. We just apply an intuitive idea.
The usual BWA estimators Θ̂HMM are used as initial points for the UMVU inspired estimation.
Define vj :=

∑n
i=1 γj(i)(1/di − 1/µ̂j) and ñj := (

∑n
i=1 γj(i))

2/
∑n

i=1 γj(i)
2. vj plays the role

of v in the traditional UMVU estimation (compare equation (9.5)). The weighting factor ñj is
motivated by the variance of a random variable Z :=

∑
wiXi/

∑
wi where wi ≥ 0 are weights

and Xi i.i.d. with variance σ2. It holds Var(Z) =
∑
w2
i σ

2/(
∑
wi)

2 as can be shown by a
short derivation. In our case the Xi are the 1

di
− 1

µ̂j
and wi is γj(i). Inspired by the UMVU

estimator for σ (Corollary 9.10) we define the UMVU inspired estimator for σj , j ∈ {S,U} as

σ̂UMVU
j :=

Γ(ñj − 1)/2√
2Γ(ñj/2)

(µ̂3
jvj)

1/2 × F
(

1

4
,
3

4
;
ñj
2

;− µ̂jvj
ñj

)
. (9.17)

The estimates of µS , µU , pSS , pUU remain unchanged. Thus, the only difference compared to
the traditional Baum-Welch algorithm is that we re-estimate the estimators for the standard
deviations in the end of the estimation procedure using equation (9.17). In case of only stable
or only unstable dominance times, we use the usual UMVU estimator of σ (given in Corollary
9.10). In Section 9.6.3.2, we compare the bias of the traditional BWA and the UMVU inspired
estimates of σS and σU empirically.

Remark on the estimation implementation

The estimation of model parameters speeds up remarkably when outsourcing parts of the
code from the statistical package R to the widely used programming language C++. When
estimating the Hidden Markov Model the forward- and backward algorithm are typically
performed in loops, which are not recommended to use in R. Therefore, we suggest to perform
these algorithms in C++ using the weights of the inverse Gaussian or the Gamma distribution
for each data point as input.

9.4.2 Direct numerical maximization of the log-likelihood

Besides the traditional approach of estimating Hidden Markov Models by the Baum-Welch
algorithm direct numerical maximization (DNM) of the log-likelihood was introduced by
several authors (e.g., MacDonald and Zucchini, 1997; Turner, 2008). The (scaled) forward
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9. A Hidden Markov Model

variables α̃j(i) are used to compute the likelihood of the complete model given the parameter
set ΘHMM

L(d1, . . . , dn|ΘHMM) =

n∏
i=1

c(i)(α̃S(n) + α̃U (n)) =

n∏
i=1

c(i),

where (c(i))i=1,...,n are the normalizing constants defined on page 98. The corresponding
log-likelihood

∑
i log(c(i)) is maximized subject to the constraints

A) µ̂S > 0.98µ̂15 B) µ̂S < 1.02µ̂75 C) σ̂S < 1.2σ̂15 D) p̂SS ∈ [0, 1] E) p̂UU ∈ [0, 1]

applying the Newton-type algorithm implemented in the R-function nlm(). In the latter display
we use σ̂k := (1/

∑n
i=1 1di>k)

∑n
i=1 (di − µ̂k)2

1di>k if any dominance time is larger than k
seconds and 0 else. We only accept estimates where all constraints are fulfilled. Constraints A)
and B) are also used for the BWA and constraints D) and E) are due to the model formulation.
Constraint C) prevents the distribution of the stable dominance times to be implausibly
irregular.
This approach can be used for the HMM with IG as well as for the HMM with Gamma-
distributed dominance times.

Censored dominance times

Like in the continuous viewing experiment we did not consider the censored last dominance
time dn+1 until now. Using the direct likelihood maximization approach, it is straightforward
how to include this censored dominance time. For α̃j(1), . . . , α̃j(n) with j ∈ {S,U} the
estimates remain changed, but we define α∗j (n+ 1) as follows

α∗j (n+ 1) = (1− Fµj ,σj (dn+1))
∑

i∈{S,U}

pijα̃i(n)

and norm it to obtain α̃j(n+ 1). Depending on the model Fµj ,σj is the distribution function of
either the inverse Gaussian or the Gamma distribution (for j = U Fµj ,σj is in the second case the
distribution function of the exp(1/µU )-distribution). Thereby, c(n+1) = α∗S(n+1)+α∗U (n+1).
Then, the resulting log-likelihood

∑
i log(c(i)) is maximized subject to the constraints A)-E)

given above.

9.4.3 ML estimators: Asymptotic distribution

As with the ML estimators for the IG or the Gamma distribution asymptotic properties
of the ML estimators for the two-state HMM are of principal interest. The consistency
and asymptotic normality of maximum likelihood estimators for HMMs was shown first by
Baum and Petrie (1966) assuming a finite state space, stationarity and some more technical
conditions. Bickel et al. (1998) generalized these results assuming regularity conditions on the
conditional distributions. Moreover, it is to assure that the log-likelihood of the HMM is twice
continuously differentiable and that the score function and the observed information have
finite first two moments. A detailed treatise of the statistical properties of the ML estimator
for Hidden Markov Models can be found in Cappé et al. (2005). We leave it for future work
to check in detail if the conditions for consistency and asymptotic normality are fulfilled by
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9. A Hidden Markov Model

the HMM used in this chapter. Note, however, that the sample sizes given in the data sets of
Schmack et al. (2013, 2015) are small and therefore asymptotic results are not necessarily of
major practical importance for this thesis.

9.5 Parameters of example response patterns

In Figure 9.1 response patterns typical for continuous and intermittent presentation are shown.
For intermittent presentation, we chose examples of a stable response pattern with only three
perceptual reversals (panel E), a rather unstable response pattern with many changes (F)
and two examples of response patterns with long stable as well as short unstable dominance
times with different degrees of regularity (C and D). In terms of visual inspection, all other
response patterns in the data sets Schmack et al. (2013, 2015) are similar to panel A or B
for continuous presentation and C, D, E or F for intermittent presentation (compare Figures
A.1 and A.2 in the appendix). Here, we fit Hidden Markov Models with inverse Gaussian
distributed dominance times to the response patterns from Figure 9.1 and show the estimated
parameters.

9.5.1 Continuous presentation

Table 9.1 gives the estimated parameter combinations for the two original response patterns
visualized in Figure 9.1 (page 70, panels A and B). The histograms of the dominance times
are plotted in Figure 9.2 A and B.

panel µ σ

A 10.50 8.18
B 6.69 3.58

Table 9.1: Estimated exemplary HMM parameter combinations for continuous
presentation assuming IG distributed dominance times. The original data response patterns
are shown in Figure 9.1 A and B (page 70).

9.5.2 Intermittent presentation

In Table 9.2 we show the estimated parameter constellations for the four realizations shown in
Figure 9.1 C-F. The corresponding dominance time histograms are printed in Figure 9.2 C-F.

panel µS σS µU σU pSS pUU πstart,S

C 186.45 30.50 5.01 3.06 0.67 0.96 0.11
D 67.12 50.81 3.25 2.76 0.33 0.82 0.21
E 372.28 68.30 NA NA 1.00 NA 1.00
F 77.13 9.99 5.37 6.26 0.00 0.99 0.01

Table 9.2: Estimated exemplary HMM parameter combinations for intermittent
presentation assuming IG distributed dominance times. The corresponding data response
patterns are shown in Figure 9.1 C-F (page 70). The entry NA implies that only the parameters
of the stable state were estimated as only long dominance times larger than 30 seconds occur
(compare page 99).
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9.6 Precision of parameter estimates

Basic error measures are defined in the first part of this section (Section 9.6.1). Simulations to
quantify the quality of the fitting procedure for the continuous HMM follow where also censored
dominance times are included (Section 9.6.2). In the last part, the estimation precision of
the HMM for intermittent presentation is investigated including short paragraphs about the
estimation precision of the UMVU inspired approach and the DNM approach (Section 9.6.3).

Note that we focus on the HMM with inverse Gaussian distributed observations here as the
inverse Gaussian distribution first provides a better fit to the data (compare Section 14.1.3),
and second inverse Gaussian distributed dominance times are directly comparable to the
dominance times of the later on introduced Hierarchical Brownian Model.

9.6.1 Error measures

Let θ̂ be an estimator of the true parameter θ ∈ R and (θ̂i)i=1,...,n be a sample of realizations

of θ̂. To quantify the estimation precision, we introduce (or recall) two error measures. The
absolute error (AE) is defined as

AE(θ̂i) := AEθ(θ̂i) := |θ̂i − θ|,

and the absolute relative error (RE) is given by

RE(θ̂i) := REθ(θ̂i) :=
AE(θ̂i)

θ
.

9.6.2 Continuous presentation

In order to investigate the estimation precision for small data sets, we applied parametric
bootstrap. For each parameter combination (µi, σi)i=1,...,61 estimated from the data set
Schmack et al. (2015) we simulated 1000 response patterns with length T = 240s as in the
original data. We then compared the estimators (µ̂i, σ̂i)i=1,...,61 with the true parameter values
using the RE. The median relative errors for the 61 parameter constellations are shown in
Figure 9.12 A. Out of these, 54 (89%) showed estimation errors with median REs less than
0.25 (across the two parameters µ and σ, black). The remaining simulations (dark orange)
showed only few percept changes, n < 20, as well as large coefficient of variation (σ/µ, Figure
9.12 B).

Simulation results for the Gamma distribution are comparable (data not shown).

Precision of parameter estimates including censored dominance times

The estimation precision of the ML estimators including the censored last dominance times
can be evaluated using the same parametric bootstrap method as described above. The results
are comparable, i.e., the effect of including the censored last dominance time is negligible.
This is due to the relatively large number of dominance times during continuous presentation
(the median number of dominance times in Schmack et al. (2015) is 27) such that the effect of
including an additional (censored) dominance time is small.

103



9. A Hidden Markov Model

µ σ0.
0

0.
4

0.
8

m
ed

(R
E

)
●

●
●

●

●
●

●
●

●

●

●
●

●

●

●
●

●
●

●
●

●

●

●
●

●
●

●

●

●

●

●
●●

●●

●

●
●

●

●●

●

●
●●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●●

●

●
●●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●
●●

●●

●

●
●

●

●

●
●

●

●

●
●●

●

●
●

●

●

●
●

●
●●

●

●

●

●
●

●

●

A

●

●

● ●

●

●

●●

●

●

●

●
●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●●

●

● ●

●

●
●
●

●

●●

●

●

●

●

0 50 100

0.
5

1.
0

1.
5

●

●

●

●

●

●

●

B

C
V

n

Figure 9.12: Precision of parameter estimates in the one-state HMM. For each
of 61 parameter constellations in continuous presentation, 1000 simulations were performed
with sample sizes as in Schmack et al. (2015). (A) Median of the relative error (RE) for
each parameter and (B) a scatterplot of CV and n for the parameter estimates. Black points
indicate constellations with mean RE across the parameters smaller than 0.25.

9.6.3 Intermittent presentation

9.6.3.1 Precision of parameter estimates using the BWA

In order to investigate the estimation precision of the Baum-Welch algorithm, we again apply
parametric bootstrap to the 61 parameter combinations estimated from the response patterns
to intermittent presentation in the sample data set. Figure 9.13 shows the median errors
obtained in 1000 simulations for every parameter constellation for T1 = 1200 s (like in Schmack
et al. (2013, 2015)) and T2 = 3600 s where πstart,S is not analyzed as it is estimated as function
of pSS and pUU (9.12). For pSS and pUU the absolute errors are presented due to the small
values of the two parameters. For the time horizon of the data, T1 (panel A), 50 of the 61
parameter combinations yielded average errors (i.e., mean median errors across all parameters)
smaller than 0.25 (black). The remaining cases (dark orange) showed a large CVU = σU/µU ,
i.e., less distinguishable stable and unstable distributions, or small sample size n ≈ 10 (panel
C). For the larger time horizon T2 (panel B), almost all parameter combinations showed errors
smaller than 0.25.
The HMM with Gamma-distributed dominance times yields comparable results concerning the
precision of parameter estimation. Moreover, subjects yielding large estimation errors for the
IG-model often also yield comparatively large errors for the model with Gamma-distributed
dominance times (data not shown).

9.6.3.2 Precision of parameter estimates using UMVU inspired estimates

We discussed in Section 9.4.1 (page 100) that UMVU inspired estimators could improve the
estimation results of the estimators of the standard deviations, especially concerning bias.
Figure 9.14 now shows the simulated median bias (defined as the difference between the
empirical median of the estimator and the true value) of σ̂S (panel A) and σ̂U (B) depending
on the estimation procedure (ML or UMVU inspired) for the 61 subjects of Schmack et al.
(2015) and using T1 = 1200 s.
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Figure 9.13: Precision of parameter estimates in the two-state HMM. For each of
61 parameter constellations in intermittent presentation 1000 simulations were performed.
Log(median) of RE (for µS , σS , µU , σU) or of AE (for pSS , pUU) for T1 = 1200 (A) and
T2 = 3600 (B). Black lines indicate constellations with mean error across the parameters
< 0.25. (C) and (D): Scatterplot of CVU and the sample size n where parameter combinations
yielding large mean errors ≥ 0.25 are printed dark orange for T1 = 1200 (C) and T2 = 3600
(D).
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Figure 9.14: Comparison of ML and UMVU inspired estimators. The simulated
median bias (defined as the difference between the empirical median of the estimator and the
true value) is shown for ML and UMVU inspired estimators for σS (A) and σU (B). Each point
represents the median bias of the ML estimator (x-axis) and the UMVU inspired estimator
(y-axis) for the response pattern of one subject in Schmack et al. (2015). To derive the median
bias 1000 simulations were performed. Additionally, the main diagonal is drawn.
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For almost all subjects shown in Figure 9.14 A the median bias of the UMVU inspired estimator
of σS is smaller than the median bias of the ML estimator. For σU this effect is visible much
less clearly (panel B) as there are more unstable dominance times which decrease the bias
of the ML estimator and make it comparable to the UMVU inspired estimator in terms of
bias. The relative errors for the two types of estimators are comparable (data not shown).
However, recall that the UMVU inspired estimators are just intuitive estimators which lack
further detailed mathematical considerations.

9.6.3.3 Fitting the HMM to the data set Schmack et al. (2015) via Direct Nu-
merical Maximization

We now estimate the HMM parameters of the 61 response patterns in the data set Schmack
et al. (2015) via direct numerical maximization (DNM) explained in Section 9.4.2. Moreover,
we contrast the results with the estimation results obtained by the Baum-Welch algorithm.
For 37 of the 61 subjects in Schmack et al. (2015) the estimated likelihoods of BWA and
DNM are identical, for ten the DNM likelihood is less than one percent worse and for another
ten subjects the likelihood of the DNM is even more than one percent smaller than the
BWA likelihood. For four subjects the DNM approach yields slightly larger likelihoods than
the BWA. In addition, simulations with the DNM estimated parameters in some cases with
smaller likelihoods do not yield such convincing results as simulations with the parameters
estimated using the BWA. Therefore, we recommend to apply the BWA to estimate the HMM
parameters.

Precision of parameter estimates using the DNM approach

Comparing the estimation precision of the DNM approach with the BWA approach using
the response patterns of the 61 subjects in Schmack et al. (2015) yields better results for the
BWA. For the recording length T = 1200 s the DNM yields 27 subjects with a mean median
relative error larger than 0.25, where the BWA only yields eleven subjects. For T = 3600 s
there are for the BWA three subjects with a mean median relative error larger than 0.25 and
for the DNM twelve subjects.

Precision of parameter estimates including censored dominance times

The estimation precision when including the censored dominance times via the DNM method
can be evaluated using the data set of (Schmack et al., 2015). It should be compared to the
DNM method in the paragraph above. The results are comparable, i.e., the effect of including
the censored last dominance time is small.
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Chapter 10

The HMM: Theoretical properties

In this chapter we aim to investigate the mathematical properties of the sequences of dominance
times generated by the Hidden Markov Model more in detail thereby also deriving quantities
important for the comparison of clinical groups. There are several possibilities to interpret
these sequences. First, the points in time where the perception changes can be understood
as point process on the (non-negative) real line. Second, the perceptual reversals may be
interpreted as renewal points and the whole process in the case of continuous stimulation as
renewal process. When incorporating the stable and unstable phases occurring in intermittent
presentation, the process can be connected to an alternating renewal process (e.g., Medhi,
2009) introduced in Chapter 8.2.3.1.

In this chapter we always assume HMMs with inverse Gaussian distributed emissions. In
Section 10.1 we derive results on the distribution and expectation of the number of perceptual
reversals during continuous presentation. The central theme of Section 10.2 is the theoretical
investigation of the point process induced by the HMM for intermittent presentation (HMMi).
First, we explain the connection to semi-Markov processes. Then, the number of changes is
discussed as well as first passage times, stationary distributions and renewal equations. Note
that first passage times are required for the derivation of the steady-state distribution, which
is very important to analyze differences between clinical groups as an increased time spent in
the unstable state is an indicator for a less stable perception. Thus, Corollary 10.8 about the
steady-state distribution is the result in this chapter being most important for application.
Moreover, we investigate the expectation and distribution of the residual time. A knowledge
about the residual time enables us to make a prognosis about the next perceptual reversal.

We understand ΞHMMc and ΞHMMi as the point processes on the non-negative line generated
by the points in time (t0, t1, t2, . . . , tn) of the perceptual reversals of the HMM for continuous
(HMMc) and for intermittent presentation, respectively. There, we use t0 = 0. Formally, for
the set of realized dominance times (d1, d2, . . . , dn) of a HMMc

ΞHMMc := {0} ∪ {t ∈ R|
k∑
i=1

di = t, k = 1, 2, . . . , n} = {t0, t1, t2, . . . , tn}

and equivalently for the set of dominance times (d1, d2, . . . , dn) of a HMMi

ΞHMMi := {0} ∪ {t ∈ R|
k∑
i=1

di = t, k = 1, 2, . . . , n} = {t0, t1, t2, . . . , tn}.
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10. The HMM: Theoretical properties

We define Ỹt:= (Ỹt)t≥0 as the hidden state at time t governing the point process ΞHMMi (in
contrast to Yi which is the hidden state of the i-th dominance time). In precise terms,

Ỹt := j ∈ {S,U}|
k∑
i=1

di ≤ t <
k+1∑
i=1

di, Yk+1 = j, k = 0, 1, 2, . . . , n− 1

= Yi on ti−1 ≤ t < ti,

with
∑0

i=1 di := 0. The difference between Yi and Ỹt is illustrated in Figure 10.1 for a simulated
example of a HMMi. Panel C shows Ỹt as variable defined on a continuous time space, and
panel D shows Yi as variable defined on a discrete time space. Ỹt may be described using an
alternating renewal process with states S and U or a regenerative process (compare Sections
8.2.3.1 and 8.2.3.2).
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Figure 10.1: Overview of different variables in the HMM. (A) The perception at
time t ∈ [0, T ]. (B) The resulting dominance times (di)i≥1. (C) The hidden state Ỹt on the
continuous axis [0, T ]. (D) The hidden state Yi of each dominance time di.

Note that ΞHMMi is not a continuous time Markov chain as the probabilities
P(Ỹt = S|Ỹs = S), 0 ≤ s < t depend on how long the current state is S and thus also depend
on the state of the chain at points in time s1, s2, . . . < s. As a simple example, imagine that
the hidden state changes at time t = 100 from unstable to stable. Then, we observe that
P(Ỹ200 = S|Ỹ150 = S) 6= P(Ỹ200 = S|Ỹ150 = S, Ỹ101 = S) as the inverse Gaussian distribution
is not memoryless.

Often we speak of ”phases”: A stable phase comprises all stable dominance times between a
change from the unstable to the stable state and the change back to the unstable state. An
unstable phase is defined analogously.

10.1 Continuous presentation

In this section the number of changes in the HMM as well as the residual time are analyzed.

10.1.1 Number of changes

We derive the distribution and (asymptotic) expectation of the number of perceptual changes
in a given interval of length ∆ ≥ 0 starting with a perceptual change. There, we use that the
distribution function F̃Mν(t) of the maximum Mν(t) of a Brownian motion with drift ν > 0 is
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given by (Corollary 7.2.2 in Shreve, 2004)

F̃Mν(t)(m) = Φ

(
m− νt√

t

)
− exp (2νm) Φ

(
−m− νt√

t

)
(10.1)

for m ≥ 0 and by 0 else, where Φ is the distribution function of the standard normal
distribution.

Proposition 10.1. Number of changes in the HMMc
Let (µ, σ) be the parameter set of a HMM for continuous presentation and I(∆) be a right-open
interval of length ∆ ≥ 0 starting with a perceptual change. Let b :=

√
µ3/σ2 and ν :=

√
µ/σ2.

The number of perceptual changes in this interval N(∆) has the following probability distribution

w∆(j) := P(N(∆) = j) = F̃Mν(∆)(jb)− F̃Mν(∆)((j − 1)b),

for j ≥ 1 and 0 else with F̃Mν(t)(m) as in (10.1). For ∆→∞ it holds for the expected number

of changes in the interval I(∆): E[N(∆)]
∆ → 1

µ .

Note that w∆(1) also writes as w∆(1) = F̃Mν(∆)(b) as F̃Mν(∆)(0) = 0.

Proof : By transferring the parameters µ and σ to b and ν we interpret the inverse Gaussian
distributed dominance times as hitting times of a border b > 0 by a Brownian motion
W := (Wt)t≥0 with drift ν > 0 starting in 0 (Proposition 8.6). Having hit jb for j ≥ 0 the
border is instantaneously set to (j+ 1)b (Figure 10.2). Note that the first change occurs at the
beginning of the interval. Thus, j changes in the interval I(∆) correspond to the Brownian
motion having crossed (j− 1)b but not jb in the interval I(∆). This means that in the interval
I(∆) the maximum distance covered was in [(j − 1)b, jb). As for a Brownian motion with drift
ν > 0 this distance has the distribution function F̃Mν(∆)(m) (10.1), the assertion follows.
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Figure 10.2: Interpretation of the inverse Gaussian distribution as hitting time
of a border by a Brownian motion W with drift. Hitting a border jb (j ≥ 0, shown
on the left axis) corresponds to a perceptual change (right axis). There is one change in the
interval I(∆) if the dominance time is larger than ∆ which implies that the related Brownian
motion has not crossed the border b and thus has not left the yellow stripe at the bottom
upwards during I(∆). There are two perceptual changes in the interval if the maximum of W
has crossed the border b but not the next border 2b and so on. The (Hi)i≥1 denote the times
of percept changes (with H1 = 0). In the graph five changes occur.
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Concerning the expected value E[N(∆)] note that the process of perceptual changes may be
interpreted as renewal process (Definition 2.5) with life times following the IG(µ, σ)-distribution.

The assertion E[N(∆)]
∆ −−−−→

∆→∞
1
µ follows directly by the Elementary Renewal Theorem (e.g.,

Ross, 1996).

Next, we relax the assumption that the interval I(∆) starts with a perceptual change and
state an asymptotic result. Thereby, we prove that the point process ΞHMMc induced by the
HMMc is (in the limit) crudely stationary. Recalling Definition 8.14 crude stationarity in the
limit means that

P(number of events of ΞHMMc in (t, t+ h) = k), h > 0, k = 0, 1, . . .

depends for t→∞ only on the length h.

Corollary 10.2. Crude stationarity of the HMMc
Contrary to Proposition 10.1 it is now assumed that the start t of the right-open interval I(∆)
with length ∆ ≥ 0 does not coincide with a perceptual change. Then, it holds

lim
t→∞

P(N(∆) = j) =


P(Rc > ∆), if j = 0,
∆∫
0

w∆−∆r(j)fRc(∆r)d∆r, if j ≥ 1,

with Rc as the asymptotic residual time with density fRc = 1/µ(1− F IG
µ,σ) as given in the next

Corollary 10.3 and w∆ as given in Proposition 10.1.
For the expected number of changes it again holds asymptotically

E[N(∆)]

∆
−−−−→
∆→∞

1

µ
.

ΞHMMc is in the limit crudely stationary.

Proof : The interval I(∆) has to be divided into the residual time ∆r until the first perceptual
change and the remaining interval Ir(∆−∆r) of length ∆−∆r. If the residual time is larger
than ∆, no changes occur in the interval I(∆). Hence, for t→∞: P(N(∆) = 0) = P(Rc > ∆).

For j > 0 we require the distribution of changes in the interval Ir(∆−∆r) (now starting with
a perceptual change) given that the residual time is ∆r. The assertion follows directly by
noting that j changes in the interval Ir(∆−∆r) imply j changes in the whole interval I(∆)
(such that the weights of j have to be used) and by the law of total probability.

Asymptotically the difference between the interval I(∆) starting with a perceptual change or
not is negligible such that the assertion

E[N(∆)]

∆
−−−−→
∆→∞

1

µ

directly follows from Proposition 10.1. As the distribution of N(∆) is (asymptotically) inde-
pendent of t and depends only on the interval length ∆, the resulting point process ΞHMMc is
in the limit crudely stationary.
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10.1.2 Residual time

Now, we derive results for the density and the expectation of the residual time, i.e., the time
span until the next perceptual change.

Corollary 10.3. Residual time in the HMMc
Let ΞHMMc be the point process of a HMMc with parameters (µ, σ) and Rc be the asymptotic
residual time. Its expectation is given by

E[Rc] =
σ2

2µ
+
µ

2
,

and the distribution has the density fRc(x) = 1/µ
(
1− F IG

µ,σ(x)
)
.

Proof : It holds for the second moment of an IG(µ, σ) distributed random variable D:
E[D2] = Var(D) + E[D]2 = σ2 + µ2. With this relation and Proposition 8.12 the assertion
concerning the mean and the density of Rc can be concluded easily.

10.2 Intermittent presentation

We derive results on the point process induced by the two-state HMM for intermittent
presentation. Note that for technical reasons the structure of this chapter differs from the
structure of Chapter 10.1, i.e., results on the number of perceptual reversals and residual
times are not derived at the beginning. Instead, we first discuss the relation to semi-Markov
processes (Section 10.2.1). Second, first passage times as well as stationarity properties are
derived (Section 10.2.2). Then, the number of perceptual reversals is investigated as well as
the residual time (Sections 10.2.3 and 10.2.4). The most important result is the steady-state
distribution discussed in Corollary 10.8. Another important result (Proposition 10.14) concerns
the theoretical rate of changes.

10.2.1 HMM as semi-Markov process

We link the HMM to the concept of semi-Markov processes (recall the introduction in Section
8.2.3.3), which is widely used in the theory of stochastic processes. We conclude easily that
in our HMM with (ti)i≥1 as the perceptual reversal times the process (Yi, (0, ti))i≥1 is a
Markov renewal process and that (Ỹt)t≥0 is a semi-Markov process (assuming known hidden
states). Moreover, we directly observe for the semi-Markov kernel Q that Qjk(t) = pjkF

IG
µj ,σj (t)

(i.e., the duration of a dominance time is independent of the next state) and for the conditional
sojourn time Sjk(t) = F IG

µj ,σj (t), which again is independent of the next state. The theory of
semi-Markov processes is widely developed (compare, e.g., Medhi, 2009, and the references
therein), and different renewal equations (recall Definition 8.13) are well known. Here, we
focus only on the aspects relevant for this thesis and derive, if possible, even exact results for
properties like first hitting times instead of renewal equations.
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10.2.2 First passage times, steady-state distributions and renewal equa-
tions

We introduce the terminology of first passage and first recurrence times for Hidden Markov
Models for both the discrete number of dominance times until a state change and the
continuously defined time until a state change of the point process ΞHMMi. We need the first
passage times later on to derive the steady-state distribution, i.e., the asymptotic probability
that a subject is in a given state which is of practical interest, e.g., when comparing the two
groups in the data set of Schmack et al. (2015).

Definition 10.4. First passage and first recurrence times of the HMMi
Let (Yi)i≥1 be the underlying Markov chain of a HMM and (Ỹt)t≥0 be the state at time t of the
associated point process ΞHMMi. Assuming a start in state i (and a start of the dominance
time at 0) the first passage times Tij and T̃ij of a state j 6= i are defined as

Tij := inf{m ≥ 2 : Ym = j|Y1 = i} − 1, T̃ij := inf{t > 0 : Ỹt = j|Ỹ0 = i}.

The first recurrence times Tii and T̃ii are defined as

Tii := inf{m ≥ 3 : Ym = i|∃2 ≤ l < m : Yl 6= i, Y1 = i} − 1,

T̃ii := inf{t > 0 : Ỹt = i|∃0 < s < t : Ỹs 6= i, Ỹ0 = i}.

Note that we understand the first recurrence time here as the sum of the time spent in state i
and outside of state i before returning for the first time to state i. Now, we derive the expected
first passage times which are the key ingredient for the steady-state distributions discussed
later on.

Proposition 10.5. First passage and first recurrence times of the HMMi:
Expectation
Let ΘHMM = (µS , σS , µU , σU , pSS , pUU , πstart,S) be the parameter set of a HMM for intermittent
presentation.
Assume the HMM starts with a perceptual change in the stable state S and pSS < 1. The
expected first passage times of the unstable state U are given by

E[TSU ] =
1

1− pSS
and E[T̃SU ] =

1

1− pSS
µS .

A similar result holds for the first passage time of the stable state when starting with a
perceptual change in the unstable state and pUU < 1.
If pSS = 1 or pUU = 1, the corresponding expected first passage times are ∞.

The expected first recurrence time to the initial state is independent of the starting state
given by E[TSS ] = E[TUU ] = 1

1−pSS + 1
1−pUU and E[T̃SS ] = E[T̃UU ] = 1

1−pSS µS + 1
1−pUU µU if

max(pSS , pUU ) < 1 and by E[TSS ] = E[TUU ] = E[T̃SS ] = E[T̃UU ] =∞ else.

Proof: Assume pSS < 1 and a start in the stable state. The success probability of a change to
U is 1−pSS when a new percept emerges. Therefore, the number of percepts in the stable state
until the change to U is a geometrically distributed random variable with parameter 1− pSS .
The expected value is well known as the inverse of the parameter. Thus, E[TSU ] = 1/(1− pSS).
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T̃SU is a random variable distributed like
∑TSU

i=1 D
S
i , where DS

1 , . . . , D
S
TSU

are IG(µS , σS)-
distributed and independent from each other and also independent of TSU . Therefore, we have
(Wald, 1944)

E
[
T̃SU

]
= E

[
TSU∑
i=1

DS
i

]
= E [TSU ]E

[
DS
i

]
=

µS
1− pSS

.

Now, let pSS = 1. The process therefore always remains in the stable state and never reaches
the unstable state. This causes non-finite first passage times of the unstable state.
The assertions for the first passage time of the stable state when starting in U follow by similar
arguments.
The first recurrence time is the first time the process reaches the stable state again having
started in the stable state plus the time spent in the stable state. Hence, we can due to the
linearity of the expectation add the expected number of dominance times in the stable and
the unstable state before a change as well as the corresponding time spans in the stable and
unstable state.

As an additional result we prove a representation for the distribution of the first passage
times. Applying the law of total probability, we therefore sum for a given x > 0 about all
state sequences S, SS, SSS, . . . consisting only of stable dominance times and having length x
until the first entry in the unstable state (see Figure 10.3). This yields the density of the first
passage time of U by the point process ΞHMMi for this x.

TSU = 1
TSU = 2
TSU = 3

0 x

U S U

Figure 10.3: Different numbers of dominance times in a stable phase TSU leading
to the same length x of the stable phase. In the graph, examples for TSU = 1, TSU = 2
and TSU = 3 are shown. Perceptual changes are marked by vertical bars.
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Proposition 10.6. First passage and first recurrence times of the HMMi:
Distribution
a) Assume the HMM starts with a perceptual change in the stable state S and pSS < 1.
The weights wTSU of the first passage time of U are the weights of a Geometric distribution
with parameter p = 1− pSS. The density fT̃SU can be expressed using convolutions

fT̃SU (x) =

∞∑
i=1

f i
T̃SU

(x) =

∞∑
i=1

(1− pSS)pi−1
SS f

IG
µS ,σS

∗(i−1)
(x),

if x ≥ 0 and 0 otherwise.
Similar results hold for the first passage time of the stable state when starting with a perceptual
change in the unstable state and pUU < 1.
If max(pSS , pUU ) = 1, all finite weights vanish.

b) If max(pSS∗, pUU ) < 1, the weights wr(i) of the first recurrence time TSS are wr(i) = 0 if
i ≤ 1 and

wr(i) =
i−1∑
j=1

wTUS (j)wTSU (i− j),

else. The density fr(x) of the first recurrence time T̃SS is fr(x) = 0 if x < 0 and

fr(x) =

x∫
0

fT̃US (y)fT̃SU (x− y)dy,

else.
If max(pSS , pUU ) = 1, the first recurrence times are ∞.

Proof : First, we show a). As discussed in the proof of Proposition 10.5, TSU is for pSS < 1 a
geometrically distributed random variable with parameter 1− pSS . The density of T̃SU follows
by similar arguments as in the proof of Proposition 13.9 later in this thesis (page 183).
Now, let pSS = 1. The process therefore always remains in the stable state and never reaches
the unstable state. This causes non-finite first passage times of the unstable state.
The assertions for the first passage time of the stable state when starting in U follow by similar
arguments.
We turn to b). The first recurrence time is the first time the process reaches the stable
state again having started in the stable state with a perceptual reversal plus the time spent
in the stable state. Thus, for max(pSS , pUU ) < 1 the weights and the density are given by
convolutions. The assertion for max(pSS , pUU ) = 1 follows directly.

There also exists a renewal equation (recall Definition 8.13) for the distribution function of
the first passage time of the process Ỹt (whose solution in terms of the density is given in
Proposition 10.6).
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Proposition 10.7. Renewal equation for the first passage time of the HMMi
Let Gjk(t) := P(T̃jk ≤ t|Ỹ0 = j) describe the distribution function of the first passage time of
state k starting in j of the process Ỹt and Q(t) be the semi-Markov kernel (Section 10.2.1). It
holds for j, k ∈ {S,U} and t ≥ 0

Gjk(t) = Qjk(t) +

∫ t

0
Gjk(t− x)dQjj(x).

Proof : This is Theorem 7.5 in Medhi (2009) (where we do not need the summation as we only
have two states).

The stationary distribution of the underlying Markov chain and the steady-state distribution
of the point process ΞHMMi are derived in the following corollary which is the most important
result for application in this chapter. Recall that the steady-state distribution π̃= (π̃S , π̃U )
denotes the probabilities of being in a given state at time t for t→∞, i.e., π̃S := limt→∞ Ỹt = S.
π̃S moreover denotes the long term relative time spent in state S (equation (8.3)).

Corollary 10.8. Stationary/steady-state distributions of the HMMi
Let ΘHMM = (µS , σS , µU , σU , pSS , pUU , πstart,S) be the parameter set of a HMM for intermittent
presentation. Assume max(pSS , pUU ) < 1. The stationary distribution π = (πS , πU ) of the
underlying Markov chain is given by

π =

(
pUU − 1

pSS + pUU − 2
,

pSS − 1

pSS + pUU − 2

)
.

The steady-state distribution π̃ = (π̃S , π̃U ) of the resulting point process ΞHMMi derives as

π̃ =

(
1

1−pSS µS
1

1−pSS µS + 1
1−pUU µU

,

1
1−pUU µU

1
1−pSS µS + 1

1−pUU µU

)
. (10.2)

If pSS = 1, we have π = π̃ = (1, 0), and if pUU = 1, it holds π = π̃ = (0, 1).

Proof : Assume max(pSS , pUU ) < 1. Let P be the transition matrix of the hidden Markov
chain. The stationary distribution of a Markov chain is defined as the normalized vector π
satisfying πP = π (Section 9.1). Thus, π is a normalized multiple of the eigenvector of the
transposed matrix P T to the eigenvalue 1. It can be derived explicitly via standard derivation

methods as π =
(

pUU−1
pSS+pUU−2 ,

pSS−1
pSS+pUU−2

)
.

To derive the steady-state-distribution of ΞHMMi, we interpret ΞHMMi as regenerative process
and use equation (8.2) on page 67. The life times (D̃i)i≥1 of the regenerative process are
given by the first recurrence times in the HMM, and the expected amount of time spent in S
during a life time is the expected first passage time of the state U when starting in S and by
Proposition 10.5 given by 1

1−pSS µS . Thus, it follows directly

π̃S =
E[amount of time in state j during D̃1]

E[D̃1]
=

E[T̃SU ]

E[T̃SS ]
=

1
1−pSS µS

1
1−pSS µS + 1

1−pUU µU

and analogously for π̃U .

The assertions for pSS = 1 or pUU = 1 are trivial.
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Next, we translate classical results of the theory of alternating renewal processes (compare
Section 8.2.3.1) to our case of Hidden Markov Models (mainly for the sake of mathematical
interest). We introduce the concept of a cycle which corresponds to a life time in a regenerative
process: A cycle comprises all dominance times during a stable phase and all dominance times
during the next unstable phase (or vice versa). The idea is illustrated in Figure 10.4.

cycle 1 cycle 2

Figure 10.4: Visualization of a cycle. A cycle comprises a stable (light blue) and an
unstable phase (blue). The graph shows two complete cycles.

We derive the expected number of cycles in an interval of length ∆ > 0 (Lemma 10.9) and
renewal equations for the exact probabilities that the i-th dominance time is stable and that
the HMMi is at time t in the stable state (Proposition 10.10, the steady-state distribution in
contrast yields the corresponding asymptotic probability).

Lemma 10.9. Expected number of cycles in the HMMi
Assume the HMM starts with a perceptual change in the stable state S, and let FS(t) and FU (t)
be the distribution functions of the length of stable and unstable phases in the point process
ΞHMMi (which derive from the densities given in Proposition 10.6). The expectation of the
number of cycles CS(∆) in an interval I(∆) of length ∆ > 0 is given by

E[CS(∆)] =

∞∑
m=1

(FS ∗ FU )∗(m)(∆),

where ∗(m) denotes m-fold convolution.

Proof : See p.121 in Beichelt and Fatti (2001).
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Proposition 10.10. Renewal equations for the state of the HMMi
The renewal equation for the hidden Markov chain of the HMMi is for i ≥ 1 given by

P(Yi = S|Y1 = S) = P(T 1
SU ≥ i) +

i−1∑
m=1

P(Yi−m = S|Y1 = S)cA(m), (10.3)

where T 1
SU is the number of stable dominance times in the first stable phase and cA(m) is the

probability that the first cycle has length m, i.e., the first new cycle occurs at the m + 1-st
dominance time.
For the renewal equation of the induced point process ΞHMMi, it holds for t > 0 with Q as
the semi-Markov kernel and FS(t) and FU (t) as the distribution functions of the length of
stable and unstable phases in the point process ΞHMMi (which derive from the densities given
in Proposition 10.6)

P(Ỹt = S|Ỹ0 = S) = (1− FS(t)) +

t∫
0

(1− FS(t− s))dE[CS(s)]

= (1− FS(t)) +
∑

k∈{S,U}

∫ t

0
P(Ỹt−x = S|Ỹ0 = k)dQSk(x).

Proof : The proof for the renewal equation of the Markov chain is given in (Barbu and Limnios,
2008, Example 2.8). Note that our first index is 1 and not 0 as in Barbu and Limnios (2008)
such that our upper limit of summation is i− 1.
The first representation of the renewal equation for ΞHMMi can be found on p.122 in (Beichelt
and Fatti, 2001), and the second one is given in Theorem 7.1 of Medhi (2009).

Applying the renewal equation for the Markov chain, we obtain an exact result for the
probability that the i-th state is stable given a start in the stable state.

Corollary 10.11. Exact probability of being in the stable state
Assume a start in the stable state (Y1 = S). The probability that the i-th hidden state of the
HMM is also stable is for i ≥ 1 given by

P(Yi = S|Y1 = S) =
i−1∑
m=0

uA(m)pi−m−1
SS

with uA(m) as the probability that a renewal of the stable state occurs in the m+1-st dominance
time.

Proof : Solving the renewal equation (10.3) yields (Barbu and Limnios, 2008, p.39)

P(Yi = S|Y1 = S) =
i−1∑
m=0

uA(m)P(T 1
SU ≥ i−m) =

i−1∑
m=0

uA(m)pi−m−1
SS ,

where the i− 1 in the upper summation border again is due to our starting index 1.

The probabilities uA(m) can be obtained by evaluating the m-th derivative of the probability
generating function ηA at zero (given in Lemma 10.13):

uA(m) =
η

(m)
A (0)

m!

We require the probability generating function of the Geometric distribution.
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Lemma 10.12. Probability generating function of a Geometric distribution
The probability generating function (PGF) ρX= E[sX ] of a Geometric distributed random
variable X with success parameter p is given by ρX(s) = ps

1−(1−p)s .

Proof : Follows by elementary calculations.

Lemma 10.13. PGF of a HMM
Let Sk and Uk denote the number of dominance times in the k-th stable or k-th unstable phase,
respectively. Then, the sequence of stable renewals Ak = Sk +Uk has the probability generating
function

ρA(s) = s2 (1− pSS)(1− pUU )

(1− pSSs)(1− pUUs)
,

and for the PGF ηA of the sequence uA(i) that a renewal of the stable state occurs at time
i ∈ N it holds

ηA(s) =
(1− pSSs)(1− pUUs)

(s− 1)(pSSs+ pUUs− s− 1)
.

Proof : Sk and Uk are geometrically distributed with parameters 1− pSS and 1− pUU . The
PGF of the sum of two independent random variables is the product of the PGFs and thus, it
holds by the PGF of the geometric distribution (Lemma 10.12)

ρA(s) = ρS(s) · ρU (s) = s2 (1− pSS)(1− pUU )

(1− pSSs)(1− pUUs)
.

To derive the PGF ηA of uA(i), we use the relation ηA(s) = 1/(1− ρA(s)) (Barbu and Limnios,
2008, Proposition 2.1):

ηA(s) =
1

1− s2 (1−pSS)(1−pUU )
(1−pSSs)(1−pUUs)

=
(1− pSSs)(1− pUUs)

(s− 1)(pSSs+ pUUs− s− 1)
.

10.2.3 Number of changes

We focus on the theoretical (asymptotic) rate of perceptual changes in the HMMi which is one
important result of this chapter. We also evaluate the result compared to the rate of changes
observed in the original data.

Proposition 10.14. Rate of changes in the HMMi
Let ΘHMM = (µS , σS , µU , σU , pSS , pUU , πstart,S) be the parameter set of a HMMi. For the
expected number of changes E[N(∆)] in an interval I(∆) of length ∆ ≥ 0 of the point process
ΞHMMi, it holds for max(pSS , pUU ) < 1

E[N(∆)]

∆
−−−−→
∆→∞

pSS + pUU − 2

(pUU − 1)µS + (pSS − 1)µU
.

If pSS = 1, it holds
E[N(∆)]

∆
−−−−→
∆→∞

1

µS

and analogously for pUU = 1.
We define ρHMMi := lim∆→∞

E[N(∆)]
∆ as the (asymptotic) rate of changes.
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Proof : Assume max(pSS , pUU ) < 1. Let NS(∆) denote the number of perceptual changes
during a stable phase in an interval of length ∆ ≥ 0 and ∆S be the amount of time spent in
the stable state in an interval of length ∆. Regarding only the stable phases it holds by the
Elementary Renewal Theorem (e.g., Ross, 1996)

E[NS(∆S)]

∆S
=

E[NS(∆S)]

E[∆S ]
−−−−−→
∆S→∞

1

µS

as in this setting ∆S is deterministic. Turning back from the stable phases to the whole
process, note that ∆S is now random and ∆ → ∞ also implies ∆S → ∞. Moreover, the
number of perceptual changes in the stable state during stable phases corresponds to the
overall number of changes during stable phases E[NS(∆S)] = E[NS(∆)]. Thus,

E[NS(∆)]

E[∆S ]
−−−−→
∆→∞

1

µS
.

Note that ∆ = ∆S + ∆U where ∆U is the time spent in the unstable state.
By interpreting ΞHMMi as alternating renewal process with states S and U and using Theorem
4.8 in Beichelt and Fatti (2001) we obtain E[∆S ]/∆ −−−−→

∆→∞
π̃S . This yields

E[NS(∆)]

∆
−−−−→
∆→∞

π̃S
µS
.

An analogous result holds for the unstable state such that we obtain

E[NS(∆) +NU (∆)]

∆
=

E[N(∆)]

∆
−−−−→
∆→∞

π̃S
µS

+
π̃U
µU

.

Plugging in the expressions for π̃j (Corollary 10.8) gives

E[N(∆)]

∆
−−−−→
∆→∞

1
1−pSS

1
1−pSS µS + 1

1−pUU µU
+

1
1−pUU

1
1−pSS µS + 1

1−pUU µU

=
pSS + pUU − 2

(pUU − 1)µS + (pSS − 1)µU
,

where in the last line we used the common denominator (1− pUU )(1− pSS).
For pSS = 1 or pUU = 1, we are in the situation of a renewal process. Thus, the Elementary
Renewal Theorem yields the assertion.

The theoretical (asymptotic) rate of changes in the HMM ρHMMi and the empirical rate of
changes in the data set of Schmack et al. (2015) are compared in Figure 10.5 A for all 61
subjects. In the majority of cases, the rates are close together (mostly not more than 10%
apart from each other). Deviations occur because in some cases there is a difference between
the starting state in the data and the steady-state distribution. For example a large weight of
the steady-state distribution in the unstable state but a first rather stable dominance time in
the data may lead to differences between the asymptotic and the empirical rate of changes in
an interval of length 1200 seconds. Note, moreover, that the model rate of changes is larger
than the data rate of changes especially if there is a long unstable phase at the end of the
recording due to a ”censoring” problem. We explain that by using response pattern C from
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10. The HMM: Theoretical properties

Table 9.2 (page 102) as an example where this problem occurs. The corresponding most likely
state path (estimated by the Viterbi algorithm explained in Section 12.5) is illustrated in
Figure 12.7 A on page 167 (for the HBM, but the same is estimated for the HMM). Here,
the first unstable phase consists of eight dominance times, and the second of (at least) 17
dominance times and is located at the end of the response pattern. This explains why the
probability to remain in the unstable state is estimated as p̂UU = 23/24, and the estimated
mean duration of an unstable phase has 1/(1− p̂UU ) = 24 dominance times. Consequently,
the model predicts in this example more changes than there are in the original data.
Panel B of Figure 10.5 shows the comparison of the mean simulated rate of changes in the
HMM conditioned on starting in the same state than in the data set of Schmack et al. (2015)
and recording for the same length T to the empirical rate of changes for all 61 subjects. The
starting state is estimated using the Viterbi path. Now in the great majority of cases the
model and the data rate fit perfectly (and the deviations are due to the censoring problem
explained in the paragraph above).
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Figure 10.5: Comparison of the rate of changes in Schmack et al. (2015) and in
the HMMi. (A) The theoretical (asymptotic) rate ρHMMi (Proposition 10.14) is used. (B)
The mean simulated rate in 1000 simulations starting with the same Viterbi-estimated state as
in the original data is contrasted to the rate of perceptual changes in the data.

As an additional result we investigate the distribution of the number of changes in an interval
of length ∆. First, we claim that the interval starts with a perceptual change (Proposition
10.15). Second, we relax this assumption (Proposition 10.16). This split in two propositions
simplifies the notation and argumentation.
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10. The HMM: Theoretical properties

Proposition 10.15. Number of changes in the HMMi: Distribution I
Let ΘHMM = (µS , σS , µU , σU , pSS , pUU , πstart,S) be the parameter set of a HMMi, π its sta-
tionary distribution and I(∆) := [t, t + ∆) be an interval of length ∆ ≥ 0 starting with a
perceptual change. Moreover, let Y be a random sequence of hidden states. The probability
of a realized state sequence y covering I(∆) with |y| ≥ 2 hidden states in I(∆) is for t→∞
given by

P(Y = y) = πy1

∆∫
0

(
1− F IG

µy |y|,σy |y|
(∆− s)

){gy1(s)ds, if |y| = 2,

(gy1 ∗ . . . ∗ gy|y|−1
)(s)ds, if |y| > 2,

where the following function is folded

gyi(s) := f IGµyi ,σyi
(s) · pyi,yi+1 .

If |y| = 1, we have

P(Y = y) = πy1

(
1− F IG

µy1 ,σy1
(∆)

)
.

The probability weights of the number of changes Nc(∆) of ΞHMMi in the interval I(∆) (starting
with a perceptual change) are then given by

P(Nc(∆) = j) =
∑

y∈Y(∆)||y|=j

P(Y = y), (10.4)

where Y(∆) denotes all hidden state sequences starting with a perceptual change whose resulting
point processes cover the interval I(∆).

Proof : The proof follows the same steps as the proof of Proposition 13.14 later on in this
thesis (page 188).
An example of a realized state sequence y covering the interval I(∆) is given in Figure 10.6.

)
U U S S

t t + ∆

Figure 10.6: Example of a realized state sequence covering I(∆). Here, the state se-
quence y starting with a perceptual change at time t and covering the interval I(∆) = [t, t + ∆)
consists of two unstable dominance times followed by two stable dominance times, i.e.,
y = (U,U, S, S). Four perceptual changes marked by vertical bars occur in I(∆).

We extend Proposition 10.15 by allowing an arbitrary start of the interval I(∆), i.e., the
interval does not have to start with a perceptual change. Thereby, we show crude stationarity
(Definition 8.14) of the process of perceptual changes.
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10. The HMM: Theoretical properties

Proposition 10.16. Number of changes in the HMMi: Distribution II
Let I(∆) := [t, t+ ∆) be an interval of length ∆ ≥ 0. The probability weights of the number
of changes N(∆) of ΞHMMi in the interval I(∆) are then for j ≥ 1 and t→∞ given by

P(N(∆) = j) =

π̃S

 ∆∫
0

fRS (∆S)pSSP(NS
c (∆−∆S) = j)/πS + fRS (∆S) (1− pSS)P(NU

c (∆−∆S) = j)/πUd∆S


+ π̃U× ∆∫

0

fRU (∆U ) (1− pUU )P(NS
c (∆−∆U ) = j)/πS + fRU (∆U )pUUP(NU

c (∆−∆U ) = j)/πUd∆U

 ,

where NS
c (∆) and NU

c (∆) denote the number of changes in an interval of length ∆ starting
with a perceptual change and in the stable or the unstable state, respectively (equation (10.4)).
Moreover, fRS , fRU are the densities of the asymptotic residual times given in Proposition
8.12 (where the life times are IG distributed with parameters µS , σS and µU , σU , respectively)
and π̃S , π̃U are the steady-state weights given in equation (10.2). For j = 0 we have

P(N(∆) = 0) = π̃SP(RS > ∆) + π̃UP(RU > ∆).

The induced point process ΞHMMi is in the limit crudely stationary.

Proof : Conditioning on the hidden state the probability of N(∆) = j is given by

P(N(∆) = j) = lim
t→∞

(
P(Ỹt = S)P(N(∆) = j|Ỹt = S) + P(Ỹt = U)P(N(∆) = j|Ỹt = U)

)
.

(10.5)

We use this equation and analyse the case j = 0. Moreover, we assume that the current state
is the stable one. This event has for t→∞ the probability π̃S (Corollary 10.8). If the residual
time RS is larger than ∆, we do not observe any change. With similar observations for the
current state being unstable the conclusion for j = 0 follows directly using (10.5).
Now, we consider the case j ≥ 1. Assume the stable state as current one. Thus, we observe a
perceptual change at t+ ∆S < t+ ∆ with density fRS (∆S) (compare Figure 10.7). This is
the first change in the interval [t+ ∆S , t+ ∆) such that in the whole interval j changes should
occur. With probability pSS the state remains stable and the distribution of the number of
changes is therefore given by the distribution of NS

c (∆−∆S) from equation (10.4). Note that
the perceptual change at t in equation (10.4) corresponds to the change at t+ ∆S here. The
S in the exponent implies that we consider only the hidden state sequences y starting with a
stable state. We divide by πS as we condition on a start in the stable state. With probability
1− pSS the state changes to unstable and we need the distribution of NU

c (∆−∆S) from (10.4)
where we consider only the paths y starting in the unstable state. Due to the different values
∆S can take (compare the first two arrows in Figure 10.7), integration is required and the first
summand of the assertion follows. Similar arguments hold if the current state is the unstable
one, which happens with probability π̃U . Plugging into (10.5) yields the assertion.
The weights P(N(∆) = j) in the limit only depend on the length of the interval. Thus, ΞHMMi

is crudely stationary.
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10. The HMM: Theoretical properties

)[

t t + ∆t + ∆S

res. time

change 1 ... change j

Figure 10.7: Visualization of the number of perceptual changes in the HMMi.
j > 1 changes (marked by vertical bars) occur in the interval I(∆) which starts in the stable
state. The first change occurs after the residual time at t+ ∆S. The interval [t+ ∆S , t+ ∆)
starts with a perceptual change such that the results of Proposition 10.15 can be applied. The
positions of all j changes are variable as indicated by the exemplary arrows.

10.2.4 Residual time

Here, we derive the density and the expected value of the residual time, i.e., the time until the
next percept change in the HMMi.

Corollary 10.17. Residual time in the HMMi
Let ΞHMMi be the point process of a HMMi with parameters
ΘHMM = (µS , σS , µU , σU , pSS , pUU , πstart,S) and asymptotic residual time Rin. Its expectation
is given by

E[Rin] = π̃U

(
σ2
U

2µU
+
µU
2

)
+ π̃S

(
σ2
S

2µS
+
µS
2

)
,

and its distribution has the density

f inR (x) =
π̃U
µU

(
1− F IG

µU ,σU
(x)
)

+
π̃S
µS

(
1− F IG

µS ,σS
(x)
)
.

Proof : We condition on the hidden state Ỹt and apply Corollary 10.8 about the steady-state
distribution in the HMMi and Corollary 10.3 about the expected residual time in the HMMc
as conditioning on a hidden state we are in the situation of the HMMc again. This yields

E[Rin] = lim
t→∞

E[Rin
t ]

= lim
t→∞

(
P(Ỹt = U)E[Rin

t |Ỹt = U ] + P(Ỹt = S)E[Rin
t |Ỹt = S]

)
= π̃U

(
σ2
U

2µU
+
µU
2

)
+ π̃S

(
σ2
S

2µS
+
µS
2

)
.

The density can be derived using the same split into states S and U . Then, an application of
Corollary 10.8 and Corollary 10.3 yields the assertion.
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Chapter 11

A hierarchical Brownian motion
model

With its small number of parameters, the HMM can be fitted also to short data sections
available empirically. As shown later in Chapter 14.1, the HMM moreover can capture the
high variety of response patterns both in continuous and intermittent viewing, including uni-
and bimodal distributions of dominance times with alternations between stable and unstable
states and a high variability across subjects.

However, the HMM description remains phenomenological and does not provide insight
into potential neuronal processes. Also, it cannot provide explanations for potential effects
that different lengths of blank displays could have on the response patterns, as discussed
for example by Orbach et al. (1963); Kornmeier and Bach (2004); Brascamp et al. (2009);
Pastukhov and Braun (2013). In addition, the HMM cannot represent the following interesting
empirical observation: Before changing from stable to unstable state, the last dominance
time tends to be shorter (see Figure 14.11). Therefore, we introduce here a new model,
called Hierarchical Brownian Model (HBM), which provides a potential link between the
phenomenological description of the response and potential underlying neuronal processes.
The HBM assumptions can also provide hypotheses on the effects of different lengths of blank
displays and naturally yield shorter dominance times before a state change to the unstable
state.

The HBM assumes two competing neuronal populations which indicate perception of right and
left rotation, respectively. As has been proposed by various authors (Brascamp et al., 2009;
Gigante et al., 2009), we implicitly assume mechanisms of self-excitation, cross-inhibition and
adaptation across these neuronal populations, without explicitly modeling them in order to
reduce the number of parameters and to allow for model fitting to short trials. In order to
obtain a parsimonious model description, we again assume independence of dominance times
by neglecting potential mechanisms of week long-term adaptation (Pastukhov and Braun,
2011). For possible model extensions compare Section 15.2.

We use the simplified assumption that perception arises from the difference in the activity of
the two populations, which is modeled here by a Brownian motion with drift (similar to Cao
et al., 2016) that fluctuates between two thresholds, where the first passage times indicate
perceptual reversals. This results in two parameters for the case of continuous presentation
that are directly linked to the two parametric inverse Gaussian distribution of dominance times
in the HMM (Section 9.2). Further, we describe switching between stable and unstable states
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11. A hierarchical Brownian motion model

in intermittent presentation by applying an analogous mechanism, which leads to a hierarchical
model. We assume another hierarchical layer of neuronal populations and a corresponding
Brownian motion which modulates the drift and the threshold of the first population pair and
thus causes switching between stable and unstable phases.

The HBM for continuous presentation is explained in detail in Section 11.1, and Section 11.2
elaborates on the HBM for intermittent presentation. There, we also extensively discuss model
assumptions, the connection to the HMM and the distribution of dominance times conditioned
on the next state.

11.1 Continuous presentation

First, we introduce the model (Section 11.1.1), then elaborate on the effects of single parameter
changes (Section 11.1.2) and finally discuss its simulation (Section 11.1.3).

11.1.1 The model

The HBM in continuous presentation (HBMc) simply assumes a Brownian motion with drift
±ν0 between two borders, ±b, where the first hitting times of the borders indicate a percept
change and lead to a sign change in the drift. As a potential neurophysiological interpretation,
b could be considered the size of the activity difference between the L and R population
required for a perception change and thereby be related to the respective population sizes.
Roughly speaking, the speed of the drift ν0 could be considered related to the inverse of the
connection strengths within and across populations that engage in self excitation and cross
inhibition.

Formally, let b > 0 be a fixed border, ν0 > 0 be a drift and T > 0 a time horizon, and let
(Wt)t∈[0,T ] be a standard Brownian motion. The perception process P := (Pt)t∈[0,T ] is then
defined by

dPt = Stν0dt+ dWt, where P0 = −b,

and the process St := S(Pt, t) takes the value −1 if Pt last hit b and 1 if Pt last hit −b, with
S0 := 1. Formally, for t ∈ (0, T ] let

t∗ := t∗(t) := sup{x : x < t, |Px| = b}, where t∗(0) = 0

be the last time before t that Pt hit either b or −b. Then

St := S(Pt, t) := −sgn(Pt∗).

The perception at time t ≥ 0 takes the value L (left) if St = 1 and R (right) if St = −1 and
switches at the first-hitting times (Hi)i of the borders ±b defined by H0 := 0 and

Hi := inf{t ≤ T : t > Hi−1, Pt = Stb} i = 1, 2, . . . . (11.1)

An example of such a process is shown in Figure 11.1. Panel A shows the process P , where
the sign of the drift changes at each first hitting time of b or −b indicated by the process (Hi)i,
which also marks switches in the percept (panel B). In panel A it is visible that P is allowed
to overshoot the borders meaning that the process is not reflected there.
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Figure 11.1: The HBMc. The first passage times (Hi) (green) of a Brownian motion (black,
panel A) with drift ±ν0 at borders ±b indicate the times of the percept changes (orange, panel
B). The Brownian motion is assumed to summarize the activity difference of two conflicting
neuronal populations with only two parameters. Additionally, for a given t the value of t∗ is
visualized.

11.1.2 Effect of single parameter changes

The influence of b and ν0 on the mean dominance time µ and the CV is shown in Figure 11.2.
Note that b has opposite effects on the mean (2b/ν0) and the CV= 1/

√
2bν0 of the dominance

times, whereas ν0 has the same effect on mean and CV as it is in the denominator of both
quantities (recall Proposition 8.6 for the transformation of b and ν0 to µ and CV).

● ●

A

⇒b

µ

CV

⇒

B

ν0 ⇒

µ CV

Figure 11.2: Influence of the HBMc parameters on mean and CV of the domi-
nance times. The influence of increasing the two parameters b (panel A) and ν0 (panel B)
while leaving the other one constant on µ and CV = σ/µ is shown.

11.1.3 Remarks on the simulation

The simulation of the Hierarchical Brownian model (for continuous stimulation) on the interval
[0, T ] mainly relies on the simulation of a Brownian motion on [0, T ]. One way to generate such
a stochastic process is to use the discrete skeleton 0 = t0 < t1 < . . . < tT/∆ = T with step width

ti − ti−1 =: ∆ > 0 ∀i = 1, . . . , T/∆ by simulating i.i.d. random variables I∆
1 , I

∆
2 , . . . , I

∆
T/∆

with normal distribution with mean 0 and variance ∆ (e.g., Asmussen and Glynn, 2007). To
simulate the perception process (P∆

t )t=0,∆,2∆,... during continuous presentation on the discrete
skeleton with step width ∆, we use for i ≥ 1 the summing of the increments as follows
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11. A hierarchical Brownian motion model

P∆
ti = P∆

ti−1
+ I∆

i + ∆ ·

{
ν0, if argmaxti{P

∆
ti : P∆

ti ≤ −b} > argmaxti{P
∆
ti : P∆

ti ≥ b},
(−ν0), if argmaxti{P

∆
ti : P∆

ti ≤ −b} < argmaxti{P
∆
ti : P∆

ti ≥ b},

with P∆
0 := −b and argmax{} := −1.

Hence, in every simulation step we have to check whether the perception process is above b
or below −b. Implementing this in a for()-loop is in the standard statistical programming
package R time consuming in particular for small step widths ∆. Therefore, we propose
to outsource the simulation to C++ which is much more efficient while performing standard
loops. Nevertheless, the normal distributed random variables are simulated in R and then
transferred as function input to the C++-function. We compare the runtimes using the two
different programming languages in Figure 11.3 for three different time horizons T and four
different step widths ∆. The dependence of the computation time on the time horizon T and
the programming language – C++ (yellow points) leads to faster simulations – is clearly visible.
The choice of the step width ∆ is another crucial point in the simulation. Large ∆ leads to
inaccurate simulation, whereas a small ∆ increases the computational effort (compare the
different symbols in Figure 11.3). We recommend the step width ∆ = 0.01.

● ●

●

●
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●

●

●

4 7 10
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●

∆=

0.001
0.01
0.1
1

language

R
C++

Figure 11.3: Comparison of the computation times for simulation of the HBMc.
Mean computation times (in ten trials) with R are printed red, whereas the C++ results are
printed yellow. The simulation of the HBMc is performed using different time horizons T and
step widths ∆ visualized by different symbols (see legend). Both axes are logarithmic due to
the different magnitudes.

11.2 Intermittent presentation

In this section we introduce the Hierarchical Brownian Motion model for intermittent pre-
sentation (Section 11.2.1), discuss its assumptions and its relation to the HMM (Sections
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11.2.2 and 11.2.3) and elaborate on the effects of single parameter changes (Section 11.2.4).
Moreover, in Sections 11.2.5 and 11.2.6, the dominance time distributions dependent on the
following hidden state and Markov properties are examined. Finally, hints for simulation are
given (Section 11.2.7).

11.2.1 The model

In the Hierarchical Brownian Motion model for intermittent presentation (HBMi), we require
mechanisms for long dominance times in the stable state as well as for short dominance times
in the unstable state. In order to describe the responses to intermittent and continuous
presentation in one model framework, we assume the identical perceptual process as in the
HBMc (Section 11.1) during phases of stimulus presentation. The periods of blank display
represent the only difference in the experimental setup to continuous presentation. In these
periods, we assume additional neuronal mechanisms. In particular, we assume that the
perceptual process then takes on one of two mean drifts, νS in the stable state and νU ≥ νS
in the unstable state, with potentially opposite signs of ν0 and νS for increased stability
(Figure 11.4). Note that the drifts νS and νU are not necessarily constant across the whole
period of blank display, but they denote the mean drift of the process, which is sufficient to
describe the distribution of dominance times. Interestingly, additional assumptions on the
temporal behavior of the drift terms could also allow describing the impact of the lengths
of blank displays (compare Section 15.2). Further, in the unstable state the border bU at
which perception and drift direction change is assumed smaller than the border bS during
stable perception. Switches between the stable and unstable state will be caused by a similar
mechanism in a so-called background process B described later in this section.
Within a state (S or U), the fluctuation of the perception process between the borders is
assumed analogous to the HBMc, except that the borders are dependent on the hidden state
and that the drift is ν0 during presentation and νS or νU during blank display. Formally,
we denote by PR and BL the sets of all periods of stimulus presentation and blank display,
respectively. Assuming that we start a trial with a presentation interval and then switch
regularly between presentation intervals of length lp and blank display of length lb, PR and
BL are given by

PR =

T/(lp+lb)⋃
i=1

[(i− 1)(lp + lb); (i− 1)(lp + lb) + lp)

BL =

T/(lp+lb)⋃
i=1

[(i− 1)(lp + lb) + lp; i(lp + lb))

as shown in Figure 11.4.
The perception process P := (Pt)t is then given by

dPt =

{
Stν0dt+ dWt, if t ∈ PR,

StνỸtdt+ dWt, if t ∈ BL,

where Ỹt ∈ {S,U} denotes the hidden state at time t ≥ 0 and (Wt)t denotes a standard
Brownian motion. As a result, the mean drift per second is given by the weighted mean

ν∗S :=
lb · νS + lp · ν0

lb + lp
and ν∗U :=

lb · νU + lp · ν0

lb + lp
(11.2)
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Figure 11.4: The perception process P in the HBMi during intermittent presen-
tation. During presentation, P has drift ν0. During blank displays (yellow), P has drift νS
in the stable phase (A), and drift νU in the unstable phase (B). Typically, we have νS ≤ ν0

and νU ≥ ν0. The borders are bS (light blue horizontal line) in the stable state and bU (blue
horizontal line) in the unstable state.

for states S and U , respectively. Because the periods lb and lp are typically short in relation
to a dominance time, the behavior of P can be approximated by a Brownian motion with
absolute drifts ν∗S and ν∗U , respectively. As in the HBMc, the sign of the drift St := S(Pt, t)
changes at every first hitting time of the respective border, i.e.,

S(Pt, t) := −sgn(Pt∗), where t∗ := t∗(t) := sup{x : x < t, |Px| = bYx} with t∗(0) = 0.

We initialize P0 = −bỸ0 for the initial state Ỹ0 which is the stable state with probability

π∗start,S := P(Ỹ0 = S). The perception then takes the value L if St = 1 and R if St = −1 and
switches at the first-hitting times (Hi)i of the borders ±bi comparable to equation (11.1).
Note that perception also changes during blank display. The dominance times are therefore
again given by di := Hi −Hi−1, i = 1, 2, . . ..
In order to describe the switching between the two states S and U , we use an analogous
upper hierarchical level with another pair of conflicting neuronal populations. Their difference
activity is described by a so-called background process B := (Bt)t (Figure 11.5 A, middle
panel). B is also assumed to be a Brownian motion with drift. Its drift is assumed to vanish
during presentation and to take the value ±νB during blank display, where the sign of drift
depends on the hidden state as follows

dBt =


dW̃t, if t ∈ PR,

νBdt+ dW̃t, if t ∈ BL, Ỹt = S,

−νBdt+ dW̃t, if t ∈ BL, Ỹt = U,

(11.3)

where (W̃t)t is a Brownian motion independent of (Wt)t. Again, the mean drift across PR
and BL intervals is ν∗B:= lb·νB

lb+lp
.

The background process B evokes changes between the stable and the unstable state. Specif-
ically, at the time of a percept change t∗, the question of whether the process stays in the
former state (S or U) or switches to the other state depends only on the value of B. Two
borders, b̃S and b̃U , determine this switching as follows (see Figure 11.5). If the former state
is S, the process remains stable if and only if Bt∗ ≥ b̃S (first light blue arrow in panel A),
while switching to the unstable state if Bt∗ < b̃S (blue arrow, panel A). Analogously, if the
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former state is U , the process switches to S if and only if Bt∗ ≥ b̃U (right light blue arrow,
panel A), while staying in U if Bt∗ < b̃U (blue arrow, panel B). After the percept change, the
background process B is reset to zero and then follows its usual dynamic (eq. (11.3)), i.e., the
sign of its drift changes if and only if the state has changed. Finally, as the perception process
P fluctuates between ±bS in the stable state and between ±bU in the unstable state, the value
of P is reset when the state changes, to the value sgn(P )bS when changing to the stable state
and to sgn(P )bU when changing to the unstable state.
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Figure 11.5: The HBMi. The perception process P , the background process B and the
resulting percept. (A): A simulation on [0, 500]. (B): The same realization, zoomed in on
the time interval [408, 458]. Stable phases indicated by light gray background, unstable phases
indicated by dark gray background. The beginnings of stable and unstable phases are marked
with light blue and blue arrows, respectively.

Detailed model definition

Here, we state a precise mathematical model definition of the HBMi (as supplement to the
prose definition given above).
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Model 11.1. Hierarchical Brownian model in intermittent presentation (HBMi)
Let bS > 0, bU ∈ (0, bS ], b̃S > 0 and b̃U ∈ R be four borders, let ν0 > 0, νS ∈ R, νU ≥ νS , νB > 0
be drift parameters, T > 0 be a time horizon, lp > 0 be the length of stimulus presentation and
lb > 0 be the length of blank display. Furthermore, 0 ≤ π∗start,S ≤ 1 is the initial weight of the
stable state.
Let (Wt)t and (W̃t)t be independent standard Brownian motions and PS0 be a Bernoulli(π∗start,S)-
distributed random variable. Then, the dynamics of the perception process P := (Pt)t∈[0,T ] and
the background process B := (Bt)t∈[0,T ] are assumed to be

dPt =


S(Pt, t)ν(Pt, Bt, t)dt+ dWt, if dbt = 0,

|bS − bU |, if dbt 6= 0 ∧ Pt ≤ min(sgn(Pt)bS , sgn(Pt)bU ),

−|bS − bU |, if dbt 6= 0 ∧ Pt > min(sgn(Pt)bS , sgn(Pt)bU ),

with P0 = −b0, (bt) the border process defined below and the process (St) depending on the sign
of the last hit border ±bt

St := S(Pt, bt, t) := −sgn(Pt∗), where t∗ := t∗(t) := sup{x : x < t, |Px| = bx} with t∗(0) = 0.

The drift ν(Pt, Bt, t) depends on the background process (see below)

ν(Pt, Bt, t) :=

{
ν0, if t ∈ PR,

νblankt , if t ∈ BL,

where νblankt := νblank(Pt, Bt, t)

νblankt (Pt, Bt, t) :=


V0, if t∗ = 0,

νS , if t∗ > 0 ∧ ((Bt∗ ≥ b̃S ∧ νblankt∗ = νS) or (Bt∗ ≥ b̃U ∧ νblankt∗ = νU )),

νU , if t∗ > 0 ∧ ((Bt∗ < b̃S ∧ νblankt∗ = νS) or (Bt∗ < b̃U ∧ νblankt∗ = νU )),

where V0 is vS if PS0 = 1 and vU otherwise, and the border process (bt) := b(νblankt , t) is assumed
to be

b(νblankt , t) :=

{
bS , if νblankt = νS ,

bU , if νblankt = νU .

The perception at time t ≥ 0 takes the value L if St = 1 and R if St = −1 and (Hi)i=0,1,...

denotes the process of first passage times as defined in (11.1) with b replaced by bt.
For the background process (Bt)t∈[0,T ] we assume B0 = 0 and

dBt =

{
1t∈BLS̃(Bt, Pt, t)νBdt+ dW̃t, if dSt = 0,

−sgn(Bt)Bt, if dSt 6= 0,

with the sign of drift

S̃t := S̃(νblankt , t) :=

{
1, if νblankt = νS ,

−1, if νblankt = νU .

We say that the HBMi is in state S at time t if vblank
t equals νS and in state U otherwise.
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11.2.2 Discussion of assumptions and interpretation of model parameters

The technical advantage of the HBMi is that the resulting dominance times agree in most
parts with the dominance times resulting from the inverse Gaussian HMM assumptions, which
allows model fitting also to short data sections and comparison across clinical groups. In
addition, the HBMi also provides a relation to potential underlying neuronal processes, as
discussed in the following and illustrated in Figure 11.6.

Both HBMi-processes P and B are assumed Brownian motions with drift which may be
interpreted as the activity difference between neuronal populations. Implicitly, this assumes
mechanisms of self-excitation, cross-inhibition and adaptation across these neuronal popula-
tions, as proposed by various authors (Brascamp et al., 2009; Gigante et al., 2009). Without
explicitly modeling such mechanisms in order to reduce the number of parameters and allow
model fitting, the parameter sets are reduced to the mean drifts ν and the borders b. Analo-
gously to the HBMc, the speed of the drifts could be considered related to the inverse of the
connection strengths within and across populations that engage in self excitation and cross
inhibition. The border b, in analogy to the HBMc, could be considered related to the size of
the respective populations under consideration. The use of different borders allows fitting of
highly various response patterns and can be motivated as follows.

In the HBMi, the perception process P has two borders, bS ≥ bU for the stable and the
unstable state. This suggests different population sizes of neurons involved in the stable and
unstable state. Typically bS > b > bU , suggesting that in the stable state, the activity of
the dominant population is increased by joining additional neurons to the population, for
example by positive feedback mediated by population S. Vice versa, in the unstable state,
only a minimal population is involved in the respective percept, leading to fast changes. Thus,
one could assume that the dominant percept population size is decreased by the population U
(red arrows). The active population sizes are indicated by different circle sizes in the first line
of Figure 11.6 and are assumed modulated by the background populations S and U .

The background process B models the activity difference between S and U and is also
associated with two borders, b̃S and b̃U . The assumption regarding resetting of B at percept
change is technically necessary to generate independent dominance times and to thus allow
straightforward model fitting (compare Section 12.2). In the picture of Figure 11.6 it can be
motivated as follows. Population S is capable of offering positive feedback to the currently
active population, L or R, which results in an increased population size as described above.
S is also activated by the active population. Therefore, a percept change causes a resetting
to zero. However, if S had shown high previous activation (above b̃S), the activity of S
can increase rapidly again, causing another stable dominance time. In contrast, in case of
weak previous activation (below b̃S), the unstable population U is taking over, marking the
transition to an unstable state. With opposite signs, i.e., negative drift and a small new border
b̃U , the process proceeds analogously. Similar to the mean drift terms νS and νU , the drift
νB is not necessarily constant but describes the mean drift of B during the period of blank
display. During continuous presentation the background process is of no relevance as its drift
vanishes during presentation phases and moreover the drift of P is generally given by ν0.

In addition to the potential neurophysiological interpretations of the model parameters, we
give here a relation of the parameters to the response patterns. Interestingly, the seven HBMi
parameters allow the reproduction of highly variable response patterns as are also observed in
the empirical data sets (e.g., Figure 1.3). The following quantities, which are easily derived
from the parameters, offer a straightforward pattern interpretation.
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Figure 11.6: Motivation of HBMi assumptions. The populations L and R being active
during continuous presentation are visualized by the medium circles. During stable phases
in intermittent presentation the population size is increased (large circles), whereas during
unstable phases it is decreased (small circles). The populations S and U are responsible for the
hidden state. Excitations are visualized by green arrows and inhibitions by red arrows.

First, the parameter sets (bS , ν
∗
S) and (bU , ν

∗
U ) can be interpreted analogously to the parameters

(b, ν0) in continuous stimulation (Section 11.1.2). That means, an increase in the border (bS
or bU ) increases the mean dominance time and decreases the CV in the respective state. An
increase in the drift (ν∗S or ν∗U ) decreases the mean dominance time, while also decreasing the
CV. Recall that the CVs of dominance times during stable and unstable states are given by

CV∗S := 1/
√

2bSν∗S and CV∗U := 1/
√

2bUν∗U , respectively.

Figure 11.7 illustrates examples with small CV∗S (panels A-D) and large CV∗S (panels E-H).
Second, the parameters b̃S and ν∗B can be interpreted best when compared to bS and ν∗S as
follows. Consider the expected fraction of b̃S reached by the background process at the end of
a stable dominance time,

Expected duration of a stable dominance time

Expected duration until B reaches b̃S
=

2bS/ν
∗
S

b̃S/ν∗B
=

2bSν
∗
B

b̃Sν∗S
,

which is related to the transition probability from stable to unstable state. In case of a small
background border b̃S < bS and small ν∗S , the probability of B crossing b̃S until percept change
is high, such that the process remains stable. Figure 11.7 A, B, E and F show such parameter
combinations. An analogous term can be derived in comparison to the parameters b̃U and ν∗U .
Third, the parameter b̃U is related to the number of dominance times in the unstable state
observed before changing to the stable state. Recall that the drift of B is negative during
unstable phases. Therefore, a large value of b̃U implies a low probability to reach b̃U until the
percept change. This implies a high expected number of dominance times in the unstable
state, or a low transition probability from the unstable to the stable state. Figure 11.7 B, D,
F and H show examples with large values of b̃U .
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Figure 11.7: Impact of HBMi parameter values on the response pat-
terns. Examples of simulated response patterns are shown for different values of
the three quantities CV∗S, 2bSν

∗
B/b̃Sν

∗
S and b̃U . The quantities for panels A-H were

CV∗S = {0.2, 0.2, 0.2, 0.2, 1, 1, 1, 1}, 2bSν∗B/b̃Sν∗S = {4, 4, 0.4, 0.4, 4, 4, 0.4, 0.4},
b̃U = {0, 3, 0, 3, 0, 3, 0, 3}.

Starting positions We discuss the starting positions P0, which is −bS with probability
π∗start,S and −bU else, and B0 = 0. Thus, the first dominance time is distributed like all other
dominance times. Choosing P0 as bU or bS does not change the distributions and as we are
only interested in the alternation behavior it does not matter whether the starting perception
is left or right. Choosing a starting point different from a border for the perception process
leads to a different distribution of the first dominance time which we do not observe in the
data. A nonzero starting value for the background process also imposes challenges as then
the probability to remain in the current state would be different for the first dominance time
which is not justified by the data or theoretical reflections.

11.2.3 Relation of the HBMi to the two state HMM

In the following we only consider the HMM with inverse Gaussian distributed dominance
times. The relation of the HBMc to the one state HMM is simple as is represents only
a reparametrization. Both the one state HMM and the HBMc yield independent and IG
distributed dominance times.
For the intermittent case, the relation of the HBMi to the two state HMM is not as straightfor-
ward. The two models are highly similar in the sense that they use two parameters to describe
long and short dominance times, respectively (e.g., (µS , σS) and (bS , ν

∗
S) for the stable state).

In the HMM, the dominance times are IG distributed, given the state with the respective
parameters. In the HBMi, the dominance times are approximately IG distributed, where the
minor deviation from the IG distribution originates from the minor deviation of P from a
Brownian motion with drift ν∗S (or ν∗U ), instead of exactly assuming drift ν0 during stimulation
and νS (or νU ) during blank display. However, the marginal distribution of P at multiples of
such intervals lp + lb is identical to the marginal distribution of a Brownian motion with drift
ν∗S (or ν∗U ) at these time points, and the differences can only be observed in the meantime.
Because dominance times usually span multiple trials of duration lp + lb, the approximation is
very close. To simplify comparison between the HMM and the HBMi we denote by
(µ∗S , σ∗S) and (µ∗U , σ∗U ) the mean and standard deviation of dominance times in the HBMi in
the stable and unstable state, respectively. These have analogous interpretations as (µS , σS)
and (µU , σU ) in the HMM and are given by

µ∗S ≈ 2bS/ν
∗
S and σ∗S ≈

√
2bS/ν∗S

3, (11.4)

and analogously for µ∗U and σ∗U , where the approximation is again due to the minimal difference
between the mean drift ν∗S and the changing drift νS+ν0 during presentation and blank display.
As another similarity, both models use additional parameters ((pSS , pUU ) and (b̃S , b̃U , νB)) to
describe the transition probabilities between the stable and the unstable state.
The main difference between the HBMi and the two state HMM concerns the dynamic of
the state transitions between stable and unstable state. In the HMM, transition probabilities
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are given by (1 − pSS) and (1 − pUU ) and are independent of the duration of the previous
dominance time. In contrast, in the HBMi, a transition from stable to unstable state requires
that B has not reached b̃S at the end of the respective dominance time. Therefore, the
transition probability p̃SU (di) depends on the duration di of the i-th dominance time, where
shorter dominance times yield higher transition probabilities. Note that the position of B at
the end of a dominance time di is given by an increment of a Brownian motion with drift ν∗B
in the fixed time interval di. Therefore the position is normally distributed with mean di · ν∗B
and variance di, and the probability to remain in the stable state (which is the probability
that the background process exceeds b̃S) is given by

p̃SS(di) := P(Yi+1 = S|Yi = S, di) ≈ 1− Φν∗Bdi,di

(
b̃S

)
, (11.5)

where Φµ,σ2() denotes the distribution function of the normal distribution with mean µ and
variance σ2 and Yi is the hidden state of the i-th dominance time. Similarly, the relation
between the transition probability and the previous dominance time di is for the unstable
state given by

p̃UU (di) := P(Yi+1 = U |Yi = U, di) ≈ Φ−ν∗Bdi,di

(
b̃U

)
. (11.6)

Note that we use the approximate sign ”≈” because the drift of B is not exactly ν∗B throughout,
but is assumed to change between ν0 and νB during stimulation and blank display, respectively,
yielding a mean drift of ν∗B. Analogously to the above explanation, differences caused by the
approximation can be considered minimal.
In order to obtain quantities comparable to the transition probabilities pSS and pUU in the
HMM, we can obtain the marginal transition probabilities in the HBMi as the expected
value of p̃SS and p̃UU by integration across all dominance times. As shown in Corollary
8.10 the positions XS and XU of B at the end of an independent stable or unstable IG
distributed dominance time follow the normal-inverse Gaussian (NIG) distribution. The
resulting transition probabilities in the HBMi can then be calculated as

p∗SS ≈ P(XS ≥ b̃S) and p∗UU ≈ P(XU < bU ), (11.7)

where XS is NIG distributed with parameters (0,
√
ν∗S

2 + ν∗B
2, ν∗B, 2bS) and XU is NIG dis-

tributed with parameters (0,
√
ν∗U

2 + ν∗B
2,−ν∗B, 2bU ). For the parametrization, recall the proof

of Corollary 8.10. In a reasonable model, not both of p∗SS and p∗UU equal one.
One should note that due to the difference in transition probabilities of the two models, the
parameters (bS , ν

∗
S) are not direct reparametrization of (µS , σS) (and similarly for the unstable

state). Furthermore, the dependence of the transition probability on the length of the previous
dominance time is one important new aspect in the HBMi not described in the HMM, which
will also be used in Section 14.2.1 for comparison of models and empirical observations.

Influence of the length of dominance times on the transition probabilities

As explained above (equation (11.5)), the transition probability from the stable to the unstable
state p̃SU (d) decreases with the length of the stable dominance time. This is visualized in
Figure 11.8 A.
Investigating the influence of the length d of an unstable dominance time (which depends on
bU and ν∗U ) on the transition probability p̃US(d) to the stable state, the model implication
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is ambiguous which we illustrate in Figure 11.8 B and C. Non-positive borders b̃U (panel B)
cause very large transition probabilities for short unstable dominance times as there is not
enough time for the background process to reach b̃U (the state only remains unstable if the
background process is below b̃U at the end of a dominance time, recall moreover the negative
drift of the background process during unstable phases). The longer the dominance time, the
more time the background process has to cross b̃U .
Positive values of b̃U (panel C) imply generally smaller transition probabilities (due to the
negative drift of the background process). Additionally, the curves have a maximum turning
point as a minimum time is needed for a process with negative drift to reach a positive border
with a small probability.
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Figure 11.8: Transition probabilities p̃SU(d), p̃US(d) depending on the length d
of the dominance time for ν∗B = 1 and different values of b̃S , b̃U as indicated in
the legends. (A) The transition probability in the unstable state p̃SU (d) decreases with the
length of the stable dominance time. (B) b̃U ≤ 0 leads to monotonously decreasing transition
probabilities p̃US(d). (C) b̃U > 0 causes transition probability curves with a maximum which
decreases with b̃U increasing. The transition probabilities are much smaller than the largest
probabilities in panel B.

11.2.4 Effect of single parameter changes

How does an increase in the size of the neuronal pool bS or in the border b̃S of the background
process influence the response pattern? These and other comparable questions are important
for understanding the HBMi and its interpretation properly. Therefore, we discuss the influence
of single HBMi parameters on the response patterns. As the response patterns are determined
by the distribution of the stable and the unstable dominance times as well as by the transition
probabilities we examine the impact of each HBMi parameter on µ∗S ,CV∗S , µ

∗
U ,CV∗U , p

∗
SS , p

∗
UU .

The results are summarized in Table 11.1.
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Parameter Change µ∗S CV∗S µ∗U CV∗U p∗SS p∗UU

bS
↑ ↑ ↓ → → ↑ →
↓ ↓ ↑ → → ↓ →

ν∗S
↑ ↓ ↓ → → ↓ →
↓ ↑ ↑ → → ↑ →

bU
↑ → → ↑ ↓ → Fig. 11.9
↓ → → ↓ ↑ → Fig. 11.9

ν∗U
↑ → → ↓ ↓ → Fig. 11.9
↓ → → ↑ ↑ → Fig. 11.9

b̃S
↑ → → → → ↓ →
↓ → → → → ↑ →

b̃U
↑ → → → → → ↑
↓ → → → → → ↓

ν∗B
↑ → → → → ↑ ↑
↓ → → → → ↓ ↓

Table 11.1: Effect of single parameter changes in the HBMi. The influence of
changing one of the seven parameters bS , ν

∗
S , bU , ν

∗
U , b̃S , b̃U , ν

∗
B while leaving the others constant

on the target parameters µ∗S ,CV∗S , µ
∗
U ,CV∗U , p

∗
SS , p

∗
UU is shown. An increase in a parameter is

highlighted yellow, and a decrease is highlighted red where no influence is colored orange. The
effect of bU and ν∗U on p∗UU is more complex and shown in Figure 11.9.

The explanations for the effects of bS and ν∗S on µ∗S and CV∗S as well as for the effects of bU
and ν∗U on µ∗U and CV∗U are as already explained similar to the effects of drift and border
parameter in the HBMc (compare Section 11.1.2). Increasing bS moreover also increases the
probability to remain in the stable state p∗SS as the background process has more time to
reach its border. Increasing the drift ν∗S has the opposite effect as the background process has
less time to exceed the border.
A larger drift ν∗B of the background process also increases the probability to stay in the current
state as the process gets faster above or below the borders b̃S and b̃U , respectively. Increasing
b̃S hinders the background process to pass the border and thus p∗SS decreases. Increasing b̃U
facilitates the background process to be below the border and thus p∗UU increases.
The dependence of p∗UU on bU and ν∗U depends on the sign of b̃U and is illustrated in Figure
11.9 and explained in the following. Panel A indicates for a positive b̃U (orange line) a
negative correlation between bU and p∗UU for small bU and a positive correlation for larger bU .
Increasing bU implies longer unstable dominance times. The negative drift of B in unstable
phases therefore causes for a long dominance time a large probability for B to be negative and
thus below bU . If the dominance time is short, there is not enough time for the background
process to reach b̃U and thus increasing a short dominance time by increasing bU increases the
probability to reach the border and therefore has a negative impact on p∗UU . With b̃U ≤ 0
(red line) there is a positive relation between bU and p̃UU as longer dominance times enhance
the probability of B to be below b̃U .
The impact of ν∗U on p∗UU is visualized in panel B. Generally, increasing ν∗U causes shorter
unstable dominance times. Assuming a positive b̃U (orange line) only for rather long dominance
times (small ν∗U ) the background process has some chance to hit b̃U . For shorter dominance
times the process does not have enough time and therefore remains below b̃U and in the
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unstable state. In case of a non-positive b̃U (red line), shorter dominance times (i.e., larger ν∗U )
imply that B with negative drift has less time to reach the border and thus p∗UU approaches
zero.
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Figure 11.9: Dependence of p∗UU on bU and ν∗U . In panel A we let ν∗U = 0.73 and
vary bU , and in panel B ν∗U varies and bU = 1.84 is used. The orange lines code a positive
b̃U = 2.39, and the red lines code a negative b̃U = −2.39. All other parameters can be found in
Table 12.2, subject C (page 162).

11.2.5 Dominance time distributions depending on the next state

As already discussed in Section 11.2.3 the definition of the HBMi implies shorter stable
dominance times before a state change. Here, in Lemma 11.2 we derive the expected values
of a stable dominance time before a state change (termed µ−S ) and before another stable
dominance time (termed µ+

S ). Moreover, the corresponding expected values µ+
U and µ−U for the

unstable states are derived. Again, due to taking the mean of different drifts, this derivation
is only a close approximation, but we omit approximation signs here for convenience. The
distribution of the dominance times depending on the next state is computed in Lemma 11.3.

Lemma 11.2. Expected dominance times conditioned on the next state
Let ΘHBMi= (bS , νS , bU , νU , b̃S , b̃U , νB, ν0, π

∗
start,S) be the parameter set of a HBMi and p∗SS , p

∗
UU

be defined as in equation (11.7). Then it holds

µ+
S := E[D1|Y1 = S, Y2 = S] =

∫∞
0 f IG

2bS/ν
∗
S ,
√

2bS/ν
∗
S
3
(t)(1− Φν∗Bt,

√
t(b̃S))tdt

p∗SS
,

µ−S := E[D1|Y1 = S, Y2 = U ] =

∫∞
0 f IG

2bS/ν
∗
S ,
√

2bS/ν
∗
S
3
(t)Φν∗Bt,

√
t(b̃S)tdt

1− p∗SS
,

µ+
U := E[D1|Y1 = U, Y2 = U ] =

∫∞
0 f IG

2bU/ν
∗
U ,
√

2bU/ν
∗
U

3
(t)Φ−ν∗Bt,

√
t(b̃U )tdt

p∗UU
,

µ−U := E[D1|Y1 = U, Y2 = S] =

∫∞
0 f IG

2bU/ν
∗
U ,
√

2bU/ν
∗
U

3
(t)(1− Φ−ν∗Bt,

√
t(b̃U ))tdt

1− p∗UU
.
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11. A hierarchical Brownian motion model

Proof : First, we focus on µ+
S . It holds with DS

1 as IG(2bS/ν
∗
S ,
√

2bS/ν∗S
3)-distributed domi-

nance time emitted in the stable state

µ+
S = E[DS

1 |Y1 = S, Y2 = S] = E[DS
1 |Y1 = S,BDS1

≥ b̃S ]

=

∫∞
0 P(DS

1 = t, BDS1
≥ b̃S)tdt

P(BD1 ≥ b̃S)

=

∫∞
0 f IG

2bS/ν
∗
S ,
√

2bS/ν
∗
S
3
(t)(1− Φν∗Bt,

√
t(b̃S))tdt

p∗SS
.

In the second line, we used the definition of conditional expected values. The independence of P
and B during one dominance time was applied in the third line to derive the joint distribution
in the numerator. The first hitting time of the border bS (leading to the perceptual reversal)
is inverse Gaussian distributed, and the position of the background process (which started
from 0) given the fixed and known hitting time t is a normal distributed random variable.
The expression in the denominator just is the term for p∗SS as given in equation (11.7).
The derivation for µ−S follows similar ideas:

µ−S = E[DS
1 |Y1 = S, Y2 = U ] = E[DS

1 |Y1 = S,BDS1
< b̃S ]

= E[D1|Y1 = S, Y2 = U ] =

∫∞
0 f IG

2bS/ν
∗
S ,
√

2bS/ν
∗
S
3
(t)Φν∗Bt,

√
t(b̃S)tdt

1− p∗SS
.

Here, the background process should not reach the border b̃S at the time of perceptual reversal.
Therefore, basically the 1− Φ()- and p∗SS-factors are substituted by Φ() and 1− p∗SS , and the
same explanation as above can be used.
The proofs for µ+

U and µ−U follow analogously.

Figure 11.10 shows the values of µ+
S , µ

−
S , µ

+
U and µ−U as well as µ∗S and µ∗U for the four response

patterns printed in Figure 9.1 (page 70, parameter combinations given in Table 12.2). µ−S is
(if it exists) per construction always smaller than µ+

S . For the unstable state, there are two
examples with µ−U > µ+

U and one with µ−U < µ+
U (for subject E the unstable state does not

occur). This is due to the fact that the impact of longer unstable dominance times on the
state change probability is not always monotone (recall Figure 11.8).
In case of large transition probabilities to the other state, the unconditioned expectations µ∗j
are close to µ−j as most of the dominance times are followed by a dominance time of the other
state i 6= j. An analogous argument holds for small transition probabilities.

Analytical treatments of µ+
S , µ

−
S , µ

+
U and µ−U are difficult due to the involved distribution

functions. We therefore analyze the qualitative influence of the HBMi parameters using µ+
S as

an example. We distinguish between the absolute value of µ+
S and its value relative to the

mean µ∗S ≈ 2bS/ν
∗
S of all stable dominance times.

An increase in µ+
S is caused by

bS ↑, ν∗S ↓, b̃S ↑, νB ↓ .

A larger border bS or a smaller drift ν∗S in general causes longer stable dominance times
(Table 11.1) and therefore also µ+

S increases. Increasing b̃S or decreasing νB implies that the

141



11. A hierarchical Brownian motion model

● ●

C D E F C D E F
50

150

250

350

1

2

3

4

5

6

combination

µUµS

● µj
+

µj
*

µj
−

●

●

●

●

●

●

●

Figure 11.10: Example values of conditioned expectations. The values of the con-
ditioned expectations µ+

S , µ
−
S , µ

+
U , µ

−
U and the unconditioned expectations µ∗S , µ

∗
U for the four

parameter combinations C, D, E, F whose response patterns are shown in Figure 9.1 C-F
(page 70) and whose parameters are given in Table 12.2 (page 162). The left part of the graph
shows the expectations for the stable state, whereas the right part shows the expectations for
the unstable state. Note that for parameter combination E only stable phases occur such that
only µ+

S = µ∗S exists.

background process needs more time to cross b̃S , and thereby only very long stable dominance
times are followed by another stable dominance time. A decrease in µ+

S is caused by the
opposite parameter changes.
An increase in µ+

S /µ
∗
S is caused by

bS ↓, ν∗S ↑, b̃S ↑, νB ↓ .

Decreasing the border bS or increasing the drift ν∗S causes shorter stable dominance times
(Table 11.1). Thus, only atypically long stable dominance times are followed by another stable
dominance time. The same effect is caused by an increase in b̃S or a decrease in νB which
complicate the crossing of the border b̃S by the background process. A decrease in µ+

S /µ
∗
S is

caused by the opposite parameter changes.
Similar observations and arguments hold for the parameter influence on µ−S , µ+

U and µ−U .
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11. A hierarchical Brownian motion model

Next, we derive in Lemma 11.3 the distribution of dominance times in the HBMi conditioned
on the next state.

Lemma 11.3. Distribution of dominance times conditioned on the next state
Let ΘHBMi = (bS , ν

∗
S , bU , ν

∗
U , b̃S , b̃U , ν

∗
B, π

∗
start,S) be the parameter set of a HBMi and p∗SS , p

∗
UU

be defined as in equation (11.7). Then it holds for the densities of the dominance times given
the state of the next dominance time

fD+
S

(d) := fDSS (d) := f(d|Y1 = S, Y2 = S) =
f IG

2bS/ν
∗
S ,
√

2bS/ν
∗
S
3
(d)(1− Φν∗Bd,

√
d(b̃S))

p∗SS
,

fD−S
(d) := fDSU (d) := f(d|Y1 = S, Y2 = U) =

f IG
2bS/ν

∗
S ,
√

2bS/ν
∗
S
3
(d)Φν∗Bd,

√
d(b̃S)

1− p∗SS
,

fD+
U

(d) := fDUU (d) := f(d|Y1 = U, Y2 = U) =
f IG

2bU/ν
∗
U ,
√

2bU/ν
∗
U

3
(d)Φ−ν∗Bd,

√
d(b̃U )

p∗UU
,

fD−U
(d) := fDUS (d) := f(d|Y1 = U, Y2 = S) =

f IG
2bU/ν

∗
U ,
√

2bU/ν
∗
U

3
(d)(1− Φ−ν∗Bd,

√
d(b̃U ))

1− p∗UU
.

Proof : First, we focus on fD+
S

(d) and observe

fD+
S

(d) = f(d|Y1 = S, Y2 = S) = f(d|Y1 = S,BD1 ≥ b̃S)

=

∫∞
b̃S

P(DS
1 = d,BDS1

= x)dx

P(BDS1
≥ b̃S)

=
f IG

2bS/ν
∗
S ,
√

2bS/ν
∗
S
3
(d)(1− Φν∗Bd,

√
d(b̃S))

p∗SS
,

where exactly the same ideas as in the proof of Lemma 11.2 were applied.
The derivation for the other three cases follows similar ideas.

The next corollary connects the expectations µ∗S and µ∗U of stable and unstable dominance
times to the corresponding conditioned expectations. Again, approximation signs are omitted.

Corollary 11.4. Connection of µ∗j to µ+
j and µ−j

Let µ∗S , µ
∗
U be defined as in equation (11.4), µ+

S , µ
−
S , µ

+
U , µ

−
U be as in Lemma 11.2 and p∗SS , p

∗
UU

be as in equation (11.7). Then,

µ∗S = p∗SSµ
+
S + (1− p∗SS)µ−S and µ∗U = p∗UUµ

+
U + (1− p∗UU )µ−U .

Proof : We show the assertion for the stable state with similar arguments holding true for the
unstable state. We have with DS

1 as a dominance time in the stable state and the law of total
probability

µ∗S = E[DS
1 ] = P(Y1 = S, Y2 = S)E[DS

1 |Y1 = S, Y2 = S]

+ P(Y1 = S, Y2 = U)E[DS
1 |Y1 = S, Y2 = U ]

= p∗SSµ
+
S + (1− p∗SS)µ−S .
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11. A hierarchical Brownian motion model

11.2.6 Markov property of the HBMi

The underlying processes of Hidden Markov Models fulfill the conditional independence
assumption (9.1) and the Markov property (9.2). Now, let Yi be the hidden state of the i-th
dominance time in the HBMi. The conditional independence property

P(Di = di|Yi = yi) = P(Di = di|Y i
1 = yi1, D

i−1
1 = di−1

1 ), 1 ≤ i ≤ n, (11.8)

is also fulfilled for the HBMi (Yi, Di)1≤i≤n as the drift νyi and the border byi being responsible
for the distribution of the dominance times depend only on the current hidden state yi and
are independent of the history. Moreover, the HBMi constitutes a kind of Markov property

P(Yi = yi|Yi−1 = yi−1, Di−1 = di−1) = P(Yi = yi|Y i−1
1 = yi−1

1 , Di−1
1 = di−1

1 ), 2 ≤ i ≤ n,
(11.9)

where the only difference to the Markov property of the HMM is the additional condition
Di−1 = di−1 on the left hand side of equation (11.9) due to the dependence of the state
transition on the emission. Again, this property follows directly by the model construction
as discussed in Section 11.2. Note that the mean probability P(Yi = yi|Yi−1 = yi−1) is given
by p∗yi−1yi (equation (11.7)) and that (Yi)1≤i≤n can also be interpreted as embedded Markov
chain (when the dominance times are unknown).
As with the HMM, the state Ỹt of the HBMi at a given time t can also be understood as a
semi-Markov process (Definition 8.15). We will focus on that more in detail in Section 13.2.1.

11.2.7 Remarks on the simulation

The same remarks about outsourcing parts of the code to C++ as for the simulation of the
HBMc (Section 11.1.3) hold for the simulation of the HBMi, i.e., the simulation speeds up
remarkably using C++. Additionally, the different drifts and borders during stable and unstable
state as well as the different drifts during presentation of the stimulus and blank displays have
to be considered.
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Chapter 12

The HBM: Parameter estimation

This chapter explains and evaluates the parameter estimation of the Hierarchical Brownian
Model for continuous presentation as well as for intermittent presentation of a bistable
stimulus. In the case of continuous presentation, we apply maximum likelihood estimation to
the dominance times (comparable to the estimation of the HMM for continuous stimulation,
Section 9.3). Again, the exact sampling distributions for small sample sizes are derived.
We also introduce UMVU and moment estimators for the border parameter b and the drift
parameter ν0 (Section 12.1).
In Section 12.2 the estimation procedure for the HBMi is discussed. Basically, we derive
the log-likelihood of the model using forward variables and then maximize the log-likelihood
numerically.
In Section 12.3 estimated HBM parameter sets of typical response patterns are shown. Section
12.4 uses parametric bootstrap to evaluate the precision of parameter estimation for the HBMc
and the HBMi. Finally, in Section 12.5 we show why the Viterbi algorithm for the estimation
of the most likely hidden state path can be transferred from the world of Hidden Markov
Models to the HBMi.

12.1 Continuous presentation: Parameter estimation

Here, we present different approaches for the parameter estimation in the HBMc. In practice,
we use the maximum likelihood approach (Section 12.1.1). As the ML estimators are biased,
we moreover discuss an UMVU idea where, however, the drawbacks predominate (Section
12.1.2). Additionally, in Section 12.1.3 moment estimators are briefly introduced. In case the
reader is just interested in a brief description of the parameter estimation used in practice
(e.g., when analyzing the data set Schmack et al. (2015)), we suggest reading only the first
paragraph of Section 12.1.1 and then jumping ahead to Section 12.2.

12.1.1 Maximum likelihood estimation

First, we derive the ML estimators of b and ν0 in the HBMc. Then, we compute exact sampling
distributions of these ML estimators. These results are original. Moreover, we also derive the
asymptotic normal distribution of the estimators.
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12. The HBM: Parameter estimation

The ML estimation in the HBMc makes use of the fact that with (Hi)i≥0 as the first hitting
times of the borders (equation (11.1)) the resulting dominance times

di := Hi −Hi−1, i = 1, 2, . . .

are independent and IG distributed, with a known relation between the HBMc parameters b
and ν0 and the parameters µ and σ of the IG distribution, given by µ = 2b/ν0 and σ =

√
2b/ν3

0

(Proposition 8.6). Due to the invariance property of ML estimators, the ML estimators b̂ and
ν̂0 can be derived via

b̂ := b̂ML = (1/2) ·
√
µ̂3/σ̂2, ν̂0 := ν̂ML

0 =
√
µ̂/σ̂2,

where µ̂ and σ̂ are derived from equation (9.3). Explicitly, we have

b̂ =
1

2

√√√√√ 1

1/n
n∑
i=1

1/di − n/
n∑
i=1

di

ν̂0 =
2nb̂∑n
i=1 di

. (12.1)

Censored dominance times may be included as in the estimation of the HMM for continuous
presentation (page 76).

12.1.1.1 Sampling distribution of the estimators b̂ and ν̂0

The sampling distributions of the ML estimators of b and ν0 for n independent IG(b, ν0)-
distributed random variables are derived. In Figure 12.1 we compare for four different sample
sizes the simulated empirical distributions with the exact theoretical distributions of b̂ and ν̂0

given in Propositions 12.2 and 12.3 and the asymptotic normal distributions derived in the
next Section 12.1.1.2. For n = 5, n = 10 and n = 20 there is a notable difference between
the asymptotic and the exact distributions which describe the empirical distributions very
well. For the largest n = 100, the theoretical as well as the asymptotic distributions fit the
simulated data closely. In a potential future work the theoretical distributions can be used to
compute confidence intervals for parameters estimated from small sample sizes.

To derive the sampling distribution of b̂ note that due to Proposition 8.4 and Proposition
8.6 4b2 = µ3/σ2 = λ and thus 4b̂2 = µ̂3/σ̂2 = λ̂ when using the ML estimators. Therefore, it
follows by the sampling distributions of µ̂ and λ̂ (Proposition 9.2)

nb2

b̂2
∼ χ2

n−1.

Extracting the root gives

X̃ :=

√
nb

b̂
∼ χn−1,

where χn−1 denotes the chi-distribution (Definition 9.3) with n− 1 degrees of freedom. To
obtain the density f of the estimator b̂ = g(X̃) itself with g(x) = b

√
n/x we apply for x > 0

the method of transformations as follows

f(x) = F ′(x) =
d

dx
(FX̃(g−1(x))) = fX̃(g−1(x))

∣∣∣ d
dx
g−1(x)

∣∣∣.
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Figure 12.1: Comparison of exact (light red) and asymptotic (dark red) distribu-
tion of b̂ (A-D) and ν̂0 (E-H). The histograms show the empirical distribution of b̂ or ν̂0

in 10000 simulations with IG(8.5, 6.5)-distributed random variables for the four sample sizes
n ∈ {5, 10, 20, 100}, respectively. The true values are indicated by dashed lines. Consider the
different scaling of the y-axes in panels D and H, respectively

With g−1(x) = b
√
n/x we derive

f(x) = fχn−1

(
b
√
n

x

)
b
√
n

x2

for x > 0 and 0 otherwise.
Now, the expectation of the estimator b̂ is derived. Therefore, we need the expectation of the
inverse of a χk-distributed random variable X. The distribution of 1/X is called reciprocal
chi-distribution.

Lemma 12.1. Expectation of the reciprocal chi-distribution
Let X be χk distributed. Then it holds

E
[

1

X

]
=

Γ(k/2− 1/2)√
2Γ(k/2)

.

Proof : We derive

E
[

1

X

]
=

∞∫
0

xk−2 21−k/2 exp(−x2/2)

Γ(k/2)
dx

=
21−k/2

Γ(k/2)

∞∫
0

xk−2 exp(−x2/2)dx. (12.2)
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Next, note that Γ(k/2− 1/2)/2 =
∫∞

0 (zk−2 exp(−z2)dz) (for the definition of Γ(k) compare,

e.g., Abramowitz and Stegun, 1972). Substituting z/
√

2 = x yields

Γ((k − 1)/2)2k/2−3/2 =

∞∫
0

xk−2 exp(−x2/2)dx.

Plugging this in (12.2) we obtain

E
[

1

X

]
=

Γ(k/2− 1/2)√
2Γ(k/2)

.

Using Lemma 12.1, we derive with X now as χn−1 distributed random variable

E[b̂] = b
√
nE
[

1

X

]
= b
√
n

Γ(n/2− 1)√
2Γ(n/2− 1/2)

.

Hence, the bias of b̂ is given by

Bias(b̂) =

(√
n

Γ(n/2− 1)√
2Γ(n/2− 1/2)

− 1

)
b. (12.3)

Applying an asymptotic approximation for the Gamma function (eq. 6.1.39 in Abramowitz

and Stegun, 1972), we observe for n→∞: Γ(n/2− 1)/Γ(n/2− 1/2) ∝
√

2
n . Thus, the bias of

b̂ vanishes asymptotically.
Moreover, we have b̂ =

√
µ̂3/σ̂2/2. We know by Propositions 9.2 and 9.5 that µ̂ and σ̂ are

consistent, i.e., converge in probability toward µ and σ, respectively. Thus, by continuous
mapping and Slutskys’s theorem the consistency of b̂ follows.

The results are summarized in the following Proposition.

Proposition 12.2. Sampling distribution and expectation of b̂
Let b̂ be the ML estimator of b using a sample of n ≥ 2 IG(2b/ν0,

√
2b/ν3

0)-distributed random

variables. The random variable
√
nb/b̂ is χn−1 distributed. b̂ has the density

f(x) = fχn−1

(
b
√
n

x

)
b
√
n

x2
,

if x > 0 and 0 otherwise, and the expectation of b̂ is

E[b̂] = b
√
n

Γ(n/2− 1)√
2Γ(n/2− 1/2)

.

The estimator b̂ is consistent.
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Next, we investigate the distribution of the ML estimator ν̂0.

Proposition 12.3. Sampling distribution and expectation of ν̂0
Let ν̂0 be the ML estimator of ν0 using a sample of n ≥ 2 IG(2b/ν0,

√
2b/ν3

0)-distributed
random variables. The density of ν̂0 is given by

f(x) =
8b2n

x3

∞∫
0

f IG
2b/ν0,

√
2nb/ν30

(y)fχ
2

n−1

(
4nb2

x2y2

)
1

y2
dy

for x > 0 and 0 otherwise. The expectation of ν̂0 is

E[ν̂0] =
√

2nb
Γ(n/2− 1)

Γ(n/2− 1/2)

(
ν0

2b
+

1

4nb2

)
.

The estimator ν̂0 is consistent.

Proof : To derive the density we first define X̃ := (2b
√
n)/ν̂0 and derive the density of X̃.

Then, we use this density to conclude the density of ν̂0.
With ν̂0 = 2b̂/µ̂, λ = 4b2 (Proposition 8.4 and Proposition 8.6) and λ̂ = 4b̂2 we observe

2b
√
n

ν̂0
=

2b
√
nµ̂

2b̂
=

√
nλµ̂√
λ̂
.

By Proposition 9.2 we know that Ỹ := µ̂ is IG distributed with parameters µ and σ/
√
n (in the

parametrization used here 2b/ν0 and
√

2nb/ν3
0) and that Z̃ := nλ/λ̂ is χ2

n−1-distributed. The

density function of the product X̃ = Ỹ
√
Z̃ is given by fX̃(x) =

∫∞
−∞ fỸ (y)fZ̃(x2/y2)2x/y2dy

(e.g., Grimmett and Stirzaker, 2001). Thus,

fX̃(x) =

∞∫
0

f IG

2b/ν0,
√

2nb/ν30
(y)fχ

2

n−1

(
x2

y2

)
2x

y2
dy

for x > 0 and 0 otherwise. The latter display is the density of X̃. To obtain the density f
of the estimator ν̂0 = g(X̃) itself with g(x) = 2b

√
n/x for x > 0 and g(x) = 0 otherwise, we

apply the method of transformations. With g−1(x) = 2b
√
n/x it follows

f(x) =

∞∫
0

f IG

2b/ν0,
√

2nb/ν30
(y)fχ

2

n−1

(
4nb2

x2y2

)
4b
√
n

xy2

2b
√
n

x2
dy

for x > 0 and 0 otherwise which is the assertion after rearranging terms.
To compute the expected value note that the distribution of

ν̂0

2b
√
n

=
2b̂

2b
√
nµ̂

=

√
λ̂√

nλµ̂

is the product distribution of the random variables 1/
√
Z̃ =

√
λ̂/nλ and 1/Ỹ = 1/µ̂. By

Propositions 9.2 and 8.8 1/Ỹ is RIG distributed with parameters 2b/ν0 and
√

2nb/ν3
0 and

expected value

E
[

1

Ỹ

]
=
ν0

2b
+

1

4nb2
,
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and by Proposition 9.2 and the explanations on page 147 1/
√
Z̃ follows the reciprocal chi-

distribution with n− 1 degrees of freedom. Its expected value is known by Lemma 12.1

E

[
1√
Z̃

]
=

Γ(n/2− 1)√
2Γ(n/2− 1/2)

.

Moreover, 1/Ỹ and 1/
√
Z̃ are independent due to Proposition 9.2. Thus, the assertion about

the expected value follows directly by multiplying 1/E[Ỹ ], 1/E[
√
Z̃] and 2b

√
n.

Hence, the bias of ν̂0 derives as

Bias(ν̂0) =

(
1− 2b

(
1

2b
+

1

4nb2ν0

)√
n

2

Γ(n/2− 1)

Γ(n/2− 1/2)

)
ν0. (12.4)

Again, an application of the asymptotic approximation for the Gamma function shows that
the bias vanishes asymptotically.
In addition, we observe ν̂0 =

√
µ̂/σ̂2. We know by Propositions 9.2 and 9.5 that µ̂ and σ̂ are

consistent, i.e., converge in probability toward µ and σ, respectively. Thus, by continuous
mapping and Slutskys’s theorem the consistency of ν̂0 follows.

Figure 12.2 visualizes the relative bias (Bias(θ̂)/θ) for the parameters θ = b, θ = ν0 depending
on the sample size n. The relative bias for ν0 is slightly larger than that for b. Both are larger
than 0.25 for n ≤ 5, larger than 0.1 for n ≤ 13 and larger than 0.01 for n ≤ 126 (not shown in
the graph).
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Figure 12.2: Relative bias of b̂ and ν̂0. The true parameters are b = 1.91, ν0 = 0.45,
and equations (12.3) and (12.4) are used.

12.1.1.2 ML estimators: Asymptotic distribution

Recall from Section 9.3.3 that under certain regularity conditions the asymptotic distribution of
ML estimators is normal with the variance determined by the inverse of the Fisher-information
matrix. Here, we let D denote an inverse Gaussian distributed random variable and investigate
the asymptotic variances of the ML estimators b̂ and ν̂0. Using this parametrization, we
have η(b, ν0) = (−ν2

0/2,−2b2) in the exponential family representation of the IG distribution.
The existence and continuity of the derivatives of η are easy to see as well as its injectivity.
The nonsingularity of the covariance matrix of t(D) was shown in Section 9.3.3. Therefore,
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12. The HBM: Parameter estimation

the regularity conditions are met, and the asymptotic variance of the asymptotic normal
distribution of the estimators is given by the diagonal entries of the inverse Fisher-information
matrix I(b, ν0). The means of the asymptotic normal distribution are the true parameter
values b and ν0, respectively.
The density log f IG

2b/ν0,
√

2b/ν30
(d) of the inverse Gaussian distribution with parameters 2b/ν0

and
√

2b/ν3
0 is given by

log f IG

2b/ν0,
√

2b/ν30
(d) = log(2b)− (1/2)log(2πd)− ν2

0(d− 2b/ν0)2

2d
.

As for the IG distribution the regularity conditions for equation (9.9) to hold are fulfilled, the
Fisher-information matrix for an IG(2b/ν0,

√
2b/ν3

0)-distributed random variable D hence is
given by

I(b, ν0) := −E

 ∂2

∂b2
log f IG

2b/ν0,
√

2b/ν30
(D) ∂2

∂b∂σ log f IG

2b/ν0,
√

2b/ν30
(D)

∂2

∂σ∂b log f IG

2b/ν0,
√

2b/ν30
(D) ∂2

∂ν0
log f IG

2b/ν0,
√

2b/ν30
(D)


= −E

[
− 1
b2
− 4

D 2
2 −D

]
=

[2ν0
b + 2

b2
−2

−2 2b
ν0

]
.

In the last line, we plugged in E[1/D] = ν0/2b+ 1/4b2 (Prop. 8.8).
We invert the Fisher-information matrix I(b, ν0), divide by n and obtain for the asymptotic
variances of the estimators b̂ML and ν̂ML

0 the values

Var
(
b̂ML

)
≈ b2

2n
Var

(
ν̂ML

0

)
≈ ν2

0 + ν0/b

2n
.

12.1.2 UMVU estimators

As with the estimators µ̂ and σ̂ in the HMM, we introduce here UMVU estimators to correct
the bias of the ML estimators for the border and drift parameter applying Lemma 9.9 again.
However, we do not recommend using these estimators in practice as the HBMc with the
UMVU estimates of b and ν0 produces a dominance time distribution with a bias in µ and σ
(and our key aim is to reproduce the empirical behavior of the dominance times, where we ”see”
the expectation µ and the standard deviation σ and not the border and drift parameters). We
explain that in detail. Recall that ML estimation of b and ν0 leads to an unbiased estimate µ̂.

Corollary 12.4. UMVU estimators of b and ν0
Let d be a realization of n ≥ 3 IG(2b/ν0,

√
2b/ν3

0)-distributed random variables D. The UMVU
estimators of b and ν0 are given by

b̂UMVU =
Γ(n/2− 1/2)√

2Γ(n/2− 1)

1√
v
× F

(
−1

2
, 0;

n

2
− 1;− d̄v

n

)
,

ν̂0
UMVU =

√
2

Γ(n/2− 1/2)

Γ(n/2− 1)

1

d̄
√
v
× F

(
−1,−1

2
;
n

2
− 1;− d̄v

n

)
,

with d̄ as the sample mean and v defined in equation (9.5). F () is the hypergeometric function
(Definition 9.8).
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12. The HBM: Parameter estimation

Proof : The assertion for b follows by the relation b =
√

µ3

σ2 /2 (Proposition 8.6) and by

setting α = −1
2 , β = 0 and τ = −1

2 in Lemma 9.9. For ν0 note ν0 =
√

µ
σ2 , and set

α = 1, β = −1
2 and τ = −1

2 in the same Lemma. In both cases, we multiply in equation (9.6)
with the reciprocal of the terms involving the Gamma function and exploit the relationship(

2nµ2

σ2π

)1/2
exp

(
nµ2

σ2

)
K1/2

(
nµ2

σ2

)
= 1 (Iwase and Seto, 1983) as well as Kα(x) = K−α(x) for

x ∈ R and α ∈ R. In detail, this means for b

E
[

1√
v
F

(
−1

2
, 0;

n

2
− 1;− d̄v

n

)]
=

Γ(n/2− 1/2 + τ)

Γ(n/2− 1/2)

√
2b

⇒ E
[

Γ(n/2− 1/2)√
2Γ(n/2− 1)

1√
v
F

(
−1

2
, 0;

n

2
− 1;− d̄v

n

)]
= b,

where an analogous computation is necessary for ν0. The UMVU property follows by the
Lehmann-Scheffé-Theorem (Proposition 9.7) as the only random inputs of both estimators are
d̄ and v which build a complete and sufficient statistic for b and ν0 (Seshadri, 1993).

In the following, we explain why we propose not to use the UMVU estimators for b and ν0 in
practice. We perform the following step-wise simulation procedure with 10000 simulations in
each simulation step.

• Simulate an IG(2b/ν0,
√

2b/ν3
0) distributed random-variable, where

µ = 2b/ν0, σ =
√

2b/ν3
0 .

• Estimate the parameters b̂UMVU and ν̂0
UMVU.

• Simulate an IG

(
2b̂UMVU/ν̂0

UMVU,

√
2b̂UMVU/ν̂UMVU

0
3
)

distributed random-variable.

• Estimate the parameters µ̂UMVU and σ̂UMVU.

The estimators µ̂UMVU and σ̂UMVU should be close to µ and σ if the estimation procedure
works well.
Figure 12.3 visualizes for a constant mean µ and three different values of σ the drawback
of using the UMVU estimators for b and ν0. Estimating the UMVU estimators for b and ν0

and then resimulating the response pattern even for large n does not yield (when estimating)
the original parameters µ = 2b/ν0 and σ =

√
2b/ν3

0 . This can be explained by the following
observations

2b̂UMVU

ν̂UMVU
0

=
F (−1/2, 0;n/2;−d̄v/n)

F (−1,−1/2;n/2;−d̄v/n)
d̄ 6= d̄ = µ̂UMVU

√
2b̂UMVU

ν̂0
UMVU3 =

√
Γ(n/2− 1)2F (−1/2, 0;n/2;−d̄v/n)

2Γ(n/2− 1/2)2F (−1,−1/2;n/2;−d̄v/n)3
d̄3v 6= σ̂UMVU.

Thus, when using the UMVU estimators the visible response patterns cannot be reproduced
precisely. Therefore, we recommend using the ML estimators for b and ν0, which yield an
unbiased mean µ even though the estimators b̂ML and ν̂ML

0 themselves are biased.
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Figure 12.3: Drawback of using UMVU estimators for b and ν0. In the two-step
simulation procedure explained above inverse Gaussian random variables are simulated. The
UMVU estimates µ̂UMVU (light green) and σ̂UMVU (green) of the second simulation are for
different sample sizes n compared with the parameters µ and σ of the IG random variables of
the first simulation printed as horizontal lines (which per construction should correspond to µ
and σ of the IG random variables of step 2.). µ = 8 is constant over the panels, whereas σ
differs σ = 4.25 (A), σ = 8.5 (B), σ = 17 (C) causing different degrees of regularity of the
inverse Gaussian distribution.

12.1.3 Moment estimators

The moment estimators for the b, ν0-parametrization of the IG distribution are given by

b̂mom =
1

2

√
µ̂3

ˆσmom2 ν̂mom
0 =

√
µ̂

ˆσmom2

using the empirical standard deviation σ̂mom (given in Section 9.3.1.3). This follows from
Proposition 8.4. We will not use the moment estimators further as their relative bias and
relative errors are larger compared to the ML estimators (data not shown, comparable to
Figure 9.9).

12.2 Intermittent presentation: Parameter estimation

To estimate the HBMi parameter set ΘHBMi = (bS , ν
∗
S , bU , ν

∗
U , b̃S , b̃U , ν

∗
B, π

∗
start,S) we maximize

the log-likelihood of the model directly.

12.2.1 Direct numerical maximization of the log-likelihood

We start by discussing the key idea of the direct numerical maximization algorithm and
continue by a theoretical justification including a proof of the representation of the likelihood.
Then, details about scaling, constraints and starting values of the algorithm are given as well
as remarks on the inclusion of censored dominance times and the estimation implementation.
Finally, we explain that the assumption of constant drifts during blank display and presentation
period has negligible effects for the parameter estimation of the HBMi.

153



12. The HBM: Parameter estimation

12.2.1.1 Idea

The HBMi parameter set ΘHBMi = (bS , ν
∗
S , bU , ν

∗
U , b̃S , b̃U , ν

∗
B, π

∗
start,S) is estimated using maxi-

mum likelihood. The likelihood L is given by

L(d1, . . . , dn|ΘHBMi) ≈ αS(n) + αU (n), (12.5)

where the forward variable αj(i) := αj(i|ΘHBMi) := P(Di
1 = di1, Yi = j|ΘHBMi) denotes the

probability of observing (d1, . . . , di) and being in state j at time i. Lemma 12.6 shows the
correctness of equation (12.5). The approximation is due to the averaging of drifts during
blank display and stimulus presentation. The forward variables can be derived recursively by
(Rabiner, 1989; Turner, 2008)

αj(i) =


π∗start,jf

IG

2bj/ν∗j ,
√

2bj/ν∗j
3
(di), if i = 1,

f IG

2bj/ν∗j ,
√

2bj/ν∗j
3
(di)

∑
k∈{S,U}

αk(i− 1)p̃kj(di−1), if i > 1,
(12.6)

with j ∈ {S,U}, which is shown in Lemma 12.5. Details on the maximization algorithm can
be found in the following two subsections. After estimation of ΘHBMi, the estimates ν̂S , ν̂U
and ν̂B can be obtained as follows using equation (11.2) and the estimate of ν0 from (12.1)

ν̂S =
(lp + lb)ν̂

∗
S − lpν̂0

lb
, ν̂U =

(lp + lb)ν̂
∗
U − lpν̂0

lb
and ν̂B =

(lp + lb)ν̂
∗
U

lb
.

12.2.1.2 Theoretical justification

In this subsection we first prove the correctness of the terms for the forward variables in
equation (12.6). Then, we prove that the expression for the model likelihood given the set of
model parameters ΘHBMi in equation (12.5) is correct.
To derive terms for the forward variables and thereby prove equation (12.6), we adjust Lemma
9.12 a) properly.

Lemma 12.5. Forward variables in the HBMi
It holds for j ∈ {S,U}

αj(1) = π∗start,jf
IG

2bj/ν∗j ,
√

2bj/ν∗j
3
(d1) and

αj(i+ 1) = f IG
2bj/ν∗j ,

√
2bj/ν∗j

3
(di+1)

∑
k∈{S,U}

αk(i)p̃kj(di) for i = 1, . . . , n− 1.

Proof : The claim is shown inductively, where the case i = 1 is trivial. For i→ i+ 1 it holds

αj(i+ 1) = P(Di+1
1 = di+1

1 , Yi+1 = j|ΘHBMi)

= P(Di+1 = di+1|Di
1 = di1, Yi+1 = j,ΘHBMi)P(Di

1 = di1, Yi+1 = j|ΘHBMi)

= f IG

2bj/ν∗j ,
√

2bj/ν∗j
3
(di+1)·∑

k∈{S,U}

P(Di
1 = di1, Yi = k|ΘHBMi)P(Yi+1 = j|Yi = k,Di = di, D

i−1
1 = di−1

1 ,ΘHBMi)

= f IG

2bj/ν∗j ,
√

2bj/ν∗j
3
(di+1)

∑
k∈{S,U}

αk(i)p̃kj(di),
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12. The HBM: Parameter estimation

where in the third line the conditional independence and the Markov property for the HBMi
(equations (11.8) and (11.9)) were applied. In the last line, we made use of the definitions of
αk(i) and p̃kj(di).

Note that in the HBMi the joint probability of observing the i-th dominance time di and the
state transition from Yi = k to Yi+1 = j given the state Yi = k can be written as

P(Di = di, Yi+1 = j|Yi = k) = P(Di = di|Yi = k) · P(Yi+1 = j|Di = di, Yi = k)

≈ f IG

2bk/ν
∗
k ,
√

2bk/ν
∗
k
3(di)p̃kj(di), (12.7)

where the approximation is due to the non-constant drifts. Now, we use this insight to write
the model likelihood in matrix notation.
We denote the starting distribution by π∗start = (π∗start,S , π

∗
start,U ), the emission matrix by E(di)

with

E(di) :=

f IG

2bS/ν
∗
S ,
√

2bS/ν
∗
S
3
(di) 0

0 f IG

2bU/ν
∗
U ,
√

2bU/ν
∗
U

3
(di),

 ,
and the transition matrix T̃ (di) is defined as

T̃ (di) :=

[
1− Φν∗Sdi,

√
di

(bS) Φν∗Sdi,
√
di

(bS)

1− Φ−ν∗Udi,
√
di

(bU ) Φ−ν∗Udi,
√
di

(bU )

]
,

where the entries are the state transition probabilities dependent on the dominance time di.
Using these matrix notations and the idea shown in equation (12.7), the approximate complete
likelihood L̃ (which neglects the averaging of drifts) is given by (for a similar expression for
the HMM likelihood compare equation (9.10))

L̃(d1, . . . , dn|ΘHBMi) = π∗startE(d1)T̃ (d1)E(d2)T̃ (d2) . . . E(dn−1)T̃ (dn−1)E(dn)(1, 1)T

= π∗start

n−1∏
j=1

(
E(dj)T̃ (dj)

)
E(dn)(1, 1)T . (12.8)

Now, we prove the representation of the likelihood given in equation (12.5). To omit approxi-
mation signs, we use L̃ instead of L.

Lemma 12.6. Likelihood of the HBMi
Let (di)i=1,...,n be the observed data of a HBMi with parameter set
ΘHBMi = (bS , ν

∗
S , bU , ν

∗
U , b̃S , b̃U , ν

∗
B, π

∗
start,S). Furthermore, let αj(S) and αj(U) be

the forward variables. Then, then approximate likelihood given in (12.8) can also be written as

L̃(d1, . . . , dn|ΘHBMi) = αS(n) + αU (n).

Proof : The assertion is shown by induction over i. Let i = 1. We have

αS(1) + αU (1) = π∗start,Sf
IG

2bS/ν
∗
S ,
√

2bS/ν
∗
S
3(d1) + π∗start,Uf

IG

2bU/ν
∗
U ,
√

2bU/ν
∗
U

3(d1) = π∗startE(d1)(1, 1)T .
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Assume the assertion is fulfilled for a fixed i. We show the induction step i→ i+ 1:

αS(i+ 1) + αU (i+ 1)

Lemma 12.5
= (αS(i)p̃SS(di) + αU (i)p̃US(di))f

IG

2bS/ν
∗
S ,
√

2bS/ν
∗
S
3(di+1)

+ (αS(i)p̃SU (di) + αU (i)p̃UU (di))f
IG

2bU/ν
∗
U ,
√

2bU/ν
∗
U

3(di+1)

= (αS(i), αU (i))

[
p̃SS(di) p̃SU (di)
p̃US(di) p̃UU (di)

]f IG

2bS/ν
∗
S ,
√

2bS/ν
∗
S
3
(di+1) 0

0 f IG

2bU/ν
∗
U ,
√

2bU/ν
∗
U

3
(di+1)

 (1, 1)T

= (αS(i), αU (i))T̃ (di)E(di+1)(1, 1)T

I.H.
= π∗start

i−1∏
j=1

(
E(dj)T̃ (dj)

)
E(di)T̃ (di)E(di+1)(1, 1)T = π∗start

i∏
j=1

(
E(dj)T̃ (dj)

)
E(di+1)(1, 1)T

= L̃(d1, . . . , di, di+1|ΘHBMi),

where in the next-to-last line we made use of the induction hypothesis

αS(i) + αU (i) = π∗start

i−1∏
j=1

(
E(dj)T̃ (dj)

)
E(di)(1, 1)T which also writes as

(αS(i), αU (i)) = π∗start

i−1∏
j=1

(
E(dj)T̃ (dj)

)
E(di).

12.2.1.3 Details and starting values

Recall that the likelihood of the whole model given the data and the parameter vector ΘHBMi

is approximately
L(d|ΘHBMi) ≈ αS(n) + αU (n),

using the forward variables αj(i) derived recursively in equation (12.6). Note that we suppress
dependence on the parameters ΘHBMi for convenience. In practice, we need to avoid underflow
when calculating αj(i). To that end the forward variables are normalized such that

∑
j αj(i) = 1

for all time points i, using the following steps (e.g., Turner, 2008) and similar to the scaling
for the HMM forward variables (page 98). For j ∈ {S,U},

α∗j (1) := αj(1), c(i) := α∗S(i) + α∗U (i), α̃j(i) := α∗j (i)/c(i),

α∗j (i) := f IG

2bj/ν∗j ,
√

2bj/ν∗j
3
(di)

∑
k∈{S,U}

α̃k(i− 1)p̃kj , i > 1.

The likelihood then derives as

L(d|ΘHBMi) ≈
n∏
i=1

c(i)(α̃S(n) + α̃U (n)) =

n∏
i=1

c(i), yielding logL ≈
n∑
i=1

log(c(i)). (12.9)

Parameter estimation is then obtained by maximizing
∑

i log(c(i)), which is a function of the
model parameters ΘHBMi. To that end we apply the Newton-type algorithm (Dennis and
Schnabel, 1983) implemented in the R-function nlm() (explained on page 157). Alternatively
the COBYLA algorithm (Powell, 1994) for maximization under non-linear constraints can be
applied. Its idea and application is discussed in Appendix B.

156



12. The HBM: Parameter estimation

Next, we discuss the set of starting values {b(s)S , ν∗S
(s), b

(s)
U , ν∗U

(s), b̃
(s)
S , b̃

(s)
U , ν∗B

(s)} for the Newton-
type optimization algorithm. Let U := {µ̂15, µ̂30} and O := {σ̂15, σ̂30, 1.15σ̂30}, where µ̂k and
σ̂k denote the empirical mean and standard deviation of all dominance times larger than k
seconds. Thereby, we split the dominance times into longer and shorter ones by the fixed
borders 15 or 30 seconds. Then, we choose the initial values for bS and ν∗S from the sets

b
(s)
S ∈ {

√
µ3/σ2/2|µ ∈ U , σ ∈ O}, ν∗S

(s) ∈ {
√
µ/σ2|µ ∈ U , σ ∈ O}.

Depending on ν∗S
(s) and b

(s)
S , we choose b

(s)
U ∈ {0.01b

(s)
S , 0.05b

(s)
S , 0.15b

(s)
S } (as the bor-

der in the unstable state should be remarkably smaller than bS), b̃
(s)
S ∈ {b(s)S , 10b

(s)
S },

ν∗U (s) ∈ {1.01ν∗S
(s), 3ν∗S

(s), 7ν∗S
(s)} (as the drift in the unstable state should be larger than ν∗S),

furthermore ν∗B
(s) ∈ {0.1, 3} and b̃

(s)
U ∈ {−3, 0, 3} as b̃U can be positive or negative. All these

starting values were chosen also according to and have proven of value in extensive simulation
studies.
The value for π∗start,S = P(Y1 = S) is set to π̂∗start,S = 1 if d1 ≥ 45, π̂∗start,S = 0 if d1 ≤ 15,
and π̂∗start,S = 1/2 otherwise. Alternatively and comparable to the HMM the stationary
distribution can be used for the initial distribution, thereby reducing the number of parameters
by one. As this, however, requires numerical integration and increases the computational
effort considerably and the differences between the two approaches were negligible we used
the simpler rule.
The maximization algorithm is applied using all combinations of starting values. We then take
the set of parameter estimates which yields the highest log-likelihood and fulfills the following
constraints

A) ν̂U ≥ ν̂S ; B) 0 < b̂U ≤ b̂S ; C)
ˆ̃
bS > 0; D) ν̂B > 0;

E) µ̂∗S ≈ 2b̂S/ν̂
∗
S ≥ 0.98µ̂15; F) σ̂∗S ≈

√
2b̂S/ν̂∗S

3 < 1.20σ̂15.

Constraints A) to D) result from the model assumptions, E) prevents dominance times smaller
than 15 seconds to be considered for the estimation of the distribution of stable dominance
times, analogously to the HMM procedure. Constraint F) prevents too big estimates of
standard deviations, which would yield implausible results.
In cases in which only dominance times larger than 30 seconds are observed, we apply the
algorithm described for the HBMc, where bS , ν

∗
S are estimated like in Section 12.1.1 and b̃S is

set to zero. In cases in which only dominance times up to 30 seconds are observed, we proceed
analogously, where bU , ν

∗
U are estimated like in Section 12.1.1 and set b̃U = 1010. In either

case we set ν∗B = 10 and do not estimate the other variables.
To derive confidence intervals for the HMM parameters (block) bootstrap approaches are
thinkable (e.g., Efron and Tibshirani, 1994; Scholz, 2007).

Nonlinear optimization using nlm()

The log-likelihood function (12.9) is maximized numerically using the nlm()-command in
R. Here, we describe the Newton-type algorithm implemented in this function briefly and
refer for any details to Dennis and Schnabel (1983). Note that the algorithm performs global
minimization of a function f : Rn → R such that we minimize the negative log-likelihood.
Traditionally, the Newton method is used to find roots of a given function. As a necessary
condition for a global minimum of f is that the derivative (i.e., the gradient) vanishes at the
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minimum, finding the minimum is equivalent to finding the root of its derivative. Now, assume
we are in the k-th iteration step. The key idea is to improve the current estimate xk as follows:
xk+1 = xk + λkpk, where λk is a step width and pk is a descent direction. Following Dennis
and Schnabel (1983) pk is chosen in each step as pk := −H−1

k ∇f(xk), where H−1
k denotes an

inverse of the Hessian matrix and ∇ denotes the gradient. Note that in case of an unknown
gradient or Hessian matrix numerical approximation methods are used. The step width is
chosen by a backtracking line search (Algorithm 6.3.5 in Dennis and Schnabel (1983)) with
ζ ∈ (0, 1/2), 0 < l < r < 1:

λk :=1;
while f(xk+λkpk) > f(xk) + ζλk∇f(xk)

T pk , do
λk := ρλk for some ρ ∈ [l, r] ;
xk+1 = xk + λkpk ;

The condition in the while-loop ensures that the decrease in the function is not too small
compared to the step width. ζ is typically chosen as 10−4. Detailed instructions how to choose
ρ are given by Dennis and Schnabel (1983). The algorithm stops if the relative gradient is
close to zero, the difference between two iterates is very small, or the number of iterations has
exceeded some limit.

Censored dominance times

Including the censored last dominance time dn+1 into the estimation is straightforward.
For j ∈ {S,U} the forward variables α̃j(1), . . . , α̃j(n) remain unchanged, and α∗j (n + 1) is
introduced follows

α∗j (n+ 1) =

(
1− F IG

2bj/ν∗j ,
√

2bj/ν∗j
3
(dn+1)

) ∑
j∈{S,U}

p̃ij(dn)α̃∗s(n)

and normed to obtain α̃j(n + 1). Thereby, c(n + 1) = α∗S(n + 1) + α∗U (n + 1). Then, the
resulting log-likelihood

∑
i log(c(i)) is maximized subject to the constraints A)-F) given above

on page 157.

Remark on the estimation implementation

The computation of the forward variables αj(i) in the estimation of the HBMi should – due to
the for-loop – be transferred to C++ with the inverse Gaussian and normal weights as input (as
explained on page 100 for the HMM). The computational effort using a R- and a C++-function
for the forward algorithm is presented in Figure 12.4. Again, the C++-implementation is
remarkably faster.

12.2.1.4 Exact distribution of hitting times in the HBMi

We assume constant drifts ν∗U and ν∗S in the estimation procedure described here although per
construction of the HBMi the drifts of P during the presentation phase and the blank display
differ between νS , νU and ν0. However, an incorporation of the different drifts increases the
mathematical efforts and leads to very complicated mathematical terms not estimable using
standard approaches. Nevertheless, our simplifying approach is justified by two reasons.
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Figure 12.4: Comparison of the computation times for the estimation of the
HBMi. Red points show the mean computation time in ten trials with R and yellow points
the mean computation times using C++. We used simulated response patterns of parameter
combination C in Table 12.2. The axes are logarithmic due to the different magnitudes.

First, compared to the overall mean of the hitting time in the stable state of, in most cases,
more than 100 seconds, the proportion of a difference between hitting during blank display
(lb = 0.8 seconds in the experiment of Schmack et al. (2015)) and hitting during presentation
(lp = 0.6 seconds) is very small. In other words, because dominance times usually span multiple
trials of duration lp+ lb, the approximation is very close. In addition, the marginal distribution
of P at multiples of such intervals lp+ lb is identical to the marginal distribution of a Brownian
motion with drift ν∗S at these time points, and the differences can only be observed in the
meantime (as already explained in Section 11.2.3).
Second, the influence of the different drifts in the unstable state is larger as the dominance
times are shorter. However, the start of a new dominance time relative to the start of the
presentation of the stimulus is not fixed but also varies between the beginning of a presentation
and the end of a blank display depending on the end of the last dominance time. Thus,
the effects of different starting positions and faster drift during blank displays compensate
each other resulting in a dominance time distribution similar to the one assuming a constant
drift ν∗U with comparable first moments. Moreover, the argument with the identical marginal
distribution at multiples of intervals lp + lb also holds during unstable phases.
As an example Figure 12.5 shows in panels A and C for the stable and the unstable phases of
the response pattern type D (Table 12.2) the dominance times resulting from simulating the
HBMi, where the drifts during blank display and presentation differ between νU , νS and ν0.
Additionally, in panels B and D the simulated dominance times when assuming a constant
drift ν∗S and ν∗U are printed. We note that not only the differences in the means and the
standard deviations are small (which are the parameters we intend to model) but also the
differences in the shape of the distributions. This justifies again our simplifying assumption
of constant drifts. Similar considerations hold for the non-constant drift of the background
process.
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Figure 12.5: Example of empirical distributions of stable (A,B) and un-
stable (C,D) dominance times generated by the HBMi (A,C) with drifts
ν0, νS, νU and by simulations (B,D) assuming a constant drift ν∗S and ν∗U , re-
spectively during blank display and presentation phase. The parameters were
bS = 5.42, ν∗S = 0.16, bU = 1.06, ν∗U = 0.65, ν0 = 0.27, νS = 0.01, νU = 1.16 (given
by the subject D in Table 12.2, page 162). The sample means are printed in all four panels as
dashed lines, and the estimated means and standard deviations are printed for each sample.
For all plots 10000 simulations were used to estimate the histograms.

160



12. The HBM: Parameter estimation

12.2.2 ML estimators: Asymptotic distribution

Due to the close connection between the estimators for the HMM and the HBMi, comparable
results concerning the asymptotic consistency and normality are expectable. However, technical
assumptions will be necessary. We leave these theoretical analyses for future work.

12.3 Parameters of example response patterns

In Figure 9.1 (page 70) response patterns typical for continuous and intermittent presentation
were shown. Here, we fit the HBM to these response patterns and show the estimated
parameters. These are the same examples as used for the HMM in Section 9.5, and they are
applied later on in this thesis for simulations.

12.3.1 Continuous presentation

Table 12.1 contains two estimated HBMc parameter combinations. We show in Figure 9.1
panels A and B the data where the parameters were estimated from and in Figure 9.2 A and
B the corresponding histograms of dominance times.

panel µ σ b ν

A 10.50 8.18 2.08 0.40
B 6.69 3.58 2.42 0.72

Table 12.1: Estimated exemplary HBMc parameter combinations. The correspond-
ing data response patterns are shown in Figure 9.1 A and B (page 70) .

12.3.2 Intermittent presentation

In Table 12.2 we show four estimated exemplary parameter combinations representing the
response patterns described by the HBMi. The original processes are shown in Figure 9.1,
and in Figure 9.2 C-F the corresponding histograms of dominance times are plotted.
In addition to the set of the original HBMi parameters, we use the set of derived parameters
(µ∗S , σ

∗
S , µ

∗
U , σ

∗
U , p

∗
SS , p

∗
UU , π

∗
start,S) that are more easily comparable to the HMM parameters.

The parameters were introduced in equations (11.4) and (11.7).

12.4 Precision of parameter estimates

The estimation precision in the HBMc is discussed in Section 12.4.1. Simulations to quantify
the quality of the fitting procedure for the HBMi are performed in Section 12.4.2, where also
a paragraph about censored dominance times is included.

12.4.1 HBMc

Simulation results for the HBMc are directly comparable to the simulated estimation precision
results of the HMM for continuous presentation with inverse Gaussian distributed dominance
times. Therefore, we refer to Section 9.6.2 (page 103) and note that sample size and CV are
critical for the estimation.
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panel bS ν∗S bU ν∗U b̃S b̃U ν∗B π∗start,S

C 41.70 0.45 1.84 0.73 49.70 2.39 0.31 1.00
D 5.42 0.16 1.06 0.65 4.56 1.13 0.04 1.00
E 52.60 0.28 NA NA 0.00 NA 10.00 1.00
F 13.50 0.38 1.00 0.38 110.30 0.77 1.08 1.00

panel µ∗S σ∗S µ∗U σ∗U p∗SS p∗UU π∗start,S

C 186.50 30.50 5.01 3.06 0.66 0.97 1.00
D 67.18 50.78 3.26 2.78 0.36 0.79 1.00
E 372.30 68.30 NA NA 1.00 NA 1.00
F 70.54 21.94 5.21 5.96 0.10 0.99 1.00

Table 12.2: Estimated exemplary HBMi parameter combinations. The corresponding
data response patterns are shown in Figure 9.1, panels C-F (page 70). The entry NA implies
that only the parameters of the stable state were estimated as only dominance times larger
than 30 seconds occur (compare Section 12.2.1.3).

12.4.2 HBMi

Precision of parameter estimates

The variability of the parameter estimates in the HBMi is studied analogously to the HMM
(compare Section 9.6), using the RE and the AE of the parameter estimates obtained in 1000
simulations of the 61 parameter combinations estimated from the empirical data set Schmack
et al. (2015). For the border parameters bS , bU , b̃S , b̃U , we use the RE, while for the typically
small drift parameters ν∗S , ν

∗
U , ν

∗
B, the AE is used. Again, one set of simulations uses the

time horizon of the empirical data, T1 = 1200 s (Figure 12.6 A), and a second simulation
was performed using T2 = 3600 s (Figure 12.6 B). According to the simulation results, the
precision of parameter estimation in the given parameter range is not always satisfactory for
the given parametrization (bS , bU , b̃S , b̃U , ν

∗
S , ν

∗
U , ν

∗
B), yielding average errors (i.e., mean REs

or AEs across all variables) smaller than 0.25 in only 24 out of 61 cases for the empirical time
horizon T1 and still only 44 out of 61 for the tripled sample size of T2. This suggests that
these raw parameters yield less reliable estimates because different combinations of b and ν
can yield the same mean stable dominance time. In contrast, the set of derived parameters
(µ∗S , σ

∗
S , µ

∗
U , σ

∗
U , p

∗
SS , p

∗
UU ) shows better properties. Figure 12.6 C and D show the median REs

for µ∗S , σ
∗
S , µ

∗
U , σ

∗
U and median AEs for p∗SS , p

∗
UU obtained in the 1000 simulations of length

T1 (panel C) and T2 (panel D). Concerning this parametrization, 51 parameter combinations
yielded average errors smaller than 0.25 across all variables for T1, while as many as 58 out
of 61 cases showed errors smaller than 0.25 for T2. Large average errors mainly occur for
small sample sizes n < 10 or large p∗SS > 0.8 (panels E and F). These simulations suggest that
the parametrization (µ∗S , σ

∗
S , µ

∗
U , σ

∗
U , p

∗
SS , p

∗
UU ) yields more reliable parameter estimates in the

HBMi than the original parametrization of borders and drifts.
Note that it may happen that no estimate can be found that satisfies all constraints. In the
1000 simulations for 48 out of the 61 subjects this never happened, for seven cases it happened
in less than one percent of the 1000 simulations, and for six subjects up to five percent of the
estimates cannot be calculated. Mostly this is due to a small sample size with short as well as
long dominance times.
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Figure 12.6: Precision of parameter estimates in the HBMi. For each of the 61
parameter constellations from the sample data set, 1000 HBMi simulations were performed.
(A) and (B): log(median(REs)) of the border parameters bS , bU , b̃S , b̃U , and log(median(AEs))
of the drift parameters ν∗S , ν

∗
U , ν

∗
B with T = 1200 (A) and T = 3600 (B). (C) and (D):

log(median(REs)) for the derived model parameters µ∗S , σ
∗
S , µ

∗
U , σ

∗
U and log(median(AEs)) for

the parameters p∗SS and p∗UU for T = 1200 (C) and T = 3600 (D). Parameter combinations
with mean errors < 0.25 across all variables plotted in black. (E) and (F): Corresponding
scatterplots of p∗SS and n where the black points correspond to mean errors < 0.25 across the
derived parameters.
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Censored dominance times: Precision of parameter estimates

The estimation precision of the estimation procedure including the censored dominance times
(recall page 158) can be evaluated using the same parametric bootstrap as described above.
The results are for most subjects comparable, i.e., the effect of including the censored last
dominance time is very small. Only for the subjects whose response patterns are described
using only the stable state the results for the non-censored estimation are better, i.e., yield
smaller median errors. This can be explained by the fact that the corresponding sample sizes
are small, and therefore the influence of the (less informative) censored dominance time is
large.

12.5 Viterbi algorithm for the HBMi

What is the ”single” best state sequence path of a HMM, i.e., the path maximizing
P(Y n

1 = yn1 , D
n
1 = dn1 |ΘHMM)? This question is answered by the Viterbi algorithm (Viterbi,

1967; Forney, 1973) using the estimated parameter set, i.e., after the parameter estimation. In
this section we show that for the HBMi the same technique can be applied to estimate the
most likely state sequence path Y n

1
∗. Thus, we are able to estimate the hidden state of each

dominance time given the estimated model parameters which is, for instance, important when
comparing the stable dominance times before an estimated state change to the other stable
dominance times. In the following, we first define the key variable and then present a brief
summary of the Viterbi algorithm closely following Rabiner (1989). Third, the correctness of
the Viterbi algorithm for the HBMi is proven. Fourth, the algorithm is evaluated in simulations
of the HBMi.
Inductively we define for j ∈ {S,U} and i = 1, . . . , n the variable wj(i) as follows

wj(1) := π∗start,jfj(d1), wj(i+ 1) :=

(
max

k∈{S,U}
wk(i)p̃kj(di)

)
fj(di+1). (12.10)

In Proposition 12.7 we prove for the HBMi that it holds

wj(i) = max
y1,...,yi−1

P(Y1 = y1, Y2 = y2, . . . , Yi = j,Di
1 = di1|ΘHBMi),

i.e., that wj(i) gives the likelihood of the most likely path considering the first i observations
and ending in state j at time i. Recall that di1i0 := {di0 , . . . , di1} where i0 < i1 and similarly
for D, y and Y .
After initializing the Viterbi algorithm consists of a recursion step, a termination step and
state sequence backtracking. The recursion step contains the derivation of wj(i) as in (12.10),
i.e., we search for each time the largest product of the likelihood of the current path and the
transition probability to the next state. For each i and j the argument maximizing (12.10)
has to be saved, for instance, by an array w. In the termination step of the algorithm we find
the maximum entry of wk(n) and its argmax, i.e., the last state y∗n of the most likely state
path given all data. Then, we successively trace back in time to find the i-th state y∗i of the
most likely state path (using the array w).
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The complete algorithm can be formalized as follows.

1. Initialization:

• wj(1) := π∗start,jfj(d1), j ∈ {S,U}
• wj(1) := 0

2. Recursion:

• wj(i) := maxk∈{S,U}(wk(i− 1)p̃kj(di−1))fj(di) 2 ≤ i ≤ n, j ∈ {S,U}
• wj(i) := argmaxk∈{S,U}(wk(i− 1)p̃kj(di−1))

3. Termination:

• L∗ := maxk∈{S,U}wk(n)

• y∗n := argmaxk∈{S,U}wk(n)

4. State sequence backtracking:

• y∗i := wy∗i+1
(i+ 1), i = n− 1, n− 2, . . . , 1

In the implementation the Viterbi algorithm is quite similar to the forward algorithm (Section
9.4.1) except for the maximization over previous states performed in the recursion step for
wj(i) which is done instead of summing as in Lemma 9.12 a).
Now, we prove the correctness of the Viterbi algorithm for the HBMi thereby for the sake
of simplicity neglecting that due to the non-constant drift fj(di) ≈ P(Di = di|Yi = j) and
p̃kj(di) ≈ P(Yi+1 = j|Yi = k, di). Sometimes, we only write di or yi instead of Di = di or
Yi = yi to abbreviate notation.

Proposition 12.7. HBMi: Viterbi recursion
Given the HBMi parameters ΘHBMi the joint probability of the most likely HBMi state path
ending in state j at observation number i and all the observations up to observation number i
is given by

max
y1,...,yi−1

P(Y i−1
1 = yi−1

1 , Yi = j,Di
1 = di1|ΘHBMi) = wj(i)

for i = 2, 3, . . . , n. For i = 1 it holds P(Y1 = j,D1 = d1|ΘHBMi) = wj(1).

Proof : We use the induction principle. For the base case, it holds

wj(1) = fj(d1)π∗start,j = P(D1 = d1|Y1 = j,ΘHBMi)P(Y1 = j|ΘHBMi)

= P(Y1 = j,D1 = d1|ΘHBMi)

as claimed.
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Now assume that the claim holds true for all times 1, . . . , i− 1. We show the induction step
i− 1 → i where we use the induction hypothesis in the second line and omit the condition
ΘHBMi in each P(. . .) for convenience

wj(i) = fj(di) max
k∈{S,U}

p̃kj(di−1)wk(i− 1)

= fj(di) max
k∈{S,U}

p̃kj(di−1) max
y1,...,i−2

P(Yi−1 = k, Y i−2
1 = yi−2

1 , Di−1
1 = di−1

1 )

= max
k∈{S,U}

max
yi−2
1

fj(di)p̃kj(di−1)P(Yi−1 = k, Y i−2
1 = yi−2

1 , Di−1
1 = di−1

1 )

= max
k∈{S,U}

max
yi−2
1

fj(di)P(Yi = j|Yi−1 = k,Di−1 = di−1)P(Yi−1 = k, Y i−2
1 = yi−2

1 , Di−1
1 = di−1

1 )

= max
k∈{S,U}

max
yi−2
1

fj(di)P(Yi = j|Yi−1 = k,Di−1
1 = di−1

1 , yi−2
1 )P(Yi−1 = k, yi−2

1 , di−1
1 )

= max
k∈{S,U}

max
yi−2
1

fj(di)P(Yi = j, Yi−1 = k,Di−1
1 = di−1

1 , Y i−2
1 = yi−2

1 )

= max
yi−1
1

fj(di)P(Yi = j,Di−1
1 = di−1

1 , Y i−1
1 = yi−1

1 )

= max
yi−1
1

P(Di = di|Yi = j)P(Yi = j,Di−1
1 = di−1

1 , Y i−1
1 = yi−1

1 )

= max
yi−1
1

P(Di = di|Y i−1
1 = yi−1

1 , Yi = j,Di−1
1 = di−1

1 )P(Yi = j,Di−1
1 = di−1

1 , Y i−1
1 = yi−1

1 )

= max
y1,...,yi−1

P(Y i−1
1 = yi−1

1 , Yi = j,Di
1 = di1).

In the following y∗i denotes the realization of the random variable Y ∗i for i = 1, . . . , n.

Proposition 12.8. HBMi: Viterbi traceback
The final state of the most likely state path of a HBMi is y∗n = argmaxk∈{S,U}wk(n).
If y∗i+1 is the (i+ 1)-th state of the most likely state path, then

y∗i = wy∗i+1
(i+ 1) = argmaxk∈{S,U}P(Y ∗i+1 = y∗i+1|Yi = k,Di = di,ΘHBMi)wk(i)

is the i-th state of the most likely state path (i = 1, . . . , n− 1).

Proof : First note that in the proof we omit the condition ΘHBMi in each P(. . .) for convenience.
By Proposition 12.7 we know that the last state of the most likely state sequence is given by

y∗n = argmaxk∈{S,U}wk(n) = argmaxk∈{S,U}max
yn−1
1

P(y1...n−1, Yn = k, d1...n).

Now, let i ∈ {1, . . . , n− 1} and y∗i+1 be the (i+ 1)-th state of the most likely state path. In
the following we show that argmaxk∈{S,U}P(Y ∗i+1 = y∗i+1|Yi = k,Di = di)wk(i) is the i-th state
of the most likely state path.
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argmaxk∈{S,U}P(Y ∗i+1 = y∗i+1|Yi = k,Di = di)wk(i)

= argmaxk∈{S,U}P(Y ∗i+1 = y∗i+1|Yi = k,Di = di) max
yi−1
1

P(Y i−1
1 = yi−1

1 , Yi = k,Di
1 = di1)

= argmaxk∈{S,U}max
yi−1
1

P(Y ∗i+1 = y∗i+1|Yi = k,Di = di)P(Y i−1
1 = yi−1

1 , Yi = k,Di
1 = di1)

= argmaxk∈{S,U}max
yi−1
1

P(Y ∗i+1 = y∗i+1|Yi = k, Y i−1
1 = yi−1

1 , di1)P(Y i−1
1 = yi−1

1 , Yi = k, di1)

= argmaxk∈{S,U}max
yi−1
1

P(Y ∗i+1 = y∗i+1, Yi = k, Y i−1
1 = yi−1

1 , Di
1 = di1)

= argmaxk∈{S,U}

[
max
yni+2

P(Y n
i+2 = yni+2, d

n
i+1|y∗i+1)

]
max
yi−1
1

P(Y ∗i+1 = y∗i+1, Yi = k, Y i−1
1 = yi−1

1 , di1)

= argmaxk∈{S,U}max
yi−1
1

max
yni+2

P(Y n
i+2 = yni+2, d

n
i+1|y∗i+1)P(Y ∗i+1 = y∗i+1, Yi = k, Y i−1

1 = yi−1
1 , di1)

= argmaxk∈{S,U} max
yi−1
1 ,yni+2

P(Y n
i+2 = yni+2, d

n
i+1|y∗i+1, Yi = k, yi−1

1 , di1)P(y∗i+1, Yi = k, yi−1
1 , di1)

= argmaxk∈{S,U} max
yi−1
1 ,yni+2

P(Y n
i+2 = yni+2, d

n
i+1, y

∗
i+1, Yi = k, Y i−1

1 = yi−1
1 , di1)

= argmaxk∈{S,U} max
yi−1
1 ,yni+2

P(Y n
i+2 = yni+2, y

∗
i+1, Yi = k, Y i−1

1 = yi−1
1 , dn1 ) = wY ∗i+1

(i+ 1) = y∗i ,

where the last line is the i-th state of the most likely state path.

In Figure 12.7 we present examples of the Viterbi path derived for the four response patterns
presented in Figure 9.1, panels C-F (page 70). Here, the estimated paths (indicated by the
background colors) agree closely with visual inspection as long dominance times are classified
stable and short dominance times are estimated as unstable.
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Figure 12.7: Estimated Viterbi paths. Response patterns of the four subjects of Table
12.2 (page 162) together with the estimated Viterbi paths of the HBMi. Panel A corresponds
to subject C, panel B to subject D and so on. Dominance times estimated as stable are colored
light gray and dominance times estimated as unstable are colored in a darker gray. The last
dominance time is censored and thus cannot be estimated by the Viterbi algorithm (white
background). The estimated path corresponds to visual inspection in all four cases.
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12. The HBM: Parameter estimation

Evaluation of the Viterbi algorithm

We briefly evaluate the Viterbi algorithm for the HBMi in simulations. Therefore, for each
of the 61 intermittent response patterns in the data set Schmack et al. (2015) n0 = 1000
HBMis are simulated, and the parameters as well as the Viterbi paths are estimated. As the
underlying states are known in simulations, we can compare the Viterbi-estimated hidden
states to the true states. We compute the quantity of false estimations ηk for each simulated
response pattern {Ξk}k=1,2,...,n0 as follows

ηk =
|{i : Y k

i 6= Ŷ k
i }|

nk
, (12.11)

where nk is the number of dominance times in Ξk, (Y k
i )i=1,2,...,nk denotes the hidden states

and (Ŷ k
i )i=1,2,...,nk denotes the estimated hidden states. Figure 12.8 shows for each subject

the mean value of ηk in 1000 simulations. Only for six of the 61 subjects more than five
percent of the states were estimated falsely (especially if the separation of stable and unstable
distributions was not clear-cut) and the median over all subjects is 0.7%. We conclude that
both the parameter estimation and the Viterbi algorithm for the HBMi yield convincing
results.
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Figure 12.8: Evaluation of the Viterbi algorithm. Mean percentage of falsely estimated
states ηk (12.11) by the Viterbi algorithm for each subject in 1000 simulations together with
the median (gray diamond) across all subjects and the 25%/75%-quantiles.
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Chapter 13

The HBM: Theoretical properties

Interpreting the perceptual changes as renewal points, the HBMc is an example of a renewal
process, whereas the HBMi may be understood as an alternating renewal process (Section
8.2.3.1). As with the HMM in Chapter 10 we derive here theoretical results concerning the
behavior of the point processes induced by the perceptual changes. These results can be used
for investigation of differences between clinical groups.
In Section 13.1 we first derive the distribution and (asymptotic) expectation of the number
of perceptual changes in a fixed interval during continuous presentation before deriving the
marginal density of the perception process P . In Section 13.2 first-passage and steady-state
results for the HBMi are given. Next, the number of changes as well as the residual time to
the next perceptual change are investigated. Moreover, marginal densities of the perception
and the background process are derived. Note that all results concerning the HBMi are only
approximate due to the deviation between the assumed constant drift in theoretical results
and the different drifts during blank display and presentation in the model. However, we omit
approximation signs here for convenience.
The key results given in this chapter are the steady-state distribution (Corollary 13.11) and
the theoretical (asymptotic) rate of changes of the HBMi (Proposition 13.13). Readers more
interested in the application may skip all other parts of this chapter.
In this chapter we understand ΞHBMc and ΞHBMi as the point processes on the non-negative
line generated by the points in time (t0, t1, t2, . . . , tn) of the perceptual reversals of the HBM
for continuous and for intermittent presentation, respectively. There, we use t0 = 0. Formally,
for the set of realized dominance times (d1, d2, . . . , dn) of a HBMc,

ΞHBMc := {0} ∪ {t ∈ R|
k∑
i=1

di = t, k = 1, 2, . . . , n} = {t0, t1, t2, . . . , tn}

and equivalently for the set of realized dominance times (d1, d2, . . . , dn) of a HBMi

ΞHBMi := {0} ∪ {t ∈ R|
k∑
i=1

di = t, k = 1, 2, . . . , n} = {t0, t1, t2, . . . , tn}.
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13. The HBM: Theoretical properties

As with the HMM Ỹt := (Ỹt)t≥0 is the hidden state at time t

Ỹt := j ∈ {S,U}|
k∑
i=1

di ≤ t <
k+1∑
i=1

di = t, Yk+1 = j, k = 0, 1, 2, . . . , n− 1,

= Yi on ti−1 ≤ t < ti,

with
∑0

i=1 di := 0. For a graph illustrating this definition, we refer to Figure 10.1 that shows
these definitions for the Hidden Markov Model. Note again that Ỹt is an alternating renewal
process with states S and U and thus also a regenerative process (Section 8.2.3.2).
In addition, note that ΞHBMi is not a continuous time Markov chain as the inverse Gaussian
distribution is not memoryless (as explained in more detail on page 108).

13.1 Continuous presentation

In this section we start by computing results on the expectation and distribution of the number
of perceptual reversals and on the residual time (Sections 13.1.1 and 13.1.2). Then, a result
on the asymptotic marginal density of the perception process P is proven (Section 13.1.3).

13.1.1 Number of changes

Transferring the corresponding results for the HMMc (Proposition 10.1 and Corollary 10.2)
to the HBMc, simple results for the number of changes in the HBMc in an interval of length
∆ > 0 can be stated. First, we assume that the interval starts with a perceptual change.
Second, we relax this assumption and state an asymptotic result in Corollary 13.2. The crude
stationarity of ΞHBMc in the limit is concluded. Recall that crude stationarity means that the
number of changes in an interval only depends on its length and not on the starting point
(Definition 8.14).

Proposition 13.1. Number of changes in the HBMc
Let (b, ν0) be the parameter set of a HBMc and I(∆) be a right-open interval with length ∆ ≥ 0
starting with a perceptual change. The number of perceptual changes in this interval N∗(∆)
has the following probability weights

w∗∆(j) := P(N∗(∆) = j) = F̃Mν0 (∆)(2jb)− F̃Mν0 (∆)(2(j − 1)b),

for j ≥ 1 and 0 else with F̃Mν0 (t)(m) as in (10.1). For ∆→∞ it holds for the expected number

of changes in the interval I(∆): E[N∗(∆)]
∆ −−→ 1

2b/ν0
.

Proof : As the HBMc just is a reparametrization of the HMMc this result is identical to
Proposition 10.1.

We skip the assumption of the interval I(∆) beginning with a perceptual change and show an
asymptotic result.
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Corollary 13.2. Crude stationarity of the HBMc
Contrary to Proposition 13.1 assume now that the start t of the right-open interval I(∆) with
length ∆ ≥ 0 does not coincide with a perceptual change. Then, it holds

lim
t→∞

P(N∗(∆) = j) =


P(Rc > ∆), if j = 0,
∆∫
0

w∗∆−∆r
(j)fRc(∆r)d∆r, if j ≥ 1,

with Rc as the asymptotic residual time with density fRc = 1/(2b/ν0)(1 − F IG

2b/ν0,
√

2b/ν30
) as

given in the next Corollary 13.3 and w∗∆ as given in Proposition 13.1.
For the expected value of changes, it again holds asymptotically

E[N∗(∆)]

∆
−−−−→
∆→∞

1

2b/ν0
,

and the resulting point process ΞHBMc is in the limit crudely stationary.

Proof : Analogous to the proof of Corollary 10.2.

13.1.2 Residual time

The residual time, i.e., the time span until the next percept change, is the next issue. We
show results for the density and the expectation.

Corollary 13.3. Residual time in the HBMc
Let ΞHBMc be the point process of a HBMc with parameters (b, ν0) and Rc be the asymptotic
residual time. Its expectation is given by

E[Rc] =
1

2ν2
0

+
b

ν0
,

and the distribution has the density fRc(x) = 1
2b/ν0

(
1− F IG

2b/ν0,
√

2b/ν30
(x)

)
.

Proof : This follows by exchanging µ and σ in Corollary 10.3 by b and ν0 using Proposition
8.6.

13.1.3 Marginal density of P

In the HBM the perception is determined by the perception process (Pt)t. Here, we focus on
its marginal distribution and derive a limit result for t → ∞ which however also holds for
small t as we discuss. In Proposition 13.6 we show that the marginal limit distribution of P
has also small weights outside the borders as overshooting is allowed. To simplify notation in
the proof we introduce the error function. The error function is given by an integral (e.g.,
Abramowitz and Stegun, 1972).

Definition 13.4. Error function
For x ∈ R the error function erf is defined as follows

erf(x) :=
2√
π

x∫
0

exp(−t2)dt.
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Remark 13.5. Connection of the error function to the normal distribution
The error function is connected to the distribution function Φ(x) of the standard normal
distribution (Abramowitz and Stegun, 1972), which can be shown via change of variables:

erf(x) = 2Φ(
√

2x)− 1.

The name of the error function originates from its main application area (Kilian and Weber,
2003): In measurement theory the value of the error function at x

σ
√

2
gives for x > 0 the

probability that a measurement has a distance of at most x from the mean value assuming
normally distributed errors with standard deviation σ > 0.
Now, we are ready to state the proposition about the marginal density of P .

Proposition 13.6. Marginal density of P
Let (Pt)t be the perception process in the HBMc with border b and drift ν0 and P0 = −b. fPt(x)
is the marginal density of the position Pt at a fixed time t. Letting t→∞ it holds

fP (x) := lim
t→∞

fPt(x) =


1
2b −

1
4b exp(2ν0(x− b))− 1

4b exp(−2ν0(x+ b)), if − b ≤ x ≤ b,
1
4b [exp(−2ν0(x− b))− exp(−2ν0(x+ b))], if x > b,
1
4b [exp(2ν0(x+ b))− exp(2ν0(x− b))], if x < −b.

Proof : The proof follows a case-by-case analysis.

First case: |x| < b
We seek to find an expression for fPt(x) that is easy to handle. Let therefore Et denote
the distance covered by Pt, i.e., regardless of the sign of the drift Et is the increment of the
Brownian motion W (Model 11.1) in the interval [0, t] plus ν0t (compare also Figure 13.1 for
the exchange of the position Pt by the distance Et). Moreover, let Mt denote the maximum
distance reached until t. Note that different distances Et lead to the same position x of the
perception process (visualized in Figure 13.1 by the gray and red lines). In particular, starting
in −b a position x is reached when for j = 1, 2, . . . a distance of x+ b+4(j−1)b or 4jb− (x+ b)
is covered by the distance process. To consider the different drift signs of P , we have to claim
that the maximum value Mt of the process has not exceeded the border 4(j − 1)b + 2b in
the first case of positive drift (because otherwise the sign of the drift would have changed
such that the translation of P to E gets incorrect) and the border 4jb in the second case of
negative drift. Therefore, it holds for y := x+ b

fPt(xt) =
∞∑
j=1

P(Et = 4(j − 1)b+ y,Mt < 4(j − 1)b+ 2b) + P(Et = 4jb− y,Mt < 4jb),

(13.1)

where the substitution of x by y mainly is for notational reasons.
Next, we derive in step 1 expressions for the first and the second summand in equation (13.1).
Then, we derive in step 2 upper and lower integral bounds for the infinite sum about these
two summands using different inequalities for exponential functions. We will observe that the
limits for t→∞ of the upper and the lower bound are identical such that the we can prove
the assertion for the case |x| < b.
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Figure 13.1: Transferring the perception process Pt (A) to the distance process
Et (B). Et is the distance Pt covered since the start of the experiment, i.e., regardless of the
changes of the sign of the drift. One dominance time corresponds to a covered distance of 2b.
The variable y := x+ b is highlighted, and the position x is marked by a gray line in panel A.
In panel B all distances leading to the position x are marked gray and the points in time where
such a distance is reached are visualized by red lines.

Step 1: Expressions for the summands in (13.1)
We need the following result (Theorem 7.2.1 in Shreve, 2004): For w ≤ m and m ≥ 0 the joint
density f̃ of the position Wt of a Brownian motion with drift ν0 and its maximum Mt at time
t > 0 is given by

f̃M(t),W (t)(m,w) =
2(2m− w)

t
√

2πt
exp

(
ν0w −

1

2
ν2

0 t−
1

2t
(2m− w)2

)
.

Otherwise, f̃M(t),W (t)(m,w) = 0.
Thus, it holds for the terms in equation (13.1)

P(Et = 4(j − 1)b+ y,Mt < 4(j − 1)b+ 2b)

=

4(j−1)b+2b∫
4(j−1)b+y

2(2m− 4b(j − 1)− y)

t
√

2πt
exp

(
ν0(4(j − 1)b+ y)− 1

2
ν2

0 t

− 1

2t
(2m− 4(j − 1)b− y)2

)
dm

= − 1√
2πt

exp

(
ν0(4(j − 1)b+ y)− 1

2
ν2

0 t−
1

2t
(2m− 4(j − 1)b− y)2

)∣∣∣∣4(j−1)b+2b

m=4(j−1)b+y

= − 1√
2πt

exp

(
− 1

2t

(
−4m(4b(j − 1) + y) + (4b(j − 1)− tν0 + y)2 + 4m2

))∣∣∣∣4(j−1)b+2b

m=4(j−1)b+y

=
1√
2πt

exp

(
− 1

2t
(4(j − 1)b− tν0 + y)2

)
− 1√

2πt
exp

(
− 1

2t
(−4(2b+ 4(j − 1)b)(4b(j − 1) + y)

+(4b(j − 1)− tν0 + y)2 + 4(2b+ 4(j − 1)b)2

))
(13.2)
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and

P(Et = 4jb− y,Mt < 4jb)

=

4jb∫
4jb−y

2(2m− 4jb+ y)

t
√

2πt
exp

(
ν0(4jb− y)− 1

2
ν2

0 t−
1

2t
(2m− 4jb+ y)2

)
dm

= − 1√
2πt

exp

(
ν0(4jb− y)− 1

2
ν2

0 t−
1

2t
(2m− 4jb+ y)2

)∣∣∣∣4jb
m=4jb−y

= − 1√
2πt

exp

(
− 1

2t

(
−4m(4jb− y) + (−4jb+ tν0 + y)2 + 4m2

))∣∣∣∣4jb
m=4jb−y

=
1√
2πt

exp

(
− 1

2t
(−4jb+ tν0 + y)2

)
− 1√

2πt
exp

(
− 1

2t

(
16jb(y − 4jb) + (−4jb+ tν0 + y)2 + 64j2b2

))
. (13.3)

Step 2: Lower and upper bounds for the sums over (13.2) and (13.3)

We investigate the behavior of the sum over the first summand in (13.2). This infinite sum
over j can be approximated by a lower and an upper integral bound. We explain this by using
different inequalities for exponential functions. Note that exp(−(cbwc+a)2) ≤ exp(−(cw+a)2)
for cw + a ≤ 0⇔ w ≤ −a/c and exp(−(cbwc+ a)2) ≤ exp(−(cw − 1 + a)2) for
cw + a > 1 ⇔ w > (1 − a)/c. There, we use the floor function bwc := max{k ∈ Z | k ≤ w}
and w, c > 0, a ∈ R. With w = z, c = 4b and a = −4b + y − tν0 and the inequality
exp(−(cbwc + a)2) ≤ exp(0) = 1 especially for w ∈ (−a/c; (1 − a)/c] we find for the first
summand of (13.2) the following upper bound

1√
2πt

∞∑
j=1

exp

(
−((j − 1)4b− tν0 + y)2

2t

)

=
1√
2πt

∞∫
1

exp

(
−(bzc4b− 4b+ y − tν0)2

2t

)
dz

=
1√
2πt


tν0−y

4b
+1∫

1

exp

(
−(bzc4b− 4b− tν0 + y)2

2t

)
dz



+
1√
2πt


tν0−y+1

4b
+1∫

tν0−y
4b

+1

exp

(
−(bzc4b− 4b− tν0 + y)2

2t

)
dz



+
1√
2πt


∞∫

tν0−y+1
4b

+1

exp

(
−(bzc4b− 4b− tν0 + y)2

2t

)
dz
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≤ 1√
2πt


tν0−y

4b
+1∫

1

exp

(
−((z − 1)4b− tν0 + y)2

2t

)
dz +

tν0−y+1
4b

+1∫
tν0−y

4b
+1

exp(0)dz



+
1√
2πt


∞∫

tν0−y+1
4b

+1

exp

(
−((z − 1/(4b)− 1)4b− tν0 + y)2

2t

)
dz


=

1√
2πt

√
πt√
32b

erf

(
1√
2t

(4(z − 1)b− tν0 + y)

)∣∣∣∣
tν0−y

4b
+1

z=1

+
1√
2πt

1

4b

+ lim
r→∞

1√
2πt

√
πt√
32b

erf

(
1√
2t

(4(z − 1/(4b)− 1)b− tν0 + y)

)∣∣∣∣r
z=

tν0−y+1
4b

+1

=
1

8b
(1− erf((y − tν0)/

√
2t)) +

1

4b
√

2πt
(13.4)

t→∞−−−→ 1

4b
,

where we start the sum and the integral at 1, but effectively at 0 due to j−1 and z−1. Moreover,
we use erf(0) = 0 and limx→−∞ erf(x) = −1, limx→∞ erf(x) = 1 (e.g., Abramowitz and Stegun,

1972) and the abbreviation
∞∫
1

f(x)dx := limX→∞
X∫
1

f(x)dx for arbitrary f : R→ R.

Concerning the lower bound for the first summand in (13.2), we use the inequalities
exp(−(cbwc+ a)2) ≥ exp(−(cw + a)2) for cbwc+ a > 0
and exp(−(cbwc+ a)2) ≥ exp(−(cw − 1 + a)2) for cbwc+ a ≤ 0.
We conclude

1√
2πt

∞∑
j=1

exp

(
−((j − 1)4b− tν0 + y)2

2t

)

=
1√
2πt

∞∫
1

exp

(
−(bzc4b− 4b− tν0 + y)2

2t

)
dz

≥ 1√
2πt


d tν0−y

4b
+1e∫

1

exp

(
−((z − 1/(4b)− 1)4b− tν0 + y)2

2t

)
dz



+
1√
2πt


∞∫

d tν0−y
4b

+1e

exp

(
−((z − 1)4b− tν0 + y)2

2t

)
dz


=

1√
2πt

√
πt√
32b

erf

(
1√
2t

(4(z − 1/(4b)− 1)b− tν0 + y)

)∣∣∣∣d
tν0−y

4b
+1e

z=1

+ lim
r→∞

1√
2πt

√
πt√
32b

erf

(
1√
2t

(4(z − 1)b− tν0 + y)

)∣∣∣∣r
z=d tν0−y

4b
+1e
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=
1

8b
(1− erf((−1− tν0 + y)/

√
2t))

+
1

8b

(
erf

(
4(d tν0−y4b + 1e − 1/(4b)− 1)b− tν0 + y

√
2t

))

− 1

8b

(
erf

(
4(d tν0−y4b + 1e − 1)b− tν0 + y

√
2t

))
t→∞−−−→ 1

4b
,

with the ceiling function dwe := min{k ∈ Z : k ≥ w}.
Hence,

∞∑
j=1

1√
2πt

exp

(
− 1

2t
(4(j − 1)b− tν0 + y)2

)
t→∞−−−→ 1

4b
.

Analogously we show

∞∑
j=1

1√
2πt

exp

(
− 1

2t
(−4jb+ tν0 + y)2

)
t→∞−−−→ 1

4b

which is the first summand in equation (13.3).
To bound the second summands in (13.2) and (13.3) we again require bounds for exponential
functions. When using integrals to represent the sums over these summands, the argument is
of the type exp(−(bzc2z1 + bzcz2)) for z1 > 0, z2 ∈ R and z > 0. Depending on z1 and z2 we
show two possibilities how to bound these expressions (one for small z, one for large z). First,
we observe

exp(−(bzc2z1 + bzcz2)) ≤ exp(−(z2z1 + zz2))⇔ bzc2z1 + bzcz2 ≥ z2z1 + zz2.

For z2 ≥ 0 the display above never holds true. Assuming z2 < 0 we obtain

bzc2z1 + bzcz2 ≥ z2z1 + zz2 ⇔
z1

z2
≥ z − bzc
bzc2 − z2

=
−1

bzc+ z
. (13.5)

It follows 2z− 1 < bzc+ z ≤ 2z, and therefore z < −z2/(2z1) is a sufficient condition for strict
inequality.
The second bound derives as

exp(−(bzc2z1 + bzcz2)) ≤ exp(−((z − 1)2z1 + (z − 1)z2))

⇔ bzc2z1 + bzcz2 ≥ (z − 1)2z1 + (z − 1)z2.

For z2 ≥ 0 the display above always holds true. Assuming z2 < 0 we obtain

bzc2z1 + bzcz2 ≥ (z − 1)2z1 + (z − 1)z2 ⇔
z1

z2
≤ z − 1− bzc
bzc2 − (z − 1)2

=
−1

bzc+ z − 1
. (13.6)

It follows 2z− 2 < bzc+ z ≤ 2z− 1, and therefore z > −z2/(2z1) + 3/2 is a sufficient condition
for strict inequality.
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Our aim is to find an upper border for the second summand in (13.2), which is

∞∑
j=1

1√
2πt
×

exp

(
− 1

2t

(
−4(2b+ 4(j − 1)b)(4b(j − 1) + y) + (4b(j − 1)− tν0 + y)2 + 4(2b+ 4(j − 1)b)2

))
.

We abbreviate m := −4(2b+4(z−1)b)(4(z−1)b+y)+(4(z−1)b− tν0 +y)2 +4(2b+4(z−1)b)2.
Separating the terms with z2 and z, we obtain as coefficient for the terms with z2 in m the
value z1 := 16b2 and for the coefficient for the terms with z the value z2 := −8btν0 − 8b < 0.
The infinite sum over the second summand in (13.2) hence can be bounded by an integral
consisting of (at most) three parts. We need different parts as the bounds given below (13.5)
and (13.6) state that different summands have to be bounded by different expressions. In the
first part, we use the bound given due to (13.5), and in the third part we use the bound given
following (13.6). Thus, we use values N1 := −z2/(2z1) = tν0/(4b) + 1/(4b) as upper border of
the first integral (if N1 > 1) and N2 := −z2/(2z1) + 3/2 = tν0/(4b) + 1/(4b) + 3/2 as lower
border of the third integral (which ensures the inequalities (13.5) and (13.6) to hold). The
second part is just the integral between N1 and N2.

∞∑
j=1

1√
2πt

exp

(
− 1

2t

(
−4(2b+ 4(j − 1)b)(4b(j − 1) + y) + (4b(j − 1)− tν0 + y)2

+4(2b+ 4(j − 1)b)2
))

=

∞∫
1

1√
2πt

exp

(
− 1

2t

(
−4(2b+ 4(bzc − 1)b)(4b(bzc − 1) + y) + (4b(bzc − 1)− tν0 + y)2

+4(2b+ 4(bzc − 1)b)2
))

dz

≤
max(1,N1)∫

1

1√
2πt

exp

(
− 1

2t

(
−4(2b+ 4(z − 1)b)(4b(z − 1) + y) + (4b(z − 1)− tν0 + y)2

+4(2b+ 4(z − 1)b)2
))

dz

+

N2∫
max(1,N1)

1√
2πt

dz

+

∞∫
N2

1√
2πt

exp

(
− 1

2t

(
−4(2b+ 4(z − 2)b)(4b(z − 2) + y) + (4b(z − 2)− tν0 + y)2

+4(2b+ 4(z − 2)b)2
))

dz
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= − 1√
2πt

√
πt√
32b

exp (2ν0(y − 2b)) erf

(
−4b(z − 1) + tν0 + y√

2t

)∣∣∣∣max(1,N1)

z=1

+
N2 −max(1, N1)√

2πt

− lim
r→∞

1√
2πt

√
πt√
32b

exp (2ν0(y − 2b)) erf

(
−4b(z − 2) + tν0 + y√

2t

)∣∣∣∣r
z=N2

≤ 1

8b
exp (2ν0(y − 2b)) (1 + erf((−4b+ tν0 + y)/

√
2t)) +Rt +

3

2
√

2πt
(13.7)

t→∞−−−→ 1

4b
exp (2ν0(y − 2b)) .

Rt includes the terms when plugging in the upper and the lower bound of the first and the
third integral, respectively. Rt is proportional to erf(1/

√
t) and thus vanishes for t→∞.

The lower bound can be shown to be the same.
Analogously we compute for the second summand in (13.3)

∞∑
j=1

1√
2πt

exp

(
−1

2t

(
16jb(y − 4jb) + (−4jb+ tν0 + y)2 + 64j2b2

)) t→∞−−−→ 1

4b
exp (−2ν0y) .

Finally, we have to adjust the terms with y properly (i.e., transform y = x+ b back to x) and
arrive at

fP (x) =
1

2b
− 1

4b
exp(2ν0(x− b))− 1

4b
exp(−2ν0(x+ b)), if − b ≤ x ≤ b.

Thus, the first case of the assertion is proven.

Second and third case: x > b and x < −b
Let x > b. We follow the same strategy as in the first case, i.e., find an expression for fPt(x)
and then bound it asymptotically by integrals. Concerning the distance Et the process Pt
covered this means that 4(j − 1)b + 2b has been crossed, but now the process is smaller
than this border again. Moreover, Pt has not crossed the distance 4jb yet, as otherwise the
drift direction would have changed again. With x > b we therefore need the probability
P(Et = 4(j − 1)b + 3b − x,Mt ∈ (4(j − 1)b + 2b, 4jb)). Again, we use a transformation
y := 3b− x:

P(Et = 4(j − 1)b+ y,Mt ∈ (4(j − 1)b+ 2b, 4jb))

= − 1√
2πt

exp

(
−1

2t

(
−4m(4b(j − 1) + y) + (4jb− tν0 + y)2 + 4m2

))∣∣∣∣4jb
m=4(j−1)b+2b

=
1√
2πt

exp

(
−1

2t

(
−4(2b+ 4(j − 1)b)(4b(j − 1) + y) + (4jb− tν0 + y)2

+4(2b+ 4(j − 1)b)2
))

− 1√
2πt

exp

(
−1

2t

(
−4(4jb)(4b(j − 1) + y) + (4jb− tν0 + y)2 + 4(4jb)2

))
.

As we already know, the infinite sum over the first summand in the latter display converges
to 1/(4b) exp(2ν0(y − 2b)) (as it is equivalent to the second summand in (13.2)). The sum
over the second summand can be bounded by the same arguments as the sum over the second
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summand in (13.2) (i.e., using (13.5) and (13.6)). We obtain 1
4b exp(2ν0(y − 4b)) as lower and

upper bound and do not the show the derivation in detail.
Interchanging y = 3b− x by the position x above the border, we observe for x > b

fP (x) =
1

4b
(exp (2ν0(b− x))− exp (2ν0(−b− x)))

=
1

4b
(exp (−2ν0(x− b))− exp (−2ν0(x+ b))).

Similarly, we obtain for x < −b

fP (x) =
1

4b
(exp (2ν0(x+ b))− exp (2ν0(x− b))).

Thus, the assertion has been shown for all three cases.

The perception process mainly fluctuates between the two borders ±b. As, however, also
overshooting is allowed, we analyze in Remark 13.7 the probability of exceeding the borders.

Remark 13.7. Probability of exceeding the borders
Asymptotically, the probability for the perception process to be outside the borders is given for
symmetry arguments by

lim
t→∞

P(|Pt| > b) = 2

∫ ∞
b

1

4b
(exp(−2ν0(x− b))− exp(−2ν0(x+ b)))dx =

1

4bν0
[1− exp(−4bν0)].

This ”overshooting”-probability ranges as claimed from 0 to 1. It gets large for a small bν0

as can be seen by regarding the function h(z) = 1/z(1− exp(−z)). For z > 0 this function is
monotonously decreasing from 1 to 0. In addition, we can relate the probability of overshooting
the borders to the CV of the dominance times. It holds bν0 = 0.5µ2/σ2 = 1/(2CV2). Hence,
highly irregular dominance time distributions with a large CV cause the perception process to
be often outside the borders. In precise terms, we observe

lim
t→∞

P(|Pt| > b) =
CV2

2

(
1− exp

(
− 2

CV2

))
.

Figure 13.2 compares the simulated marginal density of Pt in histograms with the theoretical
density derived in Proposition 13.6. Different drift parameters ν0 are chosen as well as two
different points in time t to evaluate this asymptotic result.
In Figure 13.2 the dependence of the shape of the marginal distribution of Pt on the parameters
is clearly visible. The first column (panels A and D) corresponds to typical parameters in the
data set Schmack et al. (2015). Here, a bell-shaped density is derived with a small weight
outside the borders ±b. Already for the smaller t = 20 the fit is quite well (recall the length
of recording T = 240 in the original data set). Decreasing the drift ν0 increases the CV of the
dominance times and thereby (Remark 13.7) increases also the probability to overshoot the
borders as clearly is visible in Panels B and E. Here, the fit for the larger t = 200 is clearly
better than for the smaller t = 20 (as also the mean dominance time is about 67 for this
parameter combination such that often the upper border has not been reached at t = 20).
Note that we have chosen a very extreme parameter ν0 in these panels to illustrate the effect.
Such an extreme CV is not observed in the data. The same holds for the small CV in panels
C and F. There, the distribution between the borders is almost uniform as the drift is large
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Figure 13.2: Comparison of the asymptotic marginal density fP (x) of Pt
with simulated histograms at a fixed t. The parameters are b = 2.42 and ν0 ∈
{0.72, 0.072, 2.42}, where ν0 differs column by column. The parameters in the first column are
the estimated parameters of subject B in Table 12.1 (page 161). In the first line (A-C), the
empirical histogram at t = 20 is shown, where in the second line (D-F), the histogram at fixed
t = 200 is plotted. 10000 simulations were used.

allowing only small variability. Note that also for the quite extreme densities shown in panels
B, C, E and F the fit of the asymptotic density is convincing.
The fast convergence of the empirical density toward the asymptotic density is due to the form
of the error function (recall Remark 13.5 for its connection to the distribution function of the
standard normal distribution). In the proof of Proposition 13.6, we let t→∞ in terms where
t only occurs in the error function. Typical examples are the expressions in (13.4) and (13.7)

1

8b
(1− erf((y − tν0)/

√
2t))

t→∞−−−→ 1

4b
1

8b
exp (2ν0(y − 2b)) (1 + erf((−4b+ tν0 + y)/

√
2t))

t→∞−−−→ 1

4b
exp (2ν0(y − 2b)) ,

where the limits limx→∞ erf(x) = 1 and limx→−∞ erf(x) = −1 are used. In Figure 13.3 we
show that the terms with the error function (printed in the picture) in the aforementioned
expressions converge very fast. For t = 20 both terms are close to +1 and -1, respectively.

13.2 Intermittent presentation

We derive results on the point process induced by the HBMi. For technical reasons the
structure of this chapter differs slightly from the structure of Chapter 13.1. First, the relation
to semi-Markov processes is discussed (Section 13.2.1). Next, first passage times as well as
stationarity properties are derived (Section 13.2.2). Further, the number of perceptual reversals
is investigated as well as the residual time (Sections 13.2.3 and 13.2.4). Additionally, in Section
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Figure 13.3: Convergence of the error function. The error function for the two terms
in equations (13.4) (light gray) and (13.7) (dark gray) depending on the time t. b = 2.41 and
ν0 = 0.72 are chosen according to the estimated parameters of subject B in Table 12.1 and
are the same as used for the first column in Figure 13.2. Moreover, we set y := 2. Larger
absolute values for y slow the convergence toward ±1 down, whereas smaller values speed the
convergence up.

13.2.5 marginal densities of the perception and the background process are computed. Recall
that the key results are Corollary 13.11 about the steady-state distribution and Proposition
13.13 on the asymptotic rate of changes in the HBMi. Readers more interested in the
application may skip all other parts of this section.

13.2.1 HBMi as semi-Markov process

The HBMi can be linked to the concept of semi-Markov processes (recall the introduction
in Section 8.2.3.3) which is of importance in the theory of stochastic processes. The process
(Ỹt)t≥0 denoting the state of the HBMi at time t ≥ 0 constitutes a semi-Markov process
(Definition 8.15, assuming known hidden states), and (Yi, (0, ti))i≥1 is a Markov renewal
process, where (ti)i≥1 are the perceptual reversal times and Yi is the i-th hidden state. Here,
we derive the key variables of this semi-Markov process. The entries of the semi-Markov kernel
Q(t) are given by

Qjk(t) = P(Di+1 ≤ t, Yi+1 = k|Yi = j) = P(Yi+1 = k|Yi = j)P(Di+1 ≤ t|Yi+1 = k, Yi = j)

= p∗jk

t∫
0

fDjk(s)ds, (13.8)

where fDjk(s) are the densities of the dominance times conditioned on the next state as derived
in Lemma 11.3. In the context of semi-Markov processes the (Djk) are the conditional sojourn
times. In addition, (Yi)i≥1 is the embedded Markov chain.
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13.2.2 First passage times, steady-state distributions and renewal results

In this section we focus first on the first passage times of the HBMi. These are defined like
in Definition 10.4 with HMMi replaced by HBMi, ΞHMMi exchanged by ΞHBMi and T ∗ij , T̃

∗
ij

instead of Tij , T̃ij , i.e.,

T ∗ij := inf{m ≥ 2 : Ym = j|Y1 = i} − 1, T̃ ∗ij := inf{t > 0 : Ỹt = j|Ỹ0 = i}.

Then, we turn to the steady-state distributions. The steady-state distributions are of practical
relevance, e.g., for the investigation of group differences between the control and the patients
group in the data set Schmack et al. (2015). Note again that the following results are
approximate due to the non-constant drifts of the perception process and the background
process and that we omit approximation signs here for convenience.

Proposition 13.8. First passage and first recurrence times of the HBMi:
Expectation
Let p∗SS , p

∗
UU be defined as in equation (11.7) and µ∗S , µ

∗
U be as in equation (11.4). Moreover,

µ+
S , µ

−
S , µ

+
U and µ−U are defined as in Lemma 11.2.

Assume the HBMi starts with a perceptual reversal in the stable state S and p∗SS < 1.
The expected first passage times of the unstable state U are approximately given by

E[T ∗SU ] =
1

1− p∗SS
and E[T̃ ∗SU ] =

p∗SS
1− p∗SS

µ+
S + µ−S =

µ∗S
1− p∗SS

.

Similar results hold for the first passage time of the stable state when starting with a perceptual
change in the unstable state and p∗UU < 1.
If p∗SS = 1 or p∗UU = 1, the corresponding expected first passage times are ∞.

If max(p∗SS , p
∗
UU ) < 1, the expected first recurrence time to the initial state is independent of

the starting state approximately given by E[T ∗SS ] = E[T ∗UU ] = 1
1−p∗SS

+ 1
1−p∗UU

and

E[T̃ ∗SS ] = E[T̃ ∗UU ] =
p∗SS

1−p∗SS
µ+
S + µ−S +

p∗UU
1−p∗UU

µ+
U + µ−U =

µ∗S
1−p∗SS

+
µ∗U

1−p∗UU
.

If max(p∗SS , p
∗
UU ) = 1, the recurrence time is ∞.

Proof : The assertions for max(p∗SS , p
∗
UU ) = 1 are trivial. Therefore, we assume

max(p∗SS , p
∗
UU ) < 1. As the lengths of stable dominance times are independent and the

background process starts at zero at the beginning of each new dominance time, the number of
visits to the stable state when starting in this stable state is a geometrically distributed random
variable with success probability 1− p∗SS . Thus, its expectation is given by E[T ∗SU ] = 1

1−p∗SS
.

The length of a stable phase T̃ ∗SU is a random variable distributed like
∑T ∗SU

i=1 D
S
i , where

DS
1 , . . . , D

S
T ∗SU

denote the random stable dominance times. Given T ∗SU , we use linearity of

expectation to compute the conditional expectation

E

T ∗SU∑
i=1

DS
i |T ∗SU

 = (T ∗SU − 1)µ+
S + µ−S .

Now we take expectation over T ∗SU and use Corollary 11.4 to find

E[T̃ ∗SU ] = E

T ∗SU∑
i=1

DS
i

 =
p∗SS

1− p∗SS
µ+
S + µ−S =

µ∗S
1− p∗SS

.
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The assertions for T ∗US and T̃ ∗US can be shown using the same arguments. By the linearity of
the expectations the claims about the expected first recurrences times follow.

We derive the distribution of the first passage times as an additional result. For T̃ ∗kj we

therefore sum over f i
T̃ ∗kj

(x) which are the densities of observing a phase of state k with i

dominance times and length x followed by state j. Applying the law of total probability, the
summation over i of f i

T̃ ∗kj
(x) gives the probability of a phase of state k with length x followed

by a phase of state j.

Proposition 13.9. First passage and first recurrence times of the HBMi:
Distribution
a) Assume the HBMi starts with a perceptual reversal in the stable state S and p∗SS < 1.
The weights wT ∗SU of the first passage time of U are the weights of a Geometric distribution
with parameter p = 1− p∗SS. The density fT̃ ∗SU

of the first passage time of the point process

ΞHBMi is expressed using convolutions

fT̃ ∗SU
(x) =

∞∑
i=1

f i
T̃ ∗SU

(x) = (1− p̃SS(x))f IG
2bS/ν

∗
S ,
√

2bS/ν
∗
S
3(x)+

∞∑
i=2

(
(1− p̃SS)f IG

2bS/ν
∗
S ,
√

2bS/ν
∗
S
3

)
∗
(
p̃SSf

IG

2bS/ν
∗
S ,
√

2bS/ν
∗
S
3

)∗(i−2)

(x), (13.9)

if x ≥ 0 and 0 otherwise. There, p̃SS(x) is given by (11.5).
Similar results hold for the first passage time of the stable state when starting with a perceptual
change in the unstable state and p∗UU < 1.
If max(p∗SS , p

∗
UU ) = 1, all finite weights vanish.

b) If max(p∗SS , p
∗
UU ) < 1, the weights wr(i) of the first recurrence time T ∗SS are wr(i) = 0 if

i ≤ 1 and

wr(i) =
i−1∑
j=1

wT ∗US (j)wT ∗SU (i− j),

else. The density fr(x) of the first recurrence time T̃ ∗SS is fr(x) = 0 if x < 0 and

fr(x) =

x∫
0

fT̃ ∗US
(y)fT̃ ∗SU

(x− y)dy,

else.
If max(p∗SS , p

∗
UU ) = 1, the recurrence times are ∞.

Proof : First, we show a). The assertions for max(p∗SS , p
∗
UU ) = 1 are trivial. Therefore,

we assume max(p∗SS , p
∗
UU ) < 1. As explained in the proof of Proposition 13.8, T̃SU is a

geometrically distributed random variable with success probability 1− p∗SS which yields the
assertion for wT ∗SU .
We turn to the first passage time distribution of the unstable state by the point process ΞHBMi.
To show the assertion a case-by-case analysis of the (random) number of dominance times in
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the stable state T ∗SU is necessary. We explain the structure of f i
T̃ ∗SU

(x) := P(T̃ ∗SU = x, T ∗SU = i)

for i = 1 and i = 2 in detail and then generalize to an arbitrary i > 2. In the last step of the

proof we use the law of total probability fT̃ ∗SU
(x) =

∞∑
i=1

P(T̃ ∗SU = x, T ∗SU = i) =
∞∑
i=1

f i
T̃ ∗SU

(x).

The stable phase ends after one dominance time (T ∗SU = 1) if at the time x of a border crossing
by the perception process the background process is below b̃S . Due to the independence of
the two processes during one dominance time, we derive

f1
T̃ ∗SU

(x) := P(T̃ ∗SU = x, T ∗SU = 1) = f IG

2bS/ν
∗
S ,
√

2bS/ν
∗
S
3(x)Φν∗Bx,

√
x(b̃S).

Now, assume that the stable phase of length x ends after two dominance times, i.e., T ∗SU = 2.
This implies that at the end of the first dominance time with length x1 (0 < x1 < x) the
background process is above the border b̃S (A) and, in contrast, at the end of the second
dominance time with length x− x1 the background process is below b̃S (B). Again, we make
use of the independence of the two processes during one dominance time and the independence
of two stable dominance times and need the convolution of the densities of events A and B:

f2
T̃ ∗SU

(x) := P(T̃ ∗SU = x, T ∗SU = 2)

=

x∫
0

f IG

2bS/ν
∗
S ,
√

2bS/ν
∗
S
3(x− x1)Φν∗B(x−x1),

√
x−x1(b̃S)f IG

2bS/ν
∗
S ,
√

2bS/ν
∗
S
3(x1)(1− Φν∗Bx1,

√
x1)(b̃S)dx1

=

x∫
0

f IG

2bS/ν
∗
S ,
√

2bS/ν
∗
S
3(x− x1)(1− p̃SS(x− x1))f IG

2bS/ν
∗
S ,
√

2bS/ν
∗
S
3(x1)p̃SS(x1)dx1

=

(
(1− p̃SS)f IG

2bS/ν
∗
S ,
√

2bS/ν
∗
S
3

)
∗
(
p̃SSf

IG

2bS/ν
∗
S ,
√

2bS/ν
∗
S
3

)
(x).

For T ∗SU > 2 we need T ∗SU − 1-fold convolutions (see Figure 13.4) following the same idea
as explained for T ∗SU = 2, i.e., T ∗SU − 1 dominance times where the background process has
crossed b̃S and the last dominance time where the background process is below its border
(equation (13.9)).

0 xx1 x2 x3

Figure 13.4: A stable phase of length x > 0 consisting of T ∗SU = 4 dominance
times. The perceptual changes occur at points in time 0 < x1 < x2 < x3 < x which may vary
as indicated by arrows.

The assertion follows by the law of the total probability as explained above.
Now, we turn to b). By simple convolution arguments the claims about the first recurrences
times follow.

The first recurrence times can also be interpreted as life time distributions of a renewal process.

We illustrate Proposition 13.9. by comparing the theoretical density of the first passage time
of the unstable state with the empirical density based on simulations. Therefore, we made use
of the estimated HBMi parameters of subject C in Table 12.2 and simulated a HBMi with
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10000 stable phases separated by unstable phases. For each stable phase we derived the length.
The corresponding histogram is plotted in Figure 13.5 together with the theoretical density
given in Proposition 13.9. We note that the theoretical and empirical density closely fit.

0 200 400 600 800

0.
00

0
0.

00
2

0.
00

4

de
ns

ity

T
~

SU

*
 [s]

fT~SU
*

Figure 13.5: Comparison of the theoretical density fT̃ ∗
SU

(x) (blue line, Proposition

13.9) of the length of a stable phase with a simulated histogram for parameter
combination C (see Figure 9.1 [page 70] and Table 12.2).

Again, there exists a renewal equation for the distribution function of the first passage time of
the process Ỹt. Proposition 13.9 gives a solution of this equation.

Proposition 13.10. Renewal equation for the first passage time of the HBMi
Regard the process Ỹt. Let Gjk(t) := P(T̃jk ≤ t|Ỹ0 = j) describe the distribution function of
the first passage time of state k starting in state j. It holds for j, k ∈ {S,U}, the semi-Markov
kernel Q(t) (equation (13.8)) and t ≥ 0

Gjk(t) = Qjk(t) +

∫ t

0
Gjk(t− x)dQjj(x).

Proof : This is Theorem 7.5 in Medhi (2009).

Next, we analyze the stationary and steady-state distribution. Recall that the steady-state
distribution π̃ = (π̃S , π̃U ) denotes the probabilities of being in a given state at time t for
t→∞, i.e., π̃S := limt→∞ Ỹt = S as well as the long term relative time spent in the two states
(equation (8.3)). Hence, π̃S is an important quantity to analyze group differences in the data
set Schmack et al. (2015), and Corollary 13.11 is one of the key results stated in this chapter.
To distinguish between the HBM and the HMM we now use stars as superscript for π and π̃.
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Corollary 13.11. Stationary and steady-state distribution of the HBMi
Let (µ∗S , σ

∗
S , µ

∗
U , σ

∗
S , p
∗
SS , p

∗
UU ) be the derived parameter set of a HBMi. Assume

max(p∗SS , p
∗
UU ) < 1. The stationary distribution π∗= (π∗S , π

∗
U ) of the underlying hidden

state process is given by

π∗ =

(
p∗UU − 1

p∗SS + p∗UU − 2
,

p∗SS − 1

p∗SS + p∗UU − 2

)
.

The steady-state distribution π̃∗= (π̃∗S , π̃
∗
U ) with π̃∗S := limt→∞ P(Ỹt = S),

π̃∗U := limt→∞ P(Ỹt = U) of the resulting point process ΞHBMi derives as

π̃∗ =

 µ∗S
1−p∗SS

µ∗S
1−p∗SS

+
µ∗U

1−p∗UU

,

µ∗U
1−p∗UU

µ∗S
1−p∗SS

+
µ∗U

1−p∗UU

 . (13.10)

If p∗SS = 1, we have π∗ = π̃∗ = (1, 0), and if p∗UU = 1, it holds π∗ = π̃∗ = (0, 1).

Proof : Assume max(p∗SS , p
∗
UU ) < 1. Note that the mean probability that the perception

process remains in the stable state (i.e., is during the i+ 1-st dominance time stable given it
is stable in the i-th dominance time) is given by p∗SS if the i-th dominance time is unknown.
Analogously p∗UU is the mean probability to remain in the unstable state in case of an unknown
i-th dominance time. These probabilities only depend on the current state. Therefore, we can
interpret the hidden process (Yi)i≥1 as embedded Markov chain (compare also Section 13.2.1
about the interpretation as semi-Markov process). Assuming that P ∗ is the transition matrix
of this Markov chain (with entries given by p∗jk for j, k ∈ {S,U}) we know that π∗ satisfies

π∗P ∗ = π∗ (Section 9.1). By standard calculations it follows π∗ =
(

p∗UU−1
p∗SS+p∗UU−2 ,

p∗SS−1
p∗SS+p∗UU−2

)
.

To derive the steady-state distribution of ΞHBMi, we interpret ΞHBMi as regenerative process
(compare Section 8.2.3.2). The life times (D̃i)i≥1 of the corresponding renewal process are
given by the first recurrence times in the HBMi. The amount of time spent in state S during
a life time then is just the first passage time of the state U when starting in S. Using equation
(8.2) and Proposition 13.8, it follows directly

π̃∗S =
E[amount of time in state j during D̃1]

E[D̃1]
=

E[T̃SU ]

E[T̃SS ]
=

µ∗S
1−p∗SS

µ∗S
1−p∗SS

+
µ∗U

1−p∗UU

and analogously for π̃∗U .
The assertions for max(p∗SS , p

∗
UU ) = 1 are obvious.

By equation (8.3) we know that the steady-state distribution also describes the long term
relative time spent in the two states. Therefore, we now compare the theoretical relative
time spent in the stable state with the empirical relative time spent in the stable state. 1000
response patterns for the four subjects given in Table 12.2 are simulated for T ∈ {1200, 3600}.
The empirical value π̃emp

S is for each response pattern estimated as

π̃emp
S :=

∑
i|Yi=S

di

T
. (13.11)
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Note that the hidden states Yi are known as we simulate the response patterns. In Table 13.1
the mean and median of π̃emp

S for the two time horizons are compared with the theoretical
values π̃∗S given by Corollary 13.11. We note that already for the comparatively small recording
length in the data T = 1200 theoretical and empirical values agree quite closely.

T = 1200 T = 3600
subject π̃∗S

¯̃πemp
S medπ̃emp

S
¯̃πemp
S medπ̃emp

S

C 0.785 0.761 0.781 0.787 0.786
D 0.872 0.871 0.873 0.871 0.872
E 1.00 1.00 1.00 1.00 1.00
F 0.155 0.216 0.209 0.177 0.176

Table 13.1: Comparison of empirical and theoretical relative times spent in the
stable state by the HBMi. For the empirical steady-state distribution 1000 response patterns
were simulated with the parameters given in Table 12.2 (page 162). Mean and median values
of (13.11) are used for the comparison. The theoretical values are derived using (13.10).

The empirical validity of the stationary distribution π∗ of the underlying Markov chain is
comparable (data not shown).

Remark 13.12. Renewal results for the HBMi
The results about the expected number of cycles in the HBMi, the renewal equations for Yi and
Ỹt, the exact probability of being in the stable state and the probability generating function of
the HBMi translate directly from the HMMi (Lemma 10.9, Proposition 10.10, Corollary 10.11
and Lemma 10.13). pSS and pUU have to be exchanged by p∗SS and p∗UU , respectively.

13.2.3 Number of changes

We focus on the rate of perceptual changes. The following proposition 13.13 is one key result
of this chapter. It is, for instance, required to derive the asymptotic expected number of
perceptual reversals in the HBMi when changing the length of the blank display. With a
different length of the blank display (µ∗S , σ

∗
S , µ

∗
U , σ

∗
S , p
∗
SS , p

∗
UU ) change (as the mean drifts

ν∗S , ν
∗
U , ν

∗
B change). Proposition 13.13 enables us to derive the asymptotic expected rate of

perceptual reversals dependent on the new parameter set.

Proposition 13.13. Rate of changes in the HBMi
Let (µ∗S , σ

∗
S , µ

∗
U , σ

∗
S , p
∗
SS , p

∗
UU ) be the derived parameter set of a HBMi and ∆ > 0 be the length

of an interval. If max(p∗SS , p
∗
UU ) < 1, it holds for the expected number of changes N∗(∆) in

this interval

E[N∗(∆)]

∆
−−−−→
∆→∞

2− p∗UU − p∗SS
(1− p∗UU )µ∗S + (1− p∗SS)µ∗U

. (13.12)

If p∗SS = 1, it holds
E[N∗(∆)]

∆
−−−−→
∆→∞

1

µ∗S

and analogously for p∗UU = 1.

We define ρHBMi := lim∆→∞
E[N∗(∆)]

∆ as the (asymptotic) rate of changes.
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13. The HBM: Theoretical properties

Proof : Using Corollary 13.11 about the steady-state distribution, the proof is analogous to
the proof of Proposition 10.14.

The asymptotic rate of changes in the HBMi and the rate of changes in the data set Schmack
et al. (2015) are compared in Figure 13.6 A. As with the HMM (compare Figure 10.5 on page
120) these rates are close together (mostly not more than 10% apart from each other). The
same explanations as in the HMM case are possible for differences in the rates.
Panel B shows the comparison with the rate of changes in the data for the simulated rate
of changes in the HBMi conditioning on the same (Viterbi-estimated) starting state and the
same recording length as in the original data. As in contrast to the HMM not the transition
probabilities directly are maximized, the model fit is a slightly worse compared to the HMM.
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Figure 13.6: Comparison of the rate of changes between the HBMi and the data
set Schmack et al. (2015). In A the theoretical (asymptotic) rate ρHBMi (Proposition
13.13) is contrasted with the rate of changes in the data, and in B the mean rate of changes in
1000 simulations started in the same (Viterbi-estimated, Section 12.5) state as the original
data is used (T = 1200).

Additionally, we state results about the distribution of the number of perceptual changes in
the HBMi. For technical reasons, we first assume an interval of length ∆ starting with a
perceptual change to state Proposition 13.14. In Proposition 13.15 we relax this assumption.

Proposition 13.14. Number of changes in the HBMi: Distribution I
Let ΘHBMi = (bS , ν

∗
S , bU , ν

∗
U , b̃S , b̃U , ν

∗
B, π

∗
start,S) be the parameter set of a HBMi, π∗ be its

stationary distribution and p∗SS , p
∗
UU be defined as in equation (11.7).

Moreover, let I(∆) := [t, t + ∆) be an interval of length ∆ ≥ 0 starting with a perceptual
change and Y be a sequence of hidden states. The probability of a realization y covering I(∆)
with |y| ≥ 2 states in I(∆) is for t→∞ given by

P(Y = y) = π∗y1

∆∫
0

(
1− F IG

2by|y|/ν
∗
y|y|

,
√

2by|y|/ν
∗
y|y|

3 (∆− s)

){
gy1(s)ds, if |y| = 2,

(gy1 ∗ . . . ∗ gy|y|−1
)(s)ds, if |y| > 2,

(13.13)
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13. The HBM: Theoretical properties

where the following function is folded

gyi(s) := f IG
2byi/ν

∗
yi
,
√

2byi/ν
3
y∗
i

(s) ·


Φsν∗B ,

√
s(b̃yi), if yi+1 = U, yi = S,

Φ−sν∗B ,
√
s(b̃yi), if yi+1 = U, yi = U,

1− Φsν∗B ,
√
s(b̃yi), if yi+1 = S, yi = S,

1− Φ−sν∗B ,
√
s(b̃yi), if yi+1 = S, yi = U.

(13.14)

If |y| = 1, we have

P(Y = y) = π∗y1

(
1− F IG

2by1/ν
∗
y1
,
√

2by1/ν
3
y∗1

(∆)

)
. (13.15)

The probability weights of the number of changes N∗c (∆) of ΞHBMi in the interval I(∆) (starting
with a perceptual change) are then given by

P(N∗c (∆) = j) =
∑

y∈Y(∆): |y|=j

P(Y = y), (13.16)

where Y(∆) denotes all hidden state sequences starting with a perceptual change whose resulting
point processes cover the interval I(∆).

Proof : In the first step of the proof, we take the probabilities P(Y = y) as given to show the
assertion (13.16). In the second step of the proof, an explanation for the correctness of the
expressions for P(Y = y) is provided.
Given a perceptual change at t, j changes in the interval [t, t + ∆) imply that the hidden
state sequence y leading to the response pattern has a length of j (recall also Figure 10.6 on
page 121 for an example). To compute the probability of j changes in the interval I(∆), we
therefore have to sum over all possible hidden state paths of length j, i.e.,

P(N∗c (∆) = j) =
∑

y∈Y(∆)||y|=j

P(Y = y).

Now, we focus on the derivation of P(Y = y). For t → ∞ the probability weights of the
first state of the interval are given by the stationary distribution π∗. Thus, the first factor of
P(Y = y) is the stationary weight π∗y1 of the first state y1.
|y| = 1 implies that no change occurs in the interval [t, t+ ∆). This means that the perception
process has not crossed the border bS or bU (depending on the hidden state) in this interval,
i.e., (13.15) holds true.
For j = |y| ≥ 2, we assume the last perceptual reversal occurring at time t + s < t + ∆
(compare Figure 13.7). Then, no changes occur in (t+ s, t+ ∆). Thus, the perception process
has not crossed its current border bS or bU in an interval with length ∆− s. This event has
the probability 1− F IG

2by|y|/ν
∗
y|y|

,
√

2by|y|/ν
∗
y|y|

3
(∆− s). As the last perceptual change can occur

at an arbitrary t + s < t + ∆, we need the convolution defined in (13.13). The other j − 1
changes occur in the interval [t, t+ s). For all these perceptual changes it holds: The state
remains stable or changes to stable if the current border b̃S or b̃U of the background process is
crossed at the end of a dominance time (third and fourth case in (13.14)).
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If the background process border is not crossed, the state remains or changes to unstable (first
and second case in (13.14)). The function gyi(s) in (13.14) considers for each pair (yi, yi+1)
the length of dominance times and the hidden states. Folding it implies that we allow for
arbitrary perceptual reversal times t+ s1, t+ s2, . . . , t+ sj−2, t+ s with
t < t+ s1 < . . . < t+ sj−2 < t+ s < t+ ∆ (compare the arrows in Figure 13.7).

)

t t + ∆t + s1 t + s2 t + s
change 1 change 2 change 3 change 4

Figure 13.7: Visualization of the number of changes in the HBMi. In this
example j = 4 changes (marked by vertical bars) occur in the interval I(∆) at times
t < t + s1 < t + s2 < t + s which are not fixed as indicated by arrows. There is
no perceptual change in the interval (t+ s, t+ ∆).

Next, we relax the assumption that the interval I(∆) has to start with a perceptual change.

Proposition 13.15. Number of changes in the HBMi: Distribution II
Let I(∆) := [t, t+ ∆) be an interval of length ∆ ≥ 0. The probability weights of the number
of changes N∗(∆) of ΞHBMi in the interval I(∆) are then for t→∞ and j ≥ 1 given by

P(N∗(∆) = j) = π̃∗S× ∆∫
0

fRS (∆S)p̃∗SS(∆S)P(N∗,Sc (∆−∆S) = j)/π∗S

+fRS (∆S)(1− p̃∗SS(∆S))P(N∗,Uc (∆−∆S) = j)/π∗Ud∆S


+ π̃∗U× ∆∫

0

fRU (∆U )(1− p̃∗UU (∆U ))P(N∗,Sc (∆−∆U ) = j)/π∗S

+ fRU (∆U )p̃∗UU (∆U )P(N∗,Uc (∆−∆U ) = j)/π∗Ud∆U

 ,

where N∗,Sc (∆) and N∗,Uc (∆) denote the number of changes in an interval I(∆) starting with
a perceptual change in the stable or the unstable state, respectively (equation (13.16)), and π̃∗j
denotes the steady-state probability of state j (Corollary 13.11). RS and RU are the asymptotic
residual times in the stable and the unstable state as given in Proposition 8.12 with life time
distributions IG(µ∗S , σ

∗
S) and IG(µ∗U , σ

∗
U ).
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p̃∗SS(∆S) is the probability to remain stable given the residual time ∆S and derives as

p̃∗SS(∆S) := P
(
Y2 = S|Y1 = S,RS = ∆S

)
=

∞∫
∆S

(
1− Φ

d̃ν∗B ,
√
d̃
(b̃S)

) f IG
2bS/ν

∗
S ,
√

2bS/ν
∗
S
3
(d̃)

1− F IG

2bS/ν
∗
S ,
√

2bS/ν
∗
S
3
(∆S)

dd̃. (13.17)

p̃∗UU (∆U ) is defined similarly.
For j = 0 we have

P(N∗(∆) = 0) = π̃∗SP(RS > ∆) + π̃∗UpP(RU > ∆).

The point process ΞHBMi is asymptotically crudely stationary.

Proof : The proof mainly follows the same ideas as the proof of Proposition 10.16. Therefore,
we only show that the expression for p̃∗SS(∆S) in equation (13.17) holds true. First, we derive
the density of the stable dominance time DS

1 given its residual time ∆S

fDS1 |RS=∆S
(d̃) =

fAS ,RS (d̃−∆S ,∆S)

fRS (∆S)
=

fDS1
(d̃)

fRS (∆S)E[DS
1 ]
,

where AS denotes the age (Definition 8.11), and the second equal sign follows by known results
(e.g., Lemma 2.1 in Haviv, 2013).
Given this conditioned dominance time distribution we are able to derive the probability that
the subject remains stable, i.e., that the background process is above b̃S at the end of the
dominance time d̃. We integrate

p̃∗SS(∆S) =

∞∫
∆S

P(BDS1
> b̃S |DS

1 = d̃, RS = ∆S)fDS1 |RS=∆S
(d̃)dd̃

=

∞∫
∆S

(
1− Φ

d̃ν∗B ,
√
d̃
(b̃S)

)
fDS1

(d̃)

fRS (∆S)E[DS
1 ]
dd̃

=

∞∫
∆S

(
1− Φ

d̃ν∗B ,
√
d̃
(b̃S)

) f IG

2bS/ν
∗
S ,
√

2bS/ν
∗
S
3
(d̃)

1− F IG

2bS/ν
∗
S ,
√

2bS/ν
∗
S
3
(∆S)

dd̃,

where in the last line the density of RS (Proposition 8.12) was plugged in. The same ideas are
applicable to p̃∗UU (∆U ).
The asymptotic crude stationarity follows directly from the independence of the probability
weights P(N∗(∆) = j) from t for t→∞.

13.2.4 Residual time

Here, we derive the density and the expected value of the residual time, i.e., the time span
until the next perceptual reversal in the HBMi.
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Corollary 13.16. Residual time in the HBMi
Let ΞHBMi be the point process of a HBMi with parameter set
ΘHBMi = (bS , ν

∗
S , bU , ν

∗
U , b̃S , b̃U , ν

∗
B, π

∗
start,S) and asymptotic residual time Rin. Its

expectation is given by

E[Rin] = π̃∗U

(
1

2ν∗U
2 +

bU
ν∗U

)
+ π̃∗S

(
1

2ν∗S
2 +

bS
ν∗S

)
,

and the distribution has the density

f inR (x) =
π̃∗U

2bU/ν∗U

(
1− F IG

2bU/ν
∗
U ,
√

2bU/ν
∗
U

3(x)

)
+

π̃∗S
2bS/ν∗S

(
1− F IG

2bS/ν
∗
S ,
√

2bS/ν
∗
S
3(x)

)
.

Proof : By substituting the mean and standard deviation parameters by the border and drift
parameters (as in Proposition 8.6), the proof follows the same steps as the proof of Corollary
10.17.

13.2.5 Marginal densities of the perception and the background process

Marginal density of P

As with the perception process in the HBMc, we derive the (approximate) asymptotic marginal
density of the perception process for the HBMi.

Corollary 13.17. Marginal density of P
Let ΘHBMi = (bS , ν

∗
S , bU , ν

∗
U , b̃S , b̃U , ν

∗
B, π

∗
start,S) be the parameter set of a HBMi. The limit of

the marginal density fP (x) of the perception process is (approximately) given by

fP (x) := lim
t→∞

fPt(x) ≈

π̃∗S

(
1

4bS
[exp(−2ν∗S(x− bS))− exp(−2ν∗S(x+ bS))]

)
+π̃∗U

(
1

4bU
[exp(−2ν∗U (x− bU ))− exp(−2ν∗U (x+ bU ))]

)
, if x > bS ,

π̃∗S

(
1

2bS
− 1

4bS
exp(2ν∗S(x− bS))− 1

4bS
exp(−2ν∗S(x+ bS))

)
+π̃∗U

(
1

4bU
[exp(−2ν∗U (x− bU ))− exp(−2ν∗U (x+ bU ))]

)
, if bU < x ≤ bS ,

π̃∗S

(
1

2bS
− 1

4bS
exp(2ν∗S(x− bS))− 1

4bS
exp(−2ν∗S(x+ bS))

)
+π̃∗U

(
1

2bU
− 1

4bU
exp(2ν∗U (x− bU ))− 1

4bU
exp(−2ν∗U (x+ bU ))

)
, if − bU ≤ x ≤ bU ,

π̃∗S

(
1

2bS
− 1

4bS
exp(2ν∗S(x− bS))− 1

4bS
exp(−2ν∗S(x+ bS))

)
+π̃∗U

(
1

4bU
[exp(2ν∗U (x+ bU ))− exp(2ν∗U (x− bU ))]

)
, if − bS ≤ x < −bU ,

π̃∗S

(
1

4bS
[exp(2ν∗S(x+ bS))− exp(2ν∗S(x− bS))]

)
+π̃∗U

(
1

4bU
[exp(2ν∗U (x+ bU ))− exp(2ν∗U (x− bU ))]

)
, if x < −bS ,

with π̃∗S and π̃∗U as the steady-state distribution given in Corollary 13.11.

Proof : We decompose the density as follows

fPt(x) = P(Ỹt = S)fPt|Ỹt=S(x) + P(Ỹt = U)fPt|Ỹt=U (x).
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Letting t → ∞ we use the results of Corollary 13.11 (about the steady-state distribution
π̃∗) and Proposition 13.6 (about the asymptotic marginal density of P in the HBMc as
the (P )-process with an assumed constant drift ν∗S or ν∗U corresponds approximately to the
(P )-process in the HBMc) to state the assertion. Now, we explain why the approximation
signs occurs. Assume that the perception process is at bS when the state changes to unstable.
For simplification we assume that the perception process jumps back to bS when the state
gets stable again, i.e., the sign of the border does not change (in contrast to the true model
behavior where the sign may change, see Model 11.1). Similar assumptions hold for a position
of −bS and the unstable state, respectively. Using this approximation and conditioning on
the stable or the unstable state, we are back in the situation of the perception process in
the HBMc and can use the corresponding density to derive fPt|Ỹt=S(x) and fPt|Ỹt=U (x) (with

adjusted drift and border parameters).
As the exact derivation of fPt(x) would be lengthy and does not yield additional insights,
and furthermore the approximation is close (e.g., Figure 13.8), we content ourselves with the
approximation.

An exemplary marginal density is shown in Figure 13.8 using the parameters of subject C in
Table 12.2. The approximate theoretical density agrees closely with the empirical distribution
(estimated in 1000 simulations), where the peak around zero is caused by the unstable state
and the rather flat distribution for larger x-values is due to the stable state. Toward the
borders ±bS the density decreases like in the continuous case (Figure 13.2).

− bS bS

0.00

0.01

0.02

0.03

0.04

0.05

0.06

bU− bU

de
ns

ity

P900

fP

Figure 13.8: Comparison of the asymptotic marginal density fP (x) of Pt (blue
line, Corollary 13.17) with an empirical histogram at t = 900 obtained from 1000
simulations. The parameters are taken from parameter combination C (Table 12.2, page
162).
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Marginal density of B

Here, we discuss the asymptotic marginal density of the background process B.

Proposition 13.18. Marginal density of B
Let ΘHBMi = (bS , ν

∗
S , bU , ν

∗
U , b̃S , b̃U , ν

∗
B, π

∗
start,S) be the parameter set of a HBMi with steady-

state distribution π̃∗. The asymptotic marginal density of the background process B is given
by

fB(x) := lim
t→∞

fBt(x) = π̃∗S
1

2bS/ν∗S

∞∫
0

Φν∗Bs,
√
s(x)

(
1− f IG

2bS/ν
∗
S ,
√

2bS/ν
∗
S
3(s)

)
ds

+ π̃∗U
1

2bU/ν∗U

∞∫
0

Φ−ν∗Bs,
√
s(x)

(
1− f IG

2bU/ν
∗
U ,
√

2bU/ν
∗
U

3(s)

)
ds.

Proof : As we are asymptotically for t→∞ in the steady state, the perception process is with
probability π̃∗S in the stable state and with probability π̃∗U in the unstable state. We use this
and condition on the age of the current dominance time

fB(x) = lim
t→∞

P(Yt = S)fB|Yt=S(x) + lim
t→∞

P(Yt = U)fB|Yt=U (x)

= lim
t→∞

P(Yt = S)

∞∫
0

fB|Y=S,A=s(x)fA|Y=S(s)ds

+ lim
t→∞

P(Yt = U)

∞∫
0

fB|Y=U,A=s(x)fA|Y=U (s)ds

= π̃∗S

∞∫
0

Φν∗Bs,
√
s(x)

(
1− f IG

2bS/ν
∗
S ,
√

2bS/ν
∗
S
3
(s)

)
2bS/ν∗S

ds

+ π̃∗U

∞∫
0

Φ−ν∗Bs,
√
s(x)

(
1− f IG

2bU/ν
∗
U ,
√

2bU/ν
∗
U

3
(s)

)
2bU/ν∗U

ds,

where we used Proposition 8.12 for the (asymptotic) density of the age and the property that
the increments of the background process are normal distributed for a fixed s for the last
equal sign.

An exemplary marginal density of the background process is shown in Figure 13.9 using
the parameters of subject C in Table 12.2. The theoretical density fits closely the empirical
distribution (estimated in 1000 simulations), where the peak around zero is caused by the
unstable state, and the rather flat distribution for larger x-values is due to b̃S being remarkably
larger than b̃U .
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Figure 13.9: Comparison of the asymptotic marginal density fB(x) of Bt (blue
line, Proposition 13.18) with an empirical histogram at t = 900 obtained from
1000 simulations. The parameters are taken from parameter combination C in Table 12.2
(page 162).
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Chapter 14

Data analysis

In this chapter we apply the HMM and the HBM to the sample data set presented in Schmack
et al. (2015) consisting of responses to continuous and intermittent stimulation obtained from
each of 29 patients with schizophrenia and 32 healthy controls (Sections 14.1 and 14.2). As
suggested in Schmack et al. (2015), missing responses during intermittent stimulation were
replaced by their preceding responses because the reported percept typically persisted to the
next available response. For both models we evaluate the model fit visually, perform model
diagnostics and investigate group differences between the patients with schizophrenia and the
control subjects. For the HMM for continuous presentation, we moreover show a reproducibility
result, i.e., that the parameters µ and σ are highly correlated across subjects in two different
recording sessions recorded by Schmack et al. (2013) (Section 14.1.5). Additionally, the
advantage of the inverse Gaussian HMM compared to the Gamma HMM is analyzed (Section
14.1.3). All response patterns reported in Schmack et al. (2015) are visualized in Appendix A.
In the last part of the chapter (Section 14.3), another data set (published in Weilnhammer
et al., 2016) is presented, and the HBMc is fitted to this data set.

Statistical properties like the coefficient of variation of the dominance times or different
correlation measures are often investigated in studies evaluating continuous stimulation with
an ambiguous stimulus. Therefore, we analyze the response patterns during continuous
presentation in Schmack et al. (2015) briefly with regard to the CV and correlation and
compare the results to other studies. Moreover, we justify again the assumption of independent
dominance times in the HMMc and the HBMc. While response patterns in the data set
Schmack et al. (2015) were highly variable across subjects, the CV of dominance times (mean
0.79, SEM 0.04) was comparable as also reported in (Cao et al., 2016). Serial correlation of
adjacent dominance times of the same percept was typically small (mean of Kendall’s rank
correlation τ̄ = 0.02), and statistically significant on the 5% level in less than 7% of the
cases, which is about chance level. Concerning long-term dependence (compare Pastukhov
and Braun, 2011), deviations from the assumption of independent dominance times were not
observed in 81% of the cases, and no differences were observed between the experimental groups
(p > .1, Wilcoxon test). Long-term dependencies are analyzed using the Pearson correlation
coefficient cH between the dominance times and the cumulative history H as introduced
in Pastukhov and Braun (2011). The history H is a function of the length and recency of
previously dominated percepts. For each of the 57 subjects with at least five dominance
times, cH is estimated as explained in Pastukhov and Braun (2011). To assess statistical
significance, 1000 data sets are obtained for each subject by permutation of the dominance
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14. Data analysis

times to approximate the distribution of cH under the null hypothesis of independent and
identically distributed dominance times. Statistical significance on the 5% level is obtained by
comparison of the empirical history cH to the 95% quantile of the distribution of cH derived
from the permuted data sets. A correlation between the alternation rates in continuous and
intermittent stimulation across subjects was not observed in either group, comparable to the
results of Brascamp et al. (2009).

14.1 Hidden Markov Model

Here, we apply the Hidden Markov Model with IG distributed dominance times to the data set
reported in Schmack et al. (2015). First, we investigate the goodness of fit visually (Section
14.1.1), then perform model diagnostics for the HMMi (Section 14.1.2) before showing that the
IG HMM describes the data better than the HMM with Gamma-distributed dominance times
(Section 14.1.3). In Section 14.1.4 we refine group differences between a group of patients with
schizophrenia and a control group using the HMM parameters, and in Section 14.1.5 we show
that the HMMc parameters of individuals across two different sessions are highly correlated
(data from Schmack et al. (2013)).

14.1.1 Model fit

By fitting the HMM to response patterns in continuous and intermittent presentation as
described in Section 9.3, the typical properties of the observed response patterns can be
reproduced in simulations, including unimodal distributions for continuous presentation and
changes between stable and unstable stages in intermittent presentation and a high variety of
response patterns (Figure 14.1). For example, subject C shows rather regular stable phases,
separated by unstable phases, while subject D shows an irregular response pattern, subject E
shows only stable phases, while subject F shows almost only unstable phases. The parameter
estimates of these example subjects are given in Tables 9.1 and 9.2. Note also that the response
patterns of seven of the 61 subjects were described better by only one (stable or unstable)
distribution than by the two-state HMM.
In addition to the good correspondence in the response patterns, no strong deviations could be
observed from the model assumption of inverse Gaussian distributed dominance times (Figure
14.2).

14.1.2 Model diagnostics

The fitting procedure leaves the investigator with the estimated set of parameters Θ̂HMM.
Should we trust these parameters and thereby work with them for, e.g., comparison between
parameter estimates or not? First of all, we recommend visual inspection of a number of
simulated data with the same parameters (maybe ten) and comparison to the original data.
In case the simulated data differ strongly from the original data because, e.g., unstable phases
occur too often or the response pattern is too irregular, we recommend not working with the
estimated parameters. Model diagnostics offer a more formal approach to answer the question
if to trust the parameters.
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Figure 14.1: Comparison of empirical response patterns to patterns simulated
with the HMM. Examples of response patterns to continuous (green, A-B) and intermittent
(blue, C-F) stimulation repeated from Figure 8.1 and corresponding simulations within the HMM
(orange). The parameter estimates are given in Tables 9.1 and 9.2 (page 102), respectively.
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Figure 14.2: Comparison of distribution of dominance times with theoretical
distribution. The theoretical IG distribution in the HMM fitted to the empirical distribution
of dominance times for continuous (A) and intermittent (B) presentation shown in Figure
14.1 A and C.
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14. Data analysis

In the literature several approaches for model diagnostics of HMMs are described. Here,
we concentrate on the two-state HMM for intermittent presentation and focus on the idea
of Altman (2004), who compares the empirical distribution function of dominance times
F̂ (y) =

∑n
i=1 1di≤y/n with the parametric HMM estimate

FΘHMM
(y) = πS · FS,ΘHMM

(y) + πU · FU,ΘHMM
(y),

where FS,ΘHMM
(y) and FU,ΘHMM

(y) describe the response distributions in the stable and the
unstable state, respectively, and πS , πU are the weights of the stationary distribution (Corollary
10.8). If the model is specified correctly, a plot of F̂ (y) against FΘHMM

(y) should be close to
the main diagonal.
Figure 14.3 presents the comparison of the empirical and the model distribution functions
for the four response patterns shown in Figure 9.1 panels C-F (page 70). For subjects A, B
and D the fitting is satisfactory, especially when considering the small sample sizes in the
data set. The response pattern of subject C only consists of three complete dominance times.
Hence, the empirical distribution function only takes the values 0, 1/3, 2/3, 1. As the model
distribution function of an IG distribution is continuous, the comparison of the empirical and
the model distribution function is difficult (panel C). For the majority of the subjects in the
two data sets of Schmack et al. (2013, 2015) the empirical and the model distribution function
agree closely (data not shown).
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Figure 14.3: Comparison of the empirical with the HMM distribution functions.
The four exemplary response patterns shown in Figure 9.1 C-F (page 70) yield the HMM
estimates of Table 9.2 (page 102) used here. Subject A here corresponds to panel C in the table
and so on. Additionally, the main diagonal is plotted.

Moreover, we briefly want to note that different types of tests exist to test the null hypothesis
of a parameter set Θ0 fitting to the data. The first type tests against the alternative of a
parameter set Θ1 describing the data and relies on the likelihood ratio for the two models (e.g.,
Giudici et al., 2000; Dannemann and Holzmann, 2008) where in our situation the distribution
of the test statistic under the null hypothesis has to be simulated, or theoretical work is
required. Such a test can be used to investigate the question if the estimated model for one
subject may also explain the response data of another subject. Second, one may think of
chi-square-type tests (Titman and Sharples, 2008) to test if Θ0 describes the data well where
the deviations of observations from their expectations are summed using chi-square statistics.
Again, a simulation of the test statistic distribution would be necessary. Generally, one should
keep in mind that more work is necessary to understand the different tests properly, that our
sample sizes per subject possibly are too small for meaningful tests, and that tests should
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always be carefully interpreted. Note that even if the HMM is not ”correct” it maybe a
valuable tool to approximate the data.
If the fitting procedure has not found a solution (i.e., no estimate satisfying the constraints
A)-C) given on page 99 was found), the simulated data do not look convincing, or model
diagnostics rather speak against the model, we should think about reasons and possible
solutions:

• The model is not appropriate due to a completely discrepant structure of the data or
due to non-stationarities. Thus, thinking about another model may be helpful.

• There are not enough events. This is an important issue given the small sample sizes
analyzed in this thesis. However, increasing the recording length T is due to fatigue
effects not always recommendable.

14.1.3 Comparison between Gamma and IG distribution

Throughout this thesis we have proposed to model the dominance times using the inverse
Gaussian and not the Gamma distribution. To justify this, we compare in this subsection the
fitting of these two distributions. First, we compare graphically the fitting of a Gamma and
an inverse Gaussian distribution to exemplary dominance times distributions in continuous
stimulation. In Figure 14.4 we note that the IG distribution visually fits the data slightly
better than the Gamma distribution. To generalize this result, Figure 14.5 A shows the
log-likelihoods of Gamma and inverse Gaussian distributions fitted to the dominance times
during continuous stimulation in Schmack et al. (2015). In about 61% of the cases the IG
model yielded a (slightly) larger log-likelihood than the model using Gamma-distributed
dominance times, and in the other cases the Gamma-distribution yielded only slightly better
results.
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Figure 14.4: (A-D): Four examples of histograms of dominance times from
Schmack et al. (2015) with densities of fitted Gamma (cyan) and inverse Gaus-
sian distributions (green, both via maximum likelihood).

Comparing the two Hidden Markov Models for the response data to intermittent presentation
note that except for two cases the model likelihood for all subjects is larger for the IG HMM
than for the HMM with Gamma-distributed dominance times (shown in Figure 14.5 B).

201



14. Data analysis

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

−150 −100 −50 0

−
15

0
−

10
0

−
50

0

log−lik. of IG−HMM

lo
g−

lik
. o

f Γ
−

H
M

M

continuousA
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●●
●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

−450 −250 −50

−
45

0
−

25
0

−
50

log−lik. of IG−HMM

lo
g−

lik
. o

f Γ
−

H
M

M

intermittentB

Figure 14.5: HMM log-likelihoods for the IG and the Gamma distribution. (A)
Comparison of the log-likelihoods of the inverse Gaussian- and the Gamma-HMM for continuous
presentation. (B) Comparison of the log-likelihoods of the inverse Gaussian- and the Gamma-
HMM for intermittent presentation. The main diagonal is added in both plots.

14.1.4 Group differences

The HMM provides a relation between the underlying model parameters and the observed
group differences reported in the introduction (Figure 8.2) and in Schmack et al. (2015).
In the continuous case, the decreased alternation rate in the patients with schizophrenia is
simply reflected in an increased mean dominance time µ̂ (Figure 14.6 A) in the one-state
HMM. For intermittent presentation, we had observed an increased alternation rate in the
patients with schizophrenia. The interpretation of this observation was not obvious due to the
high variability of response patterns and particularly due to the fluctuation between stable
and unstable state. The HMM provides a first explanation of this phenomenon by capturing
important response properties in the parameter estimates, which showed the following group
differences: In particular, the (expected) relative time spent in the stable state π̃S , was higher
in the control group (Figure 14.6 B, formula given in equation (10.2) in Section 10.2.2). As
the main variable contributing to this difference, we observe that the probability p̂SS to stay
in the stable state was higher in healthy controls. In addition, the mean dominance time µ̂U
in the unstable state was slightly larger in the patients with schizophrenia. The degree of
statistical significance was highly similar to the one reported in Schmack et al. (2015) (p < .1
for µ̂, µ̂U , p̂SS and ˆ̃πS , two-sided Wilcoxon test).

Remark 14.1. Effect of direct maximization, censored dominance times, UMVU
inspired estimation and the Gamma model
The observed parameter differences also hold for the DNM estimation described in Section
9.4.2 and using the censored dominance times or the UMVU inspired approach. Moreover,
using the same constraints concerning µ̂S and σ̂S as for the HBMi (E) and F) on page 157)
does not change the significance of results (but yields less reliable estimates as µU appears to be
estimated too large). Using the assumption of Gamma instead of inverse Gaussian distributed
dominance times also does not affect the estimated group differences considerably.
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Figure 14.6: Differences in the HMM parameter estimates between subjects with
schizophrenia and control subjects. (A) µ̂ during continuous presentation and p̂SS and
ˆ̃πS for intermittent presentation (B). Each gray dot indicates one individual participant’s data,
colored diamonds indicate medians, horizontal bars indicate 25%/75%-quantiles.

14.1.5 Comparison of repeated trials

14.1.5.1 Results

The HMM approach also allows studying the reproducibility of response parameters of subjects
across multiple sessions. Interestingly, the data set reported in Schmack et al. (2013)
contains two separate sessions of continuous presentation for each of 105 healthy subjects (the
first two training runs from Behavioral Experiment 2 as described in this previous work).
These showed highly reproducible response patterns, i.e., a high correlation of parameter
estimates of the IG distribution of the same individuals across different sessions (Figure 14.7).
In addition, we also used a likelihood ratio test (Samanta, 1985, evaluated in the next subsection)
to investigate for each subject the null hypothesis of equality of the parameters of two inverse
Gaussian distributed samples with sample sizes n1 and n2, i.e., H0 : µ1 = µ2 and σ1 = σ2.
The likelihood ratio derives as

Qn =

2∏
i=1

(n/ni)
ni/2 (Si/S)ni/2,

with Si =
∑ni

j=1 (d−1
ij − µ̂

−1
i ) for i = 1, 2, S3 = n1/µ̂1 +n2/µ̂2−n2(n1µ̂1 +n2µ̂2)−1, n = n1 +n2

and S = S1 +S2 +S3. Under H0 the quantity Q∗n := −2(1−1/6[1/n1 +1/n2]−1/[12n]) logQn
is approximately chi-square distributed with two degrees of freedom. Thus, the test rejects
the null hypothesis at level 5% if Q∗n exceeds the 95%-th-quantile of the χ2(2)-distribution.
In the sample data set, the likelihood ratio test did not reject the null hypothesis of equal
parameter sets in 83 out of 105 subjects (about 79%). For a comparison, we performed 10000
permutations by randomly assigning a first trial of one subject to a second trial of another
subject and performing the likelihood ratio tests on the permuted data sets. In the mean, the
null hypothesis was not rejected in only about 36% of the randomly assigned pairs, with a
maximum percentage across all permutations of 51%. The likelihood ratio test is evaluated in
the next subsection concerning the dependence of the significance level and the test power on
the sample sizes and the distribution parameters.
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In summary, the response patterns of the same subject across multiple sessions showed a high
degree of reproducibility, with a Pearson correlation coefficient of up to r = 0.76 between
log(µ1) and log(µ2) (Figure 14.7). The similarity of response patterns for the same subject
across multiple sessions was significantly higher than the similarity of response patterns
between subjects.
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Figure 14.7: Reproducibility of response patterns. Parameter estimates of log(µ) (A)
and log(σ) (B) of the IG distribution in two sessions with the same individuals, data set reported
in Schmack et al. (2013). The logarithm was applied due to asymmetric distributions of the
parameter estimates. Stars indicate highly significant (p < .0001) correlation of parameter
estimates across different sessions.

14.1.5.2 Evaluation of the likelihood ratio test by Samanta (1985)

The likelihood ratio test suggested by Samanta (1985) is an asymptotic test as the distribution
of the test statistic Q∗n is asymptotically chi-square. In the following, we investigate the
empirical behavior of the test depending on the sample size n1 = n2 = n, the initial values
µ1, σ1 and the factors of change µ2/µ1, σ2/σ1. For each sample size and parameter combination,
we perform 1000 simulations consisting of n IG distributed random variables X1, X2, . . . , Xn

with parameters µ1, σ1 and n IG distributed random variables Xn+1, Xn+2, . . . , X2n with
parameters µ2, σ2 and count how often the statistic Q∗n exceeds for the random sample
X = (X1, X2, . . . , X2n) the 95%-th-quantile of the χ2(2)-distribution, i.e., how often the null
hypothesis is rejected. All sample sizes, parameter combinations and changes are shown in
Figure 14.8. The parameters were chosen according to typical values in the data set Schmack
et al. (2013).
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Figure 14.8: Simulated significance level and test power of the likelihood ratio test
suggested by Samanta (1985) for different parameter combinations and magni-
tudes of changes in 1000 simulations. In the first row (A-E) the sample size was n = 10,
in the second row n = 25 (F-J) and in the third row n = 100 (K-O). The initial parameters
were (µ1, σ1) ∈ {(8.5, 6.5), (17, 6.5), (4.25, 6.5), (8.5, 13), (8.5, 3.25)}, where the initial values
differ from column to column. The size of changes differs from 1/3 to 3, where the point with
no change neither in the mean nor in the variance shows the empirical significance level. The
color coding is shown on the right.

Four conclusions can be drawn from Figure 14.8:

• The empirical significance level (green/yellow points in Figure 14.8) ranges from 4.5−8.0%,
mostly slightly above five percent.

• The test power increases with the sample size, which is a well-known effect in statistics.

• The test power increases with a decreasing CV=σ/µ as possibly a large irregularity
overlaps the difference between the distributions.

• A change in the expectation µ is easier to detect than a change in the standard deviation
σ (for instance, for n = 25 and (µ1, σ1) = (8.5, 6, 5) a change by the factor of 1.5 is
detected with a probability of about 40 percent for σ and 94% for µ, see panel F) as
changes in µ affect the mass of the distribution, and the standard deviation rather effects
the tails. Hence, the parts of Figure 14.8 with smaller test power have an elliptic form.

To sum up, the likelihood ratio test of Samanta (1985) shows practical applicability also for
rather small sample sizes (n ≈ 25 as typical for the data Schmack et al. (2013)).

14.2 Hierarchical Brownian Model

Now, the Hierarchical Brownian Model is applied to the data set reported in Schmack et al.
(2015). We start by assessing the goodness of fit visually (Section 14.2.1). Then, we perform
model diagnostics for the HBMi (Section 14.2.2) before analyzing group differences in the
HBM parameters between the patients and the controls in Section 14.2.3.

14.2.1 Model fit

Here, we use the parameter estimation described in Sections 12.1 and 12.2. Because the HBMc
represents only a reparametrization of the one-state HMM, results are completely analogous
for continuous presentation. Thus, a high variability of response patterns can be described
with the two parametric distribution (see Figures 14.9 A and B), including also different means
and variances of dominance times.
For intermittent presentation, the HBMi and the two-state HMM are similar, but also show a
number of differences (see Section 14.1). As a first similarity to the two-state HMM, the HBMi
can also describe and reproduce a high variety of response pattens (Figure 14.9 C-F). For
example, these include highly regular stable states that may or may not be interrupted by short
unstable phases (C,E) or response patterns with different degrees of regularity and different
alternation rates (D, F). Note also that the response patterns to intermittent stimulation of
six out of the 61 subjects were described better by the one-parametric HBMc as in these cases
only long dominance times longer than 30 seconds occur (e.g., E).
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Figure 14.9: Comparison of empirical response patterns to patterns simulated
with the HBM. Example empirical response patterns from Figure 8.1 and response patterns
simulated by the HBM (orange). Responses to continuous and intermittent presentation are
plotted in green and blue, respectively. The estimated parameters used for simulation are given
in Tables 12.1 and 12.2 (page 162), respectively. (A) and (B) Continuous presentation and
HBMc. (C)-(F) Intermittent presentation and HBMi. Below the orange response patterns, one
can see the perception process P and (for the HBMi) the background process B corresponding
to the respective simulation.

In addition to the close description and reproduction of the patterns in the empirical data,
one interesting additional aspect is captured by the HBMi, which cannot be described in the
two-state HMM. As explained in Section 11.2.3, the probability of a transition from stable
to unstable state decreases with the length of the dominance time in the HBMi. Indeed, the
same observation can be made in the empirical data set, while this dependence cannot be
captured within the HMM (Figure 14.11). Additionally, we show an example where a shorter
stable dominance time before the state change is directly visible in both the data and the
corresponding HBMi simulation and is printed on a yellow background (Figure 14.10).
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Figure 14.10: Example of a shorter dominance time before a state change from
stable to unstable. The shorter dominance time is printed on a yellow background and is
visible in both the data (A) and the simulated response pattern of the HBMi (B) (using the
estimated HBMi parameters from A).
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14. Data analysis
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Figure 14.11: Mean dominance times in the stable state as a function of the
successive state. In the empirical data set, the mean dominance time before a state transition
SU is shorter than the mean dominance time before SS (A). This observation can be reproduced
in the HBMi (C), while the expected dominance time in the HMM (B) is equally long for
intervals with and without transition, i.e., independent from transition between states. In the
empirical data set (Schmack et al., 2015), the state transitions were estimated using the Viterbi
paths (Section 12.5). Analogous results were obtained using a fixed threshold (All dominance
times shorter than 15 seconds are classified as unstable and all dominance times larger than
45 seconds as stable. The other dominance times are classified as ”no decision possible”.) or
the data set Schmack et al. (2013). For the HBMi, the expected dominance times were derived
from the HBMi parameters according to Lemma 11.2. In the HMM, expected dominance times
correspond to µ̂S.

14.2.2 Model diagnostics

As with the HMM the question of validity of the estimated parameter set arises. Again, we
recommend comparing estimated and simulated data as well as the distribution functions
using the approach of Altman (2004). For details see Section 14.1.2.
Figure 14.12 shows the comparison of the empirical and the HBMi distribution functions for
the four response patterns shown in Figure 9.1 panels C-F (page 70). The same remarks as in
Section 14.1.2 concerning the convincing fit for the three subjects A, B and D as well as for
subject C with the small number of dominance times hold.
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Figure 14.12: Comparison of the empirical and HBMi distribution functions. The
four exemplary response patterns shown in Figure 9.1 (page 70) yield in the HBMi estimates
of Table 12.2 (page 162) used here. Panel A here corresponds to subject C in the table and so
on. Additionally, the main diagonal is plotted.
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The same guidelines as on page 201 hold if the simulations or model diagnostics do not look
convincing or no estimate satisfying the constraints A)-F) on page 157 has been found. Tests
to check the model fit of an parameter set Θ0 basing on the likelihood-ratio are conceivable as
well as basing on chi-square statistics. However, we do not apply any test here.

14.2.3 Group differences

Due to the high correspondence of the HBMi response patterns with the empirical data and
the neurophysiologically related parametrization, the HBMi provides potential additional links
to underlying neuronal processes of the observed differences between control subjects and
patients with schizophrenia in Schmack et al. (2015). Here, we consider three aspects related
to continuous and intermittent stimulation and to the transition between these two conditions.
First, concerning continuous stimulation, we note that the one-state-HMM with IG distributed
dominance times and the HBMc yield identically distributed sequences of dominance times.
Note that the mean dominance time µ̂ in the HMM (Figure 14.6A) therefore equals the
corresponding value 2b̂/ν̂0 in the HBMc. As a consequence, the results and interpretation were
identical, i.e., the higher alternation rate of the control subjects during continuous presentation
(Figure 8.2) was reflected in a smaller value of 2b̂/ν̂0. When analyzing the individual parameters
b and ν0, we found no group differences in the drift ν0, but a tendency for a larger neuronal
pool b involved in sensory processing in the group of patients with schizophrenia
(Figure. 14.13 A, p < .1, two-sided Wilcoxon test).
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Figure 14.13: Group differences between patients with schizophrenia and control
subjects in the HBM. The HBMc parameter b̂ (A) and the relation b̂/b̂S (B). (C): Differences

in b̂S/
ˆ̃
bS and p̂∗SS. The raw data together with the median (colored diamonds) and 25%- and

75%-quantiles are shown. All p-values of a two-sided Wilcoxon test were below .1. Recall that
b can be interpreted as the size of the neuronal pool active during continuous presentation
and bS as the size of the neuronal pool being active in the stable state during intermittent
presentation. b̃S is the border which the background process has to cross to remain stable.

Second, regarding intermittent presentation, we focused on the derived parameters
(µ∗S , σ

∗
S , µ

∗
U , σ

∗
U , p

∗
SS , p

∗
UU ), which show correspondence to the HMM and good estimation

properties, instead of testing the border and drift parameters individually. Similar to the
HMM, we found an increased mean unstable dominance time in the group of patients with
schizophrenia as compared to healthy controls. More importantly and also consistent with
the HMM, we also found that patients with schizophrenia showed a decreased relative time
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spent in S, π̃∗S (p < .1, two-sided Wilcoxon test, see eq. (13.10) in Section 13.2.2). Again, the
probability p∗SS to stay in the stable state seemed to be the main variable contributing to
this difference, being significantly reduced in patients with schizophrenia (Figure. 14.13 C,
p < .1, two-sided Wilcoxon test). In order to identify potential neurophysiological mechanisms
underlying this group difference, we further investigated the components of p∗SS . Noting that
no difference was observed in the mean stable dominance time µ∗S = 2bS/ν

∗
S and in the relation

ν∗S/ν
∗
B of the drift in stable state and the drift of the background process, one interesting

parameter is bS/b̃S . Keeping all other parameters constant, an increase in this quantity means
an increase in p∗SS because the crossing of b̃S at the end of a stable dominance time, i.e., staying
in the stable state, gets more likely. In the empirical data set, we found increased values of
bS/b̃S in the control group (Figure. 14.13 C, p < .1, two-sided Wilcoxon test). In terms of the
potential neurophysiological interpretation, this would suggest an increased population size
involved in stable perception processing as a potential main underlying mechanism.
Third, a similar observation resulted from the derived parameter bS/b, which describes
a transition of population sizes from continuous to intermittent stimulus processing. In
the data set, we observed increased values of bS/b for the control group (Figure 14.13 B)
as compared to the group of patients with schizophrenia. Again, applying a potential
neurophysiological interpretation, this would suggest that in the control group, the neuronal
pool that is additionally recruited during intermittent presentation in stable states could
be higher than in the group of patients with schizophrenia. Note that this result could not
be obtained in the HMM, which does not explicitly describe a potential transition between
continuous and intermittent presentation. However, note that this result should be interpreted
carefully due to reduced estimation precision of the parameters bS/b̃S and bS/b.
In summary, this analysis of the HBM parameters suggests the following explanation for the
observed phenomenon that the alternation rate of the perceived percepts is increased for
patients with schizophrenia during intermittent stimulation, while being decreased during
continuous stimulation. In general, the relative time spent in the unstable state was increased
in patients with schizophrenia. According to the HBM, this was attributed to an increased
probability of transition from the stable to the unstable state, which could be potentially
related to a decreased recruitment of neurons in the stable state. More specifically, a larger
neuronal pool is hypothesized to account for the increased stability, and we accordingly observe
a smaller increase in the neuronal pool from continuous to intermittent stable presentation in
the patients with schizophrenia, which is suggested by the HBM as a main mechanism for the
observed group differences. This analysis of a potential underlying mechanism, explaining the
observed group differences also in the transition from continuous to intermittent presentation,
is a particular advantage of the HBM over the HMM, because the HBM provides mechanistic
explanations and variables with potential neurophysiological interpretations.

Remark 14.2. Effect of the COBYLA algorithm, the censored dominance times
and the constraints
In this thesis, we also presented estimation approaches for the HBM using the COBYLA
algorithm and using the censored last dominance times. The parameter differences found using
the standard estimators above can also be observed for these other two estimation procedures.
Moreover, omitting the constraints E) and F) (about µ∗S and σ∗S) for the HBMi on page 157
yields less reliable parameter estimates but also the same parameter differences observed when
maximizing the likelihood under these constraints. Hence, the parameter differences are not
due to an specific estimation procedure.
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14.3 Dataset of Weilnhammer et al. (2016)

To show the applicability of our model, we fit the HBMc to another data set of responses to
bistable stimulation presented in Weilnhammer et al. (2016). As the HMM for continuous
presentation with IG distributed dominance times is directly comparable to the HBMc, one
can alternatively fit the HMM.

Stimulus and data description

Lissajous figures (see, e.g., Figure 14.14) belong to the bistable stimuli as they are perceived
as objects rotating in-depth and unpredictably changing their direction of rotation. They
are generated by sinusoidally varying x- and y-values of 2D curves in the plane causing an
increasing phase shift of the sinusoids (more details in Weilnhammer et al. (2016)).

Figure 14.14: The intersection of two sinusoids with perpendicular axis and in-
creasing phase-shift generates the Lissajous figure (from Weilnhammer et al.,
2016, Creative Commons license).

Two factors (size and shifting frequency) of the Lissajous figure were varied in the aforemen-
tioned paper, resulting in four different conditions. In one run, each condition was presented
for 80 seconds with five seconds of fixation in between and random order of conditions. All of
the 18 participants completed 8-9 runs of the experiment. As the length of response patterns
per run is thus very short, we focus on the overall distribution of dominance times per subject
and/or per condition.

Data analysis and the HBMc model

The empirical dominance times show an one-peaked, right-skewed distribution resembling a
Gamma or inverse Gaussian distribution. Our model can capture this kind of distribution, not
only summed over all subjects, but also for the different conditions and the individual subjects
as shown in Figures 14.16 and 14.17. In the figures the deviations between the simulated and
the empirical histograms of dominance times are small. The HBMc moreover generates run
response patterns closely matching the wide variety of empirical ones. In Figure 14.15 we
present one example of an empirical response pattern during one run of 80 seconds duration
and a simulated response pattern, closely fitting the true one.
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Figure 14.15: Comparison of an empirical (A) and a simulated (B) response pat-
tern in one run of 80 seconds duration in the Lissajous experiment (Weilnham-
mer et al., 2016) and the HBMc, respectively.

We describe the parameter estimation briefly.

Parameter estimation

As each run only lasts 80 seconds, there is a number of runs where the perception does
not change. Therefore, we treat these dominance times of length 80 as censored ones. The
log-likelihood L, which has to be maximized to estimate the HBMc model, is for the data
d = (d1, . . . , dn) thus given by

L =

n∑
i=1

1

2
log

(
4b2

πdi

)
1di≤80 −

n∑
i=1

ν2
0

2

(di − 2b/ν0)2

di
1di≤80 +

n∑
i=1

1di>80 log

(
1− F IG

2b/ν0,
√

2b/ν30
(80)

)
.

To maximize the latter display w.r.t. b and ν0 the nlm()-command can be used with the
moment estimates of b and ν0 (Section 12.1.3, based only on the not-censored dominance
times) as initial values.
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Figure 14.16: Comparison of the overall empirical distribution of dominance
times in (Weilnhammer et al., 2016) and the simulated one in the HBMc for the
four conditions for subject 1. Parameters are fitted to the four conditions separately using
all runs in the respective condition. 10000 runs were simulated for each condition.
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Figure 14.17: Comparison of the overall empirical distribution of dominance
times in (Weilnhammer et al., 2016) and the simulated one in the HBMc for
each of the 18 subjects. Here, conditions and runs are not distinguished when fitting the
parameters to the data of each subject. 10000 runs were simulated for each subject.
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Chapter 15

Summary and Discussion

In Section 15.1 a summary and discussion of this second part of the thesis is given (where we
also relate our findings to other results in schizophrenia research), and in Section 15.2 the
applicability of the HBMi as well as possible model extensions are discussed.

15.1 Summary and implications

In this part we have proposed a model framework for the description and analysis of perceptual
responses to bistable stimuli. In particular, one aim was to describe a high number of
observed patterns in responses to continuous and intermittent stimulation and the change
in variability between the presentation types. The variety of patterns includes more or less
regular dominance times during continuous stimulation and a switching between long and
short dominance times, i.e., stable and unstable states, during intermittent stimulation, with
a tendency for periodically occurring percept changes.
We started on a descriptive level, assuming that dominance times were generated by a simple
HMM with only one state for continuous presentation and a stable and an unstable state in
intermittent presentation. The HMM was sufficiently small to allow model fit to short empirical
data sets (our third goal mentioned in the introduction on page 55) and could also describe
the high variety of empirically observed response patterns in continuous and intermittent
presentation (the first goal). Interestingly, it also revealed a high degree of reproducibility of
response patterns of the same subject across different sessions. In addition, it allowed to relate
observed group differences in the rate of percept alternations to HMM parameters, suggesting
that especially the relative time spent in the stable state was reduced in the patients with
schizophrenia. Mathematically, we derived for the first time the estimators for the HMM
parameters in the framework of the Baum-Welch algorithm for inverse Gaussian distributed
emissions.
Our second goal was to relate the observed response patterns and group differences to potential
underlying mechanisms and thus, to build a link to models with detailed neurophysiological
assumptions (Moreno-Bote et al., 2007; Brascamp et al., 2009; Gigante et al., 2009; Braun
and Mattia, 2010; Pastukhov et al., 2013) that may not include all types or response patterns
and/or may not allow fitting to short data sets. To that end, we proposed a hierarchical model
of interacting Brownian motions (HBM). The HBM is based on the common assumption that
the sequence of percept changes results from a competition of conflicting neuronal populations
(Laing and Chow, 2002; Wilson, 2007; Brascamp et al., 2009; Gigante et al., 2009; Pastukhov
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et al., 2013). Instead of modeling these in detail, we describe the activity difference by a
Brownian motion P with drift ν0 (Cao et al., 2016) between two borders ±b, where the first
hitting times of the borders indicate percept changes. These hitting times are inverse Gaussian
distributed. Roughly speaking, the drift ν0 could be considered related to the neuronal
interactions within and between the populations, while the border b could be considered
related to the population sizes. In order to describe responses to intermittent presentation, this
mechanism is adapted in another population pair. These populations exhibit a corresponding
background process B that evokes switching between stable and unstable states, similar to
switching between the two percepts. In particular, B causes the perception process P to
change parameters from small drift νS and large border bS in the stable state to fast drift νU
and small border bU in the unstable state.
The HBM parameters can be related to the parameters of the HMM with inverse Gaussian
distributed emissions. For the continuous presentation this is just a reparametrization, where
for the HBMi the relation is not as straightforward. However, the models are highly similar in
the sense that one subset of parameters describes the distributions of long and short dominance
times and the other subset describes the transition probabilities between the hidden states.
An important difference is that in the HBM the transition probabilities depend on the length
of the current dominance time.
In addition, we derived properties of the point process induced by the perceptual changes of
the HBMi including first-hitting times, distribution of the number of perceptual changes and
stationarity properties. Most important, the expected relative time in the stable state was
computed.
The HBM could be fitted nicely to the given empirical data set (i.e., fulfills the third goal),
reproducing a high variety of response patterns to continuous and intermittent stimulation in
healthy subjects and patients with schizophrenia (the first goal). The estimation for the HBMc
applies maximum likelihood, and for the HBMi numerical maximization of the likelihood
expressed in terms of forward variables is used. In particular, the model fit was improved over
the descriptive HMM by reproducing shorter stable dominance times before a change to the
unstable state. The HBM also provided more detailed explanations for the observed group
difference that patients with schizophrenia showed higher alternation rates during intermittent
stimulation, while percept alternation was decreased during continuous presentation. In
particular, the HBM contains additional mechanisms of switching between stable and unstable
state for intermittent presentation, which is assumed inactive during continuous presentation.
The HBM, similar to the HMM, suggests an increased probability of switching to the unstable
state for the patients with schizophrenia and thus, a longer relative time spent in the unstable
state. The HBM also provides additional potential explanations related to the borders, or
assumed population sizes, suggesting a higher increase from continuous (border b) to stable
intermittent presentation (border bS) in the healthy subjects. This is a first finding on the
transition from continuous to intermittent presentation, which results from including both
continuous and intermittent presentation in one model.

Connection to findings about schizophrenia These findings suggested by the HBM,
which include a longer relative time spent in the unstable state for the patients with schizophre-
nia and a smaller population size involved in percept stabilization, are also in agreement
with recent findings of Stuke et al. (2017). They studied the learning behavior of healthy
subjects of whom the degree of delusional ideation (Peters et al., 1999) had been measured.

216



15. Summary and Discussion

In compliance with earlier studies (for a review see Fletcher and Frith, 2009), they reported
that subjects with larger delusion proneness made decisions on the basis of less information
and were also less resilient against irrelevant information (compare also the literature about
jumping to conclusions, e.g., Evans et al., 2015; Ross et al., 2015). In the present setting, the
ambiguous stimulus represents a constant source of partly contradicting visual information
(see also Hohwy et al., 2008; Weilnhammer et al., 2017). In that sense, the unstable state could
be considered a state in which one is less resilient against this contradicting visual information,
which yields a high rate of percept changes. The fact that the patients with schizophrenia
spent more time in the unstable state is therefore highly consistent with the findings of Stuke
et al. (2017). Moreover, this finding is also compatible with current models of schizophrenia
in the framework of predictive coding (Adams et al., 2013) that propose a reduced top-down
influence of stored predictions. However, it goes beyond previous work by highlighting the
role of a background process that controls the balance between stable and unstable states
in perceptual inference. In addition, the population sizes could be considered related to the
amount of information taken into consideration to create a percept. Again, consistently with
Stuke et al. (2017), we find, in the stable state, larger estimated population sizes, bS , of the
perceptual populations L and R in healthy controls than in patients with schizophrenia. Also,
these population sizes are typically much larger than the population sizes in the unstable state
(bS >> bU ), which would be consistent with the notion that subjects in the unstable state
need less information to change their perception.

15.2 Applicability and model extensions

The HBM may also be used to describe dominance times resulting from other experiments with
ambiguous visual stimuli studying, e.g., motion-induced-blindness, binocular rivalry, moving
plaids, the Necker Cube, orthogonal gratings or the house/face-paradoxon (e.g., van Ee, 2005;
Cao et al., 2016) or also bistable auditory stimuli (Rankin et al., 2015). The HBM is, however,
not designed for tristable stimuli, and transient stimulus manipulations as used in after-effect
studies cannot be captured by the HBM in its current form. In different bistable settings, the
HBM cannot be applied directly, but would allow for potential extensions. For example, in its
present form, the HBM describes only balanced perception. However, it could be extended
with respect to unbalanced bistable displays, e.g., for different eye contrasts during binocular
rivalry (Brascamp et al., 2006), by choosing different drift parameters for the positive and the
negative drift direction during presentation. Similarly, the drift could be chosen to vary as
a function of attention (Pastukhov and Braun, 2007; Dieter et al., 2016) or as a function of
long-term history (e.g., the cumulative history H proposed in Pastukhov and Braun (2011)).
In studies on mixed perception during binocular rivalry (Gershman et al., 2012), one might
use an additional border to define an intermediate range for the perception process in which
mixed perception is described.
Possibly, the HBM could be connected to fMRI measurements. However, as the perception
and the background process are assumed to represent differences in neuronal activities and
as we only know their values at the time of perceptual changes, this connection might be a
challenging task.
One should note that the HBMi in its current form is restricted to a duration of blank displays
lb ≤ lp · ν0/νS . For longer blank displays, the mean drift of P during stable states, ν∗S , will be
negative, yielding no perception change with high probability. However, it would be possible
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to extend the model accordingly, assuming a temporal evolution in the drift parameters,
given corresponding extended empirical observations. In addition, note that the border of the
perception process is assumed to be b during continuous stimulation and bS (or bU ) during
intermittent stimulation. Therefore, an instantaneous change of intermittent to continuous
presentation is not yet described. Here, we qualitatively assume that the border jumps very
fast from b to bS with the onset of a blank display, while going back slowly during stimulation.
A transition from continuous to intermittent presentation would therefore instantly change the
response pattern, while a reverse transition would gradually reverse the change back to the
one-state process. Quantitative validation and fitting of this assumption would be interesting,
but requires corresponding empirical observations, in which the length of the presentation
period lp is varied. This would also allow investigation of potential relations between the
HBMc and HBMi parameters and thus, between the mechanisms assumed to underlie the
identified group differences.
Concerning the impact of the duration of the blank display lb, two aspects should be discussed.
First, the HBM can theoretically reproduce a phenomenon reported earlier in Brascamp et al.
(2009). Conditional that one percept has been present for a short while, the probability of a
percept change rises with the blank duration lb. In the HBMi, the same is observed during
the unstable state with typically short dominance times: During the unstable state the drift
in the blank displays, νU , is typically larger than the drift ν0 during stimulation. Therefore,
longer blank displays speed up P , thereby reducing perceptual stability.
Second, one interesting potential model extension is concerned with the relationship between
the length of the blank display and the alternation rate. As reported earlier by Leopold et al.
(2002); Brascamp et al. (2009); Gigante et al. (2009), the mean dominance time in intermittent
presentation has been found to be a function of the relationship between the presentation length
lp (or ”ON”-period) and the length of the blank display lb (or ”OFF”-period). Particularly,
the dependence between lb and the alternation rate is non-monotonic, as would be implied in
the HBMi, but follows an inverted U-shape (Orbach et al., 1963; Kornmeier and Bach, 2004;
Pastukhov and Braun, 2013) with a peak roughly at 0.4 s. Such an inverted U-shape would
be possible in a model extension of the HBMi. As discussed in Section 11.2.1, the drift terms
νS , νU only represent the mean drift across the period of blank display, which is sufficient and
parsimonious in the given data set with fixed length of blank display. However, the model
would be fully consistent with the assumption that the drifts change during the ”OFF”-period,
such that the mean drifts νS(lb) and νU (lb) are functions of the length of the blank display lb.
In Figure 15.1 A these mean drifts νS , νU decrease with lb, where the stronger drifts at the
beginning of the blank display could be effects of the recent stimulation. Panel B shows the
resulting mean alternation rate, which has an inverted U-shape with a maximum around
0.4 s and shows increased stability under intermittent stimulation for lb > 0.7. This increased
stability is caused first by a small drift νS < ν0 in that range. Second, it is also caused by
the fact that the time interval lb in which the background process B has positive drift is
longer, leading to an increased probability to reach b̃S and thus, to stay in the stable state.
Estimation of the functions νS(lb) and νU (lb) from a suitable data set with variable lengths of
blank displays would be an interesting task.
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15. Summary and Discussion
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Figure 15.1: HBMi extension for different lengths of blank display. Parameters
derived for subject B and C in Tables 12.1 and 12.2, which is the same subject during continuous
and intermittent presentation. (A) The mean drifts νS , νU decrease with the length of the
blank display lb. (B) The resulting mean alternation rate ρHBMi under intermittent stimulation
(black) is derived using formula (13.12) (Section 13.2.3). Therefore, for each length of blank
display lb and the value of νS , νU as shown in panel A the mean drifts per second in the stable
and the unstable state ν∗S, ν∗U and the mean drift of the background process ν∗B are derived
using equation (11.2). The empirical mean alternation rates per minute of the subject during
intermittent viewing with lb = 0.8 and during continuous viewing are marked by blue and green
lines, respectively.

In summary, the proposed HBM intends to provide a link between empirical data analysis and
mechanistic modeling. On the one hand, it aims at precisely describing the high variety of
response patterns observed in perceptual responses to bistable stimuli. On the other hand,
it aims at bridging the gap to detailed mechanistic models of bistable perception, allowing
assumed processes to be fitted to short empirical data sets and thus, also the analysis of group
differences. Various extension possibilities show a potential of the HBM to investigate related
experimental contexts. By including both continuous and intermittent stimulation, the HBM
can thus provide interesting new hypotheses on potential neuronal mechanisms of cognitive
phenomena.
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Chapter 16

Overall summary

The present thesis handles the description and analysis of point processes occurring in
neuroscience, with a focus on the description and detection of different kinds of variability
changes. It consists of two parts. In the first part, an existing method (MFT) for the test of
rate homogeneity and the detection of rate change points in renewal processes was extended to
the test of variance homogeneity of the life times and the detection of variance change points.
The approach allows for the rate given by a step function, is non-parametric and can detect
change points in multiple time scales. Under the null hypothesis of variance homogeneity
limit processes for the corresponding filtered derivative process (which compares the estimated
variances in two adjacent sliding windows) were derived which are called L in the case of
rate homogeneity and L̃ in the case of one rate change point. The two processes are both
unit-variance centered Gaussian processes and differ only in the covariance structure around
the rate change point, but in contrast to L̃ the process L is independent of unknown process
parameters. Hence, the rejection threshold is derived from L also with rate change points
being present (as supported by simulation results). The necessity of estimating the rates before
and including the rate change points in the procedure was explained. Simulations have shown
that the procedure keeps the asymptotic significance level and that the detection probability
of variance change points is considerably high. In an analysis of neuronal spike trains, several
rate and variance change points were estimated.

In the second part of the thesis, response patterns to continuous and intermittent presentation of
a bistable stimulus were modeled. Especially the difference between the unimodal distribution
of dominance times during continuous presentation and the bimodal distribution during
intermittent presentation, which can also be interpreted as change in variability, was of interest.
First, a descriptive Hidden Markov Model with one or two hidden states was applied. Using
the HMM the data set could be described nicely applying maximum likelihood estimation, and
moreover, group differences observed in the response patterns of a healthy control group and a
group of patients with schizophrenia could be refined. Second, a hierarchical Brownian model
was used to allow for neuronal correlates. In this model perception arises from the competition
between two conflicting neuronal populations. The activity difference between these groups of
neuronal populations is modeled as Brownian motion with drift which fluctuates between two
borders, where every first hitting time of a border implies a perceptual change and a change
of the sign of the drift. For the intermittent presentation a second layer with competing
populations encoding a stable and an unstable state is assumed. The model is estimated via
the maximum likelihood method which also is applicable to the short data sets available from

221



16. Overall summary

experiments. Data are fitted closely and again the difference between the group of patients
with schizophrenia and the group of controls is mainly explained by the patients spending less
time in the stable state. The Viterbi algorithm allows estimating the points in time where the
hidden regime changes from stable to unstable or vice versa. To conclude, the HBM connects
precise data description and mechanistic models.

In summary, this work presented two approaches for dealing with point processes with different
kinds of variability changes emerging in neuroscience. First, a widely applicable technique to
detect change points in the first two moments of a point process was discussed, and second,
a model linking empirical data analysis and mechanistic modeling for response patterns to
bistable stimuli was presented. Thus, variance changes in point processes with a large number
of events such as neuronal spike trains can be detected, and differences in the variability
between short empirical point processes like response patterns can be described using the
approaches developed in this thesis. To conclude, on the one hand, the thesis provides
techniques that can be helpful for signal detection and as a preprocessing step for statistical
analyses being sensitive to deviations from rate or variance stationarity. On the other hand, it
introduces a mechanistic stochastic model closely describing the variability in response patterns
to both continuous and intermittent stimulation by an ambiguous stimulus and thereby offers
interesting new insights into potential neuronal mechanisms of visual perception.
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Appendix A

The sample data set Schmack et al.
(2015)

The main data set analyzed in Part II of this thesis was partly published in Schmack et al.
(2015). The ambiguous stimulus (Figure 8.3) was presented continuously and intermittently
to 61 subjects, where 29 were patients with schizophrenia and the other 32 a healthy control
group. During intermittent presentation a presentation period of 0.6 seconds interchanged
with a blank display period of 0.8 second (compare also Section 8.1 for a description of the
experimental setup). As discussed, the response patterns to both continuous and intermittent
stimulation vary widely between the subjects and groups. To give an overview, we show in
Figure A.1 the response patterns to continuous presentation for all subjects and in Figure A.2
the response patterns to intermittent presentation. Note that the perception at the beginning
of the experiment during continuous viewing is not known (as long as the subject does not
press one button), and therefore the perception in Figure A.1 starts always at some time t > 0.
The continuous data consist of the points in time a button was pressed and the button that
was pressed. The intermittent data contain the times of stimulus onsets, the times where
the stimuli were answered (if they were answered) and the button that was pressed. In the
heading of each graph in Figures A.1 and A.2 we indicate if the subject belongs to the group
of patients with schizophrenia or the control group. 68 subjects participated in the experiment
but for different reasons only the data of 61 subjects were analyzed. Thus, some subject
numbers are missing in Figures A.1 and A.2 (as Subject 3, Subject 6, etc.).
During continuous presentation the control group had more perceptual reversals, whereas
during intermittent presentation the reverse holds true (Figure 8.2). Especially, the relative
time spent in the stable state was significantly higher for the control group (Figures 14.6 and
14.13 for the HMM and the HBMi, respectively), which is also visible when comparing the
response patterns of the two groups per eye (more long dominance times for the control group).
The correlation between the alternation rates in continuous and intermittent stimulation across
subjects was not significant in either group.
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Figure A.1: Response patterns to continuous presentation of the stimulus for all
61 subjects differed by control or schizophrenia group (Schmack et al., 2015).
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Figure A.2: Response patterns to intermittent presentation of the stimulus for
all 61 subjects differed by control or schizophrenia group (Schmack et al., 2015).
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Appendix B

The COBYLA algorithm

The COBYLA algorithm for optimization under non-linear constraints offers an alternative to
the Newton-type approach used in this thesis for the direct numerical maximization of the
HBMi log-likelihood as given in equation (12.9) on page 156. In contrast to the Newton-type
approach (called by nlm() in R), it was directly constructed for constrained maximization
with non-linear constraints. Recall that by using the nlm()-command we only accepted the
solutions satisfying the constraints A)- F) on page 157. The COBYLA algorithm takes the
constraints as input. In this appendix we present the idea of the COBYLA algorithm briefly
(Section B.1) and then examine the estimation precision of parameter estimates for the HBMi
using this algorithm (Section B.2) thereby also explaining why we do not use the COBYLA
algorithm in practice. We use the same set of starting values as for the Newton-type algorithm
(discussed in Section 12.2.1.3).

B.1 Idea

The COBYLA algorithm (constrained optimization by linear approximation) was invented by
Powell (1994) to solve optimization problems that are constrained and where no derivatives
exist. We describe the main ideas very briefly and refer for more details to Powell (1998, 2007).
The goal is to minimize a function f(x) : Rn → R subject to m ∈ N (possibly non-linear)
constraints ck(x) ≥ 0, k = 1, . . . ,m. Therefore, the function values f(xi), i = 1, . . . , n at
the vertices of a simplex are interpolated by a linear polynomial L(x) : Rn → R, and the
constraints are approximated by linear polynomials lk(x) ≥ 0, k = 1, . . . ,m. In each iteration
step the linear program

minL(x) + κ[max (−lk(x), k = 1, . . . ,m)]+

s.t.||x− x0|| ≤ ρj

is solved, where the subscript ”+” denotes that the expression in the brackets is replaced by
zero if it is negative. κ is a parameter, which may be increased from its initial value zero, x0 is
the vertice with the smallest value, i.e., f(x0) ≤ f(xi), i = 1, . . . n, || · || denotes the Euclidean
norm, and ρj is a positive number, which may be reduced iteration-wise. The condition is
introduced to prevent the linear approximations to be inaccurate. Moreover and particularly
for the same reason, a lower bound ∆j is imposed on ρj that is reduced only when the current
value seems to prevent further progress. The new ”best vertice” x̂0 replaces one of the old
vertices of the simplex. The algorithm finishes when ∆j becomes sufficiently small.
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B. The COBYLA algorithm

B.2 Precision of parameter estimates for the HBMi

We evaluate the estimation precision of the HBMi parameters applying parametric simulations
as in Section 12.4.2 using the 61 estimated parameter constellations from the data set Schmack
et al. (2015). The only difference is that we know use the COBYLA algorithm to estimate
the parameters. Figure B.1 shows the results and is directly comparable to Figure 12.6 (page
163). For the original parameter set bS , ν

∗
S , bU , ν

∗
U , b̃S , b̃U , ν

∗
B and the original recording length

T = 1200 s only 18 parameter constellations yield smaller errors in the sense that the median
error across the relative and the absolute errors was smaller than 0.25. For a recording length
T = 3600 s 43 parameter constellation showed small errors. Regarding the set of derived
parameters µ∗S , σ

∗
S , µ

∗
U , σ

∗
U , p

∗
SS and p∗UU for T = 1200 s we observe 49 parameter constellations

yielding small errors and for the larger T = 3600 s as much as 58 parameter combinations.
Again the sample size n and the probability p∗SS are critical for the estimation precision
(panels E and F). These results are highly similar to the results obtained using the Newton
approach implemented in the nlm()-function (Section 12.4.2). However, in a few cases the
COBYLA algorithm (implemented in the R-package nloptr) does not stop and thereby causes
a program crash. Therefore, we recommend to use the nlm()-function when estimating the
HBMi parameters in practice.
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Figure B.1: Precision of parameter estimates in the HBMi using the COBYLA
optimization. For each of the 61 parameter constellations estimated from the sample data set,
1000 HBMi simulations were performed. (A) and (B): log(median(REs)) of the border param-
eters bS , bU , b̃S , b̃U , and log(median(AEs)) of the drift parameters ν∗S , ν

∗
U , ν

∗
B with T = 1200

(A) and T = 3600 (B). (C) and (D): log(median(REs)) for the derived model parameters
µ∗S , σ

∗
S , µ

∗
U , σ

∗
U and log(median(AEs)) for the parameters p∗SS and p∗UU for T = 1200 (C) and

T = 3600 (D). Parameter combinations with mean errors < 0.25 across all variables plotted in
black. (E) and (F): Corresponding scatterplots of p∗SS and n where the black points correspond
to mean errors < 0.25 across the derived parameters.
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Die vorliegende Dissertation widmet sich der Analyse und Modellierung von Punktprozessen,
wie sie aus verschiedenen Experimenten in den Neurowissenschaften entstehen. Insbesondere
wird ein Fokus auf die Beschreibung und Detektion von verschiedenen Arten von Variabilitäts-
änderungen innerhalb von Punktprozessen gelegt. Hierbei bilden die Zeitpunkte, zu denen
Ereignisse stattfinden, Punktprozesse auf der (positiven) reellen Achse.

Ein prominentes Beispiel für die Anwendung von Punktprozessen in den Neurowissenschaften
sind sogennante Spike Trains. Ein charakteristischer, kurzfristiger Anstieg im Membranpoten-
tial einer Nervenzelle (auch Neuron genannt) wird als “Spike“ bezeichnet. Es wird Information
durch die Übertragung elektrischer Signale zu benachbarten Zellen verarbeitet. Weder die Höhe
noch die Dauer des Potentialanstiegs unterscheiden sich wesentlich, weshalb angenommen wird,
dass die zeitliche Abfolge der Spikes – der Spike Train – die Basis der Informationsverarbeitung
im Gehirn bildet (siehe z.B. Kandel et al., 2000). Die Auftrittszeitpunkte (t1, t2, . . . , tn) der
Spikes in einem Intervall [0, T ] (mit 0 < t1 < t2 < . . . < tn < T <∞) bilden den Spike Train
und stellen im mathematischen Sinne einen Punktprozess auf der positiven reellen Achse
dar. Die Analyse dieser Punktprozesse dient zum Verstehen der Funktionsweise des Nerven-
systems. Häufig werden dabei statistische Modelle auf der Basis von Erneuerungsprozessen
verwendet (vgl. Johnson, 1996; Dayan and Abbott, 2005; Kass et al., 2005; Nawrot et al.,
2008) und stationäre Modellparameter wie z.B. Rate oder Varianz der Lebenszeiten (auch
Inter-Spike-Intervals genannt) angenommen. Statistische Analysen (wie beispielsweise serielle
Korrelationen oder Koordination zwischen parallelen Spike Trains) können durch Verletzung
dieser Modellannahmen verfälscht werden (Brody (1999); Grün et al. (2003); ein Beispiel eines
simulierten Spike Trains mit nicht-stationärer Rate und Varianz findet sich in Abbildung 1).
Es wurden daher eigens Techniken entwickelt, die auf separaten Analysen in Abschnitten mit
stationären Parametern aufbauen (Grün et al., 2002; Schneider, 2008; Staude et al., 2010;
Quiroga-Lombard et al., 2013). Diese Techniken verwenden Stufenfunktionen und zielen auf
die Detektion der Change Points, d.h. der Strukturbrüche, ab.

Abbildung 1: Schematische Darstellung eines simulierten Spike Trains mit Struk-
turbrüchen in der Rate und in der Varianz

Außer der Verbesserung der Ergebnisse statistischer Analysen können detektierte Raten-
oder Varianz Change Points auch direkt wertvolle Information beinhalten. So werden in
Bingmer et al. (2011) verschiedene neuronale Feuermuster beschrieben, die mit Änderungen
in der Variabilität verbunden sind. Dopaminerge Neuronen beispielsweise wechseln in ihrem

253



German summary

Feuermuster oftmals zwischen einem oszillatorischem Feuern geringer Rate und kurzen, so
genannten burstigen Abschnitten mit hoher Feuerintensität. Diese burstigen Abschnitte stellen
eine potenzielle Änderung in der Varianz dar und werdem mit einem erhöhten Dopaminausstoß
in Verbindung gebracht (z.B. Gonon, 1988; Schiemann et al., 2012).

Zur Detektion von Change Points in der Rate (oder ähnlich gelagert von Change Points im
Mittelwert von Folgen von Zufallsvariablen) gibt es vielfältige wissenschaftliche Arbeiten,
wie z.B. Bertrand (2000); Lavielle and Moulines (2000); Bertrand et al. (2011); Frick et al.
(2014); Fryzlewicz (2014); Matteson and James (2014); Messer et al. (2014); Eichinger and
Kirch (2018). Einen generellen Überblick über das Feld der Change Point detection bieten die
Übersichtswerke Basseville and Nikiforov (1993); Csörgö and Horváth (1997); Aue and Horváth
(2013); Jandhyala et al. (2013); Brodsky (2017). Einige dieser Techniken können auch zur
Detektion von Strukturbrüchen in der Varianz verwendet werden. Weitere Arbeiten zu diesem
Thema stammen von Hsu (1977); Inclan (1993); Inclan and Tiao (1994); Chen and Gupta
(1997); Whitcher et al. (2000); Killick et al. (2010); Zhao et al. (2010); Noorossana and Heydari
(2012); Killick et al. (2013); Nam et al. (2015); Korkas and Fryzlewicz (2017). Einschränkend ist
anzumerken, dass die meisten Methoden parametrisch sind, d.h. beispielsweise normalverteilte
Zufallsvariablen annehmen, oder höchstens einen Change Point finden können. Eine zentrale
Annahme ist zudem die einer stationären und teils sogar bekannten Rate. Zur Detektion
simultaner Change Points in Rate und Varianz gibt es lediglich die anwendungsorientierten
Arbeiten von Hawkins and Zamba (2005); Rodionov (2005). Weiterhin entwickelten Dette
et al. (2015) einen statistischen Test für die Nullhypothese der Varianzhomogenität bei leicht
variierendem Mittelwert.

Der erste Teil der vorliegenden Arbeit fokussiert sich daher auf eine Methode zur Erkennung von
Change Points in der Rate und in der Varianz in Erneuerungsprozessen, die in verschiedenen
Zeitskalen simultan oder separat auftreten können. In einem zweistufigen Verfahren soll
dabei zunächst die Nullhypothese der Ratenhomogenität bei gewisser Variabilität der Varianz
getestet und etwaige Raten Change Points detektiert werden. Im zweiten Schritt wird die
Nullhypothese der Varianzhomogenität getestet und etwaige Strukturbrüche der Varianz sollen
detektiert werden. Hierbei werden die Raten Change Points als Eingabe verwendet. Das
nichtparametrische Verfahren ist auf eine Vielzahl an Lebenszeitverteilungen anwendbar und
nicht auf die Alternative genau eines Change Points beschränkt.

Im zweiten Teil der Arbeit werden Punktprozesse resultierend aus Experimenten zur bista-
bilen Wahrnehmung untersucht. Beim Betrachten visueller Illusionen, die mehr als eine Art
der Reizinterpretation zulassen (typischerweise zwei), treten unvorhersagbare Wechsel der
Wahrnehmung auf. Die Zeitpunkte dieser Wahrnehmungswechsel bilden einen Punktprozess.
Hierbei ist die Wechselrate höchst abhängig vom verwendeten Stimulus und weist große
interindivuelle Unterschiede auf. Prominente Beispiele sind der Necker-Würfel (Necker, 1832)
oder die Rubinsche Vase (Rubin, 1915). Darstellungen finden sich in Abbildung 2.
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Abbildung 2: Necker-Würfel (A) und Rubinsche Vase (B). Der Necker-Würfel kann
entweder von oben oder von unten wahrgenommen werden. Die Rubinsche Vase kann als Vase
oder als zwei sich anschauende Gesichter aufgefasst werden. Die Grafik wurde leicht überarbeitet
von https://commons.wikimedia.org/wiki/File:Multistability.svg übernommen (Public Domain
license).

In dieser Arbeit werden Daten aus den Studien Schmack et al. (2013) und Schmack et al.
(2015) verwendet. Den Teilnehmern dieser Studien wurde am Monitor eine Ansammlung von
sich bewegenden Punkten gezeigt (Abbildung 3). Das “structure-from-motion“ Phänomen
bedingt, dass wir diesen Stimulus als drehende Sphäre mit nicht eindeutiger Drehrichtung
wahrnehmen.

Abbildung 3: Stimulus aus Schmack et al. (2015). Die Grafik unterliegt einer Creative
Commons license.

Den Studienteilnehmern wurde der Stimulus sowohl kontinuierlich als auch intermittierend,
d.h. mit kurzen Phasen eines “blank displays“ zwischen den Präsentationsphasen, vorgespielt.
Die Zeitpunkte, zu denen die Teilnehmer einen wahrgenommenen Wechsel der Drehrichtung
angaben, bilden die Punktprozesse, die im zweiten Teil der Arbeit betrachtet werden. Im
Antwortverhalten lassen sich bemerkenswerte Unterschiede zwischen kontinuierlicher und inter-
mittierender Präsentation feststellen (siehe Abbildung 4) mit einer Zunahme der Variabilität
(gemessen an der mittleren Dominanzzeit, d.h. des mittleren Intervalls konstanter Wahrneh-
mung) hin zur intermittierenden Präsentation. Die Verteilung der Längen der Dominanzzeiten
ist bei kontinuierlicher Stimulation meist eine rechtsschiefe unimodale Verteilung (Levelt,
1965; Brascamp et al., 2009) mit einem Mittelwert von ca. fünf Sekunden. Bei intermittie-
render Präsentation mit genügend langen “blank displays“ hingegen beobachtet man einen
Wechsel zwischen sehr langen, stabilen Dominanzzeiten von über eine Minute (Leopold et al.,
2002; Maier et al., 2003) mit sehr kurzen, instabilen Dominanzzeiten von oft weniger als fünf
Sekunden (Brascamp et al., 2009).
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Abbildung 4: Antwortverhalten auf einen bistabilen Stimulus unter kontinuierli-
cher Präsentation (grün, A, B) und intermittierender Präsentation (blau, C-F).
Die Daten stammen aus Schmack et al. (2015). Es lässt sich eine große interindivuelle
Variabilität der Antwortmuster feststellen.

In der Literatur finden sich einige detaillierte mathematische Modelle zur Beschreibung bistabi-
ler Wahrnehmung, die Eigenschaften wie die Verteilung der Dominanzzeiten bei kontinuierlicher
Stimulation (Wilson, 2007; Gershman et al., 2012; Pastukhov et al., 2013; Cao et al., 2014,
2016; Weilnhammer et al., 2017) oder periodisches Verhalten und den Einfluss der Länge des
blank displays bei intermittierender Stimulation (Brascamp et al., 2009; Gigante et al., 2009)
erklären können. Oftmals wird hierbei eine Rivalität zwischen verschiedenen Wahrnehmungen
zugeordneten Neuronenpopulationen angenommen (Laing and Chow, 2002; Wilson, 2007;
Brascamp et al., 2009; Gigante et al., 2009; Pastukhov et al., 2013). Die Zunahme an Stabilität
bei genügend langem blank display wird mittels multipler Zeitskalen für den Aufbau von
Erinnerung modelliert (Brascamp et al., 2009; Gigante et al., 2009).

Aufgrund der Komplexität und Hochdimensionalität der Modelle stellen Parameteranpassungen
an Realdaten eine Herausforderung dar, insbesondere unter Berücksichtigung der typischerweise
kurzen Aufzeichnungslängen. Des Weiteren sind nur wenige Modelle dokumentiert, die sowohl
kontinuierliche als auch intermitterende Stimulation abdecken (Wilson, 2007; Brascamp et al.,
2009; Gigante et al., 2009).

Ziel des zweiten Teils dieser Arbeit ist es daher ein stochastisches Modell zu entwickeln,
welches das beobachtete Verhalten in den beiden Stimulationsarten mit potenziell zugrun-
deliegenden Prozessen auf neuronaler Ebene in Verbindung bringt. Das Modell sollte dabei
einerseits die große Variabilität der Antwortmuster zu kontinuierlicher und intermittierender
Präsentation beschreiben. Andererseits sollte die Anzahl der Parameter klein genug sein um
Modellanpassungen an Daten, die oftmals nur aus wenigen Dominanzzeiten bestehen, zu
ermöglichen.

Nachfolgend werden die beiden Teile der Arbeit genauer erläutert.
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Teil 1

Der in Teil 1 vorgestellte Test und Algorithmus basiert auf dem Multiple Filter Test (MFT)
(Messer et al., 2014) und dem zugehörigen Multiple Filter Algorithmus (MFA). Diese wurden
ursprünglich für die Detektion von Raten Change Points in Punktprozessen mit gewisser
Variabilität der Lebenszeiten entwickelt. Der MFT testet zunächst die Nullhypothese der
Ratenhomogenität. Wird diese verworfen, so werden Änderungen in der Rate mittels des
MFA detektiert. Die Grundidee ist, Daten aus zwei angrenzenden Teilbereichen des Prozesses
(Fenstern) heran zu ziehen, und auf deren Basis die passend skalierte Differenz der geschätzten
Rate zu berechnen. Ist die Differenz groß, so spricht dies gegen eine stationäre Rate. Die
Fenster werden zum einen vergrößert und zum anderen über den Prozess geschoben. Es
werden die sogenannten filtered derivative Prozesse berechnet. Kleine Fenster können eher nah
beieinanderliegende Change Points erkennen, während größere Fenster auch kleine Änderungen
der Rate detektieren können. Das Maximum aller filtered derivative Prozesse dient als Test-
statistik M , die mit einer Verwerfungsschwelle Q verglichen wird. Unter der Nullhypothese
konvergieren die filtered derivative Prozesse schwach gegen Gaußsche Grenzprozesse (Lh,t)t,
die von der verwendeten Fenstergröße h abhängen. Q wird als Quantil des Maximums über
alle Grenzprozesse simuliert. Falls M > Q wird die Nullhypothese der Ratenhomogenität
verworfen.

Im ersten Teil der Arbeit wird der MFT erweitert, um auch Change Points in der Varianz
der Lebenszeiten (ξi)i eines Erneuerungsprozesses zu finden. Statt der Rate wird nun die
geschätzte Varianz in adjazenten und über den Prozess gleitenden Fenstern unterschiedlicher
Größe verglichen (Kapitel 3). Für eine Fenstergröße h wird die Statistik

G := Gh,t :=
σ̂2

ri − σ̂2
le√

V̂ar(σ̂2
ri − σ̂2

le)

mit passenden Schätzern σ̂2
le und σ̂2

ri für die Varianz im linken bzw. rechten Teilfenster verwendet.
Etwaige Raten Change Points werden dabei in der Varianzschätzung berücksichtigt.
Unter der Annahme der Varianz- und Ratenhomogenität wird in Theorem 3.4 gezeigt, dass
der resultierende Gaußsche Grenzprozess L identisch zum Grenzprozess im Ratenfall ist, d.h.
es wird die schwache Konvergenz

G −→ L

in (D[h, T − h], dSK) bewiesen (mit T als Zeithorizont). L ist definiert als

L := Lh,t :=
(Wt+h −Wt)− (Wt −Wt−h)√

2h
,

wobei (Wt)t eine standard Brownsche Bewegung ist. Somit kann der Test und Algorithmus
für die Varianzen analog zu den Raten angewendet werden. In Theorem 3.6 wird schließlich
für die Situation eines Raten Change Points bewiesen, dass der Grenzprozess des filtered
derivative Prozesses unter der Nullhypothese der Varianzhomogenität ein zentrierter Gaußscher
Prozess L̃ ist. Dieser unterscheidet sich lediglich in der Kovarianzstruktur in der Umgebung
des Raten Change Points vom Prozess L. Der Grenzprozess im Falle mehrer Raten Change
Points ist eng verwandt mit L̃. Da L̃ von unbekannten Prozessparametern abhängt, schlagen
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wir vor, weiterhin den Prozess L zur Simulation der Verwerfungsschwelle Q zu verwenden. Dies
wird auch von Simulationsresultaten unterstützt (Abschnitt 5.2). Die ausführlichen Beweise
der beiden Theoreme finden sich in Kapitel 4. Hierbei sind das Anscombe-Donsker-Theorem
(Theorem 4.1), continuous mapping sowie die Konsistenz der Schätzer für den Mittelwert
µ und Var((ξi − µ)2) von zentraler Bedeutung. Der MFT lässt sich auch für den Test der
Homogenität der k-ten Momente der Lebenszeiten verwenden unter Annahme der Homogenität
aller niedrigeren Momente (Korollar 3.5).

In Kapitel 5 werden das Signifikanzniveau und die Testmacht des MFT bzw. MFA für die
Varianzen in Simulationen untersucht. Der MFA kombiniert die von Einzelfenstern geschätzten
Change Points und bevorzugt dabei die mit kleineren Fenstern detektierten Change Points. Mit
einem genügend großen kleinsten Fenster in der Fenstermenge wird in den Simulationen das
asymptotische Signifikanzniveau des MFT für weite Parameterbereiche eingehalten – auch bei
zusätzlichen Raten Change Points (Abschnitte 5.1 und 5.2). Die Detektionswahrscheinlichkeit
von Varianz Change Points wird von einer unbekannten, zu schätzenden Rate kaum beeinflusst
und ist abhängig sowohl von der Stärke der Varianzänderung als auch von der Regularität des
Prozesses (Abschnitt 5.3).

Schließlich werden MFT und MFA für die Rate und die Varianz in Kapitel 6 auf einen
Datensatz von Spike Train Aufnahmen angewendet. Die Daten wurden als spontane Aktivität
dopaminerger Neurone der Substantia nigra von anästhesierten Mäusen aufgenommen und
in Schiemann et al. (2012) veröffentlicht. In ungefähr der Hälfte der Fälle werden beide
Nullhypothesen von konstanter Rate und konstanter Varianz verworfen und multiple Raten
und Varianz Change Points geschätzt.

Der erste Teil schließt mit einer Zusammenfassung in Kapitel 7. Hierbei wird betont, dass
die vorgeschlagene Methode hilfreich bei der Change Point Detektion und Einteilung von
Prozessen wie neuronalen Spike Trains in stationäre Abschnitte ist. Die Methode kann daher
entweder im Sinne der Aufdeckung von Nichtstationaritäten oder als vorbereitender Schritt
für statistische Analysen mit Stationaritätsannahmen dienen.

Veröffentlichte Inhalte: Dieser Teil der Arbeit ist größtenteils in Albert et al. (2017a)
veröffentlicht. Die untersuchten Daten sind von Schiemann et al. (2012) publiziert. Der Code
des Varianz-MFTs ist als Teil des Pakets MFT unter CRAN verfügbar
(https://CRAN.R-project.org/package=MFT, Messer et al. (2017)).

Teil 2

Der zweite Teil der Arbeit behandelt die Modellierung des Antwortverhaltens auf bistabile
Stimulation, wobei Daten aus Schmack et al. (2013, 2015) analysiert werden. Es soll u.a.
die Zunahme an Variabilität von Antwortmustern auf kontinuierliche Stimulation hin zum
Antwortverhalten auf intermittierende Stimulation beschrieben werden. In Kapitel 8 wird
zunächst das Experiment genauer erläutert und eine Einführung in die wichtigsten Begriffe
gegeben.

Zur Beschreibung der Daten wird in Kapitel 9 erstmals ein einfaches Hidden Markov Mo-
dell (HMM) verwendet, welches die beobachteten Antwortmuster mit wenigen Parametern
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beschreibt. Im Falle kontinuierlicher Präsentation erzeugt ein Zustand unabhängige, identisch
verteilte Dominanzzeiten, die entweder Gamma oder invers Gauß verteilt sind (mit Parametern
µ und σ). Die Existenz von langen stabilen und kurzen instabilen Dominanzzeiten bei intermit-
tierender Stimulation erfordert die Verwendung eines HMM mit zwei verborgenen Zuständen
(siehe Abbildung 5). Parameter sind hier µS , σS , µU , σU für die inverse Gauß (IG) Verteilung
der Dominanzzeiten im stabilen (S) bzw. instabilen (unstable, U) Zustand sowie die Bleibe-
wahrscheinlichkeiten pSS und pUU . Die Parameterschätzung baut für beide Stimulationsarten
auf bekannten Methoden auf: Die Maximum-Likelihood-Methode und für die IG-Verteilung
alternativ ein UMVU Schätzer (gleichmäßig bester erwartungstreuer Schätzer) wird beim
HMM für die kontinuierliche Präsentation angewendet (Abschnitt 9.3), wobei zusätzlich die
exakte Verteilung der ML-Schätzer unter IG-Verteilung hergeleitet wird. Das Resultat der
Verteilung des Schätzers σ̂ ist dabei originär in dieser Arbeit. Zum Schätzen der Parameter des
HMM mit zwei Zuständen wird der Baum-Welch-Algorithmus (BWA, Baum and Petrie, 1966,
basierend auf ML) verwendet (Abschnitt 9.4). Erstmals wird in der Arbeit dabei ein HMM
mit invers Gauß verteilten Emissionen verwendet und die entsprechenden Parameterschätzer
im Rahmen des BWA hergeleitet. Die Genauigkeit der Parameterschätzung wird in Abschnitt
9.6 für verschiedene Szenarien evaluiert. Hierbei ergeben sich trotz der geringen sample sizes
zufriedenstellende Resultate.

kontinuierliche
Präsentation

fµ, σ
IG

A

● ●

intermittierende
Präsentation

U S
1−pUU

1−pSS

pSSpUU

fµS, σS

IG

fµU, σU

IGB

Abbildung 5: Ein HMM zur Beschreibung bistabiler Wahrnehmung. (A) Ein
Zustand induziert eine unimodale Verteilung der Dominanzzeiten unter kontinuierlicher
Präsentation. (B) Zwei Zustände (S und U) emittieren lange und kurze Dominanzzeiten
bei intermittierender Stimulation.

In Kapitel 10 werden theoretische Eigenschaften der vom HMM erzeugten Punktprozesse von
Wahrnehmungswechseln betrachtet. In Abschnitt 10.1 liegt der Fokus auf der kontinuierlichen
Präsentation, während sich Abschnitt 10.2 dem HMM mit zwei Zuständen zur Modellierung
des Antwortverhaltens während intermittierender Stimulation widmet. Es werden die Anzahl
an Wechseln in einem Zeitintervall, Eintrittszeiten und Gleichgewichtszustände betrachtet. Ein
bedeutendes Resultat (Korollar 10.8) betrifft hierbei die asymptotische Wahrscheinlichkeit,
dass der verborgene Prozess Ỹ im stabilen Zustand ist

π̃S := lim
t→∞

(Ỹt = S) =

1
1−pSS µS

1
1−pSS µS + 1

1−pUU µU
,

die der erwarteten relativen Zeit im stabilen Zustand entspricht.

Das Hidden Markov Modell ist ein beschreibendes Modell und stellt keine Verbindung zu
potenziell zugrundeliegenden Prozessen auf neuronaler Ebene her. Des Weiteren kann die
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empirisch beobachtete Eigenschaft, dass stabile Dominanzzeiten vor einem Zustandswechsel
zum instabilen Zustand kürzer sind, im HMM nicht modelliert werden. Daher wird in Kapitel
11 das sogenannte Hierarchische Brownsche Modell (HBM) vorgestellt, welches gleichzeitig
die zugrundeliegende, aggregierte neuronale Aktivität und die beobachteten Antwortmuster
beschreiben soll.

Zentrale Idee des HBM ist, dass das Wechseln der Wahrnehmung durch den Konflikt zweier
Neuronenpopulationen hervorgerufen wird (vgl. z.B., Gigante et al., 2009). Um die Modell-
komplexität gering zu halten, wird angenommen, dass sich der Prozess der Aktivitätsdifferenz
(genannt perception process P ) zwischen diesen beiden Populationen durch eine Brown-
sche Bewegung mit Drift beschreiben lässt (ähnlich wie in Cao et al., 2016). Weiterhin
wird angenommen, dass dieser Prozess zwischen zwei Schwellen fluktuiert, wobei die ersten
Übertrittszeiten über eine Schwelle einen Wechsel der Wahrnehmung und des Driftvorzeichens
bewirken (Abbildung 6). Zur Beschreibung des Prozesses genügen folglich nur zwei Parameter,
die Schwelle b und die Drift ν0 (Abschnitt 11.1). Wir nehmen an

dPt = Stν0dt+ dWt, mit P0 = −b,

wobei (Wt)t eine standard Brownsche Bewegung ist und St := S(Pt, t) der Prozess des
Driftvorzeichens mit Wert −1, falls Pt zuletzt b traf und Wert 1, falls Pt zuletzt −b traf. Es
gilt S0 := 1. Die Dominanzzeiten sind somit durch die Treffzeiten der Schwellen gegeben. Als
Treffzeiten einer Schwelle durch eine Brownsche Bewegung mit Drift sind die Dominanzzeiten
invers Gauß verteilt (mit Parametern 2b/ν0 und

√
2b/ν3

0 für die kontinuierliche Präsentation).
Es gibt folglich eine einfache Beziehung zwischen den HBM Parametern für die kontinuierliche
Stimulation und den entsprechenden HMM Parametern (unter der Annahme der invers
Gauß-Verteilung im HMM).

A

−b

b
ν0 − ν0

ν0

− ν0

H0 H1 H2 H3 H4 H5 H6 H7 H8

P
t

 

B

L

R

P
er

z.

0 TZeit

Abbildung 6: Das HBM für kontinuierliche Präsentation. Die Übertrittszeiten (Hi)
einer Brownschen Bewegung (schwarz, A) mit Drift ±ν0 über Schwellen ±b induzieren Wechsel
der Wahrnehmung (orange, B).

Um die Antwortmuster auf intermittierende Stimulation im gleichen Modellrahmen darzustellen,
wird in Abschnitt 11.2 ein hierarchisches Modell eingeführt. In diesem basiert das für diese
Stimulationsart typische Wechseln zwischen stabilem und instabilem Zustand gleichfalls auf
dem Konflikt von Neuronenpopulationen und dem Überschreiten einer Schwelle durch den
Prozess der zugehörigen Aktivitätsdifferenz, der als background process B bezeichnet wird.
Diese Differenz wird abermals durch eine Brownsche Bewegung modelliert (mit Drift Null
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während Präsentationsphasen). Der background process bestimmt die Schwelle des perception
process und dessen Drift während blank displays. Diese Drift und die Schwelle unterscheiden
sich je nach verborgenem Zustand. Während Präsentationsphasen ist die Drift des perception
process weiterhin durch ν0 gegeben. Die weiteren Parameter sind nun die Schwellen bS , bU und
Drifts νS , νU des perception process im stabilen bzw. instabilen Zustand sowie die Schwellen
b̃S , b̃U und die Drift νB des background process während blank displays. Unter gewissen
Modellannahmen können die HBM Parameter mit den HMM Parametern verglichen werden
(siehe Abschnitt 11.2.3). So gilt mit der mittleren Drift ν∗S während stabiler Phasen für den
Mittelwert µ∗S und die Standardabweichung σ∗S der Dominanzzeiten

µ∗S ≈ 2bS/ν
∗
S und σ∗S ≈

√
2bS/ν∗S

3,

wobei die Approximation durch die Verwendung der mittleren Drift ν∗S statt der sich un-
terscheidenden Drift ν0 und νS begründet ist (die Auswirkungen dieser Vereinfachung sind
vernachlässigbar). Ein analoges Resultat ist für die instabilen Phasen möglich. Weiterhin wird
die Eigenschaft des HBM, dass die Übergangswahrscheinlichkeiten zwischen den Zuständen
abhängig von der Länge der gegenwärtigen Dominanzzeit di sind, mathematisch analysiert.
Für die Bleibewahrscheinlichkeit im stabilen Zustand gilt beispielsweise

p̃SS(di) := P(Yi+1 = S|Yi = S, di) ≈ 1− Φν∗Bdi,di

(
b̃S

)
,

wobei Yi der verborgene Zustand zur Zeit i ≥ 1 ist, ν∗B die durchschnittliche Drift des
background process ist und Φ() die Verteilungsfunktion der Normalverteilung beschreibt.
Die mittlere Bleibewahrscheinlichkeit p∗SS erhält man durch Integration über die Länge der
Dominanzzeit di wie folgt

p∗SS ≈ P(XS ≥ b̃S),

wobei XS normal-invers Gauß-verteilt ist (Definition 8.9) mit Parametern

(0,
√
ν∗S

2 + ν∗B
2, ν∗B, 2bS). Ähnliche Resultate gelten für den instabilen Zustand.

Die Parameterschätzung für das HBM wird in Kapitel 12 beleuchtet. Im Falle kontinuierlicher
Präsentation kann abermals die Maximum-Likelihood-Methode verwendet werden (Abschnitt
12.1) und bei intermittierender Präsentation wird die Likelihood-Funktion L mittels Forward-
Variablen αj(i), die die Wahrscheinlichkeit der Beobachtungen d1, . . . , di und des Zustands j
zur Zeit i angeben, wie folgt bestimmt

L(d1, . . . , dn) ≈ αS(n) + αU (n)

und die resultierende log-likelihood numerisch maximiert (Abschnitt 12.2). n ist dabei die
Anzahl der Dominanzzeiten. In Abschnitt 12.4 wird die Präzision der Parameterschätzung
analysiert und gezeigt, dass auch kurze Datenstücke zu validen Schätzungen führen. Weiterhin
wird in Kapitel 12.5 gezeigt, dass der Viterbi-Algorithmus zur Klassifikation der Dominanzzeiten
als stabil und instabil für das HBM anwendbar ist.

Theoretische Resultate zum vom HBM induzierten Punktprozess folgen in Kapitel 13. Abermals
werden die Anzahl der Wechsel, erste Treffzeiten und Gleichgewichtsverteilungen analysiert.
Weiterhin werden Verbindungen des Prozesses zu bekannten stochastischen Prozessen wie
Semi-Markov- oder regenerativen Prozessen betrachtet. Zudem werden marginale Verteilungen
des perception und des background Prozesses hergeleitet.
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Die Anwendung der beiden Modelle auf den Datensatz aus Schmack et al. (2013) und Schmack
et al. (2015) erfolgt in den Kapiteln 14.1 und 14.2. Beide Modelle können auf die teils kurzen
Datenstücke angepasst werden und sowohl die rechtsschiefe unimodale Verteilung der Domi-
nanzzeiten während kontinuierlicher Präsentation als auch die bimodale Verteilung während
intermittierender Stimulation wiedergeben. Zudem ermöglichen sie eine hohe interindividuelle
Variabilität der Antwortmuster. Weiterhin lässt sich mit dem HMM eine hohe Reproduzier-
barkeit des Antwortverhaltens während kontinuierlicher Präsentation zeigen (Figure 14.7), d.h.
die Verteilungen der Dominanzzeiten des gleichen Probanden in zwei unterschiedlichen Ver-
suchsdurchläufen ähneln sich stark. Das HBM erfüllt die in den Daten beobachtete Eigenschaft
kürzerer stabiler Dominanzzeiten vor einem Zustandswechsel in den instabilen Zustand, wie in
Figure 14.11 sichtbar ist. Des Weiteren können auch in den Daten beobachtete Unterschiede
zwischen einer Kontrollgruppe und einer Gruppe von Patienten mit Schizophrenie in den
Modellparametern des HMM und HBM identifiziert werden. Insbesondere ermöglicht das
HBM die Verbindung zu potenziell zugrundeliegenden Prozessen im Gehirn. Im Wesentlichen
trägt im Rahmen der Annahmen des HBM bei den Patienten eine geringere Anregung von
Neuronen im stabilen Zustand während intermittierender Stimulation zu geringerer Stabilität
der Wahrnehmung bei, während die Anzahl der beteiligten Neuronen bei kontinuierlicher
Präsentation größer ist und somit hier im Vergleich zur Kontrollgruppe für erhöhte Stabilität
der Wahrnehmung verantwortlich ist (Figure 14.13).

Ein Fazit in Kapitel 15 rundet den zweiten Teil ab. Das HBM bildet eine Brücke zwischen
empirischer Datenanalyse und mechanistischen Modellen. Einerseits zielt es auf eine präzise
Beschreibung der hohen Variabilität der Antwortmuster und der Varianzzunahme von konti-
nuierlicher zu intermittierender Präsentation ab, anderseits sollen potenziell zugrundeliegende
neuronale Prozesse beschrieben werden. Verschiedene Erweiterungsmöglichkeiten zeigen das
Potenzial des HBM, Ergebnisse verwandter Experimente zur multistabilen Wahrnehmung zu
analysieren. Durch seine Anwendbarkeit auf kontinuierliche und intermittierende Stimulati-
on können auf Basis des HBMs neue Hypothesen über potenzielle neuronale Mechanismen
kognitiver Phänomene entwickelt werden.

Eine Darstellung der Daten aus Schmack et al. (2015) findet sich in Anhang A.

Veröffentlichte Inhalte: Weite Abschnitte des zweiten Teils der Arbeit (insbesondere Ab-
schnitte der Kapitel 9, 11, 12, 14 und 15) sind in Albert et al. (2017b) veröffentlicht. Die
untersuchten Daten sind von Schmack et al. (2013, 2015); Weilnhammer et al. (2016) publiziert.

Insgesamt betrachtet werden in dieser Arbeit zwei Ansätze zur Modellierung von Punktprozes-
sen mit unterschiedlichen Arten an Variabilitätsänderungen vorgestellt. Im ersten Teil wird
eine Methode zur Detektion von Change Points in Mittelwert und Varianzen von Lebenszeiten
eines Punktprozesses präsentiert, während sich der zweite Teil einem mechanistische Modelle
und empirische Datenanalyse verbindenden Ansatz zur Modellierung des Antwortverhaltens
bistabiler Wahrnehmung widmet. Die Arbeit beinhaltet daher einerseits Techniken, die hilfreich
für die Signaldetektion sein können und als vorbereitender Schritt für statistische Analysen,
die auf Raten- und Varianzhomogenität beruhen, dienen können. Andererseits wird ein me-
chanistisches stochastisches Modell vorgestellt, welches die Variabilität in Antwortmustern
auf kontinuierliche und intermittierende Stimulation mit einem bistabilen Stimulus abbilden
kann und somit wertvolle, neue Hypothesen über potenzielle neuronale Mechanismen visueller
Wahrnehmung liefert.
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