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Abstract

In this paper, we study the limit of compactness which is a graph index originally introduced

for measuring structural characteristics of hypermedia. Applying compactness to large scale

small-world graphs (Mehler, 2008) observed its limit behaviour to be equal 1. The striking

question concerning this finding was whether this limit behaviour resulted from the specifics

of small-world graphs or was simply an artefact. In this paper, we determine the necessary

and sufficient conditions for any sequence of connected graphs resulting in a limit value of

CB = 1 which can be generalized with some consideration for the case of disconnected

graph classes (Theorem 3). This result can be applied to many well-known classes of con-

nected graphs. Here, we illustrate it by considering four examples. In fact, our proof-theoreti-

cal approach allows for quickly obtaining the limit value of compactness for many graph

classes sparing computational costs.

Introduction

Evidently, a hypertext forms a network of documents mostly linked on the basis of content-

related connections. There is a range of studies applying the compactness measure itroduced

in [2] in order to answer questions concerning the structure of hypermedia [1–8]. All these

studies addressed compactness computing the values of particular graph invariants which

implies high computational costs. In this paper, we take a different perspective considering the

limit of compactness for different classes of connected graphs proof-theoretically. Our

approach allows for omitting the computational step when the conditions below hold.

The paper is organized as follows. Section starts with repeating graph-theoretical notions

used throughout the paper. Section outlines our main findings regarding the limit value of

compactness. Section illustrates the application of our tool on four selected graph classes.

Finally, Section summarizes our mathematical findings and gives an outlook on results

obtained which are part of a subsequent publication. More specifically, in Section we give an

overview of those graph classes for which compactness can be easily obtained applying our

mathemaical tool (in fact, we have studied about 30 well-known graph classes, there are pre-

sumably more than those mentioned here for which our tool can be applied).
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Preliminaries

In this Section, we recall some definitions from graph theory to be used throughout this paper.

Let G be a simple undirected graph with the vertex set V = V(G) and the edge set E = E(G). The

order n of G is the number of its vertices (n = |V|). The size of G is the number of its edges.

Definition 1. The degree (or valency) deg(v) of a vertex v of a graph G is the number of edges
incident to v in G.

Definition 2. The geodesic distance δ(v, w) of two vertices u and v in graph G is the number
of edges of the shortest path in G connecting them.

Definition 3. The diameter D(G) of a graph G is the maximum of geodesic distances in G.

By L(G) we denote the average geodesic distance in graph G = (V, E) [9]:

LðGÞ ¼
P
fv;wg2½V�2 dðv;wÞ
nðn � 1Þ

ð1Þ

Further, we denote the numerator of the fraction in (1) by S(G), that is:

SðGÞ ¼
X

fv;wg2½V�2
dðv;wÞ

ð2Þ

Thus, (1) can be rewritten as:

LðGÞ ¼
SðGÞ

nðn � 1Þ
ð3Þ

Further, for every vertex c 2 V we denote by S(c, G) the sum of n − 1 geodesic distances

from c to vertices in V \ {c}. That is:

Sðc;GÞ ¼
X

u2V

dðc; uÞ ð4Þ

and using this notation we write

SðGÞ ¼
X

u2V

Sðu;GÞ ð5Þ

For example, for the path graph P2 on two vertices u and v connected by an edge we get

Sðu; P2Þ ¼ Sðv; P2Þ ¼ 1

and

SðP2Þ ¼ Sðu; P2Þ þ Sðv; P2Þ ¼ 2

We repeat the definition of the compactness CB(G) of a graph G = (V, E), |V| = n> 1, as

introduced in [2] in a version obtained from [1]:

CBðGÞ ¼
Kðn � 1Þn � ð

P
fv;wg2½V�2 dðv;wÞ þ K

P
G02ComðGÞjG

0jðjVj � jG0jÞÞ
ðK � 1Þnðn � 1Þ

ð6Þ

where K is “the maximum value an entry in the converted distance matrix [of a graph] can

assume” [2, p. 161], Com(G) is the set of connected components of G and |G0| is the order of

the graph G0 (connected component of the graph G). In what follows, we set K = n. Here, we
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consider only connected graphs, so we can obviously write the following:

CBðGÞ ¼
n

n � 1
�

LðGÞ
n � 1

: ð7Þ

On can easily see that CB(G)� 1. Further, since 8{v, w} 2 [V]2: D(G)� δ(v, w), we have:

0 � LðGÞ � DðGÞ: ð8Þ

Thus, with (7) and (8) we get for every connected graph G:

1 � CBðGÞ ¼
n

n � 1
�

LðGÞ
n � 1

¼ 1 �
LðGÞ � 1

n � 1
� 1 �

DðGÞ � 1

n � 1
ð9Þ

Definition 4. The path graph Pm, m� 2, is a simple connected undirected graph with two
vertices of degree 1 (called terminal vertices) and m − 2 vertices of degree 2 (called internal
vertices).

The order n of Pm is equal to m and its diameter D(Pm) = m − 1. The vertices of Pm can be

labeled by the consecutive integers {1, 2, . . ., m} in such a way that the terminal vertices are

labeled by 1 and m, respectively, and for every integer i, 1� i�m − 1, the consecutive vertices

with labels i and i + 1 are adjacent.

Further we need the following formula the proof of which one can easily get with the

straightforward calculation:

SðPmÞ ¼
mðm2 � 1Þ

3
ð10Þ

Hence in view of (3) we have

LðPmÞ ¼
mðm2 � 1Þ

3mðm � 1Þ
¼
mþ 1

3

and

CBðPmÞ ¼
m

m � 1
�

mþ 1

3ðm � 1Þ
¼

2

3
þ

1

3ðm � 1Þ
ð11Þ

Definition 5. The Cartesian product G1☐G2 of two graphs G1, G2 is a graph with vertex set
V(G1) × V(G2 ) such that any two vertices (v, u), (w, z) 2 V(G1☐G2 ) are adjacent iff v = w and u
and z are adjacent in G2 or v and w are adjacent in G1 and u = z.

Remark 1. If G = G1☐G2 is the Cartesian product of two graphs G1 of order n1 and G2 of
order n2, then the following properties (referred to below) hold:

• G is connected iff both G1 and G2 are connected;

• the diameter of G is the sum of the diameters of G1 and G2:

DðG1☐G2Þ ¼ DðG1Þ þ DðG2Þ

• the order n of G is the product n1 n2 of the order n1 of G1 and the order n2 of G2.

Example 1. Let us consider the Cartesian product G(m) of two copies of the path graph Pm,
that is, G(m) = Pm☐Pm (a so-called square lattice graph whose compactness CB is investigated
below). According to Remark 1, G(m) is connected (since Pm is connected), its order is m2 and its
diameter D(G(m)) is 2(m − 1).

Compactness—The limit value
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Main results

Throughout the present paper we deal with sequences {G(m)|m = 1, 2, . . .} of connected graphs

that satisfy the following “natural” condition

lim
m!1

nðmÞ ¼ 1 ð12Þ

where n is the order of the graph G(m).

Theorem 1. Let {G(m)|m = 1, 2, . . .} be a sequence of simple undirected connected graphs G
(m) such that the order n = n(m)!1 for m!1. Assume that the following holds:

limm!1
DðGðmÞÞ

n
¼ 0; ð13Þ

where D(G(m)) is the diameter of the graph G(m). Then, the compactness CB(G(m)) tends to 1
for m!1.

Proof. In view of (9) we have

1 � CBðGðmÞÞ � 1 �
DðGðmÞÞ � 1

n � 1

which implies with our assumptions that

lim
m!1

CBðGðmÞÞ ¼ 1

Theorem 2. Let {G(m)|m = 1, 2, . . .} be a sequence of simple undirected connected graphs G
(m) such that the order n = n(m)!1 for m!1. Then, L(G(m))/n!0 for m!1 (n!1)

iff D(G(m))/n! 0 for m!1 (n!1).

Proof. In view of (8), we can easily see that we only need to prove that if D(G)/n↛ 0 for

m!1 then L(G)/n↛ 0 for m!1.

Without loss of generality we assume that

lim
m!1

DðGÞ=n ¼ c 6¼ 0 ð0 < c � 1Þ

Hence, if we take any number a, 0< a< c, then for all sufficiently large numbers m we

have

DðGÞ > an

which implies that there is a geodesic path (subgraph Pk(n)) in G of length k(n) where k(n) is

the integer part of the number an. So we have an = k(n) + εn with εn (0� εn< 1) being the

fractional part of the number an. Therefore, in view of S(G)> S(Pk(n)) and with (10) we have

for all sufficiently large m

LðGÞ=n > SðPkðnÞÞ=ðn2ðn � 1ÞÞ ¼ ð1=3ÞkðnÞðkðnÞ2 � 1Þ=ðn2ðn � 1ÞÞ:

Thus, with k(n) = an − εn we get

LðGÞ=n >
ðan � εnÞððan � εnÞ

2
� 1Þ

3n2ðn � 1Þ
¼
ða � εn=nÞðða � εn=nÞ

2
� 1=n2Þ

3ð1 � 1=nÞ

Compactness—The limit value
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which implies in view of limm!1 n =1 that for all sufficiently large numbers m we have

LðGÞ
n
� a3=4 > 0:

Hence, L(G)/n↛ 0.

From these two theorems obviously follows:

Corollary 1. For any sequence of simple undirected connected graphs G(m) for which the
order n = n(m) of G(m) tends to1 whenever m!1, CB(G(m))! 1 for m!1 iff for
m!1 L(G(m))/n! 0 (D(G(m))/n! 0).

And what about the case of disconnected graphs? It turns out that Corollary 1 can be easily

generalized with some consideration for the case of disconnected graph classes. That is, the fol-

lowing statement holds:

Theorem 3. Let {G(m)|m = 1, 2, . . .} be a sequence of simple undirected not necessarily con-
nected graphs G(m) such that the order n = n(m)!1 for m!1. Then, the compactness CB of
G(m) tends to 1 iff both of the following equalities hold:

1. L(G(m))/n!0 (or D(G(m))/n! 0) for m!1

2. limm!1 n1/n = 1 (equivalently, limm!1(n − n1)/n = 0), where n1 is the order of the largest
connected component of G(m).

These results give an answer to the question in which case CB(G(m)) tends to 1 for m!1
(n!1).

Some simple applications

In this section, we consider four simple classes of undirected connected graphs and examine

their compactness CB in the limit of their order (i.e., n!1). Sometimes, CB is easily esti-

mated as in the case of complete graphs. In most cases, however, it is difficult to calculate the

exact value of CB or to give a good estimation of it. Here, we refer to Corollary 1 in order to do

this.

The examples of graphs considered here have the following properties. Their diameter D
(G) is either constant or grows slower than its order n in such a way that D(G)/n tends to 0

whenever n tends to1.

Complete graphs

A complete graph Kn of order n is a simple undirected graph with n vertices such that each pair

of distinct vertices is connected by a unique edge. That is, the average geodesic distance L(Kn)

and the diameter D(Kn) both are equal to 1. Using (7), we get the exact value of compactness

CB(Kn) of Kn:

CBðKnÞ ¼
n

n � 1
�

LðGÞ
n � 1

¼
n

n � 1
�

1

n � 1
¼ 1

It is worth noting that the complete graph Kn is the only graph for which CB(Kn) equals 1.

This trivially results in the following equality:

lim
n!1

CBðKnÞ ¼ 1

The same result is obtained by directly applying Corollary 1.

Compactness—The limit value
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Star graphs

A star graph Sm on m vertices (m> 2) is a simple undirected connected graph in which one

vertex called central vertex has degree m − 1 and another m − 1 vertices have degree 1.

Consider a sequence {Sm|m = 1, 2, . . .} of connected star graphs of order n = m where diam-

eter D(Sm) is obviously equal to 2 8m� 3. By using Corollary 1 we immediately obtain (seem-

ingly counter-intuitively to what we expect should be measured by compactness):

lim
m!1

CBðSmÞ ¼ 1

It is worth noting that for Sm (m> 2) it is easy to calculate the value of L(Sm) and of CB(Sm).

Indeed, we have

SðSmÞ ¼ 2ðm � 1Þ
2

where S(G) is defined by (2). Next, using (3), L(Sm) can be computed as follows:

LðSmÞ ¼ 2ðm � 1Þ
2
=ðmðm � 1ÞÞ ¼ 2ðm � 1Þ=m

So with (7) we clearly have

CBðSmÞ ¼
m

m � 1
�

2

m

Hence, it follows that CB(Sm)! 1 as m!1. Thus, we get the same result as in the case of

complete connected graphs by calculating CB(Sm) without Corollary 1.

Lattice graphs

We consider a simple undirected graph G(m) whose vertices can be associated with the points

in the plane with the integer x and y coordinates being both in the range 1, 2, . . .m. Two verti-

ces are connected by an edge if and only if the distance between them is equal to 1. Such a

graph is called a lattice graph or a square grid graph and can be viewed as the Cartesian prod-

uct of two copies of the path graph Pm, that is, G(m) = Pm☐Pm (see Example 1). So, we only

repeat that G(m) is connected, has the order n = m2 and the diameter D(G(m)) = 2(m − 1).

Let us consider a sequence {G(m)|m = 1, 2, . . .} of lattice graphs. What is the limit value of

CB(G(m))? With n = m2 and D(G(m)) = 2(m − 1) we have

lim
m!1

n ¼ 1

and

lim
m!1

DðGðmÞÞ
n

¼ lim
m!1

2ðm � 1Þ

m2
¼ 0

Hence, with Corollary 1 we immediately have limm!1 CB(G(m)) = 1.

Hypercube graphs

A hypercube graph Qm is a simple undirected connected graph on 2m vertices labeled by the

numbers 0, 1, . . ., 2m − 1. Two vertices are connected by an edge if and only if the binary repre-

sentations of their labels differ exactly in one position. Qm can also be defined as the Cartesian

Compactness—The limit value
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product of m copies of the path graph P2:

Qm ¼ P2☐P2☐ . . .☐P2|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
m

In view of Remark 1 of Section, we see that Qm is connected (because P2 is connected), its

diameter D(Qm) equals m and its order n is 2m. We easily see that the fraction D(Qm)/n = m/2m

tends to zero for m!1, so with Corollary 1 we obtain:

lim
m!1

CBðQmÞ ¼ 1:

Concluding remarks

We confined us here to providing only four simple examples of the graph classes, for which

our tool can be easily applied. Actually, we have found more than 30 well-known graphs classes

for which our tool is applicable. So, the compactness of these graphs tends to 1 whenever their

order tends to1.

First, among these graph classes there are those whose diameter does not depend on the

order n. These are book graphs, complete r-partite graphs, crown graphs, Hadamard graphs, Kel-
ler graphs, lating square graphs, Paley graphs, strongly regular graphs, Turán graphs, wheel
graphs, windmill graphs and some others.

Next, we found some graph classes for each of which the estimation of its diameter as a

function of the order n allows the application of our tool. Among those graph classes are the

following: de Bruijn graphs, cube-connected cycles, Fibonacci cube graphs, folded cube graphs,
Hamming graphs, Johnson graphs, king’s graphs, Kneser graphs, knight’s graphs, perfect undi-
rected binary trees, self-complementary graphs, Ramanujan graphs and others.

Further, we have seen in Section that the complete graph Km has the largest possible value

of compactness which is 1. So we can say that the graph Km is the most compact graph among

all the graphs of the same order m. If we try now to get the limit value of compactness of the

path graph Pm using our tool, we see that this is not possible because D(Pm)/m↛ 0 for m!
1. Indeed,

lim
m!1

DðPmÞ

m
¼ lim

m!1

m � 1

m
¼ 1

but with (11) we easily get limm!1 CB(P(m)) = 2/3. We can prove (to appear) that the path

graph Pm is the least compact among all the simple connected undirected graphs of the same

order m. That is, for each such graph G of order m the following holds:

2

3
< CBðPmÞ � CBðGÞÞ � CBðKmÞ ¼ 1:

This finding defines the range of possible values of compactness for connected graphs.

Hence, the limit value of compactness for any sequence of simple connected undirected graphs

lies within the interval [2/3; 1]. Moreover, we can prove (to appear) that for any number α in

the interval [2/3; 1] a graph family can be constructed for which the limit value is exactly α.

It is worth noting that in the case of not necessarily connected graphs the value of compact-

ness lies within the interval [0, 1]. Our future work will consider, amongst others, an extended

set of graph classes and the study of a range of invariants including weighted and unweighted

ones.
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