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1 Introduction

Preface

The goal of this thesis is to give insight into the study of hierarchical fields and their application
today. It is also a nice opportunity to introduce the reader to the credo "If there is a tree, there is a
way.", meaning once the hierarchical structure of a model is nailed down we can unravel its inner
workings, which was (maybe half jokingly) introduced to me by my Ph.D. adviser Nicola Kistler,
but held true ever since. To this end we begin our journey in Section 1.1 with a short introduc-
tion to hierarchical fields and some well known results for Derrida’s random energy model and
generalized random energy model, which are some of the simplest yet paradigmatic hierarchical
fields. We proceed to explain in Section 1.2 the connection of so called scales in hierarchical
models with the behavior of their maximum culminating in a summary of the results and ideas of
Kistler and Schmidt [42], in which a class of models is discussed for which the second order of
the maximum is directly related to the number of scales, clarifying the meaning of the constant in
aforementioned second order correction. In Section 1.3 thereafter we outline the state of the art
for branching Brownian motion type models that are studied extensively to this day not only for
their theoretical appeal, but also for their far reaching prototypical role and connections to other
fields of research. We also explain the contributions made to the study of these models by Glenz,
Kistler and Schmidt [36] and give some intuition for the result. We conclude the introduction by
Section 1.4 explaining the strong connection between cover times in two dimensions and hierar-
chical fields; again giving the reader some intuition for the results and stating the contributions
of Schmidt [52] to the research efforts. Overall the aim of this introduction is to give the reader
who may not be an expert for hierarchical fields a good view of "the big picture" without forcing
the fine details onto him or her. For this reason, in order to keep the introduction and summary
brief, concise and readable as well as to familiarize the reader with some intuition that directs the
arguments of attached papers we deliberately forgo being absolutely rigorous in these sections.
For more details on the discussed topics as well as full proofs of all mentioned results we refer
the reader to given references. After the introduction aforementioned papers [36, 42, 52] are at-
tached. We then proceed to give a quick summary of the insights obtained in English and German
language. As the introduction explains also the interlinking of discussed topics it is encouraged to
read it start to finish, whereas the attached papers are written to be read independently.

Acknowledgments. Before going into more detail, the author wishes to express his grat-
itude to the many people who in one way or another helped him on his way, some of
whom are Julius Achenbach, Magdalena Anthes, Alexander Becker, Daniel Fröhlich, Rita
Gerlach, Nicola Kistler, Luis Kuhn, Anna Meiser, Ralph Neininger, Sebastian Oliva, Eve-
lyn Praefke, Claudia Schmidt, Frank Schmidt, Karlheinz Schmidt, Ursula Schmidt, Doris
Stürmer, Anton Wakolbinger, Tobias Weth and Stephan Wezorke.
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1.1 From independence to hierarchical models

Since the inception of probability theory the concept of independence has remained most central to
this day. There are innumerable results on independent random variables: Law of large numbers,
central limit theorem, Cramér’s theorem, Fisher-Tippett-Gnedenko theorem, Poisson limit theo-
rem or local limit theorems are only a few prominent representatives of this huge class of results.
Slightly more general there are just as many results on approximately independent behavior. De
Finetti’s theorem, mixing, Martingale difference sequences, Galton Watson processes, subcritical
Erdös Rényi Graphs or Chen-Stein method are some exponents of this class. Asking the most
natural question "What about dependent behavior?" one is quickly convinced that this is too vague
a question to answer. This leaves no choice, but to look for large classes of models that are still
confined enough to say something meaningful. One such class is the class of hierarchically depen-
dent fields which, as in the independent case, allows one to consider approximately hierarchical
behavior as well. We consider any field constructed as follows to be hierarchical:

1. Pick a possibly random rooted tree.

2. Given the tree associate independent random variables to the edges.

3. Consider the field indexed by the leafs that is obtained by associating each leaf to the sum
of the random variables from the root to the leaf.

Typically one considers an in some sense consistent sequence of hierarchical fields with growing
number of leafs and is interested in e.g. the maximum, minimum, extremal process or how many
leafs are associated to random variables near a given value. Note that elements of the index set
of a field are called leafs for now, but for some fields may be called spins or particles depending
on the context in order to stay in line with the literature. The concept of so called scales will play
an important role. Given a tree scale refers simply to the distance to the root, hence the behavior
on small scales is the behavior near the root and the number of scales is the number of levels
on which the tree is branching. Even for not exactly hierarchical models we introduce scales to
indicate where the suggested branching structure is to be found. The simplest hierarchical field

Figure 1: Random energy model

and first model we discuss is the random energy model (short REM) introduced by Derrida [33]. It
corresponds to the tree that is only the root with 2N leafs and centered Gaussian random variables
of variance N on all edges (see Fig. 1). Clearly the field at hand simply consists of 2N independent
Gaussians. Hence considering the maximum or extremal process is a classical problem:
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Theorem 1. Subtracting

aREM
N ≡

√
2ln2N− 1

2
√

2ln2
lnN (1)

from the REM the maximum of the field converges to a Gumbel distribution and the extremal
process converges to a Poisson point process with intensity

κe−
√

2ln2xdx, (2)

where κ > 0 is a numerical constant, which is explicitly known.

Behavior similar to this is not special to the Gaussian distribution, but known for any dis-
tribution such that there exists a renormalization that emits a sensible limit. Details are given
by the Fisher-Tippett-Gnedenko theorem and related results. The next model we consider is the
generalized random energy model (short GREM) introduced by Derrida [32]. For K ∈ N and
a1,a2, ...,aK ≥ 0 it is described by the tree of depth K where each non leaf vertex has 2N/K chil-
dren. The edges connecting a depth i and a depth i+ 1 vertex are equipped with centered Gaus-
sians of variance ai+1N. To compare only different correlation structures one typically considers
the case ∑

K
i=1 ai = 1 fixing the variance to N. One could consider different amounts of children on

each level, which is usually not done as it has about the same effect as a variance change, which
we allow to be chosen freely.

Figure 2: Generalized random en-
ergy model: K = 2, N = 4

We will focus on K = 2 (see Fig. 2), since the most rel-
evant phenomena are already present in this case and the
exposition can be handled without heavy notation. For an
in depth treatment of the GREM see Bovier and Kurkova
[24] or see Gayard and Kistler [41] for an intuitive intro-
duction to the model. The K = 2 GREM has three regimes:
a1 < a2, a1 = a2 and a1 > a2. If a1 < a2 we are in the so
called REM phase this name becomes clear in view of

Theorem 2. For a1 < a2 subtracting aREM
N from the GREM

gives convergence of the extremal process to a Poisson point
process of intensity κe−

√
2ln2xdx for some known constant

κ > 0.

For the critical regime a1 = a2 the same centering and
convergence are correct, but the constant κ is different. Al-
though this result is very similar the critical case is the hard-
est to handle and arguably has the most interesting underly-
ing behavior. For a1 > a2 we have the centering

aGREM
N ≡ (

√
a1 +
√

a2)

(√
ln2N− 1

2
√

ln2
lnN

)
. (3)

Let (ζ (1)
i )i∈N be a Poisson point process of intensity κ(1)e−x

√
ln2/a1dx and consider independent

Poisson point processes (ζ
(2)
i, j ) j∈N with intensity κ(2)e−x

√
ln2/a2dx for i ∈ N all independent of

ζ (1).

Theorem 3. The extremal process of the GREM with a1 > a2 after subtracting aGREM
N from the

field converges to the process defined by
∞

∑
i, j=1

δ
ζ
(1)
i +ζ

(2)
i, j

(4)

for some known constants κ(1),κ(2) > 0.
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Generalizing this limiting process to arbitrary amount of scales (from 2 scales here) gives the
class of Derrida-Ruelle Cascades, which play an important role even beyond GREM like models.
For details on Derrida-Ruelle Cascades see e.g. Ruelle [51]. Prominent examples in the field
of spin glasses incorporating these processes are the Parisi theory [47] or Guerra’s interpolation
technique [38]. Before we continue to the discussion of result and intuition of attatched papers we
mention the main techniques used. At the center of all three attached papers stands the hierarchical
structure of the model, which is to my knowledge best exploited employing a multiscale refine-
ment of the second moment method. This flexible and powerful method is employed in all three
papers. For a comprehensive introduction to the method see Kistler [41, pages 71-120]. To han-
dle convergence of extremal processes Kallenberg [39] and [40] have proven very useful. Either
the Laplace transform of the extremal process can be controlled directly or alternatively one can
employ Chen-Stein methods (see e.g. Barbour, Holst and Janson [11]) to control the avoidance
function as is done in Kistler and Schmidt [42].

1.2 From generalized random energy model to branching random walk

While models with a fixed number of scales are very well understood, models with growing num-
ber of scales have some unanswered questions still. Focusing on what is known first, we introduce
the critical branching random walk which is the straight forward generalization of the critical
GREM to K = N scales. This is the model constructed by using the complete binary tree of depth
N and attaching a standard Gaussian to each edge. For this model we consider the following result,
which by linear rescaling is a direct consequence of Aïdékon [1, Theorem 1.1]:

Theorem 4. Subtracting the normalization

aBRW
N ≡

√
2ln2N− 3

2
√

2ln2
lnN (5)

from the critical branching random walk yields convergence to a randomly shifted Gumbel distri-
bution.

Note that results of this type often are universal: e.g. Aïdékon [1, Theorem 1.1] implies that
as long as branching and edge random variables are constructed in the same way for the entire
tree (resulting in a self similar model), then we are still in the critical regime and up different
normalizing constants we obtain the same result (given reasonable tail behavior). One immediately
notices the difference to the critical GREM which has only 1/3 the log-correction. This is in fact
not only true for K = 2 but for any fixed number of scales. Explaining the emergence of the extra
factor 3 in the log-correction and constructing models with any log-correction in between is the
topic of Kistler and Schmidt [42] the first paper of this thesis, which closed the before unexplained
gap between the 1 of the REM and the 3, which was first seen in Bramson [27] in the case of
branching Brownian motion (which we discuss in the next section).

We now discuss the main result of Kistler and Schmidt [42]: Consider the balanced tree with
2N leafs and Nα scales for some 0 < α < 1. This entails that any non leaf vertex has 2(N

1−α )

child vertices (see Fig.3). Associating each edge to a Gaussian random variable of variance N1−α

finishes the description of the model. Note that this model as well as the REM, GREM and BRW
we consider are all normalized to have 2N leafs that are all associated to Gaussians of variance
N, allowing for a comparison of dependencies only. This interpolating model gives a first idea of
the root cause of the change in log-correction in view of the main result of Kistler and Schmidt
[42]: We identify the space of vertices by strings of length up to Nα with values in {1, ...,2(N1−α )},
hence the set of leafs is ΣN ≡ {1, ...,2(N

1−α )}(Nα ). We refer to the random variable associated to
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Figure 3: Trees interpolating between REM and BRW

the edge from (σ1, ...,σi−1) to (σ1, ...,σi) by Xσ1,...,σi . Finally we define the field associated to the
leafs σ ∈ ΣN by

Xσ =
Nα

∑
i=1

Xσ1,..,σi . (6)

Theorem 5. Setting

a(α)
N ≡

√
2ln2N− 1+2α

2
√

2ln2
lnN (7)

we have for Ξ a Poisson point process with density κe−
√

2ln2xdx

∑
σ∈ΣN

δ
Xσ−a(α)

N
→ Ξ (8)

for a known κ > 0 weakly in the large N limit.

While this gives a precise statement how the number of scales or equivalently strength of
correlation influences the log-correction, we need to take a closer look to truly find the root cause
of this behavior. Note that we have for any compact set A of positive Lebesgue measure

E

[
∑

σ∈ΣN

δ
Xσ−a(α)

N
(A)

]
= 2N

∫
A

exp

−
(

a(α)
N + x

)2

2N

 dx√
2πN

∼ κANα , (9)

where κA > 0 is a constant dependent on A only. This would on first inspection suggest that the
recentering a(α)

N is too small, this is however misleading as the main contribution of this expecta-
tion is carried by paths that are so rare that they have no contribution to the limiting process. We
understand a path as the sequence of partial sums from the root to the leaf picking up the random
variable from the edge we traverse in each step, i.e

Sσ = (Sσ

k ,k ≤ Nα), Sσ

k ≡ ∑
j≤k

Xσ1,..σ j . (10)

Defining
UN(k)≡

√
2ln2kN1−α + ln(N) , k = 1, ..,Nα . (11)
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we check by Markov inequality that there are most likely no paths above U as

P(∃k ≤ Nα ,σ ∈ ΣN : Sσ

k >UN (k))≤ ∑
k≤Nα

2kN1−α

P(Sσ

k >UN(k)) , (12)

is vanishing in view of the following Gaussian tail estimate and as
√

2ln2 > 1 > α

P(Sσ

k >UN(k))≤
√

kN1−α

UN(k)
exp
(
− UN(k)2

2kN1−α

)
≤ 1

N
√

2ln2
2−kN1−α

. (13)

As there are most likely no path above UN restricting the consideration to leafs with path below
UN does not change the limiting process. Considering the restricted extremal process yields

E

[
∑

σ∈ΣN

1{Sσ≤UN}δXσ−a(α)
N
(A)

]
=

2N
∫

A
P
(

Sσ ≤UN |Xσ = a(α)
N + x

)
exp

−
(

a(α)
N + x

)2

2N

 dx√
2πN

.

(14)

Up to small error P
(

Sσ ≤UN |Xσ = a(α)
N + x

)
is the probability that a discrete Brownian bridge

from 0 to
√

2ln2N exceeds its expectation no more than logarithmically. This is equally likely
to a discrete Brownian bridge from 0 to 0 staying below a logarithmic barrier. Renormalizing to
standard Brownian bridges this comes essentially down to a discrete Brownian bridge of length
K = Nα being non positive. The probability of this happening is well known by the ballot theorem
and is exactly K−1 = N−α . This gives precisely the contribution necessary to push (9) down to
(13) which we now see is of order one, as we expect from the correct centering. With this it is
clear that in the critical GREM this term only contributes a factor of order one as K is fixed in that
case.

Expanding on this intuition we aim to explain the reasons for the Poissonian nature of the
limiting process for α < 1 next. Discrete Brownian bridge path have fluctuations of order of the
standard deviation. Hence asking such a bridge to stay non positive, forces it to be negative and
roughly of size of the standard deviation. This phenomenon is known as entropic repulsion and an
integral observation of Bramson [26] needed for the treatment of extreme values of hierarchical
fields. With this observation we are now in a position to make the following simple statement
which has far reaching consequences: The best leafs are not the children of vertices with the
highest paths. Of course this entails that away from the starting point many paths are potential
parents for future maxima, which in turn makes it unlikely to branch at some time into two particles
that much later have both some near maximal child. This results in the fact that two near maximal
leafs have paths that are either disjoint up to a common part of order one from the early evolution
where there are only few vertices in existence or nearly identical paths up to branching of order
one away from the leaf. This is unavoidable as relative only different by a random variable of
order one from the maximum is near the maximum. The common part near the root typically
gives the limiting process a random shift encoding the success of the early evolution and the
branching near time N gives a clustering phenomenon. For α < 1 however the first and last step
are larger than order one, hence neither random shift nor clustering occurs making the limiting
process Poissonian.

1.3 On branching Brownian motion

Standard branching Brownian motion is a model very similar to the branching random walk we
discussed in the last section. It can be constructed by running a Yule process with rate one up to
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some time t. Then equipping each edge with a centered Gaussian of variance equal to the length
of the edge in the Yule tree. This is equivalent to starting a particle at zero performing a Brownian
motion for an exponentially distributed time, then splitting into two particles that progress like
independent copies of the first particle from the splitting point onwards (see Fig. 4). Branching

Figure 4: Two realizations of branching brownian motion

Brownian motion (short BBM) today is a very well analyzed model. The interest in the model, es-
pecially in its maximum, was amplified by the connection to the Kolmogorov-Petrovskii-Piskunov
(or Fisher-Kolmogorov-Petrovskii-Piskunov) equation first observed by McKean [46]. The model
is also relevant in the theory of disordered systems see e.g. Bovier and Kurkova [25] or Derrida and
Spohn [34]. Bramson [27] showed two years after McKeans’s observation that the maximum is up
to error of order one given by

√
2t− 3

2
√

2
ln t. The missing ln2 compared to the BRW simply stems

from the fact that at time t BBM has about et particles whereas a BRW at time N has 2N particles.
This turns the BRW ln2 term to a lne = 1. Hence we already notice that changing from deter-
ministic discrete binary branching to continuous random branching with rate one only changes the
model slightly seen here by the fact that the maxima differ only by order one. The question of
the distribution of the maximum was resolved by Lalley and Sellke [43] and the limiting extremal
process was found independently by Aïdékon, Berestycki, Brunet and Shi [2] as well as Arguin,
Bovier and Kistler [8]. Recently even finer results were established see Bovier and Hartung [21] or
Cortines, Hartung and Louidor [30] for details. Also variants of the standard branching Brownian
motion have been studied and are still far from fully solved one of which being variable speed
branching Brownian motion allowing the variance of the Brownian motions used in the construc-
tion to depend on time, see e.g. Bovier and Hartung [23]. One model in the class of variable speed
branching Brownian motions is two-speed branching Brownian motion introduced by Derrida and
Spohn [34] investigated in some detail by Fang and Zeitouni [35] and the extremal process was
established in Bovier and Hartung [22]. A simulation of the model is given in Fig. 5, fixing the
variance at time 8 to that of standard branching Brownian motion and comparing a branching
Brownian motion which fluctuates faster up to time 4 and slower thereafter (left) with one that
fluctuates slower up to time 4 and faster thereafter (right). The weak correlation regime and its
extremal processes of two-speed branching Brownian motion and also variable speed branching
Brownian motion are intimately intertwined with the number of so called high points of standard
branching Brownian motion, which is analyzed in the second paper of this theses: Glenz, Kistler
and Schmidt [36]. For {xk(t),k ≤ n(t)} the points of a branching Brownian motion we consider
point k ≤ n(t) to be a high point of parameter α ∈ (0,

√
2) if xk(t)≥

(√
2−α

)
t. Hence the

8



Figure 5: Two-speed branching Brownian motion, strong correlation (left), weak correlation
(right)

number of α-high points is given by

Zα(t)≡ #
{

k ≤ n(t) : xk(t)≥
(√

2−α

)
t
}
. (15)

As there is a growing amount of particles in each region that is traversed by a typical α-high
point except for the beginning, it is a natural guess that given the early evolution Zα(t) should be
practically known. Hence consider the conditional expectation of Zα(t) conditioned on everything
that happens up to some time r ∈ (0, t) as a good approximation of Zα(t) for r large enough. To
compute said expectation some notation is needed. To this end let ∆α ≡

√
2−α , n(r) the number

of particles at time r and let ni(t− r) the number of children particle i≤ n(r) at time r has at time
t. By grouping particles at time t in groups of common ancestor at time r we identify

{xk(t),k ≤ n(t)}= {xi(r)+ xi, j(t− r), i≤ n(r), j ≤ ni(t− r)}. (16)

Aforementioned conditional expectation is now computed to leading order by

E [Zα(t) |Fr] = E

[
∑

k≤n(t)
1{xk(t)≥ ∆αt}

∣∣∣Fr

]
=

= E

[
∑

i≤n(r)
∑

j≤ni(t−r)
1
{

xi, j(t− r)≥ ∆α(t− r)− (xi(r)−∆αr)
}∣∣∣Fr

]
= ∑

i≤n(r)
et−rP

[
x1(t− r)≥ ∆α(t− r)− (xi(r)−∆αr)

∣∣∣Fr

]
∼
(

∆α

√
2π

)−1
exp
[(

1−∆
2
α/2
)

t− 1
2

log(t)
]

Yα(r), a.s.,

(17)

where

Yα(r)≡ ∑
k≤n(r)

exp
[
−r
(

1+
1
2

∆
2
α

)
+∆αxk(r)

]
. (18)

The last step by a standard tail estimate for Gaussian random variables and using that r is much
smaller than t. As is to be expected by the derivation as a conditional expectation of non negative
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random variables Yα(r) is a non negative martingale, which turns out to be square integrable for
α ∈ (0,

√
2) and therefore has a nontrivial limit. Yα(r) is known as McKean’s martingale who first

discovered it in the context of branching Brownian motion. More details are available in Bovier
and Hartung [22]. Realizing that

E [Zα(t)]∼
(

∆α

√
2π

)−1
exp
[(

1−∆
2
α/2
)

t− 1
2

log(t)
]

(19)

as Yα(0) = 1 the main result of Glenz, Kistler and Schmidt [36] should come as no surprise to the
reader:

Theorem 6. (Strong law of large numbers for high points of BBM) For any 0 < α <
√

2,

lim
t→∞

Zα(t)
EZα(t)

= lim
r→∞

Yα(r) , almost surely. (20)

1.4 On cover times

To any finite Graph we can associate a random walk by considering the Markov chain that goes
in one step to one neighbor of the momentary position, each being equally likely. Now the cover
time of the Graph is given by the first time each vertex has been hit at least once. For some re-
sults on these discrete time cover times see e.g. Aldous [3]. The continuous analog is considering
Brownian motion on a compact and smooth Riemannian manifold without boundary (or reflecting
the Brownian motion on the boundary) and defining the ε-cover time as the first time all ε balls
with centers on the manifold are hit. The cover time is also given by the first time the ε Wiener
sausage of the Brownian motion covers the entire manifold. For some results concerning contin-
uous cover times see e.g. Matthews [45], who establishes the ε → 0 asymptotic of cover times
on spheres of dimension at least 3. The two-dimensional case, discrete or continuous, regardless
of the choice of manifold remained open for quite some time. Aldous [4] conjectured the upper

Figure 6: Brownian motion on the torus and its occupation times

bound 4
π
(n lnn)2 to be sharp for the n by n discrete torus. Zuckerman [53] provided a first lower

bound of the correct order, which was sharpened by Lawler [44] and the conjecture was finally
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proven by Dembo, Peres, Rosen and Zeitouni (short DPRZ) [31]. They solved the discrete prob-
lem by proving the asymptotics for the cover time of the continuous two-dimensional unit torus
first and then deducing the result for the n by n torus by a coupling argument. They also argue
that the method of proof extends to arbitrary smooth, compact manifolds without boundary. This
makes the following result of DPRZ [31] the center piece of leading order considerations for cover
times in two dimensions:

Theorem 7. For Tε the cover time of the two dimensional unit torus we have

Tε

(lnε)2 →
2
π

almost surely as ε → 0. (21)

Today even more details are known as Belius and Kistler [13] established the next correc-
tion term and very recently Belius, Rosen and Zeitouni [14] showed tightness for the recentered
cover time of the unit Sphere and from there generalized to arbitrary smooth, compact, connected,
two-dimensional Riemannian manifolds without boundary. As the field of cover times and the
techniques of analyzing approximately hierarchical fields have evolved over the years, we are able
today to give a simple proof of Theorem 7 laying bare the underlying phenomena driving the
model in Schmidt [52], which is the third paper attached to this thesis. To give the reader a first
impression why the result is at least plausible we make some rough computations. Consider a
point x on the unit torus and two circles around it of radii r and R satisfying 0 < r < R < 1

2 . Using
explicit asymptotics on Green’s function on the torus it is not too hard to establish that one excur-
sion from r to R and back to r takes on average about 1

π
ln R

r time. Not very surprisingly there is
a law of large numbers for the time needed to perform many excursions and also exponential tail
bounds hold. This concentration is sufficiently strong to justify replacing large times t with the
time needed to perform the first t

1
π

ln R
r

many excursions from r to R and back. The probability that

in one such excursion the ε-ball is hit is lnR−lnr
lnR−lnε

, which is easy to compute as the scenario can be
identified with the same scenario on R2 and therefore the probability in question is rotationally
invariant harmonic function of the starting point. Hence the probability of one small ε-ball not
being hit up to some time t is roughly(

1− lnR− lnr
lnR− lnε

) t
1
π ln R

r ≈ exp
(
πt(lnε)−1) . (22)

As we can find of order ε−2 many disjoint ε-balls in a torus we can hope that the dependencies
between them are not too strong and match the expected number of avoided balls among these ε−2

many to 1. This gives a guess for the critical time around which covering should happen by

ε
−2 exp

(
πt(lnε)−1) !

= O(1), (23)

which gives precisely t = 2
π
(lnε)2. While this simple line of reasoning can be refined to estab-

lish an upper bound rigorously it shines not the slightest bit of light on why the dependencies are
sufficiently weak, hence giving no idea how to find a matching lower bound. It turns out that
the dependencies at hand are almost the same as the dependencies of branching Brownian motion
making them barely weak enough for this first moment calculation to hit the leading order term
precisely. To go into more detail about aforementioned analogy we need to make some obser-
vations on the behavior of the model first. We consider for some R ∈ (0,1/2) and K ∈ N the
radii

ri ≡ R
(

ε

R

)i/K
(24)

for 0 ≤ i ≤ K and associate to each point x on the torus the circles (∂Bri(x))i≤K which we call
scales. Controlling the model is done by counting the number of excursions the Brownian motion

11



performs up to some large time t. These excursion counts can be viewed as proxy for the occupa-
tion times displayed in Fig. 6. By identifying the circles with circles in R2 we see that starting at
some circle ri, i 6= 0,K it is equally likely to hit the next smaller or the next larger circle first due
to relative sizes of neighboring circles being constant. Hence tracking visits to circles (excluding
consecutive visits to the same circle) and stopping upon hitting scale 0 gives a simple random walk
stopped in 0 due to the strong Markov property of the Brownian motion being inherited. Starting
the counting with the first visit to scale 1, stopping when hitting scale 0 and starting the next ex-
cursion when scale 1 is hit again we can read independent excursions of a SRW from 1 to 0 off the
path of Brownian motion on the torus. Note that the independence of different excursions is due to
the strong Markov property of Brownian motion and rotational invariance making the distribution
of future hits of scales independent of the choice of starting point on scale 1. Taking the path
displayed in Fig. 7 as an example we start at the black dot and track the path to the first hit of
scale 1, which is marked by the blue dot. From there we follow the path writing down each hit to a
non most recently visited scale, i.e. following the path and noting down the circle numbers along
the red dots. As hitting scale K is the same as hitting an ε-ball, tracking these SRW excursions

Figure 7: Reading off the excursions 1→ 0 and 1→ 2→ 1→ 0

is sufficient to decide weather an ε-ball is hit or not, given the information how many excursions
W performs from scale 1 to scale 0. The number of excursions from scale 1 to scale 0 up to some
large time t is however concentrated enough to replace these excursion numbers with constants in
the proof. Establishing some notation for excursion counts we set

N x
l (n)≡ number of excursions of W from ∂Brl (x) to ∂Brl+1 (x) within the

first n excursions from ∂Brl (x) to ∂Brl−1 (x) after time τr1 ,
(25)

for W Brownian motion on the torus and τr1 its first hitting time of scale 1. Note that for fixed x
the N x

l (n), l ∈ {1, ...,K− 1}, n ∈ N are independent and distributed like sums of n independent
geometrically distributed random variables of parameter 1/2. Both independencies are due to the
strong Markov property of the simple random walk. The geometrical distribution simply appears
as the answer to the question"How often does a simple random walk started in j go from j to j+1
before hitting j− 1 ?". While this gives very strong control over the probability of single ε-ball
being hit or not we need to also keep the correlations between N x and N y in mind. As the circle
sizes (associated to the scales) decay exponentially and the relative size difference becomes larger
with ε getting smaller, the circle around x and the circle around y associated to some scale i are
either practically identical or disjoint. No matter the distance of x and y this effect holds true up
to at most 1 scale, which produces for a big number of scales (K large) only a small error. The

12



Figure 8: Scales seen by zooming towards two points.

phenomenon becomes almost obvious considering Figure 8: left the circles are almost identical,
zooming in the circles are neither similar nor disjoint but only one scale later the circles are disjoint
(right). This has the following two crucial consequences. On one hand if the circles associated
to scale l around x and y are practically identical then so are the excursion counts N x

l and N y
l .

On the other hand if two circles are disjoint then conditionally on the exterior of both circles what
happens inside one circle is independent of the events in the other by the strong Markov property
of W . Hence N x

l and N y
m are perfectly independent if Brl (x) and Brm(y) are disjoint. This reveals

that the model is approximately hierarchical and fixes up to small error the dependence structure.
This effect is indicated schematically in the bottom of Figure 8. These ideas are the guiding
principles of Schmidt [52]. We however establish some additional intuition for the model to see
the strong connection to branching Brownian motion, which has played a major role in the control
of the subleading order established by Belius and Kistler [13]. Considering

Nx
l (t)≡ Number of excursions W completes from ∂Brl (x) to ∂Brl+1(x) before time t, (26)

it should be not too outlandish of a statement to the reader, that
√

Nx
l (t) has very strong analogies

to a branching Brownian motion. Let us draw a comparison considering two particles of branching
Brownian motion. Given when the paths of these two particles split the increments are identical
up to that point and given the past independent thereafter. Partitioning into K increments gives
some identical pairs of increments in the beginning, some independent pairs of increments at the
end and one mixed pair that for large K has only little influence. This is up to only approximately
identical increments exactly what we observed for excursion counts of cover times. Also from
the representation as sum of independent geometrical random variables we get that the increments√

Nx
l (t)−

√
Nx

l−1(t) given the past (i.e. given
√

Nx
l−1(t)) have the tail of a centered Gaussian of

variance not depending l. This is exactly the case for branching Brownian motion. Finally we have
to check the branching. In branching Brownian motion particles branch at constant rate, which
is analogous to the ratio of neighboring circles being constant, as this keeps ratio between the
number of circles with radius rl we can place disjointly into the torus to the number of circles of
radius rl+1 we can place disjointly into the torus asymptotically constant as well. Hence morally
the "rate of branching" is essentially constant. As the correlation structure and tail behavior of
increments match we expect to see the same behavior of extrema. This turns out to be true for
all known results, which nail down the cover time up to an error of order one. This of course
includes our first moment inspired guess (23) being sharp as is the case for branching Brownian

13



motion. The reader may be interested to know that cover times in two dimensions is one of a
plethora of models for which such an analogy holds and approximately hierarchical correlations
are present. Some prominent examples of such models are the two-dimensional Gaussian free
field [15, 16, 17, 18, 19, 28], characteristic polynomials of random unitary matrices [5, 29, 49] and
extreme values of the Riemann zeta function on the critical line [6, 7, 10, 48].
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1 Introduction and main result

The Gaussian fields we consider are constructed as follows. Let α ∈ [0, 1] and
N ∈ N. We refer to the parameter N as the size of the system. For j = 1 . . . Nα and

σj = 1 . . . 2(N1−α), consider the vectors σ = (σ1, . . . , σNα). (We assume, without loss of
generality, that N and α are such that Nα and N1−α are both integers). We refer to
the indices j = 1 . . . Nα as scales, and to the labels σ as configurations. The space of
configurations is denoted by Σ

(α)
N . Remark that, by construction, ]Σ(α)

N = 2N . For scales
j ≤ Nα and (σ1, . . . , σj), consider independent centered Gaussian random variables

X
(α,j)
σ1,...,σj with variance N1−α defined on some common probability space (Ω,F ,P). To

given configuration σ ∈ Σ
(α)
N we associate the energies

X(α,N)
σ ≡

Nα∑
j=1

X(α,j)
σ1,...,σj (1.1)

The collection X(α,N) ≡
{
X

(α,N)
σ , σ ∈ Σ

(α)
N

}
defines a centered Gaussian field with

var
[
X(α,N)
σ

]
= N, and cov

[
X(α,N)
σ , X(α,N)

τ

]
= (σ ∧ τ)N1−α,

where σ ∧ τ ≡ inf {j ≤ Nα : (σ1, . . . , σj) = (τ1, . . . , τj) and σj+1 6= τj+1}. In spin glass
terminology, σ ∧ τ is the overlap of the configurations σ and τ . In other words, the
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From REM to BRW

Gaussian field X(α,N) is hierarchically correlated. The parameter α governs the number
of scales in the underlying "trees". The choice α = 0 yields the celebrated REM of
Derrida [12]; in this case the tree consists of a single scale (only for this boundary case
is the field uncorrelated). The choice α = 1 yields the (classical) BRW, also known as
the directed polymer on Cayley trees [15]: in this model, the number of scales grows
linearly with the size of the system. In this sense, the fields X(α,N) interpolate between
REM and BRW (remark that these boundary cases are, within our class, the least resp.
the most correlated fields). See Figure 1 below for a graphical representation.

Figure 1: Trees interpolating between REM and BRW

A fundamental question in the study of random fields concerns the behavior of the
extreme values in the limit of large system-size. The case of independent random
variables is simple, and completely understood, see e.g. the classic [21]. On the
other hand, the study of the extremes of correlated random fields is a much harder
question. There is good reason to develop an extreme value theory for Gaussian fields
defined on trees: besides being typically amenable to a detailed analysis (see e.g.
[3, 5, 7, 8, 9, 10, 16, 22]), Gaussian hierarchical fields should be some sort of "universal
attractors" in the limit of large system-size; this claim is a major pillar of the Parisi theory
[24] which has remained to these days rather elusive (see however [19] and references
therein for some recent advances). Our main result provides a characterization of the
weak limit of the extremes of the hierarchical field (1.1).

Theorem 1.1. Assume α ∈ [0, 1). Let

a
(α)
N ≡ βcN −

1 + 2α

2βc
logN, where βc ≡

√
2 log 2,

and consider the random Radon measure on the real line

Ξ
(α)
N ≡

∑
σ∈Σ

(α)
N

δ
X

(α,N)
σ −a(α)

N

.

Then Ξ
(α)
N converges weakly to a Poisson process Ξ of intensity µ(A) ≡

∫
A
e−βcxdx/

√
2π.
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From REM to BRW

The weak limits of the extremes of Gaussian hierarchical fields with a fixed number
of scales, the generalized random energy models by Derrida [13], have been rigorously
derived in [10]. On the other hand, apart from the case α = 0, the picture depicted
in Theorem 1.1 seems to be new. There is good reason to leave out the case α = 1:
to clarify this, and to shed further light on our main result, let us spend a few words.
First, the theorem implies that a(α)

N is the level of the maximum of the random field

X(α,N), and Ξ
(α)
N is then the extremal process. It steadily follows from the convergence

of the extremal process that the maximum of the field, recentered by its level, weakly
converges to a Gumbel distribution. As expected under the light of (say) Slepian’s
Lemma, the level of the maximum decreases when α (hence the amount of correla-
tions) increases. However, this feature is only detectable at the level of the second
order, logarithmic corrections; curiously, the pre-factor 1 + 2α interpolates smoothly
between the REM- and the BRW-values ("from 1 to 3"). Notwithstanding, as long as
α < 1 strictly, and in spite of what might look at first sight as severe correlations, all
our models fall into the universality class of the REM, which is indeed characterized
by convergence towards Poissonian extremal processes. In the boundary case of the
BRW, the picture is only partially correct: the logarithmic correction is still given by a(α)

N

with α = 1, see [1, 2, 11], yet the weak limit of the maximum is no longer a Gumbel dis-
tribution [20], nor is the limiting extremal process a simple Poisson process [3, 5, 14, 22].

We conclude this section with a sketch of the proof of our main result. A natural
approach would be to choose a(α)

N such that the expected number of extremal configura-
tions in any given compact A ⊂ R is of order one in the large N -limit. However, with
the level of the maximum as given by Theorem 1.1, classical Gaussian estimates steadily
yield

E
[
Ξ

(α)
N (A)

]
= 2N

∫
A

exp

[
−
(
x− a(α)

N

)2

/(2N)

]
dx√
2πN

= Nα(1 + o(1)) (N →∞),

which is exploding as soon as α > 0 strictly. The reason for this is easily identified: by
linearity of the expectation, we are completely omitting correlations, but these turn
out to be strong enough to affect the level of the maximum. To overcome this problem,
we rely on the multi-scale analysis which has emerged in the study of the extremes of
branching Brownian motion (see e.g. [19]). To formalize, we need some notation. First,
for a given σ ∈ Σ

(α)
N , we refer to the process

Sσ = (Sσk , k ≤ Nα), Sσk ≡
∑
j≤k

X(α,j)
σ1,..σj ,

as the path of a configuration. (The process Sσ is a random walk with Gaussian incre-
ments, i.e. a discrete Brownian motion). We refer to any function FN : {0 . . . Nα} → R,
k 7→ FN (k), as barrier. Given a barrier FN , we denote by

Ξ
(α)
N,FN

≡
∑
σ∈ΣN

δ
X

(α,N)
σ −a(α)

N

1{Sσk≤FN (k) for all k∈{1,..,Nα}}

the modified (extremal) process. A key step in the proof is to identify a barrier EN , see
(2.8) below for its explicit form, such that for any compact A ⊂ R,

lim
N→∞

P
[
Ξ

(α)
N (A) = Ξ

(α)
N,EN

(A)
]

= 1. (1.2)

This naturally entails that the weak limit of the extremal process and that of the modified
process must coincide (provided one of the two exists). We will thus focus our attention
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From REM to BRW

on the modified process Ξ
(α)
N,EN

, thereby proving that mean of the process as well as its
avoidance functions converge to the Poissonian limit as given by Theorem 1.1, to wit:

lim
N→∞

E
[
Ξ

(α)
N,EN

(A)
]

= µ(A) (Convergence of mean) (1.3)

and
lim
N→∞

P
(

Ξ
(α)
N,EN

(A) = 0
)

= P (Ξ(A) = 0) (Avoidance functions) (1.4)

By (1.3) and (1.4), it follows from Kallenberg’s theorem on Poissonian convergence [18],
that the modified process weakly converges to the Poisson point process Ξ; but by (1.2),
the same must be true for the extremal process, settling the proof of Theorem 1.1.

The rest of the paper is devoted to the proof of (1.2), (1.3) and (1.4). Since α ∈ [0, 1)

is fixed throughout, we lighten notations by dropping the α-dependence whenever no
confusion can possibly arise, writing e.g. ΣN for Σ

(α)
N , Xσ for X(α,N)

σ , aN for a(α)
N , etc.

2 Barriers, and the modified processes

The goal of this section is to construct the barrier EN to which we alluded in the
introduction, and to give a proof of (1.2) and (1.3). In a first step, we construct a barrier
which is not "optimal", but which provides important a priori information:

Lemma 2.1. Consider the barrier

UN (k) ≡ βckN1−α + ln (N) , k = 0, .., Nα.

It then holds:
lim
N→∞

P (Sσk ≤ UN (k) ∀k ∈ {1, .., Nα} , σ ∈ ΣN ) = 1 .

Proof. By Markov inequality, and simple counting, it holds:

P

∃σ ∈ ΣN :
∑
i≤j

X(i)
σ1,..,σi > UN (j), for some j ≤ Nα


≤
∑
j≤Nα

exp
(
jN1−α ln 2

)
P

∑
i≤j

X
(j)
1,...,1 > βcjN

1−α + lnN

 .

(2.1)
By classical Gaussian estimates, the probability on the r.h.s. above is at most√

jN1−α
√

2π (βcjN1−α + lnN)
exp

[
−
(
βcjN

1−α + lnN
)2

2jN1−α

]
.

Using this, and straightforward estimates, we get

(2.1) ≤ exp

[(
3α− 1

2
− βc

)
lnN

]
,

which is evidently vanishing in the large N -limit, since 3α−1
2 < βc.

The above Lemma immediately implies that the weak limit of the extremal process
ΞN and the weak limit of the modified process ΞN,UN must necessarily coincide (provided
one of the two exists). We now identify conditions under which this remains true for
barriers which lie even lower than UN .
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From REM to BRW

Lemma 2.2. Consider a barrier FN with the following properties:

i) FN ≤ UN , i.e. FN (k) ≤ UN (k) for all k;

ii) for A ⊂ R compact, it holds:

lim
N→∞

E [ΞN,FN (A)] = lim
N→∞

E [ΞN,UN (A)]

Then the weak limits of ΞN,FN and ΞN,UN coincide (provided one of the two exists).

Proof. The Lemma steadily follows from the claim

P (ΞN,UN (A) = ΞN,FN (A)) ≥ 1− E [ΞN,UN (A)− ΞN,FN (A)] . (2.2)

The proof of (2.2) is straightforward. Simple rearrangements and subadditivity imply
that the for probability of the complementary event, it holds:

P (ΞN,UN (A) 6= ΞN,FN (A))

= P
(
∃σ ∈ ΣN : Xσ − aN ∈ A, ∀j=1...Nα : Sσj ≤ UN (j) but ∃j=1...Nα : Sσj > Fj,N

)
≤
∑
σ∈ΣN

P
(
Xσ − aN ∈ A,∀j=1...Nα : Sσj ≤ UN (j) but ∃j=1...Nα : Sσj > Fj,N

)
= 2NP

(
Xσ − aN ∈ A,∀j=1...Nα : Sσj ≤ UN (j) but ∃j=1...Nα : Sσj > Fj,N

)
= 2NP (Xσ − aN ∈ A, Sσ ≤ UN )− 2NP (Xσ − aN ∈ A, Sσ ≤ FN )

= E [ΞN,UN (A)− ΞN,FN (A)] .

Building the complement, (2.2) immediately follows.

By the previous Lemma, and in view of a proof of the main theorem, it is crucial to
identify conditions for which the mean(s) of the modified process(es) converge to a finite
limit. This is done by

Proposition 2.3. Consider a barrier of the form FN = UN + fN , where fN is such that

i) fN (0) = fN (Nα) = 0

ii) sup
k∈{1,..,Nα}

|fN (k)| = o
(
N

1−α
2

)
for N ↑ ∞.

For A ⊂ R compact, and µ as in Theorem 1.1, it holds:

lim
N→∞

E [ΞN,FN (A)] = µ(A) .

Proof. By linearity of the expectation, and by conditioning on the "terminal event",

E [ΞN,FN (A)] =

= 2N
∫
A

P
(
∀k∈{1,..,Nα} : Sσk ≤ FN (k)

∣∣∣Xσ − aN = x
)
P (Xσ − aN ∈ dx) . (2.3)

Let us focus on the conditional probability: we first write this as

P
(
∀k∈{1,..,Nα} : Sσk ≤ FN (k)

∣∣∣Xσ − aN = x
)

= P

(
∀k∈{1,..,Nα} : Sσk −

k

Nα
Xσ ≤ FN (k)− k

Nα
(aN + x)

∣∣∣Xσ − aN = x

)
.

(2.4)
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From REM to BRW

Inspection of the covariances shows that the Gaussian vector
(
Sσk − k

NαXσ, k = 1 . . . Nα
)

is, in fact, independent of Xσ. Using this, and rescaling by N−
1−α
2 yields

(2.4) = P

(
∀k∈{1,..,Nα} : N−

1−α
2

[
Sσk −

k

Nα
SσNα

]
≤ N−

1−α
2

[
FN (k)− k

Nα
(aN + x)

])
.

(2.5)
Again by inspection of the covariances, one immediately realizes that the law of the

Gaussian vector
(
N−

1−α
2

[
Sσk − k

NαS
σ
Nα

]
, k = 0 . . . Nα

)
is that of a (discrete) Brownian

bridge of lifespan Nα, starting and ending in 0. To lighten notations, let (BNα(k), k ≤ Nα)

be such a Brownian bridge, and shorten

F̃N (k, x) ≡ N−
1−α
2

[
FN (k)− k

Nα
(aN + x)

]
.

It thus holds:
(2.4) = P

(
∀k∈{1,..,Nα} : BNα(k) ≤ F̃N (k, x)

)
.

One immediately checks that within our choice of the barrier FN , and since α < 1 strictly,

lim
N↑∞

sup
k≤Nα,x∈A

∣∣∣F̃N (k, x)
∣∣∣ = 0 .

in which case it follows from the lemmata in the Appendix that

P
(
∀k∈{1,..,Nα} : BNα(k) ≤ F̃N (k, x)

)
= P

(
∀k∈{1,..,Nα} : BNα(k) ≤ 0

)
(1 + o(1))

= N−α (1 + o(1)) ,
(2.6)

uniformly for x in compacts, and for N ↑ ∞. Plugging this into (2.3), we have

E [ΞN,FN (A)] = 2NN−α (1 + o(1))

∫
A

P (Xσ − aN ∈ dx) .

The claim of the Proposition then immediately follows by straightforward estimates on
the Gaussian density.

Remark 2.4. The proof of Proposition 2.3 breaks down in the limiting case α = 1: for
this choice of the parameter, FN (k)− k

Nα (aN + x) is of logarithmic size, hence F̃N (k, x)

does not vanish in the large N limit. As technical as it may look, this is in fact a structural
issue: for α = 1 the extremal process cannot be a simple Poisson point process.

We can finally specify our choice of the barrier EN alluded to in the introduction. The
optimal choice is (by far) not unique, and depends on an additional free parameter γ.
The only requirement is that

0 < γ <
1− α

2
. (2.7)

With any γ satisfying (2.7), and UN as in Lemma 2.1, we set

EN (k) ≡ UN (k)−Nγ1k 6=0,Nα (2.8)

This choice of a barrier clearly satisfies the assumptions of Proposition 2.3 and also
Lemma 2.2. This has two fundamental consequences: first, the weak limit of the modified
process Ξ

(α)
N,EN

and that of extremal process Ξ
(α)
N must necessarily coincide (provided

one of the two exists); second, the mean of the modified process converges to the alleged
limit, i.e. (1.3) holds with EN as a barrier. Theorem 1.1 will thus follow as soon as we
prove that avoidance functions (1.4) also converge with the very same choice for the
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From REM to BRW

barrier. This will be done in the next section by means of the Chen-Stein method. Before
that, let us spend a few words "on what really stands behind" the choice of the barrier
(2.8). (The discussion is intentionally informal: for details, the reader is referred e.g. to
[19].)

First, we remark that by Lemma 2.1, the path of extremal configurations (the process
k 7→ Sσk for σ s.t. Xσ ≈ aN ) must necessarily satisfy the "UN -barrier condition". As we
have seen in Proposition 2.3, conditioning onto the terminal event turns the path into a
Brownian bridge which is required to stay below 0 during its lifespan. It is well known
that in order to achieve this, the bridge will behave within good approximation as the
path of its modulus in the negative, k 7→ − | Sσk |, which is typically much lower than the
shift −Nγ1k 6=0,Nα for γ < (1− α)/2 (this is the so-called entropic repulsion, see e.g. [4]).
In other words, requiring that the paths stay below EN is no stricter requirement than
asking them to stay below UN . However, and crucially, the EN -barrier is low enough to
force the expected number of correlated extremal pairs to vanish in the large N -limit: it
is this specific feature which stands behind the Chen-Stein method which we implement
below.

3 Convergence of the avoidance functions

The goal of this section is to prove (1.4), which we recall reads

lim
N→∞

P (ΞN,EN (A) = 0) = P (Ξ(A) = 0) , (3.1)

where EN is given by (2.8), A is any compact set, and Ξ is a Poisson point process with
density µ(A) =

∫
A
e−βcxdx/

√
2π. To do so, we will use the so-called Chen-Stein method

[6, Theorem 1A]. We begin with a warm-up computation. In what follows, we write EN (σ)

for the event that a configuration σ satifies the "EN -barrier condition", more precisely:

EN (σ) ≡ {ω ∈ Ω : Sσk (ω) ≤ EN (k), k = 1 . . . Nα} .

Recall that for two configurations σ, τ ∈ Σ
(α)
N , we denote by σ ∧ τ their overlap, namely

the first scale at which the two configurations do not coincide.

Lemma 3.1 (Extremal pairs). Let A ⊂ R be compact. With the above notations, it holds:

E [] {σ, τ : σ ∧ τ 6= 0, Nα, and Xσ − aN ∈ A, EN (σ); Xτ − aN ∈ A, EN (τ)}] = o (1) ,

as N →∞.

It follows from Lemma 3.1 that energies of extremal configurations are, in fact,
independent random variables. It will come hardly as a surprise that this feature stands
behind the onset of the Poisson point process in the large N -limit.

Proof of Lemma 3.1. By linearity of the expectation, and re-arranging the ensuing sum
according to the possible overlap-values, it holds:

E [] {σ, τ : σ ∧ τ 6= 0, Nα, and Xσ − aN ∈ A, EN (σ); Xτ − aN ∈ A, EN (τ)}]

=

Nα−1∑
K=1

# {(σ, τ) |σ ∧ τ = K}P (Xσ − aN ∈ A, EN (σ) , Xτ − aN ∈ A, EN (τ))
(3.2)

Let us focus on the probability on the r.h.s. above: since σ and τ coincide up to scale K,
by conditioning on the "trunk" which is shared by σ and τ , we get

P (Xσ − aN ∈ A, EN (σ) ;Xτ − aN ∈ A, EN (τ)) =

EK,N∫
−∞

(P )× P (SσK ∈ dx) , (3.3)
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where

(P ) ≡ P
(
x+ (SσNα − SσK)− aN ∈ A, EN (σ) ; x+ (SτNα − SτK)− aN ∈ A, EN (τ)

∣∣∣SσK = x
)
.

On the event appearing in (P ) we drop the E-requirements: by independence of the
paths after the "branching point", this leads to

(3.3) ≤
EK,N∫
−∞

P (x+ (SσNα − SσK)− aN ∈ A)
2
P (SσK ∈ dx) . (3.4)

This steadily implies that the r.h.s. of (3.4) is at most

EK,N∫
−∞

 ∫
A+aN−x

exp

(
− z2

2N1−α (Nα −K)

)
dz

2

exp

(
− x2

2N1−αK

)
dx

≤ 2−2N+KN1−α
λ (A)×

× sup
a∈A

0∫
−∞

exp

−
(
a

(α)
N − EK,N − x+ a

)2

N1−α (Nα −K)
− (x+ EK,N )

2

2N1−αK
+
(
2N −KN1−α) ln 2

 dx,

(3.5)
where λ denotes Lebesgue measure. The argument of the exponential in (3.5) is easily
seen to be bounded by βc (3 lnN −Nγ + x− 2a), hence

(3.3) ≤ 2−2N+KN1−α
λ (A) sup

a∈A

0∫
−∞

exp

[
βc (3 lnN −Nγ + x− 2a)

]
dx

≤ 2−2N+KN1−α
CA exp

[
βc (3 lnN −Nγ)

]
,

(3.6)

with CA ≡ 1
βc
λ (A) exp

[
− 2βc inf {A}

]
. Plugging (3.6) into (3.2), and using that

# {(σ, τ) |σ ∧ τ = K} × 2−2N+KN1−α
≤ 1,

we get

(3.2) ≤
Nα−1∑
K=1

CA exp
[
βc (3 lnN −Nγ)

]
,

which is evidently vanishing in the large N -limit.

We can now finally move to the last missing piece, namely a proof of convergence of
the avoidance functions (3.1). As mentioned, the main technical device here will be the
so-called Chen-Stein method, [6, Theorem 1A]. To implement this, we need to introduce
some notation. For compact A ⊂ R, we shorten

µN (A) ≡ E [ΞN,EN (A)]

and denote by LN (A) the law of the random variable ΞN,EN (A). For a (sigma-finite)
measure ν on R, we denote by Poisν(A) the law of a Poisson random variable with mean
ν(A). For ρ, ρ′ ∈ M1(R) two probability measures on R we denote by dTV (ρ, ρ′) their
distance in total variation. In order to closely stick to the notation in [6], we write

ΞN,EN (A) =
∑

σ∈Σ
(α)
N

Iσ, Iσ ≡ 1{Xσ−aN∈A,EN (σ)},
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and define, for given σ ∈ ΣN ,

Zσ ≡
∑

τ∈ΣN ,τ∧σ 6=0,Nα

Iτ .

For a last piece of notation, we shorten pσ ≡ E[Iσ].
Coming back to our main task of proving (3.1), with µ(A) as in Theorem 1.1, it holds:∣∣∣P (ΞN,EN (A) = 0)− P (Ξ(A) = 0)

∣∣∣ ≤ dTV (LN (A),Poisµ(A)

)
≤ dTV

(
LN (A),PoisµN (A)

)
+ dTV

(
PoisµN (A),Poisµ(A)

) (3.7)

The convergence of µN (A) towards µ(A) is guaranteed by Proposition 2.3; in virtue of
simple properties of Poisson random variables, this convergence implies that the second
term on the r.h.s. above vanishes in the limit of large N . Concerning the first term on
the r.h.s. of (3.7): the Chen-Stein method [6, Theorem 1A] yields the bound

dTV
(
LN (A),PoisµN (A)

)
≤
∑
σ∈ΣN

(
p2
σ + pσE [Zσ] + E [IσZσ]

)
(3.8)

Since for any σ ∈ ΣN , pσ = 2−NµN (A), one immediately gets∑
σ∈ΣN

p2
σ = 2−NµN (A)2, (3.9)

and by simple counting, ∑
σ∈ΣN

pσE [Zσ] ≤ 2−N
1−α

µN (A)2. (3.10)

Plugging (3.9) and (3.10) in (3.8) we get

dTV
(
LN (A),PoisµN (A)

)
≤ 2−NµN (A)2 + 2−N

1−α
µN (A)2 +

∑
σ∈Σ

(α)
N

E [IσZσ]

= 2−NµN (A)2 + 2−N
1−α

µN (A)2 +
∑

σ∧τ 6=0,Nα

E [IσIτ ] ,
(3.11)

the last equality by definition of Zσ. Since µN (A) converges to a finite limit (by Proposi-
tion 2.3), the first two terms in the last display of (3.11) vanish in the limit of large N ;
the third term is exactly what was analyzed in Lemma 3.1, and therefore also vanishing.
All in all, (3.7) is vanishing, hence (3.1) holds and the proof of Theorem 1.1 is concluded.

Appendix

A fundamental ingredient in the proof of Theorem 1.1 are the estimates (2.6) on
Brownian bridge probabilities appearing in the proof of Proposition 2.3; these are
somewhat classical [17], sometimes going under the name of "ballot theorems". For
the reader’s convenience, we give here a short proof of the estimates as needed in our
framework.

Lemma 3.2. Let (∆i)i∈{0,..,n−1} be i.i.d random variables having a density with respect
to the Lebesgue measure and (Bn(j), j ∈ {1, .., n}) the related bridge, i.e.

Bn(j) ≡
j−1∑
i=0

∆i −
j

n

n−1∑
i=0

∆i,

then it holds:

P (Bn(j) ≤ 0 for all j ∈ {1, .., n}) =
1

n
(3.12)
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Proof. We refer to (∆i)i∈{0,..,n−1} as increments. The event in (3.12) is equivalent to the
maximum of the bridge being lower than zero. Let m ∈ {0, .., n− 1} be the position of
the maximum; remark that this is almost surely unique by the density-assumption. One
steadily checks that applying a cyclic permutation, say π, to the increments of the bridge,
shifts the position of the maximum to π−1m. There is one cyclic permutation only, say π̂,
which shifts the position of the maximum to the origin, i.e. for which π̂−1m = 0. On the
other hand, the distribution of the bridge is not affected by any permutation, hence π̂
must be uniformly distributed among the n possible cyclic permutations: since the event
in (3.12) is equivalent to π̂ being the identity, the Lemma follows.

In other words, the probability that a discrete bridge stays below zero during its
lifetime decays as the inverse of the length of the bridge. On the other hand, since our
bridges have "square-root fluctuations", one expects that whether the bridge is required
to stay below zero or below a straight line shouldn’t alter (much) the asymptotic behavior
of these probabilities. This is indeed the case:

Lemma 3.3. Let (Bn(j), j = . . . n) be a (discrete) Brownian bridge of length n. Then
there exists c > 0 independent of n such that for any n and |ε| ≤ c−1, it holds:∣∣∣P (Bn(j) ≤ 0, j = 1 . . . n− 1)− P (Bn(j) ≤ ε, j = 1 . . . n− 1)

∣∣∣ ≤ c |ε|
n
.

Proof. We proceed by induction on the length of the bridge.

Base case. For n = 2, it clearly holds:

P (Bn(j) ≤ ε, j ∈ {1} ,∃j ∈ {1} : Bn(j) > 0) = P (Bn(1) ∈ [0, ε]) ≤ 2√
π

|ε|
n

for ε > 0.

P (Bn(j) ≤ 0, j ∈ {1} ,∃j ∈ {1} : Bn(j) > ε) = P (Bn(1) ∈ [ε, 0]) ≤ 2√
π

|ε|
n

for ε < 0.

The proof in the cases ε > 0 and ε < 0 are similar, we thus consider only the first case.

Induction step. For n ≥ 3, assume the claim is true for all k ≤ n−1. By Markov inequality,

P (Bn(j) ≤ ε, j = 1 . . . n− 1 but ∃i = 1 . . . n− 1 : Bn(i) > 0)

≤
n−1∑
i=1

P (Bn(j) ≤ ε, j = 1 . . . n− 1 but Bi > 0)

=

n−1∑
i=1

ε∫
0

P
(
Bn(j) ≤ ε, j = 1 . . . n− 1

∣∣∣ Bn(i) = x
)
P (Bn(i) ∈ dx) .

(3.13)

By the Markov property of Brownian bridges, the conditional probability above reads

P
(
∀j∈{1,..,i} : Bn(j) ≤ ε

∣∣∣ Bn(i) = x
)
P
(
∀j∈{i,..,n−1} Bn(j) ≤ ε

∣∣∣Bn(i) = x
)

≤ P
(
∀j∈{1,..,i} : Bn(j) ≤ ε

∣∣∣ Bn(i) = 0
)
P
(
∀j∈{i,..,n−1} Bn(j) ≤ ε

∣∣∣Bn(i) = 0
)

where the inequality follows by monotonicity in x. Using this, and Gaussian estimates,

(3.13) ≤
n−1∑
i=1

P
(
∀j∈{1,..,i} : Bn(j) ≤ ε|Bn(i) = 0

)
×

× P
(
∀j∈{i,..,n−1} : Bn(j) ≤ ε|Bn(i) = 0

) ε√
2π
(
i− i2

n

) .
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Given that Bn(i) = 0, the process (Bn(j), j = 1 . . . n) is a Brownian bridge of length
i ≤ n− 1; analogously, the second probability involves a Brownian bridge of length n− i.
The assumption therefore applies, and the above is at most

n−1∑
i=1

(
P
(
∀j∈{1,..,i} : Bi(j) ≤ 0

)
+ c

ε

i

)
×

×
(
P
(
∀j∈{1,..,n−i} : Bn−i(j) ≤ 0

)
+ c

ε

n− i

)
ε√

2π
(
i− i2

n

) .
(3.14)

It then holds:

(3.14) ≤ ε4
√
n√

2π

n−1∑
i=1

(
1

i (n− i)

)3/2

≤ ε8
√
n√

2π

bn2 c∑
i=1

(
1

i (n− i)

)3/2

≤ c ε
n
,

the last inequality using the bound [i(n− i)]−3/2 ≤ [i(n/2)]−3/2, for i ≤ bn/2c.
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ON MCKEAN’S MARTINGALE IN THE
BOVIER-HARTUNG EXTREMAL PROCESS

CONSTANTIN GLENZ, NICOLA KISTLER, AND MARIUS A. SCHMIDT

Abstract. It has been proved by Bovier & Hartung [Elect. J. Probab. 19 (2014)]
that the maximum of a variable-speed branching Brownian motion (BBM) in the weak
correlation regime converges to a randomly shifted Gumbel distribution. The random
shift is given by the almost sure limit of McKean’s martingale, and captures the early
evolution of the system. In the Bovier-Hartung extremal process, McKean’s martingale
thus plays a role which parallels that of the derivative martingale in the classical BBM.
In this note, we provide an alternative interpretation of McKean’s martingale in terms of
a law of large numbers for high-points of BBM, i.e. particles which lie at a macroscopic
distance from the edge. At such scales, ’McKean-like martingales’ are naturally expected
to arise in all models belonging to the BBM-universality class.

1. Introduction

Over the last years, one has witnessed an explosion of activity in the study of the
extremes of Branching Brownian Motion, BBM for short. The list of papers on the
subject is way too long to be given here: below, we shall only mention those works which
are indispensable for the discussion, and refer the reader to Bovier’s monograph [14] for
an exhaustive overview of the literature.

The classical, supercritical and time-homogeneous BBM is constructed as follows. A
single particle performs standard Brownian motion x(t), starting at 0 at time 0. After
an exponential random time T of mean one and independent of x, the particle splits into
two (say) particles. The positions of these particles are independent Brownian motions
starting at x(T ). Each of these processes have the same law as the first Brownian particle.
Thus, after a time t > 0, there will be n(t) particles located at x1(t), . . . , xn(t)(t), with n(t)
being the random number of offspring generated up to that time (note that En(t) = et).

A fundamental link between BBM and partial differential equations was observed by
McKean [27], who showed that the law of the maximal displacement of BBM solves the
celebrated KPP-equation [25]. Thanks to the cumulative works [25, 27, 16, 26] it is now
known that the maximum of BBM weakly converges, upon recentering, to a random shift
of the Gumbel distribution. More precisely, let

m(t) ≡
√

2t− 3

2
√

2
log t, M(t) ≡ max

k≤n(t)
xk(t)−m(t) , (1.1)
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and consider the so-called derivative martingale

Z(t) ≡
∑
k≤n(t)

(√
2t− xk(t)

)
exp−

√
2
(√

2t− xk(t)
)
. (1.2)

Leaning on the work of McKean [27] and Bramson [16], Lalley and Sellke [26] proved that

lim
t↑∞

Z(t) = Z a.s., (1.3)

with Z a positive random variable, and that

lim
t→∞

P [M(t) ≤ x] = E exp−CZe−
√

2x . (1.4)

where C > 0 is a numerical constant. Inspecting the proof of this result, one gathers
that the derivative martingale captures the early evolution of the system. Perhaps a more
intuitive interpretation of the derivative martingale has been given by Arguin, Bovier and
Kistler [5] in the form of an ergodic theorem, to wit:

lim
t↑∞

1

t

∫ t

0

1{M(s) ≤ x} ds = exp
(
−CZe−

√
2x
)

almost surely. (1.5)

The derivative martingale may thus be seen as a measure of success, capturing the fraction
of particles which reach maximal heights.

Also of interest are time-inhomogeneous BBMs. These have been first introduced by
Derrida and Spohn [22], and are constructed as follows: one considers a BBM where,
at time s, all particles move independently as Brownian motions with time-dependent
variance

σ2(s) =

{
σ2

1 0 ≤ s < t/2

σ2
2 t/2 ≤ s ≤ t.

(1.6)

In the above, σ1, σ2 are (positive) parameters chosen in such a way that the total variance
is normalised to unity, to wit: σ2

1/2 + σ2
2/2 = 1. (One may also consider K > 2 distinct

variance-regimes, but the qualitative picture does not change much, as long as K remains
finite). Denoting by n̂(s) the number of particles at time s, and by {x̂k(s), k ≤ n̂(s)}
their position, it has been proved by Fang and Zeitouni [23] that

max
k≤n̂(t)

x̂k(t) =

{√
2t− 1

2
√

2
log(t) +OP(1) if σ1 < σ2√

2(σ1/2 + σ2/2)− 3
2
√

2
(σ1 + σ2) log(t) +OP(1) if σ1 > σ2,

(1.7)

The second case above, namely σ1 > σ2, is easily understood: the maximum of the time-
inhomogeneous process is given by the superposition of the relative maxima at time t/2
and the maxima of their offspring after a t/2-lifespan.

The first case, σ1 < σ2, is arguably more interesting as it shows that the level of the
maximum coincides with that of Derrida’s REM [21]: in spite of what may look as severe
correlations between the Brownian particles, the extremes behave as if they were coming
from a field of independent random variables. This, however, is only true at the above level
of precision, as the weak limit of the maximum does detect the underlying correlations.
To formulate precisely, let us shorten

mREM(t) ≡
√

2t− 1

2
√

2
log(t), M̂(t) ≡ max

k≤n̂(t)
x̂k(t)−mREM(t). (1.8)
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Bovier and Hartung [15] prove that in such a regime of ”REM-collapse” (σ1 < σ2),

lim
t→∞

P
[
M̂(t) ≤ x

]
= E exp−ĈẐe−

√
2x, (1.9)

for a numerical constant Ĉ > 0 and Ẑ a positive random variable. Much akin to the
homogeneous BBM, the weak limit of the time-inhomogeneous process is thus given by
a random shift of the Gumbel distribution. For our purposes, it is however crucial to
emphasize that the random shift in case of REM-collapse is not given by the derivative
martingale, but by the so-called McKean’s martingale. To see how the latter comes about,
recall the time-homogeneous BBM {xk(t), k ≤ n(t)}, and define McKean’s martingale by

Ẑ(t) ≡
∑
k≤n(t)

exp
[
−t(1 + σ2

1) +
√

2σ1xk(t)
]
. (1.10)

Bovier and Hartung [15] show that this is, in fact, a square integrable martingale, provided
that σ1 < 1 strictly. It therefore converges almost surely to a well defined random variable
whose law coincides with that of the Ẑ-random variable shifting the maximum (1.9) of
the time-inhomogeneous process1.

The analogy with the homogeneous BBM goes even further: an inspection of the proof
of the weak convergence (1.9) shows that McKean’s martingale captures, in fact, the early
evolution of the system (remark, in particular, that McKean’s martingale depends solely
on σ1).

The purpose of these notes is to present yet another interpretation of McKean’s mar-
tingale, somewhat close in spirit to the ergodic theorem (1.5). To formulate precisely,
let

α ∈ (0,
√

2), ∆α ≡
√

2− α, and Zα(t) ≡ ] {k ≤ n(t) : xk(t) ≥ ∆αt} . (1.11)

The random variable Zα(t) thus counts the ”α-high-points”, those particles which lag
behind the leader at time t by a macroscopic distance αt. Finally, consider the McKean’s
martingale

Yα(t) ≡
∑
k≤n(t)

exp

[
−t
(

1 +
1

2
∆2
α

)
+ ∆αxk(t)

]
. (1.12)

Through the matching α ≡
√

2(1 − σ1), and by the aforementioned result of Bovier and
Hartung we see that this is, for α > 0, a square integrable martingale whose limit

lim
t→∞

Yα(t) =: Yα (1.13)

exists almost surely. Here is our main result.

Theorem 1.1. (Strong law of large numbers) For any 0 < α <
√

2, and Yα as in (1.13),

lim
t→∞

Zα(t)

EZα(t)
= Yα , almost surely. (1.14)

1We emphasize tha the REM-collapse holds only for σ1 < σ2 ; given the normalization σ2
1/2+σ2

2/2 = 1,

this is equivalent to σ1 <
√

2/2. The square integrability of McKean’s martingale holds however for any
σ1 < 1. The choice σ1 = 1 corresponds to a boundary case where square integrability no longer holds. It
has furthermore been proved by Lalley and Sellke [26] that for σ1 = 1 the limit of McKean’s martingale
vanishes, in which case it is the derivative martingale that enters the picture for the weak limit of the
maximum of (the time-homogeneous) BBM.
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According to the SLLN, the random shift entering the weak limit (1.9) in the Bovier-
Hartung extremal process thus captures the average number of successful particles. It is
however noteworthy that the definition of success comes here with a twist: it pertains
to those particles reaching2 heights which lie macroscopically lower than the level of the
maximum; this should be contrasted with (1.5), where successful particles reach extremal
heights. Half-jokingly, we may thus say that Lalley and Sellke’s derivative martingale is
way more elitist than McKean’s martingale!

The proof of the SLLN follows the strategy of [5]. Precisely, for some r = o(t) to
be specified later, and Fr ≡ σ (xk(r), k ≤ n(r)) the standard filtration of BBM, we first
decompose telescopically

Zα(t)

EZα(t)
=

E [Zα(t) | Fr]
EZα(t)

+
Zα(t)− E [Zα(t) | Fr]

EZα(t)
. (1.15)

The next Proposition will seamlessly follow from the strong Markov property of BBM
and classical Gaussian estimates.

Proposition 1.2. (Onset of McKean’s martingale) It holds:

E [Zα(t) | Fr]
EZα(t)

= (1 + o(1))Yα(r), almost surely. (1.16)

By the above, and with our main theorem in mind, an important ingredient is therefore
to prove that the second term on the r.h.s. of the telescopic decomposition (1.15) yields
an irrelevant contribution in the limit of large times. This is guaranteed by the following

Proposition 1.3. There exists κα > 0 such that for r = o(t) as t→∞,

P
(∣∣∣∣Zα(t)− E [Zα(t) | Fr]

EZα(t)

∣∣∣∣ > c

)
≤ (1 + o(1))

c+ 1

c2
e−καr , (1.17)

A small remark concerning the conceptual picture behind Proposition 1.3 is perhaps at
place. As mentioned, the proof strategy and, in particular, the telescopic decomposition
(1.15), are borrowed from [5]. In the latter paper, the counterpart of Proposition 1.3,
namely [5, Theorem 3] holds thanks to a delicate decorrelation at specific timescales of
the extremal particles of BBM which, in turns, is a consequence of the picture derived in
[4]. It is however unreasonable to expect here a similar decorrelation: α-high-particles,
namely those with xk(t) ≥ ∆αt, are unlikely to come from (genealogically) distant an-
cestors. Indeed, quite the contrary is true: a wealth of random variables contributing to
Zα(t) turn out to be strongly correlated, but these are washed out, in the limit of large
times, by the exponentially large normalization EZα(t).

Assuming Proposition 1.2 and 1.3, our main theorem steadily follows.

Proof of Theorem 1.1. We use the above telescopic decomposition

Zα(t)

EZα(t)
=

E [Zα(t) | Fr]
EZα(t)

+
Zα(t)− E [Zα(t) | Fr]

EZα(t)
=: (A) + (B) . (1.18)

2in a ”distant past”, as will become clear in the course of the proof.
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By Proposition 1.3, the (B)-term on the r.h.s. above vanishes in probability as t ↑ ∞
first, and r ↑ ∞ next. In fact, we may lift this to an almost sure statement in the single
limit t ↑ ∞: simply choose r = r(t)→∞ such that the r.h.s of (1.17) becomes integrable
(any choice of the form r = (log t)ε with ε > 1 will do) and appeal to the Borel-Cantelli
Lemma together with standard approximation arguments (for the latter, see e.g. [4]). But
for such choice r = r(t), and the almost sure convergence of the McKean’s martingale
established by Bovier-Hartung, the (A)-term will converge, almost surely, to Yα. This
settles the proof of the SLLN. �

The rest of the paper is devoted to the proofs of Proposition 1.2 and 1.3. Before giving
the details, we conclude this section with the following

Conjecture. A SLLN as in Theorem 1.1 holds true, mutatis mutandis, in all models be-
longing to the BBM-universality class, such as the 2-dim Gaussian free field [13, 17, 9, 10,
11, 12], the 2-dim cover times [20, 7, 8], the characteristic polynomials of random unitary
matrices [1, 19, 29], and the extreme values of the Riemann zeta function on the critical
line [2, 28, 3, 6]. In particular, we expect that an approximate McKean’s martingale will
capture in all such models the almost sure limit of the normalized number of high-points.
(What stands behind this wording becomes, of course, model-dependent).

Acknowledgments. It is a pleasure to thank David Belius for raising the question of
high-points in the 2dim GFF, which lead to the writing of this paper.

2. Proofs

2.1. Some preliminaries, and Onset of McKean’s martingale. We will make con-
stant use of some classical Gaussian tail-estimates:

Lemma 2.1. Let X ∼ N (0, σ2) be centered Gaussian random variables. Then

P [X > a] = (2π)−1/2 (σ/a) exp

[
− a2

2σ2

] (
1 +O

(
σ2/a2

))
(a/σ →∞) , (2.1)

with the r.h.s. above without error term being an upper bound valid for any a > 0.

The following is also elementary.

Lemma 2.2.

EZα(t) ∼
(

∆α

√
2π
)−1

exp

[(
1−∆2

α/2
)
t− 1

2
log(t)

]
. (2.2)

(Here and throughout, we use f(t) ∼ g(t) if the ratio converges, as t→∞, to one). In
order to exploit the strong Markov property of BBM, for t and r as in Proposition 1.2 ,
we re-label particles at time t according to their ancestor at time r:

(xk(t))k≤n(t) = (xi(r) + xi,j(t− r))i≤n(r),j≤ni(t−r) . (2.3)

Precisely: xi(r) is the position of the i-th particle at time r, n(r) is the number of such
particles, ni(t − r) stands for the number of offspring such particle has produced in the
timespan t − r, and finally xi,j(t − r) denotes the displacement of the j-th offspring of
particle i from its starting position xi(r).
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Proof of Proposition 1.2 (Onset of McKean’s martingale).

E [Zα(t) | Fr] = E

 ∑
k≤n(t)

1 {xk(t) ≥ ∆αt}
∣∣∣Fr
 =

= E

 ∑
i≤n(r)

∑
j≤ni(t−r)

1 {xi,j(t− r) ≥ ∆α(t− r)− (xi(r)−∆αr)}
∣∣∣Fr


=
∑
i≤n(r)

et−rP
[
x1(t− r) ≥ ∆α(t− r)− (xi(r)−∆αr)

∣∣∣Fr]
∼
(

∆α

√
2π
)−1

exp

[(
1−∆2

α/2
)
t− 1

2
log(t)

]
Yα(r), a.s..

(2.4)

The last step by combining Lemma 2.1 with the fact that (xk(r)−∆αr) / (t− r) → 0
almost surely for r = o(t), see e.g. [24] (where, in fact, control at even finer levels is
provided). The claim then follows by Lemma 2.2. �

2.2. Vanishing correlations, via 2nd moment. We will prove Proposition 1.3 by a
2nd moment estimate. For these computations to go through, we need however to localize
paths of contributing particles. (This approach is by now classical in the BBM-field, see
for instance [5] for a closely related setting). As for the localization, let ε > 0 and consider

Z>
α (t) ≡ ] {k ≤ n(t) : xk(t) ≥ ∆αt,∃s ∈ [r, t] : xk(s) > (∆α + ε)s} , (2.5)

This random variable thus counts paths which overshoot at some point (in time) the
straight line connecting 0 to (∆α + ε)t. As it turns out, such particles do not contribute,
upon E[Zα(t)]-normalization, to the α-high-points. Here is the precise statement.

Lemma 2.3. (Paths-localization) For r = o(t), r, t both sufficiently large, it holds:

P
(
Z>
α (t) ≥ cEZα(t)

)
≤ 1

c
exp

(
−rε

2

4

)
, (2.6)

and

P
(
E[Z>

α (t)|Fr] ≥ cEZα(t)
)
≤ 1

c
exp

(
−rε

2

4

)
. (2.7)

Proof.

EZ>
α (t) = et

∞∫
∆αt

P(x1(t) ∈ dy)P(∃s ∈ [r, t] : x1(s) > (∆α + ε)s|x1(t) = y) (2.8)

= et
∞∫

∆αt

P(x1(t) ∈ dy)P(∃s ∈ [r, t] : b(s) > (∆α + ε− y

t
)s), (2.9)

where b(s) ≡ x1(s) − s
t
x1(t) is a Brownian bridge of length t. Consider the line l from

(0, εr/2) to (t, (∆α + ε/2)t − y). One easily checks that l(s) ≤ (∆α + ε − y
t
)s for all
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s ∈ [r, t]. Hence the probability involving the Brownian brige is at most

P(∃s ∈ [0, t] : b(s) > l(s)) = exp

(
−2

l(0)l(t)

t

)
, (2.10)

by a well-known formula (see e.g. [31]). Using this, (2.9) is therefore at most

et
∞∫

∆αt

1√
2πt

exp

(
−y

2

2t
− εr

(
∆α +

ε

2
− y

t

))
dy

= exp

(
t− r

(
∆αε+

ε2

2

)
+
ε2r2

2t

) ∞∫
∆αt

1√
2πt

exp

(
−(y − εr)2

2t

)
dy,

(2.11)

which is, by Lemma 2.1,

∼
√
t

(∆αt− εr)
√

2π
exp

(
t− r

(
∆αε+

ε2

2

)
+
ε2r2

2t
− (∆αt− εr)2

2t

)
∼ E[Zα(t)] exp

(
−rε

2

2
+ o(r)

)
,

(2.12)

the second asymptotical equivalence by Lemma 2.2. The claim of Lemma 2.3 thus follows
from Markov inequality. �

As mentioned, we will prove Proposition 1.3 by means of a (truncated) second moment
computation. The following is the key estimate.

Lemma 2.4. (Pair-counting) Let Ii,j be the the Indicator of the event that the j-th off-
spring at time t of particle i at time r contributes to Z≤α (t), i.e the event

{xi(r) + xi,j(t− r) ≥ ∆αt,∀s ∈ [r, t] : xi(r) + xi,j(s− r) ≤ (∆α + ε)s} (2.13)

for i ≤ n(r) and j ≤ ni(r). Then, for any α ∈ (0,
√

2) there exists εα and κα, r(α) > 0
such that

E

n(r)∑
i=1

ni(t−r)∑
j 6=j′=1

Ii,jIi,j′

 ≤ (1 + o(1))E[Zα(t)]2e−καr, as t→∞ , (2.14)

for r > rα.

Proof. Denoting by ϕγ the density of a centered Gaussian of variance γ, and with x a
standard Brownian motion, it holds that

1

2
E

n(r)∑
i=1

ni(t−r)∑
j 6=j′=1

Ii,jIi,j′

 =

=

t∫
r

e2t−γ

(∆α+ε)γ∫
−∞

ϕγ(y)P(∀s ∈ [r, γ] : x(s) ≤ (∆α + ε)s|x(γ) = y)×

× P (y + x(t− γ) ≥ ∆αt,∀s ∈ [γ, t] : y + x(s− γ) ≤ (∆α + ε)s)2 dydγ .

(2.15)
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(See e.g. [30] for a rigorous derivation of a similar ”two-point formula”). Dropping the
path-constraint appearing in the integrand (yet keeping those in the domain of integra-
tion), (2.15) is at most

t∫
r

e2t−γ

(∆α+ε)γ∫
−∞

ϕγ(y)P (x(t− γ) ≥ ∆αt− y)2 dydγ

=

t∫
r

e2t−γ

(∆α+ε)γ∫
−∞

1{y≥(∆α−ε)t}(·)dydγ +

t∫
r

e2t−γ

(∆α+ε)γ∫
−∞

1{y<(∆α−ε)t}(·)dydγ ,

(2.16)

by distinguishing whether at time of splitting particles are above (respectively below) a
threshold which is slightly below the target.

As for the first scenario, we clearly have

t∫
r

e2t−γ

(∆α+ε)γ∫
−∞

1{y≥(∆α−ε)t}(·)dydγ ≤
t∫

(1−2ε/∆α)t

e2t−γ

(∆α+ε)γ∫
∆αt−εt

ϕγ(y)dydγ , (2.17)

with the r.h.s. of (2.17) being at most

4ε2t2

∆α

√
2πt

exp

(
(1 + 2ε/∆α)t− (∆αt− εt)2

2t

)
≤ exp

(
(1−∆2

α/2 + ε(2/∆α + ∆α))t
)
,

(2.18)
for t large enough. Since 1−∆2

α/2 + ε(2/∆α + ∆α) < 2−∆2
α for some ε = εα, it follows

that (2.18) grows at most exponentially (in t) with rate smaller than 2−∆2
α, and therefore

yields a negligible contribution.
It thus remains to analyse the second scenario in (2.16). By Lemma 2.1 and shortening

ζ ≡ min{(∆α + ε)γ,∆αt− εt}, we have that

t∫
r

e2t−γ

(∆α+ε)γ∫
−∞

1{y<(∆α−ε)t}(·)dydγ

≤
t∫

r

e2t−γ

ζ∫
−∞

t− γ
2π
√
γ(∆αt− y)2

exp

(
− y

2

2γ
− (∆αt− y)2

(t− γ)

)
dydγ

=

t∫
r

e2t−γ

ζ∫
−∞

t− γ
2π
√
γ(∆αt− y)2

exp

(
−∆2

αt
2

t+ γ
−

(y − 2γ∆αt
t+γ

)2

2γ(t− γ)/(t+ γ)

)
dydγ.

(2.19)

Since ∆αt− y ≥ εt on the entire domain of integration, and rearranging, (2.19) is at most

t∫
r

exp

(
2t− γ − ∆2

αt
2

t+ γ

) √
t2 − γ2

ε2t2γ
√

2π
P
(
x

(
γ(t− γ)

t+ γ

)
< ζ − 2γ∆αt

t+ γ

)
dγ. (2.20)

We split (2.20) again into two regions: the first concerns γ > (1− δ)t, with δ ≡ 3ε
∆α+ε

.
In this case, estimating the probability by one and the remaining integrand by a rough



MCKEAN, BOVIER AND HARTUNG 35

bound on its maximum yields a contribution of at most

t∫
(1−δ)t

exp

(
2t− γ − ∆2

αt
2

t+ γ

) √
t2 − γ2

ε2t2γ
√

2π
P
(
x

(
γ(t− γ)

t+ γ

)
< ζ − 2γ∆αt

t+ γ

)
dγ

≤ δt exp

(
(1− ∆2

α

2
+ δ)t

) √
t2 − γ2

ε2t2γ
√

2π
≤ exp

(
(1− ∆2

α

2
+ 2δ)t

)
,

(2.21)

for t large enough. Therefore, for δ or equivalently ε small enough (depending on α only),
this term is also negligeable.

The second case in (2.20) pertains to γ < (1− δ)t: in this region, and due to the choice
of δ, we have

ζ = (∆α + ε)γ =⇒ ζ − 2γ∆αt

t+ γ
= γ

(
ε−∆α

t− γ
t+ γ

)
< 0, (2.22)

(the last estimate again due to the choice of δ, and for sufficiently small ε depending on
α only). This, together with Lemma 2.1, implies that

(1−δ)t∫
r

exp

(
2t− γ − ∆2

αt
2

t+ γ

) √
t2 − γ2

ε2t2γ
√

2π
P
(
x

(
γ(t− γ)

t+ γ

)
< ζ − 2γ∆αt

t+ γ

)
dγ

≤
(1−δ)t∫
r

exp

(
2t− γ − ∆2

αt
2

t+ γ
− γ (∆α(t− γ)− ε(t+ γ))2

2(t2 − γ2)

)
×

× t2 − γ2

(∆α(t− γ)− ε(t+ γ)) ε2t2γ
√

2πγ
dγ .

(2.23)

Using that −γε2(t+γ)2

2(t2−γ2)
< 0, and by simple algebra, (2.23) is at most

(1−δ)t∫
r

exp

(
(2−∆2

α)t+ (
∆2
α

2
− 1 + ∆αε)γ

)
2

∆α(1− 3ε
∆αδ

)ε2γ
√
γ2πt

dγ

∼ E[Zα(t)]2
2∆α

(1− 3ε
∆αδ

)ε2

(1−δ)t∫
r

γ−3/2 exp

(
(
∆2
α

2
− 1 + ∆αε)γ

)
dγ ,

(2.24)

by Lemma 2.2. But for ε sufficiently small ∆2
α/2 − 1 + ∆αε < 0, hence the integral

in (2.24) vanishes exponentially fast in r. In other words, (2.24) can be bounded by
E[Zα(t)]2 exp (−καr) for any κα < 1 − ∆2

α/2 and r large enough. Combining this with
the fact that the two error-terms (2.18) and (2.21) are of negligeable size compared to
E[Zα(t)]2 finishes the proof. �

We can now move to the
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Proof of Proposition 1.3. By the paths-localization from Lemma 2.3, and for t large enough,

P
(∣∣∣∣Zα(t)− E [Zα(t)|Fr]

E [Zα(t)]

∣∣∣∣ ≥ c

)
≤ P

(∣∣∣∣∣Z≤α (t)− E
[
Z≤α (t)|Fr

]
E [Zα(t)]

∣∣∣∣∣ ≥ c/2

)
+

8

c
exp

(
−rε

2

4

)

≤
4E
[(
Z≤α (t)− E

[
Z≤α (t)|Fr

])2
]

c2E [Zα(t)]2
+

8

c
exp

(
−rε

2

4

)
,

(2.25)
the last step by Markov inequality. We thus need sufficiently good (upper) bounds for

E
[(
Z≤α (t)− E

[
Z≤α (t)|Fr

])2
]

= E
[
E
[
(Z≤α (t))2|Fr

]
− E

[
Z≤α (t)|Fr

]2]
. (2.26)

Adopting the notation of Lemma 2.4,

Z≤α (t) =
∑
i≤n(r)

∑
j≤ni(t−r)

Ii,j, (2.27)

in which case

E
[
(Z≤α (t))2|Fr

]
− E

[
Z≤α (t)|Fr

]2
=

=

n(r)∑
i,i′=1

E

ni(t−r)∑
j=1

Ii,j

ni′ (t−r)∑
j′=1

Ii′,j′

∣∣∣∣∣∣Fr


− E

ni(t−r)∑
j=1

Ii,j

∣∣∣∣∣∣Fr
E

ni′ (t−r)∑
j′=1

Ii′,j′

∣∣∣∣∣∣Fr
 .

(2.28)

In the above, and for i 6= i′, particles (i, j) and (i′, j′) have branched off before time r:
they are thus independent, conditionally upon Fr. This leads to a perfect cancellation of
all terms i 6= i′, and reduces the above formula to

E
[
(Z≤α (t))2|Fr

]
− E

[
Z≤α (t)|Fr

]2
=

n(r)∑
i=1

E

ni(t−r)∑
j=1

Ii,j

2∣∣∣∣∣∣Fr
− E

ni(t−r)∑
j=1

Ii,j

∣∣∣∣∣∣Fr
2

.

(2.29)
Dropping the second term, and taking expectations, we thus obtain

E
[(
Z≤α (t)− E

[
Z≤α (t)|Fr

])2
]
≤ E

n(r)∑
i=1

ni(t−r)∑
j,j′=1

Ii,jIi,j′

 . (2.30)

Collecting the terms j = j′ yields Z≤α (t), while all other terms sum over all unordered
pairs of particles that have split after time r. Choosing ε = εα small enough and r = o(t)
large enough, by Lemma 2.4 there exists κα > 0 such that

(2.30) ≤ E[Z≤α (t)] + (1 + o(1))E[Zα(t)]2e−καr = (1 + o(1))E[Zα(t)]2e−καr. (2.31)

The claim thus follows by plugging (2.31) into (2.25). �
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The ε-cover time of the two dimensional unit torus T2 by Brownian motion (BM) is the time
for the process to come within distance ε > 0 from any point. Denoting by Tε (x) the first time BM
hits the ε-ball centered in x ∈ T2, the ε-cover time is thus given by

Tε ≡ sup
x∈T2

Tε (x) . (1)

The purpose of these short notes is to provide a concise proof of a celebrated theorem by Dembo,
Peres, Rosen and Zeitouni, DPRZ for short, which settles the leading order in the small-ε regime:

Theorem 1. (The DPRZ-Theorem, [3]) Almost surely,

lim
ε↓0

Tε

(lnε)2 =
2
π
. (2)

A key idea in the DPRZ-approach is to relate hitting times of ε-balls on T2 to excursion counts
between circles of mesoscopic sizes around these balls [6]; the DPRZ-proof of the theorem goes
then through an involved multiscale analysis in the form of a second moment computation with
truncation. We take here a similar point of view but with a number of twists which altogether
lead to a considerable streamlining of the arguments. In particular, we implement the multiscale
refinement of the second moment method emerged in the recent studies of Derrida’s GREM and
branching Brownian motion [5]. This tool brings to the fore the true process of covering [1] with
the help of minimal infrastructure only; it also efficiently replaces the delicate tracking of points
which DPRZ refer to as ’n-successful’, and requires the use of finitely many scales only. All these
features simplify substantially the proof of the DPRZ-theorem.

We believe the route taken here also considerably streamlines the deep DPRZ-results on late
and thin/thick points of BM [2], and, what is perhaps more, it will be useful in the study of the
finer properties. In fact, our approach carries over, mutatis mutandis, to these issues as well: when
backed with [1], the present notes suggest that in order to address lower order corrections, one
"simply" needs to increase the number of scales.

These notes are self-contained. Although, as mentioned, some key insights are taken from [3],
no knowledge of the latter is assumed and detailed proofs to all statements are given.

1 The (new) road to the DPRZ-Theorem

We identify the unit torus T2 with [0,1)× [0,1)⊂ R2, endowed with the metric

dT2 (x,y) = min{||x− y+(e1,e2) || : e1,e2 ∈ {−1,0,1}} .

We construct BM on T2 by Wt ≡
(
Ŵ1(t) mod 1,Ŵ2(t) mod 1

)
, where Ŵ is standard BM on R2.

By monotonicity of Tε and Borel-Cantelli Lemma, the DPRZ-Theorem steadily follows from
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Theorem 2. For δ > 0 small enough there exist constants c(δ ) ,c′ (δ )> 0 such that the following
bounds hold for any 0 < ε < c′ (δ ):

1) (upper bound)

P
(

Tε > (1+δ )
2
π
(lnε)2

)
≤ ε

c(δ ), (3)

2) (lower bound)

P
(

Tε < (1−δ )
2
π
(lnε)2

)
≤ ε

c(δ ) . (4)

Theorem 2 will be proved by relating the natural timescale of the covering process to the
excursion-counts of an embedded random walk, and a multiscale analysis of the latter which ex-
ploits some underlying, approximate hierarchical structure in the spirit of [1].

1.1 Scales, embedded random walks and excursion-counts

For R ∈
(
0, 1

2

)
and K ≥ 1 we consider scales i = 0,1, ..,K and associate to each such scale a radius

ri ≡ R
(

ε

R

)i/K
. (5)

BM started on ∂Bri hits ∂Bri+1 before ∂Bri−1 with probability 1/2: by the strong Markovianity
and rotational invariance, it follows that the process obtained by tracking the order in which BM
visits the scales (with respect to one fixed center point and not counting multiple consecutive hits
to the same scale) during one excursion from scale 1 to scale 0 is a simple random walk (SRW)
started at 1 and stopped in 0. Keeping track of all BM-excursions up to some time thus yields a
collection of independent SRW-excursions from 1 to 0. (The evolution of the SRW-excursions can

Figure 1: Reading off the SRW excursions 1→ 0 and 1→ 2→ 1→ 0

be unambiguously read off the BM-path, see Figure 1). For x ∈T2, we set

Dn (x)≡ time at which W completes the n-th excursion from ∂Br1 (x) to Bc
r0
(x) . (6)

Proposition 1. (Concentration of excursion-counts) For δ ,R ∈
(
0, 1

2

)
and x ∈T2, it holds

P
(

Dn (x)≥ (1+δ )n
1
π

ln
r0

r1

)
≤ exp

(
−n
(

δ 2

8
+or1(1)

))
(7)

P
(

Dn(x)≤ (1−δ )n
1
π

ln
r0

r1

)
≤ exp

(
−n
(

δ 2

4
+or1 (1)

))
(8)

for all n ∈ N as r1→ 0.
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Proposition 1 will bear fruits when combined with the following

Proposition 2. (First moment of hitting times) There exists an universal constant C > 0, such that∣∣∣∣Ey[τBr(x)]−
1
π

ln
dT2 (x,y)

r

∣∣∣∣≤C (9)

for all x ∈T2, r > 0 and y ∈T2 \Br (x). Also

Ey
[
τBc

r(x)
]
=

r2−dT2 (x,y)
2

2
(10)

for all x ∈T2, r ∈
(
0, 1

2

)
and y ∈ Br (x).

Propositions 1 and 2 make precise the intuition that Dn(x)≈ nEBr0
[τBr1

], allowing in particular to
switch from the natural timescale to the excursion-counts. Armed with the above results, which
will be proved in Section 2.1, we discuss the main steps behind Theorem 2. The upper bound is
easy: we address that first.

Here and below, Lε will denote the square lattice of mesh size dε−1e−1. Remark that |Lε | ≈ ε−2.

1.2 The upper bound

We will show that, with overwhelming probability, at time

tε(δ )≡ (1+δ )
2
π
(lnε)2 , (11)

each ε-ball with center on Lε has been hit by BM and extend this to the entire torus thereafter.

Lemma 1. For δ > 0 small enough there exist constants c,c′ > 0 depending on δ only such that

P(∃x ∈ Lε such that Tε(x)> tε(δ ))≤ ε
c (12)

holds for all 0 < ε < c′.

Proof. We set
nε(δ ) =−(1+δ/2)2K ln(ε) , (13)

which is slightly larger then the typical amount of excursions at time tε(δ ). For an ε-ball to be
avoided up to some time: either i) BM needs to complete less than nε(δ ) excursions from scale
1 to scale 0 in that time or ii) scale K, corresponding to the ε-ball, has to be avoided for at least
nε(δ ) many excursions. Therefore setting

T (x)≡ number of the first excursion from ∂Br1 (x) to Bc
r0
(x) that hits BrK (x) .

we have

P(∃x ∈ Lε s.t. Tε(x)> tε(δ ))≤ P
(
∃x ∈ Lε s.t. T (x)> nε(δ ) or Dnε (δ ) (x)≥ tε(δ )

)
. (14)

By Markov inequality and union bound

(14)≤ ∑
x∈Lε

P(T (x)> nε(δ ))+P
(
Dnε (δ ) (x)≥ tε(δ )

)
. (15)

The probability that nε(δ ) independent excursions of a SRW starting in 1 all hit 0 before K is given
by (1−1/K)nε (δ ), while the second probability on the r.h.s of (15) is estimated by Proposition 1.
This shows that the above is at most

|Lε |
[(

1− 1
K

)nε (δ )

+ exp
(
−δ 2

72
nε(δ )

)]
≤ ε

δ (1+oε (1)) , (16)

for K large enough, the last inequality since 1− 1
K ≤ e−1/K , and |Lε | ≈ ε−2.

41



Coming back to the upper bound in Theorem 2,

P(Tε > tε(δ )) = P(∃x ∈T2 : Tε (x)> tε(δ ))≤ P
(
∃x ∈ Lε/10 : Tε/10(x)> tε(δ )

)
, (17)

the last step using that any ε-ball contains a ball of radius ε/10 with center in Lε/10. For ε > 0
small enough depending on δ we have tε(δ )≥ tε/10(δ/2), therefore it holds that

(17)≤ P
(
∃x ∈ Lε/10 : Tε/10 (x)> tε/10(δ/2)

)
. (18)

Applying Lemma 1 with ε/10 for ε and δ/2 yields the upper bound in Theorem 2.

1.3 The lower bound

We show that with overwhelming probability there exists x ∈T2 with avoided ε-ball at time

t= t(ε,δ )≡ (1−δ )4 2
π
(lnε)2 . (19)

Theorem 2 will then follow immediately by considering1 δ̂ ≡ 1− (1−δ )4. Set

n( j) = n( j;ε,δ ,K)≡−2K (1−δ ) j lnε, ( j ∈ N). (20)

With τr ≡ τr (x) denoting the first time BM hits the r-ball around x ∈T2, we define the events

R ≡
⋂

x∈Lε

{
Dn(3)(x)> t

}
and (21)

Rx ≡ {τr1 < τrK}∩{At most n(2)excursions dδke� dδke−1 during first n(3) excursions1� 0} .
(22)

For n ∈ N and l ∈ {1, ..,K−1}, let

N x
l (n)≡ number of excursions of W from ∂Brl (x) to ∂Brl+1 (x) within the

first n excursions from ∂Brl (x) to ∂Brl−1 (x) after time τr1 .
(23)

For x ∈T2 define the events

Ax ≡
K−1⋂

l=dδKe
Ax

l , where Ax
l ≡

{
N x

l

(
n
(

1− l
K

)2
)
≤ n

(
1− l +1

K

)2
}
. (24)

The events A,R are motivated by the following observations. First, it can be checked via Doob’s
h-transform that the expected number of excursions from l to l + 1 performed by a SRW started
at 1 and stopped at 0 and conditioned not to hit K, is approximately [1− (l +1)/K]2. The events
Ax thus describe the natural avoidance strategy of scale K by n independent such SRW, which is
in turn equivalent to specifying the avoidance strategy of an ε-ball. Second, we claim that

R ∩Rx∩Ax ⊂ {Bε (x) is not hit up to time t}. (25)

Remark in fact that on Rx, the ball Bε (x) is not hit before ∂Br1 (x), hence the ε-ball can only be
hit in an excursion from Br1 to Br0 . R ensures that there are at most n(3)-excursions before time t.
Therefore, on Rx∩R, there are at most n(2) excursions from scale dδKe → dδKe−1 at time t.
But on Ax, none of these excursions reaches scale K, hence the ε-ball is not hit, and (25) holds.

In light of (25), and in view of the lower bound in Theorem 2, estimates on the probabilities of
the R,A-events are needed. This information is provided by Lemma 2 and 3 below, whose proofs
are deferred to Section 2.2. Concerning the R-event we state

1This is notationally convenient, but holds no deeper meaning.
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Lemma 2. For all δ > 0 and large enough K =K(δ )∈N there exist constants κ,κ ′> 0 depending
on δ ,K only such that

inf
x∈Lε\Br1 (W0),ε∈(0,κ ′)

P(Rx) ,P(R)≥ 1− ε
κ . (26)

Concerning the A-events,

Lemma 3. (One-point estimates) For K large, ε > 0 small enough (depending on δ )

ε
2−1.99δ ≤ P(Ax)≤ ε

2−2.01δ , (27)

Coming back to the lower bound, restricting to the set L∗ε ≡ Lε \Br1(W0) yields that

P

(
sup

x∈T2

Tε (x)> t

)
≥ P(∃x ∈ L∗ε such that Bε(x) is not hit up to time t)

(25)
≥ P(R and ∃x ∈ L∗ε such that Rx∩Ax)

≥ E [#{x ∈ L∗ε : Rx∩Ax}]2

E
[
#{x ∈ L∗ε : Rx∩Ax}2

] −P(Rc),

(28)

by Paley-Zygmund inequality. Rotational invariance and strong Markovianity imply that Rx and
Ax are independent, hence the above is at least[

∑
x∈L∗ε

P(Rx)P(Ax)

]2

/

[
∑

x,y∈L∗ε

P(Ax∩Ay)

]
−P(Rc). (29)

We now analyse the denominator. First, remark that for dT2(x,y)> 2rdδKe−1, the A-events decou-
ple: in fact, they are rotationally invariant and depend on disjoint excursions, hence the strong
Markov property yields P(Ax∩Ay) = P(Ax)P(Ay). Shortening

A ≡ ∑
x∈L∗ε

P(Ax) , B ≡ ∑
x,y∈Lε

1{dT2 (x,y)≤2rdδKe−1}P(A
x∩Ay) ,

by Lemma 2 and the exact decoupling we thus have that

(29)≥ (1− ε
κ)

2 A 2

A 2 +B
− ε

κ ≥ (1− ε
κ)

2
(

1− B

A 2

)
− ε

κ

≥ (1− ε
κ)

2
(

1− B

ε−3.96δ

)
− ε

κ ,

(30)

the last step by Lemma 3 and using that |Lε | ≥ ε−2+0.01δ . It thus remains to analyze the B-term:
by regrouping terms according to the distance,

B ≤
K

∑
i=dδKe−2

∑
x,y∈Lε

1{dT2 (x,y)∈[ri+1,ri]}P(A
x∩Ay) . (31)

To get a handle on the two-points probabilities appearing in (31), we follow the recipe from [5, Sec.
3.1.1 p. 97-98], exploiting the approximate hierarchical structure which underlies the excursion-
counts, and which is best explained with the help of a picture, see Figure 2 below. First, the
circles associated to x,y on small scales i (left) are almost identical and so are the excursion
counts; this suggests that Ax

i ∩Ay
i is well represented by Ax

i alone. Dropping one of the events is
an estimate by worst case scenario known in this context as "REM approximation". For larger
i (middle) this approximation is not sharp, but only a single scale can fall into this case as we
can choose ε arbitrarily small for given K. Choosing K large makes the influence of a single
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Figure 2: Common branch on small scales (left) and decoupling on large scales (right).

scale comparatively small. For i large (right), balls are disjoint, which by rotational invariance
and strong Markovianity yields independent excursion counts. Such approximate tree-structure of
excursion counts is summarized in the lower picture, with the red box corresponding to the scale
at hand. By these considerations, for i≥ dδKe−2 and dT2 (x,y) ∈ [ri+1,ri], we write

P(Ax∩Ay) = P

 K−1⋂
l=dδKe

Ax
l ∩

K−1⋂
l=dδKe

Ay
l


≤ P

 K−1⋂
l=dδKe,l 6=i,i+1

Ax
l ∩

K−1⋂
l=i+1

Ay
l

 ("REM approximation")

=
K−1

∏
l=dδKe,l 6=i,i+1

P(Ax
l )

K−1

∏
l=i+1

P
(
Ay

l

)
(exact decoupling)

≤ ε
4−2.01δ−2 i+1

K (Lemma 3 / one-point estimates) .

(32)

There are at most 2ε−4πr2
i pairs of points on Lε with distance at most ri: using that ri ≤ ε i/K , and

(32) in (31) we get

B ≤
K

∑
i=dδKe−2

2πε
−2.01δ− 4

K ≤ ε
−2.02δ . (33)

Applying this estimate to (30) and putting δ̂ ≡ 1− (1−δ )4 we therefore see that

P

(
sup

x∈T2

Tε (x)>
(

1− δ̂

) 2
π
(lnε)2

)
≥ 1− ε

ĉ, (34)

for ĉ≡ 1
2 min{κ,1.94δ}, settling the lower bound of Theorem 2.

2 Proofs

2.1 Hitting times and excursion-counts

The study of hitting times for BM is closely related to Green’s functions. Estimates on the torus
have however proofs which are either opaque or hard to find: we include here an elementary
treatment based on Fourier analysis for the reader’s convenience.
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Lemma 4. The function

F (x,y)≡ Gx (y)−
1

2π
lndT2 (x,y) , where Gx (y)≡− ∑

p∈2πZ2\{0}

1

|p|2
eip(x−y) (35)

is bounded on T2
2 \{(x,x) : x ∈T2}.

Proof. It suffices to consider y in a small neighborhood of x, as otherwise the result is trivial. So
let z≡ x− y and assume that 2|z1| ≥ |z| (swapping coordinates otherwise). We have∣∣∣∣∣∣∣∣ ∑

p∈2πZ2\{0}
|p|>|z|−1

1

|p|2
eipz

∣∣∣∣∣∣∣∣=
∣∣∣∣∣∣∣∣ ∑

p∈2πZ2\{0}
|p|>|z|−1

1
1− ei2πz1

1

|p|2
(

eipz− ei(p+(2π,0))z
)∣∣∣∣∣∣∣∣ . (36)

Shifting the difference from the exponential to |p|−2 by collecting terms with the same exponent,
and by the triangle inequality, one obtains boundedness uniformly over z 6= 0 in a small enough
neighborhood of 0. The extra terms due to the boundary of the summation domain are easily
shown to be bounded. By combining the summand p and −p we see that sums of this form are
real valued. Therefore

∑
p∈2πZ2\{0}
|p|≤|z|−1

1

|p|2
eipz = ∑

p∈2πZ2\{0}
|p|≤|z|−1

1

|p|2
cos(pz). (37)

Since |pz| ≤ 1 for all summands contained in this sum we can estimate cos(x)≤ 1− x2/4. Hence∣∣∣∣∣∣∣∣Gx (y)− ∑
p∈2πZ2\{0}
|p|≤|z|−1

1

|p|2

∣∣∣∣∣∣∣∣ (38)

is uniformly bounded for y in a small neighborhood of x. The claim of Lemma 4 then follows by
rearranging summands into groups C j ≡ {p ∈ 2πZ2 \{0} : |p|2 ∈

(
( j−1)3, j3

]
}, estimating |p|−2

by best/worst case scenario within each group, and using that |C j|= 3
4π

j2 +O( j3/2).

Proof of Proposition 2: first moment of hitting times. Let µ(y) ≡ Ey
[
τBr(x)

]
. For ∆ the Laplacian

with periodic boundary condition onT2 we have Poisson’s equation ∆µ =−2 onT2 \Br (x) with
µ = 0 on Br (x). Plainly,

Gx (y)≡− ∑
p∈2πZ2\{0}

1

|p|2
eip(x−y) (39)

is a Green function, i.e. solution of ∆Gx = 1−δx on the torus. In particular, µ +2Gx is harmonic
on T2 \Br (x). By the maximum principle, and since µ ≡ 0 on ∂Br (x),

2 inf
z∈∂Br(x)

Gx (z)≤ µ (y)+2Gx (y)≤ 2 sup
z∈∂Br(x)

Gx (z) (40)

holds. It follows from Lemma 4 that µ (y)− 1
π

ln[dT2 (x,y)/r] is bounded, and the first claim (9)
is proved. The second claim (10) is elementary as we can identify the ball on T2 with the ball in
R2 and exploit rotational invariance to solve Poisson’s equation explicitly.

Proof of Proposition 1: concentration of excursion-counts. By Kac’s moment formula [4],

Ex
[
τ

i
A
]
≤ i! sup

x∈T
Ex [τA]

i , A⊂T closed. (41)
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By monotone convergence, Taylor-expanding the exponential function, and by the above estimate,

Ex

[
eθτA

]
≤ 1+θEx [τA]+

∞

∑
i=2

(
θ sup

x∈T
Ex [τA]

)i

≤ exp
(

θEx [τA]+2θ
2 sup

x∈T
Ex [τA]

2
)

(42)

for 0 < θ < 1
2

(
sup
x∈T

Ex [τA]

)−1

. Using e−x ≤ 1− x+ x2 for positive x gives

Ex

[
e−θτA

]
≤ 1−θEx [τA]+θ

2 sup
x∈T

Ex [τA]
2 ≤ exp

(
−θEx [τA]+θ

2 sup
x∈T

Ex [τA]
2
)
. (43)

Consider τ(i←) the time it takes W to get from ∂Br1 (x) to Bc
r0
(x) the i− th time; τ i→ the time W

needs to get from ∂Br0 (x) to Br1 (x) the i-th time after Br1 (x) has been hit the first time and τr1 the
time it takes W to get from the starting point to ∂Br1 (x). Now by definition we have

Dn (x) = τr1 +
n−1

∑
i=1

τ
(i→)+

n

∑
i=1

τ
(i←). (44)

Exponential Markov inequality gives for any t,θ > 0

P(Dn (x)≥ t)≤ e−θ tE
[
eθDn(x)

]
(45)

Using (44), by strong Markovianity and estimating by worst starting points this is

≤ e−θ t

(
sup
z∈T2

Ez

[
eθτr1

])(
sup

z∈Br0 (x)
Ez

[
eθτ(1→)

])n−1(
sup

z∈Br1 (x)
Ez

[
eθτ(1←)

])n

(46)

Using (42) with θ =− πδ

4lnr1
, and applying Proposition 2, we obtain

sup
z∈T2

Ez

[
eθτr1

]
≤ e

δ

4 +
δ2
8 +or1 (1)

sup
z∈Br0 (x)

Ez

[
eθτ(1→)

]n−1
≤ e(n−1)

(
δ

4 +
δ2
8 +or1 (1)

)

and sup
z∈Br1 (x)

Ez

[
eθτ(1←)

]n
≤ enor1 (1).

(47)

With t = (1+δ )n 1
π

ln r0
r1

, and by the above estimates, (46) reads

P
(

Dn (x)≥ (1+δ )n
1
π

ln
r0

r1

)
≤ e−n

(
δ

4 +
δ2
4 +or1 (1)

)
en
(

δ

4 +
δ2
8 +or1 (1)

)
, (48)

settling (7). As for (8): for any n ∈ N and θ > 0 we have

P(Dn (x)≤ t)≤ eθ tEe−θDn(x) ≤ eθ tE
[
e−θτ(1→)

]n−1
. (49)

Choosing θ = πδ

2lnr1
and t = (1−δ )n 1

π
ln r0

r1
, applying (43) together with Proposition 2 yields the

second claim and concludes the proof of Proposition 1.
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2.2 Estimates for R and A

Proof of Lemma 2. For x ∈ L∗ε , {τr1 < τrK} almost surely. By rotational invariance and strong
Markovianity, the number of excursions from scale dδKe to scale dδKe−1 in different excursions
from scale 1 to scale 0 are independent of each other. The number of excursions from scale
dδKe to scale dδKe−1 in one excursion from scale 1 to scale 0 is distributed like the product of
a Bernoulli distributed and an independent geometrically distributed random variable, both with
parameter dδKe−1. (This product has expectation 1). By Cramér’s theorem,

P(more than n(2) times dδKe → dδKe−1 in the first n(3) excursions 1→ 0)

≤ exp
(
−n(3)I

(
1

1−δ

))
= ε

2K(1−δ )3I( 1
1−δ ),

(50)

with I the rate function of a Bernoulli(1/dδKe )× geometric(1/dδKe). It follows that P((Rx)c)
vanishes polynomially in ε for fixed δ and K. Taking the complement yields the first claim.

By Proposition 1 we have

P
(
Dn(3) (x)≤ t

)
≤ ε

2K(1−δ )3(δ 2/4+or1 (1)), (51)

which vanishes faster then, say, ε3 for K sufficiently large. The second claim thus follows by
union bound over all x ∈ Lε on the complements.

Proof of Lemma 3. The number of times a SRW goes from l to l +1 before going from l to l−1
is geo(1/2)-distributed. Therefore N x

l (n) is, by strong Markovianity and rotational invariance,
the sum of n independent geo(1/2)-distributed r.v.’s. Hence by Cramér’s theorem

P(Ax) =
K−1

∏
l=dδKe

P(Ax
l ) =

K−1

∏
l=dδKe

exp

(
−n
(

1− l
K

)2

I

((
1− l+1

K

)2(
1− l

K

)2

)
+oε (n)

)

= exp

(
− n

K2

K−1

∑
l=dδKe

(K− l)2 I

((
1− 1

K− l

)2
)
+oε (n)

)
,

(52)

where I (x) = x ln(x)− (1+ x) ln
(1+x

2

)
is the geo(1/2)-rate function. Using I (1) = I′ (1) = 0 and

I′′ (1) = 1
2 one quickly obtains j2I

(
(1−1/ j)2

)
= 1+o j (1) as j→ ∞, and therefore

P(Ax) = exp
(
− n

K
(1−δ )(1+oK (1))+oε (n)

)
= ε

2(1−δ )(1+oK(1))+oε (1), (53)

concluding the proof of the Lemma.
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5 Summary

The goal of this thesis is to give insight into the study of hierarchical fields and its application
today. We call any field hierarchical that is constructed by generating a rooted tree, given the
tree equipping the edges with independent random variables and then considering the field of ran-
dom variables indexed by leafs, that associates a leaf to the sum of random variables along the
path from the root to the leaf. Typically one is interested how the extremes or related functionals
like extremal process or high points of such fields develop when considering an in some sense
consistent sequence of hierarchical fields growing the number of leafs to infinity. In the discus-
sion of hierarchical and approximately hierarchical models the notion of scales is central. If the
model at hand is constructed from a tree, scale refers to the distance to the root, i.e. behavior on
small scales is behavior close to the root and number of scales is the (maximal) distance from
the root to the leafs. In not exactly hierarchical models however we still use the notion in order
to indicate where the suggested tree like structure is to be found. Prominent hierarchical mod-
els are e.g. Derrida’s random energy model (REM), Derrida’s generalized random energy model
(GREM), branching random walk (BRW) and branching Brownian motion (BBM). The REM was
introduced by Derrida [33] and simply considers a collection of independent random variables,
studying the extremes of which is classical and discussed in the Fisher-Tippett-Gnedenko theorem
and related results. The GREM model corresponds to a regular tree with finite number of scales
and centered Gaussian edge weights, which was introduced by Derrida [32] and extensively ana-
lyzed by Bovier and Kurkova [24]. The GREM is very well analyzed, but for this discussion we
will only note the following result describing the critical case:

Theorem 8. Let K ∈ N, N be a multiple of K and consider the complete tree of height K where
each non leaf vertex has 2N/K children. Equipping each edge with independent Gaussians of
variance N/K and considering the field associated to the leafs (X (N)

σ )σ∈ΣN , we have that

max
σ∈ΣN

X (N)
σ −

(√
2ln2N− 1

2
√

2ln2
lnN

)
(27)

converges to a Gumbel distribution as N→ ∞ for any fixed K.

For details see [41] or [24]. We compare this result to the BRW analogue. BRWs in general
are constructed by adding an independent copy of a point process as children to each vertex, where
the number of points of the process is the number of children and the displacement gives the edge
weights, then considering the field of vertices of depth N. The analogue case to GREM setting we
considered is choosing the point process consisting of two independent standard Gaussian points
and considering the maximum at scale N. This construction is the same as considering the binary
tree of depth N with standard Gaussian edge weights. Which in turn is identical to the critical
GREM with K = N levels. In this case we have

Theorem 9. Let (X (N)
σ )σ∈ΣN be defined as before, then we have that

max
σ∈ΣN

X (N)
σ −

(√
2ln2N− 3

2
√

2ln2
lnN

)
(28)

converges to a randomly shifted Gumbel distribution for K = N.

This is a consequence of [1, Theorem 1.1], but not a straight forward extension of Theorem
8 as one notices the extra factor 3 in the log-correction. Of course such an effect needs to have
an explanation how and why the stronger correlations in this latter case translate to the different
recentering. This is precisely the topic of the first paper of this thesis Kistler and Schmidt [42],
wherein we discuss a class of models interpolating between the cases K = 1 and K = N, see
Figure 9.
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Figure 9: Trees interpolating between REM and BRW

The main result being

Theorem 10. Let (X (N)
σ )σ∈ΣN be defined as before with K = Nα for some α ∈ (0,1), then we have

that
∑

σ∈ΣN

δ
X (N)

σ −
(√

2ln2N− 1+2α

2
√

2ln2
lnN

)→ Ξ, (29)

weakly as N→ ∞, where Ξ is a Poisson point process of intensity 1√
2π

e−
√

2ln2xdx.

For comparison to the results before note that this implies weak convergence of the recentered
maximum to the Gumbel distribution. We see that the log-correction interpolates linearly between
REM and BRW in α . The result is correct for α = 0 also which is the REM case, but cannot be
correct for α = 1 in view of Theorem 9. This is very intuitive as fluctuations in the beginning and
close relatives of maximal particles in the end produce non Poissonian effects that have to carry
over to the limit. Some intuition for Theorem 10 is given in Section 1.2 of this thesis.

Figure 10: Two realizations of branching Brownian motion

We continue with the study of a model with many similarities to the BRW, namely branching
Brownian motion (BBM), see Fig. 10 for two realizations. BBM can be constructed by considering
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one particle starting at 0 following a standard Brownian motion for an exponentially distributed
time of parameter one. After said time the particle splits into two independent copies of itself
progressing and splitting independently of each other and of the past from the splitting point
onwards. The extremes of BBM have been studied extensively (see e.g. [2, 8, 21, 27, 43]), not
only for the theoretical appeal but also for the connection to the FKPP equation [46] and the
relevance to disordered systems [25, 34]. Also the generalizations to time dependent speed of
the Brownian motions is studied [22, 23, 34, 35]. One such model is two-speed BBM, which
simply considers one speed up to some time t/2 and another from time t/2 to t, see Fig. 11. If

Figure 11: Two-speed BBM, strong correlation (left), weak correlation (right)

the fluctuations in the beginning are weaker we are in the weak correlation regime and if they
are stronger we are in the strong correlation regime. Roughly speaking stronger correlations stem
from less chances to improve later, hence increasing the value of a good candidate, which in turn
results in there being less candidates at time t/2 that might produce offspring that are optimal at
time t. The bigger the fluctuations at the end the more the balance between entropy and energy
in the beginning moves towards entropy. Explained in more simple words considering the time
t/2 as now: If large changes are bound to happen chances are the best in the future are far from
the best now, simply due to the fact that many particles now are suboptimal but only few are very
good. On the other hand if things change in the future by not as much the advantage of good
particles today becomes more pronounced. Standard BBM is the critical case in between these
two regimes. In the second paper of this thesis Glenz, Kistler and Schmidt [36] we discuss the
number of highpoints of BBM, which has strong connections to the weak correlation regime of
two-speed BBM. For (Xi(t), i ≤ n(t)) the position of particles of a standard BBM at time t we
define the number of α-high points by

Zα(t)≡ #
{

k ≤ n(t) : xk(t)≥
(√

2−α

)
t
}
. (30)

This is sensible as there are no 0-high points for large t and roughly every second particle would
be a

√
2-high point. The main result of Glenz, Kistler and Schmidt [36] is the following strong

law of large numbers for high points:

Theorem 11. For any 0 < α <
√

2

lim
t→∞

Zα(t)
EZα(t)

= Yα , almost surely, (31)
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where Yα is given as the almost sure limit of McKean’s martingale:

Yα(t)≡ ∑
k≤n(t)

exp
[
−t
(

1+
1
2

∆
2
α

)
+∆αxk(t)

]
. (32)

To explain the intuition behind this result let ∆α ≡
√

2−α , n(r) the number of particles at
time r and let ni(t− r) the number of children particle i≤ n(r) at time r has at time t. By grouping
particles at time t in groups of common ancestor at time r we identify

{xk(t),k ≤ n(t)}= {xi(r)+ xi, j(t− r), i≤ n(r), j ≤ ni(t− r)}. (33)

Computing the conditional expectation of Zα(t) given the events up to time r we have

E [Zα(t) |Fr] = E

[
∑

k≤n(t)
1{xk(t)≥ ∆αt}

∣∣∣Fr

]
=

= E

[
∑

i≤n(r)
∑

j≤ni(t−r)
1
{

xi, j(t− r)≥ ∆α(t− r)− (xi(r)−∆αr)
}∣∣∣Fr

]
= ∑

i≤n(r)
et−rP

[
x1(t− r)≥ ∆α(t− r)− (xi(r)−∆αr)

∣∣∣Fr

]
∼
(

∆α

√
2π

)−1
exp
[(

1−∆
2
α/2
)

t− 1
2

log(t)
]

Yα(r), a.s.,

(34)

The last step by a standard tail estimate for Gaussian random variables and using that r is much
smaller than t. This gives us

E [Zα(t) |Fr]

E [Zα(t)]
=

E [Zα(t) |Fr]

E [Zα(t)F0]
∼ Yα(r)

Yα(0)
= Yα(r) (35)

making the claim of Theorem 11 what one expects, as it is easy to predict that the randomness in
the beginning carries over to the limit as each fluctuation in the early evolution influences a non
vanishing fraction of the entire population. The proof of Theorem 11 is controlling the difference
of Zα(t) and its conditional expectation by a multiscale refinement of the second moment method
truncating off particles moving too far above the optimal strategy.

The third paper of this thesis is Schmidt [52]. It discusses how the methods developed for
hierarchical fields can be applied to only approximately hierarchical models in the case of two-
dimensional cover times giving a simple proof to the famous result by Dembo, Peres, Rosen and
Zeitouni (short DPRZ) [31]:

Theorem 12. For Tε the ε-cover time of the two-dimensional unit torus we have

Tε

(lnε)2 →
2
π

almost surely as ε → 0. (36)

To define this cover time precisely we identify the unit torus T2 with [0,1)× [0,1) ⊂ R2,
endowed with the metric

dT2 (x,y) = min{||x− y+(e1,e2) || : e1,e2 ∈ {−1,0,1}} . (37)

Brownian motion on T2 is given by Wt ≡
(
Ŵ1(t) mod 1,Ŵ2(t) mod 1

)
, where Ŵ is standard

Brownian motion on R2. The ε-cover time Tε is then given as the first time the path of W is within
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ε distance of any point on the torus. Considering the Tε(x) the hitting time of the ε-ball around
x ∈T2 we have the identity

Tε = sup
x∈T2

Tε(x). (38)

To make Theorem 12 plausible we do some rough calculations. Consider 0 < r < R < 1/2 and
some reference point x ∈ T2, then one can show that it takes Brownian motion on the torus on
average 1

π
ln R

r long to perform one excursion from ∂BR(x) to ∂Br(x) and back up to bounded
error. Hence for r small and t large enough W completes about tπ/ ln R

r such excursions up to time
t. The chance of Bε(x) being hit by W in one such excursion is easily seen to be exactly lnR−lnr

lnR−lnε
.

Hence in total the chance to avoid on ε-ball is roughly(
1− lnR− lnr

lnR− lnε

) t
1
π ln R

r ≈ exp
(
πt(lnε)−1) . (39)

As one can place of order ε−2 disjoint ε-balls on the unit torus it is plausible to think that the torus
should be ε-covered around the time all these balls are hit. Hoping that the correlations are not to
strong we can conjecture that this happens around the time the expected number of unhit ε-balls
is of order one, which suggests:

ε
−2 exp

(
πt(lnε)−1) !

= O(1). (40)

This hits precisely the result. One can even make this line of reasoning rigorous to establish an
upper bound. For a matching lower bound it is however necessary to handle the correlations, which
is much more delicate. This is done by controlling excursion counts between circles of mesoscopic
sizes exploiting the strong Markovianity of W to its fullest. This point of view reveals a decoupling
effect resulting in a hierarchical structure, which is best explained with Figure 12. Consider two

Figure 12: Hierarchical structure of cover times.

points on the torus and circles of different sizes around them. If the radii of considered circles
are large in comparison to the distance of the two points the circles are similar resulting in similar
excursion counts. This is depicted on the left and gives morally the common trunk of these two
points. If we consider circles of size that is of the same order as the distance, then we see the
middle picture which is a complicated situation, however as this can happen only for very specific
circle sizes the error caused by this effect can be controlled. If the distance is of larger order
than the circle sizes, then those circles are disjoint (right), which means conditionally on the
exterior what happens inside them is independent of each other. As excursion counts in between
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circles have a distribution that does not depend on the starting point by rotational invariance we
obtain perfect independence of excursion counts in this case. This observation allows a multiscale
analysis treating the model as though it was hierarchical to be successful.

6 Zusammenfassung (German summary)

Das Ziel dieser Ausarbeitung ist einen Einblick in die momentane Erforschung hierarchischer
Felder zu geben. Wir nennen jedes Feld hierarchisch, dass konstruiert ist, indem ein verwurzelter
Baum generiert wird, gegeben dem Baum seine Kanten mit unabhängigen Zufallsvariablen verse-
hen werden und das Feld indiziert durch die Blätter des Baumes betrachtet wird, dass jedem Blatt
die Summe der Kantengewichte entlang des Weges von Wurzel zu Blatt zuordnet. Typischerweise
gilt das Interesse dem Verhalten der Extreme solcher Felder oder verwandter Funktionale, wie
dem Extremalprozess oder der Anzahl sogenannter highpoints, entlang einer auf eine Art kon-
sistenten Folge von hierarchischen Feldern mit wachsender Blattzahl. Ein zentraler Begriff im
Studium hierarchischer Felder oder approximativ hierarchischer Felder ist der Begriff der Skalen.
Ist ein Modell wie beschrieben durch einen Baum konstruiert, so bezieht sich der Begriff Skala
auf den Abstand zur Wurzel. Das bedeutet, "Verhalten auf kleinen Skalen" meint das Verhalten
nahe der Wurzel und "Anzahl der Skalen" ist nichts weiter als die (maximale) Tiefe des betra-
chteten Baumes. Für nicht exakt hierarchische Modelle verwenden wir den Begriff der Skalen um
aufzuzeigen wo die suggerierte Baumstruktur zu finden ist. Prominente Beispiele für hierarchis-
che Modelle sind Derridas random energy model (REM) und generalized random energy model
(GREM), branching random walk (BRW) und branching Brownian motion (BBM). Im von Der-
rida bekannt gemachten REM betrachtet man unabhängige identisch verteilte Zufallsvariablen.
Die Betrachtung der Extreme des REM ist somit ein klassisches Problem der Extremwerttheorie
und kann durch den Satz von Fisher-Tippett-Gnedenko und verwandte Resultate behandelt wer-
den. Das GREM wurde ebenfalls von Derrida [32] eingeführt. Es entsteht durch Betrachtung eines
gleichmäßigen Baumes mit fester Stufenzahl und zentrierten normalverteilten Kantengewichten.
Für eine ausführliche Behandlung dieses Modells siehe Bovier und Kurkova [24]. Für unsere
Zwecke beschränken wir uns auf die Angabe von folgendem Resultat, das den kritischen Fall
beschreibt:

Theorem 13. Sei K ∈ N, N ein Vielfaches von K und betrachte den vollständigen Baum der Tiefe
K bei dem jeder Knoten, der kein Blatt ist, 2N/K Kinder besitzt. Das Versehen der Kanten mit
zentriert normalverteilten Zufallsvariablen mit Varianz N/K schließt die Konstruktion ab. Für
(X (N)

σ )σ∈ΣN , das zu den Blättern assoziierte Feld, gilt

max
σ∈ΣN

X (N)
σ −

(√
2ln2N− 1

2
√

2ln2
lnN

)
(41)

konvergiert gegen die Gumbelverteilung für N→ ∞ und K fest.

Wir vergleichen dieses Resultat mit seinem BRW-Analogon. Im Allgemeinen sind BRWs
konstruiert, indem an die Wurzel ein Punktprozess angehängt wird, wobei jeder Punkt einem Kind
entspricht und die Auslenkung des Punktes dem Kantengewicht. Dieser Prozess wird für jedes
Kind der Wurzel unabhängig wiederholt, um eine zweite Stufe anzuhängen, usw. bis N Stufen
entstanden sind. Das Analogon zum kritischen GREM in diesem setting ist die Wahl des Punk-
tprozesses, der aus zwei unabhängigen standardnormalverteilten Zufallsvariablen entsteht. Diese
Konstruktion ist äquivalent zur Betrachtung des binären Baumes mit Tiefe N und standard nor-
malverteilten Kantengewichten oder zur Betrachtung eines GREMs mit K = N Skalen. Für dieses
Modell gilt:
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Theorem 14. Sei (X (N)
σ )σ∈ΣN gegeben wie zuvor, dann konvergiert

max
σ∈ΣN

X (N)
σ −

(√
2ln2N− 3

2
√

2ln2
lnN

)
(42)

gegen eine zufällig verschobene Gumbelverteilung für K = N.

Dieses Resultat folgt aus [1, Theorem 1.1], ist jedoch keine simple Verallgemeinerung von
Theorem 13 wegen des extra Faktors 3 in der log-Korrektur. Natürlich muss erklärlich sein, wie
und warum die stärkeren Korrelationen eine veränderte Zentrierung zur Folge haben. Dies ist
präzise das Thema des ersten Papers dieser Arbeit Kistler und Schmidt [42] in der eine Klasse von
Modellen beschrieben wird die zwischen K = 1 (REM) und K = N (BRW) interpolieren. Siehe
Abbildung 13.

Figure 13: Interpolierende Bäume von REM bis BRW

Das Hauptresultat von Kistler und Schmidt [42] ist

Theorem 15. Sei (X (N)
σ )σ∈ΣN definiert wie zuvor für K = Nα und ein α ∈ (0,1), dann gilt

∑
σ∈ΣN

δ
X (N)

σ −
(√

2ln2N− 1+2α

2
√

2ln2
lnN

)→ Ξ, (43)

schwach für N→ ∞ mit Ξ einem Poisson Punkt Prozess mit Intensität 1√
2π

e−
√

2ln2xdx.

Zu Vergleichszwecken sei angemerkt, dass dies direkt schwache Konvergenz des rezentrierten
Maximums gegen die Gumbelverteilung zur Folge hat. Wir sehen, dass die log-Korrektur linear
in α zwischen REM und BRW interpoliert. Gegebenes Resultat ist für α = 0 (REM Fall) immer
noch korrekt, kann jedoch nicht korrekt sein im BRW Fall α = 1 in Anbetracht von Theorem 14.
Dies ist zu erwarten, da in diesem Fall sowohl Fluktuationen in der frühen Entwicklung als auch
enge Verwandte der maximalen Partikel, die sich nur um Ordnung 1 unterscheiden, existieren.
Diese beiden Effekte haben einen nicht poissonschen Beitrag zum Extremalprozess, für den es
keinen Grund gibt nach Grenzübergang nicht mehr sichtbar zu sein. Die intuitiven Gründe für die
Gültigkeit von Theorem 15 werden detaillierter in Kapitel 1.2 dieser Arbeit behandelt.

Wir gehen zur Betrachtung eines mit dem BRW verwandten Modells über: Branching Brow-
nian motion (BBM), siehe Abbildung 14. Zur Konstruktion einer BBM betrachten wir ein in 0
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Figure 14: Zwei Realisationen einer branching Brownian motion

startendes Partikel, dass für eine exponentialverteilte Zeit zum Parameter 1 einer standard brown-
schen Bewegung folgt und sich dann in zwei Partikel spaltet, die sich vom Spaltungspunkt aus wie
unabhängige Kopien des ersten Partikels verhalten. Die Extreme der BBM wurden ausführlich
studiert (siehe z.B. [2, 8, 21, 27, 43]). Dies ist nicht nur auf Interesse rein theoretischer Natur
zurückzuführen, sondern auch bedingt durch den Zusammenhang zur FKPP Gleichung [46] und
die Relevanz für ungeordnete Systeme [25, 34]. Auch die Verallgemeinerungen auf zeitabhänge
Geschwindigkeit der brownschen Bewegung wird untersucht [22, 23, 34, 35]. Ein Modell in dieser
Klasse ist two-speed BBM, die bis zur Zeit t/2 eine Geschwindigkeit und von t/2 bis t eine andere
Geschwindigkeit betrachtet (siehe Abbildung 15). Fluktuiert die brownsche Bewegung im ersten

Figure 15: Two-speed BBM, starke Abhängigkeiten (links), schwache Abhängigkeiten (rechts)

Teil weniger als im Zweiten, so sind wir im Regime schwacher Abhängigkeiten. Umgekehrt sind
die Fluktuationen am Anfang stärker, so befinden wir uns im Regime starker Abhängigkeiten.
Grob kann man dies wie folgt begründen: Weniger Fluktuationen am Ende reduzieren die Chan-
cen auf eine große Verbesserung in der zweiten Hälfte; dies erhöht den Wert eines guten Kandi-
daten zur Zeit t/2, was dazu führt, dass es weniger Kandidaten zur Zeit t/2 gibt, die eine Chance
darauf haben, einen optimalen Nachfahren zur Zeit t zu erzeugen. Je größer die Fluktuationen am
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Ende umso mehr verschiebt sich das Energie-Entropie-Gleichgewicht in Richtung Entropie. In
einfachen Worten: Wenn große Veränderungen anstehen, sind die optimalen Partikel von morgen,
Nachfahren suboptimaler Partikel von heute, allein aus dem Grund, dass diese enorm zahlreich
sind. Auf der anderen Seite, wenn stabile Zeiten anstehen, ist der Vorteil von heute von größerer
Bedeutung. Standard BBM ist der kritische Fall zwischen diesen Regimen. Im zweiten Paper
dieser Arbeit Glenz, Kistler und Schmidt [36] besprechen wir das Verhalten der Anzahl von high-
points einer BBM. Diese Größe ist stark mit dem schwachen Abhängigkeitsregime der two-speed
BMM verbunden. Mit (Xi(t), i≤ n(t)) den Positionen der Partikel einer standard BBM zur Zeit t
definieren wir die Anzahl der α-highpoints durch

Zα(t)≡ #
{

k ≤ n(t) : xk(t)≥
(√

2−α

)
t
}

(44)

für α ∈ (0,
√

2). Dies ist sinnvoll, da für α = 0 keine Partikel mehr existieren und für α =
√

2
praktisch jeder zweite Partikel ein highpoint ist. Das Hauptresultat von Glenz, Kistler und Schmidt
[36] ist folgendes starke Gesetz der großen Zahlen für highpoints:

Theorem 16. Für 0 < α <
√

2 gilt

lim
t→∞

Zα(t)
EZα(t)

= Yα , fast sicher, (45)

wobei Yα der fast sichere Grenzwert von McKean’s Martingal Yα(t) ist:

Yα(t)≡ ∑
k≤n(t)

exp
[
−t
(

1+
1
2

∆
2
α

)
+∆αxk(t)

]
. (46)

Zur Erklärung der Intuition hinter diesem Resultat sei ∆α ≡
√

2−α , n(r) die Anzahl der
Partikel zur Zeit r und sei ni(t− r) die Anzahl der Kinder die ein Partikel i ≤ n(r) zur Zeit r bis
Zeit t erzeugt. Durch sortieren der Partikel zur Zeit t in Gruppen mit gemeinsamem Vorfahren zur
Zeit r identifizieren wir

{xk(t),k ≤ n(t)}= {xi(r)+ xi, j(t− r), i≤ n(r), j ≤ ni(t− r)}. (47)

Berechnen wir den bedingten Erwartungswert von Zα(t), gegeben die Ereignisse bis zur Zeit r, so
ergibt sich

E [Zα(t) |Fr] = E

[
∑

k≤n(t)
1{xk(t)≥ ∆αt}

∣∣∣Fr

]
=

= E

[
∑

i≤n(r)
∑

j≤ni(t−r)
1
{

xi, j(t− r)≥ ∆α(t− r)− (xi(r)−∆αr)
}∣∣∣Fr

]
= ∑

i≤n(r)
et−rP

[
x1(t− r)≥ ∆α(t− r)− (xi(r)−∆αr)

∣∣∣Fr

]
∼
(

∆α

√
2π

)−1
exp
[(

1−∆
2
α/2
)

t− 1
2

log(t)
]

Yα(r), f.s..

(48)

Der letzte Schritt durch gaussche Tailabschätzungen unter Verwendung, dass r wesentlich kleiner
als t ist. Somit sehen wir, dass

E [Zα(t) |Fr]

E [Zα(t)]
=

E [Zα(t) |Fr]

E [Zα(t)F0]
∼ Yα(r)

Yα(0)
= Yα(r) (49)

57



gilt, was die Aussage von Theorem 16 zum natürlichen Resultat macht. Natürlich auch daher,
dass es leicht ist vorherzusagen, dass die Fluktuationen am Anfang der Evolution im Grenzwert
sichtbar sind, da diese einen Einfluss auf einen nicht verschwindenden Anteil der Gesamtpopula-
tion haben. Der Beweis von Theorem 16 besteht somit im Wesentlich daraus, zu zeigen, dass die
Differenz zwischen Zα(t) und seinem bedingten Erwartungswert verschwindet. Dies geschieht
mittels einer Multiskalenverbesserung der zwei Momenten Methode, die Partikel zu weit oberhalb
der optimalen Strategie abschneidet.

Das dritte Paper dieser Arbeit ist Schmidt [52]. Es beschäftigt sich damit, wie die entwickelten
Methoden für hierarchische Felder Anwendung auf approximativ hierarchische Felder finden, im
Falle von Abdeckzeiten (cover times) in zwei Dimensionen. Dieses Studium manifestiert sich in
einem wesentlich vereinfachten Beweis des berühmten Resultats von Dembo, Peres, Rosen und
Zeitouni (kurz DPRZ) [31]:

Theorem 17. Für Tε die ε-Abdeckzeit des zweidimensionalen Einheitstorus gilt

Tε

(lnε)2 →
2
π

fast sicher für ε → 0. (50)

Um Abdeckzeiten präzise zu definieren, identifizieren wir den Einheitstorus T2 mit [0,1)×
[0,1)⊂ R2, ausgestattet mit der Metrik

dT2 (x,y) = min{||x− y+(e1,e2) || : e1,e2 ∈ {−1,0,1}} . (51)

Eine brownsche Bewegung auf T2 ist durch Wt ≡
(
Ŵ1(t) mod 1,Ŵ2(t) mod 1

)
definiert, wobei

Ŵ eine standard brownsche Bewegung auf R2 ist. Die ε-Abdeckzeit Tε ist nun gegeben durch die
erste Zeit zu der W bis auf Abstand ε an jedem Punkt war. Betrachten wir Tε(x) die erste Treffzeit
des ε-Balls um x ∈T2, dann gilt folgende Identität

Tε = sup
x∈T2

Tε(x). (52)

Um Theorem 17 zu plausibilisieren führen wir einige Überschlagsrechnungen durch. Betrachten
wir 0< r <R< 1/2 und einen Referenzpunkt x∈T2, dann kann gezeigt werden, dass eine brown-
sche Bewegung in Erwartung 1

π
ln R

r Zeiteinheiten für eine Exkursion von ∂BR(x) nach ∂Br(x) und
zurück benötigt (bis auf beschränkten Fehler). Daher gilt für r klein und t groß genug, dass W
circa tπ/ ln R

r solche Exkursionen bis zur Zeit t absolviert. Die Chance, dass Bε(x) von W in einer
solchen Exkursion getroffen wird beträgt exakt lnR−lnr

lnR−lnε
. Folglich ist die Wahrscheinlichkeit einen

ε-Ball zu vermeiden grob (
1− lnR− lnr

lnR− lnε

) t
1
π ln R

r ≈ exp
(
πt(lnε)−1) . (53)

Da grob ε−2 disjunkte ε-Bälle auf dem Einheitstorus platziert werden können, ist es plausibel zu
denken, dass ε-Abdeckung ungefähr zu der Zeit stattfindet, zu der all diese Bälle getroffen worden
sind. Wenn wir nun für einen kurzen Moment blind darauf hoffen, dass die Korrelationen nicht
zu stark sind, sollte beschriebenes Ereignis grob zu der Zeit eintreten, zu der die erwartete Anzahl
ungetroffener Bälle von Ordnung 1 ist. Somit ergibt sich folgende Vermutung:

ε
−2 exp

(
πt(lnε)−1) !

= O(1). (54)

Diese trifft exakt Theorem 17. Man kann diese grobe Betrachtung als obere Schranke rigoros be-
weisen. Für eine passende untere Schranke ist es jedoch notwendig die Abhängigkeiten genauer zu
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Figure 16: Hierarchische Struktur von Abdeckzeiten.

studieren. Dies erfolgt durch Kontrolle von Exkursionsanzahlen zwischen Kreisen mesoskopis-
cher Größe mittels Nutzung der starken Markoveigenschaft von W . Dieser Blickwinkel offen-
bart einen Entkopplungseffekt, der eine (approximativ) hierarchische Struktur erzeugt. Um das
Phänomen zu beschreiben betrachten wir Abbildung 16. Betrachten wir zwei Punkte auf dem
Torus und Kreise verschiedener Größe um sie herum. Wenn Kreisradien von größerer Ordnung als
der Abstand der Punkte sind, dann sind jeweils die zwei Kreise gleicher Größe mit verschiedenen
Mittelpunkten praktisch identisch und selbiges gilt demnach auch für betrachtete Exkursionsan-
zahlen. Dies ist abgebildet links und gibt uns den gemeinsamen "Stamm" der zwei Punkte. Be-
trachtet man Kreise mit Radius von gleicher Größenordnung wie der Abstand, so ist die Situation
komplizierter, wie wir im mittleren Bild sehen. Da dies jedoch nur für vergleichsweise wenige
Kreisgrössen eintritt, kann dieser Fall grob abgeschätzt werden, ohne problematische Fehler zu
verursachen. Ist der Abstand zwischen den Punkten größer als die betrachteten Radien, sind die
Kreise disjunkt (rechts). Disjunkte Kreise bedeuten, dass gegeben dem Geschehen außerhalb, ist
das Geschehen innerhalb der Kreise unabhängig voneinander. Da Exkursionsanzahlen zwischen
Kreisen mit dem selben Mittelpunkt in Verteilung nicht von dem Startpunkt auf dem Rand ab-
hängen, erhalten wir perfekte Unabhängigkeit von Exkursionsanzahlen disjunkter Kreise. Diese
Beobachtung erlaubt eine Multiskalenanalyse des Modells, als ob es ein hierarchisches Modell
wäre, die letztendlich zum Erfolg führt.
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